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Extended Newton-type Method for Generalized

Equations with Hölderian Assumptions

M. Z. Khaton1, M. H. Rashid2*

Abstract
In the present paper, we consider the generalized equation 0 ∈ f (x)+g(x)+F (x), where f : X → Y is Fréchet

differentiable on a neighborhood Ω of a point x̄ in X , g : X → Y is differentiable at point x̄ and linear as well

as F is a set-valued mapping with closed graph acting between two Banach spaces X and Y . We study the

above generalized equation with the help of extended Newton-type method, introduced in [ M. Z. Khaton, M.

H. Rashid, M. I. Hossain, Journal of Mathematics Research, 10(4) (2018), 1–18.], under the weaker conditions

than that are used in Khaton et al. (2018). Indeed, semilocal and local convergence analysis are provided for

this method under the conditions that the Fréchet derivative of f and the first-order divided difference of g are

Hölder continuous on Ω. In particular, we show this method converges superlinearly and these results extend

and improve the corresponding results in Argyros (2008) and Khaton et al. (2018).

Keywords: Divided difference, Extended Newton-type method, Generalized equations, Lipschitz-like mappings,

Semilocal convergence.
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1. Introduction

Robinson [27, 28] introduced generalized equation problems as an universal instrument for describing, analyzing and solving

various type of problems in a framed way. This form of generalized equation problems have been discussed widely. Typical

examples are systems of inequalities, systems of nonlinear equations, variational inequality problems, linear and nonlinear

complementary problems and etc; see for examples [7, 19, 20]. Let Ω be a subset of X . Let f be a Fréchet differentiable

function from Ω to Y and ∇ f be its Fréchet derivative, g be a differentiable at x̄ but it may not be differentiable in a

neighborhood Ω of x̄ and linear function from Ω to Y , [x,y;g] denote the first-order divided difference at the points x and y and

F be a set-valued mapping from X to Y with closed graph. To find a point x in Ω, we consider the generalized equation of

the following form:

0 ∈ f (x)+g(x)+F (x). (1.1)

Pietrus and Alexis [1] associated the following Newton-like method for solving (1.1):

0 ∈ f (xk)+g(xk)+(∇ f (xk)+ [2xk+1 − xk,xk;g])(xk+1 − xk)

+F (xk+1), for k = 0,1, . . . (1.2)
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and proved that the sequence generated by the process (1.2) converges superlinearlly. To solve the generalized equation (1.1),

Rashid et al. [25] established the local convergence results using the weaker conditions than Alexis and Pietrus [1] for the

method (1.2) and expanded the sequels by fixing a gap in the proof of [1, Theorem 1].

Furthermore, Hilout et al. [12] associated the following sequence for solving (1.1):







x0 and x1 are two starting points

yk = αxk +(1−α)xk−1; here α ∈ (0,1)
0 ∈ f (xk)+ [yk,xk; f ](xk+1 − xk)+F (xk+1)

and they proved the superlinear convergence of the sequence generated by this method under the assumption that f is only

differentiable and continuous at a solution x∗.

For approximating the solution of (1.1), Argyros and Hilout [4] considered the following Newton-like method :

0 ∈ f (xk)+g(xk)+
(

∇ f (xk)+ [xk+1,xk;g]
)

(xk+1 − xk)+F (xk+1), for k = 0,1, . . . , (1.3)

and under Lipschitz continuity property of ∇ f , they presented the quadratic convergence of the method (1.3).

Moreover, when F = {0}, Argyros [2] investigated on local as well as semilocal convergence analysis for two-point

Newton-like methods for solving (1.1) in a Banach space setting under very general Lipschitz type conditions. An extensive

study on these issues has been investigated by Rashid [3, 19, 20, 21] and other researchers when g = 0. In the case when F is

either zero mapping or nonzero mapping, a large number Newton-like iterative methods have been studied and we will not

mention here all in detail.

Suppose that x ∈ X and N (x) is the subset of X which is defined as

N (x) =
{

d ∈ X : 0 ∈ f (x)+g(x)+(∇ f (x)+ [x+d,x;g])d +F (x+d)
}

.

Under some suitable conditions, Khaton et al. [18] introduced and studied extended Newton-type method, when ∇ f is

continuous and Lipschitz continuous as well as g admits first-order divided difference satisfying Lipschitzian condition. Inspired

by the work of Argyros in [4], Khaton et al. [18] considered the following “so called” extended extended Newton-type method

(see Algorithm 1):

Algorithm 1 (Extended Newton-type Method)

Step 0. Pick η ∈ [1,∞), x0 ∈ X , and put k := 0.

Step 1. If 0 ∈ N (xk), then stop; otherwise, go to the next Step 2.

Step 2. If 0 /∈ N (xk), choose dk ∈ N (xk) such that

‖dk‖ ≤ η dist (0,N (xk)).

Step 3. Set xk+1 := xk +dk.

Step 4. Replace k by k+1 and go to Step 1.

In contrast Algorithm 1 with the known results, we have the following conclusions: When F = 0 and g = 0, it is obvious

that Algorithm 1 is turned into the known Gauss-Newton method which is a famous iterative technique for solving nonlinear

least squares (model fitting) problems and has been studied widely; see for example [8, 9, 13, 15, 29, 30]. Within the case

when g = 0, several kind of methods for solving (1.1) were established by Rashid [22, 23, 24] and also obtained their local and

semilocal convergence.

The objective of this article is to continue to study the semilocal and local convergence for the extended Newton-type

method under the weaker conditions than [18], that is, ∇ f is (L,q)-Hölder continuous and g admits the first-order divided

difference satisfying q-Hölderian condition. The Lipschitz-like property of set-valued mappings which is the main tool of

this study whose concepts can be found in Aubin [5] in the context of non smooth analysis and it has been studied by a huge

number of mathematicians [1, 4, 10, 12, 17]. The main result of this study is semilocal analysis for the extended Newton-type

method, that is, based on the information around the initial point, the main results are the convergence criteria, which provide

few suitable conditions ensuring the convergence to a solution of any sequence generated by Algorithm 1. Consequently, the

results of the local convergence for the extended Newton-type method are attained.

This article is organized as follows: Some necessary notations, notions, preliminary results and a fixed-point theorem are

recalled in Section 2 that are used in the subsequent sections. In Section 3, we consider the extended Newton-type method

defined by Algorithm 1 to approximate the solution of (1.1). Using the concept of Lipschitz-like property for the set-valued



Extended Newton-type Method for Generalized Equations with Hölderian Assumptions — 3/13

mapping, in this section we also establish the existence and superlinear convergence of the sequence generated by Algorithm 1

in both semilocal and local cases. At the end, we give a summary of the main results and present a comparison of this study

with other known results.

2. Notations and Preliminaries

In this section, we evoke some notations and take out some results that will be helpful to verify our main results. Let X and Y

be two complex or real Banach spaces. Also, let p ∈ X and B(p,α) = {u ∈ X : ‖u− p‖ ≤ α} denote the closed ball centered

at p with radius α > 0, and F be a set-valued mapping with closed graph. The domain of F , can be stated as

domF := {p ∈ X : F (p) 6= /0}.

Let q ∈ Y . Then the inverse of F , denoted by F−1, is defined by

F
−1(q) := {p ∈ X : q ∈ F (p)}.

The graph of F , denoted by gphF , is defined by

gphF := {(p,q) ∈ X ×Y : q ∈ F (p)}.

Let M and N be two subsets of a non empty set X and p be a point in X . The distance from a point p to a set M is defined by

dist(p,M) := inf{‖p−m‖ : m ∈ M}.

In addition, the excess e from the set M to the set N is defined by

e(N,M) := sup{dist(n,M) : n ∈ N}.

The set L (X ,Y ) is the space of linear operators from X to Y and all the norms are denoted by ‖ · ‖.

Definition 2.1. Suppose f ∈ L (X ,Y ). Then f is said to have the first order divided difference on the points x1 and y1 in X

(x1 6= y1) if the following properties hold:

(a) [x1,y1; f ](y1 − x1) = g(y1)−g(x1) for x1 6= y1;

(b) if f is Fréchet differentiable at x1 ∈ X , then [x1,x1; f ] = ∇ f (x1).

Now we mention the notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings, which was established by Aubin

and have been studied widely. To see the more details about this topic, the reader could refer to [5, 6, 26].

Definition 2.2. Let Ψ : Y ⇒ X be a set-valued mapping and (q̄, p̄) ∈ gphΨ with α p̄, αq̄ and ν are positive constants. Then

Ψ is said to be

(a) Lipchitz-like on B(q̄,αq̄) relative to B( p̄,α p̄) with constant ν if the following inequality holds:

e(Ψ(q1)∩B(p̄,αp̄),Ψ(q2))≤ ν‖q1 −q2‖ for every q1,q2 ∈ B(q̄,αq̄).

(b) pseudo-Lipschitz around (q̄, p̄) if there exist constants α ′
p̄ > 0,α ′

q̄ > 0 and ν ′ > 0 such that Ψ is Lipchitz-like on B(q̄,α ′
q̄)

relative to B( p̄,α ′
p̄) with constant ν ′.

The following lemma is due to Rashid et al. [26, Lemma 2.1], which is effective and the proof of this lemma is similar to

that of [16, Theorem 1.49(i)].

Lemma 2.3. Let Ψ : Y ⇒ X be a set-valued mapping and (ȳ, x̄) ∈ gph Ψ. Also suppose that Ψ is Lipschitz-like on B(ȳ,rȳ)
which is related to B(x̄,rx̄) with constant µ . Then

dist (x,Ψ(y))≤ ν dist(y,Ψ−1(x)),

for each x ∈ B(x̄,rx̄) and y ∈ B(ȳ,
rȳ

3
) satisfying dist(y,Ψ−1(x))≤

rȳ

3
, is hold.
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Dontchev and Hager [11] proved Banach fixed point theorem, which has been employing the standard iterative concept

for contracting mapping. To prove the existence of the sequence generated by Algorithm 1, the following lemma will play an

important rule in this study.

Lemma 2.4. Let Φ : X ⇒ X be a set-valued mapping. Let x∗ ∈ X , 0 < λ < 1 and r > 0 be such that

dist(x∗,Φ(x∗))< r(1−λ ) (2.1)

and

e(Φ(x1)∩B(x∗,r),Φ(x2))≤ λ‖x1 − x2‖ for all x1,x2 ∈ B(x∗,r). (2.2)

Then Φ has a fixed point in B(x∗,r), that is, there exists x ∈ B(x∗,r) such that x ∈ Φ(x). Furthermore, if Φ is single-valued,

then there exists a fixed point x ∈ B(x∗,r) such that x = Φ(x).

The preceding lemma is a generalization of a fixed point theorem and it has been taken from [14], where in the second

assertion the excess e is updated by Hausdorff distance.

3. Convergence Analysis

Let f : Ω ⊆ X → Y be a Fréchet differentiable function on a neighborhood Ω of x̄ with its derivative denoted by ∇ f ,

g : Ω → Y which is linear and differentiable at x̄ and let F : X ⇒ Y be a set-valued mapping with closed graph. This section

is dedicated to prove the existence of a sequence generated by the extended Newton-type method, represented by Algorithm 1

and show the superlinear convergence of the sequence generated by this method.

Let x ∈ X . Then for each x ∈ X , we get

g(x)+ [x+d,x;g]d = g(x)− [x+d,x;g](x− (x+d))

= g(x)− (g(x)−g(x+d)) = g(x+d). (3.1)

Define a set-valued mapping Gx by

Gx(·) := f (x)+g(·)+∇ f (x)(·− x)+F (·).

It holds, for the formation of N (x) and (3.1), that

N (x) =
{

d ∈ X : 0 ∈ Gx(x+d)
}

.

In addition, for any z ∈ X and y ∈ Y , we get the following identity:

z ∈ G
−1
x (y) if and only if y ∈ f (x)+g(z)+∇ f (x)(z− x)+F (z). (3.2)

Particularly, let (x̄, ȳ) ∈ gphGx̄. Then, the definition of closed graphness of Gx̄ signifies that

x̄ ∈ G
−1
x̄ (ȳ). (3.3)

The following outcome constitutes the equivalence between G
−1
x̄ and ( f +g+F )−1. This result is due to [18].

Lemma 3.1. Let (x̄, ȳ) ∈ gph ( f +g+F ). Suppose that ∇ f is continuous around x̄. Assume that g admits first-order divided

difference. Then the followings are equivalent:

(i) The mapping ( f +g+F )−1 is pseudo-Lipschitz at (ȳ, x̄);

(ii) The mapping G
−1
x̄ is pseudo-Lipschitz at (ȳ, x̄).

For our suitability, let rx̄ > 0, rȳ > 0 and B(x̄,rx̄)⊆ Ω∩domF . Suppose that ∇ f is (L,q)-Hölder continuous on B(x̄,rx̄),
that is , there exists L > 0 such that

‖∇ f (x)−∇ f (x′)‖ ≤ L‖x− x′‖q,q ∈ (0,1], for any x,x′ ∈ B(x̄,rx̄), (3.4)

g admits a first-order divided difference satisfying q-Hölder condition, that is, there exists ν > 0 such that, for all x,y,v,w ∈
B(x̄,rx̄) (x 6= y,v 6= w),

‖[x,y;g]− [v,w;g]‖ ≤ ν(‖x− v‖q +‖y−w‖q), (3.5)
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and the mapping G
−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M, that is,

e(G−1
x̄ (y1)∩B(x̄,rx̄),G

−1
x̄ (y2))≤ M‖y1 − y2‖ for any y1, y2 ∈ B(ȳ,rȳ). (3.6)

Further, for ȳ, the closed graph property of Gx̄ implies that f +g+F is continuous at x̄ i.e.

lim
x→x̄

dist
(

ȳ, f (x)+g(x)+F (x)
)

= 0 (3.7)

is hold.

Let ε0 > 0 and write

r̄ := min
{

rȳ −2ε0rx̄,
rx̄(1−Mε0)

4M

}

. (3.8)

Then

r̄ > 0 if and only if ε0 < min
{ rȳ

2rx̄

,
1

M

}

. (3.9)

The following lemma is taken from [26, Lemma 3.1] and it plays a crucial role for convergence analysis of the extended

Newton-type method.

Lemma 3.2. Assume that G
−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M and that

sup
x′,x′′∈B(x̄,

rx̄
2 )

‖∇ f (x′)−∇ f (x′′)‖ ≤ ε0 < min
{ rȳ

2rx̄

,
1

M

}

. (3.10)

Let x ∈ B(x̄, rx̄
2
) and ε0 be defined by (3.9). Suppose that ∇ f is continuous on B(x̄, rx̄

2
). Let r̄ be defined by (3.8) such that (3.10)

is true. Then G−1
x is Lipschitz-like on B(ȳ, r̄) relative to B(x̄, rx̄

2
) with constant M

1−Mε0
, that is,

e(G−1
x (y1)∩B(x̄,

rx̄

2
),G−1

x (y2))≤
M

1−Mε0
‖y1 − y2‖ for any y1, y2 ∈ B(ȳ, r̄).

For our convenience, we would like to introduce some notations. First we define the mapping Jx : X →Y , for each x ∈X ,

by

Jx(·) := f (x̄)+g(·)+∇ f (x̄)(·− x̄)− f (x)−g(x)−
(

∇ f (x)+ [·,x;g]
)

(·− x)

and the set-valued mapping Φx : X ⇒ X by

Φx(·) := G
−1
x̄ [Jx(·)]. (3.11)

Then for any x′, x′′ ∈ X , we have

‖Jx(x
′)− Jx(x

′′)‖ = ‖g(x′)−g(x′′)− [x′,x;g](x′− x)+ [x′′,x;g](x′′− x)

+(∇ f (x̄)−∇ f (x))(x′− x′′)‖. (3.12)

Furthermore, let q ∈ (0,1] and define

r̂ := min
{

rȳ −2Lr
q+1
x̄ ,

rx̄(1−MLr
q
x̄)

4M

}

. (3.13)

Then

r̂ > 0 ⇔ L < min
{ rȳ

2r
q+1
x̄

,
1

Mr
q
x̄

}

. (3.14)
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3.1 Superlinear Convergence

In this section we will show that the sequence generated by Algorithm 1 converges superlinearly if ∇ f is (L,q)-Hölderian and g

admits first-order divided difference satisfying (ν ,q)-Hölder condition. In fact, the following theorem provides some sufficient

conditions ensuring the convergence of the extended Newton-type method with initial point x0.

Theorem 3.3. Let η > 1 and q ∈ (0,1]. Assume that G
−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M and

that ∇ f is (L,q)- Hölder continuous on B(x̄, rx̄
2
) and g admits first-order divided difference that satisfies (3.5). Let r̂ be defined

by (3.13) so that (3.14) is satisfied. Let ν > 0, δ > 0 be such that

(a) δ ≤ min
{ rx̄

4
, (q+5)r̂, 1,

( 3(q+1)rȳ

[L(q+2)+2ν(q+1)](6.2q +1)

)
1

(q+1)
}

,

(b) (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qr
q
x̄

)

≤ (q+1),

(c) ‖ȳ‖<
[L(q+2)+2ν(q+1)]

3(q+1)
δ q+1.

Suppose that

lim
x→x̄

dist(ȳ, f (x)+g(x)+F (x)) = 0. (3.15)

Then there exist some δ̂ > 0 such that any sequence {xn} generated by Algorithm 1 with initial point x0 in B(x̄, δ̂ ) converges

superlinearly to a solution x∗ of (1.1).

Proof. According to the assumption (a) 4δ ≤ rx̄ and η > 1, by assumption (b) we can write the inequality as follows

(2qM+1)(q+5)[L(q+2)+2ν(q+1)]δ q = (2qM+1)[L(q+2)+2ν(q+1)]
(

(q+1)δ q +4δ q
)

≤ (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +4δ q
)

≤ (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qr
q
x̄

)

≤ (q+1). (3.16)

Furthermore, using assumption (a) 4δ ≤ rx̄ and assumption(b) we can reduce the inequality as follows

ηM[L(q+2)+2ν(q+1)]δ q < η2qM[L(q+2)+2ν(q+1)](q+5)δ q

≤ (2qM+1)[L(q+2)+2ν(q+1)](η(q+1)δ q +4δ q)−2qML4δ q

≤ (2qM+1)[L(q+2)+2ν(q+1)](η(q+1)δ q +41−qr
q
x̄)−2qML41−qr

q
x̄

≤ (q+1)−2qML41−qr
q
x̄ .

Since q ∈ (0,1] then, we get 2qML41−qr
q
x̄ ≥ (q+1)MLr

q
x̄ . Now using (3.16) in the above equation and it becomes

ηM[L(q+2)+2ν(q+1)]δ q ≤ (q+1)− (q+1)MLr
q
x̄ . (3.17)

Putting

s :=
ηM[L(q+2)+2ν(q+1)]δ q

(q+1)(1−MLr
q
x̄)

.

Then, from (3.17) we have that

s ≤ 1. (3.18)

Pick 0 < δ̂ ≤ δ such that, for each x0 ∈ B(x̄, δ̂ ),

dist(0, f (x0)+g(x0)+F(x0))≤
[L(q+2)+2ν(q+1)]

3(q+1)
δ q+1. (3.19)
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Note that since (3.15) holds and assumption (c) is true, we assume that such δ̂ exists, which satisfies (3.19). Let x0 ∈ B(x̄, δ̂ ).
By induction we will show that Algorithm 1 generates at least one sequence and such sequence {xn} generated by Algorithm 1

satisfies the following statements:

‖xn − x̄‖ ≤ 2δ (3.20)

and ‖dn‖ ≤ s
(1

3

)(q+1)n

δ , (3.21)

hold for every n = 0,1,2, ....
Define

rx :=
(q+5)M

4(q+1)

(

[L(q+2)+2ν(q+1)]‖x− x̄‖(q+1)+(q+1)‖ȳ‖
)

for each x ∈ X . (3.22)

From (3.16) we get

2qM[L(q+2)+2ν(q+1)]δ q ≤
q+1

q+5
. (3.23)

and [L(q+2)+2ν(q+1)]δ q ≤
q+1

q+5
. (3.24)

Hence by the combination of δ ≤ (q+5)r̂ in assumption (a) and inequality (3.24), we get

‖ȳ‖ <
[L(q+2)+2ν(q+1)]δ q+1

3(q+1)

≤
(q+1)

(q+1) · (q+5)
·
(q+5)r̂

3
=

r̂

3
. (3.25)

Utilizing (3.23) and assumption (c) together with (3.24), we get from (3.22) that

rx ≤
(q+5)M

4(q+1)

(

[L(q+2)+2ν(q+1)]‖x̄− x0‖
q+1 +

[L(q+2)+2ν(q+1)]

3
δ q+1

)

<
(q+5)M

12(q+1)

(

3[L(q+2)+2ν(q+1)](2δ )q+1 +2q[L(q+2)+2ν(q+1)]δ q+1
)

=
(q+5)M

12(q+1)
[L(q+2)+2ν(q+1)]δ q+1(3.2.2q +2q)

=
(q+5)(6 ·2q +2q)M

12(q+1)
[L(q+2)+2ν(q+1)]δ q+1

=
(q+5)7 ·2qM

12(q+1)
[L(q+2)+2ν(q+1)]δ p+1

=
7(q+5)

12(q+1)
·
(q+1)

(q+5)
δ <

7

12
δ < 2δ for each x ∈ B(x̄,2δ ). (3.26)

Observe that (3.20) is trivial for n = 0.

At first, we need to prove N (x0) 6= /0 to show that (3.21) holds for n = 0. The nonemptyness of N (x0) will ensure us to

deduce the existence of the point x1. We will apply Lemma 2.4 to the map Φx0
with η0 = x̄ for completing this. We have to

show that Lemma 2.4 holds with r := rx0
and λ :=

q+1

q+5
satisfying both assertions (2.1) and (2.2). We get from (3.3) that

x̄ ∈ G
−1
x̄ (ȳ)∩B(x̄,2δ ). According to the definition of the excess e and (3.11), defined as the mapping of Φx0

, we have that

dist(x̄,Φx0
(x̄)) ≤ e(G−1

x̄ (ȳ)∩B(x̄,rx0
),Φx0

(x̄))

≤ e(G−1
x̄ (ȳ)∩B(x̄,2δ ),Φx0

(x̄))

≤ e(G−1
x̄ (ȳ)∩B(x̄,rx̄),G

−1
x̄ [Jx0

(x̄)]). (3.27)
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Since ∇ f is (L,q)-Hölder continuous and g admits first-order divided difference satisfies Hölderian condition, for every

x ∈ B(x̄,2δ )⊆ B(x̄, rx̄
2
), we have that

‖Jx0
(x)− ȳ‖ = ‖ f (x̄)+g(x)+∇ f (x̄)(x− x̄)− f (x0)−g(x0)

−(∇ f (x0)+ [x,x0;g])(x− x0)− ȳ‖

≤ ‖ f (x̄)− f (x0)−∇ f (x0)(x̄− x0)‖+‖
(

∇ f (x0)−∇ f (x̄)
)

(x̄− x)‖

+‖g(x)−g(x0)− [x,x0;g](x− x0)‖+‖ȳ‖

≤
L

q+1
‖x̄− x0‖

q+1 +‖[x0,x;g]− [x,x0;g]‖‖x− x0‖+

L‖x0 − x̄‖q‖x̄− x‖+‖ȳ‖ (3.28)

≤
L

q+1
‖x̄− x0‖

q+1 +ν
(

‖x0 − x‖q +‖x− x0‖
q
)

‖x− x0‖+

L‖x0 − x̄‖q‖x̄− x‖+‖ȳ‖

≤
L

q+1
(2δ )q+1 +L(2δ )q ·2δ +ν

(

(2δ )q +(2δ )q
)

·2δ +‖ȳ‖

≤
L(q+2)+2ν(q+1)

q+1
δ q+1 ·2q+1 +‖ȳ‖. (3.29)

Now through the assumptions (a)
[L(q+2)+2ν(q+1)](6 ·2q +1)

3(q+1)
δ q+1 ≤ rȳ and (c), (3.28) gives that

‖Jx0
(x)− ȳ‖ ≤

[L(q+2)+2ν(q+1)]

q+1
2q+1δ q+1 +

[L(q+2)+2ν(q+1)]

3(q+1)
δ q+1

=
[L(q+2)+2ν(q+1)](3.2.2q +1)

3(q+1)
δ q+1

<
[L(q+2)+2ν(q+1)](6 ·2q +1)

3(q+1)
δ q+1

≤ rȳ. (3.30)

This means that Jx0
(x) ∈ B(ȳ,rȳ). Moreover, let x = x̄ in (3.28). Then it is easily proved that

Jx0
(x̄) ∈ B(ȳ,rȳ)

and

‖Jx0
(x̄)− ȳ‖ ≤

[L+2ν(q+1)]

q+1
‖x̄− x0‖

q+1 +‖ȳ‖. (3.31)

By using the Lipschitz-like property of G
−1
x̄ and (3.31) in (3.27), we obtain

dist(x̄,Φx0
(x̄)) ≤ M‖ȳ− Jx0

(x̄)‖

≤
M[L(q+2)+2ν(q+1)]

q+1
‖x̄− x0‖

q+1 +M‖ȳ‖

≤
4

q+5
rx0

=
(

1−
q+1

q+5

)

rx0

= (1−λ )r;

i,e,. the statement (2.1) of Lemma 2.4 is hold.

Now, it is evident to show that statement (2.2) of Lemma 2.4 holds. Let x′,x′′ ∈ B(x̄,rx0
). Then we have that x′,x′′ ∈

B(x̄,rx0
)⊆ B(x̄,2δ )⊆ B(x̄,rx̄) by (3.26) and Jx0

(x′), Jx0
(x′′) ∈ B(ȳ,rȳ) by (3.30). This together with Lipschitz-like property of

G
−1
x̄ follows as

e(Φx0
(x′)∩B(x̄,rx0

),Φx0
(x′′)) ≤ e(Φx0

(x′)∩B(x̄,2δ ),Φx0
(x′′))

≤ e(G−1
x̄ [Jx0

(x′)]∩B(x̄,rx̄),G
−1
x̄ [Jx0

(x′′)])

≤ M‖Jx0
(x′)− Jx0

(x′′)‖. (3.32)
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Now, using the definition of first order divided difference of g in (3.12) we obtain

‖Jx0
(x′)− Jx0

(x′′)‖ = ‖g(x′)−g(x′′)− [x′,x0;g](x′− x0)+ [x′′,x0;g](x′′− x0)

+(∇ f (x̄)−∇ f (x0))(x
′− x′′)‖

≤ ‖g(x′)−g(x′′)+ [x′,x0;g](x0 − x′)− [x′′,x0;g](x0 − x′′)‖

+‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖

≤ ‖g(x′)−g(x′′)+g(x0)−g(x′)−g(x0)+g(x′′)

+‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖

≤ ‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖ ≤ L‖x̄− x0‖
q‖x′− x′′‖

≤ L.2qδ q‖x′− x′′‖. (3.33)

It follows from (3.32), that

e(Φx0
(x′)∩B(x̄,rx0

),Φx0
(x′′)) ≤ ML.2qδ q‖x′− x′′‖.

Since ν ,M,L > 0 and q ∈ (0,1], then we can write 2qMLδ q < 2qM[L(q+2)+2ν(q+1)]δ p and hence the above inequality

becomes

e(Φx0
(x′)∩B(x̄,rx0

),Φx0
(x′′)) ≤ 2qM[L(q+2)+2ν(q+1)]δ p‖x′− x′′‖

≤
q+1

q+5
‖x′− x′′‖

= λ‖x′− x′′‖.

Thus the statement (2.2) of Lemma 2.4 is also hold. Hence, both statements (2.1) and (2.2) of Lemma 2.4 are accomplished.

Finally, it shows that Lemma 2.4 is adequate to presume the position of a point x̂1 ∈ B(x̄,rx0
) such that x̂1 ∈ Φx0

(x̂1) which

implies that 0 ∈ f (x0)+g(x0)+(∇ f (x0)+ [x̂1,x0;g])(x̂1 − x0)+F (x̂1) and hence N (x0) 6= /0.

Next, it is sufficient to prove that (3.21) holds for n = 0. As ∇ f is (L,q)- Hölder continuous on B(x̄, rx̄
2
), we have for all

x′,x′′ ∈ B(x̄, rx̄
2
), that

Lr
q
x̄ ≥ sup

x′,x′′∈B(x̄,
rx̄
2 )

‖∇ f (x′)−∇ f (x′′)‖. (3.34)

Observe the assumption (a) that r̂ > 0. Therefore, from (3.13) and (3.34)imply that Lemma 3.2 is satisfied with ε0 := Lr
p
x̄ .

According to our assumption G
−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄). Then, it implies from Lemma 3.2 that, G−1

x0

is Lipschitz-like on B(ȳ, r̂) relative to B(x̄, rx̄
2
) with constant M

1−MLr
q
x̄

as x0 ∈ B(x̄, δ̂ )⊆ B(x̄,δ )⊆ B(x̄, rx̄
2
) by assumption (a) and

the choice of δ̂ . On the other hand, (3.19) follows as

dist(0,Gx0
(x0)) = dist(0, f (x0)+g(x0)+F (x0))

≤
r̂

3
.

Inequality (3.25) shows that 0 ∈ B(ȳ, r̂
3
) and observe before that x0 ∈ B(x̄, rx̄

2
). Hence using Lemma 2.3, we get

dist(x0,G
−1
x0

(0)) ≤
M

1−MLr
q
x̄

dist(0,Gx0
(x0))

=
M

1−MLr
q
x̄

dist(0, f (x0)+g(x0)+F (x0)).

This together with (3.1), gives

dist(0,N (x0)) = dist(x0,G
−1
x0

(0))

≤
M

1−MLr
q
x̄

dist(0, f (x0)+g(x0)+F (x0)). (3.35)
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According to Algorithm 1 and using (3.35), (3.19) and then assumption (a), we have

‖d0‖ ≤ η dist(0,N (x0))

≤
ηM

(1−MLr
q
x̄)

dist(0, f (x0)+g(x0)+F (x0))

≤
ηM[L(q+2)+2ν(q+1)]δ q+1

3(q+1)(1−MLr
q
x̄)

= s
(1

3

)

δ .

This means that

‖x1 − x0‖= ‖d0‖ ≤ s
(1

3

)

δ ,

and therefore, (3.21) is true for n = 0.

Suppose x1,x2, . . . ,xk are formed and (3.20), and (3.21) hold for n = 0,1,2, . . . ,k−1. We show that there exists xk+1 such that

(3.20) and (3.21) also hold for n = k. Since (3.20) and (3.21) are true for each n ≤ k−1, we have the following inequality:

‖xk − x̄‖ ≤
k−1

∑
i=0

‖di‖+‖x0 − x̄‖ ≤ sδ
k−1

∑
i=0

(1

3

)(q+1)i

+δ ≤ 2δ .

This implies (3.20) holds for n = k. Now with all the same argument as we did for the case when n = 0, we can prove

that N (xk) 6= /0, that is, the point xk+1 exists and G−1
xk

is Lipschitz-like on B(ȳ, r̂) relative to B(x̄, rx̄
2
) with constant M

1−MLr
q
x̄

.

Therefore, we have that

‖xk+1 − xk‖ = ‖dk‖ ≤ η dist(0,N (xk))

≤ η dist(xk,G
−1
xk

(0))

=
ηM

1−MLr
q
x̄

dist(0, f (xk)+g(xk)+F (xk))

≤
ηM

1−MLr
q
x̄

‖ f (xk)+g(xk)− f (xk−1)−g(xk−1)

−
(

∇ f (xk−1)+ [xk,xk−1;g]
)

(xk − xk−1)‖

≤
ηM

1−MLr
q
x̄

(

‖ f (xk)− f (xk−1)−∇ f (xk−1)(xk − xk−1)‖

+‖g(xk)−g(xk−1)− [xk,xk−1;g](xk − xk−1)‖
)

≤
ηM

(q+1)(1−MLr
q
x̄)

(

L‖xk − xk−1‖
q+1 +

(q+1)‖[xk−1,xk;g]− [xk,xk−1;g]‖‖xk − xk−1‖
)

≤
ηM

(q+1)(1−MLr
q
x̄)

(

L‖xk − xk−1‖
q+1 +

(q+1)ν(‖xk−1 − xk‖
q +‖xk − xk−1‖

q)‖xk − xk−1‖
)

≤
ηM[L+2ν(q+1)]

(q+1)(1−MLr
q
x̄)

‖dk−1‖
q+1

≤
ηM[L(q+2)+2ν(q+1)]

(q+1)(1−MLr
q
x̄)

‖dk−1‖
q+1

≤
ηM[L(q+2)+2ν(q+1)]

(q+1)(1−MLr
q
x̄)

(

s
(1

3

)(q+1)k−1

δ
)q+1

≤ s
(1

3

)(q+1)k

δ .

This implies that (3.21) holds for n = k and therefore the proof of the theorem is complete.

Consider the special case when x̄ is a solution of (1.1) (that is, ȳ = 0) in Theorem 3.3. We have the following corollary,

which describes the local superlinear convergence result for the extended Newton-type method.
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Corollary 3.4. Suppose that x̄ is a solution of (1.1). Let q ∈ (0,1] and η > 1 and let G
−1
x̄ be pseudo-Lipschitz around (0, x̄).

Let r̃ > o and suppose that ∇ f is (L,q)-Hölder continuous on B(x̄, r̃) and g admits first-order divided difference satisfying

Hölderian condition on B(x̄, r̃). Assume that

lim
x→x̄

dist(0,Gx(x)) = 0. (3.36)

Then, with an initial point x0, there exists some δ̂ > 0 such that any sequence {xn} generated by Algorithm 1 converges

superlinearly to a solution x∗ of (1.1).

Proof. Suppose that G
−1
x̄ is pseudo-Lipschitz around (0, x̄). Then by definition of pseudo-Lipschitz continuty, there exist

constants M, r̃ and r0 such that G
−1
x̄ is Lipschitz-like on B(ȳ,r0) relative to B(x̄, r̃) with constant M. Then, for each 0 < rx̄ ≤ r̃,

we have that

e(G−1
x̄ (y1)∩B(x̄,rx̄),G

−1
x̄ (y2)≤ M‖y1 − y2‖ for any y1, y2 ∈ B(0,r0),

that is, G
−1
x̄ is Lipschitz-like on B(ȳ,r0) relative to B(x̄,rx̄) with constant M. Let L ∈ (0,1], q ∈ (0,1] and ν > 0. By the

(L,q)-Hölder continuty of ∇ f we can select rx̄ ∈ (0, r̃) such that
rx̄

2
≤ r̃, r0 −2Lr

q+1
x̄ > 0, MLr

q
x̄ < 1 and

Lr
q
x̄ ≥ sup

x′,x′′∈B(x̄,
rx̄
2 )

‖∇ f (x′)−∇ f (x′′)‖.

Then, define

r̂ := min
{

r0 −2Lr
q+1
x̄ ,

rx̄(1−MLr
q
x̄)

4M

}

> 0.

and

min
{ rx̄

4
, (q+5)r̂,

3(q+1)r0

[L(q+2)+2ν(q+1)](6.2q +1)

}

> 0

Thus, we can choose 0 < δ ≤ 1 such that

δ ≤ min
{ rx̄

4
, (q+5)r̂,

3(q+1)r0

[L(q+2)+2ν(q+1)](6.2q +1)

}

and

(2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qr
q
x̄

)

≤ (q+1).

Now it is routine to check that conditions (a)-(c) of Theorem 3.3 are satisfied. Thus we can apply Theorem 3.3 to complete the

proof.

4. Conclusion

The semilocal and local convergence results are presented for the extended Newton-type method when η > 1, G
−1
x̄ is Lipschitz-

like, ∇ f satisfies Hölderian condition and g admits first-order divided difference satisfying the Hölder condition defined by

(3.5). In particular, we have presented semilocally superlinear convergence analysis for extended Newton-type method in

Theorem 3.3 while the locally superlinear convergence analysis for extended Newton-type method is presented in Corollary 3.4.

This result extends and improves the corresponding ones [4, 18].

Moreover, according to our main results, we have the following conclusions:

(i) If we set q = 0 in Theorem 3.3, it gives the semilocal linear convergence result for the extended Newton-type method and

this result coincides with the result presented in [18, Theorem 3.1]. On the other hand, if we put q = 0 in Corollary 3.4,

this result provides locally linear convergence result which is similar with the result presented in [18, Corollary 3.1].

(ii) If we put q = 1 in Theorem 3.3, it yields the semilocal quadratic convergence result for the extened Newton-type method

and this result is analogous to the outcome presented in [18, Theorem 3.2]. Furthermore, if we give q = 1 in Corollary 3.4,

it gives the local quadratic convergence result for this method which is resembling the work presented in [18, Corollary

3.2].
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1. Introduction and background

A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces

are ℓp (the space of p-absolutely summable sequences, 1 ≤ p < ∞), ℓ∞ (the space of bounded sequences), c0 ( the space of

null sequences), c (the space of convergent sequences). On the other hand, bs, cs0 and cs are the most frequently encountered

spaces consisting of sequences generating bounded, null and convergent series, respectively. Further ψ is the space of all finite

sequences. A Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are c0 and c

endowed with the supremum norm ‖x‖∞ = supn∈N |xn|, where N= {1,2,3, ...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an

important role in the study of sequence spaces. Let X and Y be two sequence spaces, A = (ank) be an infinite matrix with

real entries and An indicate the nth row of A . If each term of the sequence A x = {(A x)n}= {∑
∞
k=1 ankxk} is convergent, this

sequence is called A -transform of x = (xn). Further, if A x ∈ Y for every sequence x ∈ X, then the matrix A defines a matrix

mapping from X into Y. (X,Y) represents the collection of all matrices defined from X into Y. Additionally, B(X,Y) is the set

of all bounded (continuous) linear operators from X to Y. A matrix A = (ank) is called a triangle if ann 6= 0 and ank = 0 for

k > n.

The matrix domain XA of the matrix A in the space X is defined by

XA = {x ∈ ω : A x ∈ X}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
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any triangle A and a BK-space X, the sequence space XA gives a new BK-space equipped with the norm ‖x‖
XA

= ‖A x‖
X
.

Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,

the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] can be referred.

The spaces

X
α =

{

t = (tk) ∈ ω :
∞

∑
k=1

|tkxk|< ∞ for all x = (xk) ∈ X

}

,

X
β =

{

t = (tk) ∈ ω :
∞

∑
k=1

tkxk converges for all x = (xk) ∈ X

}

,

X
γ =

{

t = (tk) ∈ ω : sup
n

∣

∣

∣

∣

∣

n

∑
k=1

tkxk

∣

∣

∣

∣

∣

< ∞ for all x = (xk) ∈ X

}

,

are called the α-, β -, γ-duals of a sequence space X, respectively.

Let (X,‖.‖X) be a normed space and BX = {x ∈ ω : ‖x‖X = 1}. Given any BK-space X⊃ ψ and t = (tn) ∈ ω ,

‖t‖∗
X
= sup

x∈BX

∣

∣

∣

∣

∣

∑
k

tkxk

∣

∣

∣

∣

∣

implies that t ∈ X
β .

Lemma 1.1. [16, Theorem 1.29] ℓ
β
1 = ℓ∞ and ℓ

β
p = ℓq, where 1 < p < ∞ and 1

p
+ 1

q
= 1. The equality ‖t‖∗ℓp

= ‖t‖
ℓ

β
p

holds for

all t ∈ ℓ
β
p , where 1 ≤ p < ∞.

Lemma 1.2. [16, Theorem 1.23 (a)] Given any BK-spaces X, Y and A ∈ (X,Y), there exists a linear operator LA ∈ B(X,Y)
such that LA (x) = A x for all x ∈ X.

Lemma 1.3. [16] Let X⊃ ψ be a BK-space and Y ∈ {c0,c, ℓ∞}. If A ∈ (X,Y), then

‖LA ‖= ‖A ‖(X,Y) = sup
n∈N

‖An‖
∗
X
< ∞.

Let Q be a bounded set in a metric space X and B(x,δ ) be the open ball. The value

χ(Q) = inf{ε > 0 : Q ⊂ ∪n
i=1B(xi,δi),xi ∈ X,δi < ε,n ∈ N}

is called the Hausdorff measure of noncompactness of Q.

To compute the Hausdorff measure of noncompactness of a set in ℓp for 1 ≤ p < ∞, the following result is essential.

Theorem 1.4. [17] Let Q be a bounded subset in ℓp for 1 ≤ p < ∞ and Pr : ℓp → ℓp be the operator defined by Pr(x) =
(x0,x1,x2, ...,xr,0,0, ...) for all x = (xk) ∈ ℓp and each r ∈ N. Then, we have

χ(Q) = lim
r

(

sup
x∈Q

‖(I −Pr)(x)‖ℓp

)

,

where I is the identity operator on ℓp.

A linear operator L : X→ Y is a compact operator if the domain of L is all of X and for every bounded sequence x = (xn)
in X, the sequence (L (xn)) has a convergent subsequence in Y. The idea of compact operators between Banach spaces is

closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator

L ∈ B(X,Y), ‖L ‖χ = χ(L (BX)) = 0 if and only if L is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize

the compactness of an operator between BK spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix Φ = (φnk) is defined as in [25]

φnk =

{

ϕ(k)
n

, if k | n

0 , if k ∤ n,
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where ϕ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined

and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For p ∈N with p 6= 1, ϕ(p) gives the number of positive integers less than p which are coprime with p and ϕ(1) = 1. Also,

the equality

p = ∑
k|p

ϕ(k)

holds for every p ∈ N. For p ∈ N with p 6= 1, the Möbius function µ is defined as

µ(p) =







(−1)r if p = p1 p2...pr, where p1, p2, ..., pr are

non-equivalent prime numbers

0 if p̃2 | p for some prime number p̃

and µ(1) = 1. The equality

∑
k|p

µ(k) = 0 (1.1)

holds except for p = 1.

The Riesz matrix E = (enk) is defined as

enk =

{ qk
Qn

, if 0 ≤ k ≤ n

0 , if k > n,

where (qk) is a sequence of positive numbers and Qn = ∑
n
k=0 qk for all n ∈ N. By using these matrix, the authors of [34]

introduced the Riesz sequence spaces of non-absolute type.

The main purpose of this study is to construct new BK spaces ℓp(RΦ) for 1 ≤ p < ∞. The matrix RΦ is obtained by

combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α-, β - and γ-duals

are computed. Finally some matrix mappings from the spaces ℓp(RΦ) to the classical spaces are characterized and compact

operators are studied.

2. The sequence space ℓp(RΦ)

In the present section, we introduce the sequence space ℓp(RΦ) by using the matrix RΦ, where 1 ≤ p < ∞. Also, we present

some theorems which give inclusion relations concerning this space.

The matrix RΦ = (rnk) is defined as

rnk =

{

qkϕ(k)
Qn

, if k | n

0 , if k ∤ n,

where Qn = q1 +q2 + ...+qn. We call this matrix as Riesz Euler Totient matrix operator.

The inverse R−1
Φ = (r−1

nk ) of the matrix RΦ is computed as

r−1
nk =

{

µ( n
k
)

ϕ(n)
Qk
qn

, if k | n

0 , if k ∤ n

for all k,n ∈ N.

Now, we introduce the sequence space ℓp(RΦ) by

ℓp(RΦ) =

{

x = (xn) ∈ ω : ∑
n

∣

∣

∣

∣

∣

1

Qn
∑
k|n

qkϕ(k)xk

∣

∣

∣

∣

∣

p

< ∞

}

(1 ≤ p < ∞).

Unless otherwise stated, y = (yn) will be the RΦ-transform of a sequence x = (xn), that is, yn = (RΦx)n =
1

Qn
∑k|n qkϕ(k)xk

for all n ∈ N.

Theorem 2.1. The space ℓp(RΦ) is a Banach space with the norm given by ‖x‖ℓp(RΦ) =
(

∑n

∣

∣

∣

1
Qn

∑k|n qkϕ(k)xk

∣

∣

∣

p)1/p

, where

1 ≤ p < ∞.
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Proof. We omit the proof which is straightforward.

Corollary 2.2. The space ℓp(RΦ) is a BK-space, where 1 ≤ p < ∞.

Theorem 2.3. The space ℓp(RΦ) is linearly isomorphic to ℓp, where 1 ≤ p < ∞.

Proof. Let f be a mapping defined from ℓp(RΦ) to ℓp such that f (x) = RΦx for all x ∈ ℓp(RΦ). It is clear that f is linear. Also

it is injective since the kernel of f consists of only zero. To prove that f is surjective, consider the sequence x = (xn) whose

terms are

xn = ∑
k|n

µ( n
k
)

ϕ(n)

Qk

qn

yk

for all n ∈ N, where y = (yk) is any sequence in ℓp. It follows from (1.1) that

(RΦx)n =
1

Qn
∑
k|n

qkϕ(k)xk =
1

Qn
∑
k|n

qkϕ(k)∑
j|k

µ( k
j
)

ϕ(k)

Q j

qk

y j

=
1

Qn
∑
k|n

∑
j|k

µ(
k

j
)Q jy j =

1

Qn
∑
k|n

(

∑
j|k

µ( j)

)

Q n
k
y n

k
=

1

Qn

µ(1)Qnyn = yn

and so x = (xn) ∈ ℓp(RΦ). f preserves norms since the equality ‖x‖ℓp(RΦ) = ‖ f (x)‖ℓp
holds.

Remark 2.4. The space ℓ2(RΦ) is an inner product space with the inner product defined as 〈x, x̃〉ℓ2(RΦ) = 〈RΦx,RΦx̃〉ℓ2
, where

〈., .〉ℓ2
is the inner product on ℓ2 which induces ‖.‖ℓ2

.

Theorem 2.5. The space ℓp(RΦ) is not an inner product space for p 6= 2.

Proof. Consider the sequences x = (xn) and x̃ = (x̃n), where

xn =

{

µ(n)
ϕ(n)

Q1
qn

+
µ( n

2 )

ϕ(n)
Q2
qn

, if n is even
µ(n)
ϕ(n)

Q1
qn

, if n is odd

and

x̃n =

{

µ(n)
ϕ(n)

Q1
qn

−
µ( n

2 )

ϕ(n)
Q2
qn

, if n is even
µ(n)
ϕ(n)

Q1
qn

, if n is odd

for all n ∈ N. Then, we have RΦx = (1,1,0, ...,0, ...) ∈ ℓp and RΦx̃ = (1,−1,0, ...,0, ...) ∈ ℓp. Hence, one can easily observe

that

‖x+ x̃‖ℓp(RΦ)+‖x− x̃‖ℓp(RΦ) 6= 2(‖x‖ℓp(RΦ)+‖x̃‖ℓp(RΦ)).

Theorem 2.6. The inclusion ℓp(RΦ)⊂ ℓq(RΦ) strictly holds for 1 ≤ p < q < ∞.

Proof. It is clear that the inclusion ℓp(RΦ)⊂ ℓq(RΦ) holds since ℓp ⊂ ℓq for 1 ≤ p < q < ∞. Also, ℓp ⊂ ℓq is strict and so there

exists a sequence z = (zn) in ℓq\ℓp. By defining a sequence x = (xn) as

xn = ∑
k|n

µ( n
k
)

ϕ(n)

Qk

qn

zk

for all n ∈ N, we conclude that x ∈ ℓq(RΦ)\ℓp(RΦ). Hence, the desired inclusion is strict.

Before presenting the next result, we define the sequence space ℓ∞(RΦ) by

ℓ∞(RΦ) = {x ∈ ω : RΦx ∈ ℓ∞}.

Theorem 2.7. The inclusion ℓp(RΦ)⊂ ℓ∞(RΦ) strictly holds for 1 ≤ p < ∞.

Proof. The inclusion is obvious since ℓp ⊂ ℓ∞ holds for 1 ≤ p < ∞. Let x = (xn) be a sequence such that xn = ∑k|n(−1)k µ( n
k
)

ϕ(n)
Qk
qn

for all n∈N. We obtain that RΦx=

(

1
Qn

∑k|n qkϕ(k)∑ j|k(−1) j µ( k
j )

ϕ(k)

Q j

qk

)

=((−1)n)∈ ℓ∞\ℓp which implies that x∈ ℓ∞(RΦ)\ℓp(RΦ)

for 1 ≤ p < ∞.
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3. The α-, β - and γ-duals of the space ℓp(RΦ)

In this section, we determine the α-, β - and γ-duals of the sequence space ℓp(RΦ), where 1 ≤ p < ∞. The following lemmas

are required to prove our main results in this section. Here and in what follows K denotes the family of all finite subsets of N.

Lemma 3.1. [35] The following statements hold:

A = (ank) ∈ (ℓp, ℓ1) if and only if

sup
F∈K

∑
k

∣

∣

∣

∣

∣

∑
n∈F

ank

∣

∣

∣

∣

∣

q

< ∞ (3.1)

holds, where 1 < p < ∞.

A = (ank) ∈ (ℓ∞, ℓ1) if and only if (3.1) holds with q = 1.

A = (ank) ∈ (ℓ1, ℓ1) if and only if

sup
k

∑
n

|ank|< ∞ (3.2)

holds.

A = (ank) ∈ (ℓp,c) if and only if

lim
n→∞

ank exists for each k ∈ N (3.3)

and

sup
n

∑
k

|ank|
q < ∞ (3.4)

holds, where 1 < p < ∞.

A = (ank) ∈ (ℓ∞,c) if and only if (3.3) and

lim
n→∞

∑
k

|ank|= ∑
k

∣

∣

∣
lim
n→∞

ank

∣

∣

∣

hold.

A = (ank) ∈ (ℓ1,c) if and only if (3.3) and

sup
n,k

|ank|< ∞ (3.5)

hold.

A = (ank) ∈ (ℓp,c0) if and only if

lim
n→∞

ank = 0 for each k ∈ N (3.6)

and (3.4) holds, where 1 < p < ∞.

A = (ank) ∈ (ℓ∞,c0) if and only if (3.6) and

lim
n→∞

∑
k

|ank|= 0

hold.

A = (ank) ∈ (ℓ1,c0) if and only if (3.5) and (3.6) hold.

A = (ank) ∈ (ℓp, ℓ∞) if and only if (3.4) holds, where 1 < p < ∞.

A = (ank) ∈ (ℓ∞, ℓ∞) if and only if (3.4) holds with q = 1.

A = (ank) ∈ (ℓ1, ℓ∞) if and only if (3.5) holds.

In the following theorem, we determine the α-duals of the spaces ℓp(RΦ) (1 < p < ∞) and ℓ1(RΦ).
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Theorem 3.2. The α-duals of the spaces ℓp(RΦ) (1 < p < ∞) and ℓ1(RΦ) are as follows:

(ℓp(RΦ))
α =

{

t = (tn) ∈ ω : sup
F∈K

∑
k

∣

∣

∣

∣

∣

∑
n∈F,k|n

µ( n
k
)

ϕ(k)

Qk

qn

tn

∣

∣

∣

∣

∣

q

< ∞

}

,

and

(ℓ1(RΦ))
α =

{

t = (tn) ∈ ω : sup
k

∑
n∈N,k|n

∣

∣

∣

∣

µ( n
k
)

ϕ(k)

Qk

qn

tn

∣

∣

∣

∣

< ∞

}

.

Proof. Consider the matrix C = (cnk) defined by

cnk =

{

µ( n
k
)

ϕ(k)
Qk
qn

tn , k | n

0 , k ∤ n

for any sequence t = (tn) ∈ ω . Hence, given any x = (xn) ∈ ℓp(RΦ) for 1 ≤ p < ∞, we have tnxn = (Cy)n for all n ∈ N. This

implies that tx ∈ ℓ1 with x ∈ ℓp(RΦ) if and only if Cy ∈ ℓ1 with y ∈ ℓp. It follows that t ∈ (ℓp(RΦ))
α if and only if C ∈ (ℓp, ℓ1)

which completes the proof in view of Lemma 3.1.

Theorem 3.3. Let us define the following sets:

A1 =

{

t = (tk) ∈ ω : lim
n→∞

n

∑
j=k,k| j

µ( j
k
)

ϕ( j)

Qk

q j

t j exists for each k ∈ N

}

,

A2 =

{

t = (tk) ∈ ω : sup
n

∑
k

∣

∣

∣

∣

∣

n

∑
j=k,k| j

µ( j
k
)

ϕ( j)

Qk

q j

t j

∣

∣

∣

∣

∣

q

< ∞

}

,

and

A3 =

{

t = (tk) ∈ ω : sup
n,k

∣

∣

∣

∣

∣

n

∑
j=k,k| j

µ( j
k
)

ϕ( j)

Qk

q j

t j

∣

∣

∣

∣

∣

< ∞

}

.

The β and γ-duals of the spaces ℓp(RΦ) (1 < p < ∞) and ℓ1(RΦ) are as follows:

(ℓp(RΦ))
β = A1 ∩A2 and (ℓ1(RΦ))

β = A1 ∩A3,

(ℓp(RΦ))
γ = A2 and (ℓ1(RΦ))

γ = A3.

Proof. Let t = (tk) ∈ ω and B = (bnk) be an infinite matrix with terms

bnk =

{

∑
n
j=k,k| j t j

µ( j
k
)

ϕ( j)
Qk
q j

, if 1 ≤ k ≤ n

0 , if k > n.

Hence it follows that

n

∑
k=1

tkxk =
n

∑
k=1

tk

(

∑
j|k

µ( k
j
)

ϕ(k)

Q j

qk

y j

)

=
n

∑
k=1

(

n

∑
j=k,k| j

t j

µ( j
k
)

ϕ( j)

Qk

q j

)

yk = (By)n

for any x = (xn) ∈ ℓp(RΦ). This equality yields that tx ∈ cs for x ∈ ℓp(RΦ) if and only if By ∈ c for y ∈ ℓp. That is,

t ∈ (ℓp(RΦ))
β if and only if B ∈ (ℓp,c) for 1 ≤ p < ∞. Hence, by Lemma 3.1, it is concluded that (ℓp(RΦ))

β = A1 ∩A2 and

(ℓ1(RΦ))
β = A1 ∩A3.

This equality also yields that tx ∈ bs for x ∈ ℓp(RΦ) if and only if By ∈ ℓ∞ for y ∈ ℓp. That is, t ∈ (ℓp(RΦ))
γ if and only if

B ∈ (ℓp, ℓ∞) for 1 ≤ p < ∞. Hence, by Lemma 3.1, it is concluded that (ℓp(RΦ))
γ = A2 and (ℓ1(RΦ))

γ = A3.
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4. Some matrix transformations related to the sequence space ℓp(RΦ)

In this section, we give the characterization of the classes (ℓp(RΦ),Y), where 1 ≤ p < ∞ and Y ∈ {ℓ∞,c,c0, ℓ1}. Throughout

this section, we write d(n,k) = ∑
n
j=0 d jk for an infinite matrix D = (dnk) and all n,k ∈ N.

Theorem 4.1. Let 1 ≤ p < ∞ and Y be any sequence space. Then, we have A = (ank) ∈ (ℓp(RΦ),Y) if and only if

D(n) =
(

d
(n)
mk

)

∈ (ℓp,c) f or each n ∈ N,

D = (dnk) ∈ (ℓp,Y),

where d
(n)
mk =

{

0 , k > m

∑
m
j=k,k| j an j

µ( j
k
)

ϕ(k)
Qk
q j

, 0 ≤ k ≤ m
and dnk = ∑

∞
j=k,k| j an j

µ( j
k
)

ϕ(k)
Qk
q j

for all k,m,n ∈ N.

Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1].

The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.

(a) A = (ank) ∈ (ℓ1(RΦ), ℓ∞) if and only if

lim
m→∞

d
(n)
mk exists for each n,k ∈ N, (4.1)

sup
m,k

∣

∣

∣
d
(n)
mk

∣

∣

∣
< ∞ for each n ∈ N (4.2)

and (3.5) holds with dnk instead of ank.

(b) A = (ank) ∈ (ℓ1(RΦ),c) if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with dnk instead of ank.

(c) A = (ank) ∈ (ℓ1(RΦ),c0) if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with dnk instead of ank.

(d) A = (ank) ∈ (ℓ1(RΦ), ℓ1) if and only if (4.1) and (4.2) hold, and (3.2) also holds with dnk instead of ank.

Theorem 4.3. Let 1 < p < ∞.

(a) A = (ank) ∈ (ℓp(RΦ), ℓ∞) if and only if (4.1) and

sup
m

m

∑
k=0

∣

∣

∣
d
(n)
mk

∣

∣

∣

q

< ∞ for each n ∈ N (4.3)

hold, and (3.4) also holds with dnk instead of ank.

(b) A = (ank) ∈ (ℓp(RΦ),c) if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with dnk instead of ank.

(c) A = (ank) ∈ (ℓp(RΦ),c0) if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with dnk instead of ank.

(d) A = (ank) ∈ (ℓp(RΦ), ℓ1) if and only if (4.1) and (4.3) hold, and (3.1) also holds with dnk instead of ank.

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:

(a) A = (ank) ∈ (ℓ1(RΦ),bs) if and only if (4.1), (4.2) hold and (3.5) holds with d(n,k) instead of ank.

(b) A = (ank) ∈ (ℓ1(RΦ),cs) if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d(n,k) instead of ank.

(c) A = (ank) ∈ (ℓ1(RΦ),cs0) if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with d(n,k) instead of ank.

Corollary 4.5. Let 1 < p < ∞. Then, the following statements hold:

(a) A = (ank) ∈ (ℓp(RΦ),bs) if and only if (4.1), (4.3) hold and (3.4) holds with d(n,k) instead of ank.

(b) A = (ank) ∈ (ℓp(RΦ),cs) if and only if (4.1), (4.3) hold and (3.3),(3.4) hold with d(n,k) instead of ank.

(c) A = (ank) ∈ (ℓp(RΦ),cs0) if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with d(n,k) instead of ank.
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5. Compact operators on the space ℓp(RΦ)

Let the matrix ˜A = (ãnk) defined by an infinite matrix A = (ank) as

ãnk =
∞

∑
j=k,k| j

µ( j
k
)

ϕ( j)

Qk

q j

an j

for all n,k ∈ N.

For a sequence t = (tk) ∈ ω , define a sequence t̃ = (t̃k) as t̃k = ∑
∞
j=k,k| j

µ( j
k
)

ϕ( j)
Qk
q j

t j for all k ∈ N.

Lemma 5.1. Let t = (tk) ∈ (ℓp(RΦ))
β , where 1 ≤ p < ∞. Then t̃ = (t̃k) ∈ ℓq and

∑
k

tkxk = ∑
k

t̃kyk

for all x = (xk) ∈ ℓp(RΦ).

Lemma 5.2. The following statements hold.

(a) ‖t‖∗ℓ1(RΦ) = supk |t̃k|< ∞ for all t = (tk) ∈ (ℓ1(RΦ))
β .

(b) ‖t‖∗ℓp(RΦ) = (∑k |t̃k|
q)1/q < ∞ for all t = (tk) ∈ (ℓp(RΦ))

β , where 1 < p < ∞.

Lemma 5.3. Let X be any sequence space and A = (ank) be an infinite matrix. If A ∈ (ℓp(RΦ),X), then ˜A ∈ (ℓp,X) and

A x = ˜A y for all x ∈ ℓp(RΦ), where 1 ≤ p < ∞.

Proof. It follows from Lemma 5.1.

Lemma 5.4. If A ∈ (ℓ1(RΦ), ℓp), then we have

‖LA ‖= ‖A ‖(ℓ1(RΦ),ℓp) = sup
k

(

∑
n

|ãnk|
p

)1/p

< ∞,

where 1 ≤ p < ∞.

Lemma 5.5. [22, Theorem 3.7] Let X⊃ ψ be a BK-space. Then, the following statements hold.

(a) A ∈ (X, ℓ∞), then 0 ≤ ‖LA ‖χ ≤ limsupn ‖An‖
∗
X

.

(b) A ∈ (X,c0), then ‖LA ‖χ = limsupn ‖An‖
∗
X

.

(c) If X has AK or X= ℓ∞ and A ∈ (X,c), then

1

2
limsup

n
‖An −a‖∗

X
≤ ‖LA ‖χ ≤ limsup

n
‖An −a‖∗

X
,

where a = (ak) and ak = limn ank for each k ∈ N.

Lemma 5.6. [22, Theorem 3.11] Let X⊃ ψ be a BK-space. If A ∈ (X, ℓ1), then

lim
r

(

sup
N∈Kr

∥

∥

∥

∥

∥

∑
n∈N

An

∥

∥

∥

∥

∥

∗

X

)

≤ ‖LA ‖χ ≤ 4lim
r

(

sup
N∈Kr

∥

∥

∥

∥

∥

∑
n∈N

An

∥

∥

∥

∥

∥

∗

X

)

and LA is compact if and only if limr

(

supN∈Kr
‖∑n∈N An‖

∗
X

)

= 0, where Kr is the subcollection of K consisting of subsets

of N with elements that are greater than r.

Theorem 5.7. Let 1 < p < ∞.

1. For A ∈ (ℓp(RΦ), ℓ∞),

0 ≤ ‖LA ‖χ ≤ limsup
n

(

∑
k

|ãnk|
q

)1/q

holds.
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2. For A ∈ (ℓp(RΦ),c),

1

2
limsup

n

(

∑
k

|ãnk − ãk|
q

)1/q

≤ ‖LA ‖χ ≤ limsup
n

(

∑
k

|ãnk − ãk|
q

)1/q

holds, where ã = (ãk) and ãk = limn ãnk for each k ∈ N.

3. For A ∈ (ℓp(RΦ),c0),

‖LA ‖χ = limsup
n

(

∑
k

|ãnk|
q

)1/q

holds.

4. For A ∈ (ℓp(RΦ), ℓ1),

lim
r
‖A ‖

(r)
(ℓp(RΦ),ℓ1)

≤ ‖LA ‖χ ≤ 4lim
r
‖A ‖

(r)
(ℓp(RΦ),ℓ1)

holds, where ‖A ‖
(r)
(ℓp(RΦ),ℓ1)

= supN∈Kr
(∑k |∑n∈N ãnk|

q)1/q (r ∈ N).

Proof.

1. Let A ∈ (ℓp(RΦ), ℓ∞). Since the series ∑
∞
k=1 ankxk converges for each n ∈ N, we have An ∈ (ℓp(RΦ))

β . From Lemma

5.2 (b), we write ‖An‖
∗
ℓp(RΦ) = ‖ ˜An‖

∗
ℓp
= ‖ ˜An‖ℓq

= (∑k |ãnk|
q)1/q

for each n ∈N. By using Lemma 5.5 (a), we conclude

that

0 ≤ ‖LA ‖χ ≤ limsup
n

(

∑
k

|ãnk|
q

)1/q

.

2. Let A ∈ (ℓp(RΦ),c). By Lemma 5.3, we have ˜A ∈ (ℓp,c). Hence, from Lemma 5.5 (c), we write

1

2
limsup

n
‖ ˜An − ã‖∗ℓp

≤ ‖LA ‖χ ≤ limsup
n

‖ ˜An − ã‖∗ℓp
,

where ã = (ãk) and ãk = limn ãnk for each k ∈ N. Moreover, Lemma 1.1 implies that ‖ ˜An − ã‖∗ℓp
= ‖ ˜An − ã‖ℓq

=

(∑k |ãnk − ãk|
q)1/q

for each n ∈ N. This completes the proof.

3. Let A ∈ (ℓp(RΦ),c0). Since we have ‖An‖
∗
ℓp(RΦ) = ‖ ˜An‖

∗
ℓp

= ‖ ˜An‖ℓq
= (∑k |ãnk|

q)1/q
for each n ∈ N, we conclude

from Lemma 5.5 (b) that

‖LA ‖χ = limsup
n

(

∑
k

|ãnk|
q

)1/q

.

4. Let A ∈ (ℓp(RΦ), ℓ1). By Lemma 5.3, we have ˜A ∈ (ℓp, ℓ1). It follows from Lemma 5.6 that

lim
r



 sup
N∈Kr

∥

∥

∥

∥

∥

∑
n∈N

˜An

∥

∥

∥

∥

∥

∗

ℓp



≤ ‖LA ‖χ ≤ 4lim
r



 sup
N∈Kr

∥

∥

∥

∥

∥

∑
n∈N

˜An

∥

∥

∥

∥

∥

∗

ℓp



 .

Moreover, Lemma 1.1 implies that ‖∑n∈N
˜An‖

∗
ℓp
= ‖∑n∈N

˜An‖ℓq
= (∑k |∑n∈N ãnk|

q)1/q
which completes the proof.

Corollary 5.8. Let 1 < p < ∞.
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1. LA is compact for A ∈ (ℓp(RΦ), ℓ∞) if

lim
n

(

∑
k

|ãnk|
q

)1/q

= 0.

2. LA is compact for A ∈ (ℓp(RΦ),c) if and only if

lim
n

(

∑
k

|ãnk − ãk|
q

)1/q

= 0.

3. LA is compact for A ∈ (ℓp(RΦ),c0) if and only if

lim
n

(

∑
k

|ãnk|
q

)1/q

= 0.

4. LA is compact for A ∈ (ℓp(RΦ), ℓ1) if and only if

lim
r
‖A ‖

(r)
(ℓp(RΦ),ℓ1)

= 0,

where ‖A ‖
(r)
(ℓp(RΦ),ℓ1)

= supN∈Kr
(∑k |∑n∈N ãnk|

q)1/q
.

Theorem 5.9.

1. For A ∈ (ℓ1(RΦ), ℓ∞),

0 ≤ ‖LA ‖χ ≤ limsup
n

(

sup
k

|ãnk|

)

holds.

2. For A ∈ (ℓ1(RΦ),c),

1

2
limsup

n

(

sup
k

|ãnk − ãk|

)

≤ ‖LA ‖χ ≤ limsup
n

(

sup
k

|ãnk − ãk|

)

holds.

3. For A ∈ (ℓ1(RΦ),c0),

‖LA ‖χ = limsup
n

(

sup
k

|ãnk|

)

holds.

4. For A ∈ (ℓ1(RΦ), ℓ1),

‖LA ‖χ = lim
r

(

sup
k

∞

∑
n=r

|ãnk|

)

holds.

Proof. It follows with the same technique in Theorem 5.7.

Corollary 5.10.

1. LA is compact for A ∈ (ℓ1(RΦ), ℓ∞) if

lim
n

(

sup
k

|ãnk|

)

= 0.
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2. LA is compact for A ∈ (ℓ1(RΦ),c) if and only if

lim
n

(

sup
k

|ãnk − ãk|

)

= 0.

3. LA is compact for A ∈ (ℓ1(RΦ),c0) if and only if

lim
n

(

sup
k

|ãnk|

)

= 0.

4. LA is compact for A ∈ (ℓ1(RΦ), ℓ1) if and only if

lim
r

(

sup
k

∞

∑
n=r

|ãnk|

)

= 0.
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1. Introduction

Difference equations (also called recursive sequences) appear in a lot of fields of pure and applied mathematics, both as

discrete analogs of continuous behavior (analysis, numerical approximations) and as independent models for discrete behavior

(population dynamics, economics, biology, ecology, etc.), [1]. In recent years, many models, especially in mathematical biology,

are based on non-linear ones, [11]. Difference equation theory, especially nonlinear ones, is very fertile subject for scientists

and is one of the important subjests of applied mathematics. So, many researchers have dealth with the qualitative behavior of

nonlinear higher order rational difference equations and systems, see [1]-[33].

In [9], El-Owaidy et al. studied the global analysis of the following difference equation

xn+1 =
αxn−1

β + γx
p
n−2

, n = 0,1, ... (1.1)

with non-negative parameters and non-negative initial values.

In [5], Ahmed investigated the global asymptotic behavior and the perodic character for the rational difference equation

xn+1 =
bxn−1

A+Bx
p
nx

p
n−2

, n = 0,1, ... (1.2)

where the parameters b,A,B, p,q are non-negative numbers and the initial values x−2,x−1,x0 are arbitrary non-negative real

numbers.
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In [15], Gümüş and Soykan investigated the local asymptotic stability of equilibria, the periodic nature of solutions, the

existence of unbounded solutions and the global behavior of solutions of the difference equation

xn+1 =
αxn−(k+1)

β + γx
p
n−kx

q

n−(k+2)

, n = 0,1, ... (1.3)

where the parameters α ,β ,γ, p,q are non-negative numbers and the initial values x−(k+2),x−(k+1),...,x−1,x0 ∈ R+.

In [13], Gümüş and Soykan studied the dynamical behavior of positive solutions for a system of rational difference equation

following form

un+1 =
αun−1

β + γv
p
n−2

, vn+1 =
α1vn−1

β1 + γ1u
p
n−2

, n = 0,1, ... (1.4)

where the parameters α ,β ,γ,α1,β1,γ1, p and the initial values u−i,v−i for i = 0,1,2 are positive real numbers.

In [14], Gümüş and Öcalan studied the dynamical behavior of positive solutions for a system of rational difference equations

following form

un+1 =
αun−1

β + γv
p
nv

q
n−2

, vn+1 =
α1vn−1

β1 + γ1u
p1
n u

q1
n−2

, n = 0,1, ... (1.5)

where the parameters α,β ,γ ,α1,β1,γ1, p,q, p1,q1 are positive real numbers and the initial values u−i,v−i are non-negative

real numbers for i = 0,1,2.

In [28], Khan et al. investigated the asymptotic behavior of following anti-competitive system of rational difference

equations

xn+1 =
αyn

β + γxr
n

,

yn+1 =
α1xn

β1 + γ1yt
n

,



















, n = 0,1, ...

where the parameters α ,β ,γ,α1,β1,γ1,r ∈ (0,∞) and x0,y0 ∈ (0,∞).
In [29], Qureshi and Din investigated the qualitative asymptotic behavior of positive solution for an anti-competitive system

of third-order rational difference equations

xn+1 =
yn−2

β + γxnxn−1xn−2
,

yn+1 =
α1xn−2

β1 + γ1ynyn−1yn−2
,



















, n = 0,1, ...

where the parameters α,β ,γ,α1,β1,γ1 and x0,x−1,x−2,y0,y−1,y−2 are positive real numbers.

In [27], Qureshi and Khan studied the global dynamics of following (1,2)−type systems of difference equations

xn+1 =
ηyn−1

1+µx
p
n−2

, yn+1 =
µxn−1

1+ηy
p
n−2

, n = 0,1, ... (1.6)

xn+1 =
ηyn−1

1+µy
p
n−2

, yn+1 =
µxn−1

1+ηx
p
n−2

, n = 0,1, ...

where η ,µ, p and initial conditions xl ,yl , l =−2,−1,0 are non negative real numbers.

In the present paper, we will investigate of some properties, such as the local asymptotic stability, the global asymptotic

stability, the existence of periodic solutions, the rate of converges etc., for (1,2)−type system of difference equations in the

title, which has been investigated different versions of it in the known literarture. We first note down critical error for the results

of the article [27]. Namely, to put it briefly, they can not obtain the equations they claim with their transformations. Using the

transformations, they could get equations in this form;

xn+1 =
ηyn−1

1+µy
p
n−2

,

yn+1 =
η1xn−1

1+µ1x
p
n−2

,



















, n = 0,1, ...
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with

η =
α

β
, η1 =

α1

β1

and

µ1 =
β

γ
, µ =

β1

γ1
.

The same applies to the other equation. Let us also note that the theoretical results they obtained in their article are correct.

However, an error was made only at the beginning.

The aim of this paper is to investigate the equilibrium points, the local asymptotic stability of these points, the global

behavior of positive solutions, the existence of the prime two-periodic solutions and the rate of convergence of positive solutions

of the following system

un+1 =
αvn−1

β + γv
p
nv

q
n−2

,

vn+1 =
α1un−1

β1 + γ1u
p
nu

q
n−2

,



















,n = 0,1, ... (1.7)

where the parameters α,β ,γ,α1,β1,γ1, p,q are positive and initial condition u−2,u−1,u0,v−2,v−1,v0 ∈ (0,∞) . Our results

extend and complement some results in the literature.

If the initials conditions ui = vi in the system (1.7) for i ∈ {−2,−1,0} and α = α1, β = β1, γ = γ1 then one obtain that

un = vn for all n >−2, hence, the system (1.7) reduces to the difference equation

vn+1 =
αvn−1

β + γv
p
nv

q
n−2

, n = 0,1, ...

which was studied by [4]. Therefore, to avoid degenerate situations, here we discuss the case ui 6= vi for i ∈ {−2,−1,0} and

we investigate the system (1.7) basing on this condition.

It is clear that the system (1.7) can be reduced to the following system of difference equations

xn+1 =
ryn−1

1+ s1y
p
ny

q
n−2

,

yn+1 =
r1xn−1

1+ sx
p
nx

q
n−2

,



















, n = 0,1, ... (1.8)

by the change of variables

un =

(

ββ1

γγ1

)1/p+q

xn

and

vn =

(

ββ1

γγ1

)1/p+q

yn

with

r =
α

β
, r1 =

α1

β1

and

s =
β

γ
, s1 =

β1

γ1
.

So, in order to study the system (1.7), we investigate the system (1.8).
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2. Preliminaries

For the completenessin the paper, we find useful to remind some basic concepts of the difference equations theory as follows:

Let us introduce the six-dimensional discrete dynamical system

xn+1 = f1(xn,xn−1,xn−2,yn,,yn−1,yn−2),
yn+1 = f2(xn,xn−1,xn−2,yn,,yn−1,yn−2),

(2.1)

n ∈ N where f1 : I3
1 × I3

2 → I1 and f2 : I3
1 × I3

2 → I2 are condinuously differentiable functions and I1 , I2 are some invervals

of real numbers. Then, for every initial conditions (xi,yi) ∈ I1 × I2, for i =−2,−1,0 the system (2.1) has a unique solution

{(xn,yn)}∞
n=−2.

Definition 2.1. An equilibrium point of stsytem (2.1) is a point (x,y) that satisfies

x = f1(x,x,x,y,y,y),
y = f2(x,x,x,y,y,y),

Together with system (2.1), if we consider the associatedvector map

F = ( f1,xn,xn−1,xn−2, f2,yn,yn−1,yn−2),

then the point (x,y) is also called o fixed point of the vector map F.

Definition 2.2. If (x,y) be an equilibrium point of a map

F = ( f1,xn,xn−1,xn−2, f2,yn,yn−1,yn−2)

where f1 and f2 are continuously differentiable functions at (x,y). The linearized system (2.1) about the equilibrium point (x,y)

is

Xn+1 = F(Xn) = BXn

where

Xn =

















xn

xn−1

xn−2

yn

yn−1

yn−2

















and B is a Jacobian matrix of the system (2.1) about the equilibrium point (x,y).

Theorem 2.3. For the system Xn+1 = F(Xn), n = 0,1, ..., of difference equations such that X is a fixed point of F. If all

eigenvalues of the Jacobian matrix B about X lie inside the open unit disk |λ |< 1, then X is locally asymptotically stable. If

one of them has a modulus greater then one, then X is unstable.

3. Stability Character Of Equilibrium

In this section we will prove the stability nature of the zero equilibrium point. In the following theorem we will give the

equilibrium points of system (1.8).

Theorem 3.1. For all parameters r,r1,s,s1, system (1.8) have a unique zero equilibrium point.

Proof. It is clear from the equilibrium definition.
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Before we give the following stability theorems about the local asymptotic stability of the zero equilibrium point, we build

the corresponding linearized form of the system (1.8) and consider the following transformation;

(xn,xn−1,xn−2,yn,yn−1,yn−2)→ ( f , f1, f2,g,g1,g2)

where

f =
ryn−1

1+ s1y
p
ny

q
n−2

,

f1 = xn,

f2 = xn−1,

g =
r1xn−1

1+ sx
p
nx

q
n−2

,

g1 = yn,

g2 = yn−1.

The Jacobian matrix about the fixed point (x,y) under the above transformation is as follows:

B(x,y) =

























0 0 0 − rs1 pyp+q

(1+ s1yp+q)2

r

1+ s1yp+q
− rs1qyp+q

(1+ s1yp+q)2

1 0 0 0 0 0

0 1 0 0 0 0

− r1spxp+q

(1+ sxp+q)2

r1

1+ sxp+q
− r1sqxp+q

(1+ sxp+q)2
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

























where r,s,r1,s1, p,q ∈ (0,∞).

Theorem 3.2. For system (1.8) the following properties hold:

(i) The zero equilibrium point is locally asymptotically stable if rr1 < 1.

(ii) The zero equilibrium point is locally unstable if rr1 > 1.

Proof. (i) The linearized system of system (1.8) about the equilibrium point

(x0,y0) = (0,0)

is given by

Xn+1 = B(x0,y0)Xn,

where

Xn =

















xn

xn−1

xn−2

yn

yn−1

yn−2

















and

B(x0,y0) =

















0 0 0 0 r 0

1 0 0 0 0 0

0 1 0 0 0 0

0 r1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

















.

The characteristic equation of B(x0,y0) is as follows:

P(λ ) = λ 6 − (rr1)λ
2 = 0.
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The roots of P(λ ) are

λ1,2 = 0,

λ3,4 = ± 4
√

rr1,

λ5,6 = ±i 4
√

rr1.

Since all eigenvalues of the Jacobian matrix B about

(x0,y0) = (0,0)

lie inside the open unit disk

|λ |< 1,

the zero equilibrium point is locally asymptotically stable.

(ii) It is easy to see that if rr1 > 1, then the zero equilibrium point of system (1.8) is unstable.

Now, we will study the global asymptotic stability of system (1.8) about the zero equilibrium point.

Theorem 3.3. The zero equilibrium point of system (1.8) is globally asymptotically stable when r < 1 and r1 < 1.

Proof. In view of Theorem 3.2, it suffices to prove that

lim
n→∞

(xn,yn) = (0,0).

It is evident from (1.8) that

0 6 xn+1 =
ryn−1

1+ s1y
p
ny

q
n−2

< ryn−1 < yn−1.

This implies that

x4n+1 < y4n−1

and

x4n+5 < y4n+3.

Besides this,

0 6 yn+1 =
r1xn−1

1+ sx
p
nx

q
n−2

< r1xn−1 < xn−1

This implies that

y4n+1 < x4n−1

and

y4n+5 < x4n+3.

So

x4n+5 < y4n+3 < x4n+2

and

y4n+5 < x4n+3 < y4n+2.

Hence, the subsequences

{x4n+1} ,{x4n+2} ,{x4n+3} ,{x4n+4}
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and

{y4n+1} ,{y4n+2} ,{y4n+3} ,{y4n+4}

are decreasing. Therefore the sequences {xn} and {yn} are monotonic which are decreasing. Hence

lim
n→∞

xn = 0

and

lim
n→∞

yn = 0.

This completes the proof.

4. Prime Periodic Two-Solutions 1.8

In this section we will investigate the periodic nature of system (1.8).

Theorem 4.1. System (1.8) has no prime period two solutions.

Proof. Assuming

. . . ,(a,b),(c,d),(a,b),(c,d), . . .

is prime period two solutions of the system (1.8) such that

a,b,c,d 6= 0

and

a 6= c,b 6= d.

Then we have

a =
rb

1+ s1dp+q
, b =

r1a

1+ scp+q
(4.1)

and

c =
rd

1+ s1b
p+q , d =

r1c

1+ sa
p+q (4.2)

After some tedious calculations from (4.1) and (4.2), we can obtain the following equilities;

(a+ c)2 −4ac = 0,

and

(b+d)2 −4bd = 0.

But they are contrary to our assumption and therefore system (1.8) has no prime period-two solutions. This completes the

proof.

5. Rate of Convergence

In this section, we will give exact results about the rate of convergence of positive solutions that converge to the equilibrium

point of the system (1.8), in the regions of parameters described in Theorem (3.3).

Consider the following system of difference equations

xn+1 = f1(xn,yn), n = 0,1, . . .
yn+1 = f2(xn,yn), n = 0,1, . . .

}

(5.1)
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where f1, f2 are continuous functions that maps some set I into I. The set I is an interval of real numbers. System (5.1) is

competitive if f1(x,y) is non-decreasing in x and non-increasing in y and f2(x,y) is non-increasing in x and non-decreasing in y.

System (5.1) is called anti-competitive system, if the functions f1 and f2 have monotonic character opposite to the monotonic

character in competitive system.

We state that the following theorems give precise information about the asymptotics of linear non-autonomous difference

equations. Consider the scalar mth-order linear difference equation

yn+m + p1(n)yn+m−1 + pm(n)yn = 0 (5.2)

where m is a positive integer and pi : Z+ → C for i ∈ {1, . . . ,m}. Suppose that

qi = lim
n→∞

pi(n), for i = 1,2, . . . ,m, (5.3)

exist in C. For the following limitting equation of (5.2)

yn+m +q1yn+m−1 + . . .+qmyn = 0, (5.4)

the asymptotics of solutions of (5.2) are given the following results. See [25].

Theorem 5.1. (Poincaré’s Theorem) Consider (5.2) based on the condition (5.3). Let λi for i = 1, . . . ,m be the roots of the

characteristic equation

λ m +q1λ m−1 + . . .+qm = 0 (5.5)

of the limiting equation (5.4) under the condition that |λi| 6=
∣

∣λ j

∣

∣ for i 6= j. If xn is a positive solution of (5.2), then either xn = 0

for all large n or there exists an index j ∈ {1, . . . ,m} such that

lim
n→∞

xn+1

xn

= λ j.

The releated results were obtained by Perron, and one of Perron’s results was improved by Pituk, see [25].

Theorem 5.2. Assume that (5.3) holds. If xn is a positive solution of (5.2), then either eventually xn = 0 or

lim
n→∞

sup(
∣

∣xn j

∣

∣)1/n =
∣

∣λ j

∣

∣ ,

where λ1, . . . ,λm are the roots (not necessarily distinct) of the characteristic equation (5.5).

Consider

Yn+1 = [A+B(n)]Yn (5.6)

where Yn is an m-dimensional vector, A ∈Cm×m is a constant matrix and

B : Z+ →Cm×m

is a matrix function satisfying

‖B(n)‖→ 0, when n → ∞, (5.7)

where ‖.‖ denotes any matrix norm which is associated with the vector norm ‖.‖. See [20].

Theorem 5.3. (Pituk) Suppose that condition (5.7) holds for system (5.6). If Yn is a solution of (5.6), then either

Yn = 0

for all large n or

θ = lim
n→∞

‖Yn‖1/n

exists and θ is equal to the modulus of one the eigenvalues of the matrix A.
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Theorem 5.4. (Pituk) Suppose that condition (5.7) holds for system (5.6). If Yn is a solution of (5.6), then either

Yn = 0

for all large n or

θ = lim
n→∞

‖Yn+1‖
‖Yn‖

exists and θ is equal to the modulus of one the eigenvalues of the matrix A.

Using Theorem (5.3) and (5.4), we obtain the following rate of convergence result.

Theorem 5.5. Suppose that r < 1 and r1 < 1. Let {(xn,yn)}∞
n=−2 be any positive solution of the system (1.8) such that

lim
n→∞

xn = x1,

lim
n→∞

yn = x2

where M = (x1,x2) and M is globally asymptotically stable. Then, the error vector

En =

















e1
n

e1
n−1

e1
n−2

e2
n

e2
n−1

e2
n−2

















6×1

=

















xn − x1

xn−1 − x1

xn−2 − x1

yn − x2

yn−1 − x2

yn−2 − x2

















6×1

of every positive solution of the system (1.8) satisfies both of the following asymptotic relations:

lim
n→∞

‖En‖1/n = |λiJF(M)| , for some i = 1,2, . . . ,6

lim
n→∞

‖En+1‖
‖En‖

= |λiJF(M)| , for some i = 1,2, . . . ,6

where

|λiJF(M)|

is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at the equilibrium point M.

Proof. Let {(xn,yn)}∞
n=−2 be any positive solution of the system (1.8) such that

lim
n→∞

xn = x1

and

lim
n→∞

yn = x2.

To find the error terms, we have

xn+1 − x1 = ∑
2

i=0
Ai(xn−i − x1)+∑

2

i=0
Bi(yn−i − x2)

yn+1 − x2 = ∑
2

i=0
Ci(xn−i − x1)+∑

2

i=0
Di(yn−i − x2).

Set

e1
n = xn − x1,

e2
n = yn − x2;

therefore, it follows that

e1
n+1 = ∑

2

i=0
Aie

1
n−i +∑

2

i=0
Bie

2
n−i

e2
n+1 = ∑

2

i=0
Cie

1
n−i +∑

2

i=0
Die

2
n−i
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where

A0 = 0, A1 = 0, A2 = 0,

B0 = − rs1 py(yp
nyn−2

q − yp+q)

(1+ s1y
p
nyn−2

q)2
,

B1 =
r

1+ s1y
p
nyn−2

q
,

B2 = − rs1qy(yp
nyn−2

q − yp+q)

(1+ s1y
p
nyn−2

q)2
,

C0 = − r1spx(xp
nxn−2

q − xp+q)

(1+ sx
p
nxn−2

q)2
,

C1 =
r1

1+ sx
p
nxn−2

q
,

C2 = − r1sqx(xp
nxn−2

q − xp+q)

(1+ sx
p
nxn−2

q)2
,

D0 = 0, D1 = 0, D2 = 0.

Taking the limits, it is clear that

lim
n→∞

A0 = 0, lim
n→∞

A1 = 0, lim
n→∞

A2 = 0,

lim
n→∞

B0 = − rs1 py(yp
nyn−2

q − yp+q)

(1+ s1y
p
nyn−2

q)2
,

lim
n→∞

B1 =
r

1+ s1y
p
nyn−2

q
,

lim
n→∞

B2 = − rs1qy(yp
nyn−2

q − yp+q)

(1+ s1y
p
nyn−2

q)2
,

lim
n→∞

C0 = − r1spx(xp
nxn−2

q − xp+q)

(1+ sx
p
nxn−2

q)2
,

lim
n→∞

C1 =
r1

1+ sx
p
nxn−2

q
,

lim
n→∞

C2 = − r1sqx(xp
nxn−2

q − xp+q)

(1+ sx
p
nxn−2

q)2
,

lim
n→∞

D0 = 0, lim
n→∞

D1 = 0, lim
n→∞

D2 = 0.

That is

B0 = − rs1 py(yp
1y2

q − yp+q)

(1+ s1y
p+q
2 )2

+αn,

B1 =
r

1+ s1y
p+q
2

+βn,

B2 = − rs1qy(yp
1y2

q − yp+q)

(1+ s1y
p+q
2 )2

+ γn,

C0 = − r1spx(xp
2x1

q − xp+q)

(1+ sx
p+q
1 )2

+δn,

C1 =
r1

1+ sx
p+q
1

+ηn,

C2 = −− r1sqx(xp
2x1

q − xp+q)

(1+ sx
p+q
1 )2

+θn,
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where αn → 0, βn → 0, γn → 0, δn → 0, ηn → 0, θn → 0 for n → ∞.

Thus, the limitting system of error terms about the equilibrium M can be written as follows:

En+1 = (C+D(n))En,

where En = (e1
n,e

1
n−1,e

1
n−2,e

2
n,e

2
n−1,e

2
n−2)

T ,

C =

















0 0 0 0 r 0

1 0 0 0 0 0

0 1 0 0 0 0

0 r1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

















6×6

,

Dn =

















0 0 0 αn βn γn

0 0 0 0 0 0

0 0 0 0 0 0

δn ηn θn 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















6×6

and ‖D(n)‖→ 0, when n → ∞. As desired.

Corollary 5.6. Assume that rr1 < 1. Then, the error vector of every non-trivial solution of system 1.8 satisfies both of the

following asymptotic relations:

lim
n→∞

‖En‖1/n = |λiJF(M)| , for some i = 1,2,3,4,5,6,

lim
n→∞

‖En+1‖
‖En‖

= |λiJF(M)| , for some i = 1,2,3,4,5,6

where |λiJF(M)| is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at the equilibrium point M, i.e.

{λ1,2 = 0,λ3,4 =± 4
√

rr1,λ5,6 =±i 4
√

rr1.}.

6. Conclusions

In the present paper, we described the qualitative behaviors of solutions of the system (1.8) of nonlinear difference equations.

More precisely, we studied the equilibrium points, the local asymptotic stability, the global asymptotic stability of zero

equilibrium, the existence of the prime two-periodic solutions and the rate of convergence of positive solutions of the

aforementioned system. Also, we gave a correction about an article in the literature. Our system generalized the systems

studied in [13, 14, 27].

The results in this paper can be extend to the following system of difference equations;

un+1 =
αvn−1

β + γ
k

∑
i=0

v
pi
n−2i

,

vn+1 =
α1un−1

β1 + γ1

k

∑
i=0

u
pi
n−2i

,



































,n = 0,1, ....
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1. Introduction

Integral equations arise naturally in various applications in describing numerous real universe problems. As well, quadratic

integral equations have numerous useful applications in describing uncountable events and problems of the real world. For

instance, quadratic integral equations are often applicable in the traffic theory, in the theory of radiative transfer, in the theory of

neutron transport and kinetic theory of gases. Several authors have comprehensively studied the integral equations and the

solution of them in this references [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Moreover, M.

Benchohra and M. A. Darwish et al. [1] study the existence of the unique solution, defined on a semi-infinite interval J : [0,∞)
for the following quadratic integral equations with a linear modification of the argument

x(t) = f (t)+(Ax)(t)
∫ T

0
u(t,s,x(s),x(αs))ds, t ∈ J.

where f : J → R, u : J× JT ×R
2 → R are given functions, 0 < α < 1, JT = [0,T ] and A : C(J;R)→C(J;R) is an appropriate

operator. Here C(J;R) denotes the space of continuous functions x : J → R.

This article concerns the entity of solutions of the following a quadratic integral equation of Fredholm type,

x(t) = (T1x)(t)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ, t ∈ I = [0,1]. (1.1)

where k is given function, T1,T2,T3 are given operators satisfying conditions specified later and x is unknown function.

2. Preliminaries

Let [a,b] be a closed interval in R, by C[a,b] we indicate the space of continuous functions defined on [a,b] equipped with the

supremum norm, i.e.,

‖x‖
∞
= sup

{

|x(t)| : t ∈ [a,b]
}
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for x ∈C[a,b]. For a fixed α with 0 < α ≤ 1, by Hα [a,b] we will indicate the spaces of the real functions x defined on [a,b]
and satisfying the Hölder condition, that is, those functions x for which there exists a constant Hα

x such that

|x(t)− x(s)| ≤ Hα
x |t − s|α (2.1)

for all t,s ∈ [a,b]. It is well proved that Hα [a,b] is a linear subspaces of C[a,b]. Also, for x ∈ Hα [a,b], by Hα
x we will indicate

the least possible stable for which inequality (2.1) is satisfied. Rather, we put

Hα
x = sup

{

|x(t)− x(s)|

|t − s|α
: t,s ∈ [a,b] and t 6= s

}

. (2.2)

The space Hα [a,b] with 0 < α ≤ 1 may be equipped with the norm

‖x‖α = |x(a)|+Hα
x

for x ∈ Hα [a,b]. Here, Hα
x is defined by (2.2). In [2], the authors demonstrated that (Hα [a,b],‖ · ‖α) with 0 < α ≤ 1 is a

Banach space.

Lemma 2.1. For 0 < α ≤ 1 and x ∈ Hα [a,b], we have:

‖x‖
∞
≤ max(1,(b−a)α)‖x‖α .

In particular, the inequality ‖x‖
∞
≤ ‖x‖α is satisfied for a = 0 and b = 1, [2].

Lemma 2.2. For 0 < α < β ≤ 1, we have

Hβ [a,b]⊂ Hα [a,b]⊂C[a,b].

Furthermore, for x ∈ Hβ [a,b], we have:

‖x‖α ≤ max
(

1,(b−a)β−α
)

‖x‖β .

Particularly, the inequality ‖x‖
∞
≤ ‖x‖α ≤ ‖x‖β is satisfied for a = 0 and b = 1, [2].

Lemma 2.3. Let’s assume that 0 < α < β ≤ 1 and E is a bounded subset in Hβ [a,b], then E is a relatively compact subset in

Hα [a,b], [3].

Lemma 2.4. Assume that 0 < α < β ≤ 1 and by B
β
r we indicate the ball centered at θ and radius r in the space Hβ [a,b], i.e.,

B
β
r = {x ∈ Hβ [a,b] : ‖x‖β ≤ r}. Then B

β
r is a closed subset of Hα [a,b], [3].

Corollary 2.5. Assume that 0 < α < β ≤ 1 and B
β
r = {x ∈ Hβ [a,b] : ‖x‖β ≤ r}, then B

β
r is a compact subset in the space

Hα [a,b], [3].

Theorem 2.6 (Schauder’s fixed point theorem). Let E be a nonempty, compact and convex subset of a Banach space (X ,‖ · ‖),
convex and let T : E → E be a continuity mapping. Then T has at least one fixed point in E, [4].

3. Main Result

Theorem 3.1. Assume that the following conditions (i)− (iv) are satisfied:

(i) The operators T1, T2 : Hβ [0,1]→ Hβ [0,1] are continuous on Hβ [0,1] with respect to the norm ‖ · ‖α . Also, T1 and T2

hold the inequalities

‖T1x‖β ≤ f1(‖x‖β ) and ‖T2x‖β ≤ f2(‖x‖β )

for any x ∈ Hβ [0,1], where α and β are the fixed constants satisfying 0 < α < β ≤ 1 and the functions f1, f2 : R+ → R+

are nondecreasing on R+.

(ii) k : [0,1]× [0,1]→ R is a continuous function such that there exists a constant kβ > 0 satisfying

|k(t,τ)− k(s,τ)| ≤ kβ |t − s|β ,

for any t,s,τ ∈ [0,1].



Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem — 41/45

(iii) The operators T3 : Hβ [0,1] → C[0,1] is continuous on Hβ [0,1] with respect to the norm ‖ · ‖α . Also, T3 holds the

inequality

‖T3x‖
∞
≤ f3(‖x‖β )

for any x ∈ Hβ [0,1], where α and β are the fixed constants satisfying 0 < α < β ≤ 1 and the functions f3 : R+ → R+ is

nondecreasing on R+.

(iv) There exists a positive solution r0 of the inequality

f1(r)+(2K + kβ ) f2(r) f3(r)≤ r,

where the constant K is defined by

sup

{

∫ 1

0
|k(t,τ)|dτ : t ∈ [0,1]

}

≤ K.

Then the equation (1.1) has at least one solution x = x(t) belonging to space Hα [0,1].

Proof. We take for arbitrarily fixed t,s ∈ [0,1],(t 6= s) and let us consider x ∈ Hβ [0,1] and the operator F defined on the space

Hβ [0,1] by the formula:

(Fx)(t) = (T1x)(t)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ,

for t ∈ [0,1]. Then, in view of our assumptions we get

(Fx)(t)− (Fx)(s) = (T1x)(t)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ − (T1x)(s)− (T2x)(s)

∫ 1

0
k(s,τ)(T3x)(τ)dτ

= (T1x)(t)− (T1x)(s)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ − (T2x)(s)

∫ 1

0
k(s,τ)(T3x)(τ)dτ

+(T2x)(s)
∫ 1

0
k(t,τ)(T3x)(τ)dτ − (T2x)(s)

∫ 1

0
k(t,τ)(T3x)(τ)dτ

= (T1x)(t)− (T1x)(s)+((T2x)(t)− (T2x)(s))
∫ 1

0
k(t,τ)(T3x)(τ)dτ

+(T2x)(s)
∫ 1

0
(k(t,τ)− k(s,τ))(T3x)(τ)dτ

and

|(Fx)(t)− (Fx)(s)|

|t − s|β
≤

|(T1x)(t)− (T1x)(s)|

|t − s|β
+

|(T2x)(t)− (T2x)(s)|

|t − s|β

∫ 1

0
|k(t,τ)| |(T3x)(τ)|dτ

+
|(T2x)(s)|

|t − s|β

∫ 1

0
|k(t,τ)− k(s,τ)| |(T3x)(τ)|dτ ≤ H

β
T1x +‖T2x‖β‖T3x‖

∞

∫ 1

0
|k(t,τ)|dτ

+‖T2x‖
∞
‖T3x‖

∞

∫ 1

0

|k(t,τ)− k(s,τ)|

|t − s|β
dτ

≤ H
β
T1x +‖T2x‖β‖T3x‖

∞
K +‖T2x‖β‖T3x‖

∞

∫ 1

0
kβ

|t − s|β

|t − s|β
dτ

≤ H
β
T1x + f2(‖x‖β ) f3(‖x‖β )K + f2(‖x‖β ) f3(‖x‖β )kβ

= H
β
T1x +(K + kβ ) f2(‖x‖β ) f3(‖x‖β ). (3.1)

This demonstrates that the operator F maps Hβ [0,1] into itself. Besides, for any x ∈ Hβ [0,1], we get

|(Fx)(0)| ≤ |(T1x)(0)|+ |(T2x)(0)|
∫ 1

0
|k(0,τ)|(T3x)(τ)|dτ

≤ |(T1x)(0)|+‖T2x‖
∞
‖T3x‖

∞
K

≤ |(T1x)(0)|+‖T2x‖β‖T3x‖
∞

K

≤ |(T1x)(0)|+ f2(‖x‖β ) f3(‖x‖β )K. (3.2)
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By the inequalities by (3.1) and (3.2), we derive that

‖Fx‖β ≤ ‖T1x‖β +(2K + kβ ) f2(‖x‖β ) f3(‖x‖β )

≤ f1(‖x‖β )+(2K + kβ ) f2(‖x‖β ) f3(‖x‖β ). (3.3)

Since positive number r0 is the solution of the inequality given in hypothesis (iv), from (3.3), we conclude that the inequality

‖Fx‖β ≤ f1(r0)+(2K + kβ ) f2(r0) f3(r0)≤ r0 (3.4)

holds. As a results, it follows that F transforms the ball

Bβ
r0
= {x ∈ Hβ [0,1] : ‖x‖β ≤ r0}

into itself. That is, F : B
β
r0
→ B

β
r0

. Thus, we have that the set B
β
r0

is relatively compact in Hα [0,1] for any 0 < α < β ≤ 1.

Furthermore, B
β
r0

is a compact subset in Hα [0,1].

We will show that the operator F is continuous on B
β
r0

with respect to the norm ‖ · ‖α , where 0 < α < β ≤ 1. Let y ∈ B
β
r0

be

an arbitrary point in B
β
r0

. Then, we get

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s)) = (T1x)(t)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ

−(T1y)(t)− (T2y)(t)
∫ 1

0
k(t,τ)(T3y)(τ)dτ

−(T1x)(s)− (T2x)(s)
∫ 1

0
k(s,τ)(T3x)(τ)dτ

+(T1y)(s)+(T2y)(s)
∫ 1

0
k(s,τ)(T3y)(τ)dτ (3.5)

for any x ∈ B
β
r0

and t,s ∈ [0,1]. The equality (3.5) can be rewritten as:

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s)) = (T1x)(t)− (T1y)(t)− ((T1x)(s)− (T1y)(s))

+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ − (T2y)(t)

∫ 1

0
k(t,τ)(T3x)(τ)dτ

+(T2y)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ − (T2y)(t)

∫ 1

0
k(t,τ)(T3y)(τ)dτ

−(T2x)(s)
∫ 1

0
k(s,τ)(T3x)(τ)dτ +(T2y)(s)

∫ 1

0
k(s,τ)(T3x)(τ)dτ

−(T2y)(s)
∫ 1

0
k(s,τ)(T3x)(τ)dτ +(T2y)(s)

∫ 1

0
k(s,τ)(T3y)(τ)dτ. (3.6)

By (3.6), we have

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s)) = (T1x)(t)− (T1y)(t)− ((T1x)(s)− (T1y)(s))

+((T2x)(t)− (T2y)(t))
∫ 1

0
k(t,τ)(T3x)(τ)dτ

+(T2y)(t)
∫ 1

0
k(t,τ)((T3x)(τ)− (T3y)(τ))dτ

−((T2x)(s)− (T2y)(s))
∫ 1

0
k(s,τ)(T3x)(τ)dτ

−(T2y)(s)
∫ 1

0
k(s,τ)((T3x)(τ)− (T3y)(τ))dτ. (3.7)
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(3.7) yields the following equality:

((Fx)(t)− (Fy)(t))− ((Fx)(s)− (Fy)(s)) = (T1x)(t)− (T1y)(t)− ((T1x)(s)− (T1y)(s))

+[((T2x)(t)− (T2y)(t))− ((T2x)(s)− (T2y)(s))]
∫ 1

0
k(t,τ)(T3x)(τ)dτ

+((T2x)(s)− (T2y)(s))
∫ 1

0
(k(t,τ)− k(s,τ))(T3x)(τ)dτ

+((T2y)(t)− (T2y)(s))
∫ 1

0
k(t,τ)((T3x)(τ)− (T3y)(τ))dτ

+(T2y)(s)
∫ 1

0
(k(t,τ)− k(s,τ))((T3x)(τ)− (T3y)(τ))dτ. (3.8)

Since |(T3x)(τ)| ≤ ‖T3x‖
∞
≤ f3(‖x‖β ) and |(T3x)(τ)− (T3y)(τ)| ≤ ‖T3x−T3y‖

∞
for all x,y ∈ B

β
r0

and τ ∈ [0,1], taking into

account (3.8) and hypotheses, we can write:

|(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s))|

|t − s|α
≤

|(T1x)(t)− (T1y)(t)− ((T1x)(s)− (T1y)(s))|

|t − s|α

+
|(T2x)(t)− (T2y)(t)− ((T2x)(s)− (T2y)(s))|

|t − s|α

∫ 1

0
|k(t,τ)||(T3x)(τ)|dτ

+
|(T2x)(s)− (T2y)(s)|

|t − s|α

∫ 1

0
|k(t,τ)− k(s,τ)||(T3x)(τ)|dτ

+
|(T2y)(t)− (T2y)(s)|

|t − s|α

∫ 1

0
|k(t,τ)||(T3x)(τ)− (T3y)(τ)|dτ

+
|(T2y)(s)|

|t − s|α

∫ 1

0
|k(t,τ)− k(s,τ)||(T3x)(τ)− (T3y)(τ)|dτ

≤ ‖T1x−T1y‖α +‖T2x−T2y‖α‖T3x‖
∞

K +‖T2x−T2y‖
∞
‖T3x‖

∞

∫ 1

0
kβ |t − s|β−α dτ

+‖T2y‖α‖T3x−T3y‖
∞

K +‖T2y‖
∞
‖T3x−T3y‖

∞

∫ 1

0
kβ |t − s|β−α dτ

≤ ‖T1x−T1y‖α +K‖T2x−T2y‖α‖T3x‖
∞
+ kβ‖T2x−T2y‖α‖T3x‖

∞

+K‖T2y‖α‖T3x−T3y‖
∞
+ kβ‖T2y‖α‖T3x−T3y‖

∞

= ‖T1x−T1y‖α +(K + kβ )‖T2x−T2y‖α‖T3x‖
∞
+(K + kβ )‖T2y‖α‖T3x−T3y‖

∞
(3.9)

for all t,s ∈ [0,1] with t 6= s. Besides, for x,y ∈ B
β
r0

, we obtain following equality:

(Fx)(0)− (Fy)(0) = (T1x)(0)+(T2x)(0)
∫ 1

0
k(0,τ)(T3x)(τ)dτ − (T1y)(0)− (T2y)(0)

∫ 1

0
k(0,τ)(T3y)(τ)dτ

= (T1x)(0)− (T1y)(0)+(T2x)(0)
∫ 1

0
k(0,τ)(T3x)(τ)dτ

−(T2y)(0)
∫ 1

0
k(0,τ)(T3x)(τ)dτ +(T2y)(0)

∫ 1

0
k(0,τ)(T3x)(τ)dτ

−(T2y)(0)
∫ 1

0
k(0,τ)(T3y)(τ)dτ

= (T1x)(0)− (T1y)(0)+((T2x)(0)− (T2y)(0))
∫ 1

0
k(0,τ)(T3x)(τ)dτ

+(T2y)(0)
∫ 1

0
k(0,τ)((T3x)(τ)− (T3y)(τ))dτ. (3.10)
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By (3.10), we get that

|(Fx)(0)− (Fy)(0)| = |(T1x)(0)− (T1y)(0)|+ |(T2x)(0)− (T2y)(0)|K
∫ 1

0
|(T3x)(τ)|dτ

+ |(T2y)(0)|K
∫ 1

0
|(T3x)(τ)− (T3y)(τ)|dτ

≤ ‖T1x−T1y‖
∞
+‖T2x−T2y‖

∞
K‖T3x‖

∞
+‖T2y‖

∞
K‖T3x−T3y‖

∞

≤ ‖T1x−T1y‖α +‖T2x−T2y‖α K‖T3x‖
∞
+‖T2y‖α K‖T3x−T3y‖

∞
. (3.11)

From (3.9) and (3.11), we have that

‖Fx−Fy‖α = |(Fx−Fy)(0)|+Hα
Fx−Fy

= |(Fx)(0)− (Fy)(0)|+ sup

{

|(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s))|

|t − s|α
: t,s ∈ [0,1] and t 6= s

}

≤ 2‖T1x−T1y‖α +(2K + kβ )‖T2x−T2y‖α‖T3x‖
∞
+(2K + kβ )‖T2y‖α‖T3x−T3y‖

∞

≤ 2‖T1x−T1y‖α +(2K + kβ )‖T2x−T2y‖α‖T3x‖
∞
+(2K + kβ )‖T2y‖β‖T3x−T3y‖

∞

≤ 2‖T1x−T1y‖α +(2K + kβ )‖T2x−T2y‖α f3(‖x‖β )+(2K + kβ ) f2(‖y‖β )‖T3x−T3y‖
∞
. (3.12)

Moreover, since ‖x‖β ≤ r0 and ‖y‖β ≤ r0, we derive from (3.12) that the following inequality holds:

‖Fx−Fy‖α ≤ 2‖T1x−T1y‖α +(2K + kβ ) f3(r0)‖T2x−T2y‖α +(2K + kβ ) f2(r0)‖T3x−T3y‖
∞
. (3.13)

Since the operators T1,T2 : Hβ [0,1]→ Hβ [0,1] and T3 : Hβ [0,1]→C[0,1] are continuous on Hβ [0,1] with respect to the norm

‖ · ‖α , they are also continuous at the point y ∈ B
β
r0

. Let us take an arbitrary ε > 0, then there exists the number δ = δ (ε)> 0.

The inequalities

‖T1x−T1y‖α <
ε

6
,‖T2x−T2y‖α < ε

3(2K+kβ ) f3(r0)

and

‖T3x−T3y‖
∞
<

ε

3(2K + kβ ) f2(r0)

hold for all x ∈ B
β
r0

. Then, taking into account (3.13), we derive the following inequality:

‖Fx−Fy‖α <
ε

3
+

ε

3
+

ε

3
= ε.

for all x ∈ B
β
r0

with ‖x− y‖α < δ . Eventually, we infer that the operator F is continuous at the point y ∈ B
β
r0

. Since y was

chosen arbitrarily, we conclude that F is continuous on B
β
r0

with respect to the norm ‖ · ‖α . Because B
β
r0

is compact in Hα [0,1],
by the classical Schauder fixed point theorem, we get the desired consequence.

4. Conclusion

This article concerns the entity of solutions of the following a quadratic integral equation of Fredholm type,

x(t) = (T1x)(t)+(T2x)(t)
∫ 1

0
k(t,τ)(T3x)(τ)dτ, t ∈ I = [0,1].

where k is given function, T1,T2,T3 are given operators satisfying conditions specified later and x is unknown function.
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1. Introduction

Difference equation is a very diverse field that is effective in almost every branch of applied mathematics. Recently, researchers

have shown great interest in studying the behavior of solutions of nonlinear difference equations. Difference equations are used

in many fields such as population biology, economics, probability theory, genetics, psychology, mathematical modeling. There

are many articles on difference equations, for example; [24]-[28]

Cinar, studied the following problem with positive initial values:

xn+1 =
xn−1

−1+axnxn−1
,

for n = 0,1,2, ... in [2] respectively.

Simsek et. al., studied the following problems with positive initial values,

xn+1 =
xn−3

1+ xn−1

xn+1 =
xn−5

1+ xn−2
,

xn+1 =
xn−5

1+ xn−1xn−3
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for n = 0,1,2, ... in [5]-[7] respectively.

Elsayed studied the behavior of the solution of the following difference equation,

xn+1 = axn−1 +
bxnxn−1

cxndxn−2
, n = 0,1, ...,

where the initial conditions x−2x−1,x0 are arbitrary positive real numbers and a,b,c,d are positive constants. [15]

Devault et. al. studied the following problems

xn+1 =
A

xn

+
1

xn−2

for n = 0,1,2, ... in [23] and showed every positive solution of the equation where A ∈ (0,∞).
Stevic et. al. studied on a product-type system of difference equations of second order solvable in closed form in [28].

Shown that the following system of difference equations

zn+1 =
za

n

wb
n−1

,wn+1 =
wc

n

zd
n−1

,n ∈ N0,

where a,b,c,d ∈ Z,z−1,z0,w−1,w0 ∈ C is solvable in closed form.

In this work, the following non-linear difference equation was studied

xn+1 =
xn−29

1+ xn−4xn−9xn−14xn−19xn−24
(1.1)

where x−29,x−28, ...,x−1,x0 ∈ (0,∞) .

2. Main Results

Let x be the unique positive equilibrium of the 1.1, then clearly,

x =
x

1+ xxxxx
⇒ x+ x6 = x ⇒ x6 = 0 ⇒ x = 0,

so x = 0 can be obtained. For any k ≥ 0 and m > k notation i = k,m means i = k,k+1, ...,m

Theorem 2.1. Consider the difference equation 1.1. Then the following statements are true.

a) The sequences x30n−29,x30n−28, ...,x30n−1,x30n are being decreased and

a1,a2, ...,a29,a30 ≥ 0

are existed in such that

lim
n→∞

x30n−29+k = a1+k, k = 0,29.

b)

6

∏
k=0

lim
n→∞

x35n−34− j+5k = 0, j = 0,4 or
6

∏
k=0

a5k+i = 0, i = 1,5.

c) n0 ∈ N such that xn+1 ≤ xn−24 for all n ≥ n0, then

lim
n→∞

xn = 0.

d) The following formulas below are hold:

x30n+1+k = x−29+k

(

1−
x−4+kx−9+kx−14+kx−19+kx−24+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,
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x30n+6+k = x−24+k

(

1−
x−4+kx−9+kx−14+kx−19+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+1

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+11+k = x−19+k

(

1−
x−4+kx−9+kx−14+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+2

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+16+k = x−14+k

(

1−
x−4+kx−9+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+3

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+21+k = x−9+k

(

1−
x−4+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+4

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+26+k = x−4+k

(

1−
x−9+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+5

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

k = 0,4 holds.

e) If x30n+1+k → a1+k 6= 0, x30n+6+k → a6+k 6= 0, x30n+11+k → a11+k 6= 0, x30n+16+k → a16+k 6= 0, x35n+21+k →

a21+k 6= 0, then x30n+26+k → a26+k = 0 as n → ∞. k = 0,4.

Proof. a) Firstly, from the 1.1

xn+1 =
xn−29

1+ xn−4xn−9xn−14xn−19xn−24

is obtained. If xn−4xn−9xn−14xn−19xn−24 ∈ (0,+∞), then (1+ xn−4xn−9xn−14xn−19xn−24) ∈ ((1,+∞). Since

xn+1 < xn−29,

n ∈ N,

lim
n→∞

x30n−29+k = a1+k, f or k = 0,29

existed formulas are obtained.

b) In view of the 1.1,

n = 30n ⇒ x30n+1 =
x30n−29

1+∏
5
k=0 x30n−29+5k

is obtained. If the limits are put on both sides of the above equality,

6

∏
k=0

lim
n→∞

x35n−34+5k = 0 or
6

∏
k=0

a5k+1 = 0

is obtained. Similarly for n = 30n+1, n = 30n+2, n = 30n+3 and n = 30n+4 we can obtain x30n+2, x30n+3, x30n+4

and x30n+5.
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c) If there exist n0 ∈ N such that xn+1 ≤ xn−24 for all n ≥ n0, then, a1 ≤ a6 ≤ a11 ≤ a16 ≤ a21 ≤ a26 ≤ a1, a2 ≤ a7 ≤

a12 ≤ a17 ≤ a22 ≤ a27 ≤ a2, a3 ≤ a8 ≤ a13 ≤ a18 ≤ a23 ≤ a28 ≤ a3, a4 ≤ a9 ≤ a14 ≤ a19 ≤ a24 ≤ a29 ≤ a4, a5 ≤

a10 ≤ a15 ≤ a20 ≤ a25 ≤ a30 ≤ a5. Using (b) we get

6

∏
k=0

a5k+i = 0, i = 1,5.

Then we see that,

lim
n→∞

xn = 0.

Hence the proof of (c) completed.

d) Subtracting xn−29 from the left and right-hand sides in 1.1

xn+1 − xn−29 =
1

1+ xn−4xn−9xn−14xn−19xn−24
(xn−4 − xn−34)

is obtained and the following formula is produced below, for n ≥ 5

x5n−24 − x5n−54 = (x1 − x−29)
n−5

∏
i=1

1

1+ x5i−4x5i−9x5i−14x5i−19x5i−24

x5n−28 − x5n−53 = (x2 − x−28)
n−5

∏
i=1

1

1+ x5i−3x5i−8x5i−13x5i−18x5i−23

x5n−27 − x5n−52 = (x3 − x−27)
n−5

∏
i=1

1

1+ x5i−2x5i−7x5i−12x5i−17x5i−22

x5n−26 − x5n−51 = (x4 − x−26)
n−5

∏
i=1

1

1+ x5i−1x5i−6x5i−11x5i−16x5i−21

x5n−25 − x5n−50 = (x5 − x−25)
n−5

∏
i=1

1

1+ x5ix5i−5x5i−10x5i−15x5i−20

.

(2.1)

6 j inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+1+k − x−29+k = (x1+k − x−29+k)
n

∑
j=0

6 j

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+1 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+6+k − x−24+k = (x6+k − x−24+k)
n

∑
j=0

6 j+1

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+2 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+11+k − x−19+k = (x11+k − x−19+k)
n

∑
j=0

6 j+2

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+3 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4
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x35n+16+k − x−14+k = (x16+k − x−14+k)
n

∑
j=0

6 j+3

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+4 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+21+k − x−9+k = (x21+k − x−9+k)
n

∑
j=0

6 j+4

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+5 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+26+k − x−4+k = (x26+k − x−4+k)
n

∑
j=0

6 j+5

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Now we obtained of the above formulas:

x30n+1+k = x−29+k

(

1−
x−4+kx−9+kx−14+kx−19+kx−24+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+6+k = x−24+k

(

1−
x−4+kx−9+kx−14+kx−19+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+1

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+11+k = x−19+k

(

1−
x−4+kx−9+kx−14+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+2

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+16+k = x−14+k

(

1−
x−4+kx−9+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+3

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+21+k = x−9+k

(

1−
x−4+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+4

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

x30n+26+k = x−4+k

(

1−
x−9+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+5

∏
i=1

1

1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)

,

k = 0,4 holds.
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e) Suppose that a1 = a6 = a11 = a16 = a21 = a26 = 0. By (d), the following formulas are produced below

lim
n→∞

x30n+1 = lim
n→∞

x−29

(

1−
x−4x−9x−14x−19x−24

1+ x−4x−9x−14x−19x−24

n

∑
j=0

6 j

∏
i=1

1

1+ x5i−4x5i−9x5i−14x5i−19x5i−24

)

a1 = x−29

(

1−
x−4x−9x−14x−19x−24

1+ x−4x−9x−14x−19x−24

∞

∑
j=0

6 j

∏
i=1

1

1+ x5i−4x5i−9x5i−14x5i−19x5i−24x5i−29

)

a1 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−24
=

∞

∑
j=0

6 j

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.2)

Similarly,

a6 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.3)

Similarly,

a11 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.4)

Similarly,

a16 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.5)

Similarly,

a21 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.6)

Similarly,

a26 = 0 ⇒
1+ x−4x−9x−14x−19x−24

x−9x−14x−19x−24x−29
=

∞

∑
j=0

6 j+5

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.7)

From 2.2 and 2.3

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−24
=

∞

∑
j=0

6 j

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−29 > x−24. From 2.3 and 2.4
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1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−24 > x−19. From 2.4 and 2.5

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−19 > x−14. From 2.5 and 2.6

1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−14 > x−9. From 2.6 and 2.7

1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−9x−14x−19x−24x−29
=

∞

∑
j=0

6 j+5

∏
i=1

1

x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−9 > x−4.

From here we obtain x−29 > x−24 > x−19 > x−14 > x−9 > x−4. Similarly, we can obtain x−28 > x−23 > x−18 > x−13 >

x−8 > x−3, x−27 > x−22 > x−17 > x−12 > x−7 > x−2, x−26 > x−21 > x−16 > x−11 > x−6 > x−1 and x−25 > x−20 > x−15 >

x−10 > x−5 > x0. We arrive at a contradiction which completes the proof of theorem.

3. Conclusion

In this study, the theorem is given for the 1.1, and its solution and periodicity are investigated. By taking the coefficients of the

1.1, real numbers, sequence or function, new equations can be defined and their solutions can be examined.
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