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New Refinements of Hadamard Integral Inequality via k-Fractional
Integrals for P- Convex Function

M. Emin Özdemira

aBursa Uludağ University, Education Faculty, 16059, Campus, Bursa, Turkey

Abstract. In this study, we use k-fractional integrals to establish some new integral inequalities for p-
convex function. These integral inequalities includes some new estimations for Hadamard inequality via
k-fractional integrals.

1. Introduction

A function ρ[ε, ε′] ⊂ R → R is said to be convex if whenever u, v ∈ [ε, ε′] and t ∈ [0, 1], the following
inequality holds:

ρ(tu + (1 − t)v) ≤ tρ(u) + (1 − t)ρ(v).

We say that ρ is concave if (−ρ) is convex. If ρ is both convex and concave, then ρ is to be said affin function.
The affine functions are in the form ε1u + ε′1,for suitable constants ε1, ε′1.

This definition has its origins in Jensen’s results and has opened up the most extended, useful and
multi-disciplinary domain of mathematics, namely, convex analysis. Convex curves and convex bodies
have appeared in mathematical literature since antiquity and there are many important results related to
them.

The following double inequality is well known in the literature as Hadamard’s inequality:
Let ρ : [ε, ε′] ⊂ R → R be a convex function defined on an subinterval of real numbers, η, η′ ∈ [ε, ε′]

and η < η′, we have

ρ

(
η + η′

2

)
≤

1
η′ − η

η′∫
η

ρ(u)dx ≤
ρ(η) + ρ (η′)

2
. (1)

Both inequalities hold in the reversed direction if ρ is concave. In [7], there are many inequalities associated
with (1.1) for different function types.

The definition and basic elements about the subject are following.
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Definition 1.1. [12] Let ρ ∈ L1[ε, ε′]. The Riemann Liouville integrals Jαε+ f and Jαε′− f of order α > 0 with ε ≥ 0 are
defined by

Jαε+ f (u) =
1

Γ (α)

∫ u

ε
(u − t)α−1 f (t) dt , u > ε

and

Jαε′− f (u) =
1

Γ (α)

∫ ε′

u
(t − u)α−1 f (t) dt , u < ε′

respectively where Γ (α) =
∫
∞

0 e−uuα−1du. Here is J0
ε+ f (u) = J0

ε′− f (u) = f (u) .

In the case of α = 1 the fractional integral reduces to the classical integral.

Definition 1.2. [12] Let ρ ∈ L1[ε, ε′]. The right and the left k−Riemann Liouville integrals J
α
k −1
ε+ ρ and J

α
k −1
ε′− ρ of

order α > 0, k > 0 with ε > 0 are defined by

Jα,ka+ ρ (u) =
1

kΓk (α)

∫ u

ε
(u − t)

α
k −1 ρ (t) dt , u > ε

and

Jα,kε′−ρ (u) =
1

kΓk (α)

∫ ε′

x
(t − u)

α
k −1 ρ (t) dt , u < ε′

Definition 1.3. [7] We say that ρ:I → R is a P-function, or that f belongs to the class P(I), if ρ is a non-negative
function and for all u, v ∈ I, t ∈ [0, 1], we have

ρ(tu + (1 − t)v) ≤ ρ(u) + ρ(v).

P(I) contain all nonnegative monotone convex and quasi convex functions.

Definition 1.4. [12] Let real function f be defined on some nonempty interval I of real line R: The function f is said
to be quasi-convex on I if inequality

ρ(tu + (1 − t)v) ≤ sup{ρ(u);ρ(v)} (QC)

holds for all u; v ∈ I and t ∈ [0; 1]

In [14], M.Zeki Sarıkaya et.all proved the following inequality with connected (1.1) for fractional integrals
using the definition of convexity:

f
(

a + b
2

)
≤

Γ (α + 1)
2 (b − a)α

[
Jαa+ f (b) + Jαb+ f (a)

]
≤

f (a) + f (b)
2

(2)

The aim of this paper is to rewrite inequality written in type (1.2) for the Riemann-Liouville k−fractional,
using the P-convex function. In a way, it is a continuation of my previous works. see[12]

In [12] , we obtained the following lemma for k−Riemann Liouville fractional integrals.

Lemma 1.5. Let ρ: I ⊂ R → R be a function on I ,where η, η′ ∈ I with t ∈ [0, 1] . If ρ ∈ L
[
η, η′

]
, then for all

η ≤ u < v ≤ η′ and α > 0 we have:

ρ (u) + ρ (v)
v − u

+
αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (u)

]
(3)

=

∫ 1

0
(1 − t)

α
k ρ′ (tu + (1 − t) v) dt

+

∫ 1

0
(1 − t)

α
k ρ′ ((1 − t) u + tv) dt.
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for each u, v ∈ [η, η′].
Recently, Mathematicians have been published a huge amount papers for fractional order operators using the

various convex functions, see [1–6, 8–11, 13, 15–18]

2. MAIN RESULTS

Theorem 2.1. Let ρ: S ⊂ R→ R be a function on I ,where η, η′ ∈ S with t ∈ [0, 1] . If ρ′ ∈ L
[
η, η′

]
,

for all η ≤ u < v ≤ η′ and α, k > 0. If ρ′ is p−convex on [u, v]. Then we have the
inequality ∣∣∣∣∣∣ρ (v) + ρ (u)

v − u
+

αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]∣∣∣∣∣∣ ≤ 2
k

α + k

[∣∣∣ρ′ (u) + ρ′ (v)
∣∣∣] . (4)

Proof. By using properties modulus and the identity in (1.3) with the p convexity of ρ′∣∣∣∣∣∣ρ (v) + ρ (u)
v − u

+
αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]∣∣∣∣∣∣
≤

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (tu + (1 − t) v)

∣∣∣ dt +

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ ((1 − t) u + tv)

∣∣∣ dt.

J1 =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (tu + (1 − t) v)

∣∣∣ dt

≤

∫ 1

0
(1 − t)

α
k
[∣∣∣ρ′(u)

∣∣∣ +
∣∣∣ρ′(v)

∣∣∣] dt =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′(u)

∣∣∣ dt +

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′(v)

∣∣∣ dt

=
[∣∣∣ρ′(u)

∣∣∣ +
∣∣∣ρ′(v)

∣∣∣] k
α + k

and

J2 =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ ((1 − t) u + tv)

∣∣∣ dt

≤

∫ 1

0
(1 − t)

α
k
[∣∣∣ρ′(u)

∣∣∣ +
∣∣∣ρ′(v)

∣∣∣] dt =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′(u)

∣∣∣ dt +

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′(v)

∣∣∣ dt

=
[∣∣∣ρ′(u)

∣∣∣ +
∣∣∣ρ′(v)

∣∣∣] k
α + k

Then adding J1 and J2 we get the (2.1) inequality.

Corollary 2.2. when α = k = 1 in (2.1) we obtain the inequality∣∣∣∣∣ρ (v) + ρ (u)
2 (v − u)

+

∫ v

u
f (t) dt

∣∣∣∣∣ ≤ [∣∣∣ρ′ (u) + ρ′ (v)
∣∣∣] .

Theorem 2.3. Let ρ: I ⊂ [0,∞)→ R be a differentiable mapping on I ,where η, η′ ∈ I with t ∈ [0, 1] . If ρ′ ∈ L
[
η, η′

]
,

for all η ≤ u < v ≤ η′ and α, k > 0. If
∣∣∣ρ′∣∣∣q is p−convex on [u, v] and q > 1 with 1

p + 1
q = 1 Then we have the
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inequality

|J| ≤ 2
k

α + k

[∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q] 1

q . (5)

where

J =
ρ (v) + ρ (u)

v − u
+

αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]
Proof. If we use the lemma (1.3) in view of the properties of modulus and Power Mean inequality with
p−convex of

∣∣∣ρ′∣∣∣q on [u, v], we have

|J1| =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (tu + (1 − t) v)

∣∣∣ dt

≤

(∫ 1

0
(1 − t)

α
k dt

) 1
p
(∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (tu + (1 − t) v)

∣∣∣q dt
) 1

q

=

(∫ 1

0
(1 − t)

α
k dt

) 1
p
(∫ 1

0
(1 − t)

α
k
(∣∣∣ρ′ (u)

∣∣∣q +
∣∣∣ρ′ (v)

∣∣∣q) dt
) 1

q

=
(
α

α + k

) 1
p
(∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (u)

∣∣∣q dt +

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ (v)

∣∣∣q dt
) 1

q

=
(
α

α + k

) 1
p
[(

α
α + k

) ∣∣∣ρ′ (u)
∣∣∣q +

(
α

α + k

) ∣∣∣ρ′ (v)
∣∣∣q] 1

q

=
(
α

α + k

) 1
p
[(

α
α + k

) (∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q)] 1

q

=
(
α

α + k

) 1
p
(
α

α + k

) 1
q (∣∣∣ρ′ (u)

∣∣∣q +
∣∣∣ρ′ (v)

∣∣∣q) 1
q

=
(
α

α + k

) (∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q) 1

q

Similarly

J2 =

∫ 1

0
(1 − t)

α
k
∣∣∣ρ′ ((1 − t) u + tv)

∣∣∣ dt

≤

(
α

α + k

) (∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q) 1

q

Now, then we obtain

|J| ≤ |J1| + |J2| = 2
(
α

α + k

) (∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q) 1

q

which proof the inequality (2.2) .

Theorem 2.4. Let ρ:
[
η, η′

]
→ R be a differentiable mapping on

[
η, η′

]
,where η < η′ such that ρ′ ∈ L

[
η, η′

]
If∣∣∣ρ′∣∣∣q is p−convex on [u, v] and η ≤ u < v ≤ η′ and . p > 1 ,with t ∈ [0, 1] . Then we have the∣∣∣∣∣∣ρ (v) + ρ (u)

v − u
+

αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]∣∣∣∣∣∣ (6)

≤ 2
(

k
αp + k

) 1
p [∣∣∣ρ′ (u)

∣∣∣q +
∣∣∣ρ′ (v)

∣∣∣q] 1
q .
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where 1
p + 1

q = 1, k > 0, α > 1.

Proof. By using the identity that is given in (1.3) with classic hölder inequaliy for each term and the definition
p−convex of

∣∣∣ρ′∣∣∣ , we have ∣∣∣∣∣∣ρ (v) + ρ (u)
v − u

+
αΓk (α)

(v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]∣∣∣∣∣∣
≤

(∫ 1

0
(1 − t)(

α
k )p dt

) 1
p
(∫ 1

0

∣∣∣ρ′ (tu + (1 − t) v)
∣∣∣q dt

) 1
q

+

(∫ 1

0
(1 − t)(

α
k )p dt

) 1
p
(∫ 1

0

∣∣∣ρ′ ((1 − t) u + tv)
∣∣∣q dt

) 1
q

≤ 2
(

k
k + αp

) 1
p [∣∣∣ρ′ (u)

∣∣∣q +
∣∣∣ρ′ (v)

∣∣∣q] 1
q .

which proof the inequality (2.3) .

Corollary 2.5. Under conditions of Theorem 3 we have∣∣∣∣∣∣ρ (v) + ρ (u)
2 (v − u)

+
αΓk (α)

2 (v − u)
α
k −1

[
Iα,ku+ ρ (v) + Iα,kv− ρ (v)

]∣∣∣∣∣∣ ≤ [∣∣∣ρ′ (u)
∣∣∣q +

∣∣∣ρ′ (v)
∣∣∣q] 1

q

Proof. Since
lim

p→∞ 2
(

k
αp+k

) 1
p

= 2 the result is clear.
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[2] Budak H, Usta F, Sarıkaya MZ, Özdemir ME. On generalization of midpoint type inequalities with generalized fractional integral operators,

RACSAM, https://doi.org/10.1007/s13398-018-0514-z
[3] Dahmani Z. New inequalities in fractional integrals, International Journal of Nonlinear Science, 9(4) (2010), 493-497.
[4] Dahmani Z, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1) (2010), 51-58.
[5] Dahmani Z, Tabharit L, Taf S. Some fractional integral inequalities, Nonl. Sci. Lett. A., 1(2) (2010), 155-160.
[6] Dahmani Z, Tabharit L, Taf S. New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal.

Appl., 2(3) (2010), 93-99.
[7] Dragomir SS, Pearce CEM. Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria Univer-

sity,2000. ONLINE: http://rgmia. vu. edu. au/monographs.
[8] Gorenflo R, F. Mainardi F. Essentials of fractional calculus, (2000).
[9] Oldham K, J. Spanier J. The fractional calculus, Academic Press, New York- London, (1974).
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Abstract. In this study, which focuses on the intersection of soft set theory and topological hyperrings, the
concept of soft topological hyperrings is proposed and its relation with topological hyperrings is examined.
Morever, some characterizations related to the family of soft topological hyperrings are obtained and the
category of soft topological hyperrings is established. Finally, the concept of soft topological subhyperrings
is described and several structural features are studied.

1. Introduction

Due to its compelling structure, the literature on ring theory has received less attention than group
theory, but it has gained enough attention lately. [27] can be given as an example to the studies in this
area. More interesting is the relationship between soft set theory and hyper structure of group/ring theory.
The algebraic hyperstructures that emerged with the introduction of hypergroups by Marty are considered
as a generalization of classical algebraic structures [1]. The concept of hyperrings plays important role
in the the theory of algebraic hyperstructures. Hyperrings, defined by M. Krasner, have been studied by
various researchers [19-21].In particular, the book ”Hyperrings Theory and Applications” is a good review
resource on this topic [18]. Although there are many algebraic studies on hyperrings, topological studies
on them are very limited. By defining the concept of topological hyperrings, Nodehi et al. investigated
some differences between the topological rings and topological hyperrings [20].

One of the fertile areas for many researchers working on theories modeling uncertainty is the soft set
theory initiated by Molodstov, since it has many applications in economics, computer science, biology,
engineering, environment, social science and medical science [2]. The easy applicability of this theory in
other fields of mathematics, especially algebra and topology, has enabled many important studies. Firstly,
Maji et al. developed the application of soft set theory in decision making problems and introduced some
operations on soft sets [23]. Aktas and cagman presented the definition of soft groups and studied their
fundamental operations [5]. Other algebraic works of soft set theory can be found [4, 6]. On the other hand,
topological studies on soft sets were first put forth by Shabir and Naz [8]. By defining the notion of a soft
topological space, they examined the separation axioms in a soft topological space. For more details, see
[7, 9-11,13].
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Keywords. Soft topological ring, topological hyperring, soft hyperring, soft topological hyperring.
2010 Mathematics Subject Classification. 03E99, 13J99, 16W80
Cited this article as: Ozcan AF, Icen I, Tasbozan H. The Category of Soft Topological Hyperrings, Turkish Journal of Science. 2021,
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Recently, some researchers have applied soft set theory to algebraic hyperstructures. Yamak, the first of
these, developed the concepts of soft hypergroupoids and soft subhypergroupoids [12]. Later on, Wang et al.
introduced the concepts of soft (normal) polygroups and soft (normal) subpolygroups [16]. Selvachandran
and Salleh studied the concepts of soft hypergroups and soft subhypergroups as an expansion of soft
hypergroupoids and soft subhypergroupoids [15]. Also, Selvachandran presented the definitions of Soft
hyperrings and soft hyperring homomorphism [17]. In [14] Oguz developed the concept of soft topological
polygroups by examining polygroups, an important subclass of hypergroups, with a soft topological
approach.

The main purpose of this study is to present the concept of soft topological hyperrings by examining
hyperrings which is one of the the algebraic hyperystructures with soft set theory from the topological point
of view. Further, the relation between soft topological hyperrings and soft hyperrings is investigated and
several theoretical results are given. By defining the concept of soft topological hyperring homomorphism,
the category of soft topological hyperrings is establıshed. This study completed by giving the definition of
soft topological subhyperrings and examining some relevant properties.

2. Preliminaries

In this section, some notions and results about soft sets, topological hyperrings and soft hyperrings to
be used in the sequel will be presented.

Let X be an initial universe set and E be a set of parameters. Also, let P(X) denotes the power set of X
and A ⊂ E. The definition of a soft set introduced by Molodtsov is as follows:

Definition 2.1. [2] A pair (F ,A) is called a soft set over X, where F is a mapping defined by

F : A −→ P(X)

Note that a soft set over X is actually a parametrized family of subsets of the universe X.

Definition 2.2. [3] Let (F ,A) and (G,B) be two soft sets over the common universe X. Then, (F ,A) is called a soft
subset of (G,B) (i.e., (F ,A)⊂̃(G,B)) if
i. A ⊆ B,
ii. F (ε) and G(ε) are identical approximations for all ε ∈ A.

Definition 2.3. [12] The support of a soft set (F,A) is defined as a set

Supp(F ,A) = {ε ∈ A : F(ε) , ∅}

If Supp(F ,A) is not equal to the empty set, then (F ,A) is called non-null.

In the following, some generalizations are given for the nonempty family {(Fα,Aα)|α ∈ I} of soft sets
over the common universe X.

Definition 2.4. [24] The restricted intersection of the family {(Fα,Aα) |α ∈ I} is defined by a soft set (F ,A) =⋂̃
α∈I(Fα,Aα) such that A =

⋂
α∈I Ai , ∅ and F (α) =

⋂
α∈I Fα(ε) for all ε ∈ Aα.

Definition 2.5. [24] The extended intersection of the family {(Fα,Aα)|α ∈ I} is a soft set (F ,A) = (
⋂
E)α∈I(Fα,Aα)

such that A =
⋃
α∈I Aα and F (ε) =

⋂
α∈I(ε) Fα(ε), I(ε) = {α ∈ I|ε ∈ Aα} for all ε ∈ Aα.

Definition 2.6. [24] The ∧−intersection of the family {(Fα,Aα)|α ∈ I} is defined by a soft set (F,A) =
∧̃
α∈I(Fα,Aα)

such that A = Πα∈IAα and F((εα)α∈I) =
⋂
α∈I Fα(εα) for all (εα)α∈I ∈ Aα.

Definition 2.7. [26] Let R be a non-empty set and P∗(R) denote the family of non-empty subsets of R. Then, the
mapping · : R × R −→ P∗(R) is called a hyperoperation and the pair (R, ·) is also called hypergroupoid.
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Definition 2.8. [26] A hypergroup is a hypergroupoid (R, ·) which satisfies the following axioms:

(i) x · (y · z) = (x · y) · z for all x, y, z ∈ R

(ii) x · R = R · x for all x ∈ R.

A semi hypergroup is a hypergroupoid (R, ·) if for all x, y, z ∈ R, we have x · (y · z) = (x · y) · z . Now, the
definitions of topological hyperring, soft topological ring and soft hyperring will be recalled.

Definition 2.9. [18] Let (F ,A) be a non-null soft set on a commutative ring R endowed with the topology τ. Then,
the triplet (F ,A, τ) is called a soft topological ring over R if the following conditions hold for all ε ∈ A:
i. F (ε) is a subring of G for all ε ∈ A.
ii. the mapping F(ε) × F(ε) −→ F(ε) defined by (x, y) 7−→ x − y is continuous.
iii. the mapping F(ε) × F(ε) −→ F(ε) defined by (x, y) 7−→ x · y is continuous.

Definition 2.10. [22] A hyperring is an algebraic system (R,+, ·) which satisfies the following axioms:
i. (R,+) is a commutative hypergroup.
ii. (R, ·) is a semihypergroup.
iii. The hyperoperation “·” is distributive with respect to the hyperoperation “+”.

Example 2.11. [22] Let R = {0, 1} be a set with two hyperoperations defined as follows:

+ 0 1
0 {0} {1}
1 {1} {0, 1}

· 0 1
0 {0} {0}
1 {0} {0, 1}

So it can be easily verified that (R,+, ·) is a hyperring.

Definition 2.12. [25] A non-empty subset R′ of a hyperring (R,+, ·) is said to be a subhyperring of R if (R′,+, ·)
itself is a hyperring.

Definition 2.13. [20] Let (R, τ) be a topological space and P∗(R) denote the family of non-empty subsets of R. Then,
the collection B consisting of all sets SV = {U ∈ P∗(R) : U ⊆ V,U ∈ τ} is a base for a topology on P∗(R) denoted by
τ∗.

Definition 2.14. [20] Let (R,+, ·) be a hyperring and (R, τ) be a topological space. Then, algebraic hyperstructure
(R,+, ·, τ) is called a topological hyperring if three hyperoperations “ + ”, “ · ” and “/” are continuous.

Remark 2.15. [20] Every topological ring is a topological hyperring by trivial hyperoperations.

Definition 2.16. [17] Let (F ,A) be a non-null soft set over the hyperring R. Then the pair (F,A) is said to be a soft
hyperring over R if F (ε) is a subhyperring of R for all ε ∈ Supp(F ,A).

Example 2.17. [25] Consider a hyperring (R,+, ·) with the hyperoperations as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 0 0 0

Define a soft set (F,A) over R = {0, 1, 2, 3}, where A = R, by F(0) = {0, 2}, F(1) = {0, 3}, F(2) = {0} and F(3) = {0, 1}.
Then it is clear that F(0),F(1),F(2) and F(3) are subhyperrings of R. Thus (F,A) is a soft hyperring over R.
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3. Soft Topological Hyperrings

In this section, the concept of soft topological hyperrings will be introduced and some important
characterizations of them will be established. By presenting the concept of soft topological subrings, the
related structural properties will also be examined.

Definition 3.1. Let τ be a topology on the hyperring R. Let F : A −→ P(R) be a mapping, where P(R) is the set of
all subhyperrings of R, and A is the set of parameters. The system (F ,A, τ) is called a soft topological hyperring over
R if the following statements hold for all ε ∈ Supp(F ,A):
i. F(ε) is a subhyperring of R ;
ii. Three hyperoperations +, ·, / : F (ε) × F (ε) −→ P∗(F (ε)) are continuous with respect to the topologies induced
by τ × τ and τ∗.

A trivial verification shows that if R is a topological hyperring, it is sufficient to hold only the statement
i. in the above definition in order to called the system (F ,A, τ) as a soft topological hyperring. Besides, the
soft topological hyperring (F ,A, τ) can be considered as a parameterized family of subhyperrings of the
topological hyperring R.

Example 3.2. Every soft topological ring is a soft topological hyperring.

Example 3.3. Consider the hyperring R of real numbers with its natural topology τ such that the hyperoperations
x + y = x · y = {x, y} for all x, y ∈ R. Suppose A =N. Then for all ε ∈ A, the mapping F is defined as

F :N −→ P∗(R)

ε 7→ F(ε) =

{
{0, ε} ε tek
Q ε çift

In either case, it can be clearly checked that F(ε) is a subhyperring of the topological hyperring R. Hence, the triplet
(F ,A, τ) a soft topological hyperring over R.

Definition 3.4. Let (F ,A, τ) be a soft topological hyperring over R. Then (F ,A, τ) is said to be
i. an identity soft topological hyperring if F(ε) = ∅ for all ε ∈ A.
ii. an absolute soft topological hyperring if F(ε) = R for all ε ∈ A.

Example 3.5. In the example above, assuming A = R and F(ε) = {ω ∈ R : ε + ω = {ε}} for all ε ∈ A, it is easily
obtained that (F ,A, τ) is an identity soft topological hyperring over R.

In the following, we present the relationship between soft hyperrings and soft topological hyperrings.

Theorem 3.6. Every soft hyperring on a topological hyperring R is a soft topological hyperring.

Proof. Consider a soft hyperring (F ,A) over the topological hyperring Rwith the topology τ. Since F (ε) is
a subhyperring of R for all ε ∈ A, F (ε) is also a topological subhyperring of Rwith recpect to the topologies
induced by τ and τ∗ for all ε ∈ A. Thus, (F ,A, τ) is a soft topological hyperhyperring over R.

Remark 3.7. Each soft hyperring R can be transformed into a soft topological hyperring by equipping both R and
P∗(R) with discrete or indiscrete topology. But the converse of this statement is not true, meaning that every soft
hyperring over a hyperring is not a soft topological hyperring.

Some generalizations for a nonempty family of soft topological hyperrings are introduced here:

Theorem 3.8. Let {(Fα,Aα, τ) | α ∈ I} be a non-empty family of soft topological hyperrings over R.
i. The restricted intersection of the family {(Fα,Aα, τ)|α ∈ I} with

⋂
α∈I Aα , ∅ is a soft topological hyperring over R

if it is non-null.
ii. The extended intersection of the family {(Fα,Aα)|α ∈ I} is a soft topological hyperring over R if it is non-null.
iii. The ∧−intersection

∧̃
α∈I(Fα,Aα, τ) is a soft topological hypergroup over R if it is non-null
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Proof. i. The restricted intersection of the family {(Fα,Aα, τ)|α ∈ I} with
⋂
α∈I Aα , ∅ given by the soft set⋂̃

α∈I(Fα,Aα, τ) = (F ,A, τ) such that
⋂
α∈I Fα(ε) for all ε ∈ A from Definition 2.4. Take ε ∈ Supp(F ,A). By the

assumption,
⋂
α∈I Fα(ε) , ∅ such that Fα(ε) , ∅ for all α ∈ I. Since {(Fα,Aα, τ)|α ∈ I} is a non-empty family

of soft topological hyperrings over R, this implies that Fα(ε) is also a topological subhyperring of R for all
α ∈ I. It is then evident that

⋂
α∈I Fα(ε) is a topological subhyperring of R. Therefore, (F ,A, τ) is a soft

topological hyperring over R.
ii. The proof is similar to i.
iii. Choose (F ,A, τ) =

∧̃
α∈I(Fα,Aα, τ) for a non-empty family {(Fα,Aα, τ)|α ∈ I}of soft topological hyperrings

over R. Let ε ∈ Supp(F ,A). It follows from the hypothesis
⋂
α∈I Fα(εα) , ∅ that Fα(εα) , ∅ for all α ∈ I and

(εα)α∈I ∈ Aα. Thus, Fα(εα) is a topological subhyperring of R for all α ∈ I so that their intersection must be a
topological subhyperring of R too. Clearly, (F ,A, τ) is a soft topological hyperring over R.

3.1. Soft Topological Hyperring Homomorphisms

Definition 3.9. Let (F ,A, τ) and (K ,B, τ′) be soft topological hyperrings overR andS, respectively. Letφ : A −→ B
and ψ : R −→ S be two mappings. Then the pair (ψ,φ) is called a soft topological homomorphism if the following
statements are satisfied:
i. ψ is a strong homomorphism;
ii. ψ(F (ε)) = K (φ(ε)) for all ε ∈ Supp(F ,A);
iii. ψε : (F (ε), τF (ε)) −→ (K (φ(ε)), τ′

K (φ(ε))) continuous and open for all ε ∈ Supp(F ,A).

Namely, a soft topological homomorphism (ψ,φ) is a mapping of soft topological hyperrings. In this
direction, we obtain a new category whose objects are soft topological hyperrings and whose arrows are
soft topological homomorphisms.

Note that If ψ is a isomorphism, φ is bijective, then the pair (ψ,φ) is said to be a soft topological
isomorphism, and (F ,A, τ) is soft topologically isomorphic to (K ,B, τ′) denoted by (F ,A, τ) ' (K ,B, τ′).

Example 3.10. Let (K ,B, τ) be a soft topological subhyperring of (F ,A, τ) over R. Then the pair (I, i) is a soft
topological homomorphism from (K ,B, τ) to (F ,A, τ), where i : B −→ A is an inclusion map and I : R −→ R is an
identity map.

Example 3.11. Let (F ,A) and (K ,B) be the two soft homomorphic hyperrings defined over R and S, resp. Then,
it is easy to obtain that (F ,A, τ) is soft topological homomorphic to (K ,B, τ) such that τ is discrete or anti-discrete
topology. So, any soft homomorphic hyperrings can be reviewed as soft topological homomorphic hyperrings with the
discrete or anti-discrete topology.

At the moment, we can easily deduce that

Theorem 3.12. Let the pair (ψ,φ) be a soft topological homomorphism between the soft topological hyperrings
(F ,A, τ) and (K ,B, τ′) defined over R and S, resp. Then if φ : A −→ B be an injective mapping, (ψ(F ),B, τ′) is a
soft topological hyperring over S

Proof. Consider two soft topological hyperrings (F ,A, τ) and (K ,B, τ′) over R and S, respectively. Since
(ψ,φ) : (F ,A, τ) −→ (K ,B, τ′) is a soft topological homomorphism, it follows that φ(Supp(F ,A)) =
Supp(ψ(F ),B). Consider b ∈ Supp(ψ(F ),B). So there exist ε ∈ Supp(F ,A) such that φ(ε) = b and hence
F (ε) , ∅. Also, it is evident that F (ε) is a topological subhyperring of R and is also a topological hyperring
with respect to the topology induced by τ. Since ψ is a strong homomorphism, we obtain that ψ(F (ε)) is a
topological subhyperring ofH ′ with respect to the topology induced by τ′. Consequently, (ψ(F ),B, τ′) is a
soft topological hypergroup over S.

Theorem 3.13. Let the pair (ψ,φ) be a soft topological homomorphism between the soft topological hyperrings
(F ,A, τ) and (K ,B, τ′) over H and H ′, resp. Then (ψ−1(K ),A, τ) is a soft topological hyperring over R if it is
non-null.
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Proof. Since the pair (ψ,φ) be a soft topological homomorphism, this implies

φ(Supp(ψ−1(K ),A)) = φ−1(Supp(K ,B))

for all b ∈ Supp(K ,B). When a ∈ Supp(ψ−1(K ),A), we get φ(ε) ∈ Supp(K ,B). Thus, the nonempty set
K (φ(ε)) is a topological subhyperring ofH ′ and is also a topological hyperring with respect to the topology
induced by τ′. Since ψ is a strong homomorphism, it follows that ψ−1(K (φ(ε))) = ψ−1(K (ε)) is a topological
subhyperring of R with respect to the topology induced by τ. This means that (ψ−1(K ),A, τ) is a soft
topological hyperring over R.

Theorem 3.14. Let (F ,A, τ), (K ,B, τ′) and (N ,C, τ′′) be soft topological hyperrings over R, S and T , respectively.
If (ψ,φ) : (F ,A, τ) −→ (K ,B, τ′) and (ψ′, φ′) : (K ,B, τ′) −→ (N ,C, τ′′) are two soft topological homomorphisms,
then the pair (ψ′ ◦ ψ,φ′ ◦ φ) is a soft topological homomorphism.

Proof. Consider two soft topological homomorphisms (ψ,φ) : (F ,A, τ) −→ (K ,B, τ′) and (ψ′, φ′) : (K ,B, τ′) −→
(N ,C, τ′′). By Definition 3.9, it follows that ψ : H −→ H ′ and ψ′ : H ′ −→ H ′′ are two strong homomor-
phisms, and φ : A −→ B and φ′ : B −→ C are two mappings such that the equalities ψ(F (ε)) = K (φ(ε))
and ψ′(K (ε)) = N(φ′(ε)) hold for all ε ∈ Supp(F ,A), ε ∈ Supp(K ,B). So, We can easily deduce that
ψ′ ◦ ψ : H −→ H ′′ is also strong homomorphism and φ′ ◦ φ : A −→ C is a mapping so that the equality

(ψ′ ◦ ψ)(F (ε)) = ψ′(ψ(F (ε))) = ψ′(K (φ(ε))) = N(φ′(φ(ε))) = N((φ′ ◦ φ)(ε))

holds for all ε ∈ Supp(F ,A). Also, (ψ′ ◦ ψ)ε : (F (ε), τF (ε)) −→ (N((φ′ ◦ φ)(ε)), τ′′
N((φ′◦φ)(ε))) continuous and

open for all ε ∈ Supp(F ,A). Hence, it is concluded that (ψ′ ◦ ψ,φ′ ◦ φ) : (F ,A, τ) −→ (N ,C, τ′′) is a soft
topological homomorphism.

3.2. Soft Topological Subhyperrings
In this subsection, we define the notion of soft topological subhyperrings and establısh some its impor-

tant characterizations.

Definition 3.15. Let (F ,A, τ) be a soft topological hyperring over R. Then, (K ,B, τ) is called a soft topological
subhyperring of (F ,A, τ) if the following conditions are satisfied:
i. B ⊆ A;
ii. K (b) is a subhyperring of F (b) for all b ∈ Supp(K ,B);
iii. The hyperoperations +, ·, / : F (ε)×F (ε) −→ P∗(F (ε)) are continuous with respect to the topologies induced by
τ × τ and τ∗ for all b ∈ Supp(K ,B).

Example 3.16. Consider a soft topological hyperring (F ,A, τ) over R and B ⊆ A. Then, we can easily deduce that
(F |B,B, τ) is a soft topological subhyperring of (F ,A, τ).

Theorem 3.17. If (K ,B, τ) is a soft topological subhyperring of (F ,A, τ) and (N ,C, τ) is a soft topological subhy-
perring of (K ,B, τ), then (N ,C, τ) is the soft topological subhyperring of (F ,A, τ).

Proof. Straightforward.

Theorem 3.18. Let (F ,A, τ) and (K ,B, τ) be two soft topological hyperrings over R. Then (K ,B, τ) is a soft
topological subhyperring of (F ,A, τ) if (K ,B) is a soft subset of (F ,A).

Proof. Assume (F ,A, τ) and (K ,B, τ) are two soft topological hyperrings over R. Clearly, if (K ,B) is a soft
subset of (F ,A), it follows that B ⊆ A and K (b) ⊆ F (b) for all b ∈ Supp(K ,B). Thus, K (b) is a topological
subhyperring of F (b) with respect to the topology induced by τ. Thus, (K ,B, τ) is a soft topological
subhyperring of (F ,A, τ).

After that, we discuss some generalized properties of soft topological subhyperrings.
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Theorem 3.19. Let (F ,A, τ) be a soft topological hyperring overH and {(Fα,Aα, τ) |α ∈ I} be a non-empty family
of soft topological subhyperrings of (F ,A, τ).
i. The restricted intersection of the family {(Fα,Aα, τ) |α ∈ I} with

⋂
α∈I Aα , ∅ is a soft topological subhyperring of

(F ,A, τ) if
⋂̃
α∈I(Fα,Aα, τ) , ∅.

ii. The extended intersection of the family {(Fα,Aα, τ) |α ∈ I} is a soft topological subhyperring of (F ,A, τ) if⋂
α∈I Aα , ∅.

iii. The extended union of the family {(Fα,Aα, τ) |α ∈ I} is a soft topological subhyperring of (F ,A, τ) with the
topology τ if Aα ∩ Aβ = ∅ for all α, β ∈ I, α , β.

Proof. We only prove i., and the proofs of ii. and iii. are similar. The restricted intersection of the family
{(Fα,Aα, τ) |α ∈ I} with

⋂
α∈I Aα , ∅ defined by the soft set

⋂̃
α∈I(Fα,Aα, τ) = (F ,A, τ) such that F (ε) =⋂

α∈I Fα(ε) for all ε ∈ A. Let ε ∈ Supp(F ,A). Assume
⋂
α∈I Fα(ε) , ∅ such that Fα(ε) , ∅ for all α ∈ I.

Since {(Fα,Aα, τ) |α ∈ I} is a non-empty family of soft topological subhyperrings of (F ,A, τ), therefore
Aα ⊆ A and Fα(ε) is a topological subhyperring of F (ε) with respect to the topology induced by τ for all
α ∈ I. So

⋂
α∈I Aα ⊆ A and

⋂
α∈I Fα(ε) is a topological subhyperring of F (ε). Consequently, the family

{(Fα,Aα, τ) |α ∈ I} is a soft topological subhyperring of (F ,A, τ)

Besides, we can obtain the following result:

Theorem 3.20. Let {(Fα,Aα, τ) |α ∈ I} be a non-empty family of soft topological hyperrings overH and let (Kα,Bα, τ)
be a soft topological subhyperring of (Fα,Aα, τ) for all α ∈ I. Then,∧−intersection

∧̃
α∈I(Kα,Bα, τ) is a soft topological

subhyperring of
∧̃
α∈I(Fα,Aα, τ) if it is non-null.

Proof. Suppose that {(Fα,Aα, τ) |α ∈ I} is a non-empty family of soft topological hyperrings over R. By The-
orem 3.5 (ii), it is clear that

∨̃
α∈I(Fα,Aα, τ) is a soft topological hyperring over R. Choose εα ∈ Supp(Kα,Bα).

Then
⋂
α∈IKα(εα) , ∅ which implies that Kα(εα) , ∅ for all α ∈ I and (εα)α∈I ∈ Bi. Further, Bα ⊆ Aα and

Kα(εα) is a topological subhyperring of Fα(εα) with respect to the topology induced by τ for all α ∈ I such
that

⋂
α∈I Bα ⊆

⋂
α∈I Aα and

∨
α∈I(Kα(εα)) is also a a topological subhyperring of

∨
α∈I(Fα(εα)). Therefore,∧̃

α∈I(Kα,Bα, τ) is a soft topological subhyperring of
∧̃
α∈I(Fα,Aα, τ).

Theorem 3.21. Let (K ,B, τ) be a soft topological subhyperring of (F ,A, τ) over R. Then, the restricted intersection
of (F ,A, τ) and (K ,B, τ) is a soft topological subhyperring of (F ,A, τ) if it is non-null.

Proof. Suppose that (K ,B, τ) is a soft topological subhypergroup of (F ,A, τ) over R. If it is non-null, we
have that B ⊆ A andK (ε) is a topological subhyperring ofF (ε) with respect to the topology induced by τ for
all ε ∈ Supp(K ,B). Thus, we can obtain easily that A∩ B ⊆ A andK (ε)∩F (ε) is a topological subhyperring
of F (ε) with respect to the topology induced by τ for all ε ∈ Supp(K ,B). Hence, the restricted intersection
(F ,A, τ)∩̃(K ,B, τ) is a soft topological subhyperring of (F ,A, τ).

Theorem 3.22. Let f : R −→ R′ be a good homomorphism of the topological hyperrings (F ,A, τ′) and (K ,B, τ′)
over H ′. Then ( f−1(K ),B, τ) is a soft topological subhyperring of ( f−1(F ),A, τ) if (K ,B, τ′) is a soft topological
subhyperring of (F ,A, τ′).

Proof. Consider (K ,B, τ′) as a soft topological subhyperring of (F ,A, τ′) over R. Let ε ∈ Supp( f−1(K ),B).
Because (K ,B, τ′) is a soft topological subhyperring of (F ,A, τ′), we have that B ⊆ A and (K (b)) is a
topological subhyperring of (F (ε) with respect to the topology induced by τ′ for all ε ∈ Supp( f−1(K ),B).
Further, since f : H −→ H ′ be a good topological homomorphism, so f−1(F )(ε) = f−1(F (ε)) is a topological
subhyperring of f−1(K )(ε) = f−1(K (ε)) with respect to the topology induced by τ for all ε ∈ Supp( f (K ),B).
Therefore, ( f−1(K ),B, τ) is a soft topological subhyperring of ( f−1(F ),A, , τ).
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Theorem 3.23. Let f : H −→ H ′ be a good homomorphism of the topological hyperrings (F ,A, τ) and (K ,B, τ)
over R. Then ( f (K ),B, τ′) is a soft topological subhyperring of ( f (F ),A, τ′) overH ′ if (K ,B, τ) is a soft topological
subhyperring of (F ,A, τ).

Proof. Assume (K ,B, τ) is a soft topological subhyperring of (F ,A, τ) overR. If (K ,B, τ) is a soft topological
subhyperring of (F ,A, τ), this means that B ⊆ A and (K (ε)) is a topological subhyperring of (F (ε) with
respect to the topology induced by τ for all ε ∈ Supp(K ,B). Also, because f : H −→ H ′ be a good topological
homomorphism, we have that f (F )(ε) = f (F (ε)) is a topological subhyperring of f (K )(ε) = f (K (ε)) with
respect to the topology induced by τ′ for all ε ∈ Supp( f (K ),B). Hence, ( f (K ),B, τ′) is a soft topological
subhyperring of ( f (F ),A, τ′).
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Abstract. Introducing the notion of asymptotically isometric copies inside Banach spaces, Dowling,
Lennard and Turett made easier to detect failure of the fixed point property for nonexpansive mappings.
Their tool was very usefull for indicating the failure. Since then, researchers have investigated alternative
tools. Recently, Nezir introduced the notion of asymptotically isometric copies of `1�0. He noticed that
a renorming of `1 turns out to be a degenerate Lorentz-Marcinkiewicz space and using its structure he
introduced his notion which implies the failure of the fixed point property for nonexpansive mappings. In
this study, we introduce another notion which is derived from the structure of another degenerate Lorentz-
Marcinkiewicz space and we show that detecting our new tool in Banach spaces will indicate the failure of
the fixed point property for nonexpansive mappings.

1. Intoduction and Preliminaries

While Dowling and Lennard initially wanted to prove that nonreflexive subspaces of L1[0, 1] fail the
fixed point property, they introduced the concept of a Banach space containing an asymptotically isometric
copy of `1 and then used this notion to prove that every equivalent renorming of `1(Γ), for Γ uncountable,
fails the fixed point property [4].

The notion of asymptotically isometric copies of the classical Banach spaces `1 has applications in metric
fixed point theory because they arise naturally in many places. For example, every non-reflexive subspace
of (L1[0, 1], ‖.‖1), every infinite dimensional subspace of (`1

‖.‖1), and every equivalent renorming of `∞

contains an asymptotically isometric copy of `1 and so all of these spaces fail the fixed point property [4, 6].
The concept of containing an asymptotically isometric copy `1 also arises in the isometric theory of Banach
spaces in an intriguing way: a Banach space X contains an asymptotically isometric copy `1 if and only if
X∗ contains an isometric copy of (L1[0, 1], ‖.‖1) [6].

In 1996, Dowling, Lennard and Turett investigated Banach spaces containing asymptotically isometric
copies of `1 deeply and they reached important results which has leaded researchers to test the failure of
the fixed point property for nonexpansive mappings in Banach spaces they have studied. In fact, Lin was
impressed with their work [5] which proved `1 with a norm does not contain any asymptotically isometric
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copy of `1 and then he later showed using a special version of the norm in [7] that `1 has the fixed point
property.

Thus, importance of detecting nice copies of `1, after witnessing their applications especially, suggests
the researchers to investigate alternative properties which will help explore the failure of the fixed point
property for nonexpansive mappings. For example, recently, Álvaro, Cembranos and Mendoza [1] intro-
duced another nice property, which they called N1, to detect failure of fixed point property for nonexpansive
mappings. Their notion was more general than the concept of a Banach space containing an asymptotically
isometric copy of c0.

In 2019, the first author explored a new renorming of `1 and noticed that his renorming was actually
yielding a degenerate Lorentz-Marcinkiewicz space. He investigated fixed point properties for the dual
and predual of his renorming and obtained the results of their failure of the fixed point property for
nonexpansive mappings [10]. Later, using the structure of these spaces, in [11], he introduced the notion of
asymptotically isometric copies of `1�0 which implies failure of the fixed point property for nonexpansive
mappings for nonexpansive mappings. One can say that detecting Nezir’s construction in Banach spaces
is a sign of detecting a nice copy of a degenerate Lorentz-Marcinkiewicz space.

In this study, we introduce another notion which is derived from the structure of another degenerate
Lorentz-Marcinkiewicz space and we show that detecting our new tool in Banach spaces will indicate the
failure of the fixed point property for nonexpansive mappings.

Now, we give some preliminaries for our study.

Definition 1.1. [3] A Banach space (X, ‖ · ‖) is said to contain an asymptotically isometric copy of `1 if there is a null
sequence (εn)n in (0, 1) and a sequence (xn)n in X so that

∞∑
n=1

(1−εn)|an|≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥≤
∞∑

n=1

|an| ,

for all (an)n ∈ `1.

The usefulness of this notion can be found in the next result.

Theorem 1.2. [4] If a Banach space X contains an asymptotically isometric copy of `1, then X fails the fixed point
property for nonexpansive mappings on closed bounded convex subset of X.

Moreover, Dowling, Lennard and Turett provided the following theorem which shows an alternative
way of detecting an asymptotically isometric copy of `1 in Banach spaces.

Theorem 1.3. [3] A Banach space X contains an asymptotically isometric copy of `1 if and only if there is a sequence
(xn)n in X such that there are constants 0 <m≤M<∞ so that for all (tn)n∈`

1 ,

m
∞∑

n=1

|tn|≤

∥∥∥∥∥∥∥
∞∑

n=1

tnxn

∥∥∥∥∥∥∥≤M
∞∑

n=1

|tn| ,

and lim
n→∞
‖xn‖=m.

Now, let’s recall the definition of Lorentz-Marcinkiewicz space and the degenerate one, the space Nezir
introduced in [10].

First of all, we note that our reference for Lorentz spaces is [8, 9].
Now, we recall the construction of Lorentz-Marcinkiewicz spaces.
Let w ∈ (c0 \ `1)+, w1 = 1 and (wn)n∈N be decreasing; that is, consider a scalar sequence given by

w = (wn)n∈N, wn > 0,∀n ∈ N such that 1 = w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn ≥ wn+1 ≥ . . . ,∀n ∈ N with wn −→ 0 as
n −→ ∞ and

∑
∞

n=1 wn = ∞. This sequence is called a weight sequence. For example, wn = 1
n ,∀n ∈N.



V. Nezir, N. Mustafa, / TJOS 6 (1), 14–23 16

Definition 1.4.

`w,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣‖x‖w,∞ := sup
n∈N

∑n
j=1 x j

?∑n
j=1 w j

< ∞

 .

Here, x? represents the decreasing rearrangement of the sequence x, which is the sequence of |x| = (|x j|) j∈N, arranged
in non-increasing order, followed by infinitely many zeros when |x| has only finitely many non-zero terms.

This space is non-separable and an analogue of `∞ space.

Definition 1.5.

`0
w,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣lim sup
n−→∞

∑n
j=1 x j

?∑n
j=1 w j

= 0

 .

This is a separable subspace of `w,∞ and an analogue of c0 space.

Definition 1.6.

`w,1 :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣∣∣‖x‖w,1 :=
∞∑
j=1

w j x j
? < ∞

 .

This is a separable subspace of `w,∞ and an analogue of `1 space with the following facts: (`0
w,∞)? � `w,1 and

(`w,1)? � `w,∞ where the star denotes the dual of a space while � denotes isometrically isomorphic.

Now, we will introduce Nezir’s construction.

For all x = (xn)n∈N ∈ `
1, we define ~x~ := ‖x‖1 + ‖x‖∞ =

∞∑
n=1
|xn| + sup

n∈N
|xn| . Clearly ~ · ~ is an equivalent

norm on `1 with ‖x‖1 ≤ ~x~ ≤ 2‖x‖1, ∀x ∈ `1.
We shall call ~ · ~ the 1 �∞-norm on `1.
Note that ∀x ∈ `1, ~x~ = 2x∗1 + x∗2 + x∗3 + x∗4 + · · · where z∗ is the decreasing rearrangement of |z| =

(|zn|)n∈N, ∀z ∈ c0.
Let δ1 := 2, δ2 := 1, δ3 := 1, · · · , δn := 1, ∀n ≥ 4.
We see that (`1,~ · ~) is a (degenerate) Lorentz space `δ,1, where the weight sequence δ = (δn)n∈N is a

decreasing positive sequence in `∞\c0, rather than in c0\`1 (the usual Lorentz situation). This suggests that

`0
δ,∞ = (c0, ‖ · ‖) is an isometric predual of (`1,~ · ~) where for all z ∈ c0, ‖z‖ := sup

n∈N

n∑
j=1

z∗j
n∑

j=1
δ j

.

In our study, we will consider the degenerate Lorentz-Marcinkiewicz space generated by the weight
sequence δ =

(
1 + 1, 1 + 1

2 , 1 + 1
4 , 1 + 1

8 , 1 + 1
16 , · · · , 1 + 1

2n , · · ·
)
.

That is, we will consider the degenerate Lorentz-Marcinkiewicz space given by the following definition.

Definition 1.7.

`δ,1 :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣∣∣‖x‖`,1 :=
∞∑
j=1

|x j| +

∞∑
j=1

x j
?

2 j−1
< ∞

 .

Here, one can notice that for x ∈ `δ,1,

‖x‖`,1 =

∞∑
j=1

|x j| +

∞∑
j=1

x j
?

2 j−1

=

∞∑
j=1

x j
? +

∞∑
j=1

x j
?

2 j−1

=

∞∑
j=1

(
1 +

1
2 j−1

)
x j
? .
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Inspired by the construction of degenerate Lorentz-Marcinkiewicz Nezir introduced in [10], in [11], Nezir
introduced the structure of asymptotically isometric copies of `1�0. Then, he proved that if a Banach
space contains an asymptotically isometric copies of `1�0, it fails the fixed point property for nonexpansive
mappings. This was an alternative property to the concept of Banach spaces’ containing an asymptotically
isometric copies of `1. Now, we will recall this notion and the consequences it yields in fixed point theory.

Definition 1.8. [11] A Banach space (X, ‖ · ‖) is said to contain an asymptotically isometric copy of `1�0 if there is a
null sequence (εn)n in (0, 1) and a sequence (xn)n in X so that

1
2

sup
n∈N

(1 − εn)|an| +

∞∑
n=1

(1−εn)|an|

≤
∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥≤1
2

sup
n∈N
|an| +

∞∑
n=1

|an|

 ,
for all (an)n ∈ `1.

Then, as we previously stated that he obtained the following result.

Theorem 1.9. [11] If a Banach space X contains an asymptotically isometric copy of `1�0 , then X fails the fixed point
property for nonexpansive mappings on closed bounded convex subset of X.

He also showed that the above result could be given as the consequence of the following theorem.

Theorem 1.10. [11] If a Banach space X contains an asymptotically isometric copy of `1�0 , then X contains an
asymptotically isometric copy of `1 but the converse is not true.

2. Main Results

In this section, we define two new properties that imply the failure of the fixed point property for
nonexpansive mappings. That is, we show that if a Banach space has any of the properties we introduce
then it fails to have the fixed point property for nonexpansive mappings. We find alternative ways of
detecting our properties. Then, we show that a Banach space contains an asymptotically isometric copy
of `1 if and only if it has any of the properties we introduce. Moreover, we show that the degenerate
Lorentz-Marcinkiewicz space we introduce in the earlier section has any of the properties we introduce in
this section but we show that a Banach space isomorphic to the degenerate Loretz-Marcinkiewicz space we
introduce in the previous section does not contain any asymptotically isometric copy of `1 while oviously
it has the properties we introduce in this section. Now, let’s introduce those new properties and the results
we have mentioned.

First of all, we give the definitions of our properties as follows:

Definition 2.1. We will say that a Banach space (X, ‖ · ‖) has property NM-1 if there is a null sequence (εn)n in (0, 1)
and a sequence (xn)n in X so that

∞∑
n=1

(1 − εn)|an| +

∞∑
n=1

(1 − εn)|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|an| +

∞∑
n=1

|an|

2n−1 ,

for all (an)n ∈ `1.

Definition 2.2. We will say that a Banach space (X, ‖ · ‖) has property NM-2 if there is a null sequence (εn)n in (0, 1)
and a sequence (xn)n in X so that√√√√√√√√√√√√√ ∞∑

n=1

(1 − εn)
∞∑

j=n

|a j|


2

+


∞∑

n=1

(1 − εn)
∞∑

j=n
|a j|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤
√√√√√√√√√√√√√ ∞∑

n=1

∞∑
j=n

|a j|


2

+


∞∑

n=1

∞∑
j=n
|a j|

2n−1


2

,

for all (an)n ∈ `1.
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First, we give an alternative ways of detecting our properties NM-1 and NM-2 which will help us prove
that a Banach space contains an ai copy of `1 if and only if it has one of the properties NM-1 and NM-2.

Theorem 2.3. A Banach space (X, ‖ · ‖) has property NM-1 if and only if there is a sequence (xn)n in X such that

1. there exists M ∈ [1,∞) so that for any (an)n ∈ `1,

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

 ∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1

 (1)

and
2.

lim
n→∞
‖xn‖ = 1. (2)

Proof. Suppose that (X, ‖ · ‖) has property NM-1. Then, there exist a null sequence (εn)n in (0, 1) and a
sequence (xn)n in X so that

∞∑
n=1

(1 − εn)|an| +

∞∑
n=1

(1 − εn)|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|an| +

∞∑
n=1

|an|

2n−1 , (3)

for all (an)n ∈ `1.
We may assume (εn)n∈N to be a decreasing sequence since we may replace that withξ j := max

k≥n
εk , for all j ∈

N . Let zk = (1 − εk)−1xk for each k ∈N. Then, for all (ak)k ∈ `1,

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|an|

1 − εn
+

∞∑
n=1

|an|

(1 − εn)2n−1 .

Let M = 1
1−ε1

. Then, condition (1) is achieved for the sequence (zn)n in X. Also, it is clear to see the condition
(2) is achieved for the sequence (zn)n too since in inequality (3), taking (an)n as the unit basis (en)n of c0 we
obtain that lim

n→∞
‖xn‖ = 1 and so lim

n→∞
‖zn‖ = 1.

Conversely, assume that there exist a sequence (xn)n in X and M ∈ [1,∞) so that for all (an)n ∈ `1,

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

 ∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1

 (4)

and lim
n→∞
‖xn‖ = 1.

Let (εn)n be a null sequence in (0, 1). Since lim
k→∞
‖xk‖ = 1, and ‖xk‖ ≥ 1 for all k ∈ N, by passing to

subsequences, if necessary, we may suppose that 1 ≤ ‖xk‖ ≤ 1 + εk for all k ∈ N. Define zk = xk
1+εk

for every
k ∈N. Then, since ‖zk‖ ≤ 1, we have∥∥∥∥∥∥∥

∞∑
n=1

anzn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|an| ≤

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 for every (ak)k ∈ `
1 .

Also, from the left hand side inequality of (4), we have∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑

n=1

an
xn

(1 + εn)

∥∥∥∥∥∥∥ ≥
∞∑

n=1

|an|

1 + εn
+

∞∑
n=1

|an|

(1 + εn)2n−1 ≥

∞∑
n=1

(1 − εn)|tn| +

∞∑
n=1

(1 − εn)
|an|

2n−1 .
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Now, we show the alternative way of detecting NM-2 property.

Theorem 2.4. A Banach space (X, ‖ · ‖) has property NM-1 if and only if there is a sequence (xn)n in X such that

1. there exists M ∈ [1,∞) so that for any (an)n ∈ `1,√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

(5)

and
2.

lim
n→∞
‖xn‖ = 1. (6)

Proof. Assume that (X, ‖ · ‖) has property NM-2. Then, there exist a null sequence (εn)n in (0, 1) and a
sequence (xn)n in X so that√√√√√√√√√√√√√ ∞∑

n=1

(1 − εn)
∞∑

j=n

|a j|


2

+


∞∑

n=1

(1 − εn)
∞∑

j=n
|a j|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤
√√√√√√√√√√√√√ ∞∑

n=1

∞∑
j=n

|a j|


2

+


∞∑

n=1

∞∑
j=n
|a j|

2n−1


2

, (7)

for every (an)n ∈ `1.
Now for every n∈N, define zn:=xn−xn−1 with x0= 0. So there exist a null sequence (εn)n in (0, 1) so that

for all (an)n∈`
1√√√ ∞∑

n=1

(1 − εn)|an|


2

+

 ∞∑
n=1

(1 − εn)|an|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤
√√√ ∞∑

n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

, (8)

We may assume (εn)n∈N to be a decreasing sequence since we may replace that withξ j := max
k≥n

εk , for all j ∈

N . Let yk = (1 − εk)−1zk for each k ∈N. Then, for all (ak)k ∈ `1,√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anyn

∥∥∥∥∥∥∥ ≤
√√√ ∞∑

n=1

|an|

1 − εn


2

+

 ∞∑
n=1

|an|

(1 − εn)2n−1


2

.

Let M = 1
1−ε1

. Then, condition (5) is achieved for the sequence (zn)n in X. Also, it is clear to see the condition
(6) is achieved for the sequence (zn)n too since in inequality (3), taking (an)n as the unit basis (en)n of c0 we
obtain that lim

n→∞
‖xn‖ = 1 and so lim

n→∞
‖zn‖ = 1.

Conversely, assume that there exist a sequence (xn)n in X and M ∈ [1,∞) so that for all (an)n ∈ `1,√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

(9)

and lim
n→∞
‖xn‖ = 1.

Let (εn)n be a null sequence in (0, 1). Since lim
k→∞
‖xk‖ = 1, and ‖xk‖ ≥ 1 for all k ∈ N, by passing to

subsequences, if necessary, we may suppose that 1 ≤ ‖xk‖ ≤ 1 + εk for all k ∈ N. Define zk = xk
1+εk

for every
k ∈N. Then, since ‖zk‖ ≤ 1, we have∥∥∥∥∥∥∥

∞∑
n=1

anzn

∥∥∥∥∥∥∥ ≤
∞∑

n=1

|an| ≤

√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

for every (an)n ∈ `
1 .
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Also, from the left hand side inequality of (9), we have∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑

n=1

an
xn

(1 + εn)

∥∥∥∥∥∥∥ ≥

√√√ ∞∑
n=1

|an|

1 + εn


2

+

 ∞∑
n=1

|an|

(1 + εn)2n


2

≥

√√√ ∞∑
n=1

(1 − εn)|an|


2

+

 ∞∑
n=1

(1 − εn)
|an|

2n−1


2

.

Now for each n∈N, define yn:=
∑n

j=1 zj. Then, there exist a null sequence (εn)n in (0, 1) so that for all (an)n∈`
1,√√√√√√√√√√√√√ ∞∑

n=1

(1 − εn)
∞∑

j=n

|a j|


2

+


∞∑

n=1

(1 − εn)
∞∑

j=n
|a j|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anyn

∥∥∥∥∥∥∥ ≤
√√√√√√√√√√√√√ ∞∑

n=1

∞∑
j=n

|a j|


2

+


∞∑

n=1

∞∑
j=n
|a j|

2n−1


2

.

Now, we give important results for properties NM-1 and NM-2, one by one.

Theorem 2.5. Let (X, ‖.‖) be a Banach space. Then, X has property NM-1 if and only if X contains an asymptotically
isometric copy of `1.

Proof. Suppose that X has property NM-1. Then, there is a sequence (xn)n in X satisfying lim
n→∞
‖xn‖ = 1 and

there exists a constant M ∈ [1,∞) so that for any (an)n ∈ `1,

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

 ∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1

 .
Thus, letting R := 2M we have

∞∑
n=1

|an| ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤ R
∞∑

n=1

|an| .

Hence, by Theorem 1.3, X contains an asymptotically isometric copy of `1.
Conversely, suppose that a Banach space X contains an asymptotically isometric copy of `1. Then, by

Theorem 1.3, there is a sequence (xn)n in X with lim
n
‖xn‖ = 1 and there exists a constant M ∈ [1,∞) such that

for all (an)n ∈ `1,
∞∑

n=1

|an| ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M
∞∑

n=1

|an| .

Now, define zn =:
(
1 + 1

2n−1

)
xn for each n ∈N and let K = 2M, then we have

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤M

 ∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1

 .
Hence,

∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1 ≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤ K
∞∑

n=1

|an| ≤ K
∞∑

n=1

|an| +

∞∑
n=1

|an|

2n−1

and lim
n
‖zn‖ = 1.

Hence, by Theorem 2.4, X has property NM-2 and we are done.
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Therefore, we can give the following corollary using Theorem 1.2.

Corollary 2.6. If a Banach space X has property NM-1, then X fails the fixed point property for nonexpansive
mappings on closed bounded convex subset of X.

Theorem 2.7. Let (X, ‖.‖) be a Banach space. Then, X has property NM-2 if and only if X contains an asymptotically
isometric copy of `1.

Proof. Suppose that X has property NM-2. Then, there is a sequence (xn)n in X satisfying lim
n→∞
‖xn‖ = 1 and

there exists a constant M ∈ [1,∞) so that for any (an)n ∈ `1,√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M

√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

.

Thus, letting R :=
√

2M we have

∞∑
n=1

|an| ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤ R
∞∑

n=1

|an| .

Hence, by Theorem 1.3, X contains an asymptotically isometric copy of `1.
Conversely, suppose that a Banach space X contains an asymptotically isometric copy of `1. Then, by

Theorem 1.3, there is a sequence (xn)n in X with lim
n
‖xn‖ = 1 and there exists a constant M ∈ [1,∞) such that

for all (an)n ∈ `1,
∞∑

n=1

|an| ≤

∥∥∥∥∥∥∥
∞∑

n=1

anxn

∥∥∥∥∥∥∥ ≤M
∞∑

n=1

|an| .

Now, define zn =:
(
1 + 1

2n−1

)
xn for each n ∈N and let K = 2M, then we have√√√ ∞∑

n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

≤

∞∑
n=1

|an| +

∞∑
n=1

|tn|

2n−1

≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤M

 ∞∑
n=1

|an| +

∞∑
n=1

|an|

2n−1

 .
Hence, √√√ ∞∑

n=1

|an|


2

+

 ∞∑
n=1

|an|

n − 1


2

≤

∥∥∥∥∥∥∥
∞∑

n=1

anzn

∥∥∥∥∥∥∥ ≤ K
∞∑

n=1

|an|

≤ K

√√√ ∞∑
n=1

|an|


2

+

 ∞∑
n=1

|an|

2n−1


2

and lim
n
‖zn‖ = 1.

Hence, by Theorem 2.4, X has property NM-2 and we are done.

Therefore, we can give the following corollary using Theorem 1.2.

Corollary 2.8. If a Banach space X has property NM-2, then X fails the fixed point property for nonexpansive
mappings on closed bounded convex subset of X.
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3. Some Examples and Remarks

In this section, we will give examples that will show some utilization of our property in the fixed point
theory.

As we mentioned in the introduction section, our construction appears in the structure of some degener-
ate Lorentz-Marcinkiewicz spaces. We have been impressed by the first author’s solely works [10, 11] that
introduce a degenerate Lorentz-Marcinkiewicz space and later give the definition of the concept of Banach
spaces containing asymptotically isometric copies of `1�0. Now, let’s consider the degenerate Lorentz-
Marcinkiewicz space `δ,1 that we had talked about in the introduction section where its weight sequence δ
is given by δ =

(
1 + 1

2n−1

)
n
. In a recent, unpublished study by the authors of this paper, it was shown that `δ,1

contains an asymptotically isometric copy of `1 and so we can say by Theorem 2.5 that it has property NM-1
and so equivalently it has property NM-2. Then, this would prove that `δ,1 fails the fixed point property for
nonexpansive mappings.

On the other hand, by Theorem 1.10, we know that if a Banach space contains an asymptotically isometric
copy of `1�0, then it contains an asymptotically isometric copy of `1. Thus, we can conclude by Theorem
2.5 and Theorem 2.7 that if a Banach space contains an asymptotically isometric copy of `1�0, then it has
properties NM-1 and NM-2. However, the following example shows that there exists a Banach space that
has these properties but it does not contain any asymptotically isometric copy of `1�0. We have to note that
the first author showed in [11] that there exists a Banach space that contains an asymptotically isometric
copy of `1 but it does not contain any asymptotically isometric copy of `1�0. Thus, his example also verifies
our remark but here we provide a different example.

Example 3.1. One can easly see that Banach space `1 with its equivalent renorming given by for any x = (xn)n ∈

`1, ~x~∼ =
∞∑

n=1

(
1
4 + 1

2n+1

)
|xn| has the property NM-1 (so NM-2) but we can prove that it does not contain any

asymptotically isometric copy of `1�0.

Proof. We use the similiar ideas expressed in [5] and by contradiction, assume
(
`1, ~ · ~∼

)
does contain an

asymptotically isometric copy of `1�0. That is, there exists a null sequence (εn)n in (0, 1) and a sequence (xn)n
in `1 such that

1
2

sup
n∈N

(1 − εn) |tn| +
1
2

∞∑
n=1

(1 − εn) |tn| ≤

�
�
�
�
�

∞∑
n=1

tn xn

�
�
�
�
�

∼

(10)

≤
1
2

sup
n∈N
|tn| +

1
2

∞∑
n=1

|tn| ,

for every (tn)n∈N ∈ `
1.

Without loss of generality we suppose that (xn)n is disjointly supported and that by passing to a
subsequence, we can assume that (xn) converges weak* (and so it is pointwise) to some y ∈ `1.

Next, replacing xn by the ~ · ~∼-normalization of
(

x2n−x2n−1
2

)
n

satisfying (10), we can suppose that y = 0.

By the proof of the Bessaga-Pełczyński Theorem [2], we may pass to an essentially disjointly supported
subsequence of xn. Hence, when it is normalized and truncated this subsequence appropriately, we get
a disjointly supported sequence satisfying (10). Also, by passing to subsequences if necessary, we may
suppose that εn < 1

3n for all n ∈N.

Let (m(k))k∈N0
with m(0) = 0 and (ξk)k∈N a sequence of scalars such that for each k ∈N, yk =

m(k)∑
j=m(k−1)+1

ξ je j.
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Using the triangular inequality of the norm, for each K ∈N, we get

K − KεK

2
+

K + 1 − ε1 − KεK

2
≤ ~x1 + KxK~

∼

≤

m(1)∑
k=1

(1
4

+
1

2n+1

)
|ξk| + K

m(K)∑
k=m(K−1)+1

(1
4

+
1

2n+1

)
|ξk|

≤
1
2

m(1)∑
k=1

|ξk| + K
(1

4
+

1
2m(K−1)+2

) m(K)∑
k=m(K−1)+1

|ξk| .

Therefore, K + 1−ε1
2 − KεK ≤

1
2 + K

(
1
4 + 1

2m(K−1)+2

)
for all K ∈ N. But since ε1 < 1

3 and KεK < 1
3 , we have

K + 1−ε1
2 − KεK > K and so

1 +
1

2K
−
ε1

2K
− εK ≤

3
4K

+
(1

4
+

1
2m(K−1)+1

)
, for all K ∈N.

Thus, we get a contradiction by letting K→∞ since we would have 3
4 ≤ 0. This completes the proof.
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Abstract. Recently, the q- derivative operator has been used to investigate several subclasses of analytic
functions in different ways with different perspectives by many researchers and their interesting results are
too voluminous to discuss. The q- derivative operator are also used to construct some subclasses of analytic
functions.

In this study, we introduce certain subclasses of analytic and univalent functions in the open unit disk
defined by q-derivative. Here, we give some conditions for an analytic and univalent function to belonging
to these classes. Also, in the study, we define two functions using q-derivative and we aim to find the
conditions for this functions to belonging to defined above subclasses of analytic functions.

1. Intoduction

Let A be the class of analytic functions f in the open unit disk U = {z ∈ C : |z| < 1}, normalized by
f (0) = 0 = f ′ (0) − 1 of the form

f (z) = z + a2z2 + a3z3 + · · · + anzn + · · · = z +

∞∑
n=2

anzn, an ∈ C. (1)

Also, by Swe will denote the family of all functions in A which are univalent in U.
Let T denote the subclass of all functions f in A of the form

f (z) = z − a2z2
− a3z3

− · · · − anzn
− · · · = z −

∞∑
n=2

anzn, an ≥ 0. (2)

Some of the important and well-investigated subclasses of the univalent functions class S include the classes
S∗ (α) and C (α), respectively, starlike and convex functions of order α(α ∈ [0, 1)). By definition, we have
(see for details, [2, 3], also [9])

S∗ (α) =

{
f ∈ A : Re

(
z f ′ (z)

f (z)

)
> α, z ∈ U

}
, C (α) =

{
f ∈ A : Re

(
1 +

z f ′′ (z)
f ′ (z)

)
> α, z ∈ U

}
.
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For β ∈ [0, 1), interesting generalization of the classes S∗ (α) and C (α) are the classes S∗
(
α, β

)
and C

(
α, β

)
which, respectively, defined as follows

S∗
(
α, β

)
=

{
f ∈ S : Re

(
z f ′ (z)

βz f ′ (z) + (1 − β) f (z)

)
> α, z ∈ U

}
,

C
(
α, β

)
=

{
f ∈ S : Re

(
f ′ (z) + z f ′′ (z)

f ′ (z) + βz f ′′ (z)

)
> α, z ∈ U

}
.

The classes TS∗
(
α, β

)
and TC

(
α, β

)
were extensively studied by Altintaş and Owa [1] and certain conditions

for hypergeometric functions and generalized Bessel functions for these classes were studied by Moustafa
[5] and Porwal and Dixit [8].

For γ ∈ [0, 1], a generalization of the function classes S∗
(
α, β

)
and C

(
α, β

)
is the class S∗C

(
α, β;γ

)
which

is defined as follows:

S∗C
(
α, β;γ

)
=

{
f ∈ S : Re

(
z f ′ (z) + γz2 f ′′ (z)

γz
(

f ′ (z) + βz f ′′ (z)
)

+
(
1 − γ

) (
βz f ′ (z) +

(
1 − β

)
f (z)

) ) > α} , z ∈ U.

In his fundamental paper [4], Jackson, for q ∈ (0, 1), introduced the q-derivative operator Dq of the an
analytic function f as follows:

Dq f (z) =

 f (z)− f(qz)
(1−q)z

, i f z , 0,

f ′ (0) , i f z = 0.

The formulas for the q- derivative Dq of a product and a quotient of functions are

Dqzn = [n]q zn−1,n ∈ N,

where

[n]q =
1 − qn

1 − q
=

n∑
k=1

qk−1

is the q- analogue of the natural number n.
It is clear that lim

q→1−
[n]q = n, [0]q = 0 and lim

q→1−
Dq f (z) = f ′ (z) for the function f ∈ A.

For q ∈ (0, 1) andα ∈ [0, 1), we define by S∗q (α) and Cq (α) the subclass of A which we will call, respectively,
q - starlike and q- convex functions of order α, as follows:

S∗q (α) =

{
f ∈ S : Re

zDq f (z)
f (z)

> α, z ∈ U
}
,Cq (α) =

 f ∈ S : Re
Dq

(
zDq f (z)

)
Dq f (z)

> α, z ∈ U

 .
Also, let’s denote TS∗q (α) = T

⋂
S∗q (α) and TCq (α) = T

⋂
Cq (α).

For β ∈ [0, 1), interesting generalization of the function classes S∗q (α) and Cq (α) are the function classes
S∗q

(
α, β

)
and Cq

(
α, β

)
, respectively, which we define as follows:

S∗q
(
α, β

)
=

{
f ∈ A : Re

(
zDq f (z)

βzDq f (z) + (1 − β) f (z)

)
> α, z ∈ U

}
,Cq

(
α, β

)
=

 f ∈ A : Re

 Dq f (z) + zD2
q f (z)

Dq f (z) + βzD2
q f (z)

 > α, z ∈ U

 .
Now let’s define a generalization of the function classes S∗q

(
α, β

)
and Cq

(
α, β

)
as follows:
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Definition 1.1. For α, β ∈ [0, 1) and γ ∈ [0, 1] a function f given by (1) is said to be in the class S∗qCq
(
α, β;γ

)
if the

following condition is satisfied

Re

 zDq f (z) + γz2D2
q f (z)

γz
(
Dq f (z) + βzD2

q f (z)
)

+
(
1 − γ

) (
βzDq f (z) +

(
1 − β

)
f (z)

)  > α, z ∈ U.

We will use TS∗qCq
(
α, β;γ

)
= T ∩ S∗qCq

(
α, β;γ

)
.

It is clear that S∗qCq
(
α, β; 0

)
= S∗q

(
α, β

)
, S∗qCq

(
α, β; 1

)
= Cq

(
α, β

)
, lim

q→1−
S∗qCq

(
α, β;γ

)
= S∗C

(
α, β;γ

)
and

lim
q→1−

TS∗qCq
(
α, β;γ

)
= TS∗C

(
α, β;γ

)
. So, function classes S∗qCq

(
α, β;γ

)
and TS∗qCq

(
α, β;γ

)
are generaliza-

tion of the previously known function classes S∗q
(
α, β

)
, Cq

(
α, β

)
, S∗C

(
α, β;γ

)
and TS∗C

(
α, β;γ

)
of analytic

functions, respectively.
A variable x is said to have q- Poisson Distribution if it takes the values 0,1,2,3,. . . with probabilities

e−p
q ,

p
1! e
−p
q ,

p2

2! e−p
q ,

p3

3! e−p
q , ... , respectively, where p a parameter and

ex
q = 1 +

x
[1]q!

+
x2

[2]q!
+

x3

[3]q!
+ · · · +

xn

[n]q!
+ · · · =

∞∑
n=0

xn

[n]q!
(3)

is q- analogue of the exponential function ex and

[n]q! = [1]q · [2]q · [3]q · · · [n]q

is the q- analogue of the factorial function n! = 1 · 2 · 3 · · · n.
Thus, for q- Poisson Distribution, we have

Pq(x = n) =
pn

n!
e−p

q , n = 0, 1, 2, 3, ....

Now, we introduce a q- Poisson Distribution series as follows:

z +

∞∑
n=2

pn−1e−p
q

[n − 1]q!
zn, z ∈ U. (4)

We can easily show that series (4) is convergent and the radius of convergence is infinity.
Let us define functions Fq : C→ C and Gq : C→ C as

Fq (z) = z +

∞∑
n=2

pn−1e−p
q

[n − 1]q!
zn, z ∈ U (5)

and

Gq (z) = 2z − Fq (z) = z −
∞∑

n=2

pn−1e−p
q

[n − 1]q!
zn, z ∈ U. (6)

It is clear that Fq ∈ A and Gq ∈ T, respectively.
In this study, using q−derivative we introduce certain subclasses of analytic and univalent functions

in the open unit disk in the complex plane. Here, we give some conditions for an analytic and univalent
function to belong to these classes. Applications of a q- Poisson Distribution series on the analytic functions
are also given. In the study, we define two functions Fq and Gq by q- Poisson Distribution and we aim to
find the conditions for this functions to belong to the classes of analytic functions which we define in the
study.
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2. Main Results

In this section, we will give sufficient condition for the function Fq defined by (5), belonging to the class
S∗qCq

(
α, β;γ

)
, and necessary and sufficient condition for the function Gq defined by (6), belonging to the

class TS∗qCq
(
α, β;γ

)
, respectively.

In order to prove our main results, we need the following theorems.

Theorem 2.1. [6] Let f ∈ A. Then, f ∈ S∗qCq
(
α, β;γ

)
if the following condition is satisfied

∞∑
n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)}
|an| ≤ 1 − α.

The result obtained here is sharp.

Theorem 2.2. [6] Let f ∈ T. Then, f ∈ TS∗qCq
(
α, β;γ

)
if and only if

∞∑
n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)}
|an| ≤ 1 − α.

The result obtained here is sharp.

A sufficient condition for the function Fq defined by (5) to belonging to the class S∗qCq
(
α, β;γ

)
is given

by the following theorem.

Theorem 2.3. Let p > 0 and the following condition is provided
(
1 − αβ

)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p

−
[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)  ep
q ≤ 1 − α. (7)

Then, the function Fq defined by (5) belongs to the classS∗qCq(α, β;γ).

Proof. Since Fq ∈ A and

Fq(p, z) = z +

∞∑
n=2

pn−1

[n − 1]!
e−p

q zn, z ∈ U,

according to Theorem 2.1, we must show that

∞∑
n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)} pn−1

[n − 1]q!
e−p

q ≤ 1 − α. (8)

Let

Lq
(
α, β, γ

)
=

∞∑
n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)} pn−1

[n − 1]q!
e−p

q .

By setting
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)
= [n]q

[
1 − αβ −

(
1 − β

)
αγ

]
+ [n]q [n − 1]q

(
1 − αβ

)
γ − α

(
1 − β

) (
1 − γ

)
and using [n]q = [n − 1]q + qn−1, [n]q = [n − 2]q + qn−2 + qn−1, we write

[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)
=

(
1 − αβ

)
γ [n − 2]q [n − 1]q +

[
1 − αβ −

(
1 − β

)
αγ +

(
1 − αβ

)
γ
(
qn−2 + qn−1

)]
[n − 1]q

+qn−1 [
1 − αβ −

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

) (9)
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Considering equality (9), by simple computation, we can write

Lq(α, β, γ; p) =
(
1 − αβ

)
γe−p

q
∑
∞

n=3
pn−1

[n−3]q! +
[
1 − αβ −

(
1 − β

)
αγ

]
e−p

q
∑
∞

n=2
pn−1

[n−2]q!

+
(
1 − αβ

) (
1 + q

)
γe−p

q
∑
∞

n=2
(qp)n−1

[n−2]q! +
[
1 − αβ −

(
1 − β

)
αγ

]
e−p

q
∑
∞

n=2
(qp)n−1

[n−1]q!

−α
(
1 − β

) (
1 − γ

)
e−p

q
∑
∞

n=2
pn−1

[n−1]q! .

Then, using the equality (3), we obtain

Lq(α, β, γ; p) =
(
1 − αβ

)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p

−
[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
+ (1 − α)

(
1 − e−p

q

)
.

Therefore, inequality (8) holds true if

(
1 − αβ

)
γp2 +

[
1 − αβ −

(
1 − β

)
αγ +

(
1 − αβ

) (
1 + q

)
qγe

p(q−1)
q

]
p

−
[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
+ (1 − α)

(
1 − e−p

q

)
≤ 1 − α

which is equivalent to (7).
Thus, the proof of Theorem 2.3 is completed.

From the Theorem 2.3, we can readily deduce the following results.

Corollary 2.4. If p > 0 and satisfied the following condition

(
1 − αβ

) (
p − 1 + e

p(q−1)
q

)
ep

q ≤ 1 − α,

then the function Fq defined by (5) belongs to the class S∗q(α, β).

Corollary 2.5. If p > 0 and satisfied the following condition{(
1 − αβ

)
p2 +

[
1 − α +

(
1 − αβ

) (
1 + q

)
qe

p(q−1)
q

]
p − (1 − α)

(
1 − e

p(q−1)
q

)}
ep

q ≤ 1 − α,

then the function Fq defined by (5) belongs to the class Cq(α, β).

Now, we give necessary and sufficient condition for the function Gq defined by (6), to belonging to the class
TS∗qCq

(
α, β;γ

)
with the following theorem.

Theorem 2.6. If p > 0, then the function Gq defined by (6) belongs to the class TS∗qCq(α, β;γ) if and only if satisfied
the following condition

(
1 − αβ

)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p

−
[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)  ep
q ≤ 1 − α. (10)

Proof. Firstly, let us prove the sufficiency of the theorem.
First of all, let us state that we will use Theorem 2.2 to prove the theorem.
It is clear that Gq ∈ T. Let us show that the function Gq satisfies the sufficiency condition of Theorem 2.2

.
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From the proof of Theorem 2.3, we write∑
∞

n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)} pn−1

[n−1]q! e
−p
q

=
(
1 − αβ

)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p

−
[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
+ (1 − α)

(
1 − e−p

q

) (11)

Now, suppose that condition (10) is satisfied.
It follows that(

1 − αβ
)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p −

[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
≤ (1 − α) e−p

q ,

which is equivalent to(
1 − αβ

)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p −

[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
+ (1 − α)

(
1 − e−p

q

)
≤ 1 − α,

Considering equality (11), we write

∞∑
n=2

{
[n]q

[(
1 − αβ

) (
1 + γ [n − 1]q

)
−

(
1 − β

)
αγ

]
− α

(
1 − β

) (
1 − γ

)} pn−1

[n − 1]q!
e−p

q ≤ 1 − α. (12)

Thus, the function Gq satisfies the sufficiency condition of Theorem 2.2. Hence, according to Theorem 2.2,
the function Gq belongs to the class TS∗qCq(α, β;γ).

With this, the proof of the sufficiency of theorem is completed.
Now, let us we prove the necessity of theorem.
Assume that Gq ∈ TS∗qCq(α, β;γ). Then, from Theorem 2, we can say that condition (12) is satisfied.
It follows from (11) that(

1 − αβ
)
γp2 +

{(
1 − αβ

) [
1 +

(
1 + q

)
qγe

p(q−1)
q

]
−

(
1 − β

)
αγ

}
p −

[
1 − αβ −

(
1 − β

)
αγ

] (
1 − e

p(q−1)
q

)
+ (1 − α)

(
1 − e−p

q

)
≤ 1 − α,

which is equivalent to (10).
This completes proof of the necessity of theorem.
Thus, the proof of Theorem 2.6 is completed.

From Theorem 2.6, we can readily deduce the following results.

Corollary 2.7. If p > 0, then the function Gq defined by (6) belongs to the class TS∗q
(
α, β

)
if and only if satisfied the

following condition (
1 − αβ

) (
p − 1 + e

p(q−1)
q

)
ep

q ≤ 1 − α.

Corollary 2.8. If p > 0, then the function Gq defined by (6) belongs to the class TCq
(
α, β

)
if and only if satisfied the

following condition{(
1 − αβ

)
p2 +

[
1 − α +

(
1 − αβ

) (
1 + q

)
qe

p(q−1)
q

]
p − (1 − α)

(
1 − e

p(q−1)
q

)}
ep

q ≤ 1 − α.

Remark 2.9. The results obtained in Theorem 2.3, Theorem 2.6 and Corollaries 2.4, 2.5, 2.7, 2.8 are generalization
of the results obtained in Theorem 3,4 and Corollary 5-8 in [7].
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Repdigits as Product of Fibonacci and Pell numbers
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Abstract. In this paper, we find all repdigits which can be expressed as the product of a Fibonacci number
and a Pell number. We use of a combined approach of lower bounds for linear forms in logarithms of
algebraic numbers and a version of the Baker-Davenport reduction method to prove our main result.

1. Introduction

Diophantine equations involving recurrence sequences have been studied for a long time. One of the
most interesting of these equations is the equations involving repdigits.

A repdigit (short for “repeated digit”) T is a natural number composed of repeated instances of the same
digit in its decimal expansion. That is, T is of the form

x ·
(

10t
− 1

9

)
for some positive integers x, t with t ≥ 1 and 1 ≤ x ≤ 9.

Some of the most recent papers related to the repdigits with well known recurrence sequences are
[3, 5, 6, 8]. In this note, we use Fibonacci and Pell sequences in our main result.

Binet’s formula for Fibonacci numbers is

Fn =
ϕn
− ψn

√
5

where ϕ =
(
1 +
√

5
)
/2 (the golden ratio) and ψ =

(
1 −
√

5
)
/2. From this formula, one can easiliy get

ϕn−2
≤ Fn ≤ ϕ

n−1. (1)

Also, we can write

Fn =
ϕn

√
5

+ θ (2)

where |θ| ≤ 1/
√

5.
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Pell sequence, one of the most familiar binary recurrence sequence, is defined by P0 = 0, P1 = 1 and
Pn = 2Pn−1+Pn−2. Some of the terms of the Pell sequence are given by 0, 1, 2, 5, 12, 29, 70, . . . . Its characteristic
polynomial is of the form x2

−2x−1 = 0 whose roots are α = 1 +
√

2 (the silver ratio) and β = 1−
√

2. Binet’s
formula enables us to rewrite the Pell sequence by using the roots α and β as

Pn =
αn
− βn

2
√

2
. (3)

Also, it is known that
αn−2

≤ Pn ≤ α
n−1 (4)

and

Pn =
αn

2
√

2
+ λ (5)

where |λ| ≤ 1/
(
2
√

2
)
.

In this study, our main result is the following:

Theorem 1.1. The only positive integer triples (n, t, x) with 1 ≤ x ≤ 9 satisfying the Diophantine equation

FnPn = x ·
(

10t
− 1

9

)
(6)

as follows:
(n, t, x) ∈ {(1, 1, 1) , (2, 1, 2)} .

2. Preliminaries

Before proceeding with the proof of our main result, let us give some necessary information for proof.
We give the definition of the logarithmic height of an algebraic number and its some properties.

Definition 2.1. Let z be an algebraic number of degree d with minimal polynomial

a0xd + a1xd−1 + · · · + ad = a0 ·

d∏
i=1

(x − zi)

where ai’s are relatively prime integers with a0 > 0 and zi’s are conjugates of z. Then

h (z) =
1
d

log a0 +

d∑
i=1

log (max {|zi| , 1})


is called the logarithmic height of z. The following proposition gives some properties of logarithmic height that can
be found in [9].

Proposition 2.2. Let z, z1, z2, . . . , zt be elements of an algebraic closure of Q and m ∈ Z. Then

1. h (z1 · · · zt) ≤
∑t

i=1 h (zi)
2. h (z1 + · · · + zt) ≤ log t +

∑t
i=1 h (zi)

3. h (zm)=|m| h (z) .

We will use the following theorem (see [7] or Theorem 9.4 in [2]) and lemma (see [1] which is a variation of
the result due to [4] ) for proving our results.
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Theorem 2.3. Let z1, z2, . . . , zs be nonzero elements of a real algebraic number field F of degree D, b1, b2, . . . , bs
rational integers. Set

B := max{|b1| , . . . , |bs|}

and
Λ := zb1

1 . . . z
bs
s − 1.

If Λ is nonzero, then

log |Λ| > −3 · 30s+4
· (s + 1)5.5

·D2
· (1 + log D) · (1 + log(sB)) · A1 · · ·As

where
Ai ≥ max{D · h(zi),

∣∣∣log zi

∣∣∣ , 0.16}

for all 1 ≤ i ≤ s. If F = R, then

log |Λ| > −1.4 · 30s+3
· s4.5
·D2
· (1 + log D) · (1 + log B) · A1 · · ·As.

Lemma 2.4. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ be an irrational number and M be a
positive integer. Take p/q as a convergent of the continued fraction of γ such that q > 6M. Set ε :=

∥∥∥µq
∥∥∥−M

∥∥∥γq
∥∥∥ > 0

where ‖·‖ denotes the distance from the nearest integer. Then there is no solution to the inequality

0 <
∣∣∣uγ − v + µ

∣∣∣ < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

log B
.

3. The Proof of Theorem 1.1

Let us write Equations (2) and (5) in Equation (6). We get(
ϕn

√
5

+ θ

) (
αn

2
√

2
+ λ

)
= x ·

(
10t
− 1

9

)
.

By using |θ| ≤ 1/
√

5 and |λ| ≤ 1/
(
2
√

2
)

we obtain∣∣∣∣∣∣
(
ϕα

)n

√
5 · 2
√

2
−

x · 10t

9

∣∣∣∣∣∣ < 0.8 · αn.

To convert this inequality into form in Theorem 2.3, let us divide both sides by
(
ϕα

)n /
(√

5 · 2
√

2
)
. So, we

have ∣∣∣∣1 − 10t
·
(
ϕα

)−n
·

((
x ·
√

5 · 2
√

2
)
/9

)∣∣∣∣ < 5.06 · ϕ−n. (7)

Set
Γ := 10t

·
(
ϕα

)−n
·

((
x ·
√

5 · 2
√

2
)
/9

)
− 1.

We claim that Γ , 0. If Γ = 0, then one can easiliy see that
(
ϕ
)2n
∈ Q (α). Since [Q (α) : Q] = 2 and ϕ is an

quadratic algebraic number, the degree of
(
ϕ
)2n is either 1 or 2. This means that

(
ϕ
)2n
∈ Q but from the

Binomial theorem we know that
(
ϕ
)2n is of the form Xn + Yn

√
5 for some positive rational numbers Xn and

Yn which is a contradiction. Thus, we get Γ , 0.
Let us apply Theorem 2.3 to the inequality (7). Set

(z1, z2, z3) =
(
10, ϕα,

(
x ·
√

5 · 2
√

2
)
/9

)
and (b1, b2, b3) = (t,−n, 1) .
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Since zi ∈ Q
(√

2,
√

5
)
, we know that D = 4. So, we can take

10 = A1 ≥ 4 · h (10) = 4 · log(10) ∼ 9.21
3 = A2 ≥ 4 · h

(
ϕα

)
< 4 · log (2) ∼ 2.77

25 = A3 ≥ 4 · h
(
x ·
√

52
√

2/9
)
< 24.96.

Now, let us try to estimate the value of B. From the inequalities (1) and (4), we can write

ϕn−1
· αn−1

≥ FnPn = x ·
(
10t−1

− 1
)
/9 > 10t−1

and this inequality implies that
1.68t − 1 < n. (8)

Since t < 1.68t − 1 for t > 1 we can write t < n from the inequality (8). Thus, we take

B := n.

So, due to the Theorem 2.3 we have

|Γ| > exp
(
−C ·

(
1 + logn

)
· 10 · 3 · 25

)
where C := 1.4 · 306

· 34.5
· 42
·
(
1 + log4

)
. From the inequality (7), we get

5.06
ϕn > exp

(
−C ·

(
1 + logn

)
· 10 · 3 · 25

)
.

Taking logarithm of both sides of the above inequality and considering C < 5.5 · 1012 and 1 + logn < 2logn
for n ≥ 3, we obtain

n < 7.1 · 1017. (9)

By the inequality (8), we get
t < 4.3 · 1017. (10)

Now, let us improve the bounds (9) and (10). Set

Ω := tlog10 − nlog
(
ϕα

)
+ log

((
x ·
√

5 · 2
√

2
)
/9

)
.

So, we can rewrite the Inequality (7) as ∣∣∣1 − eΩ
∣∣∣ < 5.06

ϕn .

If Ω > 0, then
Ω < eΩ − 1 < 5.06 · ϕ−n.

Otherwise, i.e., Ω < 0, then
1 − e−|Ω| =

∣∣∣eΩ − 1
∣∣∣ < 5.06 · ϕ−n.

Thus,
|Ω| < e|Ω| − 1 < ϕ−n/

(
1 − ϕ−n) < ϕ−n+1.

From this inequality, we get
|Ω| < 5.06 · ϕ−n+1. (11)

Now, without loss of the generality, supposeΩ > 0 (operations for the caseΩ < 0 are similar). From the
Inequality (11), we obtain

0 < tlog10 − nlog
(
ϕα

)
+ log

((
x ·
√

5 · 2
√

2
)
/9

)
< 5.06 · ϕ−(n−1).
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Dividing both sides of the above inequality by log
(
ϕα

)
, we get

0 < t ·
log10

log
(
ϕα

) − n +
log

((
x ·
√

5 · 2
√

2
)
/9

)
log

(
ϕα

) < 3.72 · ϕ−(n−1).

In here, γ := log10/log
(
ϕα

)
is an irrational number. Hence, we can apply the Lemma 2.4 to the above

inequality with the parameters

µ :=
log

((
x ·
√

5 · 2
√

2
)
/9

)
log

(
ϕα

) , A := 3.72, B := ϕ and w := n − 1.

We can choose M := 4.3 · 1017 from the bound (10). So, 41th convergence of γ is satisfies the condition
q > 6M. From this convergent, we get the smallest ε as 0.00207249. Thus, we have

log (3.72 · 2714452526429576634/0.00207249)
logϕ

∼ 103.775 ≤ n − 1

and so, we get n < 104. Considering this bound on n, we obtain t < 63 from the inequality (8). Hence, in
Mathematica, for the values 1 ≤ n ≤ 103 and 1 ≤ t ≤ 62 we get the solutions of the equality (6) as follows:

(n, t, x) ∈ {(1, 1, 1) , (2, 1, 2)} .

This completes the proof.
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Abstract. In this study, the representations of the ribbons in the 3-dimensional Euclidean space as the
developable ruled surface are given. By calculating the average curvature of the ribbon surface, the
results regarding the mean curvature according to the character of the centerline are obtained. In addition,
examples supporting these results are given.

1. Introduction

In classical differential geometry, the ruled surfaces with additional property (constant mean curvature,
constant Gauss curvature, minimal, etc.) are probably the simplest surface having the specified properties
see for example [7],[8], [11] and references there in. These surfaces have many applications in surface
modeling [12] and parametric design [13]. The structures formed are in the form of ribbon that increase
in width and length in the [2] self-shaping process. The rulings don’t correspond to the ribbon’s central
lines, but only to geometric lines that are constantly evolving during the deformation [5]. Helical ribbons
are a significant class of 2-dimensional structures that often occurs in engineering and biology [14]. The
predictive model for the mechanics and morphology of the stability of spiral bands is a new and important
tool for research and design in various technologies such as biological sensing, nano-engineering coils for
visual electronics [10].

This agreement aims to develop a common framework for discussing the above mathematical model of
ribbons by classifying according to the centerline curves γ(s). This article is structured as follows: Section
2 contains some notations and basic equations of the differential geometry of spatial curves in E3. Section
3 describes some geometrical properties of ruled surfaces at E3. Section 4 contains original results about
ribbon surfaces in E3. These components also provide some of the key characteristics of ribbon surfaces
and the construction of their curvatures. In section 5, we present some examples of ribbon surfaces. Finally,
in section 6, we discuss our findings and decide details for future work.

2. Preliminaries

We will now analyze some notations of the differential distribution of spatial curves in 3-dimensional
Euclidean space E3. Let γ = γ(s) : I→ E3 be a unit speed curve with γ′(s) , 0, where γ′(s) =

dγ
ds . T(s) = γ′(s)
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is a unit tangent vector and is perpendicular to T′(s) = γ′′(s). If γ′′(s) , 0, these vectors extend on the plane
of oscillation γ in s. Specify the curvature of γ with κ(s) =

∥∥∥γ′′(s)
∥∥∥. If κ(s) , 0, then the principal principal

unit of the unit N(s) of the curve γ in s is given by T′(s) = κ(s)N(s). The unit vector B(s) = T(s) × N(s) is
called the unit binormal vector γ in s. Hence the Serret-Frenet formulas of γ are

T′(s) = κ(s)N(s)
N′(s) = −κ(s)T(s) + τ(s)B(s) (1)
B′(s) = −τ(s)N(s)

where τ(s) is the torsion of the curve γ at s [6].
A curve γ = γ(s) : I → E3 with κ(s) , 0 is called a conical geodesic (resp. cylindrical helix) if the ratio

( τκ )′(s) (resp. τ
κ (s)) is constant function [7]. If κ(s) , 0, τ(s) are both constant, then γ is known as circular helix

(W-curve) [6].
In [4], B.Y. Chen defined a new type of curve in three-dimensional Euclidean space called a rectifying

curve. According to his definition, a unit speed curve γ : I → E3 is called the rectifying curve if γ satisfies
the equation

γ(s) = m1(s)T(s) + m2(s)B(s) (2)

for some real valued functions m1(s) and m2(s) [4]. By differentiating (2) and using the Frenet formulas one
can obtain m1(s) = 1, m′2(s) = 0, m1κ − m2τ = 0. As a result of these conditions, it is easy to show that the
curve is a rectifying curve if and only if τ

κ (s) = as + b holds. Consequently, each rectifying curve is a kind of
conical geodesic.

The Frenet motion formulas can be expounded as ”if with the time variable s the motion point crosses the
curve, the moving frame {T(s),N(s),B(s)} moves based on (1). Consequently, the instantaneous rotational
speed given by the Darboux vector

W(s) = τ(s)T(s) + κ(s)B(s). (3)

The Darboux vector is in its instantaneous axis direction of rotation and its length is

ω(s) = ‖W(s)‖ =
√
κ2(s) + τ2(s).

The modified Darboux vector along the curve γ is defined by (see [7])

W̃(s) =
τ(s)
κ(s)

T(s) + B(s). (4)

3. Material and Method

We now deal with the ruled surfaces in Euclidean space E3.

Definition 3.1 With the ruled patch
ϕ = ϕ(γ,β)(s,u) = γ(s) + uβ(s) (5)

the surface is called a ruled surface, where, γ is the base curve and β is the director of the surface. The rulings of the
surface are the lines u 7−→ γ(s) + uβ(s) (see [1], [7],[8], [9] and [11]).

Let S be a ruled surface. In this case, the TpS space is spanned by the following vectors;

ϕs(s,u) =
∂ϕ(γ,β)

∂s
= γ′(s) + uβ′(s),

ϕu(s,u) =
∂ϕ(γ,β)

∂u
= β(s).
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The coefficients of the 1st fundamental form are

111 = < ϕs(s,u), ϕs(s,u) >=
∥∥∥γ′(s) + uβ′(s)

∥∥∥2
,

112 = < ϕs(s,u), ϕu(s,u) >=
〈
γ′(s), β(s)

〉
+ u

〈
β′(s), β(s)

〉
, (6)

122 = < ϕu(s,u), ϕu(s,u) >=
〈
β(s), β(s)

〉
,

where 〈, 〉 is the inner product of E3. If the area element∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥ =

√
111122 − 1

2
12, (7)

does not vanish then ϕ(γ,β) is called regular. From now on we assume that ϕ(γ,β) is a regular patch. Then, the
unit normal vector is

U(s,u) =
ϕs(s,u) × ϕu(s,u)∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥ . (8)

Also, the partial derivatives of second order are:

ϕss(s,u) = γ′′(s) + uβ′′(s),
ϕsu(s,u) = β′(s), (9)
ϕuu(s,u) = 0.

Using (8) with (9) the coefficients of the 2nd fundamental form become

L11 = < ϕss(s,u),U >=
det(ϕss, ϕs, ϕu)∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥ ,
L12 = < ϕsu(s,u),U >=

det(ϕsu, ϕs, ϕu)∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥ , (10)

L22 = < ϕuu(s,u),U >= 0.

Summing up these equations, one can write that the Gaussian curvature of S at point (s,u) is

K =
L11L22 − L2

12

111122 − 1
2
12

= −

〈
β′(s), γ′(s) × β(s)

〉2∥∥∥ϕs(s,u) × ϕu(s,u)
∥∥∥2 , (11)

and the mean curvature of S is

H =
L11122 + L22111 − 2112L12

2
(
111122 − 1

2
12

) (12)

=

〈
β, β

〉
det(ϕss, ϕs, ϕu) − 2

(〈
γ′, β

〉
+ u

〈
β′, β

〉)
+ det(γ′, ϕs, ϕu)

2
∥∥∥ϕs(s,u) × ϕu(s,u)

∥∥∥3 .

If K vanishes then the ruled surface is called developable. Further, if β′(s)×β(s) = 0, then S is called cylindrical,
otherwise it is non-cylindrical. The surface of S ⊂ E3 is minimal if and only if its mean curvature vanishes
identically.

In [7], authors studied the rectifying developable surfaces given with the parametrization

ϕ(γ,W̃)(s,u) = γ(s) + uW̃(s) (13)

where W̃(s) is the modified Darboux vector field defined by (4). They have proved that if the rectifying
developable surface given with the parametrization (13) of is a cylindrical surface (resp. conical surface)
then the base curve γ is a cylindrical helix (resp. conical helix).
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4. Results

In [7], S. Izumiya and N. Takeuchi studied with ruled surface using the base curve W̃(s). They called
them rectifying developable surfaces. In this section, we present an application of rectifying developable
surface to ribbons in E3. However, a characterization of the mean curvature of the strip surfaces according
to the character of the central line of the ribbon is given.

Definition 4.1 A ribbon is a rectifying developable surface defined by the ruled patch

ϕ̃ = ϕ̃(γ,W̃)(s,u) = γ(s) + uW̃(s), s ∈ [0,L], u ∈ [−b, b] (14)

where, W̃ is the modified Darboux vector field defined by (4) (see, [3]).

Let R be a ribbon surface given with the ruled patch (14) then the tangent space of R is spanned by

ϕ̃s(s,u) =
(
1 + uρ′(s)

)
T(s)

ϕ̃u(s,u) = ρ(s)T(s) + B(s). (15)

where ρ(s) =
τ(s)
κ(s) is the harmonic curvature function of γ. Then the coefficients of the 1st fundamental form of

R are found as

1̃11 = < ϕ̃s(s,u), ϕ̃s(s,u) >= (1 + uρ′(s))2

1̃12 = < ϕ̃s(s,u), ϕ̃u(s,u) >= ρ(s)
(
1 + uρ′(s)

)
(16)

1̃22 = < ϕ̃u(s,u), ϕ̃u(s,u) >= 1 + (ρ(s))2.

Consequently, the area element of the ribbon becomes√
1̃111̃22 − 1̃

2
12 =

∥∥∥ϕ̃s(s,u) × ϕ̃u(s,u)
∥∥∥ =

∣∣∣1 + uρ′(s)
∣∣∣ (17)

where

ϕ̃s(s,u) × ϕ̃u(s,u) =
(
1 + uρ′(s)

)
T(s) ×

(
ρ(s)T(s) + B(s)

)
(18)

= −
(
1 + uρ′(s)

)
N(s)

is the surface normal. So, the unit normal vector field of R becomes

Ũ(s,u) =
ϕ̃s(s,u) × ϕ̃u(s,u)∥∥∥ϕ̃s(s,u) × ϕ̃u(s,u)

∥∥∥ = −N(s). (19)

The second partial derivatives of ϕ̃(u, v) are expressed as follows

ϕ̃ss(s,u) = uρ′′(s)T(s) + κ(s)
(
1 + uρ′(s)

)
N(s),

ϕ̃su(s,u) = ρ′(s)T(s), (20)
ϕ̃uu(s,u) = 0.

Using (19) with (20) the coefficients of the 2nd fundamental form become

L̃11 = < ϕ̃ss(s,u),U >= −κ(s)
(
1 + uρ′(s)

)
,

L̃12 = < ϕ̃su(s,u),U >= 0, (21)

L̃22 = < ϕ̃uu(s,u),U >= 0.

From the equations (21) and (11) it can be easily seen that the ribbon R is a flat surface. Furthermore,
summing up (16)-(20) and using (12) we obtain the following results;
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Theorem 4.2 Let R be a ribbon surface given by (14), then the mean curvature vector of R becomes

H̃(s,u) = −
κ(s)

(
1 + (ρ(s))2

)
2
∣∣∣1 + uρ′(s)

∣∣∣ (22)

where ρ(s) =
τ(s)
κ(s) is the harmonic curvature (function) of the central line γ.

With the equation (22) we have the following results;

Corollary 4.3 The ribbon surface R given by the parametrization (14) can not be minimal.

Corollary 4.4 Let R be a ribbon surface given by (14). If the center line of R is a circular helix then the mean
curvature of the ribbon is constant i.e., the ribbon is of constant mean curvature.

Corollary 4.5 Let R be a ribbon surface given by (14). If the center line of R is a cylindrical helix then the mean
curvature of the ribbon turns into H̃(s,u) = δκ(s), where δ = −

1+ρ
2 is a constant function.

The following result contains a characterization of the Serret-Frenet curvatures of the spherical (constant
slope) helix curves.

Lemma 4.6 [6] Let γ = γ(s) be a unit-speed curve in E3 that has constant slope cotθ = τ
κ with respect to a unit

vector −→u ∈ E3, where 0 < θ < π
2 . Assume also that γ lies on a sphere of radius r > 0 then the curvature and torsion

of γ are given by

κ2(s) =
1

r2 − s2 tan2 θ
=

1
r2 − s2 cot2 θ

, τ2(s) =
1

r2 tan2 θ − s2
. (23)

Proposition 4.7 Let R be a ribbon surface whose center line is a spherical helix given with the Serret-Frenet curvatures
κ and τ. Then, the mean curvature H of the ribbon R is given by H̃ = λκ(s),where λ is a constant function defined
by λ = − 1+cot2 θ

2

Proof. Assume that the centerline of the strip is a spherical slope curve (helix) then the ratio of curvatures
must be constant. Thus, with the help of equations (23) and (22) we get the result.

Corollary 4.8 Let R be a ribbon surface whose center line is a conical geodesic, i.e. ρ′′(s) = 0. Then, the mean
curvature H̃ of the ribbon R is the multiple of the curvature κ(s),with a smooth function

µ(s,u) =
1 + (as + b)2

2 |1 + au|
, a, b ∈ R. (24)

The geodesic curvature, the normal curvature and the geodesic torsion of the surface associated the curve γ(s)
are defined as follows;

κ1 = 〈U × T,T′〉 , κn =
〈
U, γ′′

〉
, τ1 = 〈U ×U′,T′〉 (25)

where U is the unit normal of the surface. From this consideration, a curve γ(s) is an asymptotic line (resp.
geodesic line or principal line) if and only if normal curvature κn (resp. geodesic curvature κ1 or geodesic
torsion τ1) vanishes identically [6].

Proposition 4.9 The center line γ of the ribbon R is geodesically principal and the normal curvature of R corresponds
to the curvature κ of γ.
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Proof. By the use of Serret-Frenet frame (1) with (25) the geodesic curvature, the normal curvature and the
geodesic torsion of R become

κ1 = 〈U × T,T′〉 = κ 〈B,N〉 = 0,
τ1 = 〈U ×U′,T′〉 = κ 〈D,N〉 = 0, (26)
κn =

〈
U, γ′′

〉
= −κ 〈N,N〉 = −κ,

respectively.

Definition 4.10 A unit speed planar curve γ : I −→ E2 whose curvature is a given piecewise-continuous function
κ : I −→ R+ is parametrized by

γ(s) =

(∫
cosθ(s)ds + a,

∫
sinθ(s)ds + b

)
; θ(s) =

∫
κ(s)ds + c (27)

where, a, b, c are constant of integration [6].

If the center line of the ribbon is a regular curve γ(s) =
(
x(s), y(s

)
, 0) then the the resultant ribbon R becomes

a cylindrical ruled surface with the parametrization

ϕ̃(γ,W̃)(s,u) =

(∫
cosθ(s)ds + a,

∫
sinθ(s)ds + b,u

)
, s ∈ [0,L],u ∈ [−b, b]. (28)

Thus, we have the following result;

Corollary 4.11 Let R be a ribbon surface given by the parametrization (28). Then the mean curvature of R is a
multiple of the curvature κ of the form H̃ = −

κ(s)
2 .

5. Visualization

Geometric models of curves and surfaces have an important place in computer-aided geometric design.
Therefore, in the present section, geometric visualization of some ribbon models is given with the help of
maple.

Example 5.1 In this example we construct three kind of ribbon using the plane curve given with the parametrization
(21);

(a) For κ(s) = as + b the center line is a Cornu spiral and the graph of resultant ribbon is cylindrical (Figure 1-(a)).
(b) For κ(s) = as2 + bs + c the center line is a generalized Cornu spiral and the graph of resultant ribbon is

cylindrical (Figure 1-(b)).
(c) For κ(s) = a

s+b the center line is a logarithmic spiral and the graph of resultant ribbon is cylindrical (Figure
1-(c)).
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(a) Cornu spiral (b) Generalized cornu spiral

(c) Logarithmic spiral

Figure 1: Ribbon Surfaces in E3

Example 5.2 We take the center line curve γ as a right circular helix

γ(s) =

(
a cos

( s
c

)
, a sin(

s
c

),
bs
c

)
, a2 + b2 = c2.

The Serret-Frenet curvatures of γ are constant functions κ(s) = a
c2 , τ(s) = b

c2 and cotθ(s) = b
a . A simple calculation

shows that the ribbon R has constant mean curvature H = − 1
2a . In Figure 2-(a) we pictured the ribbon taking the

values a = 3, b = 4 and c = 5.

Example 5.3 Consider the planar curve γ(s) = (s cos (s) , s sin s, 0) with curvature κ(s) = − 2+s2

(1+s2)3/2 . The resultant
surface becomes a braid ribbon which has self intersection (Figure 2-(b)). Further, the mean curvature of the ribbon
becomes

H̃(s,u) = −
2 + s2

2 (1 + s2)3/2
.
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(a) Cylindrical ribbon (b) The braid ribbon

Figure 2: Ribbon Surfaces in E3

6. Conclusions

In conclusion, the paper presents a simple method for constructing developable surface patches bounded
by space curves. These surfaces have many applications in surface modeling and parametric design. The
most relevant feature of this construction is that the parametrization of the resultant ruled surface gives a
ribbon in 3-dimensional Euclidean space. The method is founded on finding a special type of ruled surface
taking the director curve as Darboux vector of the base curve. It has been shown that the mean curvature
of the helical ribbon surfaces are related with the Serret-Frenet curvature of the center line of the ribbon.
Nowadays, helical ribbons getting popular in nanoengineering. The detailed exploration of this analogy is
the subject of future work. Especially, We would also like to extend our calculations to a parallel transport
frame of ribbon configurations.
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Abstract. In this paper, a new key agreement scheme is constructed using the notions of the interior of
a set, the closure of a set, open function, closed function, continuous function in topological spaces. An
implementation of this scheme is presented between the two parties and it is shown that they generate the
common secret key.

1. Introduction

Key agreement, a protocol that enables two or more parties to create a secret key together over an unpro-
tected channel, does not require an active role of the trusted authority, unlike most other key distribution
techniques. Key agreement schemes can be divided into two categories based on private keys and based on
public keys. Consider a n-user network. In a secret key-based key agreement scheme, it is a requirement
that each user stores n-1 secret keys. On the other hand, this requirement is reduced to only one pair of
public and private keys in a key agreement scheme based public key. This indicates that public key-based
key agreement is more useful. (see [1] for details).

The first work on the key agreement scheme was done by Merkle [2] in 1978. However, the article
published by Diffie, Merkle’s doctoral advisor, and Helmman [3] in 1976 is the first article published on this
subject in the literature. This is because the study Merkle submitted in 1975 was in a lengthy evaluation
process.

The Diffie-Hellman key agreement scheme uses the commutativity property provided by cyclic groups.
In this scheme, the associativity property of group axioms is used in the generation of a common secret key,
and the cyclicity of the group is used in making it difficult to find this secret key by an adversary.

In 2017, Partala [4] published a study based on the computation of homomorphic images, which included
an algebraically generalized Diffie-Hellman key-agreement scheme. The security of this scheme lies in the
difficulty of solving the homomorphic image problem. This problem is the problem of computing the image
of a given group element under an indefinite homomorphism.

Çağman et al. [5] introduced a key agreement scheme based on a group action of special orthogonal
group on the complex projective line whose elements are 2 × 2 matrices with real entries.

In this paper, a new key agreement scheme is constructed using the notions of interior and closure in
topological spaces.
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2. Preliminaries

Let’s give some information about the general topology from [6–8].

Definition 2.1. Let (X, τ) be a topological space and A ⊆ X.

1. A point x ∈ A is called an interior point of A if there exists an open set G such that x ∈ G ⊆ X. The set
of all interior point of A, denoted by Int(A), is called the interior of A.

2. A point x ∈ X is called an closure point of A if every open set containing x contains at least one point of
A. The set of all closure point of A, denoted by Cl(A), is called the closure of A.

Proposition 2.2. Let (X, τ) be a topological space. For every pair of subsets A, B of X, the followings hold:

1. Int(A ∩ B) = Int A ∩ Int B,
2. Cl(A ∪ B) = Cl A ∪ Cl B.

Definition 2.3. Let (X, τX) and (Y, τY) be topological spaces, f : X→ Y a function and let x ∈ X.

1. f is called a continuous function at the point x if, for every τY-open set V containing f (x), f−1(V) is a
τX-open set. f is called a continuous function if f is continous at every point of X.

2. f is called an open function at the point x if, for every τX-open set U containing x, f (U) is a τY-open set.
f is called an open function if f is open at every point of X.

3. f is called an closed function at the point x if, for every τX-closed set U containing x, f (U) is a τY-closed
set. f is called a closed function if f is closed at every point of X.

Proposition 2.4. Let (X, τ) be a topological space, f : X→ Y a function. The followings hold.

1. If f is continuous, then f (Cl (A)) ⊆ Cl
(

f (A)
)

for every subset A of X.
2. If f is injective and continuous, then Int

(
f (A)
)
⊆ f (Int (A)) for every subset A of X.

3. If f is open, then f (Int (A)) ⊆ Int
(

f (A)
)

for every subset A of X.
4. If f is closed, then Cl

(
f (A)
)
⊆ f (Cl (A)) for every subset A of X.

3. Key Agreement Scheme

Let’s assume that Alice and Bob must have a common secret key as shown in Figure 3 to communicate
securely with each other.

Figure 1: A communication diagram for Alice and Bob

In Table 1, they follow their steps to agree on a common secret key.
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Step Alice Bob

1 They specify arbitrary positive integers n,m as public.

2
Choose an arbitrary topological space (X, τX) publicly such

that |X| = n.

Choose an arbitrary topological space (Y, τY) publicly such

that |Y| = n.

3
They choose an arbitrary pair of m-tuples A = (A1,A2, . . . ,Am) and

B = (B1,B2, . . . ,Bm) whose components are subsets of X as public.

4

Set f and 1 secretly as m-tuples ( fk)k≤m and (1k)k≤m,

respectiveley, where each fk is an injective, open and

continuous functions from X to Y, and each 1k is a closed

and continuous functions from X to Y.

Let G and F be m-tuples whose the general terms are

Gk = IntτY (Ak ∩ Bk) and Fk = ClτY (Ak ∪ Bk), respectively.

5

Set the m-tuples f [A], 1[A], f [B], 1[B] whose the general

terms are f [A]k = fk(Ak), f [B]k = fk(Bk), 1[A]k = 1k(Ak),

1[B]k = 1k(Bk), respectively, and send them to Bob as public.

Send m-tuples G and F to Alice.

6

By using m-tuples G and F, generate the secret key as the pair

K = (KInt,KCl) where KInt and KCl are the m-tuples whose the

general terms are KInt
k = fk(Gk) and KCl

k = 1k(Fk), respectively.

By using m-tuples f [A], 1[A], f [B] and 1[B], generate the

secret key as the pair K = (KInt,KCl) where KInt and KCl are

the m-tuples whose the general terms are

KInt
k = IntτY ( f [A]k ∩ f [B]k) and KCl

k = ClτY (1[A]k ∪ 1[B]k),

respectively.

Table 1: Key agreement scheme

In the first step, the sizes of the topologies and the tuples to be created are fixed, say n and m, respectively.
In the next step, Alice chooses an arbitrary topology on an X set with n elements as public, while Bob chooses
an arbitrary topology on a Y set with the same number of elements as public. In the third step, They together
arbitrarily choose a pair of m-tuples whose components are subsets of X.

In the next two steps, Alice secretly and arbitrarily chooses an m-tuple f whose components are injective,
open and continuous functions from X to Y, and an m-tuple 1whose components are closed and continuous
from X to Y, and then send m-tuples f [A], 1[A], f [B], 1[B] to Bob whose the general terms are

f [A]k = fk(Ak), f [B]k = fk(Bk), 1[A]k = 1k(Ak), 1[B]k = 1k(Bk)

while Bob set G and F as the m-tuples whose general terms are

Gk = IntτY (Ak ∩ Bk) and Fk = ClτY (Ak ∪ Bk)

, respectively, and sends them to Alice.
The last step shows how to generate the common secret key K by each of parties. Alice computes two

components of K as m-tuples with the general terms fk(Gk) and 1k(Fk), respectively while Bob computes two
components of K as m-tuples with the general terms

IntτY ( f [A]k ∩ f [B]k) and ClτY (1[A]k ∪ 1[B]k)

, respectively.
Let’s examine the steps in the key agreement scheme on an example.

Example 3.1. Alice and Bob set n = 4 and m = 3. Then, Alice set X = {a, b, c, d} while Bob Y = {1, 2, 3, 4}. Alice
and Bob set

τX = {∅, {a} , {c} , {d} , {a, c} , {a, d} , {b, c} ,
{c, d} , {a, b, c} , {a, c, d} , {b, c, d} ,X}

and
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τY = {∅, {1} , {2} , {4} , {1, 2} , {1, 4} , {2, 4} ,
{3, 4} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} ,Y} ,

respectively. Then, They set two 3-tuples A = (A1,A2,A3) and B = (B1,B2,B3) where

A1 = ∅, A2 = {c} , A3 = {a, d} ,
B1 = {b, c} , B2 = {b, c} , B3 = {a, c, d} .

Alice sets f =
(

f1, f2, f3
)
, each component of which is an injective, open and continuous function from X to Y

where

a
f1
7→ 1, b

f1
7→ 3, c

f1
7→ 4, d

f1
7→ 2,

a
f2
7→ 1, b

f2
7→ 3, c

f2
7→ 4, d

f2
7→ 2,

a
f3
7→ 1, b

f3
7→ 3, c

f3
7→ 4, d

f3
7→ 2,

and 1 =
(
11, 12, 13

)
, each component of which is a closed and continuous function from X to Y where

a
11
7→ 1, b

11
7→ 1, c

11
7→ 1, d

11
7→ 1,

a
12
7→ 2, b

12
7→ 2, c

12
7→ 2, d

12
7→ 3,

a
13
7→ 3, b

13
7→ 1, c

13
7→ 1, d

13
7→ 3.

Then, Alice computes m-tuples f [A], 1[A], f [B], 1[B] whose the general terms are f [A]k = fk(Ak), f [B]k = fk(Bk),
1[A]k = 1k(Ak), 1[B]k = 1k(Bk), respectively, as

f [A] = (∅, {4} , {1, 2}) ,
1 [A] = (∅, {2} , {3}) ,
f [B] = ({3, 4} , {3, 4} , {1, 2, 4}) ,
1 [B] = ({1} , {2} , {1, 3}) ,

and send them to Bob while Bob computes m-tuples G and F whose the general terms are Gk = IntτY (Ak ∩ Bk) and
Fk = ClτY (Ak ∪ Bk), respectively, as

G = (∅, {c} , {a, d}) ,
F = ({b, c} , {b, c} ,X) ,

and send them to Alice.
Using m-tuples G and F, Alice computes the secret common key K = (KInt,KCl) whose general terms of components

are KInt
k = fk(Gk) and KCl

k = 1k(Fk), respectively, as

K = ((∅, {4} , {1, 2}) , ({1} , {2} , {1, 3})) .

On the other hand, by using m-tuples f [A], 1[A], f [B] and 1[B], Bob computes the secret common key K = (KInt,KCl)
whose the general terms of components are KInt

k = IntτY ( f [A]k ∩ f [B]k) and KCl
k = ClτY (1[A]k ∪ 1[B]k), respectively,

as
K = ((∅, {4} , {1, 2}) , ({1} , {2} , {1, 3})) .

Thus Alice and Bob have produced the same public key K to use in communication.
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