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ii



Contents

1 Unrestricted Fibonacci and Lucas Quaternions
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4 Construction of Degenerate q-Daehee Polynomials with Weight α and its Applications

Serkan Aracı 25-32

5 Discrete Networked Dynamic Systems with Eigen-Spectrum Gap: Analysis and Performance

Magdi S. Mahmoud, Bilal J. Karaki 33-44

6 I-Limit and I-Cluster Points for Functions Defined on

Amenable Semigroups
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Abstract

Many quaternion numbers associated with Fibonacci and Lucas numbers or even their

generalizations have been defined and widely discussed so far. In all the studies, the

coefficients of these quaternions have been selected from consecutive terms of these numbers.

In this study, we define other generalizations for the usual Fibonacci and Lucas quaternions.

We also present some properties, including the Binet’s formulas and d’Ocagne’s identities,

for these types of quaternions.

1. Introduction

Since Sir William Rowan Hamilton introduced the quaternion algebra in 1843, their usage areas have developed rapidly. Due

to the fact that the quaternions are encountered in many problems from elastodynamics, quantum mechanics, elasticity theory

and many other fields of modern sciences, they have been studied widely.

A quaternion q can be regarded as a quadruple of real numbers and is formally defined by

q = q0 + iq1 + jq2 + kq3,

where q0,q1,q2, and q3 are any real numbers and the standard basis {1, i, j,k} satisfies

i2 = j2 = k2 =−1, i j =− ji = k, jk =−k j = i,ki =−ik = j.

The conjugate of q is

q∗ = q0 − iq1 − jq2 − kq3

and, the norm of q is

Email addresses and ORCID numbers: ahmetdasdemir37@gmail.com, https://orcid.org/0000-0001-8352-2020 (A. Daşdemir), gbilgici@kastamonu.edu.tr,

https://orcid.org/0000-0001-9964-5578 (G. Bilgici)
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N(q) = qq∗ = q2
0 +q2

1 +q2
2 +q2

3.

Fibonacci numbers are recursively defined as

Fn = Fn−1 +Fn−2,

with the initial terms F0 = 0 and F1 = 1. The Lucas numbers satisfy the same recurrence relation but with the initial terms

L0 = 2 and L1 = 1. Binet’s formulas for the Fibonacci and Lucas numbers are

Fn =
αn −β n

α −β
and Ln = αn +β n

,

respectively. Here, α = 1+
√

5
2

and β = 1−
√

5
2

are the positive and negative roots of x2 − x−1 = 0, respectively.

Horadam [1] defined Fibonacci quaternions as

Qn := Fn + iFn+1 + jFn+2 + kFn+3, (1.1)

where Fn is the nth term of the Fibonacci sequence. Iyer [2] gave a similar definition for Lucas quaternions by the relation

Tn := Ln + iLn+1 + jLn+2 + kLn+3, (1.2)

and gave their many properties, where Ln is the nth Lucas number.

Halici [3] gave Binet’s formulas for the Fibonacci and Lucas quaternions as follows:

Qn =
αα −ββ

α −β
and Tn = αα +ββ ,

where α = 1+ iα + jα2 + kα3 and β = 1+ iβ + jβ 2 + kβ 3.

There exist many papers devoted to generalizations of the quaternion sequences in (1.1) and (1.2) today. For example, the

references in [4]–[11] can be investigated. Note that all authors have used a known generalization of Fibonacci and Lucas

numbers and have placed these numbers in coefficients of the basis vectors similar to the format given by Horadam and Iyer. In

this study, we present an another perspective to the Fibonacci and Lucas quaternions. According to our approach, we define a

new classes of quaternions whose the coefficients are arbitrarily selected from these splendid integers. The outline of this paper

is as follows: In Section 2, we introduce the unrestricted Fibonacci and Lucas quaternions and give Binet’s formulas and the

generating functions for these quaternions. Furthermore, we present certain special identities such as d’Ocagne’s identity and

Catalan’s identity; in Section 3, we display many fundamental properties and some sum formulas for these quaternion families.

2. Main results

Here, we present our definitions, some concepts and results. First of all, we give a definition in the following.

Definition 2.1. Let p, r and s be arbitrary integers. Hence, nth unrestricted Fibonacci and Lucas quaternions are given by the

relations

F
(p,r,s)
n := Fn + iFn+p + jFn+r + kFn+s (2.1)

and

L
(p,r,s)

n := Ln + iLn+p + jLn+r + kLn+s, (2.2)

respectively.
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According to our definitions, we have the following special cases:

• For p = r = s =−n, the usual Fibonacci numbers are obtained:

F
(−n,−n,−n)
n = Fn

• For p = 1 and r = s =−n, the Gaussian Fibonacci numbers are obtained:

F
(1,−n,−n)
n = Fn + iFn+1

• For p = 1, r = 2 and s = 3, the well-known Fibonacci and Lucas quaternions are obtained:

F
(1,2,3)
n = Qn = Fn + iFn+1 + jFn+2 + kFn+3

L
(1,2,3)

n = Tn = Ln + iLn+1 + jLn+2 + kLn+3

Taking Eqs. (2.1) and (2.2) into account, we directly obtain

F
(p,r,s)
n = F

(p,r,s)
n−1 +F

(p,r,s)
n−2 (2.3)

and

L
(p,r,s)

n = L
(p,r,s)

n−1 +L
(p,r,s)

n−2 , (2.4)

by the recurrence relations of Fibonacci and Lucas numbers respectively.

To make it easier to present and prove the results of the rest of paper, we now present next theorem that states Binet’s formulas

for the unrestricted Fibonacci and Lucas quaternions.

Theorem 2.2. (Binet’s Formula) Let n be an integer. Then the Binet’s formulas of the unrestricted Fibonacci and Lucas

quaternions are

F
(p,r,s)
n =

ᾰαn − β̆β n

α −β
(2.5)

and

L
(p,r,s)

n = ᾰαn + β̆β n
, (2.6)

where ᾰ = 1+ iα p + jαr + kαs and β̆ = 1+ iβ p + jβ r + kβ s.

Proof. Applying Binet’s formulas of the classic Fibonacci numbers to the definition of the unrestricted Fibonacci quaternions,

we obtain

F
(p,r,s)
n = Fn + iFn+p + jFn+r + kFn+s

=
1

α −β

(

αn −β n + i(αn+p −β n+p)+ j(αn+r −β n+r)+ k(αn+s −β n+s)
)

=
1

α −β

(

αn(1+ iα p + jαr + kαs)−β n(1+ iβ p + jβ r + kβ s)
)

,

and the last equation gives Eq. (2.5). The other can be proved similarly.
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· ᾰ β̆ ᾰ∗ β̆ ∗

ᾰ 2ᾰ −N(ᾰ) B+
√

5C N(ᾰ) A−
√

5C+2γ

β̆ B−
√

5C 2β̆ −N
(

β̆
)

−A+
√

5C N
(

β̆
)

ᾰ∗ N(ᾰ) −A−
√

5C 2ᾰ∗−N(ᾰ) −B+
√

5C−2γ +4

β̆ ∗ A+
√

5C+2γ N
(

β̆
)

−B−
√

5C−2γ +4 2β̆ ∗−N
(

β̆
)

Table 1: The multiplicative properties of ᾰ and β̆

Table 1 displays important features corresponding to the multiplication of ᾰ and β̆ . They will undertake important tasks in the

process of proofing the next theorems. Note that each of them can easily be proven by certain elementary operations and we

omit the details. In Table 1, the following notations are used:

A =
√

5F
(p,r,s)
0 − γ,

B = L
(p,r,s)

0 − γ,

C = i(−1)s
Fr−s + j(−1)p

Fs−p + k(−1)r
Fp−r

and

γ = 1+(−1)p +(−1)r +(−1)s
.

Note that r− s, s− p, and p− r may be positive or negative.

The next theorem gives d’Ocagne’s identities for the considered quaternions.

Theorem 2.3. (d’Ocagne’s identity) Let m and n be any integers. Hence, we have

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n = (−1)n(BFm−n +CLm−n)

and

L
(p,r,s)

m L
(p,r,s)

n+1 −L
(p,r,s)

m+1 L
(p,r,s)

n =−5(−1)n(BFm−n +CLm−n).

Proof. From the Binet’s formula in (2.5), we have

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n =

1

5

[(

ᾰαm − β̆β m
)(

ᾰαn+1 − β̆β n+1
)

−
(

ᾰαm+1 − β̆β m+1
)(

ᾰαn − β̆β n
)]

=

√
5

5
(−1)n

(

ᾰβ̆αm−n − β̆ ᾰβ m−n
)

and by Table 1,

F
(p,r,s)
m F

(p,r,s)
n+1 −F

(p,r,s)
m+1 F

(p,r,s)
n =

√
5

5
(−1)n

[

(B+C
√

5)αm−n − (B−C
√

5)β m−n
]

=

√
5

5
(−1)n

[

B(αm−n −β m−n)+C
√

5(αm−n +β m−n)
]

.

We obtain the first identity from the last equation. Repeating the same procedure, the second identity can be obtained.
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Now we give Catalan’s identities of the unrestricted Fibonacci and Lucas quaternions.

Theorem 2.4. (Catalan’s identity) For any integers m and n, we have

F
(p,r,s)
m+n F

(p,r,s)
m−n −

[

F
(p,r,s)
m

]2

= (−1)m+n+1Fn (BFn +CLn)

and

L
(p,r,s)

m+n L
(p,r,s)

m−n −
[

L
(p,r,s)

m

]2

= 5(−1)m+nFn (BFn +CLn) .

Proof. By Eq. (2.5) and Table 1, we can write

F
(p,r,s)
m+n F

(p,r,s)
m−n −

[

F
(p,r,s)
m

]2

=
1

5

[

(ᾰαm+n − β̆β m+n)(ᾰαm−n − β̆β m−n)− (ᾰαm − β̆β m)2
]

=
1

5

[

((−1)m−n+1(ᾰβ̆α2n + β̆ ᾰβ 2n)+(−1)m2C
]

=
1

5

[

(−1)m+n−1
(

(B+
√

5C)α2n +(B−
√

5C)β 2n
)

+(−1)mB
]

=
1

5

[

(−1)m+n−1

(

B(α2n +β 2n)+5C

(

α2n −β 2n

α −β

))

+(−1)mB

]

=
1

5

[

(−1)m+n−1 (BL2n +5CF2n)+(−1)mB
]

.

Substituting the identities 5F2
n = L2n − (−1)n ([12, p.42]) and F2n = FnLn ([12, p.14]) give the desired result. Similarly, the

second identity can be obtained.

For the case n = 1 in Theorem 2.4, we attain Cassini’s identities, which are given in the following.

Corollary 2.5. (Cassini’s identity) For any integer m, we have

F
(p,r,s)
m+1 F

(p,r,s)
m−1 −

[

F
(p,r,s)
m

]2

= (−1)m(B+C)

and

L
(p,r,s)

m+1 L
(p,r,s)

m−1 −
[

L
(p,r,s)

m

]2

=−5(−1)m(B+C).

Note that the above identities can be re-written for the usual forms of the Fibonacci and Lucas quaternions in the case

(p,r,s) = (1,2,3). In this case, we can summarize them as follows:

• D’Ocagne’s identities are as follows:

QmQn+1 −Qm+1Qn = (−1)n [T0Fm−n +(−Q0 +3k)Lm−n]

KmKn+1 −Km+1Kn =−5(−1)n [T0Fm−n +(−Q0 +3k)Lm−n]

• Catalan’s identities are as follows:

Qm+nQm−n −Q2
m = (−1)mF−n [FnT0 +(−Q0 +3k)Ln]

Km+nKm−n −K2
m =−5(−1)mF−n [FnT0 +(−Q0 +3k)Ln]
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• Cassini’s identities are as follows:

Qm+1Qm−1 −Q2
m = (−1)m(Q−1 +3k)

Km+1Km−1 −K2
m =−5(−1)m(Q−1 +3k)

The concept of Generating Function is so important research topic since that is helpful tool to solve linear homogeneous

recurrence relations with constant coefficients. Here, we investigate both the ordinary generating functions and the exponential

generating functions associated with our generalized quaternions. To do this, we introduce the following functions:

GF (x) =
∞

∑
n=0

F
(p,r,s)
n xn

,

GL (x) =
∞

∑
n=0

L
(p,r,s)

n xn
,

EF (x) =
∞

∑
n=0

F
(p,r,s)
n

xn

n!
(2.7)

and

EL (x) =
∞

∑
n=0

L
(p,r,s)

n
xn

n!
.

Hence, we present another main results of the current paper.

Theorem 2.6. The generating functions for the unrestricted Fibonacci and Lucas quaternions are

GF (x) =
F

(p,r,s)
0 +F

(p,r,s)
−1 x

1− x− x2
(2.8)

and

GL (x) =
L

(p,r,s)
0 +L

(p,r,s)
−1 x

1− x− x2
. (2.9)

Proof. Substituting Eq. (2.3) into Eq. (2.8) and Eq. (2.4) into Eq. (2.9), the results are satisfied. So, this completes the

proof.

Theorem 2.7. The exponential generating functions for the unrestricted Fibonacci and Lucas quaternions are

EF (x) =
ᾰeαx − β̆eβx

α −β

and

EL (x) = ᾰeαx + β̆eβx
,

where e is the famous Euler’s number.

Proof. Substituting Eq. (2.5) into Eq. (2.7) leads to

EF (x) =
∞

∑
n=0

F
(p,r,s)
n

xn

n!
=

∞

∑
n=0

ᾰαn − β̆β n

α −β

xn

n!
=

1

α −β

(

ᾰ
∞

∑
n=0

(αx)n

n!
− β̆

∞

∑
n=0

(βx)n

n!

)

.

Considering MacLaurin series of an exponential function, the result follows. The second identity is demonstrated similarly.
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3. More features

In this section, we present many properties for the unrestricted Fibonacci and Lucas quaternions and some sum formulas of

them. The next theorem present these identities.

Theorem 3.1. Let m,n and t be any integers. Then,

F
(p+1,r+1,s+1)
n = F

(p,r,s)
n +F

(p,r,s)
n−1 −Fn−1, (3.1)

L
(p+1,r+1,s+1)

n = L
(p,r,s)

n +L
(p,r,s)

n−1 −Ln−1,

F
(p,r,s)
n+1 = F

(p+1,r+1,s+1)
n +Fn−1,

L
(p,r,s)

n+1 = L
(p+1,r+1,s+1)

n +Ln−1,

L
(p,r,s)

n = F
(p,r,s)
n−1 +F

(p,r,s)
n+1 ,

L
(p,r,s)

m+n F
(p,r,s)
m+t −L

(p,r,s)
m+t F

(p,r,s)
m+n = 2(−1)m+nBF

(p,r,s)
t−n ,

F
(p,r,s)
m+n +(−1)n

F
(p,r,s)
m−n = F

(p,r,s)
m Ln,

F
(p,r,s)
m L

(p,r,s)
n −L

(p,r,s)
n F

(p,r,s)
m = 2(−1)mCLn−m,

F
(p,r,s)
m L

(p,r,s)
n −L

(p,r,s)
m F

(p,r,s)
n = 2(−1)n(BFm−n +CLm−n),

F
(p,r,s)
n F

(p,r,s)
m −F

(p,r,s)
m F

(p,r,s)
n = 2(−1)m+1CFn−m,

L
(p,r,s)

n L
(p,r,s)

m −L
(p,r,s)

m L
(p,r,s)

n = 10(−1)mCFn−m,

F
(p,r,s)
m+n Fm+n −F

(p,r,s)
m−n Fm−n = F

(p,r,s)
2m F2n,

L
(p,r,s)

m+n Lm+n −L
(p,r,s)

m−n Lm−n = 5F
(p,r,s)
2m F2n, (3.2)

F
(p,r,s)
m+n Lm+n +F

(p,r,s)
m−n Lm−n = F

(p,r,s)
2m L2n +2(−1)m+n

F
(p,r,s)
0 ,

L
(p,r,s)

m+n Lm+n +L
(p,r,s)

m−n Lm−n = L
(p,r,s)

2m L2n +2(−1)m+n
L

(p,r,s)
0 ,

5
[

F
(p,r,s)
m

]2

−
[

L
(p,r,s)

m

]2

= 4(−1)m+1B,

F
(p,r,s)
m+n +(−1)n

F
(p,r,s)
m−n = F

(p,r,s)
m Ln,

L
(p,r,s)

m+n +(−1)n
L

(p,r,s)
m−n = L

(p,r,s)
m Ln

and

F
(p,r,s)
2m = Fm+1F

(p,r,s)
m +FmF

(p,r,s)
m−1 .
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Proof. To reduce the volume of the current paper, we give some proofs of the above identities. Since the proofs of the first six

identities are done in the same way, we only prove Eq. (3.1). By the definition of unrestricted Fibonacci quaternions, we can

write

F
(p+1,r+1,s+1)
n = Fn + iFn+p+1 + jFn+r+1 + kFn+s+1

= Fn + i(Fn+p +Fn+p−1)+ j(Fn+r +Fn+r−1)+ k(Fn+s +Fn+s−1)

= (Fn + iFn+p + jFn+r + kFn+s)+(Fn−1 + iFn+p−1 + jFn+r−1 + kFn+s−1)−Fn−1.

Other proofs are based on Binet’s formulas of the corresponding quaternions. As an example, we show that (3.2) holds. Hence,

by employing Eq. (2.6) we obtain

L
(p,r,s)

m+n Lm+n −L
(p,r,s)

m−n Lm−n =
(

ᾰαm+n + β̆β m+n
)

(

αm+n +β m+n
)

−
(

ᾰαm−n + β̆β m−n
)

(

αm−n +β m−n
)

=
(

ᾰα2m+2n + β̆β 2m+2n − ᾰα2m−2n − β̆β 2m−2n
)

=
(

ᾰα2m+2n + β̆β 2m+2n − ᾰα2mβ 2n − β̆α2nβ 2m
)

= (α −β )2

(

ᾰα2m − β̆β 2m

α −β

)

(

α2n −β 2n

α −β

)

= 5F
(p,r,s)
2m F2n.

So, the proof is completed.

Now, we list sum formulas for the considered quaternions in the following theorem.

Theorem 3.2. The following summation formulas hold for any integer n.

n

∑
t=0

F
(p,r,s)
t = F

(p,r,s)
n+2 −F

(p,r,s)
1 , (3.3)

n

∑
t=0

L
(p,r,s)

t = L
(p,r,s)

n+2 −L
(p,r,s)

1 ,

n

∑
t=0

F
(p,r,s)
2t−1 = F

(p,r,s)
2n −F

(p,r,s)
0 ,

n

∑
t=0

L
(p,r,s)

2t−1 = L
(p,r,s)

2n −L
(p,r,s)

0 ,

n

∑
t=0

F
(p,r,s)
2t = F

(p,r,s)
2n+1 −F

(p,r,s)
−1 ,

n

∑
t=0

L
(p,r,s)

2t = L
(p,r,s)

2n+1 −L
(p,r,s)
−1 ,

n

∑
t=0

(

n

t

)

F
(p,r,s)
t = F

(p,r,s)
2n (3.4)

and

n

∑
t=0

(

n

t

)

L
(p,r,s)

t = L
(p,r,s)

2n .
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Proof. We will prove some of the above identities again. Let us consider at = F
(p,r,s)
t+2 −F

(p,r,s)
1 . Hence, by the definition of

the unrestricted Fibonacci quaternions, we obtain

at −at−1 = F
(p,r,s)
t .

Applying the idea of creative telescoping [13] to Eq. (3.3), we conclude

n

∑
t=0

F
(p,r,s)
t =

n

∑
t=0

(at −at−1) = an −a−1,

and since a−1 = 0, Eq. (3.3) is attained. Proceeding as in the previous proof, we can obtain the other identities except last two

identities.

Now, substituting Eq. (2.5) to Eq. (3.4) leads to

n

∑
t=0

(

n

t

)

F
(p,r,s)
t =

n

∑
t=0

(

n

t

)

ᾰαn − β̆β n

α −β
=

1

α −β

(

ᾰ
n

∑
t=0

(

n

t

)

αn − β̆
n

∑
t=0

(

n

t

)

β n

)

,

and considering the formal expression of the Binomial Theorem, we obtain

n

∑
t=0

(

n

t

)

F
(p,r,s)
t =

ᾰ (α +1)n − β̆ (β +1)n

α −β
.

Using α2 = α + 1 and β 2 = β + 1, the proof of Eq. (3.4) is completed. The last equation can also be found in a similar

way.

4. Conclusions

In this study, we presented other generalizations for the usual Fibonacci and Lucas quaternions and gave many interesting

properties of these definitions. In particular, the Binet’s formulas, the generating function, some explicit formulas, and

special identities such as d’Ocagne’s Identities were obtained. Moreover, the examples regarding the reduced cases for our

generalizations, from the quaternion forms to the usual integer sequence ones, were investigated. In addition to those, we

considered sum formulas for our generalizations including the even and odd subscripts.

We think that the inferences of the paper can be used in several practical applications in applied sciences, e.g. control and

system theory, and neural network, etc.
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Abstract

A. F. Horadam defined the complex Fibonacci numbers and Fibonacci quaternions in the

middle of the 20th century. Half a century later, S. Halıcı introduced the complex Fibonacci

quaternions by inspiring from these definitions and discussed some properties of them.

Recently, the elliptic biquaternions, which are generalized form of the complex and real

quaternions, have been presented. In this study, we introduce the set of Fibonacci elliptic

biquaternions that includes the set of complex Fibonacci quaternions as a special case, and

investigate some properties of Fibonacci elliptic biquaternions. Furthermore, we give the

Binet formula and Cassini’s identity in terms of Fibonacci elliptic biquaternions. Finally,

we give elliptic and real matrix representations of Fibonacci elliptic biquaternions.

1. Introduction

Real quaternions and complex quaternions were introduced by Hamilton in 1843 [1] and 1853 [2], respectively. The set of real

quaternions and the set of complex quaternions are represented as

H = {w = w0 +w1i+w2j+w3k : w0,w1,w2,w3 ∈ R} (1.1)

and

HC = {W =W0 +W1i+W2j+W3k : W0,W1,W2,W3 ∈ C}

respectively where the quaternionic units i, j and k satisfy

i2 = j2 = k2 =−1 , ij =−ji = k , jk =−kj = i , ki =−ik = j.

As a consequence of the representations given above, a complex quaternion W can be written as

W = w+ iw∗
, i2 =−1 (1.2)

where w and w∗ are real quaternions.

1This article is the completed version of the paper titled ”Fibonacci Elliptic Biquaternions”, which was presented as an virtual presentation at the 12th

International Conference on Clifford Algebras and Their Applications in Mathematical Physics. The conference was held as an online conference between 3-7

August 2020.

Email addresses and ORCID numbers: kahraman.ozen1@ogr.sakarya.edu.tr, https://orcid.org/0000-0002-3299-6709 (K. E. Özen), tosun@sakarya.edu.tr,

https://orcid.org/0000-0002-4888-1412 (M. Tosun)
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In 1963, n− th Fibonacci quaternion

Wn = Fn +Fn+1i+Fn+2j+Fn+3k

was introduced by changing the components in equation (1.1) with the consecutive Fibonacci numbers by Horadam. Also,

Horadam similarly defined the n− th Lucas quaternion

Tn = Ln +Ln+1i+Ln+2j+Ln+3k.

Here Ln and Fn are n− th Lucas number and n− th Fibonacci number, respectively [3].

On the other hand, the complex Fibonacci numbers were defined as

Cn = Fn + iFn+1, i2 =−1

in [3]. Then, Halıcı expanded this definition to the complex quaternions with the name ”n− th complex Fibonacci quaternion”.

Halıcı gave this definition by changing the real quaternions w and w∗ in the equation (1.2) with consecutive Fibonacci

quaternions Wn and Wn+1 as in the following [4]:

Rn =Wn + iWn+1, i2 =−1.

There are many studies on Fibonacci quaternions and complex Fibonacci quaternions in the literature. The readers are referred

to the studies [3]-[8] for these topics.

Recently, Özen and Tosun have expressed elliptic biquaternions comprising the complex and real quaternions [9]. The set of

them is given as follows:

HCp =
{

U =U0 +U1i+U2j+U3k : U0,U1,U2,U3 ∈ Cp

}

where Cp =
{

u+ Iv : u,v ∈ R, I2 = p, p ∈ R
−} indicates the set of elliptic numbers. The system of elliptic numbers is a

one-parameter family of generalized complex number systems. The readers are referred to [10]-[14] for some interesting

studies on the generalized complex numbers and elliptic numbers.

For any two elliptic biquaternions U =U0 +U1i+U2j+U3k ∈ HCp and V =V0 +V1i+V2j+V3k ∈ HCp, addition and scalar

multiplication by λ ∈ Cp are given by

U +V = (U0 +V0)+(U1 +V1) i+(U2 +V2) j+(U3 +V3) k

λU = (λU0)+(λU1) i+(λU2) j+(λU3)k

and also, the multiplication of U and V is defined as in the following [9]:

UV = [(U0V0)− (U1V1)− (U2V2)− (U3V3)]+ [(U0V1)+(U1V0)+(U2V3)− (U3V2)] i

+[(U0V2)− (U1V3)+(U2V0)+(U3V1)] j+[(U0V3)+(U1V2)− (U2V1)+(U3V0)] k.

Moreover, the Hamiltonian, complex and total conjugates of U are as below:

U = U0 −U1i−U2j−U3k

U∗ = U0
∗+U1

∗i+U2
∗j+U3

∗k

U† = U0
∗−U1

∗i−U2
∗j−U3

∗k

where superscript stars on U0, U1, U2 and U3 denote the usual complex conjugation. On the other hand, the semi-norm of U is

defined as [9]:

N(U) =U0
2 +U1

2 +U2
2 +U3

2
.

In the next section, we introduce Fibonacci elliptic biquaternions and give their some properties. In the last section, we give

elliptic and real matrix representations of Fibonacci elliptic biquaternions.

2. Fibonacci elliptic biquaternions and their some properties

Thanks to [15], we know that p−complex Fibonacci numbers are given as in the following:

(Cp)n
= Fn + IFn+1, I2 = p ∈ R
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where Fn is the n− th Fibonacci number. Here, we consider the case p ∈R
− and call these numbers Fibonacci elliptic numbers.

Thus, n− th Fibonacci elliptic number is defined as

(Cp)n
= Fn + IFn+1, I2 = p ∈ R

−
.

By following the method given in [4], we expand this definition to the elliptic biquaternions with the name ”n− th Fibonacci

elliptic biquaternion”. That is, n− th Fibonacci elliptic biquaternion is given by

(Up)n
=Wn + IWn+1, I2 = p ∈ R

−

where

Wn = Fn +Fn+1i+Fn+2j+Fn+3k

and

Wn+1 = Fn+1 +Fn+2i+Fn+3j+Fn+4k

are consecutive Fibonacci quaternions. Therefore, (Up)n
can be written as follows:

(Up)n
= (Fn + IFn+1)+(Fn+1 + IFn+2)i+(Fn+2 + IFn+3)j+(Fn+3 + IFn+4)k, I2 = p ∈ R

−
. (2.1)

As a consequence of the definition of Fibonacci elliptic numbers and the equation (2.1), (Up)n
can also be given in the following

form

(Up)n
= (Cp)n

+(Cp)n+1
i+(Cp)n+2

j+(Cp)n+3
k, I2 = p ∈ R

−
.

Thus, (Up)n
includes a scalar part

S
(

(Up)n

)

= (Cp)n

and a vectorial part

V
(

(Up)n

)

= (Cp)n+1
i+(Cp)n+2

j+(Cp)n+3
k.

The Hamiltonian, complex and total conjugates of (Up)n
can be found as

(Up)n
= (Cp)n

− (Cp)n+1
i− (Cp)n+2

j− (Cp)n+3
k

(Up)
∗
n

= (Cp)
∗
n
+(Cp)

∗
n+1

i+(Cp)
∗
n+2

j+(Cp)
∗
n+3

k

(Up)
†
n

= (Cp)
∗
n
− (Cp)

∗
n+1

i− (Cp)
∗
n+2

j− (Cp)
∗
n+3

k

where (Cp)
∗
n
= Fn − IFn+1. From here, it can be easily seen that the following identities hold:

(Up)n
+(Up)n

= 2(Cp)n

(Up)n
+(Up)

∗
n

= 2Wn.

The semi norm of (Up)n
can be given as in the following:

N
(

(Up)n

)

= (Cp)
2
n
+(Cp)

2
n+1

+(Cp)
2
n+2

+(Cp)
2
n+3

.

If we use the identities

Fn−1 +Fn+1 = Ln, n ∈ Z
+

and

F2
n +F2

n+1 = F2n+1, n ∈ Z

given in [16], we get

N
(

(Up)n

)

= (F2n+1 + pF2n+3 +F2n+5 + pF2n+7)+2I (Fn+1Ln+1 +Fn+3Ln+3) .

Note that we will show the set of Fibonacci elliptic biquaternions with FHCp throughout the paper. For negative indices, the

Fibonacci elliptic biquaternions can be given as in the following lemma.
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Lemma 2.1. For (Up)n
∈ FHCp, the equality

(Up)−n
= (−1)n [(−Fn + IFn−1)+(Fn−1 − IFn−2) i+(−Fn−2 + IFn−3) j+(Fn−3 − IFn−4)k]

is satisfied.

Proof. By considering the definition of the Fibonacci elliptic biquaternions and the equality F−n = (−1)n+1
Fn given in [17],

we can write the followings:

(Up)−n
= (F−n + IF−n+1)+(F−n+1 + IF−n+2) i+(F−n+2 + IF−n+3) j+(F−n+3 + IF−n+4)k

=
(

F−n + IF−(n−1)

)

+
(

F−(n−1)+ IF−(n−2)

)

i+
(

F−(n−2)+ IF−(n−3)

)

j+
(

F−(n−3)+ IF−(n−4)

)

k

=
(

(−1)n+1
Fn + I(−1)n

Fn−1

)

+
(

(−1)n
Fn−1 + I(−1)n−1

Fn−2

)

i

+
(

(−1)n−1
Fn−2 + I(−1)n−2

Fn−3

)

j+
(

(−1)n−2
Fn−3 + I(−1)n−3

Fn−4

)

k

= (−1)n [(−Fn + IFn−1)+(Fn−1 − IFn−2) i+(−Fn−2 + IFn−3) j+(Fn−3 − IFn−4)k] .

Now, we give the following theorem which reveals an essential relation between the Fibonacci numbers and Fibonacci elliptic

biquaternions.

Theorem 2.2. (Binet Formula) For (Up)n
∈ FHCp, Binet formula is given as

(Up)n
= (Up)1

Fn +(Up)0
Fn−1

where n ≥ 0.

Proof. By direct calculation, the followings can be written easily:

(Up)1
Fn +(Up)0

Fn−1 = [(F1 + IF2)+(F2 + IF3) i+(F3 + IF4) j+(F4 + IF5)k]Fn

+[(F0 + IF1)+(F1 + IF2) i+(F2 + IF3) j+(F3 + IF4)k]Fn−1

= F1Fn +F2Fni+F3Fnj+F4Fnk+ I (F2Fn +F3Fni+F4Fnj+F5Fnk)

+F0Fn−1 +F1Fn−1i+F2Fn−1j+F3Fn−1k+ I (F1Fn−1 +F2Fn−1i+F3Fn−1j+F4Fn−1k)

= [(F0Fn−1 +F1Fn)+ I (F1Fn−1 +F2Fn)]+ [(F1Fn−1 +F2Fn)+ I (F2Fn−1 +F3Fn)] i

+[(F2Fn−1 +F3Fn)+ I(F3Fn−1 +F4Fn)] j+[(F3Fn−1 +F4Fn)+ I(F4Fn−1 +F5Fn)]k.

Using the identity

FnFm +Fn+1Fm+1 = Fm+n+1, m,n ∈ Z
+

given in [5] and the equalities

F0Fn−1 +F1Fn = 0Fn−1 +1Fn = Fn

and

F1Fn−1 +F2Fn = 1Fn−1 +1Fn = Fn−1 +Fn = Fn+1,

the proof is completed.

Theorem 2.3. (Cassini’s Identity) For (Up)n
∈ FHCp, Cassini’s identity is given as

(Up)n−1
(Up)n+1

− (Up)
2
n
= (−1)n

(

2W1 −3k− pF2
1 T0 − pF2W0 +3pF2

)

+ I (Wn−1Wn+2 −WnWn+1)

where n ≥ 1.

Proof. By direct calculation, we get

(Up)n−1
(Up)n+1

− (Up)
2
n

= (Wn−1 + IWn)(Wn+1 + IWn+2)− (Wn + IWn+1)
2

= Wn−1Wn+1 + pWnWn+2 + I (WnWn+1 +Wn−1Wn+2)−
(

W 2
n + pW 2

n+1 +2IWnWn+1

)

= Wn−1Wn+1 −W 2
n + p

(

WnWn+2 −W 2
n+1

)

+ I (Wn−1Wn+2 −WnWn+1) .
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Using the identities

Wn−1Wn+1 −W 2
n = (−1)n (2W1 −3k)

and

Wn+1−rWn+1+r −W 2
n+1 = (−1)n−r

[

F2
r T0 +F2r (W0 −3r)

]

( f or r = 1)

given in [5], the proof is completed.

3. Matrix representations of Fibonacci elliptic biquaternions

In this section, elliptic and real matrix representations of Fibonacci elliptic biquaternions are given by emphasizing the

isomorphisms which determine these matrix representations.

3.1. 2x2 and 4x4 elliptic matrix representations of Fibonacci elliptic biquaternions

Thanks to Özen and Tosun [18], we know that there is a faithful relation between the elliptic biquaternions and 2x2 elliptic

matrices. Every elliptic biquaternion U =U0 +U1i+U2j+U3k ∈ HCp has a 2x2 elliptic matrix representation

σ (U) =





U0 +
1√
|p|

IU1 −U2 − 1√
|p|

IU3

U2 − 1√
|p|

IU3 U0 − 1√
|p|

IU1





which is determined by means of the following linear isomorphism [18]

σ : HCp → M2×2 (Cp)

U → σ (U) =





U0 +
1√
|p|

IU1 −U2 − 1√
|p|

IU3

U2 − 1√
|p|

IU3 U0 − 1√
|p|

IU1





.

Let us consider the restriction of this isomorphism to the set of Fibonacci elliptic biquaternions. Then we get the following

isomorphism:

σ∗ : FHCp → σ (FHCp)⊂ M2×2 (Cp)

(Up)n
→ σ∗ ((Up)n

)

=





(Cp)n
+ 1√

|p|
I(Cp)n+1

−(Cp)n+2
− 1√

|p|
I(Cp)n+3

(Cp)n+2
− 1√

|p|
I(Cp)n+3

(Cp)n
− 1√

|p|
I(Cp)n+1





.

Thus, we can give the following definition by using the equality I2 = p =−
√

|p|
√

|p|.

Definition 3.1. The matrix









(

Fn −
√

|p|Fn+2

)

+ I

(

1+ 1√
|p|

)

Fn+1

(

−Fn+2 +
√

|p|Fn+4

)

− I

(

1+ 1√
|p|

)

Fn+3

(

Fn+2 +
√

|p|Fn+4

)

+ I

(

1− 1√
|p|

)

Fn+3

(

Fn +
√

|p|Fn+2

)

+ I

(

1− 1√
|p|

)

Fn+1









derived from σ∗ ((Up)n

)

is called 2x2 elliptic matrix representation of (Up)n
.

On the other hand, there is an isomorphism between the matrix space M =























X0 −X1 −X2 −X3

X1 X0 −X3 X2

X2 X3 X0 −X1

X3 −X2 X1 X0









: X0,X1,X2,X3 ∈ Cp















and the elliptic biquaternion space HCp [19]:

γ : HCp → M

U → γ (U) =









U0 −U1 −U2 −U3

U1 U0 −U3 U2

U2 U3 U0 −U1

U3 −U2 U1 U0









.
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Similarly above, if this isomorphism is restricted to the set of Fibonacci elliptic biquaternions, it is not difficult to see the

following isomorphism

γ∗ : FHCp → γ (FHCp)⊂ M

(Up)n
→ γ∗

(

(Up)n

)

=









(Cp)n
−(Cp)n+1

−(Cp)n+2
−(Cp)n+3

(Cp)n+1
(Cp)n

−(Cp)n+3
(Cp)n+2

(Cp)n+2
(Cp)n+3

(Cp)n
−(Cp)n+1

(Cp)n+3
−(Cp)n+2

(Cp)n+1
(Cp)n









.

Then, we can give the following according to definition of n− th Fibonacci elliptic number.

Definition 3.2. The matrix








Fn + IFn+1 −Fn+1 − IFn+2 −Fn+2 − IFn+3 −Fn+3 − IFn+4

Fn+1 + IFn+2 Fn + IFn+1 −Fn+3 − IFn+4 Fn+2 + IFn+3

Fn+2 + IFn+3 Fn+3 + IFn+4 Fn + IFn+1 −Fn+1 − IFn+2

Fn+3 + IFn+4 −Fn+2 − IFn+3 Fn+1 + IFn+2 Fn + IFn+1









derived from γ∗
(

(Up)n

)

is called 4x4 elliptic matrix representation of (Up)n
.

3.2. 8x8 real matrix representations of Fibonacci elliptic biquaternions

In the study [20], Özen and Tosun obtained 8x8 real matrix representation of an arbitrary elliptic biquaternion in the space

HCp. However, the isomorphism that determines this representation was not emphasized with its domain and range in this

study. So, we are not able to apply the method of restriction as in the previous subsection. Here we give particular importance

to get an isomorphism whose domain is FHCp and whose range is a special 8x8 real matrix set. Because of this, we need

some preparation.

From [21], it is known that there is an isomorphism between the elliptic matrix set M4×4(Cp) and real matrix set MΩ

8×8(R) as

in the following:

ψ : M4×4 (Cp) → MΩ

8×8 (R)

A = A1 + IA2 → ψ (A) =

[

A1 −
√

|p|A2
√

|p|A2 A1

]

where MΩ

8×8 (R) =

{[

G −
√

|p|H
√

|p|H G

]

: G,H ∈ M4×4 (R)

}

.

Since γ (FHCp) ⊂ M ⊂ M4×4 (Cp), we can restrict the isomorphism ψ to the set γ (FHCp). If we do this, we have the

isomorphism ψ∗ : γ (FHCp) → ψ (γ (FHCp))⊂ MΩ

8×8(R). To obtain 8x8 real matrix representations of Fibonacci elliptic

biquaternions is the aim of us. To do so, we write γ∗
(

(Up)n

)

as follows:

γ∗
(

(Up)n

)

= B1 (n)+ IB2 (n)

where

B1 (n) =









Fn −Fn+1 −Fn+2 −Fn+3

Fn+1 Fn −Fn+3 Fn+2

Fn+2 Fn+3 Fn −Fn+1

Fn+3 −Fn+2 Fn+1 Fn









∈ M4×4 (R)

and

B2 (n) =









Fn+1 −Fn+2 −Fn+3 −Fn+4

Fn+2 Fn+1 −Fn+4 Fn+3

Fn+3 Fn+4 Fn+1 −Fn+2

Fn+4 −Fn+3 Fn+2 Fn+1









∈ M4×4 (R) .

Then, the compound function δ = ψ∗ ◦ γ∗ yields the following isomorphism:

δ : FHCp → ψ (γ (FHCp))⊂ MΩ

8×8(R)

(Up)n
→ δ

(

(Up)n

)

=

[

B1 (n) −
√

|p|B2 (n)
√

|p|B2 (n) B1 (n)

]

.

Consequently, we can give the following definition.
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Definition 3.3. The real matrix



























Fn −Fn+1 −Fn+2 −Fn+3 −
√

|p|Fn+1

√

|p|Fn+3

√

|p|Fn+3

√

|p|Fn+4

Fn+1 Fn −Fn+3 Fn+2 −
√

|p|Fn+2

√

|p|Fn+4

√

|p|Fn+4 −
√

|p|Fn+3

Fn+2 Fn+3 Fn −Fn+1 −
√

|p|Fn+3 −
√

|p|Fn+1 −
√

|p|Fn+1

√

|p|Fn+2

Fn+3 −Fn+2 Fn+1 Fn −
√

|p|Fn+4 −
√

|p|Fn+2 −
√

|p|Fn+2 −
√

|p|Fn+1
√

|p|Fn+1 −
√

|p|Fn+2 −
√

|p|Fn+3 −
√

|p|Fn+4 Fn −Fn+1 −Fn+2 −Fn+3
√

|p|Fn+2

√

|p|Fn+1 −
√

|p|Fn+4

√

|p|Fn+3 Fn+1 Fn −Fn+3 Fn+2
√

|p|Fn+3

√

|p|Fn+4

√

|p|Fn+1 −
√

|p|Fn+2 Fn+2 Fn+3 Fn −Fn+1
√

|p|Fn+4 −
√

|p|Fn+3

√

|p|Fn+2

√

|p|Fn+1 Fn+3 −Fn+2 Fn+1 Fn



























derived from δ
(

(Up)n

)

is called 8x8 real matrix representation of (Up)n
.

4. Conclusion

In this study, Fibonacci elliptic biquaternions and their some properties are introduced. Also, Binet formula and Cassini’s

identity are given in terms of Fibonacci elliptic biquaternions. Moreover, real and elliptic matrix representations of Fibonacci

elliptic biquaternions are derived.

When p = −1, the set of elliptic numbers matches up with the set of complex numbers. In that case, the set of elliptic

biquaternions is reduced to the set of complex quaternions. Therefore, Fibonacci elliptic biquaternions can be seen as

generalized form of complex Fibonacci quaternions that take an important place in the literature.

The use of matrix techniques gives us many advantages in many areas of science. In this respect, this study can be seen as the

first step of the future studies which will be presented by using the matrix representations of Fibonacci elliptic biquaternions.
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Abstract

In this paper, we use the Faber polynomial expansion techniques to get the general Taylor-

Maclaurin coefficient estimates for |an|, (n ≥ 4) of a generalized class of bi-univalent

functions by means of (p,q)−calculus, which was introduced by Chakrabarti and Jagan-

nathan. For functions in such a class, we get the initial coefficient estimates for |a2| and

|a3|. In particular, the results in this paper generalize or improve (in certain cases) the

corresponding results obtained by recent researchers.

1. Introduction

Let A indicate the class of functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disc D= {z : |z|< 1} and satisfy the conditions f (0) = 0, f ′(0) = 1 for every z ∈D. Denote

by S the subclass of A containing of all univalent functions. Let Ω be the class of Schwarz functions φ , which are analytic in

D satisfying the conditions φ(0) = 0 and |φ(z)|< 1 for all z ∈ D. If f1 and f2 are analytic functions in D, then we state f1 is

subordinate to f2, denoted by f1 ≺ f2, if there exists a Schwarz function φ ∈ Ω such that f1(z) = f2(φ(z)) (see [1]).

According to the Koebe 1/4 Theorem [1], the range of D under every function f in the univalent function class S contains a

disc {w : |w|< 1/4} of radius 1/4. Thus, every univalent function f has an inverse f−1 satisfying the conditions

f−1( f (z)) = z, (z ∈ D)

and

f ( f−1(w)) = w, (|w|< r0( f ); r0( f )≥ 1/4),

where

f−1 (w) = w−a2w2 +
(

2a2
2 −a3

)

w3 −
(

5a3
2 −5a2a3 +a4

)

w4 + · · · .

Email addresses and ORCID numbers: oahuja@kent.edu, https://orcid.org/0000-0003-0701-6390 (Om P. Ahuja), asnfigen@hotmail.com, https://orcid.org/0000-0002-

8815-5642 (A. Çetinkaya)



18 Fundamental Journal of Mathematics and Applications

If both f and f−1 are univalent in D, then a function f ∈ A is said to be bi-univalent in D. The class of bi-univalent functions

will be denoted by Σ in D.

Not much is known about the bounds for |an| of Faber polynomials in quantum calculus because the bi-univalency requirement

makes the behaviour of the coefficients of the functions f and f−1 unpredictable. The quantum calculus has a great number of

applications in the fields of special functions and other areas (see [2], [3]). There is a possibility to extend some of the results

in quantum calculus to post quantum calculus in geometric function theory.

Let us first recall certain notations of the (p,q)−calculus. The (p,q)−twin-basic number [n]p,q is defined by

[n]p,q =
pn −qn

p−q
, (0 < q < p ≤ 1,n = 0,1,2, ...).

The (p,q)−derivative operator of a function f is given by

(Dp,q f )(z) =
f (pz)− f (qz)

(p−q)z
, (z 6= 0) (1.2)

and (Dp,q f )(0) = f ′(0) provided that the function f is differentiable at z = 0 (see [4]). For a function f given by (1.1), it can

be easily concluded that

Dp,q f (z) = 1+
∞

∑
n=2

[n]p,qanzn−1. (1.3)

Note that, for p = 1, (p,q)−derivative operator reduces to the Jackson q−derivative ([5], [6]) given by

(Dq f )(z) =
f (z)− f (qz)

(1−q)z
, (z 6= 0). (1.4)

Also, for p = 1, q−bracket [n]q is given by

[n]q =
1−qn

1−q
, (n = 0,1,2, ...).

In 1903, G. Faber [7] in his thesis, introduced the polynomials which have since proved useful in analysis, and hence are known

as Faber polynomials. By using the Faber polynomial expansion of functions f ∈ A , researchers in [8] got the following

useful results.

Lemma 1.1. If f is of the form (1.1), then the coefficients of its inverse functions g = f−1 are given by

g(w) = f−1(w) = w+
∞

∑
n=2

1

n
K−n

n−1(a2,a3, ...)w
n := w+

∞

∑
n=2

bnwn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)! an−1

2 + (−n)!
(2(−n+1))!(n−3)! an−3

2 a3 +
(−n)!

(−2n+3)!(n−4)! an−4
2 a4

+ (−n)!
(2(−n+2))!(n−5)! an−5

2 [a5 +(−n+2)a2
3]

+ (−n)!
(−2n+5)!(n−6)! an−6

2 [a6 +(−2n+5)a3a4]+∑l≥7 an−l
2 Vl

such that Vl ,(7 ≤ l ≤ n) is a homogeneous polynomial in the variables a2,a3, ...,an. The first three terms of K−n
n−1 are given

below:

K−2
1 =−2a2, K−3

2 = 3(2a2
2 −a3), K−4

3 =−4(5a3
2 −5a2a3 +a4).

Making use of (p,q)−derivative operator defined in (1.2), we define the class NΣ(p,q;λ ,δ ,A,B) as below:

Definition 1.2. Let A and B be real numbers such that −1 ≤ B < A ≤ 1. For 0 < q < p ≤ 1,λ ≥ 1,δ ≥ 0, a bi-univalent

function f ∈ Σ is said to be in NΣ(p,q;λ ,δ ,A,B) if

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z)≺

1+Az

1+Bz
, (z ∈ D) (1.5)

and

(1−λ )
g(w)

w
+λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w)≺

1+Aw

1+Bw
, (w ∈ D) (1.6)

where g(w) = f−1(w) for w ∈ D.
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By taking different values of the parameters p,q,λ ,δ ,A,B, we may obtain several new and known subclasses of the family

NΣ(p,q;λ ,δ ,A,B); for instance we have

(i) GΣ(q;λ ,δ ,A,B)≡ NΣ(1,q;λ ,δ ,A,B).
(ii) DΣ(p,q;λ , 1+Az

1+Bz
)≡ NΣ(p,q;λ ,0,A,B).

(iii) RΣ(λ ,δ ,α)≡ NΣ(1,1;λ ,δ ,1−2α,−1),(0 ≤ α < 1), [9].

(iv) TΣ(λ ,α)≡ NΣ(1,1;λ ,0,1−2α,−1),(0 ≤ α < 1), [10].

(v) HΣ(α)≡ NΣ(1,1;1,0,1−2α,−1),(0 ≤ α < 1), [11].

(vi) MΣ(δ ,α)≡ NΣ(1,1;1,δ ,1−2α ,−1),(0 ≤ α < 1), [12].

Remark 1.3. Note that the class GΣ(q;λ ,δ ,A,B) in (i) is a new generalized class of bi-univalent functions defined by

Dq = limp→1 Dp,q given in (1.4).

Remark 1.4. The class DΣ(p,q;λ , 1+Az
1+Bz

) in (ii) may be obtained by letting ϕ = 1+Az
1+Bz

in the class DΣ(p,q;λ ,ϕ) which was

studied in 2017 by Altınkaya and Yalçın [13]. The results in our paper improve the estimates of the corresponding bounds in

[13]. Similarly, our results are also better than those determined in [11].

In view of the relations witnessed in (i) to (vi) and Remarks 1.3 and 1.4, we conclude that the generalized class NΣ(p,q;λ ,δ ,A,B)
unifies several subclasses of Σ.

2. Main results

We first give coefficient estimates of a function f in the class NΣ(p,q;λ ,δ ,A,B) for all the coefficients except for the first

initial coefficients a2 and a3.

Theorem 2.1. For 0 < q < p ≤ 1, δ ≥ 0, λ ≥ 1, −1 ≤ B < A ≤ 1, let the function f given by (1.1) be in the class

NΣ(p,q;λ ,δ ,A,B). If am = 0,(2 ≤ m ≤ n−1), then

|an| ≤
A−B

|1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ |
, (n ≥ 4). (2.1)

Proof. If a function f given by (1.1) is in NΣ(p,q;λ ,δ ,A,B), then by using (1.2) and (1.3), the left side of (1.5) gives

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z) = 1+

∞

∑
n=2

[

1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ
]

anzn−1. (2.2)

In view of (1.2), (1.3) and Lemma 1.1, the left side of (1.6) yields

(1−λ ) g(w)
w

+λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w)

= 1+∑
∞
n=2

[

1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ
]

bnwn−1

= 1+∑
∞
n=2

[

1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ
]

× 1
n
K−n

n−1(a2,a3, ...,an)w
n−1,

(2.3)

where K−n
n−1(a2,a3, ...,an) are given in Lemma 1.1.

On the other hand, (1.5) and (1.6) imply the existence of two Schwarz functions φ(z) = ∑
∞
n=1 cnzn, (z ∈ D) and ψ(w) =

∑
∞
n=1 dnzn,(w ∈ D) so that

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z) =

1+Aφ(z)

1+Bφ(z)
(2.4)

and

(1−λ )
g(w)

w
+λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w) =

1+Aψ(w)

1+Bψ(w)
. (2.5)

Moreover, by using the method given in [8] and [14], Jahangiri and Hamidi in [15] observed that

1+Aφ(z)

1+Bφ(z)
= 1−

∞

∑
n=1

(A−B)K−1
n (c1,c2, ...,cn,B)z

n, (2.6)

and

1+Aψ(w)

1+Bψ(w)
= 1−

∞

∑
n=1

(A−B)K−1
n (d1,d2, ...,dn,B)w

n, (2.7)
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where K−1
n (k1,k2, ...,kn,B) are obtained by the general coefficients K

j
n(k1,k2, ...,kn,B) for all j ∈ Z given by

K
j

n(k1,k2, ...,kn,B) =
j!

( j−n)!(n)! kn
1Bn−1 + j!

( j−n+1)!(n−2)! kn−2
1 k2Bn−2

+ j!
( j−n+2)!(n−3)! kn−3

1 k3Bn−3

+ j!
( j−n+3)!(n−4)! kn−4

1 [k4Bn−4 + j−n+3
2

k2
3B]

+ j!
( j−n+4)!(n−5)! kn−5

1 [k5Bn−5 +( j−n+4)k3k4B]+∑ j≥6 k
n− j
1 Vj,

and where Vj is a homogeneous polynomial of degree j in the variables k2,k3, ...,kn; (see [8], [14], [15]).

In view of (2.2), (2.4) and (2.6), for every n ≥ 2, we get

[1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)K−1
n−1(c1,c2, ...,cn−1,B). (2.8)

Similarly, because of (2.3), (2.5) and (2.7), for every n ≥ 2, we have

[1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ ]bn =−(A−B)K−1
n−1(d1,d2, ...,dn−1,B). (2.9)

Since am = 0 for 2 ≤ m ≤ n−1, we have bn =−an and thus,

[1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)cn−1,

−[1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)dn−1.

Recall that for the Schwarz functions φ and ψ , we have |cn−1| ≤ 1 and |dn−1| ≤ 1 (see [1]). Taking absolute values of the last

two equalities and using |cn−1| ≤ 1 and |dn−1| ≤ 1, we obtain

|an|=
(A−B)|cn−1|

|1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ |
=

(A−B)|dn−1|

|1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ |
,

thus we arrive at

|an| ≤
A−B

|1+([n]p,q −1)λ +[n]p,q[n−1]p,qδ |
.

This completes the proof.

Setting p = 1 in (2.1) and using (i), we get the q−coefficient bounds of the Faber polynomials of the class GΣ(q;λ ,δ ,A,B).

Corollary 2.2. Let q ∈ (0,1), δ ≥ 0, λ ≥ 1 and −1 ≤ B < A ≤ 1. If f ∈ GΣ(q;λ ,δ ,A,B) and am = 0,(2 ≤ m ≤ n−1), then

|an| ≤
A−B

|1+([n]q −1)λ +[n]q[n−1]qδ |
, (n ≥ 4).

Setting δ = 0 in (2.1) and in view of (ii) together with Remark 1.4, we get the following:

Corollary 2.3. If f ∈ DΣ(p,q;λ , 1+Az
1+Bz

) and am = 0,(2 ≤ m ≤ n−1), then

|an| ≤
A−B

|1+([n]p,q −1)λ |
, (n ≥ 4).

Remark 2.4. In [13], the authors found that if f ∈ DΣ(p,q;λ ,ϕ) and am = 0,(2 ≤ m ≤ n−1), then

|an| ≤
2

|1+([n]p,q −1)λ |
, (n ≥ 4). (2.10)

However, we find that the coefficient estimates in Corollary 2.3 further improve the estimates in (2.10) because

|an| ≤
A−B

|1+([n]p,q −1)λ |
≤

2

|1+([n]p,q −1)λ |
, (n ≥ 4)

for all λ ≥ 1,−1 ≤ B < A ≤ 1, (see [13]).
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In view of (iii), Theorem 2.1 gives the next corollary:

Corollary 2.5. [9] Let λ ≥ 1,δ ≥ 0,0 ≤ α < 1. If f ∈ RΣ(λ ,δ ,α) and am = 0,(2 ≤ m ≤ n−1), then

|an| ≤
2(1−α)

1+(n−1)λ +n(n−1)δ
, (n ≥ 4).

Since TΣ(λ ,α)≡ NΣ(1,1;λ ,0,1−2α,−1) by (iv), Theorem 2.1 gives the next result:

Corollary 2.6. [16] Let λ ≥ 1, 0 ≤ α < 1 and am = 0,(2 ≤ m ≤ n−1). If f ∈ TΣ(λ ,α), then

|an| ≤
2(1−α)

1+(n−1)λ
, (n ≥ 4).

Remark 2.7. In view of (vi), if f ∈ MΣ(δ ,α), then we get corresponding result obtained in [12].

For the next theorem, we need the following lemma.

Lemma 2.8. [15] Let φ(z) = ∑
∞
n=1 cnzn be a Schwarz function satisfying |φ(z)|< 1 for |z|< 1. If γ ≥ 0, then

|c2 + γc2
1| ≤ 1+(γ −1)|c1|

2.

Theorem 2.9. For 0 < q < p ≤ 1, δ ≥ 0, λ ≥ 1, −1 ≤ B ≤ A ≤ 1, let the function f given by (1.1) be in the class

NΣ(p,q;λ ,δ ,A,B). If

t = [3]p,q = p2 + pq+q2

µ = [2]p,q = p+q,
(2.11)

then

|a2| ≤ min































A−B
√

∣

∣

∣
(A−B) [1+(t −1)λ + tµδ ]+ (1+B) [1+(µ −1)λ +µδ ]2

∣

∣

∣

, B ≤ 0

A−B

|1+(µ −1)λ +µδ |
,

(2.12)

|a3| ≤
(A−B)2

[1+(µ −1)λ +µδ ]2
+

A−B

|1+(t −1)λ + tµδ |
(2.13)

and

∣

∣a3 −2a2
2

∣

∣≤

(A−B)

[

1− (1+B)
(1+(µ −1)λ +µδ )2 |a2|

2

(A−B)2

]

|1+(t −1)λ + tµδ |
(B ≤ 0) . (2.14)

These results are sharp.

Proof. Upon setting 2 in place of n in (2.8), we obtain

[1+([2]p,q −1)λ +[2]p,qδ ]a2 = (A−B)K−1
1 (c1) =−(A−B)c1. (2.15)

Again, replacing n = 3 in (2.8), we have

[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ]a3 = (A−B)K−1
2 (c2) =−(A−B)(Bc2

1 − c2). (2.16)

Similarly, by substituting n = 2 and n = 3, respectively in (2.9), we observe

−[1+([2]p,q −1)λ +[2]p,qδ ]a2 =−(A−B)d1, (2.17)

and

[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ](2a2
2 −a3) =−(A−B)(Bd2

1 −d2). (2.18)
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Using |c1| ≤ 1 and |d1| ≤ 1, it follows from (2.15) and (2.17) that c1 =−d1 and

|a2|=
(A−B)|c1|

|1+([2]p,q −1)λ +[2]p,qδ |
=

(A−B)|d1|

|1+([2]p,q −1)λ +[2]p,qδ |
,

then we get

|a2| ≤
A−B

|1+(µ −1)λ +µδ |
,

where µ is given by (2.11) and for −1 ≤ B ≤ A ≤ 1.

Adding (2.16) to (2.18), and simple calculations gives

2[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ]a2
2 = (A−B)(c2 +(−B)c2

1 +d2 +(−B)d2
1).

Taking absolute values of both sides, we get

∣

∣2[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ]
∣

∣|a2|
2 ≤ (A−B)

[∣

∣c2 +(−B)c2
1

∣

∣+
∣

∣d2 +(−B)d2
1

∣

∣

]

.

If B ≤ 0, then by Lemma 2.8 we have

2
∣

∣1+([3]p,q −1)λ +[3]p,q[2]p,qδ
∣

∣|a2|
2 ≤ (A−B)

[

2− (B+1)(|c1|
2 + |d1|

2)
]

.

Upon substituting c1 and d1 from (2.15) and (2.17), we obtain

2
∣

∣1+([3]p,q −1)λ +[3]p,q[2]p,qδ
∣

∣|a2|
2 ≤ (A−B)

[

2−2(B+1)

(

1+([2]p,q −1)λ +[2]p,qδ

)2

|a2|
2

(A−B)2

]

,

or equivalently

|a2| ≤
A−B

√

∣

∣(A−B)
(

1+(t −1)λ + tµδ
)

+(1+B)
(

1+(µ −1)λ +µδ
)2∣
∣

,

where t and µ are given by (2.11). This completes the proof of (2.12).

In order to obtain the coefficient estimates for |a3|, we subtract (2.18) from (2.16), and we get

[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ](−2a2
2 +2a3) =−(A−B)

[

(Bc2
1 − c2)− (Bd2

1 −d2)

]

,

or

a3 = a2
2 +

(A−B)(c2 −d2)

2[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ]
. (2.19)

Upon substituting the value of a2
2 from (2.15) into (2.19), it follows that

a3 =
(A−B)2c2

1

(1+([2]p,q −1)λ +[2]p,qδ )2
+

(A−B)(c2 −d2)

2[1+([3]p,q −1)λ +[3]p,q[2]p,qδ ]
.

Taking the absolute value and by using |c1| ≤ 1, |c2| ≤ 1 and |d2| ≤ 1, we get

|a3| ≤
(A−B)2

(1+(µ −1)λ +µδ )2
+

A−B

|1+(t −1)λ + tµδ |
,

where t and µ are given by (2.11). This proves the inequality in (2.13).

Finally, (2.18) yields

2a2
2 −a3 =

(A−B)(d2 +(−B)d2
1)

1+([3]p,q −1)λ +[3]p,q[2]p,qδ
.

By taking the absolute value of the above equation, we find

|a3 −2a2
2| ≤

(A−B)|d2 +(−B)d2
1 |

|1+([3]p,q −1)λ +[3]p,q[2]p,qδ |
.
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If B ≤ 0, then by Lemma 2.8 we have

|a3 −2a2
2| ≤

(A−B)(1+(−B−1)|d1|
2

|1+([3]p,q −1)λ +[3]p,q[2]p,qδ |
.

Upon substituting the value of d1 from (2.17), we get

|a3 −2a2
2| ≤

(A−B)

(

1− (1+B)
(1+([2]p,q−1)λ+[2]p,qδ )2|a2|

2

(A−B)2

)

|1+([3]p,q −1)λ +[3]p,q[2]p,qδ |
.

This proves the inequality given by (2.14).

In view of (i) and (ii), Theorem 2.9 leads to the following corollaries.

Corollary 2.10. Let q ∈ (0,1),λ ≥ 1,δ ≥ 0 and −1 ≤ B < A ≤ 1. If f ∈ GΣ(q;λ ,δ ,A,B) and am = 0,(2 ≤ m ≤ n−1), then

|a2| ≤ min























A−B
√

∣

∣

∣
(A−B) [1+(q+q2)λ +(1+q+q2)(1+q)δ ]+ (1+B) [1+qλ +(1+q)δ ]2

∣

∣

∣

, B ≤ 0

A−B
1+qλ+(1+q)δ ,

|a3| ≤
(A−B)2

(1+qλ +(1+q)δ )2
+

A−B

1+(q+q2)λ +(1+q+q2)(1+q)δ

and

∣

∣a3 −2a2
2

∣

∣≤

(A−B)

[

1− (1+B)
[1+qλ+(1+q)δ 2]|a2|

2

(A−B)2

]

1+(q+q2)λ +(1+q+q2)(1+q)δ
(B ≤ 0) .

Corollary 2.11. Let 0 < q < p ≤ 1,λ ≥ 1,−1 ≤ B < A ≤ 1. If f ∈ DΣ(p,q;λ , 1+Az
1+Bz

) and am = 0,(2 ≤ m ≤ n−1), then

|a2| ≤ min















A−B

|1+(p+q−1)λ |
,

A−B
√

∣

∣

∣
(A−B) [1+(p2 + pq+q2 −1)λ ]+ (1+B) [1+(p2 + pq+q2 −1)λ ]2

∣

∣

∣















,

|a3| ≤
(A−B)2

(1+(p+q−1)λ )2
+

A−B

|1+(p2 + pq+q2 −1)λ |
.

Remark 2.12. Let λ ≥ 1,δ ≥ 0,0 ≤ α < 1. If f ∈ RΣ(λ ,δ ,α) and am = 0,(2 ≤ m ≤ n− 1), then Theorem 2.9 yields the

corresponding results obtained in [9] for coefficients a2, a3 and a3 −2a2
2.

Remark 2.13. Let λ ≥ 1,0≤α < 1. If f ∈TΣ(λ ,α) and am = 0,(2≤m≤ n−1), then Theorem 2.9 satisfies the corresponding

results obtained in [16] for coefficients a2 and a3 −2a2
2.

Remark 2.14. Setting p = 1,q → 1−,A = 1− 2α,(0 ≤ α < 1),B = −1 and δ = 0, Theorem 2.9 yields the corresponding

results in [10] for coefficients a2 and a3.

Remark 2.15. Setting p= 1,q→ 1−,A= 1−2α,(0≤α < 1),B=−1,δ = 0 and λ = 1, Theorem 2.9 yields the corresponding

results in [11] for coefficient a2.

3. Conclusion

In this paper, we defined a new subclass of bi-univalent functions associated with (p,q)-derivative operator and investigated

Faber polynomial coefficient estimates for this new class. We also concluded that the results are generalization of the

corresponding results obtained by recent researchers.
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Abstract

The fundamental aim of the present paper is to deal with introducing a new family of Daehee

polynomials which is called degenerate q-Daehee polynomials with weight α by using

p-adic q-integral on Zp. From this definition, we obtain some new summation formulae

and properties. We also introduce the degenerate q-Daehee polynomials of higher order

with weight α and obtain some new interesting identities.

1. Introduction

The notion of p-adic numbers was firstly considered by Kurt Hensel (1861-1941). Motivated by this fruitful idea, many

scientists begun to study new scientific tools using good and useful properties of them. Diverse effects of these new researches

have emerged in mathematical physics in which they are used in the theory of ultrametric calculus, p-adic quantum mechanics,

the p-adic mechanics, etc.

The one useful tool of p-adic analysis is Volkenborn integral (or so-called p-adic integral). Intense research activities in

such an area as p-adic integral are principally motivated by their importance in special polynomials, especially the Bernoulli

polynomials and their various generalizations. The other useful tool of p-adic analysis is q -analogue of p-adic invariant integral

which is invented by Kim [10] . He showed that the Carlitz’s q-Bernoulli polynomials and their different generalizations can

be represented as a p-adic q-invariant integral which is called Witt’s formula. Therefore, in recent years, p-adic integral and its

various generalizations have been considered and extensively studied by many mathematicians, cf. [3], [4], [5], [7], [11], [12],

[16], [20], [21], [22], [29].

We now begin with recalling some basic notations as follows.

Throughout this paper we use the following standard notations:

N := {1,2,3, · · ·} and N0 := N∪{0} .

The parameter p stands for the first letter of p-adic being a fixed prime number. The symbols denoted by Zp, Qp and Cp mean

p-adic integers field, p-adic rational numbers field and the completion of an algebraic closure of Qp, respectively. The known

Email address and ORCID number: mtsrkn@hotmail.com, 0000-0002-3950-6864
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p-adic norm denoted by | . |p is normalized by the equality |p|p = p−1. The UD(Zp) means the space of Cp-valued uniformly

differentiable functions over Zp. The p-adic q-integral on Zp of a function f ∈UD(Zp) is originally given by Kim [10] as

follows:

Iq( f ) :=
∫

Zp

f (y)dµq(y) = lim
N→∞

pN−1

∑
k=0

f (k)µq(k+ pNZp), (1.1)

where µq(k+ pNZp) =
qk

[pN ]
q

is Kim’s q-Haar distribution. It follows from (1.1) that

qIq( f1)− Iq( f ) =
q−1

logq
f ′(0)+(q−1) f (0), (1.2)

where f1(x) = f (x+1).

In the year 2011, Kim [11] defined weighted q-Bernoulli polynomials (or known as q-Bernoulli polynomials with weight α)

which can be represented by the p-adic q-integral on Zp as follows:

∞

∑
n=0

β
(α)
n,q (x)

zn

n!
=
∫

Zp

e
z[x+y]qα dµq(y), (1.3)

or equaivalently by

β
(α)
n,q (x) =

n

∑
l=0

(
n

l

)

qlx[x]n−l
qα β

(α)
l,q , (n ≥ 0). (1.4)

The pioneering of degenerate versions of Bernoulli and Euler polynomials was Carlitz who considered (1+λ z)
1
λ instead of ez

in their generating functions. When λ → 0, it returns to classical one. Actually, Carlitz [1], [2] gave the generating function of

degenerate Bernoulli polynomials as follows:

∞

∑
n=0

βn (x | λ )
zn

n!
=

z

(1+λ z)
1
λ −1

(1+λ z)
x
λ .

When x = 0, βn (0 | λ ) := βn (λ ) are called degenerate Bernoulli numbers. It is noteworthy that

lim
λ→0

βn (x | λ ) = Bn (x) ,

where Bn (x) are the Bernoulli polynomials, see [5], [30], [31], [32].

Kim also applied the idea of degenerate version to various special functions, polynomials and numbers, cf. [12], [13], [14],

[15]. For example, Kim considered a new class of q-Bernoulli polynomials which is called degenerate q-Bernoulli polynomials

given by

∫

Zp

(1+λ z)
[x+y]q

λ dµq(y) =
∞

∑
n=0

Bn,q(x|λ )
zn

n!
, (1.5)

where the parameters are assumed that λ ,z,q ∈ Cp with |λ z|p < p
− 1

p−1 and |1−q|p < p
− 1

p−1 , see [12].

Let Dn(x) be Daehee polynomials given by

∞

∑
n=0

Dn(x)
zn

n!
=

log(1+ z)

z
(1+ z)x.

In the case when x = 0, Dn = Dn(0) are called the Daehee numbers, cf. [5], [7], [17], [18], [19], [21], [22], [24], [25], [26],

[28], [29]. The degenerate version of Carlitz’s type q-Daehee polynomials is considered by

∞

∑
n=0

Dn,q,λ (x)
zn

n!
=
∫

Zp

(1+λ log(1+ z))
[x+y]q

λ dµq (y) , (1.6)

where the case x = 0, Dn,q,λ (0) := Dn,q,λ stands for the degenerate of q-analogue Carlitz’s type Daehee numbers, see [23].

Clearly that

Dn,q,λ → Dn,q as λ → 0.
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The Stirling numbers of first and second kinds are given, respectively, by

∞

∑
n=k

S1(n,k)
zn

n!
=

(log(z+1))k

k!
and

∞

∑
n=k

S2(n,k)
zn

n!
=

(ez −1)k

k!
, (1.7)

satisfying

(x)n =
n

∑
k=0

S1(n,k)x
k and xn =

n

∑
k=0

S2(n,k)(x)k, see [8], [30], [32].

Motivated by the works of [3], [4] and [12], we consider the degenerate q-Daehee polynomials with weight α as follows:

∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq(y) =
∞

∑
n=0

Dn,q;α,λ (x)
zn

n!
.

From this definition, we obtain explicit identities and properties. We also introduce the degenerate q-Daehee polynomials of

higher order with weight α .

2. The degenerate q-Daehee polynomials with weight α

We begin with the following definition.

Definition 2.1. Let λ ,z,q ∈ Cp with |λ z|p < p
− 1

p−1 and |1−q|p < p
− 1

p−1 . The degenerate q-Daehee polynomials Dn,q;α,λ (x)
are given by

∞

∑
n=0

Dn,q;α,λ (x)
zn

n!
=
∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq (y) . (2.1)

Remark 2.2. Putting α = 1 in Eq. (2.1) reduces to Eq. (1.6).

Remark 2.3. Traditionally, in the case x = 0, the polynomial reduces to its number. So, when x = 0 in (2.1), Dn,q;α,λ (0) :=
Dn,q;α,λ will be called the degenerate q-Daehee numbers with weight α .

It follows from Eq. (2.1) that

∞

∑
m=0

Dm,q;α,λ (x)
zm

m!
=

∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq (y)

=
∫

Zp

∞

∑
j=0

( [x+y]qα

λ

j

)

λ j (log(1+ z)) j
dµq (y)

=
∞

∑
j=0

∫

Zp

(

[x+ y]qα

)

j,λ

∞

∑
m= j

S1 (m, j)dµq (y)
zm

m!

=
∞

∑
m=0

(
m

∑
j=0

∫

Zp

(

[x+ y]qα

)

j,λ
S1 (m, j)dµq (y)

)

zm

m!
,

where we have used
(

[γ +ζ ]qα

)

j,λ
= [γ +ζ ]qα

(

[γ +ζ ]qα −λ
)(

[γ +ζ ]qα −2λ
)

· · ·
(

[γ +ζ ]qα − ( j−1)λ
)

.

Thus we obtain the following theorem.

Theorem 2.4. Let m ∈ N0. The degenerate q-Daehee polynomials with weight α satisfy

Dm,q;α,λ (x) =
m

∑
j=0

∫

Zp

(

[x+ y]qα

)

j,λ
S1 (m, j)dµq (y) .

Let Bk,q;α,λ (x) be degenerate q-Bernoulli polynomials with weight α which may be given by

∞

∑
n=0

Bn,q;α,λ (x)
zn

n!
=
∫

Zp

(1+λ z)
[x+y]qα

λ dµq (y) . (2.2)
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Replacing z by ez −1 in Eq. (2.1) gives

∞

∑
m=0

Dm,q;α,λ (x)
(ez −1)m

m!
=

∫

Zp

(1+λ z)
[x+y]qα

λ dµq (y) , (2.3)

=
∞

∑
m=0

Bm,q;α,λ (x)
zm

m!

and

∞

∑
m=0

Dm,q;α,λ (x)
(ez −1)m

m!
=

∞

∑
m=0

Dm,q;α,λ (x)
∞

∑
n=m

S2 (n,m)
zn

n!
(2.4)

=
∞

∑
m=0

(
m

∑
n=0

Dn,q;α,λ (x)S2 (m,n)

)

zm

m!
.

Thus, from (2.3) and (2.4), we have the following theorem.

Theorem 2.5. Let m ∈ N0. The following identity holds

Bm,q;α,λ (x) =
m

∑
n=0

Dn,q;α,λ (x)S2 (m,n) .

Changing z to log(1+ z) in Eq. (2.2) yields

∞

∑
m=0

Dm,q;α,λ (x)
zn

n!
=

∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq (y)

=
∞

∑
m=0

Bm,q;α,λ (x)
(log(1+ z))m

m!

=
∞

∑
m=0

Bm,q;α,λ (x)
∞

∑
n=m

S1 (n,m)
zn

n!

=
∞

∑
n=0

(
n

∑
m=0

Bm,q;α,λ (x)S1 (n,m)

)

zn

n!
.

By comparing coefficitents of zn

n!
on the both sides of the above, we procure the following theorem.

Theorem 2.6. Let m ∈ N0. The following summation formula satisfies

Dm,q;α,λ (x) =
n

∑
m=0

Bm,q;α,λ (x)S1 (n,m) .

Since

qx = ex logq
,

we have

(1+λ log(1+ z))
[x+y]qα

λ = e

[x+y]qα

λ log(1+λ log(1+z))

=
∞

∑
n=0

(

[x+ y]qα

λ

)n
(log(1+λ log(1+ z)))n

n!
(2.5)

=
∞

∑
n=0

(

[x+ y]qα

λ

)n
∞

∑
m=n

S1 (m,n)λ m (log(1+ z))m

m!

=
∞

∑
n=0

(
n

∑
j=0

j

∑
l=0

[x+ y]lqα λ j−lS1 ( j, l)S1 (n, j)

)

zn

n!
.
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Taking p-adic q-integral on Zp on both sides of (2.5) becomes

∞

∑
m=0

Dm,q;α,λ (x)
zm

m!
=

∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq (y) (2.6)

=
∫

Zp

∞

∑
m=0

(
m

∑
j=0

j

∑
l=0

[x+ y]lqα λ j−lS1 ( j, l)S1 (m, j)

)

dµq (y)
zm

m!

=
∞

∑
m=0

(
m

∑
j=0

j

∑
l=0

λ j−lS1 ( j, l)S1 (m, j)β
(α)
l,q (x)

)

zm

m!
. (2.7)

By (2.6) and (2.7), we arrive at the following theorem.

Theorem 2.7. Let m ∈ N0. The following relation holds

Dm,q;α,λ (x) =
m

∑
j=0

j

∑
l=0

λ j−lS1 ( j, l)S1 (m, j)β
(α)
l,q (x).

It is easy to check that

[x+ y]qα =
1−qα(x+y)

1−qα
=

1−qαx

1−qα
+

qαx (1−qαy)

1−qα
= [x]qα +qαx [y]qα .

From here, we see that

(1+λ log(1+ z))
[x+y]qα

λ = (1+λ log(1+ z))
[x]qα +qαx [y]qα

λ

= (1+λ log(1+ z))
[x]qα

λ (1+λ log(1+ z))
qαx [y]qα

λ

=

(
∞

∑
j=0

( [x]qα

λ

j

)

λ j (log(1+ z)) j

)(
∞

∑
m=0

qmαx [y]mqα

λ m

(log(1+λ log(1+ z)))m

m!

)

=

(
∞

∑
n=0

(
n

∑
j=0

(

[x]qα

)

j,λ
S1 (n, j)

)

zn

n!

)(
∞

∑
n=0

(
n

∑
k=0

k

∑
l=0

λ k−lqαlx [y]lqα S1 (k, l)S1 (n,k)

)

zn

n!

)

=
∞

∑
n=0

(
n

∑
j=0

n− j

∑
m=0

j

∑
k=0

k

∑
l=0

(
n

j

)

λ k−l
(

[x]qα

)

m,λ
qαlx [y]lqα S1 (k, l)S1 ( j,k)S1 (n,m)

)

zn

n!
.

Thus we have the following theorem.

Theorem 2.8. Let n be nonnegative integer. The following implicit summation formula satisfies

Dn,q;α,λ (x) =
n

∑
j=0

n− j

∑
m=0

j

∑
k=0

k

∑
l=0

(
n

j

)

λ k−l
(

[x]qα

)

m,λ
qαlxS1 (k, l)S1 ( j,k)S1 (n,m)β

(α)
l,q .
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Now we observe that

∞

∑
n=0

Dn,q;α,λ (x)
zn

n!
=

∫

Zp

(1+λ log(1+ z))
[x+y]qα

λ dµq (y)

= lim
N→∞

1

[pN ]q

pN−1

∑
y=0

(1+λ log(1+ z))
[x+y]qα

λ qy

= lim
N→∞

1

[d pN ]q

d pN−1

∑
y=0

(1+λ log(1+ z))
[x+y]qα

λ qy

= lim
N→∞

1

[d]q [p
N ]qd

d−1

∑
a=0

pN−1

∑
y=0

qa (1+λ log(1+ z))
[x+a+dy]qα

λ qdy

=
1

[d]q

d−1

∑
a=0

qa lim
N→∞

1

[pN ]qd

pN−1

∑
y=0

(1+λ log(1+ z))
[d]qα [ x+a

d
+y]

qdα

λ qdy

=
1

[d]q

d−1

∑
a=0

qa lim
N→∞

1

[pN ]qd

pN−1

∑
y=0

∞

∑
n=0

(
n

∑
k=0

k

∑
j=0

S1 (k, j)S1 (n,k) [d]
j
qα

[
a+ x

d
+ y

] j

qα

λ n−k

)

qdy zn

n!

=
∞

∑
n=0

(

1

[d]q

d−1

∑
a=0

n

∑
k=0

k

∑
j=0

qaS1 (k, j)S1 (n,k) [d]
j
qα β

(α)

j,qd (
a+ x

d
) λ n−k

)

zn

n!
.

Thus we get the following theorem.

Theorem 2.9. Let n be nonnegative integer. The following distribution formula for degenerate q-Daehee polynomials with

weight α holds

Dn,q;α,λ (x) =
1

[d]q

d−1

∑
a=0

n

∑
k=0

k

∑
j=0

qaS1 (k, j)S1 (n,k) [d]
j
qα β

(α)

j,qd (
a+ x

d
) λ n−k.

Recall from Eq. (1.2) that

qIq( f1)− Iq( f ) =
q−1

logq
f ′(0)+(q−1) f (0).

Let us now consider the following function

f (y) = (1+λ log(1+ z))
[x+y]qα

λ ,

then we find the following difference equation for degenerate q -Daehee polynomials with weight α as follows:

qDn,q;α,λ (x+1)−Dn,q;α,λ (x) = (q−1)
n

∑
k=0

(

[x]qα

)

k,λ
S1 (n,k)+n

α

[α]q
(q−1)2

qαx

×
n−1

∑
j=0

j

∑
k=0

(
n

j+1

)

(−1)k λ kk!Dn−1− j,q;α,λ (x+1)S1 ( j+1,k+1) .

Now we introduce degenerate q-Daehee polynomials of higher order by using multivariate p-adic q-integral on Zp defined by

Kim in [16]:

∞

∑
n=0

D
(v)
n,q;α,λ

(x)
zn

n!
=
∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

(1+λ log(1+ z))
[x+y]qα

λ dµq (y) , (2.8)

where

x :=
v

∑
i=1

xi and dµq (y) :=
v

∏
i=1

dµq (yi) .
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It follows from the Eq. (2.8) that

∞

∑
n=0

D
(v)
n,q;α,λ

(x)
zn

n!
=

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

(1+λ log(1+ z))
[x+y]qα

λ dµq (y)

=
∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

∞

∑
l=0

( [x+y]qα

λ

l

)

λ l (log(1+ z))l
dµq (y)

=
∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

∞

∑
l=0

(

[x+ y]qα

)

l,λ

∞

∑
n=l

S1 (n, l)dµq (y)
zn

n!

=
∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

∞

∑
n=0

(
n

∑
l=0

l

∑
j=0

λ l− jS1 (l, j)S1 (n, l) [ x+ y] j
qα dµq (y)

)

zn

n!

=
∞

∑
n=0

(
n

∑
l=0

l

∑
j=0

λ l− jS1 (l, j)S1 (n, l)β
(α,v)
j,q (x)

)

zn

n!
.

From those applications, we deduce the following theorem.

Theorem 2.10. Let n ∈ N0. The following relation

D
(v)
n,q;α,λ

(x) =
n

∑
l=0

l

∑
j=0

λ l− jS1 (l, j)S1 (n,k)β
(α,v)
j,q (x),

holds true.

We finalize our paper replacing z by ez −1 in Eq. (2.8):

∞

∑
m=0

D
(v)
m,q;α,λ

(x)
(ez −1)m

m!
=

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

v-times

(1+λ z)
[x+y]qα

λ dµq (y)

=
∞

∑
n=0

B
(v)
n,q;α,λ

(x)
zn

n!
(2.9)

and

∞

∑
m=0

D
(v)
m,q;α,λ

(x)
(ez −1)m

m!
=

∞

∑
n=0

D
(v)
n,q;α,λ

(x)
∞

∑
n=m

S2 (n,m)
zn

n!

=
∞

∑
n=0

(
n

∑
m=0

D
(v)
m,q;α,λ

(x)S2 (n,m)

)

zn

n!
. (2.10)

Thus, from (2.9) and (2.10), we have the following theorem.

Theorem 2.11. Let n ∈ N0. The following identity holds

B
(v)
n,q;α,λ

(x) =
n

∑
m=0

D
(v)
m,q;α,λ

(x)S2 (n,m) .

3. Conclusion

The pioneering of degenerate idea was Carlitz, see[1] and [2], who considered for Bernoulli and Euler polynomials. This idea

was one of good advantages in order to introduce new families of special polynomials. As has been listed in the references,

Kim and his research team have been working this fruitful idea for new special polynomials intensively.

In this paper, motivated by the works of Kim and his research team, we have dealt mainly with new family of polynomials

which are called degenerate q-Daehee polynomials with weight α and degenerate q-Daehee polynomials with weight α of

higher order. We have derived their explicit and summation formulae by using p-adic q-integral on Zp and analytic methods.

Seemingly that these types of polynomials will be continued to be studied for a while due to their interesting reflections in the

fields of mathematics.
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Abstract

This paper provides a detailed analysis and performance treatment of a class of discrete-

time systems with an eigen-spectrum gap coupled over networks. We deploy tools from

time-scale modeling (TSM) theory to develop rigorous reduced-order models to aid in the

stability analysis of these multiple time-scale networked systems over fixed and undirected

graph topology. We establish that the controller gain matrices can be determined by solving

convex optimization problems in terms of finite linear matrix inequalities with prescribed

H∞ and H2 performance criteria. As demonstrated by simulation studies, the ensuing results

provide designers with a network-centric approach to improve the performance and stability

of such coupled systems.

1. Introduction

The usefulness of time-scale modeling (TSM) theory for the analysis and synthesis of dynamical control systems with slow and

fast dynamics has been broadly recognized as a strong technique for over four decades [1, 2]. Different control methodologies

have received great attention of various researchers in the theory of control systems that comprises time-scales [3]-[6]. An

important feature of the existing results is that the control analysis and synthesis are accomplished in two stages, such that a

suitable reduced-order dynamics is treated at each stage. Order reduction and control has been extended to discrete systems

with two time scale [7]-[9] based on explicit invertible-transformations where quasi-steady-state is assumed [10]-[13]. It has

been demonstrated that the discrete time dynamics can be reduced to (a) a slow sub-dynamics with large eigenvalues near the

the unit disk and (b) a fast sub-dynamics with eigenvalues distributed near the origin of the disk. This decomposition can be

satisfied if an inequality relating the norms of subsystem matrices holds. Therefore, this structure allows the user to implement

feedback control using different gain matrices. Along with the enormous advancement of control theory, technological

development of controlling a group of agents has been widely investigated and received increasing demands. A common

structure for controlling a group of agents is the distributed cooperative and coordinated control techniques [14]-[19]. Recently,

distributed coordination of multi-agent systems have received a tremendous interests in a wide range of practical applications,

mainly including engineering, ecology, biology and sociology [20]-[30].

On another research avenue, discrete networked dynamic systems (DNDS) provides a high-level treatment of a general class of

linear discrete-time dynamic systems interconnected over an information network processed in discrete-time environment,

exchanging relative state measurement or output measurements. It seems encouraging that by exploiting the impact of the

network properties, additional features of the dynamical systems can be revealed [31]. On a parallel development in view of

the available results, it turns out that research avenues in multiagent systems offer great opportunities for further developments

from theoretical, simulation and implementations standpoints [32, 33]. TSM theory [34, 35] is attractive for establishing

these approximations as the obtained reduced-order dynamics guarantees the asymptotic behavior of the coupled-consensus
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dynamics and give a viable estimate of the performance of the network trajectories through a simpler set of equations, compared

to the original complex structure. Reduced-order modeling and synchronization of a network of homogeneous linear agents

that comprises two time-scale behavior over fixed and undirected graph topology are investigated in [36]. However, most of the

existing results do not employ the time-scale separation that normally appears between the agent-layer and the network-layer.

By adopting advantage of this framework, the technique addressed in this article is, therefore, flexible to be applied to a broad

range of agent models and wide range network controllers. In addition, it gives important insights into the interplay between

design parameters such as controller parameters and communication topology on the behavior of coupled-consensus dynamics.

In this paper, tools from time-scale modeling (TSM) theory [37]–[42] are used to investigate reduced-order dynamics rigorously

to help in the stability analysis of the multi-time-scale networked systems. Modeling and synchronizing reduced-order networks

of a group of identical agents characterized by continuous singularly-perturbed dynamics over undirected graph topology have

been addressed in [43].

The contributions of this paper are as follows:

A) We extend the preliminary findings of [7, 8] to networked formalism of discrete systems with eigen-spectrum gap, thereby

exploring the relationship between the graph topology and the coupled system stability framework.

B) We develop a mode-separation methodology of expanding the stabilization control design to the synchronization problem.

This is clarified by decomposing the overall network dynamics and designing the controls that synchronize the slow

dynamics and the fast ones. By recomposing the slow and fast controllers to the network of two time-scale systems we

obtain an approximation of the synchronization behavior imposed for each scale.

C) We established that the controller gain matrices can be determined by solving convex optimization problems in terms of

finite linear matrix inequalities with prescribed H∞ and H2 performance criteria.

Notations: Let Q−1, Qt and ||Q|| denote the inverse, the transpose and induced-matrix-norm of square matrices Q, respectively.

The notation Q > 0 is used to represent a symmetric positive-definite matrix Q and IN represents the N ×N identity matrix. If

the dimension of any matrix is not not explicitly given, we assume it to have an appropriate dimension for algebraic operations.

We use the notation • to denote an element that is induced by symmetry. Sometimes, the arguments of a function will be

omitted when no confusion can arise.

2. Graph theory

In the sequel, we recall some definitions and properties of Graph theory, which will be used throughout the paper.

A weighted graph is a triple G= (V,E,W) consisting of a node (vertex) set V= {1, · · · n} with cardinality |V|= n, an edge

set E ⊂ V×V with cardinality |E| = m, a positive weight set W with cardinality |W| = m, a weighted adjacency matrix

A= [ai j] with non-negative adjacent elements ai j and the corresponding vector of weights w with the order wi j refers to the

weight of the edge {i, j} [33]. In what follows, we consider undirected graph such that (i, j) ∈ E is equivalent to ( j, i) ∈ E.

In addition, we consider that the graph G contains no self-loop (∀i = 1, · · · n), one has (i, i) /∈ E. The adjacency matrix

associated with G is define as A= [ai j] ∈ ℜn×n such that

{
ai j > 0 i f (i, j) ∈ E

ai j = 0 otherwise

The (graph) Laplacian of G is a rank deficient and symmetric matrix defined by

L(G) := E(G)E(G)t = ∆(G) − A(G)

:= [ℓi j], ℓi j =−ai j, ℓii =
n

∑
j=1

ai j.

Based on the definition of L, the any of its rows sum is zero. Moreover, L(G) ha eigenvalues set 0 = λ1(G)≤ ·· · ≤ λn(G) =
λmax(G) and associated with the set eigenvectors v1 := 1

n
1,v2, . . . ,vn. An attraction of these dynamics is that all subsystems

converge to the consensus space defined as Xc = {y ∈ ℜnp|y1(k) = · · ·= yn(k)} when G is a connected graph [33].

Definition 2.1. In the graph G= (V,E), a path of length p is defined as the union of edges as follows:

p⋃

m=1

(im, jm)⇒ im+1 = jm, ∀m ∈ {1, · · · p−1}

The agent j is said to be connected with agent i if there one path exists joining i with j, i.e. i1 = i and jp = j. If every two

different agents has at least one path connecting them, the graph is said to be connected. Henceforth, we assume that the

undirected graph G is connected.

The following remark gives some important characteristic of the graph and its Laplacian matrix.

Remark 2.2. Let λ1 ≤ λ1 ≤ ·· · ≤ λn be the eigenvalues of L. It follows from [32] that
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• λ1 = 0 is a unique zero eigenvalue of L corresponding to the eigenvector I
∆
= [1, 1, · · · , 1]t .

• λ2 is strictly positive if and only if the graph G is connected. This means that L≥ 0.

• λ1 = 0 is an eigenvalue with multiplicity r of the matrix L⊗ Ir. Moreover, L⊗ Ir has r different normalized eigenvectors

given by I⊗ ei, i = 1, ...,r where ei ∈ ℜr is the column vector whose ith element is 1 and others are zeros.

• An orthonormal matrix exists: T ∈ ℜn×n, TTt = T
t
T= In such that TLTt = D

∆
= diag(λ1, λ2, · · · , λn)

3. Mode-separation of discrete time dynamical systems

There are a wide class of linear discrete-time control systems with eigenvalue-separation. By reordering and/or rescaling of

states, linear discrete system can be cast into the form

x(k+1) = A1x(k)+A2z(k)+B1u(k)+Γ1ω(k),

z(k+1) = A3x(k)+A4z(k)+B2u(k)+Γ2ω(k),

y(k) = C1x(k)+C2z(k) (3.1)

where the disturbance weighting matrices are Γ1 ∈ ℜn1×s, Γ2 ∈ ℜq×s. We seek to determine the conditions under which the

modes of discrete systems can be separated. In (3.1), the state vector is formed by x(k) ∈ ℜn1 and z(k) ∈ ℜn2 , and the control

is u(k) ∈ ℜm and the disturbance vector ω(k) ∈ ℜs.

Assumption 1. Let n = n1 +n2. System (3.1) is asymptotically Schur stable and its eigen-spectrum

1 > |λ1|> · · ·> |λn1
|> |λn1+1|> · · ·> |λn|

∆
= λ (As)∪λ (A f ) (3.2)

λ (As) = {λ1, · · · ,λn1
}, λ (A f ) = {λn1+1, · · · ,λn}

possesses a gap expressed by µ
∆
= |λn1+1|/|λn1

|<< 1

A standard assumption in time-scale modeling theory, which ensures the well-posedness of (3.1) is that following.

Assumption 2. The matrix A4 is invertible.

When Assumption 1 is met, then system (3.1) is called a two-time-scale system. To this end λ (As),λ (A f ) define, respectively,

the eigenvalues of the slow (dominant) parts and are the eigenvalues of the fast (non-dominant) parts of system (3.1). A useful

interpretation of (3.2) is that [A f ]
k tends to zero much quicker that [As]

k. Recalling the facts for any square invertible matrix P

that

|λmax| ≤ ||P||, 1/|λmin| ≤ ||P−1||

An alternative expression of the eigen-spectrum property is

||A−1
s ||||A f || << 1 (3.3)

which designates a matrix norm condition of mode separation in linear discrete systems.

Remark 3.1. By looking at system (3.1) with property (3.2) or (3.3), it is significant that it enjoys the mode-separation

implicitly through the recognition of a gap in the eigen-spectrum.

3.1. Mode separation in networked systems

We consider a network of n identical linear discrete systems having an eigen-spectrum gap in the manner of (3.2). For any

i = 1, · · · ,n where the ith system at discrete instant k, represented by the state [xi(k), zi(k)] ∈ ℜn1+n2 and the input u(k) ∈ ℜm,
is given by

xi(k+1) = A1xi(k)+A2zi(k)+B1ui(k)+Γ1ωi(k),

zi(k+1) = A3xi(k)+A4zi(k)+B2ui(k)+Γ2ωi(k),

yi(k) = C1xi(k)+C2zi(k) (3.4)

A1 ∈ ℜn1×n1 , A2 ∈ ℜn1×n2 , A3 ∈ ℜn2×n1 ,

A4 ∈ ℜn2×n2 , rank(B1) = rank(B2) = m

The consensus problem of n systems is first introduced:
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Definition 3.2. The n discrete systems with mode-separation defined by (3.4) achieve asymptotic synchronization using local

information if there exists a state protocol of the form

ui(k) = K1

n

∑
j=1

ai j[xi(k) − x j(k)]+K2

n

∑
j=1

ai j[zi(k) − z j(k)] (3.5)

where K1 ∈ ℜm×n1 , K2 ∈ ℜm×n2 such that

lim
k→∞

||xi(k) − x j(k)||= 0, lim
k→∞

||zi(k) − z j(k)||= 0 (3.6)

The prime objective hereafter is the characterization of the local controllers that use local information and asymptotically

synchronize the two time-scale (TTS) discrete systems defined by (3.4). Toward our objective, we express the collective

dynamics characterizing the performance of the collective dynamics of n feedback coupled-systems. In terms of

x(k) = [xt
1(k), ..., xt

n(k)]
t ∈ ℜnn1 , and z(k) = [zt

1(k), ..., zt
n(k)]

t ∈ ℜnn2

we note that the asymptotic synchronization (3.6) corresponds to

lim
k→∞

(L⊗ In1
)x(k) = 0, lim

k→∞
(L⊗ In2

)z(k) = 0 (3.7)

Invoking the fact that TL= DT, it follows that (3.7) can be expressed as

lim
k→∞

(D⊗ In1
)(T⊗ In1

)x(k) = 0, and lim
k→∞

(D⊗ In2
)(T⊗ In2

)z(k) = 0 (3.8)

3.2. Closed-loop representation

On substituting protocol (3.5) in system (3.4), we obtain the closed-loop dynamics:

x(k+1) = Â1x(k)+ Â2z(k)+ Γ̂1ω(k),

z(k+1) = Â3x(k)+ Â4z(k)+ Γ̂2ω(k) (3.9)

where

Â1 = (In ⊗A1) − (In ⊗B1K1)(L⊗ In1
),

Â2 = (In ⊗A2) − (In ⊗B1K2)(L⊗ In1
),

Â3 = (In ⊗A3) − (In ⊗B2K1)(L⊗ In1
),

Â4 = (In ⊗A4) − (In ⊗B2K2)(L⊗ In1
),

Γ̂1 = (In ⊗Γ1) , Γ̂2 = (In ⊗Γ2).

It is significant to notice that unlike the invertibility of matrix I2 −A4, we can not guarantee that the matrix I2 − Â4 is

non-singular. Hence, the well-posedness of the closed-loop dynamics (3.9) has also to be guaranteed by the selection of the

matrix gains. We now proceed by making another transformation of variables

x̂(k) = (T⊗ In1
)x(k) , ẑ(k) = (T⊗ In2

)z(k),

converts the aggregate dynamics (3.9) into the form

[
x̂(k+1)
ẑ(k+1)

]
=

[
Â1 Â2

Â3 Â4

][
x̂(k)
ẑ(k)

]
+

[
Γ̂1

Γ̂2

]
ω(k) (3.10)

where Γ̂1 = (T⊗ In1
)(In ⊗Γ1), Γ̂2 = (T⊗ In1

)(In ⊗Γ2), and

Â1 = (In ⊗A1) − (In ⊗B1K1)(D⊗ In1
),

Â2 = (In ⊗A2) − (In ⊗B1K2)(D⊗ In1
),

Â3 = (In ⊗A3) − (In ⊗B2K1)(D⊗ In1
),

Â4 = (In ⊗A4) − (In ⊗B2K2)(D⊗ In1
). (3.11)

The following results stand out:

Proposition 3.3. The closed-loop system (3.10)-(3.11) can be decoupled in n independent TTS systems.
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Proof: Invoking the properties of Kronecker products [3], one uses the fact that for any matrices M, N of appropriate

dimensions we have

(In ⊗M) − (In ⊗N)(D⊗ Im) = (In ⊗M) − (D⊗N)

= diag[M, · · · ,M] − diag[λ1N, · · · ,λnN]

= diag[M−λ1N, · · · ,M−λnN]

which eventually results in

Â1 = diag[A1 −λ1B1K1, · · · ,A1 −λnB1K1],

Â2 = diag[A2 −λ1B1K2, · · · ,A2 −λnB1K2],

Â3 = diag[A3 −λ1B2K1, · · · ,A3 −λnB2K1],

Â4 = diag[A4 −λ1B2K2, · · · ,A4 −λnB2K2].

This in turn casts the closed-loop system (3.10) into the form

[
x̂i(k+1)
ẑi(k+1)

]
=

[
(A1 −λiB1K1) (A2 −λiB1K2)
(A3 −λiB2K1) (A4 −λiB2K2)

][
x̂i(k)
ẑi(k)

]
+

[
Γ̂1

Γ̂2

]
ω(k) (3.12)

for i = 1, · · · · · · , n, which is the desired result. �

Proposition 3.4. The asymptotic synchronization problem under consideration with local state information becomes a problem

of feedback simultaneous stabilization of systems in (3.12) for i = 2; · · · ; n.

Proof: Recall that (3.8) can be cast into

lim
k→∞

(D⊗ In1
)x̂ = 0 , lim

k→∞
(D⊗ In2

)(T⊗ In1
)ẑ = 0.

In view of the fact that D= diag[λ1, · · · , λn], λ1 ≡ 0, it follows that the asymptotic synchronization condition reduces to

lim
k→∞

x̂i = 0, lim
k→∞

ẑi = 0, i = 2, · · · , n

which completes the proof. �

Now, it follows from the definition of T, that the following change of variables

x̂(k) = (Tt ⊗ In1
)x(k) , ẑ(k) = (Tt ⊗ In2

)z(k)

also hold.

Proceeding further and following the time-scale design theory [11]-[40] with ωi(k)≡ 0, the consensus manifold depends on

the behavior of [x̂(k); ẑ(k)]. Effectively, if the discrete-system

[
x̂1(k+1)
ẑ1(k+1)

]
=

[
A1 A2

A3 A4

][
x̂1(k)
ẑ1(k)

]
(3.13)

has a stable equilibrium [x̂∗(k); ẑ∗(k)], then the original dynamics (3.1) reaches a finite synchronization asymptotically. If the

system (3.13) has unstable equilibrium point then all the systems given in (3.4) achieves consensus on divergent paths.

Finally, the well-posedness of dynamics (3.4) is similar to the system (3.10) which in turn is guaranteed if all systems given in

(3.12) are also well-posed. It must be emphasized that for i = 1, the system is well posed due to the non-singularity of I2 −A4.

The rest of the systems in (3.10) are well-posed if K2 is selected such that (A4 −λiB2K2) invertible for i = 2, · · · , n.

4. Control design

In this section, we aim to provide a control design method that gives completely decouple structure of the fast and slow modes

that appear in the whole closed-loop system. Following the discrete quasi-steady state concept [7, 40], the fast dynamics

associated with the small eigenvalues are crucial only within a short period of time. When that transient period finished, they

become negligible and the trajectories behavior the original system can be characterized only by its slow dynamics.

Formally, setting zi(k+ 1) = zi(k)
∆
= zis(k) in the dynamics (3.4) is the same as neglecting the effect of the fast dynamics.

Under this condition, discrete quasi-steady state is given by

zis(k) = [I2 −A4]
−1[A3xis(k)+B2uis(k)+Γ2ω(k)]
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As demonstrated in [11] the slow-mode control law us(k) = K1xs(k) and the fast-mode control law u f (k) = K2z f (k) will

eventually produce a composite control law uc(k) based on uc(k) = us(k)+u f (k).

Note that the gains K1, K2 can be synthesized for slow and fast modes subject to specified performance objective. To this

end and following a discrete-time quasi-steady-state technique [9]-[12], it can be readily investigated, the aggregate model

(3.10)-(3.11) can be separated into a slow dynamics

xis(k+1) = [Âo − λiB̂oK1]xis(k)+Γoω(k),

yis(k) = [Ĉo + D̂oK1]xis(k),

zis(k) = −(I − Â−1
4 )[Â3 − λiB̂2K2]xis(k)+Γ2w(k),

Âo = Â1 + Â2(I − Â4)
−1Â3,

B̂o = Â1 + Â2(I − Â4)
−1B̂2,

Ĉo = Ĉ1 + Ĉ2(I − Â4)
−1Â3,

D̂o = Ĉ2(I − Â4)
−1B̂2,

Γo = Γ1 + Â2(I − Â4)
−1Γ2, (4.1)

of order n1, and a fast dynamics:

xi f (k+1) = [Â4 − λiB̂2K2]xi f (k)+Γ2w(k),

yi f (k) = Ĉ2xi f (k) (4.2)

of order n2.

We are now in a position to establish the following result:

Theorem 4.1. Let the gain matrices K1 and K2 be designed such that for i = 2, · · · , n the matrices

[Âo − λiB̂oK1] , [Ai4 −λiB2K2]

are all Schur stable. Then, the composite controllers gain

Kc =

[
Im −K2(In2

−A4)
−1B2

]
K1 −K2(In2

−A4)
−1A3

asymptotically synchronize systems (3.4) with local state information.

Proof: Following the results of [9] and selecting the gain matrices K1 and K2 to stabilize the slow and fast subsystems (4.1)

and (4.2), respectively for i = 2, · · · , n, guarantees that

x̂i(k) = x̂is(k) + O(µ),

ẑi(k) = (In2
−Ai4)

−1[Ai3xis(k)−λiB2K2x̂is(k)]+ x̂i f (k) + O(µ)

hold for all sufficiently small µ > 0 and all k ∈ [0, ∞). Recalling that the asymptotic synchronization corresponds to

lim
k→∞

(L⊗ In1
)x(k) = 0 , lim

k→∞
(L⊗ In2

)z(k) = 0

which holds true in view of

(L⊗ In1
)x(k) = (D⊗ In1

)x̂(k),

= [0, λ2x̂2, · · · , λnx̂n]
t ,

(L⊗ In2
)z(k) = (D⊗ In2

)ẑ(k),

= [0, λ2ẑ2, · · · , λnẑn]
t .

Therefore, the proof is completed. �

Remark 4.2. Basically, Theorem 4.1 guarantees asymptotic synchronization of systems (3.1). In order to achieve that, both

slow and fast dynamics should be separately synchronized by stabilizing the error between the different dynamics.

Corollary 4.3. Suppose that Ko is designed such that for i= 2, ...,n that matrices [Ao−λiBoK1] are Schur stable. If ||A4||s < 1,

meaning that the matrix A4 has a spectral radius less than 1, then a lower-order controller with K1 =Kc will asymptotically

synchronize systems (3.1) as well.
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5. H∞ and H2 control design

We next direct attention to the composite control design problem based on the H∞ and H2 prescribed performance criteria. Our

approach is to pursue a Lyapunov-design implementation of H∞ and H2 controllers to guarantee stabilizing system (4.1)-(4.2),

then we recompose them in the manner of Theorem 4.1. We start with the slow-control design.

5.1. Slow H∞ controller

Consider a Lyapanov candidate function Vs = xt
s(k)Psxs(k), Ps > 0 that is associated with the slow dynamics (4.1). Given a

scalar γs > 0, the objective of slow mode H∞ control law is to determine the controller us(k) = K1xs(k) that leads system

(4.1) to stability and guarantees that ||ys(k)||
2
2 < γ2

s ||ω(k)||22. The synthesis of the control problem is detailed by the following

result:

Theorem 5.1. : The dynamical system (4.1) is stabilized by the control law us(k) =K1xs(k) and ||ys(k)||
2
2 < γ2

s ||ω(k)||22 if

there exist matrices Xs > 0, Ys and a scalar γs > 0 satisfying the following LMIs for i = 2, · · · ,n are feasible




−Xs 0 XsÂ
t
o +Y

t
sB̂

t
o XsĈ

t
o +Y

t
sD̂

t
o

• −γ2
s I Γt

o 0

• • −Xs 0

• • • −I


 < 0 (5.1)

The H∞ slow gain matrix can be obtained as K1 = YsX
−1
s .

Proof: Based on robust control theory [44] that the solution of the slow-mode H∞ control problem corresponds to obtaining

the controller gain K1 that ensures the feasibility of the following inequality:

Πs = ∆Vs + yt
s(k)ys(k) − γ2

s ω t(k)ω(k)< 0. (5.2)

Obtaining of difference of the Lyapunov function ∆Vs along the dynamics of (4.1) with the control law us(k) =K1xs(k), we

rewrite inequality (5.2) in its equivalent form:

Πs =

[
xs,
ωs

]t

Ξs

[
xs,
ωs

]
< 0, (5.3)

Ξs =

[
Ξs1 Ξs2,
• −Ξs3

]
,

Ξs1 = −Ps +(Ât
o +K

t
1B̂t

o)Ps(Âo + B̂oK1)+(Ĉt
o +K

t
1D̂t

o)(Ĉo + D̂oK1),

Ξs2 = (Ât
o +K

t
1B̂t

o)PsΓo,

Ξs3 = γ2
s I −Γt

oPsΓo.

Inequality (5.3) implies that Ξs < 0. Employing Schur complements to Ξs < 0 and using the following congruent transformation

Xs, I, Xs, I with Xs = P
−1
s , K1Xs = Ys, we obtain the LMI (5.1). �

5.2. Fast H∞-control

Using the same procedure of the slow-mode case, consider the Lyapunov function Vf = xt
f (k)P f x f (k), P f > 0 associated

with the fast-dynamics (4.2). Given a scalar γ f > 0, the objective of fast-mode H∞ control law is to obtain the controller

u f (k) = K2x f (k) that stabilizes system (4.2) and guaranteeing that ||y f (k)||
2
2 < γ2

f ||ω(k)||22. The synthesis of the control

problem is detailed by the following result:

Theorem 5.2. : System (4.2) is stabilizable by the controller u f (k) = K2x f (k) and ||y f (k)||
2
2 < γ2

f ||ω(k)||22 if there exist

matrices X f > 0, Y f and a scalar γ f > 0 such that such that the following LMIs for i = 2, · · · ,n are feasible




−X f 0 X f Ât
4 +Y

t
f B̂t

2 X f Ĉt
2

• −γ2
f I Γt

2 0

• • −X f 0

• • • −I


 < 0 (5.4)

The H∞ fast gain matrix can be determined by K2 = Y fX
−1
f .

Proof: The proof is similar to the proof of Theorem 5.1. �

We combine the results of Theorems 4.1, 5.1 and 5.2, such that the composite H∞ control law is obtained by the following

result:



40 Fundamental Journal of Mathematics and Applications

Lemma 5.3. Consider the dynamical system (4.1)-(4.2) and let Xs > 0, Ys and X f > 0, Y f be the obtained solutions of the

LMIs (5.1) and (5.4), respectively. Then, the H∞ composite controller is obtained in the form

uc(k) = [(I −Y fX
−1
f (I −A4)

−1B2)
−1
YsX

−1
s −Y fX

−1
f (I −A4)

−1A3]x(k)+Y fX
−1
f z(k)

guarantees that ||y(k)||22 < γ2 ||ω(k)||22 with γ ∈ [γs, γ f ]. In addition, it yields an approximation of first-order to the states of

the original dynamics (3.4).

If the fast-mode dynamics is asymptotically stable, we can derive a reduced-order H∞ control based on the following lemma:

Lemma 5.4. Consider the dynamics in (3.1) and assume Xs > 0, Ys are the solutions obtained by solving LMI (5.1). Then the

reduced-order H∞ control law is given as follows

uc(k) = YsX
−1
s x(k)

guarantees that ||y(k)||22 < γ2 ||ω(k)||22 with γ ∈ [γs, γ f ]. In addition, it yields an approximation of first-order to the states of

the original dynamics (3.4).

Proof: The proof follows parallel details to the results in [7, 40]. �

Remark 5.5. It is worth noting that that the results of Theorems 5.1 and 5.2 and Lemmas 5.3-5.4 are new in the field of two

time-scale discrete-time dynamical systems. Morover, it also strengthen the idea that system (3.1) is represent a good model of

discrete-time practical engineering dynamics with implicit representation of the mode-separation property.

6. H2 Control design

Similarly, instead of synthesizing a full-order H2 control, we decompose it into separate H2 controllers for slow and fast modes.

Moreover, we recompose the controllers similar ro the manner of Theorem 4.1.

6.1. Slow H2 controller

Consider a candidate Lyapunov function Vs = xt
s(k)Ps2xs(k), Ps2 > 0 corresponding the slow dynamics (4.1). The objective

of slow-mode H2 control law is to guarantee the stability of closed-loop slow mode and to maintain the H2-objective of the

closed loop transfer function Hysw(s) from the exogenous input ω to controlled output ys as small as possible.

Substituting the slow-mode control law us(k) =Ks1xs(k) into (4.1), the closed-loop slow subsystem becomes

xs(k+1) = Âcoxs(k)+Γoω(k),

ys(k) = Ĉcoxs(k),

Âco = Âo + B̂oKs1, Ĉco = Ĉo + D̂oKs1. (6.1)

Based on Lyapunov theory, given the control gain matrix Ks1, the closed-loop dynamics (6.1) become asymptotically stable

ω(k)≡ 0 if

Ps2 − Ât
coPs2Âco > 0.

Then, we can express the square of the H2-norm of the transfer function Hzw(s) in terms of the solution of a Lyapunov equation

(controllability Grammian). In addition, its minimization problem with respect to the gain matrix Ks1 is characterized as

min

{
Tr[ĈcoPs2Ĉt

co] : Ps2 − Ât
coPs2Âco +ΓoΓt

o = 0

}

where Trr[.] represents the trace of a matrix. Since Ps2 < P for any P satisfying

P − Ât
coPÂco +ΓoΓt

o < 0 (6.2)

it is readily verified that ||Hzw(s)||
2
2 =Tr[ĈcoPs2Ĉt

co]< ν if and only if there exists P > 0 satisfying (6.2) and Tr[ĈcoPs2Ĉt
co]<

ν . We introduce a new dummy variable Z , to obtian the following synthesis result:

Theorem 6.1. : The dynamical system (4.1) can bw stabilizable by the control law us(k) =Ks1xs(k) and ||Hzw(s)||
2
2 < ν for a

prescribed ν if and only if there exist positive definite matrices P, Z , and a matrix Q with appropriate dimensions satisfying

the following conditions:

Tr(Z ) < ν ,

[
Z ĈoP + D̂oQ

• P

]
> 0,




P ÂoP + B̂oQ Γo

• P 0

• • I


 > 0 (6.3)

Moreover, the slow-mode gain matrix is obtained by Ks1 = QP−1

proof: It can be proved based on standard convex analysis similar to procedure presented in [45]. �
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6.2. Fast H2 controller

Similarly, consider a Lyapunov function Vf = xt
f (k)P f 2x f (k), P f 2 > 0 associated with the fast dynamics (4.2). The objective

of fast-mode H2 control law is to guarantee the stability of closed-loop fast-mode and to maintain a prescribed H2-performance

the closed loop transfer function Hy f w(s) from ω to y f as small as possible. The corresponding synthesis result is provided by

the following result which follows a parallel development to Theorem 6.1:

Theorem 6.2. : System (4.2) is stabilizable by the controller u f (k) =K f 2x f (k) and ||Hy f w(s)||
2
2 < ν for a prescribed ν if and

only if there exist matrices R > 0, S , W > 0 such that

Tr(W ) < ν ,

[
W Ĉ2R

• R

]
> 0,




R Â4R+ B̂2S Γ2

• R 0

• • I


 > 0 (6.4)

Moreover, the fast gain is given by K f 2 = S R−1

Once again, by combining Theorems 4.1 , 6.1 and 6.2, the composite H2 controller is obtained by the following result:

Lemma 6.3. Consider the dynamical system (3.1). Let P > 0, Q, Z > 0 and R > 0, S , W > 0 be the given solutions of

the conditions in (6.3) and (6.4). Then we obtain the H2 composite control as

uc(k) = [(I −S R
−1(I −A4)

−1B2)
−1

QP
−1 −S R

−1(I −A4)
−1A3]x(k)+S R

−1z(k)

that guarantees the stability of closed-loop system and maintaining the H2-norm of the closed loop transfer function Hyw(s)
from ω to ys as small as possible. In addition, it yields an approximation of first-order to the states of the original dynamics

(3.1).

Remark 6.4. In a similar way, the results of Theorems 6.1 and 6.2 and Lemmas 6.3 and 5.4 are contributions to the field

of discrete systems with mode-separation. It is important to assert the relevance of the permutation and/or scaling in

casting the discrete dynamics of the type (3.1) in the structure of two-time-scale discrete modes with the property of implicit

characterization of the mode-separation.

7. Simulation example

Figure 7.1: Connected topology of 4 agents.

Now, we apply the provided theoretical results to an engine model with dynamometer test. A linearizion is used to obtain the

linear model as developed in [46].The state variables are selected as follows: the speed of the rotor, shaft-torque, speed of the

engine and amplifier’s current.The throttle-servo voltage and dynamometer current are input variables.Consider a group of 4

agent whose graph topology is shown in Fig 7.1. It can be easily shown that the model has a mode separation with two time

scales: slow states (n1 = 2) and three fast states (n2 = 3). Using the data given in [46], the slow dynamics (4.1) is described by

Ao =

[
0.762 0

−0.029 0.689

]
,Bo =

[
0 1.049

0.090 −0.018

]

Co =

[
0 1

−0.221 8.191

]
,Do =

[
0 0

0.765 −0.144

]
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whereas the fast model (4.2) is given by

A4 =




0.160 −0.002 −0.258

0 −0.038 0

0.231 0 −0.381


 ,B2 =




0.702 −0.083

0 22.400

0.142 0.026


 , C2 =

[
0 0 1

]

Based on Theorems 5.1 and 5.2, we obtain the H∞ slow and fast matrix gains as follows

K1 =

[
0.008 −0.094

0.007 0.089

]
,γs = 0.453,

K2 =

[
−0.286 −0.001 −0.079

−0.277 −0.011 −0.084

]
,γ f = 0.629

This gives the H∞ composite control law as

Kc =

[
0.054 0.030 −0.288 0.012 −0.078

0.051 0.114 −0.269 0.078 −0.103

]
,

γc ∈ [0.453, 0.629].

In addition, applying Theorems 6.1 and 6.2 with ν = 1.245 gives the following H2 slow and fast matrix gains as

K1 =

[
0.016 −0.085

0.002 0.097

]
,K2 =

[
−0.305 −0.013 −0.044

−0.225 −0.001 −0.103

]
.

Based on the gain matrices K1 and K1, the H2 composite control law is obtained:

Kc =

[
0.0784 −0.248 −50.87 −0.0065 −0.0771

0.095 0.0534 −144.7 −0.0047 −0.246

]

According to Lemmas 5.3-6.3, the composite gains guarantee good approximation to the closed-loop state trajectories. Figure

7.2 shows the output response of the original system. The output disagreement of all agents are demonstrated in Figs 7.3, 7.4

and 7.5.
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Figure 7.2: Output response of the original system.
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Figure 7.3: Disagreement among outputs y1(k)− y2(k)
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Figure 7.4: Disagreement among outputs y2(k)− y3(k)
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Figure 7.5: Disagreement among outputs y3(k)− y4(k)

.

8. Conclusions

This article investigated feedback control synthesis problem of a broad range of discrete-time dynamics that possesses eigen-

spectrum gap. The fast and slow modes are assumed to be observable and controllable. This assumption constitutes a very mild
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condition and less conservative than assuming observability and controllability of the original dynamical system. Adopting

either the H∞ or H∞ optimization schemes, we have investigated two-stage design approach based on separate gain matrices

for the slow and fast modes. We have constructed a composite controller to obtain first-order approximations to the behavior of

the discrete-time dynamics. Moreover, the paper investigates the interactions between multiple time-scale-networked dynamics

and gives guarantees on the stability of the disagreement among coupled systems. The addressed effectiveness of the presented

methodologies have been demonstrated using a typical application model.
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Abstract

In this paper firstly, for functions defined on discrete countable amenable semigroups

(DCASG), the notions of I-limit and I-cluster points are introduced. Then, for the functions,

the notions of I-limit superior and inferior are examined.

1. Preliminaries

The notion of I-convergence, based on the structure of the ideal I of subset of the set of natural numbers N, was introduced

and studied by Kostyrko et al. [1, 2]. After than, regarding this notion, Demirci [3] examined the notions of I-limit superior

and inferior.

One of first studies on amenable semigroups (ASG) is made by Day [4]. Then, Douglass [5] and Mah [6] studied the

notions of summability in ASG. The notion of arithmetic mean was extended to ASG by Douglas [5] and Douglas obtained a

characterization for the notion of almost convergence in ASG. Recently, Nuray and Rhoades [7] introduced the notions of

convergence and statistical convergence in ASG.

The aim of this paper is to introduce some new notions for functions defined on DCASG and to examine some properties of

them. Our new notions yield the notions in [2, 3] when the ASG is the additive positive integers.

Now, for better understanding our study, we recall the basic notations (see, [1, 2, 7, 8, 9]).

Let G be a DCASG with identity in which both left and right cancelation laws hold and r(G ) denote the space of real functions

on G .

If G is a countable amenable group, then there exists a sequence {λi} of finite subsets of G such that

i. G =
⋃

∞

i=1 λi,

ii. λi ⊂ λi+1 (i = 1,2, . . .),

iii. lim
i→∞

|λiϑ∩λi|
|λi|

= 1, lim
i→∞

|ϑλi∩λi|
|λi|

= 1, for all ϑ ∈ G (see, [9]).

If a sequence of finite subsets of G satisfy (i)− (iii), then this sequence is called a Folner sequence of G .

A familiar Folner sequence giving rise to the classical Cesàro method of summability is the sequence

λi = {0,1,2, . . . , i−1}.
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Let G be a DCASG with identity in which both left and right cancelation laws hold. For any Folner sequence {λi} of G , a

function h ∈ r(G ) is called convergent to l ∈ R if every ξ > 0 there exists a s0 ∈ N such that

|h(ϑ)− l|< ξ ,

for all n > s0 and ϑ ∈ G \λn.

Let Y 6= /0. A family of sets I⊆ 2Y (the power set of Y ) is called an ideal if and only if

i. /0 ∈ I,

ii. U ∪V ∈ I for U,V ∈ I,

iii. V ∈ I for U ∈ I and V ⊆U .

An ideal I⊆ 2Y is called non-trivial if Y /∈ I. A non-trivial ideal I⊆ 2Y is called admissible if

I⊃ {{y} : y ∈ Y}.

All ideals in this paper are assumed to be admissible in N.

Let G be a DCASG with identity in which both left and right cancelation laws hold. For any Folner sequence {λi} of G , a

function h ∈ r(G ) is called I-convergent to l ∈ R if every ξ > 0

{

ϑ ∈ G : |h(ϑ)− l| ≥ ξ
}

∈ I.

2. Main results

In this section firstly, for functions defined on DCASG, the notions of I-limit and I-cluster points are introduced.

Definition 2.1. For any Folner sequence {λi} of G , a number l ∈ R is called a I-limit point of a function h ∈ r(G ) if there

exists a set F ⊂ G (F /∈ I) such that

limh(ϑ) = l (ϑ ∈ F \λi).

Definition 2.2. For any Folner sequence {λi} of G , a number c ∈R is called an I-cluster point of a function h ∈ r(G ) if every

ξ > 0

{

ϑ ∈ G : |h(ϑ)− c|< ξ
}

/∈ I.

For any function h ∈ r(G ), let Ih
Λ
(G ) and I

h
Γ
(G ) denote the set of all I-limit and I-cluster points of the function h, respectively.

Theorem 2.3. For each function h ∈ r(G ),

I
h
Λ
(G )⊆ I

h
Γ(G ).

Proof. Let l ∈ I
h
Λ
(G ). Then, there exists a set F /∈ I such that

limh(ϑ) = l (ϑ ∈ F \λi).

Hence, for every δ > 0 there exists a s0 = s0(δ ) ∈ N such that for ϑ ∈ F \λi we have

|h(ϑ)− l|< δ ,

for all i > s0. Therefore,

{

ϑ ∈ G : |h(ϑ)− l|< δ
}

⊃ F \λi

and so

{

ϑ ∈ G : |h(ϑ)− l|< δ
}

/∈ I,

which means that l ∈ I
h
Γ
(G ).

Theorem 2.4. For each function h ∈ r(G ), the set Ih
Λ
(G) is a closed set in R.
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Proof. Let l ∈ Ih
Λ
(G ) and ξ > 0. Then, there exists

l0 ∈ I
h
Λ
(G )∩B(l,ξ ).

Choose δ ≥ 0 such that

B(l0,δ )⊂ B(l,ξ ).

Obviously, we have

{

ϑ ∈ G : |l −h(ϑ)|< ξ
}

⊃
{

ϑ ∈ G : |l0 −h(ϑ)|< δ
}

.

Therefore,

{

ϑ ∈ G : |l −h(ϑ)|< ξ
}

/∈ I

and so l ∈ I
h
Λ
(G ).

Now secondly, for functions defined on DCASG, the notions of I-limit superior and inferior are examined.

For a function h ∈ r(G ), we define the following sets:

Ah :=
{

a ∈ R : {ϑ ∈ G : h(ϑ)< a} /∈ I
}

,

similarly

Bh :=
{

b ∈ R : {ϑ ∈ G : h(ϑ)> b} /∈ I
}

for any Folner sequence {λi} of G .

Definition 2.5. For a function h ∈ r(G ), I-limit inferior is given by

I− liminfh =

{

infAh , Ah 6= /0

∞ , Ah = /0

also, I-limit superior is given by

I− limsuph =

{

supBh , Bh 6= /0

−∞ , Bh = /0.

for any Folner sequence {λi} of G .

For any function h ∈ r(G ), it is easy to see that

I− liminfh ≤ I− limsuph

for any Folner sequence {λi} of G .

Definition 2.6. For any Folner sequence {λi} of G , a function h ∈ r(G ) is called I-bounded if there exists a M such that

{

ϑ ∈ G : |h(ϑ)|< M
}

∈ I.

Note that I-boundedness for a function h ∈ r(G ) implies that I− liminfh and I− limsuph are finite for any Folner sequence

{λi} of G .

The following theorem can be proved by a simple least upper bound argument.

Theorem 2.7. For any function h ∈ r(G ); if γ = I− liminfh is finite, then for every ξ > 0

{

ϑ ∈ G : h(ϑ)< γ +ξ
}

/∈ I and
{

ϑ ∈ G : h(ϑ)< γ −ξ
}

∈ I, (2.1)

for any Folner sequence {λi} of G .

Conversely if (2.1) holds for every ξ > 0, then

I− liminfh = γ.

The dual statement for I− limsuph is as follows:
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Theorem 2.8. For any function h ∈ r(G ); if η = I− limsuph is finite, then for every ξ > 0

{

ϑ ∈ G : h(ϑ)> η −ξ
}

/∈ I and
{

ϑ ∈ G : h(ϑ)> η +ξ
}

∈ I, (2.2)

for any Folner sequence {λi} of G .

Conversely if (2.2) holds for every ξ > 0, then

I− limsuph = η .

Theorem 2.9. For any Folner sequence {λi} of G ; I− liminfh = I− limsuph if and only if the I-bounded function h is

I-convergent.

Proof. For any Folner sequence {λi} of G , let

γ = I− liminfh and η = I− limsuph.

Firstly, we assume that I− limh = l and ξ > 0. Then,

{

ϑ ∈ G : |h(ϑ)− l| ≥ ξ
}

∈ I

and so

{

ϑ ∈ G : h(ϑ)> l +ξ
}

∈ I,

which implies that η ≤ l. Also, we have

{

ϑ : h(ϑ)< l −ξ
}

∈ I,

which implies that l ≤ γ . Therefore η ≤ γ , which we combine with the fact that

I− liminfh ≤ I− limsuph,

to conclude that γ = η .

Now, secondly, we assume that for any Folner sequence {λi} of G ,

I− liminfh = I− limsuph.

If ξ > 0, then (2.1) and (2.2) imply

{

ϑ ∈ G : h(ϑ)> l +
ξ

2

}

∈ I and

{

ϑ ∈ G : h(ϑ)< l −
ξ

2

}

∈ I.

Hence, for any Folner sequence {λi} of G , we have

I− limh = l.

3. Conclusion

We investigated the notions of I-limit points and I-cluster points for functions defined on discrete countable amenable

semigroups. These notions can also be studied for double sequences in the future.
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Abstract

In this study, we deal with an m banded circulant matrix, generally called circulant m-

diagonal matrix. This special family of circulant matrices arise in many applications such

as prediction, time series analysis, spline approximation, difference solution of partial

differential equations, and so on. We firstly obtain the statements of eigenvalues and

eigenvectors of circulant m-diagonal matrix based on the Chebyshev polynomials of the

first and second kind. Then we present an efficient formula for the integer powers of this

matrix family depending on the polynomials mentioned above. Finally, some illustrative

examples are given by using maple software, one of computer algebra systems (CAS).

1. Introduction

Multiplying a vector by a circulant matrix is equivalent to a well-known operation called a circular convolution. Convolu-

tion operations, and so circulant matrices, arise in number of applications: digital signal processing, image compression,

physics/engineering simulations, number theory, coding theory, cryptography, etc. Numerical solutions of certain types of

elliptic and parabolic partial differential equations with periodic boundary conditions often involve linear systems associated

with circulant matrices [1]-[3].

A certain type of transformation of a set of numbers can be represented as the multiplication of a vector by a square matrix.

Repetition of the operation is equivalent to multiplying the original vector by a power of the matrix. Solving some difference

equations, differential and delay differential equations and boundary value problems, we need to compute the arbitrary integer

powers of a square matrix [4, 5]. The powers of matrices are thus of considerable importance.

Computing the integer powers of circulant matrices depending on Chebyshev polynomials recently has been a very attractive

problem [6]-[13]. For example, Rimas obtained a general expression for the entries of the rth power (r ∈ N) of the n×n real

symmetric circulant circn (0,1,0, . . . ,0,1) (see [6] or [7] for the odd case and [8] or [9] for the even case). In [10], Gutiérrez

obtained a general expression for the entries of the positive integer powers of complex symmetric circulant matrix given by

circn

(

b0,b1, . . . ,b n−1
2
,b n−1

2
, . . . ,b1

)

if n is odd,

circn

(

b0,b1, . . . ,b n
2−1,b n

2
,b n

2−1, . . . ,b1

)

if n is even.
(1.1)

by generalizing the results derived by Rimas in [6]-[9].

In [11], Köken et al. obtained a general expression for the entries of the rth power (r ∈ N) of odd order circulant matrices

of the type circn (0,a,0, . . . ,0,b). In [12], we presented a single expression for the integer powers of the circulant matrix

circn (a0,a1,0, . . . ,0,a−1) of odd and even order by generalizing the results derived by Köken et al. in [11].
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In the current study, we consider an n×n circulant m-diagonal matrix An, that clearly is as,

An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) (1.2)

=

















































a0 a1 · · · am 0 · · · 0 a−m · · · a−1

a−1 a0 a1

. . . am 0
. . .

. . .
. . .

...
... a−1 a0 a1

. . .
. . .

. . .
. . .

. . . a−m

a−m

. . . a−1 a0

. . .
. . .

. . .
. . .

. . . 0

0 a−m

. . .
. . .

. . .
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . .
. . .

. . .
. . . am 0

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . am

am

. . .
. . .

. . .
. . .

. . .
. . .

. . . a1

...
...

. . .
. . .

. . . 0 a−m · · · a−1 a0 a1

a1 · · · am 0 · · · 0 a−m · · · a−1 a0

















































for all 3 ≤ n ∈ N, where 1 ≤ m ≤
⌊

n−1
2

⌋

and

a−i = an−i, i = 1, . . . ,m. (1.3)

We organize this paper as the following parts. In Section 2, we give some fundamental notations, definitions and important

properties that we will need for the next sections. In Section 3, we introduce Lemma 3.1 and Theorem 3.3 that respectively

give the statements of eigenvalues and eigenvectors of circulant m-diagonal matrix in (1.2) depending on the Chebyshev

polynomials of the first and second kind. In Section 4, we obtain an efficient expression for the integer power of this matrix by

means of the polynomials mentioned above. In Section 5, some illustrative examples are given. Finally, we will finish the

paper with two Maple procedures.

2. Preliminaries

In this part, we present some fundamental notations, definitions and necessary properties for the next parts.

An n×n circulant matrix is defined in [14] as

Cn :=

























c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1

. . . cn−2

cn−2 cn−1 c0

. . .
. . .

...
...

. . .
. . .

. . .
. . . c2

c2

. . .
. . .

. . . c1

c1 c2 . . . cn−2 cn−1 c0

























where ci j = c( j−i)(mod n). It can be clearly seen from above that each row of Cn is a cyclic shift of the previous row. Since Cn

has at most n distinct elements in each row, it is often represented by

Cn := circn (c0,c1, . . . ,cn−1) .

Let n ≥ 1 be a fixed integer and ω be the primitive nth root of unity; namely, ω = ei 2π
n = cos

(

2π
n

)

+ isin
(

2π
n

)

, i =
√
−1. The

well-known eigenvalue decomposition of the matrix Cn = circn (c0,c1, . . . ,cn−1) is that

Cn = F∗
n DnFn (2.1)

where * denotes the conjugate transpose (i.e F∗
n = F

T
n ), Fn called n×n Fourier matrix that contains the eigenvectors of Cn such

that

[F∗
n ]u,v =

1√
n

ω(u−1)(v−1), 1 ≤ u,v ≤ n

and Dn = diag(λ1,λ2, . . . ,λn) with

λk =
n

∑
r=1

cr−1ω(k−1)(r−1), 1 ≤ k ≤ n (2.2)
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are the eigenvalues of Cn [14].

It can be easily seen that the matrices Fn and F∗
n are symmetric:

Fn = FT
n , F∗

n = (F∗
n )

T = Fn (2.3)

where we can deduce [Fn]u,v = [Fn]v,u. It is also one of fundamental property that the matrix Fn is unitary: FnF∗
n = F∗

n Fn = I

[14].

In [15], we have the eigenvector f (k) of Cn corresponding to the eigenvalue λk in (2.2) as the following

f (k) =
1√
n

(

1,ωk−1,ω2(k−1), . . . ,ω(n−1)(k−1)
)T

. (2.4)

Since the product of two circulant matrices is again a circulant matrix, the rth power (r ∈ N) of Cn is also circulant and it is,

from the well-known expression (2.1), obtained as

Cr
n = F∗

n Dr
nFn = F∗

n diag(λ r
1 ,λ

r
2 , . . . ,λ

r
n) Fn. (2.5)

If Cn is nonsingular, then the expression (2.5) applies to negative integers.

Definition 2.1. The Chebyshev polynomial Tn (x) of the first kind is a polynomial in x of degree n, defined by the relation

Tn (x) = cosnθ when x = cosθ .

Definition 2.2. The Chebyshev polynomial Un (x) of the second kind is a polynomial of degree n in x defined by

Un (x) = sin(n+1)θ/sinθ when x = cosθ .

One can reach the following result about Chebyshev polynomials in [16]:

Let Tk (x) and Uk (x) (k ∈ N∪{0}) be the kth degree Chebyshev polynomials of the first and second kind, respectively. Then

Tk (x) = cos(k arccosx) and Uk (x) =
sin((k+1)arccosx)

sin(arccosx)
(2.6)

for −1 ≤ x ≤ 1. Moreover, one can find more applications related this polynomials in [17]-[19].

3. Eigenvalues and eigenvectors of circulant m-diagonal matrix

In this part, we give the expressions of eigenvalues and eigenvectors of An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
depending on Chebyshev polynomials of the first and second kind.

Lemma 3.1. Consider 3≤ n∈N, 1≤m≤
⌊

n−1
2

⌋

and ai ∈R (i = 0,±1, . . .±m). Let An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)

be an n×n circulant matrix and αk = cos
2π(k−1)

n
for every 1 ≤ k ≤ n. Then the eigenvalues of An are

λk = a0 +
m

∑
l=1

(

(al +a−l)Tl (αk)+ i(al −a−l)sgn
(n

2
+1− k

)
√

1−α2
k lim

j→k
Ul−1 (α j)

)

(3.1)

where λk is the kth eigenvalue of An and sgn denotes the signum function.

Proof. Taking into account (2.2), (1.3) and ω(k−1)(n+2−r−1) = ω−(k−1)(r−1) for all 2 ≤ r ≤ n (see [10]), we can write λk as

λk = a0 +a1ω(k−1)1 + . . .+amω(k−1)m +an−mω(k−1)(n−m)+ . . .+an−1ω(k−1)(n−1)

= a0 +a1ω(k−1)+ . . .+amω(k−1)m +a−mω−(k−1)m + . . .+a−1ω−(k−1).

From the definition of ω , we get

λk = a0 +
m

∑
l=1

(

(al +a−l)cos
2π (k−1) l

n
+ i(al −a−l)sin

2π (k−1) l

n

)

. (3.2)

Observe that from (2.6), we have

Tm

(

cos
2π (k−1)

n

)

= cos
2π (k−1)m

n
,

and

Um−1

(

cos
2π (k−1)

n

)

=
sin

2π(k−1)m
n

sin
2π(k−1)

n
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where there exists indeterminate form 0/0 for k = 1 and k = n
2
+1. Then we can construct the expression (3.2) as

λk = a0 +
m

∑
l=1

(

(al +a−l)Tl

(

cos
2π (k−1)

n

)

+ i(al −a−l)sin
2π (k−1)

n
lim
j→k

Ul−1

(

cos
2π ( j−1)

n

))

.

Consequently, we reach the desired result by transforming cos
2π(k−1)

n
= αk and then

sin
2π (k−1)

n
=















√

1−α2
k if n

2
+1− k > 0,

0 if n
2
+1− k = 0,

−
√

1−α2
k if n

2
+1− k < 0.

(3.3)

With the help of Lemma 3.1, we reach a nice result for the eigenvalues of An = circn (a0,a1, . . .am,0, . . . ,0,a−m, . . .a−1). Since

cos
2π (n+2− k−1)

n
= cos

2π (k−1)

n

and

sin
2π (n+2− k−1)

n
=−sin

2π (k−1)

n
.

We obtain that λk = λn+2−k (2 ≤ k ≤ n) from (3.2). Clearly, if we rewrite this eigenvalues in a diagonal matrix, then

Dn = diag
(

λ1,λ2, . . . ,λ n+1
2
,λ n+1

2
, . . . ,λ2

)

if n is odd,

Dn = diag
(

λ1,λ2, . . . ,λ n
2
,λ n

2+1,λ n
2
, . . . ,λ2

)

if n is even.
(3.4)

If we take n = 8 and m = 2 for the matrix An in (1.2), then, from Lemma 3.1, we get

λ3 = a0 +(a1 +a−1)cos
π

2
+ i(a1 −a−1)sin

π

2

+(a2 +a−2)cosπ + i(a2 −a−2)sinπ

= a0 −a2 −a−2 + i(a1 −a−1)

and

λ7 = a0 +(a1 +a−1)cos
3π

2
+ i(a1 −a−1)sin

3π

2

+(a2 +a−2)cos3π + i(a2 −a−2)sin3π

= a0 −a2 −a−2 − i(a1 −a−1) .

As can be seen above, λ7 = λ3.

Corollary 3.2. Consider 3≤ n∈N, 1≤m≤
⌊

n−1
2

⌋

and ai ∈R (i = 0,1, . . .m). Let Bn = circn (a0,a1, . . . ,am,0, . . . ,0,am, . . . ,a1)

be an n×n symmetric circulant matrix and αk = cos
2π(k−1)

n
for every 1 ≤ k ≤ n. Then the eigenvalues of Bn are

µk = a0 +2
m

∑
l=1

alTl (αk) (3.5)

where µk is the kth eigenvalue of Bn.

Proof. The proof can be straightforwardly obtained from Lemma 3.1.

Since cos
2π(n+2−k−1)

n
= cos

2π(k−1)
n

, we can easily see that µk = µn+2−k (2 ≤ k ≤ n) from Corollary 3.2. Clearly, if we

rewrite this eigenvalues in a diagonal matrix again, then

Dn = diag
(

µ1,µ2, . . . ,µ n+1
2
,µ n+1

2
, . . . ,µ2

)

if n is odd,

Dn = diag
(

µ1,µ2, . . . ,µ n
2
,µ n

2+1,µ n
2
, . . . ,µ2

)

if n is even.

If we take n = 8 and m = 2 for the matrix Bn = circn (a0,a1, . . .am,0, . . . ,0,am, . . .a1), then, from Corollary 3.2, we get

µ3 = a0 +2
(

a1 cos
π

2
+a2 cosπ

)

= a0 −2a2
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and

µ7 = a0 +2

(

a1 cos
3π

2
+a2 cos3π

)

= a0 −2a2.

As can be seen above, µ7 = µ3.
Now, from the expression (2.4), let us give the following result for the eigenvectors of An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
depending on Chebyshev polynomials of the first and second kind

Theorem 3.3. Let 3 ≤ n ∈ N, 1 ≤ m ≤
⌊

n−1
2

⌋

and ai ∈ R (i = 0,±1, . . .±m) and αk = cos
2π(k−1)

n
for every 1 ≤ k ≤ n. Then

the eigenvector Fk of the matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) corresponding to the eigenvalue λk given by

(3.1) is

Fk =





















T0 (αk)+ isgn
(

n
2
+1− k

)

√

1−α2
k lim

j→k
U−1 (α j)

T1 (αk)+ isgn
(

n
2
+1− k

)

√

1−α2
k lim

j→k
U0 (α j)

...

Tn−1 (αk)+ isgn
(

n
2
+1− k

)

√

1−α2
k lim

j→k
Un−2 (α j)





















. (3.6)

Proof. From (2.4), (2.6) and (3.3), the result can be easily obtained.

We must note that each one of all circulant matrices also have the eigenvectors generated by Fk given by (3.6)

4. Integer powers of circulant m-diagonal matrix

In this part, by using the symmetric relationship between the eigenvalues in (3.4), we give the efficient expression to compute

the integer power of the circulant m-diagonal matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) based on Chebyshev

polynomials of the first and second kind such that the method is faster than any of the classical methods which find the powers

of An with an amount of computations.

Theorem 4.1. Consider 3≤ n∈N, 1≤m≤
⌊

n−1
2

⌋

and ai ∈R (i = 0,±1, . . .±m). Let An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)

be an n×n nonsingular circulant m-diagonal matrix and αk = cos
2π(k−1)

n
for every 1 ≤ k ≤ n. Then the (u,v)th entry of Ar

n is

that

[Ar
n]u,v =

1

n
(S1 +S2)

for all r ∈ Z and 1 ≤ u,v ≤ n, where S1 and S2 are respectively such that

S1 =
⌊ n

2⌋+1

∑
k=1

(

a0 +
m

∑
l=1

(

(al +a−l)Tl (αk)+ i(al −a−l)sgn
(n

2
+1− k

)
√

1−α2
k lim

j→k
Ul−1 (α j)

)

)r

×
(

T|u−v| (αk)+ isgn(u− v)sgn
(n

2
+1− k

)
√

1−α2
k lim

j→k
U|u−v|−1 (α j)

)

and

S2 =
⌊ n+1

2 ⌋
∑
k=2

(

a0 +
m

∑
l=1

(

(al +a−l)Tl (αk)− i(al −a−l)sgn
(n

2
+1− k

)
√

1−α2
k lim

j→k
Ul−1 (α j)

)

)r

×
(

T|u−v| (αk)− isgn(u− v)sgn
(n

2
+1− k

)
√

1−α2
k lim

j→k
U|u−v|−1 (α j)

)

.

Here ⌊x⌋ and sgn denote the largest integer less than or equal to x and the signum function, respectively.

Proof. By using (2.5) and (2.3), we get

[Ar
n]u,v = [F∗

n Dr
nFn]u,v =

n

∑
k=1

[F∗
n ]u,k [D

r
nFn]k,v =

n

∑
k=1

[F∗
n ]u,k λ r

k [Fn]k,v ,

=
n

∑
k=1

λ r
k [F

∗
n ]u,k [Fn]v,k =

1

n

n

∑
k=1

λ r
k ω(u−1)(k−1)ω−(v−1)(k−1)
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and then

[Ar
n]u,v =

1

n

n

∑
k=1

λ r
k ω(k−1)(u−v) (4.1)

where λk is already obtained as in (3.1). Since λk = λn+2−k, 2 ≤ k ≤ n and ω(n+2−k−1)(u−v) = ω−(k−1)(v−u), the second half

of the sum in (4.1) can be written as

n

∑
k= n+1

2 +1

λ r
k ω(k−1)(u−v) =

n+1
2

∑
k=2

λ r
n+2−kω(n+2−k−1)(u−v) =

n+1
2

∑
k=2

λk
r
ω−(k−1)(u−v)

for the case n is odd. The same observations can be applied in the case n even and the result is that

[Ar
n]u,v =

1

n





⌊ n
2⌋+1

∑
k=1

λ r
k ω(k−1)(u−v)+

⌊ n+1
2 ⌋

∑
k=2

λk
r
ω−(k−1)(u−v)



=
1

n
(S1 +S2) .

Thus, from the expression above, we can write

S1 =
⌊ n

2⌋+1

∑
k=1

λ r
k

(

cos
2π (k−1)(u− v)

n
+ isin

2π (k−1)(u− v)

n

)

and

S2 =
⌊ n+1

2 ⌋
∑
k=2

λk
r
(

cos
2π (k−1)(u− v)

n
− isin

2π (k−1)(u− v)

n

)

.

Since, from (2.6),

T|u−v|

(

cos
2π (k−1)

n

)

= cos
2π (k−1)(u− v)

n

and

U|u−v|−1

(

cos
2π (k−1)

n

)

= sgn(u− v)
sin

2π(k−1)(u−v)
n

sin
2π(k−1)

n

with indeterminate form 0/0 for k = 1 and k = n
2
+1, then

S1 =
⌊ n

2⌋+1

∑
k=1

λ r
k

(

T|u−v|

(

cos
2π (k−1)

n

)

+ isgn(u− v)sin
2π (k−1)

n
lim
j→k

U|u−v|−1

(

cos
2π ( j−1)

n

))

,

and

S2 =
⌊ n+1

2 ⌋
∑
k=2

λk
r
(

T|u−v|

(

cos
2π (k−1)

n

)

− isgn(u− v)sin
2π (k−1)

n
lim
j→k

U|u−v|−1

(

cos
2π ( j−1)

n

))

.

The theorem follows by substituting λk in (3.1) and cos
2π(k−1)

n
= αk into the above expressions.

From (2.5), we have the rth power of any (symmetric) circulant matrix is also a (symmetric) circulant matrix.

Consider ai ∈ R (i = 0,±1) and let A4 = circ4 (a0,a1,0,a−1) be circulant tridiagonal matrix. Then, by using Theorem 4.1, we

get Ar
4 = circ4 (τ0,τ1,τ2,τ3) with

τ0 =
1

4
[(a0 +a1 +a−1)

r +(a0 − (a1 +a−1))
r + zr + zr] ,

τ1 =
1

4
[(a0 +a1 +a−1)

r − (a0 − (a1 +a−1))
r − izr + izr] ,

τ2 =
1

4
[(a0 +a1 +a−1)

r +(a0 − (a1 +a−1))
r − izr − izr] ,

τ3 =
1

4
[(a0 +a1 +a−1)

r − (a0 − (a1 +a−1))
r + izr − izr]

where z = a0 + i(a1 −a−1) .
If we take m = 1 in Theorem 4.1, the expression given in [12, Theorem 2.1] can be easily seen.

Theorem 4.1 allows us to significantly reduce the computing process while finding the integer powers of the circulant

m-diagonal matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
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Theorem 4.2. Consider 3≤ n∈N, 1≤m≤
⌊

n−1
2

⌋

and ai ∈R (i = 0,1, . . .m). Let Bn = circn (a0,a1, . . . ,am,0, . . . ,0,am, . . . ,a1)

be an n×n nonsingular symmetric circulant m-diagonal matrix and αk = cos
2π(k−1)

n
for every 1 ≤ k ≤ n. Then the (u,v)th

entry of Br
n is that

[Br
n]u,v =

1

n

⌊ n
2⌋+1

∑
k=1

ln−2k+2

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)

where ⌊x⌋ denotes the largest integer less than or equal to x and

ls =

{

1 if s ∈ {0,n}
2 in other cases.

Proof. By using Theorem 4.1, we get

S1 =
⌊ n

2⌋+1

∑
k=1

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)+ isgn(u− v)sgn
(n

2
+1− k

)
√

1−α2
k U|u−v|−1 (αk)

and

S2 =
⌊ n+1

2 ⌋
∑
k=2

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)− isgn(u− v)sgn
(n

2
+1− k

)
√

1−α2
k U|u−v|−1 (αk) .

Since
{ ⌊

n+1
2

⌋

= n+1
2

and
⌊

n
2

⌋

+1 = n+1
2

if n is odd,
⌊

n+1
2

⌋

= n
2

and
⌊

n
2

⌋

+1 = n
2
+1 if n is even.

Then

[Br
n]u,v =

1

n
(S1 +S2)

=















































1
n

[

(

a0 +2
m

∑
l=1

al

)r

+2

n+1
2

∑
k=2

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)

]

if n is odd,

1
n

[

(

a0 +2
m

∑
l=1

al

)r

+2

n
2

∑
k=2

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)+

(

a0 +2
m

∑
l=1

alTl

(

α n
2+1

)

)r

T|u−v|
(

α n
2+1

)

] if n is even.

Therefore,

[Br
n]u,v =

1

n

⌊ n
2⌋+1

∑
k=1

ln−2k+2

(

a0 +2
m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)

which is desired.

Consider ai ∈ R (i = 0,1,2) and let B5 = circ5 (a0,a1,a2,a2,a1) be a symmetric circulant pentadiagonal matrix. Then, from

Theorem 4.2, we get Br
5 = circ4 (τ0,τ1,τ2,τ2,τ1) with

τ0 =
1

5

[

(a0 +2a1 +2a2)
r +2

(

a0 +
1

φ
a1 −φa2

)r

+2

(

a0 −φa1 +
1

φ
a2

)r]

,

τ1 =
1

5

[

(a0 +2a1 +2a2)
r +

1

φ

(

a0 +
1

φ
a1 −φa2

)r

−φ

(

a0 −φa1 +
1

φ
a2

)r]

,

τ2 =
1

5

[

(a0 +2a1 +2a2)
r −φ

(

a0 +
1

φ
a1 −φa2

)r

+
1

φ

(

a0 −φa1 +
1

φ
a2

)r]

where φ denotes the golden ratio.

Now, if we consider
{

m =
⌊

n−1
2

⌋

= n−1
2

for n is odd,

m =
⌊

n−1
2

⌋

+1 = n
2

for n is even,

in the symmetric circulant m-diagonal matrix Bn = circn (a0,a1, . . . ,am,0, · · · ,0,am, · · · ,a1) and a n
2
6= 0, then we get the sym-

metric circulant matrix in (1.1) discussed by Gutiérrez in [10]. And so, with the help of Theorem 4.2, we can straightforwardly

reach the expression obtained by Gutiérrez in [10, Theorem 1] for positive integer powers of the matrix Bn in (1.1).
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5. Illustrative examples

In this part, we give some illustrative examples. We will utilize Maple software in our calculations.

Example 5.1. Let A6 = circ6 (5,4,9,0,8,−2) be a circulant pentadiagonal matrix. we find the eigenvalues of A6 by using

(3.1) as

λ1 = 24,
λ2 = −2,5000+6,0621i,
λ3 = −4,5000+4,3301i,
λ4 = 20,

λ5 = λ3 = −4,5000−4,3301i,

λ6 = λ2 = −2,5000−6,0621i

and from Theorem 4.1, the entries of A3
6 as

A3
6 = circ6 (3778,1008,3483,938,3651,966) .

Example 5.2. Let A9 = circ9 (−2,3,−4,9,0,0,6,5,−1) be a circulant heptadiagonal matrix. we find the eigenvalues of A9

by using (3.1) as

λ1 = 16,
λ2 = −7,7942−3,6940i,
λ3 = −10,0923−1,73701i,
λ4 = 11,5000+11,2583i,
λ5 = −10,6133+9,7512i,

λ6 = λ5 = −10,6133−9,7512i,

λ7 = λ4 = 11,5000−11,2583i,

λ8 = λ3 = −10,0923+1,73701i,

λ9 = λ2 = −7,7942+3,6940i

and from Theorem 4.1, the entries of A4
9 as

A4
9 = circ9 (−15410,26041,7866,−5401,16331,13209,−2024,3458,21466) .

Example 5.3. Let B7 = circ7 (1,−3,2,0,0,2,−3) be a symmetric circulant pentadiagonal matrix. we find the eigenvalues of

B7 by using (3.5) as

λ1 = −1,
λ2 = −3,6310,
λ3 = −1,2687,
λ4 = 8,8987,
λ5 = λ4 = 8,8987,
λ6 = λ3 = −1,2687,
λ7 = λ2 = −3,6310

and from Theorem 4.2, the entries of B5
7 as

B5
7 = circ7 (15771,−14485,9987,−3388,−3388,9987,−14485) .

Examples 5.1, 5.2 and 5.3 can be also confirmed by means of Maple procedures given by Appendix A and B.

Appendix A. Following Maple procedure firstly generates a n×n circulant heptadiagonal matrix An = circn(a0,a1,a2,a3,0, . . . ,0,
a−3,a−2,a−1) and then compute eigenvalues and the kth power (r ∈ Z) of it.

restart:

with(LinearAlgebra):

m:=’3’:

n:=’n’:

r:=’r’:

a[0]:=’a[0]’:

a[1]:=’a[1]’:

a[-1]:=’a[-1]’:

a[2]:=’a[2]’:

a[-2]:=’a[-2]’:
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a[3]:=’a[3]’:

a[-3]:=’a[-3]’:

f:=(i,j)→ piecewise(i=j,a[0],j>i and j-i<m+1,a[j-i],i>j and i-j<m+1,a[j-i],n-j+i<m+1,a[j-i-n],n-i+j<m+1,a[j-i+n]):

A[n]:=Matrix(n,n,f);

alpha:=k → evalf(cos(2*Pi*(k-1)/n)):

lambda:=k→ evalf((a[0]+sum((a[l]+a[-l])*ChebyshevT(l,alpha(k))+I*(a[l]-a[-l])*signum((n/2)+1-k)*sqrt(1-(alpha(k))ˆ2)*limit

(ChebyshevU(l-1,alpha(j)),j=k),l=1..m))):

g:=(i,j)→ piecewise(i=j,lambda(i),0):

p:=(u,v)→evalf((1/n)*(sum((lambda(k)ˆr)*(ChebyshevT(abs(u-v),alpha(k))+I*signum(u-v)*signum((n/2)+1-k)*

sqrt(1-(alpha(k))ˆ2)*limit(ChebyshevU(abs(u-v)-1,alpha(j)),j=k)),k=1..floor(n/2)+1)+sum(conjugate(lambda(k))ˆr*

(ChebyshevT(abs(u-v),alpha(k))-I*signum(u-v)*signum((n/2)+1-k)*sqrt(1-(alpha(k))ˆ2)*ChebyshevU(abs(u-v)-1,alpha(k))),

k=2..floor((n+1)/2)))):

eigenvalues of A[n]:=Matrix(n,n,g);

the rth power of A[n]:=Matrix(n,n,p);

Appendix B. Following Maple procedure firstly generates a n×n symmetric circulant heptadiagonal matrix Bn = circn(a0,a1,a2,
a3,0, . . . ,0,a3,a2,a1) and then compute eigenvalues and the kth power (r ∈ Z) of it.

restart:

with(LinearAlgebra):

m:=’3’:

n:=’n’:

a[0]:=’a[0]’:

a[1]:=’a[1]’:

a[2]:=’a[2]’:

a[3]:=’a[3]’:

r:=’r’:

f:=(i,j)→ piecewise(i=j,a[0],i>j and i-j<m+1,a[i-j],i<j and j-i<m+1,

a[j-i],i<j and j-i>n-m-1,a[n-(j-i)],i>j and i-j>n-m-1,a[n-(i-j)],0):

B[n]:=Matrix(n,n,f);

alpha:=k→ evalf(cos(2*Pi*(k-1)/n)):

mu:=k → evalf(a[0]+2*sum(a[l]*ChebyshevT(l,alpha(k)),l=1..m)):

g:=(i,j)→ piecewise(i=j,µ(i),0):

l:=(s) → piecewise(s=0,1,s=n,1,2):

p:=(u,v)→ evalf((1/n)*((sum(((l(n-2*k+2)*(µ(k))ˆr)*(ChebyshevT(abs(u-v),alpha(k))),k=1..floor(n/2)+1))))):

eigenvalues of B[n]:=Matrix(n,n,g);

the rt power of B[n]:=Matrix(n,n,p);

6. Conclusion

There has been recently increasing research interest in circulant matrices in several areas, such as digital signal processing,

image compression, physics/engineering simulations, number theory, coding theory, cryptography, and, naturally, linear algebra.

This paper present eigenvalues, eigenvectors, powers of circulant m-diagonal matrix which is one type of circulant matrices by

using some famous relations on chebyshev polynomials.
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Abstract

This paper gives HOMFLY polynomials and Kauffman polynomials L and F of twist knots

as recurrence relations, respectively, and also provides some recursive properties of them.

1. Introduction

The knot polynomials are the most practical knot invariants for distinguishing knots from each other, where the coefficients of

polynomials represent some properties of the knot. The first of the polynomial invariants is the Alexander polynomial [1] with

one variable for oriented knots and links. There are generalizations of the Alexander polynomial and its Conway version [2],

see [3]- [5]. Another important knot polynomial with one variable for oriented knots and links is the Jones polynomial [6].

Both the Jones polynomial was defined with new methods [7, 8] and studies were conducted on generalizations of the Jones

polynomial [9]- [11]. One of the most important generalized polynomials is the HOMFLY polynomial [11]- [13] with two

variable. The Alexander and Jones polynomials are special cases of the HOMFLY polynomial. For unoriented knots and links,

there are the polynomials such as the BLM/Ho polynomial [14, 15] with one variable and the Kauffman polynomial F [16]

with two variable whose primary version Kauffman polynomial L is an invariant of regular isotopy for unoriented knots and

links. Both the Jones and the BLM/Ho polynomials are special cases of the Kauffman polynomial F .

The HOMFLY polynomial or HOMFLY-PT polynomial whose name is an acronym for its discoverers’ last names is inspired

by the Jones polynomial. The HOMFLY polynomial PK(a,z) is two variables Laurent polynomial for the oriented link diagram

K. PK(a,z) is an ambient isotopy invariant of the link K determined by the following axioms:

a−1PK+(a,z)−aPK−(a,z) = zPK0
(a,z) (1.1)

P©(a,z) = 1, (1.2)

where K+, K− and K0 are skein diagrams drawn in Figure 1.1 and © is any diagram of the unknot.

K+ K− K0

Figure 1.1: Skein Diagrams
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From the axioms (1.1) and (1.2), it is obtained that a−1 −a = zP©© or δ = (a−1 −a)z−1 with δ = P©©, where ©© is trivial

link with two components. If ©µ is a trivial µ-component link, then P©µ (a,z) = δ µ−1. Also, PK∗(a,z) = PK(a
−1,−z), where

K∗ is the mirror image of K.

In 1987, L. Kauffman [16, 17] discovered a new polynomial, denoted by L, which specializes to the bracket polynomial [7].

The Kauffman polynomial L(a,x) is a two-variable Laurent polynomial for the unoriented link diagram K. L(a,x) is a regular

isotopy invariant of the link K satisfying the following axioms:

LK+(a,x)+LK−(a,x) = x(LK0(a,x)+LK∞(a,x)) , (1.3)

L©(a,x) = 1, (1.4)

LD+(a,x) = aLD0(a,x), (1.5)

LD−(a,x) = a−1LD0(a,x), (1.6)

where K+, K−, K0 and K∞ are unoriented diagrams drawn in Figure 1.2, © is any diagram of unknot and D+, D− and D0 are

unoriented diagrams drawn in Figure 1.3.

K+ K− K0 K∞

Figure 1.2: Crossings and splits

D+ D− D0

Figure 1.3: Diagrams related to Reidmeister moves of type I

The Kauffman polynomial F for oriented link diagram K by the formula [17]

FK(a,x) = a−w(K)LK(a,x), (1.7)

where LK is defined on oriented link diagrams by forgetting the orientation and w(K) denotes the writhe of oriented link

diagram K (w(K) is the sum of all crossing signs of K). Then the polynomial FK(a,x) is a Laurent polynomial invariant of

ambient isotopy. From the axioms (1.3) and (1.5), it is obtained that L©©(a,x) = (a+a−1)x−1 −1 or δ = (a+a−1)x−1 −1

with δ = L©©(a,x), where ©© is trivial link with two components. If ©µ is a trivial µ-component link, then L©µ (a,x) =

F©µ (a,x) = δ µ−1. Also, LK∗(a,x) = LK(a
−1,x) and FK∗(a,x) = FK(a

−1,x), where K∗ is the mirror image of link K.

The twist knots, which obtained by twisting a closed-loop repeatedly and then linking the ends together, are an essential class

of knots. It could be found out lots of studies about their knot invariants (See [18]- [25] and others). Here, a twist knot is

regarded with a clasp and right-handed n-half twists as drawn in Figure 2.1. Besides, the knot polynomials of some classes of

knots and links were studied to give recursive formulas [26]- [31].

In this paper, it is aimed that deriving the recurrence relations for the HOMFLY polynomials of the oriented twist knots and the

Kauffman polynomials L and F of the unoriented twist knots. While the HOMFLY polynomial and the Kauffman polynomials

L and F of twist knots are defined as fourth-order recurrence relations, the (2,n)-torus link diagrams are encountered and their

mentioned knot polynomials are utilized for some results. Also, some recursive properties of these relations are examined and

it is provided the generating functions, the general solutions and the explicit forms.

2. Oriented and unoriented knot polynomials of twist knots

2.1. HOMFLY polynomials of twist knots

Suppose that Kn is an oriented digram of twist knot drawn in Figure 2.1, K(2,n) is an oriented digram of (2,n)-torus link drawn

in Figure 2.2 and Pn denotes the HOMFLY polynomial of Kn instead of PKn
(a,z) for simplicity.
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Figure 2.1: The twist knot with a clasp and right-handed n-half twists Figure 2.2: (2,n)-torus link

Theorem 2.1. The HOMFLY polynomial of twist knot Kn satisfies the following relations:

Pn = (a2 +1)Pn−2 −a2Pn−4, n ≥ 4 (2.1)

and

Pn =

{

azPK(2,n+1)
+a2 if n is odd,

−a−1zPK(2,n)
+a−2 if n is even.

(2.2)

Proof. Let the skein operations be applied to a designated half twist of the oriented diagram Kn. If the crossing is switched,

the resulting diagram is Kn−2 twist knot by the second Reidemeister move. Then, if the crossing is smoothed, the resulting

diagram is (2,2)-torus link, i.e. Hopf link, obtained by applying the first Reidemeister move n−1 times. Notice that, if n is

odd, all crossings of the (2,2)-torus link are right-handed with counter-directed strands and if n is even, all crossings of the

(2,2)-torus link are left-handed with same-directed strands. Hence, from the axiom (1.1), the following equations are obtained

as

Pn = azPK(2,2)
+a2Pn−2

and

Pn−2 = azPK(2,2)
+a2Pn−4.

Thus, the recurrence relation (2.1) is gotten from last two equations.

Let the skein operations be applied to a designated crossing of the clasp of the oriented diagram Kn. The crossings of the clasp

are right-handed and left-handed when n is odd and even, respectively. In case of n is odd, if the crossing is switched, the

resulting diagram is an unknot by applying the second Reidemeister move and the first Reidemeister move n times. Then, if

the crossing is smoothed, the resulting diagram is K(2,n+1) torus link with counter-directed strands taking into consideration

n+1 is even. Hence, from the axiom (1.1) and (1.2), the relation in (2.2) is obtained as

Pn = azPK(2,n+1)
+a2.

In case of n is even, the relation in (2.2) is obtained similarly.

Then, the recurrence relation (2.1) in Theorem 2.1 could be given with initial conditions as a fourth-order recurrence relation.

Definition 2.2. The HOMFLY polynomials {Pn}∞
n=0 for the oriented diagrams of twist knots Kn is defined by the recurrence

relation

Pn = (a2 +1)Pn−2 −a2Pn−4, n ≥ 4

with initial conditions

P0 = 1, P1 = a2z2 −a4 +2a2, P2 = a2 − z2 +a−2 −1, P3 = a4z2 +a2z2 −a6 +a4 +a2. (2.3)

Also, since PK∗(a,z) = PK(a
−1,−z), where K∗ is the mirror image of the diagram K, the following relation is obtained by

using P−n instead of PK ∗
n
(a,z)

P−n = (a−2 +1)P−(n−2)−a−2P−(n−4).

The characteristic equation of (2.1) is a bi-quadratic equation as

λ 4 − (a2 +1)λ 2 +a2 = 0

and the roots of this equation are

λ1 = a, λ2 =−a, λ3 = 1, λ4 =−1. (2.4)
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Proposition 2.3. The generating function of the sequence {Pn} is

gP(λ ) =
−a2λ 3 +(a−2 − z2 −2)λ 2 +(a2z2 −a4 +2a2)λ +1

a2λ 4 − (a2 +1)λ 2 +1
. (2.5)

Proof. The generating function of {Pn} has the following form:

gP(λ ) = P0 +P1λ +P2λ 2 + . . .

After the multiplications (a2 +1)λ 2gP(λ ) and −a2λ 4gP(λ ), the following is provided by using (2.1)

(1− (a2 +1)λ 2 +a2λ 4)gP(λ ) = P0 +P1λ +(P2 − (a2 +1)P0)λ
2 +(P3 − (a2 +1)P1)λ

3

+
∞

∑
n=4

(

Pn − (a2 +1)Pn−2 +a2Pn−4

)

λ n

= P0 +P1λ +(P2 − (a2 +1)P0)λ
2 +(P3 − (a2 +1)P1)λ

3.

Hence, the equality (2.5) is obtained from the below by using the equalities in (2.3).

gP(λ ) =
P0 +P1λ +(P2 − (a2 +1)P0)λ

2 +(P3 − (a2 +1)P1)λ
3

a2λ 4 − (a2 +1)λ 2 +1
.

Proposition 2.4. The general solution of the recurrence relation (2.1) is

Pn = Aan +B(−a)n +C+D(−1)n, n ≥ 0,

where

A =− (a2 +a+1)(a4 −a2(z2 +2)+1)

2a2(a+1)
, C =

a4 −a2z2 +1

2a2
,

B =
(a2 −a+1)(a4 −a2(z2 +2)+1)

2a2(a−1)
, D =− (a2 +1)(a4 −a2(z2 +2)+1)

2a2(a2 −1)
.

Proof. The closed form of the sequence {Pn} is given by

Pn = Aλ n
1 +Bλ n

2 +Cλ n
3 +Dλ n

4 , n ≥ 0.

Then, the following linear equation system is provided from (2.3) and (2.4) as

P0 = A+B+C+D = 1,

P1 = Aλ1 +Bλ2 +Cλ3 +Dλ4 = a2z2 −a4 +2a2,

P2 = Aλ 2
1 +Bλ 2

2 +Cλ 2
3 +Dλ 2

4 = a2 − z2 +a−2 −1,

P3 = Aλ 3
1 +Bλ 3

2 +Cλ 3
3 +Dλ 3

4 = a4z2 +a2z2 −a6 +a4 +a2.

The values A, B, C and D is obtained by solving this system. Note that considering xn − yn = (x− y)
n−1

∑
i=0

xkyn−1−k, the factors

(a−1) are simplified.

Corollary 2.5. For n ≥ 2, the explicit formula for the HOMFLY polynomial of twist knot Kn is given by

Pn =



















z2

a+1

(

n

∑
i=0

ai+2

)

−an+3 +an+1 +a2 if n is odd,

− z2

a+1

(

n−1

∑
i=0

ai

)

+an −an−2 +a−2 if n is even.

(2.6)

Proof. From Corollary 1 in [28], the explicit formula for the HOMFLY polynomial of (2,n)-torus link K(2,n) with counter-

directed strands taking into consideration that n is even and the notations and diagrams mentioned in this paper is given

by

PK(2,n)
=

(

an −1

a−a−1

)

z−an(a−a−1)z−1. (2.7)

Hence, the formulas in (2.6) are provided by using (2.2) and (2.7).

Remark 2.6. Since it is well known that the HOMFLY polynomial specializes to the Jones polynomial for a = t and

z = t
1/2 − t−

1/2 , the Alexander-Conway polynomial for a = 1 and the Alexander polynomial for a = 1 and z = t
1/2 − t−

1/2 , the

recurrence relations for the mentioned knot polynomials of twist knot Kn could be easily obtained.
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2.2. Kauffman polynomials L and F of twist knots

Now, suppose that Kn is an unoriented digram of twist knot drawn in Figure 2.1, K(2,n) is an unoriented digram of (2,n)-torus

link drawn in Figure 2.2 and Ln denotes the Kauffman polynomial L of Kn instead of LKn
(a,x) for simplicity.

Theorem 2.7. The Kauffman polynomial L of twist knot Kn satisfies the following relations:

Ln = xLn−1 +(a2 −1)Ln−2 −a2xLn−3 +a2Ln−4, n ≥ 4 (2.8)

and

Ln = a−1xLK(2,n)
+ xLK(2,n+1)

−an. (2.9)

Proof. Let the axiom (1.3) be applied to a designated half twist of the unoriented diagram Kn. If the crossing is switched, the

resulting diagram is Kn−2 twist knot by the second Reidemeister move. If the crossing is split according to the K0, the resulting

diagram is Kn−1 twist knot. Then, if the crossing is split according to the K∞, the resulting diagram is (2,2)-torus link, i.e.

Hopf link, obtained by applying the first Reidemeister move n−1 times. Note that, if n is even, all crossings of the (2,2)-torus

link are left-handed and if n is odd, all crossings of the (2,2)-torus link are right-handed. Hence, by using the axioms (1.4) and

(1.5), the following equations are obtained as

Ln = xLn−1 +an−1xLK(2,2)
−Ln−2

and

Ln−2 = xLn−3 +an−3xLK(2,2)
−Ln−4.

Thus, the recurrence relation (2.8) is gotten from last two equations.

Let the axiom (1.3) be applied to a designated crossing of the clasp of the unoriented diagram Kn. If the crossing is switched,

the resulting diagram is an unknot obtained by applying the second Reidemeister move and the first Reidemeister move n

times. If the crossing is split according to the K0, the resulting diagram is torus link K(2,n+1). Then, if the crossing is split

according to the K∞, the resulting diagram is the image of torus link K(2,n) by applying the first Reidemeister move. Thus, the

relation (2.9) is obtained by using the axioms (1.4), (1.5) and (1.6).

Then, the recurrence relation (2.8) in Theorem 2.7 could be given with initial conditions as a fourth-order recurrence relation.

Definition 2.8. The Kauffman polynomials {Ln}∞
n=0 for the unoriented diagrams of twist knots Kn is defined by the recurrence

relation

Ln = xLn−1 +(a2 −1)Ln−2 −a2xLn−3 +a2Ln−4, n ≥ 4

with initial conditions

L0 = a−2, L1 = (a+a−1)x2 +(a−2 +1)x−2a−a−1,

L2 = (a+a−1)x3 +(a2 +a−2 +2)x2 − (a+a−1)x−a2 −a−2 −1, (2.10)

L3 = (a+a−1)x4 +(a2 +a−2 +2)x3 +(a3 −a−2a−1)x2 − (2a−2 +2)x−a3 +a+a−1.

Since LK∗(a,x) = LK(a
−1,x), where K∗ is the mirror image of the diagram K, the following relation is obtained by using L−n

instead of LK ∗
n
(a,x)

L−n = xL−(n−1)+(a−2 −1)L−(n−2)−a−2xL−(n−3)+a−2L−(n−4).

The characteristic equation of (2.8) is a quadratic equation as

λ 4 − xλ 3 − (a2 −1)λ 2 +a2xλ −a2 = 0

and the roots of this equation are

λ1 = a, λ2 =−a, λ3 =
1

2
(x+

√

x2 −4), λ4 =
1

2
(x−

√

x2 −4). (2.11)

Proposition 2.9. The generating function of the sequence {Ln} is

gL(λ ) =
a3λ 3 +((a2 +1)x2 +ax−a2 −2)λ 2 +((a+a−1)x2 + x−2a−a−1)λ +a−2

−a2λ 4 +a2xλ 3 − (a2 −1)λ 2 − xλ +1
.
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Proof. The generating function of {Ln} has the following form:

gL(λ ) = L0 +L1λ +L2λ 2 + . . .

After the multiplications xλgL(λ ), (a
2 −1)λ 2gL(λ ), −a2xλ 3gL(λ ) and a2λ 4gL(λ ), the following is provided by using (2.8)

(1− xλ − (a2 −1)λ 2 +a2xλ 3 −a2λ 4)gL(λ ) = L0 +(L1 − xL0)λ +(L2 − xL1 − (a2 −1)L0)λ
2 +(L3 − xL2 − (a2 −1)L1 +a2xL0)λ

3

+
∞

∑
n=4

(

Ln − xLn−1 − (a2 −1)Ln−2 +a2xLn−3 −a2Ln−4

)

λ n

= L0 +(L1 − xL0)λ +(L2 − xL1 − (a2 −1)L0)λ
2 +(L3 − xL2 − (a2 −1)L1 +a2xL0)λ

3

Hence, the equality (2.5) is obtained from the below by using the equalities in (2.3).

gL(λ ) =
L0 +(L1 − xL0)λ +(L2 − xL1 − (a2 −1)L0)λ

2 +(L3 − xL2 − (a2 −1)L1 +a2xL0)λ
3

−a2λ 4 +a2xλ 3 − (a2 −1)λ 2 − xλ +1
.

Proposition 2.10. The general solution of the recurrence relation (2.8) is

Ln = Aan +B(−a)n +C(
1

2
(x+

√

x2 −4))n +D(
1

2
(x−

√

x2 −4))n, n ≥ 0, (2.12)

where

A =
a2

(

x2 −1
)

+ax+ x2 −1

a2 −ax+1
, B = 0,

C =

(

a2 +1
)

(

2a3 +a2
(

x3 + x2
√

x2 −4−
√

x2 −4−3x
)

+a
(

−x2 + x
√

x2 −4+2
)

−
√

x2 −4− x
)

2a2
√

x2 −4(−a2 +ax−1)
,

D =

(

a2 +1
)

(

−2a3 +a2
(

−x3 + x2
√

x2 −4−
√

x2 −4+3x
)

+a
(

x2 + x
√

x2 −4−2
)

−
√

x2 −4+ x
)

2a2
√

x2 −4(−a2 +ax−1)
.

Proof. The closed form of the sequence {Ln} is given by

Ln = Aλ n
1 +Bλ n

2 +Cλ n
3 +Dλ n

4 , n ≥ 0.

Then, the following linear equation system is provided from (2.10) and (2.11) as

L0 = A+B+C+D = a−2,

L1 = Aλ1 +Bλ2 +Cλ3 +Dλ4 = (a+a−1)x2 +(a−2 +1)x−2a−a−1,

L2 = Aλ 2
1 +Bλ 2

2 +Cλ 2
3 +Dλ 2

4 = (a+a−1)x3 +(a2 +a−2 +2)x2 − (a+a−1)x−a2 −a−2 −1,

L3 = Aλ 3
1 +Bλ 3

2 +Cλ 3
3 +Dλ 3

4 = (a+a−1)x4 +(a2 +a−2 +2)x3 +(a3 −a−2a−1)x2 − (2a−2 +2)x−a3 +a+a−1.

The values A, B, C and D is obtained by solving this system.

Suppose that Fn denotes the Kauffman polynomial F of Kn instead of FKn
(a,x) for simplicity.

Corollary 2.11. The Kauffman polynomials {Fn}∞
n=0 for the unoriented diagrams of twist knots Kn is defined by the recurrence

relation

Fn =







a−5xFn−1 +(1−a−2)Fn−2 −a−5xFn−3 +a−2Fn−4 if n is odd,

a3xFn−1 +(1−a−2)Fn−2 −a3xFn−3 +a−2Fn−4 if n is even,

n ≥ 4 (2.13)

with initial conditions

F0 = 1, F1 = (a−2 +a−4)x2 +(a−3 +a−5)x−2a−2 −a−4,

F2 = (a+a−1)x3 +(a2 +a−2 +2)x2 − (a+a−1)x−a2 −a−2 −1,

F3 = (a−4 +a−6)x4 +(a−3 +a−7 +2a−5)x3 +(a−2 +−a−4 −2a−6)x2 − (2a−7 +2a−5)x−a−2 +a−4 +a−6.

Also, the following relation is satisfied for Fn.

Fn =







a−3xFK(2,n)
+a−1xFK(2,n+1)

−a−2 if n is odd,

axFK(2,n)
+a3xFK(2,n+1)

−a2 if n is even.
(2.14)
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Proof. It is proven by considering w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even, respectively, and by using (1.7) in

Definition 2.8 and the relation (2.9).

In addition, since FK∗(a,x) = FK(a
−1,x), where K∗ is the mirror image of the diagram K, the following relations are obtained

by using F−n instead of FK ∗
n
(a,x)

F−n =







a5xF−(n−1)+(1−a2)F−(n−2)−a5xF−(n−3)+a2F−(n−4) if n is odd,

a−3xF−(n−1)+(1−a2)F−(n−2)−a−3xF−(n−3)+a2F−(n−4) if n is even.

By using same notation, it could be provided a relation from (2.14) for the mirror image of K ∗
n .

Corollary 2.12. The general solution of the recurrence relation (2.13) is

Fn =











a−n−2
(

Aan +B(−a)n +C( 1
2
(x+

√
x2 −4))n +D( 1

2
(x−

√
x2 −4))n

)

if n is odd,

a−n+2
(

Aan +B(−a)n +C( 1
2
(x+

√
x2 −4))n +D( 1

2
(x−

√
x2 −4))n

)

if n is even,

n ≥ 0,

where

A =
a2

(

x2 −1
)

+ax+ x2 −1

a2 −ax+1
, B = 0,

C =

(

a2 +1
)

(

2a3 +a2
(

x3 + x2
√

x2 −4−
√

x2 −4−3x
)

+a
(

−x2 + x
√

x2 −4+2
)

−
√

x2 −4− x
)

2a2
√

x2 −4(−a2 +ax−1)
,

D =

(

a2 +1
)

(

−2a3 +a2
(

−x3 + x2
√

x2 −4−
√

x2 −4+3x
)

+a
(

x2 + x
√

x2 −4−2
)

−
√

x2 −4+ x
)

2a2
√

x2 −4(−a2 +ax−1)
.

Proof. The proof follows directly from (1.7) and (2.12) by considering w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even,

respectively.

Remark 2.13. Since it is well known that the Kauffman polynomial F specializes to the Jones polynomial for a =−t
3/2 and

x = t−
1/4 + t

1/4 and the BLM/Ho polynomial for a = 1, the recurrence relations for the mentioned knot polynomials of twist

knot Kn could be easily obtained.

Corollary 2.14. For n ≥ 1, the explicit form of of {Ln} and {Fn} are

Ln = a−1xRn+2 +(ax2 +a−2x−a−a−1)Rn+1 +(x2 −ax+a2 −a−2)Rn +(−x+a+a−1)Rn−1 −an (2.15)

and

Fn =







a−1xSn+2 +(a2x2 +a−3x−a2 −1)Sn+1 +(x2 −a3x+a4 +a2 −a−2 −1)Sn +(−ax+a2 +1)Sn−1 −a−2 if n is odd,

a3xSn+2 +(a6x2 +ax−a6 −a4)Sn+1 +(a4x2 −a7x+a8 +a6 −a4 −a2)Sn +(−a5x+a6 +a4)Sn−1 −a2 if n is even,

(2.16)

where {Rn} and {Sn} are special cases of the following sequence {Gn} with initial conditions G0 = G1 = 0, G2 = 1 for

r = a+ x, s =−(1+ax), t = a and r = a2 +ax, s =−(a2 +a3x), t = a4, respectively.

Gn =

⌊ n−2
2

⌋

∑
i=0

⌊ n−2
3

⌋

∑
j=0

(

n−2− i−2 j

i+ j

)(

i+ j

j

)

rn−2−2i−3 jsi(−1)it j.

Proof. From Theorem 2.3 and 2.4 in [31], the explicit forms of the Kauffman polynomial L and F sequences of K(2,n) are

given by

LK(2,n)
= (a−1)Rn+1 +

(

ax− (a+a−1)x−1
)

Rn +
(

(1+a2)x−1 −a
)

Rn−1, n ≥ 1 (2.17)

and

FK(2,n)
= Sn+1 +

(

a3x− (a3 +a)x−1
)

Sn +
(

(a5 +a3)x−1 −a4
)

Sn−1, n ≥ 1. (2.18)

Hence, the explicit form (2.15) is obtained by using (2.9) and (2.17). Then, the explicit form (2.16) is obtained by considering

w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even, respectively, and by using (2.14) and (2.18).
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