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Abstract. If a Tychonoff space is fixed, then we may consider all possible

Hausdorff compactifications of the space. If an infinite set is fixed, then we

may vary Tychonoff topologies on the set and the compactifications may also
be varied.Magills construction for compactifications of a fixed Tychonoff space

through partitions is applied to derive compactifications of various Tychonoff

spaces (X, τ), with a fixed set X and with a variation in Tychonoff topologies
τ . The structure of required partitions is also analyzed. When topologies are

varied, some possible extensions of mappings are obtained in this regard.

1. Introduction

Compactification of a space X is a compact space containing X as a dense sub-
space. If a Tychonoff space is fixed, then we may consider all possible Hausdorff
compactifications of the space. If an infinite set is fixed, then we may vary Ty-
chonoff topologies on the set and the compactifications may also be varied. Mag-
ill’s [10] construction of compactifications through partitions is improved in the
second section of this article, when topologies are also varied. The structure of
required partitions is also analyzed in the second section. In a compact extension
of a topological group, the inverse operation should be extendable homeomorphi-
cally from the base topological group (See:[1]). The third section of this article is
to study such extensions of mappings, when topologies are also varied. The au-
thors have also contributed a classical work for compactifications including order
relations (See: [11], [13], [14], [15]). Recent works are also available in literature
regarding compactifications and lattice structure of a collection of compactifica-
tions (See: [2], [3], [7]). The major application of Hausdorff compactifications is
obtaining completeness under all uniformities inducing same topologies, apart from
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2 RAMKUMAR SOLAI AND C. GANESA MOORTHY

other applications (See: [4], [6], [8] and [9]). All definitions which are not defined
here are followed from [12].

2. Set Fixation

Let us fix an infinite set X. We consider the collection of all (Hausdorff)
Tychonoff topologies on X. If τ1 and τ2 are two Tychonoff topologies on X, then
we write τ1 ≤ τ2 if τ1 ⊆ τ2. The supremum of any collection of Tychonoff topologies
does exist and it is also a Tychonoff space. Let (Y1, τ

′
1) and (Y2, τ

′
2) be two Hausdorff

compactifications of (X, τ1) and (X, τ2) respectively, whenX is fixed. Then we write
(Y1, τ

′
1) ≥ (Y2, τ

′
2) if there is a continuous function f from (Y1, τ

′
1) onto (Y2, τ

′
2) such

that f(x) = x, for all x ∈ X. In this case, {f−1(y) : y ∈ Y2} form a partition for
Y1 by compact subsets of Y1. Moreover, each x ∈ X is in at most one partitioning
set f−1(y). That is, f−1(y)∩X is either an empty set or a singleton set, for every
y ∈ Y2.

On the other hand, let us consider a partition π for Y1 by compact subsets
of a compactification (Y1, τ

′
1) of (X, τ1) such that the following is true: To each

A ∈ π, A∩X is either an empty set or a singleton set. Define Y2 = Y1/π, and let
f : Y1 → Y1/π = Y2 be the natural quotient mapping. Endow Y2 with the quotient
topology τ ′2 corresponding to the quotient mapping f . Then (Y2, τ

′
2) is a compact

space, which may not be Hausdorff. However we have the following Result 2.1 on
Hausdorffness. A variation of the Theorem 2.1 may be found in [12, Problem 4Q].
Note that if A ∈ π is such that A∩X is a singleton set {x}, say, then x is identified
with f(A) as an element of Y2. In this way, X is considered as a dense subset of
(Y2, τ

′
2).

Theorem 2.1. (Y2, τ
′
2) is a Hausdorff compactification of (X, τ2) (for some τ2),

if and only if for a given τ ′1-open subset U containing a given A ∈ π, there is a
τ ′1-open set V , which is a union of members of π, such that A ⊆ V ⊆ U .

Proof. Suppose (Y2, τ
′
2) is Hausdorff. Let A ∈ π and U be a τ ′1-open set containing

A. Then f(Y1\U) is a τ ′2-compact subset of Y2, because f is continuous. It is a
τ ′2-closed set, because (Y2, τ

′
2) is Hausdorff. Then f(A) ∈ Y2\(f(Y1\U)) or A ⊆

f−1(Y2\(f(Y1\U))) ⊆ U , where V = f−1(Y2\(f(Y1\U))) is a τ ′1-open set, which is
a union of members of π.

To prove the converse part, consider two distinct members A,B ∈ π. Since
(Y1, τ

′
1) is normal, there are disjoint τ ′1-open sets U1 and V1 such that A ⊆ U1 and

B ⊆ V1. Then there are τ ′1-open sets U2 and V2, which are unions of members
of π such that A ⊆ U2 ⊆ U1 and B ⊆ V2 ⊆ V1. Then f(U2) and f(V2) are two
disjoint τ ′2-open sets of Y2 such that f(A) ∈ f(U2) and f(B) ∈ f(V2). This proves
the Hausdorffness of (Y2, τ

′
2). �

Let us now give a sufficient condition for a partition to obtain a Hausdorff com-
pactification.

Theorem 2.2. If the subfamily of all non singleton members of π is a locally finite
family in (Y1, τ

′
1), then (Y2, τ

′
2) is a Hausdorff compactification of (X, τ2), for some

Hausdorff topology τ2 in X .

Proof. To prove the Hausdorffness of (Y2, τ
′
2), consider two distinct elements y1, y2

in Y2. Then there are A,B ∈ π such that A = f−1(y1) and B = f−1(y2), re-
spectively. For any x ∈ A, there is a τ ′1-open set Ux of x, which intersects only a
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finite number of non singleton members C1, C2 · · ·Cn of π such that Ux ∩B = φ

and Ci 6= A, for every i. Define a τ ′1-open set Vx = Ux\(
n
∪
i=1

Ci) containing x.

Then {Vx : x ∈ A} is an open cover of A and this cover has a finite subcover

{Vx1 , Vx2 , · · ·Vxm}, say. Let U =
m
∪
i=1

Vxi . Then U is a τ ′1-open set such that A ⊆ U ;

U ∩B = φ, and such that U is a union of members of π. Similarly, we can find a
τ ′1-open set V such that B ⊆ V, U ∩V = φ, and such that V is a union of members
of π. Then f(U) and f(V ) are disjoint τ ′2-open sets in Y2 such that f(A) ∈ f(U)
and f(B) ∈ f(V ). This proves the Hausdorffness of (Y2, τ

′
2). �

This Theorem 2.2 generalizes Lemma 2.1 in [10].
If we fix an infinite set X, vary Tychonoff topologies τ on X and vary (Hausdorff)

compactifications (Y, τ ′) of (X, τ), then we obtain a complete upper semi-lattice
L(X) under the relation “ ≥ ” defined above, that relates two compactifications.
The largest element of this semi-lattice is the Stone-Čech compactification of X
endowed with the discrete topology.

If a Tychonoff topology τ is fixed in X, then the collection L(X, τ) of all com-
pactifications of (X, τ) is a complete upper semi sublattice of L(X).

If ((X, τi))i∈I is a collection of Tychonoff topologies on an infinite set X, τ∗ is
the supremum of (τi)i∈I , and (Yi, τ

′
i) is a compactification of (X, τi), for every i ∈ I,

then the supremum of (Yi, τ
′
i)i∈I is of the form (Y, τ∗

′
), where (X, τ∗) is a topological

dense subspace of (Y, τ∗
′
). Here (Y, τ∗

′
) is the closure of the natural embedding of

X into the Cartesian product
∏
i∈I

Yi, with the product topology. So, the mapping

f from L(X) onto the complete upper semi-lattice of Tychonoff topologies on X,
defined by f((Y, τ)) = the subspace topology of τ on X, is an order preserving
mapping and a join preserving mapping. This discussion leads to a convex structure
of L(X, τ) and a congruence relation through f (See: [5, p.17 and p.20]).

3. Self Extendable Mappings

Theorem 3.1. Let (X, τ) be a locally compact Hausdorff space and (Y, τ ′) be its
one point compactification, where Y = X ∪{∞}, say. Let h : (X, τ)→ (X, τ) be an
onto homeomorphism. Then h has a unique homeomorphic extension h′ : (Y, τ ′)→
(Y, τ ′), and in this case h′(∞) =∞.

Proof. Define h′(∞) = ∞ and h′(x) = h(x), for all x ∈ X. Fix a compact subset
K of X. Then h(K) and h−1(K) are compact subsets of X, and h(X\K) and
h−1(X\K) are open subsets of X. So h′ and h′−1 are continuous at ∞. The
continuity of h′ and h′−1 at any point of X follows from the fact that X is open in
(Y, τ ′). This completes the proof. �

Theorem 3.2. Let ((X, τi))i∈I be a collection of Tychonoff spaces and ((Yi, τ
′
i))i∈I

be a collection such that

(i) Each (Yi, τ
′
i) is a compactification of (X, τi).

(ii) For any continuous mapping hi : (X, τi) → (X, τi), there is a continuous
extension h′i : (Yi, τ

′
i)→ (Yi, τ

′
i).

Let h : X → X be a mapping such that h : (X, τi) → (X, τi) is continuous, for

every i ∈ I. Then there is a continuous mapping h′ : (Y, τ∗
′
)→ (Y, τ∗

′
), that is an
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extension of h, where τ∗ is the supremum of (τi)i∈I and (Y, τ∗
′
) is the supremum

of ((Yi, τ
′
i))i∈I .

Proof. Let h′i : (Yi, τ
′
i) → (Yi, τ

′
i) be the continuous extension of h : (X, τi) →

(X, τi). Define H :
∏
i∈I

(Yi, τ
′
i) →

∏
i∈I

(Yi, τ
′
i) by H((yi)i∈I) = (h′i(yi))i∈I . Then H

is continuous. Then the required h′ : (Y, τ∗
′
) → (Y, τ∗

′
) is the restriction of H to

(Y, τ∗
′
), where (Y, τ∗

′
) is considered as a subspace of

∏
i∈I

(Yi, τ
′
i) as in Section 2. �

Remark. Suppose (ii) in Proposition 3.2 is replaced by

(ii)’ For any surjective homeomorphism hi : (X, τi)→ (X, τi), there is a unique
homeomorphic (or continuous) extension h′i : (Yi, τ

′
i)→ (Yi, τ

′
i).

Assume that h : X → X is a one to one and onto mapping such that hi : (X, τi)→
(X, τi) is an onto homeomorphism, for every i ∈ I. Then there is a homeomorphic

(or continuous) mapping h′ : (Y, τ∗
′
) → (Y, τ∗

′
), that is an extension of h, for

(Y, τ∗
′
) given in Proposition 3.2.

Proof. If each h′i is a homeomorphism, then H defined in the proof of the Proposi-
tion 3.2 is a homeomorphism. �

4. Conclusion

For a fixed infinite set, we may vary Tychonoff topologies on the set and the com-
pactifications may also be varied. Magill’s [10] construction of compactifications
through partitions is improved and the structure of required partitions is also ana-
lyzed . In a compact extension of a topological group, the inverse operation should
be extendable homeomorphically from the base topological group (See:[1]). Finally
mappings are extended homeomorphically from topological space to its compact
extension, when topologies are also varied.

Acknowledgments. The authors are grateful to the anonymous reviewers and
the editor for their valuable suggestions and useful comments to improve the man-
uscript.
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Abstract. Our aim in this paper is to present a reduction method that solves
first order functional differential inclusion in the nonconvex case. This ap-

proach is based on a discretization of the time interval, a construction of

approximate solutions by reducing the problem to a problem without delay
and an application of known results in this case. We generalize earlier results,

the right hand side of the inclusion has nonconvex values and satisfies a linear

growth condition instead to be integrably bounded. The lack of convexity is
replaced by the topological properties of decomposable sets, that represents a

good alternative in the absence of convexity.

1. Introduction

Let τ, T ≥ 0, be two non-negative real numbers, CT := CRn([−τ, T ]) is the
Banach space of all continuous mappings from [−τ, 0] to Rn equipped with the
norm of uniform convergence and F : [0, T ] × C0 ⇁ Rn be a set-valued mapping
with nonempty closed values. In this work, we study the existence of solutions for
the following differential inclusion with delay

(DP)

{
ẋ(t) ∈ F (t, T (t)x) a.e. t ∈ [0, T ];
x(t) = ϕ(t) t ∈ [−τ, 0];

where ϕ ∈ C0 and T (t) : CT −→ C0 defined by T (t)x(s) = x(t + s), ∀s ∈
[−τ, 0 ]. In [11], Fryszkowski proved an existence result for (DP) when F is a
set-valued mapping with nonconvex values, measurable, integrably bounded and
lower semicontinuous in x. The proof of this theorem is based on the construction
of a continuous selection for a class of nonconvex set-valued mapping. The existence
of such selection is proved in [10]. In [12], Fryszkowski and Gorniewicz proved an

2020 Mathematics Subject Classification. Primary: 34K09 ; Secondaries: 49J52 .
Key words and phrases. Lower semicontinuous; nonconvex differential inclusion; reduction;

delay; linear growth condition.
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existence result for differential inclusion of the form

(P)

{
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ]
x(0) = x0,

where F is a set-valued mapping measurable in (t, x) and lower semicontinuous in
x with nonconvex values, satisfying a linear growth condition. The main tool used
in their proof is a continuous selection theorem for the set-valued mapping

KF (x) = {y ∈ L1
Rn([0, T ]) : y(t) ∈ F (t, x(t)) a.e. on [0, T ]},

which is well defined on CRn([0, T ]) and is lower semicontinuous with decomposable
values. Decomposable sets represent a good alternative in the absence of convexity.
Our aim in this work, is to prove a general existence result for (DP), where F
satisfies a linear growth condition instead to be integrably bounded, that is

‖y‖ ≤ ( 1 + ‖ϕ‖ ) ρ(t), for every y ∈ F (t, ϕ) and (t, ϕ) ∈ [0, T ]× C0.

We extend also the existence result for the Cauchy problem without delay in the
nonconvex case. Some applications have been obtained by considering such delayed
set-valued mapping as perturbations (external forces applied) on systems governed
by subdifferential operators, particularly in the case of the so-called Sweeping pro-
cess, see for instance [7], [8]. We refer to [1]-[3] for recent results, [4], [5] and [13] for
other approaches. The paper is organized as follows. In Section 2, we recall con-
cepts and preliminaries needed in the paper. In Section 3, we provide the existence
result for problem (DP).

2. Preliminaries

Throughout the paper, we will use the following notations and definitions. Let
Rn be the n dimensional Euclidean space and ‖ · ‖ its norm. CT := CRn( [−τ, T ]) is
the Banach space of all continuous mappings from [−τ, T ] to Rn endowed with the
sup-norm, L1

Rn([0, T ]) is the Banach space of all measurable mappings from [0, T ] to
Rn. Let B(C0) be the σ-algebra of Borel sets of C0 and L the σ-algebra of Lebesgue
measurable subsets of [0, T ], d(x,A) mean the usual distance from a point x to a
set A, i.e., d(x,A) := infy∈A ‖x− y‖. A set-valued mapping F : [0, T ]×C0 ⇁ Rn is
integrably bounded if there exists an integrable function ρ : [0, T ]→ R+ such that

‖F (t, ϕ)‖ := sup{ ‖y‖; y ∈ F (t, ϕ) } ≤ ρ(t), t ∈ [0, T ], ϕ ∈ C0.

Definition 2.1. ([6]) Let X and Y be two topological spaces, F : X ⇁ Y a set-
valued mapping with closes valued, is called lower semicontinuous (lsc for short)
at a point x0 ∈ X if for any y0 ∈ F (x0) and any neighborhood U of y0 such
that F (x0) ∩ U 6= ∅, there exists a neighborhood V (x0) of the point x0 such that
F (x0) ∩ U 6= ∅ for all x ∈ V (x0). A set-valued mapping F is said to be lower
semicontinuous if it is so at every point x0 ∈ X.

If X and Y are metric spaces, it’s equivalent to say: for each x0 ∈ [0, T ] and
y0 ∈ F (x0) and any sequence xn −→ x0 there is yn ∈ F (xn) such that yn −→ y0.

Lemma 2.1. (Gronwall inequality) Let u, v : [t0, t1] −→ R+ two continuous func-
tions such that, for any C ≥ 0, we have

u(t) ≤ C +

∫ t

t0

u(s)v(s)ds, ∀t ∈ [t0, t1].
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Then

u(t) ≤ C exp(

∫ t

t0

v(s)ds), ∀t ∈ [t0, t1].

3. Existence of solutions

In this section, we begin by the following result for the undelayed problem due
to Fryszkowski and Gorniewicz (see [12]).

Theorem 3.1. Let G : [0, T ] × Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying

(i) G is L ⊗ B(Rn) measurable;
(ii) for every t ∈ [0, T ], G(t, ·) is lsc in Rn;
(iii) there exists an integrable function ρ : [0, T ] −→ R+ such that

‖y‖ ≤ ( 1 + |x| ) ρ(t), for every y ∈ G(t, x) and (t, x) ∈ [0, T ]× Rn.

Then, ∀ x0 ∈ Rn, the problem{
ẋ(t) ∈ G(t, x(t)) a.e. on [0, T ];
x(0) = x0;

(3.1)

admits at least one solution x : [0, T ]→ Rn absolutely continuous on [0, T ].

The proof of this theorem is based on a selection theorem for decomposable sets
stated in [11].

Now, we are able to give the existence result for the delayed problem.

Theorem 3.2. Let F : [0, T ] × C0 ⇁ Rn be a set-valued mapping with nonempty
closed values such that

(i) F is L ⊗ B(C0) measurable;
(ii) for every t ∈ [0, T ], F (t, ·) is lsc in C0;

(iii) for every (t, ϕ) ∈ [0, T ]× C0

‖F (t, ϕ)‖ ≤ (1 + ‖ϕ(0)‖)ρ(t).

Then, ∀ ϕ ∈ C0, the problem (DP) admits at least one continuous solution x :
[−τ, T ]→ Rn, absolutely continuous on [0, T ].

Proof. We will reduce our problem to a problem without delay and apply Theorem
3.1. For simplcity, we take T = 1 and consider for every n ∈ N a partition of [0, T ]
defined by tni = iµnT , µn = 2−n, i = 0, 1, ......, 2n.

Step 1 Construction of approximate solutions.
For every (t, x) ∈ [−τ, tn1 ]× Rn, we define fn0 : [−τ, tn1 ]× Rn by

fn0 (t, x) =

{
ϕ(t) if t ∈ [−τ, 0];
ϕ(0) + t

µn
(x− ϕ(0)) if t ∈]0, tn1 ];

clearly fn0 (tn1 , x) = x, ∀x ∈ Rn.
We define the set-valued mapping Gn0 on [0, tn1 ]× Rn with closed values in Rn by

Gn0 (t, x) := F (t, T (tn1 )fn0 (·, x)) ∀(t, x) ∈ [0, tn1 ]× Rn.
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Let show that Gn0 satisfies the conditions of Theorem 3.1. Remark first, that the
function x 7−→ T (tn1 )fn0 (·, x) is Lipschitz. Indeed, for every x, y ∈ Rn we have

‖T (tn1 )fn0 (·, x)− T (tn1 )fn0 (·, y)‖C0 = sup
s∈[−τ,0]

‖fn0 (tn1 + s, x)− fn0 (tn1 + s, y)‖

= sup
s∈[−µn,0]

‖fn0 (tn1 + s, x)− fn0 (tn1 + s, y)‖

= sup
s∈[−µn,0]

‖ t
n
1 +s
µn

(x− y)‖

= ‖x− y‖.

The measurability and lower semicontinuity of G follows from that of F. Further-
more, by the condition iii) of Theorem 3.2, we have, for every t ∈ [0, tn1 ] and
x ∈ Rn,

‖Gn0 (t, x)‖ = ‖F (t, T (tn1 )fn0 (·, x))‖ ≤ (1 + ‖T (tn1 )fn0 (0, x)‖) ρ(t)
= (1 + ‖fn0 (tn1 , x)‖) ρ(t)
= (1 + ‖x‖) ρ(t).

Hence Gn0 verifies the conditions of Theorem 3.1, this provides an absolutely con-
tinuous solution vn0 : [0, tn1 ] −→ Rn to the problem

v̇n0 (t) ∈ Gn0 (t, vn1 (t)) a.e. on [0, tn1 ];

vn0 (t) = ϕ(0) +
∫ t
0
v̇n0 (s)ds ∀t ∈]0, tn1 ];

vn0 (0) = ϕ(0).

That is, vn0 is a solution to{
v̇n0 (t) ∈ F (t, T (tn1 )fn0 (·, x)) a. e. on [0, tn1 ];
vn0 (0) = ϕ(0).

Put

xn(t) =

{
ϕ(t) if t ∈ [−τ, 0];
vn0 (t) if t ∈]0, tn1 ].

As before, for every (t, x) ∈ [−τ, tn1 ]× Rn, we define fn1 : [−τ, tn2 ]× Rn −→ Rn by

fn1 (t, x) =

{
xn(t) if t ∈ [−τ, tn1 ];

xn(tn1 ) +
t−tn1
µn

(x− xn(tn1 )) if t ∈]tn1 , t
n
2 ].

with fn1 (tn2 , x) = x, ∀x ∈ Rn. Hence, we can define similarly the set-valued map-
ping Gn1 on [tn1 , t

n
2 ]× Rn with closed values of Rn by

Gn1 (t, x) := F (t, T (tn1 )fn1 (·, x)) ∀(t, x) ∈ [tn1 , t
n
2 ]× Rn

satisfying for every t ∈ [tn1 , t
n
2 ] and x ∈ Rn,

‖Gn1 (t, x)‖ = ‖F (t, T (tn2 )fn1 (·, x))‖ ≤ (1 + ‖T (tn2 )fn1 (0, x)‖) ρ(t)
= ( 1 + ‖fn1 (tn2 , x)‖) ρ(t)
= ( 1 + ‖x‖) ρ(t).
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The function x 7−→ T (tn2 )fn1 (·, x) is Lipschitz since for all x, y ∈ Rn we have

‖T (tn2 )fn1 (·, x)− T (tn2 )fn1 (·, y)‖ = sup
s∈[−τ,0]

‖fn1 (tn2 + s, x)− fn1 (tn2 + s, y)‖

= sup
s∈[−µn,0]

‖fn1 (tn2 + s, x)− fn1 (tn2 + s, y)‖

= sup
s∈[−µn,0]

‖xn(tn1 ) +
tn2 +s−t

n
1

µn
(x− xn(tn1 ))

− (xn(tn1 ) +
tn2 +s−t

n
1

µn
(y − xn(tn1 )))‖

= sup
s∈[−µn,0]

‖ t
n
2 +s−t

n
1

2−n (x− y)‖

= ‖ t
n
2−t

n
1

µn
(x− y)‖

= ‖x− y‖.
Hence Gn1 verifies the conditions of Theorem 3.1, this provides an absolutely con-
tinuous solution vn1 : [tn1 , t

n
2 ] −→ Rn to the problem

v̇n1 (t) ∈ Gn1 (t, vn1 (t)) a. e. on [tn1 , t
n
2 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
v̇n1 (s)ds ∀ t ∈]tn1 , t

n
2 ];

vn1 (tn1 ) = xn(tn1 ).

So vn1 is a solution of
v̇n1 (t) ∈ F (t, T (tn2 )fn1 (·, x)) a.e. on [tn1 , t

n
2 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
v̇n1 (s)ds ∀ t ∈]tn1 , t

n
2 ];

vn1 (0) = ϕ(0).

By induction, suppose that xn is defined on [−τ, tnk ], absolutely continuous on [0, tnk ],
and satisfies{

ẋn(t) ∈ F (t, T (tnk−1)fnk−1(·, x)) a.e. on [tnk−1, t
n
k ];

xn(t) = xn(tnk−1) +
∫ t
tnk−1

ẋn(s)ds ∀ t ∈]tnk−1, t
n
k ];

and build a solution on [tnk , t
n
k+1]. For every (t, x) ∈ [−τ, tn1 ] × Rn, we defined

fnk : [−τ, tnk+1]× Rn −→ Rn by

fnk (t, x) =

{
xn(t) if t ∈ [−τ, tnk ];

xn(tnk ) +
t−tnk
µn

(x− xn(tnk )) if t ∈]tnk , t
n
k+1];

with fnk (tnk+1, x) = x and fnk ∈ CRn([−τ, tnk+1]). The function x 7−→ T (tnk+1)fnk (·, x)
is Lipschitz. Indeed, for all x, y ∈ Rn we have

‖T (tnk+1)fnk (·, x)− T (tnk+1)fnk (·, y)‖ =

sup
s∈[−τ,0]

‖fnk (tnk+1 + s, x)− fnk (tnk+1 + s, y)‖

= sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖.

We distinguish two cases

(1) if −τ + tnk+1 ≤ tnk , we have

sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖ = sup
t∈[tnk ,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖

= sup
t∈[tnk ,t

n
k+1]

‖ t−t
n
k

µn
(x− y)‖

= ‖x− y‖.
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(2) if tnk ≤ −τ + tnk+1 ≤ tnk+1, we have

sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖ ≤ sup
t∈[tnk ,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖

= sup
t∈[tnk ,t

n
k+1]

‖ t−t
n
k

µn
(x− y)‖

= ‖x− y‖.

Similarly we can define Gnk on [tnk , t
n
k+1]× Rn with closed values of Rn by

Gnk (t, x) := F (t, T (tnk+1)fnk (·, x)) ∀(t, x) ∈ [tnk , t
n
k+1]× Rn

satisfying conditions of Theorem 3.1. Hence, there exists an absolutely continuous
solution vnk : [tk, tk+1] −→ Rn to

v̇nk (t) ∈ Gnk (t, vnk (t)) a.e. on [tnk , t
n
k+1];

vnk (t) = xn(tnk ) +
∫ t
tnk
v̇nk (s)ds ∀ t ∈ [tnk , t

n
k+1];

vnk (tnk ) = xn(tnk ).

So vnk is a solution of
v̇nk (t) ∈ F (t, T (tnk+1)fnk (·, x)) a.e. on [tnk , t

n
k+1];

vnk (t) = xn(tnk ) +
∫ t
tnk
v̇nk (s)ds ∀ t ∈ [tnk , t

n
k+1];

vnk (tnk ) = xn(tnk ).

Putting xn(t) = vnk (t) on [tnk , t
n
k+1], we obtain

xn(t) =



vn0 (t) = ϕ(0) +
∫ t
0
ẋn(s)ds if t ∈ [0, tn1 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
ẋn(s)ds if t ∈ [tn1 , t

n
2 ];

· · ·

vnk (t) = xn(tnk ) +
∫ t
tnk
ẋn(s)ds if t ∈ [tnk , t

n
k+1].

For every t ∈ [0, 1], we set θn(t) = tni , δn(t) = tni+1, ∀ t ∈]tni , t
n
i+1] and θn(0) = 0

and define fnµnδn(t)−1 ∈ CRn([−τ,δn(t)]) by

fnµnδn(t)−1(t, x) =

{
xn(t) if t ∈ [−τ, θn(t)];

xn(θn(t)) + t−θn(t)
µn

(x− xn(θn(t))) if t ∈]θn(t), δn(t)].

Clearly xn is continuous on [−τ, 1], absolutely continuous on [0, 1] and satisfies
ẋn(t) ∈ F (t, T (δn(t))fnµnδn(t)−1(·, xn(t))) a. e. on [0, 1];

xn(t) = ϕ(0) +
∫ t
0
ẋn(s)ds ∀ t ∈ [0, 1];

xn(t) = ϕ(t) ∀ t ∈ [−τ, 0].

(3.2)

Step 2 Uniform convergence.
By the condition iii) of Theorem 3.1 and (3.2), for almost t ∈ [0, 1], one has

ẋn(t) ∈ F (t, T (δn(t))fnµnδn(t)−1(·, xn(t))),

with T (δn(t))fnµnδn(t)−1(·, xn(t))(0) = xn(t) and

‖F (t, T (δn(t))fnµnδn(t)−1(·, xn(t)))‖ ≤ ( 1 + ‖xn(t)‖ ) ρ(t).
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Further, since xn is absolutely continuous on [0, 1], we have

‖xn(t)− ϕ(0)‖ ≤
∫ t
0
‖ẋn(s)‖ ds

≤
∫ t
0
( 1 + ‖xn(s)‖ ) ρ(s)ds

≤
∫ t
0
( 1 + ‖xn(s)‖ρ(s) ) ds

=
∫ t
0
ρ(s)ds+

∫ t
0
ρ(s)‖xn(s)‖ ds, ∀t ∈ [0, 1].

Then, ‖xn(t)‖ ≤ ‖ϕ(0)‖+
∫ t
0
ρ(s)ds+

∫ t
0
ρ(s)‖xn(s)‖ ds, ∀t ∈ [0, 1]. Using Lemma

2.1, we obtain for all t ∈ [0, 1],

‖xn(t)‖ ≤ (‖ϕ(0)‖+

∫ t

0

ρ(s)ds) exp(

∫ t

0

ρ(s)ds).

Let α(t) = (‖ϕ(0)‖+
∫ t
0
ρ(s)ds) exp(

∫ t
0
ρ(s)ds). Hence for almost every t ∈ [0, 1],

‖ẋn(t)‖ ≤ ( 1 + α(t)) ρ(t). (3.3)

By (3.3), (ẋn(t))n is relatively compact in L1
Rn([0, 1]). By extracting a subsequence,

we may assume that (ẋn)n converges σ(L1, L∞) to some y ∈ L1
Rn([0, 1]). On the

other hand, by (3.3) again, (xn)n is equi-continuous, Ascoli’s Theorem yields that
(xn)n converges uniformly in [0, 1] to x and

x(t) = ϕ(0) +

∫ t

0

y(s)ds, ∀t ∈ [0, 1],

hence ẋ(t) = y(t) almost everywhere. Now, let show that

‖T (δn(t))fnµnδn(t)−1(·, xn(t))− T (t)x‖ −→ 0, when n −→∞.

sup
s∈[−τ,0]

‖T (δn(t))fnµnδn(t)−1(s, xn(t))− T (t)x(s)‖C0 =

sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(s+ t)‖

= sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s) + x(δn(t) + s)− x(s+ t)‖

≤ sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖+

sup
s∈[−τ,0]

‖x(δn(t) + s)− x(s+ t)‖.

firstly,
sup

s∈[−τ,0]
‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

≤ sup
s∈[−τ,−µn]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

+ sup
s∈[−µn,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

= sup
s∈[−τ,−µn]

‖xn(δn(t) + s)− x(δn(t) + s)‖+

sup
s∈[−µn,0]

‖xn(θn(t)) +
δn(t) + s− θn(t)

µn
(xn(t)− xn(θn(t))− x(δn(t) + s))‖

= sup
s∈[−τ,−µn]

‖xn(δn(t) + s)− x(δn(t) + s)‖

+ sup
s∈[−µn,0]

‖ s
µn

(xn(t)− xn(θn(t))) + xn(t)− x(δn(t) + s)‖

= ‖xn(θn(t))− x(θn(t))‖+ ‖xn(t)− xn(δn(t))‖.
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On the other hand

sup
s∈[−τ,0]

‖x(δn(t) + s)− x(s+ t)‖ ≤ sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖

+ sup
s∈[−µn,0]

‖x(δn(t) + s)− x(s+ t)‖

= sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖

+‖x(δn(t))− x(t)‖.
Then

sup
s∈[−τ,0]

‖T (δn(t))fnµnδn(t)−1(s, xn(t))− T (t)x(s)‖C0 ≤

‖xn(θn(t))− x(θn(t))‖+ ‖xn(t)− xn(δn(t))‖+
sup

s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖+ ‖x(δn(t))− x(t)‖.

As |θn(t)− t| ≤ µn and |δn(t)− t| ≤ µn, ∀t ∈ [0, 1] then θn(t) −→ t and δn(t) −→ t
for n large enough. Furthermore, (xn)n converges uniformly to x, ‖x(δn(t)) −
x(t)‖ −→ 0, ‖ xn(δn(t)) − xn(t)‖ −→ 0 and ‖xn(θn(t)) − x(θn(t))‖ −→ 0. As x is
uniformly continuous, there is λ > 0 such that |s− t| ≤ λ implies ‖x(s)−x(t)‖ ≤ ε.
But we have |δn(t) + s− (s+ t)| ≤ µn for all s ∈ [−τ, µn]. Hence

sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖ ≤ ε for λ ≤ µn.

We can conclude that T (δn(t))fnµnδn(t)−1(·, xn(t)) −→ T (t)x in C0.
Finally, since T (δn(t))fnµnδn(t)−1(·, xn(t)) −→ T (t)x in C0, (ẋn)n converges σ(L1, L∞)

to ẋ ∈ L1
Rn([0, 1]) and the set-valued mapping F (t, ·) is lsc with closed values on

C0, then ẋ(t) ∈ F (t, T (t)x) (see [9]). So, x satisfies
ẋ(t) ∈ F (t, T (t)x) a.e. on [0, T ];

x(t) = ϕ(0) +
∫ t
0
ẋ(s)ds ∀ t ∈ [0, T ];

x(t) = ϕ(t) ∀ t ∈ [−τ, 0].

The proof is then complete. �

4. Conclusion

In this paper, an existence result is obtained for first order functional differential
inclusions with nonconvex right hand side. The approach used is an adaptation
of a reduction method which consists of replacing the problem with delay with a
problem without delay and applying the known results in this case.
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ON A MEAN METHOD OF SUMMABILITY
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Abstract. Let p(x) be a nondecreasing real-valued continuous function on

R+ := [0,∞) such that p(0) = 0 and p(x) → ∞ as x → ∞. Given a real or

complex-valued integrable function f in Lebesgue’s sense on every bounded
interval (0, x) for x > 0, in symbol f ∈ L1

loc(R+), we set

s(x) =

∫ x

0
f(u)du

and

σp(s(x)) =
1

p(x)

∫ x

0
s(u)dp(u), x > 0

provided that p(x) > 0.

A function s(x) is said to be summable to l by the weighted mean method

determined by the function p(x), in short, (N, p) summable to l, if

lim
x→∞

σp(s(x)) = l.

If the limit limx→∞ s(x) = l exists, then limx→∞ σp(s(x)) = l also ex-
ists. However, the converse is not true in general. In this paper, we give an

alternative proof a Tauberian theorem stating that convergence follows from

summability by weighted mean method on R+ := [0,∞) and a Tauberian
condition of slowly decreasing type with respect to the weight function due to

Karamata. These Tauberian conditions are one-sided or two-sided if f(x) is a

real or complex-valued function, respectively. Alternative proofs of some well-
known Tauberian theorems given for several important summability methods

can be obtained by choosing some particular weight functions.

1. introduction

Let p(x) be a nondecreasing real-valued continuous function on R+ := [0,∞).
Throughout this paper, we assume that p(0) = 0 and p(x)→∞ as x→∞. Given
a real-valued integrable function f in Lebesgue’s sense on every bounded interval
(0, x) for x > 0, in symbol f ∈ L1

loc(R+), we set

s(x) =

∫ x

0

f(u)du (1.1)

2020 Mathematics Subject Classification. Primary: 40E05; Secondaries: 40G05, 40A10.
Key words and phrases. summability by the weighted mean method; Tauberian conditions and

theorems; slow decrease and oscillation with respect to a weight function.
c©2019 Maltepe Journal of Mathematics.

Submitted on March 14th, 2021. Published on April 30th, 2021. Communicated by Huseyin
CAKALLI..

The main results of this paper were presented at International Conference of Mathematical

Sciences (ICMS 2020) to be held 17 June-21 June 2020 at Maltepe University, Istanbul, Turkey.
15
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and

σp(s(x)) =
1

p(x)

∫ x

0

s(u)dp(u), x > 0

provided that p(x) > 0.
A function s(x) is said to be summable to l by the weighted mean method

determined by the function p(x), in short, (N, p) summable to l, if

lim
x→∞

σp(s(x)) = l. (1.2)

Clearly, if the ordinary limit

lim
x→∞

s(x) = l (1.3)

exists, then (1.2) holds. However, the converse implication is not true in general.
We may get the converse implication by adding some assumption(s) on s(x), which
is so-called Tauberian condition(s). Any theorem which states that convergence
of (1.3) follows from (1.2) and a Tauberian condition is said to be a Tauberian
theorem for summability by the weighted mean method.

A real-valued function s(x) defined on R+ is said to be slowly decreasing with
respect to p if

lim
λ→1+

lim inf
t→∞

min
t≤x≤T

(s(x)− s(t)) ≥ 0, (1.4)

where

T := p−1(λp(t)), t > 0. (1.5)

Note that the concept of slow decrease with respect to p is due to Karamata [4].
It is easy to see that a real-valued function s(x) is slowly decreasing with respect

to p if and only if for every ε > 0 there exist t0 = t0(ε) > 0 and λ = λ(ε) > 1 such
that s(x)− s(t) ≥ −ε whenever t0 ≤ t ≤ x ≤ T .

An equivalent reformulation of (1.4) can be given as follows (see Fekete and
Moricz [1]):

lim
λ→1−

lim inf
t→∞

min
T≤x≤t

(s(t)− s(x)) ≥ 0, (1.6)

where T is defined in (1.5). It is easy to see that a real valued function s(x) is slowly
decreasing with respect to p if and only if for every ε > 0 there exist t1 = t1(ε) > 0
and λ = λ(ε) with 0 < λ < 1 such that s(t)− s(x) ≥ −ε whenever t1 ≤ T ≤ x ≤ t.

A real-valued function s(x) defined on R+ is said to be slowly decreasing if (1.4)
holds, where p(x) = x for all x > 0. Recall that the term ”slow decrease” is
introduced by Schmidt [7] for sequences of real numbers.

In [3], we obtained an alternative proof of Theorem 2.1 below when a Tauberian
condition is of slowly decreasing type.

In this paper, we give an alternative proof a Tauberian Theorem stating that
convergence follows from summability by weighted mean method over R+ and a
Tauberian condition of slowly decreasing type with respect to the weight function,
due to Karamata [4].

Alternative proofs of some well-known Tauberian theorems given for several im-
portant summability methods can be obtained by choosing some particular weight
functions.
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2. main results

By using proving techniques in [6], we give an alternative proof of the following
Tauberian theorem [5] for the weighted mean summability of integrals of real-valued
functions over R+.

Theorem 2.1. Let p(x) be a nondecreasing real-valued continuous function on R+

such that p(0) = 0 and p(x)→∞ as x→∞. If a real-valued function f ∈ L1
loc(R+)

is such that (1.2) holds and its integral function s(x) is slowly decreasing with respect
to p, then (1.3) holds.

Proof. By the regularity of the summability method by the weighted mean, without
loss of generalization, we assume that l = 0. Assume that s(x) does not converge
to 0 as x→∞.

Then, we have either lim supx→∞ s(x) > 0 or lim infx→∞ s(x) < 0.
First, we assume that lim supx→∞ s(x) > 0. Then, there exist α > 0 and a

sequence (ni) such that s(ni) ≥ α for all nonnegative integers i. Choosing ε = α
2 in

the equivalent form of (1.4), we find λ > 1 and t0 ≥ 0 such that s(x) ≥ s(ni)−α
2 ≥

α
2

for t0 ≤ ni < x ≤ mi = p−1(λp(ni)).
Since

σp(s(mi))−
p(ni)

p(mi)
σp(s(ni)) = σp(s(mi))−

1

λ
σp(s(ni))

=
1

p(mi)

∫ mi

ni

s(u)dp(u),

we have

σp(s(mi))−
p(ni)

p(mi)
σp(s(ni)) ≥ α

2p(mi)

∫ mi

ni

dp(u)

=
α

2

(
1− 1

λ

)
(2.1)

for t0 ≤ ni < x ≤ mi = p−1(λp(ni)). We conclude by (2.1) that 0 ≥ α
2

(
1− 1

λ

)
.

This contradicts our assumption that lim supx→∞ s(x) > 0. Then, we have

lim sup
x→∞

s(x) ≤ 0. (2.2)

Next, we assume that lim infx→∞ s(x) < 0. Then, there exist β < 0 and a sequence

(ni) such that s(ni) ≤ β < 0 for all nonnegative integers i. Choosing ε = −β2
in the equivalent form of (1.4), we find 0 < λ < 1 and t1 = t1(ε) such that

s(x) ≤ s(ni)− β
2 ≤

β
2 for t1 ≤ mi = p−1(λp(ni)) < x ≤ ni.

Since

σp(s(ni))−
p(mi)

p(ni)
σp(s(mi)) = σp(s(ni))− λσp(s(mi))

=
1

p(ni)

∫ ni

mi

s(u)dp(u),

we have

σp(s(ni))−
p(mi)

p(ni)
σp(s(mi)) ≤ β

2p(ni)

∫ ni

mi

dp(u)

=
β

2
(1− λ) (2.3)
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for t1 ≤ mi = p−1(λp(ni)) ≤ x ≤ ni. We conclude by (2.3) that 0 ≤ β
2 (1− λ).

This contradicts our assumption that lim infx→∞ s(x) < 0. Then, we have

lim inf
x→∞

s(x) ≥ 0. (2.4)

Combining (2.2) and (2.4) gives convergence of s(x) to 0 as x→∞. �

A real-valued function s(x) defined on R+ is said to be slowly increasing with
respect to p if −s is slowly decreasing with respect to p.

Remark. Theorem 2.1 remains true if slow decrease of s(x) with respect to p is
replaced by slow increase of s(x) with respect to p.

For a complex-valued integrable function f in Lebesgue’s sense on every bounded
interval (0, x) for 0 < x <∞, we have the following Tauberian theorem.

Theorem 2.2. Let p(x) be a nondecreasing real-valued continuous function on R+

such that p(0) = 0 and p(x) → ∞ as x → ∞. If a complex-valued function f ∈
L1
loc(R+) is such that (1.2) holds and its integral function s(x) is slowly oscillating

with respect to p, then (1.3) holds.

The proving technique in Theorem 2.1 is also valid for the proof of Theorem 2.2.
We remind the reader that a complex-valued function s(x) defined on R+ is said

to be slowly oscillating with respect to p ([4]) if

lim
λ→1+

lim sup
t→∞

max
t≤x≤T

|s(x)− s(t)| = 0, (2.5)

where T is defined as (1.5).
It is easy to see that a real-valued function s(x) is slowly oscillating with respect

to p if and only if for every ε > 0 there exist t0 = t0(ε) > 0 and λ = λ(ε) > 1 such
that |s(x)− s(t)| ≤ ε whenever t0 ≤ t ≤ x ≤ T .

An equivalent reformulation of (2.5) can be given as follows (see Fekete and
Moricz [1]):

lim
λ→1−

lim sup
t→∞

max
T≤x≤t

|s(t)− s(x)| = 0, (2.6)

where T is defined in (1.5). It is easy to see that a real valued function s(x) is slowly
decreasing with respect to p if and only if for every ε > 0 there exist t1 = t1(ε) > 0
and λ = λ(ε) with 0 < λ < 1 such that |s(t)− s(x)| ≤ ε whenever t1 ≤ T ≤ x ≤ t.

A complex-valued function s(x) defined on R+ is said to be slowly oscillating if
(2.5) holds, where p(x) = x for all x > 0.

Recall that the concept of slow oscillation was introduced by Hardy [2] for se-
quences of real numbers.

3. particular weights

Some particular choices of weight functions can lead to alternative proofs of some
well-known Tauberian theorems given for several important summability methods.
If p(x) = x for all x > 0, then weighted mean method (N, p) reduces to the Cesàro
summability method. If p(x) = lnx for all x ∈ [1,∞) and zero for all x ∈ [0, 1),
then then weighted mean method (N, p) reduces the harmonic mean method of
first order. For other particular choices of the weight function p, we obtain the
harmonic mean method of higher order. Our main Theorem 2.1 applies to all of
these methods.
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Ege University, Department of Mathematics, Izmir, Turkey, Phone: +90 232 311 54 18,

ORCID: 0000-0002-1754-1685

Email address: ibrahim.canak@ege.edu.tr



Maltepe Journal of Mathematics

ISSN:2667-7660, URL:http://dergipark.org.tr/tr/pub/mjm

Volume III Issue 1 (2021), Pages 20-29. Doi:https://doi.org/10.47087/mjm.900156

ON (p, q)-ANALOG OF STANCU OPERATORS OF ROUGH λ-

STATISTICALLY ρ-CAUCHY CONVERGENCE OF TRIPLE

SEQUENCE SPACES

ARULMANI INDUMATHI*,AYHAN ESI**, NAGARAJAN SUBRAMANIAN***, AND M.

KEMAL OZDEMIR****

*DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA,
ORCID:0000-0003-3249-6525

**DEPARTMENT OF BASIC ENGINEERING SCIENCES, MALATYA TURGUT OZAL

UNIVERSITY, MALATYA, TURKEY. ORCID:0000-0003-3137-3865
***DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA.

ORCID:0000-0002-5895-673X

****DEPARTMENT OF MATHEMATICS, SCIENCE AND ARTS FACULTY, INONU
UNIVERSITY, MALATYA, TURKEY. ORCID: 0000-0001-6798-1868

Abstract. In this work, using the concept of natural density, we introduce the
(p, q)-analogue of the Stancu-beta operators of rough λ-statistically ρ-Cauchy

convergence on triple sequence spaces. We define the set of Bernstein Stancu

beta opeators of rough statistical limit points of a triple sequence spaces and
obtain to λ-statistical convergence criteria associated with this set. Also, we

examine the relations between the set of Bernstein-Stancu beta operators of

rough λ-statistically ρ-Cauchy convergence of triple sequences.

1. Introduction

We introduce the (p, q)-analogue of the Stancu-beta operators and study their
approximation properties.

The idea of statistical convergence was introduced by Steinhaus and also in-
dependently by Fast for real or complex sequences. Statistical convergence is a
generalization of the usual notion of convergence, which parallels the theory of
ordinary convergence.

Let K be a subset of the set of positive integers N and let us denote the set
Kij` = {(m,n, k) ∈ K : m ≤ i, n ≤ j, k ≤ `} . Then the natural density of K is given
by

δ3 (K) = lim
i,j,`→∞

|Kij`|
ij`

,

where |Kij`| denotes the number of elements in Kij`.
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First applied the concept of (p, q)-calculus in approximation theory and intro-
duced the (p, q)-analogue of Bernstein operators. Later, based on (p, q)-integers,
some approximation results for Bernstein-Stancu operators, Bernstein-Kantorovich
operators, (p, q)-Lorentz operators, Bleimann-Butzer and Hahn operators and
Bernstein-Schurer operators etc.

Very recently, Khalid et al. have given a nice application in computer-aided
geometric design and applied these Bernstein basis for construction of (p, q)-Bezier
curves and surfaces based on (p, q)-integers which is further generalization of q-
Bezier curves and surfaces.

Motivated by the above mentioned work on (p, q)-approximation and its applica-
tion, in this paper we study statistical approximation properties of Bernstein-Stancu
beta operators based on (p, q)-integers.

Now we recall some basic definitions about (p, q)-integers. For any u, v, w ∈ N,
the (p, q)-integer [uvw]p,q is defined by

[0]p,q := 0 and [uvw]p,q =
puvw − quvw

p− q
if u, v, w ≥ 1,

where 0 < q < p ≤ 1. The (p, q)-factorial is defined by

[0]p,q! := 1 and [uvw]!p,q = [1]!p,q[6]!p,q...[uvw]!p,q if u, v, w ≥ 1.

Also the (p, q)-binomial coefficient is defined by(
u
m
)(

v
n
)(w

k

)
p,q

=
[uvw]!p,q

[mnk]!p,q [(u−m) + (v − n) + (w − k)]!p,q

for all u, v, w,m, n, k ∈ N with u ≥ m, v ≥ n,w ≥ k.
The formula for (p, q)−binomial expansion is as follows:

(ax+ by)
uvw
p,q

=

u∑
m=0

v∑
n=0

w∑
k=0

p
(u−m)(u−m−1)+(v−n)(v−n−1)+(w−k)(w−k−1)

6 q
m(m−1)+n(n−1)+k(k−1)

6

(
u
m
)(

v
n
)(w

k

)
p,q

a(u−m)+(v−n)+(w−k)bm+n+kx(u−m)+(v−n)+(w−k)ym+n+k,

(x+ y)
uvw
p,q = (x+ y) (px+ qy)

(
p6x+ q6y

)
· · ·(

p(u−1)+(v−1)+(w−1)x+ q(u−1)+(v−1)+(w−1)y
)
,

(1− x)
uvw
p,q = (1− x) (p− qx)

(
p6 − q6x

)
· · ·(

p(u−1)+(v−1)+(w−1) − q(u−1)+(v−1)+(w−1)x
)
, and

(x)
mnk
p,q = x (px)

(
p6x
)
· · ·
(
p(u−1)+(v−1)+(w−1)x

)
= p

m(m−1)+n(n−1)+k(k−1)
6 .

The Bernstein operator of order (r, s, t) is given by

Brst (f, x)=

r∑
m=0

s∑
n=0

t∑
k=0

f

(
mnk

rst

)(
r
m
)(

s
n
)( t

k

)
xm+n+k (1− x)

(m−r)+(n−s)+(k−t)

where f is a continuous (real or complex valued) function defined on [0, 1].



22ARULMANI INDUMATHI*,AYHAN ESI**, NAGARAJAN SUBRAMANIAN***, AND M. KEMAL OZDEMIR**** *DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA, ORCID:0000-0003-3249-6525 **DEPARTMENT OF BASIC ENGINEERING SCIENCES, MALATYA TURGUT OZAL UNIVERSITY, MALATYA, TURKEY. ORCID:0000-0003-3137-3865 ***DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA. ORCID:0000-0002-5895-673X ****DEPARTMENT OF MATHEMATICS, SCIENCE AND ARTS FACULTY, INONU UNIVERSITY, MALATYA, TURKEY. ORCID: 0000-0001-6798-1868

The (p, q)-Bernstein operators are defined as follows:

Brst,p,q (f, x)

=
1

p
r(r−1)+s(s−1)+t(t−1)

6

r∑
m=0

s∑
n=0

t∑
k=0

(
r
m
)(

s
n
)( t

k

)
p
m(m−1)+n(n−1)+k(k−1)

6 xm+n+k (1.1)

.

(r−m−1)+(s−n−1)+(t−k−1)∏
u=0

(pu − qux)f

(
[mnk]p,q

p(m−r)+(n−s)+(k−t) [rst]p,q

)
, x∈ [0, 1] .

Also, we have

(1− x)
rst
p,q

=
r∑

m=0

s∑
n=0

t∑
k=0

(−1)
m+n+k

p
(r−m)(r−m−1)+(s−n)(s−n−1)+(t−k)(t−k−1)

6 q
m(m−1)+n(n−1)+k(k−1)

6

(
r
m
)(

s
n
)( t

k

)
xm+n+k.

(p, q)-Bernstein-Stancu operators are defined as follows:

Srst,p,q (f, x)

=
1

p
r(r−1)+s(s−1)+t(t−1)

6

r∑
m=0

s∑
n=0

t∑
k=0

(
r
m
)(

s
n
)( t

k

)
p
m(m−1)+n(n−1)+k(k−1)

6 xm+n+k. (1.2)

(r−m−1)+(s−n−1)+(t−k−1)∏
u=0

(pu − qux)f

(
p(r−m)+(s−n)+(t−k) [mnk]p,q + η

[rst]p,q + µ

)
, x∈ [0, 1] .

Note that for η = µ = 0, (p, q)-Bernstein-Stancu operators given by (1.2) reduces
into (p, q)-Bernstein operators. Also for p = 1, (p, q)-Bernstein-Stancu operators
given by (1.1) turn out to be q-Bernstein-Stancu operators.

The definite integrals of a function f are defined by∫ a

0

∫ b

0

∫ c

0

f (xyz) dpqxdpqydpqz

= (q − p) abc
∞∑
m=0

∞∑
n=0

∞∑
k=0

pm+n+k

q(m+1)+(n+1)+(k+1)
f

(
pm+n+k

q(m+1)+(n+1)+(k+1)
abc

)
,

when

∣∣∣∣pq
∣∣∣∣ < 1 and

∫ a

0

∫ b

0

∫ c

0

f (xyz) dpqxdpqydpqz

= (p− q) abc
∞∑
m=0

∞∑
n=0

∞∑
k=0

qm+n+k

p(m+1)+(n+1)+(k+1)
f

(
qm+n+k

p(m+1)+(n+1)+(k+1)
abc

)
,

when

∣∣∣∣qp
∣∣∣∣ < 1.



ON (p, q)-ANALOG OF STANCU BETA OPERATORS ... 23

There are two (p, q)-analogues of the classical exponential function defined as
follows:

epq (x) =

∞∑
m=0

∞∑
n=0

∞∑
k=0

p
u(u−1)+v(v−1)+w(w−1)

2

[uvw]pq!
xu+v+w and

Epq (x) =

∞∑
m=0

∞∑
n=0

∞∑
k=0

q
u(u−1)+v(v−1)+w(w−1)

2

[uvw]pq!
xu+v+w.

It is easily seen that epq (x) Epq (−x) = 1. For m,n, k ∈ N, the (p, q)-beta and
the (p, q)-Gamma functions are defined by

Bpq (m,n) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

xm−1 + xn−1 + xk−1

(1 + x)
m+n dpqx

and

Γpq (u) =

∞∑
m=0

∞∑
n=0

∞∑
k=0

p
u(u−1)+v(v−1)+w(w−1)

2 Epq (−q (xyz)) dpqx,

Γpq (u+ 1, v + 1, w + 1) = [uvw]pq!,

respectively. The functions are connected through

Bpq (m,n, k)

= q
6−[m(m−1)+n(n−1)+k(k−1)]

2 p
−[m(m−1)+n(n−1)+k(k−1)]

2
Γpq (m) Γpq (n) Γpq (k)

Γpq (m+ n+ k)
. (1.3)

If p = 1 then the above notions of (p, q)-calculus reduce to the corresponding
notations of q-calculus.

Let 0 < q < p < 1 and x ∈ [0,∞). We introduce the (p, q)-Stancu-beta operators
as follows:

Suvw,pq (f, x) =
1

Bpq

(
[uvw]pq x, [uvw]pq + 3

) .
∫ ∞
0

∫ ∞
0

∫ ∞
0

(rst)
[uvw]pq(x−1)

(1 + (rst))
[uvw]pqx+[uvw]pq+3

.

f
(
p[uvw]pqx, q[uvw]pqxrst

)
dpqrdpqsdpqt.

Throughout the paper, R3 denotes the real of three dimensional space with metric
(X, d). Consider a triple sequence of Bernstein-Stancu beta operators (Suvw,p,q (f, x))
such that (Suvw,p,q (f, x)) ∈ R, m,n, k ∈ N.

Let f be a continuous function defined on the closed interval [0, 1]. A triple
sequence of Bernstein-Stancu-beta operators (Suvw,p,q (f, x)) is said to be statisti-
cally convergent to 0 ∈ R, written as st3 − limSuvw,p,q (f, x) = f(x), provided that
the set

Kε :=
{

(m,n, k) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ ε
}

has natural density zero for any ε > 0. In this case, 0 is called the statistical limit
of the triple sequence of Bernstein-Stancu-beta operators. i.e., δ3 (Kε) = 0. That
is,

lim
u,v,w→∞

1

uvw
|{m ≤ u, n ≤ v, k ≤ w : |Suvw,p,q (f, x)− (f, x)| ≥ ε}| = 0.



24ARULMANI INDUMATHI*,AYHAN ESI**, NAGARAJAN SUBRAMANIAN***, AND M. KEMAL OZDEMIR**** *DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA, ORCID:0000-0003-3249-6525 **DEPARTMENT OF BASIC ENGINEERING SCIENCES, MALATYA TURGUT OZAL UNIVERSITY, MALATYA, TURKEY. ORCID:0000-0003-3137-3865 ***DEPARTMENT OF MATHEMATICS, SASTRA UNIVERSITY, THANJAVUR, INDIA. ORCID:0000-0002-5895-673X ****DEPARTMENT OF MATHEMATICS, SCIENCE AND ARTS FACULTY, INONU UNIVERSITY, MALATYA, TURKEY. ORCID: 0000-0001-6798-1868

In this case, we write δ3− limSuvw,p,q (f, x) = (f, x) or Suvw,p,q (f, x)
st3−−→ (f, x).

Throughout the paper, N denotes the set of all positive integers , χA-the char-
acteristic function of A ⊂ N. A subset A of N is said to have asymptotic density
d (A) if

d3 (A) = lim
i,j,`→∞

1

ij`

i∑
m=1

j∑
n=1

∑̀
k=1

χA (K) .

The theory of statistical convergence has been discussed in trigonometric series,
summability theory, measure theory, turnpike theory, approximation theory, fuzzy
set theory and so on.

The idea of rough convergence was introduced by Phu [11], who also introduced
the concepts of rough limit points and roughness degree. The idea of rough conver-
gence occurs very naturally in numerical analysis and has interesting applications.
Aytar [1] extended the idea of rough convergence into rough statistical conver-
gence using the notion of natural density just as usual convergence was extended
to statistical convergence. Pal et al. [10] extended the notion of rough convergence
using the concept of ideals which automatically extends the earlier notions of rough
convergence and rough statistical convergence.

In this paper, we introduce the notion of Bernstein-Stancu beta operators of
rough λ-statistically ρ-Cauchy sequences convergence. Defining the set of Bernstein-
Stancu beta operators of rough λ-statistical limit points of a sequence, we obtain
to λ-statistical convergence criteria associated with this set. Later, we prove that
this set of rough λ-statistically ρ-Cauchy convergence of a triple sequence spaces.

A triple sequence (real or complex) can be defined as a function x : N3 →
R (C), where N, R and C denote the set of natural numbers, real numbers and
complex numbers respectively. The different types of notions of triple sequence was
introduced and investigated at the initial by Esi et al. [2, 3, 4, 5], Dutta et al. [6],
Esi et al. [7, 8], Sahiner et al. [12, 13], Subramanian et al. [14], Debnath et al. [9]
and many others.

Throughout the paper let β be a nonnegative real number.

2. Definitions and Preliminaries

Definition 2.1. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,pq, (f, x)) be a triple sequence of Bernstein-Stancu beta operators of
real numbers is said to be β-convergent to (f, x) denoted by Suvw,p,q (f, x)→β (f, x),
provided that

∀ε>0 ∃ (uε, vε, wε)∈N3 : u≥uε, v≥vε, w≥wε ⇒ |Suvw,p,q (f, x)− (f, x)|<β+ε.

The set

LIMβ x =
{

(f, x) ∈ R3 : Suvw,p,q (f, x)→β (f, x)
}

is called the β-limit set of the triple sequences.

Definition 2.2. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu-beta operators of

real numbers is said to be β-convergent if LIMβ Suvw,p,q (f, x) 6= φ. In this case,
β is called the Bernstein-Stancu-beta operators of rough convergence degree of the
triple sequence spaces. For β = 0, we get the ordinary convergence.
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Definition 2.3. Let f be a continuous function defined on the closed interval
[0, 1] and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu beta oper-
ators of real numbers is said to be β-statistically convergent to (f, x), denoted by
Suvw,p,q (f, x)→uvw (f, x), provided that the set{

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε
}

has natural density zero for every ε > 0, or equivalently, if the condition

st− lim sup |Suvw,p,q (f, x)− (f, x)| ≤ β

is satisfied.

In addition, we can write Suvw,p,q (f, x)→uvw (f, x) if and only if the inequality

|Suvw,p,q (f, x)− (f, x)| < β + ε

holds for every ε > 0 and almost all (u, v, w). Here β is called the Bernstein-Stancu
beta operators of roughness of degree. If we take β = 0, then we obtain the ordinary
statistical convergence.

In a similar fashion to the idea of classic Bernstein-Stancu beta operators of
rough convergence, the idea of Bernstein-Stancu beta operators of rough statistical
convergence of a triple sequence spaces can be interpreted as follows:

Assume that a Bernstein-Stancu beta operators of triple sequence space
(Suvw,p,q (g, x)) is statistically convergent and cannot be measured or calculated
exactly; one has to do with an approximated (or statistically approximated) triple
sequence spaces (Suvw,p,q (f, x)) satisfying |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ β for
all u, v, w (or for almost all u, v, w, i.e.,

δ
({

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| > β
})

= 0.

Then the triple sequence spaces x is not statistically convergent any more, but as
the inclusion {

(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (f, x)| ≥ ε
}

⊇
{

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε
}

(2.1)

holds and we have

δ
({

(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (f, x)| ≥ ε
})

= 0,

i.e., we get

δ
({

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε
})

= 0,

i.e., the triple sequence spaces x is β-statistically convergent in the sense of defini-
tion 2.3

In general, the Bernstein-Stancu beta operators of rough statistical limit may
not unique for the Bernstein-Stancu beta operators of roughness degree r > 0. So
we have to consider the so called Bernstein-Stancu beta operators of rough ness of
β-statistical limit set is defined by

st− LIMβ suvw,p,q (f, x) =
{

(f, x) ∈ R3 : Suvw,p,q (f, x)→uvw (f, x)
}
.

The Bernstein-Stancu-beta operators of triple sequence space Suvw,p,q (f, x) is
said to be Bernstein-Stancu beta operators of rough β-statistically convergent pro-
vided that st−LIMβ Suvw,p,q (f, x) 6= φ. It is clear that if st−LIMβ Suvw,p,q (f, x) 6=
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φ. We have

st− LIMβ Suvw,p,q (f, x)

= [st− lim supSuvw,p,q (f, x)− β, st− lim inf Suvw,p,q (f, x) + β] (2.2)

We know that LIMβ = φ for an unbounded triple sequence spaces might be rough
statistically convergent. For instance, define

Suvw,p,q (f, x) =

{
(−1)

uvw
, ifu 6= i3, v 6= j3, w 6= `3 (i, j, ` ∈ N)

uvw , otherwise

in R. Because the set {1, 64, 739, . . .} has natural density zero, we have

st− LIMβ Suvw,p,q (f, x) =

{
φ , if β < 1
[1− β, β − 1] , otherwise

and LIMβ Suvw,p,q (f, x) = φ for all β ≥ 0.

As can be seen by the example above, the fact that st−LIMβ Suvw,p,q (f, x) 6= φ

does not imply LIMβ Suvw,p,q (f, x) 6= φ. Because a finite set of natural numbers has

natural density zero, LIMβ Suvw,p,q (f, x) 6= φ implies st−LIMβ Suvw,p,q (f, x) 6= φ.

Therefore, we get LIMβ Suvw,p,q (f, x) ⊆ st−LIMβ Suvw,p,q (f, x). This obvious fact

means
{
β ≥ 0 : LIMβ Suvw,p,q (f, x) 6= φ

}
⊆
{
β ≥ 0 : st− LIMβ Suvw,p,q (f, x) 6= φ

}
in this language of sets and yields immediately

inf
{
β ≥ 0 : LIMβ Suvw,p,q (f, x) 6= φ

}
≥ inf

{
β ≥ 0 : st− LIMβ Suvw,p,q (f, x) 6= φ

}
.

Moreover, it also yields directly

dim
(

LIMβ Suvw,p,q (f, x)
)
≤ dim

(
st− LIMβ suvw,p,q (f, x)

)
.

Note. The Bernstein-Stancu beta operators of rough statistical limit of a triple
sequence spaces is unique for the roughness degree β > 0.

Definition 2.4. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu-beta operators of

real numbers is β-convergent, i.e., LIMβ Suvw,p,q (f, x) 6= φ. Take an arbitrary

L ∈ LIMβ Suvw,p,q (f, x), for all ε > 0 ∃ an uε, vε, wε ∈ N3 such that u ≥ uε, v ≥
vε, w ≥ wε implies

|Suvw,p,q (f, x)− (f, x)| ≤ β +
ε

2
and |Suvw,p,q (g, x)− (g, x)| ≤ β +

ε

2
⇒ |Suvw,p,q(f, x)− Suvw,p,q(g, x)|≤|Suvw,p,q(f, x)−(f, x)|+|Suvw,p,q(g, x)−(g, x)|

≤ β +
ε

2
+
ε

2
≤ 2β + ε.

Hence the Bernstein-Stancu beta operators of triple sequence spaces is a ρ-
Cauchy sequence with ρ = 2β. This Cauchy degree cannot be generally decreased.
Indeed, let z ∈ R3 with |z| = β and Suvw,p,q (f, x) = (−1)

u+v+w
z then Bernstein-

Stancu-beta operators of roughness is β-convergent with 0 ∈ LIMβ Suvw,p,q (f, x),
and ρ = 2β is its minimal Cauchy degree.

Conversely, let ρ ≥ 0 be a Cauchy degree of some given Bernstein-Stancu-beta
operators of triple sequence (Suvw,p,q (f, x)) its convergence degree to equal ρ2 , i.e.,

LIM
ρ
2 Suvw,p,q (f, x) 6= φ. This condition always not true.
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Definition 2.5. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu beta operators of
real numbers is said to be βλ-statistically convergent or βλ st-convergent to (f, x),
denoted by Suvw,p,q (f, x)→βλst (f, x), provided that the set

lim
u,v,w

1

λuvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε
}∣∣ = 0

Definition 2.6. Let f be a continuous function defined on the closed interval [0, 1]
and let (suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu-beta operators of
real numbers and λ = (λuvw) be non-decreasing sequence of positive numbers tending
to∞ and λ(uvw)+1 ≤ λuvw+1, λ111 = 1. Hence the Bernstein-Stancu-beta operators
of triple sequence is a ρ− Cauchy sequence with ρ = 2β, i.e.,

lim
uvw

1

λuvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε
}∣∣ = 0

If λ = 1 then it is called ordinary ρ-Cauchy sequences.

3. Main Results

Theorem 3.1. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu beta operators of
real numbers β > 0, a triple sequence (Suvw,p,q (f, x)) →βλst (f, x) ⇔
(Suvw,p,q (f, x))→βλst ρ-Cauchy sequence.

Proof. Assume that (Suvw,p,q (f, x))→βλst (f, x). Let ε > 0. then we can write

δ

({
(u, v, w) ∈ N3 :

1

λuvw
|Suvw,p,q (f, x)− (f, x)| ≥ ε

})
= 0,

we have δ (K1) = 0 and δ (K2) = 0, where

K1 =
{

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β +
ε

2

}
and

K2 =
{

(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (g, x)| ≥ β +
ε

2

}
.

Using the properties of natural density, we get

δ (Kc
1

⋂
Kc

2)

λuvw
= 1 as u, v, w →∞.

Since the triple sequence is β convergent, LIMβ Suvw,p,q (f, x) 6= φ, take an arbitrary

(f, x) ∈ LIMβ Suvw,p,q (f, x) for all ε > 0 there exists an uε, vε, wε ∈ N such that
u ≥ uε, v ≥ vε, w ≥ wε and u ≥ uε, v ≥ vε, w ≥ wε implies |Suvw,p,q (f, x)− (f, x)| <
β + ε

2 and |Suvw,p,q (g, x)− (g, x)| < β + ε
2 ,

⇒ 1

λuvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≥ ρ+ ε
}∣∣

≤ 1

λuvw

∣∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β +
ε

2

}∣∣∣+
1

λuvw

∣∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (g, x)| ≥ β +
ε

2

}∣∣∣ = 0.

Hence, (Suvw,p,q (f, x))→βλst ρ-Cauchy sequence.
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Conversely, suppose that the triple sequence spaces of Bernstein-Stancu beta
operators of (Suvw,p,q (f, x))→βλst ρ-Cauchy sequence. For every ε > 0, we have

⇒ 1

λuvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε
}∣∣

≤ 1

λuvw

∣∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β +
ε

2

}∣∣∣+
1

λuvw

∣∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (g, x)| ≥ β +
ε

2

}∣∣∣ ,
⇒
∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β + ε

}∣∣ ≤{
(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− (f, x)| ≥ β +

ε

2

}
+∣∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (g, x)− (g, x)| ≥ β +

ε

2

}∣∣∣ .
⇒ (suvw,p,q (f, x))→βλst (f, x) .

�

Theorem 3.2. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu beta operators of
real numbers β > 0,

(Suvw,p,q (f, x))→mnk (f, x) =⇒ st− lim inf

(
λuvw
uvw

)
→βλst (f, x) .

Proof. Omitted. �

Theorem 3.3. Let f be a continuous function defined on the closed interval [0, 1]
and let (Suvw,p,q (f, x)) be a triple sequence of Bernstein-Stancu beta operators of
real numbers β > 0, if (Suvw,p,q (f, x)) →mnk ρ-Cauchy sequence and

LIMr Suvw,p,q (f, x) − lim inf
(
λuvw
uvw

)
> 0, then (Suvw,p,q (f, x)) →βλst ρ-Cauchy

sequence.

Proof. A Bernstein-Stancu beta operators of triple sequence
(Suvw,p,q (f, x)) be β-convergent, i.e., LIMβ Suvw,p,q (f, x) 6= φ. Take an arbitrary

(f, x) ∈ LIMβ Suvw,p,q (f, x) for all ε > 0 there exists an uε, vε, wε ∈ N such that
u ≥ uε, v ≥ vε, w ≥ wε ∈ N and β ≥ uε, vε, wε ∈ N implies

{uε ≤ u, vε ≤ v, wε ≤ w : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε}
⊃
{

(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε
}
.

Therefore,

1

uvw
|{uε ≤ u, vε ≤ v, wε ≤ w : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε}|

⊃ 1

uvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε
}∣∣

≥ λuvw
uvw

1

λuvw

∣∣{(u, v, w) ∈ N3 : |Suvw,p,q (f, x)− Suvw,p,q (g, x)| ≤ ρ+ ε
}∣∣ .

Taking limit as u, v, w →∞ and using LIMβ Suvw,p,q (f, x)− lim inf
(
λuvw
uvw

)
> 0, we

get (Suvw,p,q (f, x))→βλst ρ-Cauchy sequence. �
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Abstract. In this paper, we propose and investigate the stability of a novel
3-compartment ordinary differential equation (ODE) model of HIV infection
of CD4+ T-cells with a mass action term. Similar to various endemic models,
the dynamics within the model is fully determined by the basic reproduction
term R0. If R0 < 1, the disease-free (zero) equilibrium will be asymptotically
stable. On the other hand, if R0 > 1, there exists a positive equilibrium that
is globally/orbitally asymptotically stable under certain conditions within the
interior of a predefined region. Finally, numerical simulations are conducted to
illustrate and verify the results.

1. Introduction

In the field of epidemiology, although our knowledge of viral dynamics and virus-
specific immmune responses has not fully developed, numerous mathematical models
have been developed an investigated to describe the immunological response to HIV
infection (for example, [11, 2, 4, 18, 19, 12] and references therein). The models
have been used to explain different phenomena within the host body, and by directly
applying the models to real clinical data, they can also predict estimates of many
measures, including the death rate of productively infected cells, the rate of viral
clearance or the viral production rate.

These simple HIV models have played an essential role in providing a better
understanding in the dynamics of this infectious diseases, while providing very
important biological meanings for the (combined) drug therapies used against it.
For more references and detailed meta mathematical analysis on these models in
general, we can refer to survey papers written by Kirschner, 1996 [14] or Perelson
and Nelson, 1999 [8]
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The simplest HIV model, only considering the dynamics of the virus concentration,
is

dV

dt
= P − cV (1.1)

where
• P is an unknown function representing the rate of production of the virus,
• V is the virus concentration.

The dynamics of the population of target cells (CD4+ T-cells for HIV or hepatic
cells for HBV and HCV) is still not fully understood. Nevertheless, a reasonable,
simple model for this population of cells, which can be extended further in various
models, is

dT

dt
= s− dT + aT

(
1− T

Tmax

)
(1.2)

with
• s representing the rate at which new T-cells are created from sources within

the body, such as the thymus, or from the proliferation of existing T-cells,
• d being the death rate per T-cells,
• a is the maximum proliferation rate of target T-cells, when the proliferation

is represented by a logistic function, and
• Tmax is the population density of T-cells at which proliferation shuts off.

Human immunodeficiency virus, or HIV, is a virus belonging to the genus
Lentivirus, part of the family Retroviridae [27]. It has an outer envelope of lipid and
viral proteins, which encloses its core. The virion core contains two positive-sense
single-stranded RNA and the enzyme reverse transcriptase, an RNA-dependent
DNA polymerase.

HIV, like most viruses, cannot reproduce by itself. Therefore, they require a host
cell and its materials to replicate. For HIV, it infects a variety of immune cells,
including helper T cells, lymphocytes, monocytes, and dendritic cells by attaching
to a specific receptor called the CD4 receptor contained in the cell membrane. Along
with a chemokine coreceptor, the virus is granted entry into the cell. Inside the host
cell, the viral RNA is transcribed into DNA by the enzyme reverse transcriptase.
However, the enzyme has no proofreading capacity, so errors often occur during this
process, giving rise to 1 to 3 mutations per newly synthesized virus particle. The
DNA provirus is then transported into the nucleus and inserts itself into the host
cell DNA with the aid of viral integrase. Thus, the viral genetic code becomes a
stable part of the cell genome, which is then transcribed into a full-length mRNA
by the host cell RNA polymerase. The full-length mRNA would be

(1) the genomes of progeny virus, which would be transported to the cytoplasm
for assembly,

(2) translated to produce the viral proteins, including reverse transcriptase and
integrase, and

(3) spliced, creating new translatable sequences
The nonstructural genes on the virus also encode regulatory proteins that have

diverse effects on the host cell, including down-regulating host cell receptors like
CD4 and major histocompatibility complex class I molecules, aiding in synthesizing
full-length HIV RNAs and enabling transportation of the viral mRNAs out of the
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nucleus without being spliced by the host cell. Altogether, these effects enable
viral mRNAs to be correctly translated into polypeptides and packaged into virions.
These components are then transported to the plasma membrane and assembled
into the mature virion, exiting the cell.

A person can contract the virus through one of four routes: sexual contact, either
homo- or heterosexual; transfusions with whole blood, plasma, clotting factors
and cellular fractions of blood; contaminated needles; perinatal transmission. The
virus causes tissue destruction, immunodeficiency and can progress to acquired
immunodeficiency syndrome (AIDS), completely breaking down the human body’s
defense mechanisms. These patients are now more susceptible to infections that
should be harmless to a normal person, such as P.jiroveci pneumonia or tuberculosis,
and the conditions are worse as well. So far, treatments for the disease mainly target
reverse transcriptase, viral proteases, and viral integration and fusion, dealing with
the virus infection before it progresses to AIDS. Currently, one treatment for HIV is
highly active antiretroviral therapy (HAART), which includes a combination of drugs
including nucleoside/nucleotide analog reverse transcriptase inhibitors, nonnucleo-
side reverse transcriptase inhibitors, protease inhibitors, fusion inhibitors, integrase
inhibitors, and coreceptor blockers. These drugs are administered based on individ-
ualized criteria such as tolerability, drug-drug interactions, convenience/adherence,
and possible baseline resistance. Although HAART can lower the viral load, the
virus reemerges if the treatment is stopped. Therefore, HIV infection is currently
both chronic and incurable. [28]

Whenever the population reaches Tmax, it will decrease, allowing us to impose an
upper constrain dTmax < s. With this constrain, the equation (1.2) has a unique
equilibrium at

T̂ =
Tmax

2a

[
a− d+

√
(a− d)2 +

4as

Tmax

]
(1.3)

In 1989, Perelson [5] proposed a general model for the interaction between the
human immune system and HIV; in the same paper, he also simplified that general
model into a simpler model with four compartments, whose dynamics are described
by a system of four ODEs:

• Concentration of cells that are uninfected (T ),
• Concentration of cells that are latently infected (T ∗),
• Concentration of cells that are actively infected (T ∗∗), and
• Concentration of free infectious virus particles (v).

Later, he extended his own model in Perelson et al. (1993) [6] by proving various
mathematical properties of the model, choosing parameter values from a restricted
set that give rise to the long incubation period characteristic of HIV infection, and
presenting some numerical solutions. He also observed that his model exhibits many
clinical symptoms of AIDS, including:

• Long latency period,
• Low levels of free virus in the environment, and
• Depletion of CD4+ cells.

The paper will be organized as follows: First, we will investigate a simplified
ODE model from Perelson et al. (1993) [6] by considering three main components:
the uninfected CD4+ T-cells (T ), the infected CD4+ T-cells (I), and the free virus
(V ) with. This model is also assumed to have a saturation response of the infection
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rate. Next, the existence and stability of the infected steady state are considered
through different theorems. Finally, numerical simulations are carried out, using
Julia, to confirm the obtained results, before some remarks are included in the
conclusion.

2. The proposal of the ODE model

Simplifying the model proposed in Perelson et al. (1993) [6] by reducing the
number of dimensions and assuming that all of the infected cells have the ability of
producing virus at an equal rate, we propose the following epidemic model of HIV
infection of CD4+ T-cells as follows:

dT

dt
= s− dT + aT

(
1− T

Tmax

)
− βTV

1 + αV
+ ρI

dI

dt
=

βTV

1 + αV
− (δ + ρ)I

dV

dt
= qI − cV − k1V T

(2.1)

where
• T (t) is the concentration of healthy CD4+ T-cells at time t (target cells),
• I(t) is the concentration of infected CD4+ T-cells at time t, and
• V (t) is the viral load of the virions (concentration of free HIV at time t).

In infection modelling, it is very common to augment (2.1) with a "mass-action"
term in which the rate of infection is given by βTV . This type of term is sensible,
since the virus must interact with T-cells in order to infect and the probability
of virus encountering a T-cell at a low concentration environment (where infected
cells and viral load’s motions are regarded as independent) can be assumed to be
proportional to the product of the density, which is called linear infection rate. As
a result, it follows that the classical models can assume that T-cells are infected at
rate −βTV and are generated at rate βTV .

With that simple mass-action infection term, the rates of change of uninfected
cells, T , productively infected cells I, and free virus V , would be

dT

dt
= s− dT + aT

(
1− T

Tmax

)
− βTV

dI

dt
= βTV − δI

dV

dt
= qI − cV

(2.2)

Moreover, although the rate of infection in most HIV models is bilinear for the
virus V and the uninfected target cells T , the actual incidence rates are probably
not strictly linear for each variable in over the whole valid range. For example, a
non-linear or less-than-linear response in V could occur due to the saturation at
a high enough viral concentration, where the infectious fraction is significant for
exposure to happen very likely. Thus, is it reasonable to assume that the infection
rate of HIV modelling in saturated mass action is

βTV x

1 + αV y
, x, y, α > 0 (2.3)
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In this paper, we will investigate the viral model with saturation response of the
infection rate where x = y = 1, for the sake of simplicity. With that being said, we
will proceed to explain the parameters within the model, with

• s is the rate at which new T-cells are created from source from precursors,
• d is the natural death rate of the CD4+ T-cells,
• a is the maximum proliferation rate (growth rate) of T-cells (this means

that a > d, in general),
• Tmax is the T-cells population density at which proliferation shuts off (their

carrying capacity),
• β is the rate constant of infection of T-cells with free virus,
• ρ is the "cure" rate, or the non-cytolytic loss of infected cells,
• δ is the death rate of the infected cells,
• q is the reproduction rate of the infected cells, and
• c is the clearance rate constant (loss rate) of the virions.

From the explanations above, we can say that
• δ+ρ is the total rate of disappearance of infected cells from the environment,
• 1/δ is the average lifespan of a productively infected cell
• q/δ is the total number of virions produced by an actively infected cell

during its lifespan, and
• q is the average rate of virus released by each cell.

Under the absence of virus (i.e, I(t) = V (t) = 0 ∀t > 0), the T-cell population
has a steady state value of

T0 =
Tmax

2a

[
(a− d) +

√
(a− d)2 +

4a

Tmax

]
(2.4)

The system (2.1) needs to be initialized with the following initial conditions

T (0) > 0, I(0) > 0, V (0) > 0, (2.5)
which lead us to denote that

R3
+ = {(T, I, V ) ∈ R3‖T ≥ 0, I ≥ 0, V ≥ 0}. (2.6)

3. Equilibrium and stability of the proposed model

3.1. Equilibria and local stability. The system (2.1) has two steady states: the
uninfected steady state E0 = (T0, 0, 0) and the (positive) infected steady state
Ē =

(
T̄ , Ī, V̄

)
, where:

T̄ =
Tmax

2a

a− d− δ qβ − (δ + ρ)

qα(δ + ρ)
+

√(
a− d− δ qβ − (δ + ρ)

qα(δ + ρ)

)2

− 4a

Tmax

(
δc

qα
− s
)

Ī =
[qβ − (δ + ρ)k1]T̄ − (δ + ρ)c

qα(δ + ρ)

V̄ =
1

α

[
qβT̄

α(δ + ρ)(c1 + k1T
− 1

]
.

(3.1)
Now, we will proceed to analyse the stability of the equilibria of system (2.1).
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Since T0 and T̄ satisfy

s− dT0 + aT0

(
1− T0

Tmax

)
= 0

s− dT̄ + aT̄

(
1− T̄

Tmax

)
= δĪ =

δ

qα(δ + ρ)
[(qβ − (δ + ρ))T − (δ + ρ)c]

(3.2)

we get that

T̄ >
c(δ + ρ)

qβ − (δ + ρ)k1
⇒ s− dT̄ + aT̄

(
1− T̄

Tmax

)
> 0 ⇒ T0 > T̄ , (3.3)

and

T̄ <
c(δ + ρ)

qβ − (δ + ρ)k1
⇒ s− dT̄ + aT̄

(
1− T̄

Tmax

)
< 0 ⇒ T0 < T̄ . (3.4)

Hence,

• If T̄ > c(δ+ρ)
qβ−(δ+ρ)k1 , then T0 > T̄ > c(δ+ρ)

qβ−(δ+ρ)k1 , which means that E0(T0, 0, 0)

is unstable, while the positive equilibrium Ē(T̄ , Ī, V̄ ) exists.
• If T̄ < c(δ+ρ)

qβ−(δ+ρ)k1 , then T0 < T̄ < c(δ+ρ)
qβ−(δ+ρ)k1 , which means that E0(T0, 0, 0)

is locally asymptotically stable, while the positive equilibrium Ē(T̄ , Ī, V̄ ) is
not feasible, as Ī < 0, V̄ < 0.

Let

R0 =

(
qβ − (δ + ρ)k1

c(δ + ρ)

)
T̄ . (3.5)

We can see that R0 is the bifurcation parameter. When R0 < 1, the uninfected
steady state E0 is stable and the infected steady state Ē does not exist (unphysical).
When R0 > 1, E0 becomes unstable and Ē exists.

For system (2.2), it is known that the basic reproductive ratio is given by:

R01 =

(
qβ − (δ + ρ)k1

c(δ + ρ)

)
T0 (3.6)

Once again, we emphasize the large difference of the basic reproduction ratio
between the linear infection rate and the saturation infection rate.

• If α→ 0, then T̄ → c(δ+ρ)
qβ−(δ+ρ) , R0 → 1;

• If α→ +∞, then T̄ → T0, R0 → R01.

The Jacobian matrix of system (2.1) is:(a− d)− 2aT
Tmax

− βV
1+αV ρ − βT

(1+αV )2
βV

1+αV −(δ + ρ) βT
(1+αV )2

−k1V q −c− k1T

 . (3.7)

Let E∗(T ∗, I∗, V ∗) be any arbitrary equilibrium. Then, the characteristic equation
about E∗ is:
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∣∣∣∣∣∣∣
λ+

(
(d− a) + 2aT∗

Tmax
+ βV ∗

1+αV ∗

)
−ρ βT∗

(1+αV ∗)2

− βV ∗

1+αV ∗ λ+ (δ + ρ) − βT∗

(1+αV ∗)2

k1V
∗ −q λ+ (c+ k1T

∗)

∣∣∣∣∣∣∣ = 0. (3.8)

For equilibrium E0 = (T0, 0, 0), (3.8) reduces to(
λ− a+ d+

2aT0
Tmax

)[
λ2 + (c+ δ + ρ)λ+ c(δ + ρ)− qβT0

]
= 0 (3.9)

Hence, we can see that E0 = (T0, 0, 0) is locally asymptotically stable if R0 < 1,
and it is a saddle point if dimW s(E0) = 2, or if dimW s(E0) = 1 while R0 > 1. As
a result, we have the following theorems.

Theorem 3.1. If R0 < 1, E0 = (T0, 0, 0) is locally asymptotically stable; else, if
R0 > 1, E0 = E0 = (T0, 0, 0) is unstable.

Theorem 3.2. There exists M > 0,M ∈ R such that for any positive solution
(T (t), I(t), V (t)) of system (2.1),

T (t) ≤M, I(t) ≤M,V (t) ≤M (3.10)

for all large enough t.

Proof. Let L(t) = T (t) + I(t) and assume that L(0) = T (0) + I(0) = const = c.
Calculating the derivative of L(t) using the equations in system (2.1), we have:

dL(t)

dt
=
dT (t)

dt
+
dI(t)

dt

= s− dT + aT

(
1− T

Tmax

)
− δI

= −dt− δI − a

Tmax

(
T − Tmax

2a

)2

+
4s+ aTmax

4

≤ −(T + I) min (d, δ)− a

Tmax

(
T − Tmax

2a

)2

+
4s+ aTmax

4

= −hL(t)−M0

(
h = min (d, δ),M0 =

4s+ aTmax

4

)
(3.11)

Let U(t) = L(t)− M0

h . This means that

U(0) = L(0)− M0

h
= c− M0

h
dU(t)

dt
=
dL(t)

dt

(3.12)

The inequality (3.11) can be rewritten as

dU(t)

dt
≤ (−h)U(t) (3.13)

which yields, according to Gronwall’s inequality,
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U(t) ≤ U(0) exp

(∫ t

0

(−h)ds

)
=

(
c− M0

h

)
exp

(
[−hs]t0

)
=

(
c− M0

h

)
exp(−ht)

≤ c− M0

h

(3.14)

or

T (t) + I(t) = L(t) = U(t) +
M0

h
= c− M0

h
+
M0

h
= c. (3.15)

As T (t) > 0, I(t) > 0 ∀i ∈ Z+, we can say that

V (t) ≤ c, I(t) ≤ c. (3.16)

Moreover, we also know that

dV

dt
= qI − cV − k1V T ≤ qI − cV ≤ qc− cV = −c(V − q). (3.17)

Setting V (0) = const = cV , using the exact same procedure with Gronwall’s
inequality, we obtain

V (t) ≤ cV ∀t ∈ Z+. (3.18)

With M = max (c, cV ), we would then conclude that

T (t) ≤M, I(t) ≤M, V (t) ≤M ∀t ∈ Z+. (3.19)

We can easily see that this set is convex. As a consequence, the system (2.1) is
dissipative.

The proof is complete. �

From this theorem, we define

D =
{

(T, I, V ) ∈ R3, 0 ≤ T, I, V ≤M
}
. (3.20)

Denote

M = d− a+
2aT̄

Tmax
, N =

βV̄

1 + αV̄
, P =

βT̄

(1 + αV̄ )2
. (3.21)

Then, the characteristic equation of the system around the equilibrium Ē(T̄ , Ī, V̄ )
reduces to:

λ3 + a1λ
2 + (a2 + a4)λ+ (a3 + a5) = 0, (3.22)

where
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a1 = M + (δ + ρ+ c1 + k1T̄ )

a2 = (δ + ρ)(c1 + k1T ) +M(δ + ρ+ c1 + k1T̄ ) + (−k1V̄ P )

a3 = ρ
[
−N(c1 + k1T̄ ) + Pk1V̄

]
+ PNq

a4 = −NP
a5 = M(δ + ρ)(c1 + k1T̄ )− P (δ + ρ)k1V̄ .

(3.23)

By the Routh-Hurwitz criterion [15], it follows that all eigenvalues of equation
(3.22) have negative real parts if and only if

a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0. (3.24)

This leads us to the following theorems.

Theorem 3.3. Suppose that

(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, the positive equilibrium Ē(T̄ , Ī, V̄ ) is asymptotically stable.

Theorem 3.4. If R0 < 1, then E0(T0, 0, 0) is globally asymptotically stable.

Proof. First of all, as R0 < 1, we would have

T0 < T̄ <
c(δ + ρ)

qβ − (δ + ρ)
(3.25)

which means that

p <
(c+ k1T )(δ + ρ)

βT
. (3.26)

From the system (2.1), we would have

dI

dt
≤ βTV − (δ + ρ)I,

dV

dt
= qI − cV − k1V T.

(3.27)

Now, we would consider the following comparative system

dz1
dt

= βTz2 − (δ + ρ)z1

dz2
dt

= pz1 − cz2 − k1z2T.
(3.28)

We will consider the following form of Lyapunov function:

L(X) = V (z1, z2) =
δ + ρ

(βT )2
z21 +

1

c+ k1T
z22 . (3.29)

The derivative of the function can be calculated as follows
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dL

dt
=
∂L

∂z1

dz1
dt

+
∂L

∂z2

dz2
dt

= 2
δ + ρ

(βT )2
z1 (βTz2 − (δ + ρ)z1) + 2

1

c+ k1T
z2 (qz1 − cz2 − k1Tz2)

= −2

[(
δ + ρ

βT
z1

)2

+ z22 −
(
δ + ρ

βT
z1z2 +

q

c+ k1T

)
z1z2

]

≤ −2

[(
δ + ρ

βT
z1

)2

+ z22 −
(
δ + ρ

βT
+
β + ρ

βT

)
z1z2

]

= −2

[
δ + ρ

βT
z1 − z2

]2
≤ 0 ∀z1, z2.

(3.30)

We can see that the derivative is negative definite everywhere except at (0, 0).
This means that (z1, z2) = (0, 0) is globally asymptotically stable.

As we can also see that

0 ≤ I(0) ≤ z1(0), 0 ≤ V (0) ≤ z2(0) (3.31)
which means that, if the system (3.28) admits the initial values (z1(0), z2(0)), we

have that

I(t) ≤ z1(t), V (t) ≤ z2(t) ∀t > t1 (3.32)
or, in other words,

lim
t→+∞

I(t) = lim
t→+∞

V (t) = 0. (3.33)

From this, using the first equation of the system (2.1), for an ε in(0, 1) infinitesi-
mal,

s+ (a− d− δε)T − aT 2

Tmax
≤ dT (t)

dt
≤ s+ (a− d)T − aT 2

Tmax
∀t > t2 (3.34)

which shows that

lim
t→+∞

T (t) = T0. (3.35)

From (3.33) and (3.35), we conclude that the system is globally asymptotically
stable. The proof is complete. �

Theorem 3.5. If R0 > 1, then the system (2.1) is permanent.

Proof. If R0 > 1, we would have

(qβ − (δ + ρ)k1)T0 > (qβ − (δ + ρ)k1)T̄ > c(δ + ρ) (3.36)

We will proceed to prove the weak permanence of this system using contradiction.
Assume that the system is not weakly permanent, from Theorem 3.4, there exists

a positive orbit (T (t), I(t), V (t)) such that

lim
t→+∞

T (t) = T0, lim
t→+∞

I(t) = lim
t→+∞

V (t) = 0. (3.37)



40 HOANG ANH NGO, HUNG DANG NGUYEN, AND MEHMET DIK

Since T0 >
c(δ+ρ)

qβ−(δ+ρ) , combining with (3.37), we choose an arbitrary infinitesimal
ε > 0 such that there exists a t0 > 0, for all t > t0,

T0 − ε
1 + αε

>
c(δ + ρ)

qβ − (δ + ρ)

T (t) > T0 − ε,
V (t) < ε.

(3.38)

Under these conditions, the system (2.1) becomes

dI

dt
=

βTV

1 + αV
− (δ + ρ)I ≥ β(T0 − ε)

1 + αε
V − (δ + ρ)I(t)

dV

dt
= qI − (c1 + k1T ) ≈ qI − cV − k1T0

(3.39)

Consider the following Jacobian matrix

Jε =

(
−(δ + ρ) β(T0−ε)

1+αε

q −(c+ k1T0).

)
(3.40)

Since Jε has positive off-diagonal element, according to the Perron - Frobenius
theorem, for the maximum positive eigenvalue j1 of Jε, there is an associated positive

eigenvector v =

(
v1
v2

)
.

Next, we consider a system associated with the Jacobian matrix Jε

dz1
dt

=
β(T0 − ε)

1 + αε
z2 − (δ + ρ)z1

dz2
dt

= qz1 − (c+ k1T0)z2.

(3.41)

Let z(t) = (z1(t), z2(t)) be a solution of (3.41) through (lv1, lv2) at t = t0, where
l > 0 satisfies that

lv1 < I(t0), lv2 < V (t0). (3.42)

As we know that the semi-flow of (3.41) is monotone and Jεv = v > 0, zi(t)(t =
1, 2) is strictly increasing, meaning limt→+∞ zi(t) = +∞. This contradicts the
Theorem 3.2, saying that the positive solution of (2.1) is bounded from above. This
contradiction says that there exists no positive orbit of (2.1) tends to (T0, 0, 0) and
t→ +∞. Combining this and a result provided in [23], we conclude that the system
(2.1) is permanent.

The proof is complete.
�

Theorem 3.6. Assume that D is convex and bounded. Suppose that the system

dX

dt
= F (X), X ∈ D (3.43)

is competitive, permanent and has the property of stability of periodic orbits. If
X̄0 is the only equilibrium point in intD and if it is locally asymptotically stable,
then it is globally asymptotically stable in intD.
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Proof. This matrix can easily be proven by considering the Jacobian matrix and
choose the matrix H as

H =

1 0 0
0 −1 0
0 0 1

 . (3.44)

By simple calculation, we obtain that

H
∂f

∂x
H =

(a− d)− 2aT
Tmax

− βV
1+αV −ρ − βT

(1+αV )2

− βV
1+αV −(δ + ρ) − βT

(1+αV )2

−k1V −q −c− k1T

 . (3.45)

This means that the system (2.1) is competitive in D, with respect to the partial
order defined by the orthant

K =
{

(T, I, V ) ∈ R3‖T ≤ 0, I ≥ 0, V ≥ 0
}
. (3.46)

�

Remark. As D is convex and the system (2.1) is competitive in D, we can say that
the system (2.1) satisfies the Poincare - Bendixson property. This has been proven
by Hirsch (1990) [22], Zhu and Smith (1994) [21] and Smith and Thieme (1991)
[24] that any three-dimensional competitive system that lie in convex sets would have
the Poincaré - Bendixson property; in other words, any non-empty compact omega
limit set that contains no equilibria must be a closed orbit.

Theorem 3.7. Let c = I(0) + T (0) and suppose that
(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, the positive equilibrium Ē(T̄ , Ī, V̄ ) of system (2.1) is globally asymptotically
stable provided that one of the following two assumptions hold

(3) Tmax
a−d+k1c

2a < m < T0 < Tmax
a−d+δ+k1c

2a ,
(4) m > Tmax

a−d+δ+k1c
2a .

As we have already known that the system (2.1) is competitive and permanent
(from Theorem 3.5 and Theorem 3.6), while Ē(T̄ , Ī, V̄ ) is locally asymptotically
stable if the two properties (i) and (ii) of Theorem 3.7 holds. As a result, in
accordance with Theorem 3.6 (choosing D = Ω), Theorem 3.7 if we can prove that
the system (2.1) has the stability of periodic orbits. We will proceed to prove this
under the following proposition.

Proposition 3.8. Assume condition 3. or 4. of Theorem 3.7 hold true. Then,
system (2.1) has the property of stability of periodic orbits.

Proof. Let P (t) = ((T (t), I(t), V (t)) be a periodic solution whose orbit Γ is contained
in intΩ. In accordance with the criterion given by Muldowney in [25], for the
asymptotic orbital stability of a periodic orbit of a general autonomous system, it is
sufficient to prove that the linear non-autonomous system

dW (t)

dt
=
(
DF [2] (P (t))

)
W (t) (3.47)

is asymptotically stable, where DF [2] is the second additive compound matrix of
the Jacobian DF [1].
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The Jacobian matrix of the system (2.1) is given by

J =

(a− d)− 2aT
Tmax

− βV
1+αV ρ − βT

(1+αV )2
βV

1+αV −(δ + ρ) βT
(1+αV )2

−k1V q −(c+ k1T )

 . (3.48)

For the solution P (t), the equation (3.47) becomes

dW1

dt
= −

(
δ + ρ− (a− d) +

2aT

Tmax
+

βV

1 + αV

)
W1 +

βT

(1 + αV )2
(W2 +W3),

dW2

dt
= qW1 +

(
a− d− 2aT

Tmax
− βV

1 + αV
− (c+ k1T )

)
W2 + ρW3,

dW3

dt
= k1VW1 +

βV

1 + αV
W2 − (δ + ρ+ c+ k1T )W3.

(3.49)
To prove that the system (3.49) is asymptotically stable, we shall use the following

Lyapunov function, which is similar to the one found in [26] for the SEIR model:

L(W1(t),W2(t),W3(t), T (t), I(t), V (t)) =

∥∥∥∥(W1(t),
I(t)

V (t)
W2(t),

I(t)

V (t)
W3(t)

)∥∥∥∥ ,
(3.50)

where ‖·‖ is the norm in R3 defined by

‖(W1,W2,W3)‖ = sup{|W1|, |W2 +W3|}. (3.51)

From Theorem 3.5, we obtain that the orbit of P (t) remains at a positive distance
from the boundary of Ω. Therefore,

I(t) ≥ η, V (t) ≥ η, η = min{I,V} ∀t→ +∞. (3.52)

Hence, the function L(t) is well defined along P (t) and

L(W1,W2,W3;T, I, V ) ≥ η

M
‖(W1,W2,W3)‖ . (3.53)

Along a solution (W1,W2,W3) of the system (3.49), L(t) becomes

L(t) = sup

{
|W1(t)| , I(t)

V (t)
(|W2(t)|+ |W3(t)|)

}
. (3.54)

Then, we would have the following inequalities

D+|W1(t)| ≤ −
(
δ + ρ− (a− d) +

2aT

Tmax
+

βV

1 + αV

)
|W1|+

βT

(1 + αV )2
(|W2(t)|+ |W3(t)|)

D+|W2(t)| ≤ q|W1(t)|+
(
a− d− 2aT

Tmax
− βV

1 + αV
− (c+ k1T )

)
|W2(t)|+ ρ|W3(t)|

D+|W3(t)| ≤ k1V |W1(t)|+ βV

1 + αV
|W2(t)| − (δ + ρ+ c+ k1T )|W3(t)|.

(3.55)
From this, we get
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D+
I

V
(|W2|+ |W3|) =

(
dI/dt

V
− IdV/dt

V 2

)
(|W2|+ |W3|) +

I

V
D+(|W2|+ |W3|)

≤
(
dI/dt

I
− dV/dt

V

)
I

V
(|W2|+ |W3|) +

(
qI

V
+ k1I

)
|W1|

−
(
−a+ d+

2aT

Tmax
+ (c+ k1T )

)
I

V
|W2(t)| − (δ + c+ k1T )

I

V
|W3(t)|.

(3.56)
Thus, we can obtain

D+L(t) ≤ sup{g1(t), g2(t)}L(t), (3.57)
where

g1(t) = −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βTV

I(1 + αV )2

g2(t) =
qI

V
+ k1I +

dI/dt

I
− dV/dt

V
−G1

G1 = min

{
−a+ d+

2aT

Tmax
+ (c+ k1T ), δ + c+ k1T

}
.

(3.58)

From the second equation of the system (2.1), we obtain

g1(t) = −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βTV

I(1 + αV )2

≤ −δ − ρ+ a− d− 2aT

Tmax
− βV

1 + αV
+

βtV

I(1 + αV )

= a− d− 2aT

Tmax
− βT

1 + αV
+
dI/dt

I
.

(3.59)

Here, we consider two different cases.
• Case 1: If Point 3. of Theorem 3.7 holds, then

− δ < a− d− 2aT

Tmax
< 0, (3.60)

that is

G1 = −a+ d+
2aT

Tmax
+ (c+ k1T ). (3.61)

Then, we would obtain

g2(t) = a− d− 2aT

Tmax
+ k1I +

dI/dt

I
= g1(t) + k1I +

βV

1 + αV
> g1(t). (3.62)

Hence,

sup{g1(t), g2(t)} ≤ a− d− 2aT

Tmax
+ k1I +

dI/dt

I
≤ −µ1 +

dI/dt

I
, (3.63)

where

µ1 > 0, a− d− 2aT

Tmax
+ k1I ≤ −µ1 < 0 (3.64)
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with the assumption that k1I is negligible compare to the term a− 2aT
Tmax

.
This assumption would be verified in the examples of the simulation part
below.

• Case 2: If Point 4. of Theorem 3.7 holds, then

− a+ d+
2aT

Tmax
≤ δ, (3.65)

which means that G1 = δ + c+ k1T . Then, we obtain that

µ2 < 0, g1(t) < g2(t) = k1T − δ +
dI/dt

I
≤ −µ2 +

dI/dt

I
(3.66)

with the same assumption that k1T < σ in reasonably practical scenarios.
Hence,

sup{g1(t), g2(t)} ≤ −µ+
dI/dt

I
. (3.67)

Let µ = min{µ1, µ2}. Then, form (3.63) and (3.66), we have

sup{g1(t), g2(t)} ≤ −µ+
dI/dt

I
, (3.68)

or

D+L(t) ≤
(
−µ+

dI/dt

I

)
L(t). (3.69)

According to Gronwall’s inequality, we would have

L(t) ≤ L(0) exp

(∫ t

0

[
−µ+

dI/dt

I

]
ds

)
= L(0) exp

(
[−µs+ ln(I(s))]

t
0

)
= L(0) exp(−µt) exp (ln(I(t))− ln(I(0)))

= L(0) exp(−µt) I(t)

I(0)

≤ ML(0)

I(0)
exp(−µt)→ 0 as t→ +∞.

(3.70)

From (3.53), we conclude that

(W1(t),W2(t),W3(t))→ 0 as t→ +∞. (3.71)

This implies that the linear system equation (3.49) is asymptotically stable,
and, therefore, the periodic solution is asymptotically orbitally stable. This proves
proposition 3.8.

�

Theorem 3.9. Suppose that
(1) R0 > 1,
(2) a1 > 0, a3 + a5 > 0, a1(a2 + a4)− (a3 + a5) > 0.

Then, system (2.1) has an orbitally asymptotically stable periodic solution.
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Proof. First, we perform a change of variables as follows:

z1(t) = −T (t), z2(t) = I(t), z3(t) = −V (t) (3.72)

Applying this transformation to the system (2.1), we obtain

dz1(t)

dt
= −s− dz1 + az1

(
1 +

z1
Tmax

)
+

βz1z3
1− αz3

+ ρz2

dz2(t)

dt
=

βz1z3
1− αz3

− (δ + ρ)z2

dz3(t)

dt
= −qz2 − cz3 + k1z1z3.

(3.73)

The Jacobian matrix of the system (3.73) is then given by

J(z) =

a− d+ 2az1
Tmax

+ βz3
1−αz3 ρ βz1

(1+αz3)2
βz3

1−αz3 −(δ + ρ) βz1
(1+αz3)2

k1z3 −q −c+ k1z1.

 (3.74)

Similar to the definition of the set D at 3.20, we define set E as:

E = {(z1, z2, z3) : z1 ≤ 0, z2 ≥ 0, z3 ≤ 0} . (3.75)

Since J(z) has non-positive off diagonal elements at each point of E, (3.73) is
competitive at E. Set z∗ = (−T ∗, I∗, V ∗). It is easy to see that z∗ is unstable and
det J(z∗) < 0. Furthermore, it follows from Theorem 3.5 that there exists a compact
set B in the interior of E such that for any z0 ∈ intE, there exists T (z0) > 0 such
that z(t, z0) ∈ B for all t > T (z0). Consequently, by Theorem 1.2 in Zhu and Smith
(1994) [21] for the class of three-dimensional competitive systems, it has an orbitally
asymptotically stable periodic solution.

The proof is complete. �

4. Numerical simulation

After providing all the analytical tools and qualitatively analysing the system for
patterns on its dynamics, in this section, we will perform some numerical analysis
on the model to verify the previous results.

4.1. Simulation tools. The numerical simulation is conducted on the programming
language Julia through the package DifferentialEquation.jl, A Performant and
Feature-Rich Ecosystem for Solving Differential Equations in Julia by Rackauckas
and Nie (2017) [29].

In order to avoid any stiffness in the ODE models, the algorithm for the Method
of Steps in Julia is set to Rosenbrock23, which is the same as the classic ODE
solver ode23s in MATLAB.

The simulation is conducted on a system with a 2.0 GHz dual core Intel core i5
with 16GB of RAM.
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Parameters and Variables Values
Dependent variables
T Uninfected CD4+ T-cell population size 250 mm−3
I Infected CD4+ T-cell density 50 mm−3
V Initial density of HIV RNA 160 mm−3
Parameters and Constants
s Source term for uninfected CD4+ T-cells 5 day−1 mm−3
d Natural death rate of CD4+ T-cells 0.01 day-1

a Growth rate of CD4+ T-cell population 0.8 day−1
Tmax Maximal population level of CD4+ T-cells 1500 mm−3
β Rate CD4+ T-cells became infected with virus 2.4× 10−4 mm−3
α Saturated mass-action term 0.001
ρ Rate of cure 0.01 day−1
δ Blanket death rate of infected CD4+ T-cells 0.3 day−1
q Reproduction rate of the infected CD4+ T-cells 500 mm−3 day−1
c Death rate of free virus 8 day−1

Table 1. Preliminary values of variables and parameters for viral spread.

Parameters Original scenario Scenario #2 Scenario #3 Scenario #4
s 5 − − −
d 0.01 − − −
a 0.8 8 − −
Tmax 1500 − − −
β 2.4× 10−4 − 0.0024 0.0024
α 0.001 0.0001 0.000001 0.000001
ρ 0.01 0.01 − −
δ 0.3 5 − −
q 500 − 2.5 2.5
c 8 1.3 3 1.3

Table 2. Values of parameters for viral spread in different scenarios.

4.2. Simulation results. Within the range of parameters that are proven to be
realistic in medical research, we investigate the behavior of the model within 4
different scenarios.

• The original scenario: In this scenario, the conditions 1, 2 and 3 in
Theorem 3.7 are satisfied. This means that, the positive equilibrium of the
system (2.1) is globally asymptotically stable.

• Scenario #2: In this scenario, the conditions 1, 2 and 4 in Theorem 3.7
are satisfied. This means that, the positive equilibrium of the system (2.1)
is also globally asymptotically stable.

• Scenario #3: In this scenario, the conditions 1 and 2 of Theorem 3.3 are
satisfied. This means that, the positive equilibrium of the system (2.1) is
locally asymptotically stable.

• Scenario #4: In this scenario, the conditions 1 and 2 of Theorem 3.9 are
satisfied. This means that, the positive equilibrium of the system (2.1) is
orbitally asymptotically stable.
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Figure 1. The ODE model is locally asymptotically stable with
parameters in the original scenario

Figure 2. The ODE model is locally asymptotically stable with
parameters in Scenario #2
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Figure 3. The ODE model is locally asymptotically stable with
parameters in Scenario #3

Figure 4. The ODE model is orbitally asymptotically stable with
parameters in Scenario #4

Appendix A. Detailed proof of used theorems

Theorem A.1 (Gronwall, 1919). Let I denote an interval of the real line of the
form [a, inf) or [a, b] or [a, b) with a < b. Let β and u be real-valued continuous
functions defined on I. If u is a differentiable function in the interior I0 of I (the
interval I without the end points a and possibly b) and satisfies the differential
inequality

u′(t) ≤ β(t)u(t), t ∈ I0 (A.1)
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then u is bounded by the solution of the corresponding differential equation ν′(t) =
β(t)ν(t):

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
. (A.2)

Theorem A.2 (Lyapunov’s stability). Let a function V (X) be continuously dif-
ferentiable in a neighbourhood U of the origin. The function V (X) is called the
Lyapunov function for an autonomous system

X′ = f(X) (A.3)
if the following conditions are met:
(1) V (X) > 0 for all X ∈ U \ {0};
(2) V(0) = 0;
(3) dV

dt ≤ 0 for all X ∈ U .
Then, if in a neighborhood U of the zero solution X = 0 of an autonomous system
there is a Lyapunov function V (X) with a negative definite derivative dV

dt for all
X ∈ U \ {0}, then the equilibrium point X = 0 of the system is asymptotically stable.

Theorem A.3 (Perron - Frobenius Theorem). [20] Let A be an irreducible Metzler
matrix (A Metzler matrix is a matrix whose all of its off-diagonal elements are
non-negative). Then, λM , the eigenvalue of A of largest real part is real, and the
elements of its associated eigenvector vM are positive. Moreover, any eigenvector of
A with non-negative elements belongs the the span of vM .

Theorem A.4 (Poincaré - Bendixson Theorem). [3]
Given a differentiable real dynamical system defined on an open subset of the

plane, every non-empty compact ω-limit set of an orbit, which contains only finitely
many fixed points, is either

• a fixed point,
• a periodic orbit, or
• a connected set composed of a finite number of fixed points together with
homoclinic and heteroclinic orbits connecting these.

Moreover, there is at most one orbit connecting different fixed points in the same
direction. However, there could be countably many homoclinic orbits connecting one
fixed point.

Next, we will give the definition of an additive compound matrix and consider
the particular case when it’s a square matrix [1]. A survey of properties of additive
compound matrices, along with their connections to differential equations have been
investigated in [25, 26].

We will start with the definition of the k-th exterior power (or multiplicative
compound) of an n×m matrix.

Definition A.1 (Multiplicative compound of a matrix). Let A be an n×m matrix
of real or complex numbers. Let ai1,i2,...,ik,j1,j2,...,jk be the minor of A determined
by the rows (i1, ..., ik) and the columns (j1, ..., jk), 1 ≤ i1 < i2 < ... < ik ≤ n, 1 ≤
j1 < j2 < ... < jk ≤ m. The k-th multiplicative compound matrix A(k) of A is the(
n
k

)
×
(
m
k

)
matrix whose entries, written in lexicographic order, are ai1,...,ik,j1,...,jk .

In particular, when A is an n× k matrix with columns a1, a2, ..., ak, A(k) is the
exterior product a1 ∨ a2 ∨ ... ∨ ak.
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In the case m = n, the additive compound matrices are defined as follows.

Definition A.2. Let A be an n× n matrix. The k-th additive compound A[k] of A
is the

(
n
k

)
×
(
n
k

)
matrix given by

A[k] = D(I + hA)‖h=0. (A.4)

If B = A[k], the following formula for bi,j can be deduced from the equation
(A.4). For any integer i = 1, ...,

(
n
k

)
, let (i) = (i1, i2, ..., ik) be the i-th member in the

lexicographic ordering of all k-tuples of integers such that 1 ≤ i1 < i2 < ... < ik ≤ n.
Then,

bi,j =


ai1,i1 + ...+ aik,ik if (i) = (j)

(−1)r+sais,jr if exactly one entry is in (i) does not occur in (j)

and jr does not occur in (i),
0 if (i) differs from (j) in two or more entries.

(A.5)

In the extreme cases when k = 1 and k = n, we would have that A[1] = A and
A[n] = tr(A). For n = 3 ,which is the case that we are considering in this paper, we
would have the matrices A[k], k = 0, 1, 2 as follows:

A[1] = A, A[2] =

a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

 , A[3] = a11 + a22 + a33.

(A.6)
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