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TÜRKİYE

Syed Abdul Mohiuddine

Sakarya University,

TÜRKİYE
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TÜRKİYE
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Çankaya University,
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Ali Fuat YENİÇERİOĞLU, Cüneyt YAZICI, Vildan YAZICI 33 - 40

5 Boolean Hypercubes: The Origin of a Tagged Recursive Logic and the

Limits of Artificial Intelligence
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Abstract

In this paper we obtain some new additive refinements and reverses of Young’s operator

inequality via a result of Cartwright and Field. Comparison with other additive Young’s

type inequalities are also provided.

1. Introduction

We have the following inequality that provides a refinement and a reverse for the celebrated Young’s inequality

1

2
ν (1−ν)

(b−a)2

max{a,b} ≤ (1−ν)a+νb−a1−ν bν ≤ 1

2
ν (1−ν)

(b−a)2

min{a,b} (1.1)

for any a,b > 0 and ν ∈ [0,1] .
This result was obtained in 1978 by Cartwright and Field [1] who established a more general result for n variables and gave an application

for a probability measure supported on a finite interval.

Throughout this paper A, B are positive invertible operators on a complex Hilbert space (H,〈·, ·〉) . We use the following notations for

operators

A∇ν B := (1−ν)A+νB,

the weighted operator arithmetic mean and

A♯ν B := A1/2
(

A−1/2BA−1/2
)

ν

A1/2,

the weighted operator geometric mean. When ν = 1
2 we write A∇B and A♯B for brevity, respectively.

The famous Young inequality for positive invertible operators A, B says that if ν ∈ [0,1], then

A♯ν B ≤ A∇ν B. (1.2)

The inequality (1.2) is also called ν-weighted arithmetic-geometric operator mean inequality.

In the recent paper [12], by the use of Cartwright and Field inequality (1.1), Minculete and Furuichi showed amongst other that

1

2
ν (1−ν)

(

AB−1A−2A+B
)

≤ A∇ν B−A♯ν B (1.3)

≤ 1

2
ν (1−ν)

(

BA−1B−2B+A
)

,
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provided that A ≤ B, and

1

2
ν (1−ν)

(

BA−1B−2B+A
)

≤ A∇ν B−A♯ν B (1.4)

≤ 1

2
ν (1−ν)

(

AB−1A−2A+B
)

,

provided that B ≤ A.

For other inequalities between the operator means A♯ν B and A∇ν B see [2]- [11], [13]- [14] and the references therein.

In this paper, several other lower and upper bounds for the Young’s difference A∇ν B−A♯ν B under various boundedness assumptions for the

involved operators A and B are given. Comparison with other additive Young’s type inequalities are also provided.

2. A Refinement and Reverse of Young’s Inequality

We have:

Theorem 2.1. Let A, B be positive invertible operators and M > m > 0 such that

MA ≥ B ≥ mA. (2.1)

Then for any ν ∈ [0,1] we have

1

2
ν (1−ν)c(m,M)A ≤ 1

2

ν (1−ν)

max{M,1} (B−A)A−1 (B−A) , (2.2)

≤ A∇ν B−A♯ν B,

≤ 1

2

ν (1−ν)

min{m,1} ,(B−A)A−1 (B−A) ,

≤ 1

2
ν (1−ν)C (m,M)A,

where

c(m,M) :=











(M−1)2
if M < 1,

0 if m ≤ 1 ≤ M,
(m−1)2

M if 1 < m

and

C (m,M) :=















(m−1)2

m if M < 1,
1
m max

{

(m−1)2 ,(M−1)2
}

if m ≤ 1 ≤ M,

(M−1)2
if 1 < m.

In particular,

1

8
c(m,M)A ≤ 1

8max{M,1} (B−A)A−1 (B−A)≤ A∇B−A♯B (2.3)

≤ 1

8min{m,1} (B−A)A−1 (B−A)≤ 1

8
C (m,M)A.

Proof. If we write the inequality (1.1) for a = 1 and b = x we get

1

2
ν (1−ν)

(x−1)2

max{x,1} ≤ 1−ν +νx− xν ≤ 1

2
ν (1−ν)

(x−1)2

min{x,1} (2.4)

for any x > 0 and for any ν ∈ [0,1] .

If x ∈ [m,M]⊂ (0,∞) , then max{x,1} ≤ max{M,1} and min{m,1} ≤ min{x,1} and by (2.4) we get

1

2
ν (1−ν)

minx∈[m,M] (x−1)2

max{M,1} ≤ 1

2
ν (1−ν)

(x−1)2

max{M,1} (2.5)

≤ 1−ν +νx− xν

≤ 1

2
ν (1−ν)

(x−1)2

min{m,1}

≤ 1

2
ν (1−ν)

maxx∈[m,M] (x−1)2

min{m,1}

for any x ∈ [m,M] and for any ν ∈ [0,1] .
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Observe that

min
x∈[m,M]

(x−1)2 =























(M−1)2 if M < 1,

0 if m ≤ 1 ≤ M,

(m−1)2 if 1 < m

and

max
x∈[m,M]

(x−1)2 =



























(m−1)2 if M < 1,

max
{

(m−1)2 ,(M−1)2
}

if m ≤ 1 ≤ M,

(M−1)2 if 1 < m.

Then

minx∈[m,M] (x−1)2

max{M,1} =



























(M−1)2 if M < 1,

0 if m ≤ 1 ≤ M,

(m−1)2

M if 1 < m

= c(m,M)

and

maxx∈[m,M] (x−1)2

min{m,1} =































(m−1)2

m if M < 1,

1
m max

{

(m−1)2 ,(M−1)2
}

if m ≤ 1 ≤ M,

(M−1)2 if 1 < m.

=C (m,M)

Using the inequality (2.5) we have

1

2
ν (1−ν)c(m,M)≤ 1

2
ν (1−ν)

(x−1)2

max{M,1} (2.6)

≤ 1−ν +νx− xν

≤ 1

2
ν (1−ν)

(x−1)2

min{m,1}

≤ 1

2
ν (1−ν)C (m,M)

for any x ∈ [m,M] and for any ν ∈ [0,1] .
If we use the continuous functional calculus for the positive invertible operator X with mI ≤ X ≤ MI, then we have from (2.10) that

1

2
ν (1−ν)c(m,M) I ≤ 1

2

ν (1−ν)

max{M,1} (X − I)2 (2.7)

≤ (1−ν) I +νX −Xν

≤ 1

2

ν (1−ν)

min{m,1} (X − I)2

≤ 1

2
ν (1−ν)C (m,M) I

for any ν ∈ [0,1] .
If we multiply (2.1) both sides by A−1/2 we get MI ≥ A−1/2BA−1/2 ≥ mI.
By writing the inequality (2.7) for X = A−1/2BA−1/2 we obtain

1

2
ν (1−ν)c(m,M) I ≤ 1

2

ν (1−ν)

max{M,1}
(

A−1/2BA−1/2 − I
)2

(2.8)

≤ (1−ν) I +νA−1/2BA−1/2 −
(

A−1/2BA−1/2
)

ν

≤ 1

2

ν (1−ν)

min{m,1}
(

A−1/2BA−1/2 − I
)2

≤ 1

2
ν (1−ν)C (m,M) I

for any ν ∈ [0,1] .
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If we multiply the inequality (2.8) both sides with A1/2, then we get

1

2
ν (1−ν)c(m,M)A ≤ 1

2

ν (1−ν)

max{M,1}A1/2
(

A−1/2BA−1/2 − I
)2

A1/2 (2.9)

≤ (1−ν)A+νB−A1/2
(

A−1/2BA−1/2
)

ν

A1/2

≤ 1

2

ν (1−ν)

min{m,1}A1/2
(

A−1/2BA−1/2 − I
)2

A1/2

≤ 1

2
ν (1−ν)C (m,M)A,

and since

A1/2
(

A−1/2BA−1/2 − I
)2

A1/2 = A1/2
(

A−1/2 (B−A)A−1/2
)2

A1/2

= A1/2A−1/2 (B−A)A−1/2A−1/2 (B−A)A−1/2A1/2

= (B−A)A−1 (B−A) ,

then by (2.9) we get the desired result (2.2).

When the operators A and B are bounded above and below by constants we have the following result as well:

Corollary 2.2. Let A, B be two positive operators and m, m′, M, M′ be positive real numbers. Put h := M
m and h′ := M′

m′ .

(i) If 0 < mI ≤ A ≤ m′I < M′I ≤ B ≤ MI, then

1

2
ν (1−ν)

(h′−1)2

h
A ≤ 1

2

ν (1−ν)

h
(B−A)A−1 (B−A) (2.10)

≤ A∇ν B−A♯ν B

≤ 1

2
ν (1−ν)(B−A)A−1 (B−A)

≤ 1

2
ν (1−ν)(h−1)2

A,

and, in particular,

(h′−1)2

8h
A ≤ 1

8h
(B−A)A−1 (B−A)≤ A∇B−A♯B (2.11)

≤ 1

8
(B−A)A−1 (B−A)≤ 1

8
(h−1)2

A.

(ii) If 0 < mI ≤ B ≤ m′I < M′I ≤ A ≤ MI, then

1

2
ν (1−ν)

(

h′−1

h′

)2

A ≤ 1

2
ν (1−ν)(B−A)A−1 (B−A) (2.12)

≤ A∇ν B−A♯ν B

≤ 1

2
ν (1−ν)h(B−A)A−1 (B−A)

≤ 1

2
ν (1−ν)

(h−1)2

h
A

and, in particular,

1

8

(

h′−1

h′

)2

A ≤ 1

8
(B−A)A−1 (B−A)≤ A∇B−A♯B (2.13)

≤ 1

8
h(B−A)A−1 (B−A)≤ (h−1)2

8h
A.

Proof. We observe that h, h′ > 1 and if either of the condition (i) or (ii) holds, then h ≥ h′.
If (i) is valid, then we have

A < h′A =
M′

m′ A ≤ B ≤ M

m
A = hA, (2.14)

while, if (ii) is valid, then we have

1

h
A ≤ B ≤ 1

h′
A < A. (2.15)

If we use the inequality (2.2) and the assumption (i), then we get (2.10).

If we use the inequality (2.2) and the assumption (ii), then we get (2.12).
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3. Bounds in Term of Kantorovich’s Constant

We consider the Kantorovich’s constant defined by

K (h) :=
(h+1)2

4h
, h > 0. (3.1)

The function K is decreasing on (0,1) and increasing on [1,∞) , K (h)≥ 1 for any h > 0 and K (h) = K
(

1
h

)

for any h > 0.
Observe that for any h > 0

K (h)−1 =
(h−1)2

4h
= K

(

1

h

)

−1.

Also, if a,b > 0 then

K

(

b

a

)

−1 =
(b−a)2

4ab
.

Since min{a,b}max{a,b}= ab if a,b > 0, then

(b−a)2

max{a,b} =
min{a,b}(b−a)2

ab
= 4min{a,b}

[

K

(

b

a

)

−1

]

and

(b−a)2

min{a,b} =
max{a,b}(b−a)2

ab
= 4max{a,b}

[

K

(

b

a

)

−1

]

and the inequality (1.1) can be written as

2ν (1−ν)min{a,b}
[

K

(

b

a

)

−1

]

≤ (1−ν)a+νb−a1−ν bν (3.2)

≤ 2ν (1−ν)max{a,b}
[

K

(

b

a

)

−1

]

for any a,b > 0 and ν ∈ [0,1] .
For positive invertible operators A,B we define

A∇∞B :=
1

2
(A+B)+

1

2
A1/2

∣

∣

∣
A−1/2 (B−A)A−1/2

∣

∣

∣
A1/2

and

A∇−∞B :=
1

2
(A+B)− 1

2
A1/2

∣

∣

∣
A−1/2 (B−A)A−1/2

∣

∣

∣
A1/2.

If we consider the continuous functions f∞, f−∞ : [0,∞)→ [0,∞) defined by

f∞ (x) = max{x,1}= 1

2
(x+1)+

1

2
|x−1|

and

f−∞ (x) = max{x,1}= 1

2
(x+1)− 1

2
|x−1| ,

then, obviously, we have

A∇±∞B = A1/2 f±∞

(

A−1/2BA−1
)

A1/2. (3.3)

If A and B are commutative, then

A∇±∞B =
1

2
(A+B)± 1

2
|B−A|= B∇±∞A.

Theorem 3.1. Let A, B be positive invertible operators and M > m > 0 such that the condition (2.1) holds. Then we have

2ν (1−ν)g(m,M)A∇−∞B ≤ A∇ν B−A♯ν B (3.4)

≤ 2ν (1−ν)G(m,M)A∇∞B,

where

g(m,M) :=























K (M)−1 if M < 1,

0 if m ≤ 1 ≤ M,

K (m)−1 if 1 < m
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and

G(m,M) :=























K (m)−1 if M < 1,

max{K (m) ,K (M)}−1 if m ≤ 1 ≤ M,

K (M)−1 if 1 < m.

In particular,

1

2
g(m,M)A∇−∞B ≤ A∇B−A♯B ≤ 1

2
G(m,M)A∇∞B. (3.5)

Proof. From (3.2) we have for a = 1 and b = x that

2ν (1−ν)min{1,x} [K (x)−1]≤ 1−ν +νx− xν (3.6)

≤ 2ν (1−ν)max{1,x} [K (x)−1]

for any x > 0.

From (3.6) we then have

2ν (1−ν) f−∞ (x) min
x∈[m,M]

[K (x)−1]≤ 1−ν +νx− xν (3.7)

≤ 2ν (1−ν) f∞ (x) max
x∈[m,M]

[K (x)−1]

for any x ∈ [m,M] .

Observe that

max
x∈[m,M]

[K (x)−1] =























K (m)−1 if M < 1,

max{K (m) ,K (M)}−1 if m ≤ 1 ≤ M,

K (M)−1 if 1 < m.

= G(m,M)

and

min
x∈[m,M]

[K (x)−1] =























K (M)−1 if M < 1,

0 if m ≤ 1 ≤ M,

K (m)−1 if 1 < m.

= g(m,M) .

Therefore by (3.7) we get

2ν (1−ν) f−∞ (x)g(m,M)≤ 1−ν +νx− xν ≤ 2ν (1−ν) f∞ (x)G(m,M) (3.8)

for any x ∈ [m,M] and ν ∈ [0,1] .

If we use the continuous functional calculus for the positive invertible operator X with mI ≤ X ≤ MI, then we have from (3.8) that

2ν (1−ν) f−∞ (X)g(m,M)≤ (1−ν) I +νX −Xν (3.9)

≤ 2ν (1−ν) f∞ (X)G(m,M)

for any x ∈ [m,M] and ν ∈ [0,1] .

By writing the inequality (2.7) for X = A−1/2BA−1/2 we obtain

2ν (1−ν) f−∞

(

A−1/2BA−1/2
)

g(m,M)≤ (1−ν) I +νA−1/2BA−1/2 −
(

A−1/2BA−1/2
)

ν

(3.10)

≤ 2ν (1−ν) f∞

(

A−1/2BA−1/2
)

G(m,M)

for any ν ∈ [0,1] .

If we multiply (3.10) both sides by A1/2 we get

2ν (1−ν)A1/2 f−∞

(

A−1/2BA−1/2
)

A1/2g(m,M)≤ (1−ν)A+νBA−A1/2
(

A−1/2BA−1/2
)

ν

A1/2

≤ 2ν (1−ν)A1/2 f∞

(

A−1/2BA−1/2
)

A1/2G(m,M)

for any ν ∈ [0,1] , which, by (3.3) produces the desired result (3.4).

We have:
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Corollary 3.2. Let A, B be two positive operators and m, m′, M, M′ be positive real numbers. Put h := M
m and h′ := M′

m′ . If either of the

conditions (i) or (ii) from Corollary 2.2 holds, then

2ν (1−ν)
[

K
(

h′
)

−1
]

A∇−∞B ≤ A∇ν B−A♯ν B (3.11)

≤ 2ν (1−ν) [K (h)−1]A∇∞B.

In particular,

1

2

[

K
(

h′
)

−1
]

A∇−∞B ≤ A∇B−A♯B ≤ 1

2
[K (h)−1]A∇∞B. (3.12)

Proof. If (i) is valid, then we have

A < h′A =
M′

m′ A ≤ B ≤ M

m
A = hA.

By using the inequality (3.4) we get (3.11).

If (ii) is valid, then we have

1

h
A ≤ B ≤ 1

h′
A < A.

By using the inequality (3.4) we get

2ν (1−ν)

[

K

(

1

h′

)

−1

]

A∇−∞B ≤ A∇ν B−A♯ν B

≤ 2ν (1−ν)

[

K

(

1

h

)

−1

]

A∇∞B,

and since K
(

1
h′
)

= K (h′) and K
(

1
h

)

= K (h) , the inequality (3.11) is also obtained.

4. Comparison with Other Additive Inequalities

Kittaneh and Manasrah [9], [10] provided a refinement and a reverse for Young’s scalar inequality as follows:

r
(√

a−
√

b
)2

≤ (1−ν)a+νb−a1−ν bν ≤ R
(√

a−
√

b
)2

, (4.1)

where a,b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} . The case ν = 1
2 reduces (4.1) to an identity and is of no interest.

In [2] we obtained the following logarithmic upper bound for the Young’s difference

(0 ≤)(1−ν)a+νb−a1−ν bν ≤ ν (1−ν)(a−b)(lna− lnb) (4.2)

for any a,b > 0 and ν ∈ [0,1], while in the subsequent paper [3] we obtained the following refinement and reverse of Young’s inequality

1

2
ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν (4.3)

≤ 1

2
ν (1−ν)(lna− lnb)2 max{a,b} ,

for any a,b > 0 and ν ∈ [0,1] .
Consider the following functions of two variables obtained from the upper bounds in inequalities (1.1), (4.1), (4.2) and (4.3) for a = 1,
b = x ∈ (0,∞) and ν = y ∈ (0,1) , namely

U1 (x,y) :=
1

2
y(1− y)

(x−1)2

min{x,1} ,

U2 (x,y) := max{y,1− y}
(√

x−1
)2

,

U3 (x,y) := y(1− y)(x−1) lnx and

U4 (x,y) :=
1

2
y(1− y)max{x,1} ln2 x.

We observe that the 3D plots of the differences U1 (x,y)−U2 (x,y) on (0,10)×(0,1) ,U1 (x,y)−U3 (x,y) on (2,4)×(0,1) ,U2 (x,y)−U3 (x,y)
on (2,4)×(0,1) ,U2 (x,y)−U4 (x,y) on (2,4)×(0,1) and U3 (x,y)−U4 (x,y) on (3,6)×(0,1) show that they take both negative and positive

values, meaning that neither of the corresponding upper bounds are better in general.

It appears that U1 (x,y) > U4 (x,y) on the box (0,10)× (0,1) suggesting that the upper bound in (4.3) is better than the one from (1.1).

However we do not have an analytic proof for it in general.

Similar conclusions may be derived for the lower bounds, however the details are left to the interested reader.
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5. Conclusion

In this paper we obtained some new additive refinements and reverses of Young’s operator inequality via a result of Cartwright and Field.

Comparison with other additive Young’s type inequalities were also provided.
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Abstract

In the present paper, generalized Rayleigh-quotient formulas for the real parts, imaginary

parts, and moduli of the eigenvalues of general (not necessarily diagonalizable) matrices

are derived by using quotients of the form (Au,v)/(u,v) instead of (Au,u)/(u,u). These

formulas are new and correspond to similar formulas for diagonalizable matrices obtained

recently. Numerical examples underpin the theoretical findings. We point out that, in the

case of general matrices, the principal vectors of largest stage of matrix A∗ take over the

role of the eigenvectors in the case of diagonalizable matrices. So, even though the formulas

in both cases look very similar, the result is somehow unexpected and surprising.

1. Introduction

For self-adjoint matrices, there are formulas for the eigenvalues in the form of generalized Rayleigh quotients; more precisely, max-, min-,

min-max-, and max-min-formulas have been derived by the author in [8].

Recently, corresponding formulas could be carried over to formulas for the real parts, imaginary parts, and moduli of diagonalizable matrices

in [10].

The aim of the present paper is to extend these results to general matrices.

We mention also that the presentation of this paper parallels that of [8] and [10]. So, similarities in the formulation do not happen by accident,

but are intended in order to underline the similarities. As a consequence, many verbatim passages in the formulations are taken from there.

As has already been said in [9], first, the obtained formulas are of interest on their own in Linear Algebra. Second, these are also of potential

interest, for example, in the theory of linear dynamical systems. The reason for this is as follows. The real parts of the eigenvalues multiplied

by the time are equal to the arguments of the exponential functions that describe the decay behavior of the solution (see, e.g., [7, Section 7.1,

p.2011, Formulas (89), (90)]). Further, the system is asymptotically stable if the real parts of all eigenvalues are negative. Moreover, when

the eigenvalues are pairwise conjugate-complex, then the moduli of the imaginary parts are the circular damped eigenfrequencies of the

system (see, e.g., [7, Section 7.1, p. 2011, (89)]).

The paper is structured as follows.

In Sections 2 - 4, the new generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli for general matrices are

stated, as the case may be. In Section 5, the special case of general matrices with real eigenvalues is treated. Section 6 contains an application

and Section 7 the definitions of new generalized numerical ranges. In Sections 8 and 9, numerical examples are presented that underpin the

obtained findings. In the first example, matrix A is taken as the non-diagonalizable system matrix of a linear dynamical problem. In the

second example, we choose a non-diagonalizable matrix with real eigenvalues. Finally, Section 10 contains the conclusion. The References

are restricted to those that are cited in this paper augmented by those used in [8] and [10], the latter being [2], [3], [12], [13], and [14].

Email address and ORCID number: kohaupt@bht-berlin.de, 0000-0003-1781-0600, (L. Kohaupt)

https://orcid.org/0000-0003-1781-0600
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2. Generalized Rayleigh-Quotient Formulas for the Real Parts of the Eigenvalues of a General

Matrix

In this section, we want to derive formulas for the representation of the real parts of the eigenvalues of a general matrix A ∈C
n×n by Rayleigh

quotients that generalize existing ones. More precisely, max-, min-, min-max-, and max-min-representations are obtained in the form of

more general Rayleigh quotients corresponding to associated formulas for the eigenvalues of diagonalizable matrices assembled in [10]. The

difference to the results obtained in [9] is that here we use the scalar product (·, ·) in C
n instead of a weighted scalar product (·, ·)R.

First, we formulate the following conditions (C1′) - (C4′):

(C1′) A ∈ C
n×n

(C2′) λi, i = 1, · · · ,r are the eigenvalues of A corresponding to the Jordan blocks Ji(λi) ∈ C
mi×mi , i = 1, · · · ,r with the chains of principal

vectors p
(i)
1 , · · · , p

(i)
mi
, i = 1, · · · ,r

(C3′) u
(i)
1

∗
, · · · ,u

(i)
mi

∗
, i = 1, · · · ,r are the principal vectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,r of the Jordan blocks

Ji(λi) ∈ C
mi×mi , i = 1, · · · ,r

(C4′) λi 6= λ j, i 6= j, i, j = 1, · · · ,r

We mention that, even though condition (C4′) may be omitted (see [6, Theorem 4]), it is nevertheless useful here since it will turn out to be

fulfilled in the numerical examples in Sections 8 and 9 and since the biorthogonal system in Theorem 2.1 can be constructed more easily

than without this condition. One has the following theorem.

Theorem 2.1. (Biorthogonality relations for principal vectors)

Let the conditions (C1′)-(C4′) be fulfilled. Then, the systems {p
(1)
1 , · · · , p

(1)
m1

; · · · ; p
(r)
1 , · · · , p

(r)
mr
} and {u

(1)
1

∗
, · · · ,u

(1)
m1

∗
; · · · ;u

(r)
1

∗
, · · · ,u

(r)
mr

∗
}

can be constructed such that the following biorthogonality relations hold:

(p
(i)
k
,u

(i)
l

∗
) =

{
1, l = mi − k+1

0, l 6= mi − k+1
(2.1)

k = 1, · · · ,mi, i = 1, · · · ,r and

(p
(i)
k
,u

( j)
l

∗
) = 0, i 6= j, (2.2)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

So, with

v
(i)
l

∗
:= u

(i)
mi−l+1

∗
, (2.3)

l = 1, · · · ,mi, i = 1, · · · ,r one has the biorthogonality relations

(p
(i)
k
,v

(i)
l

∗
) = δkl , (2.4)

k, l = 1, · · · ,mi, i = 1, · · · ,r, and

(p
(i)
k
,v

( j)
l

∗
) = 0, i 6= j, (2.5)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

Proof. See proof of [5, Theorem 2] or [6, Theorem 4].

Next, we want to derive a relation corresponding to that of [10, Formula (12)]. This is done in the following Formula (2.19).

First, with the identity matrix E, we introduce the abbreviation

Nλ j(A) := {u ∈ C
n |(A−λ j(A)E)u = 0}, j = 1, . . . ,r (2.6)

for the geometric eigenspaces so that

Nλ j(A) := [p
( j)
1 ] = [p j], j = 1, . . . ,r.

Herewith, we define

Nσ(A) :=
r⊕

j=1

Nλ j(A). (2.7)

Further, we define the following subspaces of Cn. For every k = 1, · · · ,r, let

Np,k :=

{

u ∈ C
n |u =

k

∑
j=1

α j p j with α j ∈ C, j = 1, · · · ,k

}

=: [p1, · · · , pk] (2.8)

and

Np,k,R :=

{

u ∈ C
n |u =

k

∑
j=1

β j p j with β j ∈ R, j = 1, · · · ,k

}

=: [p1, · · · , pk]R (2.9)
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as well as

Np := Np,r :=

{

u ∈ C
n |u =

r

∑
j=1

α j p j with α j ∈ C, j = 1, · · · ,r

}

=: [p1, · · · , pr] (2.10)

and

Np,R := Np,r,R :=

{

u ∈ C
n |u =

r

∑
j=1

β j p j with β j ∈ R, j = 1, · · · ,r

}

=: [p1, · · · , pr]R (2.11)

where Np,R is apparently isomorphic to R
r and Np is isomorphic to C

r.

We mention that all these spaces (2.8) - (2.11) are subspaces of the geometric eigenspace Nσ(A).

In [10], we have defined the further spaces Nu∗,k, Nu∗,k,R, Nu∗ , and Nu∗,R which are subspaces of the geometric eigenspace Nσ(A∗). Here,

however, we need different spaces. For this, we begin with the abbreviations

v∗j := v
( j)
1

∗
= u

( j)
m j−1+1

∗
= u

( j)
m j

∗
, (2.12)

j = 1, · · · ,r that are principal vectors of stage m j pertinent to the eigenvalue λ j(A
∗) = λ j(A), j = 1, · · · ,r. Herewith, for every k = 1, · · · ,r,

we define

Nv∗,k :=

{

u ∈ C
n |u =

k

∑
j=1

α jv
∗
j with α j ∈ C, j = 1, · · · ,k

}

=: [v∗1, · · · ,v
∗
k ] (2.13)

and

Nv∗,k,R :=

{

u ∈ C
n |u =

k

∑
j=1

β jv
∗
j with β j ∈ R, j = 1, · · · ,k

}

=: [v∗1, · · · ,v
∗
k ]R (2.14)

as well as

Nv∗ := Nv∗,r :=

{

u ∈ C
n |u =

r

∑
j=1

α jv
∗
j with α j ∈ C, j = 1, · · · ,n

}

=: [v∗1, · · · ,v
∗
r ] (2.15)

and

Nv∗,R := Nv∗,r,R :=

{

u ∈ C
n |u =

r

∑
j=1

β jv
∗
j with β j ∈ R, j = 1, · · · ,r

}

=: [v∗1, · · · ,v
∗
r ]R (2.16)

where Nv∗,R is apparently isomorphic to R
r and Nv∗ is isomorphic to C

r.

After these preparations, we are able to prove the following lemma.

Lemma 2.2. Let the conditions (C1′)-(C4′) be fulfilled.

Then, with the denotations of Theorem 2.1 and (2.12),

(Au,v) =
r

∑
j=1

λ j(A)
m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,v)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(p

( j)
k−1,v), u,v ∈ C

n (2.17)

leading to

(Au,v) =
r

∑
j=1

λ j(A)(u,v
∗
j)(p j,v), u ∈ Nσ(A), v ∈ C

n (2.18)

and thus to

Re(Au,v) =
r

∑
j=1

Reλ j(A)(u,v
∗
j)(p j,v), u ∈ Np,R, v ∈ Nv∗,R. (2.19)

Proof. First, we prove (2.17). For this, let u ∈ C
n. Then, with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

(2.20)

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
)Ap

( j)
k

=
r

∑
j=1

m j

∑
k=1

(u,v
( j)
k

∗
) [λ j p

( j)
k

+ p
( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
) p

( j)
k

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
) p

( j)
k−1

(2.21)
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since p
( j)
0 = 0, j = 1, . . . ,r.

Further, for every v ∈ C
n,

v =
r

∑
l=1

ml

∑
s=1

(v, p
(l)
s )v

(l)
s

∗
. (2.22)

This leads to

(Au,v) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,v)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(p

( j)
k−1,v)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(v, p
(l)
s ) (p

( j)
k

,v
(l)
s

∗
)

︸ ︷︷ ︸

δl jδsk

+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(v, p
(l)
s ) (p

( j)
k−1,v

(l)
s

∗
)

︸ ︷︷ ︸

δs,k−1δl j

implying

(Au,v) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v
( j)
k

∗
)(p

( j)
k

,v)+
r

∑
j=1

m j

∑
k=2

(u,v
( j)
k

∗
)(p

( j)
k−1,v)

so that (2.17) follows.

Now, for u ∈ Nσ(A), we have

(u,v
( j)
k

∗
) = 0, k = 2, · · · ,m j

since (ps,v
( j)
k

∗
) = (p

(s)
1 ,v

( j)
k

∗
) = 0 if k 6= 1, ;s, j = 1, · · · ,r. Thus, from (17), we deduce that

(Au,v) =
r

∑
j=1

λ j(u,v
( j)
1

∗
)(p

( j)
1 ,v). (2.23)

With the abbreviation (2.12), we obtain (2.18).

Relation (2.19) is a direct consequence of equation (2.18) since (u,v∗j) ∈ R, u ∈ Np,R and (p j,v) ∈ R, v ∈ Nv∗,R.

Next, as in [10], we define the vector spaces Mp,k,R, namely:

Mp,1,R := Np,R = [p1, · · · , pr]R,

Mp,k,R := {u ∈ Np,R |(u,u∗j) = 0, j = 1,2, · · · ,k−1}, k = 2, · · · ,r.
(2.24)

Instead of the spaces Mu∗,k,R in [10], we need the spaces Mv∗,k,R, i.e.,

Mv∗,1,R := Nv∗,R = [v∗1, · · · ,v
∗
r ]R,

Mv∗,k,R := {u ∈ Nv∗,R |(u, p j) = 0, j = 1,2, · · · ,k−1}, k = 2, · · · ,r.
(2.25)

The next lemma characterizes these spaces.

Lemma 2.3. Let the conditions (C1′)-(C4′) be fulfilled as well as {p1, · · · , pr} be the eigenvectors of A and {v∗1, · · · ,v
∗
r} be principal vectors

of A∗ defined by (2.12) with the property

(pi,v
∗
j) = δi j, i, j = 1, · · · ,r.

Then,

Mp,k,R = [pk, pk+1, · · · , pn]R, k = 1, · · · ,r (2.26)

and

Mv∗,k,R = [v∗k ,v
∗
k+1, · · · ,v

∗
r ]R, k = 1, · · · ,r. (2.27)

Proof. The proof is similar to that of [10, Lemma 3].

Similarly to [10, (21)], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Reλ1(A)≥ Reλ2(A)≥ ·· · ≥ Reλr(A). (2.28)

Further, let u ∈ Np,R with u = ∑
r
k=1 αk pk and v ∈ Nv∗,R with v = ∑

r
k=1 βkv∗k . Then, due to Theorem 2.1, as in [10],

(u,v) =
r

∑
k=1

αkβk. (2.29)

In order to facilitate the manner of speaking, we say that the scalar product (u,v) of u and v is strongly positive if αkβk ≥ 0, k = 1, · · · ,r and

∑
r
k=1 αkβk > 0. For short, we write (u,v)≫ 0.
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Remark 2.4. One has αk = (u,v∗k), u ∈ Np,R and βk = (pk,v), v ∈ Nv∗,R for k = 1, · · · ,r. Therefore, (u,v) ≫ 0 means (u,v∗k)(pk,v) ≥
0, k = 1, · · · ,r and (u,v) = ∑

r
k=1(u,v

∗
k)(pk,v) > 0.

Remark 2.5. More generally, in the sequel, one could admit linear combinations u = ∑
r
k=1 αk pk and v = ∑

r
k=1 βkv∗k with αk, βk ∈ C

such that αk βk = |αk βk| and ∑
r
k=1 |αk βk|> 0. For example, all elements αk, βk ∈ C with αk = |αk|e

iϕk and βk = |βk|e
iϕk where ϕk is in

0 ≤ ϕk < 2π for k = 1, · · · ,r would be acceptable. But, we do not want to pursue this aspect in more detail.

Comparing relation (2.19) with [10, (12)], it is clear that one can obtain similar generalized max-, min-, min-max-, and max-min-

representations for the real parts, imaginary parts, and moduli as in the case of diagonalizable matrices. Therefore, we state them without

proofs.

Theorem 2.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28). Moreover, let the

vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,n be defined by (2.24), (2.25) or (2.26),(2.27).

Then,

Reλk(A) = max
(u,v)≫0

u∈Mp,k,R ,v∈Mv∗ ,k,R

Re(Au,v)

(u,v)
, k = 1,2, · · · ,r. (2.30)

The maximum is attained for u = pk, v = v∗k .

Theorem 2.7. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28).

Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following

inequalities are valid:

Reλ j(A)≤ max
(u,v)≫0

u∈Mp ,v∈Mv∗

Re(Au,v)

(u,v)
≤ Reλ1(A), (2.31)

and the following representation formulas hold:

Reλ j(A) = min
dimMp=m

dimMv∗=m

max
(u,v)≫0

u∈Mp ,v∈Mv∗

Re(Au,v)

(u,v)
. (2.32)

Remark 2.8. From (2.31), it follows

Re(Au,v)

(u,v)
≤ ν [A] = max

j=1,··· ,r
Reλ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.

Theorem 2.9. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28). Moreover, let the

vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).

Then,

Reλk(A) = min
(u,v)≫0

u∈Np,k,R ,v∈Nv∗ ,k,R

Re(Au,v)

(u,v)
, k = 1,2, · · · ,r. (2.33)

The minimum is attained for u = pk, v = v∗k .

Theorem 2.10. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (2.28).

Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

Reλr(A)≤ min
(u,v)≫0

u∈Np ,v∈Nv∗

Re(Au,v)

(u,v)
≤ Reλ j(A), (2.34)

and the following representation formulas hold:

Reλ j(A) = max
dimNp= j

dimNv∗= j

min
(u,v)≫0

u∈Np ,v∈Nv∗

Re(Au,v)

(u,v)
. (2.35)

Remark 2.11. From (2.34), it follows

Re(Au,v)

(u,v)
≥−ν [−A] = min

j=1,··· ,r
Reλ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.
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3. Generalized Rayleigh-Quotient Formulas for the Imaginary Parts of the Eigenvalues of a

General Matrix

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of a general matrix A ∈ C
n×n

by Rayleigh quotients corresponding to those for the real parts. More precisely, max-, min-, min-max-, and max-min-representations are

obtained corresponding to those in Section 2.

First, we want to state a relation corresponding to that of (2.19).

Lemma 3.1. Let the conditions (C1′)-(C4′) be fulfilled. Then, with the denotations of Theorem 2.1 and (2.12),

Im(Au,v) =
r

∑
j=1

Imλ j(A)(u,v
∗
j)(p j,v), u ∈ Np,R, v ∈ Nv∗,R. (3.1)

Proof. Equation (3.1) follows directly from Lemma 2.2, Formula (2.18).

Similarly to (2.28), we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Imλ1(A)≥ Imλ2(A)≥ ·· · ≥ Imλr(A). (3.2)

Then, we have the following series of theorems.

Theorem 3.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2). Moreover, let the

vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).

Then,

Imλk(A) = max
(u,v)≫0

u∈Mp,k,R ,v∈Mv∗ ,k,R

Im(Au,v)

(u,v)
, k = 1,2, · · · ,r. (3.3)

The maximum is attained for u = pk, v = v∗k .

Theorem 3.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2).

Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following

inequalities are valid:

Imλ j(A)≤ max
(u,v)≫0

u∈Mp ,v∈Mv∗

Im(Au,v)

(u,v)
≤ Imλ1(A), (3.4)

and the following representation formulas hold:

Imλ j(A) = min
dimMp=m

dimMv∗=m

max
(u,v)≫0

u∈Mp ,v∈Mv∗

Im(Au,v)

(u,v)
. (3.5)

Remark 3.4. From (3.4), it follows

Im(Au,v)

(u,v)
≤ max

j=1,··· ,r
Imλ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.

Theorem 3.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2). Moreover, let the

vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).

Then,

Imλk(A) = min
(u,v)≫0

u∈Np,k,R ,v∈Nv∗ ,k,R

Im(Au,v)

(u,v)
, k = 1,2, · · · ,r. (3.6)

The minimum is attained for u = pk, v = v∗k .

Theorem 3.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.2).

Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

Imλr(A)≤ min
(u,v)≫0

u∈Np ,v∈Nv∗

Im(Au,v)

(u,v)
≤ Imλ j(A), (3.7)

and the following representation formulas hold:

Imλ j(A) = max
dimNp= j

dimNv∗= j

min
(u,v)≫0

u∈Np ,v∈Nv∗

Im(Au,v)

(u,v)
. (3.8)

Remark 3.7. From (3.7), it follows

Im(Au,v)

(u,v)
≥ min

j=1,··· ,r
Imλ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.
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4. Generalized Rayleigh-Quotient Formula for the Moduli of the Eigenvalues of a General Matrix

Whereas in Sections 2 and 3 max-, min-, min-max-, and max-min-representations with generalized Rayleigh quotients for general matrices

could be obtained, it seems that, for the moduli of eigenvalues, only a max-representation is possible. Some arguments why this is probably

the case were already given in [10, Section 4].

Now, we want to state the max-representation. For this, we suppose that the eigenvalues λ1(A), · · · ,λr(A) of A ∈ C
n×n are arranged such

that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)|. (4.1)

Herewith, one has the following theorem.

Theorem 4.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.1). Moreover, let the

vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).

Then,

|λk(A)|= max
(u,v)≫0

u∈Mp,k,R ,v∈Mv∗ ,k,R

|(Au,v)|

(u,v)
, k = 1,2, · · · ,r. (4.2)

The maximum is attained for u = pk, v = v∗k .

5. Generalized Rayleigh-Quotient Formulas for a General Matrix with Real Eigenvalues

In Section 4, we have observed that, for the moduli of the eigenvalues of a general matrix, one obtains only a max-representation with

generalized Rayleigh quotients. However, for A ∈ C
n×n with

σ(A)⊂ R,

one gets generalized Rayleigh-quotient formulas for the eigenvalues themselves. And it goes without saying that these imply Rayleigh-

quotient representations for the moduli if all eigenvalues are nonnegative such as λ1(A
∗A), · · · ,λr(A

∗A) (where r = n).

So, let A ∈ C
n×n with spectrum σ(A)⊂ R. Further, let the eigenvalues be arranged according to

λ1(A)≥ λ2(A)≥ ·· · ≥ λr(A). (5.1)

Then, we obtain the following series of corollaries following from Theorems 2.7 - 2.10, as the case may be.

Corollary 5.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to

(5.1). Moreover, let the vector spaces Mp,k,R and Mv∗,k,R for k = 1, · · · ,r be defined by (2.24), (2.25) or (2.26),(2.27).

Then,

λk(A) = max
(u,v)≫0

u∈Mp,k,R ,v∈Mv∗ ,k,R

(Au,v)

(u,v)
, k = 1,2, · · · ,r. (5.2)

The maximum is attained for u = pk, v = v∗k .

Corollary 5.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to

(5.1).

Then, for every j = 1, · · · ,r and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = r + 1− j, the following

inequalities are valid:

λ j(A)≤ max
(u,v)≫0

u∈Mp ,v∈Mv∗

(Au,v)

(u,v)
≤ λ1(A), (5.3)

and the following representation formulas hold:

λ j(A) = min
dimMp=m

dimMv∗=m

max
(u,v)≫0

u∈Mp ,v∈Mv∗

(Au,v)

(u,v)
. (5.4)

Remark 5.3. From (5.3), it follows

(Au,v)

(u,v)
≤ max

j=1,··· ,r
λ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.
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Corollary 5.4. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to

(5.1). Moreover, let the vector spaces Np,k,R and Nv∗,k,R for k = 1, · · · ,r be defined by (2.9) and (2.14).

Then,

λk(A) = min
(u,v)≫0

u∈Np,k,R ,v∈Nv∗ ,k,R

(Au,v)

(u,v)
, k = 1,2, · · · ,r. (5.5)

The minimum is attained for u = pk, v = u∗k .

Corollary 5.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let σ(A)⊂ R, and let the eigenvalues of A be arranged according to

(5.1).

Then, for every j = 1, · · · ,r and all subspaces Np ⊂ Np,R and Nv∗ ⊂ Nv∗,R with dimNp = dimNv∗ = j, the following inequalities are valid:

λr(A)≤ min
(u,v)≫0

u∈Np ,v∈Nv∗

(Au,v)

(u,v)
≤ λ j(A), (5.6)

and the following representation formulas hold:

λ j(A) = max
dimNp= j

dimNv∗= j

min
(u,v)≫0

u∈Np ,v∈Nv∗

(Au,v)

(u,v)
. (5.7)

Remark 5.6. From (5.6), it follows

(Au,v)

(u,v)
≥ min

j=1,··· ,r
λ j(A), (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.

6. Application

In this section, an application of the obtained results is presented. More precisely, a new formula for ρ(A) is stated; its derivation is similar to

that of [8, (79)]. First, known formulas for this quantity are recapitulated.

Known formulas for the spectral radius of A ∈ C
n×n

One formula is given by

ρ(A) = lim
n→∞

‖An‖
1
n , (6.1)

see [4, Chapter I, p.27], where in (6.1) the spectral radius ρ(A) is independent of the used operator norm ‖ · ‖.

Another representation is

ρ(A) = max
j=1,··· ,n

|λ j(A)|, (6.2)

cf. [4, Chapter I,(5.12), p.38].

New formula for the spectral radius of A ∈ C
n×n

Let the conditions (C1′)-(C4′) be fulfilled. Then, from Theorem 4.1, as Application, we deduce the new formula

ρ(A) = max
(u,v)≫0

u∈Np,R ,v∈Nv∗ ,R

|(Au,v)|

(u,v)
. (6.3)

7. New Generalized Numerical Ranges

In this section, a series of known numerical ranges are recapitulated and new numerical ranges of a general matrix are defined.

Known numerical range of A ∈ C
n×n with respect to the full space C

n

According to [12, Section 5.4,(5)], the numerical range of A ∈ C
n×n with respect to the full space C

n is defined by

WCn(A) =

{

z ∈ C |z =
(Au,u)

(u,u)
, 0 6= u ∈ C

n

}

, (7.1)

which is a convex subset of C. Employing this definition to A∗A instead of A, we obtain

WCn(A∗A) =

{

x ∈ R
+
0 |x =

(A∗Au,u)

(u,u)
=

(Au,Au)

(u,u)
, 0 6= u ∈ C

n

}

, (7.2)
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which is a convex subset of R+
0 . One has

WCn(A∗A) =

[

min
j=1,··· ,n

λ j(A
∗A), max

j=1,··· ,n
λ j(A

∗A)] = [
1

‖A−1‖2
2

,‖A‖2
2

]

(7.3)

where 1
‖A−1‖2

2

has to be interpreted as zero if A is singular.

The following four definitions of generalized numerical ranges are new.

Generalized numerical range of A ∈ C
n×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the generalized numerical range of A with respect to the subspaces Np,R and

Nv∗,R by

WNp,R,Nv∗ ,R,gen.(A) =

{

z ∈ C |z =
(Au,v)

(u,v)
, (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R

}

. (7.4)

Real part of the generalized numerical range of A ∈ C
n×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the real part of the generalized numerical range of A with respect to the subspaces

Np,R and Nu∗,R by

Re[WNp,R,Nv∗ ,R,gen.(A)] =

{

x ∈ R |x =
Re(Au,v)

(u,v)
, (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R

}

. (7.5)

Imaginary part of the generalized numerical range of A ∈ C
n×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the imaginary part of the generalized numerical range of A with respect to the

subspaces Np,R and Nv∗,R by

Im[WNp,R,Nv∗ ,R,gen.(A)] =

{

x ∈ R |x =
Im(Au,v)

(u,v)
, (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R

}

. (7.6)

Modulus of the generalized numerical range of A ∈ C
n×n with respect to the subspaces Np,R and Nv∗,R

Let the conditions (C1′)-(C4′) be fulfilled. Then, we define the modulus of the generalized numerical range of A with respect to the subspaces

Np,R and Nv∗,R by

|[WNp,R,Nv∗ ,R,gen.(A)]|=

{

x ∈ R
+
0 |x =

|(Au,v)|

(u,v)
, (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R

}

. (7.7)

8. Numerical example

In this section, we check some of the formulas of Section 2 on an example from the theory of linear dynamical systems.

8.1. A two-mass vibration model

We take up the multi-mass vibration model of [5], shown in Fig.8.1

. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

Fig.8.1: Multi-mass vibration model

and study the case n = 2 as in [11]. For the sake of completeness, we give again the details. The associated initial value problem is given by

M ÿ+Bẏ+K y = 0, y(0) = y0, ẏ(0) = ẏ0,

where y = [y1,y2]
T and

M =

[
m1 0

0 m2

]

,

B =

[
b1 +b2 −b2

−b2 b2 +b3

]

,
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K =

[
k1 + k2 −k2

−k2 k2 + k3

]

,

with the mass, damping, and stiffness matrices M, B, and K, as the case may be, and the displacement vector y. In state-space description,

this problem takes the form

ẋ = Ax, t ≥ 0, x(0) = x0, (8.1)

where x = [yT ,zT ]T , z = ẏ, and where the system matrix A is given by

A =

[
0 E

−M−1K −M−1B

]

.

Like in [11], as numerical values for the quantities not yet specified, we choose b1 = 1/4, k2 = 23 = 8. On the whole, this delivers the

following data:

m1 = m2 = 1; b1 = 1/4, b2 = 0, b3 = 1/4; k1 = 1/64 = 1/24, k2 = 8, k3 = 1/64 = 1/24,

which leads to

M =

[
m1 0

0 m2

]

=

[
1 0

0 1

]

,

B =

[
b1 +b2 −b2

−b2 b2 +b3

]

=

[
0.25 0

0 0.25

]

,

K =

[
k1 + k2 −k2

−k2 k2 + k3

]

=

[
1/64+8 −1/2

−1/2 8+1/64

]

=

[
8.015625 −0.5

−0.5 8.015625

]

.

Further, we choose

t0 = 0

as well as

y0 = [−1,1]T

and

ẏ0 = [−1,−1]T ,

but y0 and ẏ0 are not needed here.

8.2. Computation of important quantities

Using the Matlab routine jordan, one obtains

λ1(A) = −0.1250+4.0000i,
λ2(A) = −0.1250−4.0000i,
λ3(A) = −0.1250,
λ4(A) = λ3(A).

(8.2)

The pertinent eigenvectors and principal vectors are

[

p
(1)
1 , p

(2)
1 , p

(3)
1 , p

(3)
2

]

= [p1, p2, p3, p4.]

They are unnormed. The algebraic multiplicities are thus m1 = m2 = 1 and m3 = 2. So, here, r = 3.

For the adjoint matrix A∗, we obtain

λ1(A
∗) = −0.1250−4.0000i,

λ2(A
∗) = −0.1250+4.0000i,

λ3(A
∗) = −0.1250,

λ4(A
∗) = λ3(A

∗).

(8.3)

The associated eigenvectors and principal vectors are

[

u
(1)
1

∗
,u

(2)
1

∗
,u

(3)
1

∗
,u

(3)
2

∗]

= [u∗1,u
∗
2,u

∗
3,u

∗
4.]

They are also unnormed.

In [11], we biorthogonalized these vectors based on Theorem 1 such that the relations

(p
(i)
k
,u

(i)
l

∗
) =







1, l = mi − k+1

0, l 6= mi − k+1

(8.4)



Universal Journal of Mathematics and Applications 19

and

(p
(i)
k
,u

( j)
l

∗
) = 0, i 6= j. (8.5)

So, with

v
(i)
l

∗
= u

(i)
mi−l+1

∗
, (8.6)

one has then the biorthogonality relations

(p
(i)
k
,v

( j)
l

∗
) = δklδi j. (8.7)

The details of the biorthogonalization can be found in [11]. Define

v∗1 = v
(1)
1

∗
= u

(1)
1

∗
= u∗1,

v∗2 = v
(2)
1

∗
= u

(2)
1

∗
= u∗2,

v∗3 = v
(3)
1

∗
= u

(3)
2

∗
= u∗4,

v∗4 = v
(3)
2

∗
= u

(3)
1

∗
= u∗3.

Herewith,

(pi,v
∗
j) = δi j, i, j = 1, · · · ,4 (8.8)

where

p1 =







0.364602

−0.364602

−0.045575+1.458408i

0.045575−1.458408i






, v∗1 =







0.685679+0.021427i

−0.685679−0.021427i

0+0.171420i

0−0.171420i






,

p2 =







0.364602

−0.364602

−0.045575−1.458408i

0.045575+1.458408i






, v∗2 =







0.685679−0.021427i

−0.685679+0.021427i

0−0.171420i

0+0.171420i






,

p3 =







0.707107

0.707107

−0.088388

−0.088388






, v∗3 =







0.707107

0.707107

0

0






,

p4 =







0

0

0.712610

0.712610






, v∗4 =







0.087706

0.087706

0.701646

0.701646






.

As in [11], we add the followings remarks.

Remark 8.1. The vector p
(3)
2 is a principal vector of stage 2 for matrix A. But, since it is normed such that (p

(3)
2 ,v

(3)
2

∗
) = 1 instead of

‖p
(3)
2 ‖2 = 1, we have not Ap

(3)
2 = λ3 p

(3)
2 + p

(3)
1 , but instead, Ap

(3)
2 = λ3 p

(3)
2 + γ

(3)
1 p

(3)
1 with a factor γ

(3)
1 6= 0, γ

(3)
1 6= 1. Similarly, u

(3)
2

∗

is principal vector of stage 2 for A∗. But, due to the biorthogonalization process, we have not A∗u
(3)
2

∗
= λ3u

(3)
2

∗
+ u

(3)
1

∗
, but instead,

A∗u
(3)
2

∗
= λ3u

(3)
2

∗
+δ

(3)
1 u

(3)
1

∗
with a factor δ

(3)
1 6= 0, δ

(3)
1 6= 1. We leave it to the reader to check this numerically on our example.

Remark 8.2. Due to the foregoing remark, Formula (2.17) looks somewhat different. But, Formula (2.18) remains valid which is the

important point since the subsequent findings are based on Formula (2.18), not on Formula (2.17).

8.3. Numerical check of Theorems 2.6 and 2.9

From Theorem 2.6, Formula (2.30) and Theorem 2.9, Formula (2.33), we conclude

min
j=1,2,3

Reλ j(A)≤
Re(Au,v)

(u,v)
≤ max

j=1,2,3
Reλ j(A),

(u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R by setting k = 1, there. This can also be written as

Re(Au,v)

(u,v)
∈

[

min
j=1,2,3

Reλ j(A), max
j=1,2,3

Reλ j(A)

]

,
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(u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R. We check this for a series of vectors. One has

[

min
j=1,2,3

Reλ j(A), max
j=1,2,3

Reλ j(A)

]

= [−0.1250,−0.1250];

in other words

Re(Au,v)

(u,v)
=−0.1250, (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.

Let

u1 = −5p1 +3p3,
v1 = −4v∗1 +2v∗3.

Then, u1 ∈ Np,R and v1 ∈ Nv∗,R as well as (u1,v1)≫ 0, and one obtains

u1 =







0.298311

3.944330

−0.037289−7.292039i

−0.493041+7.292039i






, v1 =







−1.328504−0.085710i

4.156931+0.085710i

0−0.685679i

0+0.685679i






,

(Au1,v1) = −3.250000000000000+80.000000000000000i,
(u1,v1) = 26.000000000000004,

and thus

Re(Au1,v1)

(u1,v1)

.
=−0.125000000000000.

Let

u2 = 3p2,
v2 = −4v∗1 +2v∗2.

Then, u2 ∈ Np,R and v2 ∈ Nv∗,R as well as (u2,v2)≫ 0, and one obtains

u2 =







1.093806

−1.093806

−0.136726−4.375223i

0.136726+4.375223i






, v2 =







−1.371359−0.128565i

1.371359+0.128565i

0−1.028519i

0+1.028519i






,

(Au2,v2) = −0.750000000000000−24.000000000000000i,
(u2,v2) = 6,

and thus

Re(Au2,v2)

(u2,v2)

.
=−0.125000000000000.

Let

u3 = −5p1 +3p2 −4p3,
v3 = −4v∗1 +2v∗2 −2v∗3.

Then, u3 ∈ Np,R and v3 ∈ Nv∗,R as well as (u3,v3)≫ 0, and one obtains

u3 =







−3.557631

−2.099223

0.444704−11.667262i

0.262403+11.667262i






, v3 =







−2.785572−0.128565i

−0.042855+0.128565i

0−1.028519i

0+1.028519i






,

(Au3,v3) = −4.250000000000000+56.000000000000000i,
(u3,v3) = 34,

and thus

Re(Au3,v3)

(u3,v3)

.
=−0.125000000000000.

Let

u4 = −5p1 +3p2 +6p3 −4p4,
v4 = −2v∗1 +4v∗2 +2v∗3 −3v∗4.
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Then, (u4,v4)≫ 0, and one obtains

u4 =







3.513437

4.971845

−3.289618−11.667262i

−3.471919+11.667262i






, v4 =







2.522455−0.128565i

−0.220262+0.128565i

−2.104939−1.028519i

−2.104939+1.028519i






,

(Au4,v4) = −13.812257748298542−7.999999999999989i,
(u4,v4) = 46,

and thus

Re(Au4,v4)

(u4,v4)
= −0.709454874462791

6= −0.1250

which is not surprising since u4 6∈ Np,R = [p1, p2, p3] and v4 6∈ Nv∗,R = [v∗1,v
∗
2,v

∗
3]. Recall at this point that r = 3 and v∗j = u

( j)
m j

∗
, j = 1,2,3

are the principal vectors of maximum stage associated with the eigenvalues λ j(A
∗), j = 1,2,3, as the case may be. With m1 = m2 = 1

and m3 = 2, therefore v∗1 = u
(1)
1

∗
and v∗2 = u

(2)
1

∗
are eigenvectors and v∗3 = u

(3)
2

∗
is a principal vector of stage 2 whereas v∗4 = u

(3)
1

∗
is an

eigenvector and thus not a principal vector of maximum stage.

Let

u5 = [1,2,3,4]T ∈ R
4,

v5 = [4,3,2,1]T ∈ R
4.

Here, one obtains

(Au5,v5) = 29.437500000000000,
(u5,v5) = 20,

and thus

Re(Au5,v5)

(u5,v5)
= 1.471875000000000 6=−0.1250

which is neither surprising since (u5,v5) 6≫ 0 due to

α(5) := (α
(5)
k

)k=1,··· ,4 = ((u5,v
∗
k))k=1,··· ,4 =







−0.685679+0.192847i

−0.685679−0.192847i

2.121320

5.174642







and

β (5) := (β
(5)
k

)k=1,··· ,4 = ((pk,v5))k=1,··· ,4 =







0.319027+1.458408i

0.319027−1.458408i

4.684582

2.137829






.

8.4. Computational aspects

In this subsection, we say something about the used computer equipment and the computation times.

(i) As to the computer equipment, the following hardware was available: an Intel Core2 Duo Processor at 3166 GHz, a 500 GB mass storage

facility, and two 2048 MB high-speed memories. As software package for the computations, we used MATLAB, Version 7.11.

(ii) The computation time t of an operation was determined by the command sequence t1=clock; operation; t=etime(clock,t1). It is put out

in seconds, rounded to four decimal places. For the computation of the eigenvalues of matrix A in Subsection 8.2, we used the command

[XA,DA]=eig(A); the pertinent computation time was less than 0.0001 s.

9. Numerical Example 2

In this section, we proceed in a similar way as in Section 8. Here, we present an example of a real non-diagonalizable matrix A with real

eigenvalues.



22 Universal Journal of Mathematics and Applications

9.1. The matrix A and its eigenvalues and principal vectors

We take the matrix A from [1, Example 5.2, p.82]. So, let

A =





4 1 1

2 4 1

0 1 4



 .

In [1], the eigenvalues are given as

λ1 = 6,
λ2 = 3,
λ3 = λ2,

where the numbering is such that λ1 ≥ λ2. According to [1], the associated right eigenvectors are given as

p1 = p
(1)
1 =





3

4

2



 , p2 = p
(2)
1 =





0

1

−1



 ;

they are unnormed. Here, m1 = 1 and m2 = 2. So, here, r = 2. A corresponding principal vector p3 = p
(2)
2 is not given in [1].

Further, there, the vectors u∗1 and u∗2 of A∗ = AT are given as

u∗1 = u
(1)
1

∗
=





1

1

1



 , u∗2 = u
(2)
1

∗
=





2

−1

−1



 ;

they are also unnormed. Again, the principal vector u∗3 = u
(2)
2

∗
is not given in [1].

From

Ap
(2)
2 = λ2(A)p

(2)
2 + p

(2)
1 ,

one can determine a principal vector p
(2)
2 , and from

A∗u
(2)
2

∗
= λ2(A

∗)u
(2)
2

∗
+u

(2)
1

∗
,

a principal vector u
(2)
2

∗
. By hand calculation, we obtain

p
(2)
2 =





1

−1

0



 , u
(2)
2

∗
=





0

1

−2





if we choose the third component of p
(2)
2 and the first component of u

(2)
2

∗
as zero. At this point, we remind that these principal vectors of

stage 2 are only determined up to an associated eigenvector.

9.2. Auxiliary computational results

Using the Matlab routine eig.m, we obtain

λ1 = 6,
λ2 = 3,
λ3 = λ2.

The pertinent computed biorthonormal right eigenvectors and principal vectors

[

p
(1)
1 , p

(2)
1 , p

(2)
2

]

= [p1, p2, p3]

are unnormed. The algebraic multiplicities are thus m1 = 1 and m2 = 2.

For the adjoint matrix A∗, we obtain

λ1(A
∗) = λ1(A),

λ2(A
∗) = λ2(A),

λ3(A
∗) = λ2(A).

(9.1)

The associated eigenvectors and principal vectors are

[

u
(1)
1

∗
,u

(2)
1

∗
,u

(2)
2

∗]

= [u∗1,u
∗
2,u

∗
3]

are also unnormed.
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As in [11], we biorthogonalized these vectors based on Theorem 2.1 such that the relations (8.4) - (8.7) hold. The details of the biorthogonal-

ization can be found in [11].

Define

v∗1 = v
(1)
1

∗
= u

(1)
1

∗
= u∗1,

v∗2 = v
(2)
1

∗
= u

(2)
2

∗
= u∗3,

v∗3 = v
(3)
1

∗
= u

(2)
1

∗
= u∗2.

Herewith,

(pi,v
∗
j) = δi j, i, j = 1, · · · ,3 (9.2)

where

p1 =





−0.577350269189626

−0.769800358919501

−0.384900179459750



 , v∗1 =





−0.577350269189626

−0.577350269189626

−0.577350269189626



 ,

p2 =





0

−1.427248064296125

1.427248064296125



 , v∗2 =





−0.622799155329218

0.077849894416152

0.778498944161523



 ,

p3 =





−0.816496580927726

1.632993161855452

−0.816496580927726



 , v∗3 =





−0.816496580927726

0.408248290463863

0.408248290463863



 .

These results are based on the eigenvectors and principal vectors computed by using the Matlab routine jordan. We leave it to the reader to

compute these vectors by starting with the unnormed vectors stated in Section 9.1. The result is somewhat different. This outcome is not

surprising since the principal vectors are determined only up to eigenvectors for the treated matrix A.

We conclude this section by mentioning that, here, similar remarks hold to those at the end of Section 8.2.

9.3. Numerical check of Corollaries 5.2 and 5.5

From Corollary 5.2, Formula (5.3) and Corollary 5.5, Formula (5.7), we conclude

min
j=1,2

λ j(A)≤
(Au,v)

(u,v)
≤ max

j=1,2
λ j(A),

(u,v)≫ 0, u ∈ Np,R = [p1, p2]R, v ∈ Nv∗,R = [v∗1,v
∗
2]R by setting k = 1, there. This can also be written as

(Au,v)

(u,v)
∈

[

min
j=1,2

λ j(A), max
j=1,2

λ j(A)

]

,

(u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R. We check this for a series of vectors. One has

[

min
j=1,2

λ j(A), max
j=1,2

λ j(A)

]

= [3;6].

Let

u1 = −5p1 +3p2,
v1 = −4v∗1 +2v∗2.

Then, u1 ∈ Np,R and v1 ∈ Nv∗,R as well as (u1,v1)≫ 0, and one obtains

u1 =





2.886751345948128

−0.432742398290872

6.206245090187128



 , v1 =





1.063802766100067

2.465100865590808

3.866398965081549



 ,

(Au1,v1) = 138.0000000000000,
(u1,v1) = 25.999999999999996,

and thus

(Au1,v1)

(u1,v1)

.
= 5.307692307692308 ∈ [3;6].

Let

u2 = 3p2,
v2 = −4v∗1 +2v∗2.
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Then, u2 ∈ Np,R and v2 ∈ Nv∗,R as well as (u2,v2)≫ 0, and one obtains

u2 =





0

−4.281744192888376

4.281744192888376



 , v2 =





1.063802766100067

2.465100865590808

3.866398965081549



 ,

(Au2,v2) = 17.999999999999996,
(u2,v2) = 5.999999999999998,

and thus

(Au2,v2)

(u2,v2)

.
= 3.000000000000000 ∈ [3;6].

Let

u3 = −2p1 +2p2,
v3 = −2v∗1 +2v∗2.

Then, u3 ∈ Np,R and v3 ∈ Nv∗,R as well as (u3,v3)≫ 0, and one obtains

u3 =





1.154700538379251

−1.314895410753249

3.624296487511752



 , v3 =





−0.090897772279185

1.310400327211556

2.711698426702298



 ,

(Au3,v3) = 36,
(u3,v3) = 7.999999999999999,

and thus

(Au3,v3)

(u3,v3)

.
= 4.500000000000001 ∈ [3;6].

Let

u4 = −5p1 +3p2 +6p3,
v4 = −2v∗1 +4v∗2 +2v∗3.

Then, (u4,v4)≫ 0, and one obtains

u4 =





−2.012228139618228

9.365216572841840

1.307265604620772



 , v4 =





−2.969489244793074

2.282596696971587

5.085192895953069



 ,

(Au4,v4) = 145.7298612851365,
(u4,v4) = 34,

and thus

(Au,v4)

(u4,v4)
= 4.286172390739309 ∈ [3;6]

even though u4 6∈ Np,R = [p1, p2]R and v4 6∈ Nv∗,R = [v∗1,v
∗
2]R.

Let

u5 = [1,2,3]T ∈ R
3,

v5 = [3,2,1]T ∈ R
3.

Here, one obtains

(Au5,v5) = 67,
(u5,v5) = 10,

and thus

(Au5,v5)

(u5,v5)
= 6.700000000000000 6∈ [3;6]

which is not surprising since (u5,v5) 6≫ 0 due to

α(5) := (α
(5)
k

)k=1,2,3 = ((u5,v
∗
k))k=1,2,3 =





−3.464101615137755

1.868397465987655

1.224744871391589





and

β (5) := (β
(5)
k

)k=1,2,3 = ((pk,v5))k=1,2,3 =





−3.656551704867629

−1.427248064296125

0.000000000000000



 .
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10. Conclusion

It has been shown that there exist generalized Rayleigh-quotient representations of the real and imaginary parts of the eigenvalues of general

matrices that parallel those for the eigenvalues of diagonalizable matrices. As in that case, for the moduli, only a max-representation

could be stated. The special case of general matrices with real eigenvalues has also been considered. The main difference to the case of

diagonalizable matrices is that the space Nu∗,R = [u∗1, · · · ,u
∗
n]R is replaced by the space Nv∗,R = [v∗1, · · · ,u

∗
r ]R where v∗j = v

( j)
1

∗
= u

( j)
m j

∗
are

the principal vectors of largest stage m j pertinent to the eigenvalues λ j(A
∗) = λ j(A) for j = 1, · · · ,r. As application, a new formula for

the spectral radius ρ(A) for general matrices is obtained. On a numerical example from the theory of linear dynamical systems with non-

diagonalizable system matrix A (Example 1), we check that
Re(Au,v)

(u,v)
∈ [ min

j=1,··· ,r
Reλ j(A), max

j=1,··· ,r
Reλ j(A)], (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R.

On a further example (Example 2), also for a non-diagonalizable matrix A, this time with real eigenvalues, we check numerically that
(Au,v)

(u,v)
∈ [ min

j=1,··· ,r
λ j(A), max

j=1,··· ,r
λ j(A)], (u,v)≫ 0, u ∈ Np,R, v ∈ Nv∗,R. We mention that, in the case of diagonalizable matrices, the results

of [10] are obtained back since then r = n and m j = 1 for j = 1, · · · ,r so that then Nv∗,R = Nu∗,R and Nσ(A) =C
n. The paper is of interest on

its own in the areas of Linear Algebra and Numerical Analysis. Beyond this, it could be of value to mathematicians and engineers, in general.
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Appendix

As in [10], with a minor additional hypothesis, the generalized min-, min-max-, and max-min-representaions for the moduli of eigenvalues

can be proven. In this Appendix, we show this, but restrict ourselves to the min-max-representation. The minor additional hypothesis is

p j ∈ Mp and v∗j ∈ Mv∗ . A further advantage of this additional hypothesis is that the proofs simplify. But, we omit the proof since it is similar

to that in the case when matrix A is diagonalizable in [10].

We have the following theorem.

Theorem 10.1. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.1).

Then, for every j = 1, · · · ,n and every subspace Mp ⊂ Np,R and Mv∗ ⊂ Nv∗,R with dimMp = dimMv∗ = m = n+1− j where additionally

pj ∈ Mp and v∗j ∈ Mv∗ , the following inequalities are valid:

|λ j(A)| ≤ max
(u,v)≫0

u∈Mp ,v∈Mv∗

|(Au,v)|

(u,v)
≤ |λ1(A)|,

and the following representation formulas hold:

|λ j(A)|= min
dimMp=m, p j∈Mp

dimMv∗=m,v∗
j
∈Mv∗

max
(u,v)≫0

u∈Mp ,v∈Mv∗

|(Au,v)|

(u,v)
.

Remark 10.2. We mention that, with the above additional hypotheses, the proofs of Theorems 2.6 - 2.10, Theorems 3.2 - 3.5, Theorem 4.1,

and Corollaries 5.1 - 5.5 get also simpler.
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Abstract

In the second half of the 19th century, Siacci investigated the motion of a particle in space

under the influence of any forces (Atti R Accad Sci. Torino 14(1879)). In this study, Siacci

obtained a resolution of the acceleration vector which is very useful when the angular

momentum is conserved. On the other hand, Bishop introduced the Bishop frame which

is well defined for every curves and so very convenient for mathematical researches in the

third quarter of the 20th century (Am Math Monthly 82(1975)). In this study, we discuss

the Siacci’s resolution of the acceleration vector according to Bishop frame of the trajectory

of the moving particle. Also, we provide an illustrative example for the obtained results.

1. Introduction

In kinematics, the change in velocity of a moving particle in 3-dimensional Euclidean space with respect to the time parameter gives the

acceleration. Since the force acting on a particle is concerned with its acceleration through the equation F = ma, the acceleration vector has

an important place in kinematics and Newtonian physics.

The acceleration vector is usually written as the sum of its tangent and normal components. This writing style is useful in many applications.

But we can not say this in movements where angular momentum is conserved. In this case, it is more useful to write the acceleration vector

as the sum of its tangent and radial components. The success of obtaining the acceleration vector along tangent and radial components

belongs to the Italian mathematician Francesco Siacci. The acceleration vector is stated in the aforementioned form by Siacci in the study [1].

In this study performed by Siacci, the motion of the particle is restricted to the plane. Also, Siacci performed a similar study for a moving

particle in space [2].

Siacci’s theorem has been studied widely by many authors. Whittaker was the first person to deal with this issue after Siacci. Whittaker

proved the Siacci’s theorem in the plane geometrically in his work carried out in 1937 [3]. Grossman succeeded in providing a more modern

proof than Whittaker’s in 1996 [4]. Afterwards, Casey discussed the Siacci’s theorem in space which is based on the Serret-Frenet formulas

to simplify the mathematical expressions in the theorem [5]. One of the most recent studies has been carried out by Kucukarslan et al [6].

The authors expressed and proved the Siacci’s theorem for the curves lying on the Finsler manifold in this study. Then, Ozen studied on the

Siacci’s theorem for Bishop and Type-2 Bishop frames in his master’s thesis [7] under the supervision of M. Tosun (The present article is

derived from this master’s thesis). Also Ozen et al. [8] researched the Siacci’s theorem in view of the Darboux frame for the motion of a

particle along the regular surface curve. Afterwards, Ozen et al [9] discussed the Siacci’s theorem in the space endowed with the modified

orthogonal frame. Finally, Ozen expressed and proved the Siacci’s theorem for Frenet curves in 3-dimensional Minkowski space [10].

In the theory of curves, Serret-Frenet frame is a moving frame which is very useful and has an important place. To ride along a curve and

illustrate the typical properties of this curve, e.g. the curvatures is possible thanks to this frame. But this frame has a disadvantage. For the

curves which have vanishing second derivatives, it is not well defined. Hence an alternative frame, that is more convenient for mathematical

investigations, was required. The discovery of Bishop frame finished this requirement in 1975 [11].

†This article is derived from the master’s thesis titled ”Siacci’s theorem for the first and the second Bishop frame” which was carried out by K. E. Özen under the supervision of

M. Tosun at Sakarya University / Graduate School of Natural and Applied Sciences.
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This frame is well defined for every curves. As a result of this, it has been studied by a lot of researchers to deal various concepts. Today, the

studies on the Bishop frame have expanded to areas such as Biology and Computer graphics. Bishop’s framework is used in predicting the

structural information of DNA in biology and controlling virtual cameras in the field of Computer Graphics. The readers are referred to the

studies [12–18] which are related to Bishop frame.

This article is organized as follows. In Section 2, we have given a short knowledge on the fundamental concepts to ensure understanding

the ensuing sections. In Section 3, for a moving particle in space, we give Siacci’s theorem in terms of Bishop elements of the trajectory.

Moreover, an illustrative example is given for the aforementioned theorem.

2. Preliminaries

Let us consider the 3−dimensional Euclidean space E3 with the standard scalar product:

〈Q,R〉= q1r1 +q2r2 +q3r3, (2.1)

where Q = (q1 , q2 , q3) , R = (r1 , r2 , r3) are arbitrary vectors in this space. The norm of the vector Q is given by ‖Q‖ =
√

〈Q , Q〉. If a

curve σ = σ (s) : I ⊂ R → E3 satisfies the equality

∥

∥

∥

dσ
ds

∥

∥

∥
= 1 for all s ∈ I, this curve is said to be a unit speed curve and s is said to be

arc-length parameter of this unit speed curve.

The moving Serret-Frenet frame of σ (s) is showed with {T(s) , N(s) , B(s)}. In this frame, the vector T(s) is called the unit tangent vector,

the vector N(s) is called the unit principal normal vector. Also, the vector B(s) is called the unit binormal vector and it is obtained by

vectorial product of T(s) and N(s). Another thing that can be of importance is that this frame satisfies the following formulas:

dT

ds
= κN

dN

ds
=−κT+ τB

dB

ds
=−τN,

(2.2)

where κ =
∥

∥

∥

dT
ds

∥

∥

∥
and τ =−

〈

dB
ds , N(s)

〉

represent the curvature function and the torsion function, respectively [19].

We know that the unit tangent vector T(s) of a given curve is determined uniquely. The Bishop frame of this given curve comprises the

unique tangent vector T(s) and two normal vectors N1 (s) and N2 (s), that are obtained by applying the circular rotation to the vectors N(s)

and B(s) in the instantaneous normal plane T(s)⊥ such that N1
′ (s) and N2

′ (s) are collinear with T(s) [11]. Consequently, we have the

Bishop frame {T, N1, N2} which satisfies the derivative formulas:

dT

ds
= k1N1 + k2N2

dN1

ds
=−k1T

dN2

ds
=−k2T,

(2.3)

where k1 and k2 indicate the Bishop curvatures. As a result of the aforementioned circular rotation, there is a relation between the

Serret-Frenet frame and Bishop frame as follows:

T = T

N1 = cosϕ N− sinϕ B

N2 = sinϕ N+ cosϕB,

(2.4)

where ϕ represents the aforementioned rotation angle. On the other hand, the equalities

ϕ (s) = arctan
k2 (s)

k1 (s)

κ(s) =

√

k1
2(s) + k2

2(s)

k1(s) =

√

k1
2(s) + k2

2(s)cosϕ (s)

k2(s) =

√

k1
2(s) + k2

2(s)sinϕ (s)

τ (s) =
dϕ

ds

(2.5)

hold [16, 20].

In E3, let us assume that a particle P moves along a curve γ endowed with the Bishop frame. At time t, let us show the position vector of P

relative to the origin O with x. Denote by s the arc-length parameter of γ which is a function of the time t. Then the equality

T =
dx

ds
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is immediately obtained. This equality yields the velocity of P as follows [5]:

v =
dx

dt

=
dx

ds

ds

dt

=
ds

dt
T.

Similarly above, the acceleration

a =
dv

dt

=
d

dt

(

ds

dt
T

)

=
d

dt

(

ds

dt

)

T+
ds

dt

d T

dt

=
d2s

dt2
T+

ds

dt

d T

ds

ds

dt

=
d2s

dt2
T+

(

ds

dt

)2

k1N1 +

(

ds

dt

)2

k2N2

is found. With the help of (2.5), a can be written as in the following form:

a =
d2s

dt2
T+

√

k1
2 + k2

2

(

ds

dt

)2

(cosϕ N1 + sinϕ N2) . (2.6)

Then we conclude that the acceleration vector lies in the instantaneous plane Sp {T,cosϕ N1 + sinϕ N2}. The instantaneous vector

−sinϕ N1 + cosϕ N2 is the normal vector of this instantaneous plane and the system {T, cosϕ N1 + sinϕ N2,−sinϕ N1 + cosϕ N2} is a

right-handed orthonormal system [7].

3. Alternative Resolution of Acceleration Vector According to Bishop Frame

In this section, we express Siacci’s theorem according to Bishop Frame and give an example for the application of this theorem (see [7] for

more details). We continue to take into account of the aforementioned particle P.

Suppose that the position vector of the particle P is resolved as

x = aT−b(cosϕ N1 + sinϕ N2)+ c (−sinϕ N1 + cosϕ N2) , (3.1)

where

a = 〈x, T〉

b = 〈x,−cosϕ N1 − sinϕ N2〉

c = 〈x,−sinϕ N1 + cosϕ N2〉 .

(3.2)

Denote by r the vector

r = aT−b(cosϕ N1 + sinϕ N2) , (3.3)

lying in the instantaneous plane Sp{T, cosϕ N1 + sinϕ N2}. Where r symbolizes the length of r

r2 = 〈r, r〉= a2 +b2 (3.4)

can be written easily (see Figure 3.1).

On the other hand, the angular momentum vector of P about the origin O is obtained as

HO = mc
ds

dt
(cosϕ N1 + sinϕ N2)+mb

ds

dt
(−sinϕ N1 + cosϕ N2) (3.5)

by vector product of x and m ds
dt T.

Now we try to resolve the acceleration vector in (2.6) along the radial direction BP and tangential direction in the instantaneous plane

Sp{T, cosϕ N1 + sinϕ N2}. To do so, let us state the vector cosϕ N1 + sinϕ N2 in terms of r and T. Due to (3.3), that can be possible when

b 6= 0. If we assume that the component of angular momentum along the vector −sinϕ N1 + cosϕ N2 never vanishes, we can ensure that b

never equals to zero. Considering this assumption, we can write the following equalities

cosϕ N1 + sinϕ N2 =
1

b
(−r+aT) (3.6)

and

er =
1

r
r. (3.7)
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Here er indicates the unit vector in direction of r. By means of (3.7), we get

cosϕ N1 + sinϕ N2 =
1

b
(−r er +aT) . (3.8)

Considering (3.8) in (2.6), we obtain the fundamental form of the acceleration vector as in the following:

a =

[

d2s

dt2
+

a

b

√

k1
2 + k2

2

(

ds

dt

)2
]

T+

[

−
r

b

√

k1
2 + k2

2

(

ds

dt

)2
]

er = St T+Sr er. (3.9)

 

T ɣ 

Z B 

a 
b 

O 

c 

er 

x 

r 
P 

Sp{ T, cosϕN1+sinϕN2} 

 cosϕN1+sinϕN2 

-sinϕN1+cosϕN2 

ϕ 

N1 

N2 

Figure 3.1: An illustration for explaining the motion of the moving particle P and the components of its acceleration vector.

Now we want to obtain the acceleration components St and Sr of the particle P in various forms. Because of that, we need some preparation.

Let us differentiate the right and left side of (3.1) with respect to s. Then we obtain

T =

(

da

ds
+ k1csinϕ + k1bcosϕ − k2ccosϕ + k2bsinϕ

)

T

+

(

k1a−
dc

ds
sinϕ −

dϕ

ds
ccosϕ −

db

ds
cosϕ +

dϕ

ds
bsinϕ

)

N1

+

(

k2a+
dc

ds
cosϕ −

dϕ

ds
csinϕ −

db

ds
sinϕ −

dϕ

ds
bcosϕ

)

N2.

(3.10)

Because the vectors T, N1 and N2 compose an orthonormal system,

1 =
da

ds
+ k1csinϕ + k1bcosϕ − k2ccosϕ + k2bsinϕ

0 = k1a−
dc

ds
sinϕ −

dϕ

ds
ccosϕ −

db

ds
cosϕ +

dϕ

ds
bsinϕ

0 = k2a+
dc

ds
cosϕ −

dϕ

ds
csinϕ −

db

ds
sinϕ −

dϕ

ds
bcosϕ

(3.11)

can be written. By keeping the equalities k1 =
√

k1
2 + k2

2 cosϕ and k2 =
√

k1
2 + k2

2 sinϕ in mind, we get

da

ds
= 1−b

√

k1
2 + k2

2

db

ds
= a

√

k1
2 + k2

2 − c
dϕ

ds

dc

ds
= b

dϕ

ds
.

(3.12)

If we differentiate (3.4) and use (3.12), it is not difficult to see the followings:

r
dr

ds
= a− cb

dϕ

ds

r
dr

ds
= a− c

dc

ds
.

(3.13)
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Let us use the notation

h = b
ds

dt
. (3.14)

Then, we obtain Sr as in the following form:

Sr =−
r h2
√

k1
2 + k2

2

b3
. (3.15)

If (3.12) and (3.14) are taken into consideration, St can be written as

St =
1

2b2

(

d

ds

(

h2
)

+
h2

b2

d

ds

(

c2
)

)

. (3.16)

Similar to above, we can easily get

St =
1

2

d

ds

(

(

ds

dt

)2
)

+

√

k1
2 + k2

2

(

ds

dt

)2(
1

2b

d

ds

(

r2
)

+
dϕ

ds
c

)

(3.17)

by using the first equality in (3.13).

Finally, it is very easy to see the following:

St =
1

2

d

ds

(

(

ds

dt

)2
)

+
1

2b

(

ds

dt

)2√

k1
2 + k2

2 d

ds
(〈x, x〉) (3.18)

from the second equality in (3.13), since 〈x ,x〉= a2 +b2 + c2 = r2 + c2.

Consequently, if we consider the above derivation, we can state the following theorem and corollary for a particle moving along a space

curve endowed with the Bishop frame.

Theorem 3.1 (Siacci’s Theorem According to Bishop Frame). ( [7]) In E3, let P be a particle moving on a curve γ endowed with Bishop

frame. Suppose that the component of the angular momentum of P along the unit vector −sinϕ N1 +cosϕ N2 never equals to zero. Then, the

acceleration vector a of the particle P can be expressed as in (3.9). The component St , given in (3.9), lies along the tangent line of γ . The

component Sr, given in (3.9), lies along the line which passes through P and the foot of the perpendicular that is from O to the instantaneous

plane Sp{T, cosϕ N1 + sinϕ N2}.

Corollary 3.2. ( [7]) St can be given as in (3.16), (3.17) and (3.18) except for the fundamental form, while Sr can be given as in (3.15)
except for the fundamental form.

Remark 3.3. ( [7]) In Euclidean 3-space E3, let the trajectory γ be restricted to the fixed plane Sp{T, cosϕ N1 + sinϕ N2} containing

or not containing O. Then, it is obvious that the unit vector −sinϕ N1 + cosϕ N2, that is the unit normal vector of this fixed plane, is

constant along γ . This means that its derivative d
ds (−sinϕ N1 + cosϕ N2) equals to zero for all s values of the parameter. If this derivative

is calculated, one can easily conclude that
dϕ
ds = 0. So, for this case, (3.16) and (3.17) reduce to

St =
1

2b2

d

ds

(

h2
)

(3.19)

and

St =
1

2

d

ds

(

(

ds

dt

)2
)

+
1

2b

√

k1
2 + k2

2

(

ds

dt

)2
d

ds

(

r2
)

, (3.20)

respectively.

Example 3.4. Assume that the helix curve δ (t) =
(

8cos
t

17
, 8sin

t

17
, 15

t

17

)

is the trajectory of the moving particle P. Then we can easily

write

x =
(

8cos
s

17
, 8sin

s

17
, 15

s

17

)

. (3.21)

Firstly, let us note that

〈x, x〉=
〈(

8cos
s

17
, 8sin

s

17
, 15

s

17

)

,

(

8cos
s

17
, 8sin

s

17
, 15

s

17

)〉

= 64+
225

289
s2
.

By differentiating (3.21) twice with respect to time t, we get

a =

(

−
8

289

(

ds

dt

)2

cos
s

17
−

8

17

d2s

dt2
sin

s

17
, −

8

289

(

ds

dt

)2

sin
s

17
+

8

17

d2s

dt2
cos

s

17
,

15

17

d2s

dt2

)

.

Since δ is a unit speed curve, it is obvious that

ds

dt
= 1

d2s

dt2
= 0.
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θ(s)=s/17 

15θ(s)=15s/17 

δ 

Figure 3.2: An illustration for the helix curve given in Example 3.4

On the other hand, the following equalities hold:

T(s) =

(

−
8

17
sin

s

17
,

8

17
cos

s

17
,

15

17

)

N(s) =
(

−cos
s

17
,−sin

s

17
, 0
)

B(s) =

(

15

17
sin

s

17
, −

15

17
cos

s

17
,

8

17

)

.

(3.22)

From here, we obtain

√

k1
2 + k2

2 =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=

∥

∥

∥

∥

(

−
8

289
cos

s

17
,−

8

289
sin

s

17
, 0

)∥

∥

∥

∥

=
8

289
.

By means of (2.4) and (3.22), the second and third Bishop bases are given by

N1 =

(

−cosϕ cos
s

17
−

15

17
sinϕ sin

s

17
, −cosϕ sin

s

17
+

15

17
sinϕ cos

s

17
, −

8

17
sinϕ

)

(3.23)

and

N2 =

(

−sinϕ cos
s

17
+

15

17
cosϕ sin

s

17
, −sinϕ sin

s

17
−

15

17
cosϕ cos

s

17
,

8

17
cosϕ

)

. (3.24)

Then we can write

a = 〈x, T〉=
225

289
s

b = 〈x,−cosϕ N1 − sinϕ N2〉= 8.

So, we get

h = 8

r =

√

50625

83521
s2 +64.

Substituting the obtained values of b, r, h,
√

k1
2 + k2

2, ds
dt and 〈x, x〉 into (3.15) and (3.18) gives us the followings:

St =
225

83521
s (3.25)

and

Sr =−
1

289

√

50625

83521
s2 +64. (3.26)

Finally, we must note that one can easily find the same solutions by means of the other options that are given in (3.9), (3.16) and (3.17).
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Abstract

In this study, we examine the behavior of solutions of the neutral functional differential

equations. Using a suitable real root of the corresponding characteristic equation, the

asymptotic behavior of the solutions and the stability of the trivial solution are explained.

Three examples are also provided to illustrate our results.

1. Introduction and Preliminaries

This paper aims to describe the stability behaviour of the solutions of the neutral-type linear functional differential equations

d

dt

[

x(t)−
∫ 0

−1
x(t − τ(θ))dq(θ)

]

=
∫ 0

−1
x(t − r(θ))dv(θ), t ≥ 0 (1.1)

where x(t)∈R, r(θ) and τ(θ) are nonnegative real continuous functions in [−1,0], and v(θ) and q(θ) are real functions of bounded variation

in [−1,0]. Riemann-Stieltjes integrals are used. It is assumed that v and q are non-constant in [−1,0]. Consider the value R = max{‖τ‖,‖r‖},

where ‖τ‖= max{τ(θ) : −1 ≤ θ ≤ 0} and ‖r‖= max{r(θ) : −1 ≤ θ ≤ 0}. The initial condition for (1.1) is determined by a function

x(t) = φ(t), −R ≤ t ≤ 0. (1.2)

A solution of (1.1) refers to a continuous function x : [−R,+∞)→ R satisfying (1.2), such that

x(t)−
∫ 0

−1
x(t − τ(θ))dq(θ)

is differentiable in [0,+∞) and satisfies (1.1) for every t ≥ 0.

For a solution of (1.1) in the form x(t) = eλ t for t ∈ R, λ represents a root of the characteristic equation

λ

(

1−
∫ 0

−1
e−λτ(θ)dq(θ)

)

=
∫ 0

−1
e−λ r(θ)dv(θ). (1.3)

Additionally, this is applied to the relevant class of differential - difference equation

d

dt

[

x(t)−
m

∑
j=1

b jx(t − τ j)

]

=
m

∑
j=1

a jx(t − r j),
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where j = 1, ...,m, a j,b j ∈ R and τ j,r j ∈ (0,∞). As it is well-known, this equation can be obtained from (1.1), under the assumption that

q(θ) and v(θ) are step functions with a number m of jump points (See, [5], [12], [22], [26] and references therein). Furthermore, the equation

(1.1) for τ(θ) = r(θ) =−rθ (r > 0) and θ ∈ [−1,0] is reduced to the class of the equation

d

dt

[

x(t)−
∫ 0

−1
x(t +θ)dq(θ)

]

=
∫ 0

−1
x(t +θ)dv(θ), (1.4)

where q(θ) = q(θ/r) is atomic at zero, and v(θ) = v(θ/r). The authors in [23] and [25] obtained behavior and stability analysis of the

solutions of the equation (1.4). In this article, we examine the stability of equation (1.1), which is more general than equation (1.4). In other

words, we make preference relying on equation (1.1) considering the chance to understand the impact of the delays on the stability behaviour

of the neutral functional differential equations more clearly. One may look at the references [2], [7], [17], [19]- [21], [27] for a special case

of equation (1.1)

x
′

(t) =
∫ 0

−1
x(t − r(θ))dv(θ).

In addition, the references [4] and [11] may also be reviewed.

Ferreira and Pedro [6] established the oscillatory criteria of the equation (1.1). However, the article in [6] has no information about asymptotic

behavior and exponential estimate of solutions. In this article, we obtain the stability analysis of the solutions of the equation (1.1). Namely,

we obtained the asymptotic behavior of the solutions and then we created a useful exponential estimate for these solutions and finally provided

a stability criterion in this article which is different from the article in [6]. These results are obtained with a real root of the characteristic

equation. For this purpose, the applied techniques are generated from a mix of methods used in the references [12], [13], [22]- [25], [27].

Examples are also given in this article.

The stability theory of the delay and the differential equations of neutral type in recent two decades has received widespread attention, as one

can see through the textbooks [1], [3], [8]- [10], [14], [15], [18] and the references therein. Additionally, there are equations similar to (1.1)

in the book by Kolmanovskii and Nosov [9].

Throughout this paper, V (q) and V (v) are denoted for the total variation function of q and v, respectively, defined in the interval [−1,0]. Note

that the functions V (q) and V (v) are greater than zero in the interval [−1,0]. Moreover, it must be noted that V (q) and V (v) are not identically

zero in the interval [−1,0]. The reader should know about both theories of the bounded variation functions and the Riemann-Stieltjes

integrations. It is assumed that the reader knows the theory of Riemann-Stieltjes integration and the theory of functions of bounded variation

(see [8], [16]).

Finally, in this section, we will give three well-known definitions of stability (see, for example, [9]). The trivial solution of (1.1) is defined as

stable if for every ε > 0, there exists a number ℓ= ℓ(ε) such that, for any initial function φ with

‖φ‖= max
−R≤t≤0

|φ(t)|< ℓ

the solution x of (1.1)-(1.2) satisfies

|x(t)|< ε, for all t ∈ [−R,∞).

In another case, the trivial solution of (1.1) is considered to be unstable. Provided that it is stable in the above-mentioned concept, the trivial

solution of (1.1) is also considered asymptotically stable, and additionally, there exists a number ℓ0 > 0 such that, for any initial function φ

with ‖φ‖< ℓ0, the solution x of (1.1)-(1.2) satisfies

lim
t→∞

x(t) = 0.

2. Statement of the Main Results and Comments

Theorem 2.1. We assume that λ0 ∈ R is a root of characteristic equation (1.3) with the property

µ(λ0) =
∫ 0

−1
e−λ0τ(θ) (1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)< 1. (2.1)

Set

β (λ0) =
∫ 0

−1
e−λ0τ(θ)(λ0τ(θ)−1)dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ). (2.2)

Then, for any function φ ∈C([−R,0],R), the solution x of (1.1)-(1.2) satisfies

lim
t→∞

[

e−λ0tx(t)
]

=
L(λ0;φ)

1+β (λ0)
, (2.3)

where

L(λ0;φ) =φ(0)−
∫ 0

−1

[

φ(−τ(θ))−λ0e−λ0τ(θ)
∫ 0

−τ(θ)
e−λ0uφ(u)du

]

dq(θ)+
∫ 0

−1
e−λ0r(θ)

[

∫ 0

−r(θ)
e−λ0uφ(u)du

]

dv(θ).

Note: Property (2.1) guarantees that 1+β (λ0)> 0.
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Proof. Property (2.1) implies 0 < µ(λ0)< 1. From (2.2) we obtain

|β (λ0)|=

∣

∣

∣

∣

λ0

∫ 0

−1
e−λ0τ(θ)τ(θ)dq(θ)−

∫ 0

−1
e−λ0τ(θ)dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ)

∣

∣

∣

∣

≤|λ0|
∫ 0

−1
e−λ0τ(θ)τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ).

In this case, |β (λ0)| ≤ µ(λ0) is satisfied, so |β (λ0)|< 1. Then 1+β (λ0)> 0 is the outcome.

Let us define y(t) = e−λ0tx(t), t ∈ [−R,∞). Then, by considering that λ0 is a real root of characteristic equation (1.3), for every t ≥ 0, we

obtain

[

x(t)−
∫ 0

−1
x(t − τ(θ))dq(θ)

]
′

−
∫ 0

−1
x(t − r(θ))dv(θ)

= eλ0t

{

[

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)

]
′

+λ0

[

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)

]

−
∫ 0

−1
e−λ0r(θ)y(t − r(θ))dv(θ)

}

= eλ0t

{

[

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)

]
′

+

[

λ0

∫ 0

−1
e−λ0τ(θ)dq(θ)+

∫ 0

−1
e−λ0r(θ)dv(θ)

]

y(t)

−λ0

∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)−

∫ 0

−1
e−λ0r(θ)y(t − r(θ))dv(θ)

}

= eλ0t

{

[

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)

]
′

+λ0

∫ 0

−1
e−λ0τ(θ)[y(t)− y(t − τ(θ))]dq(θ)+

∫ 0

−1
e−λ0r(θ)[y(t)− y(t − r(θ))]dv(θ)

}

.

Hence, x satisfies (1.1) for all t ≥ 0, it follows that y satisfies

[

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ)

]
′

=−λ0

∫ 0

−1
e−λ0τ(θ)[y(t)− y(t − τ(θ))]dq(θ)−

∫ 0

−1
e−λ0r(θ)[y(t)− y(t − r(θ))]dv(θ).

(2.4)

And then, the initial condition (1.2) becomes

y(t) = e−λ0tφ(t), t ∈ [−R,0]. (2.5)

When equation (2.4) is integrated from 0 to t, the following equation is obtained

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ) = y(0)−

∫ 0

−1
e−λ0τ(θ)y(−τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t

0
[y(s)− y(s− τ(θ))]ds

)

dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(

∫ t

0
[y(s)− y(s− r(θ))]ds

)

dv(θ)

=φ(0)−
∫ 0

−1
φ(−τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
y(u)du

)

dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
y(u)du

)

dv(θ)+λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ 0

−τ(θ)
y(u)du

)

dq(θ)+
∫ 0

−1
e−λ0r(θ)

(

∫ 0

−r(θ)
y(u)du

)

dv(θ)

=−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
y(u)du

)

dq(θ)−
∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
y(u)du

)

dv(θ)+L(λ0;φ).

Here, L(λ0;φ) is given in Theorem 2.1. So that the following equation (2.6) is obtained

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t − τ(θ))dq(θ) =−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
y(u)du

)

dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
y(u)du

)

dv(θ)+L(λ0;φ), t ≥ 0.

(2.6)

This equation is equivalent to equation (1.1). Now, let us define following expression:

z(t) = y(t)−
L(λ0;φ)

1+β (λ0)
, t ≥−R.

If this definition applied to equation (2.6), we obtain

z(t)−
∫ 0

−1
e−λ0τ(θ)z(t − τ(θ))dq(θ) =−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
z(u)du

)

dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
z(u)du

)

dv(θ), t ≥ 0.

(2.7)
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Moreover, the following expression is obtained when the initial condition (2.5) is obtained

z(t) = e−λ0tφ(t)−
L(λ0;φ)

1+β (λ0)
, t ∈ [−R,0]. (2.8)

Here, β (λ0) is given by expression (2.2).

From the definitions of y and z, we have

lim
t→∞

z(t) = 0. (2.9)

We will prove the statement (2.9) later. We define,

M(λ0;φ) = max
t∈[−R,0]

∣

∣

∣

∣

e−λ0tφ(t)−
L(λ0;φ)

1+β (λ0)

∣

∣

∣

∣

. (2.10)

In this case, from (2.8), the following expression is obtained:

|z(t)| ≤ M(λ0;φ), −R ≤ t ≤ 0. (2.11)

Now, let us show that the following inequality is satisfied in the interval [−R,∞)

|z(t)| ≤ M(λ0;φ). (2.12)

Consider an arbitrary number ε > 0. We claim that

|z(t)|< M(λ0;φ)+ ε, for t ≥−R. (2.13)

Let us assume that inequality (2.13) is not satisfied. In this case, because of (2.11), there exist a point t0 > 0 such that

|z(t)|< M(λ0;φ)+ ε, −R ≤ t < t0 and |z(t0)|= M(λ0;φ)+ ε.

Since µ(λ0)< 1, from equation (2.7) we obtain

M(λ0;φ)+ ε = |z(t0)|=

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0τ(θ)z(t0 − τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(

∫ t0

t0−τ(θ)
z(u)du

)

dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(

∫ t0

t0−r(θ)
z(u)du

)

dv(θ)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0τ(θ)z(t0 − τ(θ))dq(θ)

∣

∣

∣

∣

∣

+ |λ0|

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0τ(θ)

(

∫ t0

t0−τ(θ)
z(u)du

)

dq(θ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0r(θ)

(

∫ t0

t0−r(θ)
z(u)du

)

dv(θ)

∣

∣

∣

∣

∣

≤
∫ 0

−1
e−λ0τ(θ)|z(t0 − τ(θ))|dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

(

∫ t0

t0−τ(θ)
|z(u)|du

)

dV (q)(θ)

+
∫ 0

−1
e−λ0r(θ)

(

∫ t0

t0−r(θ)
|z(u)|du

)

dV (v)(θ)

≤ [M(λ0;φ)+ ε]

{

∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

= [M(λ0;φ)+ ε]

{

∫ 0

−1
e−λ0τ(θ)(1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

= [M(λ0;φ)+ ε]µ(λ0)< [M(λ0;φ)+ ε] ,

which is a contradiction. So, inequality (2.13) must be true. Therefore, inequality (2.12) must also be true. Now, by virtue of (2.12), from

(2.7) we obtain for t ≥ 0

|z(t)| ≤

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0τ(θ)z(t − τ(θ))dq(θ)

∣

∣

∣

∣

∣

+ |λ0|

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
z(u)du

)

dq(θ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
z(u)du

)

dv(θ)

∣

∣

∣

∣

∣

≤
∫ 0

−1
e−λ0τ(θ)|z(t − τ(θ))|dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

(

∫ t

t−τ(θ)
|z(u)|du

)

dV (q)(θ)+
∫ 0

−1
e−λ0r(θ)

(

∫ t

t−r(θ)
|z(u)|du

)

dV (v)(θ)

≤M(λ0;φ)

{

∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

=M(λ0;φ)

{

∫ 0

−1
e−λ0τ(θ)(1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

.
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Due to the definition of µ(λ0), we have

|z(t)| ≤ µ(λ0)M(λ0;φ), ∀t ≥ 0. (2.14)

Using inequalities (2.12) and (2.14), by the induction method we can easily show

|z(t)| ≤ (µ(λ0))
nM(λ0;φ), t ≥ nR−R (n = 0,1,2, ...). (2.15)

Here, due to limn→∞ (µ(λ0))
n = 0, from inequality (2.15) limt→∞ z(t) = 0 is obtained, that is, (2.9) is true. Hence, Theorem 2.1 is proven at

all.

A root of characteristic equation (1.3) is λ = 0 if and only if the following expressions hold:

∫ 0

−1
dv(θ) = 0 and

∫ 0

−1
dV (q)(θ)+

∫ 0

−1
r(θ)dV (v)(θ)< 1

or

v(0) = v(−1) and V (q)(0)−V (q)(−1)+
∫ 0

−1
r(θ)dV (v)(θ)< 1. (2.16)

So, an application of Theorem 2.1 with λ = 0 leads to the following corollary.

Corollary 2.2. Let us satisfy the conditions of (2.16). In this case, for any φ ∈C([−R,0],R), the solution x of equation (1.1)-(1.2) is given

as follows:

lim
t→∞

x(t) =
φ(0)−

∫ 0
−1 φ (−τ(θ))dq(θ)+

∫ 0
−1

[

∫ 0
−r(θ) φ(u)du

]

dv(θ)

1−q(0)+q(−1)+
∫ 0
−1 r(θ)dv(θ)

.

Note: Because of the second condition of (2.16), 1−q(0)+q(−1)+
∫ 0
−1 r(θ)dv(θ)> 0 holds.

Theorem 2.3. Let λ0 be a real root of the characteristic equation (1.3), and the condition (2.1) is provided for λ0. Let us consider β (λ0) in

Theorem 2.1. Then, for any φ ∈C([−R,0],R), the solution x of (1.1)-(1.2) satisfies

|x(t)| ≤

[

(1+µ(λ0))
2

1+β (λ0)
+µ(λ0)

]

N(λ0;φ)eλ0t , ∀t ≥ 0

where

N(λ0;φ) = max
t∈[−R,0]

∣

∣

∣
e−λ0tφ(t)

∣

∣

∣
. (2.17)

Moreover, the trivial solution of equation (1.1) is stable if λ = 0, asymptotically stable if λ0 < 0 and unstable if λ0 > 0.

Proof. Let y and z be defined as in the proof of Theorem 2.1, i.e.

z(t) = y(t)−
L(λ0;φ)

1+β (λ0)
, t ≥−R,

where L(λ0;φ)) and M(λ0;φ) are defined as in Theorem 2.1. Then, we can express the following for t ≥ 0

y(t)≤
|L(λ0;φ)|

1+β (λ0)
+µ(λ0)M(λ0;φ). (2.18)

From the definition of L(λ0;φ) we get

L(λ0;φ) =φ(0)−
∫ 0

−1

[

eλ0τ(θ)φ (−τ(θ))−λ0

∫ 0

−τ(θ)
e−λ0uφ(u)du

]

e−λ0τ(θ)dq(θ)+
∫ 0

−1
e−λ0r(θ)

[

∫ 0

−r(θ)
e−λ0uφ(u)du

]

dv(θ)

≤|φ(0)|+
∫ 0

−1

[∣

∣

∣
eλ0τ(θ)φ(−τ(θ))

∣

∣

∣
+ |λ0|

∫ 0

−τ(θ)

∣

∣

∣
e−λ0uφ(u)

∣

∣

∣
du
]

e−λ0τ(θ)dV (q)(θ)

+
∫ 0

−1
e−λ0r(θ)

[

∫ 0

−r(θ)

∣

∣

∣
e−λ0uφ(u)

∣

∣

∣
du

]

dV (v)(θ)

≤

{

1+
∫ 0

−1

[

1+ |λ0|τ(θ)
]

e−λ0τ(θ)dV (q)(θ)+
∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

N(λ0;φ)

=(1+µ(λ0))N(λ0;φ).

Furthermore, by the definition of µ(λ0;φ), we obtain

M(λ0;φ) = max
t∈[−R,0]

∣

∣

∣

∣

e−λ0tφ(t)−
L(λ0;φ)

1+β (λ0)

∣

∣

∣

∣

≤ max
t∈[−R,0]

∣

∣

∣
e−λ0tφ(t)

∣

∣

∣
+

|L(λ0;φ)|

1+β (λ0)

=N(λ0;φ)+
|L(λ0;φ)|

1+β (λ0)
≤ N(λ0;φ)+

(1+µ(λ0))N(λ0;φ)

1+β (λ0)

=

(

1+
1+µ(λ0)

1+β (λ0)

)

N(λ0;φ).
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So, from (2.18) we get

|y(t)| ≤
(1+µ(λ0))N(λ0;φ)

1+β (λ0)
+µ(λ0)

(

1+
1+µ(λ0)

1+β (λ0)

)

N(λ0;φ)

=

[

(1+µ(λ0))
2

1+β (λ0)
+µ(λ0)

]

N(λ0;φ).

Finally, by the definition of y, we obtain

|x(t)| ≤

[

(1+µ(λ0))
2

1+β (λ0)
+µ(λ0)

]

N(λ0;φ)eλ0t (2.19)

for all t ≥ 0. So, the proof of the first part of the theorem is completed. Now let us show the stability criterion of the theorem.

Assume that λ0 ≤ 0, and let φ ∈ ([−R,0],R) be an arbitrary initial function. Then, from inequality (2.19) we get

|x(t)| ≤

[

(1+µ(λ0))
2

1+β (λ0)
+µ(λ0)

]

N(λ0;φ), ∀t ≥ 0.

Because
(1+µ(λ0))

2

1+β (λ0)
> 1, we obtain

|x(t)| ≤

[

(1+µ(λ0))
2

1+β (λ0)
+µ(λ0)

]

N(λ0;φ), ∀t ≥−R.

So, the trivial solution of equation (1.1) is stable. For λ0 < 0, it is clear that, from inequality (2.19) it follows that

lim
t→∞

x(t) = 0.

Thus, the trivial solution is asymptotically stable. Finally, let λ0 > 0. We want to show that this solution is unstable. Let us assume that it is

stable. Then, there is a number δ > 0 such that, for each φ ∈C([−R,0],R) with ‖φ‖< δ , the solution x of (1.1)-(1.2) satisfies

|x(t)|< 1, t ≥−R.

Given the following,

φ0(t) = eλ0t , t ∈ [−R,0].

We see that φ0 ∈C([−R,0],R). From the definition of L(λ0;φ) we obtain

L(λ0;φ0)≡φ0(0)−
∫ 0

−1

[

φ0 (−τ(θ))−λ0e−λ0τ(θ)
∫ 0

−τ(θ)
e−λ0uφ0(u)du

]

dq(θ)+
∫ 0

−1
e−λ0r(θ)

[

∫ 0

−r(θ)
e−λ0uφ0(u)du

]

dv(θ)

=1−
∫ 0

−1

[

e−λ0τ(θ)−λ0e−λ0τ(θ)
∫ 0

−τ(θ)
e−λ0ueλ0udu

]

dq(θ)+
∫ 0

−1
e−λ0r(θ)

[

∫ 0

−r(θ)
e−λ0ueλ0udu

]

dv(θ)

=1−
∫ 0

−1
e−λ0τ(θ) [1−λ0τ(θ)]dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ)

=1+β (λ0)> 0.

Now, we select a number δ0 with 0 < δ0 < δ and let

φ =
δ0

‖φ0‖
φ0,

where it is clear that φ ∈C([−R,0],R) and ‖φ‖= δ0 < δ . So, we obtain

lim
t→∞

[

e−λ0tx(t)
]

=
L(λ0;φ)

1+β (λ0)
=

(δ0/‖φ0‖)L(λ0;φ0)

1+β (λ0)
=

δ0

‖φ0‖
> 0.

However, due to λ0 > 0, we get

lim
t→∞

[

e−λ0tx(t)
]

= 0.

We reach a contradiction, and hence Theorem 2.3 is proven.



Universal Journal of Mathematics and Applications 39

3. Examples

Example 3.1. Let τ(θ) =− θ
4 , r(θ) = θ 2

2 , q(θ) =− θ 2

5 and v(θ) = 3θ 2

5 . In this case, the characteristic equation (1.3) is obtained as follows:

λ

(

1−
∫ 0

−1
exp
(λθ

4

)

d
(

−
θ 2

5

)

)

=
∫ 0

−1
exp
(

−
λθ 2

2

)

d
(3θ 2

5

)

. (3.1)

It is seen that λ0
∼=−1,03 is a root of equation (3.1). Here, this root is one of the roots of (3.1) that we obtain with the MATLAB program.

Thus, the condition of Theorem 2.3 is satisfied by using the root λ0 =−1,03. Namely, because the functions q and v are monotonous in

[−1,0], from expression (2.1) we obtain

µ(−1,03) =
∫ 0

−1
e−

1,03θ
4

(

1+ |−1,03|
(

−
θ

4

)

)

dV
(

−
θ 2

5

)

+
∫ 0

−1
e

1,03θ2

2

(

θ 2

2

)

dV
(3θ 2

5

)

≤ max
−1≤θ≤0

∣

∣

∣

∣

∣

e−
1,03θ

4

(

1−
1,03θ

4

)∣

∣

∣

∣

∣

∣

∣

∣
−

1

5

∣

∣

∣
+ max

−1≤θ≤0

∣

∣

∣

∣

∣

e
1,03θ2

2

(

θ 2

2

)

∣

∣

∣

∣

∣

∣

∣

∣

3

5

∣

∣

∣

=
1

5
e

1,03
4

(

1+
1,03

4

)

+
3

5

e
1,03

2

2
∼= 0,83 < 1.

Since λ0 =−1,03 < 0, the solution x(t)≡ 0 is asymptotically stable.

Example 3.2. Let τ(θ) = θ 2, r(θ) =− θ
2 , q(θ) =− θ 2

4 and v(θ) = 4θ 3. In this case, the characteristic equation (1.3) is obtained as follows:

λ

(

1−
∫ 0

−1
exp(−λθ 2)d

(

−
θ 2

4

)

)

=
∫ 0

−1
exp
(λθ

2

)

d(4θ 3). (3.2)

We see λ0
∼= 2,08745 is a root of equation (3.2). Here, this root is one of the roots of (3.2) that we obtain with the MATLAB program. Thus,

the condition of Theorem 2.3 is satisfied for the root. Namely, because the functions q and v are monotonous in [−1,0], from (2.1) we obtain

µ(2,08745) =
∫ 0

−1
e−2,08745θ 2

(

1+2,08745θ 2
)

dV
(

−
θ 2

4

)

+
∫ 0

−1
e

2,08745θ
2

(

−
θ

2

)

dV
(

4θ 3
)

≤ max
−1≤θ≤0

∣

∣

∣

∣

∣

e−2,08745θ 2
(

1+2,08745θ 2
)

∣

∣

∣

∣

∣

1

4
+ max

−1≤θ≤0

∣

∣

∣

∣

∣

e
2,08745θ

2

(

−
θ

2

)

∣

∣

∣

∣

∣

4

=e0(1+0)
1

4
+

e−
2,08745

2

2
4 = 0,954 < 1.

Since λ0 > 0, the solution x(t)≡ 0 is unstable.

Example 3.3. Let τ(θ) = −2θ , r(θ) = − θ
2 , v(θ) = θ 2+θ

2 and q(θ) = θ
4 . In this case, the characteristic equation (1.3) is obtained as

follows:

λ

(

1−
∫ 0

−1
exp(2λθ)d

(θ

4

)

)

=
∫ 0

−1
exp
(λθ

2

)

d

(

θ 2 +θ

2

)

. (3.3)

We see λ0 = 0 is a root of equation (3.3). The following expressions is satisfied since the function v(θ) is decreasing in the interval [−1,− 1
2 ]

and increasing in the interval [− 1
2 ,0], whereas q(θ) is also increasing in the interval [−1,0]:

µ(0) =
∫ 0

−1
dV

(

θ

4

)

+
∫ 0

−1

(

−
θ

2

)

dV

(

θ 2 +θ

2

)

=
∫ 0

−1

1

4
dV (θ)+

∫ − 1
2

−1

(

−
θ

2

)

dV

(

θ 2 +θ

2

)

+
∫ 0

− 1
2

(

−
θ

2

)

dV

(

θ 2 +θ

2

)

≤
1

4
+ max

−1≤θ≤0

{

(

−
θ

2

)

}

1

2

[

∫ − 1
2

−1
dV
(

θ 2 +θ
)

+
∫ 0

− 1
2

dV
(

θ 2 +θ
)

]

=
1

4
+

1

4

(

∣

∣

∣

∣

−
1

4

∣

∣

∣

∣

+

∣

∣

∣

∣

1

4

∣

∣

∣

∣

)

=
1

4
+

1

4

1

2
=

3

8

<1.

Hence, the solution x(t)≡ 0 is stable for the root λ0 = 0.
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4. Conclusions

In this study, firstly, a basic asymptotic result for the solution of the equation (1.1) is proved. Secondly, we obtained a useful exponential

boundary for solutions and the stability of trivial solutions were shown. These results were obtained using a suitable real root for the

characteristic equation. Namely, this real root played an important role in establishing the results of the article. Finally, three examples were

given for stability.
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Abstract

Boolean and logical hypercubes are discussed as providers of tags to logical object sets,

transforming them into logical tagged sets, a generalization of fuzzy sets. The equivalence

of Boolean and logical sets permits to consider natural tags as an equivalent basis of

logical tagged sets. Boolean hypercube concatenation easily allows studying how Boolean

information is transmitted. From there a Gödel-like behavior of Boolean hypercubes and

thus of logical object sets can be unveiled. Later, it is discussed the iterative building of

natural numbers, considering Mersenne numbers as upper bounds of this kind of recursive

construction. From there information acquisition, recursive logic, and artificial intelligence

are also examined.

1. Introduction

This paper can be considered as another application of the versatile structure of Boolean hypercubes, which has been steadily developing in

this laboratory since the first paper on a generalized form of fuzzy sets [1]. Reference [2] can be thought of as an application example of

Boolean vertex structures to molecular similarity and design. Since these two works had been published, many developments in mathematical

structures definition and applications in chemistry, biology, and physics were produced, as a condensed list see references [3]- [11]. On the

other hand, the final prospection of a recent Bunge’s book [13], has motivated the background where the present study is inspired and built.

Bunge presented in an appendix of the previous reference an extremely interesting prospect to formulate the structure of logic.

The present paper will be developed using Boolean hypercubes as a tool but following essentially Bunge’s directives. In this sense, the

following working organization will be used. First, the basic ideas about fuzzy sets will be detailed. Then, the concept of Boolean tagged

sets will be established. Boolean hypercubes and their transcription into natural numbers will be described next. Concatenation of Boolean

hypercubes and the possibility to design a recursive construction of natural numbers will follow. Next, Mersenne numbers will be shown that

play a leading role in this recursive construction. In a new section, a simple distance definition will permit in the continuing development of

the paper to classify the truth and falsehood contents of available logical tags described at some Boolean hypercube dimension level. The

Gödel-like structure of Boolean hypercubes tags associated with their concatenation will be later discussed. Finally, an analysis of the limits

of artificial intelligence will close this presentation.

2. Binary Functions Over Object Sets: Basic Fuzzy Sets

One can classically define in general a set containing some sort of objects, an object set Ω. Then according to the ideas of fuzzy set

definition by Zadeh [14], see also for extended information on fuzzy sets the reference [15], one can also describe a function f , the so-called

membership function, having as domain the elements of such an object set. When applying the function to any object belonging to Ω, one

can suppose that if such a function yields a binary outcome, then the resulting value of the function codomain may be associated with a

Email address and ORCID number: ramoncarbodorca@gmail.com, 0000-0002-9219-0686, (R. Carbó-Dorca)

https://orcid.org/0000-0002-9219-0686
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Boolean pair of digits: B = {0,1}, which alternatively can be also taken as a logical pair: L = {F,T}, of false and true, values.

Initially, this scheme can be formally written as a classical set theory definition, providing information about some objects and some set,

through:

∀ϖ /∈Ω→ f (ϖ) = 0∧∀ω ∈Ω→ f (ω) = 1. (2.1)

So, one can use the Boolean digits B as the function codomain leading to the primary definition of a fuzzy set [1], [14] or substitute them

with the logical values L and thus leading to a fuzzy logical set.

This previous fuzzy set definition is equivalent to use the results of the application of the membership function f over the objects’ domain as

the vertices of a one-dimensional Boolean hypercube: H1 = {(0),(1)}, where the parenthesis means one can take the two binary digits as

one-dimensional Boolean vectors, the two vertices of the one-dimensional Boolean hypercube.

To attach fuzziness to the membership function codomain, one might proceed one step further and suppose that some objects cannot be

considered as sharply belonging to the set Ω or as clearly being in the outside of the object set, but in kind of no-man’s-land between the

outside and inside of the object set. In this case, the simplest way is to use as function codomain the elements of a two-dimensional Boolean

hypercube as follows:

H2 = {(0,0),(0,1),(1,0),(1,1)}= {〈h0|;〈h1|;〈h2|;〈h3|}. (2.2)

A membership function outcome like the zero vertex: 〈h0| might mean that the domain object does not belong to the set. However, any

vertex of the pair: {〈h1|;〈h2|} obtained as a membership function value within the codomain, will represent a fuzzy answer to the question

about the object belongs or not to the object set. Finally, the outcome 〈h3| can be interpreted as positively belonging to the object set. The

whole number of possibilities can be described using as the object set a fuzzy set Φ instead defined as:

∀ω ∈Φ : f (ω) = 〈h3|,
∀ϖ /∈Φ : f (ϖ) = 〈h0|,
∃ϕ : f (ϕ) = 〈h2| → ϕ∈̃Φ,

∃φ : f (φ) = 〈h1| → φ /̃∈Φ.

where the symbols ∈̃ and /̃∈ mean an incomplete knowledge of the objects: {ϕ;φ} about belonging or not to the set Φ.

The use of the four vertices of the two-dimensional Boolean hypercube in the equation 2.2 as membership function outcome codomain

permits, besides the positive and negative belonging issues, to add two nuances to the fact that the objects are located or not into the set.

A simple fuzzy set Φ can be defined in this manner, constituting an example of the most basic one, a part of the monodimensional case

defined in the equation 2.1, which can be defined based on Boolean hypercubes.

3. Basic Boolean Tagged Sets

Nevertheless, the possibility of defining a fuzzy logic structure along with an object set can be easily generalized. Precisely taking as start up

the two-dimensional Boolean hypercube as a platform to generalize fuzzy logical sets. From this initial scaffold, then using the properties of

Boolean hypercubes of higher dimensions it can be in general created a fuzzy logical framework of arbitrary dimensions.

At the same time, to avoid the fuzzy set idea of defining a membership function, whose variable values in its domain are objects of some

set, one can be aware of the fact that the same idea of fuzziness attached to an object set might be also generalized, using instead of the

membership function the definition of a tagged set, see for instance references [1], [2].

In a primitive way, similar to the previous fuzzy set description, to the objects of some set one can connect tags, which for this study can be

essentially characterized as the elements of the Boolean hypercube as defined in the equation 2.2.

Suppose an object set Ω and the two-dimensional Boolean hypercube H2 as defined in the equation 2.2. A Cartesian product can be described

between the elements of the object set and the two-dimensional Boolean hypercube vertices: T = Ω×H2, such that the elements of the

tagged set T can be defined by the ordered pairs:

∀t ∈ T : t = (ω;〈hI |)← ω ∈Ω∧〈hI | ∈H2. (3.1)

The elements of the tagged set T permit to consider that every element ω of the object set Ω can be associated with a tag {〈hI‖I = 0,1,2,3}
which is one of the Boolean vertices belonging to H2. The elements of the object set can be identified with the vertices of the Boolean

hypercube and thus classified into four kinds, coincident with the fuzzy set structure already discussed.

The object tags might be also replaced by the four natural numbers which coincide with the digital transcriptions of the four Boolean vertices

of H2. In one way or another, the four tags will classify in the same manner the elements of the object set. Of course, instead of Boolean

tags, constructed by the set B = {0;1} of bits, when looking at the construction of a logic system, one can use the logical values contained in

the set: L = {F,T}. Then, four logical classes associated with the object set can be also easily described. That is, the logical equivalent of

the two-dimensional Boolean hypercube in the equation 2.2 can be written like:

L2 = {(F,F);(F,T );(T,F);(T,T )}= {〈I0|;〈I1|;〈I2|;〈I3|}

and every logical vertex is used as a logical tag.

From now on, the Boolean framework will be used as a collection of Boolean vertex sets, which can be subjected to a trivial transformation,

leading to a logical framework simply corresponding to a substitution of the Boolean bits: (0)bit–(1)bit, by logical (F)alse-(T)rue values.
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4. Boolean Hypercubes

Because everything from now on will be based on the Boolean hypercubes structure, the building of such mathematical elements will be

succinctly discussed next.

Any N− dimensional Boolean hypercube HN possess 2N vertices, which can be expressed as binary row vectors or Boolean strings. 1

HN = {〈hI‖I = 0,2N −1}
→ 〈hI |= (βI,N ;βI,N−1; ...βI,1)←∀J = 1,N : βI,J ∈ {0,1}.

(4.1)

This notation obeys the fact that the binary strings 〈hI | are supposed here to bear the most significant bits on the leftmost side.

5. Transcription of a Boolean Hypercube into a Natural Number Sequence

Every Boolean vertex corresponds to a decimal number within a well-defined natural number sequence. Constituting a relationship which

can be defined as:

∀I = 0,(2N −1) : δ (〈hI |) =
N

∑
J=1

βIJ2(J−1) = υI ∈ SN ⊂ N (5.1)

where using as variables the Boolean hypercube vertices, then the multivariate Boolean function δ (〈hI |) ∈ N yields a natural number,

including zero.

Thus, the natural number set SN in equation 5.1 contains a sequence of 2N natural numbers:

SN = {0,1,2, ...,(2N −1)} (5.2)

where the last value corresponds to the so-called Mersenne number, which can be represented by:

µ2(N) = 2N −1.

6. Equivalence of Boolean and Logical Hypercube Vertices with a Natural Number Sequence

One can see without a problem that the elements of the natural sequence SN , described in the equation 5.2, can be used as a set of tags as

such, accompanying any object set element. While the tagged set in the equation 3.1 can be described as a Boolean tagged set, substituting

the Boolean hypercube vertices by elements of the natural number sequence of equation 5.2 results in a natural tagged set.

Natural tagged sets are even more identifiable with fuzzy sets because one can easily define the connection between the values of some

membership function as elements of some natural number sequence, like SN , which can instead be employed as tags in an equivalent tagged

set.

However, the connection of Boolean-logical hypercubes and natural numbers can be seen as an iterative way to build the hypercube vertices

and the equivalent natural elements, but subject to the binary increase of elements both in HN and in SN .

The natural elements of the sequence SN are equivalent to the vertices of some Boolean hypercube HN . It has also been seen that these

Boolean vertices can be transformed into logical ones. Thus, all the possible Boolean tags are transformed into the vertices of a logical

hypercube: LN and those into a natural number set: SN .

Next, one can admit that natural sequences, Boolean and logical hypercubes are the same structure described in three equivalent forms and

therefore interchangeable.

In this manner the natural number sequence SN in equation 5.2 might be well used as a set of tags instead of a set of logical hypercube

vertices. Fuzzy logical sets and natural tagged sets are the same mathematical construct.

7. Specific and Complementary Vertices of a Boolean Hypercube

To deepen in the previously commented equivalence of the three possible kinds of tagged sets, the specific nature of some Boolean vertices

will be presented now.

In any Boolean hypercube there are two well-defined vertices: The zero vertex:

〈h0| ≡ 〈0|= (0,0,0, ...,0)

and the unity or Mersenne vertex:

〈h(2N−1)| ≡ 〈1N |= (1,1,1, ...,1)

which for any dimension the unity vector corresponds to the binary representation of the corresponding so-called Mersenne number:

δ (〈1N |) = µ2(N).

Another well-defined set of vertices corresponds to a set containing N vertices, which can be called the canonical basis set. Such a specific

Boolean vertex set may be constructed associated with the vertices, which starting from the zero vector, then one 0-bit at a time is substituted

by a 1-bit only. The canonical basis set is made by the Boolean vertices, which also correspond to the decimal sequence of the powers of two:

KN = {〈h20 |;〈h21 |;〈h22 |; ...;〈h2N−1 |} ⇒ δ (KN) = {2
0;21;22; ...;2N−1}.

1In the present paper, the Dirac notation is used to represent vectors. Thus, an N−dimensional row vector is written as: 〈a|= (a1;a2; , , , ;aN) and its transpose which corresponds

to a column vector is represented as: |a〉.
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The canonical basis set vertices can also be expressed with the usual symbols employed to describe the canonical basis set of any vector

space:

EN = {〈e1|;〈e2|;〈e3|; ...;〈eN |} →
{|e1〉; |e2〉; |e3〉; ...; |eN〉} ≡ IN = {IIJ = δIJ |I,J = 1,N}

which when considering them as columns and their zero-one elements as natural numbers, the final structure is the (N×N) unit matrix

IN = {IIJ = δIJ}, being δIJ a Kronecker delta. However, turning again into the Boolean meaning side provides 1-bits in the whole diagonal

and 0-bits elsewhere. The unity vertex is the complete sum of the canonical basis vertices:

〈1|=
N

∑
I=1

〈eI | → µ2(N) =
N−1

∑
I=0

2I = 2N −1.

Every Boolean hypercube vertex has a complementary vertex, where the 0-bits are substituted by 1-bits and vice versa, every 1-bit is

substituted by a 0-bit. In particular, a conversion of this kind occurs when the zero and unity vector both are considered as complementary

vertices.

The canonical basis vectors possess a complementary basis set made by substitution one of a time of the 1-bit of the unity vector by a 0-bit.

As the canonical basis set can be arranged to construct the unit matrix, the complementary canonical basis set can be arranged into a matrix

CN , defined with the aid of the unity matrix: 1N = {1IJ = 1}, a matrix with all the elements equal to the 1-bit, minus the unit matrix, that is:

CN = 1N − IN = {CIJ = δ (I 6= J)}, where δ (I 6= J) is a logical Kronecker delta 2, which in this case yields 0-bits at the diagonal and 1-bits

at every one of the off-diagonal elements.

8. Concatenation of Boolean Hypercubes

Moreover, Boolean hypercubes can be concatenated [9]. The symbol ∪ will be employed to signal the operation of vertex concatenation. For

instance, one can simply write the concatenation:

H2 = H1∪H1→H2 = {(0 0),(0 1),(1 0),(1 1)} (8.1)

which can be interpreted as concatenating the vertices of the right Boolean hypercube by each vertex of the one on the left. If necessary, one

can construct higher dimensional Boolean hypercubes, see reference [9] for more details, just concatenating two or more Boolean hypercubes

of lower-dimensional structures, for instance:

HM+N = HM ∪HN .

Following this hypercube building up, concatenation of the mono-dimensional Boolean hypercube H1 with any arbitrary N− dimensional

one: HN produces:

HN+1 = H1∪HN (8.2)

meaning that the resultant Boolean hypercube HN+1 possesses a double number of vertices than the original Boolean hypercube HN . This is

so because with the concatenation 8.2 the original Boolean hypercube vertices, as defined in the equation 5.1, transform into two kinds of

vertices belonging to HN+1:

∀I = 0,2N : 〈hN;I | ∈HN :

→ (0)∪〈hN;I |= 〈h(N+1);I |=
〈

0;〈hN;I |
∣

∣ ∈ AN+1

→ (1)∪〈hN;I |= 〈h(N+1);(2N+I)|=
〈

1;〈hN;I |
∣

∣ ∈ BN+1

with the additional property, involving the two newly defined sets:

HN+1 = AN+1∪BN+1∧AN+1∩BN+1 =∅.

Thus, in such a concatenation operation two new Boolean vertex sets are well-defined. The set AN+1 is equivalently made by the old Boolean

vertices of HN , considering that they are one dimension larger, but possessing the most significative bit as the 0-bit; while the set BN+1

contains all the new vertices which conform to the Boolean hypercube AN+1 and cannot belong to the initial HN .

9. Recursive Construction of Boolean Hypercubes and Natural Numbers

As explained above, this construction indicates that starting from any Boolean hypercube one can obtain another one with the dimension

augmented in one unit. An in a deep application can be found in reference [10].

Half of the vertices in HN+1 are those of HN , because whenever one writes the decimal representations of the involved vertices it is obtained:

δ (HN) = SN , but also it can be written: δ (AN+1) = SN . The Boolean vertex set BN+1 corresponds to a decimal representation which

corresponds to the very new nature of the extended dimension and can be easily written as:

δ (BN+1) = 2N ⊕SN = {2N ;(2N +1);(2N +2); ...;(2N+1−1)} (9.1)

meaning that the power of two constant 2N is summed to every element of the natural set SN . The final element of this sequence 9.1 is the

Mersenne number µ2(N +1). Accordingly, the natural number set associated with HN+1 can be expressed as:

SN+1 = δ (AN+1)∪δ (BN+1) = SN ∪ (2
N ⊕SN). (9.2)

2A logical Kronecker delta is a symbol δ (E) where E is an expression, which if E = .True. returns δ (T ) = 1 and if E = .False., then δ (F) = 0.
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A result meaning that natural numbers can be constructed within a recursive framework, associated in turn with the building of Boolean

hypercubes via an iterative concatenation as defined in the equation 8.2.

Moreover, in the equation, 9.2 the structure of the recursion involving the decimal representation of Boolean hypercubes suggests one can

define a recursion operator R, such that:

SN+1 = R[SN ] = SN ∪ (2
N ⊕SN).

Consequently, fuzzy logical arbitrarily complex structures can be iteratively constructed in the same way.

9.1. Mersenne Numbers and Their Twins

According to the equations 9.1 and 9.2, the lower and upper limits of the new natural numbers attached to a Boolean hypercube digital

transcription, are respectively the Mersenne number and a power of 2, both associated with the appropriate dimension of the hypercube.

Furthermore, it is interesting to note the role of the Mersenne number: µ2(N) = 2N −1, contained in a natural number sequence similar to

the equation 5.2, and another number contained as a second element of the sequence of the equation 9.1 υ2(N) = 2N +1, which is a member

of a general sequence, which can be called Mersenne twins [10]. While any Mersenne number is translated into binary form as a 1-bit

string of dimension N, a unity vector: 〈1N |= (1,1,1, ...,1,1), the Mersenne twins are well-defined bit strings too, being nearly a zero vector

but having two 1-bits, one at the most significative left bit and the other at the rightmost position:〈vN+1|= (1,0,0, ...,0,1). Between any

Mersenne number and his twin there is the vertex corresponding to the power 2N , which obviously enough corresponds to an elements of the

canonical basis 〈eN |.

9.2. Complex Logical Object Sets

Coming back to a logical object set Ω, one can choose some function, which applied on an object yields a Boolean hypercube vertex, that is:

∀ω ∈Ω : f (ω) = 〈hI | ∈HN

or similarly as done in the equation 3.1, one can associate to each object belonging to the set Ω a Boolean hypercube vertex, forming a

Boolean tagged set. That is, first forming a tagged Set using the vertices of a Boolean hypercube as tags:

TH = Ω×HN →∀t ∈ TH : t = (ω;〈hI |)⇐ ω ∈Ω∧〈hI | ∈HN . (9.3)

Alternatively, one can use as tags the elements of the decimal transcription SN of a given Boolean hypercube HN :

TS = Ω×SN →∀t ∈ TS : t = (ω;sI)⇐ ω ∈Ω∧ sI ∈ SN = δ (HN). (9.4)

In equations 9.3 and 9.4, it is supposed that HN and what is the same, the natural transcription SN , contain sufficient information on the

elements of Ω, which in turn can be considered in particular as logical objects, to leave almost all sensible knowledge covered up to some

extent and experience, whose measure can be easily associated to the dimension N. Of course both Boolean hypercubes and the decimal

transcript forming natural number sequences are equivalent to the logical hypercubes LN , whose vertices are made by logical elements. One

can write the implication of interchange among the three descriptions of the same concept:

LN ⇔HN ⇔ SN .

10. The Distance of a Boolean Hypercube Vertex from the 〈0| and 〈1| Vectors

While the extreme vectors 〈0| and 〈1| represent the most far away vertices of any Boolean hypercube HN , representing the natural numbers

0 and (2N −1) respectively, the rest of Boolean-logical vertices can be also located concerning these extremal vertices belonging to any

hypercube.

Boolean vertices can be classified in a complementary manner by the number of 0-bits or 1-bits they have, but this just describes some

trivial classification of Boolean vertices. There are in a Boolean hypercube HN , (N +1) vertex classes, which also can be complementary to

another set of classes with the same number of elements. Depending on that, each class corresponds to having: {0,1,2, ...,(N−1),N} 1-bits,

or in a complementary way, the vertex classes might be contemplated as possessing: {N,(N−1), ...,2,1,0} 0-bits.

Although there are several ways to measure the similarity between two-bit strings, see for instance references [17]- [22] as an assorted

example, the distance of a precisely given Boolean vertex say 〈vI | to both extreme vectors can be also used. Such a measure might be

obtained first via its decimal transcription: δ [〈vI |] = dI .

Once obtained the decimal transcription of a Boolean vertex, then two Minkowski-like distances: D0

∣

∣〈vI |− 〈0|
∣

∣ and D1

∣

∣〈vI |− 〈1|
∣

∣ can

be constructed, taking directly the decimal transcription dI for the first distance to the zero vertex, and using the absolute difference:

|dI − (2N −1)| ≡ |dI +1−2N | ≡ |2N − (dI +1)| for the second one to the unity vertex.

Thus, every vertex could be associated with a pair of natural numbers: (D0;D1), which will locate it nearest one or another of the extremal

vertices or make it equidistant to both.

For example, one could be interested to locate from the zero and unity vertices respectively, in the way explained above, the 5-dimensional

Boolean hypercube vertex: 〈h| = (1,0,1,0,1)→ δ [〈h|] = 21. Thus, the distance to the zero vector is just 21, while the distance to the

Mersenne vertex, which in this case has a decimal value: µ2(5) = 25−1 = 31 is 10. One can conclude that this specific vertex example is

nearby to the Mersenne vertex than to the zero vertex. Better, one can represent this situation with a two-dimensional vector, in this specific

case: (21,10). From the logical point of view, if the zero vertex represents absolute falsehood and the unity vertex absolute trueness, the

vertex of the above example can be classified as nearer truth than from untruth.
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10.1. Double distances and the falsehood-trueness content of logical objects

Such double distance classification, providing for every vertex a two-dimensional non-negative definite coordinate element, as explained

above, might be interesting when using Boolean hypercube vertices as sequences of false and true associations, because even if every vertex

will correspond to a non-trivial sequence of false and true elements, the double distances to the extremal hypercube vertices can locate an

associated complicated logical object as being lying next to complete falsehood, represented by the zero vertex 〈0|, or sitting nearby to the

absolute truth, represented by the unity vector 〈1|.
Another short example will provide the already mentioned possible use of the double distance to associate Boolean hypercube vertices to the

extremal vertices for logical purposes. In the equation 8.1, the vertices of a two-dimensional Boolean hypercube are given. The natural

number sequence associated with every one of these vertices is: S2 = {0,1,2,3}. Then the two middle vertices double distances are simply

obtained as: (1,2) and (2,1) respectively. The meaning of this resultant pattern corresponds to associate the vertex (0,1) nearby to the zero

vector, while the vertex (1,0), which is complementary to the former one, is located closer to the Mersenne vertex.

The above simple case, connected with the two-dimensional Boolean hypercube of the equation 8.1, can be also seen from a multidimensional

logical point of view and to the three-valued logic system [23]. After substituting the 0-bit by a logical F−value and the 1-bit by a logical

T−value, then immediately one can consider that the two vertices (F,T ) and (T,F) can be classified as undecidable logical objects, from

the point of view of absolute falsity-trueness values. However, using the defined double distance technique, the first vertex can be thought

located nearby to the absolute falsehood vector (F,F), while the second one, could be seen lying nearest to the absolute truth vertex

(T,T ). This interpretation means that even undecidable logical objects, corresponding to a fuzzy or tagged logical frame, might be studied

possessing extra logical nuances, allowing them to consider holding truth and false contents in different amounts when compared with

respect Aristotelian complete falsehood and trueness vertices.

11. Gödel-Like Properties of Boolean Tagged Sets

The recursive structure of the natural numbers as shown in the previous pages, essentially in section 9, permit us to observe how every

time a Boolean hypercube concatenates with a mono-dimensional one, then, as a result, the number of vertices or elements in the decimal

transcription, is duplicated. What is the same, the tag set construct duplicates itself its elements every time a simple concatenation of this

kind is performed, as it is also shown in the equation 9.2.

That is: one-bit concatenation is enough to duplicate the amount of information, which one can suppose is ready to be attached as Boolean or

logical vertices or natural numbers tags to the elements of an object set. In case this extra information is not needed; even so, the new tags,

which can be generated in this one-bit way, can be used to enrich the available information with minimal effort.

However, if the new extended tags are used, then the possibility appears to create this augmented information once again and thus new

extended tags can be added to the initial tag set.

No end could be envisaged to stop this iterative process, which will reappear along every time one might need more information to be added

as Boolean or logical vertex tags to an object set. Such characteristics shared by both Boolean and logical basis sets and the attached natural

numbers can be taken as a Gödel-like theorem [34] property, a characteristic which was already discussed in reference [9]. With this, it is

meant the intrinsic incompleteness and unprovability of any logical structure which can be based on a Boolean or logical basic description.

One can advance that in general almost all, if not all, human knowledge might be translated into a Boolean-logical framework. Therefore,

any human knowledge construct is incomplete and unprovable.

Such a recursive procedure illustrates the possibility to assemble a simple path leading to an increase in the information knowledge about

a known object set, and the impossibility that any (in the present case: logical) theory becomes complete. A simple 1-bit reconstructs a

completely new set of logical information structures, equal in number to the initial ones, which are also preserved with the addition of a

complementary single 0-bit.

Describing this issue again in short: a unique 1-bit concatenated to any initial set of Boolean-logical tags can completely transform the

tagged set information contents, while the initial original tags are preserved via a 0-bit concatenation.

Therefore, no Boolean-logical information about some object set can be considered final and complete, but always lying one step back, until

the use of a 1-bit concatenation changes everything, doubling the potentially available information.

Of course, the same incompleteness occurs in the set of decimal transcription of a given Boolean-logical hypercube. That is, in the

information duplication: HN →HN+1, there is also a duplication of the sequence of the natural number transcription, where: SN → SN+1

implies that: SN+1 = SN ∪2N ⊕SN . Meaning, as before, that to every element of SN the power: 2N is added. Evidently, because of this

information doubling, a similar expansion appears associated with the tags or fuzzy logical values in logical object sets.

12. The Limits of Artificial Intelligence

The issue of fuzzy Boolean tagged sets might not only be associated with a Gödel-like impossibility to get rid of incompleteness in any

kind of theoretical or experimental structure, whenever such structure can be transformed into bit strings. It has immediate consequences

in handling Artificial Intelligence (AI) devices (wherein this denomination also machine learning procedures are included to simplify the

reasoning of the present discussion) constructed for any purpose and at any complexity level, the development of logical systems included.

Something similar has been commented on machine learning not long ago [30].

What it seems not commented at all, as far as the present author knows, is the nature of any AI procedure, by extension of any computational

procedure, which is or can be running in some computer, from small desktop to supercomputers or clusters of them. They undoubtedly run

as programs written in any available programming language.

Any application program constructed for any purpose is, sorry for the redundancy, programmed by one or several programmers. Because of

this, a program cannot perform anything else outside of the programmed code provided by the programmer(s). That is: not included by the

programmer(s) within the code. This is not the only limit of any given computing procedure. In old and modern computers results are in

need to be reproducible, and the digital machines are thus lacking the freedom to provide different results than these expected to be yielded

by a given program.
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That is, every time that the same input is fed up with a program, no matter how complex can be, the same output will be obtained. In this

sense, programs running on digital computers are predictable. Certainly, one can simulate randomness through adequate programming

techniques, but these techniques need a random seed, which repeats the pseudo-random series every time the same seed is introduced as

input. In brief, computers’ lack of freedom of will, is deterministic.

No one can predict if the announced quantum computers will continue to be fully deterministic or for some purposes can be programmed to

act with some output freedom of choice. Certainly, for engineering purposes, say, even quantum computers must behave deterministically,

otherwise, it will become impossible to compute any object with reasonable confidence.

However, with some easy thought, one can describe fuzzy Boolean hypercubes, which can possess even the ability to change the information

content, depending on some parameter(s) which can act as a time-like dependence or evolution, see reference [35]. That is, with the aid of

this kind of hypercubes not only the fuzziness of the involved (pseudo-)Boolean tags, which can be chosen as the hypercube vertices, can be

present and attached to any kind of logical objects, but one can even envisage their time-like evolution depending on ad hoc parameter(s).

Such previous statements appear to be obvious if one analyzes the essence of an AI procedure. One can consider that they are based on a

complex mathematical scheme, built on computational programming grounds, and previously trained by a finite object subset to become

operative. An AI procedure is hopefully trained, so it achieves the stage of being able to recognize and handle new objects, which have been

not previously used in the training or learning period stage.

It seems that the forest of methods where AI is grounded; among them logic, statistical learning, and classifiers, image recognition, ... could

also be essentially based on a large variety of the so-called Neural Networks, see for an excellent resume reference [24].

A brief description example of the use and characteristics of AI within the neural network context will be done within the interesting

background of medicinal chemistry. The use of neural networks in drug design is quite old, see for instance reference [25]. However, modern

AI users in this field can be quite preposterous sometimes, offering publications that intend to astonish the naive readers. A good example of

the idea of obtaining exhaustivity within the field of drug design can be well represented by the article of reference [26]. There, the authors

describe an AI way to obtain molecular information.

Pretending to have produced a sample of all molecular structures bearing potential biological activity 3. In the not very far years there is

a large amount of paper, which in one way or another use AI to the aim of molecular design, it is too short space to describe and quote

all of them. However, some examples are worth comment. Another at least not so pretending set of studies on the same AI application

field was recently published [27], this time various authors were offering a more reasonable point of view to the public, though. But a

preposterous and overwhelming very recent contribution, precludes a not particularly good perspective in the field of AI application to

molecular engineering [28] via theoretically dubious docking techniques. The same can be told about another pair AI recently published

papers, which claim to have solved old chemical problems. The first describes a solution of the protein folding problem (see the web site [30]

for more information and references), while the basic background relies on a classical parametric structure of the computations. The second

claims to provide a black box Schrödinger equation solution [31] of any quantum chemical problem but based on a Monte Carlo procedure to

solve the wave function equation, but using simple ideas to construct the wave functions, as atomic centered basis sets. One can wonder,

among several technical questions if a pseudo random procedure will appear reliable enough for large molecular systems.

This kind and other multiple applications of AI algorithms, in case one agrees that these processes (usually acting as black boxes) can be

called in this way, try to simulate as much as possible a brain activity knowledge process. Similarly, as brain most of the development does,

these procedures need a training initialization, a specific information gathering as a starting point for every purpose of AI deployment.

The resultant computational trained structure, according to the AI users, must be hopefully able to build new information concerning objects

not used in the training period.

Now, one must be aware that in the present discussion the AI structure sits into a computer in the form of a program. Thus, a discussion about

the limits of AI must consider such a program background, and the boundaries of such a situation are to be linked to the proper AI limits.

These points above are coupled to the fact that new information is generated from the initial one, which has been provided during the training

step. Then, additionally, some important questions arise.

For instance, how pretended AI efficiency can happen? Whenever the AI system, must consist of a program written by some operator, and

thus cannot generate new information within the program itself if left intact. Unless such an issue is provided from an external extra training

step or by a program modifying source: included in the program or feed on it in some moment of the analysis?

Is any new source of information pre-programmed and based on the knowledge provided by every new object feed to the procedure, analyzed

by the trained algorithm, and finally used to modify the initial information? If so, the AI will act on every new analysis as being in another

stage of the training step. Therefore, entering a never-ending loop, taking for granted the intrinsic Gödel-like incompleteness of any

information system [30].

Alternatively, the AI answer on a new object analysis is just given by an as sophisticated as one can imagine kind of interpolation (or

extrapolation, which constitutes a shady workout, prone to failure) among the information of the training objects used?

After these preliminary discussions on the nature of computing and AI, one can also consider now the problem of causality, which is dubious

that any AI-based procedure can include, at least with the actual level of programmed AI systems. Nobody can say how these issues will

evolve with a new breed of quantum computers, which even might be able (difficult to think how this be reached, though) to escape in some

circumstances the deterministic behavior of digital computers. To peruse an excellent discussion on the nature of the important causality

topic by Bunge, reference [33] is recommended.

The acausal character of AI appears to be another issue and can be stored on the same shelf where statistical correlation remains. It is

well-known that such a statistical relationship does not imply a causal connection between the variables involved. No doubt about this,

because there is a shared set of similarities between statistical correlation and AI. Both might use a training set, and both provide acausal

relationships on new objects and some parameters, both present Gödel-like incompleteness.

Perhaps the AI acausal background is a consequence of the fact that the information content of the related procedures also bears the paradox

of apparently creating new information, starting from an a priori established set of computational structures. This formal appearance is

certainly shared by AI with the well-known set of statistical correlation procedures.

Such a problem is not the only one that can be found in AI procedures. As it has been previously commented, unprovability is another one,

3The title of the quoted paper might be taken as representative of the authors’ attitude: ”Stochastic Voyages into Unchartered Chemical Space Produce a Representative Library

of All Possible Drug-Like Compounds”. One can say that, not only the apparently complete advertised results seem a bit preposterous, considering of the Gödel-like properties of

information manipulation, but even the wording at the beginning of the title statement has been duly criticized some years ago [28].
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see reference [30] to have some information about this problem too, which can be linked to one of Gödel’s theorems [34], and thus also to

the discussion contained in the previous section.

Even more, another similar problem that also can be found within AI procedures will be discussed now. When setting up initial information,

any AI might be considered that produces the equivalent of some bit string, provided that any information or logical string is constructed,

bearing a dimension, say, as large as the nature of the problem requires.

Such an initial setup cannot provide new appearances of the same kind of bit strings showing out of nowhere, except information already

contained into the original bit string appears. What could be conceivable to consider is the possibility to obtain Boolean vertex transformations

belonging to the Boolean-logical hypercube containing the initial bit string. This might be allowed as a posterior step of information

manipulation because, given a bit string of dimension N, the remaining 2N − 1 vertex components of the hypercube holding them are

well-known and can be easily chosen as vertices of some Boolean hypercube HN for any purposes.

That is, such information changes shall be found within the set of the initial well-defined dimension of the Boolean-logical bit structures,

where belongs to the gathered training information.

To better visualize this situation, suppose that the AI training set has been able to construct information contained into some N−dimensional

Boolean hypercube: HN . In principle, no limit must hinder the dimension N. Thus, theoretically one can suppose that the information

generated after the training period might be contained in some Boolean vertex:〈hI | ∈HN .

What one can easily grasp is that without adding at all even a new 1-bit of information to the trained system represented by 〈hI |, any answers

the AI procedure can provide are compelled to be located among the Mersenne number µ2(N) of the remaining vertices of the original

Boolean-logical hypercube, where the Boolean vertex representing the trained AI belongs.

It has already been previously discussed how by addition of one bit, the amount of information of any Boolean hypercube duplicates. If one

bit is added to the initial Boolean-logical AI structure, then the training period might be invalidated or transformed into another completely

different result.

Therefore, no new information content must be created by an AI post-training manipulation out of the vertices belonging to HN . The

AI resulting outcome must be just the consequence of a shift from a Boolean-logical vertex to another, that is: 〈hI | → 〈hJ | or any other

manipulation among the known vertices of HN .

Such a program could be modified if and only if, with the analysis of a new object, the AI answer and the information of the newly tested

object could be absorbed into the old pool of training objects. Then, the resulting algorithm issued from the training set period results in

being necessarily modified. Subsequently, one could face the transformation of the original Boolean-logical hypercube HN into another one

of larger dimensions, say: HN →HN+M .

In case this possibility appears to be feasible (an insecure question considering all possible problems to be treated), without the intervention

of an external operator cooperating with the whole AI process, then it might appear the same as a digital machine can program itself.

Nowadays, such self-programming ability still is a bit difficult to admit, without another program taking care of the initial one and doing

the reprogramming job, say automatically. But such an exploit within a program’s ability must be made with another program made by an

external operator beforehand and somehow included in the whole procedure. Further reprogramming will initiate a never-ending process.

Hence, unless an external programmer re-programs the code or simpler: the AI algorithm acting with a re-programming issue, might

re-educate itself accordingly.

An AI algorithm once trained means that one has fed the training stage with objects, described in some manner, and their attached tags.

Once the AI is trained, the desideratum is such that the learned AI system in front of a new object, described in the same fashion as the ones

previously used in the training period, could be able to generate part of some new unknown object tag.

If this previously unknown tag is not contained in the AI training phase, then that will be the same as new information has appeared from

nowhere. In the case it is so, this freshly new information must be feed again as part of the training source. And the AI process will enter an

unending loop or become corrupt at the end. The only possibility to avoid the appearance of such a loop is that the information generated

because of the new object input corresponds to an interpolation of the information already known by the trained AI.

Therefore, it seems a bit out of question pretending that, after a correct training phase, a computational AI structure can generate by itself,

even partially, new Boolean-logical structures, not contained in the Boolean-logical pool, the N−dimensional hypercube HN , organized by

the initial training object set.

Nevertheless, even if some kind of procedure, generating new information not contained in the old experience, could be successfully

implemented with the aid of new computing machines, and possessing additional self-programming abilities, one must be again aware that a

unique bit, added to any old information structure, can duplicate the information content of the whole affair. This might revert an AI process

into a never-ending learning procedure and drive the whole computational structure into a combinatorial information explosion.

For the moment, the best one can say about this problem is that any AI result appears forcibly deterministic, incomplete, and acausal. In

agreement with the author of reference [30], one might learn and accept to become a bit humbler about the abilities of AI procedures.

13. Conclusion

A succinct revision of the fuzzy set definition, extending this mathematical structure into the tagged set construction, permits with the aid of

Boolean hypercubes to create a general formalism involving Boolean vertices, fuzzy logical vertices, and natural number tags. This point

of view results in an equivalent formalism, which permits to study of falsity-verity contents of logical object sets from three equivalent

kinds of points of view, represented by the three kinds of different tags available. Because of the option to construct Boolean hypercubes

recursively, then logical objects tags can be generated also recursively. This possibility causes the equivalent of Gödel’s unprovability and

incompleteness in fuzzy multivalued logical theories. Finally, such a result also permits the description of some limitations appearing in the

AI procedures, which can be involved in the development of fuzzy logical systems based on computational grounds.
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