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Düzce-TÜRKİYE
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Monte Carlo and Quasi Monte Carlo Approach to

Ulam’s Method for Position Dependent Random

Maps

Md Shafiqul Islam 1*

Abstract
We consider position random maps T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)} on I = [0,1], where τk,k =
1,2, . . . ,K is non-singular map on [0,1] into [0,1] and {p1(x), p2(x), . . . , pK(x)} is a set of position dependent

probabilities on [0,1]. We assume that the random map T posses a density function f ∗ of the unique absolutely

continuous invariant measure (acim) µ∗. In this paper, first, we present a general numerical algorithm for the

approximation of the density function f ∗. Moreover, we show that Ulam’s method is a special case of the general

method. Finally, we describe a Monte-Carlo and a Quasi Monte Carlo implementations of Ulam’s method for the

approximation of f ∗. The main advantage of these methods is that we do not need to find the inverse images of

subsets under the transformations of the random map T .

Keywords: Dynamical systems, Invariant measure, Invariant density, Monte Carlo approach, Position dependent

random maps, Quasi Monte Carlo approach, Ulam’s method.
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1. Introduction

A position dependent random map is a special type of random dynamical system involving a set of non-singular transfor-

mations on the state space and a set of position dependent probabilities on the state space. In each iteration of the process,

one map from the set of maps with one position dependent probability from the set of probabilities [1] is selected and

applied. There are applications of random maps in many areas of science and engineering [2]-[3]-[4]-[5]-[6]. In [2] the

author applied the theory of random dynamical systems in the study of fractals. In [3], Boyarsky and Góra applied the theory

of random dynamical systems in modelling interference effects in quantum mechanics. The authors in [4] applied random

maps for computing metric entropy. Random maps have application in forecasting the financial markets [5] and in economics [6].

Invariant measures describe the statistical behaviour of trajectories of position dependent random maps [1]. In particular,

invariant measures of random maps which are absolutely continuous with respect to Lebesgue measure are very useful for the

study of chaotic nature of random dynamical systems [7]. The Frobenius-Perron operator [1, 8] of a random map is one of the

important tools for the study of invariant measures. A Fixed point f ∗ of the Frobenius-Perron operator of a position dependent

random maps are the density function f ∗ of invariant measures µ∗ [1, 7]. It is difficult to solve the fixed point equation
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or the Frobenius–Perron equation [1] for a position dependent random map because it is a complicated functional equation

except for some simple cases. Therefore, finite dimensional approximation of the Frobenius-Perron operator is necessary

to approximate invariant measures for position dependent random maps. In [9], Lasota and Yorke proved the existence of

absolutely continuous invariant measures (acims) for one dimensional deterministic dynamical systems. In his pioneering

work[10], Ulam suggested finite dimensional approximation of the Frobenious Perron operator of dynamical systems for the

approximation of invariant measures. It was T-Y Li who first proved in [11] the convergence of Ulam’s approximation for

piecewise expanding transformations τ on [0,1]. In [8], Pelikan proved a Lasota–Yorke type inequality random maps with i. i.

d. probabilities using bounded variation techniques. Then, he used the Lasota-Yorke type inequality for proving the existence

of absolutely continuous invariant measures for i. i. d. random maps. Góra and Boyarsky [1] proved the existence of absolutely

continuous invariant measures (acim) for position dependent random maps. Moreover, they proved the convergence of Ulam’s

method for position dependent random maps.

Ulam’s method is a simple, easy to implement and very useful method for approximating invariant measures for de-

terministic and random maps [1]-[14]. Note that each of the map τk,k = 1,2, . . . ,K of a position dependent random map

T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), · · · , pK(x)} is a piecewise monotonic map on a finite partition P = {I1, I2, · · · , Iq}. The

entries of an Ulam’s matrix for a random map T are related to inverse images of the transformations τk,k = 1,2, . . . ,K. For

non-linear τk,k = 1,2, . . . ,K, it is difficult to find inverse images under τk,k = 1,2, . . . ,K, and hence the computation of Ulam’s

matrix becomes challenging and complicated. In this paper, we describe a Monte Carlo method and a Quasi Monte Carlo

approach to Ulam’s method for approximating the entries of Ulam’s matrix. The main advantage of Monte-Carlo method

and Quasi Monte Carlo approach to Ulam’s method is that we do not need to find the inverse images of subsets under the

transformations of the random map T . Moreover, the evaluation of an entry of the Ulam’s matrix is independent of their entries

[12].

2. Invariant Measures for Position Dependent Random Maps and Ulam’s Method

In this section, we review position dependent random maps, the Frobenius-Perron operator, density function of absolutely

continuous invariant measures and Ulam’s method. We closely follow [1, 13, 14].

2.1 Position dependent random maps and their invariant measures

Let (I = [0,1],B,λ ) be a measure space and τk : [0,1]→ [0,1],k = 1,2, · · · ,K, be piecewise one-to-one and differentiable, non-

singular maps on a common partition I = {I1, I2, · · · , Iq} of [0,1]. We denote V (.) for the standard one dimensional variation

of a function, and BV ([0,1]) for the space of functions of bounded variation on I equipped with the norm ‖ . ‖BV=V (.)+ ‖ . ‖1,

where ‖ . ‖1 denotes the L1 norm of a function. A position dependent random map T on I with position dependent probabilities

is defined as

T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), · · · , pK(x)}

where {p1(x), p2(x), · · · , pK(x)} is a set of position dependent probabilities on I. For any x ∈ I,T (x) = τk(x) with probability

pk(x) and, for any non-negative integer N,T N(x) = τkN
◦τkN−1

◦· · ·◦τk1
(x) with probability pkN

(τkN−1
◦· · ·◦τk1

(x))pkN−1
(τkN−2

◦
· · · ◦ τk1

(x)) . . . pk1
(x). It is shown in [1] that a measure µ is invariant under the

µ(A) =
K

∑
k=1

∫

τ−1
k

(A)
pk(x)dµ(x) (2.1)

for any A ∈ B.

The Frobenius–Perron operator of the position dependent random map T is given by [1]:

(PT f )(x) =
K

∑
k=1

(

Pτk
(pk f )

)

(x) (2.2)

where Pτk
in (2.2) is the Frobenius-Perron operator of τk [14] defined by

Pτk
f (x) = ∑

z∈{τ−1
k

(x)}

f (z)
∣

∣τ ′k(z)
∣

∣

(2.3)
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where, for any x, the set {τ−1
k (x)} consists of at most q points. The Frobenius-Perron operator PT has the following properties

(i) PT : L1([0,1])→ L1([0,1]) is a linear operator;

(ii) PT is non-negative, i.e., f ∈ L1([0,1]) and f ≥ 0 => PT f ≥ 0;

(iii) PT is a contractive, i.e., ‖ PT f ‖1≤‖ f ‖1, for any f ∈ L1([0,1]);
(iv) PT satisfies the composition property, i.e., if T and R are two position dependent random maps on [0,1], then PT◦R = PT ◦PR.

In particular, for any n ≥ 1,Pn
T = PT n ;

(v) PT f = f if and only if µ = f ·λ is T-invariant.

The following Lemmas (Lemma 2.1 and Lemma 2.2) are key Lemmas for proving the existence of invariant measures for

position dependent random maps. These Lemmas are proved by Bahsoun and Góra in[13].

Lemma 2.1. [13] Consider the position dependent random maps T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), ..., pK(x)}, where τk :

[0,1] → [0,1],k = 1,2, ...,K are piecewise one-to-one and differentiable, nonsingular maps on a common partition J =

{J1,J2, ......,Jq} of [0,1]. Let gk(x) =
pk(x)

|τ ′k(x)|
,k = 1,2, ...,K. Assume that the random map T satisfies the following conditions:

(i) ∑
K
k=1 gk(x)< α < 1,x ∈ [0,1]; (ii) gk ∈ BV ([0,1]),k = 1,2, ...,K. Then, for any f ∈ BV ([0,1]), PT satisfies the following

Lasota-Yorke type inequality:

V[0,1]PT f ≤ AV[0,1] f +B ‖ f ‖1 (2.4)

where A = 3α + max
1≤i≤q

K

∑
k=1

VJi
gk and B = 2βα +β max

1≤i≤q

K

∑
k=1

VJi
gk with β = max

1≤i≤q

1

λ (Ji)
.

Proof. See [13]

Note that for x ∈ [0,1] and for any N ≥ 1 we have, T N(x) = τkN
◦ τkN−1

◦ · · · ◦ τk1
(x) with probability

pkN
(τkN−1

◦ · · · ◦ τk1
(x))pkN−1

(τkN−2
◦ · · · ◦ τk1

(x)) . . . pk1
(x).

For ω ∈ {1,2, . . . ,K}N , define

Tω(x) = T N(x),

pω = pkN
(τkN−1

◦ · · · ◦ τk1
(x))pkN−1

(τkN−2
◦ · · · ◦ τk1

(x)) . . . pk1
(x),

gω =
pω

|T ′
ω(x)|

,WN = max
L∈J (N)

∑
ω∈{1,2,...,K}N

VLgω .

Based on Lemma 2.1, Bahsoun and Góra [13] have proved the following Lemma for the iterates of PT :

Lemma 2.2. Let T be a random map satisfying conditions of Lemma 2.1 and N be a positive integer such that

AN = 3αN +WN < 1. Then

V[0,1]P
N
T f ≤ ANV[0,1] f +BN ‖ f ‖1 (2.5)

where BN = βN

(

2αN +WN

)

,βN = max
L∈J (N)

1

λ (L)
.

In the following Theorem (Theorem 2.3), Bahsoun and Góra proved the existence of invariant measures for position

dependent random maps. The proof of this Theorem is based on the above Lemmas (Lemma 2.1 and Lemma 2.2) which is

proved in [13].

Theorem 2.3. [13] Consider the position dependent random map T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), . . . , pK}. Assume that the

random map T satisfies conditions of Lemma 2.1. Then, T possesses an invariant measure which is absolutely continuous with

respect to Lebesgue measure. Moreover, the operator PT is quasi-compact in BV (I).
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2.2 Ulam’s Method for Position Dependent Random Maps
In [1] Góra and Boyarsky described Ulam’s method for position dependent random maps. Moreover, they proved the conver-

gence of Ulam’s method. For the convenience of readers, we review the Ulam’s method for position dependent random maps.

Let T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)} be a position dependent random map and the random map T satisfies

conditions of Theorem 2.3. Then, by the Theorem 2.3, the random map T has an absolutely continuous invariant measure. We

also assume that the random map has a unique acim µ∗ with density function f ∗. In the following we describe Ulam’s method

for T.

Consider the partition P(N) = {J1,J2, . . . ,JN} of [0,1] into N subintervals such that max
Ji∈P(N) λ (Ji) goes to 0 as N → ∞. For

each 1 ≤ k ≤ K, construct the matrix

M
(N)
k =

(

λ
(

τ−1
k (J j)∩ Ji

)

λ (Ji)

)

1≤i, j≤N

.

Let L(N) be the set of functions f in L1([0,1],λ ) such that f is constant on elements of the partition P(N). Any f ∈ L(n) can be

treated as a vector: vector f = [ f1, f2, . . . , fN ] corresponds to the function f = ∑
N
i=1 fiχJi

. Let Q(N) be the isometric projection

of L1 onto L(N):

Q(N)( f ) =
N

∑
i=1

(

1

λ (Ji)

∫

Ji

f dλ

)

χJi
=

[

1

λ (J1)

∫

J1

f dλ , . . . ,
1

λ (JN)

∫

JN

f dλ

]

.

Let p
(N)
k = Q(N)pk =

[

p
(n)
k,1, p

(N)
k,2 , . . . , p

(n)
k,N

]

. Let f = [ f1, f2, . . . , fN ] ∈ L(N). Let the subscript c denotes the transpose of a matrix.

We define the operator P
(N)
T : L(N) → L(N) by

P
(n)
T f =

K

∑
k=1

(

M
(n)
k

)c

diag
([

p
(N)
k,1 f1, p

(N)
k,2 f2, . . . , p

(N)
k,N fN

])

(2.6)

as a finite dimensional approximation to the operator PT . Ulam’s matrix with respect to the partition P(N) is

M
∗(N)

P(N) =
K

∑
k=1

(

M
(N)
k

)c

diag
[

p
(N)
k,1 , p

(N)
k,2 , . . . , p

(N)
k,N

]

. (2.7)

The following theorem is proved in[1] (see Theorem 3 in [1]).

Theorem 2.4. Let α be sufficiently large where α is in Theorem 1 in [1]. Let f ∗N be is a normalized fixed point of P
(N)
T ,N =

1,2, . . . . Then the sequence { f ∗N}
∞
N=1 is pre-compact in L1. Any limit point f ∗ of the sequence { f ∗N}

∞
N=1 is a fixed point of PT .

3. A General Algorithm for Finite Dimensional Approximation of the Frobenius-Perron
Operator for Position Dependent Random Maps

Let T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), . . . , pK(x)} be a position dependent random map which satisfies the following assumptions:

there exists A = 3α + max
1≤i≤q

K

∑
k=1

VJi
gk < 1 and B = 2βα +β max

1≤i≤q

K

∑
k=1

VJi
gk > 0 with β = max

1≤i≤q

1

λ (Ii)
such that ∀ f ∈ BV ([0,1]).

V[0,1]PT f ≤ AV[0,1] f +B ‖ f ‖1 . (3.1)

We also assume that T has a unique acim µ∗ with density f ∗.

Note that the invariant density f ∗ of the unique acim µ∗ is the fixed point of the Frobenius-Perron operator PT . In the

following we describe a general approximation algorithm for f ∗. Our general algorithm is a generalization of the algorithm in

[12] for single deterministic map to an algorithm for position dependent random maps.

For each k = 1,2, . . . ,K, let Uτk
: L∞([0,1])→ L∞([0,1]) be the Koopman operator of τk defined by

(Uτk
g)(x) = g(τk(x)). (3.2)

Note that each Uτk
is the dual of the Frobenius-Perron operator Pτk

of τk.



Monte Carlo and Quasi Monte Carlo Approach to Ulam’s Method for Position Dependent Random Maps — 177/185

Definition 3.1. A sequence {φn}
∞
n=1 of functions in L∞([0,1]) is said to be a complete sequence if for any f ∈ L1(0,1) with

∫ 1
0 φn(x) f (x)dλ (x) = 0, n = 1,2, · · · implies f = 0.

Proposition 3.2. Let T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), . . . , pK} be a position dependent random map which has a unique acim

µ∗ with density f ∗. Let PT be the Frobenius-Perron operator of the random map T. Let {φn}
∞
n=1 be a complete sequence of

functions. Then, f ∗ is a fixed point of PT if and only if

∫

I

[

φn(x)−
K

∑
k=1

pk(x)φn(τk(x))

]

f ∗(x)dλ (x) = 0, n = 1,2, · · · . (3.3)

Proof. Suppose that f ∗ the unique invariant density of the random maps T . In other words,

(PT f ∗)(x) = f ∗(x). (3.4)

Then for n = 1,2, · · · ,
∫

I
f ∗(x)φn(x)dλ (x) =

∫

I
(PT f ∗)(x)φn(x)dλ (x)

=
∫

I

K

∑
k=1

(Pτk
(pk f ∗))(x)φn(x)dλ (x)

=
K

∑
k=1

∫

I
(Pτk

(pk f ∗))(x)φn(x)dλ (x)

=
K

∑
k=1

∫

I
(pk f ∗)(x)Uτk

(φn(x))dλ (x)

=
∫

I
f ∗(x)

[

K

∑
k=1

pk(x)φn(τk(x))

]

dλ (x).

Thus,

∫

I

[

φn(x)−
K

∑
k=1

pk(x)φn(τk(x))

]

f ∗(x)dλ (x) = 0, n = 1,2, · · · .

Conversely, suppose that f ∗ satisfies (3.3), that is,

∫

I
φn(x) f ∗(x)dλ (x) =

∫

I
f ∗(x)

K

∑
k=1

pk(x)φn(τk(x))dλ (x).

Now,

∫

I
f ∗(x)φn(x)dλ (x) =

∫

I
f ∗(x)

K

∑
k=1

pk(x)φn(τk(x))dλ (x)

=
∫

I
f ∗(x)

K

∑
k=1

pk(x)Uτk
(φn(x))dλ (x)

=
K

∑
k=1

∫

I
f ∗(x)pk(x)Uτk

(φn(x))dλ (x)

=
K

∑
k=1

∫

I
(Pτk

(pk f ∗))(x)φn(x)dλ (x)

=
∫

I

K

∑
k=1

(Pτk
(pk f ∗))(x)φn(x)dλ (x)

=
∫

I
(PT f ∗)(x)φn(x)dλ (x).
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Thus,

∫

I
( f ∗(x)− (PT f ∗)(x))φn(x)dλ (x) = 0, n = 1,2, · · · .

From Definition 3.1, f ∗(x)− (PT f ∗)(x) = 0. This proves that

(PT f ∗)(x) = f ∗(x).

Thus, the fixed point problem (3.4) of the Frobenius-Perron operator PT for the position dependent random map T is

equivalent to homogeneous moment problem (3.3). We propose the following general algorithm for computing fixed point of PT .

General Algorithm: Consider two complete sequences of functions φn and ψn. Let N be a positive integer. Construct the

N ×N matrix A = (ai j)1≤i, j≤N given by

ai j =
∫ 1

0

(

φi(x)−
K

∑
k=1

pk(x)φi(τk(x))

)

ψ j(x)dλ (x), i, j = 1,2, . . . ,N. (3.5)

Solve the homogeneous linear system of equation Av = 0 for nonzero v = (v1,v2, . . . ,vN) with ‖ ∑
N
i=1 viψi ‖L1= 1. Then,

fN = ∑
N
i=1 viψi is a normalized approximation of the fixed point f ∗ of PT .

Lemma 3.3. Av = 0 has a nontrivial solution v.

Proof. For a nonzero vector η = (η1,η2, . . . ,ηN), the constant function g(x) = 1 can be written as g(x) = 1 = ∑
N
i=1 ηiφi.

Moreover, for each k = 1,2, . . . ,K, Uτk
1(x) = 1(τk(x)) = 1. For each j = 1,2, . . . ,N,

N

∑
i=1

ai jηi =
N

∑
i=1

ηi

∫ 1

0

(

φi(x)−
K

∑
k=1

pk(x)φi(τk(x))

)

ψ j(x)dλ (x)

=
∫ 1

0

(

N

∑
i=1

ηiφi(x)−
K

∑
k=1

pk(x)Uτk
(

N

∑
i=1

ηiφi(x))

)

ψ j(x)dλ (x)

=
∫ 1

0

(

1−
K

∑
k=1

pk(x)Uτk
(1(x))

)

ψ j(x)dλ (x)

=
∫ 1

0

(

1−
K

∑
k=1

pk(x)1

)

ψ j(x)dλ (x)

=
∫ 1

0
(1−1)ψ j(x)dλ (x)

= 0.

Thus, Acη = 0, where Ac is the transpose of A. Thus, A is singular.

Remark 3.4. The main purpose of the above general algorithm is to find a normalized function f ∈ span {ψ1,ψ2, . . . ,ψN}
such that

∫

I

[

φn(x)−
K

∑
k=1

pk(x)φn(τk(x))

]

f (x)dλ (x) = 0, n = 1,2, · · · .

Let N be a positive integer. Divide the interval I = [0,1] into N subintervals Ji = [ i−1
N
,

i
N
], i = 1,2, . . . ,N. Let λ be the

Lebesgue measure on I. For each j = 1,2, . . . ,N, let χJi
be the characteristic function on Ji. As before, Let L(N) be the subspace

of L1([0,1]) consisting of functions which are piecewise constant on the subinterval Ji, i = 1,2, . . . ,N.

For each i = 1,2, . . . ,N, let

ψ := 1i = NχJi
, φi = χJi

.
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Then, {ψi}
N
i=1 is a density basis of L(N). Thus, f = ∑

N
i=1 viψi is a density if and only if v ≥ 0 and ‖ v ‖1= ∑

N
i=1 |vi|= 1. In the

following, we show that (i, j) element of the matrix A in the above general algorithm is the (i, j) element of the Ulam’s matrix

described in the previous section.

ai j =
∫ 1

0

(

φi(x)−
K

∑
k=1

pk(x)φi(τk(x))

)

ψ j(x)dλ (x)

=
∫ 1

0

(

χJi
(x)−

K

∑
k=1

pk(x)χJi
(τk(x))

)

1 j(x)dλ (x)

=
∫ 1

0
χJi

(x)1 j(x)λ (x)−
∫ 1

0

K

∑
k=1

pk(x)χJi
(τk(x))1 j(x)dλ (x)

=
∫ 1

0
χJi

(x)1 j(x)λ (x)−
K

∑
k=1

∫ 1

0
pk(x)χJi

(τk(x))1 j(x)dλ (x)

= N

∫

Ii∩I j

dλ (x)−
K

∑
k=1

∫ 1

0
pk(x)χτ−1

k
(Ji)

(x)1 j(x)dλ (x)

= δi j −
K

∑
k=1

λ (J j ∩ τ−1
k (Ji))

λ (I j)
· p

(N)
k, j ,

where p
(N)
k, j is the restriction of Q(N)(pk(x)) on I j for the isometric projection Q(N) of L1 into L(N) defined in the previous

section. Hence Av = 0 if and only if vc = vc
MN , where vc is the transpose of v and

MN = (mi j), mi j =
K

∑
k=1

λ (J j ∩ τ−1
k (J j))

λ (Ii)
· p

(N)
k,i . (3.6)

MN in Equation (3.6) is exactly the Ulam’s matrix M
∗(N)

P(N) for position dependent random maps T described in Equation (2.7).

4. Monte Carlo and Quasi Monte Carlo approach to Ulam’s Method for Position
Dependent Random Maps

In this section, we present a generalization of Monte Carlo and Quasi Monte Carlo approach to Ulam’s method described in

[12] and [15] of single deterministic maps to Monte Carlo and Quasi Monte Carlo approach to Ulam’s method for position

dependent random maps.

4.1 Monte Carlo-Ulam approach to Ulam’s method for position dependent random maps

Recall from Section 2.2, Ulam’s matrix M
∗(N)

P(N) for a position dependent random map

T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)}

with respect to the partition P(N) is given by

M
∗(N)

P(N) =
K

∑
k=1

(

M
(N)
k

)c

diag
[

p
(N)
k,1 , p

(N)
k,2 , . . . , p

(N)
k,N

]

, (4.1)

where for each k = 1,2, . . . ,K,

M
(N)
k =

(

λ
(

τ−1
k (J j)∩ Ji

)

λ (Ji)

)

1≤i, j≤N

.

Computation of M
∗(N)

P(N) involves computations of K matrices M
(N)
k =

(

λ(τ−1
k

(J j)∩Ji)
λ (Ji)

)

1≤i, j≤N

where inverse images of sets

(intervals) under τk are necessary to compute. If τk,k = 1,2, . . .K has a complicated formula, then in many cases inverse images

of tauk are difficult to obtain and the computation of the Ulam’s matrix becomes complicated and challenging. The Monte

Carlo approach to Ulam’s method simplifies the above difficulties and makes the numerical method more efficient. The Monte

Carlo approach to Ulam’s method allows us to approximate the entries of the matrices M
(N)
k ,k = 1,2, . . . ,K. In the following

we describe the Monte Carlo approach to Ulam’s method:
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1. Choose N (a positive integer) and and consider the partition {J1,J2, . . . ,JN} of subintervals of equal lengths, where

Ji = [xi−1,xi],h = λ (Ji) =
1
N
, j = 1,2, . . . ,N.

2. for each k = 1,2,K do

(a) Choose M (M is a positive integer, same M for each k);

(b) for i = 1,2, . . . ,N do

i. Choose M points {zi,1,zi,2, . . . ,zi,M} randomly from the interval Ji with uniform distribution.

ii. for j = 1,2, . . . ,N do

A. Let qi j be the number of points {τk(zi,1),τk(zi,2), . . . ,τk(zi,M)} in J j

B. Let
qi j

M
be an approximation of the (i, j)-th entry of the matrix M

(N)
k

(c) Compute
[

p
(N)
k,1 , p

(N)
k,2 , . . . , p

(N)
k,N

]

3. Compute the Ulam’s matrix M
∗(N)

P(N) = ∑
K
k=1

(

M
(N)
k

)c

diag
[

p
(N)
k,1 , p

(N)
k,2 , . . . , p

(N)
k,N

]

.

4. Compute a eigenvector v (a normalized eigenvecto) of M
∗(N)

P(N) with eigen value 1.

5. Compute f (N) = ∑
N
i=1 vi · χJi

(x) as an approximation of the actual density function f ∗ of the absolutely continuous

invariant measure µ∗ for the position dependent random map T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)}.

Note that the computation of i-th row of each matrix M
(N)
k is independent of the computation of other rows. Therefore, for each

k = 1,2, . . .N one can use p processors to calculate l rows (here, N = pl).

4.2 Quasi Monte Carlo-Ulam Parallel Algorithm for Position Dependent Random Maps

In a Monte Carlo approach to Ulam’s methods, M points in each interval Ji, i = 1,2, . . . ,N are randomly chosen with uniform

distribution. In a Quasi Monte Carlo method M points {zi,1,zi,2, . . . ,zi,M} are chosen deterministically as follows:

zi,m = xi−1 +
m

M
h,m = 1,2, . . . ,N.

All other steps are similar to Monte Carlo Method in Section 4.1. This type of deterministic selections makes the numerical

method more efficient as we will see the next section with examples.

5. Numerical Examples

In this section, we consider position dependent random maps T satisfying conditions of Theorem 2.3 with unique invariant

density f ∗ and we apply Monte Carlo method and Quasi Monte Carlo approaches to Ulam’s method described in the previous

section. Moreover, we find the L1 norms ‖ f ∗− fN ‖1, for some N ≥ 1 where fN is an approximation of f ∗. Monte Carlo and

Quasi Monte Carlo approach to Ulam’s method can be applied to any position dependent map satisfying conditions of Theorem

2.3. However, first we consider a simple position dependent random map T, where the density f ∗ of the invariant measure

µ∗ is known. In the first example, the component maps of the position dependent random map T are piecewise linear and

Markov and the probabilities are position dependent piecewise constants. The main reason for the consideration of a such a

simple position dependent random map is that the actual density is known in this case and we can compare our numerically

approximate densities with the actual density. In the second example, we consider a position dependent random map where the

component maps are non-Markov and the actual density is not known.

Example 5.1. Consider the position dependent random map T = {τ1(x),τ2(x); p1(x), p2(x)} where τ1,τ2 : [0,1]→ [0,1] are

defined by

τ1(x) =







































3x+ 1
4
, 0 ≤ x < 1

4
,

3x− 3
4
,

1
4
≤ x < 1

2
,

4x−2, 1
2
≤ x < 3

4
,

4x−3, 3
4
≤ x ≤ 1
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τ2(x) =







































4x, 0 ≤ x < 1
4
,

4x−1, 1
4
≤ x < 1

2
,

3x− 3
2
,

1
2
≤ x < 3

4
,

3x− 9
4
,

3
4
≤ x ≤ 1,

and the position dependent probabilities p1, p2 : [0,1]→ [0,1] are defined by

p1(x) =







































1
4
, 0 ≤ x < 1

4
,

1
4
,

1
4
≤ x < 1

2
,

3
4
,

1
2
≤ x < 3

4
,

3
4
,

3
4
≤ x ≤ 1

and

p2(x) =







































3
4
, 0 ≤ x < 1

4
,

3
4
,

1
4
≤ x < 1

2
,

1
4
,

1
2
≤ x < 3

4
,

1
4
,

3
4
≤ x ≤ 1

If x ∈ [0, 1
4
), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)

|τ ′k(x)|
=

1
4
3
+

3
4
4
= 13

48
< 1.

If x ∈ [ 1
4
,

1
2
), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)

|τ ′k(x)|
=

1
4
3
+

3
4
4
= 13

48
< 1.

If x ∈ [ 1
2
,

3
4
), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)

|τ ′k(x)|
=

3
4
4
+

1
4
3
= 13

48
< 1.

If x ∈ [ 1
2
,

3
4
), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)

|τ ′k(x)|
=

3
4
4
+

1
4
3
= 13

48
< 1.

Moreover,

A = 3α +max1≤i≤q ∑
K
k=1 VJi

gk = 3 · 13
48

+0 = 39
48

< 1. Here, B = 2βα +β max1≤i≤q ∑
K
k=1 VJi

gk > 0 with β = max1≤i≤q
1

λ (Ji)
.

Thus, the random map T satisfies condition of Theorem 2.3.

From the Lasota–Yorke result ([9]), both τ1 and τ2 has acim. Moreover, τ1 and τ2 are piecewise linear, expanding and Markov.

The Frobenius-Perron matrix Pτ1
of τ1 is the transpose of Mτ1

where

Mτ1
=





















0 1
3

1
3

1
3

1
3

1
3

1
3

0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4





















.
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The matrix representation of the Frobenius–Perron operator Pτ2
is the transpose of Mτ2

where

Mτ2
=





















1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3

0

1
3

1
3

1
3

0





















.

It is easy to show that both τ1 and τ2 have unique acim. Thus, the random map T = {τ1(x),τ2(x); p1(x), p2(x)} also has a

unique acim (see Proposition 1 in [1]). The matrix representation of the Frobenius–Perron operator PT f = ∑
2
k=1 Pτk

(pk f )(x) is

the transpose of the matrix MT , where

MT =





















3
16

13
16

13
16

13
16

13
16

13
16

13
16

3
16

13
16

13
16

13
16

3
16

13
16

13
16

13
16

13
16





















.

The normalized density f ∗ of the unique acim of the random map T is the left eigenvector of the matrix MT associated with the

eigenvalue 1 (after adding the normalizing condition). In fact, f ∗ =
[

1, 13
12
,

13
12
,

5
6

]

.

Monte Carlo approach to Ulam’s method: In Figure 5.1 (a) and 5.1 (b) we have plotted the actual density and approximate

density for Monte Carlo approach to Ulam’s method.

(a) (b)

Figure 5.1. Monte Carlo approach to Ulam’s method for the random map T : Figure 5.1 (a) the graph of the approximate

density function f16 (Monte Carlo -Ulam’s method with N = 16,K = 1000:red curve) and the actual density function f ∗ (black

curve); Figure 5.1 (b) the graph of the approximate density function f32 (Monte Carlo -Ulam’s method with

N = 32,K = 1000:red curve) and the actual density function f ∗ (black curve);

The L1−norm ‖ fN − f ∗ ‖1 is measured (with Maple 15) to estimate the convergence of the approximate density fN to the actual

density f ∗ for our Monte Carlo approach to Ulam’s method.
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N ‖ fN − f ∗ ‖1

16 0.01815903102

32 0.01630702912

Quasi Monte Carlo approach to Ulam’s method: In Figure 5.2 (a) and 5.2 (b) we have plotted the actual density and

approximate density for Quasi Monte Carlo-Ulam’s method.

(a) (b)

Figure 5.2. Quasi Monte Carlo approach to Ulam’s method for the random map T : Figure 2 (a)the graph of the approximate

density function f16 (Quasi Monte Carlo -Ulam’s method with N = 16,K = 1000:red curve) and the actual density function f ∗

(black curve); Figure 2 (b) Figure 1 (a)the graph of the approximate density function f32 (Quasi Monte Carlo approach to

Ulam’s method with N = 32,K = 1000: red curve) and the actual density function f ∗ (black curve);

The L1−norm ‖ fN − f ∗ ‖1 is measured (with Maple 18) to estimate the convergence of the approximate density fN to the

actual density f ∗ for our Quasi Monte Carlo- Ulam’s method.

N ‖ fN − f ∗ ‖1

16 0.002504794762

32 0.001252884246

.

Example 5.2. We consider the position dependent random map T = {τ1(x),τ2(x); p1(x), p2(x)} where τ1,τ2 : [0,1]→ [0,1]
are defined by (see Example 5.2 of [5] for this random map)

τ1(x) =























2x, 0 ≤ x < 1
2
,

5
4
x+ 1

10
,

1
2
≤ x ≤ 2

3
,

3
4
x+ 1

4
,

2
3
< x ≤ 1,

τ2(x) =























1
2
x, 0 ≤ x < 1

2
,

3
4
x− 1

8
,

1
2
≤ x ≤ 2

3
,

3
2
x− 1

2
,

2
3
< x ≤ 1,

and the position dependent probabilities p1, p2 : [0,1]→ [0,1] are defined by

p1(x) =























0.8, 0 ≤ x < 1
2
,

0.725, 1
2
≤ x ≤ 2

3
,

0.4, 2
3
< x ≤ 1,
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and p2(x) = 1− p1(x).

It can be easily shown that the random map T satisfies condition of Theorem 2.3. Thus, T has an acim. Unfortunately, we do

not know the actual density of the acim. Góra and Boyarsky [1] presented a Markov approximation of the random map T then

they presented the density of the Markov random maps. Note that the density obtained from a Markov approximation of the

random maps is only an approximate density. In Figure 5.3 and Figure 5.4 we have presented histogram and approximate

densities via Monte Carlo approach to Ulam’s and Quasi Monte Carlo approach to Ulam’s method.

(a) (b)

Figure 5.3. Histigram and Monte Carlo approach to Ulam’s method: Figure 5.3 (a) the histogram of the density function of the

random map T with 500,000 points on the trajectory of the random map T with 1000 subintervals for [0,1].; Figure 5.3 (b)

Monte Carlo approach to Ulam’s method for the random map T : The graph of the approximate density function f20 with

K = 1000.

(a) (b)

Figure 5.4. Histigram and Quasi Monte Carlo approach to Ulam’s method: Figure 5.4 (a) the histogram of the density function

of the random map T with 500,000 points on the trajectory of the random map T with 1000 subintervals for [0,1].; Figure 5.4

(b) Quasi Monte Carlo approach to Ulam’s method for the random map T : The graph of the approximate density function f80

with K = 1000.
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6. Conclusion

In this paper, we study numerical computations of invariant measures for position dependent random maps. First, we present the

Frobenius-Perron operator and the existence of invariant measures for position dependent random maps. We present the Ulam’s

method for the computation of invariant measures for position dependent random maps. A general algorithm for approximating

fixed points of the Frobenius-Perron operator for position dependent random maps is presented. Then we present the Monte

Carlo and the Quasi Monte Carlo approach to Ulam’s method for the computation of invariant measures for position dependent

random maps. Finally, we present two examples of position dependent random maps along with the numerical computations of

invariant measures using the Monte Carlo and the Quasi Monte Carlo approach to Ulam’s method. In the first example, we

present L1 norm errors between the numerical approximation of the density of the invariant measure and analytical density of

invariant measures for the random map. The numerical examples show that the Monte Carlo approach and the Quasi Monte

Carlo approach to Ulam’s method are useful tools for the computation of invariant measures for position dependent random

maps. Our numerical schemes are generalizations of numerical schemes described in [12] and [15] of single deterministic maps

to numerical schemes for position dependent random maps. In future, we plan on studying the speed of convergence of the

Monte Carlo approach and the Quasi Monte Carlo approach to Ulam’s method.
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1. Introduction

Fibonacci sequence is the most studied sequence in the history of mathematics. In [14], the said sequence is given by A000045.

The sequence is generated by a recursive formula fn = fn−1 + fn−2, for n ≥ 3 with f1 = 0 and f2 = 1. The sequence has many

interesting properties. For example, the ratio
fn+1

fn

converges to the golden ratio
1+

√
5

2
as n tends to infinity.

Various generalizations of the aforementioned sequence have been derived since it was first discovered by Fibonacci in

the 13th century. Fibonacci sequence has been generalized mainly by two ways: by maintaining the recurrence relation and

varying the initial conditions [1, 3, 4, 5, 7, 9, 10], and by varying the recurrence relation and maintaining the initial conditions

[2, 4, 8, 9, 11, 13, 12, 15]. Some of the properties that have been obtained by various researchers are not limited to finding a

closed form for the nth term of the sequence, sum of the first n terms of the sequence, sum of the first n terms with odd (or even)

indices of the sequence, explicit sum formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity, Honsberger’s identity,

determinant identities, and generating function among many others.

Let fn be the nth term of Fibonacci sequence. Binet’s formula gives a closed formula for fn as

fn =
1

α −β

(

αn−1 −β n−1
)

, (1.1)

where α =
1+

√
5

2
and β =

1−
√

5

2
.

Companion to Fibonacci numbers are Lucas numbers with the same recurrence relation as Fibonacci numbers except for

http://oeis.org/A000045


On Generalized Fibonacci Numbers — 187/202

initial conditions which are 2 and 1. Binet’s formula for Lucas numbers, ln, is given by

ln = αn−1 +β n−1
. (1.2)

Here, ln is the nth Lucas number.

Some properties of Fibonacci sequences explored in this paper include the sum of the first n terms of Fibonacci sequence,

f1 + f2 + f3 + · · ·+ fn = fn+2 −1, (1.3)

and the Honsberger’s identity

fn+m = fn fm + fn+1 fm+1, (1.4)

for all n ≥ 1 and n > m.

Definition 1.1. The nth term of r-sum Fibonacci sequence, hn,r, is given by

hn,r = fn + fn+1 + · · ·+ fn+r−1. (1.5)

Using Definition 1.1, it follows that the first term

h1,r = f1 + f2 + · · ·+ fr = fr+2 −1

and the second term

h2,r = f2 + f3 + · · ·+ fr+1 = fr+3 −1.

As with Fibonacci sequence, the r−sum Fibonacci sequence satisfies the recurrence relation

hn,r = hn−1,r +hn−2,r, (1.6)

for n ≥ 3, with initial conditions h1,r = fr+2 −1 and h2,r = fr+3 −1.

Few entries of hn,r are given in Table 1 below.

Table 1. r-Sum Fibonacci numbers

r h1,r h2,r h3,r h4,r h5,r h6,r h7,r h8,r h9,r h10,r h11,r

1 0 1 1 2 3 5 8 13 21 34 55

2 1 2 3 5 8 13 21 34 55 89 144

3 2 4 6 10 16 26 42 68 110 178 288

4 4 7 11 18 29 47 76 123 199 322 521

5 7 12 19 31 50 81 131 212 343 555 898

6 12 20 32 52 84 136 220 356 576 932 1508

7 20 33 53 86 139 225 364 589 953 1542 2495

When r = 1,2, we get Fibonacci sequence with different initial conditions. For r ≥ 3, we get Fibonacci-like numbers. We

also note that when r = 4, we obtain Lucas numbers.

This paper is organized as follows: Some basic properties of hn,r are given in Section 2. In Section 3, we obtain Binet’s

formula and generating function for these numbers. Further properties of these numbers are presented in Section 4. Moreover,

determinant identities are presented in Section 5. We conclude the paper in Section 6.

2. Preliminary Results

We start off, with these important and interesting properties:

Lemma 2.1. For n ≥ 1, we have hn,3 = 2hn,2.
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Proof. From (1.5), we have

hn,3 = fn + fn+1 + fn+2,

= fn + fn+1 + fn + fn+1,

= 2( fn + fn+1),

= 2hn,2.

Proposition 2.2. The nth term of r−sum Fibonacci number, hn,r, can be expressed as hn,r = fn+r+1 − fn+1, for all r ≥ 1.

Proof. From recurrence relation (1.6) and equation (1.5), we have

hn,r = hn−1,r +hn−2,r,

= ( fn−1 + fn + · · ·+ fn+r−2)+( fn−2 + fn−1 + · · ·+ fn+r−3),

= [( f1 + f2 + · · ·+ fn+r−2 − ( f1 + f2 + · · ·+ fn−2)]+ [( f1 + f2 + · · ·+ fn+r−3)− ( f1 + f2 + · · ·+ fn−3)] .

By equation (1.3), we get

hn,r = [( fn+r −1)− ( fn −1)]+ [( fn+r−1 −1)− ( fn−1 −1)]

= fn+r − fn + fn+r−1 − fn−1

= fn+r+1 − fn+1.

Proposition 2.3.

hn,r = fr+1 fn+2 + fn+1

r−2

∑
i=1

fi.

Proof. By Proposition 2.2, we have that

hn,r = fn+r+1 − fn+1. (2.1)

Now, by Honsberger’s identity (1.4), we have

fn+r+1 = fr+1 fn+2 + fr fn+1.

Substituting this sum in (2.1), we obtain

hn,r = fr+1 fn+2 + fr fn+1 − fn+1

= fr fn+2 + fn+1( fr −1).

Since
n

∑
i=1

fi = fn+2 −1, then hn,r = fr+1 fn+2 + fn+1

r−2

∑
i=1

fi.

Theorem 2.4. The numbers, hn,r, can be expressed in terms of Fibonacci and Lucas numbers as:

hn,r =



















































m

∑
i=1

ln+4i−1 if r = 4m,

m

∑
i=1

ln+4i−1 + fn+4m if r = 4m+1,

m

∑
i=1

ln+4i−1 + fn+4m+2 if r = 4m+2,

m

∑
i=1

ln+4i−1 +2 fn+4m+2 if r = 4m+3.
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Proof. If r = 4m, then

hn,r = fn + fn+1 + · · ·+ fn+4m−1

= fn+2 + fn+4 + · · ·+ fn+4m

= ln+3 + ln+7 + · · ·+ ln+4m−1.

If r = 4m+1, then

hn,r = fn + fn+1 + · · ·+ fn+4m

= fn+2 + fn+4 + · · ·+ fn+4m−2 + fn+4m + fn+4m

= ln+3 + ln+7 + · · ·+ ln+4m−1 + fn+4m.

If r = 4m+2, then

hn,r = fn + fn+1 + fn+2 + · · ·+ fn+4m+1

= fn+2 + fn+4 + · · ·+ fn+4m+2

= ln+3 + ln+7 + · · ·+ ln+4m−1 + fn+4m+2.

If r = 4m+3, then

hn,r = fn + fn+1 + · · ·+ fn+4m+2

= fn+2 + fn+4 + · · ·+ fn+4m + fn+4m+2 + fn+4m+2

= ln+3 + ln+7 + · · ·+ ln+4m−1 +2 fn+4m+2.

Remark 2.5. We note that:

1. For r = 1,2, the r−sum Fibonacci numbers, hn,r, are themselves Fibonacci numbers.

2. We have hn,3 as a sum of Fibonacci numbers for all n ≥ 1.

3. The numbers, hn,4, are Lucas numbers for all integers n ≥ 1.

4. The numbers, hn,4m, are sums of Lucas numbers for all integers m ≥ 1 and n ≥ 1.

5. For all m ∈ N and n ≥ 1, we have that hn,4m+1, hn,4m+2, and hn,4m+3 are sums of Fibonacci and Lucas numbers.

Proposition 2.6. Let m ≥ 1. Then the nth term of 4m−sum Fibonacci sequence, hn,4m, satisfies the equation

hn,4m = f2m+1ln+2m+1.

Proof. By Binet’s formulas for Fibonacci numbers (1.1) and Lucas numbers (1.2) and by equation (2.1), we have

hn,4m = fn+4m+1 − fn+1

=
1

α −β
(αn+4m −β n+4m)− 1

α −β
(αn −β n).

Since αβ =−1 then, (αβ )2m = 1, and

hn,4m =
1

α −β
(αn+4m − (αβ )2mαn −β n+4m +(αβ )2mβ n)

=
1

α −β
(αn+4m −β 2mαn+2m −β n+4m +α2mβ n+2m)

=
1

α −β
(αn+2m(α2m −β 2m)+β n+2m(α2m −β 2m))

=
1

α −β
(α2m −β 2m)(αn+2m +β n+2m)

= f2m+1ln+2m+1.
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Setting m = 1 in Proposition 2.6, we get:

Corollary 2.7. hn,4 = ln+3, for all n ≥ 1.

Proposition 2.8.

n

∑
k=2

h2
k,r = hn,rhn+1,r −h1,rh2,r.

Proof. Since hn,r = hn+1,r −hn−1,r then,

h2
n,r = hn,rhn+1,r −hn−1,rhn,r.

Now, we have

h2
2,r = h2,rh3,r −h1,rh2,r

h2
3,r = h3,rh4,r −h2,rh3,r

h2
4,r = h3,rh5,r −h3,rh4,r

...

h2
n−1,r = hn−1,rhn,r −hn−2,rhn−1,r

h2
n,r = hn,rhn+1,r −hn−1,rhn,r.

Adding up these equations, we get

h2
2,r +h2

3,r +h2
4,r + · · ·+h2

n−1,r +h2
n,r = hn,rhn+1 −h1,rh2,r.‘

Proposition 2.9. For every positive integer n ≥ 2,

h2
n,r −h2

n−1,r = hn+1,rhn−2,r.

Proof. Since

h2
n−1,r = hn−1,rhn,r −hn−1,rhn−2,r

then,

h2
n,r −h2

n−1,r = h2
n,r −hn−1,rhn,r +hn−1,rhn−2,r

= hn,r(hn,r −hn−1,r)+hn−1,rhn−2,r

= hn,rhn−2,r +hn−1,rhn−2,r

= hn−2,r(hn,r +hn−1,r)

= hn+1,rhn−2,r.

3. Binet’s Formula and Generating Function

We start by getting a closed formula for hn,r.

Theorem 3.1 (Binet’s Formula). The nth term of r-sum Fibonacci sequence, hn,r, is given by

hn,r =
1

α −β

[

(h2,r −βh1,r)α
n−1 − (h2,r −αh1,r)β

n−1
]

, (3.1)

where α =
1+

√
5

2
and β =

1−
√

5

2
.
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Proof. Let n ≥ 2, then r-sum Fibonacci numbers are defined by the recurrence relation

hn,r = hn−1,r +hn−2,r,

with initial conditions h1,r = fr+2 −1 and h2,r = fr+3 −1, for all r > 0. The characteristic equation of the recurrence relation is

λ 2 −λ −1 = 0. We solve this equation to get its roots as

α =
1+

√
5

2
and β =

1−
√

5

2
.

These roots are real and distinct and thus the solution of the recurrence relation is of the form

hn,r = Aαn +Bβ n
, (3.2)

where A and B are constants.

Setting n = 1 and n = 2 in (3.2), we obtain

Aα +Bβ = h1,r

and

Aα2 +Bβ 2 = h2,r

respectively. Solving these equations simultaneously, we get

A =
h2,r −βh1,r

α(α −β )

and

B =
αh1,r −h2,r

β (α −β )
.

Thus the result follows.

Corollary 3.2. The nth term of the r−sum Fibonacci sequence satisfies the equation hn,r = h2,r fn +h1,r fn−1.

Proof. From Binet’s formula (3.1), we have

hn,r =
1

α −β

[

h2,r(α
n−1 −β n−1)−h1,r(αβ )(αn−2 −β n−2)

]

,

where α =
1+

√
5

2
and β =

1−
√

5

2
. Since αβ =−1, then

hn,r =
1

α −β

[

h2,r(α
n−1 −β n−1)+h1,r(α

n−2 −β n−2)
]

= h2,r fn +h1,r fn−1.

The following formula is rediscovered immediately upon setting r = 1 in (3.1).

Corollary 3.3 (Binet’s formula). The nth Fibonacci number, fn, is given explicitly as

fn =
1

α −β

[

αn−1 −β n−1
]

,

where α =
1+

√
5

2
and β =

1−
√

5

2
.
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Corollary 3.4. The sequence of ratio of successive r-sum Fibonacci numbers
hn+1,r

hn,r

converges to the golden ratio, i.e.,

lim
n→∞

hn+1,r

hn,r

=
1+

√
5

2
.

Proof. From Binet’s formula (3.1), we have

lim
n→∞

hn+1,r

hn,r

= lim
n→∞

1

α −β
[(h2,r −βh1,r)α

n − (h2,r −αh1,r)β
n]

1

α −β
[(h2,r −βh1,r)αn−1 − (h2,r −αh1,r)β n−1]

,

where α =
1+

√
5

2
and β =

1−
√

5

2
.

Factorizing αn−1, we obtain

lim
n→∞

hn+1,r

hn,r

= lim
n→∞

1

α −β
αn−1

[

(h2,r −βh1,r)α − (h2,r −αh1,r)α
−(n−1)β n

]

1

α −β
αn−1

[

(h2,r −βh1,r)− (h2,r −αh1,r)α−(n−1)β n−1
]

,

which simplifies to

lim
n→∞

hn+1,r

hn,r

= lim
n→∞

(h2,r −βh1,r)α − (h2,r −αh1,r)

(

β

α

)n−1

β

(h2,r −βh1,r)− (h2,r −αh1,r)

(

β

α

)n−1
.

Since | β
α |< 1, we have lim

n→∞

(

β

α

)n−1

= 0 so that

lim
n→∞

hn+1,r

hn,r

= lim
n→∞

(h2,r −βh1,r)α

(h2,r −βh1,r)
= α =

1+
√

5

2
.

We now obtain the generating function for r-sum Fibonacci sequence.

Theorem 3.5. Let Hr(t) be the generating function for r−sum Fibonacci sequence, then

Hr(t) =
h1,rt + t2(h2,r −h1,r)

1− t − t2
. (3.3)

Proof. Let Hr(t) =
∞

∑
n=1

hn,rt
n be the generating function for r−sum Fibonacci numbers, then from hn,r = hn−1,r +hn−2,r, we

have

∑
n≥3

hn,rt
n = ∑

n≥3

hn−1,rt
n + ∑

n≥3

hn−2,rt
n
.

This is the same as

∑
n≥1

hn,rt
n −h2,rt

2 −h1,rt = t ∑
n≥2

hn,rt
n + t2 ∑

n≥1

hn,rt
n

or

∑
n≥1

hn,rt
n −h2,rt

2 −h1,rt = t

(

∑
n≥1

hn,rt
n −h1,rt

)

+ t2 ∑
n≥1

hn,rt
n
.
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Substituting Hr(t) =
∞

∑
n=1

hn,rt
n we get,

Hr(t)−h2,rt
2 −h1,rt = t(Hr(t)−h1,rt)+ t2Hr(t).

Thus,

Hr(t) =
h1,rt + t2(h2,r −h1,r)

1− t − t2
.

4. Properties of r -Sum Fibonacci Numbers

In this section, we obtain further properties of r−sum Fibonacci numbers.

Proposition 4.1 (Sum of first n terms). The sum of first n terms of r-sum Fibonacci numbers is given by hn+2,r −h2,r.

Proof. By Binet’s formula (3.1), we have

n

∑
k=1

hk,r =
1

α −β
[(h2,r −βh1,r)α

0 − (h2,r −αh1,r)β
0 +(h2,r −βh1,r)α

1 − (h2,r −αh1,r)β
1 + · · ·+(h2,r −βh1,r)α

n−1

− (h2,r −αh1,r)β
n−1]

=
1

α −β

[

(h2,r −βh1,r)
(

1+α + · · ·+αn−1
)

− (h2,r −αh1,r)
(

1+β + · · ·+β n−1
)]

=
1

α −β

[

(h2,r −βh1,r)
αn −1

α −1
− (h2,r −αh1,r)

β n −1

β −1

]

.

Since α −1 =−β and β −1 =−α, we have

n

∑
k=1

hk,r =
1

α −β

[

(h2,r −βh1,r)(α
n −1)α − (h2,r −αh1,r)(β

n −1)β

−αβ

]

.

Since −αβ = 1, we get

n

∑
k=1

hk,r =
1

α −β

[

(h2,r −βh1,r)(α
n+1 −α)− (h2,r −αh1,r)(β

n+1 −β )
]

=
(h2,r −βh1,r)α

n+1 − (h2,r −αh1,r)β
n+1

α −β
− (h2,r −βh1,r)α − (h2,r −αh1,r)β

α −β

= hn+2,r −h2,r.

Proposition 4.2 (Sum of first n terms with odd indices). The sum of the first n terms with odd indices of r−sum Fibonacci

numbers is given by h2n,r −h2,r +h1,r.

Proof. By Binet’s formula (3.1), we have

n−1

∑
k=0

h2k+1,r =
1

α −β
[(h2,r −βh1,r)α

0 − (h2,r −αh1,r)β
0 +(h2,r −βh1,r)α

2 − (h2,r −αh1,r)β
2

+ · · ·+(h2,r −βh1,r)α
2n−2 − (h2,r −αh1,r)β

2n−2]

=
1

α −β
[(h2,r −βh1,r)(1+α2 + · · ·+α2n−2)− (h2,r −αh1,r)(1+β 2 + · · ·+β 2n−2)]

=
1

α −β

[

(h2,r −βh1,r)(α
2n −1)

α2 −1
− (h2,r −αh1,r)(β

2n −1)

β 2 −1

]

.
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Since α2 −1 = α and β 2 −1 = β , we have

n−1

∑
k=0

h2k+1 =
1

α −β

[

(h2,r −βh1,r)(α
2n−1 −α−1)− (h2,r −αh1,r)(β

2n−1 −β−1)
]

=
(h2,r −βh1,r)α

2n−1 − (h2,r −αh1,r)β
2n−1

α −β
− (h2,r −βh1,r)α

−1 − (h2,r −αh1,r)β
−1

α −β

= h2n,r −h0,r

= h2n,r −h2,r +h1,r.

‘

Proposition 4.3 (Sum of first n terms with even indices). The sum of the first n terms with even indices of r−sum Fibonacci

numbers is given by h2n+1,r −h1,r.

Proof. By Binet’s formula (3.1), we have

n

∑
k=1

h2k,r =
1

α −β
[(h2,r −βh1,r)α

1 − (h2,r −αh1,r)β
1 +(h2,r −βh1,r)α

3 − (h2,r −αh1,r)β
3 + · · ·+(h2,r −βh1,r)α

2n−1

− (h2,r −αh1,r)β
2n−1]

=
1

α −β
[(h2,r −βh1,r)(α +α3 + · · ·+α2n−1)− (h2,r −αh1,r)(β +β 3 + · · ·+β 2n−1)]

=
1

α −β

[

(h2,r −βh1,r)
α(α2n −1)

α2 −1
− (h2,r −αh1,r)

β (β 2n −1)

β 2 −1

]

.

Since α2 −1 = α and β 2 −1 = β , we get

n

∑
k=1

h2k,r =
1

α −β

[

(h2,r −βh1,r)(α
2n −1)− (h2,r −αh1,r)(β

2n −1)
]

=
(h2,r −βh1,r)α

2n − (h2,r −αh1,r)β
2n

α −β
− (h2,r −βh1,r)− (h2,r −αh1,r)

α −β

= h2n+1,r −h1,r.

Proposition 4.4. For every positive integer n,

h1,r +h4,r +h7,r + · · ·+h3n−2,r =
1

2
(h3n,r −h2,r +h1,r).

Proof. By Binet’s formula (3.1), we get

n

∑
k=1

h3k−2,r =
1

α −β
[(h2,r −βh1,r)α

0 − (h2,r −αh1,r)β
0 +(h2,r −βh1,r)α

3 − (h2,r −αh1,r)β
3

+ · · ·+(h2,r −βh1,r)α
3n−3 − (h2,r −αh1,r)β

3n−3]

=
1

α −β
[(h2,r −βh1,r)(1+α3 + · · ·+α3n−3)− (h2,r −αh1,r)(1+β 3 + · · ·+β 3n−3)]

=
1

α −β

[

(h2,r −βh1,r)
α3n −1

α3 −1
− (h2,r −αh0)

β 3n −1

β 3 −1

]

.
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Since α3 −1 = 2α and β 3 −1 = 2β , the above equation simplifies to

n

∑
k=1

h3k−2,r =
1

2(α −β )

[

(h2,r −βh1,r)(α
3n−1 −α−1)− (h2,r −αh1,r)(β

3n−1 −β−1)
]

=
1

2

[

(h2,r −βh1,r)α
3n−1 − (h2,r −αh1,r)β

3n−1

α −β
− (h2,r −βh1,r)α

−1 − (h2,r −αh1,r)β
−1

α −β

]

=
1

2
(h3n,r −h0,r)

=
1

2
(h3n,r −h2,r +h1,r).

Proposition 4.5. For every positive integer n,

h2,r +h5,r +h8,r + · · ·+h3n−1,r =
1

2
(h3n+1,r −h1,r).

Proof. By Binet’s formula (3.1), we have

n

∑
k=1

h3k−1,r =
1

α −β
[(h2,r −βh1,r)α − (h2,r −αh1,r)β +(h2,r −βh1,r)α

4 − (h2,r −αh1,r)β
4

+ · · ·+(h2,r −βh1,r)α
3n−2 − (h2,r −αh1,r)β

3n−2]

=
1

α −β
[(h2,r −βh1,r)(α +α4 + · · ·+α3n−2)− (h2,r −αh1,r)(β +β 4 + · · ·+β 3n−2)]

=
1

α −β

[

(h2,r −βh1,r)
α3n+1 −α

α3 −1
− (h2,r −αh1,r)

β 3n+1 −β

β 3 −1

]

.

Since α3 −1 = 2α and β 3 −1 = 2β , then

n

∑
k=1

h3k−1,r =
1

2(α −β )

[

(h2,r −βh1,r)(α
3n −1)− (h2,r −αh1,r)(β

3n −1)
]

=
1

2

[

(h2,r −βh1,r)α
3n − (h2,r −αh1,r)β

3n

α −β
− (h2,r −βh1,r)− (h2,r −αh1,r)

α −β

]

=
1

2
(h3n+1,r −h1,r).

Proposition 4.6. For every positive integer n,

h3,r +h6,r +h9,r + · · ·+h3n,r =
1

2
(h3n+2,r −h2,r).

Proof. By Binet’s formula (3.1), we obtain

n

∑
k=1

h3k,r =
1

α −β
[(h1,n −βh1,r)α

2 − (h2,r −αh1,r)β
2 +(h2,r −βh1,r)α

5 − (h2,r −αh1,r)β
5 + · · ·+(h2,r −βh1,r)α

3n−1

− (h2,r −αh1,r)β
3n−1]

=
1

α −β
[(h2,r −βh1,r)(α

2 +α5 + · · ·+α3n−1)− (h2,r −αh1,r)(β
2 +β 5 + · · ·+β 3n−1)]

=
1

α −β

[

(h2,r −βh1,r)
α3n+2 −α2

α3 −1
− (h2,r −αh1,r)

β 3n+2 −β 2

β 3 −1

]
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Since α3 −1 = 2α and β 3 −1 = 2β , we get

n

∑
k=1

h3k,r =
1

2(α −β )

[

(h2,r −βh1,r)(α
3n+1 −α)− (h2,r −αh1,r)(β

3n+1 −β )
]

=
1

2

[

(h2,r −βh1,r)α
3n+1 − (h2,r −αh1,r)β

3n+1

α −β
− (h2,r −βh1,r)α − (h2,r −αh1,r)β

α −β

]

=
1

2
(h3n+2,r −h2,r).

Proposition 4.7 (Alternating sum formula). For every positive integer n,

n

∑
k=1

(−1)k+1hk,r = (−1)n−1hn−1,r +2h1,r −h2,r.

Proof. By Binet’s formula (3.1), we get

n

∑
k=1

(−1)k+1hk,r =
1

α −β
[(h2,r −βh1,r)− (h2,r −αh1,r)− ((h2,r −βh1,r)α − (h2,r −αh1,r)β )

+ · · ·+(−1)n+1((h2,r −βh1,r)α
n−1 − (h2,r −αh1,r)β

n−1)]

=
1

α −β
[(h2,r −βh1,r)(1−α + · · ·+(−1)n+1αn−1)− ((h2,r −αh1,r)(1−β + · · ·+(−1)n+1β n−1)]

=
1

α −β

[

(h2,r −βh1,r)
((−α)n −1)

−α −1
− (h2,r −αh1,r)

((−β )n −1)

−β −1

]

.

Since −α −1 =−α2 and −β −1 =−β 2, we have

n

∑
k=1

(−1)k+1hk,r =
1

α −β

[

(h2,r −βh1,r)
(−1)nαn −1

−α2
− (h2,r −αh1,r)

(−1)nβ n −1

−β 2

]

= (−1)n−1 1

α −β

[

(h2,r −βh1,r)α
n−2 − (h2,r −αh1,r)β

n−2
]

+
1

α −β

[

(h2,r −βh1,r)α
−2 − (h2,r −αh1,r)β

−2
]

= (−1)n−1hn−1,r +
1

α −β

[

(h2,r −βh1,r)

α2
− (h2,r −αh1,r)

β 2

]

.

This gives,

n

∑
k=1

(−1)k+1hk,r = (−1)n−1hn−1,r +
1

(αβ )2(α −β )

[

(h2,r −βh1,r)β
2 − (h2,r −αh1,r)α

2
]

= (−1)n−1hn−1,r +

[

h1,r

(

α3 −β 3

α −β

)

−h2,r

(

α2 −β 2

α −β

)]

= (−1)n−1hn−1,r +

[

h1,r

(

2(α −β )

α −β

)

−h2,r

(

α2 −β 2

α −β

)]

.

Since α −β =
√

5 and α2 −β 2 =
√

5, then

n

∑
k=1

(−1)k+1hk,r = (−1)n−1hn−1,r +2h1,r −h2,r.

Proposition 4.8. For every positive integer n,

h2n,r =
n

∑
k=0

(

n

k

)

hk,r.
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Proof. By Binet’s formula (3.1), we get

h2n,r =
1

α −β
[(h2,r −βh1,r)α

2n−1 − (h2,r −αh1,r)β
2n−1]

=
1

α −β
[(h2,r −βh1,r)

α2n

α
− (h2,r −αh1,r)

β 2n

β
].

Since α2 = 1+α and β 2 = 1+β , then

h2n,r =
1

α −β

[

(h2,r −βh1,r)
(1+α)n

α
− (h2,r −αh1,r)

(1+β )n

β

]

.

Since (1+ x)n =
n

∑
k=0

(

n

k

)

xk
, we have

h2n,r =
1

α −β

[

(h2,r −βh1,r)
n

∑
k=0

(

n

k

)

αk−1 − (h2,r −αh1,r)
n

∑
k=0

(

n

k

)

β k−1

]

=
n

∑
k=0

(

n

k

)[

(h2,r −βho,r)α
k−1 − (h2,r −αh1,r)β

k−1

α −β

]

=
n

∑
k=0

(

n

k

)

hk,r.

Proposition 4.9 (Explicit sum formula). For every positive integer n,

hn,r = h1,r

⌊ n−1
2 ⌋

∑
k=0

(

n− k−1

k

)

+(h2,r −h1,r)
⌊ n−2

2 ⌋

∑
k=0

(

n− k−2

k

)

, (4.1)

where ⌊n⌋ is the greatest integer less than or equal to n.

Proof. By generating function (3.3), we have

∞

∑
n=1

hn,rt
n =

h1,rt + t2(h2,r −h1,r)

1− t − t2

= t [h1,r + t(h2,r −h1,r)](1− t − t2)−1

= t [h1,r + t(h2,r −h1,r)][1− (t + t2)]−1

= t [h1,r + t(h2,r −h1,r)]
∞

∑
n=1

tn−1(1+ t)n−1

= [h1,r + t(h2,r −h1,r)]
∞

∑
n=1

tn
n−1

∑
k=0

(

n−1

k

)

tk

= [h1,r + t(h2,r −h1,r)]
∞

∑
n=1

n−1

∑
k=0

(n−1)!

k!(n− k−1)!
tn+k

.

Replacing n by n+ k+1, we get

∞

∑
n=1

hn,rt
n = [h1,r + t(h2,r −h1,r)]

∞

∑
n=1

∞

∑
k=0

(n+ k)!

k!n!
tn+2k+1

.

Now, replacing n by n−2k−1, we have

∞

∑
n=1

hn,rt
n = [h1,r + t(h2,r −h1,r)]

∞

∑
n=1

⌊ n−1
2 ⌋

∑
k=0

(n− k−1)!

k!(n−2k−1)!
tn

= h1,r





∞

∑
n=1

⌊ n−1
2 ⌋

∑
k=0

(n− k−1)!

k!(n−2k−1)!



tn +(h2,r −h1,r)
∞

∑
n=1





⌊ n−1
2 ⌋

∑
k=0

(n− k−1)!

k!(n−2k−1)!



tn+1
.
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Equating the coefficients of tn, we obtain

hn,r = h1,r

⌊ n−1
2 ⌋

∑
k=0

(

n− k−1

k

)

+(h2,r −h1,r)
⌊ n−2

2 ⌋

∑
k=0

(

n− k−2

k

)

.

Hence the proof follows.

Proposition 4.10. For every positive integer n,

h−n,r = (−1)n(h2,r fn+2 −h1,r fn+3).

Proof. By Binet’s formula (3.1), we have

h−n,r =
1

α −β

[

(h2,r −βh1,r)α
−n−1 − (h2,r −αh1,r)β

−n−1
]

=
1

α −β

[

(h2,r −βh1,r)
1

αn+1
− (h2,r −αh1,r)

1

β n+1

]

.

Since
1

α
=−β and

1

β
=−α, we have

h−n,r =
1

α −β

[

(h2,r −βh1,r)(−1)n+1β n+1 − (h2,r −αh1,r)(−1)n+1αn+1
]

=
(−1)n+1

α −β

[

(h2,r −βh1,r)β
n+1 − (h2,r −αh1,r)α

n+1
]

=
(−1)n+1

α −β

[

h2,rβ
n+1 −h1,rβ

n+2 −h2,rα
n+1 +h1,rα

n+2
]

=
(−1)n+2

α −β

[

h2,r(α
n+1 −β n+1)−h1,r(α

n+2 −β n+2)
]

= (−1)n+2

[

h2,r(α
n+1 −β n+1)

α −β
− h1,r(α

n+2 −β n+2)

α −β

]

= (−1)n+2(h2,r fn+2 −h1,r fn+3)

= (−1)n(h2,r fn+2 −h1,r fn+3).

Proposition 4.11 (Honsberger’s identity). If n > m then

hn+m,r = hn,r fm +hn+1,r fm+1,

for all m ≥ 0 and n > 0.

Proof. Since by Corollary 3.2, we have

hn+m,r = h2,r fn+m +h1,r fn+m−1,

then by Honsberger’s identity of Fibonacci numbers (1.4), we get

hn+m,r = h2,r( fn fm + fn+1 fm+1)+h1,r( fn−1 fm + fn fm+1)

= fm(h2,r fn +h1,r fn−1)+ fm+1(h2,r fn+1 +h1,r fn).

Applying Corollary 3.2 again we have, hn+m,r = hn,r fm +hn+1,r fm+1.

Corollary 4.12. We have:

1. h2n,r = hn,r fn +hn+1,r fn+1,
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2. h2n−1,r = hn,r fn−1 +hn+1,r fn,

3. h2n−2,r = hn,r fn−2 +hn+1 fn−1,

4. h2n−k,r = hn,r fn−k +hn+1,r + fn−k+1.

Proof. The results follow from Proposition 4.11 upon setting m = n, m = n−1, m = n−2, and m = n− k in that order.

Proposition 4.13. For every n ≥ 2, we have

h2,rh3,r +h3,rh4,r + · · ·+h2n−1,rh2n,r = h2
2n,r −h2

2,r.

Proof. We induct on n. For base case, n = 2:

The left hand side gives

h2,rh3,r +h3,rh4,r = h3,r(h2,r +h4,r)

while the right hand side gives

h2
4,r −h2

2,r = (h4,r −h2,r)(h4,r +h2,r) = h3,r(h4,r +h2,r).

Since the left hand side equals to the right hand side, the base case holds.

For the induction step, we will assume the formula holds true for n and prove that it holds true for n+1.

Since by inductive hypothesis

h2,rh3,r +h3,rh4,r + · · ·+h2n−1,rh2n,r = h2
2n,r −h2

2,r,

then

h2,rh3,r +h3,rh4,r + · · ·+h2n−1,rh2n,r +h2nh2n+1,r +h2n+1,rh2n+2,r = h2
2n,r −h2

2,r +h2n,rh2n+1,r +h2n+1,rh2n+2,r

= h2
2n,r +h2n,rh2n+1,r −h2

2,r +h2n+1,rh2n+2,r

= h2n,r(h2n,r +h2n+1,r)+h2n+1,rh2n+2,r −h2
2,r

= h2n,rh2n+2,r +h2n+1,rh2n+2,r −h2
2,r

= h2n+2,r(h2n,r +h2n+1,r)−h2
2,r

= h2
2n+2,r −h2

2,r.

By the principle of mathematical induction, the result follows.

Lemma 4.14. The nth Fibonacci number, fn, is given by

fn =
h2,rhn,r −h1,rhn+1,r

h2
2,r −h1,rh3,r

.

Proof. We have, by Binet’s formula (3.1), that

h2,rhn,r −h1,rhn+1,r = h2,r

[

(h2,r −βh1,r)α
n−1

α −β
+

(αh1,r −h2,r)β
n−1

α −β

]

−h1,r

[

(h2,r −βh1,r)α
n

α −β
+

(αh1,r −h2,r)β
n

α −β

]

= h2,r

[

h2,r
(αn−1 −β n−1)

α −β
+h1,r

(αn−2 −β n−2)

α −β

]

−h1,r

[

h2,r
(αn −β n)

α −β
+h1,r

(αn−1 −β n−1)

α −β

]

=
αn−1 −β n−1

α −β

[

h2
2,r −h2

1,r

]

+
h1,rh2,r

α −β

[

αn−2 −β n−2 −αn +β n
]

=
αn−1 −β n−1

α −β

[

h2
2,r −h2

1,r −h1,rh2,r

]

.

Now,

fn =
αn−1 −β n−1

α −β
=

h2,rhn,r −h1,rhn+1,r

h2
2,r −h1,rh3,r

.
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Theorem 4.15 (Generalized identity). Let hn,r be the nth term of r−sum Fibonacci sequence then

hm,rhn,r −hm−k,rhn+k,r =
(−1)m−k−1

h2
2,r −h1,rh3,r

[

(h2,rhk+1,r −h1,rhk+2,r)(h2,rhn−m+k+1,r −h1,rhn−m+k+2,r)
]

, (4.2)

where n ≥ m and k ≥ 1.

Proof. By Binet’s formula (3.1), we have

hn,r = Aαn−1 +Bβ n−1

where A =
h2,r −βh1,r

α −β
, B =

αh1,r −h2,r

α −β
, α =

1+
√

5

2
and β =

1−
√

5

2
.

Now,

hm,rhn,r −hm−k,rhn+k,r =
(

Aαm−1 +Bβ m−1
)(

Aαn−1 +Bβ n−1
)

−
(

Aαm−k−1 +Bβ m−k−1
)(

Aαn+k−1 +Bβ n+k−1
)

= AB
(

αk −β k
)

[

αm−1β n−1

αk
− αn−1β m−1

β k

]

= AB(−1)−k
(

αk −β k
)

(

αm−1β m−1
)

(

β n−m+k −αn−m+k
)

=−AB(−1)m−k−1
(

αk −β k
)(

αn−m+k −β n−m+k
)

.

Since −AB =
h2

2,r −h1,rh3,r

(α −β )2
, then

hm,rhn,r −hm−k,rhn+k,r =
h2

2,r −h1,rh3,r

(α −β )2
(−1)m−k−1

[

(αk −β k)(αn−m+k −β n−m+k)
]

=
(

h2
2,r −h1,rh3,r

)

(−1)m−k−1

[

αk −β k

α −β

(

αn−m+k −β n−m+k

α −β

)]

.

By Lemma 4.14, we have

fk+1 =
αk −β k

α −β
=

h2,rhk+1,r −h1,rhk+2,r

h2
2,r −h1,rh3,r

and

fn−m+k+1 =
αn−m+k −β n−m+k

α −β
=

h2,rhn−m+k+1,r −h1,rhn−m+k+2,r

h2
2,r −h1,rh3,r

.

So

hm,rhn,r −hm−k,rhn+k,r = (−1)m−k−1

[

(

h2,rhk+1,r −h1,rhk+2,r

)(

h2,rhn−m+k+1,r −h1,rhn−m+k+2

)

h2
2,r −h1,rh3,r

]

.

Hence the proof follows.

Corollary 4.16 (Catalan’s identity). If we take m = n in the generalized identity (4.2), we obtain

h2
n,r −hn−k,rhn+k,r =

(−1)n−k−1

h2
2,r −h1,rh3,r

[

h2,rhk+1,r −h1,rhk+2,r

]2
,

for all n > k ≥ 1.

Corollary 4.17 (Cassini’s identity). If m = n and k = 1 in the generalized identity (4.2), then

h2
n,r −hn−1,rhn+1,r = (−1)n−2

(

h2
2,r −h1,rh3,r

)

,

for all n ≥ 1.

Corollary 4.18 (d’Ocagne’s identity). If n = m, m = n+1 and k = 1 in the generalized identity (4.2), then

hn+1,rhm,r −hn,rhm+1,r = (−1)n−1[h2,rhm−n+1,r −h1,rhm−n+2,r],

where m > n ≥ 0.
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5. Determinant Identities

Determinants play a significant role in various areas in mathematics. For instance, they are quite useful in analysis and solution

of systems of linear equations. T. Koshy [6] devoted two chapters of his book to the use of matrices and determinants in

Fibonacci numbers. In this section, we obtain further properties of r−sum Fibonacci numbers involving determinants.

Proposition 5.1. For every positive integer n,

∣

∣

∣

∣

∣

∣

hn+1,r hn+2,r hn+3,r

hn+4,r hn+5,r hn+6,r

hn+7,r hn+8,r hn+9,r

∣

∣

∣

∣

∣

∣

= 0.

Proof. Applying column reduction C1 −→ C1 +C2 to the matrix, i.e., replace the entries of column 1 with the sum of the

entries of columns 1 and 2, we get that two columns are identical and hence the determinant of the matrix is zero.

Proposition 5.2. For every positive integer n,

∣

∣

∣

∣

∣

∣

hn,r +hn+1,r hn+1,r +hn+2,r hn+2,r +hn,r

hn+2,r hn,r hn+1,r

1 1 1

∣

∣

∣

∣

∣

∣

= 0.

Proof. Applying R1 −→ R1 +R2, we get that the determinant of the matrix is

∣

∣

∣

∣

∣

∣

2hn+2,r 2hn+2,r 2hn+2,r

hn+2,r hn,r hn+1,r

1 1 1

∣

∣

∣

∣

∣

∣

= 2hn+2,r

∣

∣

∣

∣

∣

∣

1 1 1

hn+2,r hn,r hn+1,r

1 1 1

∣

∣

∣

∣

∣

∣

.

Since two rows are identical, the determinant is zero.

Proposition 5.3. Let n be a positive integer, then

∣

∣

∣

∣

∣

∣

hn,r fn 1

hn+1,r fn+1 1

hn+2,r fn+2 1

∣

∣

∣

∣

∣

∣

= fnhn+1,r − fn+1hn,r.

Proof. Applying R1 −→ R2 −R1 and R2 −→ R3 −R2, we get that

∣

∣

∣

∣

∣

∣

hn,r fn 1

hn+1,r fn+1 1

hn+2,r fn+2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

hn+1,r −hn,r fn+1 − fn 0

hn,r fn 0

hn+2,r fn+2 1

∣

∣

∣

∣

∣

∣

.

The result is thus immediate.

Proposition 5.4. For every positive integer n,

∣

∣

∣

∣

∣

∣

hn,r ln 1

hn+1,r ln+1 1

hn+2,r ln+2 1

∣

∣

∣

∣

∣

∣

= lnhn+1,r − ln+1hn,r.

Proof. The proof follows as in the proof of Proposition 5.3.

Proposition 5.5. For every positive integer n,

∣

∣

∣

∣

∣

∣

∣

∣

∣

1+hn,r hn+1,r · · · hn+p,r

hn,r 1+hn+1,r · · · hn+p,r

...
...

. . .
...

hn,r hn+1,r · · · 1+hn+p,r

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1+hn,r +hn+1,r + · · ·+hn+p,r.

Proof. The proof follows by induction on n and making use of column reductions.
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Proposition 5.6. Let n be a positive integer, then

∣

∣

∣

∣

∣

∣

hn,r hn+1,r hn+2,r

hn+2,r hn,r hn+1,r

hn+1,r hn+2,r hn,r

∣

∣

∣

∣

∣

∣

= 2(h3
n,r +h3

n+1,r).

Proof. We have

∣

∣

∣

∣

∣

∣

hn,r hn+1,r hn+2,r

hn+2,r hn,r hn+1,r

hn+1,r hn+2,r hn,r

∣

∣

∣

∣

∣

∣

= hn,r(h
2
n,r −hn+1,rhn+2,r)+hn+1,r(h

2
n+1,r −hn,rhn+2,r)+hn+2,r(h

2
n+2,r −hn,rhn+1,r)

= h3
n,r +h3

n+1,r +h3
n+2,r −3hn,rhn+1,rhn+2,r.

Substituting hn+2,r = hn,r +hn+1,r and expanding, we obtain the desired result.

6. Conclusion

In this paper, we have derived Binet’s formula (3.1) and generating function (3.3) for the r−sum Fibonacci sequence. Further,

we have obtained explicit sum formula, sum of first n terms, sum of first n terms with even indices, sum of first n terms with odd

indices, alternating sum of n terms of r−sum Fibonacci sequence, Honsberger’s identity, determinant identities and generalized

identity (4.2) from which Cassini’s identity, Catalan’s identity and d’Ocagne’s identity are simple cases.
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1. Introduction

In the mathematical literature there are many existence results on singular differential equations [3–8]. We are mainly motivated

by [1] and the references therein.

We consider the problem

(py′)′+ pqg(y) = 0, t ∈ [0,T ], (1.1)

y(0) = a > 0,

lim
t→0+

p(t)y′(t) = 0

and

(py′)′+ pqg(y) = 0, t ∈ [0,T ], (1.2)

y(0) = a > 0,

y′(0) = 0,

where 0 < T < ∞, p ≥ 0, q ≥ 0 and g : [0,∞)→ [0,∞).
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Agarwal and O’Regan [1] proved the next existence theorem for the positive solution of the problem (1.1) and (1.2).

Theorem 1.1. [1]Suppose the following conditions are satisfied

p ∈C[0,T )∩C1(0,T ) with p > 0 on (0,T ), (1.3)

q ∈ L1
p[0, t

∗] for any t∗ ∈ (0,T ) with q > 0 on (0,T ). (1.4)

Here L1
r [0,a] is the space of functions u(t) with

∫ a
0 |u(t)|r(t)dt < ∞,

∫ t∗

0

1

p(s)

∫ s

0
p(x)q(x)dxds < ∞ for any t∗ ∈ (0,T ), (1.5)

and

g : [0,∞)→ [0,∞) is continuous, nondecreasing on [0,∞) and g(u)> 0 for u > 0.

Let

H(z) =
∫ a

z

dx

g(x)
for 0 < z ≤ a

and

∫ t∗

0

1

p(s)

∫ s

0
p(x)q(x)τ(x)dxds < a for any t∗ ∈ (0,T ). (1.6)

Here

τ(x) = g

(

H−1

(

∫ x

0

1

p(w)

∫ w

0
p(z)q(z)dzdw

))

.

Then equation (1) has a solution y ∈C[0,T ) with py′ ∈C[0,T ), (py′)′ ∈ L1
pq(0,T ) and 0 < y(t)≤ a for t ∈ [0,T ). In addition,

if either

p(0) 6= 0

or

p(0) = 0 and lim
t→0+

p(t)q(t)

p′(t)
= 0

holds, then y is a solution of (1.2).

The condition (1.6) in connection with the definition of the function τ(x), makes this theorem difficult for application.

In [2], we proved the theorem:

Theorem 1.2. Suppose (1.3)-(1.5) hold. In addition, we assume

∫ t∗

0

1

p(s)

∫ s

0
p(x)q(x)g(a−ϕ(x))dxds ≤ a−ϕ(x),

∫ t∗

0

1

p(s)

∫ s

0
p(x)q(x)g(ϕ(x))dxds ≥ ϕ(x)

for some ϕ(x) ∈C[0,T ], with 0 ≤ ϕ(x) ≤ a. Then (1.1) has a solution y ∈C[0,T ] with py′ ∈C[0,T ], (py′)′ ∈ L1
pq(0,T ) and

0 < y(t)≤ a for t ∈ [0,T ].

The main purpose of this paper is to establish more easily applicable theorem on the existence of positive solution of the

problem (1.1).
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2. Main Results

The following theorem is the main result of this article.

Theorem 2.1. Suppose the following conditions are satisfied

p ∈ C[0,T )∩C1(0,T ) with p > 0 on (0,T ],

q ≥ 0,

∫ t∗

0

1

p(s)

∫ s

0
p(x)q(x)dxds < ∞ for any t∗ ∈ (0,T ],

g : [0,∞)→ [0,∞) is continuous, nondecreasing on [0,∞),

and assume

∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(a−ϕ(t))dxds ≤ ϕ(t),

for some ϕ(t) ∈ C[0,T ], with 0 ≤ ϕ(t) ≤ a,ϕ(0) = a. Then equation (1) has a solution y ∈ C[0,T ] with py′ ∈ C[0,T ],
(py′)′ ∈ L1

pq(0,T ) and 0 < y(t)≤ a for t ∈ [0,T ]. In addition, if either

p(0) 6= 0

or

p(0) = 0 and lim
t→0+

p(t)q(t)

p′(t)
= 0

holds, then y is a solution of (1.2).

Proof. We construct a sequence of functions such that the subsequences of odd-numbered terms and even-numbered terms

are convergent. By using the limits of these sequences we construct a new set and the operator in this set. Then we use

Schauder-Tychonoff theorem to show that this operator has a fixed point.

Consider the sequence {yn(t)} ,n = 0,1,2, ... with y0(t)≡ ϕ(t),

yn(t) = ϕ(t)−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(yn−1(x))dxds, n = 1,2, ..., t ≤ T.

We have

y0(t) ≡ a−ϕ(t),

y1(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y0(x))dxds ≥ y0(x),

and in like manner

y2(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y1(x))dxds

≤ a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y0(x))dxds

= y1(t),

y3(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y2(x))dxds ≥ y2(t),

y4(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y3(x))dxds ≤ y3(t), ...

y2n−1(t) ≥ y2n−2(t),

y2n(t) ≤ y2n−1(t), ...
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The sequences {y2n(t)} and {y2n+1(t)} are equicontinuous. Indeed, we have

|yn(t)− yn(r)|=
∫ t

r

1

p(s)

∫ s

0
p(x)q(x)g(yn−1(x))dxds ≤ M

∫ t

r

1

p(s)

∫ s

0
p(x)q(x)dxds, (2.1)

where

M = max{g(u) : 0 ≤ u ≤ a}

and the right hand side of (2.1) can be taken < ε for |t − r|< δ , regardless of the choice of t and r: the function
∫ t

0
1

p(s)

∫ s
0 p(x)q(x)dxds

is (uniformly) continuous on [0,T ]. It follows from Ascoli Arzela Theorem that the sequence {y2n(t)} has the (uniformly)

convergent subsequence, y2nk
(t)→ u(t). The Lebesgue dominated theorem guarantees that

y2nk+1(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y2nk

(x))dxds → v(t),

v(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(u(x))dxds,

and u(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(v(x))dxds.

If u(t) = v(t); we have that the function u(t) is the solution of the problem (1.1). Indeed, it follows from

u(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(u(x))dxds

that

u′(t) = −
1

p(t)

∫ t

0
p(x)q(x)g(u(x))dx,

pu′ = −
∫ t

0
p(x)q(x)g(u(x))dx,

(

pu′
)′

= −pqg(u).

So, we suppose u(t) 6= v(t). We have u(0) = v(0) = a and if for example, u(t)> v(t) on the interval (0,b), then we obtain

u(b)− v(b) =
∫ b

0

1

p(s)

∫ s

0
p(x)q(x) [g(u(x))−g(v(x)]dxds > 0

and therefore u(t)> v(t) on the whole interval (0,T ]. The same holds for all points of intersections t0 : u(t0) = v(t0). That is if

u(t0) = v(t0), then for any ε > 0 there are infinitely many points tn ∈ [t0, t0 + ε) such that u(tn) = v(tn). Therefore, u(t)> v(t)
(or ¡) on (t0,T ]. Without loss of generality, let us suppose u(t)> v(t) on (0,T ] and consider the operator N : C[0,T ]→C[0,T ]
defined by

Ny(t) = a−
∫ t

0

1

p(s)

∫ s

0
p(x)q(x)g(y(x))dxds.

Next, let

K = {y ∈C[0,T ] : v(t)≤ y(t)≤ u(t) for t ∈ [0,T ]} .

The set K is closed, convex and bounded subset of C[0,T ] and clearly N : K → K. Let us show that N : K → K is continuous and

compact operator. Continuity follows from Lebesgue dominated convergence theorem: if yn(t)→ y(t), then Nyn(t)→ Ny(t).
To show that N is completely continuous let y(t) ∈ K, then

|Ny(t)−Ny(r)| ≤ M

∣

∣

∣

∣

∫ t

r

1

p(x)

∫ x

0
p(z)q(z)dzds

∣

∣

∣

∣

for t,r ∈ [0,T ],
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that is N completely continuous on [0,T ]. It follows from Schauder-Tychonoff theorem that N has a fixed point w ∈ K, i.e. w is

a solution of (1.1). It follows from

w′(t) =−
1

p(t)

∫ t

0
p(x)q(x)g(w(x))dx, (2.2)

that if p(0) 6= 0; then w′(0) = 0. Now if p(0) = 0 but limt→0+
p(t)q(t)

p′(t) = 0 using L’Hôpital’s rule we obtain from (8)

w′(0+) = − lim
t→0+

∫ t
0 p(x)q(x)g(w(x))dx

p(t)

= − lim
t→0+

p(t)q(t)g(w(t))

p′(t)
= 0,

that is w is a solution of (1.2). The proof is complete.

3. Conclusion

The theorem in [1] seems difficult for applications. The condition (1.6) very restrictive and decreases the sphere of applicability

of the Theorem 1.1. We do not require the existence of the inverse H−1. We proved an easily applicable theorem on the

existence of positive solutions to initial-value problems for second-order nonlinear singular differential equations. The main

result can be easily applied for the singular and regular type of problems.
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1. Introduction

Banach [5] introduced a famous fundamental fixed point theorem, also known as the Banach contraction principle. There are

various extensions and generalizations of the Banach contraction principle in the literature see for example Kannan’s [6], Reich

[7] and see also Ćirić’s [8].

In 1968, Kannan [6] proved a new fixed point theorem and considered the following contractive type:

d(Fη ,Fω)≤ λ [d(η ,Fη)+d(ω,Fω)] (1.1)

where λ ∈ [0, 1
2
). In [2], the notion of an interpolation Kannan type contractive was introduced. On the other hand, Reich, Rus

and Ćirić [7, 9, 10, 11, 12, 13, 14] combined and improved both Banach and Kannan fixed point theorems. Recently, Karapınar

et. al., [3] proved interpolative Reich Rus Ćirić type contractive mappings on partial metric spaces.

In 1969, using Pompeiu-Hausdorff metric, Nadler [1] introduced the notion of multi-valued contraction mapping and proved

a multi-valued version of the well known Banach contraction principle. Denote by P(X) the family of all nonempty subsets of

X , C(X) the family of all nonempty, closed subsets of X , CB(X) the family of all nonempty, closed and bounded subsets of X

and K(X) the family of all nonempty compact subsets of X . It is clear that, K(X)⊆CB(X)⊆C(X)⊆ P(X). It is well known

that, H : CB(X)×CB(X)→ R is defined by, for every F,G ∈CB(X),

H(F,G) = max

{

sup
f∈F

d( f ,G),sup
g∈G

d(g,F)

}
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is a metric on CB(X), which is called the Pompeiu–Hausdorff metric induced by d, where D( f ,G) = inf{d( f ,g) : g ∈ G} and

D(F,G) = sup{D( f ,G) : f ∈ F}. Additionally, we will use the following lemma:

Lemma 1.1. Let (X ,d) metric spaces and F compact subsets of X. Afterwards, for x ∈ X , there exist f ∈ F, such that

d(x, f ) = D(x,F).

Lemma 1.2. [1] Let F and G be nonempty closed and bounded subsets of a metric space. Therefore, for any f ∈ F,

D( f ,G)≤ H(F,G).

Lately, Jleli and Samet [4] introduced a new type of contractions called θ -contraction. They introduced the family of all

functions, θ : (0,∞)→ (1,∞) supplying the following particulars by Θ:

(Θ1) θ is nondecreasing;

(Θ2) For each sequence {sn} ⊂ (0,∞), limn→∞ θ(sn) = 1 if and only if limn→∞ sn = 0+;

(Θ3) There exist m ∈ (0,1) and z ∈ (0,∞] such that lims→0+
θ(s)−1

sm = z.

In section 1, some basic definitions and theorem in the literature that will be used in the paper are given. In section 2,

by using the approach of Nadler [1], Jleli and Samet [4] and Karapınar et. al.[2, 3], we introduce the notion of extended

interpolative single and multi-valued Kannan type and Reich Rus Ćirić type θ -contractive mappings.

2. Main Results

Firstly, let us start with the definition of interpolative Kannan type θ -contractive mapping.

Definition 2.1. Let (X ,d) be a complete metric space and θ ∈ Θ. A mapping F : X → X is said to be an interpolative Kannan

type θ -contractive mapping if θ ∈ Θ and there exist λ ∈ [0,1), α ∈ (0,1) such that

θ(d(Fη ,Fω))≤ [θ(d(η ,Fη))]λα [θ(d(ω,Fω))]λ (1−α) (2.1)

for all η ,ω ∈ X .

Theorem 2.2. Let (X ,d) be a complete metric space and F : X → X be an interpolative Kannan type θ -contractive, then F

has a fixed point in X.

Proof. Starting from η0 ∈ X , consider {ηn} given as ηn = Fηn−1 for all positive integer n. If there is n0 so that ηn0 = ηn0+1

then ηn0 is a fixed point of F. Assume that ηn 6= ηn+1 for all n ≥ 0. Taking η = ηn−1 and ω = ηn in (2.1), one writes

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λα [θ(d(ηn,ηn+1))]

λ (1−α). (2.2)

If

d(ηn−1,ηn)< d(ηn,ηn+1),

then, from (2.2) we obtain

θ(d(ηn,ηn+1))≤ [θ(d(ηn,ηn+1))]
λ (1−α+α) = [θ(d(ηn,ηn+1))]

λ

which is a contradiction. Thus, for all n ∈ N

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ . (2.3)

Using (2.3) we have

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ ≤ [θ(d(ηn−2,ηn−1))]

λ 2 ≤ ·· · ≤ [θ(d(η0,η1))]
λ n

. (2.4)

Letting n → ∞ in (2.4) we obtain

lim
n→∞

θ(d(ηn,ηn+1)) = 1, (2.5)
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From (Θ2) we get

lim
n→∞

d(ηn,ηn+1) = 0+,

and from (Θ3), there exist a ∈ (0,1) and b ∈ (0,∞] such that

lim
n→∞

θ(d(ηn,ηn+1))−1

(d(ηn,ηn+1))a
= b. (2.6)

Suppose that b < ∞. In this case, let S = b
2
> 0. Using the definition of the limit, there exist n0 ∈ N such that

∣

∣

∣

∣

θ(d(ηn,ηn+1))−1

(d(ηn,ηn+1))a
−b

∣

∣

∣

∣

≤ S, for all n ≥ n0.

This implies that

θ(d(ηn,ηn+1))−1

(d(ηn,ηn+1))a
≥ b−S = S, for all n ≥ n0.

Then

n(d(ηn,ηn+1))
a ≤ Rn[θ(d(ηn,ηn+1))−1],

for all n ≥ n0 where R = 1
S
. Now suppose that b = ∞ and S > 0 be an arbitrary positive number. Using the definition the limit,

there exist n0 ∈ N such that

θ(d(ηn,ηn+1))−1

(d(ηn,ηn+1))a
≥ S,

for all n ≥ n0. This implies that

n(d(ηn,ηn+1))
a ≤ Rn[θ(d(ηn,ηn+1))−1],

for all n ≥ n0, where R = 1
S
.

Therefore, in all cases, there exist R > 0 and n0 ∈ N such that

n(d(ηn,ηn+1))
a ≤ Rn[θ(d(ηn,ηn+1))−1],

for all n ≥ n0. Using (2.4), we can write

n(d(ηn,ηn+1))
a ≤ Rn([θ(d(η0,η1))]

λ n −1), (2.7)

for all n ≥ n0. Letting n → ∞ in (2.7) we get

lim
n→∞

n(d(ηn,ηn+1))
a = 0.

Hence, there exist n1 ∈ N such that

d(ηn,ηn+1)≤
1

n
1
a

, for all n ≥ n1. (2.8)

For what follows, we shall prove that {ηn} is a Cauchy sequence by employing standard tools, For any n,m ∈N with m > n ≥ n0

we obtain

d(ηn,ηm)≤d(ηn,ηn+1)+d(ηn+1,ηn+2)+ · · ·+d(ηm−1,ηm)

≤
m−1

∑
i=n

1

i
1
a

.
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Since the last term of the above inequality tends to zero as n,m → ∞, we have d(ηn,ηm)→ 0. As (X ,d) is a complete metric

spaces, the sequence {ηn} converges to some point u ∈ X , that is,

lim
n→∞

ηn = u. (2.9)

As a next step make evident that the limit η of the iterative sequence {ηn} is a fixed point of the given mapping F . Suppose

that η 6= Fη , then d(η ,Fη)> 0. By letting η = ηn and ω = η in (2.1), we obtain that

d(ηn+1,Fη) = d(Fηn,Fη)≤ [θ(d(ηn,Fηn))]
λα [θ(d(η ,Fη))]λ (1−α).

Letting n → ∞ in the above inequality, we obtain, η = Fη . Thus the proof is completed.

Remark 2.3. Taking θ(t) = et in inequality (2.1), then it turns to Kannan contraction mapping with λα ∈ [0, 1
2
) and

λ (1−α) ∈ [0, 1
2
).

Definition 2.4. Let (X ,d) be a complete metric space and θ ∈ Θ. A mapping F : X → K(X) is said to be an interpolative

multi-valued Kannan type θ -contractive mapping if θ ∈ Θ and there exist λ ∈ [0,1), α ∈ (0,1) such that

θ(H(Fη ,Fω))≤ [θ(D(η ,Fη))]λα [θ(D(ω,Fω))]λ (1−α) (2.10)

for all η ,ω ∈ X .

Theorem 2.5. Let (X ,d) be a complete metric space and F : X → K(X) be an interpolative multi-valued Kannan type

θ -contractive, then F has a fixed point in X.

Proof. Let η0 be an arbitrary point of X and choose a η1 ∈ X such that η1 ∈ Fη0. Suppose that η1 ∈ Fη1, that is, η1 is a fixed

point of F . Then, let η1 /∈ Fη1. Since Fη1 is closed, we have D(η1,Fη1)> 0 for all η ∈ X . On the other hand, from

0 < D(η1,Fη1)≤ H(Fη0,Fη1),

so, from (2.10), and considering (Θ1),

θ(D(η1,Fη1))≤ θ(H(Fη0,Fη1))≤ [θ(D(η0,Fη0))]
λα [θ(D(η1,Fη1))]

λ (1−α). (2.11)

Since Fη1 is compact, there exist η2 ∈ Fη1 such that d(η0,η1) = D(η0,Fη0) and d(η1,η2) = D(η1,Fη1). From (2.11), we

get

θ(d(η1,η2))≤ θ(H(Fη0,Fη1))≤ [θ(d(η0,η1))]
λα [θ(d(η1,η2))]

λ (1−α). (2.12)

Therefore, continuing recursively, we get ηn ∈ X such that ηn ∈ Fηn−1, ηn+1 ∈ Fηn and

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λα [θ(d(ηn,ηn+1))]

λ (1−α). (2.13)

If

d(ηn−1,ηn)< d(ηn,ηn+1),

then, from (2.13) we obtain

θ(d(ηn,ηn+1))≤ [θ(d(ηn,ηn+1))]
λ (1−α+α) = [θ(d(ηn,ηn+1))]

λ

which is a contradiction. Thus, for all n ∈ N

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ . (2.14)

Denote

µn = d(ηn,ηn+1),
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for all n ∈ N. Then, µn > 0 and using (2.14) we have

θ(µn)≤ [θ(µn−1)]
λ ≤ [θ(µn−2)]

λ 2 ≤ ·· · ≤ [θ(µ0)]
λ n

. (2.15)

Letting n → ∞ in (2.15) we obtain

lim
n→∞

θ(µn) = 1, (2.16)

From (Θ2) we get

lim
n→∞

µn = 0+,

and so from (Θ3), there exist a ∈ (0,1) and b ∈ (0,∞] such that

lim
n→∞

θ(µn)−1

(µn)a
= b. (2.17)

Assume that b < ∞. In this case, let S = b
2
> 0. From the definition of the limit, there exist n0 ∈ N such that

∣

∣

∣

∣

θ(µn)−1

(µn)a
−b

∣

∣

∣

∣

≤ S, for all n ≥ n0.

This implies that

θ(µn)−1

(µn)a
≥ b−S = S, for all n ≥ n0.

Thus

n(µn)
a ≤ Rn[θ(µn)−1],

for all n ≥ n0 where R = 1
S
. Now assume that b = ∞ and S > 0 be an arbitrary positive number. From the definition the limit,

there exist n0 ∈ N such that

θ(µn)−1

(µn)a
≥ S,

for all n ≥ n0. This implies that

n(µn)
a ≤ Rn[θ(µn)−1],

for all n ≥ n0, where R = 1
S
.

Therefore, in all cases, there exist R > 0 and n0 ∈ N such that

n(µn)
a ≤ Rn[θ(µn)−1],

for all n ≥ n0. Using (2.15), we obtain

n(µn)
a ≤ Rn([θ(µ0)]

λ n −1), (2.18)

for all n ≥ n0. Letting n → ∞ in (2.18) we get

lim
n→∞

n(µn)
a = 0.

Therefore, there exist n1 ∈ N such that

µn ≤
1

n
1
a

, for all n ≥ n1. (2.19)
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For what follows, we shall prove that {ηn} is a Cauchy sequence by employing standard tools, For any n,m ∈N with m > n ≥ n0

we obtain

d(ηn,ηm)≤d(ηn,ηn+1)+d(ηn+1,ηn+2)+ · · ·+d(ηm−1,ηm)

=µn +µn+1 + · · ·+µm−1

≤
m−1

∑
i=n

1

i
1
a

.

Since the last term of the above inequality tends to zero as n,m → ∞, we have d(ηn,ηm)→ 0. As (X ,d) is a complete metric

spaces, the sequence {ηn} converges to some point u ∈ X , that is,

lim
n→∞

ηn = u. (2.20)

Case 1: There is a subsequence {ηnr} such that Fηnr = Fu for all r ∈ N. In this case,

D(u,Fu) = lim
n→∞

D(ηnr+1
,Fu)≤ lim

n→∞
H(Fηnr ,Fu) = 0.

Case 2: There is a natural number N such that Fηn 6= Fu for all n ≥ N. In this cases applying (2.10) for u = ηn and ω = u we

have

θ(D(ηn+1,Fu))≤ θ(H(Fηn,Fu))≤ [θ(D(ηn,Fηn))]
λα [θ(D(u,Fu))]λ (1−α). (2.21)

Then assume that

D(ηn,Fηn)< D(u,Fu),

letting n → ∞ in (2.21) we obtain,

θ(D(u,Fu))≤ [θ(D(u,Fu))]λ

which is a contradiction. Then we obtain

D(u,Fu)≤ D(ηn,Fηn),

so, we get

θ(D(u,Fu))≤ [θ(D(ηn,Fηn))]
λ . (2.22)

Since Fηn is compact, there exist ηn+1 ∈ Fηn such that d(ηn,ηn+1) = D(ηn,Fηn). Since (2.22), we get

θ(D(u,Fu))≤ [θ(D(ηn,ηn+1))]
λ (2.23)

letting n → ∞ in (2.23) we obtain, u ∈ Fu. Thus the proof is completed.

Hançer et al. [15], showed that we can take ”CB(X)” instead of ”K(X)”, by adding the condition (θ4) on θ : (0,∞)→ (1,∞),
as follows:

(θ4) θ(infM) = infθ(M) for all M ⊂ (0,∞) with infM > 0.

Take in the consideration if θ is right continuous and satisfies (θ1), in that case (θ4) founds. Let Ξ be the family of all functions

θ satisfying (θ1)− (θ4).

Corollary 2.6. Let (X ,d) be a complete metric space and F : X →CB(X) be a mapping. Given that there are θ ∈ Ξ, λ ∈ [0,1)
and α ∈ (0,1) such that

θ(H(Fη ,Fω))≤ [θ(D(η ,Fη))]λα [θ(D(ω,Fω))]λ (1−α) (2.24)

for all η ,ω ∈ X then F has a fixed point in X.
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Proof. Let η0 be an arbitrary point of X and choose a η1 ∈ X such that η1 ∈ Fη0. Assume that η1 ∈ Fη1, that is, η1 is a fixed

point of F . Then, let η1 /∈ Fη1. As Fη1 is closed, we obtain D(η1,Fη1)> 0 for all η ∈ X . So, from (2.24), and considering

(Θ1),

θ(D(η1,Fη1))≤ θ(H(Fη0,Fη1))≤ [θ(D(η0,Fη0))]
λα [θ(D(η1,Fη1))]

λ (1−α). (2.25)

Considering condition (θ4), we obtain θ(D(η1,Fη1)) = infz∈Fη1
θ(d(η1,z)). Then we have

inf
z∈Fη1

θ(d(η1,z))≤ [θ(D(η0,Fη0))]
λα [θ(D(η1,Fη1))]

λ (1−α)

< [θ(D(η0,Fη0))]
λ1α [θ(D(η1,Fη1))]

λ1(1−α). (2.26)

where λ1 ∈ (λ ,1). Then, from (2.26), there exist η1 ∈ Fη0 and η2 ∈ Fη1 such that

θ(d(η1,η2))≤ [θ(d(η0,η1))]
λ1α [θ(d(η1,η2))]

λ1(1−α). (2.27)

The rest of the proof can be completed as in the proof of Theorem 2.5.

Definition 2.7. Let (X ,d) be a complete metric space and θ ∈ Θ. A mapping F : X → X is said to be an interpolative Reich

Rus Ćirić type θ -contractive mapping if θ ∈ Θ and there exist λ ∈ [0,1), β ,α ∈ (0,1) with β +α < 1 such that

θ(d(Fη ,Fω))≤ [θ(d(η ,ω))]λβ [θ(d(η ,Fη))]λα [θ(d(ω,Fω))]λ (1−β−α) (2.28)

for all η ,ω ∈ X .

Theorem 2.8. Let (X ,d) be a complete metric space and F : X → X be an interpolative Reich Rus Ćirić type θ -contractive,

then F has a fixed point in X.

Proof. Starting from η0 ∈ X , consider {ηn} given as ηn = Fηn−1 for all positive integer n. If there is n0 so that ηn0 = ηn0+1

then ηn0 is a fixed point of F. Assume that ηn 6= ηn+1 for all n ≥ 0. Taking η = ηn−1 and ω = ηn in (2.28), one writes

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λβ [θ(d(ηn−1,ηn))]

λα [θ(d(ηn,ηn+1))]
λ (1−β−α). (2.29)

If

d(ηn−1,ηn)< d(ηn,ηn+1),

then, from (2.29) we obtain

θ(d(ηn,ηn+1))≤ [θ(d(ηn,ηn+1))]
λ (β+α+1−α−β ) = [θ(d(ηn,ηn+1))]

λ

which is a contradiction. Thus, for all n ∈ N

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ . (2.30)

From (2.30) we have

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ ≤ [θ(d(ηn−2,ηn−1))]

λ 2 ≤ ·· · ≤ [θ(d(η0,η1))]
λ n

. (2.31)

Then, it can be seen that the {ηn} is a Cauchy with similar operations in Theorem 2.2. As (X ,d) is a complete metric spaces,

the sequence {ηn} converges to some point u ∈ X , that is,

lim
n→∞

d(ηn,ηn+1) = u. (2.32)

As a next step make evident that the limit η of the iterative sequence {ηn} is a fixed point of the given mapping F . Suppose

that η 6= Fη , then d(η ,Fη)> 0. By letting η = ηn and ω = η in (2.28), we obtain that

d(ηn+1,Fη) = d(Fηn,Fη)≤ [θ(d(ηn,η))]λβ [θ(d(ηn,Fηn))]
λα [θ(d(η ,Fη))]λ (1−α−β ).

Letting n → ∞ in the above inequality, we obtain, η = Fη . Thus the proof is completed.
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Remark 2.9. Taking θ(t) = et in inequality (2.28), then it turns to Reich-Rus-Ćirić contraction mapping with a,b,c ∈ (0,1)
such that λβ = a, λα = b and c = 1−β −α, 0 ≤ a+b+ c < 1.

Definition 2.10. Let (X ,d) be a complete metric space and θ ∈ Θ. A mapping F : X → K(X) is said to be an interpolative

multi-valued Reich Rus Ćirić type θ -contractive mapping if θ ∈ Θ and there exist λ ∈ [0,1), β ,α ∈ (0,1) with β +α < 1 such

that

θ(H(Fη ,Fω))≤ [θ(d(η ,ω))]λβ [θ(D(η ,Fη))]λα [θ(D(ω,Fω))]λ (1−β−α) (2.33)

for all η ,ω ∈ X .

Theorem 2.11. Let (X ,d) be a complete metric space and F : X → K(X) be an interpolative multi-valued Reich Rus Ćirić

type θ -contractive, then F has a fixed point in X.

Proof. Let η0 ∈ X . Since Fη is nonempty for all η0 ∈ X , we can chose a η1 ∈ X . Assume that η1 ∈ Fη1, that is, η1 is a fixed

point of F . Now, let η1 /∈ Fη1. As Fη1 is closed, we obtain D(η1,Fη1)> 0 for all η ∈ X . Moreover, as

0 < d(η1,Fη1)≤ H(Fη0,Fη1),

from (2.33) and considering (Θ1), we can write that

θ(d(η1,Fη1))≤θ(H(Fη0,Fη1))

≤[θ(d(η0,η1))]
λβ [θ(d(η0,Fη0))]

λα [θ(d(η1,Fη1))]
λ (1−β−α). (2.34)

As Fη1 is compact, there exist η2 ∈ Fη1 such that d(η0,η1) = d(η0,Fη0) and d(η1,η2) = d(η1,Fη1). From (2.34), we obtain

θ(d(η1,η2))≤θ(H(Fη0,Fη1))

≤[θ(d(η0,η1))]
λβ [θ(d(η0,η1))]

λα [θ(d(η1,η2))]
λ (1−β−α). (2.35)

Therefore, continue recursively, we get ηn ∈ X such that ηn ∈ Fηn−1, ηn+1 ∈ Fηn, and

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λβ [θ(d(ηn−1,ηn))]

λα [θ(d(ηn,ηn+1))]
λ (1−β−α). (2.36)

Suppose that

d(ηn−1,ηn)< d(ηn,ηn+1),

then from (2.36) we obtain

θ(d(ηn,ηn+1))≤ [θ(d(ηn,ηn+1))]
λ (β+α+1−α−α) = [θ(d(ηn,ηn+1))]

λ

which is a contradiction. Therefore for all n ∈ N

θ(d(ηn,ηn+1))≤ [θ(d(ηn−1,ηn))]
λ . (2.37)

Let

µn = d(ηn,ηn+1),

for all n ∈ N. Thus, µn > 0 and handling (2.37) we get

θ(µn)≤ [θ(µn−1)]
λ ≤ [θ(µn−2)]

λ 2 ≤ ·· · ≤ [θ(µ0)]
λ n

. (2.38)

Then, it can be seen that the {ηn} is a Cauchy with similar operations in Theorem 2.5.

Since (X ,d) is a complete metric spaces, the sequence {ηn} converges to some point u ∈ X , that is,

lim
n→∞

ηn = u. (2.39)

Case 1: There is a subsequence {ηnr} such that Fηnr = Fu for all r ∈ N. Therefore,

D(u,Fu) = lim
n→∞

D(ηnr+1
,Fu)≤ lim

n→∞
H(Fηnr ,Fu) = 0.
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Case 2: There is a natural number N such that Fηn 6= Fu for all n ≥ N. In this cases applying (2.33) for u = ηn and ω = u we

have

θ(D(ηn+1,Fu))≤θ(H(Fηn,Fu))

≤[θ(D(ηn,u))]
λβ [θ(D(ηn,Fηn))]

λα [θ(D(u,Fu))]λ (1−β−α). (2.40)

Hence, suppose that

D(ηn,Fηn)< D(u,Fu),

letting n → ∞ in (2.40) we get,

θ(D(u,Fu))≤ [θ(D(u,Fu))]λ (1−β )

which is a contradiction. So we obtain

D(u,Fu)≤ D(ηn,Fηn),

then, we get

θ(D(u,Fu))≤ [θ(D(ηn,Fηn))]
λ (1−β ). (2.41)

As Fηn is compact, there exist ηn+1 ∈ Fηn such that d(ηn,ηn+1) = D(ηn,Fηn). From (2.41), we obtain

θ(D(u,Fu))≤ [θ(D(ηn,ηn+1))]
λ (1−β ) (2.42)

letting n → ∞ in (2.42) we get, u ∈ Fu. Therefore the proof is completed.

Example 2.12. Let X = [0,∞) and define d(η ,ω) = |η −ω|, for all η ,ω ∈ X . (X ,d) is a complete metric space. Also defined

F : X → K(X) a mapping, where

Fη =

{

{0}, if η ∈ [0,1)
{η

6
}, if η ∈ [1,∞).

Let λ = 1√
2
, β = 1

2
, α = 1

3
and θ(m) = em pertain to Θ. Without loss of generality, we may assume that η ≥ ω . Thus, through

a series of standard calculations, we can proved that

θ(H(Fη ,Fω))≤ [θ(D(η ,ω))]λβ [θ(D(η ,Fη))]λα [θ(D(ω,Fω))]λ (1−β−α)

for all η ,ω ∈ X. So, this is satisfying the condition of Theorem 2.11. F has fixed points. Since similar process are performed,

the condition of Theorem 2.5 is satisfied.

Corollary 2.13. Let (X ,d) be a complete metric space and F : X → CB(X) be a mapping. Suppose that there are θ ∈ Ξ,

λ ∈ [0,1) and β ,α ∈ (0,1) with β +α < 1 such that

θ(H(Fη ,Fω))≤ [θ(d(η ,ω))]λβ [θ(d(η ,Fη))]λα [θ(d(ω,Fω))]λ (1−β−α) (2.43)

for all η ,ω ∈ X then F has a fixed point in X.

Proof. Let η0 be an arbitrary point of X and choose a η1 ∈ X such that η1 ∈ Fη0. Assume that η1 ∈ Fη1, that is, η1 is a fixed

point of F . Therefore, let η1 /∈ Fη1. Since Fη1 is closed, we obtain D(η1,Fη1)> 0 for all η ∈ X . Hence, from (2.43), and

considering (Θ1), we can write

θ(D(η1,Fη1))≤θ(H(Fη0,Fη1))

≤[θ(d(η0,η1))]
λβ [θ(d(η0,Fη0))]

λα [θ(d(η1,Fη1))]
λ (1−β−α). (2.44)

Considering condition (θ4), we get θ(D(η1,Fη1)) = infz∈Fη1
θ(d(η1,z)). Thus, we have

inf
z∈Fη1

θ(d(η1,z))≤[θ(d(η0,η1))]
λβ [θ(d(η0,Fη0))]

λα [θ(d(η1,Fη1))]
λ (1−β−α)

<[θ(d(η0,η1))]
λ1β [θ(d(η0,Fη0))]

λ1α [θ(d(η1,Fη1))]
λ1(1−β−α) (2.45)

where λ1 ∈ (λ ,1). Then, from (2.45), there exist η1 ∈ Fη0 and η2 ∈ Fη1 such that

θ(d(η1,η2))≤ [θ(d(η0,η1))]
λ1β [θ(d(η0,η1))]

λ1α [θ(d(η1,η2))]
λ1(1−β−α). (2.46)

The rest of the proof can be completed as in the proof of Theorem 2.11.
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3. Conclusion

We aimed to present new some results to the fixed point theory by combining the ideas of Nadler, Karapınar et. al., Jleli and

Samet. We introduce the concept of interpolative single and multi-valued Kannan type and Reich Rus Ćirić type θ -contractive

mappings metric spaces and prove some fixed point results for such mappings.
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1. Introduction

Semirings [3], a common generalization of rings and distributive lattices, arise naturally in graph theory, automata theory,

mathematical modelling, functional analysis etc.. We know that ideals of ring are a very important tool to describe the structure

theory and it is useful in various purposes. If we try to obtain similar results in case of semiring, we find that there are some

limitations. To make the connection between the ring ideals and semiring ideals Henriksen [4] defined a special kind of ideals,

called k-ideal. Iizuka [5] extended the results to a similar kind of ideals called h-ideals. As a continuation of this, La Torre [10]

studied h-ideals and k-ideals in hemirings and tried to investigate the gap between the ring ideals and semiring ideals.

In 1965, Zadeh [16] proposed the theory of fuzzy sets. After that we have seen that it is a very useful mathematical tool for

describing the vague or complex or illdefined systems. Rosenfeld [15] used the concept to study of fuzzy algebraic structure.

Since then many researchers have developed these ideas. Jun et al [6] applied the concept to initiate the study of fuzzy h-ideals in

hemiring. Sardar et al [13, 14], Ma et al [11] extended some of these results in more general setting of hemiring i.e. Γ-hemiring.

Jun et al [7, 8] initiated the study of cubic subgroups and cubic sets. Khan et al [9] applied this in case of cubic h-ideals of

hemirings. Chinnadurai [1, 2] used this notion to study cubic bi-ideals and cubic lateral ideals in near-ring and ternary near-ring

respectively.

As a continuation of this, the main aim of this paper is to study h-hemiregularity and h-intra-hemiregularity criterion of

Γ-hemiring using cubic h-ideals, cubic h-bi-ideals and cubic h-quasi-ideals.

2. Primary Ideas

We know that a hemiring is a nonempty set S on which operations addition and multiplication have been defined such that

(S,+) is a commutative monoid with identity 0, (S, ·) is a semigroup and multiplication distributes over addition from either

side. In addition to that, 0 · s = 0 = s ·0 for all s ∈ S. As an extension of this Γ-hemiring can be defined as follows:

For two additive commutative semigroups with zero, S and Γ, there exists a mapping S×Γ× S → S ( (a,α,b) 7→ aαb)

which satisfy the following conditions:
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i) (a+b)αc = aαc+bαc,

ii) aα(b+ c) = aαb+aαc,

iii) a(α +β )b = aαb+aβb,

iv) aα(bβc) = (aαb)βc,

v) 0Sαa = 0S = aα0S,

vi) a0Γb = 0S = b0Γa

for all a,b,c ∈ S and for all α,β ∈ Γ.

We now summon up the definitions of several types of ideals.

A subset I of a Γ-hemiring S is called a left(resp. right) ideal of S if I is closed under addition and SΓI ⊆ I (resp.IΓS ⊆ I).

A subset Q of a Γ-hemiring S is called a quasi-ideal of S if Q is closed under addition and SΓQ∩QΓS ⊆ Q.

A subset B of a Γ-hemiring S is called a bi-ideal if B is closed under addition and BΓSΓB ⊆ B.

A left ideal H of S is called a left h-ideal if x,z ∈ S, a,b ∈ H and x+a+ z = b+ z implies x ∈ H. A right h-ideal is defined

analoguesly.

We now remind the definition of cubic set and characteristic cubic set. For a non-empty set X , a cubic set C in X is a

structure C =< µ̃, f > where µ̃ = [µ−,µ+] is an interval valued fuzzy set and f is a fuzzy set in X . For any non-empty set G

of a set X , the characteristic cubic set of G is defined to be the structure χG(x) =< x, ζ̃χG
(x),ηχG

(x) : x ∈ X > where

ζ̃χG
(x) =

{
[1,1]≈ 1̃ if x ∈ G

[0,0]≈ 0̃ otherwise.

and

ηχG
(x) =

{
0 if x ∈ G

1 otherwise.

3. Cubic h-Ideals

In this section, we recall some definitions and results from [12] which will be used to develop the main portion of the paper.

Definition 3.1. Let < µ̃, f > be a non empty cubic subset of a Γ-hemiring S. Then < µ̃, f > is called a cubic left ideal

[respectively, cubic right ideal] of S if

(i) µ̃(x+ y)⊇ ∩{µ̃(x), µ̃(y)}, f (x+ y)≤ max{ f (x), f (y)} and

(ii) µ̃(xγy)⊇ µ̃(y), f (xγy)≤ f (y) [respectively, µ̃(xγy)⊇ µ̃(x), f (xγy)≤ f (x)].

for all x,y ∈ S, γ ∈ Γ.

Note: For cubic left or right ideal < µ̃, f > of a Γ-hemiring S, µ̃(0) ⊇ µ̃(x) and f (0)≤ f (x) for all x ∈ S.

Definition 3.2. A cubic left ideal < µ̃, f > of a Γ-hemiring S is called a cubic left h-ideal if for all a,b,x,z ∈ S, x+a+z = b+z

then µ̃(x)⊇ ∩{µ̃(a), µ̃(b)} and f (x)≤ max{ f (a), f (b)}.

Definition 3.3. Let A =< µ̃, f > and B =< θ̃ ,g > be two cubic sets of a Γ−hemiring S. Define intersection of A and B by

A∩B =< µ̃, f > ∩< θ̃ ,g >=< µ̃ ∩ θ̃ , f ∪g > .

Definition 3.4. Let A =< µ̃, f > and B =< θ̃ ,g > be two cubic sets of a Γ−hemiring S. Define composition of A and B by

AΓchB =< µ̃, f > Γch < θ̃ ,g >=< µ̃Γchθ̃ , f Γchg >

where

µ̃Γchθ̃(x) = ∪[∩{µ̃(a1), µ̃(a2),
x+a1γb1+z=a2δb2+z

θ̃(b1), θ̃(b2)}]

= 0̃, if x cannot be expressed as x+a1γb1 + z = a2δb2 + z.
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and

f Γchg(x) = inf{max{ f (a1), f (a2)
x+a1γb1+z=a2δb2+z

,g(b1),g(b2)}}

= 1, if x cannot be expressed as above

for x,z,a1,a2,b1,b2 ∈ S and γ ,δ ∈ Γ.

Definition 3.5. Let A =< µ̃, f > and B =< θ̃ ,g > be two cubic sets of a Γ−hemiring S. Define generalized composition of A

and B by

AochB =< µ̃, f > och < θ̃ ,g >=< µ̃ochθ̃ , f ochg >

where

µ̃ochθ̃(x) = ∪[∩
i
{∩{µ̃(ai), µ̃(ci), θ̃(bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

θ̃(di)}}]

= 0̃, if x cannot be expressed as above

and

f ochg(x) = inf[max
i
{max{ f (ai), f (ci),g(bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

g(di)}}]

= 1, if x cannot be expressed as above

where x,z,ai,bi,ci,di ∈S and γi,δi ∈ Γ, for i ∈ {1, ...,n}.

Lemma 3.6. Let A =< µ̃1, f >, B =< µ̃2,g > be two cubic h-ideal of a Γ−hemiring S. Then AΓchB ⊆ AochB ⊆ A∩B ⊆
A( and B).

Definition 3.7. A cubic subset < µ̃, f > of a Γ-hemiring S is called cubic h-bi-ideal if for all x,y,z,a,b ∈ S and α,β ∈ Γ we

have

i) µ̃(x+ y)⊇ ∩{µ̃(x), µ̃(y)}, f (x+ y)≤ max{ f (x), f (y)}

ii) µ̃(xαy)⊇ ∩{µ̃(x), µ̃(y)}, f (xαy)≤ max{ f (x), f (y)}

iii) µ̃(xαyβ z)⊇ ∩{µ̃(x), µ̃(z)}, f (xαyβ z)≤ max{ f (x), f (z)}

iv) If x+a+ z = b+ z then µ̃(x)⊇ ∩{µ̃(a), µ̃(b)}, f (x)≤ max{ f (a), f (b)}

Definition 3.8. A cubic subset < µ̃, f > of a Γ-hemiring S is called cubic h-quasi-ideal if for all x,y,z,a,b ∈ S we have

i) µ̃(x+ y)⊇ ∩{µ̃(x), µ̃(y)}, f (x+ y)≤ max{ f (x), f (y)}

ii) (µ̃ochζ̃χS
)∩ (ζ̃χS

ochµ̃)⊆ µ̃ , ( f ochηχS
)∪ (ηχS

och f )⊇ f ,

iii) If x+a+ z = b+ z then µ̃(x)⊇ ∩{µ̃(a), µ̃(b)}, f (x)≤ max{ f (a), f (b)}

Lemma 3.9. Any cubic h-quasi-ideal of S is a cubic h-bi-ideal of S.

4. Cubic h-Hemiregularity and Cubic h-Intra-Hemiregularity

In this section, we study the concept of h-hemiregularity and h-intra-hemiregularity in Γ-hemiring by using cubic h-ideal, cubic

h-bi-ideal and cubic h-quasi-ideal.

Definition 4.1. [11] A Γ-hemiring S is said to be h-hemiregular if for each x ∈ S, there exist a,b ∈ S and α ,β ,γ,δ ∈ Γ such

that x+ xαaβx+ z = xγbδx+ z.

We now try to find some characterizations of h-hemiregular Γ-hemiring in terms of cubic h-ideals.
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Theorem 4.2. Let S be an h-hemiregular Γ-hemiring. Then for any cubic right h-ideal A =< µ̃, f > and any cubic left h-ideal

B =< ν̃ ,g > of S, we have AΓchB = A∩B.

Proof. Let S be an h-hemiregular Γ-hemiring. By Lemma 3.6, we have AΓchB ⊆ A∩B.

Since S is h-hemiregular, for any a∈ S, there exist z,x1,x2 ∈ S and α1,β1,α2,β2 ∈ Γ such that a+aα1x1β1a+z= aα2x2β2a+z.

Now for any e,b,c,d ∈ S and γ ,δ ∈ Γ, the general expression of a as a+ eγb+ z = cδd + z implies that

(µ̃Γchν̃)(a) = ∪{∩{µ̃(e),
a+eγb+z=cδd+z

µ̃(c), ν̃(b), ν̃(d)}}

⊇ ∩{µ̃(aα1x1), µ̃(aα2x2), ν̃(a)}
a+aα1x1β1a+z=aα2x2β2a+z

⊇ ∩{µ̃(a), µ̃(a), ν̃(a)}

= ∩{µ̃(a), ν̃(a)}= (µ̃ ∩ ν̃)(a).

( f Γchg)(a) = inf{max{ f (e),
a+eγb+z=cδd+z

f (c),g(b),g(d)}}

≤ max{ f (aα1x1), f (aα2x2),g(a)}
a+aα1x1β1a+z=aα2x2β2a+z

≤ max{ f (a), f (a),g(a)}

= max{ f (a),g(a)}= ( f ∪g)(a).

Therefore (A∩B)⊆ (AΓchB).
Hence AΓchB = A∩B.

Corollary 4.3. If S be a h-hemiregular Γ-hemiring, then for any cubic right h-ideal A =< µ̃, f > and any cubic left h-ideal

B =< ν̃ ,g > of S we have AochB = A∩B.

Theorem 4.4. Let S be a h-hemiregular Γ-hemiring. Then

(i) A ⊆ AochχSochA for every cubic h-bi-ideal A =< µ̃, f > of S.

(ii) A ⊆ AochχSochA for every cubic h-quasi-ideal A =< µ̃, f > of S.

Proof. Suppose that A =< µ̃ , f > be any cubic h-bi-ideal of S and x be any element of S. Since S is h-hemiregular there exist

a,b,z ∈ S and α,β ,γ,δ ∈ Γ such that x+ xαaβx+ z = xγbδx+ z.

Now for any general expression of x as x+
n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z, where ai,bi,ci,di ∈ S and γi,δi ∈ Γ, we have

(µ̃ochζ̃χS
ochµ̃)(x)

= ∪(∩{(µ̃ochζ̃χS
)(ai),(µ̃ochζ̃χS

)(ci), µ̃(bi), µ̃(di)})

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

⊇ ∩{(µ̃ochζ̃χS
)(xαa),

x+xαaβx+z=xγbδx+z

(µ̃ochζ̃χS
)(xγb), µ̃(x)}

= ∩{ ∪(∩{(µ̃(ai), µ̃(ci))})

xαa+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

, ∪(∩{(µ̃(ai), µ̃(ci))})

xγb+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

,

µ̃(x)}
⊇ ∩{µ̃(x), µ̃(x), µ̃(x)}(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa and xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb).
= µ̃(x).

( f ochηχS
och f )(x)

= inf(max{( f ochηχS
)(ai),( f ochηχS

)(ci), f (bi), f (di)})

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z
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≤ max{( f ochηχS
)(xαa),

x+xαaβx+z=xγbδx+z

( f ochηχS
)(xγb), f (x)}

= max{ inf(max{( f (ai), f (ci))})

xαa+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

, inf(max{( f (ai), f (ci))})

xγb+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

, f (x)}

≤ max{ f (x), f (x), f (x)}(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa and xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb).
= f (x).
This implies that A ⊆ AochχSochA.

(i)⇒(ii) By Lemma 3.9 “Any cubic h-quasi-ideal of S is a cubic h-bi-ideal of S”. Thus, if the proof of (ii) is made, it is

straightforward to see that (i) is true by Lemma 3.9.

Theorem 4.5. Let S be a h-hemiregular Γ-hemiring. Then

(i) A∩B ⊆ AochBochA for every cubic h-bi-ideal A =< µ̃, f > and every cubic h-ideal B =< ν̃ ,g > of S.

(ii) A∩B ⊆ AochBochA for every cubic h-quasi-ideal A =< µ̃, f > and every cubic h-ideal B =< ν̃ ,g > of S.

Proof. Suppose S is a h-hemiregular Γ-hemiring and A =< µ̃, f >, B =< ν̃ ,g > be any cubic h-bi-ideal and cubich-ideal

of S, respectively and x be any element of S. Since S is h-hemiregular, there exist a,b,z ∈ S and α ,β ,γ,δ ∈ Γ such that

x+ xαaβx+ z = xγbδx+ z.

Now for any general expression of x as x+
n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z, where ai,bi,ci,di ∈ S and γi,δi ∈ Γ, we have

(µ̃ochν̃ochµ̃)(x)
= ∪(∩{(µ̃ochν̃)(ai),(µ̃ochν̃)(ci), µ̃(bi), µ̃(di)})

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

⊇ ∩{(µ̃ochν̃)(xαa),
x+xαaβx+z=xγbδx+z

(µ̃ochν̃)(xγb), µ̃(x)}

= ∩{∪(∩{(µ̃(ai), µ̃(ci), ν̃(bi), ν̃(di))})

xαa+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

,∪(∩{(µ̃(ai), µ̃(ci), ν̃(bi), ν̃(di))})

xγb+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

,

µ̃(x)}
⊇ ∩{∩{µ̃(x), ν̃(aβxαa), ν̃(bδxαa)},∩{µ̃(x), ν̃(aβxγb), ν̃(bδxγb)}, µ̃(x)}
(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa and xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb)
⊇ ∩{µ̃(x), ν̃(x)}= (µ̃ ∩ ν̃)(x).

( f ochgoch f )(x)
= inf(max{( f ochg)(ai),( f ochg)(ci), f (bi),g(di)})

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

≤ max {( f ochg)(xαa),
x+xαaβx+z=xγbδx+z

( f ochg)(xγb), f (x)}

= max{inf(max{( f (ai), f (ci),g(bi),g(di))})

xαa+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

, inf(max{( f (ai), f (ci),g(bi),g(di))})

xγb+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

,

f (x)}
≤ max{max{ f (x),g(aβxαa),g(bδxαa)},∩{ f (x),g(aβxγb),g(bδxγb)}, f (x)}
(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa and xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb)
⊇ max{ f (x),g(x)}= ( f ∪g)(x).
(i)⇒(ii) This is straightforward using the Lemma 3.9.

Definition 4.6. [13]A Γ-hemiring S is said to be h-intra-hemiregular if for each x ∈ S, there exist z,ai,a
′

i,bi,b
′

i ∈S, and

αi,βi,γi,δi,η ∈ Γ, i∈ N, such that x+
n

∑
i=1

aiαixηxβia
′

i + z =
n

∑
i=1

biγixηxδb
′

i + z.

We now try to find a characterization of h-intrahemiregular Γ-hemiring in terms of cubic h-ideals.
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Theorem 4.7. Let S be a h-intra-regular Γ-hemiring. Then A∩B ⊆ AochB for every cubic left h-ideal A =< µ̃, f > and every

cubic right h-ideal A =< ν̃ ,g > of S.

Proof. Suppose S is h-intra-hemiregular. Let A =< µ̃, f > and A =< ν̃ ,g > be any cubic left h-ideal and cubic right

h-ideal of S respectively. Now let x ∈ S. Then by hypothesis there exist z,ai,a
′

i,bi,b
′

i ∈S, and αi,βi,γi,δi,η ∈ Γ, i∈ N,

the set of natural numbers, such that x+
n

∑
i=1

aiαixηxβia
′

i + z =
n

∑
i=1

biγixηxδb
′

i + z. Now for any general expression of x as

x+
n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z, where ai,bi,ci,di ∈ S and γi,δi ∈ Γ, we have

(µ̃ochν̃)(x) = ∪[∩
i
{∩{µ̃(ai), µ̃(ci), ν̃(bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

ν̃(di)}}]

⊇ ∩
i
[∩{µ̃(aiαix), µ̃(biγix), ν̃(xβia

′

i), ν̃(xδib
′

i)}]

x+

n

∑
i=1

aiαixηxβia
′

i + z =
n

∑
i=1

biγixηxδb
′

i + z

⊇ ∩{µ̃(x), ν̃(x)}= (µ̃ ∩ ν̃)(x).

( f ochg)(x) = inf[max
i
{max{ f (ai), f (ci),g(bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

g(di)}}]

≤ max
i
[max{ f (aiαix), f (biγix),g(xβia

′

i),g(xδib
′

i)}]

x+

n

∑
i=1

aiαixηxβia
′

i + z =
n

∑
i=1

biγixηxδb
′

i + z

≤ max{ f (x),g(x)}= ( f ∪g)(x).

Hence the proof is completed.

We now combine the concepts of h-hemiregularity and h-intra-hemiregularity of a Γ-hemiring and obtain a characterization.

Theorem 4.8. Let S be both h-hemiregular and h-intra-hemiregular Γ-hemiring. Then

(i) A = AochA for every cubic h-bi-ideal A =< µ̃, f > of S.

(ii) A = AochA for every cubic h-quasi-ideal A =< µ̃, f > of S.

Proof. Suppose S be both h-hemiregular and h-intra-hemiregular Γ-hemiring. Let x∈ S and A=< µ̃, f > be any cubic h-bi-ideal

of S. Since S is both h-hemiregular and h-intra-hemiregular there exist z,ai,bi,ci,di ∈ S and αi,βi,α
′

i ,β
′

i ,γi,δi,γ
′

i ,δ
′

i ,η ∈ Γ,

i ∈ N such that x+
n

∑
i=1

xαiaiα
′

i xηxβ
′

i biβix+ z =
n

∑
i=1

xγiciγ
′

i xηxδ
′

i diδix+ z.

Now for any general expression of x as x+
n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z, where ai,bi,ci,di ∈ S and γi,δi ∈ Γ, we have

(µ̃ochµ̃)(x)
= ∪[∩

i
{∩{µ̃(ai), µ̃(ci), µ̃(bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

µ̃(di)}}]

⊇ ∩
i
[∩{µ̃(xαiaiα

′

i x), µ̃(xβ
′

i biβix), µ̃(xγiciγ
′

i x), µ̃(xδ
′

i diδix)}]

x+

n

∑
i=1

xαiaiα
′

i xηxβ
′

i biβix+ z =
n

∑
i=1

xγiciγ
′

i xηxδ
′

i diδix+ z

⊇ µ̃(x).
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( f och f )(x)
= inf[max

i
{max{ f (ai), f (ci), f (bi),

x+

n

∑
i=1

aiγibi + z =
n

∑
i=1

ciδidi + z

f (di)}}]

≤ max
i
[max{ f (xαiaiα

′

i x), f (xβ
′

i biβix), f (xγiciγ
′

i x), f (xδ
′

i diδix)}]

x+

n

∑
i=1

xαiaiα
′

i xηxβ
′

i biβix+ z =
n

∑
i=1

xγiciγ
′

i xηxδ
′

i diδix+ z

≤ f (x).
Now AochA ⊆ AochχS ⊆ A. Hence AochA = A for every cubic h-bi-ideal Aof S.

(i)⇒(ii) This is straightforward using the Lemma 3.9.

5. Conclusion

In this paper, I have studied some properties h-hemiregular and h-intra-hemiregular Γ-hemiring using the concept of cubic

h-ideal, cubic h-bi-ideal and cubic h-quasi-ideal. At the end section, I also acquire some characterizations of h-hemiregular and

h-intra-hemiregular Γ-hemiring. Interested reader may find some other feature of these types of Γ-hemiring and extend the

obtained result using the concept of neutrosophic set and neutrosophic ideal.
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1. Introduction

The theory of analytic perturbation is historically the first subject in perturbation theory. It is mainly concerned with the behaviour

of isolated eigenvalues and eigenvectors (or eigenprojections) of an operator depending on a parameter holomorphically. Once

the notion of holomorphic dependence of an (in general unbounded) operator on a parameter is introduced, it is rather

straightforward to show that the results obtained in the finite-dimensional case can be extended, at least for isolated eigenvalues,

without essential modification. This is exactly what we aim to achieve in our present work. Indeed, in the first part of this paper

we study matrix-valued analytic functions which commute with their derivatives. We recall the main theorems obtained by

many authors such as Schwerdtfeger [15], Dieudonné [4], Goff [7] and Evard [6]. First we comment some of these results

by adding some remarks and examples to see if there is a possibility to extend some of them or not. We recall that Theorem

1 in [4] is an extension of the main theorem of [15] from analytic matrix functions to continuously differentiable functions.

Then we state J. Claude Evard’s theorem on continuously differentiable and diagonalizable matrices with a constant number of

eigenvalues [6]. Our first result, namely Theorem 3.14, extends this theorem to the case of an analytic family of matrices which

are not supposed to be diagonalizable. Then in after a preparatory lemma we give a very simple expression of a functionally

commutable analytic matrix-valued function on a real interval and in Theorem 3.17, we study functional commutativity in the

case of two by two matrices.

The second part of the paper deals with the extension of some of the above results from the case of matrix-valued analytic

functions to the infinite-dimensional situation of analytic operator-valued functions on a Hilbert space. We first recall our

main result in the case of analytic compact and self-adjoint oprator functions on a Hilbert space ([12], Theorem 2). Then we

show that this result can be extended to the more general situation of analytic normal compact operator-valued functions on a

Hilbert space. Indeed, the proof of Theorem 2 in[12] is based on the Spectral Theorem for Compact self-adjoint operators, but

this spectral representation is still valid for normal compact operators on a Hilbert space as established recently in Theorem

3.3 of [11]. We end this paper by two open questions worth studying for their importance in applications to problems on
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differential equations and other topics as can be seen from the historical overview given in [6] about problems related to

functional commutativity in general.

2. Preliminaries

Our interest in Section 3 focuses on analytic matrix-valued functions, these are functions that can be represented by Taylor

series at some point of a real interval I. The main point is whether these matrices are diagonalizable or not, that is everything

boils down to the nature of the eigenvalues of these matrices, in other words, to their spectrum. We start with Example 1, which

exhibits some features of general analytic matrices through a simple two by two matrix. A neat idea of what causes difficulties

in the problem of functional commutativity is clearly highlighted by this example. To overcome such situations involving

singularities, we present a theorem from [14] dealing with diagonalizability of analytic hermitian matrix functions on a real

interval (Theorem 4). Then we move to the core of the present paper, that is functional commutativity of analytic function

matrices commuting with their derivatives. The first theorem in this direction was due to Shwertdfeger [15]. It shows that every

analytic diagonalizable matrix function is functionally commutative. This is followed by a more general result, which was

generalized by Evard [6], who showed that any continuously differentiable family of diagonalizable matrices with a constant

number of eigenvalues is functionally commutative. At this point, one can ask if this theorem can be extended, in other words

can we drop the condition on the constancy number of eigenvalues. The answer is affirmative, of course not on all the interval

I, but on the interval minus an exceptional set. Here we make use of a powerful theorem on the scarcity of elements with

finite spectrum in Banach algebras ([1], Theorem 3.4.25). This new result is presented in Theorem 3.13. Finally, we prove

that matrices which are functionally commutative can be expressed in a very simple form, namely as linear combination of

constant matrices with coefficients given by analytic scalar functions as done in Lemma 1. We close the section by a nice

characterization of functionally commutative two by two matrices. This is presented in Theorem 3.17. Then we turn our

attention to the case of compact operators on a separable Hilbert space. First, we recall that analytic hermitian function matrices

which commute with their derivative on some real interval I, i.e, [A(t),A′(t)] = 0 for all t ∈ I, where we use the bracket notation

[A(t),A′(t)] = 0 instead of A(t)A′(t) = A(t)A(t), were studied in [7]. As a main result, it was shown that these matrices are

functionally commutative on I, i.e., [A(s),A(t)] = 0 for all s, t ∈ I ([7], Theorem 3.6). Subsequently in [6], the study of the

nonlinear differential equation [A(t), dA(t))
dt

] = 0, t ∈ Λ, where Λ is an open interval in R and A is a differentiable map from Λ

into the C-Banach space Mn of all n×n matrices (αi, j), with αi, j ∈ C for i, j ∈ {1, · · · ,n}, led the author to consider the more

general problem where Λ is an open connected subset of a Banach space on R or C. Thus obtaining Theorem 4.3 in [6], which

generalizes the main theorem of [7]. Moreover, [6] contains both a comprehensive historical summary on the motivations

behind the problem on matrix functions commuting with their derivatives and further paths of investigations such as the one

of interest to us. Indeed this is illustrated by our main result, Theorem 2 in [12], which extends the finite dimensional result

of Goff [7] to the infinite-dimensional situation of compact self-adjoint operators on a Hilbert space. In section 4, we study

analytic families of normal compact operators, on a complex Hilbert space, which commute with their derivative on some real

interval I. Our main result establishes that these operators must be functionally commutative on I, that is, [A(s),A(t)] = 0 for

all s, t ∈ I, thus extending the main result of [12].

To make the paper as self-contained as possible, we include the proofs of some well known theorems. We denote by B(H )
the Banach algebra of bounded operators on the Hilbert space H .

2.1 Adjoint of bounded operators in Hilbert spaces

Proposition 2.1. Let T ∈ B(H ) be a bounded operator. For all x ∈ H , there exists a unique T ∗x ∈ H such that

∀y ∈ H , < Ty,x >=< y,T ∗x > and < x,Ty >=< T ∗x,y > .

The application T ∗ : H −→ H is a bounded operator called the adjoint of T.

An important definition can be given now.

Definition 2.2. Let T ∈ B(H ), then:

- T is self-adjoint if T ∗ = T ;

- T is normal if T ∗T = T T ∗, i.e. it commutes with its adjoint;

- T is unitary if T T ∗ = T ∗T = IH , where IH is the identity operator on H , i.e. T is invertible and its inverse T−1 = T ∗.

Note that any self-adjoint operator is normal, any unitary operator is normal.
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2.2 The resolvent and spectrum of a bounded operator

Let E be a complex Banach space and let T ∈ B(E). The spectrum of T can be seen as the generalization in infinite

dimension of the notion of eigenvalues in finite dimension. Let us start by the complementary set.

Definition 2.3. Let T ∈ B(E). The resolvent set of T is the set

ρ(T ) := {λ ∈ C : λ −T is invertible}.

The resolvent is the map

ρ(T )−→ B(E) : λ 7−→ Rλ (T ) = (λ −T )−1.

By λ −T we mean λ IE −T, where IE is the identity operator of E. Note that, as a consequence of the closed Graph theorem, if

T is bounded and invertible, then its inverse is automatically bounded.

Definition 2.4. Let T ∈ B(E). The spectrum of T is

Sp(T) := C\ρ(T) = {λ ∈ C : λ −T is invertible}.

Definition 2.5. An eigenvalue of T is a number λ ∈C such that ker(T −λ ) 6= {0}. The set formed by the eigenvalues, denoted

by Spp(T), is called the point spectrum.

We have Spp(T)⊂ Sp(T).

Proposition 2.6. In finite dimension, the spectrum and the point spectrum coincide.

Proof. In finite dimension, the operator T − z is injective if and only if it is surjective, whereas the continuity is always

guaranteed.

Theorem 2.7. Let T ∈ B(E) where E is a Banach space. Then ρ(T ) is an open subset of C.

2.3 Digression: The notion of analyticity

Let Ω be a non-empty subset in C. We say that f : Ω −→ E is holomorphic when, for all z ∈ Ω the limit

lim
w−→z

f (w)− f (z)

w− z

exists in the norm of E. It is denoted f ′(z).

Proposition 2.8. Let f : Ω −→ E. Then f is holomorphic if and only if it is weakly holomorphic, i.e. ℓ◦ f is holomorphic on Ω

for all ℓ ∈ E ′ (i.e. the dual space ofE).

Proof. See Chapter 1 in [8].

Corollary 2.9. Let f : C−→ E be holomorphic. If f is bounded, then it is constant.

Proof. Assume that we can find z0 ∈ C and z1 ∈ C such that f (z0) 6= f (z1). Then by the Hahn-Banach theorem, there exists

some ℓ ∈ E ′ such that ℓ◦ f (z0) 6= ℓ◦ f (z1). By the classical Liouville’s theorem, it must be constant. This is a contradiction.

The mathematical theory of Banach space valued analytic functions parallels the classical theory of analytic functions as is

well presented in Chapter I of [8]. For example, if γ is a closed path in a simply connected domain Ω, then

∮

γ
f (z)dz = 0. (2.1)

(The integral defined in the usual way by the norm convergent Riemann sums.) To prove (2.1), note that for ℓ ∈ E ′,

ℓ(
∮

γ
f (z)dz) =

∮

γ
ℓ( f (z)),dz = 0.

Since E ′ separates points in E, (2.1) holds.
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Starting with (2.1) one obtains in the usual way the Cauchy integral formula

1

2πi

∮

|w−z|<r

f (w)

w− z
dw = f (z). (2.2)

Starting with the Cauchy integral formula one proves that for w ∈ Ω,

f (z) = Σ∞
n=0an(z−w)n (2.3)

where an ∈ E. The power series converges and the representation holds in the largest open disk centered at w and contained in

Ω. An excellent reference on this topic is [8].

As an example, the resolvent map is analytic.

Theorem 2.10. Let T ∈ B(E) where E is a Banach space. Then the map λ 7→ Rλ (T ) is a holomorphic function from ρ(T )
into B(E).

Another useful application of holomorphy is in obtaining the so called Riesz projections.

Proposition 2.11. Let us consider a bounded operator T ∈B(E) where E is a Banach space and λ ∈C as an isolated element

of Sp(T). Let Γλ ⊂ ρ(T ) be a contour that enlaces only λ as element of the spectrum of T. Define

Pλ :=
1

2πi

∮

Γλ

(z−T )−1 dz.

The bounded operator Pλ : E −→ Dom(T)⊂ F commutes with T and does not depend on the choice of Γλ . The operator Pλ is

a projection and

Pλ − Id =
1

2πi

∮

Γλ

(ζ −λ )−1(T −λ )(ζ −T )−1 dζ .

It is appropriate to recall at this point that most of the results on analytic matrix functions that we use in the next section

can be obtained by using finite-dimensional operators on a Hilbert space. We have already seen above that the spectrum of an

operator in finite dimension coincides with the point spectrum. Next, we look at the notion of finite-algebraic multiplicity. For

the proofs of the next results and more details see [9].

Proposition 2.12. Assume that the Hilbert space H is of finite dimension. Fix T in B(H ) and let λ ∈ Sp(T). Then, λ is an

eigenvalue. If Γλ is a contour enlacing only λ , then Pλ is the projection on the algebraic eigenspace associated with λ .

Proof. It is well known that H can be written as a sum of the eigenspaces H j associated with the distinct eigenvalues of T.

The eigenspaces H j are stable under T. We can assume that H1 is associated with λ . There exists a basis of H such that the

matrix of T is block diagonal (T1, · · · ,Tk) where the Tj is the (upper triangular) matrix of TH j
. In this adapted basis, the matrix

of Pλ is block diagonal (Pλ ,1, · · · ,Pλ ,k). By holomorphy, we have Pλ , j = 0 when j 6= 1. To simplify, assume that dimH1 = 2

(the other cases being similar) so that

T1 :=

(

λ 1

0 λ

)

, Pλ ,1 :=
1

2πi

∮

Γλ

(z−T1)
−1 dz.

where Γλ is (for example) the circle of center λ and radius 1. Let n ∈ N. Recall that

1

2πi

∮

Γλ

(z−λ )−n dz =
1

2πi

∮ 2π

θ=0
ei(1−n)θ dθ =

{

1 if n = 1

0 if n 6= 1.

It follows that

Pλ ,1 :=
1

2iπ

∮

Γλ

(

(z−λ )−1 −(z−λ )−2

0 (z−λ )−1

)

dz =

(

1 0

0 1

)

= IdH1
.

The application Pλ is indeed the projection on H1.

Corollary 2.13. If λ ∈ Sp(T) is isolated with a finite algebraic multiplicity, then it is necessarily an eigenvalue.
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3. Analytic Matrix Functions

3.1 n-Dimensional perturbation theory

Let X(t) be a complex valued n×n matrix function defined on a real interval I.

The following results are taken from [2,13,14] where proofs and more results on this topic can be found.

Definition 3.1. When we say that X(t) is analytic in a neighborhood of t = t0, we mean that each element of X(t) is representable

as a Taylor series centered at t0 which converges in some neighborhood of t0.

Example 3.2. Consider the matrix valued analytic matrix

X(β ) =

[

1 β
β −1

]

.

Its eigenvalues are

λ±(β ) =±
√

β 2 +1.

We notice the following features:

1. X(β ) is an entire function but the eigenvalues are not entire (they have singularities as functions of β ); the singularities

are not on the real axis where X(β ) is self-adjoint but occur at non real β , namely at β =±i.

2. at the singular values of β , that is, at β =±i there are fewer distinct eigenvalues, namely one, than at other points where

there are two.

3. at the singular values of β the matrix X(β ) is not diagonalizable.

If X(β ) is a matrix-valued analytic function in a connected region R of the complex plane, then the eigenvalues of X(β ) are

solutions of the equation

det(X(β )−λ I) = (−1)n(λ n +a1(β )λ
n−1 + · · ·+an(β ) = 0. (3.1)

Theorem 3.3. Let

F(β ,λ ) = λ n +a1(β )λ
n−1 + · · ·+an(β )

be a polynomial of degree n in λ whose leading coefficient is one and whose other coefficients are all analytic functions of β .

1. Suppose that λ = λ0 is a simple root of F(β0,λ ). Then for β near β0, there is exactly one root λ (β ) of F(β ,λ ) near λ0,

and λ (β ) is analytic in β near β = β0.

2. Suppose that λ = λ0 is a root of multiplicity m of F(β0,λ ). Then for β near β0, there are exactly m roots (counting

multiplicities) of F(β ,λ ) near β0, and these roots are branches of one or more multivalued analytic functions with at

most algebraic points at β = β0. Explicitly, there exist p1, · · · , pk with ∑
k
i=1 pi = m and multivalued analytic functions

λ1, · · · ,λk (not necessarily distinct) with convergent Puiseux series

λi(β ) = λ0 +
∞

∑
j=1

α j(β −β0)
j
p

so that the m roots near λ0 are given by the p1 values of λ1, the p2 values of λ2, · · · , etc.

Corollary 3.4. Let X(β ) be a matrix-valued analytic function near β0.

1. If λ0 is a simple root of X(β0), then for β near β0, X(β ) has exactly one root λ0(β ) near λ0; ( λ0(β ) is a simple and

analytic eigenvalue if β is near β = β0.

2. If λ0 is an eigenvalue of T (β0) of algebraic multiplicity m, then for β near β0, X(β ) has exactly m eigenvalues (counting

multiplicity) near λ0. These eigenvalues are all the branches of one or more multivalued functions analytic near β0 with

at most algebraic singularities at β0.
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3.2 Analytic perturbation of self-adjoint and hermitian matrices

If X and Y are self-adjoint, the perturbed eigenvalues of X +βY are analytic at β = 0 even if X has degenerate eigenvalues.

That the branch points allowed by the last theorem do not occur in this case is a theorem of F. Rellich in [14]. The example at

the beginning of this section shows that the branch points can occur for non real β even in the self-adjont case, X(β )∗ = X(β̄ ).

Theorem 3.5 ([14]). Suppose that X(β ) is a matrix-valued analytic function in a region R containing a section of the real axis,

and that X(β ) is self-adjoint for β real. Let λ0 be an eigenvalue of X(β0) of multiplicity m. If β0 is real, there are distinct

functions λ1(β ), · · · ,λp(β ), single-valued and analytic in a neighborhood of β0, which are all the eigenvalues.

For analytic Hermitian matrices the next explicit formulation of Theorem 4 holds.

Theorem 3.6 ([14]). Let X(λ ) be an n× n Hermitian matrix function which is analytic on a real interval (a,b) in which

detX(λ ) 6= 0. There exists an analytic unitary matrix function U(λ ), λ ∈ (a,b) and analytic real-valued functions µi(λ ), λ ∈
(a,b), such that

X(λ ) =U(λ )

















µ1(λ ) 0 · · · · · · 0

0 µ2(λ ) · · · · · · 0
...

...
. . .

...
...

0 0 · · ·
. . . 0

0 0 · · · 0 µn(λ )

















U(λ )−1

Remark 3.7. The interesting aspect of this theorem is its validity even at points where the multiplicity of the eigenvalues changes.

When X(λ ) is not hermitian its eigenvalues usually have branch points. Moreover, [14] contains a counterexample which

shows that the theorem cannot be extended to infinitely differentiable, but not holomorphic functions. In that counterexample,

X(λ ) and the eigenvalues are still everywhere differentiable, but all eigenvectors are discontinuous at the point λ = 0. It will

be seen later that the sharpest results, such as in [7] for hermitian matrices, are obtained when we deal with conditions close

to the ones satisfied in F. Rellich [14]. Otherwise, Example 1 and the previous discussion show some of the difficulties we

encounter when we consider general analytic matrix-valued functions (and similarly for operator-valued functions), which

force us to impose extra conditions, like the constancy on the number of eigenvalues or constancy on the number of Jordan

blocks and other similar conditions (see [6] for examples and a more complete list of references on matrices commuting with

their derivatives).

3.3 Analytic matrix functions commuting with their derivatives

We start with a result on analytic matrices which commute with their derivatives.

Theorem 3.8 ([15]). Let X(t) be an n×n analytic matrix function defined on a real interval I. Suppose that for all t ∈ I, the

eigenvalues of X(t) are distinct, and [X(t),X ′(t)] = 0 on I. Then [X(s),X(t)] = 0 for all s 6= t in I.

Proof. If for t ∈ I, eigenvalues of X(t) are distinct, then there exists a constant invertible matrix U such that

X(t) =UD(t)U−1,

where D(t) is diagonal. Thus

[X(s),X(t)] = 0

for s 6= t in I.

Remark 3.9. The paper [15] contains examples showing that the conclusion fails to hold if the eigenvalues of X(t) are not all

distinct. Jean Dieudonné proved in [4] that Theorem 3.8 holds if X(t) is only continuously differentiable.

Next we recall an important theorem contained in [6].

Theorem 3.10 ([6]). If X is an analytic matrix function, defined on an open interval Λ of R, taking its values in Mn and

commuting with its derivative on Λ, and if t0 ∈ Λ and µ1, · · · ,µp, are the distinct eigenvalues of X(t0) of respective algebraic

multiplicities m1, · · · ,mp, then on a neighborhood Λt0 ∩Λ of t0, A has the form

X(t) =U diag(m1(t), · · · ,mp(t))U−1

where t ∈ Λt0 ,U is an invertible matrix, and for each k ∈ {1,2, · · · , p}, mK is an analytic matrix function from Λt0 into Mmk

commuting with its derivative on Λt0 , such that Sp(mk(t0)) = {µk}.



Commutable Matrix-Valued Functions and Operator-Valued Functions — 231/235

3.3.1 Diagonalizable matrix functions

As in [6], we say that a matrix X from a set Λ into Mn is pointwise diagonalizable on Λ if, for every t ∈ Λ, there exists an

invertible matrix U(t) such that

U(t)−1X(t)U(t)

is diagonal, whereas we say that A is globally diagonalizable on Λ if there exists an invertible matrix U such that, for all t ∈ Λ,

the matrix

U−1X(t)U

is diagonal.

A family (X(t))t∈Λ of matrices of Mn is functionally commutative if

[X(t),X(s)] = 0

for all s, t ∈ Λ.

Theorem 3.11 ([7]). If (X(s)) is an analytic family of hermitian matrices such that [X(s),X ′(s)] = 0 for all s in an interval I

of R, then the family (X(s)) is commutative, i.e. [X(s),X(t)] = 0 for all s, t ∈ I.

Proof. It is well known that X(t) = ∑
r
i=1 λi(t)Gi, where the Gi are projection matrices such that G2

i = Gi and GiG j = G jGi = 0

if i 6= j. Now [X(t),X ′(t)] = 0 yields that Gi is constant for each i. Hence,

X(s)X(t) =
r

∑
i=1

λi(s)λi(t)Gi = X(t)X(s).

Remark 3.12. The condition of analyticity cannot be relaxed in Theorem 8. Indeed, let X and Y two n× n constant non-

commutative hermitian matrices and define A(t) = Xexp(−t2) if t < 0, A(0) = 0, A(t) = Y exp(−t2) if t > 0. Then A(t)
is hermitian, of class C ∞, and not analytic, and commutes with its derivative on R. However if s < 0 and t > 0, then

A(s)A(t) 6= A(t)A(s).

The next theorem is a generalization of Theorem 3.8 to continuously differentiable matrices commuting with their

derivatives.

Theorem 3.13 ([6]). If (X(s)) is a continuously differentiable family of diagonalizable matrices with a constant number of

eigenvalues, such that

[X(s),X ′(s)] = 0

for all s in an interval I of R, then the family (X(s)) is functionally commutative, i.e.

[X(s),X(t)] = 0

for all s, t ∈ I.

Question 1. Is it possible to extend the previous theorem to the case of an analytic family (X(s)) of matrices (without the

condition of diagonalizability)?

If we replace ‘differentiable’ by ‘analytic’ and remove ‘constant number of eigenvalues’ in Theorem 3.13, we obtain the

following result.

Theorem 3.14. If X(s) is an analytic family of diagonalizable matrices, such that [X(s),X ′(s)] = 0 for all s in a real interval

I, then X(s) is functionally commutative on I\S where S is an exceptional set containing a finite number of points, i.e.

[X(s),X(t)] = 0 for all s, t ∈ I\S.

Proof. Follows from Theorem 3.4.25 in [1].
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3.4 Characterization of functional commutativity
Definition 3.15. An analytic matrix function X defined on a contour Γ is said to be functionnally commutative if [X(s),X(t)] = 0

whenever s, t ∈ Γ.

It is natural to try to express matrix-valued functions which commute with their derivative in their simplest form possible.

The following lemma and theorem are adapted from [3], where similar results were proven for measurable functions.

Lemma 3.16. The matrix function G is functionally commutative if and only if

G(t) =
m

∑
j=1

φ j(t)G j

where m ≤ n2 and G j are pairwise commuting constant matrices and φ j are analytic scalar functions.

Proof. (⇐) The sufficiency of the conditions of the lemma is evident.

(⇒) Let L be the linear hull of the set of all matrices of the form G(t), t ∈ Γ in the space of all constant matrices of

nth order and choose in it a basis G1, . . . ,Gm. Since the space of n×n matrices has dimension n2, then m ≤ n2. Furthermore

G(t1)G(t2) = G(t2)G(t1) implies that any two matrices from L commute. Consequently, all matrices G1, . . . ,Gm commute

pairwise. Finally, as G(t) ∈ L for all t ∈ Γ and {G j}
m
j=1 is a basis in L , then there exists a unique representation G(t) in the

form of a linear combination of the G j’s. Supposing φ j(t) to be equal to the jth coefficient of this linear combination, we have

G(t) = ∑φ j(t)G j.

Next, we seek some relations between the entries of matrix-valued functions which are functionally commutative. To do so,

let us answer the simple question: what is functional commutativity of two by two matrices?

Theorem 3.17. The matrix function G =

(

g11 g12

g21 g22

)

is functionally commutative if and only if g11 − g22, g12 and g21 are

scalar multiples of one and the same function φ , i.e. g12(t) = αφ(t), g21(t) = βφ(t), g11(t)−g22(t) = γφ(t) where α, β , γ
are numbers.

Proof. (⇐) If the conditions

g12(t) = αφ(t), g21(t) = βφ(t), g11(t)−g22(t) = γφ(t)

are fulfilled, then

G(t) =

(

g22(t)+ γφ(t) αφ(t
βφ(t g22(t)

)

.

A direct verification shows that, for any s, t ∈ Γ, we have

G(s)G(t) = G(t)G(s).

(⇒) let the matrix function G be functionally commutative. At first, suppose that g11(t) = g22(t). If in addition, g12 =
g21 = 0, then the conditions

g12(t) = αφ(t), g21(t) = βφ(t), g11(t)−g22(t) = γφ(t)

are satisfied for α = 0, β = 0, γ = 0.

In the opposite case, a point t0 ∈ Γ can be found such that at least one of the functions g12 or g21 is different from zero.

Equating the diagonal elements of the matrices G(t)G(t0) and G(t0)G(t), we get g12(t)g21(t0) = g12(t0)g21(t). If g21(t0) 6= 0,

we may take φ = g21, β = 1, γ = g12(t0)
g21(t0)

, and if g12(t0) 6= 0, then we can choose φ = g12, α = 1, γ = 0, β = g21(t0)
g12(t0)

. Now, let the

functions g11 and g22 be different. Then there exists a point t0 ∈ Γ such that g11(t0) 6= g22(t0). Equating the elements outside

the diagonals of the matrices G(t)G(t0) and G(t0)G(t), we obtain

(g11(t)−g22(t))(g12(t0)) = (g11(t0)−g22(t0))(g12(t)),

and

(g11(t)−g22(t))(g21(t0)) = (g11(t0)−g22(t0))(g21(t)),

so that we may set

φ = g11 −g22, γ = 1, α =
g12(t0)

(g11(t0)−g22(t0))
, β =

g21(t0)

(g11(t0)−g22(t0))
,

and the theorem is proved.
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4. Extension to Infinite-Dimensional Case

4.1 Spectral theorem for normal compact operators

We recall that B(H ) denotes the Banach algebra of all bounded operators on the complex Hilbert space H and by

definition the spectrum of T, denoted by Sp(T ), is the set of λ ∈ C such that T −λ I is not invertible in B(H ). We recall the

important theorem on the spectrum of a compact operator on a Hilbert space.

Theorem 4.1. Let T ⊂ B(H ) be compact. Then Sp(T) is a non-empty compact subset of C with no accumulation point other

than zero. Each non-zero λ ∈ Sp(T ) is an isolated eigenvalue of T with finite algebraic multiplicity.

Theorem 4.2 (Spectral theorem for compact operators). If an operator T ∈ B[H ] on a non-zero Hilbert space H is compact

and normal, then there exists a unique countable resolution of the identity {Ek} on H and a bounded set of scalars λk for which

T = ∑
∞
k=1 λkEk, where {λk}= Spp(T ) is the (non-empty) set of all (distinct) eigenvalues of T and each Ek is the orthogonal

projection onto the eigenspace N (λkI −T ) (i.e., R(Ek) = N (λkI −T )). If the above countable weighted sum of projections

is infinite, then it converges in the (uniform) topology of B(H ).

Proof. See [11], Theorem 3.3 on page 58.

Remark 4.3. It is worth mentioning here that according to Proposition 4.K in [11], the projections Ek coincide with the Riesz

projections associated to spectral values λk as usually obtained by the Holomorphic Functional Calculus.

Definition 4.4. An operator-valued function T : Ω 7→ B(H ), defined on an open subset Ω of the complex plane C, is said to

be analytic at z0 ∈ Ω if there are operators Tn ∈ B(H ) and a positive number δ such that

T (z) =
∞

∑
n=0

(z− z0)
nTn,

where the power series on the right-hand side converges with respect to the operator norm on B(H ) in a disc |z− z0|< δ for

some δ > 0. We say that T is analytic or holomorphic in Ω if it is analytic at every point in Ω.

4.2 Riesz projections depending on a parameter

Let A(t) denote an analytic family of normal compact operators on a complex Hilbert space and defined on a real interval

I = (a,b) with a < 0 < b. Let λ be an eigenvalue of A(0). More generally A(t) can be an analytic family of bounded normal

operators on H with the property that λ is an isolated point of the spectrum SpA(0), and such that the λ−eigenspace of A(0)
is finite-dimensional. Let D be a closed disk centered at λ such that SpA(0)∩D = {λ}. It follows that, for t sufficiently small,

SpA(t)∩ γ = /0 where γ = ∂D is the boundary of D. For such t, we have the orthogonal Riesz projections

Pλ (t) =
1

2πi

∫

γ
(ξ I −A(t))−1dξ

with range H (t), depending analytically on t, such that P(0) is the orthogonal projection of H onto the λ−eigenspace of

A(0). Our main result will be based essentially on the possibility of decomposing an operator like A(t) into a sum

∞

∑
k=1

µkPk(t),

where the Pk(t) are mutually orthogonal analytic projections, such that

[A(t),Pk(t)] = 0.

It is a spectral decomposition with the added condition of analyticity. For more details on the spectrum, riesz idempo-

tents/projections, spectral decomposition of operators and related questions to spectral theory see [1], [10],[11], [13].
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4.3 Analytic family of compact operators on a Hilbert space
Our goal is to extend Theorem 3.11 from matrices to compact operators on a Hilbert space. We proved in [12] the following

theorem for self-adjoint compact operators.

Theorem 4.5 ([12]). If (A(s)) is an analytic family of compact self-adjoint operators on a Hilbert space, such that [A(s),A′(s)] =
0 for all s in an interval I of R, then (A(s)) is functionally commutative, i.e. [A(s),A(t)] = 0 for all s, t ∈ I.

Thanks to Theorem 3.3 of [11] we can extend our previous theorem to compact normal operators on a Hilbert space.

Theorem 4.6. If (A(s)) is an analytic family of normal compact operators on a Hilbert space, such that [A(s),A′(s)] = 0 for

all s in an interval I of R, then (A(s)) is functionally commutative, i.e. [A(s),A(t)] = 0 for all s, t ∈ I.

4.4 Analytic normal compact operators on a Hilbert space commuting with their derivatives

The following results may be proved in much the same way as their equivalent ones in [12].

Lemma 4.7. Let A(t) be an analytic family of normal compact operators on a Hilbert space H which commute with its

derivative. Then the projections associated to the eigenvalues of A(t) commute with their derivative.

Proof. Similar to the proof of Lemma 2 in [12] if we replace self-adjoint by normal.

Lemma 4.8. If a family of projections P(t) commutes with its derivative on an interval I ⊂ R, then P(t) is constant.

Proof. Similar to the proof of Lemma 3 in [12] if we replace self-adjoint by normal.

Theorem 4.9. Let A(t) be an analytic family of normal compact operators on a Hilbert space H. Suppose that A(t) commutes

with its derivative for all t ∈ I ⊂ R. Then A(t) is functionally commutative, i.e. [A(s),A(t)] = 0 for all s, t ∈ I.

Proof. Similar to the proof of Theorem 2 in [12] if we replace self-adjoint by normal.

It remains to solve the following two more general extensions by dropping either compactness of the operators or normality.

Problem 4.10. If (A(s)) is an analytic family of compact operators, without quasi-nilpotent component (this is the case for

self-adjoint operators on a Hilbert space), on a Banach space, such that [A(s),A′(s)] = 0 for all s in an interval I of R, then

(A(s)) is functionally commutative, i.e. [A(s),A(t)] = 0 for all s, t ∈ I.

Problem 4.11. If (A(s)) is an analytic family of self-adjoint operators on a Hilbert space, such that [A(s),A′(s)] = 0 for all s

in an interval I of R, then the family (A(s)) is functionally commutative, i.e. [A(s),A(t)] = 0 for all s, t ∈ I.

Final comments. In analytic perturbation theory, we are concerned with the analytic dependence of various quantities on

the parameter x, assuming that the given family T (x) of operators is analytic. Among the quantities that have been considered

so far, there are the resolvent Rλ (T ) = (λ −T )−1, the isolated eigenvalues λn and the associated spectral eigenprojections or

Riesz idempotents. The general form of the spectral theorem ([11], Theorem 3.15) for self-adjoint operators furnishes other

functions to be considered. One of them is the spectral family E(λ ,x) for T (x), defined for real x, where T (x) is a self-adjoint

family (see [10] for more details). This combined with Theorem 3.15 in [11], might perhaps be the path to explore towards a

possible solution of the second problem.
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