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 Two important features of the points in the LiDAR point clouds are the spatial and the color 
features. The spatial feature is mostly used in the point cloud processing field due to its 3D 
informative and distinctive characteristic. The local geometric difference derived from the 
spatial features of the points is usually benefited by graph-based point cloud segmentation 
methods, because the geometric features of the local point groups are highly distinctive. In this 
paper, we use both the geometric and color differences of the adjacent local point groups at 
the impact rates 0.3, 0.5, and 0.7 and cooperate the Euclidean and the vector color differences 
within several averaging techniques for the color difference. The difference forms have been 
tested within a graph-based segmentation method on four point cloud segmentation datasets, 
two indoor and two outdoor, using their spatial and color information. The geometric mean as 
an averaging techniques increases the segmentation success for the all datasets except one 
outdoor when the color differences are used in the segmentation at the impact rate 0.3, while 
the harmonic mean increases the success for the all datasets the successes except the other 
outdoor at the same impact rate. According to the test results, the cooperating of the Euclidean 
and vector angular color difference measurements can considerable increase the 
segmentation success on the point clouds with color information in a high quality. 

 
 
 
 

1. INTRODUCTION  
 
Point clouds are 3D spatial and usually colored data 

obtained with light detection and ranging systems 
(LiDAR) (Strom et al., 2010). Because the points in a 
LiDAR point cloud inherently come as high amount and 
unorganized, to extract meaningful information from the 
data is a challenging problem (Li et al., 2017). The point 
cloud segmentation, which groups the points to reduce 
the data to be processed and extract new features, is an 
intermediate stage through the process of extracting 
meaningful information (Barnea and Filin, 2013). 

Graph-based segmentation methods are widely 
preferred to segment the data for the segmentation 
process in both the image and point cloud processing 
fields. An efficient graph-based method (EGS) proposed 
for 2D image segmentation in (Felzenszwalb and 
Huttenlocher, 2004) is a widespread segmentation 
method due to the fastness and segmentation success. In 
this method, the nearby vertices (elements) are assumed 

to be connected by weighted edges. The weight values 
are weighted considering the differences in the color 
values between pixels for the 2D image segmentation 
process. Because the structures of 3D point clouds are 
unorganized unlike 2D images, it is difficult to process 3D 
point clouds. To deal with this problem, the points are 
usually grouped into regular 3D volumes (voxels) by the 
octree organization (Su et al., 2016; Xu et al., 2017). In 
this way, the edges are assumed between the adjacent 
voxels. 

On the other hand, it is an advantage for the point 
cloud processing field that LiDAR data has 3D spatial 
features. The 3D feature provides geometrical features 
which are more distinctive according to the color feature. 
Therefore, most graph-based point cloud segmentation 
methods use the local surface orientation difference for 
weighting the connections instead of color difference (Vo 
et al., 2015; Xu et al., 2018a). The other reason for the 
preference of geometrical differences is that the color 
feature is usually misleading because the color 

https://dergipark.org.tr/en/pub/ijeg
https://orcid.org/0000-0003-2980-9666
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information of the points is sensitive to the brightness 
varying according to the light and the reflectiveness 
varying according to the materials of objects (Xu et al., 
2018a). Another problem is that some spatially adjacent 
objects have similar colors. Nevertheless, some methods 
allow users to use color information with an adjustable 
influence rate, while some use color information at a 
certain rate (Papon et al., 2013; Strom et al., 2010; Zhu et 
al., 2017). 

The quality of the color information of point clouds 
varies and quite affects the success of the segmentation 
stage if the color information is used at the rate that is 
higher than 0. In this work, we enforce to increases the 
segmentation success by using the color information 
more efficiently. In this reason, we focus on the local 
color differences methods between two adjacent 
elements in the RGB (red, green, and blue) color space. In 
the literature, the Euclidean distance is widely used for 
the color difference between the two elements (Aijazi et 
al., 2013; Bassier et al., 2017; Dutta et al., 2014; Papon et 
al., 2013; Strom et al., 2010). On the other hand, Chen et 
al. 2019 use the spectral angle as color difference in their 
study. In this work, we use the vector angular difference 
and cooperate with the Euclidean distance in some 
forms. The tested cooperation forms consist of the 
arithmetic, geometric and harmonic means of the two 
measurements. 

Through our experiments, two indoor coarse and 
two outdoor fine point cloud segmentation datasets that 
include the RGB (red, green, and blue) color information 
of the points and reference segments. The color 
measures have been tested on the method EGS at the 
intervals 0.3, 0.5, and 0.7. The graphical results for two 
datasets are shown in the experimental results. As a 
quantitative segmentation evaluation, the Accuracy 
success measurement (Polak et al., 2009) has been used 
by looking at the compatibility between the result and 
reference segments after pairing them mutually one-to-
one. According to the Accuracy values, the cooperated 
color difference measurements increases the 
segmentation success at the influence rate 0.3 for nearly 
all of the tested datasets. 

The main contribution of this study is to present a 
new approach on the color distance measure for color 
informed point cloud segmentation. The result show that 
the cooperating of the Euclidean and vector angular 
differences by averaging as geometric and harmonic can 
significantly increases the segmentation success when 
the color information is a high quality in point clouds. 

 

2. METHOD 
 

2.1. Voxelization 
 

Voxels are equal-sized 3D cubic volumes and of 
regular/organized data structures (Lohmann, 1998). For 
the voxel organization, the octree data structure has been 
used in this study like many studies in the literature. The 
octree organization is performed through dividing the 
volumes into eight equal-sized sub-volumes by starting 
from the sup-volume that covers all points in the point 
cloud and specified according to the desired voxel size 
until the sub-volumes reach the intended voxel size. The 

voxel size refers to the length of an edge of the voxels. 
Through the voxelization process, the points are 
appointed into the voxels according to spatial 
coordinates. 

 

2.2. EGS Segmentation Method 
 

Felzenszwalb and Huttenlocher, 2004 proposed a 
new segmentation method, named as “Efficient Graph-
Based Method” (EGS), in 2004. The method runs 
successfully on 2D images in an effectively short time. 
The method regards the data elements (pixels for 2D 
images) as vertices and the connection between the 
adjacent vertices as edges. The edges are weighted with 
the Euclidean distance between the color vectors of the 
two vertices that are ends of the edges. In Fig. (1), the 
stages of the segmentation is presented. 

According to the method, at first, each element is 
seen as a segment and has a unique segment label. The 
edges are sorted in ascending order according to their 
weight values. Beginning from the smallest edges, the 
edges are considered to remove from the graph with 
respect to the criterion in Eq. (1). If the weight value 
𝑤(𝑢, 𝑣) of the edge between the vertices 𝑢 and 𝑣 meets 
the criteria, the edge is removed from the graph. 
Otherwise, the segments at the ends of the edge are 
involved in the same segments, and the elements in the 
two segments are labeled with the same segment label. If 
the segment labels are already the same, the edge is not 
evaluated by the criterion and directly removed. In Eq. 
(1), 𝐼𝑛𝑡(𝑢) and 𝐼𝑛𝑡(𝑣) are the longest edge in the 
segments 𝑆𝑢 and 𝑆𝑣, respectively. |𝑆𝑢| and |𝑆𝑣| refer to the 
number of elements in the segments 𝑆𝑢 and 𝑆𝑣, 
respectively. The parameter 𝑘 determines the degree of 
segmentation (under-segmentation or over-
segmentation).  
 

𝒘(𝒖, 𝒗) > 𝒎𝒊𝒏 (𝑰𝒏𝒕(𝒖) +
𝒌

|𝑺𝒖|
, 𝑰𝒏𝒕(𝒗) +

𝒌

|𝑺𝒗|
) (1) 

 
 
2.3 Geometric Difference 
 

The most used feature of the point groups in the 
voxels is the surface normals (Rabbani et al., 2006). The 
normal vectors give the inclination of the local 3D 
surfaces and the PCA (Principal Component Analyses) 
method is the most used technique to obtain it (Lari and 
Habib, 2014). The angle between the normals of two 
adjacent voxels is one of the basic geometric differences. 

The normalized form 𝒅𝒖�̃� of the vector 𝒅𝒖𝒗 between the 
spatial centers 𝑿𝒖 and 𝑿𝒗 of two-point groups is a way to 
estimate the orientation through two adjacent local 
surfaces (Stein et al., 2014; Verdoja et al., 2017; Xu et al., 

2018a). The angles  𝛼𝑢 and 𝛼𝑣 between the vector 𝒅𝒖�̃� 
and the normals 𝒏�̃� and 𝒏�̃� used widely to measure a 
geometric difference from the two local surfaces. As the 
geometric difference 𝐷𝑢𝑣

𝐺  in this work, we have used the 
formula in Eq. (2). 
 

𝑫𝒖𝒗
𝑮 =

𝜶𝒖 + 𝜶𝒗
𝟐

 (2) 

 



International Journal of Engineering and Geosciences– 2021; 6(3); 117-124 

 

  119  

 

The angles 𝜷𝒖 and 𝜷𝒗 in Fig. 2 (a) and Fig. 2 (b) are 

the acute angles between the normals and the vector 𝒅𝒖�̃�, 
namely, the angles can be in the range 0-90o. The angles 
𝜶𝒖 and 𝜶𝒗 are obtained by subtracting the angles 𝜷𝒖 and 
𝜷𝒗 from 90o. 
 
2.4 Color Difference 
 

LiDAR systems can integrate the spatial and color 
information about the scanned surfaces. In this way, the 
points in a point cloud save the values of both the 
coordinate and color vectors. The color information 
exists generally as RGB values. Each RGB color vector 
denotes a vector in the RGB color space. 

In the graph-based segmentation methods, the 
Euclidean distance between two color vectors is the most 
used measurement technique to measure the 
similarity/dissimilarity. To weight the edges between 
the vertices (voxels) with the Euclidean distance in point 
clouds, the mean RGB color values (𝑢𝑅, 𝑢𝐺  and 𝑢𝐵) of the 
points in the voxel 𝑢 are used. The Euclidean distance 
𝐸𝑢𝑣
𝑅𝐺𝐵 for color differences between the adjacent voxels 𝑢 

and 𝑣 can be calculated with Eq. (3) and seen in Fig. 3. 
 

𝑬𝒖𝒗
𝑹𝑮𝑩 = √(𝒖𝑹 − 𝒗𝑹)𝟐 + (𝒖𝑮 − 𝒗𝑮)𝟐 + (𝒖𝑩 − 𝒗𝑩)𝟐 (3) 

 

The vector angular difference is another distance 
measurement technique between two vectors as seen in 
Fig. 3. The angular difference �̂�𝑢𝑣

𝑅𝐺𝐵 between two color 
vectors 𝒖𝑹𝑮𝑩 and 𝒗𝑹𝑮𝑩 can be in the range 0-.90o. The 
greater the angular difference, the greater the color tone 
difference. If the angular difference is small but the 
vector length difference is high between two RGB color 
vectors, their color tone is similar but color 
lightness/darkness is different.  This case allows the 
varying brightness over the surfaces to be ignored in the 
color-supported segmentation process. 

In this work, the values of the scaled Euclidean and 
vector angular differences, and their different 
cooperated forms in Table 1 are tested, with the different 
influence rates, to weight values of edges. To evaluate 
both the color differences within the equal range, the 
calculated Euclidean distance 𝑬𝑹𝑮𝑩 are scaled to the 
range 0-90 like the vector angular difference �̂�𝑹𝑮𝑩 and 
the geometric difference 𝑫𝑮. In the normalization 
operation for the scaled Euclidean distance �̂�𝑹𝑮𝑩, the 
lower and upper limits were considered as 0 and the 
maximum distance among the calculated Euclidean 
distance values. 
 
 
 

 
Figure 1. The weighting stage in the segmentation 
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Figure 2. Some geometric differences between two local 
surfaces 
 

 
Figure 3. The Euclidean and vector angular differences 
between two color vectors 
 

Table 1. Cooperation forms of color differences 
Name Color Difference Form 

Euclidean color difference �̂�𝑅𝐺𝐵 
Vector angular color 
difference 

�̂�𝑅𝐺𝐵 

Arithmetic mean 
�̂�𝑅𝐺𝐵 + �̂�𝑅𝐺𝐵

2
 

Geometric mean √�̂�𝑅𝐺𝐵 × �̂�𝑅𝐺𝐵  

Harmonic mean 2 ×
�̂�𝑅𝐺𝐵 × �̂�𝑅𝐺𝐵

�̂�𝑅𝐺𝐵 + �̂�𝑅𝐺𝐵
 

 

3. EXPERIMENTAL RESULTS  
 
3.1 Datasets 
 

To test the color difference forms, the forms have 
been tested on four sample point cloud datasets (two 
indoors which are named as “Indoor 1” and “Indoor 2”, 
and two outdoors which are named as “Outdoor 1” and 
“Outdoor 2”). The indoor datasets are coarse 
segmentation datasets prepared for segmantic 
segmentation by (Armeni et al., 2016), while the outdoor 
datasets are cropped from outdoor building scans, which 
have been prepared from the two large-scale point cloud 
classification benchmark datasets (Hackel et al., 2017) 
with reference segments by (Xu et al., 2018a) and used 
by permission of (Xu et al., 2018b). The test data are 
shown with their original RGB colors in Fig. 4. 
 
 

3.2 Results 
 

In our experiments, the color difference forms in 
Table 1 have been used at the influence rates 0.3, 0.5, and 
0.7 with the geometric difference in Eq. (2) for the weight 
values of edges of the EGS method with the segmentation 
parameter 𝑘 in the range 0-300 with 10 intervals. The 
voxel size was specified as 0.1 like the study (Xu et al., 
2018a).  

As a quantitative evaluation, Accuracy measurement 
is used (Saglam and Baykan, 2019). According to the 
Accuracy measurement for segmentation success, the 
result segments and the reference segments have been 
paired firstly one-to-one, mutually. The pairing process 
is carried out according to the study (Awrangjeb and 
Fraser, 2014). After the pairing process, some segments 
among the result and reference segments may not be 
paired with any mutual segments. The ratio of the 
number of common points in the segment pairs to the 
number of points in the reference data indicates the 
Accuracy value. 

In Table 2, the Accuracy results of the segmentation 
results with the best 𝑘 parameter according to the color 
difference forms at the influence rates 0.3, 0.5, and 0.7 
are taken part. In Fig. 5, the colored presentations of 
some segmentation results with reference data are 
demonstrated. 
 

4. CONCLUSION 
 

The process of point cloud segmentation is an 
important intermediate stage to extract meaningful 
information from the raw point clouds. The spatial 
geometric features are the most used property for graph-
based point cloud segmentation methods. In this paper, 
we have added the color influence to local dissimilarity 
to weight connections in the graph structure at several 
influence rate. In the weighting method, the Euclidean 
and vector angular color differences are cooperated in 
some forms as arithmetic mean, geometric mean and 
harmonic means. The test was carried out on two indoor 
and two outdoor datasets using an efficient graph-based 
segmentation method. The method that cooperates the 
two color difference measures, especially the geometric 
mean and the harmonic mean, has substantially 
increased the segmentation success on the indoor 
datasets. On the other hand, the successes on the outdoor 
datasets is increased slightly because of the lack of color 
information on the outdoor datasets. The geometric 
mean as an averaging techniques increases the 
segmentation success for the all datasets except one 
outdoor when the color differences are used in the 
segmentation at the impact rate 03, while the harmonic 
mean increases the success for the all datasets the 
successes except the other outdoor at the same impact 
rate. The results show that the method is very useful 
when the segmentation are processed on the point 
clouds with sufficient color information. 
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Figure 4.  The original versions of the datasets used for segmentation 
 
Table 2. Accuracy results of the colour difference forms 

Color difference form Color influence rate 
Dataset 

Indoor 1 Indoor 2 Outdoor 1 Outdoor 2 
No color 0 0.6997 0.7187 0.6879 0.8036 

Scaled Euclidean difference 0.3 0.7057 0.7528 0.6076 0.7820 

Scaled Euclidean difference 0.5 0.7093 0.7158 0.5718 0.7209 

Scaled Euclidean difference 0.7 0.6641 0.7058 0.4792 0.7058 

Vector angular difference 0.3 0.6807 0.7232 0.6593 0.7847 

Vector angular difference 0.5 0.7154 0.7876 0.6928 0.7507 

Vector angular difference 0.7 0.7080 0.7588 0.6384 0.6968 

Arithmetic mean 0.3 0.6931 0.6873 0.6225 0.7810 

Arithmetic mean 0.5 0.7282 0.7643 0.5564 0.7342 

Arithmetic mean 0.7 0.6579 0.7484 0.4912 0.6868 

Geometric mean 0.3 0.7094 0.7937 0.6849 0.8176 

Geometric mean 0.5 0.7351 0.7566 0.6294 0.7960 

Geometric mean 0.7 0.7077 0.7153 0.5703 0.7168 

Harmonic mean 0.3 0.7048 0.7436 0.7132 0.7782 

Harmonic mean 0.5 0.7884 0.7386 0.6770 0.7787 

Harmonic mean 0.7 0.7670 0.7763 0.5501 0.6761 
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Figure 5.  The colored reference data and segmentation results (with no color and some cooperated forms) 
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 Point clouds (PCs) are inevitable sources to generate digital solid model-based applications 
such as reverse engineering, differential 3D modelling, 3D sensing and modelling of 
environments, scene reconstruction, augmented reality. Photogrammetric methods, 
Terrestrial Laser Scanners and RGB-D sensors are relatively common among the technologies 
used to capture PCs. Because of their structural characteristics, measuring systems produce 
large amounts of noise that cannot be precisely predicted in type and amplitude. Due to the 
noisy measurements, the spatial orientations of the differential surface particles and the 
spatial locations of the corner points have a certain degree of deformation. In order to increase 
visual, spatial and physical quality of the solid model, which is frequently used in reverse 
engineering, PCs must be filtered to discard noise and outlier. In this paper PC produced from 
different methods was filtering with Shepard Inverse Distance Weighting method, Gaussian 
Filtering method, Single Value Decomposition Based Plane Fitting method and Optimization 
Based Plane Fitting method. Backtracking Search Optimization Algorithm (BSA) was used to 
fitting plane. Experimental results were compared visually and statistical according to the 
number of neighborhoods. The results showed that Backtracking Search Optimization based 
filtering supplied better noise smoothing results than its competitors. 

 
 
 
 

1. INTRODUCTION 
 
3D Point Cloud (PC) plays an important role in 

creating and rendering solid models of physical objects. 
PC processing is an active research field because it is used 
in different research applications such as 3D 
reconstruction (Ahmadabadian et al. 2019), 
environmental mapping (Gunen et al. 2017), signal 
processing (Aghababaee et al. 2019), object recognition 
(Garcia-Garcia et al. 2018) and pose estimation (Vock et 
al. 2019), drainage network determination (Gunen et al. 
2019). 3D reconstruction applications are increasing 
with falling costs of computing platforms and 
improvements in 3D capture systems. Various 
technologies have been developed based on relatively 
different principles for acquiring highly accurate PCs 
from the physical structures of objects. Despite advances 
in PC capture technologies used to express the numerical 
equivalents of physical models, PCs suffer from noise due 
to instantaneous changes in atmospheric physical 

parameters and noise sources contained in the 3D 
capture method and equipment used. Therefore, in order 
to produce high-accuracy digital models of physical 
models, various noise types that contaminate the PCs 
should be filtered (Hou et al. 2012; Narváez and Narváez 
2006) 

RGB-D sensors, Photogrammetric Methods, and 
Terrestrial Laser Scanner (TLS) are the mostly used PC 
obtaining methods and can be examined in two parts: 
active and passive methods. While commonly used TLS 
and RGB-D sensor are active methods, Optical 
Photogrammetric methods are passive methods 
(Oliveira et al. 2014). These three methods, which are 
frequently used in obtaining a PC, have different 
technical structures. The 3D spatial coordinates are 
measured in the local coordinate system depending on 
the direction and distance of the object to be measured 
according to TLS. Also, TLS is capable of capturing 
millions of points per second and effectively generating a 
3D PC of large areas in a short period. Although it 

https://dergipark.org.tr/en/pub/ijeg
https://orcid.org/0000-0001-5164-375X
https://orcid.org/0000-0001-9309-375X


International Journal of Engineering and Geosciences– 2021; 6(3); 125-135 

 

  126  

 

produces high accuracy and precision PC, TLSs have high 
investment cost. Photogrammetric methods define 
parallax between correspondence-points in the images 
of the scene and allow it to obtain spatial coordinates of 
points related to the extrinsic and intrinsic orientation 
parameters. Photogrammetric methods have been 
rapidly increasing in popularity due to progress in 
imaging technology and software (Ulvi ̇ 2018). RGB-D 
sensors are compact systems consisting of an infrared 
camera and an RGB camera. Therefore, RGB-D sensors 
provide the possibility to obtain texture, like some TLS 
and photogrammetric methods, as well as depth map. 
RGB-D sensors are widely used in the production of 
indoor maps, especially with their programmable 
structures and cost (Amenta, 1999; Hoppe et al. 1992; 
Tölgyessy and Hubinský 2011). 

PCs contain indispensable noise and outliers due to 
inadequate sensor limits, imperfect nature of the 
instruments, scene artifacts, presence of inadequate 
ambient conditions, and systematic errors. Depending on 
the system PC produced, the sampled discrete 
information should be processed to remove the noise 
(Wolff et al. 2016). The raw PC should be filtered to 
ensure further analysis and processing. In addition, PC 
filtering is employed to preserve existing details 
expressed by the PC, such as edge features and to get the 
smooth surfaces that are required to produce realistic 
digital models of physical objects (Cai et al., 2019). It is 
very difficult to recognize and interpret a PC in terms of 
human perception. So that, they can be converted to solid 
model surfaces, which is the differential surfaces of mesh 
model and the edge elements of these surfaces, using 
mesh models. 

In recent years, many 3D filtering methods have 
been developed for denoising PCs. In general, noise 
suppression from literature has been done using two 
different approaches, data processing in the form of a PC 
and processing of data in the form of differential surface 
elements (Fleishman et al. 2003). Both approaches 
benefit from the topological relationships of the vertexes 
with their neighborhoods. In general, both approaches 
are based on moving vertex points according to certain 
criteria. Most of these are applied to the mesh and the 
lesser part is applied directly to the PCs. Point cloud 
filtering methods can be generally divided into 
neighborhood based, statistical based and projection 
based. Neighborhood based methods that use similarity 
information between point and its neighbors are the 
most used methods since they are effective and easy (Han 
et al., 2017). 

The Gaussian Filtering (GF) computes Euclidean 
distances between the point of interest and its specific 
neighborhoods. Then, by using Gaussian weights 
produced with the help of distances, the current point is 
filtered (Adams et al. 2009; Wirjadi  and Breuel 2005). In 
Median Filtering, the neighborhoods of the point of 
interest are determined depending on the distance. Then, 
the median point of the point is projected to a local plane 
and filtering is performed. The Moving Least Squares 
method is based on the recognition of the relevant 
parameter solutions to localized polynomial surfaces 
obtained by local measurement values. The general 
method used in the development of the average filtering 

is based on identifying the normalized mean vectors of 
the local normal vectors of the points adjacent to the 
point of interest. Then moving the corresponding point 
towards the local surface defined by the adjacent points 
(Gunen, 2017). The Shepard Inverse Distance Weighting 
(IDW) filtering is one of the basic methods used for 
filtering PCs is to project each point in the PC by defining 
the selected limited number of neighboring points. 
Fluctuated surfaces can be defined by the tensor 
products of the base functions (Babak and Deutsch 2009; 
Lu and Wong 2008). Plane-based filtering methods, such 
as Single Value Decomposition (SVD) Based Plane Fitting, 
produce fast results. However, they are not robust to 
noisy data. Evolutionary Computing methods supply 
better results in general than classical local plane fitting 
tools, such as the least square method, in the solution of 
a best plane fitting problem (Gunen, 2017; Kurban, 
2014). 

Evolutionary computation methods are stochastic 
search methods that are used effectively in solving 
different types of problems (Civicioglu et al. 2020). The 
fact that they produce more successful results than 
classical methods in solving complex problems such as 
PC cloud filtering motivated the design of a new 
Evolutionary computation-based 3D spatial filtering. 

The PC datasets used in this paper were produced by 
using TLS, RGB-D sensor, and Photogrammetric method. 
The PC produced by TLS was determined as reference 
data, due to its inherent properties. Shepard Inverse 
Distance Weighting Method (IDW), Gaussian Filtering 
Method (GF), Single Value Decomposition Based Filtering 
Method (SVD) and Optimization Based Plane Fitting by 
using Backtracking Search Optimization Algorithm (BSA) 
Method with different number of neighborhoods were 
used to filtering PCs produced by using RGB-D sensor 
and Photogrammetric method.  

The rest of this paper has been organized as follows; 
Section 2 presents Data Collection, Material and Methods 
are presented in Section 3, Experimental Results and 
Discussion are given in Section 4. 

 

2. DATA COLLECTION 
 

In this section, general 3D data capture principles of 
the TLS, RGB-D, and Photogrammetric techniques have 
been analyzed comparatively. 

 
2.1. Terrestrial Laser Scanner 
 

In recent years, with the changing and developing 
technology, laser technology has reached a very 
advanced level. Capable of capturing thousands of points 
per second, TLSs can produce data at the desired quality 
and time, from small objects to large areas without being 
noticed day or night. In addition to the brand and model 
of TLS devices using Light Detection and Ranging 
(LIDAR) technology, the resolution and quality 
parameters used in scanning affect the PC's spatial 
coordinate (Sevgen 2019; Yu et al. 2004). TLSs are 
expensive due to their high equipment requirements, the 
need for specialized software knowledge, and the need 
for skilled employees (Yu et al. 2004). Since the PC of the 
object is created in more than one session, it is necessary 
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to transform in the global or mutual local coordinate 
system. The random sample consensus (RANSAC)-based 
Iterative closest point (ICP) method is generally used for 
registration or geo-referencing of the PCs from different 
sessions (Gunen et al. 2017, Altuntas, 2015). It selects 
random points on different PCs to allow correspondence 
points to be searched and finalizes the registration 
process according to the determined criteria (Altuntas, 
2015). In addition to being fast and reliable, RANSAC-
based is preferred because of sampling large data.  

Faro Focus3D X130 TLS was used to obtain the PC. 
The Faro Focus3D X130 TLS is used to obtain PCs 
because it offers versatile measurement, wide range of 
solutions, and colored PC. Its light weight, integrated 
structure, advanced distance measurement capability, 
and intuitive operation system are used in work 
requiring precision. In addition to its ability to scan 
976,000 dots per second and to scan up to 130 meters of 
area, its integrated camera captures the current scanning 
scene with 70 MP 8-bit RGB images. Each model used in 
the application was scanned in six different sessions with 
various directions and heights (URL, 2019). 

 

2.2. Photogrammetric Methods 
 

The Photogrammetric method acquires 3D PC from 
the sequential 2D images obtained as overlapping 
intervals. Multiple images obtained from different angles 
are used to produce 3D information (Javernick et al. 
2014; Tercan, 2017). There are several methods to 
produce a PC from Satellite, Aerial, and Close-Range 
images with multiple views. Structure from Motion (SfM) 
is the method that provides high success and accuracy. 
SfM is a remote sensing method that produces 3D spatial 
coordinates of objects using color information of 
randomly ordered multiple view images. The optimal 
measurement design is the beginning of the PC 
production phase. In other words, in order to obtain the 
best results of the operations in the works as soon as 
possible, it is necessary to understand the system and 
technique of the images captured (Gunen et al. 2020; Li 
et al. 2012; Ulvi ̇ 2018). Much of the software uses key 
points of multiple images to determination the relative 
orientation of the camera. They usually use the Scale-
Invariant Feature Transform and Speeded up Robust 
Features local feature detector (Juan and Gwon 2009) to 
determine key points. By using key points, 
correspondence points are matched by methods such as 
the RANSAC algorithm. The key point determination is 
very sensitive to noise; therefore, the results depend on 
spatial and radiometric resolution images. Also, these 
points are necessary for the creation of epipolar 
geometry. After the epipolar geometry is created, the 
relative orientation of the sequential cameras relative to 
each other is carried out and their dense point cloud as 
up to scale is determined. Paying attention to the 
accuracy of the light in the correct direction and the 
overlap rate in the pair of stereo images affects the data 
quality when capturing images of the object (Xiang and 
Cheong 2003). In cases where the image overlap rates 
are too low and there are extreme differences between 
the image scales, SfM may not produce a sufficient result 
(Doğan and Yakar 2018; Javernick et al. 2014). For better 

image matching on scene images, the fixed lens should be 
captured at as high a spatial resolution as possible. Sony 
Alpha ILCE-A6000, which has a Semi-Pro mirrorless 
camera and fixed lens, was used to capture images. It is a 
compact system that can shoot at a resolution of 
6000x4000 and has a 24.3 megapixel 23.5x15.6 mm 
sized CMOS sensor. In addition, the advanced image 
processor and a superior AF system produces less 
aliasing images in moving scenes. 109 images were used 
to produce Model 1, as seen in Figure 1.b. 118 images 
were used to produce Model 2, as seen in Figure 1.e. 
 
2.3. RGB-D sensor 
 

The use of RGB-D sensor in 3D reconstruction 
applications in computer graphics and computer vision 
started rapidly in the last several decades. RGB-D sensor, 
which is developed for human computer interaction, is 
being used by different disciplines, together with the 
Software Development Kit (SDK) developed. Great 
attention has been paid to research due to its cost saving, 
easy accessibility, efficiency in 3D reconstruction, and 
use in Simultaneous localization and mapping (SLAM) 
application (Stückler et al. 2015). RGB-D sensor, which is 
the time-of-flight-based depth cameras, consist of 
infrared (IR) depth sensor, IR emitter and RGB camera. 
These lightweight sensors provide color and depth per 
pixel in enough resolution. Red, green, and blue CMOS 
sensors are used in RGB imagery. The depth map is 
produced by the IR camera, where the distance between 
the object and the view is recorded as a pixel value by 
pseudo scale distance. It is very important for the sensor 
to produce a depth map because the distance is recorded 
as pixel value and depth information basic of PC. Since 
the sequential and still image is captured in SLAM 
applications, various methods have been developed for 
producing a PC or model simultaneously. Two methods, 
mainly image-based and shaped-based, are used to 
generate PCs using an RGB-D sensor (Nyarko et al. 2018). 
The PC produced from each of the depth maps from the 
sequential frames has a local coordinate system. In the 
shaped-based method, PC registration is performed by 
using RANSAC based ICP between sequential PCs 
because of the efficiency and reliability of the method. In 
the image-based methods, pose estimation is performed 
with the help of epipolar geometry, which forms the basis 
of photogrammetry. To do this, the key points are first 
determined from the sequential images and then the 
corresponding points are determined by RANSAC based 
methods. With the help of correspondence points, the 
pose estimation process is completed. In both methods, 
because of the simultaneous operation, the rapid 
movement of the sensor or the sudden displacement of 
the object prevents the calculation of the homography 
between the PCs and causes the mismatch (Stückler et al. 
2015). PCs obtained with RGB-D sensors generate noise 
depending on the texture of the object surface, lighting 
condition, viewing angle, sensor restriction and distance 
to object. Therefore, filters such as Kalman are adapted 
to the sensors or the PC generated from the depth map is 
filtered to remove potential noise (Jia et al. 2019). In this 
paper, a Kinect 2 RGB-D sensor is used. This sensor can 
capture 30 frame images per second at a 1920x1080 
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spatial resolution. The effective SLAM-operated sensor 
between 0.5/4.5 meters can produce a depth map at 
514x424 spatial resolution. 
 

3. MATERIAL and METHODS 
 

The noise level of PCs significantly affects the 
accuracy of reconstructed models. In order to increase 
the model accuracy, a controlled filtering process should 
be used. Filtering can cause the destruction of noisy data 
from the PC, as well as extracting or suppressing noisy 
data representing the PC. In this paper, it is emphasized 
to increase the quality of the model obtained from 
different methods and to remove noisy data from the PC. 
IDW, GF, SVD Based Plane Fitting, and Optimization 
Based Plane Fitting by using BSA methods were used to 
remove noise. 

In practice, the test models (Model 1 and Model 2) in 
Figure 1, obtained by using TLS are considered to be 
errorless data (reference data) assuming that there is not 
much noise because they are obtained from close range. 
PCs of models obtained from the photogrammetric 
method and the RGB-D sensor were filtered and then 
results were compared with the reference data. While 
obtaining models with different methods, the same 
lighting conditions were provided. Since each model is 
produced in the local coordinate system, it is represented 
in the same coordinate system using the RANSAC-based 
ICP method. In Model 1, the photogrammetric method 
produced 124,211 points, TLS produced 259,726 points, 
and RGB-D sensor produced 100,038 points. In Model 2, 
the photogrammetric method produced 354,254 points, 
TLS produced 444,404 points, and RGB-D sensor 
produced 184,768 points. Although the models produced 
with three different methods for both models were 
recorded under equal conditions of lighting in the 
laboratory environment, they produced different colors 
due to system characteristics. 
 

 
Figure 1. Model 1 (a) Point Cloud, (b) Mesh Model, and 
(c) Solid Model, Model 2 (d) Point Cloud, (e) Mesh Model 
and (f) Solid Model 
 

3.1. Gaussian Filtering Method  
 

With the development of computational capabilities 
of computers, the Gaussian Filters, which require high 
computational power, are applied to PCs. The Gaussian 
filter is a low pass filtering, which uses Gaussian 
functions to produce the result. Although Gaussian filters 
cause loss of detail in data, they are fast and simple. There 
are also Gaussian derivative filters, such as the bilateral 
filters, which are developed to limit the loss of data 
caused by the Gaussian filter. k is the closest neighboring 

point set of the  , ,x y z
f  vertex (Adams et al., 2009; Tercan 

2018; Wirjadi and Breuel 2005). The Euclidean distance 
between these vertex points and nearest neighbor points 
are calculated using Equation (1). 
 

  , ,
 ,

x y z
fd dist k

 
(1) 

 
The distance values calculated using Equation (1) are 

converted to Gaussian weight values using Equation (2);  
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As the   value changes in Equation (2), the solid 

model is changed. While determining the value requires 
expertise and experience, visual value can be estimated 
by applying statistical tests. In this paper, the optimum 
  value was selected as 0.4 mm, experimentally. When 
the weight values obtained by using Equation (2) are 
used to fuse the positions of k vertexes, the 
corresponding vertex is filtered. This was expressed by; 

 
 

 , ,
( )

x y zfW G p k
 

(3) 

 
 

To achieve more optimum results in 3D Gaussian 
filtering, the expression shown in Equation (3) may have 
better results by changing the confidence interval 
(Adams et al., 2009; Tercan, 2018; Wirjadi and Breuel, 
2005). When the Gaussian filtering results are examined 
in Figure 4 and Figure 5, it is seen that the 
photogrammetric method has more detail and noise 
compared to RGB-D data. This is a result of the fact that 
the RGB-D data has less accuracy and density than the 
photogrammetric data. Similarly, the filtered 
photogrammetric data is closer to the reference data 
than the filtered RGB-D data. 
 
3.2 The Shepard Inverse Distance Weighting Method 
 

The Shepard Inverse Distance Weighting (IDW) 
method is based on giving more weight to close 
neighborhoods than the distant vertex neighborhoods. 
When a point selected within the PC is filtered, utilization 
of points closer to that point increases the quality of 
filtering. Because of the law of the instrument, an 
instrument is more affected by what is close to them. The 
IDW method, which is a deterministic method, is used in 
the suppression of peak and pit noise. In contrast, this 



International Journal of Engineering and Geosciences– 2021; 6(3); 125-135 

 

  129  

 

filter tends to disrupt the natural form of the model to be 
obtained by causing an increase in the number of 
iterations, resulting in shrinkage in the data. The 
weighting strategy used in the IDW filtering method is 
defined using Equation (4);  
 

1

p

i
i n

p

i

j

d
w

d





 

(4) 

 
Here, d is the Euclidean distance between the vertex 

to be filtered and its neighbor w  is the weight value. The 
p  shown in Equation (4) is known as the power 

parameter and is usually taken as 2. The Euclidean 
distance between the point to be filtered and the 
neighboring points of this point are calculated using the 
Equation (5); 
 

2 2 2(x x ) (y y ) (z z )i i i id      
 (5) 

 
According to the calculated distance, the points are 

weighted (Babak and Deutsch, 2009; Lu and Wong, 
2008); 
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3.3. Singular Value Decomposition Based Plane 
Fitting Method 
 

The SVD method yields matrix factorization that is 
used in many areas such as dimensionality reduction, 
plane fitting, and feature extraction. Using the SVD 

method, an (n,n)X  can be defined using Equation (7);  

 
TX USV  (7) 

 
 

(n,n)U  consists of three principal components, 
(n,n)V  

consists of three eigenvectors, which corresponded to 

eigenvalues, respectively. (n,n)S  diagonal matrix is the 

square matrix representing the singular values, 

1 2 nσ >σ >.....>σ . General form of matrix X ; 
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(8) 

 
PC contains 3D spatial information and the third 

principal component has the lowest variance. That is, the 
third eigenvector is approximately the normal direction 
of the local plane obtained from the nearest 
neighborhood of the filtered point (Golub and Reinsch, 
1971; Kurban 2014). The steps of the Single Value 
Decomposition Based Plane Fitting solution are below; 
 

1) Set the vector, p  consists of neighboring points of the 

point to be filtered ( r ), 
2)  ,  1c mean p  is the average of the vector, 

3) Normalize the c vector;  1 2; ;...; nM p c p c p c    , 

( )USV SVD M  

4) Here, ( )USV SVD M  and (:, )n V end  gives the local 

plane normal direction. 

5) 0r  is the projected point on the local plane obtained by 

 0 0r r n    

3.4. Optimization Based Plane Fitting Method 
 

The problem of plane fitting is one of the problems in 
literature. In the case of a plane fitting problem, a vector, 
p , is selected from the nearest neighbor of each point to 

be filtered and fits the local plane to these points. Then, 
the point to be filtered in the PC is projected on the local 
plane. The parameters representing the plane can also be 
calculated with the least-squares method, SVD method, 
Levenberg-Marquardt method, or evolutionary 
computation tools (Bellekens, et al. 2014; Civicioglu, 
2013; Civicioglu et al. 2020; Gunen et al. 2020). The 
objective function used to obtain the coefficients of the 
local plane to be represented by the p  vector is given in 
Equation (9). 
 

, ,

argmin | 1
a b d

ax by cz cd   
 

(9) 

 

In order to obtain the projected point, 0 0 0(x ,y ,z )r
, in the 

local plane parametric equation can be used.  
 

x u y v z w
t

a b c

  
  

 
(10) 

 
Here, 

( , , )u v wr  is the point to be filtered. The parametric 

equation can be converted to Equation (11). 
 

x u a t

y v b y

z w c t

  

  

    

(11) 

 
From here Equation (12) is obtained. 
 

0 0 0( ) ( ) ( ) 0a u a t b v b t c w c t d              (12) 

 

If 0t  is isolated, then Equation (13) is obtained. 

 

0 2 2 2
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By developing Equation (13). 
 

0 0

0 0

0 0
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(14) 

 
The distance between points 

( , , )u v wr  and 
0 0 0(x ,y ,z )r  is 

calculated using Equation (15). 
 

2 2 2

0 0 0(u x ) (v y ) (w z )d        (15) 
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Then the coordinates of 
0 0 0(x ,y ,z )r  are obtained with 

Equation (16).  
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0 2 2 2

0 2 2 2
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  
 

   

(16) 

 
The steps of the Optimization Based Plane Fitting 

solution are below; 
 
ax+by+cz+d=0 | c=1 represents the local plane. 
 
1. Set the vector, p , which consists of neighboring 

points of point to be filtered (
( , , )u v wr ), 

2. Repeat the following steps until it reaches the 
specified error criterion for each point or during 
iteration, 
2.1. Determining the plane parameters ( , , ,d)a b c , 

2.2. Calculate the projection,
0 0 0(x ,y ,z )r , of the point,

( , , )u v wr , in the local plane, 

2.3. Memorize the new location of the point, 
3. End the process. 
 

Evolutionary computational methods can provide 
more consistent solutions for plane fitting problems than 
classical methods. Also, they are used to solve non-linear, 
non-derivative complex problems. Also, evolutionary 
computational algorithms do not easily trap local 
solutions (Tercan et al. 2020). In this paper, the 
Backtracking Search Optimization Algorithm (BSA) was 
used to solve the parameters of the local plane. 

BSA (Civicioglu, 2013) is an evolutionary search 
algorithm developed by Civicioglu to solve real-value 
optimization problems. Compared to various 
evolutionary algorithms, BSA produces simpler results 
for problems such as surface fitting. The initial value in 
the problem solution is not dependent on the single 
control parameter it has. The mixrate, controls the 
crossover process, is the only control parameter. When 
creating new populations, it uses crossover and mutation 
operators as in the classical differential search algorithm. 
The search strategy and boundary control that it uses 
when creating a new population has enabled a very 
powerful exploration and exploitation skill (Civicioglu, 
2013). In this experiment, dimension of pattern matrix is 
determined as 50. Stopping conditions are given below; 
 
1.Stop when the maximum number of iterations is 500. 
2.Stop if a better solution could not be obtained in the last 
20 function evaluations. 
3.Stop if the absolute value of the solution obtained for 
the algorithm is less than 10-16. 
 
The BSA pseudo code is given in Figure 2. 
 

 
Figure 1. The Pseudo Code of the Backtracking Search 
Optimization Algorithm (Civicioglu, 2013) 
 
4. Experimental Results and Discussion 
 

Geodetic measurement systems, by their nature, 
produce noisy data of various types and amplitudes, 
which are unpredictable. The most important method of 
achieving reliable measurements in an environment 
where the avoidance of noise is limited by physical 
reasons is to produce statistical measures based on 
multiple observations or to filter the measurements 
available. Post-process filtering is more suitable because 
repeated measurement is not always possible. The 
photogrammetric method and the data generated by the 
RGB-D sensor were filtered to consider the noise level of 
the instrument. The data to be filtered is compared with 
the TLS data and the amount of the average error by 
changing the number of neighbors depends on the 
filtering method. Figure 3.a and Figure 3.b are the results 
of Model 1 photogrammetric method and RGB-D sensor, 
respectively. When the two figures are examined 
together, the average error of filtering obtained with the 
RGB-D sensor is greater. While the Gaussian filter was the 
most unsuccessful in the photogrammetric method, the 
SVD method was the worst method in the RGB-D sensor. 
Because the planes created in SVD method are highly 
affected by noise. Figure 3.c and Figure 3.d belong to 
model 2. The results of model 2 photogrammetric and 
RGB-D sensors are given, respectively. As in model 1, the 
filtering results of RGB-D sensor produced a higher 
average error in Model 2. The Gaussian filter was the 
worst in the photogrammetric method, while the IDW 
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method produced very close results. The Gaussian 
method was the worst method in the RGB-D method and 
the SVD followed it. In both test models, according to the 
changing number of neighborhoods, the least error was 
given by the Optimization Based Plane Fitting method. 
Therefore, it has produced an average error of 
unpredictable magnitude due to the varying noise level 
in each model. Gaussian filtering yielded the highest 
average error. 
 

 
Figure 3. (a) Average Error of the Model 1 
Photogrammetric Method, (b) Model 1RGB-D Sensor, (c) 
Average Error of Model 2 Photogrammetric Method, (d) 
Model 2 RGB-D Sensor 
 

PCs from different methods were registered using 
RANSAC-based ICP. Because of the registration, the 
Euclidean distance calculated between the filtered data 
and the reference data and distance value were clustered. 
The cluster labels allow visual evaluation of the 
differences between the filtered and reference data. 
Distance values, which are cluster labels, were changed 
to the pseudo colors red, turquoise, purple, white, and 
yellow. Thus, it was visually obtained which vertexes 
move in the filtered point cloud. The red color shows the 
least moving vertexes. Yellow color refers to the most 
moving vertex. In this paper, the nearest neighbor 
number was experimentally determined for visual 
representation as (10, 20, and 30). Using larger numbers 
of the neighboring vertex causes loss of detail in the data 
and using fewer vertexes prevents the generation of 
enough information to compare the filtered results. 
Different numbers of neighborhoods (10, 20, 30, 50, and 
100) were used for better expression of the graph data in 
Figure 3. Figure 4 shows the results of filtering according 
to the number of model 1 neighborhoods and the solid 
models of these results. Figure 5 shows the results of 
filtering according to the number of model 2 
neighborhoods and the solid models of these results. 

Error values were calculated by comparing the PCs 
captured with RGB-D and photogrammetric methods 
with reference data. The calculated error values are 
assigned to the point cloud of the system where they are 
generated as pseudo color and then the mesh surface is 
formed. When the results of the filtering are examined 
with the error amounts and the colorless solid models, it 

can be said that the results of the filtering provide 
approximate values. As the number of neighborhoods 
increased, the closure and detail of the data gaps 
decreased. As the sigma value was changed in the 
Gaussian filtering technique, the surface softness was 
changed but the most appropriate value was 
experimentally determined to be 0.4mm. The effect of 
this change on the result can be examined by a further 
study. Increasing the power parameter in the IDW filters 
may impair the result quality of the data. The SVD and 
Optimization Based Plane Fitting filter methods work 
differently from others because the surface parameter is 
fitted by calculating the projection of the point to the 
surface. Moreover, in some places on the surface, there 
are discontinuous transitions. The Optimization Based 
Plane Fitting filter with better quality than the SVD based 
method has been found to obtain solutions. Free-form 
surfaces can be used instead of the plane to increase the 
surface continuity effect in projection-based filtering. 
 

5. CONCLUSION  
 

PCs suffer from unpredictable and uncontrollable 
noise types with variable amplitude, due to the general 
error characteristics of the data capture environment 
conditions and the hardware used to capture related 
data. The noise, which disturbs the quality of PCs must be 
suppressed by using several filtering methods, such as 
the spatial filtering techniques mentioned in this paper. 
The most important method of achieving reliable 
measurements in an environment where the avoidance 
of noise is limited by physical reasons is to produce 
measures based on multiple observations or to filter the 
measurements available. In this paper, test model PCs 
were obtained using Terrestrial Laser Scanner, the 
Photogrammetric Method, and RGB-D sensors. The 
obtained point clouds were filtered according to the 
number of neighborhoods at three different levels using 
the Shepard Inverse Distance Weighting method, 
Gaussian Filtering method, Single Value Decomposition 
Based Filtering, and Optimization Based Plane Fitting. 
The Backtracking Search Optimization Algorithm, which 
works to find the best values for the parameters of the 
system or model in different conditions, has been used to 
determine the local plane parameters. Thus, the 
successes of the measurement systems as well as the 
success of filtering methods were examined. Although 
the proposed method provides effective results, it does 
not make sense to compare it in terms of CPU time 
consumption. Because evolutionary computation-based 
methods generally work slower than classical methods. 
Based on the statistical and visual results obtained, the 
Optimization Based Plane Fitting Method using 
Backtracking Search Optimization Algorithm gave the 
best result. 

In future studies, comparisons will be made with 
detailed analysis using evolutionary calculation-based 
methods that use different strategies to filter PC. 
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Figure 4. The solid model and error surfaces generated by applying specified filtering methods with different 
neighborhood number (N) in Model 1 produced by the Photogrammetric and RGB-D methods 
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Figure 5. The solid model and error surfaces generated by applying specified filtering methods with different 
neighborhood number (N) in Model 2 produced by the Photogrammetric and RGB-D methods. 
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 Main purpose of the design of multi-layer radar absorber (MRA) by means of metaheuristic 
optimization algorithms is to minimize both the total thickness (TT) of MRA and the 
maximum reflection coefficients for transverse electric (RTE) & transverse magnetic (RTM) 
polarizations at any oblique angle of incidence. For this purpose, sequence and thicknesses 
of layers of the MRA have been optimized by either single-objective approach based on 
combining all objectives or double-objective approach in which TT is evaluated separately 
from the reflection coefficients. In this study, triple-objective artificial bee colony (TO-ABC) 
algorithm integrated with Pareto front technique is proposed for fully optimized MRA 
design. Thus, both RTE, RTM and TT are simultaneously minimized by optimizing thickness, 
sequence and number of the layers. To demonstrate the superiority of TO-ABC, 3 types of 
MRAs operating at the frequency ranges of 2–18 GHz for each angle of incidence from 0⁰ to 
60⁰ are optimized and compared with the literature. Furthermore, 4 different real MRAs are 
also optimized using real materials given in the literature. Thanks to the developed graphical 
user interface and TO-ABC algorithm, despite the limited number of materials, all possible 
solutions providing the specified parameters are easily achieved and successful MRA 
structures are designed. 

 
 

 
 

1. INTRODUCTION 
 

Electromagnetic (EM) stealth technology is an 
important issue which has increased its popularity in the 
last quarter century and has many commercial and 
military applications. The main purpose of this 
technology is to reduce the EM energy scattered from the 
target as much as possible and to make the target 
invisible to the radar receiver. Within this scope, multi-
layer radar absorbers (MRA) have become very popular 
in recent years due to their superior absorption 
capabilities (Yigit and Duysak, 2019a). To produce the 
MRA having low thickness and low reflection properties, 
the sequence and thickness of the materials used in the 
layers should be optimally determined. For this purpose, 
natural-inspired optimization algorithms such as 
artificial bee colony (ABC)(Toktas et al., 2018), central 
force algorithm (CFO) (Asi and Dib, 2010), particle 
swarm optimization (PSO)(Goudos and Sahalos, 2006a) , 
genetic algorithm (GA) (Kern and Werner, 2003) and 
differential evolution (DE) (Goudos, 2009) and also 
surrogate-based optimization(Toktas et al., 2019) have 

been successfully applied to various MRA designs 
operating at different frequency ranges between 0.2–18 
GHz (Asi and Dib, 2010; Goudos, 2009; Goudos and 
Sahalos, 2006a, 2006b; Jiang et al., 2009; Kern and 
Werner, 2003; Michielssen et al., 1993; Ranjan et al., 
2018; Roy et al., 2016, 2015; Toktas et al., 2019, 2018; 
Weile et al., 1996; Yigit and Duysak, 2019a). Most of these 
studies were performed either for normal incidence or 
for a limited angle of incidence. Broad-band and wide-
angle MRAs should be designed for practical 
implementations of the stealth technologies. However, 
the design of broad-band and wide-angle MRA with as 
thin as possible is a challenging problem. In all of the 
studies given in references (Asi and Dib, 2010; Goudos, 
2009; Goudos and Sahalos, 2006a, 2006b; Jiang et al., 
2009; Kern and Werner, 2003; Michielssen et al., 1993; 
Ranjan et al., 2018; Roy et al., 2016, 2015; Toktas et al., 
2019, 2018; Weile et al., 1996), where predefined 16 
virtual materials were preferred, MRA designs were 
performed by means of either single objective (Asi and 
Dib, 2010; Goudos, 2009; Goudos and Sahalos, 2006a; 
Kern and Werner, 2003; Michielssen et al., 1993; Ranjan 
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et al., 2018; Roy et al., 2016, 2015; Toktas et al., 2018) or 
multi-objective (MO) approaches (Goudos and Sahalos, 
2006b; Jiang et al., 2009; Toktas et al., 2018; Weile et al., 
1996). In the MO approach, both thickness and reflection 
coefficients are optimized simultaneously, while in single 
objective optimization all objectives are combined in a 
single objective function by means of weight coefficients 
(Goudos, 2009). In addition, a new double-stage method 
has recently been introduced that optimizes the total 
thicknesses (TT) of layers separately from number & 
sequence of the layers (NSL) (Yigit and Duysak, 2019a) . 
Thanks to the double-stage approach, negative effects of 
sudden changes in layer sequence has been prevented 
(Yigit and Duysak, 2019a). However, similar to other 
single or MO approaches (Asi and Dib, 2010; Goudos, 
2009; Goudos and Sahalos, 2006a, 2006b; Jiang et al., 
2009; Kern and Werner, 2003; Michielssen et al., 1993; 
Ranjan et al., 2018; Roy et al., 2016, 2015; Toktas et al., 
2019, 2018; Weile et al., 1996), in (Yigit and Duysak, 
2019a) the reflection coefficients for Transverse Electric 
(TE) and Transverse Magnetic (TM) polarizations were 
combined in a single objective function. Satisfactory 
results can be achieved by combining different objective 
functions at the beginning of the algorithm, but in some 
special cases, it is inevitable that MO optimization is 
required for compromises between objectives. For 
example, in some cases, it may be desirable to minimize 
the maximum reflection coefficient by sacrificing TT. In 
this case, MO optimization approaches are inevitable.  

In this study, three different objectives (TT, reflection 
coefficients for TE and TM polarizations) for fully 
optimized MRA design are synchronously minimized by 
means of Pareto-integrated triple objective ABC (TO-
ABC) algorithm. In MRA design problem, it is not a 
reasonable approach to set a minimum or maximum 
objective for the number of layers (NL). As it can be seen 
from (Yigit and Duysak, 2019a), much thinner structures 
can be designed by using more layers. Therefore, in this 
study, NSL is simultaneously optimized with thicknesses. 
A graphical user interface (GUI) is designed on the 
MATLAB platform to easily obtain possible solutions on 
the Pareto front. The effectiveness of the method is 
demonstrated by using both 16 predefined virtual 
materials (Michielssen et al., 1993) and up-to-date 21 
real materials(Yigit and Duysak, 2019a). The designed 
structures are compared with the similar multi-layer 
radar absorbers in the literature(Ranjan et al., 2018).  3 
different designs (for TE/TM modes) effective at the 
frequency band of 2-8 GHz, 12-18 GHz and 2-18 GHz at 
the angles of incident between 0⁰ and 60⁰ are optimized. 
In addition, 4 different MRA structures are also designed, 
which consist entirely of real materials, operating across 
the entire band from 2 to 18 GHz for all angles of incident 
between 0⁰ and 60⁰. 

The physical model of the MRA design and the basic 
theory of the ABC algorithm are briefly presented in the 
next section. In Section III, the detailed information of 
TO-ABC is presented.  The implementation of the TO-ABC 
algorithm and optimized MRA designs are given in 
Section IV. The concluding remarks and possible further 
studies are mentioned in the conclusion section. 

 
 

2. PHYSICAL MODEL of MRA STRUCTURE and ABC 
ALGORITHM 

 

2.1. Physical Model of MRA Structure 
 

A basic MRA structure consists of different materials 
coated on a perfect electric conductor. Each layer is 
defined by different electrical properties and different 
thickness. The main purpose of the MRA design is to 
determine the NSL and TT, to minimize the back 
scattered energy for TE & TM polarizations for desired 
angle of incidences and frequencies. While the EM wave 
travels through each layer, it is exposed to the 
transmission, the absorption and the reflection effects in 
the each layer. Therefore, the total surface reflection of 
the MRA depends on the alignment of the entire 
structure. Since the detailed formulation of MRA design 
problem was given in many studies (Asi and Dib, 2010; 
Goudos, 2009; Goudos and Sahalos, 2006a, 2006b; Jiang 
et al., 2009; Kern and Werner, 2003; Michielssen et al., 
1993; Ranjan et al., 2018; Roy et al., 2016, 2015; Toktas 
et al., 2019, 2018; Weile et al., 1996; Yigit and Duysak, 
2019a), in this study only the basic equations are given 
and critical points are indicated. In the polarization-
insensitive MRA design, the back-scattered energy must 
be minimized in both TE and TM polarizations along with 
the TT of the MRA. Therefore, three objective functions 
(𝑶𝑭𝟏, 𝑶𝑭𝟐, 𝑶𝑭𝟑) are defined as follow, 
 

minimize OF1 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {20𝑙𝑜𝑔10(𝑅𝑇𝐸)}

minimize OF2 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {20𝑙𝑜𝑔10(𝑅𝑇𝑀)}

minimize OF3 = 𝑇𝑇
 (1) 

 
where 𝑹𝑻𝑴 and 𝑹𝑻𝑬 are the reflection coefficient 
matrices, which includes the TM and TE polarizations 
corresponding to each of the defined angle of incidence 
and the frequency values. For an MRA structure with 𝑴 
(Mth layer is perfect electric conductor) layer, the RTE 
and RTM are defined as follows (Yigit and Duysak, 
2019a), 
 

𝑹𝒊
𝑻𝑬 =

𝒓𝒊
𝑻𝑬 + 𝑹𝒊+𝟏

𝑻𝑬𝒆−𝟐𝒋𝒌𝒊+𝟏𝒅𝒊+𝟏

𝟏 + 𝒓𝒊
𝑻𝑬𝑹𝒊+𝟏

𝑻𝑬𝒆−𝟐𝒋𝒌𝒊+𝟏𝒅𝒊+𝟏
 (2) 

 

𝑹𝒊
𝑻𝑴 =

𝒓𝒊
𝑻𝑴 + 𝑹𝒊+𝟏

𝑻𝑴𝒆−𝟐𝒋𝒌𝒊+𝟏𝒅𝒊+𝟏

𝟏 + 𝒓𝒊
𝑻𝑴𝑹𝒊+𝟏

𝑻𝑴𝒆−𝟐𝒋𝒌𝒊+𝟏𝒅𝒊+𝟏
 (3) 

 
where 𝒅𝒊 corresponding to the thickness of each layer. 
The 𝒓𝒊

𝑻𝑬 and 𝒓𝒊
𝑻𝑴 are given as follows, 

 

𝐫𝐢
𝐓𝐄 = {

𝛍𝐢+𝟏𝐤𝐢 − 𝛍𝐢𝐤𝐢+𝟏

𝛍𝐢+𝟏𝐤𝐢 + 𝛍𝐢𝐤𝐢+𝟏

 

−𝟏,              

 &  𝐫𝐢
𝐓𝐌 = {

𝛆𝐢+𝟏𝐤𝐢 − 𝛆𝐢𝐤𝐢+𝟏

𝛆𝐢+𝟏𝐤𝐢 + 𝛆𝐢𝐤𝐢+𝟏

    𝐢 < 𝐌

𝟏                        𝐢 = 𝐌  

 (4) 

 
According to the angle of incidence 𝜽°, the wave number 
𝒌𝒊, of the 𝒊𝒕𝒉 layer is defined as, 
 

𝑘𝑖 = 2𝜋𝑓√𝜇𝑖𝜀𝑖 − 𝜇0𝜀0 𝑠𝑖𝑛2(𝜃) (5) 
 

In (4), while 𝝁𝒊 and 𝜺𝒊 are the frequency(𝒇) depended 
complex permeability and permittivity of the materials, 
𝝁𝟎 and𝜺𝟎 are permeability and permittivity of free space, 
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respectively (Yigit and Duysak, 2019a). According to the 
(2) and (3), the TT of the structure is defined as follow, 
 

𝑇𝑇 = ∑ 𝑑𝑖

𝑀−1

𝑖=1

 (6) 

 
2.2. Single-Objective ABC Algorithm for MRA Design 
 

Natural inspired metaheuristic optimization 
techniques can produce satisfactory results which are 
close to the optimum result for nonlinear problems. ABC 
is an efficient algorithm inspired by the nectar search 
activities of honey bee swarms (Karaboga and Basturk, 
2007). In the algorithm, the number of food sources (NS) 
specify the potential solutions of the problem, while the 
amount of nectar in the sources corresponds to fitness 
value of the solution.  The details of the algorithm 
developed by modeling the behavior of employed, 
onlooker and scout bees are  given in (Yigit and Duysak, 
2019a). The changes made in these three phases in the 
MO-ABC algorithm are explained in detail in the next 
section. 

 

3. MO-ABC ALGORITHM  
 
3.1. Multi -Objective Optimization 

 
In the single-objective optimization, optimum results 

can be obtained by comparing only the single value of the 
objective function. However, if there is more than one 
objective function, the problem is defined as a MO 
optimization problem and all objective functions are 
simultaneously optimized. The mathematical expression 
of MO optimization problem can be defined as follows. 
 

𝑚𝑖𝑛𝐹(𝜒) = [𝑓1(𝜒), 𝑓2(𝜒), … . . , 𝑓Π(𝜒)] (7) 
 

𝜒 = [𝑥1, 𝑥2, … … , 𝑥𝑢] 𝑆 (8) 
 

where 𝚷,  𝝌 and 𝑺 are the number of the objective 
functions, 𝒖 dimensional decision variable vector and the 
search space, respectively. The solution of the multi-
objective optimization problem is generally represented 
by a Pareto optimal set (Deb et al., 2002; Huo et al., 2015). 
For the minimization problems, if at least one objective 
value of the solution 𝝌 is less than the other solution 𝝌′, 
and all objective values of 𝝌′ aren’t less than 𝝌, then 𝝌 
dominates 𝝌′. However, if no solution dominates the 
solution 𝝌′, 𝒕𝒉𝒆𝒏 𝝌′ is called as the nondominated or 
Pareto-efficient solution. All Pareto solutions constitute 
elite solution (ES) set which are the possible solutions of 
the MO problem. 
 
3.2. Multi-Objective ABC Algorithm 
 

The MO-ABC algorithm includes four phase; 
initialization, employed bees, onlooker bees and scout 
bees. The flow chart of the algorithm is given in the Fig.1. 
 

Define: Initial parameters 

NS, MCN, Abandonment limit, and

 nrep (ES number).

Randomly produce the initial solution using equation 

10 and for each solution, calculate the objective 

function value and domination count (dcp).

Memorize the solutions with rank=1 to ES.

Produce new solutions for employed bees using 

(elite guide solution) equation 14. Perform 

greedy selection method. Then add better 

solutions  to ES.

Select nrep solution for ES according to selection 

procedure. 

Initialization 

phase

Employed bee 

phase

According to probability of the solutions, 

produce new solution as employed bee phase. 

Add better solutions  to ES.

Select nrep solutions for ES using selection 

procedure. 

Onlooker 

bees phase

Scout Bees

 phase

Does the abandonment limit 

is reached ?

Does the maximum iteration  

is reached?

The existing solution is changed with new 

solution

Y
E

SN
O

Optimized 

parameters

Y
E

S

NO

 
Figure 1. The flow chart of MOABC 
 

1) Initialization  
 
The population 𝑷 of the bee swarm is defined as follows, 
 

𝑷 = {𝝌𝟏, 𝝌𝟐, … . , 𝝌𝑵𝑺} (9) 
 
where 𝑵𝑺 is the number of food source. The initial food 
sources 𝝌𝒑 are randomly generated by (10), 

 
𝜒𝑝 = 𝑙𝑏𝑑 + 𝑟𝑎𝑛𝑑(0,1)(𝑢𝑏𝑑 − 𝑙𝑏𝑑) (10) 
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where 𝒑 ∈ {𝟏, 𝟐, … . . , 𝑵𝑺} and 𝒅 ∈ {𝟏, 𝟐, … . . , 𝒖} are the 
solution vector index and dimension of 𝝌𝒑, respectively.  

𝒍𝒃 and 𝒖𝒃 are lower and upper bound of solution vectors.  
 

 Determination of elite solutions. 
 

In MO optimization, there are more than one objective 
function, so it is not simple to determine the non-
dominated solutions. In this study, in order to sort and 
select the ES, fast nondominated sorting (Deb et al., 
2002) requiring the less computations, is preferred.  
For each solution, two parameters are calculated, these 
are;  
 
1. Domination count, 𝒅𝒄𝒑: the number of solutions which 

dominate the solution 𝒑, 
2. 𝑺𝑷: Set of the solutions dominated by solution 𝒑 .  
 

In fast nondominated sorting method, the initial 
values of 𝒅𝒄𝒑 of all solutions in population are defined as 

zero. For each solution 𝒑 in the population 𝑷 is then 
compared with every other solution 𝒒 in 𝑷. If the solution  
𝒑 is better than 𝒒, then 𝑺𝑷=𝑺𝑷 ∪ {𝒒}, otherwise; 𝒅𝒄𝒑 =

𝒅𝒄𝒑 + 𝟏. If 𝒅𝒄𝒑 = 𝟎,  𝒅𝒄𝒑. 𝐫𝐚𝐧𝐤 = 𝟏. Otherwise, 𝒅𝒄𝒑 

corresponding to each member (𝒒) of  𝑺𝑷 is reduced by 
one. When 𝒅𝒄𝒑 of 𝒒 is zero, it is saved to the new 𝑸 list. 

This 𝑸 list constitutes the second nondominated front. 
This process continues until all front is determined (Deb 
et al., 2002). In this study, ES consists of the first 
nondominated front as illustrated in Fig. 2(a). 
 

 Crowding Distance 
 

The crowding-distance is obtained according to each 
objective function value of the Pareto points. For each 
objective function, the distance values of the largest and 
smallest points are assumed as an infinite. The initial 
values of the distances of all solutions are assigned as 
zero and then the distances of each solutions for each 
objective function are updated as follows (Deb et al., 
2002).  
 

𝑑𝑖𝑠𝑡𝑚,𝑗 = 𝑑𝑖𝑠𝑚,𝑗 +
𝑓𝑚,𝑗+1 − 𝑓𝑚,𝑗−1

max(𝑓𝑚) − min (𝑓𝑚)
 (11) 

 

where 𝐝𝐢𝐬𝐭𝐦,𝐣 denotes distance of jth solution of mth 

objective function as illustrated in Fig. 2b.  
The exact crowding-distance vector (𝐂𝐝𝐣) is obtained 

by summing the individual distance values 
corresponding to each objective as follows, 
 

𝐶𝑑𝑗 = ∑ 𝑑𝑖𝑠𝑡𝑚,𝑗

Π

m=1

 (12) 

 

 Selection procedure 
 

The number of ES can be more than the desired 
number of archive,  𝐧𝐫𝐞𝐩. Therefore, population 
selection strategy must be applied to select solutions to 
constitute 𝐄𝐒. Since the ranks of the all solutions in ES are 
equal to 1, the solutions with the higher distance should 
be selected.  

For this purpose, the crowding distance values (𝐂𝐝) 
of all solutions are sorted in descending form and the first 
𝐧𝐫𝐞𝐩 solutions are selected.  

 

2) Employed Bee Phase 
 

In the employed bee phase, bees search new food 
sources to improve the existing solution. In the original 
ABC algorithm(Karaboga and Basturk, 2007), a new food 
source 𝛘′ is generated by using (13) for each employed 
bee sources (𝐧 = 𝟏 … 𝐍𝐒), 
 

𝜒𝑛𝑟
′ = 𝜒𝑛𝑟 + (𝜒𝑛𝑟 − 𝜒𝑘𝑟) (13) 

 

where 𝛘𝐤𝐫 is neighbour solution of 𝛘𝐧𝐫 corresponding 
to the randomly generated 𝐫 ∈ [𝟏, 𝐮].   

Original ABC algorithm don’t use the ES or best 
solution. However, to effectively improve the solutions in 
MO-ABC, the new solutions must be updated based on 
the ES (Huo et al., 2015). In the second phase of the MO-
ABC algorithm, a new food source is produced by the 
following equation (Huo et al., 2015), 
 

𝝌′
𝒏𝒓 = 𝝌𝒏𝒓 + (𝝌𝒏𝒓 − 𝝌𝒌𝒓) + (𝒚𝒏𝒓 − 𝝌𝒌𝒓)

 𝒚𝒏𝒓𝑬𝑺 
 (14) 

 

where   and   are random numbers in the ranges of        
[-1, 1] and [0, 2], respectively. 𝐲𝐧𝐫 denotes the randomly 
selected solution from 𝐄𝐒. 
 

The choice between the existing and new solutions is 
determined by means of the greed selection. If the 
existing solution is worse than the new solution, the 
abandonment counter is reset and 𝐄𝐒 = 𝐄𝐒 ∪ {𝛘′𝐧}; 
otherwise, the counter is increased.  After all employed 
bees search new food source, 𝐄𝐒 is updated by 
performing the selection procedure. 
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Figure 2. Illustration of the Pareto front points; a) 
Dominated and non-dominated solutions, b) 
Determination of Crowded distances  
 

3) Onlooker Bee Phase 
 

In the onlooker bee phase, in order to calculate the 
selection probability value, the fitness value of each 
solution must be calculated. For a single objective 
function, the fitness value is calculated as follows 
(Karaboga and Basturk, 2007) 
 

𝑓𝑖𝑡(𝜒𝑛) =
1

1 + 𝑓(𝜒𝑛)
 (15) 

 

However, in the MO optimization, since the number of 
objective functions is more than one, (15) is not 
applicable. Thus, the fitness function based on 
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normalization should be used. The normalization 
calculation is as follows (Huo et al., 2015),  
 

𝑓′
𝑚

(𝜒𝑛) = {

max(𝑓𝑚) − 𝑓𝑚(𝜒𝑛)

max(𝑓𝑚) − min(𝑓𝑚)
, 𝑖𝑓 max(𝑓𝑚) ≠  min(𝑓𝑚)

1, 𝑖𝑓 max(𝑓𝑚) = min(𝑓𝑚)

 (16) 

 

The 𝒇𝒊𝒕(𝝌𝒏) is calculated as following equation (Huo et 
al., 2015) 
 

𝑓𝑖𝑡(𝜒𝑛) =
1

Π
∑ 𝑓′

𝑚
(𝜒𝑛)

Π

𝑚=1

 (17) 

 

The selection probability is calculated as follows, 
 

𝑝𝑟𝑜𝑏𝑛 =
0.9𝑓𝑖𝑡(𝜒𝑛)

max𝑛=1
𝑁𝑆 𝑓𝑖𝑡(𝜒𝑛)

+ 0.1 (18) 

 

Then, each of the onlooker bees searches the new 
food source depending on the selection probability. If 
randomly generated number in the range of [𝟎, 𝟏] is 
greater than 𝒑𝒓𝒐𝒃𝒏, the new solution will be produced 
using (14) and the steps in the employed bee phase are 
applied. 
 

4) Scout Bee Phase 
 

In this phase, if a solution is not improved when the 
abandonment limit is reached, the existing solution is 
changed. For this purpose, the existing employed bee is 
transformed to the scout bee and a new food source is 
generated by (10). Thus, the algorithm continues to run 
until the maximum cycle number (MCN) or it reaches a 
predefined stop criteria.    
 

4. IMPLEMENTATION OF TO-ABC ALGORITHM  
 

The TO-ABC method for MRA design consists of 3 
main parts as seen in Fig. 3. The objective functions of the 
algorithm are defined as given in (1).  
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Figure 3. Implementation of TO-ABC to design of MRA  
 

The parameters of the MRA structure and TO-ABC 
algorithm are defined as given in Fig. 3. Since the 
minimum layer thicknesses are defined as 0, at the end of 
the optimization the layers with zero thicknesses are 
removed from the sequence. Thus, the ES are listed as 
shown in the Fig. 3 and optimized results are obtained. 
 

4.1. Graphical User Interface for MRA Design 
 

Dozens of studies have been done for the MRA design 
in the last quarter century. Each of these studies aimed to 
develop a part of the design problem. In this study, a fully 

optimized MRA design method is presented for the first 
time. However, since there are many parameters to 
consider in MRA design, an easily accessible interface is 
needed for real applications. Therefore, in this study, a 
GUI is developed for a fully optimized MRA design. As 
seen in Fig. 4 the GUI has 5 different parametric inputs 
such as Frequency, Angle of Incidence, MRA, 
Optimization and Material List. After these inputs have 
been defined, the program is run by clicking the “Start 
MRA Design” button. Once the optimization is completed, 
the optimal results determined on the Pareto front are 
illustrated in the GUI, while the corresponding RTE, RTM 
and TT values are listed in the “Elite Solution” section. In 
GUI, the operator selects the desired result according to 
the trade-off between RTE, RTM and TT. The NSL and 
thicknesses of layers corresponding to the selection of 
the operator are given in the “Layer sequence & 
Thickness” section and the reflection coefficients for TE 
and TM polarizations are plotted depending on the angle 
of incidence. Thus, with the developed GUI, MRA 
designers can easily access the results they need. 
 

4.2. Fair Comparison Criterias and Comparison Data 
 

Several studies have been conducted for MRA design 
so far and the superiority of the proposed methods in 
each study have been compared with previous ones. In 
order to make a fair comparison, the designed MRAs 
should be compared based on the same parameters. 
These parameters can be summarized as follows. 
 

1. When comparing the two designs, it is not fair to 
consider only the maximum reflection coefficients 
and to ignore thicknesses. Because it is obvious in 
MRA design that maximum reflection coefficient 
decreases with increasing thickness. 

2. It is also not true to compare broad-band wide-angle 
designs for a single type of polarization. For example, 
while the maximum reflection coefficient for TE 
polarization is minimized, TM increases. Therefore, 
the reflection coefficients for TE and TM 
polarizations need to be optimized simultaneously.  

3.  When making comparisons, optimizing both designs 
for the same angle of incidence is another important 
consideration. For example, it is a not fair comparison 
to compare an MRA structure which is optimized 
between 0⁰ and 40⁰ with another design which is 
optimized between 0⁰ and 60⁰. Because, it is an 
expected result that the MRA optimized for 60⁰ has 
worse RTE, RTM and TT values than the MRA 
optimized for 40⁰. 

4. Finally, when presenting the performances of the 
designs, it is not a consistent method to give the 
average values of the reflection coefficients relative to 
the all frequency band and angle of incidence. 
Because, if the design has a very low reflection 
coefficient at any angle or frequency, it significantly 
reduces the average value and affects the general 
information about other values.  

 

Therefore, these issues should be taken into 
consideration in order to make a rational assessment. 
For example, the designs optimized between 0-40⁰ in 
(Toktas et al., 2019) were compared to those given in 
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references(Ranjan et al., 2018; Roy et al., 2015). 
However, since the designs given in (Roy et al., 2015) 
were optimized only for normal incidence, their 
performances at 40⁰ are inherently worse than the 
(Toktas et al., 2019). It is also unfair to compare the 
designs in (Toktas et al., 2019) with the designs in 
(Ranjan et al., 2018) , as the MRAs in (Ranjan et al., 2018) 
were optimized to operate between 0⁰ and 60⁰.  

Based on these 4 criteria, in this study, the designs 
optimized with 16 virtual materials  are compared to 
those in (Ranjan et al., 2018). Since the formulation 
(2)&(3) was verified with computer simulation 
technology (CST) in the previous study(Yigit and Duysak, 
2019a), the CST results are not given in this study.  
 

4.3. Designed Fully Optimized MRAs with 16 Virtual 
Materials  
 

To show the success and practice usage of the TO-
ABC, virtual materials listed in (Michielssen et al., 1993) 
are selected as the material list in the GUI. Three types of 
MRAs effective in the frequency ranges of 2-8 (Des1), 12-
18 (Des2) and 2-18 GHz (Des3) are optimized. The angles 
of incidence are changed between 0⁰ and 60⁰. These are 
compared with those in(Ranjan et al., 2018). All design 
parameters except the frequency band are selected as 
shown in Fig. 4. While plotting the reflection coefficients, 
to obtain high-resolution graphics, the resolutions of 
frequency and angle are determined as 0.1 GHz and 1⁰, 
respectively. As seen in Table 1, at the end of the TO-ABC 
algorithm, different MRA structures having different NL 
and sequences are optimized. As shown in Fig. 4, 
although the number of ES are identified as 50, a total of 
19 possible solutions are found and 7 of them are given 
in Table 1. It should be noted that the RTE and RTM 
values given in all Tables are the maximum values 
between all angles of incidence (𝜽 ∈ [𝟎°, 𝟔𝟎°])   and 
frequencies. The 3D plots of RTE and RTM according to 
angle of incidence and the frequency are illustrated in 
Fig. 4. When these solutions are compared with the 
results given in the (Ranjan et al., 2018), it is seen that the 
highlighted  solution 12  in Table 1 is similar to the design 
in the (Ranjan et al., 2018). 

However, although there is a difference of 0.02 dB in 
RTE, RTM and TT values are lower than those found in 
[13]. When the other values in Table 1 are examined, it is 
seen that there are much thinner designs with much 
lower RTM values than the solution 12. However, it 
should be noted that RTE values of the other solutions 
are higher than solution 12.When the solution 13 of Des2 
is compared with the respective MRA(Ranjan et al., 2018)  

in Table 2, it can be seen that  both TT, RTE and RTM of 
the MRA are lower than the(Ranjan et al., 2018). This 
result clearly demonstrates the success of the proposed 
method. Furthermore, due to the nature of the MO 
approach, lower reflection coefficients can be obtained 
by sacrificing thickness or much finer MRAs can be 
chosen from Table 2 by compromising from reflection 
coefficient. Considering Table 3, where the results of 
Des3 are listed, it can be seen that all the ES consist of 4 
layers and most of them have same sequence except from 
third layer.  Furthermore, when the solution 16 in Table 
3 is compared with (Ranjan et al., 2018), it is seen that 
although they have the same sequence, both the RTE, 
RTM and TT values of the solution 16 are much better 
than the (Ranjan et al., 2018). This result is a clear 
indication of the necessity of the triple objective 
approach in MRA design. 
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Figure 4. The GUI for fully optimized MRA design 

 

Table 1. The results corresponding to some of the pareto points obtained by TO-ABC algorithm for Des1 (2-8 ghz) 
  Layer sequence d1 d2 d3 d4 RTE RTM TT 

6 [16-1-9] 0.569 0.332 0.838  -7.401 -7.844 1.739 
7 [16-2-10-11] 0.572 0.302 0.415 0.560 -7.554 -9.541 1.849 
8 [16-2-10-9] 0.650 0.300 0.373 0.581 -7.768 -9.045 1.903 
9 [16-11-2-15] 0.486 0.345 0.877 0.300 -8.056 -7.834 2.008 

10 [16-2-9-11] 0.656 0.447 0.417 0.563 -8.069 -9.392 2.083 
11 [14-2-13] 0.629 1.006 0.612  -7.771 -9.041 2.248 
12 [16-2-13-12] 0.681 0.621 0.734 0.404 -8.450 -8.843 2.440 

Data from (Ranjan et al., 2018) 

  
Layer sequence d1 d2 d3 d4 RTE RTM TT 

[16-2-13-12] 0.701 0.657 0.707 0.383 -8.476 -8.570 2.449 
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Table 2. The results corresponding to some of the pareto points obtained by TO-ABC algorithm for Des2 (8-12 GHz) 
 Layer sequence d1 d2 d3 d4 RTE RTM TT 

8 [16-2] 0.364 0.286   -6.668 -12.685 0.650 
9 [16-8] 0.376 0.370   -7.050 -12.879 0.746 

10 [16-2-5-6] 0.376 0.276 0.040 0.124 -7.742 -9.050 0.817 
11 [16-8-6] 0.376 0.308 0.250  -7.776 -10.878 0.935 
12 [16-8-16] 0.259 0.651 0.136  -8.021 -11.531 1.046 
13 [16-8-12-6] 0.376 0.560 0.014 0.162 -8.543 -10.484 1.113 
14 [16-8-6] 0.373 0.634 0.250  -9.302 -9.622 1.256 

Data from (Ranjan et al., 2018) 

 
Layer sequence d1 d2 d3 d4 RTE RTM TT 

[16-7-3-8] 0.358 0.414 0.130 0.293 -8.510 -9.940 1.195 
 

Table 3. The results corresponding to some of the pareto points obtained by TO-ABC algorithm for Des3 (2-18 GHz) 
 Layer sequence d1 d2 d3 d4 RTE RTM TT 

12 [16-7-3-14] 0.340 1.227 0.379 0.501 -6.714 -7.277 2.447 
13 [16-7-3-14] 0.340 1.036 0.731 0.385 -6.768 -7.854 2.492 
14 [16-7-3-14] 0.340 1.183 0.631 0.425 -6.899 -7.782 2.579 
15 [16-7-4-14] 0.340 1.300 0.568 0.445 -6.972 -8.448 2.653 
16 [16-7-5-14] 0.349 1.245 1.000 0.319 -7.444 -8.466 2.912 
17 [16-6-3-14] 0.340 1.232 1.063 0.367 -7.333 -8.183 3.002 
18 [16-7-3-15] 0.340 1.264 1.094 0.367 -7.150 -8.658 3.065 

Data from (Ranjan et al., 2018) 

 Layer sequence d1 d2 d3 d4 RTE RTM TT 
[16-7-5-14] 0.348 1.246 1.002 0.326 -7.400 -8.300 2.920 

 
4.4. Designed MRAS with Real Materials  
 

After the importance of TO-ABC approach in the fully 
optimized MRA design has been proved by the use of 
predefined virtual materials, real MRA structures have 
been designed with much more limited real materials. 
For this purpose, a new material pool of 21 fabricated 
materials presented in the literature(Yigit and Duysak, 
2019a)  are used. The compositions of the materials and 
measured operating frequencies are given in Table 4. The 
frequency dependent complex permeabilities 𝝁𝒊 and 
permittivities 𝜺𝒊 of these 21 up-to-date materials can be 
downloaded from (Yigit and Duysak, 2019a, 2019b). 4 
types of MRA structures labeled as Des4 (2-8 GHz), Des5 
(8.2-12.4GHz), Des6 (12-18GHz) and Des7 (2-18 GHz) 
are optimized at wide-angle (0⁰-60⁰). The layer 
properties and labels of the selected designs are listed in 
Table 5. In GUI software, the control parameters of the 
optimization process such as maximum number of 
layers, abandonment limit, maximum iteration number, 
population number and maximum number of elite 
solution are selected as 10, 100, 3000, 100 and 100, 
respectively. The maximum and minimum layer 
thicknesses are defined as 4 mm and 0 mm, respectively. 
Thus, at the end of the optimization, the layers having a 
thickness of 0 mm is removed from the structure. In these 
designs, since the used real materials are limited, TT is 
ignored when choosing between the ES and the solutions 
with minimum reflection coefficient are presented. Des4, 
Des5, Des6 and Des7 are selected by considering both 

RTE and RTM values. While some designs have lower 
RTM values, these designs have higher RTE values than 
other designs. 

Although the reflection coefficients of the designed 
MRAs can be simply obtained by using (2, 3), for an easier 
assessment, RTE and RTM corresponding to the each 10⁰ 
angle of incidences are presented in Table 5. As seen in 
Table 6, 7, 8 and 9, 7 design are given in each table. As 
shown in Table 6, the RTE and RTM of solution 33 of Des5 
are -6.29 and -11.79 dB for whole angles of incidence and 
the frequencies. In the initial parameters of the TO-ABC 
algorithm, this value can be selected larger, so that 
thicker, but better MRA structures can be designed. Since 
the all materials given in Table 4 can be used in Des5, 
much more successful MRA structures are designed than 
the Des4. As shown in Table 7, the TT of solution 20 is 
4.058 mm, although it has an absorption capability of 
87% for all frequencies and all angles of incident 
between 0⁰-60⁰. When the solution 24 given in Table 7 is 
observed, it is realized that the TT increases but the 
maximum reflection coefficients considerably decreases. 
In Des6, 8 materials given in the Table 4 are used. The ES 
obtained after TO-ABC are given in Table 8. Although all 
solutions have the same layer sequence, they have 
different thickness and reflection coefficient values. 
Among these solutions, the solution 15 with the lowest 
RTE value is selected and the RTE and RTM values are 
seen in Table 5.  
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Table 4. Up-to-date materials listed in literature (Yigit and Duysak, 2019a, 2019b) 

Material number Fabricated Materials 
Measured Frequency 

range (GHz) 

17 
Dispersed Alinco (Fe49.7Co24Ni14Al8Cu3Nb1Ti0.3) powder in paraffin wax. Fraction 
of powder is 50% 

2-18 

18 Dispersed Alinco powder in paraffin wax. Fraction of powder is 60% 2-18 
19 Ba0.85Sm0.15Co2Fe16O27 hexaferrite 2-18 
20 Pure porous carbon, obtained through the pyrolysis of pure ZIF-67 2-18 

21 
The Ferrit/Co/porous carbon materials obtained through the pyrolysis of 
Ba0.85Sm0.15Co2Fe16O27 @ZIF-67 template at 500⁰C 

2-18 

22 … Ba0.85Sm0.15Co2Fe16O27 @ZIF-67 template at 550⁰C 2-18 
23 …Ba0.85Sm0.15Co2Fe16O27 @ZIF-67 template at 650⁰C 2-18 
24 Carbon coated nickel nanocapsule 2-18 

25 
U-type hexaferrite 
Ba4(Co1-3xCrx)2Fe36O60) for different values of x 

8.2 - 12.4 

26 
U-type hexaferrite 
Ba4(Co1-3xCrx)2Fe36O60) for different values of x 

8.2 - 12.4 

27 
U-type hexaferrite 
Ba4(Co1-3xCrx)2Fe36O60) for different values of x 

8.2 - 12.4 

28 
U-type hexaferrite 
Ba4(Co1-3xCrx)2Fe36O60) for different values of x 

8.2 - 12.4 

Polyaniline (PA)/expanded graphite (EG) composites mixed at different weight percentages (wt. %) with novolac phenolic resin 
(NPR) (PA/EGx – NPR) 

29 x=0.15,       10 wt.% 

8.2 - 12.4 

30 x=0.15,       20 wt.% 
31 x=0.15,       30 wt.% 
32 x=0.25,       10 wt.% 
33 x=0.25,       20 wt.% 
34 x=0.25,       30 wt.% 
35 x=0.00,       10 wt.% 

36 x=0.00,       20 wt.% 

37 x=0.00,       30 wt.% 
 

Table 5. The layer properties and reflection coefficients of Des4, Des5, Des6 and Des7 

L.# 
Des4 Des5 

2-8 GHz  0⁰-60⁰ TE/TM pol. 8.2-12.4 GHz  0⁰-60⁰ TE/TM 
Mat. # Thick. (mm) Mat # Thick. (mm) 

1 19 3.975 17 0.095 
2 20 1.072 36 2.551 
3 24 1.954 37 0.894 
4 18 1.144 17 0.517 
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Angle of incidence Angle of incidence 
0⁰ -12.05 TE -12.05 TM 0⁰ -11.96 TE -11.96 TM 

10⁰ -12.02 TE -12.23 TM 10⁰ -12.01 TE -12.16 TE 
20⁰ -11.82 TE -12.76 TM 20⁰ -12.11 TE -12.74 TE 
30⁰ -11.22 TE -13.72 TM 30⁰ -12.19 TE -13.62 TE 
40⁰ -9.96 TE -15.16 TM 40⁰ -12.05 TE -14.42 TE 
50⁰ -8.26 TE -16.30 TM 50⁰ -11.24 TE -14.11 TE 
60⁰ -6.29 TE -11.79 TM 60⁰ -8.81 TE -11.40 TE 

TT 8.14 (mm) 4.05 (mm) 
NL 4 4 

 

L.# 
Des6 Des7 
12-18 GHz  0⁰-60⁰ TE/TM pol. 2-18 GHz  0⁰-60⁰ TE/TM pol 

Mat. # Thick. (mm) Mat # Thick. (mm) 
1 19 1.851 19 2.980 
2 20 0.803 21 1.384 
3 17 0.298 22 0.881 
4 22 0.291 18 0.811 
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Angle of incidence Angle of incidence 
0⁰ -9.99 TE -9.99 TM 0⁰ -8.33TE -8.33 TM 

10⁰ -9.97 TE -10.16 TM 10⁰ -8.26TE -8.48 TM 
20⁰ -9.89 TE -10.70 TM 20⁰ -8.05TE -8.97 TM 
30⁰ -9.70 TE -11.71 TM 30⁰ -7.68TE -9.89 TM 
40⁰ -9.27 TE -13.35 TM 40⁰ -7.11TE -11.47 TM 
50⁰ -8.44 TE -15.59 TM 50⁰ -6.28TE -11.16 TM 
60⁰ -7.04 TE -15.42 TM 60⁰ -5.02TE -9.45 TM 

TT 3.24 (mm) 6.056 (mm) 
NL 4 4 
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Table 6. The results selected from 50 pareto points obtained by TO-ABC algorithm for Des4 (2-8 GHz) 
 Layer sequence d1 d2 d3 d4 RTE RTM TT 

28 [19-21-20-18] 3.535 0.780 0.299 1.232 -5.051 -10.600 5.845 
29 [19-21-20-18] 3.118 1.481 0.458 1.082 -4.928 -10.794 6.138 
30 [19-21-20-18] 4.000 0.770 0.012 1.422 -5.171 -11.162 6.204 
31 [19-20-18] 4.000 1.082 1.461  -5.238 -11.749 6.543 
32 [19-20-18] 4.000 1.159 1.422  -5.268 -11.827 6.581 
33 [19-20-24-18] 3.975 1.072 1.954 1.144 -6.290 -11.790 8.140 
34 [19-24-17] 4.000 3.802 1.508  -6.048 -12.813 9.310 

 
Table 7. The results selected from 38 pareto points obtained by TO-ABC algorithm for Des5 (8.2-12.4 GHz) 

 Layer sequence d1 d2 d3 d4 RTE RTM TT 

18 [25-29-30-25] 0.684 0.828 0.074 0.757 -6.466 -12.809 2.343 
19 [18-35-26-18] 0.095 2.542 0.478 0.396 -6.884 -14.660 3.512 
20 [17-36-37-17] 0.095 2.551 0.894 0.517 -8.812 -11.405 4.058 
21 [36-36-17-24] 3.358 0.862 0.655 0.380 -8.040 -14.950 5.254 
22 [32-34-20-23] 3.336 0.443 1.195 0.538 -7.398 -15.295 5.513 
23 [29-23-34] 4.000 0.622 1.731  -7.802 -16.404 6.353 
24 [30-29-26-27] 1.442 3.026 2.032 2.628 -9.413 -12.639 9.129 

 
Table 8. The results selected from 40 pareto points obtained by TO-ABC algorithm for Des6 (12-18 GHz) 

 Layer sequence d1 d2 d3 d4 RTE RTM TT 
9 [19-20-17-22] 1.061 1.006 0.297 0.185 -5.379 -12.993 2.549 
10 [19-20-17-22] 1.279 0.837 0.243 0.289 -5.547 -13.839 2.648 
11 [19-20-17-22] 1.362 0.791 0.250 0.312 -5.743 -14.561 2.715 
12 [19-20-17-22] 1.486 0.761 0.298 0.283 -5.793 -14.516 2.827 
13 [19-20-17-22] 1.461 0.801 0.298 0.291 -5.846 -14.192 2.851 
14 [19-20-17-22] 1.560 0.814 0.298 0.291 -6.199 -12.922 2.963 
15 [19-20-17-22] 1.851 0.803 0.298 0.291 -7.036 -9.994 3.243 

 
Table 9. The results selected from 19 pareto points obtained by TO-ABC algorithm for Des7 (2-18 GHz) 

  Layer sequence d1 d2 d3 d4 RTE RTM TT 

11 [19-24-21-18] 2.894 0.093 1.925 0.837 -4.960 -8.763 5.749 
12 [19-21-22-18] 2.781 1.387 0.742 0.866 -4.811 -9.647 5.775 

13 [19-24-21-18] 2.894 0.232 1.866 0.849 -4.897 -8.960 5.842 
14 [19-24-21-18] 2.894 0.353 1.783 0.897 -4.872 -9.152 5.928 
15 [19-21-22-18] 2.980 1.384 0.881 0.811 -5.026 -8.330 6.056 

16 [19-21-22-18] 2.885 1.598 0.898 0.771 -5.000 -9.247 6.153 
17 [19-24-20-18] 2.796 1.334 1.526 1.098 -4.911 -9.158 6.754 

 
As listed in the Table 5, both RTE and RTM of Des7 are 

below -7 dB for the all angles of incidence between 0⁰-
40⁰. Although the all designs in this section are optimized 
using limited number materials, the obtained 
satisfactory results clearly demonstrate the superiority 
of the TO-ABC method.   

As shown in Table 5, reflection coefficients of the 
Des6 is below -9.27 dB for entire frequency band and 
angles of incident between 0⁰- 40⁰. Since the Des7 is 
optimized to operate at broad-band (2-18 GHz), as 
shown in Table 9, the maximum reflection coefficient is 
found about -5 dB for whole angles of incidence. 
 

4. CONCLUSION 
 

In the last 25 years, optimization based many 
studies have been carried out for MRA design. While the 
majority of these studies were performed with single-
objective optimization, some of them were performed 
with double-objective approaches. However, in order to 

fully optimize an MRA structure, RTE, RTM and TT must 
be simultaneously optimized. Thanks to the proposed 
TO-ABC algorithm, RTE, RTM and TT are simultaneously 
optimized for the first time and the ES of the objective 
functions are successfully obtained.  Three MRA 
structures designed with virtual materials are compared 
with the latest MRAs in the literature and the 
performance of the proposed method is demonstrated. In 
addition, thanks to the developed GUI, a practical and 
easy user interface for MRA design is also provided. 

Furthermore, four different broad-band wide-angle 
MRAs operating in the frequency ranges of 2-18 GHz are 
designed using 21 real-materials presented in recent 
years. Thanks to developed TO-ABC algorithm, despite 
the limited number of materials, all possible solutions 
providing the specified parameters are achieved and 
successful MRA structures are designed. With the help of 
proposed GUI, MRA designs can be practically realized 
without the need for complex computer scripts. Since the 
results obtained in this study provide a new perspective 
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for MRA design, triple-objective approach can be 
developed for different optimization techniques in 
further studies. 
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 The lack of common semantic information among corresponding geo-objects in different 
datasets required new matching approaches based on geometric and topological measures. In 
this study, a semi-automated matching approach based on the matching capabilities of 
geometric and topological measures was proposed. In the first stage, after the initial matching 
performed by a scoring system, the efficiency of each measure on the matching accuracy is 
evaluated manually by an operator. In the second stage, (1) the score of each measure is 
updated in accordance with the accuracy distributions. This means that the score of a measure 
is increased if it is relatively more significant than others. Finally, (2) matching process is 
repeated with new scores. The proposed approach was tested by matching tree-, cellular-, and 
hybrid-patterned road lines in municipal, private navigation, and OpenStreetMap datasets. 
The experimental testing shows that it has satisfactory results both in accuracy and 
completeness. F-measure is over 86% in hybrid-patterned Bosphorus datasets.   

 
 

1. INTRODUCTION 
 
Geometric integration establishes the relationships 

between the objects in a spatial dataset and the 
corresponding objects in another dataset and ensures 
that the target dataset reaches the required competence. 
Producing better (geometrically and semantically more 
up-to-date and rich) maps by using two different maps 
representing the same entities is also an important issue 
of integration and is called map conflation (Lynch and 
Saalfeld, 1985; Saalfeld, 1988). The integration process 
can be used for different purposes. Cobb et al. (1998) 
remarked the requirements for map conflation as; 
updating with the objects transferred from one dataset to 
another, optimization of geometric and semantic 
accuracy, and transferring data to a dataset containing 
missing information. The conflation process enables the 
spatial data generated by different sources to be used 
together. Geometric, topological and semantic 
similarities between objects are important criteria for 
the conflation process. The greater the similarity, the 
lower the operator effort. 

The conflation process is based on the principle of 
matching geometries (point, line, and polygon) that 
represent the same real entities (Yuan and Tao, 1999). 
Determining the correspondences between the objects 
according to their relations and similarities is called 
matching process (Hacar and Gökgöz, 2019b). 

In this study, a semi-automated matching approach 
based on the efficiency rates of the measures was 
proposed. In this section, related studies in the literature 
are examined. Following section presents the study area 
and datasets, the geometric and topological measures 
used to determine the similarities between the objects, 
and the proposed approach. Section 3 presents the 
experiment with tree-, cellular-, and hybrid-patterned 
road networks, and the evaluation of the results 
conducted with the statistics of the study. Section 4 
concludes the study by discussing the results and giving 
several further suggestions. 

 
1.1. Related Works 

 
Many methods have been developed to match line 

objects since it was first applied in 1980s by Rosen and 
Saalfeld (1985) and Saalfeld (1988). Main problem in line 
matching is that none of the corresponding line 
geometries from different sources are geometrically 
identical. In other words, the geometrical properties of 
corresponding line objects such as orientation, length, 
shape, location have not equal values. According to Hacar 
and Gökgöz (2019b), there are three important reasons 
that researchers prefer to work with line matching rather 
than point and polygon matchings: (1) difficulties in 
establishing relationships between complex 
representations such as patterns, intersections, 
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roundabouts, dead ends, (2) the need to keep navigation 
datasets up-to-date and (3) the rise of Volunteered 
Geographical Information (VGI) datasets. 

The concepts of matching progress in spatial data 
integration have also been focused by researchers. Yuan 
and Tao (1999) classified the matching process by 
geometry, topology and semantic. Ruiz et al. (2011) also 
discussed the integration process by match type; 
geometric, topological and semantic. Volz (2006) 
classified the process by similarity measures; point-, 
linear-, and area-based and the hybrid. Xavier et al. 
(2016) classified the measures as geometric, topological, 
attribute, context, and semantic. Memduhoğlu and 
Başaraner (2018) compared thematic geographic 
ontologies created for cities and discussed about possible 
contributions of basic integration methods and 
technologies of spatial semantics for creating a multi-
representation spatial database paradigm. Hacar and 
Gökgöz (2019a) designed a conceptual model for 
matching process under spatial data integration by 
classifying the types of geometry, measure, relationship, 
and spatial information. 

There have been developed many matching 
methods. While some of them works fully automated, 
others allow the user intervention. Xiong and Sperling 
(2004) proposed a semi-automatic method for matching 
road networks. By using a cluster-based matching 
process, strong relationships between nodes, edges, and 
segments in the two road networks are determined. 
Their method allows identifying and correcting missing 
matches, but requires significant interaction (operator 
intervention) during the process. Li and Goodchild 
(2011) proposed an automated optimization model to 
match the road lines using geometric and semantic 
measures, as well as an affine transformation. They used 
asymmetric property of one-way Hausdorff distance as a 
measure of dissimilarity. In addition, the Hamming 
distance was also used as a criterion of dissimilarity to 
show the difference between road names. Lei and Lei 
(2019) also developed a flow-based optimization model 
that seeks to minimize the total discrepancy between two 
datasets. Moreover, Araújo et al. (2019) proposed a 
Spark-based approach using the names of the places 
(semantic) and context information (e.g., neighbouring 
streets) to compare the corresponding objects in real-
world data sources of New York and Curitiba. 

Some researchers focused on matching objects in 
datasets that have a significant scale difference. To work 
with this kind of source datasets, researchers often use 
topological measures (e.g., the degree of connectivity (or 
the valence), spider function, buffer-growing, etc.) to 
match the corresponding objects. Mustière and Devogele 
(2008) proposed an approach relying on the comparison 
of geometrical, attributive, and topological properties of 
objects for matching networks with different levels of 
details. Olteanu-Raimond et al. (2015) used belief theory 
to represent and fuse knowledge from different sources 
to model imperfection (imprecision, uncertainty, and 
incompleteness), and make a decision. Chehreghan and 
Abbaspour (2018) developed an optimization-based 
matching approach for multi-source spatial datasets by 
taking into account several geometric criteria. The 
approach benefits from a genetic algorithm and 

sensitivity analysis to identify corresponding objects. 
Moreover, Guo et al. (2019) designed a new matching 
method for the objects in multi-scale geodatabases using 
weights of some well-known geometric and topological 
measures. The method has three stages; (1) entire, (2) 
partial matchings, and (3) roundabout detection and 
matching. The authors used a splitting process to match 
the unmatched road segments. 

Some studies in urban lands are also crucial tasks of 
integration cases. Recently, VGI, social media, and 
geocoding data are used to extract and combine new 
spatial data in urban areas (Hacar 2020; Kılıç and Gülgen 
2020; Bilgi et al. 2019). VGI enables generation of maps 
by using crowd-sourced volunteer contributors. Each 
volunteer has equal role to contribute the geometric and 
semantic properties of the geographical objects. 
However, since there is no rule to be a volunteer in VGI, 
non-expert contributors may draw features irregularly 
or inconsistently with basics of cartography. Therefore, 
result map may have low quality. In this context, geo-
object matching is used as a process providing a solution 
for analysing and increasing the quality and accuracy of 
VGI data. Koukoletsos et al. (2012) proposed a matching 
approach to assess the completeness of VGI data. They 
developed a multi-step approach matching 
OpenStreetMap (OSM) road data with the UK's official 
mapping agency Ordnance Survey (OS), taking into 
account the similarities in geometric (search distance, 
direction, line-based buffer zone) and attribute (road 
names). Pourabdollah et al. (2013) also conducted a 
conflation study with attribute-rich OS data to improve 
the quality of OSM road data. Besides, Hacar and Gökgöz 
(2019b) conducted a matching study with OSM and 
TomTom navigation data. In some cases, line-based 
(linear) approaches to matching road objects may be 
insufficient. In such cases, an area-based (spatial) 
matching approach, like proposed by Fan et al. (2016), 
can be used. This method finds the corresponding blocks 
in source datasets with a spatial overlapping ratio. It then 
matches the surrounding roads using the matched 
blocks. Also Fan et al. (2016) tested their method by 
matching OSM and public city data and achieved 
satisfactory results in Heidelberg (Germany), a network 
of regular networks, and Shanghai (China), with a 
relatively more complex network. The sources and 
patterns of road networks are two important factors to 
consider in the matching process. Yang et al. (2014) 
classify the pattern groups of the blocks that the roads 
surround and match the nodes in the groups 
hierarchically. Hacar (2019) and Hacar and Gökgöz 
(2019b) developed a score-based multi-stage method 
and tested it with cellular-, tree-, and hybrid- patterned 
road networks. According to the method, the candidate 
matches are scored in accordance with the geometric and 
topological similarity and then the objects with high 
scores are matched incrementally. 

The matching methods differ from each other 
according to the hierarchical steps of the approaches, 
even if they have some common stages, metrics or rules. 
The design of the method can primarily affect the 
sufficiency of the case study.  Also, the complexity of road 
networks can reduce the sufficiency. The previous 
approaches had low interest in complex road networks 
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such as in Istanbul. In this study, the scope of the 
proposed approach is determined to design a new 
matching model and its applicability in Istanbul road 
networks. 

 

2. THE PROPOSED APPROACH 
 

The proposed approach performs the matching 
process of road lines thanks to the efficiency rates. The 
rates are calculated using geometric and topological 
measures. The main idea for selecting the measures is to 
determine the similarities of corresponding matching 
pairs from different source datasets. As seen in Fig. 1, the 
matching process is managed in two stages in addition to 
a pre-process. Firstly, two road networks are aligned as a 
pre-process. In the first stage, road lines closer to each 
other than a predefined threshold distance value T are 
identified as candidate matchings. Hausdorff distance is 
used to determine the closeness between candidates. T 
should be large enough to identify possible correct 
matches and small enough not to cause too many missing 
matches (mismatching). The threshold can be 
determined by examining the source datasets and 
structure of road networks, and by conducting several 
experimental matching observations. After the selection 
of corresponding pairs, for each candidate matching, (1) 
similarity scores are calculated based on the measures of 
Hausdorff distance (𝑆𝐻), orientation (𝑆𝑂), sinuosity (𝑆𝑆), 
mean perpendicular distances (𝑆𝑃), mean length of 
triangular edges (𝑆𝑇) and modified degree of 
connectivity (𝑆𝐶) (Fig. 2). The maximum similarity score 
assigned to a candidate pair is 4 for all measures apart 
from sinuosity and mean perpendicular distance. 
Sinuosity and mean perpendicular distance represent 
similar characteristics of lines. The maximum score with 
respect to these indicators is 2 so that the maximum total 
score of these indicators shall be the same as the others, 
4, for fairness (Hacar and Gökgöz, 2019b). Table 1 shows 
the computation criteria of scores for each measure. (2) 
Sum of the similarity scores are obtained for each 
candidate pair, and (3) the candidates, whose total 
similarity scores are maximum, are selected as matched 
pairs and other candidates are eliminated. The efficiency 
of each measure is determined by comparing the 
matched pairs with the result of the manual matching. 
After determining the number of correct and incorrect 
matches for each measure, it is ensured that the score of 
the measure, which performs better results in term of the 
number of correct and incorrect matches, is higher than 
that of the relatively insignificant (less number of correct 
and/or much more incorrect matches). For this purpose, 
the efficiency ratio is used, where the numbers of correct 
and incorrect matchings are placed together. Each 
measure has its own efficiency ratio. 

Maximum-Minimum normalization method was 
adapted to calculate the efficiency ratio. Briefly, the ratio 
is multiplied by the similarity scores to increase the effect 
of the measure that performs the matching process with 

high accuracy and reduces, but not disables, the effect of 
the measure with low accuracy. 

The normalization consists of two equation: Profit 
(P) and Loss (L) (Eq. 1 and Eq. 2). While P represents how 
far the value Xi from minimum value, L represents how 
close the value Xi to maximum value. The following 
formulas are used as original Maximum-Minimum 
normalization measures (Başaraner, 2011; Şen, 2013). 

 

𝑃 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

𝐿 =
𝑋𝑚𝑎𝑥 − 𝑋𝑖

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 

 
These criteria can be adapted to calculate the 

normalized values 𝑃𝑖 and 𝐿𝑖 for each similarity measure 
with regards to the correct and incorrect match numbers 
as follows. 

 

𝑃𝑖 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

− 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥
− 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

 (3) 

𝐿𝑖 =
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

− 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥
− 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

 (4) 

 
where 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

 (i=1,2,..,n) represents the number of 

correct matches of the respective measure, 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛
 

represents the least number of correct matches, and 
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

 represents the maximum number of correct 

matches between all the measures. In addition, 
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

 (i=1,2,..,n) represents the number of incorrect 

matches of the respective measure, 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛
 

represents the least number of incorrect matches, and 
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

 represents the maximum number of 

incorrect matches between all the measures.  
The efficiency rates could be calculated as follows: 
 

𝐸𝑖 = 𝑃𝑖 × 𝐿𝑖 (5) 

 
However, the efficiency ratio (Eq. 5) is to be zero for 

the measure that performs the maximum number of 
incorrect or minimum number of correct matches. This 
results in the score used for the respective measure being 
multiplied by a factor of 0 (zero) and the corresponding 
measure being ineffective (disabled) in the second stage 
of the approach. Since there is no correlation between the 
numbers of the correct and incorrect matches, making 
any measure ineffective may reduce the success of the 
process. Also, our experience in matching cases 
motivates us to consider all of the measures, even if it is 
relatively less significant (generating many incorrect 
matches). Therefore, the exponential function should be 
used with previous formula (Eq. 5). Exponential function 
prevents the least important measure from taking a value 
0 (Eq. 6). In other words, the least important measure 
also affects the results in the second stage. 
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Figure 1. The workflow of the proposed approach 
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Table 1. The computation criteria of similarity scores (Hacar, (2019); Hacar and Gökgöz, 2019b) 
Measure Criteria 

Hausdorff distance 
For each candidate pair, the first three closest matches are scored as 𝑆𝐻1

= 4, 𝑆𝐻2
= 2, 

and 𝑆𝐻3
= 1, respectively. The fourth and others are scored as 𝑆𝐻

𝑖 (𝑖>3 ∈𝑍+)
= 0. 

Orientation 
Candidate pairs in the same class are scored as 𝑆𝑂 = 4. If they are in adjacent classes 
(seen in Fig. 2)), the score is assigned as 𝑆𝑂 = 2. Otherwise, the score is assigned as 𝑆𝑂 =
0. 

Sinuosity 

The rules for sinuosity scores (𝑆𝑆) are as follows: 
if 𝑆𝑛 = Low and if 𝑆𝑚 = Low, then  𝑆𝑆 = 2 
if 𝑆𝑛 = Low and if 𝑆𝑚 = Mid, then  𝑆𝑆 = 1 
if 𝑆𝑛 = Low and if 𝑆𝑚 = High, then  𝑆𝑆 = 0 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = Low, then  𝑆𝑆 = 1 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = Mid, then   𝑆𝑆 = 2 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = High, then  𝑆𝑆 = 1 
if 𝑆𝑛 = High and if 𝑆𝑚 = Low, then  𝑆𝑆 = 0 
if 𝑆𝑛 = High and if 𝑆𝑚 = Mid, then  𝑆𝑆 = 1 
if 𝑆𝑛 = High and if 𝑆𝑚 = High, then  𝑆𝑆 = 2 

Mean perpendicular 
distance 

If the difference between the mean perpendicular distances of Line n and Line m is less 
than or equal to 𝜎𝑝 2⁄  (𝜎𝑝 is the standard deviation of all mean perpendicular distances), 

then it is scored as 𝑆𝑃 = 2. If the difference between the mean perpendicular distances 
of Line n and Line m is greater than 𝜎𝑝 2⁄  and less than or equal to 𝜎𝑝, then it is scored as 

𝑆𝑃 = 1. Otherwise, it is scored as 𝑆𝑃 = 0. 

Mean length of 
triangle edges 

If the difference between the mean length of triangle edges of Line n and Line m is less 
than or equal to 𝜎𝐸 2⁄  (𝜎𝐸 is the standard deviation of all mean lengths of triangle edges), 
then this matching is scored as 𝑆𝑇 = 4. If the difference between the mean length of 
triangle edges of Line n and Line m is greater than 𝜎𝐸 2⁄  and less than or equal to 𝜎𝐸, then 
it is scored as 𝑆𝑇 = 2. Otherwise, it is scored as 𝑆𝑇 = 0. 

Modified degree of 
connectivity 

If the candidates have the same degree, then it is scored as 𝑆𝐶 = 4. If there is a just one 
degree of difference between the candidates, then it is scored as 𝑆𝐶 = 2. Otherwise, it is 
scored as 𝑆𝐶 = 0. 

 

 
 
Figure 2. The similarity scores of possible matches 
(Hacar and Gökgöz, 2019b). 
 

𝐸𝑖 = 2𝑃𝑖×𝐿𝑖  (6) 

 
In the second stage, the matching process is 

repeated with similarity scores updated (optimized) 
with 𝐸𝑖 efficiency rates. This means that the score of a 
measure is increased whether it is relatively more 
significant than others. Finally, the candidates with the 
highest total similarity scores are determined as certain 
matches. 

 
3. EXPERIMENTAL TESTING 
 
3.1. Study Area and Datasets 

 
The proposed method was tested with tree-, 

cellular-, and hybrid-patterned road networks in 
Istanbul.  We used different sources as; Istanbul 
Metropolitan Municipality (IMM), two private navigation 
companies Başarsoft and TomTom, and OSM, one of the 
popular VGI projects, to show how efficient the proposed 
approach with different samples (Fig. 3) (Table 2). Also, 
an additional matching process was conducted with a 
large amount of data covering Bosphorus of Istanbul to 
prove its efficiency in a realistic way (Fig. 4). In 
Bosphorus, major elevation differences exist from 
coastal land to exterior bound. This kind of local surface 
changes makes road networks complex and leads the 
road shapes to be similar with hybrid-patterns. 
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Figure 3. Tree-, cellular-, and hybrid-patterned road networks: IMM (green), Başarsoft (red), OSM (blue), and 
TomTom (orange) 

 

 
Figure 4. The road networks in Bosphorus, Istanbul: 
OSM (blue) and TomTom (orange) 

Table 2. The number or objects and total road length in 
each dataset 

Pattern Source 
The number 

of objects 

Total 
length 
(km) 

Tree 
IMM 134 14.54 

Başarsoft 118 13.64 

Cellular 
OSM 153 16.22 

TomTom 146 15.87 

Hybrid 
OSM 288 21.95 

TomTom 221 19.69 

Bosphorus 
OSM 3030 221.60 

TomTom 1381 141.04 
 

3.2. Pre-processing 
 

The source datasets have different coordinate 
systems. This difference affects the calculation of 
similarity negatively. For example, the objects in the 
Başarsoft, TomTom, and OSM datasets have geographical 
coordinates in WGS84 datum. However, the measures 
used in the study are calculated in metric. Therefore, the 
geographical coordinates of the objects were 
transformed into the ITRF96 datum (Gauss-Krüger 
projection, Central meridian: 30° and GRS80 ellipsoid) 
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where the IMM dataset was defined. Furthermore, two 
road networks were aligned using linear rubber-sheet 
transformation. Moreover, we set T distance threshold as 
85m for tree- and cellular-patterned road networks and 
50m for hybrid-patterned road network by using our 
previous matching experiences with source datasets and 
the study area. 

 

3.3. Results and Evaluation 
 

The results of the matching process were compared 
with the results of manual matching, and then, the 
numbers of correct and incorrect matches in Table 3 
were determined. The evaluation was performed both 
integrated and separately with each geometric and 
topological measure. In the first stage of the approach, 
some results occurs categorically in accordance with the 
type of measures and road patterns. While Hausdorff 
distance measure performed the maximum number of 
correct and the least number of incorrect matches in both 
tree and cellular patterns, its result in hybrid pattern is 
different. Mean perpendicular distance performs the 
maximum number of correct matches. However, it also 

gave the most number of incorrect matches in hybrid 
patterns. Therefore, we examine the results of the 
measures by using their correctness and incorrectness 
percentages (Table 3). Hausdorff distance measure 
performed the maximum correctness and the minimum 
incorrectness in all patterns. Sinuosity and mean 
perpendicular distance measure gave the least 
correctness and the maximum incorrectness in cellular 
pattern. Orientation was the second best similarity 
measure in terms of both correct and incorrect matching 
in all patterns. From this point of view, it can be observed 
from Table 3 that mean perpendicular distance was the 
worst in all patterns. Similarly, mean length of triangle 
edges and modified degree of connectivity performed the 
least correctness and the most incorrectness in hybrid 
pattern. However, these measures gave similar results 
with orientation and sinuosity in tree. 

The similarity scores used in the first stage were 
optimized by the 𝐸𝑖 in Table 4 and new similarity scores 
to be used in the second stage were calculated as in Table 
5. 

 

Table 3. The numbers and percentages of correct and incorrect matching 
  H1 O2 S3 P4 T5 C6 1. stage 

Tree 
Correct 

Number 90 88 84 83 86 86 88 
% 78 54 49 40 43 47 75 

Incorrect 
Number 26 75 86 125 114 97 30 

% 22 46 51 60 57 53 25 

Cellular 
Correct 

Number 146 146 109 144 142 145 147 
% 95 39 33 33 37 39 94 

Incorrect 
Number 7 233 224 299 246 231 9 

% 5 61 67 67 63 61 6 

Hybrid 
Correct 

Number 191 191 182 195 181 189 190 
% 83 56 47 40 40 40 82 

Incorrect 
Number 38 148 206 296 275 279 42 

% 17 44 53 60 60 60 18 
 1Hausdorff distance; 2Orientation; 3Sinuosity; 4Mean perpendicular distance; 5Mean length of triangle 

edges; 6Modified degree of connectivity 

 
Table 4. Efficiency rates (𝐸𝑖) of similarity measures 

𝐸𝑖  H1 O2 S3 P4 T5 C6 

Tree 2.00000 1.28409 1.03978 1.00000 1.03356 1.08765 

Cellular 2.00000 1.16961 1.00000 1.00000 1.11875 1.17006 

Hybrid 1.64067 1.32845 1.01742 1.00000 1.00000 1.02644 

1Hausdorff distance; 2Orientation; 3Sinuosity; 4Mean perpendicular distance; 5Mean length of triangle edges; 6Modified degree of 
connectivity 

 
Table 5. The similarity scores used in the first and second stages of the approach 

Stage Pattern 𝑆𝐻 𝑆𝑂 𝑆𝑆 𝑆𝑃  𝑆𝑇  𝑆𝐶  

1. All 4 2 1 4 2 2 1 2 1 4 2 4 2 

2. 

Tree 8 4 2 5.14 2.57 2.08 1.04 2 1 4.13 2.07 4.35 2.18 

Cellular 8 4 2 4.68 2.34 2 1 2 1 4.48 2.24 4.68 2.34 

Hybrid 6.56 3.28 1.64 5.31 2.66 2.03 1.02 2 1 4 2 4.11 2.05 

In the second stage, the relationships between the 
candidates were determined with new similarity scores 

in Table 5 and the process was performed for the last 
time. Accordingly, while the proposed approach, with 
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the updated (optimized) scores, performed almost the 
same number of matches as the number of manual 
matching in tree and cellular patterns, some missing 
matching occurred in hybrid pattern (Table 6). The 
missing matching is related to two parameter: (1) 
matching capability of the approach and (2) distance 
threshold. While the approach was common for all the 
source patterns, the distance threshold T was different 
in hybrid pattern. Therefore, possible reason for the 
missing matches of hybrid was T.  

With the updated similarity scores, the number of 
correct matches increased by 4 and the number of 
incorrect matches decreased by 7 in tree-patterned 
roads. Although the number of incorrect matches 
decreased by 2 in cellular-patterned roads, the number 
of correct matches also decreased by 1. While there is no 
change in the number of correct matches in hybrid roads 
after second stage, the number of incorrect matches 
decreased by 8. 

The operation of controlling the manual matching 
could have been too hard with over a thousand 
corresponding matching pairs in Bosphorus datasets. 
Therefore, after generating the final matching with 
whole datasets, the correct and incorrect matches was 
determined by comparing randomly selected sample 
data with manual matching (Fig. 5). In Table 6 and 7, the 
results are based on the sample of Bosphorus datasets. 

 

 
Figure 5. Randomly selected roads (green) and the 
whole road networks (grey) in Bosphorus datasets. 

 

Since Bosphorus datasets consist of several types of 
patterns, it is better to examine matching instances in 
accordance with the pattern type separately. Fig. 6 
shows correctly matched road lines with cellular 
pattern. They were matched correctly both in the first 
stage and the second stage. Both this visual instance and 
Table 6 show that the second stage of the proposed 
method almost have the same result with the first one in 
cellular patterned-road networks. Besides, while the 
northwest roads with hybrid pattern in Fig. 7 was 
matched correctly, the south was a missing match. The 
possible reason is that the corresponding roads have 

quite different geometric properties such as sinuosity 
and centroid. Moreover, the road 1 in Fig. 8 was matched 
incorrectly with the road 2ˈ both in the first and second 
stage since the geometric and topological properties of 
the road 1 are more similar with the road 2ˈ than with 
the road 1ˈ. As a matter of course, there were expected 
instances showing us that the second stage optimized 
the matching process by eliminating the incorrect 
matches in the first stage. The road 1 Fig. 9b was 
matched with three roads in other datasets in the first 
stage. However, the matches with the roads 2ˈ and 3ˈ 
were incorrect. In the second stage, the efficiency rates 
ensured the elimination of the incorrect matches. 

 

Table 6. Final results of the matching process by means 
of matching numbers 

 Cor.1 Incor.2 Miss.3 Sum 

Tree 

Man.4 116 - - 116 

1.Stage 88 30 - 118 

2.Stage 92 23 1 115 

Cellular 

Man.4 150 - - 150 

1.Stage 147 9 - 156 

2.Stage 146 7 - 153 

Hybrid 

Man.4 262 - - 262 

1.Stage 190 42 30 232 

2.Stage 190 34 38 224 

Bosphorus 
sample 

(Hybrid) 

Man.4 151 - - 151 

1.Stage 114 25 12 139 

2.Stage 114 18 19 132 

1Correct; 2incorrect; 3missing; 4manual matching 

 

 
Figure 6. Correct matches in the cellular pattern 
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Figure 7. Correct (northwest) and missing (south) 
matches 

 

 
Figure 8. Incorrect matches in the hybrid pattern 
 

 
Determining the accuracy of a matching study only 

by the correct matches is not sufficient. For example, in 
a study area, there are 100 manually detected possible 
matches and a selected automated method performed 
10 matches only. If none of the 10 matches is incorrect, 
the method is considered to have worked with 100% 
correctness. However, according to manual matching, 
the method could not identify 90 matches. This shows 

that completeness should also be taken into account 
when making assessments of accuracy. Therefore, three 
of the frequently used measures of statistical analysis in 
data science; precision (Eq. 7), recall (Eq. 8) and F-
measure (Eq. 9) were used to evaluate the proposed 
method (Samal et al., 2004; Song et al., 2011; Fan et al., 
2016). 

 
 
Figure 9. Manual (a), the first stage (b), and the second stage (c) matching 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ

 (8) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

Three parameters have been used in the statistical 
measures: Number of correct matches (true positive), 
number of incorrect matches (false positive), and 
number of missing matches (false negative) (𝑁𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ). 
The number of missing matches was obtained by 
subtracting the total number of matches performed by 

the method (sum of true and false matches) from the 
number of manual matches. 

The precision measure is a ratio of the number of 
correct matches to the total number of matches. 
Therefore, the precision was used as the accuracy 
indicator. F-measure is an evaluation measure in which 
the precision (accuracy) and recall (completeness) 
together affect in a balanced way. In the second stage of 
the method, the accuracy increased by 5.4%, 1.2%, 2.9%, 
and 4.4% in tree-, cellular-, and hybrid-patterned roads 
and Bosphorus sample, respectively (Table 7). It can be 
said that the results are satisfactory in terms of accuracy. 
Recall is a measure of how complete the methods are 
performed. For instance, when Table 6 is examined 
carefully, comparing with the manual matching result, 
the proposed approach performed two more matchings 
(over-matches) in the first stage and one missing in the 
second stage with tree-patterned roads. As seen in Table 
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7, the completeness is 100% in the first stage and 98.9% 
in the second stage. This means that over-matches do not 
affect the value of the recall measure. This also indicates 
that the recall value cannot be a standalone measure for 
the evaluation, but can be used to interpret the accuracy. 
From this point of view, recall value presented that the 
proposed approach ensured high completeness (almost 
fully complete). Therefore, the accuracy of the study is 
quite reliable. In hybrid-patterned roads, the recall value 
decreased in the second stage. This is because of that 
while the number of incorrect matches decreased, the 
number of missing matches increased. Also, F-measure 
increased by 3.1% and 0.7% in tree and cellular patterns. 
It has no change in hybrid pattern since (1) the number 
of correct matches had no change, and (2) decreasing 
number of incorrect matches was added to number of 
missing matches in both stages. 

 

Table 7. The results of the evaluation measures 
 Prec.1 

(%) 
Rec.2 

(%) 
F-m.3 

(%) 

Tree 
1.Stage 74.6 100 85.4 
2.Stage 80.0 98.9 88.5 

Cellular 
1.Stage 94.2 100 97.0 
2.Stage 95.4 100 97.7 

Hybrid 
1.Stage 81.9 86.4 84.1 
2.Stage 84.8 83.3 84.1 

Bosphorus 
sample 

(Hybrid) 

1.Stage 82.0 90.5 86.0 

2.Stage 86.4 85.7 86.0 

1Precision; 2recall; 3f-measure 
 

The number of correct matching of each measure is 
close to each other (Table 3). Therefore, the correct 
matching numbers have no specifics. This assessment 
supports the proposed efficiency formula in which the 
incorrect matches are used. Moreover, Hausdorff 
distance performed the number of correct matches at 
least 3.5 times greater than the number of incorrect 
matches (Table 3). Other measures performed many 
incorrect matches. Sinuosity and mean perpendicular 
distance performed the worst in cellular pattern since 
most of the corresponding road lines has low curvature. 
The results show that some of the similarity measures 
are more important than others for the pattern type on 
which they are used. For instance in our experiments, 
while Hausdorff distance was the best-matcher for all 
patterns, the mean length of the triangle edges was the 
worst-matcher for only hybrid pattern. This kind of 
changeable order between measures clearly supports the 
proposed approach that optimizes the similarity scores 
using the efficiency rates. 

 

4. CONCLUSION 
 

This paper proposes a semi-automated approach for 
road objects in line geometry. Besides, since it 
determined the efficiency rates for the tree-, cellular-, 
and hybrid-patterned road network datasets, the second 
stage of the proposed approach can be performed 
automatically with the road networks in a similar 
pattern. For a road network with a different pattern, the 
efficiency rates must be recalculated since the similarity 
measures have different correctness and incorrectness in 
terms of the pattern type (Table 3). In addition, efficiency 

rates can be calculated using small samples for datasets 
containing a large number of road objects, and then, 
applied to the source datasets. In this case, after the 
efficiency rates are determined semi-automatically by a 
manual matching operator using randomly selected 
samples, the actual large data is matched automatically 
using these efficiency rates. To prove the efficiency of the 
proposed approach, we conducted an additional 
matching process with OSM and TomTom road networks 
in Bosphorus, Istanbul. Since the Bosphorus networks 
were hybrid-patterned, the efficiency rates had no need 
to be computed again. This enables the matching process 
with the same patterned roads to start directly from the 
second stage. 

Utilization of Maximum-Minimum normalization 
and the exponential function enabled the efficiency rates 
to be ranged between 1 and 2. Thus, even the mean 
perpendicular distance was used as the least significant 
measure in the similarity calculation. 

The proposed approach does not use any semantic 
information to determine the similarity between objects. 
Instead, the similarities are calculated on the basis of 
scores based on geometric and topological measures. The 
optimization process updates the scores using the 
efficiency rates. 

In this study, the scoring rules and the geometric 
and topological measures were taken from the study of 
Hacar and Gökgöz (2019b). However, the proposed 
approach can be used to adapt different kind of scoring 
rules using different geometric and topological measures 
that are specific to the characteristics of the source 
datasets. 

The proposed approach has an F-measure over 86% 
in hybrid-patterned Bosphorus datasets. The results are 
satisfactory in terms of accuracy and completeness. The 
experimental testing also show that there is no need to 
conduct a second stage for the cellular-patterned road 
networks. 

Computing the time of the matching process is a 
hard task since the process is conducted semi-
automatically. The process time changes according to the 
experiences of the matching operator in the stage of 
manual results. This may occur the disadvantage that 
prevents planning the geo-process routines. 
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 Digital elevation models (DEM) are indispensable elements of sensitive earth science studies. 
It is important the production and usage of DEMs. The science of remote sensing offers 
scientists an important source of data on this subject. Radar data, which is an active remote 
sensing system, has an important capacity in this regard. DEM production using InSAR data 
has been widely used in the literature in the last decade. The temporal baseline parameter, 
which is an important factor in data generation from InSAR pairs, also affects the final 
products. In this study, it is aimed to examine the usability of these data by producing short 
(4days), medium (84 days) and long (440 days) baseline DEMs using InSAR pairs of COSMO 
Sky-Med satellite. At the same time, photogrammetric DEMs were produced with unmanned 
aerial vehicles (UAV) in selected pilot areas. The DEMs produced were evaluated in 4 land 
surface types, namely plain-bare, agricultural, urban and rugged area. In addition, by 
performing statistical analyzes such as RMSE, MAE, the accuracy of the produced DEMs 
compared to the DEMs produced with UAV was examined. The results showed that short and 
medium baseline data give more accurate results than long baseline InSAR pairs. Increasing 
the temporal baseline, increases the amount of error in the DEMs produced. Also, the effect of 
land surface types on the produced DEMs was revealed in the results of the study.   

 
 
 
 
 
 

1. INTRODUCTION 
 
The concept of the “Terrain Model” depicted as a 

numerical representation of the topographic surface, was 
first defined by Miller and Laflamme (1958). In the 
following years, several terms related to the 
representation of the topographic surface have been 
defined (Szypuła 2017).  Among many terms, it is the 
digital elevation model (DEM) that is the most common 
and accepted in geomorphometric and GIS terminology. 
DEM is a shape that helps us to describe the earth 
mathematically, with a series of height measurements at 
regular/irregular intervals to best show the surface in 3D 
projection. In general, DEM is divided into two 
categories: a digital terrain model (DTM) that is free from 
trees, buildings and all kinds of objects, and a digital 
surface model (DSM) that reflects all man-made and 
natural objects (Martha et al. 2010). 

DEMs are considered useful in many geospatial 
studies and applications, natural disasters (Hengl and 
Evans, 2009; Orhan et al. 2020a), archeology (Hageman 
et al. 2000), glacier and glacier analysis (Bishop et al. 
2001), hydrology (Yang et al., 2015), plant cover 
research, urban studies, geomorphology and topography 
(Erasmi et al. 2014; Pope et al. 2007). Therefore, DEMs 
that provide information about the topography surface 
are essential for several different studies that are often of 
interest to geomorphologists as a starting point for 
further analysis (Güvenç, 2020). Several different 
techniques such as stereo satellite images, 
Interferometric SAR (InSAR), Global Navigation Satellite 
System (GNSS) measurements, topographic maps, 
contour lines, photogrammetry techniques, and laser 
scanning are used in the creation of the digital elevation 
model (Algancı et al. 2018; Peralvo and Maidment 2004).

https://dergipark.org.tr/en/pub/ijeg
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Interferometric SAR (InSAR) has been developed as 
the most sufficient technologies to generate DEM with 
better resolution and high accuracy due to its all-
weather, all-day characteristics, and the automatic high-
efficiency processing methods (Zebker and Goldstein, 
1986; Bamler and Hartl, 1998;  Gao et al., 2017; Karabörk 
et al.2021). The InSAR technique is based on the 
principle of converting phase information obtained from 
a complex interferogram into elevation data. Both 
amplitude and phase information of microwave energy 
are measured in SAR systems. While the amplitude 
information depends on the electrical properties such as 
humidity, chemical substance content and geometric 
properties such as surface roughness, texture, the phase 
information depends on the distance between the 
satellite platform and the earth surface, like LiDAR and 
GNSS systems (Erten et al. 2018). 

Space-based techniques such as InSAR are highly 
preferred in DEM production. Before 2007, only high-
resolution stereo optical images were used in the 
production of high-resolution space-based DEMs 
(Sefercik et al. 2020). However, with the launched of 
high-resolution SAR satellites such as COSMO Sky-Med 
(COnstellation of small Satellites for Mediterranean basin 
Observation) after 2007, it has enabled the production of 
high-resolution DEMs under all weather conditions. The 
COSMO-SkyMed system, which is the unique 
constellation of four X-band radar satellites for Earth 
Observation, offers high-resolution SAR data (1m for 
Spotlight mode) for DEM generation. However, due to the 
re-pass monostatic imaging geometry, the performance 
of the generated DEMs was limited (Sefercik et al. 2020). 
The change in the earth's surface observed with the SAR 
images acquired at different dates causes a decrease in 
the coherent between the two SAR imaging systems. So, 
this situation prevents obtaining reliable phase data in 
the generation of elevation data. Therefore, the time 
difference between the SAR images is the main source of 
error in the produced DEM, and it has caused the 
production of DEM with low accuracy, especially in 
regions such as agricultural land where the temporal 
change is fast on the topography (Erten et al. 2018). In 
order to minimize limitations and increase the accuracy 
of acquired DEMs, COSMO Sky-med satellite works with 
the tandem-like interferometry system (within a 24-hour 
delay).  

In the literature, there is a lack of information about 
the effect of different temporal baselines of SAR images 
on the DEMS derived from COSMO Sky-Med data. In this 
context, it is aimed to evaluate the accuracy of DEMs 
produced by using three COSMO Sky-med image pairs 
with different baselines (4-84-440 days) over the various 
types of surfaces such as plain-bare, rugged, agriculture 
and urban. UAV was used as base data in to assess the 
accuracy of DEM derived from COSMO Sky-Med data. 

 

2. STUDY AREA AND MATERIALS 
 

2.1. Study Area 
 

 Karapınar is a district located approximately 100 
km east of Konya and is generally built on plains. 
Although traditional dry farming is practiced in the 

region, it has caused the emergence of karstic surface 
shapes due to irrigated agriculture and the geological 
structure of the region since the early 2000s (Orhan et al. 
2020a). Sinkhole formations, which are caused by the 
misuse of groundwater in the region and continue to 
emerge day by day, threaten the people of the region 
(Orhan et al. 2020b).  The main factor in choosing the 
study area is the coexistence of different land features in 
the region. Pilot areas with 4 different land surface types 
(plain-bare, agricultural, urban, rugged) determined in 
the study area were used in this study. Figure 1 provides 
the general boundaries of the study area and the selected 
pilot areas. 

 

2.2. Materials 
 

SAR images of the COSMO Sky-Med sensor were 
used in the study. COSMO Sky-Med, is a system that 
detects in X band and consists of 4 constellations, 
conceived by ASI (Agenzia Spaziale Italiana). The system 
is capable of observing in 3 imaging modes as spotlight, 
stripmap and scansar. The system can operate with 
single, double or full polarization. The revisit period of 
the system can be up to 1 day (Covello et al., 2010). In this 
study, 3 InSAR pairs, obtained with COSMO Sky-Med 
sensor, were used. InSAR pairs were created considering 
the temporal baselines. While selecting the InSAR pairs 
for DEM generation, care has been taken to ensure that 
other properties (polarization, orbital pass etc.) are the 
same, except for the baseline. Temporal baselines of 
selected InSAR pairs are 4 days, 84 days and 440 days, 
respectively. Technical information of the InSAR pairs 
used is presented in Table 1. 

In addition to the InSAR data, photogrammetric 
flights were carried out using UAVS to control the 
produced DEMs on 15th of March 2016. In the study, 
photographs were taken using a DJI Phantom 4 model 
UAV at flight height of 100m, with overlap ratio of 80%. 
Ground control points have been established on the land 
surface to be used in evaluating the photographs. GCPs 
are designed in size that can be selected from 
photographs. In addition, red and white colors are used 
to distinguish it from photographs.  The coordinates of 
GCPs were determined by precise GNSS measurements 
using with real time kinematic (RTK) method. The UAV 
and GCP used in the study are shown in Figure 2. 
 
Table 1. COSMO Sky-med image specifications 

 InSAR Pair 1 InSAR Pair 2 InSAR Pair 3 

Acquisition 
Date 

11.03.2016 11.03.2016 11.03.2016 

15.03.2016 03.06.2016 25.05.2017 

Orbit Pass Descending 

Polarization VV 

Perp. 
Baseline (m) 

466.04 52.43 41.49 

Temp. 
Baseline 
(days) 

4  84  440  

Height of 
Ambiguity 

(m) 
13.88 123.41 155.95 

Doppler 
Difference 

(Hz) 
485.49 337.58 37.85 
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Figure 1. Study areas, A) Agriculture B) Urban C) Plain-Bare D)Rugged.

 
Figure 2. A) UAV b) GCP 

 
3. METHODS 
 

Digital Elevation Model (DEM) generation method 
with InSAR technique was used in the study. As known, 
InSAR is a radar imaging technique mostly used in 
remote sensing and geodetic studies (Abdikan, 2007). 
InSAR technique is based on combining images obtained 
with radar systems for studies such as DEM generation, 
deformation measurements and glacier studies 
(Hanssen, 2001). This technique involve information 
calculated by acquiring the phase difference of the 
appropriate image points in each of the two SAR images. 
The phase difference can be thought of as the value of the 
temporal difference, in terms of angle, between signals 
sent to the same location and having the same frequency 
(Yılmaztürk, 2015). 

Digital Elevation Model (DEM) is defined as a data 
set that presents the elevation information and 
characteristics of the topography in 3 dimensions 
(Sefercik, 2007). DEMs can be used as a base for many 
analyzes that require elevation information in the field of 

earth sciences. DEMs, can be produced by techniques 
such as ground survey, aerial photogrammetry, remote 
sensing, laser scanning and InSAR (Amans et al. 2013; 
Algancı et al., 2018). 

DEM generation with the InSAR technique is based 
on the process of superimposing, one of the two images 
of the same region taken at different times as the master 
image and the other as the slave image (Kyaruzi, 2005). 
DEM generation process from radar images consists of 
coregistration, inteferogram generation, phase filtering, 
phase unwrapping, conversion of phase information to 
height information and geometric correction stages, 
respectively (Crosetto ve Crippa, 2000). Figure 3 
provides DEM generation stages with InSAR technique. 

Coregistration is one of the main steps in 
interferometric image processing. For this process to 
occur, at least two SAR images must have similar 
acquisition geometries. The slave image must match the 
main image (Gens, 1998; Sefercik, 2010).  In the image 
registration step, operations are carried out under three 
main headings as stack, cross- correlation and warp. The 
stack operator is the geographic resampling of two 
images (master and slave) that are generated by 
repeated scanning of the same region. Meanwhile, the 
values of the slave image are resampled according to the 
master image. The cross-correlation process step is the 
alignment of the same point on the earth that matches the 
master image. The warp operator that working with the 
cross-correlation, performs a mathematical calculation 
using GCPs automatically generated by the software for 
matching. 
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Figure 3. InSAR DEM generation flowchart 

 

Interferograms are images obtained from two 
different SAR images of the same region and that contain 
the phase difference information between these two 
images (Richards, 2009). With the interferogram 
generation step, a more useful single image is generated 
by using the InSAR pair. The amplitudes of the 
corresponding pixels in both images are averaged and 
the difference of the phase values for each point in the 
image is calculated. The new image obtained after all 
these processes is called as interferogram. 

Filtering is a process performed to increase the 
signal to noise ratio to increase the quality of the 
interferogram. The filter softens the spectrum of the 
interferogram into small pieces, using the amplitude 
values of the spectrum. In this process, the noise in the 
image is assumed to be lower than the other signals and 
suppressed and large amplitudes are enriched by 
assuming that the actual signal in the spectrum has a 
relatively large amplitude (Şengün, 2009). The most 
widely used filter in the literature is the adaptive phase 

filtering developed by Goldstein and Werner (Şengün, 
2009; Song et al., 2014). 

The interferogram showing the height differences of 
the topography is the module of 2π. The interferogram 
contains uncertainty in its content. To obtain height 
information at each point in the image, the correct 
integer number of phase cycles must be added to each 
measurement. The process of removing this uncertainty 
is called phase unwrapping. 

Elevation information obtained from InSAR data is 
calculated with satellite orbit parameters and specific 
satellite geometry. Satellite orbit parameters are 
produced in The Earth Centered Earth Fixed (ECEF) 
coordinate system. This shows that a reference ellipsoid 
is needed for elevation calculations (Gens, 1998; Sefercik, 
2010). For this reason, a reference DEM is used when 
performing the phase-elevation conversion. Shuttle 
Radar Topography Mission (SRTM) elevation models 
were used as the reference DEM for all images in this 
study. 

The geometric correction of SAR images is different 
from optical images. Since SAR data have a side view 
geometry, a geometric distortion occurs on the data 
produced. Since SAR systems cause nonlinear 
compression, they cannot be corrected using 
polynomials. A geometric correction should be made by 
considering the sensor and processor characteristics 
(Sefercik, 2010).  At this stage, the Range-Doppler terrain 
correction method is used for SAR images. This method 
assures the correction of geometric distortions caused by 
factors such as foreshortening and shadow, using a DEM 
to correct the position of each pixel. 

To compare the DEMs produced with the InSAR 
technique, the reference DEM to be used in the analysis 
was produced by evaluating the determined areas with 
photogrammetric methods with an UAV. At this stage, 
unique flight plans were prepared for each region, with 
100 m flight altitude and 80% longitudinal overlap 
(Figure 4). Also, 20 GCPs were used for each pilot area 
and 10 of them were reserved for testing the model 
produced. 

 

 
Figure 4. Flight plan sample 

As a result of the photogrammetric evaluation of the 
photographs, 3D model of the land surface and 
orthomosaic image can be obtained. During these 
processes, all photographs are evaluated using the 
coordinates of the GCPs established on the land surface 
as a reference. The produced data and GCPs were 
analyzed via Pix4d software. At the end of the process 
DEMs produced which have ±10cm precision.  DEM 



International Journal of Engineering and Geosciences– 2021; 6(3); 157-164 

 

  161  

 

obtained at this stage of the study was used as a reference 
for the evaluation of DEMs produced from InSAR data. 

 

3.1 Statistical Analysis 
 

Statistical analyzes were made to evaluate the DEMs 
obtained in the study. Root Mean Square Error (RMSE), 
Relative Root Mean Square Error (R-RMSE), Normalized 
Root Mean Square Error (N-RMSE) and Mean Absolute 
Error (MAE) analyzes were performed, respectively. 

RMSE is the most suitable evaluation method for 
DEM data (Yang and Hodler, 2000). MAE calculates the 
mean errors independent of the directions of the 
variables.  In order to obtain the total error, the 
differences of reference and observation data should be 
summed and divided by the number of observations 
(Güvenç, 2020). 

RMSE, R-RMSE, N-RMSE and MAE calculated by 
following equations (Eq. 1-4) respectively. 
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where Zr is the elevation values of reference DEM, Zo is 
the elevation values of observed DEM and n is the 
number of observations. 
 

3.2 DEM Evaluation 
 

Several processes have been applied to compare the 
produced DEMs with the reference DEM. Due to the 
coordinate systems and datum effects of the produced 
DEMs, there may be problems of not fully overlapping 
with each other on the horizontal. In order to eliminate 

this issue DEMSHIFT module of BLUH software 
developed by Dr. Karsten Jacobsen, Institute of 
Photogrammetry and Geoinformation (IPI), University of 
Hannover, Germany was used. The module can eliminate 
the horizontal position errors of the produced DEMs 
according to the reference DEM depending on the slopes 
of the land. Figure 5 shows the effect of horizontal 
position error on vertical accuracies. The error of ∆D of 
the X point given in Figure 5 was detected and corrected 
in the X and Y directions, and the overlapping of the data 
was achieved. As a result of this process, the height error 
of ∆Z is eliminated. 

 

 
Figure 5. The effect of X-Y axis error on Z axis error 
(Adapted from Sefercik, 2018) 

 

4. RESULTS and DISCUSSIONS 
 

In the study, we compared short, medium and long-
baseline data produced by interferometric methods and 
DEMs produced by UAVs and performed the statistical 
analysis. First of all, horizontal position errors of DEMs 
produced by interferometric methods were corrected by 
reference DEM by using the DEMSHIFT module 
(Jacobsen, 2005). Table 2 represents the applied 
corrections in X and Y directions according to the study 
areas. Figure 6 shows DEMs produced with InSAR data 
and UAV 
 

Table 2. Horizontal shifting values of DEMs according to 
land surface types (LST) 

           Baseline 
 
LST 

Short Medium Long 

X (m) Y (m) X (m) Y (m) X (m) Y (m) 

Plain-Bare 0.125 -2.852 0.149 -2.365 -0.834 2.279 

Rugged 
1.052 5.704 -1.097 -5.363 -1.535 -2.698 

Urban -0.294 2.689 -0.304 -2.700 -0.300 -2.691 

Agriculture 1.373 4.829 1.383 -4.835 1.153 -4.867 

 

 
Figure 6. Produced DEMs with InSAR and UAV A) UAV Plain-Bare Area, B) UAV Agricultural Area, C) UAV Urban 
Area, D) UAV Rugged Area 
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Figure 7. Profile plots according to land surface type

Profile graphics according to different land surface 
types are displayed in Figure 7. Profiles were extracted 
using the values taken from areas determined from 
different land surface types. When the profile charts are 
examined, it is clearly understood that InSAR data are 
affected by land surface types.

On the other hand, generally, while short and medium 
baseline data  indicate close values in all graphs, there are 
differences in data with long baseline. This situation is 
seen in the sections taken from the profile graphs. 

 Statistical analysis graphics applied to the data are 
shown in Figure 8.

 

   
 

   
Figure 8. Statistical analysis results 

 

The statistical analysis charts shown in Figure 8 
were created using an average of 10000 control points 
for all areas. Statistical analyses have been calculated 
based on the reference DEM produced by UAV. In RMSE 
evaluations, it can be said that short baseline DEM 

(4days) generally has the smallest RMSE value compared 
to other DEMs. It has 1.5 m for the plain-bare area, 2.7 m 
for the agricultural area, 4.3 m for urban area and 5.6 m 
for the rugged area, RMSE value respectively. Also, it 
showed similar results in MAE values (1.4 m-2.3 m-4.1 
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m-5.6 m respectively). As well, R-RMSE and N-RMSE 
values gave similar results too. Considering the medium 
baseline DEM (84 days) data, it can be seen that there are 
no large deviations from the short baseline data. As 
shown in Figure 8, while better results are obtained for 
plain-bare areas in RMSE values, the error occurring in 
other areas increases. It is possible to observe these 
results in other statistical analyzes. Also, when the 
analysis results of long baseline DEM were examined, it 
was observed that there were apparent differences from 
other produced DEMs. RMSE values have reached 1.8 m 
for long baseline plain-bare area, 3 m for agricultural 
area, 4.3 m for urban area and 5.8 m for rugged area. In 
other analyzes, the differences of long baseline data 
appeared similarly. 

The 1.5 m RMSE value obtained in the Plain-Bare 
area highlights an important point about the accuracy of 
the DEMs obtained. Also, when the produced DEMs are 
examined holistically, it is revealed that the average 
RMSE values are approximately 3.5 m. This shows that 
the absolute vertical error of the produced DEMs are 
better than the RMSE values of TSX-WorldDEM which is 
about 4 m (Airbus, 2018), SRTM DEM is 10 m (Farr et al., 
2007), ALOS World3D DEM is about 5 m (Tadono et al., 
2014) and ASTER GDEM V2 is about 9 m (Tachikawa et. 
al., 2011). 

In this study, the effect of land surface types on 
accuracies was revealed more clearly because the 
baseline was not compared in a single land surface type. 
When the Figure 8 were examined, despite the elevation 
changes in plain-bare and agricultural land were not very 
different the RMSE values of the agricultural lands were 
higher than the plain areas. The noise effect of 
agricultural areas on InSAR data is reflected in the results 
in this way. At the same time, the buildings and 
urbanization factors that affect the DEM data caused 
deviations in the data of the urban areas. In addition, the 
rugged area data has the highest error value can be 
explained by the effects that occur during image 
acquisition (layover, shadow, foreshortening) in the 
radar data. Errors caused by the land surface during 
image acquisition also affect the result products 
produced with InSAR data. 

 

5. CONCLUSION 
 

In this study, DEMs produced from short, medium 
and long baseline data of COSMO Sky-Med satellite were 
compared with DEM produced by UAV. Profile graphics 
were drawn from the produced data and statistical 
analysis was performed on the data. 

It is understood from all the analysis that long 
baseline data have larger deviations than short and 
medium baseline data. This is due to climate change, 
seasonal conditions and similar factors as well as errors 
that occur during the processing of InSAR pairs. It is 
obvious that not all land surface types will be the same. 
Therefore, the emergence of different results in different 
land surface types also creates a drawback in the use of 
long baseline data. The authors recommend that 
scientists avoid using long baseline data in DEM 
generation and deformation studies, where the results 
should be sensitive. 

The fact that the comparisons made with the 
baseline of the COSMO Sky-Med satellite are limited in 
the literature makes this study unique. The results can be 
evaluated by diversifying the baselines and making 
different analyzes in future studies. 
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 The present study examines the seasonal relationship between land surface temperature (LST) 
and normalized difference water index (NDWI) on various land surfaces in Raipur City of India 
by using a series of Landsat images for four specific seasons since 1991-92. The LST is 
retrieved using the mono-window algorithm technique. The results show that the LST of the 
study area is noticeably affected by surface composition. The best correlation (correlation 
coefficient r = 0.42) between the LST and NDWI is achieved in the post-monsoon season, 
followed by the monsoon season (r = 0.33), pre-monsoon season (r = 0.25), and winter season 
(r = 0.04). There is a moderate negative correlation (r = -0.49, -0.33, -0.31, and -0.25 in the pre-
monsoon, monsoon, post-monsoon, and winter season, respectively) generated between the 
LST and NDWI on water bodies. On green vegetation, this LST-NDWI correlation is moderate 
positive (r = 0.67, 0.43, 0.50, and 0.25 in the pre-monsoon, monsoon, post-monsoon, and 
winter season, respectively). On human settlement and barren land surface, the correlation is 
weak positive (r = 0.24, 0.21, 0.27, and 0.15 in the pre-monsoon, monsoon, post-monsoon, and 
winter season, respectively). The output of the research work can be used in the town planning 
section of any urban agglomeration. 

 

 

 
 
1. INTRODUCTION  

 

Land surface temperature (LST) is a significant 
factor for investigating the biogeochemical processes of 
the land surface (Tomlinson et al. 2011; Hao et al. 
2016). A variation on LST is due to the variation in land 
surface configuration (Hou et al. 2010). Generally, green 
vegetation and water bodies present low LST, whereas 
built-up area, bare rock surface or dry soil reflects high 
LST (Guha et al. 2020a). Thus, LST related studies are 
very important in urban land use planning and 
development (Li et al. 2017). Urban heat island and 
urban hot spots are a very common term in an urban 
environment and are indicated by the zone of very high 
LST inside the urban bodies (Guha et al. 2017). 
Normalized difference water index (NDWI) is the most 
popular index for water surface extraction and it is 
invariably used in LULC and LST related studies 
(McFeeters 1996; Chen et al. 2006; Essa et al. 2012; 
Yuan et al. 2017; Guha et al. 2020b). Generally, the 
nature of LST-NDWI relationship in an urban area is 

insignificant which is controlled by several factors, such 
as humidity, vegetation, wetland, bare land, air 
pollution, rock surface, dry or wet soil, heterogeneous 
man-made materials, etc. (McFeeters 1996; Ghobadi et 
al. 2014; Guha et al. 2020c). 

In many current research articles, the relationship 
between LST and NDWI was constructed using thermal 
infrared remote sensing. However, the seasonal analysis 
of the LST-NDWI relationship in tropical India is rare. 
The nature of LST and NDWI is changed due to the 
seasonal changes of evaporation, precipitation, moisture 
content, air temperature, etc. The LST-NDWI 
relationship was performed on Raipur City of 
Chhattisgarh State in Central India as it is not influenced 
by the humid maritime or dry extreme climatic 
condition. The study examines the nature and trend of 
the effect of LST on NDWI and the LST-NDWI relation on 
various land surfaces and their seasonal variation. The 
main focus of the study is to explore the long-term 
seasonal analysis of LST-NDWI correlation on various 

https://dergipark.org.tr/en/pub/ijeg
https://orcid.org/0000-0002-2967-7248
https://orcid.org/0000-0002-3433-8355
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land surfaces. The study will be effective for the future 
town and country planners for better environmental 
planning. 

 
2. MATERIALS AND METHOD 

 
2.1. Study area  

 
The Raipur City of India was selected as the study 

area for the entire research work (Fig. 1). It is the capital 
and the largest city of Chhattisgarh State of India (URL-
1). Raipur is one of the fastest-growing smart cities in 
India in terms of the urban area and urban population. 
Fig. 1(a) presents the outline map of India where 
Chhattisgarh State is located in the middle part (URL-2). 
Fig. 1(b) presents the outline map of Chhattisgarh State 
with districts (URL-2). Fig. 1(c) presents the false colour 
composite (FCC) image of Raipur City from recent 
Landsat 8 data (Date: 7 November 2018). Fig. 1(d) 
presents the digital elevation model (Date: 11 October 
2011) of Raipur City (URL-3). The total study area 
extends between 21o11'22"N to 21o20'02"N and 
81o32'20"E to 81o41'50"E with an average elevation of 
219m to 322m (Fig. 1(d)). The Mahanadi River flows to 
the east of the city of Raipur, and the southern side has 
dense forests. The Maikal Hills rise on the northwest of 
Raipur; on the north, the land rises and merges with 
the Chota Nagpur Plateau, which extends northeast 
across Jharkhand state. On the south of Raipur lies 
the Deccan Plateau. The area is under a tropical wet and 
dry climate with four typical seasons (pre-monsoon, 
monsoon, post-monsoon, and winter). Hot and dry pre-
monsoon season extends from March to May (Govil et al. 
2019). June to September (rainy months) is significantly 
considered under the monsoon season. October and 
November months are often considered as the post-
monsoon season, characterised by low pollution, 
moderate temperature, and moderate moisture content 
in plants and air, and a high percentage of green plants. 
December to February months (winter season) 
experience a cool and dry climate. The study area is also 
characterised by tropical mixed deciduous vegetation 
and mixed red soil (Govil et al. 2020). The total 
population of the city is over 1 million, and the sex ratio 
is 945 (URL-1). The city has an 86.90% total literacy 
rate (URL-1). 

 

Figure 1. Location of the study area: (a) India (b) 
Chhattisgarh (c) FCC image of Raipur City (d) DEM of 
Raipur City 
 
 

2.2. Data  
 

Table 1. Specification of Landsat data sets 
Date of 
acquisition 

Time 
(UTC) 

Cloud 
cover 

(%) 

Resolution 
of TIR 

bands (m) 
18-Mar-91 04:17:34 0 120 
03-Apr-91 04:17:46 0 120 
21-May-91 04:18:39 1 120 
26-Sep-91 04:20:03 13 120 
12-Oct-91 04:20:12 6 120 
13-Nov-91 04:20:19 1 120 
16-Jan-92 04:20:22 3 120 
01-Feb-92 04:20:27 0 120 
17-Feb-92 04:20:15 4 120 
14-Apr-95 04:05:06 0 120 
10-Dec-95 03:56:47 0 120 
27-Jan-96 04:00:14 0 120 
23-Sep-96 04:14:16 2 120 
09-Oct-96 04:15:07 0 120 
25-Oct-96 04:15:55 5 120 
10-Nov-96 04:16:41 7 120 
11-Nov-99 04:49:00 0 60 
30-Jan-00 04:48:55 0 60 
03-Apr-00 04:48:35 0 60 
05-May-00 04:48:20 0 60 
26-Sep-00 04:46:33 6 60 
15-Dec-00 04:46:31 0 60 
21-Mar-04 04:35:14 0 120 
22-Apr-04 04:36:01 1 120 
24-May-04 04:36:54 0 120 
09-Jun-04 04:37:23 9 120 
29-Sep-04 04:40:16 9 120 
15-Oct-04 04:40:36 4 120 
16-Nov-04 04:41:11 0 120 
02-Dec-04 04:41:33 0 120 
18-Dec-04 04:41:52 0 120 
19-Jan-05 04:42:17 0 120 
04-Feb-05 04:42:29 0 120 
03-Mar-09 04:42:22 0 120 
19-Mar-09 04:42:44 2 120 
04-Apr-09 04:43:05 0 120 
20-Apr-09 04:43:24 0 120 
06-May-09 04:43:42 0 120 
22-May-09 04:44:00 1 120 
23-Jun-09 04:44:35 0 120 
13-Oct-09 04:46:12 0 120 
29-Oct-09 04:46:20 0 120 
16-Dec-09 04:46:44 1 120 
17-Jan-10 04:46:55 6 120 
02-Feb-10 04:46:59 0 120 
18-Feb-10 04:47:02 7 100 
17-Mar-14 04:56:36 0 100 
02-Apr-14 04:56:19 0 100 
20-May-14 04:55:38 5 100 
05-Jun-14 04:55:45 0 100 
12-Nov-14 04:56:21 7 100 
30-Dec-14 04:56:09 0 100 
15-Jan-15 04:56:09 0 100 
31-Jan-15 04:56:04 0 100 
16-Feb-15 04:55:55 0 100 
12-Mar-18 04:55:43 2 100 
28-Mar-18 04:55:36 0 100 
15-May-18 04:55:08 0 100 
16-Jun-18 04:55:01 2 100 
06-Oct-18 04:55:53 0 100 
22-Oct-18 04:55:59 0 100 
07-Nov-18 04:56:03 0 100 
25-Dec-18 04:55:59 0 100 
11-Feb-19 04:55:52 0 100 
27-Feb-19 04:55:48 4 100 
 

Table 1 shows the specification of Landsat data of 
different sensors. Landsat 8 thermal infrared sensors 
(TIRS) dataset has two TIR bands (bands 10 and 11) in 
which band 11 has a larger calibration uncertainty. 
Thus, only TIR band 10 data (100 m resolution) was 

https://en.wikipedia.org/wiki/Mahanadi_River
https://en.wikipedia.org/wiki/Maikal_Hills
https://en.wikipedia.org/wiki/Chota_Nagpur_Plateau
https://en.wikipedia.org/wiki/Jharkhand
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recommended for the present study (Barsi et al. 2014). 
Landsat 5 thematic mapper (TM) data has only one TIR 
band (band 6) of 120 m resolution. Landsat 7 enhanced 
thematic mapper plus (ETM+) data has a TIR band 
(band 6) of 60 m resolution. The TIR bands of all the 
Landsat sensors were resampled to 30 m pixel size by 
the data provider (URL-3) as the spatial resolution of 
visible to near-infrared (VNIR) and shortwave infrared 
(SWIR) bands of the three types of Landsat sensors is 30 
m. All the raster calculations were processed in the 
environment of ArcGIS 9.3 and ERDAS IMAGINE 9.1 
software. 
 

2.3. Retrieving LST from Landsat Data  
 

In this study, the mono-window algorithm was 
applied to retrieve LST from multi-temporal Landsat 
satellite sensors (Qin et al. 2001) where three necessary 
parameters are ground emissivity, atmospheric 
transmittance, and effective mean atmospheric 
temperature. At first, the original TIR bands (100 m 
resolution for Landsat 8 OLI/TIRS data, 120 m 
resolution for Landsat 5 TM data) were resampled into 
30 m by USGS data centre for further application.  

The TIR pixel values are firstly converted into 
radiance from digital number (DN) values (Markham & 
Barkar 1985). Radiance for TIR band of Landsat 5 TM 
data is obtained using Eq. (1) (URL-3):  

 

 *       (1)MAX MIN
CAL MIN MIN

MAX MIN

L L
L Q QCAL L

QCAL QCAL

 
 

 
   

 

 

where, L  is Top of Atmosphere (TOA) spectral 

radiance (Wm-2sr-1mm-1), CALQ  is the quantized 

calibrated pixel value in DN, MINL   (Wm-2sr-1mm-1) is 

the spectral radiance scaled to 
MINQCAL , 

MAXL   (Wm-

2sr-1mm-1) is the spectral radiance scaled to MAXQCAL , 

MINQCAL  is the minimum quantized calibrated pixel 

value in DN and MAXQCAL  is the maximum quantized 

calibrated pixel value in DN. MINL  , 
MAXL  , 

MINQCAL , 

and MAXQCAL values are obtained from the metadata 

file of Landsat TM data. Radiance for Landsat 8 TIR band 
is obtained from Eq. (2) (Zanter 2019):  

 

.       (2)L CAL LL M Q A    

 

where, L  is the TOA spectral radiance (Wm-2sr-

1mm-1), LM  is the band-specific multiplicative rescaling 

factor from the metadata, 
LA  is the band-specific 

additive rescaling factor from the metadata, CALQ is the 

quantized and calibrated standard product pixel values 
(DN). All of these variables can be retrieved from the 
metadata file of Landsat 8 data. 

For Landsat 5 data, the reflectance value is obtained 
from radiances using Eq. (3) (URL-3): 

2. .
      (3)

.cos s

L d

ESUN










  

 

where,  is unitless planetary reflectance, L  is 

the TOA spectral radiance (Wm-2sr-1µm-1), d is Earth-

Sun distance in astronomical units, ESUN  is the mean 

solar exo-atmospheric spectral irradiances (Wm-2µm-1) 

and s  is the solar zenith angle in degrees. ESUN  

values for each band of Landsat 5 can be obtained from 

the handbooks of the related mission. s  and d values 

can be attained from the metadata file (Coll et al. 2010). 
For Landsat 8 data, reflectance conversion can be 

applied to DN values directly as in Eq. (4) (Zanter 2019): 
 

.
      (4)

sin

CAL

SE

M Q A 





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where, M   is the band-specific multiplicative 

rescaling factor from the metadata, A is the band-

specific additive rescaling factor from the metadata, 

CALQ  is the quantized and calibrated standard product 

pixel values (DN) and 
SE is the local sun elevation 

angle from metadata file. 
Eq. (5) is used to convert the spectral radiance to at-

sensor brightness temperature (Wukelic et al. 1989; 
Chen et al. 2006): 

 

2

1

                                (5)

ln(
b

K
T

K

L



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where, bT is the brightness temperature in Kelvin 

(K), L  is the spectral radiance in Wm-2sr-1mm-1; 2K

and 
1K are calibration constants. For Landsat 8 data, 

1K
 

is 774.89, 2K  is 1321.08 (Wm-2sr-1mm-1). For 

Landsat 5 data, 
1K

 
is 607.76, 2K  is 1260.56 (Wm-2sr-

1mm-1).  

The land surface emissivity , is estimated from Eq. 
(6) using the NDVI Thresholds Method (Sobrino et al. 
2001, 2004; Vlassova et al. 2014).  

 

(1 )                          (6)v v s vF F d        

 

where,   is land surface emissivity, v  is vegetation 

emissivity, s is soil emissivity, vF is fractional 

vegetation, d is the effect of the geometrical 
distribution of the natural surfaces and internal 
reflections that can be expressed by Eq. (7):  

 

                                           (1 )(1 ) (7)s v vd F F      

 



International Journal of Engineering and Geosciences– 2021; 6(3); 165-172 

 

 168  

 

where, v  is vegetation emissivity, s is soil 

emissivity, vF is fractional vegetation, F is a shape 

factor whose mean is 0.55, the value of d may be 2% 
for mixed land surfaces Sobrino et al. 2004).  

The fractional vegetation vF , of each pixel, is 

determined from the NDVI using Eq. (8) (Carlson & 
Repley 1997): 

 

2

m
                          

m m

I
(8)

I I

in
v

ax in

NDVI NDV
F

NDV NDV

 
  

 
 

 

where, ( ) I 0.2a NDV   for bare soil; 

( ) I 0.5b NDV   for vegetation; 

( )0.2 I 0.5c NDV   for mixed land with bare soil 

and vegetation (Sobrino et al. 2001, 2004; Vlassova et al. 
2014).  

Finally, the land surface emissivity   can be 
expressed by Eq. (9):  

 

* 0.986                              (9)vF     

 

where,   is land surface emissivity, vF is fractional 
vegetation. 

Water vapour content is estimated by Eq. (10) (Yang 
& Qiu 1996; Li 2006): 

 

0

0

17.27*( 273.15)
0.0981* 10*0.6108*exp * 0.1697          (10)

237.3 ( 273.15)

T
w RH

T

  
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where, w is the water vapour content (g/cm2), 0T is 

the near-surface air temperature in Kelvin (K), RH  is 
the relative humidity (%). These parameters of 
atmospheric profile are the average values of 14 
stations around Raipur which are obtained from the 
Meteorological Centre, Raipur 
(http://www.imdraipur.gov.in) and the Regional 
Meteorological Centre, Nagpur 
(http://www.imdnagpur.gov.in). Atmospheric 
transmittance is determined for Raipur City using Eq. 
(11) (Qin et al. 2001; Sun et al. 2010): 

 
1.031412 0.11536                          (11)w    

 

where,  is the total atmospheric transmittance, w
is the water vapour content (g/cm2). 

Raipur City is located in the tropical region. Thus, Eq. 
(12) is applied to compute the effective mean 
atmospheric transmittance of Raipur (Qin et al. 2001; 
Sun et al. 2010): 

 

017.9769 0.91715                          (12)aT T   

 

LST is retrieved from Landsat 5 TM and Landsat 8 
OLI/TIRS satellite data by using Eq. (13-15) (Qin et al. 
2001): 
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                                                      (14)C 
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where,  is the land surface emissivity,  is the total 

atmospheric transmittance, C  and D  are internal 
parameters based on atmospheric transmittance and 

land surface emissivity, bT is the at-sensor brightness 

temperature, aT is the mean atmospheric temperature, 

0T is the near-surface air temperature, sT is the land 

surface temperature, 67.355351a   , 0.458606b  . 
 

2.4. Extraction of Different Types of land surface by 
Using NDWI  

 

Various land surface biophysical parameters were 
applied to specify different types of land surface 
features (Govil et al. 2019, 2020). In this study, special 
emphasis was given on NDWI (McFeeters 1996, 2013) 
for determining the relationship with LST. NDWI is 
determined by the green and NIR bands. For, Landsat 5 
TM and Landsat 7 ETM+ data, band 2 is used as the 
green band and band 4 is used as the NIR band, 
respectively. For Landsat 8 operational land imager 
(OLI) and TIRS data, band 3 and band 5 are used as the 
green and NIR bands, respectively (Table 2). The value 
of NDWI is ranged between −1 and +1. Generally, the 
negative value of NDWI indicates the built-up area and 
bare land that have no water surfaces (Table 2). The 
dryness increases with the increase of the negativity of 
NDWI. NDWI value ranges between 0 to 0.3 shows the 
water bodies (McFeeters 2013), whereas NDWI > 0.3 
shows the vegetation with water surfaces (McFeeters 
1996, 2013; Chen et al. 2006; Guha et al. 2017). 
Generally, the post-monsoon images reduce the level of 
air pollution due to the presence of high moisture 
content in the air and these images also enhance the 
greenness of an area. Thus, the post-monsoon images 
are generally considered for the generation of land 
use/land cover (LULC) maps. LULC maps were 
generated using the aforesaid threshold limits of NDWI 
(McFeeters 1996, 2013; Chen et al. 2006: Guha et al. 
2017) and the result was validated by the maximum 
likelihood classification. The average calculated values 
of the kappa coefficient and overall accuracy for all the 
images were 0.87 and 92.14%, respectively.  

 
Table 2. Description of NDWI. 

Acronym Description Formulation References 

NDBaI Normalized 
difference 
bareness index 

Green NIR

Green NIR




 

McFeeters 
1996 

 
3. RESULTS AND DISCUSSION  

 

3.1. Extraction of LULC Types Using NDWI 
 

The total area under different LULC categories was 
shown in Table 3. Water bodies were the most stable 
LULC type in the study area. Green vegetation was 
decreased in a very significant amount (76.80 km2) from 
1991-92 to 2018-19. On the other hand, the built-up 
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area and bare land were increased at a very high rate 
(78.37 km2 in 27 years) due to rapid land conversion. In 
1991-92, the built-up area and bare land were mainly 
found in the central part of the Raipur City. The 
northwest portion of the city was urbanised rapidly 
from 1991-92 to 2004-05 as the percentage of urban 
vegetation was declined due to the conversion into 
built-up areas. After 2004-05, the green areas were 
reduced at an alarming rate as most of the parts of the 
city were converted into bare land and built-up area. 
Only the eastern and the south-western parts were 
covered by urban vegetation. 

 

Table 3. Total area (km2) under different types of LULC.  
 Year Green 

vegetation 
Built-up area  
and bare land 

Water 
bodies 

1991-92 140.38 21.16 2.69 
1995-96 130.23 31.72 2.29 
1999-00 117.74 44.59 1.89 
2004-05 112.41 49.68 2.14 
2009-10 90.69 71.59 1.95 
2014-15 81.63 81.28 1.32 
2018-19 63.58 99.53 1.12 

 

3.2. Characteristics of the Spatial Distribution of 
LST and NDWI 

 

There is a prominent seasonal variation of different 
periods that occurred in mean and standard deviation 
(STD) values of LST (Table 4). The winter season 
indicates the lowest mean LST values for all the years, 
whereas the highest mean LST values were found in the 
pre-monsoon seasons during the entire time. From 
1991-92 to 2018-19, the mean LST increased in every 
season. The post-monsoon season has the mean LST 
value nearer to the winter season, while monsoon 
season has a slightly high value of mean LST than the 
post-monsoon season. The average values of LST and 
the correlation coefficient of LST and NDWI from 1991-
92 to 2018-19 were shown in grey shades inside the 
Table 4.  

Fig. 2 shows the seasonal contrast in the distribution 
of LST from 1991-92 to 2018-19. The pre-monsoon 
season has the maximum values of mean LST followed 
by monsoon, post-monsoon, and winter season. The 
north-west and south-east parts of the study area 
exhibit high LST. These parts also have a low percentage 
of urban vegetation and a high percentage of built-up 
area and bare land. It shows that the proportion of 
vegetation has been reduced and the built-up area was 
increased significantly with time. The correlation 
coefficient values of Pearson's linear correlation 
between the LST and NDWI for the entire period were 
moderate positive to weak negative. The post-monsoon 
season has the best mean correlation coefficient value 
(0.42), followed by the monsoon (0.34), pre-monsoon 
(0.25), and winter (0.04) season. 

It is seen from Fig. 2 that in 2018-19, more than 90% 
of the area in the pre-monsoon season was above 38oC 
LST. The result is different in the winter season, where 
no area of the city was above 38oC LST. In 1991-92, 
almost 90% of the area was below 24oC LST in the 
winter season. Monsoon and post-monsoon seasons 
indicate a moderate range of LST. The mean LST of the 

study area was gradually increased between 1991-92 
and 2018-19. The conversion of other lands into the 
built-up area and bare land influences a lot on the mean 
LST of the city. Both the changed and unchanged built-
up area and bare land suffer from the increasing trend 
of LST. These results significantly present the influence 
of climate shift in Raipur City.  
 

Table 4. Temporal and seasonal variation of LST values 
and Pearson's correlation coefficient values of LST-
NDWI relationship (significant al 0.05 level). 
Season 

Year of 
acquisition 

LST (oC) Correlation  
coefficients 

for LST-
NDWI  

relationship 

Min. Max. Mean Std. 

Pre-
monsoon 1991-92 23.81 36.27 31.54 1.52 0.13 
 1995-96 24.54 41.07 34.64 1.89 0.12 
 1999-00 26.36 42.23 36.38 1.93 0.33 
 2004-05 26.95 44.07 38.01 2.19 0.29 
 2009-10 28.81 46.48 39.60 2.54 0.26 
 2014-15 31.93 48.22 41.28 1.75 0.29 
 2018-19 33.46 51.11 43.74 1.75 0.35 
 Average 27.98 44.21 37.88 1.94 0.25 
Monsoon 1991-92 19.87 30.83 25.74 1.41 0.26 
 1995-96 21.21 33.01 26.50 1.33 0.36 
 1999-00 22.76 35.91 27.81 1.34 0.48 
 2004-05 24.17 36.20 31.32 1.33 0.38 
 2009-10 25.94 38.38 33.06 2.40 0.31 
 2014-15 27.74 40.15 34.87 1.68 0.33 
 2018-19 30.59 41.98 37.30 1.13 0.36 
 Average 24.61 36.64 30.94 1.52 0.34 
Post-
monsoon 1991-92 19.72 29.56 24.32 1.72 0.35 
 1995-96 20.42 30.33 25.12 1.34 0.45 
 1999-00 22.41 33.47 26.84 1.91 0.26 
 2004-05 23.03 35.25 28.01 1.71 0.34 
 2009-10 24.62 37.91 30.26 1.60 0.47 
 2014-15 26.24 38.22 31.68 1.12 0.49 
 2018-19 28.92 41.28 33.70 1.34 0.55 
 Average 23.62 35.15 28.56 1.53 0.42 
Winter 1991-92 18.22 28.33 23.29 1.22 0.05 
 1995-96 20.08 28.68 24.40 1.04 -0.03 
 1999-00 20.44 32.80 25.21 1.81 -0.08 
 2004-05 21.08 33.21 26.47 1.25 -0.03 
 2009-10 22.06 34.36 27.98 1.23 0.11 
 2014-15 22.80 36.21 28.90 1.39 0.03 
 2018-19 24.31 38.36 30.46 1.37 0.21 
 Average 21.28 33.14 26.67 1.33 0.57 

 

 
Fig. 2. Spatial distribution of LST for the following 
years: (a1-a4) 1991-92 (b1-b4) 1995-96 (c1-c4) 1999-
00 (d1-d4) 2004-05 (e1-e4) 2009-10 (f1-f4) 2014-15 
(g1-g4) 2018-19. 
 

Fig. 3 shows the seasonal variation in the spatial 
distribution of NDWI from 1991-92 to 2018-19. The 
high and low NDWI regions were seasonally stable since 
the 1991-92 sessions. Only the values of NDWI were 
changed, whereas the overall distributional pattern of 
NDWI remains almost unchanged. The central part of 
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the city always presents a higher NDWI value. A lower 
NDWI value is seen throughout the periphery of the city. 

 

Fig. 3. Spatial distribution of NDBaI for the following 
years: (a1-a4) 1991-92 (b1-b4) 1995-96 (c1-c4) 1999-
00 (d1-d4) 2004-05 (e1-e4) 2009-10 (f1-f4) 2014-15 
(g1-g4) 2018-19. 
 

3.3. Relationship between LST and various types of 
LULC 

 

The LST of the study area significantly depends upon 
the LULC types. Generally, the area with green 
vegetation has low LST value; the built-up areas and 
bare lands have moderate to high LST value, and the 
water bodies are characterised by a low to moderate 
range of LST. In the pre-monsoon season, the built-up 
area and bare land have comparatively high LST than 
the other LULC types. But in the winter season, these 
areas have comparatively low to moderate LST due to 
low emissivity. Green areas and water areas are 
characterised by a relatively stable range of low LST 
values.  

Fig. 4 presents the temporal changes of LST on 
various categories of LULC. Vegetation and water 
surface increases the LST, while bare land/built-up 
surface decreases LST. Most of the converted lands are 
built-up or bare land. Consequently, the built-up/bare 
land surfaces increase, while vegetation and water 
surface decrease in a significant amount. Land 
conversion is the main responsible factor for the 
seasonal change of mean LST. As a result, the mean LST 
significantly increased (1.60oC in pre-monsoon, 5.34oC 
in monsoon, 4.76oC in post-monsoon, and 1.08oC in 
winter season) from 1991-92 to 2018-19.  

 

Figure 4. Seasonal variability of mean LST on various 
categories of LULC: (a) pre-monsoon (b) monsoon (c) 
post-monsoon (d) winter. 

 

3.4. Seasonal contrast on LST-NDWI relationship  
 

Table 5 shows the seasonal contrast of LST-NDWI 
relationships on different LULC types in winter, pre-
monsoon, monsoon, and post-monsoon season, 
respectively. Here, only three types of LULC were 
considered, i.e., (1) vegetation, (2) water bodies, and (3) 
built-up area and bare land. On water bodies, the LST-
NDWI relationship is moderate negative for any season. 
NDWI is a water index that is frequently used in water 
body extraction. On the bare land and built-up area of 
the study area, the correlation is a weak positive for all 
four seasons. On green vegetation, the relationship is 
strong (pre-monsoon) to moderate (monsoon, post-
monsoon, and winter (weak moderate)) positive. The 
pre-monsoon season has a strong positive LST-NDWI 
correlation on the green vegetation (0.67), a weak 
positive correlation on the bare land and built-up area 
(0.24), and a moderate negative correlation on green 
vegetation (-0.49). In the monsoon season, the 
correlation is moderate positive on green vegetation 
(0.43), weak positive (0.21) on bare land and built-up 
area, whereas the correlation is moderate negative (-
0.43) on water bodies. The post-monsoon season has a 
moderate to strong positive correlation (0.50) on green 
vegetation, a weak positive correlation (0.27) on the 
bare land and built-up area, and has a moderate 
negative correlation (-0.31) on water bodies. In winter 
season, the LST-NDWI correlation is weak positive 
(0.25) on green vegetation, weak positive (0.15) on 
built-up area and bare lands. Water bodies have a 
moderate negative (-0.45) correlation in the winter 
season.  

 

Table 5. Seasonal contrast in the LST-NDWI 
relationship on different types of LULC (significant at 
0.05 level). 

 Pre-monsoon Monsoon 

Year Vegetation 

Built-
up/bare 

land 
Water 
bodies Vegetation 

Built-
up/bare 

land 
Water 
bodies 

1991-92 0.57 0.08 -0.55 0.23 0.11 -0.41 
1995-96 0.60 0.14 -0.49 0.25 0.10 -0.31 
1999-00 0.76 0.31 -0.51 0.37 0.29 -0.28 
2004-05 0.70 0.14 -0.40 0.33 0.07 -0.35 
2009-10 0.73 0.35 -0.46 0.59 0.30 -0.31 
2014-15 0.61 0.33 -0.46 0.56 0.34 -0.28 
2018-19 0.70 0.35 -0.59 0.65 0.27 -0.42 

 0.67 0.24 -0.49 0.43 0.21 -0.33 

 Post-monsoon Winter 

Year Vegetation 

Built-
up/bare 
land 

Water 
bodies Vegetation 

Built-
up/bare 
land 

Water 
bodies 

1991-92 0.55 0.19 -0.26 0.39 0.16 -0.49 
1995-96 0.57 0.23 -0.22 0.23 0.14 -0.46 
1999-00 0.51 0.34 -0.27 0.23 0.10 -0.43 
2004-05 0.48 0.28 -0.38 0.19 0.14 -0.55 
2009-10 0.49 0.27 -0.45 0.25 0.21 -0.47 
2014-15 0.46 0.26 -0.32 0.22 0.11 -0.39 
2018-19 0.44 0.32 -0.28 0.26 0.18 -0.34 

 0.50 0.27 -0.31 0.25 0.15 -0.45 

 

Fig. 5 represents a generalised view of the overall 
seasonal variation of LST-NDWI relationships for the 
whole of the study area. The relationship was positive in 
the three seasons except for the winter, where it was 
mostly negative along with some positive values. It can 
be concluded from Fig. 5 that the post-monsoon season 
reveals the best correlation, followed by the monsoon 
and pre-monsoon seasons. There was practically no 
such relationship found in the winter season. It was 
mainly due to the high intensity of moisture content in 
the air. Dry seasons (winter and pre-monsoon) reduce 
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the strength of the correlation, while the wet seasons 
(post-monsoon and monsoon) enhance the strength of 
the LST-NDWI correlation. 

 

 
Figure 5. Seasonal contrast on the LST-NDWI 
relationship for the whole of the study area (significant 
at 0.05 level). 

 

The present study indicates that LST builds an 
insignificant and non-linear correlation with NDWI in 
Raipur City, India from 1991-92 to 2018-19 in four 
different seasons (pre-monsoon, monsoon, post-
monsoon, and winter). The result is reliable and 
significant compared to the other similar studies using 
Landsat data conducted on the cities from different 
parts of the world in recent years. NDWI and LST built a 
non-linear correlation when considering the whole 
urban area in Wuhan City of China (Wu et al. 2019). 
Choudhury et al. (2019) showed a negative correlation 
of the LST-NDWI relationship on the water bodies in the 
Asansol-Durgapur Development Region, India. LST and 
NDWI produced a negative correlation on the water 
bodies of Nanchang City, China (Zhang et al. 2017). A 
significant negative relationship was found between LST 
and NDWI on the water bodies in Shenzhen City, China 
(Chen et al. 2006). The present result shows a 
significant and stable negative correlation (-0.49, -0.34, -
0.31, and -0.45 in pre-monsoon, monsoon, post-
monsoon, and winter seasons, respectively) between 
LST and NDWI on the water bodies throughout the 
period.  

 

4. CONCLUSION 
 

The present study investigates the temporal and 
seasonal relationship of LST and NDWI in Raipur City, 
India using sixty-four Landsat datasets of four different 
seasons (pre-monsoon, monsoon, post-monsoon, and 
winter) for 1991-92, 1995-96, 1999-00, 2004-05, 2009-
10, 2014-15, and 2018-19. In general, the results show 
that the relationship between LST and NDWI is non-
linear. The correlation is moderate positive in the post-
monsoon (0.42) and monsoon (0.34) seasons, whereas 
it is found weak positive in pre-monsoon (0.25) and 
winter (0.03). The presence of high moisture content in 
the air and plants is the main responsible factor for high 
positivity. The LST-NDWI relationship varies for specific 
LULC types. The water bodies reflect a moderate 
negative correlation of LST-NDWI in all the four seasons 
(-0.49 in pre-monsoon, -0.34 in monsoon, -0.31 in post-
monsoon, and -0.45 in winter). On green vegetation, this 
LST-NDWI correlation is also strong positive in pre-
monsoon (0.67), moderate positive in monsoon (0.43) 
and post-monsoon (0.50), weak positive in winter 
(0.25). The built-up area and bare land build a weak 

positive correlation of LST-NDWI in all the four seasons 
(0.24 in pre-monsoon, 0.21 in monsoon, 0.27 in post-
monsoon, and 0.15 in winter). All the four seasons have 
an insignificant and non-linear correlation for all LULC 
types (0.14 in pre-monsoon, 0.10 in monsoon, 0.15 in 
post-monsoon, and -0.02 in winter). The high 
percentage of urban vegetation and urban water bodies 
can promote the ecological health of a rapidly growing 
city like Raipur. Thus, this research work can be an 
effective one for the future town and country planners.  

 

ACKNOWLEDGEMENT 
 

The authors are indebted to the United States 
Geological Survey (USGS).  

 

REFERENCES 
 

Barsi J, Schott J, Hook S, Raqueno N, Markham B & 
Radocinski R (2014). Landsat-8 thermal infrared 
sensor (TIRS) vicarious radiometric calibration. 
Remote Sensing, 6(11), 11607-11626.  

Carlson T N & Ripley D A (1997). On the Relation 
between NDVI, Fractional Vegetation Cover, and Leaf 
Area Index. Remote Sensing of Environment, 62, 241-
252. https://doi.org/10.1016/S0034-
4257(97)00104-1  

Chen X L, Zhao H M, Li P X & Yi Z Y (2006). Remote 
sensing image-based analysis of the relationship 
between urban heat island and land use/cover 
changes. Remote Sensing of Environment, 104(2), 
133–146. https://doi.org/10.1016/j.rse.2005.11.016 

Choudhury D, Das K, & Das A (2019). Assessment of land 
use land cover changes and its impact on variations of 
land surface temperature in Asansol-Durgapur 
Development Region. Egyptian Journal of Remote 
Sensing and Space Sciences, 22(2), 203-218. 
https://doi.org/10.1016/j.ejrs.2018.05.004 

Coll C, Galve J M, Sanchez J M & Caselles V. 2010. 
Validation of Landsat-7/ETM+ thermal-band 
calibration and atmospheric correction with ground-
based measurements. IEEE Transactions on 
Geoscience and Remote Sensing, 48(1), 547–555. 
https://doi.org/10.1109/TGRS.2009.2024934 

Essa W, Verbeiren B, Van der Kwast J, Van de Voorde T 
& Batelaan O (2012). Evaluation of the DisTrad 
thermal sharpening methodology for urban areas. 
International Journal of Applied Earth Observation 
and Geoinformation, 19, 163-172. 
https://doi.org/10.1016/j.jag.2012.05.010 

Ghobadi Y., Pradhan B., Shafri H.Z.M. & Kabiri K. 2014. 
Assessment of spatial relationship between land 
surface temperature and land use/cover retrieval 
from multi-temporal remote sensing data in South 
Karkheh Sub-basin, Iran. Arabian Journal of 
Geosciences, 8(1), 525–537. https://doi: 
10.1007/s12517-013-1244-3. 

Govil H, Guha S, Dey A & Gill N (2019). Seasonal 
evaluation of downscaled land surface temperature: A 
case study in a humid tropical city. Heliyon, 5(6), 
e01923. https://doi.org/ 
10.1016/j.heliyon.2019.e01923 

Govil H, Guha S, Diwan P, Gill N & Dey A (2020). 
Analyzing Linear Relationships of LST with NDVI and 



International Journal of Engineering and Geosciences– 2021; 6(3); 165-172 

 

 172  

 

MNDISI Using Various Resolution Levels of Landsat 8 
OLI and TIRS Data. Data Management, Analytics and 
Innovation. Advances in Intelligent Systems and 
Computing, 1042. Springer, Singapore, 171-184. 
https://doi.org/10.1007/978-981-32-9949-8_13 

Guha S, Govil H & Besoya M (2020c). An investigation on 
seasonal variability between LST and NDWI in an 
urban environment using Landsat satellite data. 
Geomatics, Natural Hazards and Risk, 11(1), 1319-
1345. 
https://doi.org/10.1080/19475705.2020.1789762 

Guha S, Govil H & Mukherjee S (2017). Dynamic analysis 
and ecological evaluation of urban heat islands in 
Raipur city, India. Journal of Applied Remote Sensing, 
11(3), 036020. https://doi:10.1117/1.JRS.11.036020 

Guha S, Govil H, Dey A & Gill N (2020a). A case study on 
the relationship between land surface temperature 
and land surface indices in Raipur City, India. 
Geografisk Tidsskrift-Danish Journal of Geography, 
120(1), 35-50. 
https://doi.org/10.1080/00167223.2020.1752272 

Guha S, Govil H, Gill N & Dey A (2020b). Analytical study 
on the relationship between land surface temperature 
and land use/land cover indices. Annals of GIS, 26(2), 
201-216. 
https://doi.org/10.1080/19475683.2020.1754291 

Hao X, Li W & Deng H (2016). The oasis effect and 
summer temperature rise in arid regions-case study 
in Tarim Basin. Scientific Reports, 6, 35418. 
https://doi.org/10.1038/srep35418 

Hou G L, Zhang H Y, Wang Y Q, Qiao Z H & Zhang Z X 
(2010). Retrieval and Spatial Distribution of Land 
Surface Temperature in the Middle Part of Jilin 
Province Based on MODIS Data. Scientia Geographica 
sinica, 30, 421-427. 

Li J (2006). Estimating land surface temperature from 
Landsat-5 TM. Remote Sensing Technology and 
Application, 21, 322-326. 

Li W F, Cao Q W, Kun L, & Wu J S (2017). Linking 
potential heat source and sink to urban heat island: 
Heterogene-ous effects of landscape pattern on land 
surface temperature. Science of the Total 
Environment, 586, 457–465. 
https://doi.org/10.1016/j.scitotenv.2017.01.191 

Markham B L & Barker J K (1985). Spectral 
characteristics of the LANDSAT thematic mapper 
sensors.  International Journal of Remote Sensing, 
6(5), 697–716. 
https://doi.org/10.1080/01431168508948492 

McFeeters S K (1996). The use of the Normalized 
Difference Water Index (NDWI) in the delineation of 
open water features. International Journal of Remote 
Sensing, 17(7), 1425-1432. 
https://doi.org/10.1080/01431169608948714 

McFeeters S K (2013). Using the Normalized Difference 
Water Index (NDWI) within a Geographic Information 
System to Detect Swimming Pools for Mosquito 
Abatement: A Practical Approach. Remote Sensing, 
5(7), 3544-3561. https://doi.org/10.3390/rs5073544 

Qin Z, Karnieli A & Barliner P (2001). A Mono-Window 
Algorithm for Retrieving Land Surface Temperature 
from Landsat TM Data and Its Application to the 
Israel-Egypt Border Region. International Journal of 
Remote Sensing, 22(18), 3719-3746. 
https://doi:10.1080/01431160010006971 

Sobrino J A, Jimenez-Munoz J C & Paolini L (2004). Land 
surface temperature retrieval from Landsat TM5. 
Remote Sensing of Environment, 9, 434–440. 
https://doi:10.1016/j.rse.2004.02.003  

Sobrino J A, Raissouni N & Li Z (2001). A comparative 
study of land surface emissivity retrieval from NOAA 
data. Remote Sensing of Environment, 75(2), 256–
266. https://doi.org/10.1016/S0034-
4257(00)00171-1 

Sun Q, Tan J & Xu Y (2010). An ERDAS image processing 
method for retrieving LST and describing urban heat 
evolution: A case study in the Pearl River Delta Region 
in South China. Environmental Earth Science, 59, 
1047-1055. 

Tomlinson C J, Chapman L, Trones J E & Baker C (2011). 
Remote sensing land surface temperature for 
meteorology and climatology: a review. 
Meteorological Application, 118, 296–306. 
https://doi.org/10.1002/met.287  

URL-1: https://censusindia.gov.in/2011 
URL-2: http://www.surveyofindia.gov.in 
URL-3: https://www.earthexplorer.usgs.gov 
Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, 

& De La Riva J (2014). Assessment of methods for land 
surface temperature retrieval from Landsat-5 TM 
images applicable to multiscale tree-grass ecosystem 
modeling. Remote Sensing, 6(5), 4345-4368. 

Wu C, Li J, Wang C, Song C, Chen Y, Finka M & Rosa D L 
(2019). Understanding the relationship between 
urban blue infrastructure and land surface 
temperature. Science of the Total Environment, 694, 
133742. 
https://doi.org/10.1016/j.scitotenv.2019.133742 

Wukelic G E, Gibbons D E, Martucci L M & Foote H P 
(1989). Radiometric calibration of Landsat Thematic 
Mapper thermal band. Remote Sensing of 
Environment, 28, 339–347. 
https://doi.org/10.1016/0034-4257(89)90125-9 

Yang J & Qiu J (1996). The empirical expressions of the 
relation between precipitable water and ground water 
vapor pressure for some areas in China. Scientia 
Atmospherica Sinica, 20, 620-626. 

Yuan X, Wang W, Cui J, Meng F, Kurban A & De Maeyer P 
(2017). Vegetation changes and land surface 
feedbacks drive shifts in local temperatures over 
Central Asia. Scientific Reports, 7(1), 3287. 
https://doi.org/10.1038/s41598-017-03432-2 

Zanter K (2019). Landsat 8 (L8) Data Users Handbook; 
EROS: Sioux Falls, SD, USA.  

Zhang X, Estoque R C & Murayama Y (2017). An urban 
heat island study in Nanchang City, China based on 
land surface temperature and social-ecological 
variables. Sustainable Cities and Society, 32, 557-568. 
https://doi.org/10.1016/j.scs.2017.05.005 

 

 

© Author(s) 2021. This work is distributed under 
https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://doi.org/10.1016/j.rse.2004.02.003
https://censusindia.gov.in/2011
http://www.surveyofindia.gov.in/
https://www.earthexplorer.usgs.gov/
http://adsabs.harvard.edu/cgi-bin/author_form?author=Wukelic,+G&fullauthor=Wukelic,%20G.%20E.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gibbons,+D&fullauthor=Gibbons,%20D.%20E.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Martucci,+L&fullauthor=Martucci,%20L.%20M.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Foote,+H&fullauthor=Foote,%20H.%20P.&charset=UTF-8&db_key=PHY
https://doi.org/10.1016/j.scs.2017.05.005
https://creativecommons.org/licenses/by-sa/4.0/

	KapakV63.pdf
	111.pdf

	Sayi Tam Dosyasi.pdf
	1son.pdf
	2son.pdf
	3son.pdf
	4son.pdf
	5son.pdf
	6son.pdf

