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Extended Newton-type Method for Generalized
Equations with Holderian Assumptions

M. Z. Khaton', M. H. Rashid®*

Abstract

In the present paper, we consider the generalized equation 0 € f(x) + g(x) + % (x), where f: 2 — % is Fréchet
differentiable on a neighborhood Q of a point xin 27, g: 2 — % is differentiable at point & and linear as well
as % is a set-valued mapping with closed graph acting between two Banach spaces 2 and #'. We study the
above generalized equation with the help of extended Newton-type method, introduced in [ M. Z. Khaton, M.
H. Rashid, M. |. Hossain, Journal of Mathematics Research, 10(4) (2018), 1—18.], under the weaker conditions
than that are used in Khaton et al. (2018). Indeed, semilocal and local convergence analysis are provided for
this method under the conditions that the Fréchet derivative of f and the first-order divided difference of g are
Hélder continuous on Q. In particular, we show this method converges superlinearly and these results extend

and improve the corresponding results in Argyros (2008) and Khaton ez al. (2018).

Keywords: Divided difference, Extended Newton-type method, Generalized equations, Lipschitz-like mappings,
Semilocal convergence.
2010 AMS: 49J53, 47H04, 65K10

1. Introduction

Robinson [27, 28] introduced generalized equation problems as an universal instrument for describing, analyzing and solving
various type of problems in a framed way. This form of generalized equation problems have been discussed widely. Typical
examples are systems of inequalities, systems of nonlinear equations, variational inequality problems, linear and nonlinear
complementary problems and etc; see for examples [7, 19, 20]. Let Q be a subset of 2. Let f be a Fréchet differentiable
function from Q to ¢ and Vf be its Fréchet derivative, g be a differentiable at X but it may not be differentiable in a
neighborhood Q of % and linear function from Q to ¢/, [x,y; g] denote the first-order divided difference at the points x and y and
Z be a set-valued mapping from 2" to ¢ with closed graph. To find a point x in 2, we consider the generalized equation of
the following form:

0€ fx)+gx)+F(x). (L.1)
Pietrus and Alexis [1] associated the following Newton-like method for solving (1.1):

0 € fla)+gbu)+ (V) + [2x01 —xx,%0.8)) (k1 —Xk)
T (1), fork=0,1,... (12)
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and proved that the sequence generated by the process (1.2) converges superlinearlly. To solve the generalized equation (1.1),
Rashid er al. [25] established the local convergence results using the weaker conditions than Alexis and Pietrus [1] for the
method (1.2) and expanded the sequels by fixing a gap in the proof of [1, Theorem 1].

Furthermore, Hilout et al. [12] associated the following sequence for solving (1.1):

xp and x; are two starting points
yi = oxg+ (1 —ot)xg—1; here a € (0,1)
0 € f(xe) + s xi 1 (o1 — xi) +F (xe1)

and they proved the superlinear convergence of the sequence generated by this method under the assumption that f is only
differentiable and continuous at a solution x™.
For approximating the solution of (1.1), Argyros and Hilout [4] considered the following Newton-like method :

0 € f(xx) +glx) + (V£ () + g1, 8]) (i1 — %) +-F (%), for k= 0,1, (1.3)

and under Lipschitz continuity property of V f, they presented the quadratic convergence of the method (1.3).

Moreover, when % = {0}, Argyros [2] investigated on local as well as semilocal convergence analysis for two-point
Newton-like methods for solving (1.1) in a Banach space setting under very general Lipschitz type conditions. An extensive
study on these issues has been investigated by Rashid [3, 19, 20, 21] and other researchers when g = 0. In the case when .% is
either zero mapping or nonzero mapping, a large number Newton-like iterative methods have been studied and we will not
mention here all in detail.

Suppose that x € 2" and .4 (x) is the subset of 2~ which is defined as

N(x)={de X :0€ f(x)+gx)+ (Vf(x)+[x+d,x;g))d+ .F(x+d)}.

Under some suitable conditions, Khaton et al. [18] introduced and studied extended Newton-type method, when V f is
continuous and Lipschitz continuous as well as g admits first-order divided difference satisfying Lipschitzian condition. Inspired
by the work of Argyros in [4], Khaton et al. [18] considered the following “so called” extended extended Newton-type method
(see Algorithm 1):

Algorithm 1 (Extended Newton-type Method)
Step 0. Pick ) € [1,0), xo € £, and put k := 0.
Step 1. If 0 € 4" (x;), then stop; otherwise, go to the next Step 2.
Step 2. If 0 ¢ A" (xx), choose dy € A" (xy) such that

l[dicll < m dist (0,4 (xx)).

Step 3. Set xgr1 := x; + di.
Step 4. Replace k by k+ 1 and go to Step 1.

In contrast Algorithm 1 with the known results, we have the following conclusions: When F = 0 and g = 0, it is obvious
that Algorithm 1 is turned into the known Gauss-Newton method which is a famous iterative technique for solving nonlinear
least squares (model fitting) problems and has been studied widely; see for example [8, 9, 13, 15, 29, 30]. Within the case
when g = 0, several kind of methods for solving (1.1) were established by Rashid [22, 23, 24] and also obtained their local and
semilocal convergence.

The objective of this article is to continue to study the semilocal and local convergence for the extended Newton-type
method under the weaker conditions than [18], that is, Vf is (L,q)-Holder continuous and g admits the first-order divided
difference satisfying g-Holderian condition. The Lipschitz-like property of set-valued mappings which is the main tool of
this study whose concepts can be found in Aubin [5] in the context of non smooth analysis and it has been studied by a huge
number of mathematicians [1, 4, 10, 12, 17]. The main result of this study is semilocal analysis for the extended Newton-type
method, that is, based on the information around the initial point, the main results are the convergence criteria, which provide
few suitable conditions ensuring the convergence to a solution of any sequence generated by Algorithm 1. Consequently, the
results of the local convergence for the extended Newton-type method are attained.

This article is organized as follows: Some necessary notations, notions, preliminary results and a fixed-point theorem are
recalled in Section 2 that are used in the subsequent sections. In Section 3, we consider the extended Newton-type method
defined by Algorithm 1 to approximate the solution of (1.1). Using the concept of Lipschitz-like property for the set-valued
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mapping, in this section we also establish the existence and superlinear convergence of the sequence generated by Algorithm 1
in both semilocal and local cases. At the end, we give a summary of the main results and present a comparison of this study
with other known results.

2. Notations and Preliminaries

In this section, we evoke some notations and take out some results that will be helpful to verify our main results. Let 2~ and %
be two complex or real Banach spaces. Also, let p € 2" and B(p, ) = {u € 2 : ||u— p|| < ¢} denote the closed ball centered
at p with radius & > 0, and .%# be a set-valued mapping with closed graph. The domain of .%, can be stated as

dom% :={pe 2 : Z(p) #0}.
Let g € % . Then the inverse of .%, denoted by .% !, is defined by
FNq)={pe X :qe F(p)}.
The graph of .%, denoted by gph.%#, is defined by
gphF :={(p.q) € Z' x¥ :q€ F(p)}.
Let M and N be two subsets of a non empty set £ and p be a point in 2. The distance from a point p to a set M is defined by
dist(p, M) :=inf{||p —m| : m € M}.
In addition, the excess e from the set M to the set N is defined by
e(N,M) := sup{dist(n,M) : n € N}.
The set Z (%", %) is the space of linear operators from 2" to % and all the norms are denoted by || - ||
Definition 2.1. Suppose f € L(Z,%). Then f is said to have the first order divided difference on the points x| and y, in &
(x1 # y1) if the following properties hold:

@ [,y fln —x1) = gn) —g(xr) for xi # yi;
(b) if f is Fréchet differentiable at x; € 2, then [x1,x1; f] =V f(x1).

Now we mention the notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings, which was established by Aubin
and have been studied widely. To see the more details about this topic, the reader could refer to [5, 6, 26].

Definition 2.2. Let W : % = 2 be a set-valued mapping and (G, p) € gph¥ with a5, 0 and v are positive constants. Then
W is said to be

(a) Lipchitz-like on B(g, o) relative to B(p, ouy) with constant v if the following inequality holds:
e(P(q1) NB(p,05),¥(q2)) < Vlg1 —qall  for every q1,q2 € B(g, 0g).

(b) pseudo-Lipschitz around (g, p) if there exist constants o > 0,0, > 0 and V' > 0 such that ¥ is Lipchitz-like on B(g, o)
relative to B(p, &) with constant V'.

The following lemma is due to Rashid et al. [26, Lemma 2.1], which is effective and the proof of this lemma is similar to
that of [16, Theorem 1.49(i)].

Lemma 2.3. Let W : % = 2 be a set-valued mapping and (3,%) € gph W. Also suppose that ¥ is Lipschitz-like on B(3,ry)
which is related to B(X, rz) with constant . Then

dist (x,¥(y)) < v dist(y, ¥ (x)),

for each x € B(%,rz) and y € B(3, 5 ) satisfying dist(y, ¥~ (x)) < %, is hold.
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Dontchev and Hager [11] proved Banach fixed point theorem, which has been employing the standard iterative concept
for contracting mapping. To prove the existence of the sequence generated by Algorithm 1, the following lemma will play an
important rule in this study.

Lemma 2.4. Let ®: 2" = 2 be a set-valued mapping. Let x* € 2, 0 < A < 1 and r > 0 be such that

dist(x*, ®(x")) <r(1—21) (2.1)
and

e(P(x) NB(x*,r),P(x2)) < Aljx; —x2|] forall xp,x € B(x*,r). (2.2)

Then @ has a fixed point in B(x*,r), that is, there exists x € B(x*,r) such that x € ®(x). Furthermore, if ® is single-valued,
then there exists a fixed point x € B(x*,r) such that x = ®(x).

The preceding lemma is a generalization of a fixed point theorem and it has been taken from [14], where in the second
assertion the excess e is updated by Hausdorff distance.
3. Convergence Analysis

Let f: Q C 2 — % be a Fréchet differentiable function on a neighborhood Q of x with its derivative denoted by V£,
g: Q — % which is linear and differentiable at ¥ and let . : 2" = % be a set-valued mapping with closed graph. This section
is dedicated to prove the existence of a sequence generated by the extended Newton-type method, represented by Algorithm 1
and show the superlinear convergence of the sequence generated by this method.

Letx € Z". Then for each x € Z°, we get

g +tdxgld = glx)—[x+dxgllx—(x+d))
= g(x)—(g(x) —glx+d)) = glx+d). G.D

Define a set-valued mapping ¥, by

() =) +8() + V() (- —x)+F().
It holds, for the formation of .4 (x) and (3.1), that

N(x)={de X :0c%(x+d)}.
In addition, for any z € 2 and y € %/, we get the following identity:

z€9 (y)ifand only if y € f(x) +g(z) + Vf(x)(z—x) + Z (2). (3.2)
Particularly, let (¥,7) € gph%;. Then, the definition of closed graphness of % signifies that

e 91 (). (3.3)
The following outcome constitutes the equivalence between %{1 and (f +g+.%#)~!. This result is due to [18].

Lemma 3.1. Let (%,5) € gph (f+g+ %). Suppose that V f is continuous around X. Assume that g admits first-order divided
difference. Then the followings are equivalent:

() The mapping (f + g+ %)~ is pseudo-Lipschitz at (3,%);
(ii) The mapping %{1 is pseudo-Lipschitz at (,%).

For our suitability, let 7z > 0, ry > 0 and B(%, rz) C QNdom.#. Suppose that V f is (L, q)-Holder continuous on B(X, r¢),
that is , there exists L > 0 such that

IVf(x) = VF)I < Lllx =], € (0,1],  forany x,x" € B(%,rs), 3.4

g admits a first-order divided difference satisfying g-Holder condition, that is, there exists v > 0 such that, for all x,y,v,w €

B(f, rf) (x Y,V F# W)7
[[bx,y;8] = v wiglll < v([lx=v[|9+|ly —wl|?), (3.5)
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and the mapping % ! is Lipschitz-like on B(¥, ry) relative to B(X, r¢) with constant M, that is,

e(@ () NB(E,7%), 9 ' (v2)) S Mly1 —y2|| forany yi,y; € B(F,r5). (3.6)

Further, for y, the closed graph property of %; implies that f + g+ .7 is continuous at ¥ i.e.

limdist (¥, f(x) +g(x) +.Z (x)) =0 (3.7
X—X
is hold.
Let & > 0 and write
_ . re(1—Még)
= 5 — 2€&07%, 7} 3.8
7 mln{r) &z i (3.8)
Then
_ . . Ty l}
7> 0 if and only if & < m1n{ 2 M 3.9

The following lemma is taken from [26, Lemma 3.1] and it plays a crucial role for convergence analysis of the extended
Newton-type method.

Lemma 3.2. Assume that ;" is Lipschitz-like on B(¥, ry) relative to B(%, rz) with constant M and that

. ry 1
sup V() = V"] Seo<mm{2—j_, M}' (3.10)
x’,x”e]B(f.%?) x

Let x € B(X,5") and & be defined by (3.9). Suppose that V f is continuous on B(X, 5 ). Let 7 be defined by (3.8) such that (3.10)
is true. Then 9.\ is Lipschitz-like on B(3,F) relative to B(%, S ) with constant 17’”7% that is,

- N o -
(@ () NBE 5), % (1)) < [y1 =2l forany yi, y2 € B(y,7).

1—Mg,

For our convenience, we would like to introduce some notations. First we define the mapping J,: 2~ — &/, foreachx € 2,
by

Jo(+) i= f(®) +g() + VIR (= %) = fx) —glx) = (VF(x) + [, x58]) (- —x)
and the set-valued mapping ®y: 2" = 2 by

Di() =% ()] 3.11)
Then for any x', X" € 2, we have

) L@ = [lg() — g0 — ¥ ox:g] (¥ —x) + [ xig] (4 —x)
HVFE) — V1) )]l (3.12)

Furthermore, let ¢ € (0,1] and define

(1 =ML
. min{r}—,—ZLrgH,%}- (3.13)
Then
N oy 1 3.14
r> = <mln{F,M7rg}. ( )
X
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3.1 Superlinear Convergence

In this section we will show that the sequence generated by Algorithm 1 converges superlinearly if V f is (L, q)-Holderian and g
admits first-order divided difference satisfying (v, q)-Holder condition. In fact, the following theorem provides some sufficient
conditions ensuring the convergence of the extended Newton-type method with initial point xg.

Theorem 3.3. Let 1) > 1 and q € (0,1]. Assume that 9;" is Lipschitz-like on B(3, ry) relative to B(Z, rz) with constant M and
that V f is (L,q)- Holder continuous on B(X, ) and g admits first-order divided difference that satisfies (3.5). Let  be defined
by (3.13) so that (3.14) is satisfied. Let v > 0, 6 > 0 be such that

( 3(g+Dry )Tn)}
[L(g+2)+2v(g+1)](6.24+1) ’

(a) 5<mm{ 1 , (g+35)7,

(b) (27M+1)[Lg+2)+2v(g+ 1)) (n(g+1)81+41-9) < (g+1),

[L(g+2)+2v(g+1)]

Lans
3(g+1)

© [I¥ll <
Suppose that

limdist(7, f(x) + g(x) + F (x)) = 0. (3.15)

X—X

Then there exist some § > 0 such that any sequence {x,} generated by Algorithm 1 with initial point xq in B(, 3) converges
superlinearly to a solution x* of (1.1).

Proof. According to the assumption (a) 46 < rz and 1 > 1, by assumption (b) we can write the inequality as follows
(29M +1)(q+5)[L(g+2) +2v(g +1)]87 = (29M +1)[L(g+2) +2v(g+1)] ((q+ 1)8 +45q)
< (IM+1)[L(g+2)+2v(g+1)] (n(q+ 1)64 +46q)
< (M4 D[L(g+2)+2v(g+ 1) (nlg+1)87 + 41771
<(g+1). (3.16)
Furthermore, using assumption (a) 46 < rz and assumption(b) we can reduce the inequality as follows

MI[L(g+2)+2v(g+1)]67 N29M[L(qg+2)+2v(q+1)](g+5)07

(2IM+1)[L(g+2) +2v(g+ D](n(g+1)07 +457) — 29ML451
(2IM +1)[L (q+2)+2v(q+1)}(n(q+1)6q+41*qrg)—2qMLA1*qrg
(g+1)—29MLA4 91

IA A IA /\

Since g € (0,1] then, we get 29MLA =971 > (g+ 1)MLr?. Now using (3.16) in the above equation and it becomes
M[L(q+2)+2v(q+1)]87 < (g+1) = (g+ 1)MLr. 3.17)
Putting

M[L(g+2)+2v(qg+1)]64
(g+1)(1—MLr)

Then, from (3.17) we have that

s< 1. (3.18)

A

Pick 0 < & < & such that, for each xo € B(, §),

[L(g+2) +2v(g+1)] 5441
3(g+1) ’

dist(0, £ (x0) + g(x0) + F(x0)) < (3.19)
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Note that since (3.15) holds and assumption (c) is true, we assume that such 5 exists, which satisfies (3.19). Let xo € B(X, 3)
By induction we will show that Algorithm 1 generates at least one sequence and such sequence {x, } generated by Algorithm 1
satisfies the following statements:

[, — X[ <28 (3.20)
1y (a+D)"
and ||dn||§s(§> s, (3.21)
hold for every n =0,1,2,....
Define
5\M
rx::m([L(q+2)+2v(q—|—l)]||x—f||(q+l)+(q+1)||)7||) for each x € X. (3.22)

From (3.16) we get

2MIL(g+2) +2v(g+1)]8¢ < 41 (3.23)
q+5
and  [L(g+2)+2v(g+ 1)]67 < % (324)

Hence by the combination of § < (¢+ 5)# in assumption (a) and inequality (3.24), we get

[L(g+2)+2v(g+1)]87"!
3(g+1)
(g+1) (g+5)7 7

(g+1)-(g+5) 3 3
Utilizing (3.23) and assumption (c) together with (3.24), we get from (3.22) that

(e

< % (3lL(g+2)+2v(g+ 1)](28)*" +27[L(g +2) +2v(q+1)]6**")

- %[L(qu)+zv(q+1)]5q“(3.2.2‘1+2‘1)

- (q+51)§?éiil+)2q)M [L(g+2)+2v(g+1)]6¢"

(g+5)7-29M

= W[L(q+2)+2v(q+ 1)}6p+1

7(q+5) (q+1)5

I3l <

(3.25)

7
< E—
12(g+1) (¢+5) 12

Observe that (3.20) is trivial for n = 0.
At first, we need to prove .4 (xg) # 0 to show that (3.21) holds for n = 0. The nonemptyness of .4 (xp) will ensure us to
deduce the existence of the point x;. We will apply Lemma 2.4 to the map ®,,, with 19 = i for completing this. We have to

1
show that Lemma 2.4 holds with r := ry, and A := q:[S
q

6 <26 foreachx e B(x,20). (3.26)

satisfying both assertions (2.1) and (2.2). We get from (3.3) that
%€ 9 (5) NB(,28). According to the definition of the excess e and (3.11), defined as the mapping of ®,,, we have that
dist(%, Py (7)) < (@ () NB(X, ryy ), Py, (1)
< (% '(7) NB(F,28), Py (7))
< e(% ' G)NB(E re), G5 U, (D)) (3.27)
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Since Vf is (L,q)-Holder continuous and g admits first-order divided difference satisfies Holderian condition, for every
x € B(%,28) C B(X, 5 ), we have that

Mo () =31 =

IN

IN

IN

IN

IN

Now through the assumptions (a)

N

g (¥) =31 <

<

<

[1F(%) +&(x) + VF(X) (x— %) — f(x0) — g(x0)
—(V/f(x0) + [x,x0: 8]) (x —x0) — 3

[1£(2) = f(x0) = V. (x0) (& = x0) || + | (V. (x0) = V(%)) (F =2
+llg(x) — &(x0) — [x,x0; 8] (x —x0) || + 7]

L
T—xol[7T" + | [x ,x; 8] — [x,x0; x—xol| +
p [|%—xo| 1 [x0,6 8] — [, 03 8] I — xo|
L|xo — x[|7]}x — x[| + [| ] (3.28)
L
% — x0T 4+ v (||xo — x| 4 |Jx — x0|9) ||x — x0]| +
qul|| ofl (llxo = x|+ flc = x0 1) [lx —xo|

L[xo — x[|7]1% — x|| + |||

TL(Z‘S)W +L(28)7-25 +v((26)7+(26)7) -28 + |3

L(g+2)+2v(g+1)
g+1

[L(g+2)+2v(g+1)](6-2741)
3(g+1)

[L(Q+2)+2V(Q+])]2q+l5q+l + [L(q+2)+2V(q+ 1)]6q+1
q+1 3(g+1)
[L(q—i—2)—i—2v(q—i—1)](3.2.244-1)5qul
3(g+1)
[L(g+2)+2v(g+1)](6-2941)
3(g+1)
- (3.30)

720 3] (3.29)

8971 <y and (c), (3.28) gives that

5q+1

This means that Jy, (x) € B(7,ry). Moreover, let x = X in (3.28). Then it is easily proved that

Jy, (%) € B(3,75)

and

H‘])C()('f)_y” S

[L+2v(g+1)]

P [ —xol| " +|I3]l- (3.31)

By using the Lipschitz-like property of %{l and (3.31) in (3.27), we obtain

dist(x, Py, (%))

<

<

IN

M||)7—Jx0()f)||
M[L(g+2)+2v(g+1)]
q+1

4 g+1
P (1~ qﬁ)%
(1-=2)r;

_ 1 _
1% — 0|7 + M5

1,e,. the statement (2.1) of Lemma 2.4 is hold.

Now, it is evident to show that statement (2.2) of Lemma 2.4 holds. Let x’,x” € B(X,ry,). Then we have that x',x" €
B(x,ry,) € B(X,28) C B(X,rz) by (3.26) and Jy, (x'), Jy, (x”) € B(3,r5) by (3.30). This together with Lipschitz-like property of

4! follows as

e(q)xo (x/) NB(x, rXo)aq>x0 (x//))

e(Py, (') NB(X,28), Py, (x"))
e(g{l ["XO (X/)} QB()@ rf)ﬁq);l [Jxo (x//)])
Mg (x') = Iy (") (3.32)

IANIA A
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Now, using the definition of first order divided difference of g in (3.12) we obtain

ey (&) = Ty )1 = [lg(x') — (") — [, x0: 8] (+' — x0) + [x" x0: 8] (x" — x0)
HVF(E) = Vf (x0) (& =x")]|

< llg() —g(x") + ¥ x05 8] (x0 — ) — [, %03 8] (x0 — )|
VS () = V£ (xo) [l — "]
< Jlg) —g(x") +g(x0) —g(x') —g(xo) +g(x")
VS (&) = V£ (xo) ||l — "]
< IVAE) = V(o) [l =" < L7 —xo| 7| = 2"
< L2989|X —X"|. (3.33)

It follows from (3.32), that
e(@xO(x/)ﬁB()@er),CI)XO(x”)) < ML29§%|x —X"||.

Since v,M,L > 0 and ¢ € (0, 1], then we can write 2/ML3Y < 29M[L(q+2)+2v(g+ 1)]6? and hence the above inequality
becomes

(Do) (X) NB(X, 1), Py (X)) < 29M[L(q+2) +2v(q+ 1)]8[|x" — x|
qg+1
< W =X
q+5
= Al =x"[|.

Thus the statement (2.2) of Lemma 2.4 is also hold. Hence, both statements (2.1) and (2.2) of Lemma 2.4 are accomplished.
Finally, it shows that Lemma 2.4 is adequate to presume the position of a point £; € B(¥,ry,) such that £; € @, (£;) which
implies that 0 € f(xo) + g(x0) + (Vf(x0) + [£1,%058]) (81 —x0) + F (1) and hence A" (xg) # 0.

Next, it is sufficient to prove that (3.21) holds for n = 0. As Vf is (L,q)- Holder continuous on B(%, 5 ), we have for all
¥, ¥ € B(%, %), that

Lrl>  sup ||VFE)=VFE). (3.39)

¥ X' eB(%, x)

Observe the assumption (a) that 7# > 0. Therefore, from (3.13) and (3.34)imply that Lemma 3.2 is satisfied with & := Lrg .
According to our assumption ¢; ! is Lipschitz-like on B(7, r)) relative to B(¥, r5). Then, it implies from Lemma 3.2 that, &, ~1

is Lipschitz-like on B(y, 7) relative to B(¥, 5) with constant ; ML oML A8 X0 € B(%,8) C B(%,8) C B(, 5) by assumption (a) and
the choice of § . On the other hand, (3.19) follows as

dist(0,%, (x0)) = dist(0, f(x0) +&(x0) +-F (x0))

<

W

Inequality (3.25) shows that 0 € B(7, g) and observe before that xo € B(¥, 5 ). Hence using Lemma 2.3, we get

dist(x0, %, '(0)) <

X0

M .
l—iﬂﬂlrg dlSt(O, ng (XO))

- % dist(0, f (xo) +&(x0) + 7 (x0))-

X
This together with (3.1), gives
dist(0, 4 (x9)) = dist(xo,%, (0))

M
S oA dist(0, f (x0) +g(x0) + 7 (x0))- (3.35)
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According to Algorithm 1 and using (3.35), (3.19) and then assumption (a), we have
ldoll < m dist(0,.4"(xo))

= % dist(0, f(x0) +8(x0) +F (x0))
NM[L(g+2)+2v(g+1)]67T" /1
< TSy -G8

This means that
1
ot —ll = lldoll < 5(3) 8.
and therefore, (3.21) is true for n = 0.

Suppose x,x2,...,x; are formed and (3.20), and (3.21) hold forn =0, 1,2,...,k— 1. We show that there exists x; such that
(3.20) and (3.21) also hold for n = k. Since (3.20) and (3.21) are true for each n < k — 1, we have the following inequality:

k=1 k=1 1\ (g+1)
b= < ¥ lldill+ o5 <s8 Y (5)° +8 <28,
i=0 i=0

This implies (3.20) holds for n = k. Now with all the same argument as we did for the case when n = 0, we can prove
that 4 (x;) # 0, that is, the point x| exists and %;1 is Lipschitz-like on B(7, 7) relative to B(¥, 5) with constant —%

1-MLZ*
Therefore, we have that
%1 = xel| = lldkl| < 7 dist(0, 4" (x))
< n diSt('x/ﬁgx;l (0))
_ % dist(0, f (x¢) + g(xe) + F (x2))
nmM
< m||f(xk)+g(xk)_f(xk%)_g(xkfl)
—(Vf (1) + i xx—1:.8]) (o —xe—1) ||
nm
< m(“f(xk)*f(xk—l)*Vf(xk—l)(Xk*x/(_l)II
+ 118 (k) — g (k1) — i, X138 (o — a1 [[)
nM +1
< L — x4
= (q+1)(1—MLr;’)( o= e |47+
(q+ D)l Pex—1,% 8] — b v 1 @ vk = xe1 )
nm +1
< Lllxx —xp—g || +
(g+ D)Vt =217+ [ —xe- 1 |9) [ —x-1 )
MI[L+2v(g+1
S n [ (q q)] ||dk71 Hq+]
(g+1)(1 —MLrg)
nMIL(g+2)+2v(g+1)] g1
< o ||
(g+1)(1 —MLr)
NMMIL(g+2)+2v(g+ 1] 1\ (gt1) g gt
n— (5(3) 3)
(g+1)(1—MLr) 3
1 k
< S(,)(‘f“) S.
3
This implies that (3.21) holds for n = k and therefore the proof of the theorem is complete. O

Consider the special case when ¥ is a solution of (1.1) (that is, ¥ = 0) in Theorem 3.3. We have the following corollary,
which describes the local superlinear convergence result for the extended Newton-type method.
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Corollary 3.4. Suppose that % is a solution of (1.1). Let g € (0,1] and 1 > 1 and let %X_l be pseudo-Lipschitz around (0,%).
Let 7 > 0 and suppose that V f is (L,q)-Holder continuous on B(%,7) and g admits first-order divided difference satisfying
Holderian condition on B(X, 7). Assume that

lim dist(0, %, (x)) = 0. (3.36)

X—X

Then, with an initial point xo, there exists some 8 > 0 such that any sequence {x,} generated by Algorithm 1 converges
superlinearly to a solution x* of (1.1).

Proof. Suppose that %’1 is pseudo-Lipschitz around (0,x). Then by definition of pseudo-Lipschitz continuty, there exist
constants M, 7 and ry such that &; ! is Lipschitz-like on B(¥, ry) relative to B(%, 7) with constant M. Then, for each 0 < r; < 7,
we have that

e(Ge ! (1) NB(E,7),%; ' (v2) < M|[y1 —y2|| forany yi, y2 € B(0, 7o),
that is, %; ! is Lipschitz-like on B(¥,r) relative to B(%, ;) with constant M. Let L € (0,1], ¢ € (0,1] and v > 0. By the

.. . ~ s ~ q+1 q
s4)" X ) A =" X ) X
(L, q)-Holder continuty of V f we can select r;z € (0,7) such that 5 <F ro—2Lr{" >0, MLr; <1and

Lrii>  sup |[Vf() = VI

xﬂx”elﬂ%(f,%)
Then, define
«(1—MLr)
o= min {ry— 20,01, UML)y
#:=min {rg i i }>
and
3(qg+1)ro

min{%,(q+5)f )}>0

" [L(g+2)+2v(g+1)](6.29+1
Thus, we can choose 0 < § < 1 such that

3(q—|—l)ro }
[L(g+2)+2v(g+1)](6.24+1)

6 < min{%, (g+3)7,

and
(M +1)[Lig+2) +2v(g+ D] (n(g+1)87+41 ) < (g+1).

Now it is routine to check that conditions (a)-(c) of Theorem 3.3 are satisfied. Thus we can apply Theorem 3.3 to complete the
proof. O

4. Conclusion

The semilocal and local convergence results are presented for the extended Newton-type method when 1 > 1, %’1 is Lipschitz-
like, V f satisfies Holderian condition and g admits first-order divided difference satisfying the Holder condition defined by
(3.5). In particular, we have presented semilocally superlinear convergence analysis for extended Newton-type method in
Theorem 3.3 while the locally superlinear convergence analysis for extended Newton-type method is presented in Corollary 3.4.
This result extends and improves the corresponding ones [4, 18].

Moreover, according to our main results, we have the following conclusions:

(i) If we set g = 0 in Theorem 3.3, it gives the semilocal linear convergence result for the extended Newton-type method and
this result coincides with the result presented in [18, Theorem 3.1]. On the other hand, if we put ¢ = 0 in Corollary 3.4,
this result provides locally linear convergence result which is similar with the result presented in [18, Corollary 3.1].

(i) If we put ¢ =1 in Theorem 3.3, it yields the semilocal quadratic convergence result for the extened Newton-type method
and this result is analogous to the outcome presented in [18, Theorem 3.2]. Furthermore, if we give ¢ = 1 in Corollary 3.4,
it gives the local quadratic convergence result for this method which is resembling the work presented in [18, Corollary
3.2].
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In this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is
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1. Introduction and background

A sequence space is a vector subspace of the space ® of all sequences with real entries. Well known classical sequence spaces
are ¢, (the space of p-absolutely summable sequences, 1 < p < o), £, (the space of bounded sequences), co ( the space of
null sequences), c (the space of convergent sequences). On the other hand, bs, cso and cs are the most frequently encountered
spaces consisting of sequences generating bounded, null and convergent series, respectively. Further y is the space of all finite
sequences. A Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are ¢y and ¢
endowed with the supremum norm ||x||,, = sup,.cy |%x|, where N = {1,2,3,...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an
important role in the study of sequence spaces. Let X and Y be two sequence spaces, &/ = (a,;) be an infinite matrix with
real entries and .<7, indicate the n'" row of .&7. If each term of the sequence .&7/x = {(#/x),} = {X| anixy} is convergent, this
sequence is called .o -transform of x = (x,). Further, if &7x € Y for every sequence x € X, then the matrix ./ defines a matrix
mapping from X into Y. (X,Y) represents the collection of all matrices defined from X into Y. Additionally, B(X,Y) is the set
of all bounded (continuous) linear operators from X to Y. A matrix o7 = (a,) is called a triangle if a,, # 0 and a,; = O for
k> n.

The matrix domain X, of the matrix .2 in the space X is defined by

Xg={xcw:dxeX}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
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any triangle &/ and a BK-space X, the sequence space X, gives a new BK-space equipped with the norm |[x||x = [|#/x||x .
Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,
the papers [1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15] can be referred.
The spaces
X% = {t =(x) €E@: Y |tpxx| <ooforallx= (x;) € X},
k=1

XB = {t =) Ew: Z fyxy, converges for all x = (x) € X} ,
k=1

n
Z 7292

k=1

X?':{tz(tk)ea):sup <oof0rallx:(xk)€X},

n

are called the o-, 8-, y-duals of a sequence space X, respectively.
Let (X, ]|.|lx) be a normed space and Bx = {x € @ : ||x|[x = 1}. Given any BK-space X D y and 7 = (t,) € o,

el = sup
xXEBx

Zthk
k

implies that 7 € X8,

Lemma 1.1. [16, Theorem 1.29] K]ﬁ = lo and 65 =g, where 1 < p < e and % +$ = 1. The equality ||t\|}fp = 7]l ;s holds for
P

allt € E,ﬁj, where 1 < p < oo,

Lemma 1.2. [16, Theorem 1.23 (a)] Given any BK-spaces X, Y and o/ € (X,Y), there exists a linear operator £,y € B(X,Y)
such that £,y (x) = @/x for all x € X.

Lemma 1.3. [16] Let X D y be a BK-space and Y € {cq,c,le}. If & € (X,Y), then

1Ll = 17 [l x,v) = sugl\%Ili < oo,
ne

Let 2 be a bounded set in a metric space X and B(x, §) be the open ball. The value
x(2)=inf{e >0: 2 C U B(x;,8),xi € X,; < €,n € N}

is called the Hausdorff measure of noncompactness of 2.
To compute the Hausdorff measure of noncompactness of a set in £, for 1 < p < oo, the following result is essential.

Theorem 1.4. [17] Let 2 be a bounded subset in £, for 1 < p < co and P, : £, — {,, be the operator defined by P.(x) =
(x0,x1,%2,...,%,0,0,...) for all x = (x) € £, and each r € N. Then, we have

2(2)=tim (swp 121, ).

xe2
where 1 is the identity operator on £,

A linear operator . : X — Y is a compact operator if the domain of . is all of X and for every bounded sequence x = (x,)
in X, the sequence (.Z(x,)) has a convergent subsequence in Y. The idea of compact operators between Banach spaces is
closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator
Z eBXY), | Z|l, = x(Z(Bx)) = 0if and only if .£ is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize
the compactness of an operator between BK spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix ® = (¢, ) is defined as in [25]

o = Wit k| n
nk 0 , ifkin,
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where ¢ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined
and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For p € N with p # 1, ¢(p) gives the number of positive integers less than p which are coprime with p and ¢(1) = 1. Also,
the equality

p=Y (k)

k|p

holds for every p € N. For p € N with p # 1, the Mobius function u is defined as

(=" if p= p1p2...pr, where p1,pa, ..., pr are
ulp) = non-equivalent prime numbers
0 if 5% | p for some prime number j

and u(1) = 1. The equality
Y uk)=0 (1.1)

Klp

holds except for p = 1.
The Riesz matrix E = (e ) is defined as

de - if0<k<n
Cnk = On .
0 , ifk>n,

where (gy) is a sequence of positive numbers and Q,, = Y'}_, gx for all n € N. By using these matrix, the authors of [34]
introduced the Riesz sequence spaces of non-absolute type.

The main purpose of this study is to construct new BK spaces {,(Re) for 1 < p < co. The matrix Re is obtained by
combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, a-, B- and y-duals
are computed. Finally some matrix mappings from the spaces £, (Ra) to the classical spaces are characterized and compact
operators are studied.

2. The sequence space /,(Ro)

In the present section, we introduce the sequence space ¢,,(Re) by using the matrix Re, where 1 < p < eo. Also, we present
some theorems which give inclusion relations concerning this space.
The matrix Rp = (ry) is defined as

a9 (k) ifk | n
rf'lk = Qn ’ .
0 , ifktn,

where O, = g1 + g2+ ... + g,. We call this matrix as Riesz Euler Totient matrix operator.
The inverse Rg' = (r;,;!) of the matrix Re is computed as

u(f) o ;
rn’,(1 { on) qn if k| n

0 , ifkfn

for all k,n € N.
Now, we introduce the sequence space £,(Ra) by

L Z qip (k)xi

" kln

Ly(Ra) = {x =) ew:y,

n

<°°} (1< p<eo).

Unless otherwise stated, y = (y,) will be the Rp-transform of a sequence x = (x,), that is, y, = (Rpx), = é Lin P (k)X
forall n € N.

n1/p
é Yiln Qkﬁo(k)xk’ ) , Where

Theorem 2.1. The space £,(Rs) is a Banach space with the norm given by |\x||, (zq) = <Zn
1< p<on
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Proof. We omit the proof which is straightforward.

Corollary 2.2. The space {,(Ro) is a BK-space, where 1 < p < o,
Theorem 2.3. The space {,(Ra) is linearly isomorphic to £, where 1 < p < oo,
Proof. Let f be a mapping defined from ¢, (Ra) to £, such that f(x)

= Rox for all x € {,(Ra). It is clear that f is linear. Also

it is injective since the kernel of f consists of only zero. To prove that f is surjective, consider the sequence x = (x,) whose

terms are

-yt

kln (P(I’l) n

for all n € N, where y = (yx) is any sequence in £,,. It follows from (1.1) that

n(h )Q,
R k)x K
(Rpx)n %qm( Qn & ar9( )%:‘(p(k)
1
R =5 1 nYn = JYn

and so x = (x,) € {,(Ro). f preserves norms since the equality ||x|[¢,(z,) = [[/(x)]|¢, holds.

Remark 2.4. The space {>(Rq) is an inner product space with the inner product defined as (x,%)¢,(r,) =

(--)¢, is the inner product on {y which induces ||.||¢,.
Theorem 2.5. The space {,(Re) is not an inner product space for p # 2.

Proof. Consider the sequences x = (x,) and X = (%,), where

X, = ¢EZ§Q1+ ((n))% , ifniseven
WO ifnis odd
and
iy = ggz;%_%% , ifniseven
=
%% , ifnisodd
for all n € N. Then, we have Rpx = (1,1,0,...,0,...) € £, and Rpi = (1,-1,0,...,0
that

[+ 2o, (Re) + X = Flg, (Re) 7 2(l1¥ll e, (Re) + ¥, (ko)) -

Theorem 2.6. The inclusion {,(Rao) C £4(Ro) strictly holds for 1 < p < g < o

O

(Rox,RaX)¢,, where

,--.) € £,. Hence, one can easily observe

Proof. Ttis clear that the inclusion £,(Re) C £4(Ra) holds since £, C £, for 1 < p < g < eo. Also, £, C £, is strict and so there

exists a sequence z = (zn) in £,\¢,. By defining a sequence x = (x,) as

-yt

Kn (p(n) Qn &

for all n € N, we conclude that x € ,(Ra)\¢,(Ra). Hence, the desired inclusion is strict.
Before presenting the next result, we define the sequence space £w.(Rs) by

lw(Rp) =
Theorem 2.7. The inclusion {,(Rao) C lo(Ra) strictly holds for 1 < p < o,

{x€Ew®:Rpx € ls}.

1(%) Ok

Proof. The inclusion is obvious since £, C £ holds for 1 < p < eo. Let x = (x,) be a sequence such that x, = ):k‘,,(—l)k PORN

forallnEN.Weobtainthatchx:( Y k@ (k) X~ )7 ))

for1 < p < oco.

) ((=1)") € £\, which implies that x € £o(Ra)\lp(Rao)

O



A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of p-Absolutely Summable Sequences — 18/25

3. The o-, B- and y-duals of the space /,(Rs)

In this section, we determine the a-, 8- and y-duals of the sequence space ¢,(Rs), where 1 < p < eo. The following lemmas
are required to prove our main results in this section. Here and in what follows .7~ denotes the family of all finite subsets of N.

Lemma 3.1. [35] The following statements hold:
o = (aw) € (£, 1) if and only if

q
< oo 3.1

Z Ank

neF

sup Z
k

Fex

holds, where 1 < p < co.
o = (a) € (Lo, 01) if and only if (3.1) holds with g = 1.
o = (an) € (£1,41) if and only if

sup Y lau| < oo (3.2)
k

n

holds.
o = (an) € (y,c) if and only if

lim a, exists for each k € N 3.3)
n—yoo
and
sup Y |a|? < oo 3.4
n Tk

holds, where 1 < p < oo,
I = (an) € (bes, ) if and only if (3.3) and

r}l_r)l;lq; ‘ankl = ; "}Elgoank

hold.
o = (an) € (41,¢) if and only if (3.3) and

sup |ank| < o0 (3.5
n.k

hold.
A = (an) € (Lp,co) if and only if

lim a,; = 0 for each k € N 3.6)
n—ro0

and (3.4) holds, where 1 < p < oo,
A = (an) € (boo,co) if and only if (3.6) and

pim )] =0

hold.
o = (an) € (£1,¢0) if and only if (3.5) and (3.6) hold.
o = (an) € ({p,Le) if and only if (3.4) holds, where 1 < p < oo,
A = (ank) € (boo, o) if and only if (3.4) holds with g = 1.
o = (an) € (01,4s) if and only if (3.5) holds.

In the following theorem, we determine the a-duals of the spaces £,(Ra) (1 < p < c°) and ¢ (Ra).
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Theorem 3.2. The a-duals of the spaces {,(Ra) (1 < p < o) and {1(Ra) are as follows:

“_ » sho '
== cs o] g SR <)
and
o __ _ - su ( ) Qk oo
(€1(Re))* = {f =) €cw: kPne%{‘n o (k) qn < }

Proof. Consider the matrix C = (c,) defined by

HE) 0
Cnk = o) anm k|n
0 , ktn

for any sequence ¢ = (1) € @. Hence, given any x = (x,) € {,(Ra) for 1 < p < oo, we have ,,x, = (Cy), for all n € N. This
implies that zx € ¢; with x € £,(Re) if and only if Cy € ¢; with y € £,,. It follows that t € (¢,(Re))® if and only if C € (¢),,¢;)

which completes the proof in view of Lemma 3.1. O

Theorem 3.3. Let us define the following sets:

A= { (%) € ®: lim 2 (& ) i exists for each k € N}
n—yoo
j=kHj P o(J) 4

) N n ()Qk o
Az_{ (%) € o: npzj%qu)u)qj ) }
and
As—{ (1) € w:sup > “(%)Qt <°°}'
= 20U g

The B and y-duals of the spaces {,(Ro) (1 < p < o) and {1(Ra) are as follows:
(fp(ch))ﬁ =A1NA; and (él(ch))ﬁ =A1NA3,
(ﬂp(Rzp))y =A2 and (51 (Rq:.))y = A3

Proof. Lett = (t) € ® and B = (b,;) be an infinite matrix with terms

n w(f) o .
by =4 LTickkilio) g, o If 1sk=n

Hence it follows that

n n ( ) ; n n J
kg’ltmzztk (jk o (k) gk ]) Z( 2 (")Qk>yk(By)n

k=1 j=k.k|j (D(J) qj

for any x = (x,) € {,(Re). This equality yields that rx € cs for x € £,(Re) if and only if By € ¢ for y € £,. That is,
€ (£,(Rg))P if and only if B € (£,,c) for 1 < p < o. Hence, by Lemma 3.1, it is concluded that (¢,(Re))? = A; N A, and
(/1 (Re))P = A1 NA;.
This equality also yields that rx € bs for x € £,(Rg) if and only if By € (., fory € £,,. Thatis, t € ({,(Rs))" if and only if
B € ({),4s) for 1 < p < eo. Hence, by Lemma 3.1, it is concluded that (¢,(Re))" = A and (¢;(Re))? = A3.
O
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4. Some matrix transformations related to the sequence space /,(Rs)

In this section, we give the characterization of the classes (¢,(Ra),Y), where 1 < p < oo and Y € {/o,c,co, ¢ }. Throughout
this section, we write d(n, k) = 27:0 djy for an infinite matrix D = (d,) and all n,k € N.

Theorem 4.1. Ler 1 < p < coandY be any sequence space. Then, we have </ = (ay) € ({,(Ra),Y) if and only if
D — (d(”>) € (p,c) foreachn e N,

mk

D= (dnk) € (Z[NY)’

where d"™ = { 0 (! o ke and dy=Y7 a -—“(%>—Q"f0rallkm neN
mk m M) O KT =k k| (k) g T :
Liinjnigu) ¢ » 0=k=m 4
Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1]. O

The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.
(a) & = (an) € (£1(Ro),Le) if and only if
: (n) , - .
nl}_r}nmdmk exists for each n,k € N, 4.1
sup ’d}g:'k)’ < oo foreachn € N “4.2)
m,k

and (3.5) holds with d, instead of ayy.
(b) o = (an) € ({1(Ra),c) if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with dy, instead of an.
(c) & = (an) € (£1(Ra),co) if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with d,. instead of ayy.
(d) o = (an) € (L1(Re), 1) if and only if (4.1) and (4.2) hold, and (3.2) also holds with d,y instead of ayy.

Theorem 4.3. Let 1 < p < oo,
(a) o = (an) € ({p(Ra), L) if and only if (4.1) and

m n q
sup Y ‘d;k) ‘ < oo for eachn € N (4.3)
m k=0

hold, and (3.4) also holds with d, instead of ay.
(b) o = (ank) € ({y(Ra),c) if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with dyy instead of ap.
(c) & = (an) € ({p(Ro),c0) if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with dyy. instead of ay.
(d) o = (aw) € (Up(Ra),l1) if and only if (4.1) and (4.3) hold, and (3.1) also holds with d,. instead of ayy.

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:
(a) o = (an) € (¢1(Ra),bs) if and only if (4.1), (4.2) hold and (3.5) holds with d(n,k) instead of ay.
(b) o = (an) € (01(Ra),cs) if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d(n,k) instead of an.
(c) o = (an) € (£1(Ra),cs0) if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with d(n,k) instead of ayy.

Corollary 4.5. Let 1 < p < oo. Then, the following statements hold:
(a) o = (an) € ({y(Ra),bs) if and only if (4.1), (4.3) hold and (3.4) holds with d(n,k) instead of an.
(b) o = (an) € (£p(Ra),cs) if and only if (4.1), (4.3) hold and (3.3),(3.4) hold with d(n,k) instead of ayy.
(c) & = (an) € ({p(Ra),cs0) if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with d(n,k) instead of an.
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5. Compact operators on the space /,(Rg)

Let the matrix &/ = (d,;) defined by an infinite matrix ./ = (a,;) as

oo J
Gk = Z M%

: Anj
sk 9 4

forall n,k € N. .
o (£) o

For a sequence 7 = (1) € o, define a sequence 7 = (f) as iy = Y7 4 ; ,;:’(7/) o tj forall ke N.
’ J

Lemma 5.1. Lett = (1) € ({,(Ro))P, where 1 < p < oo. Then 7 = (i) € £, and
Zthk = kaYk
k k

forall x = (x;) € £,(Ra).

Lemma 5.2. The following statements hold.
(a) e, (Rg) = SUPk 7| < oo forallt = (1) € (£1(Rg))P.
(0) 111 gy = (L) V4 < o for ail 1 = (1) € (€,(Ra))P. where 1 < p < o

Lemma 5.3. Let X be any sequence space and </ = (ay) be an infinite matrix. If o/ € (£,(Ra),X), then o € (£y,X) and
o/ x =y forall x € {,(Ro), where 1 < p < o,

Proof. Tt follows from Lemma 5.1. O

Lemma 5.4. If o/ € ({1(Rao),{,), then we have

1/p
1l = 17 ) = 500 (Zankp) <o,
n

where 1 < p < oo,

Lemma 5.5. [22, Theorem 3.7] Let X D y be a BK-space. Then, the following statements hold.
(a) o € (X, lw), then 0 < || Ly ||, < limsup, ||, %
(b) & € (X,cq), then || Ly ||, = limsup, || %
(¢) If X has AK or X = L, and o7 € (X, ¢), then

1. N . ‘
5 limsup [, —allx < || L[l < limsup .27, —allx,
where a = (a;) and a, = limy, ay for each k € N.

Lemma 5.6. [22, Theorem 3.11] Let X D y be a BK-space. If o € (X,{}), then

*
lim | sup
" \Nex; X

and £ is compact if and only if lim, (supy, 7 | Enen “n %) = 0, where % is the subcollection of  consisting of subsets
of N with elements that are greater than r.

*

Y

neN

Y

NeJ; ||neN

) < || Loy < 4lim ( sup
r

X

Theorem 5.7. Let 1 < p < oo,

1. For o/ € ({,(Ra), L),

1/q
0 <|[[Zylly <limsup (Z%")
n k

holds.
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Proof.

1.

. For o/ € ({,(Ra),c¢),

1/q

1/q
1. . . . ~ ~
imsup (zm —akw) < 1% < timsup (Dank—akq)
3 n k

n

holds, where @ = (Gy) and dy = lim,, dy for each k € N.

For & € ({,(Ra),c0),

1/q
|-Zw |l = limsup (Z |d,,k|q>
n 3

holds.
For o € ({,(Ra), 1),

: (r) : (r)
l‘;n||£7|‘(gp(k¢)’/l) < Hfsz/Hx < 411;“ ||f527H(gp(R¢)/l)

holds, where /(%) o = supy s (Ea| B )/ (€ N).

Let o/ € (£,(Ra), ). Since the series Y7, ax; converges for each n € N, we have %, € (£,(R))P. From Lemma
5.2 (b), we write ||«!27n\|zp(Rq)) = ||'QZzHZ, =l %nlle, = (Xk |Ge|9) "/ for each n € N. By using Lemma 5.5 (a), we conclude
that

1/q
0< 12yl < limsup (ZW) .
n k

Let o € ({,(Ro),c). By Lemma 5.3, we have </ € ({,,c). Hence, from Lemma 5.5 (c), we write
. s . 5
Slimsup |7, ~allf, < 2.l <limsupl|7 —al;
n n

where @ = (@) and d; = lim, d,; for each k € N. Moreover, Lemma 1.1 implies that ||.27, — a~||2fp = |\ — alle, =

(Xk |Gk — dk|q)l/q for each n € N. This completes the proof.

Let & € (£,(Ra),co). Since we have H%Hzp(&b) = ||e27:z||2p = ||%hlle, = (X |d@n|)/9 for each n € N, we conclude
from Lemma 5.5 (b) that

1/q
|-Zes |l = limsup (Z|dnk|‘1> .
n P

Let o € (¢,(Ro),¢1). By Lemma 5.3, we have 7 € (£,,£1). It follows from Lemma 5.6 that

* *

lim | sup
r Ne %,

)

< || Ll < 41im | sup
neN "

Ne

)

neN

lp Zp

Moreover, Lemma 1.1 implies that || ¥,,cy <7, HZ,, = ZneN,QZleq = Xk | Lnen d,1k|q)1/q which completes the proof.

O

Corollary 5.8. Let 1 < p < oo.
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1. £, is compact for o/ € ({p(Ra),l) if

1/q
. - _
llyrln (Zk:|ank| > =0.

2. %Ly is compact for o/ € ({,(Ra),c) if and only if

1/q
. s ag _
11’1111 <;|ank ar| ) 0.

3. Ly is compact for & € (£,(Ro),co) if and only if

1/q
lim (Z |an,(|CI> —0.
"\ 'k

4. Ly is compact for &7 € (£,(Ra), 1) if and only if

tim |77 ) ) = 0:

Ro),(1)
where ||WHEZ(R¢),£1) = SUPyc %, (kaneNdnk\q)]/q-
Theorem 5.9.
1. For o € ({1(Rp),l),
0= 1.2, 1, < timsup (sup )
n k
holds.
2. For o € ({;(Ro),c),
1. . - . . -
— limsup <sup |Gk ak|> < || Zwlly < limsup (sup |Gk ak|>
2 n k n k
holds.
3. For &/ € ({1(Ra),c0),
|-Zw |l = limsup <supdnk>
n k

holds.
4. For o/ € ({1(Rs),41),

|l =1im (sup Y. )

n=r
holds.

Proof. Tt follows with the same technique in Theorem 5.7. O

Corollary 5.10.

1. %L,y is compact for o € ({1(Ro), ) if

lim <sup d,,k|> =0.
™o\ k
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Abstract
This paper deals with the study of global analysis of following (1,2)—type system of non-linear difference
equations:

Avp—1 O Up—1

Sl = el 0,
B+yivi_, Bi+ viuhul_,

Un+1 =

where the parameters o, B,v,04, B, 7 p,q and the initial conditions u;,v;, i = —2,—1,0 are non negative real

numbers.
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1. Introduction

Difference equations (also called recursive sequences) appear in a lot of fields of pure and applied mathematics, both as
discrete analogs of continuous behavior (analysis, numerical approximations) and as independent models for discrete behavior
(population dynamics, economics, biology, ecology, etc.), [1]. In recent years, many models, especially in mathematical biology,
are based on non-linear ones, [11]. Difference equation theory, especially nonlinear ones, is very fertile subject for scientists
and is one of the important subjests of applied mathematics. So, many researchers have dealth with the qualitative behavior of
nonlinear higher order rational difference equations and systems, see [1]-[33].

In [9], EI-Owaidy et al. studied the global analysis of the following difference equation

OXp—1
B+,

with non-negative parameters and non-negative initial values.
In [5], Ahmed investigated the global asymptotic behavior and the perodic character for the rational difference equation

. n=0,1,... (1.1)

Xn+1 =

bxnfl

—r =0,1,... 1.2
A+Bd " (1.2)

Xnt+1 =

where the parameters b,A, B, p,q are non-negative numbers and the initial values x_» x_1 xo are arbitrary non-negative real
numbers.
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In [15], Giimiis and Soykan investigated the local asymptotic stability of equilibria, the periodic nature of solutions, the
existence of unbounded solutions and the global behavior of solutions of the difference equation

OXy— (k+1)

_ ) 0, (1.3)
B+ r2)

Xnt+1 =

where the parameters «, 3,7, p,q are non-negative numbers and the initial values X (k42), X (k+1),--X—1,%0 € R*.

In [13], Giimiis and Soykan studied the dynamical behavior of positive solutions for a system of rational difference equation
following form

Qup—1 Vorl = X1 Vp—1
n ., P n+l — o " p
B+l , Bi+viu,
where the parameters «, 3,7, oy, B1, 71, p and the initial values u_;,v_; fori=0, 1,2 are positive real numbers.

In [14], Giimiis and Ocalan studied the dynamical behavior of positive solutions for a system of rational difference equations
following form

Upyl = , n=0,1,... (1.4)

Qup—| v X1 V-1
— el = o
B+yhvi Bi+ i ul',

where the parameters o, 8,7, 01, B1,7,P,q, P1,q1 are positive real numbers and the initial values u_;,v_; are non-negative
real numbers for i =0,1,2.

In [28], Khan et al. investigated the asymptotic behavior of following anti-competitive system of rational difference
equations

Upyl = , n=0,1,... (1.5)

_ Oyy
Xn+1 = m»
n
,n=0,1,...
. o X,
Ynt+1 = ﬁl +}’1y2’

where the parameters o, 3,7, 04, B1, 1,7 € (0,00) and xp,yo € (0,0).
In [29], Qureshi and Din investigated the qualitative asymptotic behavior of positive solution for an anti-competitive system
of third-order rational difference equations

X Yn-2
n+1 = )
B + yxnxnflxn72
,n=0,1,...
Q1 Xp—2
Yn+1 =

[31 + N1YnYn—1Yn—2 ’

where the parameters «, 3,7, oy, Bi, 71 and xo,x_1,xX_2,Y0,y—1,Y—_2 are positive real numbers.
In [27], Qureshi and Khan studied the global dynamics of following (1,2)—type systems of difference equations

TI_anl [.an,1

Xptl] = ———, =——7, n=01,.. 1.6
n+1 1 +I~Lx5,2 Yn+1 1+ rl}i,z (1.6)
nynfl “xnfl
X+l = 77— p Yntl = 77— p > n:()>17"'
" T+uy? " 1+nxb_,
where 1, i, p and initial conditions x;,y;,/ = —2,—1,0 are non negative real numbers.

In the present paper, we will investigate of some properties, such as the local asymptotic stability, the global asymptotic
stability, the existence of periodic solutions, the rate of converges etc., for (1,2)—type system of difference equations in the
title, which has been investigated different versions of it in the known literarture. We first note down critical error for the results
of the article [27]. Namely, to put it briefly, they can not obtain the equations they claim with their transformations. Using the
transformations, they could get equations in this form;

Xpi] = NYn-1
n+1 — 9
L+uy) s
,n=0,1,...
NiXn—1
Yn+1 =

L+l )’
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with
n=® m®
BB

and
B B
201 '}/"u }’1.

The same applies to the other equation. Let us also note that the theoretical results they obtained in their article are correct.
However, an error was made only at the beginning.

The aim of this paper is to investigate the equilibrium points, the local asymptotic stability of these points, the global
behavior of positive solutions, the existence of the prime two-periodic solutions and the rate of convergence of positive solutions
of the following system

vy
Upi] = ———
n—+ ﬁ+7V£V3727
n=0,1,... (1.7)
Ay
Vnt+1 =

)
i+ viunu;_,

where the parameters o, 8,7, ai,Bi, %, p,q are positive and initial condition u_p,u_1,up,v_z,v_1,vp € (0,00). Our results
extend and complement some results in the literature.

If the initials conditions »; = v; in the system (1.7) for i € {—2,—1,0} and ot = o, B = B1, ¥ = 1 then one obtain that
u, = v, for all n > —2, hence, the system (1.7) reduces to the difference equation

vy

01,
B+yvivi

V1l =

which was studied by [4]. Therefore, to avoid degenerate situations, here we discuss the case u; # v; fori € {—2,—1,0} and
we investigate the system (1.7) basing on this condition.
It is clear that the system (1.7) can be reduced to the following system of difference equations

Xpi] = Yn—1
+1 =7 p.g
" 1+Sl)’gy:1,_2
n=0,1,... (1.8)
rXp—1
Yn+1 =

1+ sxﬁxz_z ’

by the change of variables

1/p+q
iy — (W) o
™

and
BB 1/p+q
Vn=\| —— n
' (Wl) >
with
L0, @
Ba 1 Bl
and
S:E, 512&.
Y N

So, in order to study the system (1.7), we investigate the system (1.8).
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2. Preliminaries

For the completenessin the paper, we find useful to remind some basic concepts of the difference equations theory as follows:
Let us introduce the six-dimensional discrete dynamical system

Xn+l = fl (xnyxnfl7xn72a))n,7yn717yn72)7

2.1
Yn+1 ::jé(xhaxnfl7xn72aymayn717yn72)a @D

n € N where f] : 113 X IS — Land f> : 113 X 123 — b, are condinuously differentiable functions and /; ,I, are some invervals
of real numbers. Then, for every initial conditions (x;,y;) € I} X L, for i = —2,—1,0 the system (2.1) has a unique solution
{(xmyn)};o:—r

Definition 2.1. An equilibrium point of stsytem (2.1) is a point (X,y) that satisfies

*
y= HE5X,3,5,5),

Together with system (2.1), if we consider the associatedvector map

F= (fl7-xn7xn717xn727f27yn:yn717yn72):
then the point (X,¥) is also called o fixed point of the vector map F.

Definition 2.2. If (X,¥) be an equilibrium point of a map
F = (f1: X0, Xn—1,Xn-2, f2, Y, Yn—1,Yn—2)
where f1 and f> are continuously differentiable functions at (X,y). The linearized system (2.1) about the equilibrium point (X,y)
is
Xu1 = F(X,) = BX,
where

Xn
Xn—1

Xn—2

X, = "

" Y
Yn—1
Yn—2

and B is a Jacobian matrix of the system (2.1) about the equilibrium point (X,5).

Theorem 2.3. For the system X,+1 = F (XQ ,n=20,1,..., of difference equations suchithat X is a fixed point of F. If all
eigenvalues of the Jacobian matrix B about X lie inside the open unit disk |A| < 1, then X is locally asymptotically stable. If
one of them has a modulus greater then one, then X is unstable.

3. Stability Character Of Equilibrium

In this section we will prove the stability nature of the zero equilibrium point. In the following theorem we will give the
equilibrium points of system (1.8).

Theorem 3.1. For all parameters r,ry,s,s1, system (1.8) have a unique zero equilibrium point.

Proof. Itis clear from the equilibrium definition. O
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Before we give the following stability theorems about the local asymptotic stability of the zero equilibrium point, we build
the corresponding linearized form of the system (1.8) and consider the following transformation;

(%3 Xn—1,%=2, Yn, Yn—1,Yn—2) = (f, f1, /2, 8,81,82)

where
yn—1
;o= 1‘¥Slygyz_2’
i = x,
fH = Xu1,
o riXp—1
& = 1—i—stxZ_27
81 = Yn
8 = Yn-1-

The Jacobian matrix about the fixed point (X,y) under the above transformation is as follows:

0 0 0 _rsipy? +q r gyt
(T+siyP )2 Tasiyr™ o (14siyPt9)2
1 0 0 0 0 0
o 0 1 0 0 0 0
Bxy) = rispxPta 4 risqx’ 0 0 0
(1+sxPT9)2 14 sxPtd (1 + sxPt4)2

0 0 0 1 0 0
0 0 0 0 1 0

where r,s,r1,51,p,q € (0,00).

Theorem 3.2. For system (1.8) the following properties hold:
(i) The zero equilibrium point is locally asymptotically stable if rri < 1.
(ii) The zero equilibrium point is locally unstable if rry > 1.

Proof. (i) The linearized system of system (1.8) about the equilibrium point

(750,?0) = (070)

is given by
XrH—l = B(XanO)Xn,
where
Xn
Xn—1
Xn—2
X —
" Yn
Yn—1
Yn-2
and
0O 0 0 0 r O
1 0 0 0 0O
_ 0O 1 0 0 0O
B(XanO)_ 0ry 00 00O
0 0 01 0 O
0O 0 00 1 0

The characteristic equation of B(Xy,Y) is as follows:

P(A) =A% — (rr)A% =0.
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The roots of P(A) are
Ma = 0,
Mg = Ly,
Asg = i/rry.
Since all eigenvalues of the Jacobian matrix B about

()TanO) = (070)

lie inside the open unit disk

Al <1,

the zero equilibrium point is locally asymptotically stable.
(ii) It is easy to see that if rr; > 1, then the zero equilibrium point of system (1.8) is unstable. O

Now, we will study the global asymptotic stability of system (1.8) about the zero equilibrium point.
Theorem 3.3. The zero equilibrium point of system (1.8) is globally asymptotically stable when r < 1 and r; < 1.

Proof. In view of Theorem 3.2, it suffices to prove that

}}grgo(xn,yn) =(0,0).

It is evident from (1.8) that

Yn—1

0< 1 = ——F55—
" 1+Slygyz_2

<Iryp—-1<Yn—-1-

This implies that

Xan+1 < Yan—-1

and

Xan45 < Yan43-

Besides this,

rXn—1

0<yur1 = < TIXp—1 < Xp—1

1+ sxx?
This implies that

Yan+1 < X4n—1

and

Van+5 < X4n+43-
So

Xan+5 < Yan+3 < Xdn42
and

Yan+s5 < Xdn+3 < Yan+42-

Hence, the subsequences

{xani1} {xans2b, {xansst, {raniat
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and

{y4n+1 } ) {y4n+2} > {y4n+3} ) {y4n+4}

are decreasing. Therefore the sequences {x,} and {y,} are monotonic which are decreasing. Hence

lim x, =0
n—soo
and
lim y, = 0.
n—soo
This completes the proof. O

4. Prime Periodic Two-Solutions 1.8

In this section we will investigate the periodic nature of system (1.8).
Theorem 4.1. System (1.8) has no prime period two solutions.
Proof. Assuming

.ooy(a,b),(c,d),(a,b),(c,d),...

is prime period two solutions of the system (1.8) such that

a,b,c,d#0
and
a#c,b#d.
Then we have
a=rt b= e @1
and
rd ric

Tlrsr 4= 1+sa"™ (%2

After some tedious calculations from (4.1) and (4.2), we can obtain the following equilities;
(a—i—c)2 —4ac =0,

and
(b+d)* —4bd = 0.

But they are contrary to our assumption and therefore system (1.8) has no prime period-two solutions. This completes the
proof. O

5. Rate of Convergence

In this section, we will give exact results about the rate of convergence of positive solutions that converge to the equilibrium
point of the system (1.8), in the regions of parameters described in Theorem (3.3).
Consider the following system of difference equations

Xn+1 :fl(xnvyn)7n:()717-~- (5.1
Yn+1 :fz(xn7)’n),”:071,-~- .
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where fi, f> are continuous functions that maps some set / into /. The set / is an interval of real numbers. System (5.1) is
competitive if fj(x,y) is non-decreasing in x and non-increasing in y and f(x,y) is non-increasing in x and non-decreasing in y.
System (5.1) is called anti-competitive system, if the functions f; and f> have monotonic character opposite to the monotonic
character in competitive system.

We state that the following theorems give precise information about the asymptotics of linear non-autonomous difference
equations. Consider the scalar mth-order linear difference equation

Yntm + P1(M)Yntm—1 + Pm(n)yn =0 (5.2)
where m is a positive integer and p; : ZT — C for i € {1,...,m}. Suppose that

qi:r}i_r>130p,-(n),fori: 1,2,...,m, (5.3)
exist in C. For the following limitting equation of (5.2)

Yntm T q1Yntm—1+ .+ gmyn =0, (5.4

the asymptotics of solutions of (5.2) are given the following results. See [25].

Theorem 5.1. (Poincaré’s Theorem) Consider (5.2) based on the condition (5.3). Let A; for i = 1,...,m be the roots of the
characteristic equation

A" g A" g =0 (5.5)

of the limiting equation (5.4) under the condition that |A;| # ’}tj | fori+ j.If x, is a positive solution of (5.2), then either x,, = 0
for all large n or there exists an index j € {1,... ,m} such that

. Xntl
lim 22 = A

n—eo X,
The releated results were obtained by Perron, and one of Perron’s results was improved by Pituk, see [25].

Theorem 5.2. Assume that (5.3) holds. If x, is a positive solution of (5.2), then either eventually x, = 0 or

- INVERTY
Tim sup(|ax,[)!/" = [2;

>

where Ay, ..., Ay, are the roots (not necessarily distinct) of the characteristic equation (5.5).
Consider
Y,+1 = [A+B(n)]Y, 5.6)

where Y, is an m-dimensional vector, A € C"™*™ is a constant matrix and
B: ZJr N Cm><m
is a matrix function satisfying
||B(n)|| = 0, when n — oo, (5.7)

where ||.|| denotes any matrix norm which is associated with the vector norm ||.||. See [20].

Theorem 5.3. (Pituk) Suppose that condition (5.7) holds for system (5.6). If Y, is a solution of (5.6), then either
Y, =0

for all large n or
6= lim |[v,|""

exists and 0 is equal to the modulus of one the eigenvalues of the matrix A.
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Theorem 5.4. (Pituk) Suppose that condition (5.7) holds for system (5.6). If'Y,, is a solution of (5.6), then either
Y, =0
for all large n or

Y,
6 — lim 1n+1]

noe ||Vl

exists and 0 is equal to the modulus of one the eigenvalues of the matrix A.
Using Theorem (5.3) and (5.4), we obtain the following rate of convergence result.

Theorem 5.5. Suppose that r < 1 and ri < 1. Let {(xXn,Yu) }s__, be any positive solution of the system (1.8) such that

limx, = X,
n—yoo
limy, = x
n—soo

where M = (xX1,%2) and M is globally asymptotically stable. Then, the error vector

eyll Xp — X1
6,1,71 Xp—1 — X1
En=| 32 _ | w2
e, Yn—X2
3,271 Yn—1 *§2
€i—2 / 6x1 Yn—27X2 /651

of every positive solution of the system (1.8) satisfies both of the following asymptotic relations:

lim |E||'" = |Adp(M)|, for somei=1,2,....6
n—yoo
. ||En+1|| .
lim |[AiJp (M), for some i=1,2,...,6
neo || Ey ||
where
|Aidr (M)]

is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at the equilibrium point M.

Proof. Let {(x4,yx)}o__, be any positive solution of the system (1.8) such that

lim x, = X
n—roo

and
lim y, =X.
n—soo

To find the error terms, we have

_ 2 _ 2 _
X1 =% = Y A i —X1)+ Y Bilyni—X2)
_ 2 _ 2 _
Y1 =X = Yo Gl i—X1)+ Y Dilyni—%).
Set
e,lq = X;,—X1,
> o
€, = Yn—X2;

therefore, it follows that
1 _ 2 1 2 2
hy1 = ZizoAien—i+ZizoBien—i
2 2 1 2 2
1 = Zi:O Cie, +Zi:0Dien7i
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where

Ag = 0, A1 =0, A, =0,

By — _SpyOmyn-a?—3")
(1+s1yhyn—29)?

B r

: 1+81yhyn-27

B, — _Sd0nyna?=y't)
(1+s1yhyn—29)?

C - — r1SpX(xhx, o9 —xP+4)
(1+sxhx,—29)2
r

G = 1+ sxbx,_04’

o  r1SqE(xnx, 27 —XPH)
(1+sxhx,—29)2

Dy = 0, D=0, D,=0.

Taking the limits, it is clear that

limAdyg = 0, limA; =0,limA; =0,
n—o0 n—o0 n—yoo
" _ rsipy(Ohyaa? —379)
imBy = -— 5 3
n—yee (1+s1ynY0-29)
n—ye L+ s1ynyn—29
i ~ rsigy(mya—2? —3'9)
imB, = -— 7 3
n—eo (] + s]ynyn—2q)
x(xF q _xr+q
limcy, = TP = ),
n—oo (1 + anxn—2q)
. r
lim C1 = T, P. g
n—yeo 1+ s x,24
(xF q _xr+q
IimC, = - rlsqx(x,,xnl; 2 x2 )
n—oo (1 +anxn—2‘1)
IimDy = 0, imD;=0, limD,=0.
n—yoo n—oo Nn—so0
That is
B rs py(yiy2? —yPte)
0 - - —ptq\a + Uy,
(I+s51957%)
,
By = ———+pu
1+s155 b
B rs1qy(yiy2? —yP )
2= rayn T
(I+s1575 )
r1spx(xhx 4 —xP+a)
C() = — 2 7p+q 5 +6n,
(1+s%")
I
Ci = ———+M,
1453yt i
x(xP x4 — xP+a
risgx(xbx x
G = _ _ nsgxon >+9n7

(1+sx01)2
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where o, — 0, B, =+ 0,% — 0,6, — 0,1, = 0, 6, — 0 for n — oo,
Thus, the limitting system of error terms about the equilibrium M can be written as follows:

Eyi1=(C+D(n))Ey,

_ 1 1 ) 2 A\T
where E, = (e,,€,_1,€,_1,€5,€5_1,€5_2)"

00 00 r o0

1 0 00 0O
c_|otroooo

0O rn 0 0 0 O ’

0 0 01 00

000010/,

0 0 0 o B W

0O 0 0 O 0 O
b _ |00 0 0 0 0
=l S M 6, 0 0 0

0O 0 0 O 0 O

00 0 0 0 0/,

and ||D(n)|| — 0, when n — co. As desired. O

Corollary 5.6. Assume that rry < 1. Then, the error vector of every non-trivial solution of system 1.8 satisfies both of the
Sfollowing asymptotic relations:

lim IE " = |Adp(M)|, for somei=1,2,3,4,56,
n—roo

lim 1En 1] |[AiJg (M), for somei=1,2,3,4,5,6
e ||Ey

where |A;Jp (M)| is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at the equilibrium point M, i.e.

{11,2 = ()73,374 = :t.4/rr1,).5,6 = :I:i(‘/rrl.}.

6. Conclusions

In the present paper, we described the qualitative behaviors of solutions of the system (1.8) of nonlinear difference equations.
More precisely, we studied the equilibrium points, the local asymptotic stability, the global asymptotic stability of zero
equilibrium, the existence of the prime two-periodic solutions and the rate of convergence of positive solutions of the
aforementioned system. Also, we gave a correction about an article in the literature. Our system generalized the systems
studied in [13, 14, 27].

The results in this paper can be extend to the following system of difference equations;

vy
Un+1 = 7]{7
i
B+v X vy
i=0
,n=0,1,....
o Up—1
V41 = 7](7
i
ﬁl +N ,Zounl—Zi
f
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In this paper, we investigate the existence of at least one solution on the closed interval for quadratic integral
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1. Introduction

Integral equations arise naturally in various applications in describing numerous real universe problems. As well, quadratic
integral equations have numerous useful applications in describing uncountable events and problems of the real world. For
instance, quadratic integral equations are often applicable in the traffic theory, in the theory of radiative transfer, in the theory of
neutron transport and kinetic theory of gases. Several authors have comprehensively studied the integral equations and the
solution of them in this references [1, 2, 3,4, 5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Moreover, M.
Benchohra and M. A. Darwish et al. [1] study the existence of the unique solution, defined on a semi-infinite interval J : [0, )
for the following quadratic integral equations with a linear modification of the argument

T
x(1) :f(t)+(Ax)(t)/0 u(t,s,x(s),x(as))ds, t€J.

where f:J — R, u:J x Jr x R? — R are given functions, 0 < & < 1, Jr = [0,T] and A : C(J;R) — C(J;R) is an appropriate
operator. Here C(J;R) denotes the space of continuous functions x : J — R.
This article concerns the entity of solutions of the following a quadratic integral equation of Fredholm type,

x(t) = (TIX)(I)+(T2X)(I)/()1 k(t,7)(Tsx)(t)dT, t €1=10,1]. (1.1

where k is given function, 71, T>, T3 are given operators satisfying conditions specified later and x is unknown function.

2. Preliminaries

Let [a,b] be a closed interval in R, by Cla, b] we indicate the space of continuous functions defined on [a,b] equipped with the
supremum norm, i.e.,

¥/l = sup {|x()| : 1 € [a,b]}
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for x € Cla,b]. For a fixed o0 with 0 < o < 1, by Hg[a,b] we will indicate the spaces of the real functions x defined on [a, ]
and satisfying the Holder condition, that is, those functions x for which there exists a constant H* such that

|x(t) —x(s)| < HF|t —s|* 2.1

for all t,s € [a,b]. It is well proved that Hy [a, b] is a linear subspaces of C[a, b]. Also, for x € H%*[a,b], by H* we will indicate
the least possible stable for which inequality (2.1) is satisfied. Rather, we put

[x(t) = x(s)]

I —s|“

Hf‘:sup{ 1,5 € [a,b] andt#s}. 2.2)

The space Hy|a,b] with 0 < a < 1 may be equipped with the norm
¥l = [x(a)| + Hy

for x € Hyla,b]. Here, HY is defined by (2.2). In [2], the authors demonstrated that (Hg[a,b],|-||,) With0 < ot < lis a
Banach space.

Lemma 2.1. For0 < a <1 and x € Hy[a,b], we have:

Xl < max (L, (b—a)®) x|
In particular, the inequality ||x||,, < ||x||,, is satisfied for a =0 and b =1, [2].
Lemma 2.2. For0< a < f8 <1, we have

Hgla,b] C Hyla,b] C Cla,b].

Furthermore, for x € Hg[a,b], we have:
Il < max (1,(6—a) =) |jx] .

Particularly, the inequality ||x||., < ||x||o, < ||x[|g is satisfied for a =0 and b =1, [2].

Lemma 2.3. Let’s assume that 0 < oo < < 1 and E is a bounded subset in Hﬁ [a,b], then E is a relatively compact subset in
Hgla,b), [3].

Lemma 2.4. Assume that 0 < oo < 3 <1 and by BE we indicate the ball centered at 6 and radius r in the space Hﬁ [a,D), ie.,
Bf = {xe Hgla,b]: ||x||g < r}. Then BP is a closed subset of Hy, [a,b], [3].

Corollary 2.5. Assume that 0 < oo < B <1 and Bf = {x € Hpla,b] : |[x||g < r}, then BF is a compact subset in the space
Hgla,b), [3].

),

Theorem 2.6 (Schauder’s fixed point theorem). Let E be a nonempty, compact and convex subset of a Banach space (X, || -
convex and let T : E — E be a continuity mapping. Then T has at least one fixed point in E, [4].

3. Main Result

Theorem 3.1. Assume that the following conditions (i) — (iv) are satisfied:

(i) The operators Ty, T : Hg[0,1] — Hg[0, 1] are continuous on Hg[0, 1] with respect to the norm || -||,. Also, Ty and T,
hold the inequalities

ITix]lg < fi(llxllg) and || Taxllg < fa(llxllp)

for any x € Hg[0,1], where o and B are the fixed constants satisfying 0 < o < B < 1 and the functions fi, fo : Ry — Ry
are nondecreasing on R..

(i) k:[0,1] x [0,1] — R is a continuous function such that there exists a constant kg > 0 satisfying
|k(ta7) —k(S, T)| < kﬁ|l _s‘ﬁv

foranyt,s,T€[0,1].
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(iii) The operators Ts : Hg[0,1] — C[0,1] is continuous on Hg0, 1] with respect to the norm ||-||,. Also, T3 holds the
inequality

1T3x[|.. < f3(11x]15)

for any x € Hg[0,1], where o and B are the fixed constants satisfying 0 < o < B < 1 and the functions f3 : R, — Ry is
nondecreasing on R .

(iv) There exists a positive solution rq of the inequality

Ji(r)+ (2K +kg) f2(r) f3(r) <,

where the constant K is defined by
1
sup{/ |k(t,7)|dT:t € [(),1]} <K.
0

Then the equation (1.1) has at least one solution x = x(t) belonging to space Hy[0,1].

Proof. We take for arbitrarily fixed 7,5 € [0, 1], (¢ # s) and let us consider x € Hg[0, 1] and the operator F' defined on the space
Hpg[0,1] by the formula:

(Fx)(t) = (Tix) (1) + (Tox) (1) /0 k(e 7 () ()dx
fort € [0, 1]. Then, in view of our assumptions we get
(FOO~ () = (00 + (B 1) [ KoD(T)(Ede — () ()~ (1)) [ K )T (D)
— (T) (1) = (Tux) (5) + (Do) (1) /0 k(e 9 (o) (1) — (Ta) (5) /0 (s, 7)(Tyx) (0)de
(1) (s) /0 k(e 7 (Tax) (1) — (To) (5) | /0 k(e 0 (o) ()dT
1
= (Tix)(t) — (T1x) (s) + ((T2x) (t) — (T2x) (S))/O k(t,7)(T3x)(T)dT

+(Tox) (s) /0 ke, ) — k(s, 7)) (To) (2)dT

and
(EDO-(FIG)] _ T 016, )0 - T )
e e AN a—ree & [ el
+|(|T2xs|(;|/ (e, 7) — (s, 9)| | (T3) ()| de < HE -+ |[Tox] | T /|kt1\dr
T Tl ’”f)"ﬁ“f)'df

IN

r—slP
Hf, + [T | T3x].. K+|\TzXIIBHT3XIIm/ k/s| ‘pdT

= HTlx+f2(||x||ﬁ)f3(||x||ﬁ)K+fZ(Hx”B)fS(Hx”B kg
= Hp A (K -+ k) fa( [l ) ol p)- (3.1)
This demonstrates that the operator F' maps Hg|0, 1] into itself. Besides, for any x € Hg|0, 1], we get

< @O+ () O)] [ k0.9 (70 ()t

<17 O+ [ Tax] . T3] K

< (10 0) + Taxl | Tov] LK

<100 )+ Al K. (2)

|(Fx)(0)]
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By the inequalities by (3.1) and (3.2), we derive that

[1Fxllg ITix]| g + (2K + kg) f2(llxll g ) f3([[x]l )

Si(llxllg) + (2K +kg) f2(IIxll g ).f3(llxl] g )- (3.3)

VARVAN

Since positive number ry is the solution of the inequality given in hypothesis (iv), from (3.3), we conclude that the inequality

[Fxllg < f1(ro) + (2K +kg) f2(r0) f3(ro) < ro (3.4)
holds. As a results, it follows that F' transforms the ball

BP = {x e Hg0,1]: |lx|l5 < ro}
into itself. That is, F : BEO — BEO. Thus, we have that the set Bgo is relatively compact in Hy[0,1] forany 0 < o < 8 < 1.

Furthermore, BEO is a compact subset in H[0, 1].

We will show that the operator F is continuous on BEO with respect to the norm || - || ,, where 0 < @ < B < 1. Lety € BEO be

an arbitrary point in BEO. Then, we get

(FR)0)— (E0E) ~ (FA6) - (A6 = (T00)+ T 0) [ ke7) (T0) (e
()0~ (1) () [ ke (T) (e
T~ (B 5) [ Ko 7) (10 (e

HIN )+ ) 6) [ Ko 7) (1) (e 65)

for any x € BEO and t,s € [0, 1]. The equality (3.5) can be rewritten as:

(FX)(0) = (F)0) = (F)6) = (F)) = (00 = (T)(0) = (Tix)(s) = (Ti) 5)
1 1
+(T0) (1) [ ke DT (@)= (T) (1) [ k(7)) ()

HE) O [ K@@ ) 0) [ kD) T e

() [ oD E) @+ (B) () [ K5, (T0)(2)dn

@) [ K DB @ () () [ K, DT (@dE. G6)
By (3.6), we have

(Fx)(t) = (Fy)(t) = (Fx)(s) = (Fy)(s)) = (Tix)(1) = (Tiy)(1) = ((Tix)(s) = (T1y)(s))
1
Jr((Tz)C)(t)—(sz)(t))/0 k(t,7)(Tax)(t)dT

) 0) [ K1) (B)(6) - (F) (D)
~(T0)0) (B 6) [ KD (Tan)@)d

~ () 6) [ Ko7 (0(0) () (@) )
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(3.7) yields the following equality:

((Fx)(1) =

(Fy)(1) -

(Fx)(s) = (Fy)(s)) = (Tix)(1) = (Ty)(#) = ((Tix)(s) = (T1y)(s))

HUTR) (1) () (1)~ (T20)5) = (B) () [ k(1 2) (T ()
HT00)~ (B)6) [ (K0,7) ks, D) (T (2)d

HT) 0~ (1) 6) [ K6,2) (10(0) - (B (@) s

HIE) [ (6D Ko D) (00 - EA@)E ()

Since |(T3x)(7)| < || T3x|l.. < f3([Ixllg) and |[(T3x)(7) — (T3y)(7)| < | T3x — T3y, for all x,y € BEO and 7 € [0, 1], taking into
account (3.8) and hypotheses, we can write:

|(Fx)(t) = (Fy)(1) = ((

Fx)(s) —

It sl

(Fy)(s))] . |(Tlx)(t)—(le)(f)—((:M)(S)—(le)(S))I
i) (t)—(sz)|Ef;t;|§gzx}(S) (Toy) (s )\/ |k(z,7)||(T3x)(7)|dT
1) <|j>:s|<§2y> ()] | k(1 9) — kG5, 9) | (Tan) ()T
(T (? *ngy) (s)] /‘1 lk(t, )| (T3x)(7) — (T3y) (1) |d7

|tT2ys\i)' / [k(t,7) = k(5. D)l|(T3) (1) — (T3y) (1) |d

IN

1
ITix = Tiy|lg + 1 T2x — Toy |l o | T3x]|. K + || Tox — szlelTstw/O kgl —s|P~*dz

1
Ty Tk = Tyl K+ oyl Tox = Tyl [ kgl stP~“ar

[Trx =Tyl + K| Tox — Toyll o | Taxoo + k|| Tox — Toyl| o || T3]
K| oy [l | T3x — Tyl + kg | T2¥ [l | T3x — T3y .
= [Tix=Tiyllo + (K+kg) (| Tox = Toy| o [| T3x]|o + (K + kg ) [| T2y [l | T3x — T5(13.9)

IN

for all ¢, s € [0, 1] with 7 # 5. Besides, for x,y € Bﬁ], we obtain following equality:

(Fx)(0) -

(Fy)(0)

(1) (0)+ (52) (0) [ (0, ) () (21~ (T2y) (0) = (7) (0) | (0, )(T) 2)
(100) (0)~ (1) )+ (10 0) [ KO,9)(T0)(2)

~(E)0) [ KO.DT@aT+ (1) 0) [ KO,D)(Tw)(e)an

- () 0) [ KODT) e

(T1x) (0) (1) (0) + (T22) (0)  (729) (0) [ K(0,2)(Tsa) ()=

+(Try) (0)/0.1/((0, 7) ((Bx)(t) — (Tzy) (7)) dT. (3.10)
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By (3.10), we get that
(PO~ (FNO] = () (0) - () O)]+ () 0) — () O [ (B} ()=

1
() OIK [ 1(T0(0) () (9)]de
72—+ 7o = Toy K T+ | Ty Tk = Ty
73— Ti T = Toy| KT | Tl KTk = T . @1y

IAINA

From (3.9) and (3.11), we have that

IFx=Fylla = 1Fx=E3)O)+HEpy
(Fx) (F — ((F. —(F
— 120~ ()] sup { LN UG OV o ana s 45
< 20Tix= Tiyly + (2K k) T~ Tl T+ K+ k) Tl Tk~ Tl
< 20T Tipll + K-+ k) | Tox~Taylal el + 2K+ k) [Tl Tox =Tyl
< 20Tix= Tyl + K +hg) = Tl rlloly) + CK+ kg bl Te— Tl @12)

Moreover, since ||x||g < ro and ||y[|g < ro, we derive from (3.12) that the following inequality holds:

|Fx—Fylly < 20T =Tyl + 2K + k) f3(ro)||Tox = oyl o + (2K + k) folro) || Tox — Tyl (3.13)

Since the operators 7i, 7 : Hg[0, 1] — Hg[0,1] and T3 : Hg[0, 1] — CI0, 1] are continuous on Hg |0, 1] with respect to the norm

-1|,, they are also continuous at the point y € BE . Let us take an arbitrary € > 0, then there exists the number § = §(g) > 0.
o Yy p y 0 y
The inequalities

€
ITix=Tivllo < @ lITox =TVl < 3prr2, 7307

and
€

Tix—T- <
T = To.. 3(2K+kﬁ)f2(ro)

hold for all x € BEO. Then, taking into account (3.13), we derive the following inequality:

E & &
Fx—Fy|,<=4+-+-=¢

for all x € BEO with ||x—y||, < 6. Eventually, we infer that the operator F is continuous at the point y € Bﬁo. Since y was

chosen arbitrarily, we conclude that F is continuous on B?O with respect to the norm || - || ,. Because BQ, is compact in Hy [0, 1],
by the classical Schauder fixed point theorem, we get the desired consequence. O

4. Conclusion

This article concerns the entity of solutions of the following a quadratic integral equation of Fredholm type,

x(t) = (Tix) (1) + (1) (1) /0 k(o) (o) (1), 1 1=[0,1].

where k is given function, 71, T>, T3 are given operators satisfying conditions specified later and x is unknown function.
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Burak Ogul'*, Dagistan Simsek?
Abstract
In this paper, we are going to analyze the following difference equation

Xn—29
Fpi il = z n=0,1,2,...
1+, 4%p—9Xp—14Xn—19Xn—24

where X_29,X_28,X_27,...,X_2,X_1,X0 € (0,00).

Keywords: Difference equations, Recursive sequences, Period 30 solutions.
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1. Introduction

Difference equation is a very diverse field that is effective in almost every branch of applied mathematics. Recently, researchers
have shown great interest in studying the behavior of solutions of nonlinear difference equations. Difference equations are used
in many fields such as population biology, economics, probability theory, genetics, psychology, mathematical modeling. There
are many articles on difference equations, for example; [24]-[28]

Cinar, studied the following problem with positive initial values:

Xp—1

Xppl=——"—"—
" —1+ax,x,_1’

forn=0,1,2,... in [2] respectively.
Simsek et. al., studied the following problems with positive initial values,

X _ Xn-3
| =—
n+ 1+xn—1
X _ Xn-5
="
n+ 1+x”_27
Xn—5
Xp+1 =

L+x,-1%,-3
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14X0—4Xn-9Xn—14Xn—19Xn—24

forn=0,1,2,... in [5]-[7] respectively.
Elsayed studied the behavior of the solution of the following difference equation,

bxnxnf 1

Xp41 = aXp—1 + , n=0,1,...,

CXpdx,_o
where the initial conditions x_»x_1,xo are arbitrary positive real numbers and a,b, c,d are positive constants. [15]
Devault et. al. studied the following problems

A 1
Xnpl = —+ ——
Xn  Xn-2
forn=0,1,2,... in [23] and showed every positive solution of the equation where A € (0,c0).
Stevic et. al. studied on a product-type system of difference equations of second order solvable in closed form in [28].
Shown that the following system of difference equations

a C
Z}’l Wn

Zntl = —5—Wntt = 5 —,n € N,
Wh—1 Zp—1

where a,b,c,d € Z,z_1,z0,w_1,wo € C is solvable in closed form.
In this work, the following non-linear difference equation was studied

Xn—29
Xpyl = - (1.1
1+ Xn—4Xpn—9Xp—14Xp—19Xn—24

where x_79,X_28,...,X_1,X0 € (0,00) .

2. Main Results

Let X be the unique positive equilibrium of the 1.1, then clearly,

X
P 6

=X=X
1 4 xxxxx

=0=x=0,

so ¥ = 0 can be obtained. For any k > 0 and m > k notation i = k,m means i = k,k+1,...,m
Theorem 2.1. Consider the difference equation 1.1. Then the following statements are true.
a) The sequences X30p—29,X30n—28; ---,X30n—1,X30n are being decreased and
ai,ap,...,ax,azy > 0
are existed in such that

Jim x30,—294k = a14x, k= 0,29.

b)

6

[] limx350-34—j45x =0, j=0,4
kzoll*)oo

6
or Ha5k+i:0, i=1,5.
k=0

c) no € N such that x,11 < x,—24 for all n > ng, then

lim x,, = 0.
n—soo

d) The following formulas below are hold:

.
X4 kX0 (AX 144 kX 194X 241k o T 1 )
)

X30n-+1+k = X—29+k (1 -
X b kX9 A X —144+KX —19-+kX 24k =0 j=] L+ X5i— 441k X5i—9 -1k X5i— 14+ kX5i— 19+ kX5i—24-+k
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14X0—4Xn-9Xn—14Xn—19Xn—24

6j+1
X4 kX0 kX141 4X194kX 291k \o T 1 )
)

X30n+6+k = X—24+k <1 -
X kX =9+ kX 144k X~ 19+ X =244k j=0 i=] L+ X514k X5i -9+ kX5i—14-+kX5i— 19+ kX5i—24-+k

6j+2
X4 kX0 kX 144 4X 244k X291k \o T 1 )
)

X30n+11+k = X—19+k <1 -
X4 kX9 kX — 144+ kX~ 19-4+kX—24+k 1=p) i |+ X5i—a4kXSi—9-+kX5i— 14-+kX5i— 19-+kX5i—24-+k
j=0 i=1

6j+3
X4 kX0 kX191 kX 244 kX 291k yo T 1 )
)

X30n+16+k = X—14+k <1 -
X4 kX9 kX — 144+ kX — 194k X241k i=p) i |+ X5i—a4kXSi—9-+kX5i— 14-+kX5i— 19-+kX5i—24-+k
j=0 i=1

6j+4
_ | XAk 14k X194k X241k X291k O 1
X30n+21+k = X941 | 1 — >

Xk X9+ AX 144K X —19+kX 24k =0 i=] L+ X5i— 41k X5i -9+ kX5i—14-+kX5i— 19+ kX5i—24-+k

6j+5
X9 kX 144X~ 194 kX 24 14X 2941k = T 1 )
)

X30n+26+k = X—4+k (1 -
X kX9 A X 144K X —19-+kX 244k =0 i=] L+ X5i— 41k X5i -9+ kX5i—14-+kX5i— 19+ kX5i—24-+k

k=0,4 holds.

e) If X30n414k = @14k 70, X30n464k —> Aok Z 0,  X30n4114k = @114k Z 0, X30nt164k — Al64k Z 0,  X35p4214% —
ik 70, then X3on4264k — G264k =0 as n—oo k=0,4

Proof. a) Firstly, from the 1.1

Xn—29
1+ Xy 4Xp—9Xn—14Xn—19Xn—24

Xn+1 =

is obtained. If x,,—4X,—9Xn—14%n—19X4—24 € (0,+00),  then (1 +x,-4X,-9Xy—14%n—19X4—24) € ((1,+00). Since
Xn+1 < Xp—29,
neN,

lim 30,294k = ar+x,  for k=0,29

existed formulas are obtained.
b) In view of the 1.1,

X30n—29

n=230n= X30n+1 =
5
1 +T1R—0X30n—29+5k

is obtained. If the limits are put on both sides of the above equality,
6 6

[ limx35,-3445c=0 or JJasir1 =0
k=0""" k=0

is obtained. Similarly for n =30n+ 1, n =30n+2, n = 30n+ 3 and n = 30n + 4 we can obtain x30,+2, X30n+3> X30n-+4
and x30,+5-
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14X0—4Xn-9Xn—14Xn—19Xn—24

c) If there exist ng € N such that x| < x,_p4 for all n > ng, then, a; < ag < aj; <ajg<apy <ay<a;, a<a;<
ap<ay<ap<ay<a, a3<ag<ap<ag<an<ag<a, as<a9<ayy<ayg<ay<a9g<ay as<
aip < ars < axy < aps < azo < as. Using (b) we get

6 [
Ha5k+i:07 i=1,5.
k=0

Then we see that,

lim x, = 0.
n—oo

Hence the proof of (c) completed.
d) Subtracting x,_»9 from the left and right-hand sides in 1.1

1

1+ Xp—4Xn—9Xn—14Xn—19Xn—24

Xpg1 —Xp—29 = (Xn—4 —Xn-34)

is obtained and the following formula is produced below, for n > 5

n—=> 1
Xsp—24 —Xsu—s54 = (X1 —x_29) []
i=1 1+ X5i_4X5;_9X5;_14X5i_19X5i—24
n—>5
X5p—28 —Xsu—53 = (X2 —x_28) [
i=1 1+ Xs5;_3X5;_8X5;_13X5,_18%5;—23
1

n—>5

2.1

=

Xsp—27 — Xsp—52 = (X3 —x_27)

i=1 1+ X5;_2X5;_7X5;_12X5,_17X5i—22

n—>5

Xsp—26 —Xsp—s51 = (x4 —x_26) []
i=1 14 X5 1X5i_6X5i—11X5i—16X5i—21

n—>5
Xsu—25 — Xsp—s50 = (¥5 —x_25) [] .
i=1 14 X5iX5i_5X5i_10X5i—15X5i—20

6 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

n 6j 1

X30n+14k — X204k = (X14k —X_294%) )
,gag 1 X5 4 kXSi— 04 kXSi— 144kXSi— 19-HkXSi—24-+k

Also, 6 + 1 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

6j+1 |
X30n+6+k — X244k = (Xopk —x—2444) 3, ||
j =1

00 it | XS4k XSi O kXS 144k XSi— 194k XSi-24-+k

Also, 6 +2 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

n 6j+2 1
X30n4114k — X194k = (X114k —X_194k) :
jgb ,11 1+ X544 kXS5i— 0k XSi— 14+kXSi— 19kXSi—24-+Kk

Also, 6+ 3 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4
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n 6j+3 1

X3574-164k — X— 144k = (X164k — X—144k) .
‘,-;) ,11 1+ X544 kXSi— O kXSi— 144 kXSi— 19-HKXSi—24+k

Also, 6 +4 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

n 6j+4 1

X30n421+k — X—9+k = (¥214k — X—04k) )
j;) ,I:I 1 4 X5i— 44 1X5i— 0k X5i— 14-HhXSi— 191kX5i—24+k

Also, 6 +5 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

n 6j+5 1

X30n+26+k — X—4+k = (X26+k - X—4+k) .
j;) ,11 1+ X5 44k XSi— 0K XSi— 144k XSi— 19+kXSi—24+k

Now we obtained of the above formulas:

n 6j
X4 kX9 kX141 kX194 4K 241k d 1 )
b)

X30n+1+k = X294k (1 -
X4 kX9 kX 14 hX 194k X 244k 1] | A XSi—dhX5i—0 4 kXSi— 144kX5i—19-+kXSi—24+k

6j+1
X4k X 94 kX— 141 kX 194X 291k \ T 1 )
b

Xl kX =9+ kX 144+ kX —19+kX 244k =0 i=] 1+ X5i 44 kX5i— 94 kX5i— 144+ kX5i— 19+ kX5i—24+k

X30n+6+k = X—24+k (1 -

6j+2
0 = xo1 k<1 X4 f X9 kX 144 kX244 kX294 k 1 i—l 1 >

n+11+k — A—19+ - )
X4 kX -9k X 14 kX 194k X241k 120 1] | A X5i- ik X5i— 04 kXS~ 144kX5i—19-+kX5i—24+k

6j+3
X4 kX0 kX 194k X244k X291k \o I 1 >
)

X4 kX9 kX 14 kX194 kX 24k 120 1] | A X5i- 44k XS5i—0 4 kXSi— 144 kX5i—19-+kX5i—24+k

X30n+164+k = X—14+k (1 -

6j+4
omealek = Too k<1 X4 kX 14 kX 194k X241 kX 294k N T 1 >
n+21+k — A9+ - )
X4 kX9 kX 14 AX 194k X 244k 120 it | T XSidpkXSi—9kXSi— 14-+kXSi— 194kXSi—24-+k
6j+5
. —x k(l X_p J X 14 kX — 194k X241 kX—294+k = T 1 )
30n+26+k = X—ak | 1 — .
Xk X9+ kX 14+ kX —19+kX 244k =0 i=] L+ X5i— 41k X5i—9+kX5i—14-+kX5i— 19+ kX5i—24-+k

k = 0,4 holds.
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e) Suppose that a; = ag = a1 = aje = az1 = are = 0. By (d), the following formulas are produced below

n 6j 1 )

| X4X_0X_14X_19X—24
T xax ox_14x_19X 24 1=)i7 | +X5i—dXs5i-9X5i—14X5i—19X5i-24

6j 1 )

=it | +Xsi_4Xs5i-9X5;_14X5i—19X5;—24X5i—29

lim X30n+1 = lim X_29 (1
n—eo n—soo

X_4X_9X_14X_19X_24
ay=x_y|(1—
I 4-x_4x X 14 19X 24

6
=0 L +Xx_4x_9x_14X_19X_24 ] 1 2.2)
1= = . )
X—4X—9X—14X—19X—24 J0i=1 X5i—4X5i—9X5i—14X5i—19X5i—24
Similarly,
o 6j+1
o — 0o 1+X_4X_9X_14X_19X_24 Z i—l 1 2.3)
6= = .
X_4X_9X_14X—-19X-29 j=0 i=1 X5i—4X5{—9X5;—14X5{—19X5;—24
Similarly,
o 6j+2
. 0o 1+ X_4X_9X_14X_19X_24 Z i—l 1 2.4)
1= = ) )
X—4X—9X—14X—24X-29 =0 =1 X5i—4X5i—9X5i—14X5i—19X5/-24
Similarly,
oo 6j+3
p 0o 1+ Xx_4x_9x_14%_19X_24 i—l 1 2.5)
16 = = ) )
X_4X_9X_19X_24X_29 =0 i=1 X5i—4X5i—9X5i—14X5;—19X5i—24
Similarly,
w 6j+4
p 0o 1+ X_4X_9X_14%X_19X_24 h 1 2.6)
21 = = .
X_4X_14X—19X_24X_29 70 i1 X5i—4X5i-9X5i—14X5i—19X5;-24
Similarly,
o 6j+5
u 0= 1+ Xx_4X_9xX_14X_19X_24 Z h 1 27
26 = = )
X—9X—14X—19X-24X_29 D0 i=1 X5i—4X5i-9X5i—14X5i—19X5i—24
From 2.2 and 2.3
1+ o/ 1
X_4X_9X_14X_19X_24 S
X_4X_9X_14X_19X_24 J0i=1 X5i—4X5i—9X5i—14X5i—19X5i—24
o 6j+1
L+ X_4X_0X_14X_10X_24 v O 1
j=0 i=1 X5i—4X5i—9X5i—14X5i—19X5i-24

X_4X_9X_14X—19X—29

thus, x_»9 > x_»4. From 2.3 and 2.4
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14X 4Xn—9Xn—14Xn—19Xn—24

1+X_4X 9X_ 14X 19X 24 i 6ﬁ1 1 -
X_4X_9X_14X_19X_29 20 T X5i-4X5i-9X5i—14X5i-19X5i-24
o 6j42
14X 4% 9X_14X_19X_24 Z i—[ 1
X_4X_9X 14X 24X 29 120 i1 X5i-4X5i-9X5i—14X5i—19%5i-24
thus, x_»4 > x_19. From 2.4 and 2.5
1+X_4X 9X_ 14X 19X 24 i 6ﬁ2 1 -

X_4X_9X_14X_24X_29 =0 i=1 X5i—4X5i—9X5i—14X5i—19X5/—24

1

i—4X5i—9X5i—14X5{—19X5i—24

14X 4X_9X_j4X_19X_24 Z

X_4X_9X_19X_24X_29 i

o 6j43
—0 i=1 *5

thus, x_19 > x_14. From 2.5 and 2.6

o 6j43
L+ X_4X_9X_14X_19X—24 Z h 1 <
X_4X_9X_19X_24X_29 0 it X5i-4X5i-9X5i—14X5i—19X5i-24

o 6j+d
L +x_4X_9X_14X_19X-24 Z i—[ 1
n =il 35

X_4X_14X—19X—24X_29 720 =1 X5i—4X5i-9X5i—14X5i—19X5i—24

thus, x_14 > x_9. From 2.6 and 2.7

I+Xx_4xX_9x_ 14X 19X 24

J
[1 >
0 sl X5i—4X5i—9X5i—14X5i—19X5i—24

o 6j+4 1
X_4X_14X_19X_24X_29 =

J

w 6j+5
L +x_4X_9X_14X_19X-24 Z J 1
~ 5

X—9X_14X—-19X—-24X_29 =0 i=1 X5i—4X5i—9X5i—14X5i—19X5i—24
thus, x_g > x_4.

From here we obtain x_p9 > x_o4 > x_19 > x_j4 > X_9 > x_4. Similarly, we can obtain x_pg > x_3 > x_13 > x_3 >
X_§>X_3,X_27 >X_22 >X_17>X_[2>X_7>X_2,X_26>X_2] >X_16>X_11 >X_g>Xx_1andx_p5>x_99 > X_15 >
X_10 > X_5 > x9. We arrive at a contradiction which completes the proof of theorem.

O

3. Conclusion

In this study, the theorem is given for the 1.1, and its solution and periodicity are investigated. By taking the coefficients of the
1.1, real numbers, sequence or function, new equations can be defined and their solutions can be examined.
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