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Abstract 

High currents occurring in transformers in transient state may cause the insulation materials to deteriorate. In 
this paper, the effects of the capacitance values between the winding and the core and between the windings on 
the transition of the lightning strike applied to the secondary side to the primary side of power transformers 
were analyzed. Transformer models were created in ANSYS@Maxwell-2D environment, which realizes a 
solution based on Finite Element Method (FEM). In simulation studies, a lightning impulse voltage of 1/100 µs 
was applied to the secondary side of the transformer with a special method. It has been observed that the change 
of the values of the capacitances between the windings in power transformers affects the amplitude of the 
primary lightning impulse voltage. With this study, the weak points of the insulation materials of transformers 
windings were determined and the electric field distribution was analyzed.  

Keywords: Transformer, FEM, Lightning Impulse, Electric field, Maxwell-2D. 

1. Introduction 

Transformer models can be classified as low frequency [1] and high frequency [2] models 
according to the applied source frequency. Low frequency models are created by open and 
short circuit tests. Studies on low frequency model aim to model the nonlinear characteristics 
of the core [3]. High frequency model studies are carried out for fault detection of 
transformers and analysis of transient response [4]. In these models, which are analyzed based 
on high frequency, capacitances are added to the designs in addition to the parameters in the 
low frequency model. Since the effect of these capacitances at low frequencies is negligible, 
they are not included in the analysis. However, at high frequencies these capacitances 
significantly affect the transformer output. 

Experimental tests have been performed on the current transformer in [3], among the studies 
on the lightning impulse response of transformers, and the lightning impulse response has 
been measured. With the test results, the equivalent circuit and transfer function of the 
transformer are established. The lightning impulse response measured with the simulation 
results with the model designed in ANSYS @ Maxwell environment was compared. In [4] the 
Frequency Response Analysis (FRA) method and an advanced model of the frequency 
response of a three-phase power transformer are presented to be used for fault detection. In 
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[5], the power transformer and distribution transformer have been tested with FRA 
(Frequency Response Analysis) device and the equivalent circuits of the transformers have 
been removed. In [6], a simple modeling method based on measurement data in frequency 
domain, which can be easily applied in Electromagnetic Transients Program (EMTP) for 
power transformer, is tried to be presented. The important function of the model is that it can 
simulate the transient voltage transferred from one winding to another after lightning strike or 
switching. 

In this paper, in the power transformer model in [5], the effect of the change of capacitance 
values on the primary side in case of a lightning strike applied to the secondary side has been 
investigated. Transformer models were created in ANSYS@Maxwell program. The electric 
field analysis of the model and the voltage distribution on the transformer are examined. 

2. Power Transformer Model 

[5] Study derives the power transformer model from study [6]. Experimental tests were 
carried out by applying 1.2/50 µs lightning strikes to a 300 MVA 415/15.75kV Y-Δ power 
transformer. Fig. 1 shows the power transformer model. 

 
Fig. 1. High frequency power transformer model [5] 

Copper losses are not taken into account in this model. C1-C6 coil capacitances; C7, C8 and C9 
capacitances between windings; C10, C11 and C12 represent the capacitance between the 
neutral point and ground. R1-R6 and L1-L6 represent iron losses (magnetic circuit). R7 
represents the neutral resistance. 

Fig. 2 contains the test setup required for the measurement of the frequency response analysis 
(FRA) winding impedance of Primary - Earth (Vin) and Neutral - Earth (Vout) voltages [6]. By 
using the frequency spectrum of the winding impedance amplitude and angle, magnetic circuit 
resistance and inductance and winding capacitance can be obtained [6]. Since impedance is 
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inductive at low frequencies, the winding capacitance can be regarded as open circuit and thus 
the magnetic circuit inductance can be determined from the measured reactance value. The 
winding capacitance is calculated using the inductance found in the first resonance frequency 
and low frequency calculation. In Eq. (1), the relation between voltages and winding 
impedance is given. In Eq. (2), the resonance frequency Eq. is given. 
 

 
Fig. 2. Power transformer primary test setup [2] 

 
 

,                               (1) 
 

                                                                            (2) 
 

The 50 Ω resistance in Eq. (1) is the internal resistance of the measuring device. The 
necessary parameters can be determined by creating the same test setup for the secondary 
winding. Secondary A phase test setup is given in Fig. 3 [2]. 

 
Fig. 3. Power transformer secondary test setup [2] 

Primary and Secondary voltages were measured to determine the capacities between 
windings. In this study, it is stated that the frequency analysis of the primary and secondary 
voltages gives the impedance between the windings. At low frequencies, this impedance 
behaves capacitively and the capacitance value was obtained from the resistance [2]. Details 
of this test were not included in the study. The setup of this test is given in Fig. 4. 

 
Fig. 4. Power transformer secondary-primary test setup [2] 
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In the model in [1], the capacitive effect of the primary side is transferred to the secondary 
side as leakage inductance due to the inductive coupling between the windings. In the 
frequency analysis of the secondary winding, it is seen that the impedance is inductive at the 
second resonance frequency. From the impedance value at this frequency, the inductance; 
From Eq. (2) capacitances can be found. 

The parameters of the tests and calculations of the power transformer model given in Fig. 1 
are given in Table 1. In this study, calculation of magnetic circuit resistances is not included. 
It can be understood from the study that these resistors are not removed from the low 
frequency impedance. 

 
Table 1. Power Transformer Parameters [5] 

(Ω) R 0.001053 
L (H) 0.366 

C12 (nF) 70.08 
 

3. Modeling of Transformer Using ANSYS@Maxwell 

Power transformer model in [5] were created in ANSYS@Maxwell environment and 
lightning impulse response was investigated. 170 kV 1/100 µs lightning impulse voltage was 
applied to the power transformer. The simulation is set to 100 µs. Lightning impulse has been 
applied in the 1st µs to see the voltage wave precisely. Fig. 5 shows the power transformer 
model. 

 
 

Fig. 5. Power transformer model 

In the program environment, boundary conditions of the transformer model, geometric 
dimensions and the properties of all materials used are defined on the model. The core of the 
transformer is defined in the program environment with the B-H curve of the magnetic 
material and thin sheets. The B-H curve, which is the magnetic property of the core material 
used, is given in Fig. 6. The geometric properties of the designed transformer are given in 
Table 2. 
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Table 2. Geometric properties of the designed transformer  

HV 33.000 V 

LV 11.000 V 

Core loss 12.500 W 

Load loss 97.000 W 

HV connection Delta 

LV connection Star 

HV turn number 675 

LV turn number  131 

HV  current 152 A 

LV currunt  785 A 

 

 
Fig. 6. B-H curve of core material 

The graph of the lightning impulse voltage applied to the transformer windings in the program 
environment is presented in Fig. 7. 

 

 
 

Fig. 7. Lightning impulse voltage applied. 
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3.1. Analysis of the model 

In Fig. 7, the form of the voltage applied to the primary A phase of the power transformer, 
and the form of the voltage generated in the secondary. The electric field distribution caused 
by a lightning strike is given in Fig. 8. The electric field voltage curve is given in Fig. 9. 

 
 

Fig. 8. Lightning-impulse electric field. 
 

 
Fig. 9. Electric field-voltage relationship 

 

The amplitude of the electric field value occurring in the transformer and the amplitude of the 
electric field strength are presented in Fig. 11 and Fig. 12, respectively. 
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Fig. 10. Magnitude of electric field on primary winding. 

 

 

Fig. 11. Magnitude of density field 

 

The energy released due to the electric field in the transformer windings and the stresses 
occurring at the edges of the transformer windings are given in Fig.s 12 and 13. 
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Fig. 12. Energy storage on winding 

 

Fig. 13. Edge force density on winding 

The result of the lightning voltage in the secondary winding is consistent with the lightning 
pulse applied. Critical areas that could cause degradation in the insulating materials between 
the primary and secondary windings have been identified. The electric field distribution in 
critical regions on the insulating material of the two-dimensional model is also shown. 



Y. Özüpak 

 9 

7. Conclusions 

In the power transformer model, it has been observed that changing capacitance values 
increase and decrease the amplitude of the voltage. In the conflict, it is also seen how the 
electric field of the transformer under transient regime causes the strain on the insulation 
material. Lightning impulse is a very important phenomenon for all electrical power systems 
due to surge surge. This is why the lightning analysis is equally important to the power 
problem. In this article, the lightning impulse voltage applied to the transformer during the 
lightning-strike, the electric field of the transformer and the voltage distribution are presented 
with simulation results. Critical areas between primary and secondary windings that may 
cause degradation in insulating materials are shown in three dimensions. The electric field 
distribution in critical regions on the insulation material of the two-dimensional model is also 
shown. This article presents the use of the integral Eq. approach in computing the electric 
field. This approach is used to solve a numerical example to verify the applicability of a 
transformer to calculate the electric field. The system of Eq.s is solved using boundary 
element methods. Results are compared to those of a commercial FEM software and are in 
good agreement. 
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Abstract 

CuFeO2 is a well known antiferromagnetic material with its geometrically frustrated antiferromagnetic (AFM) 
[TN=11K] crystal. Besides, delafossite CuFeO2 oxide crystal is known to be nonstoichiometric under the 
influence of oxygen as a result of the change in cation valence bands. In this study, boron atoms were substituted 
in the Fe coordination and the electronic response on irons valence band is probed. Due to the high difference in 
the ionic radii of the host and substituted atoms, different crystal structure formation was expected. However, 
calculations showed that boron atoms tend to locate in Fe coordination and preferred to be part of the host 
crystal by bonding with the oxygen atoms. In addition, the presence of the light boron atoms was determined to 
weaken the scattering intensities which cause a longer mean free path for the photoelectrons which means better 
conductivity of the material.   

Keywords: Absorption; XAFS; Electronic Structure; Crystal Structure 

1. Introduction 

Transition metals have vast application in current technology due to their interesting 
electronic interactions with other metals that make them an active role player in molecular 
interplays. Their desired electronic and magnetic properties make them popular for many 
scientific studies such as their superior conductivity properties, magnetic sequences as well as 
their semiconductor properties (magnetic semiconductors).  Also, the 3d elements are 
abundant in the earth's crust, and that means the commercially available powders are 
inexpensive and easy to use [1-5]. That's one of the reasons why the most popular magnetic 
materials of interest in the technological field are the ferromagnetic 3d transition metals, i.e., 
Fe, Co, and Ni, and their oxides. Low dimensional transition metal oxide CuFeO2 is one of 
the popular members of the delafossite ABO2 compounds, which is also one of the leading 
antiferromagnetic iron oxides with rhombohedral geometry and " R-3m" space group 
[TN±11K) [6-9]. Delafossite CuFeO2 is a remarkable magnetic material with its broken 
magnetic structure. The atomic structure of the delafossite group consists of a sheet of linearly 
coordinated “A” cations stacked between edge-shared  octahedral layers (BO6).  

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol. 13, Issue 1 (2021) 10-16 
http://dx.doi.org/10.24107/ijeas.854437  
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Studies on materials require a good scientific background and the right selection of the most 
appropriate techniques for the study. There are different techniques chosen to probe the 
different properties of the materials. But, one of the technique became popular with its useful 
data that can be used for several purposes, mainly for electronic structure and crystal 
structure, is the X-ray Absorption Fine Structure (XAFS) Spectroscopy. XAFS is a 
synchrotron radiation based technique and it can yield rich data that support the analysis of 
both crystal and electronic structure properties. The technique is one of the best tool to collect 
data on both single crystalline, polycrystalline, and non-crystalline materials. The XAFS data 
can be analyzed in two parts. The first part is called as the XANES (X-ray Absorption Near-
Edge Spectroscopy) and the EXAFS (Extended-XAFS).  Data of the XANES region on the 
XAFS spectra provide information about the electronic structure of the absorbing atom in the 
material and the bonding properties with the neighboring atoms. The XANES region lies 
roughly 20–30 eV below and 40–50 eVabove the main absorption edge. While, 30–40 eV 
beyond the XANES region is calledNear Edge XAFS (NEXAFS), which has the strong 
multiple scattering tracks of the excited photoelectrons, the region beyond NEXAFS is called 
the Extended-XAFS (EXAFS).  

The EXAFS region is due to the interference of the excited photoelectrons' incoming and 
outgoing wavefunctions after the scattering process from a nearest neighboring atom. The 
scattering mechanism is addressed by the EXAFS “chi” (χ) equation; 

 
(1)                                                                                                                                                                      ο        (Ε)]/Δµοχ=[µ(Ε)−µ 

Here, µ denotes the absorbing coefficient. The chi signal can also be estimated via the 
parameters for the scattering of the photoelectrons, i.e., the EXAFS equation;  

 
(2)                            )]k(j+δjΡk[2in)]σ2jΡk))/(2jσ2kπ(−2x) εk(jφj[(Ν∑)= kχ( 

and “σj2 “ is the mean-square disorder with the neighboring atom distances. Here, “N” is the 
coordination number of the neighboring atom, “f (k)” is the scattering amplitude, “δj(k)" is the 
scattering phase shift, “R” is the distance of the neighboring atom As the scattering data is 
related to the photoelectrons' interactions among the atoms and it is indirectly gives 
information about the mean free path which means the average distance travelled by the 
photoelectron, i.e. k~1/λ. In the absorption process, the photoelectron is created with the 
transferred excess kinetic energy by the photon-electron interaction mechanism. If an incident 
photon excites a core electron with an energy above the bond energy, the rest of the energy is 
used as the kinetic energy by the photoelectron to free itself from its source atom. The kinetic 
energy has a high reduction due to the interstitial potentials when a different type of atoms is 
in the neighborhood. Such kinds of materials reveals roughness in the interstitial potential 
where photoelectrons lost much of their kinetic energy and shorten their mean free paths. The 
mean free path of the photoelectron also highlights the potential distribution in the material 
that has an important influence on the conductivity of the material via the free electrons.  In a 
material, the lowest product of "ρ×λ" is related to the highest conductivity on a metal wire [5]. 
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Materials are classified as conductors, semiconductors, or insulators according to their electric 
charge or heat transfer capabilities. Most of the metals are conductive and the least conductive 
materials are called insulators such as wood, plastics, and ceramics. Best conductive metals 
are known as silver, copper, gold, aluminum, rhodium, etc.. There are different techniques to 
determine the conductivity or resistance of the metals, like 4– point probe, electrochemical 
analysis, Hall effect, etc..The electrical conductivity behavior of the materials is directly 
related to the mean free path of the free electrons. In a material, free electrons travel in the 
interstitial potential which obtained jointly by the atoms in the material. So from the point of 
view, data collected with the XAFS technique can also be used to estimate the electrical 
properties of the materials.  

 To study the single crystalline metals is useful to find out such a relation to avoid the effects 
of the impurities and the defects that can naturally occur in the materials. Besides, the yields 
of a substitution process can also provide data to enlighten the interplays between the host and 
the substituted atom in a crystal. In this study, boron atoms are substituted in the iron 
coordination to reveal its influence on bonding and chemical environment via the electronic 
properties. In this study, 10% boron substituted CuFeO2 oxide material was studied 
theoretically for its electronic and crystal structure properties. 

2. Materials and Method 

The calculations for the study are performed by the FEFF 8.2 code, which is a space multiple 
scattering approach [8-10]. For the calculation of the XAFS analysis, data were produced 
from the Fe K-edge of the CuFeO2 and CuFe1-xBxO2 boron substituted oxide. For the 
calculations, input files were generated by the TkAtoms code [11]. An iron atom in the input 
file was selected as the source atom, i.e. the photoelectron emitter.The input file was 
generated for 15 A˚ thick CuFeO2cluster containing 656 atoms (Cu, Fe, and O) and 656 atoms 
(Cu ,Fe, B, and O), where a Fe atom was chosen as the source atom.  For the calculations, 
XRD data was created via the MAUD software which is a diffraction/reflectivity analysis 
code [12]. 

3. Results and Discussion 

Calculated x-ray diffraction pattern data is given in figure 1 as a comparison of the boron 
substituted and the pure CuFeO2 oxide. The bold sketched XRD pattern has been taken from a 
real sample of us (that's the reason for the noisy data) and the pattern in red is calculated by 
the MAUD software with 10% boron substitutions in iron coordinations in the CuFeO2 
cluster.  
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.2and 10% boron substituted CuFeO 21. Comparison for the XRD patterns of CuFeO Fig. 

With the boron substitution in the iron coordination, a change in the XRD pattern peak 
positions was observed. No extra powerful peak formation has been observed and this means 
that boron atoms sit in Fe locations and preserved the crystal structure properties. To probe 
the influence of boron substitution on the electronic structure of its neighbors, on the iron, or 
on the crystal structure properties, X-ray absorption Fine Structure (XAFS) Spectroscopy 
study is the best choice. In Figure 2, calculated Fe K-edge XAFS spectra of the CuFeO2 and 
10% boron substituted CuFeO2 material are given in comparison.  
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Fig. 2. Fe K-edge XAFS spectral comparison for the CuFeO2 and 10% boron substituted CuFeO2. 
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A high agreement in the XAFS spectra of the materials is observed in fig.2. The symmetry of 
both absorption spectral features has confirmed the calculated XRD patterns. However, a 
slight energy shift ( 0.7 eV) to the lower energy side in the boron substituted sample 
highlights the change in the oxidation state of the iron electronic structure. The absorption 
peak of the pure CuFeO2 oxide has a maximum at 7131.4 eV and boron substituted material 
has the maximum at 7130.7 eV. The inset in the figure is also given to guide for the details. 
Fe K-edge spectra are a result of the 1s electron transition to unoccupied 4p levels in an 
excitation process. Actually, 3d levels are also unoccupied, but due to the quantum selection 
rules, electronic transitions of sàd is dipole forbidden. Thus, 1s electrons can make 
transitions to the 4p level which is located above the 3d level as the main route. However, 
with a hybridization via O 2p-Fe 3d levels, quadrupolar transitions may also occur weakly. 
The weak peak feature just below the main edge is a result of the quadrupolar interaction and 
this part is called the pre-edge peak. The pre-edge peak addresses a powerful Fe-O 
hybridization via the strong coupling between the outer shell electrons of the neighboring iron 
and oxygen atoms.  

Boron has the same ionic value (3+) as ionic iron. However, the ionic radii of boron and iron 
have highly different values as; 0.023 nm and 0.060 nm, respectively. Despite the 
confirmation of the boron locations in the iron coordination by the XRD patterns and XAFS 
spectra, huge difference in the ionic radii of the atoms in the substitution processes should be 
a problem for boron to sit in the iron coordination. The effect of the boron substitution in the 
crystal order of the CuFeO2 material can be best analyzed by the scattering amplitude which 
can be extracted from the Extended XAFS (EXAFS) part via the given equation (1). The 
scattering intensity graph is given in figure 3.  
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Fig. 3. EXAFS scattering intensity comparison for the CuFeO2 and 10% boron substituted CuFeO2. 

In figure 3, high agreement with the peak structures and also the high symmetry in the spectra 
also confirms the remaining crystal structure in the material, even boron substitution. 



O.M. Ozkendir 

 15 

However, weak decays at some scattering intensities highlight the light atoms’ presence in the 
crystal, i.e., Boron. When a substitution occurs in a material, the interstitial potential among 
the atoms in the material causes fluctuations for the photoelectrons where it travels. The 
fluctuations are due to the change in the merits of the potential of the neighboring atoms. 
When the substitution is taken into account for the light atoms, if it sits in the coordination of 
another atom, like here, the photoelectrons’ kinetic energy decay is lesser than before. For 
heavier atoms’ substitution is subject to a study, then new interstitial potential becomes fatal 
for the photoelectrons due to the increase in the potential borders, which are treated as 
barriers. The Fourier transform (FT) of the scattering intensity yields the Radial Distribution 
Function (RDF) of the atoms in the crystal. The RDF gives the atomic locations and distances 
of the atoms which are located mainly in the first and the second-row vicinity of the source 
atom, which is located in the origin on the 1D axis. In figure 4, the RDF of the pure CuFeO2 
material is given in comparison with the boron substitute CuFeO2 material.  

 
.2and 10% boron substituted CuFeO 2the CuFeO Radial Distribution Function intensity of. 4 Fig. 

According to figure 4, the boron sitting peaks are apparent and no need for any extra analysis 
to find out the boron locations. Analysis results of figure 4, the atomic distances from the 
source Fe atom which is sitting at the origin are: O atoms sit at 1.98 Å distance from an iron 
atom, Fe atoms sit at 3.01 Å distance and one of them is Boron. The third nearest neighbor is 
determined as the copper (Cu) atom which is located at a 3.34 Å distance. 

4. Conclusion 

In this study, boron atoms were substituted in the Fe coordinations. Due to the high difference 
in the ionic radii of the host and substituted atoms, different crystal structure formation was 
expected. However, calculations showed that boron atoms tend to locate in Fe coordination 
and prefer to the part of the host crystal and bond with the oxygen atoms strongly which are in 
its neighborhood. The presence of the light boron atoms was determined to weaken the 
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scattering intensities which cause a longer mean free path for the photoelectrons. The longer 
mean free path means lower interstitial potential and hence it means a better conductivity of 
the material, according to the equation that gives the conductivity; i.e.,ρ×λ. 
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Abstract 

In this study the elastic buckling behavior of beams with rectangular cross section is studied analytically. It is 
assumed that both the top and bottom surfaces of the beam are ceramic coated. The aluminum (Al) is chosen as a 
core material while the aluminum-oxide (Al2O3) is preferred as a liner (face) material. The transfer matrix method 
based on the Euler-Bernoulli beam theory is employed in the analysis. The exact transfer matrix in terms of 
equivalent bending stiffness is presented together with the exact buckling equations for hinged-hinged, clamped-
hinged, clamped-free, and finally clamped-clamped boundary conditions. After verifying the results for beams 
without liners, dimensionless buckling loads of the beam with ceramic liners are numerically computed for each 
boundary condition. The effect of the thickness of the ceramic liner on the buckling loads is also investigated. It is 
found that a ceramic liner enhances noticeably the buckling loads. As an additional study those effects are also 
examined for the ratios of elasticity modulus of face material to core material in a wide range. 

Keywords: Exact buckling, Euler-Bernoulli, transfer matrix, stability, sandwich beam, critical buckling loads 

1. Introduction 

Buckling of columns being a physical phenomenon is a matter of significance in the design of 
structural elements. Underestimation of this phenomenon may lead to disastrous results. 

Buckling occurs in beams subjected to compressive loads. The longer and more slender the 
column is, the lower the safe compressive stress that it can stand. The maximum load at which 
the column tends to have lateral displacement or tends to buckle is known as critical buckling 
or crippling load. Therefore in the design of columns, determination of the critical buckling 
loads becomes an inevitable stage. 

Research into buckling of columns dates back to late 1700s with Euler’s study [1].  Greenhill’s 
[2], Dinnik’s [3], and Timoshenko and Gere’s [4] studies are some subsequent fundamental 
works to Euler’s [1] study in the related realm. Numerous analytical and numerical works on 
the stability of columns were conducted after those pioneers [5-42]. From those methods which 
can be used to determine the elastic critical buckling load may be summarized as the differential 
equation solution method [1-11], energy methods [12-16], the finite element method [17-22], 
the finite difference method [23], the modified slope deflection method [24], the effective-
thickness concept [25], the multi-segment integration technique [23], the variational iteration 
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method [26-28], the homotopy perturbation method [28-33], Adomian decomposition method 
[28, 34], the transfer matrix method [35-39], the stiffness matrix method [39], the fictitious load 
method [40], the modified vibration modes [41] and much more [42-46]. In the solution of more 
complex problems, some of the solution methods mentioned above may also be used in a 
combined manner. 

The governing buckling differential equation may be obtained based on the either beam or 
elasticity [9-11] theories. The beam theories allow to solve much more complex problems for 
a beam or a system of beams. The governing equation in differential form may then be solved 
by using exact or approximate solution techniques. As may be guessed it is possible to obtain 
exact solutions for relatively simple problems.  

As is known, the gain of strain energy in the elements is less than the potential energy of the 
loads which are lower than the elastic critical load. If the change of these two energies is zero 
then the structure will not resist any disturbance. This stage at which the stiffness of the structure 
is zero is defined as a critical instability condition in the energy methods.  

In the finite element method, in which the structure is subdivided into a series of fairly short 
elements, buckling is considered by adding a geometrical stiffness matrix to the element 
equations. The resulting eigenvalue problem is then solved by applying several techniques such 
as vector iteration methods (inverse iteration, forward iteration, and Rayleigh quotient 
iteration), transformation methods (Jacobi method, the subspace iteration method).  

The transfer matrix method is one of the methods to the solution of initial value problem (IVP). 
Many problems from the simplest one to the complex ones may be solved with the help of this 
technique. The governing equations in canonical form, which is a relationship between the 
section quantities and their first derivatives, may be obtained from the either beam or elasticity 
theories. In the method, determination of the elements of the transfer matrix is crucial. The 
overall transfer matrix, which is obtained from the solution of a set of differential equation 
having either constant or variable coefficients, relates the section quantities at the initial point 
and at any point on the beam axis. The accuracy of the solution directly depends on the accuracy 
of the overall transfer matrix to be derived. It is possible to obtain some closed form solutions 
for the governing equation with constant coefficients. Otherwise, in case of existence of 
variable coefficients, the transfer matrix should be determined numerically. Contrary to the 
finite elements method, orders of the resulting matrices are independent from the number of 
elements to be considered. Therefore it is possible to construct easy-to-use algorithms with the 
transfer matrix method which are highly accurate and computationally efficient. 

A sandwich structure usually consists of two relatively thin, stiff and strong faces separated by 
a relatively thick lightweight core. The main purpose of a sandwich structure is to achieve a 
stiff and simultaneously light component. That is higher stiffness and strength can be achieved 
by sandwich structures without increasing the weight dramatically. Sandwich constructions are 
also used for the aim of thermal insulation, corrosion insulation, vibration/noise damping, and 
water ingress prevention. Buckling phenomenon is a crucial task to be considered in the analysis 
of such structures [47-53].  This may be conducted by using any of the methods mentioned 
above. Recently, Sayyad and Ghugal [54] reviewed bending buckling, and free vibration of 
laminated composite and sandwich beams up to 2017s.  

As is well known, Euler-Bernoulli theory is a simple beam theory by which one may get exact 
results which are reasonable for long and slender structural members. The theory offers 
overestimate buckling loads for relatively short columns. In other words, Euler buckling loads 
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are independent from the ratio of the total length of the beam to the width of the section. In the 
present study, the effect of the existence of the liners on the buckling loads of a rectangular 
beam is intended for an examination with the help of the transfer matrix method. As a basic 
work, Euler-Bernoulli beam theory is employed to achieve fast and reasonable buckling loads.    

2. Theory 

Consider a beam subjected to an axial compressive load 𝑁 whose critical value called the 
critical buckling load satisfies the following fourth order Euler-Bernoulli differential equation 
in terms of transverse displacement, 𝑤 [1-8]. 

𝑑$𝑤
𝑑𝑥$

+
𝑁
𝐸𝐼
𝑑)𝑤
𝑑𝑥)

= 0 
(1) 

Where, 𝑥 is the coordinate along the beam axis, 𝐸 is Young’s modulus and 𝐼 is the area moment 
of inertia about 𝑦 axis (Fig. 1). Derivation of Eq. (1) may be found in References [1-8]. The 
general solution of the foregoing well-known ODE is  

𝑤 𝑥 = 𝐴𝑐𝑜𝑠𝛼𝑥 + 𝐵𝑠𝑖𝑛𝛼𝑥 + 𝐶𝑥 + 𝐷 (2) 

where 

𝛼 =
𝑁
𝐸𝐼

 
(3) 

Solution to Eq. (2) is used with the following classical boundary conditions to determine the 
critical buckling loads of the beam. The boundary conditions for hinged ends are,  

𝑤 = 0,			𝑤′′ = 0 (4) 

for clamped ends are, 

𝑤 = 0,   	𝑤′ = 0 (5) 

and for free ends are 

𝑤′′′ = 0,										𝑤:; = 0 (6) 

The number of the problems to be directly solved by Eq. (1) is limited. To consider a wider 
range applications of beams with initial axial force, the transfer matrix method is preferred in 
the present study. As stated in the introduction, one need to put the single fourth order 
differential equation given in Eq. (1) into a set of four differential equations of first order to be 
able to apply the transfer matrix method . The equations governing the elastic buckling behavior 
of an Euler-Bernoulli beam is given in canonical form as follows [5] 
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Fig. 1. The beam geometry and the coordinates 

 

𝑑𝑤
𝑑𝑥

= 𝜃 
(7a) 

𝑑𝜃
𝑑𝑥

= −
𝑀
𝐸𝐼

 
(7b) 

𝑑𝑀
𝑑𝑥

= 𝑇 + 𝑁𝜃 
(7c) 

𝑑𝑇
𝑑𝑥

= 0 
(7d) 

where, 𝑤 is still the transverse displacement, 𝜃 is the rotation, 𝑀 is the bending moment, 𝑇 is 
the shear force, 𝑁 is the axial compressive constant initial force. Equation (7), which is 
identically equal to Eq. (1), may be written in a compact form as 

𝑺A 𝑥 = 𝑫	𝑺(𝑥) (8) 

where the state vector which comprises the section quantities is defined by 

𝑺 𝑥 =

𝑤 𝑥
𝜃 𝑥
𝑀 𝑥
𝑇 𝑥

 

(9) 

and the differential transfer matrix is 
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𝑫 =
0 1
0 0

0 0
−1
𝐸𝐼

0
0 𝑁
0 0

0 1
0 0

 

 

(10) 

There are a few ways for the determination of the elements of the transfer matrix, F [5]. If the 
elements of the differential transfer matrix are constants as in beams having unchanged section 
and material properties along the beam axis, it is possible to get an exact solution for the element 
transfer matrix as in the present study. 

Recalling that the element transfer matrix satisfy the similar differential equation for the state 
vector as in Eq. (8) the following may be written [5] 

𝑭A 𝑥 = 𝑫	𝑭(𝑥) (11) 

Solution of Eq. (11) with the initial conditions 

𝑭 𝑥 = 0 = 𝑰 (12) 

gives us the exact element transfer matrix in the form of a matrix exponential. 

𝑭 𝑥 = 𝑒I𝑫 = 1 + 𝑥𝑫 +
𝑥)

2!
𝑫) +

𝑥L

3!
𝑫L +

𝑥$

4!
𝑫$ +

𝑥O

5!
𝑫O +

𝑥Q

6!
𝑫Q + ⋯ 

(13) 

In the above, 𝑰 refers the unit matrix. In Eq. (13) the higher powers of the differential matrix 
which are equal or greater than four may be written in terms of the differential transfer matrices 
having smaller powers of up to three. To this end one may resort to Cayley-Hamilton theorem 
which states that every square matrix satisfies its own characteristic equation, |D-𝜇I|= 0. Using 
Eq. (13) together with Cayley Hamilton theorem, Eq. (13) takes the following form in terms of 
up to the third powers of the differential transfer matrix [5]. 

			𝑭 𝑥 = 1 + 𝑥𝑫 +
𝑥)

2!
−
𝑥$

4!
𝛼) +

𝑥Q

6!
𝛼$ −

𝑥U

8!
𝛼Q +

𝑥WX

10!
𝛼U − ⋯ 𝑫)

+
𝑥L

3!
−
𝑥O

5!
𝛼) +

𝑥Y

7!
𝛼$ −

𝑥[

9!
𝛼Q + ⋯ 𝑫L 

(14) 

The coefficients of the differential transfer matrix, which are in series form, correspond 
explicitly to the following functions 

𝑭 𝑥 = 1 + 𝑥𝑫 +
1 − cos 𝛼𝑥

𝛼)
𝑫) +

𝛼𝑥 − sin	(𝛼𝑥)
𝛼L

𝑫L 
(15) 

The explicit forms of the elements of the exact element transfer matrix in Eq. (15) are given 
below in terms of the equivalent bending stiffness. 
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𝐹W,W = 𝐹$,$ = 1	

𝐹),W = 𝐹L,W = 𝐹$,W = 𝐹$,) = 𝐹$,L = 0	

𝐹W,) = 𝐹L,$ =

𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁
𝐸cd𝐼

	

𝐹W,L = 𝐹),$ =

𝑐𝑜𝑠 𝑥	 𝑁
𝐸cd𝐼

− 1

𝑁
	

𝐹W,$ =

𝐸cd𝐼 𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁
L
)

−
𝑥	
𝑁
	

𝐹),) = 𝐹L,L = 𝑐𝑜𝑠 𝑥	
𝑁
𝐸cd𝐼

	

𝐹),L = −

𝑠𝑖𝑛 𝑥	 𝑁
𝐸cd𝐼

𝑁	𝐸cd𝐼
	

𝐹L,) = 𝑁	𝐸cd𝐼 𝑠𝑖𝑛 𝑥	
𝑁
𝐸cd𝐼

 

 

 

 

 

 

 

 

 

 

 

(16) 

The overall transfer matrix relates the state vectors at both ends of the beam as follows 

𝑺 𝐿 = 𝑭(𝑳)	𝑺(0) (17) 

This equation may be expanded as 

𝑤
𝜃
𝑀
𝑇 Igh

=

𝐹W,W 𝐹W,)
𝐹),W 𝐹),)

𝐹W,L 𝐹W,$
𝐹),L 𝐹),$

𝐹L,W 𝐹L,)
𝐹$,W 𝐹$,)

𝐹L,L 𝐹L,$
𝐹$,L 𝐹$,$ Igh

	
𝑤
𝜃
𝑀
𝑇 IgX

 

 

(18) 

In the present study the following boundary conditions are implemented (Fig. 2) for hinged 
(pinned) ends as 
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𝑤 = 0,   	𝑀 = 0 (19) 

for clamped ends as 

𝑤 = 0,				𝜃 = 0 (20) 

and for free ends as 

𝑇 = 0,				𝑀 = 0 (21) 

After implementing those boundary conditions in Eq. (13), the buckling equations are obtained 
as follows 

 
                                          P-P            C-P                  C-C               C-F 
 

Fig. 2. Classical boundary conditions. 

 

𝐴 ijklcmnijklcm =
𝐹(𝐿)W,) 𝐹(𝐿)W,$
𝐹(𝐿)L,) 𝐹(𝐿)L,$

=	0	

					 𝐴 opqrscmntucc =
𝐹(𝐿)L,L 𝐹(𝐿)L,$
𝐹(𝐿)$,L 𝐹(𝐿)$,$

= 0	

					 𝐴 opqrscmnijklcm =
𝐹(𝐿)W,L 𝐹(𝐿)W,$
𝐹(𝐿)L,L 𝐹(𝐿)L,$

= 0	

					 𝐴 opqrscmnopqrscm =
𝐹 𝐿 W,L 𝐹 𝐿 W,$
𝐹 𝐿 ),L 𝐹 𝐿 ),$

= 0 

 

 

 

(22) 

In the above the axial force making the corresponding determinants equal to zero is referred to 
as the critical buckling load, 𝑁ou. These loads may be found by using the searching determinant 
method together with the bi-sectioned method, or other solution techniques. 

The more compact forms of the determinants are given in Appendix. 
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3. Verifications of the results 

For the sake of simplicity, the application of this method may be shown on the simple model of 
a column with uniform cross-section that is subjected to the axial compressive force N. The 
column is assumed to be made of a single isotropic and homogeneous material. The following 
dimensionless buckling load is defined to verify the results with the open literature 

𝛽 =
𝐿)

𝐸𝐼 𝑁 
(23) 

 
 

 
 

Fig. 3. Determinant-dimensionless frequency curves under classical boundary conditions. 

Dimensionless buckling loads are listed in Table 1 in a comparative manner with the literature. 
A perfect harmony is observed among the results. The corresponding determinant curves are 
illustrated in Fig. 3. Further analytical verifications are given in Appendix A. 

 
Table 1. Comparison of dimensionless critical Euler buckling loads of uniform columns without liners 
 C–F P–P C–P C–C 
Present (Transfer matrix method) 2.4674 9.8696 20.1907 39.4784 
Wang et al. [6] (Exact) 2.4674 9.8696 20.1907 39.4784 
Saha and Banu [23] (Finite difference method) -- 9.8892 20.2044 39.786 
Saha and Banu [23] (Multi-segment integration)  -- 9.8728 20.1876 39.6408 
Coşkun and Atay [27] (Variational iteration) 2.4674 9.8696 20.1908 39.4916 
Eryılmaz et al. [33] (Homotopy analysis) 2.4674 9.8696 20.1907 39.4784 

4. Effect of the liner thickness on the buckling loads  

As stated before without increasing the weight dramatically, higher stiffness and strength can 
be achieved by sandwich structures with soft cores. Chakrabartia et al. [48] verified this for the 
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buckling of laminated sandwich beams with soft cores. Although the proposed method may be 
applied to the laminated structures having anisotropic characteristics after a certain effort, both 
the face and core material are assumed to be isotropic and homogeneous in the present study 
for simplicity.  

To study the effect of the total thickness of the bottom and top liners on the buckling loads, the 
following dimensionless quantity is defined.  

𝜆 =
2𝑡
ℎ

 (24) 

where 𝑡 is the thickness of a layer, ℎ is the width of the rectangular section having length 𝑏 
(Fig. 1). The equivalent bending stiffness of the uniform section is derived as 

				𝐸cd𝐼 = 3𝜆) − 𝜆L − 3𝜆 + 1 𝐸W + −3𝜆) + 𝜆L + 3𝜆 𝐸) 	
𝑏ℎL

12
 

(25) 

In the above 𝐸W	is Young’s modulus of the core material while 𝐸) stands for the elasticity 
modulus of the liner material (face material). The dimensionless buckling load may now be 
defined in terms of Young’s modulus of the core material. 

𝛽 =
𝐿)

𝐸W𝐼
𝑁 

(26) 

The material and geometrical properties used in the parametric study are: 	𝐸W = 𝐸o{uc =
70.0	10[	𝐺𝑃𝑎	 𝐴𝑙 , 		𝐸) = 𝐸pjkcu = 393.0	10[	𝐺𝑃𝑎	(𝐴𝑙)𝑂L), 		𝑏 = 2ℎ;  𝐿 = 1.0	𝑚;  𝐿/ℎ =
10. Effect of the total thickness of the liners with respect to the height of the section is seen in 
Table 2 and Fig. 4 under all classical boundary conditions.  

 
Table 2. Dimensionless critical buckling loads of uniform columns with liners 

𝝀 C-F P-P C-P C-C 
0.0 2.4674 9.8696 20.1907 39.4784 
0.01    2.80556 11.2222 22.9578 44.8889 
0.02    3.13695 12.5478 25.6696 50.1912 
0.05   4.09123 16.3649 33.4785 65.4597 
0.1     5.55282 22.2113 45.4387 88.8451 
0.2     8.02342 32.0937 65.6556 128.375 
0.3 9.94754 39.7902 81.4007 159.161 
0.4 11.3935 45.5739 93.2327 182.296 
0.5 12.4295 49.7181 101.711 198.873 
0.6 13.124 52.4961 107.394 209.985 
0.7 13.5453 54.1812 110.841 216.725 
0.8 13.7616 55.0464 112.611 220.186 
0.9 13.8413 55.3652 113.263 221.461 
1.0 13.8527 55.4108 113.357 221.643 
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Fig.  4. Variation of the buckling loads with the total thickness of the liners 

 

 

Fig.  5. Variation of the buckling loads with E2/E1 ratios and boundary conditions under all 
boundary conditions for 𝜆 = 0.01 
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From Table 2, it is revealed that for even very thin liners, 𝜆 = 0.01, the buckling load increases 
rapidly by over 10%. For 𝜆 = 0.1, the beam can withstand greater forces of around 22% more 
than the beam without liners. From Fig. 4, it may be concluded that the total thickness of the 
liners more than 50% is not feasible to enhance the buckling loads for the example considered.  

To more generalize the problem for practical applications, let’s consider a sandwich beam 
having a soft core and investigate the variation of the dimensionless buckling loads with E2/E1 
ratios, liner thickness and boundary conditions (𝑏 = 2ℎ;  𝐿 = 1.0	𝑚;  𝐿/ℎ = 10).  The results 
are presented in Fig. 5, and Table 3.  

 
ratios under all  1/E2ETable 3. Variation of the buckling loads with the total thickness of the liners and 

boundary conditions 
 

𝝀	
E2	/	E1	

2	 3	 5	 8	 10	 2	 3	 5	 8	 10	

 Clamped-Free	 Clamped-Clamped	

0.0 2.4674 2.4674 2.4674 2.4674 2.4674 39.4784 39.4784 39.4784 39.4784 39.4784 
0.01    2.54069 2.61397 2.76054 2.98039 3.12696 40.651 41.8235 44.1686 47.6863 50.0314 
0.02    2.6125 2.75761 3.04781 3.48312 3.77333 41.8001 44.1217 48.765 55.7299 60.3732 
0.05   2.81931 3.17123 3.87505 4.93079 5.63462 45.109 50.7396 62.0009 78.8927 90.1539 
0.1     3.13607 3.80473 5.14206 7.14806 8.48539 50.1771 60.8757 82.273 114.369 135.766 
0.2     3.67149 4.87558 7.28377 10.896 13.3042 58.7439 78.0094 116.54 174.337 212.868 
0.3 4.08848 5.70957 8.95173 13.815 17.0571 65.4157 91.3531 143.228 221.04 272.914 
0.4 4.40184 6.33629 10.2052 16.0085 19.8774 70.4295 101.381 163.283 256.136 318.038 
0.5 4.62638 6.78535 11.1033 17.5802 21.8982 74.022 108.566 177.653 281.284 350.371 
0.6 4.77689 7.08638 11.7054 18.6338 23.2528 76.4302 113.382 187.286 298.141 372.045 
0.7 4.86818 7.26896 12.0705 19.2729 24.0744 77.8909 116.303 193.128 308.366 385.191 
0.8 4.91506 7.36272 12.258 19.601 24.4964 78.641 117.804 196.129 313.617 391.942 
0.9 4.93233 7.39727 12.3271 19.7219 24.6518 78.9174 118.356 197.234 315.551 394.429 
1.0 4.9348 7.4022 12.337 19.7392 24.674 78.9568 118.435 197.392 315.827 394.784 

	 Clamped-Hinged	 Hinged-Hinged	

0.0 20.1907 20.1907 20.1907 20.1907 20.1907 9.8696 9.8696 9.8696 9.8696 9.8696 
0.01    20.7904 21.3901 22.5895 24.3885 25.5879 10.1627 10.4559 11.0422 11.9216 12.5078 
0.02    21.3781 22.5655 24.9402 28.5024 30.8771 10.45 11.0304 12.1913 13.9325 15.0933 
0.05   23.0704 25.9501 31.7095 40.3486 46.1081 11.2773 12.6849 15.5002 19.7232 22.5385 
0.1     25.6624 31.1341 42.0775 58.4925 69.4359 12.5443 15.2189 20.5683 28.5922 33.9416 
0.2     30.0438 39.8969 59.603 89.1623 108.868 14.686 19.5023 29.1351 43.5842 53.2169 
0.3 33.456 46.7213 73.252 113.048 139.579 16.3539 22.8383 35.8069 55.2599 68.2286 
0.4 36.0203 51.8498 83.5089 130.997 162.657 17.6074 25.3451 40.8207 64.034 79.5095 
0.5 37.8576 55.5245 90.8583 143.859 179.193 18.5055 27.1414 44.4132 70.3209 87.5927 
0.6 39.0893 57.9878 95.7848 152.48 190.277 19.1076 28.3455 46.8214 74.5353 93.0112 
0.7 39.8363 59.4819 98.773 157.71 197.001 19.4727 29.0759 48.2821 77.0915 96.2977 
0.8 40.2199 60.2491 100.308 160.395 200.454 19.6603 29.4509 49.0322 78.4041 97.9854 
0.9 40.3613 60.5318 100.873 161.384 201.726 19.7293 29.5891 49.3085 78.8877 98.6072 
1.0 40.3815 60.5722 100.954 161.526 201.907 19.7392 29.6088 49.348 78.9568 98.696 
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As stated above, if the aluminum is a core material and the aluminum-oxide is a face material, 
the buckling load increases rapidly over 10% for 𝜆 = 0.01. This contribution is linearly 
changed with the E2/E1 ratios for the same ratio of 𝜆 (Fig. 5). For instance, under all boundary 
conditions and for λ=0.01, the buckling loads increase by 3% if E2/E1 =2, by 12% if E2/E1 =5, 
and by 27% if E2/E1 =10. 

For λ=0.1, the improved buckling load reaches about 1.3 times the buckling load of the beam 
made from only the core material if E2/E1 =2. It is around 2 times of the buckling load without 
liners if E2/E1 =5, and is approximately 3.5 times that load if E2/E1 =10. 

7. Conclusions 

In the present study the effect of the thickness of liners on the critical buckling loads of a beam 
having uniform rectangular cross-section is investigated based on the Euler-Bernoulli beam 
theory under several boundary conditions. Real-life materials together with hypothetical ones 
are used in the examples. 

The transfer matrix method is chosen for the solution procedure due to its effective, economical, 
and accurate results together with its wider applications in the engineering realm. The element 
transfer matrix is obtained analytically by solving a set of four differential equations of first 
order.  The effective bending rigidity is used in the determination of the elements of the exact 
element transfer matrix. This approach is reasonably suitable for especially industrial 
applications 

As a first stage of the present work, the critical buckling loads are obtained for a uniform beam 
without liners and compared with the literature. Perfect agreement is observed among the 
buckling loads. 

In the next stage, a rectangular sectioned beam is handled to observe the variation of the effect 
of the liner thickness on the buckling loads. The aluminum (Al) is used for a core material and 
the aluminum-oxide (Al2O3) for a liner (face) material. It is discovered that for even very thin 
liners, 𝜆 = 0.01, the buckling load increases rapidly by over 10%. For 𝜆 = 0.1, the beam can 
tolerate greater buckling loads of around 22% more than the buckling loads of the beam without 
liners.  

In the last stage, a generalized parametric study is conducted for various ratios of Young’s 
modulus of the core material to the face material from 2 to 10. It is observed that under all 
boundary conditions and for λ=0.01, the buckling loads increase by 3% if E2/E1 =2, by 27% if 
E2/E1 =10.  For λ=0.1, the improved buckling load reaches about 1.3 times the buckling load of 
the beam made from only the core material if E2/E1 2, and is around 3.5 times that load if E2/E1 
=10. 

It is chiefly concluded that the thickness of the liner strongly affects the buckling loads. 
However the ratio of the total thickness of the liners to the total width of the section is not 
feasible if it reaches over 50%.  

It is also revealed that the transfer matrix method leading to exact solutions may be used 
effectively in the analysis of elastic stability problems of such structures. The method offered 
here may also be applied to the multi-spanned beams, beam systems having different bending 
rigidities under classical/non-classical boundary conditions.  
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Notations 

α         Dimensionless buckling parameter 
β         Dimensionless buckling load 
θ         Rotation about y-axis 
A        Characteristic buckling coefficient matrix 
b          Base length of rectangular cross section of the beam       
D         Differential transfer matrix 
E          Elasticity modulus of the beam material 
IEeq    Equivalent bending stiffness      

F         Transfer matrix     
h          Width of rectangular section 
I           Area moment of inertia about 𝑦-axis 
I           Unit matrix 
L          Length of the beam 
M         Bending moment about y-axis 
N         Axial compressive load 

crN      Critical buckling load 
S          State vector 
t           Thickness of one of liners 
T          Shearing force 
w          Transverse displacement along z-axis 
x           Position coordinate along the beam axis 
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Appendix: Analytical Verification of the Results 

Consider Eq. (16) at section  𝑥 = 𝐿 for a beam without liners.  

						𝑭 𝐿 =

1
𝑠𝑖𝑛 𝛼𝐿

𝛼
0 𝑐𝑜𝑠 𝛼𝐿

𝑐𝑜𝑠 𝛼𝐿 − 1
𝐸𝐼𝛼)

𝑠𝑖𝑛 𝛼𝐿 − 𝛼𝐿
𝐸𝐼𝛼L

−
𝑠𝑖𝑛 𝛼𝐿
𝐸𝐼𝛼

𝑐𝑜𝑠 𝛼𝐿 − 1
𝐸𝐼𝛼)

0 𝐸𝐼𝛼 𝑠𝑖𝑛 𝛼𝐿
0 0

𝑐𝑜𝑠 𝛼𝐿
𝑠𝑖𝑛 𝛼𝐿

𝛼
0 1

 

 

(A.1) 

The elements of the transfer matrix given above is used for the expansion of the determinants 
given by Eq. (22) as follows 

Beam with hinged ends 

The expansion of the determinant leads to 

𝐴 �n� =
𝑠𝑖𝑛) 𝛼𝐿

𝛼)
−
𝑠𝑖𝑛) 𝛼𝐿

𝛼)
+
sin 𝛼𝐿 𝐿

𝛼
 

(A.2) 

After simplification we are left with 

𝐴 ijklcmnijklcm = sin 𝛼𝐿 = 0	 (A.3) 

For 𝐿 ≠ 0 and 𝑛 = 0,1,2,3… solution is found as 

𝛼 =
𝑁
𝐸𝐼
	 =

𝜋𝑛
𝐿
	

(A.4) 

This gives 
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𝑁 =
𝜋)𝐸𝐼
𝐿)

	𝑛) 
(A.5) 

Where 𝑛 = 0 corresponds to the trivial solution. So, for a nontrivial solution, 𝑛 = 1 should be 
taken to determine the critical buckling load of the beam with hinged ends. 

𝑁ou ijklcmnijklcm =
𝜋)𝐸𝐼
𝐿)  

(A.6) 

Beam with clamped-free ends 

The following is used for the characteristic equation of the beam. 

𝐴 opqrscmntucc =
𝑐𝑜𝑠	(𝛼𝐿) �jk	(�h)

�
0 1

=𝑐𝑜𝑠	(𝛼𝐿) = 0 
(A.7) 

For 𝐿 ≠ 0 and 𝑛 = 0,1,2,3… solution is 

𝛼 =
𝑁
𝐸𝐼
= (2𝑛 + 1)

𝜋
2𝐿
			(𝑛 = 0,1,2, … ) 

(A.8) 

From this we get 

𝑁 =
𝜋)𝐸𝐼
4𝐿) 	(2𝑛 + 1)

) 
(A.9) 

The critical buckling load occurs when 𝑛 = 0.	 

𝑁ou opqrscmntucc =
𝜋)𝐸𝐼
4𝐿)  

(A.10) 

Beam with clamped-hinged ends 

The expansion of the characteristic determinant gives 

𝐴 opqrscmnijklcm = −
𝑠𝑖𝑛 𝛼𝐿 − 𝛼𝐿𝑐𝑜𝑠 𝛼𝐿

𝐸𝐼𝛼L
= 0 

(A.11) 

Simplification leads to 

𝑡𝑎𝑛 𝛼𝐿 = 𝛼𝐿 (A.12) 

There is no symbolic solution to this trascendental equation. It is satisfied to the four digits after 
period if the smallest root is taken as  𝛼𝐿 ≅ 4.4934. 

𝑡𝑎𝑛 4.49341001 = 4.4934211571 (A.13) 

Therefore 
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𝛼𝐿 =
𝑁
𝐸𝐼
𝐿 ≅ 4.4934 

(A.14) 

or 

𝑁ou opqrscmnijklcm =
20.19064356	𝐸𝐼

𝐿)
= 2.046	

𝜋)𝐸𝐼
𝐿)

	 
(A.15) 

is obtained. 

Beam with clamped ends 

For C-C ends we have 

𝐴 �n� = 2 − 𝐿𝑠𝑖𝑛 𝐿𝛼 − 2𝑐𝑜𝑠	(𝐿𝛼) = 0 (A.16) 

or 

𝐴 �n� = 4𝑠𝑖𝑛)
𝐿𝛼
2

− 𝛼𝐿 𝑠𝑖𝑛 𝐿𝛼 = 0 (A.17) 

By using the following trigonometric identity 

𝑠𝑖𝑛 𝐿𝛼 = 2	𝑠𝑖𝑛
𝐿𝛼
2

𝑐𝑜𝑠
𝐿𝛼
2

 (A.18) 

The expansion of the determinant reduces to 

𝐴 �n� = 𝑠𝑖𝑛
𝐿𝛼
2

4𝑠𝑖𝑛
𝐿𝛼
2

− 2𝛼𝐿𝑐𝑜𝑠
𝐿𝛼
2

= 0 (A.19) 

From this we get the solution as follows 

𝑠𝑖𝑛
𝐿𝛼
2

= 0 (A.20) 

or  

𝐿𝛼
2
=
𝐿
2

	
𝑁
𝐸𝐼
= 𝑛𝜋					 𝑛 = 1,2, … 			 

(A.21) 

If the axial load is isolated from the above   

𝑁 =
4𝜋)𝐸𝐼
𝐿) 	𝑛)							 𝑛 = 1,2, …  

(A.22) 

The corresponding critical load is obtained for  𝑛 = 1 as in the following.  
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𝑁ou �n� =
4𝜋)𝐸𝐼
𝐿)

	 
(A.23) 

It is revealed that this critical load is exactly quadruple of the pinned-pinned Euler column. 
Thus fixing two ends has increased the critical load to a large extent. 
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Abstract 

Transformer is a vital component of electrical power systems for transmission and distribution. Robust design to 
increase the efficiency of a transformer is one of the main factors in transformer manufacturing. The efficiency 
of a practical transformer is limited by the losses caused by design and manufacturing defects. Losses in 
transformers can be divided into idle losses and losses under load. Eddy current loss is obtained from the idle 
losses of the transformer. In this paper, the effect of eddy effect causing HV energy loss at high magnetization 
frequencies was investigated. ANSYS@Maxwell software based on the Finite Element Method was used to 
analyze the eddy current loss in a T-connected, 3-leg and 3-phase distribution transformer of 15 MVA. The 
losses are obtained from no-load tests by changing the operating frequency of the transformer. Depending on the 
frequency value in the range of 50-60 Hz, the change in eddy current loss has been observed while the 
transformer winding is excitation at 1.74 T magnetic flux density. It has been observed that increasing the 
frequency causes an increase in the no load loss in the 3-phase transformer.  

Keywords: Transformer, FEM, Frequency, Magnetic field, Eddy current loss. 

1. Introduction 

Calculating the parameters of power transformers, designing, modeling and realizing lifelike 
simulations of these transformers has always been a challenge for designers. These 
transformers are the most expensive item of energy transmission and distribution facilities. 
For this reason, it has always been important for designers to predict the correct operation of 
the transformer and to know the possible failures that may occur. They performed the study 
and analysis of high frequency models of power transformers for the analysis of the transient 
interaction between power systems and transformers [1]. It realizes the identification of 
different internal faults that cause power cuts in transformers with an algorithm and 
transformer model [2]. In recent years, with the development of computer software programs, 
different nonlinear core materials used in transformers core and simulation programs based on 
Finite Element Method (FEM) have been used intensively to model the permanent 
magnetization of these materials [3]. ANSYS @ Maxwell based on FEM was used to 
calculate the parameters of the model transformer in discharges occurring in the windings of 
transformers [4]. Mains frequency controlled or uncontrolled rectifiers used in power 
electronics draw currents containing harmonic components from the electric grid. The loss of 
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transformers in the no-load state consists of eddy and hysteresis losses. [5]. The effect of eddy 
loss on transformer loss can be calculated as: 

 

(1)                                                              
   

K: constant  

B: maximum flux density  

F: frequency  

The losses occurring in the transformer's magnetic core reach high values at high frequencies 
[6]. It shows that by using ferromagnetic material in a transformer core model, the core loss 
increases with increasing frequency [7]. 

Eddy currents become negligible at very low magnetization frequency. This allows a method 
is as shown in Fig. 1. A summary of the core loss mechanism is given in Fig. 2. 

 

Fig. 1. Hysteresis curve of magnetic materials 

 

 

Fig. 2. Core loss summary. 
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The power loss of no load transformer may be written as [6]: 

(2)                                                              

Eddy currents in transformer cores can be minimized. This reduces the conventional eddy 
current losses that are highly based on core material thickness [8,9]. 

2. Material and Method 

The main component core consists of a three-legged three-phase 15 MVA transformer core 
with a T-joint shear angle. The characteristics of the transformer are given in Table 1. 

 
Table 1. Properties of Transformer 

Parameter Value 
Rated Power 15.MVA 

HV 33.000 V 
LV 11.000 V 

Frequency 50 Hz 
HV turn number 665 
LV turn number 812 

aliMater 027S-M125 
thicknessal iMater 0.3 mm 

Conductivity 5000000 S/m 
Stacking factor 0.95 

 

In core type transformer, both primary and secondary windings are placed on side limbs. This 
type of transformer has two magnetic circuits. Fig. 3 shows the prototype of the core type 
transformer designed.  

 

Fig. 3. Core type three-phase transformer. 
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In the transformer model, the boundary conditions are defined on the external geometry and 
properties of all materials. The magnetic core is characterized by thin laminations such as the 
B-H curve of magnetization given in Fig. 4 [1-2]. 

 
Fig. 4. B-H curve of core material 

In order to eliminate sudden currents and shorten the simulation time, exponential excitation 
is given as given in Fig. 5. 

 
 

Fig. 5. Transformer excitation voltage curve 
 

In order to analyze the designed model, the entire model is divided into many elements, 
usually triangles. The mesh (mesh) of the model created with finite elements is presented in 
Fig. 6. 

 
 

Fig. 6. Mesh of transformer. 
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Testing has been done using the no-load test test. Each winding is also designed so that the 
stepped length of the three phase core can be varied.  

3. Analysis and Results 

The magnetic flux distribution of the designed transformer model at 50 Hz frequency and 
depending on the variable magnetic field is given in Figure 7. 

 
Fig. 7. Magnetic flux distribution. 

 

The variation of the eddy current loss in three phase cores is presented in Figure 8. As a result 
of this research, it was seen that the core loss was 12.41 kW. The loss in this study is the 
classical eddy current. Table 2 shows the eddy current loss variation obtained from the 
simulation.  

 
Fig. 8. Eddy current loss at 50 Hz frequency 
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Table 2. Variation of eddy current loss with frequency 

Frequency (Hz) Eddy Current Loss (kW) 
50 5.748 
52 5.931 
54 6.121 
56 6.218 
58 6.355 
60 6.421 

In cases where the frequency increased, the eddy current loss increased. It can be clearly 
stated that there is much about eddy current losses in the literature. When the flow, flux 
density and frequency value of the flux in the junctions increase, due to the movement of the 
flux, there is an air gap between the joints, so the flux adhering to the joint and this will allow 
the magnetic flux to flow to the other electrical steel lamine. Flux will be circulated in the 
field as shown. As a result, it has been seen how eddy current losses increase depending on 
the increase in frequency. 

7. Conclusions 

In this paper, from the results of the model analyzed at 50 Hz frequency, it was seen that the 
lowest power loss of the transformer core, ie eddy current losses, has a significant effect on 
the total core losses of the idle 3-phase transformer. The increase in frequency has caused an 
increase in transformer core losses. The eddy current losses on the core also varied depending 
on the change of magnetic flux. As a result, it has been seen how eddy current losses increase 
depending on the increase in frequency. 

Acknowledgments 

This study was supported by Inonu University Scientific Research Projects Coordination Unit. 
Project Number: FBA-2017-639. 

References 
 
 
[1] Özüpak, Y., Mamiş, M.S., Realization of electromagnetic flux and thermal analyses of 

transformers by finite element method, IEEJ Transactions on Electrical and Electronic 
Engineering, 14(10), 1478-1484, 2019. 

[2] Morched, A., Marti, L., Ottevangers J., A high frequency transformer model for the 
EMTP, IEEE Transactions on Power Delivery, 8(3), 1615-1626, 1993. 

[3] Özüpak, Y., Mamiş, M.S., Teke, İ.H., Electromagnetic field and total loss analysis of 
transformers by finite element method, International Journal of Engineering And 
Computer Science, 8(1), 24451-24460, 2019. 

 [4] Özüpak, Y., Mamiş, M.S., Realization of electromagnetic flux and thermal analyses of 
transformers by finite element method, IEEJ Transactions on Electrical and Electronic 
Engineering, 14(10), 1478-1484, 2019.  

[5] Subedi, D., Lightning induced over-voltages in power transformer and voltage spikes in 
connected load, Master Thesis, Aalto University, Helsinki, Finland, 2017. 

[6] Shirvani, A., Malekian, K., Schmidt, U., Schufft, W., A New Power transformer Model 
Over Wide Frequency range for EMTP, 45th International Universities Power 
Engineering Conference UPEC2010, 1-6, 2010. 



Y. Özüpak 
 

 42 

[7] Sabiha, N.A., Lightning-induced overvoltages in mediumvoltage distribution systems and 
customer experienced voltage spikes, PhD Thesis, Aalto University, Helsinki, Finland, 
2010. 

[8] Shareghi, M., Phung, B.T., Naderi, M.S., Blackburn, T.R., Ambikairajah, E., Effects of 
current and voltage harmonics on distribution transformer losses, International Conference 
on Condition Monitoring and Diagnosis (CMD), 633-636, 2012.  

[9] Soh, T.L.G, Said, D.M., Ahmad, N., Nor, K.M., Salim, F., Experimental study on the 
impact of harmonics on transformer, IEEE 7th International Power Engineering and 
Optimization Conference (PEOCO), 686-690, 2013. 

 


