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Abstract 

In this study, rotating long thick-walled fiber reinforced composite cylinders with closed ends are investigated 
within the elastic limits by using analytical methods. Hoffman yield criterion is employed to the elastic problem to 
find limit angular velocities. Composite bodies of the cylinders are consisting of isotropic matrix and transversely 
isotropic fibers which are unidirectionally aligned in the circumferential direction. Alterations on the elastic stress 
and displacement fields are examined by taking various fiber volume fraction and wall thickness values. Obtained 
results emphasize that both parameters highly influence the distributions of stress, displacement, and 
commencement of the yielding. 

Keywords: Rotating cylinders; composite cylinders; stress analysis; analytical methods 

1. Introduction 

In many engineering applications, cylindrical components such as disks, cylinders, and rods are 
often utilized. Hence, it is highly crucial to forecast stress and displacement distributions in 
such geometries. According to the developments in material science and the needs in 
engineering, axisymmetric components have started to be produced from different materials. 
Fiber reinforced composites have become exceedingly popular among scientists and engineers 
due to the advantageous material properties. In this regard, stress analyses of axisymmetric 
components, which are made of different materials, under various loading conditions can be 
found extensively in the literature. Stress analyses of rotating functionally graded material 
(fgm) disks have been broadly examined by the use of analytical and numerical methods [1-5]. 
Deformations and stresses of pressurized fgm cylinders and tubes can be found in the 
publications as well [6-10]. Similar studies are also carried out for orthotropic cylindrical 
structures. Rotating orthotropic disks have been the subject of various engineering studies [11-
14]. Likewise, solutions have been proposed to orthotropic cylinder investigations with [15,16] 
or without [17,18] the influence of thermal stresses. Several studies focus on composite disks 
as well. Stress and displacement fields of solid, annular, and variable thickness rotating fiber 
reinforced disks are available [19-21]. On the other hand, the number of researches for the fiber 
reinforced disks and cylinders is lower than the same geometries made of functionally graded 
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or orthotropic materials. Thus, this study is aiming to give more insight into fiber reinforced 
cylinders by employing analytical methods. 

In this research, rotating long thick-walled composite cylinders with fixed ends are studied in 
the framework of elasticity. The composite material of the cylinders consisting of isotropic 
matrix and transversely isotropic fibers. The alignment of the fibers is taken unidirectionally 
through the circumferential direction. Thus, the circumferential direction becomes the 
longitudinal (L) direction, and the remaining radial and axial directions of the cylinders turn out 
to be the transverse (T) directions. In Fig. 1 (a), these directions and the composite cylinders 
are visualized. In Fig. 1 (b), fiber reinforced composite material is demonstrated with the 
material coordinate system. Correspondingly, lower case l and t point to the longitudinal (fiber) 
and transverse directions of the composite material, where m and f denote matrix and fibers as 
well. In the elastic limit calculations, Hoffman yield criterion [22] is exploited to obtain elastic 
limit angular velocity and commencement of the yielding through the thickness of the cylinders. 

 
Fig.1. (a) Rotating cylinders with central hole, (b) Composite material 

2. Mechanical Property Calculations 

Several models can be supplied from the literature to calculate the mechanical properties of the 
fiber reinforced composites. In the present work, Chamis method [23,24] is utilized due to its 
usefulness and simple implementation. 𝑉" and 𝑉# denote the volume fraction of the matrix and 
fibers in Eq.(1).      

 𝑉" = 1 − 𝑉# (1) 

Elastic modulus of the composite material in the longitudinal (𝐸() and transverse (𝐸)) directions 
are calculated via Eqs.(2)-(3) 

 𝐸( = 𝑉#𝐸*# + 𝑉"𝐸" (2) 

 					𝐸) =
-.

/0 12	(/0
4.
452

)
	  (3) 

where 𝐸*# and 𝐸7# express elastic modulus of the transversely isotropic fibers in the longitudinal 
and transverse directions. 𝐸" is the elastic modulus of the matrix. Followingly, Poisson’s ratios 
of the composite material in different directions (𝜐(), 𝜐)(, 𝜐))) are presented 

 𝜐() = 𝑉#𝜐*7# + 𝑉"𝜐" (4) 
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 𝜐)( = 𝜐()
𝐸)
𝐸(

 (5) 

 𝜐)) = 𝑉#𝜐77#	 + 𝑉"(2𝜐" −	𝜐)() (6)    

in which 𝜐*7# and 𝜐77#	are the Poisson’s ratios of the fibers in l-t and t-t directions. Poisson’s 
ratio of the isotropic matrix is indicated with 𝜐". In the following equation, density of the 
composite (𝜌) is calculated where 𝜌# and 𝜌" signify density of the fibers and matrix 

 𝜌 = 𝑉#𝜌# + 𝑉"𝜌" (7) 

According to the fiber failure mode, such as micro buckling or fracture due to shear, there are 
many different models to estimate the elastic limits of the composite materials in different 
directions. In this study, the models proposed by Chamis to estimate the tensile and compressive 
strength of the composite are used for convenience.  In this regard, the longitudinal tensile (𝐿)) 
and compressive (𝐿=) strength of the composite are calculated by Eq.(8) and Eq.(9) 

 𝐿) = 𝑉#𝐿7# (8) 

 𝐿= = 𝑉#𝐿=# (9) 

in which 𝐿7# and 𝐿=# are the longitudinal tensile and compressive strength of the fibers. 
Transverse tensile (𝑇)) and compressive (𝑇?) strengths are as follows  

 𝑇) = 𝑇7"[1 − ( 𝑉# 	− 𝑉#)(1 −
𝐸"
𝐸7#

)] (10) 

 𝑇? = 𝑇="[1 − ( 𝑉# 	− 𝑉#)(1 −
𝐸"
𝐸7#

)] (11) 

in Eqs.(10)-(11), terms that are titled as 𝑇7" and 𝑇=" express tensile and compressive strengths 
of the matrix material.  

3. Analytical Solution 

In order to define elastic relations, cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) is exploited. 
Radial, tangential, and axial elastic strains are given below 

 	𝜀F =
𝑑𝑢F(𝑟)
𝑑𝑟

, 𝜀I =
𝑢F(𝑟)
𝑟

, 𝜀J = 0 (12) 

where 𝑢F(𝑟) is the radial displacement. Due to the axial symmetry of the cylinders, 
displacement is function of 𝑟 only. In addition, the axial strain is equal to zero since the ends of 
the cylinders are considered as fixed. As can be noticed, strain-displacement relation is defined 
at Eq.(12), and the composite material properties are calculated in the above section.  Under 
these conditions, strain-stress relation can be determined adequately. Recalling from the 
definition of the problem that the fibers are unidirectionally aligned in the circumferential 
direction, and the remaining radial and axial directions of the cylinders are taken as transverse. 
These considerations yield to the following compliance matrix, which portrays the strain-stress 
relation 
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𝜀F
𝜀I
𝜀J

=

			
1
𝐸)

−
𝜐()
𝐸(

−
𝜐))
𝐸)

−
𝜐)(
𝐸)

			
1
𝐸(

−
𝜐)(
𝐸)

−
𝜐))
𝐸)

−
𝜐()
𝐸(

			
1
𝐸)

𝜎F
𝜎I
𝜎J

 (13) 

in which 𝜎F, 𝜎I and 𝜎J express radial, tangential, and axial stresses respectively. 
Correspondingly, elastic stress-strain relation is obtained with the indicated below stiffness 
matrix   

 

𝜎F
𝜎I
𝜎J

=

			
1 − 𝜐()𝜐)(
𝐸(𝐸)∆

𝜐() 1 + 𝜐))
𝐸(𝐸)∆

𝜐)) + 𝜐()𝜐)(
𝐸(𝐸)∆

𝜐)( 1 + 𝜐))
𝐸)N∆

			
1 − 𝜐))N

𝐸)N∆
𝜐)( 1 + 𝜐))

𝐸)N∆
𝜐)) + 𝜐()𝜐)(

𝐸(𝐸)∆
𝜐)( 1 + 𝜐))

𝐸(𝐸)∆
		
1 − 𝜐()𝜐)(
𝐸(𝐸)∆

𝜀F
𝜀I
𝜀J

,	 

∆=
(1 + 𝜐)))(1 − 𝜐)) − 2𝜐O)𝜐)O)

𝐸O𝐸)N
 

(14) 

It is to be remarked that both compliance and stiffness matrices are symmetrical and obey 
Hook’s law. In the following, the compatibility condition for the elastic problem is given   

 𝑟
𝑑𝜀I
𝑑𝑟

+ 𝜀I − 𝜀F = 0 (15) 

The compatibility condition is fulfilled by substituting radial and tangential strains given in 
Eq.(12) to the above equation. The non-trivial equilibrium equation for this problem is of the 
form 

 
𝑑𝜎F
𝑑𝑟

+
1
𝑟
(𝜎F − 𝜎I) + 𝜌𝜔N𝑟 = 0 (16) 

where 𝜔 is the angular velocity. To be able to solve Eq.(16), initially, directional strain terms 
presented in Eq.(12) should be substituted into Eq.(14). Followingly, elastic stresses in Eq.(14) 
are substituted to Eq.(16). After several algebraic procedures, a non-homogeneous Cauchy 
Euler type differential equation is obtained 

 𝑟N
𝑑𝑢FN

𝑑𝑟N
+ 𝑟

𝑢F
𝑑𝑟

−
𝑠NN
𝑠//

𝑢F = −
𝜌𝜔N

𝑠//
𝑟R (17) 

𝑠ST	(𝑖, 𝑗 = 1,2,3) terms used above are the terms of the stiffness matrix given in Eq.(14).  In 
order to solve the homogeneous part of the above differential equation, in other words, the left-
hand side of Eq.(17), we may propose a solution as 𝑢F = 𝑟X in which 𝜆 is an unknown constant. 
Successively, 𝑢FZ = 𝜆𝑟X0/ and 𝑢FZZ = 𝜆(𝜆 − 1)𝑟X0N where the superscript (‘) denotes the 
derivative. By substituting 𝑢F, 𝑢FZ  and 𝑢FZZ into Eq.(17) and setting the right-hand side of the 
equation as zero, we obtain the homogeneous solution of Eq.(17) which is named 𝑢[(𝑟) 
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 𝑢[ 𝑟 = 𝐶/𝑟0]^ + 𝐶N𝑟]^, and 𝛼/ =
`aa
`^^

= -b(/0cdda)
-d(/0cbdcdb)

  (18) 

In the above equation, 𝐶/ and 𝐶N are the arbitrary constants. The next step is finding the 
particular solution (𝑢e(𝑟)) of Eq.(17). The method of variation of parameters is employed for 
this purpose.   

 𝑢e(𝑟) = 𝑄/ 𝑟 𝑢/ 𝑟 + 𝑄N 𝑟 𝑢N 𝑟  (19) 

𝑢/ and 𝑢N are the two homogeneous solutions of Eq.(17) which are equal to	𝑟0]^ and 𝑟]^ 
respectively  

 𝑄/ 𝑟 = −
𝑃 𝑟 𝑢N

𝑢/𝑢NZ − 𝑢/Z 𝑢N
𝑑𝑟, 𝑄N 𝑟 = 		

𝑃 𝑟 𝑢/
𝑢/𝑢NZ − 𝑢/Z 𝑢N

𝑑𝑟			 (20) 

in which 𝑃 𝑟 = −(𝜌𝜔N/𝑠//)𝑟. 𝑃 𝑟  is simply found by dividing Eq.(17) with 𝑟N and taking 
the right-hand side of the remaining equation. To be able to utilize the method of variation of 
parameters, the coefficient of the highest order derivative must be 1. The particular solution of 
Eq.(17) takes the below form after these mathematical operations 

 𝑢e 𝑟 = 𝛼N𝑟R, 𝛼N =
ija

`aa0k`^^
= ∆-b-daija	

-b /0cdda 0k-d(/0cbdcdb)
  (21) 

Finally, radial displacements of the composite cylinders are achieved by adding the 
homogeneous and particular solutions stated in Eq.(18) and Eq.(21) 

 𝑢F 𝑟 = 𝐶/𝑟0]^ + 𝐶N𝑟]^ + 𝛼N𝑟R (22) 

Directional elastic strains can be written of the form by applying Eq.(12) to the above equation 

 𝜀F 𝑟 = −𝐶/𝛼/𝑟0]^0/ + 𝐶N𝛼/𝑟]^0/ + 3𝛼N𝑟N (23) 

 𝜀I 𝑟 = 𝐶/𝑟0]^0/ + 𝐶N𝑟]^0/ + 𝛼N𝑟N (24) 

It should be reminded that due to the fixed ends of the geometry, the axial strain is equal to 
zero. Subsequently, if Eq.(23) and Eq.(24) are implemented to Eq.(14), directional elastic 
stresses become 

 𝜎F 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠// − 𝑠/N + 𝐶N𝑟]^0/(𝛼/𝑠// + 𝑠/N) + 𝛼N𝑟N(3𝑠// + 𝑠/N) (25) 

 𝜎I 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠N/ − 𝑠NN + 𝐶N𝑟]^0/(𝛼/𝑠N/ + 𝑠NN) + 𝛼N𝑟N(3𝑠N/ + 𝑠NN) (26) 

 𝜎J 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠R/ − 𝑠RN + 𝐶N𝑟]^0/ 𝛼/𝑠R/ + 𝑠RN + 𝛼N𝑟N(3𝑠R/ + 𝑠RN) (27) 

in which 𝑠ST terms, once again, express the components of the stiffness matrix in Eq.(14). In the 
case of rotating cylinders with central holes, 𝐶/ and 𝐶N are found by the following boundary 
conditions  

 𝜎F 𝑎 = 0, 𝜎F(𝑏) = 0 (28) 
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in which 𝑎 and 𝑏 present inner and outer radii of the cylinders. If the boundary conditions are 
exerted to Eq.(25), arbitrary constants can be carried out  

 𝐶/ =
𝛼N(𝑎N]^𝑏Rn]^ − 𝑎Rn]^𝑏N]^)(3𝑠// + 𝑠/N)

(𝑎N]^ − 𝑏N]^)(𝛼/𝑠// − 𝑠/N)
 (29) 

 
𝐶N = −

𝛼N(𝑎Rn]^o𝑏Rn]^)(3𝑠// + 𝑠/N)
(𝑎N]^ − 𝑏N]^)(𝛼/𝑠// + 𝑠/N)

 
(30) 

As previously stated, Hoffman yield criterion is employed to calculate the elastic limits of the 
cylinders. The general form of the corresponding criterion in principal directions is  

 

				/
N
− /
pdpq

+ /
rdrq

+ /
sdsq

𝜎I − 𝜎J N + /
N

/
pdpq

− /
rdrq

+ /
sdsq

𝜎J − 𝜎F N +

			/
N

/
pdpq

+ /
rdrq

− /
sdsq

𝜎F − 𝜎I N + /
pd
− /

pq
𝜎F +

/
rd
− /

rq
𝜎I +

					 /
sd
− /

sq
𝜎J ≤ 1  

(31) 

at Eq.(31), X, Y, Z express the yield strength of the material at the corresponding direction, and 
the subscripts T and C clarify either the load is tensile or compressive. In-between equations 
Eqs.(8)-(11), composite material strengths have previously been introduced. By operating 
Eq.(8) to Eq.(11) with Eq.(31), Hoffman yield criteria can be adapted to this case 

 
𝜎r 𝑟 =

1
2𝐿)𝐿?

𝜎I − 𝜎J N + 𝜎F − 𝜎I N +
1
2

2
𝑇)𝑇?

−
1

𝐿)𝐿?
𝜎J − 𝜎F N

+
1
𝑇)
−
1
𝑇?

𝜎F + 𝜎J +
1
𝐿)
−
1
𝐿?

𝜎I ≤ 1 
(32) 

Eq.(32) is the corresponding yield criteria, which is named 𝜎r(𝑟) and is going to be used to find 
the elastic limit angular velocity of the cylinders. If the value of the obtained 𝜔 is exceeded, 
then the elastic region gets exited. In other words, from Eq.(12) to this point, all elastic 
equations are valid as long as 𝜎r(𝑟) ≤ 1. Thus, limit angular velocity values are obtained when 
𝜎r(𝑟) = 1. 

3. Numerical Examples 

After analytical modeling, to exemplify numerical results, dimensions of the composite 
cylinders and the properties of the cylinder material are assigned. In this regard, to understand 
how the wall thickness of the cylinders changes the distribution of the elastic stresses, outer 
radii (𝑏) of the cylinders are kept constant as 0.1 m, and various inner radii (𝑎) values (0.02 
m,0.05 m, 0.08 m) are taken. So that the inner/outer radius ratio (𝑎/𝑏) becomes 0.2, 0.5 and 0.8 
respectively. As the fiber reinforced composite, graphite/epoxy is used. Properties of the epoxy 
and transversely isotropic graphite fibers are tabulated below 

 
Table 1. Mechanical Properties of the Epoxy and Graphite Fibers [25] 

𝑇=" 
 

𝑇7" 
 

𝐿=# 
 

𝐿7# 
 

𝜌" 
 

𝜌# 
 

𝜐" 
 

𝜐77# 
 

𝜐*7# 
 

	𝐸" 
 

𝐸7# 
 

𝐸*# 
 

(𝑀𝑃𝑎) (𝑀𝑃𝑎) (𝑀𝑃𝑎) (𝑀𝑃𝑎) (
𝑘𝑔
𝑚R) (

𝑘𝑔
𝑚R) (−) (−) (−) (𝐺𝑃𝑎) (𝐺𝑃𝑎) (𝐺𝑃𝑎) 

102 72 1999 2067 1200 1800 0.30 0.35 0.30 3.4 22 230 
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Material properties are obtained for three different fiber volume fraction values (𝑉# = 0.20, 
0.50, 0.80) via operating Chamis method, which is given from (1) to (11), with the properties 
in Table 1. Accordingly, one can investigate the influences of 𝑉# on the elastic stress and 
displacement fields. At this stage, variables are transformed to their normalized forms which 
are expressed with overbars. Hence, radial coordinate is 𝑟 = 𝑟/𝑏. Directional stresses take the 
following forms 𝜎T(𝑟) = 𝜎T(𝑟)/𝜎| where 𝑗 = 𝑟, 𝜃, 𝑧 and the yield stress is  𝜎r(𝑟) = 𝜎r(𝑟). 
Normalized angular velocity can be written as 𝜔 = 𝜔𝑏 𝜌|/𝜎|. Non-dimensional radial 
displacement is transformed to 𝑢F(𝑟) = 𝑢F(𝑟)𝐸|/𝜎|𝑏. Lastly, arbitrary constant are of the 
following 𝐶/ = 𝐶//𝑏/n]^ and 𝐶N = 𝐶N/𝑏/0]^. In the normalization procedure 𝜎|, 𝐸| and 𝜌| 
are introduced. These constants are as follows 

 𝜎| =
/
}

((52n(~2n)5.n)~.
}

)N, 𝐸| =
/
R

(-�2n-52n	-.
R

)N and 𝜌| =
i2ni.

N
 (33) 

After the boundary conditions stated in Eq.(29) and Eq.(30) are employed to stresses and 
displacements, elastic limit angular velocity and the beginning of the yielding are calculated by 
the use of Eq.(32). The results obtained for various 𝑎/𝑏 and 𝑉# are exhibited in Table 2. It is to 
be noted that the position of the yielding is denoted with 𝑟r in Table 2 

 
Table 2. Calculated dimensionless arbitrary constants, elastic limit angular velocities and position of 

the yielding for various 𝑉#  and 𝑎/𝑏  
  	𝑉# = 0.20   𝑉# = 0.50     𝑉# = 0.80 
 𝐶/ 6-6.67953x10 7-7.69944x10 7-4.93349x10 

𝑎/𝑏 = 0.2 𝐶N 0.0341764 -0.0388193 -0.0243708 
 𝑟r 0.618322 0.645025 0.634944 
 𝜔 1.56408 1.8232 1.84966 
 𝐶/ 0.000354862 0.000141208 0.000103404 

𝑎/𝑏 = 0.5 𝐶N 0.0316035 -0.0445137 -0.0298333 
 𝑟r 0.5 0.720314 0.722186 
 𝜔 1.49828 1.95469 2.04922 
 𝐶/ 0.001605 0.00120456 0.00109806 

𝑎/𝑏 = 0.8 𝐶N 0.0263474 -0.0435268 -0.0351421 
 𝑟r 0.8 0.8 0.8 
 𝜔 1.34404 1.95086 2.24789 

 

It is depicted in the results in Table 2 that elastic limit angular velocity increases with higher 
fiber volume fraction. In other words, when the fiber volume fraction elevates, cylinders begin 
yielding at higher strengths. Whereas, it is hard to make a clear statement for the influence of 
the 𝑎/𝑏 ratio. When 𝑉#=0.20 and 𝑎/𝑏 ratio is increasing from 0.20 to 0.80, calculated elastic 
limit angular velocities decreas. On the other hand, when 𝑉#=0.80 and 𝑎/𝑏 ratio rises, composite 
cylinders tend to fail at higher 𝜔. Thus, one can conclude that the wall thickness of the 
composite cylinders should be treated carefully to get optimum results. In order to understand 
this phenomenon, Figure 2 is illustrated below. According to the plotting, when fiber volume 
fraction in the composite is low (𝑉#=0.20), thick-walled cylinders (𝑎/𝑏=0.20) are prone to yield 
at greater 𝜔. However, as 𝑉# increases in the composite, cylinders that have thinner wall-
thickness (𝑎/𝑏=0.80) start plastic flow at higher 𝜔. 
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Fig. 2. Distribution of the elastic limit angular velocity for the cylinders having different 𝑎/𝑏 and 𝑉# 

In the following figures, corresponding elastic stress and displacement fields are presented. As 
can be noticed in Figure 3 (a), (b), and (c), when 𝑎/𝑏=0.2, plastic flow commences in the middle 
of the cylinders. On the other hand, as the thickness of the cylinder walls gets slender, yielding 
begins at the inner radii. For instance, all cylinders begin yielding at 𝑟 = 𝑎 when  𝑎/𝑏=0.8. The 
position of the yielding (𝑟r) is calculated when 𝜎r(𝑟)=1, and the exact position of 𝑟r is given 
in Table 2 

 

Fig. 3. Variation of the dimensionless yield stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20,   
(b) 𝑉#=0.50 and (c) 𝑉#=0.80 
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In the subsequent set of figures, non-dimensional elastic limit radial stresses are presented. It is 
observed from Figure 4 (a), (b), and (c) that radial stresses increase as 𝑉# enlarges for the 
cylinders with the same  𝑎/𝑏 ratio. The graphs below also reveal that the cylinders with higher 
wall thicknesses (𝑎/𝑏=0.2) have higher radial stress compared to the lower ones (𝑎/𝑏=0.8). In 
the ensuing plotting, tangential stresses are exhibited 

 

Fig. 4. Variation of the dimensionless radial stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20, 
(b) 𝑉#=0.50 and (c) 𝑉#=0.80 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig. 5. Variation of the dimensionless tangential stress along  𝑟 for various 𝑎/𝑏 ratios where  

(a) 𝑉#=0.20, (b) 𝑉#=0.50 and (c) 𝑉#=0.80 
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According to Figure 5 (a), (b), and (c), normalized tangential stresses enlarge, when 𝑉#  
amplifies for cylinders with the same 𝑎/𝑏 ratio. On the other hand, while the radial stresses are 
high in the thick-walled cylinders (𝑎/𝑏=0.2), tangential stress components are high in the 
thinner ones (𝑎/𝑏=0.8). Another important issue is that the magnitudes of the elastic limit 
tangential stresses are significantly higher than the radial stresses. In the next figure, axial 
stresses are presented in Figure 6 (a), (b), and (c). Fiber volume fraction slightly influences the 
axial stresses when 𝑎/𝑏=0.2. Conversely, as the wall thickness gets smaller, the effect of 𝑉# 
becomes more apparent and the profiles of the axial stress components tend to skew to the outer 
radii of the cylinders. 

 

Fig. 6. Variation of the dimensionless axial stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20, 
 (b) 𝑉#=0.50 and (c) 𝑉#=0.80 

In the final figure demonstrated below, normalized radial displacements are portrayed. In 
accordance with Figure 7 (a), (b), and (c), radial displacements of the cylinders sharing the same 
𝑎/𝑏 reduce as  𝑉# goes up. For the cylinders having the same 𝑉#, radial displacements are highly 
affected by 𝑎/𝑏. When the cylinders are having narrower walls, the magnitudes of the radial 
displacements are at high levels. However, the radial displacement differences of the inner and 
outer radii of the cylinders become greater in the thick-walled ones. Another remark that should 
be noted is that the distribution profiles of the radial displacements and tangential stresses are 
markedly analogous. The resemblance can be noticed by comparing Figures 5 and 7. 
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Fig. 7. Variation of the dimensionless radial displacement along  𝑟 for various 𝑎/𝑏 ratios where (a) 
𝑉#=0.20, (b) 𝑉#=0.50 and (c) 𝑉#=0.80 

5. Conclusion 

In this study, the rotating fiber reinforced composite cylinders subjected to free-free boundary 
conditions are studied by employing analytical methods. The elastic stress and displacement 
fields are investigated for numerous wall thickness (𝑎/𝑏) and fiber volume (𝑉#) ratios. It has 
been seen that these fields are immensely altered by 𝑎/𝑏 and 𝑉#. Hoffman yield criterion is 
adapted to the problem and elastic limits are obtained accordingly. One can conclude from the 
calculated results that as 𝑉# in the composite increases, yielding initiates at higher angular 
velocities. Whereas, 𝑎/𝑏 ratio should be utilized cautiously. If the wall thickness ratio is not 
selected properly, yielding in the cylinders may occur at lower angular velocities.  The 
commencement of the plastic flow varies according to the assigned 𝑎/𝑏 and 𝑉#. When the 
cylinder walls are thick, yielding tends to begin in the middle of the cylinder walls. However, 
as the wall thickness becomes smaller, yielding starts at the inner radii of the cylinders. Also, 
according to the elastic limit stress and displacement fields that we get, magnitudes of radial 
and axial stresses are considerably small when compared to tangential ones, and as the cylinder 
walls get thinner tangential stress components majorly rise.  
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Abstract 

Dental implant applications for edentulous jaws are today considered a predictable, safe, and daily technique for 
giving patients new aesthetics and function. However, the success of the implant therapy should be thoroughly 
investigated for long-term clinical results about the stress distribution in hosting bone tissue and prosthetic 
components. In this study, the effect of different prosthesis designs on the stress distribution around the abutment 
and dental implant in bone tissue was investigated using the finite element method (FEM) with Workbench module 
of the ANSYS package program. The examination focuses on the effect of the number of implants in teeth layouts 
on the distribution of stresses, strains, and displacements. In the study the historical development of dental implant 
problems is mentioned, and some previous studies are summarized. Critical information is also given about 
biomechanics, dental implants, jawbone, teeth, and the finite element method. Totally four different cases, one 
layout with three implants and three layouts with two implants, were analyzed. Titanium was used as an implant 
and abutment material. Nobel Active implants and abutments manufactured by Nobel BioCare Company were 
used for complete toothless lower jaw case. The critical stress, strain, and displacement values were determined 
for all four different scenarios. As a result, it was concluded that stresses, strains, and displacements have lower 
values for the design of triple dental implants compared to other layouts. 

Keywords: Biomechanics, Dental implant, Finite element method 

 
1. Introduction 
 
Mechanical behaviors of designs that can keep up with the  developing technology is one of the 
main topics of researchers. For this reason, researchers have made analytical and numerical 
solutions about the mechanical behavior of structures [1-8]. Biomechanics of the respiratory, 
skeletal, muscular and cardiovascular systems, soft and hard tissues, biological fluids, 
prosthetics, and tissue-implant interfaces are among the specialized topics of multidisciplinary 
numerical analysis. In this dental implant treatment process not realistically considering the 
importance of biomechanical effects may prevent them from continuing their task successfully 
for a long time and even lead to serious clinical complications.  
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Dental implant treatments have rapidly increased since the evolution of osseointegration, 
replacing removable dentures in the treatment of partially edentulous patients. Regardless of 
the clinician's success, many factors play an important role in load transfer from dental implant 
to the surrounding bone, such; as loading type, bone-implant integration, length and diameter 
of the implants, implant surface characteristics, prosthesis design, and quality of the host bone 
[9]. In the literature, it seen that the relationship between the success or failure of an implant 
and its useful life with the bone-implant interface has been studied [10]. Factors affecting the 
balance of implants have been presented and the principles on which implants should be 
designed for long-term success have been emphasized [11]. 
 
In ancient times, it can be counted as a solution for using stone, wood, and animal teeth in the 
jaw bones instead of a tooth that was lost. Dental implants are the most needed of these kinds 
of materials and are applied to human jaws in line with the studies performed today. Dental 
implants are placed under the bony or mucous membrane of the rigid or movable prosthesis, 
inside the jawbone, to transmit the forces formed between the jaws to the joint points instead 
of the teeth lost for any reason. Biocompatible materials are used for its production. 
 
Biomechanical behavior analysis are important implications for implants to do their job or not. 
Failure to apply the occlusal forces in accordance with the real scenarios in calculations poorly 
affects the stresses at the implant-prosthesis junction and the reshaping of the bone around the 
implant. Using biomechanical behaviors, which have a significant impact on the life of 
prostheseis, in this way enables the optimization of biomechanical conditions. There are several 
methods in the literature to examine stress, strains, and displacements for dental implant 
analysis. In experimental tests in laboratories, strain measurements give reliable results only at 
the specific position of the indicator. Photoelasticity provides realistic and reliable information 
about the global location of stresses, apart from the quantitative values. The finite element 
analysis is one of the most widely used methods in recent years, not only in the field of 
engineering but also in the field of dental implants, since it shows the problems that may occur 
before the application and shows the stresses that it will create around the implant. Geometric 
designs can be created using the finite element method. Material selection and geometric design 
are very important in determining the success of dental implants. The finite element analysis 
(FEA) can provide complete quantitative data at any local location of the model. Therefore, 
FEA has become a valuable analytical method for numerical analysis of implant applications. 
Studies on dental implant applications in different cases in the literature can be summarized as 
follows. 
 
Van Oosterwyck et al. have examined the effects of bone-implant interface, bone mechanical 
properties, unicortical versus bicortical implant fixation and the presence of a lamina dura by 
using FEM [10]. Geng et al. have investigated the bone-implant interface, implant prosthesis 
connection, and its use in multiple implant prostheses [11]. Kunavisarut et al. have aimed to 
investigate the effect of dental implant-supported passive fit prostheses, cantilever prostheses 
and various occlusive forces on prostheses, implant components, and stress around the bone 
using FEM [12]. Ding et al. have aimed to create a 3D FE model of a mandible with dental 
implants to analyze the stress distribution in the bone around the implants for different 
diameters [13]. Hsu et al. have studied the application of the finite element analysis in dentistry 
[14]. Kumar et al. have investigated the stress distribution around implant and tooth the finite 
element method in implant- supported fixed prosthesis designs [15]. El-Anwar and El-Zawahry 
have studied 25 different 3D implant designs with a gradual increase in diameter and length in 
order to extract simplified design equations to better understand implants behavior, using  the 
finite element method [16]. Baggi et al. have compared two different restorative techniques for 
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complete-arch rehabilitations supported by four implants. [17]. Liu et al. have aimed to evaluate 
the tension distribution in the peripheral bone, the tension in the abutments and the tension in 
the abutments, and the prosthetic stability of the mandibular overpressures attached with 
different implants under different loading conditions [18]. Cicciu et al. has studied the FEM 
evaluation of cement and screw-held dental implants against a single-tooth crown prosthesis 
[19]. Hambli has developed a simple and reliable FE model coupled to quasi-brittle damage 
law to describe the multiple cracks initiation [20]. Parkhe et al. have performed a finite element 
analysis to determine the best thread shape by comparing stress-induced in cortical and 
cancellous bone [21]. Gonzalez and Nuno have characterized the three types of manufacturing 
irregularities on an additive manufactured porous titanium sample having a simple cubic unit-
cell using FEA [22]. Mahajan and Patil have studied the optimization of dental implants using  
FEA [23]. Rzaghi et al. have studied dynamic simulation and the finite element analysis of the 
maxillary bone injury around the dental implants for different chewing loads [24]. Demenko et 
al. have estimated implant success prognosis, considering 0.2 mm annual bone loss for 
successful implantation [25]. Macedo et al. have evaluated the stresses and bone volume of an 
external hexagon or Morse taper dental implant systems by FEA [26]. Aumnakmanee et al. 
have studied the effects of four different Thread designs of dental implant prosthetics on stress 
at four different areas [27]. Jafarian et al.  have studied the stress distribution around the 
implants of different lengths and diameters with  the finite element analysis [28]. Wu et al. have 
evaluated the all-on-four treatment with four osseointegrated implants in terms of the 
biomechanical effects of implant design and loading position on the implant and surrounding 
bone using both test results and 3D FEA [29]. Jiménez et al. have used the FEA to determine 
whether the risks linked to Narrow-diameter implants (NDIs) could be mitigated by the 
mechanical advantages [30]. Robau Porrua et al. have examined the effect of the diameter, 
length, elasticity module on a dental implant on the stress and strain distribution in the implant 
bone by 3D FEA [31]. Zhong et al. have analyzed the biomechanical responses of zirconia-
based FAFDPs with different implant configurations by using the FEM [32]. The effect of 
different abutment materials on the stress distribution in bone tissue around the dental implant 
has investigated using the FEM by Terzi et al. [33]. 
 
Biomechanical principles help to evaluate existing designs in dental implantology and to model 
new designs. The FEM has been adapted from the engineering field to the dental implantology 
for an approximate prediction and evaluation of the amount of stress that will occur on the 
implant or surrounding tissues during the function performed. The finite element method is a 
method that explains the complex biomechanics of the implant studied and provided numerical 
results. In this study, it was aimed to find the stress, strain, and displacement values of the dental 
implants with different geometrical structures by changing the number of implants in four 
different strategies. 
 
2. Finite Element Analysis 
 
In this section, a 3.9 mm diameter prosthesis system is designed on bone tissue taken from a 
healthy person and this prosthesis is mounted. The geometry of the underlying system is 
introduced. The prosthesis and abutment system designed on the obtained bone tissue is 
connected under the first minor molar-second minor molar and first major molar teeth. 
Solidworks program was used to create the geometry [34]. After the design of the 3D model, 
the FEM was used for analysis. Stress, strain and displacement values were compared on the 
model by changing the selected material on the same model. In this study, the ANSYS 
Workbench program was used for the finite element analysis [35]. 
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The first step to be taken when starting the finite element analysis is to create a three-
dimensional model of the object to be worked on. While preparing these models, different 
imaging methods can be used depending on the complexity of the object. Computerized 
tomography and magnetic resonance imaging methods are two examples. While transferring 
such images to the computer environment and creating the model, firstly real models are created 
by scanning each detail of the object with 3D scanners and transferred to the computer 
environment or drawn by the researcher with three-dimensional modeling programs. The 
desired results can be simulated through the mathematical model and test simulations can be 
repeated at any time. Therefore, a well-tested and validated mathematical model offers 
researchers a very powerful tool for analysis. 
 
The geometric model prepared in the finite element analysis is divided into simple geometric 
infrastructures called elements, which are classified according to certain features. As some 
example of these features, geometric shape (triangle, parallel edge, quadrilateral), size (one-
dimensional, two-dimensional, three-dimensional) and the number of nodes can be given. 
Element types are shown in Figure 1. These elements are fully compatible with the geometry 
of the existing main structure. They show the desired mechanical properties in each region of 
the main structure. 
 
 

 
 

Fig. 1. Finite element types (one-dimensional, two-dimensional and three-dimensional) 
 

After the desired model is transferred to the computer environment, the division of the elements 
is called the creation of a network structure. The model analysis can be made in the most 
realistic way and reduced to a simpler model. Corner contact points between the elements are 
called knot points. In the second step, material data such as elasticity modulus, Poisson ratio 
used material are defined in the program. The boundary conditions of the object and the forces 
applied to the object are defined in the third step of the analysis. After entering this information, 
the analysis is performed by adjusting the direction, intensity and angle of the force for the 
loading conditions to be applied to the object. As a result of the solution, the sub-elements of 
each object and the entire structure are evaluated. In the interpretation of the analysis made 
using the finite element method, the values that directly affect the results of the analysis are 
chosen. These are, the geometry of the bone and implant, material properties, boundary 
conditions, force properties, and properties of the implant-bone interface. 
 
In this study, the finite element analysis was performed by transferring dental implant, abutment 
and lower jawbone modeling from Solidworks to the ANSYS Workbench program. The 
computerized tomography image of the bone tissue simplified and modeled to the desired extent 
is shown in Figure 2.  
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Fig. 2. Created solid modeling of the prosthesis 

 
The bone tissue image obtained by computerized tomography has been reduced to a simpler 
model by Solidworks program. As seen in Figure 3-b, the 3.9 mm diameter and 13 mm length 
dental implant of the Nobel Biocare Company named  the Nobel Active which provides 
excellent stability in all areas was created by the Solidworks program. In Figure 3-c, a suitable 
custom abutment (personalized application) designed according to the dental implant solid 
model is shown in Figure 3. 
 
 

 
Fig. 3. (a) Bone modeling (b) Dental implant modeling (c) Abutment modeling 

 
Layouts have been created for assembly operations and listed as follows in Figure 4. In this 
section, different geometrical assemblies of prosthetic systems designed with a diameter of 3.9 
mm and abutment systems of which the assemblies made are described. Prosthesis and abutment 
systems designed on the resulting bone tissue are linked under teeth as the following designs; 
Model 1: 1. small molar, 2. small molar, and 1. large molar 
Model 2: 1. small molar, and 1. large molar 
Model 3: 1. small molar, and 2. small molar 
Model 4: 2. small molar, and 1. large molar 
 
 

 
Fig. 4. Assembly layouts 

 
After the solid model of each part were created, they were transferred to the assembly stage. 
Bone, dental implants and abutments are combined by placing them in suitable positions for 
assembly. Firstly, the mandible and dental implants were created in the SolidWorks software 
and then transferred to the ANSYS Workbench program for the analysis, as shown in Figure 5. 
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Fig. 5. Imported geometry for ANSYS Workbench 

 
The solid model was transferred to the ANSYS Workbench program for numerical solution. 
The data that must be entered into the system to perform the analysis are introduced one by one. 
Young’s modulus and Poisson ratios are taken from the literature. The data used in the study 
are shown in Table 1. 
 

Table 1. The material properties of the models 
 Materials Modulus of elasticity 

(MPa) 
Poisson’s 

ratio 
Literature 

Abutment  Ti6Al4V 113800 0.34 [36] 
Implant Ti6Al4V 113800 0.34 [36] 
Bone Bone 14000 0.30 [37] 

 
In Figures 6-7, the mesh structure of the solid model on ANSYS Workbench is given. 191622 
elements and 321422 nodes are used in the model. After the mesh structure was created, 50 N 
load was applied to the abutments.  
 

 
Fig. 6. 3D mesh of the dental implant and abutment 
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Fig. 7. 3D mesh of the structure 

 
Three different models with two implants and one model with three implants were created. 
Three different teeth were applied to the models, namely the first molars, the second molars 
and the third molars. Titanium was chosen and used as a dental implant material. Static 
structural stress analysis was performed for the models. After all the necessary data such as 
boundary conditions and loads are defined in the ANSYS Workbench software, the analysis 
phase has been started and the obtained results are described in the numerical results part. 
Results of four different models under 50 N load are given below.   
 
3. Numerical Results 
 
In this study, the finite element method was used to obtain stress, strain, and deformation values 
in each region of the bone, dental implant, and abutment. Titanium was used as a dental implant, 
and abutment material for all models. The stress, strain, and displacement images and numerical 
values of the analysis results for the Model 1 (M1), Model 2 (M2), Model 3 (M3), and Model 
4 (M4) are shown in Figures 8-10 and Tables 2-5, respectively.  
 
The stress, strain, and displacement images and numerical values of the analysis results for the 
bone are shown in Figure 8 and Table 2, respectively. As can be seen from the table, the highest 
stress values were obtained in the M2, the highest strain values were obtained in the M4, and 
the highest deformation values were obtained in the M3. The lowest stress values were obtained 
in the M1, the lowest strain values were obtained in the M1 and the lowest deformation values 
were obtained in the M2. 
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Fig. 8. Analysis images of the stress, strain, and deformation in the bone 

 
Table 2. Results of the stress, deformation, and displacement in the bone 

Models Max. Von-Mises Stress 
(MPa) 

Max. Strain 
)4-(10 

Max. Deformation 
)4-(mm) (10 

M1 1.3981 1.0144 7.4699 
 M2 2.4186 1.8684 5.8766 
M3 2.4093 1.7773 7.5332 
M4 2.2610 2.0067 7.4385 

 
The stress, strain, and displacement images and numerical values of the analysis results for the 
dental implants are shown in Figure 9 and Table 3, respectively. As can be seen from the table, 
the highest stress values for the first, second, and third dental implants were obtained in the M1, 
M4 and M4 respectively. The highest strain values for the first, second, and third dental 
implants were obtained  in the M1, M4, and M4. The highest deformation values for the first, 
second, and third dental implants were obtained in the M3, M4, and M4. As can be seen from 
the table, the lowest stress values for the first, second, and third dental implants were obtained 
in the M2, M1 and M1 respectively. The lowest strain values for the first, second, and third 
dental implants were obtained in the M2, M1, and M1. The lowest deformation values for the 
first, second, third dental implants were obtained in the M2, M3, and M1. 
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Fig. 9. Stresses, strains and deformations in the dental implants 

 
Table 3. Results of the stress, deformation, and displacement in the implants 

First Dental Implant 
Models Max. Von-Mises Stress 

(MPa) 
Max. Strain 

)4-(10 
Max. Deformation 

)4-(mm) (10 
M1 16.7090 1.5345 7.0567 
M2 7.0089 0.6488 5.4778 
M3 16.3770 1.4900 7.8450 
M4 - - - 

Second Dental Implant 
Models Max. Von-Mises Stress 

(MPa) 
Max. Strain 

)4-(10 
Max. Deformation 

)4-(mm) (10 
M1 8.8032 0.8147 7.3773 
M2 - - - 
M3 14.0200 1.3748 6.8087 
M4 15.9690 1.5023 7.5063 

Third Dental Implant 
Models Max. Von-Mises Stress 

(MPa) 
Max. Strain 

)4-(10 
Deformation Max. 

)4-(mm) (10 
M1 9.6161 0.9130 6.1572 
M2 17.0410 1.7195 6.1651 
M3 - - - 
M4 26.7020 2.6432 6.5491 
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The stress, strain and displacement images and numerical values of the analysis results for the 
abutment are shown in Figure 10 and Table 4, respectively. As can be seen from the table, the 
highest stress values for the first, second, and third abutments were obtained in the M1, M4, 
and M4 respectively. The highest strain values for the first, second, and third abutments were 
obtained in the M1, M4, and M4. The highest deformation values for the first, second, and third 
abutments were obtained in the M3, M4, and M4. As can be seen from the table, the lowest 
stress values for the first, second, and third abutments were obtained in the M3, M3, and M1 
respectively. The highest strain values for the first, second, and third abutments were obtained 
in the M3, M3, and M1. The highest deformation values for the first, second, and third 
abutments were obtained in the M2, M3, and M1. 
 

 
Fig. 10. Stresses, strains, and deformations in the abutments 
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Table 4. Results of the stress, deformation, and displacement in the abutments 
First Dental Implant 

Models Max. Von-Mises Stress 
(MPa) 

Max. Strain 
)4-(10 

Max. Deformation 
)4-(mm) (10 

M1 11.1670 1.1098 9.5823 
M2 10.2530 0.9523 8.3830 
M3 9.2542 0.8634 11.0920 
M4 - - - 

Second Dental Implant 
Models Max. Von-Mises Stress 

(MPa) 
Max. Strain 

)4-(10 
Max. Deformation 

)4-(mm) (10 
M1 11.9320 1.1721 10.6140 
M2 - - - 
M3 9.2966 0.8609 10.1660 
M4 12.5810 1.2684 10.6880 

Third Dental Implant 
Models Max. Von-Mises Stress 

(MPa) 
Max. Strain 

)4-(10 
Deformation Max. 

)4-(mm) (10 
M1 10.5810 1.0424 9.4376 
M2 12.0060 1.1913 9.5851 
M3 - - - 
M4 17.6070 1.7118 10.0410 

 
According to Figures 11-13, it is seen that the stress values of bone are close to each other for 
M1, M2, M3 and M4 models, but it has a lower value when using M1. In dental implants, the 
stress values are found different for the first, second and third dental implants in all models. 
The stress values in the first and third dental implant are higher than the second implant. The 
stress values for abutments are close to each other for all models. Maximum Von-Mises stress 
values for all abutments were obtained when using M4, while minimum stresses were obtained 
when using M2. 
 
As can also be seen from the data in Figures 11-13, the highest value of strain in bone and dental 
implants was obtained when using M4, and the lowest value of strain was obtained when using 
M1. The maximum strain values for the abutments were obtained when Model 4 was used as 
the design. 
 
When the numerical data in Figures 11-13 are examined, it is seen that the results obtained 
using M1, M2, M3, and M4 designs were close to each other. The maximum deformation values 
were obtained when using M3 in bone, dental implants and abutments, while the lowest values 
were obtained in M2.  
 
When all the results were examined, the lowest stress, strain and deformation results among the 
analyzed design were generally seen in the M1. As a result, it is possible to say that the most 
suitable model among these for models is the M1. 
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Fig. 11. Stresses, strains, and deformations in the bone 
 

 

 
 

Fig. 12. Stresses, strains, and deformations in the dental implants 
 

 

 
 

Fig. 13. Stresses, strains, and deformations in the abutments 
 

4. Conclusion 
 
In the study, the stress, strain and deformation that were formed as a result of supporting dental 
implant supported prostheses with three and two implants in different locations and with a 
single type of implant material were examined. Three models with two implants and one model 
with three implants were created as a dental implant layout. The obtained models are analyzed 
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with the help of the ANSYS Workbench finite element program. The results are described 
below. 
1. The stress values occurring in three implant models were lower than the two implant models 
for all loading conditions. The reason for this may be that the applied force is shared by three 
implants. 
2. The maximum Von-Mises stress, strain and deformation values occurring in two implant 
models differed by the change in the region of the implant location and the applied load. For 
example, in Model 2, maximum stress, strain and deformation results are from the application 
of the load to the first molars, whereas in Model 3, the first molar tooth is in the first molar 
tooth, while in Model 4 the stress and strain values are in the first molar tooth. The replacement 
value was observed to occur in the second premolar tooth. 
3. The stresses occurring in the implants are concentrated in the implant neck region and 
reached the highest strain values at the implant neck point. The channels located in the implant 
neck region and which allow the implant to fit better in the bone caused the initial loading to be 
covered by the implant neck region and the region where the maximum stress values were 
observed. 
4. The stresses, deformations, and total displacements occurring in the abutments are 
concentrated in the abutment step region and the highest values are also formed in this region. 
5. When the stress values occurring in the bone were examined, the highest values occurred in 
the hard bone layer. 
6. Decrease in the number of implants caused negative biomechanical behavior for all structures 
(M2, M3, M4).  
7. Considering two implant-supported prostheses, Model 2 showed that stress and strain 
distributions were more suitable. 
8. The use of fixed showed unwanted biomechanical behavior for M3 and M4, mainly for M4. 
9. The use of three implants gave lower results of stress and strain.  
10. Considering two implant-supported prostheses, M3 and M4 showed unwanted 
biomechanical behavior, especially for M4. 
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Abstract 

In the paper, the size dependent buckling analysis of hybrid organic/inorganic nanobeam with I cross section is 
investigated. Eringen’s nonlocal elasticity theory is used to take the size effect into consideration. Comparative 
buckling loads of nanobeams for first ten modes is plotted in figure using Euler-Bernoulli theory and Eringen’s 
nonlocal elasticity theory. Two different size parameter is used. It is clearly demonstrated that the size effect can 
be neglected for first modes while it is unneglectable for higher modes. Simply supported case in investigated. The 
advantages of I-cross section are discussed. 

Keywords: Nonlocal elasticity theory, Euler-Bernoulli, Hybrid nanobeam, Nano-sized I-beam. 

1. Introduction 

Nano sized materials attracted much attention because of their out of the common properties. 
The starting point of the rise of these materials is the discovery of Carbon Nanotubes (CNTs) 
by Iijima in 1991 [1]. CNTs are graphene based materials. The discovery of graphene happened 
13 years later of CNTs [2]. Many methods of obtaining CNTs from graphene sheets was 
developed (layer separation, chemical separation, chemical vapor deposition etc.). The key 
point of attracting much attention is the material was performing outstanding mechanical 
strength, electronical conductivity, physicochemical properties compared to any known 
material [3]. Working experimentally with CNTs need advanced level of laboratory equipment 
together with very high experiment cost. Also, researchers have fronted to working theoretically 
instead of experiments because of time. A researcher can obtain results for thousands of 
alternative variant in seconds while working theoretically using accurate models [4]. As 
nanotubes dimensions are in nanometer level, classical theories were insufficient to perform 
theoretic analysis [5]. In past years, researchers developed and proved the accuracy of new size-
dependent theories such as nonlocal elasticity [6, 7], strain gradient [8, 9], modified couple 
stress [10], surface elasticity [11-13] theories to perform modal [14-25], bending [26-28], 
buckling [29-35] analyzes accurately. In more detail some other outstanding properties of these 
materials can be stated as high energy absorption, very high strength, superior electrical 
conductivity, flexibility, high maximum current density, high thermal conductivity, reduced 
skin and proximity effect, extreme lightweight, fatigue resistance etc. CNTs are performing 
very well in supercapasitors which are widely applied in portable devices, electric vehicles [36], 
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drug delivery [37], high-strength polymer compounds, water-gas shift and production of H2 
[38]. Lately, with the rise of popularity and extremely widened usage area CNTs and 
functionally graded materials (FGMs) are composed to create a novel type of composite 
material [39-50]. The novel composed material is named functionally graded carbon nanotube-
reinforced composites (FG-CNTRC) [51]. FG-CNTR has both advantages of CNTs and FGMs 
[52-55]. However, CNTs are not performing drastic mechanical strength or electrical or thermal 
conductivities for many applications [56]. The load capacity of CNTs and its composites started 
to be insufficient for some specific area. Therefore, scientists aimed to develop the classical 
tubular CNT structure [57]. Elmoselhy [58] presented a molecular form of I-shaped like beam 
CNT. The web resists shear forces applied to nanostructure, while the flanges resist most of the 
bending moment. The I shaped structure have advantages in carrying both bending and shear 
loads in the plane of the web while having the disadvantage of reduced capacity in the transverse 
direction, and carrying torsional loads. In present work, the buckling analysis of I-shaped hybrid 
nanobeam is investigated. In order to take the size effect into consideration, Eringen’s nonlocal 
elasticity theory is used. 

2. Hybrid Organic/Inorganic Nano-Sized I-Beam 

The classical method of obtaining conventional nanotubes with tubular cross section is 
demonstrated in Fig. 1. As it can be seen clearly from Fig. 1, the graphene-like flat structure 
composed of Carbon atoms, Silicon and Carbon atoms, Boron and Nitrogen atoms bonded to 
each other for obtaining CNTs, silicon carbide nanotubes (SiCNTs), and boron nitride 
nanotubes (BNNTs) respectively by simply rolling it to form the tubular structure [59].  

 

Fig. 1. Obtaining nanotube from graphene-like structure [60] 

The discovery and usage of inorganic nanotubes is later than organic nanotubes. Inorganic 
nanotubes are synthesized of group III-Nitrides, metal oxides, or other inorganic elements. 
Inorganic nanotubes have the advantages in case of ease in synthesis, high crystallinity, 
uniformity, high impact-resistance, high chemical stability under acidic and basic conditions 
[61]. Obtaining nanobeam with I shaped cross section was described by Elmoselhy [58]. Unlike 
the conventional techniques, a hybrid growth method was used. In the method, perpendicular 
growing technique of nanorods was combined with a tangential growing technique of a ribbon 
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of multi nanorods. Five phases of of growing were used to form a nanoribbon which compose 
the flange of the single walled nano-sized I-beam. Discrete catalytic nanoparticle (Inorganic 
Fe2O3) was placed on substrate, then chemical vapor deposition method was used to obtain 
hybrid organic/inorganic nano-sized I-Beam. It is also demonstrated that different I cross-
sectioned alternative nanobeams can be obtained according to the need in usage area. 
Alternative structures are single walled hollow, single walled solid, multi-walled hollow, multi-
walled solid nano-I-beams. In Fig. 2, the obtained nano-sized beam with I cross section is 
demonstrated. Selected nano I-beam is single walled solid nanobeam. 

 

Fig. 2. Nano-sized I-Beam 

Previous works shown that the Young’s modulus of hybrid or inorganic nano structures can be 
lower than conventional CNTs which effect directly the stability potential of material [61, 62]. 
On the other hand, the great advantage of having I-like cross section can pass over the 
disadvantage of Young’s modulus. I-cross section is widely used in civil engineering due to it’s 
high moment of inertia of cross section. The web resists shear forces while the flanges resist 
most of the bending moment. The I shaped structure have advantages in carrying both bending 
and shear loads in the plane of the web while having the disadvantage of reduced capacity in 
the transverse direction, and carrying torsional loads. Also, used material in I-cross section is 
minimized to needed area. Minimizing the production material is also a great advantage when 
it comes to work with high-cost nanomaterials.   

3. Size Dependent Buckling Analysis  

In present paper, the size effective stability analysis of simply supported, I-shaped hybrid 
nanobeam. Deriving the size effective buckling equation based on Eringen’s nonlocal elasticity 
theory [63] is given in detail in literature [60, 64].  
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Herein, “E” and “I” represent the Young’s Modulus and moment of inertia respectively. 𝜇 is 
the nonlocal parameter. 𝑘# and 𝑘$ stand for the Winkler modulus and Pasternak modulus of 
the elastic foundation which will be neglected in present paper as the nanobeam is modeled 
without foundation. Young’s modulus of hybrid inorganic/organic can vary. Selected Young’s 
modulus for this paper is equal to spinel structured C3N4 834 GPa to represent an average hybrid 
nanobeam [65]. Also, selected size of I-shaped nanobeam is 15nm wide flanges with 2nm 
thickness while having 20 nm web with 2 nm thickness and 500 nm length. The moment of 
inertia can be calculated analytically using following formulas; 

 

𝐼&'()*$+ =
𝑏ℎ/ − 𝑏ℎ#/ + 𝑡#ℎ#/

12
 (2) 

Nonlocal parameter is; 

 
𝜇 = (1 − 𝑒7𝑎): (3) 

 

Fig. 3. The variation of buckling load versus mode number 
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As it can be clearly seen from Fig. 3, the buckling load difference between size effective results 
and classical theory become dramatic with the rise in mode number. The effect of size 
dependent theory can be neglected for first modes while it is impossible for higher mode modes. 
On the other hand, the advantage of high moment of inertia results with higher buckling loads 
comparing to conventional tubular nanobeams. Together with the rise in moment of inertia the 
advantage of lower cross-sectional area results with lower production and material cost. 

4. Conclusions 

In this work, the buckling analysis of hybrid organic/inorganic nanobeam with I cross section 
is investigated by taking the size effect into consideration. Eringen’s nonlocal elasticity theory 
is used. Buckling loads of hybrid inorganic/organic nanobeam for first ten modes is 
demonstrated in figure using classical theory and Eringen’s nonlocal elasticity theory. It is 
clearly demonstrated that the size effect can be neglected for first modes while it is 
unneglectable for higher modes. The nanobeam is modeled simply supported without 
foundation. Further researches can be comparing conventional nanotubes with I cross-sectioned 
nanobeams using different size effective theory. Comparative results can guide the usage of 
nanobeams in nano-structures. 
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Abstract 

Buckling of axially loaded cantilever nanobeams with intermediate support have been studied in the current study. 
Higher order size dependent strain gradient theory has been utilized to capture the scale effect in nano dimension. 
Minimum total potential energy formulation has been used in modeling of nanobeam. Approximate Ritz method 
has been applied to the energy formulation for obtaining critical buckling loads. Position of the intermediate 
support has been varied and its effect on the critical buckling load has been investigated in the analysis. Mode 
shapes in critical buckling loads have been shown for various intermediate support positions. Present results could 
be useful in design of carbon nanotube resonators. 

Keywords: Nanobeam, Strain Gradient, Intermediate Support, Ritz Method. 

1. Introduction 

Carbon nanotubes (CNTs) have had an increasing popularity over the last three decades in 
academia and industry. Superior properties like thermal, electromagnetic, strength, etc. have 
enriched the possible usage areas of CNTs [1–3].  

Statics and dynamics of nanoscale structures can be achieved with higher order size dependent 
continuum mechanics theories: strain gradient [4], stress gradient [5,6], couple stress[7], 
doublet mechanics[8] and peridynamics [9]. It has been presented in earlier works that classical 
elasticity theory is inadequate in the modelling of CNTs due to its size independent 
characteristics. 

Basis of the higher order size dependent theories went back to a century ago. Cauchy [10], 
Voigt [11] and Cosserat brothers [12] had constituted the higher gradient elasticity theory. 
Kunin [13] , Toupin [14], Mindlin [15], Kröner [16], Green and Rivlin [17] improved the higher 
order elasticity theories with including microstructural effects. 

Eringen [18] proposed the nonlocal elasticity theory which is a stress gradient model. After 
Eringen, Aifantis and coworkers [19–22], proposed a higher order strain gradient elasticity 
theory for finite and infinitesimal deformations. Theories of Eringen and Aifantis are 
comparatively simple and includes less number of higher order gradient terms than previous 
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ones. Higher order strain gradient models have been applied to the buckling problem of nano 
structures in several papers [23–32] . Over the last 20 years, higher order stress and strain driven 
continuum mechanics theories have been used in many studies [33–46]. 

In the present study, strain gradient nanobeam model has been developed for the buckling of 
axially loaded cantilever nanobeam with intermediate support. Higher order governing equation 
of motion for nanobeam have been obtained with minimum total potential energy formulation. 
Approximate Ritz Method has been used in the solution of the governing equation of motion. 
Effect of the position of intermediate support to the critical buckling load of nanobeam. Mode 
shapes at critical buckling loads for the first three modes have been depicted in various position 
of intermediate support. Differently from the previous studies, position of the intermediate 
support has been investigated in buckling case using strain gradient theory. 

2. Analysis 

A nanobeam of hollow tube with length L is considered (Fig. 1). x and z axes define the axial 
length direction and transverse direction of nanobeam, respectively. P is the external axial load 
and position of the intermediate support is defined as ηL.  

 

Fig. 1. Axially Loaded Nanobeam with Intermediate Support 

2.1. Strain Gradient Theory 

Refined form of the strain gradient elasticity theory can be interpreted for stress-strain relation 
as below [19–22]: 

 𝜎"# = 𝜆𝜀''𝛿"# + 2𝜇𝜀"#			,			𝜀"# = 𝜀"# − 𝑙∇1𝜀"# (1) 

where σ and ε are the stress and strain tensors for elastic deformation respectively, ∇ is the 
Laplacian, λ and µ are the standard Lame constants and l is the strain gradient parameter. 

If the constituve equation is reformulated for one dimensional structures, the stress strain 
relation for the nanobeam can be obtained: 

 𝜎22 = 1 − 𝑙 4
5

425
𝐸𝜀22  (2) 

Total potential energies for the nanobeam can be defined as below: 

 𝑇 = 8
1

𝑃 4:
4;

1<
= 𝑑𝑥 (3) 
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where I is moment of inertia for the nanobeam, T defines the work done by external axial load 
and U defines the potential energy of nanobeam. It should be noted that there is no kinetic 
energy in the present static buckling problem. 

2.2. Ritz method 

Analytical solution of the higher order governing equation of motions becomes complicated 
and time consuming with increasing number of boundary conditions and integration constants. 
Ritz method is a useful approximate variational method can be used in the solution of the 
mentioned problem [47–49]. Also discrete singular convolution method [50–53] and finite 
element modelling [54] can be used as an approximate solution.  

Displacement function can be defined as in the below form for the Ritz method [55]: 

 𝑤 𝑥 = 𝐴#𝜓#(𝑥)
H
#I#J  (5) 

where 𝑥 is the dimensionless nanobeam length 𝑥 = 2
<

, 𝐴#’s are the unknown coefficients and 
𝜓#(𝑥) is a function which satisfies geometric boundary conditions of the beam. Convergence 
of this function is satisfied if this function is mathematically complete set. To determine the 
critical buckling of nanobeam, next functional is defined: 

 𝐹 = 𝑇LM2 − 𝑈LM2  (6) 

This functional should be minimized with respect to unknown coefficients given in Eq. (5): 

 4N
4OP

= 0			,			𝚥 = 𝚥=, … , 𝐽	 (7) 

 𝐹 = 8
1

𝑃UV
4:
42

4:
42

8
= 𝑑𝑥 − 8

1
45:
425

45:
425

8
= 𝑑𝑥 − 8

1
W
<5
4B:
42B

4B:
42B

8
= 𝑑𝑥 (8) 

where Pcr is the dimensionless critical buckling load of nanobeam and defined as below: 

 𝑃UV =
X<5

YZ
  (9) 

Eq. (8) gives a total of J×J simultaneous, linear, homogeneous equations in an equal number 
of unknowns 𝐴#. Those equations can be described as an eigen-value problem for critical 
buckling load. The mode shapes corresponding to any Pcr is found by substituting that value 
into Eq. (7) and solving for the eigenvector components 𝐴#/𝐴8. Inserting these components into 
Eq. (7) gives mode shape of nanobeam. 

𝜓#(𝑥) polynomial can be assumed as below in general form.  

 𝜓# = 𝑥 − 0 \] 𝑥 − 𝜂 \5 𝑥 − 1 \B 𝑥#_8  (10) 
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where b1, b2 and b3 parameters define the boundary conditions and should be selected as 0, 1, 2 
for the free, simply supported and clamped boundary conditions, respectively. For the present 
clamped-simply supported-free nanobeam case, Eq. (10) turns into: 

 𝜓# = 𝑥 1 𝑥 − 𝜂 𝑥#_8  (11) 

3. Numerical Results 

Buckling analysis of the axially loaded nanobeam has been carried out for position of 
intermediate support and strain gradient parameter in this section. Analysis has been made 
independent from the material properties, except the nanobeam length which is assumed 5nm. 
Interested readers can look to previous paper [56] about selection of the length scale parameter. 

Convergence of the Ritz method is seen in Table 1 for the first three critical buckling loads on 
local(l=0) clamped-free and clamped-simply supported beams. Ritz method converges to 
literature works when J is assumed as 7. 

Table 1. Validation of the Ritz Solution 

Mode 
Number 

Clamped-Free Clamped-Simply 
Supported	

𝑃𝑐𝑟 =
𝜋1

4  Ritz Method 𝑃𝑐𝑟 =
𝜋1

0.71
 Ritz Method 

1 2.4674 2.4674 20.1907 20.1907 
2 22.2066 22.2066 59.6795 59.6803 
3 61.6850 61.7017 118.9000 119.0870 

In Table 2, strain gradient parameter effect on critical buckling load can be seen. Strain gradient 
theory exhibits stiffening effect on structure. Growing rigidity increases the critical buckling 
load. Position of the intermediate support should be investigated with using both Table 2 and 
Figure 2. Critical buckling load increases when intermediate support approaches to the free end 
at the first mode. On the other hand, second and third mode critical buckling loads firstly 
increase, then goes constant little bit and decreases after that. Third mode buckling load also 
initially increases than start to decrease. Cause of this behavior should be related with the nodal 
points of mode shapes which can be seen in Figures 3 and 4. If the intermediate support is 
placed after a nodal point, nanobeam can buckle more easily.     

Table 2. Strain Gradient Theory Effect on Critical Buckling Loads 

Mode 
Number 

Local Theory (l=0) Strain Gradient Theory 
(l=0.1nm2) 

η=0.1 η =0.5 η =1 η =0.1 η =0.5 η =1 
1 2.8912 6.2714 20.1907 3.2152 6.6923 21.7518 
2 26.0184 52.2509 59.6803 31.0665 62.4753 72.4724 
3 72.2408 120.7560 119.0870 97.9405 171.5440 169.417 
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Fig. 2. Variation of Critical Buckling Load with Position of Intermediate Support 

 

In Figures 3 and 4, mode shapes of nanobeam at the first three critical buckling loads are seen. 
Increasing critical buckling load enhances the relative amplitude of displacements. Position of 
the intermediate support has an important effect on mode shapes. Also, strain gradient theory 
increases the amplitudes in mode shapes as a result of increasing critical buckling load.  

 

 

Fig. 3. Mode Shapes of Nanobeam at Various Intermediate Support Positions (l=0) 
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Fig. 4. Mode Shapes of Nanobeam at Various Intermediate Support Positions (l=0.1nm2) 

4. Conclusion 

Present study has been investigated the buckling of axially loaded clamped-simply supported-
free nanobeams with using strain gradient theory. Minimum total potential energy formulation 
has been applied to the nanobeam to obtain the static equilibrium equation. Ritz method has 
been used on the energy formulation for obtaining of critical buckling load. Effects of the 
position of the intermediate support and strain gradient parameter to the critical buckling load 
has been investigated. Mode shapes in critical buckling loads have been depicted for local and 
strain gradient models in various intermediate support positions. 

Strain gradient model increases the critical buckling load for nanobeam and normalized 
amplitudes with the stiffening effect. Position of the intermediate support increase or decrease 
the critical buckling load depending on the nodal points of adjacent mode numbers. 

Present results could be useful in design of carbon nanotube resonators. 
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