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Abstract − Let G be a finite, simple, undirected and connected graph. χ ′
as (G) denotes the mini-

mum number of colors required for a proper edge-coloring of G , in which no two adjacent vertices

are incident to edges colored with the same set of colors. In this paper, I am compute sharp bound

for adjacent vertex-distinguishing proper edge-coloring of brick-product.

Subject Classification (2020): 05C15, 05C32.

1. Introduction

I am refer the books [4, 11] for graph theoretical notation and terminology. Let G be a finite, simple, undi-

rected and connected graph. Denote by V (G) and E(G) be the set of vertices and edges of G , respectively.

Let ∆(G) denotes the maximum degree of G . A proper edge-coloring σ is a mapping from E(G) to the set of

colors such that any two adjacent edges receive distinct colors. For any vertex v of G , let Sσ(v) denote the set

of the colors of all edges incident to v. A proper edge-coloring σ is said to an adjacent vertex-distinguishing

(AVD) if Sσ(u) 6= Sσ(v), for every adjacent vertices u and v. The minimum number of colors required for an

adjacent vertex-distinguishing proper edge-coloring of G , denoted by χ ′
as(G), is called the adjacent vertex-

distinguishing chromatic index (AVD chromatic index) of G . Thus, χ ′
as(G) ≥χ ′(G).

The concept of adjacent vertex-distinguishing edge-coloring has been introduce and studied in [19] Zhang

et al. (2002) and pose the following conjecture.

Conjecture 1.1. (Zhang et al. [19]) For any connected graph G (|V (G) |≥ 6), there is χ ′
as(G) ≤∆(G)+2.

If H is a subgraph of G , it is interesting that χ ′
as(H) ≤ χ ′

as(G) is not always true. Let Km,n be the complete

bipartite graph, then χ ′
as(K2,3) = 3 and K2,3−e for any edge, then χ ′

as(K2,3−e) = 4. Deletion of an edge of a

graph may also decrease the coloring number of the graph. Let n ≥ 3, then χ ′
as(K1,n) = n and χ ′

as(K1,n −e) =
n −1.

The concept of adjacent vertex-distinguishing edge-coloring has been studied in many paper such as [1, 3,

1ksskcomputer@gmail.com (Corresponding Author)
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5–10, 12–20].

In [1] Anantharaman (2019) obtained exact values for adjacent vertex-distinguishing edge-coloring of strong

product of some graphs. In [3] Axenovich et al. (2016) obtained upper bound for adjacent vertex-distinguishing

edge-colorings of graphs. In [5] Balister et al. (2007) obtained upper bound for adjacent vertex-distinguishing

edge-coloring some special graphs also consider 3-regular graphs. In [6] Baril et al. (2006) obtained exact

values for adjacent vertex-distinguishing edge-coloring of meshes. In [7] Bu et al. (2011) finding adjacent

vertex-distinguishing edge-colorings of planar graphs with girth at least six. In [8] Chen et al. (2015) ob-

tained adjacent vertex-distinguishing proper edge-coloring of planar bipartite graphs with ∆ = 9, 10, or

11. In [9] Hatami (2005) prove that ∆+ 300 is a bound on the adjacent vertex-distinguishing edge chro-

matic number. In [10] Hocquard et al. (2011) compute adjacent vertex-distinguishing edge-coloring of

graphs with maximum degree at least five1. In [12] Li et al. (2006) compute adjacent strong edge-coloring of

K (n,m). In [13] Lin et al. (2010) compute the adjacent vertex-distinguishing edge-coloring of graphs con-

taining Hamiltonian path and graphs containing dominating path. In [14] Lin-zhong et al. (2003) compute

on the adjacent strong edge-coloring of Halin Graphs. In [15] Omai et al. (2017) compute for some result

for AVD-edge-coloring on power of path1. In [17] Wang et al. (2010) obtained adjacent vertex-distinguishing

edge-colorings of graphs with smaller maximum average degree. In [18] Yu et al. (2016) compute adjacent

vertex-distinguishing colorings by sum of sparse graphs. In [19] Zhang et al. (2002) obtained some stan-

dard result and pose the conjecture for adjacent Strong edge-coloring of graphs. In [20] Zhang et al. (2014)

obtained improved upper bound on adjacent vertex-distinguishing chromatic index of a graph.

2. Brick-product

Let ` ≥ 2, m ≥ 1 and r ≥ 0 be integers such that m + r is even. Let C2` be a cycle of length 2`. The (m,r )-

brick-product of C2`, denoted by Br (2`,m,r ), is the graph with adjacency defined in two cases.

• For m = 1, r ≥ 3 must be odd and Br (2`,1,r ) is obtained from the cycle C2` = (v0, v1, v2, . . . , v2`−1, v0), by

adding chords joining v2i and v2i+r for i ∈ {0,1, . . . ,`−1} where subscripts are taken modulo 2`.

• For m ≥ 2, Br (2`,m,r ) is obtained by first taking the vertex-disjoint union of m copies of C2` denoted by

C2`(i ) = (vi ,0, vi ,1, vi ,2, . . . , vi ,2`−1, vi ,0), i ∈ {0,1, . . . ,m −1}.

Next, for each pair (i , j ) ∈ {0,1, . . . ,m −2}× {0,1, . . . ,2`−1} such that i and j have the same parity, an edge is

added to join vi , j and vi+1, j . Finally, for odd j ∈ {1,3,5, . . . ,2`−1}, an edge is added to join v0, j and vm−1, j+r ,

where the second subscript is modulo 2` ([16]).

By definition, Br (2`,m,r ) is 3-regular. So χ ′
as(Br (2`,m,r )) ≥∆+1 = 4. We show at most brick-product have

χ ′
as(Br (2`,m,r )) = 4.

3.χ ′
as(Br (2`,m,r )) for m ∉ {1,2,5}

Theorem 3.1. For m ∉ {1,2,5}, χ ′
as(Br (2`,m,r )) = 4.

Proof.

Let G = Br (2`,m,r ). I am consider four cases.

Case 1. m ≡ 0(mod 4).

Define σ : E(G) → {1,2,3,4} as follows:
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for i ∈ {0,4,8, . . . ,m −4},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {1,5,9, . . . ,m −3}

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {2,6,10, . . . ,m −2},

σ(vi , j vi , j+1) =
3 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {3,7,11, . . . ,m −1},

σ(vi , j vi , j+1) =
2 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {0,4,8, . . . ,m −4}, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {1,5,9, . . . ,m −3}, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {2,6,10, . . . ,m −2}, σ(vi , j vi+1, j ) = 1;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {3,7,11, . . . ,m −5}, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1}, σ(v0, j vm−1, j+r ) = 3.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i ∈ {0,4,8, . . . ,m −4},

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {1,5,9, . . . ,m −3},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {2,6,10, . . . ,m −2},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{2,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {3,7,11, . . . ,m −1},

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{2,3,4} if j ∈ {1,3,5, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Case 2. m ≡ 1(mod 4).

Define σ : E(G) → {1,2,3,4} as follows:

for i ∈ {0,3,6},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};
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for i ∈ {1,4,7},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {2,5,8},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {9,13,17, . . . ,m −4},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {10,14,18, . . . ,m −3},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {11,15,19, . . . ,m −2},

σ(vi , j vi , j+1) =
3 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {12,16,20, . . . ,m −1},

σ(vi , j vi , j+1) =
2 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {0,6}, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i = 3, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {1,7}, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i = 4, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {2,8}, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1} and i = 5, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {9,13,17, . . . ,m −4}, σ(vi , j vi+1, j ) = 4;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {10,14,18, . . . ,m −3}, σ(vi , j vi+1, j ) = 2;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {11,15,19, . . . ,m −2}, σ(vi , j vi+1, j ) = 1;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {12,16,20, . . . ,m −5}, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1}, σ(v0, j vm−1, j+r ) = 3.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i ∈ {0,6},

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};
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for i ∈ {1,7},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {2,8},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 3,

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 4,

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 5,

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {9,13,17, . . . ,m −4},

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {10,14,18, . . . ,m −3},

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {11,15,19, . . . ,m −2},

Sσ(vi , j ) =
{2,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {12,16,20, . . . ,m −1},

Sσ(vi , j ) =
{2,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Case 3. m ≡ 2(mod 4).

Define σ : E(G) → {1,2,3,4} as follows:

for i ∈ {0,3},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};
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for i ∈ {1,4},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {2,5},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {6,10,14, . . . ,m −4},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {7,11,15, . . . ,m −3},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {8,12,16, . . . ,m −2},

σ(vi , j vi , j+1) =
3 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {9,13,17, . . . ,m −1},

σ(vi , j vi , j+1) =
2 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for j ∈ {0,2,4, . . . ,2`−2} and i = 0, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i = 1, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i = 2, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1} and i = 3, σ(vi , j vi+1, j ) = 4;

for j ∈ {0,2,4, . . . ,2`−2} and i = 4, σ(vi , j vi+1, j ) = 2;

for j ∈ {1,3,5, . . . ,2`−1} and i = 5, σ(vi , j vi+1, j ) = 3;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {6,10,14, . . . ,m −4}, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {7,11,15, . . . ,m −3}, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {8,12,16, . . . ,m −2}, σ(vi , j vi+1, j ) = 1;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {9,13,17, . . . ,m −5}, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1}, σ(v0, j vm−1, j+r ) = 3.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i = 0,

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i = 1,

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};
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for i = 2,

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 3,

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 4,

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i = 5,

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {6,10,14, . . . ,m −4},

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {7,11,15, . . . ,m −3},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {8,12,16, . . . ,m −2},

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{2,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {9,13,17, . . . ,m −1},

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{2,3,4} if j ∈ {1,3,5, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Case 4. m ≡ 3 (mod 4).

Define σ : E(G) → {1,2,3,4} as follows:

for i = 0,

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};

for i = 1,

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};
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for i = 2,

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {3,7,11, . . . ,m −4},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

2 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {4,8,12, . . . ,m −3},

σ(vi , j vi , j+1) =
1 if j ∈ {0,2,4, . . . ,2`−2},

3 if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {5,9,13, . . . ,m −2},

σ(vi , j vi , j+1) =
3 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {6,3,5, . . . ,2`−1};

for i ∈ {6,10,14, . . . ,m −1},

σ(vi , j vi , j+1) =
2 if j ∈ {0,2,4, . . . ,2`−2},

4 if j ∈ {1,3,5, . . . ,2`−1};

for j ∈ {0,2,4, . . . ,2`−2} and i = 0, σ(vi , j vi+1, j ) = 4;

for j ∈ {1,3,5, . . . ,2`−1} and i = 1, σ(vi , j vi+1, j ) = 2;

for j ∈ {0,2,4, . . . ,2`−2} and i = 2, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {3,7,11, . . . ,m −4}, σ(vi , j vi+1, j ) = 4;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {4,8,12, . . . ,m −3}, σ(vi , j vi+1, j ) = 2;

for j ∈ {1,3,5, . . . ,2`−1} and i ∈ {5,9,13, . . . ,m −2}, σ(vi , j vi+1, j ) = 1;

for j ∈ {0,2,4, . . . ,2`−2} and i ∈ {6,10,14, . . . ,m −5}, σ(vi , j vi+1, j ) = 3;

for j ∈ {1,3,5, . . . ,2`−1}, σ(v0, j vm−1, j+r ) = 3.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i = 0,

Sσ(vi , j ) =
{1,2,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i = 1,

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,3} if j ∈ {1,3,5, . . . ,2`−1};

for i = 2,

Sσ(vi , j ) =
{1,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {3,7,11, . . . ,m −4},

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1};
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for i ∈ {4,8,12, . . . ,m −3},

Sσ(vi , j ) =
{1,2,3} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {5,9,13, . . . ,m −2},

Sσ(vi , j ) =
{2,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,3,4} if j ∈ {1,3,5, . . . ,2`−1};

for i ∈ {6,10,14, . . . ,m −1},

Sσ(vi , j ) =
{2,3,4} if j ∈ {0,2,4, . . . ,2`−2},

{1,2,4} if j ∈ {1,3,5, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Thus, χ ′
as(Br (2`,m,r )) = 4.

4.χ ′
as(Br (2`,1,r ))

By definition, r ∈ {3,5,7, . . . }. Also, `≥ 3.

Theorem 4.1. If `≡ 3 (mod 6) and r ∉ {3,9,15,21, . . . }, then

χ ′
as(Br (2`,1,r )) = 4.

Proof.

Define σ : E(Br (2`,1,r )) → {1,2,3,4} as follows:

σ(v j v j+1) =


1 if j ∈ {0,3,6, . . . ,2`−3},

2 if j ∈ {1,4,7, . . . ,2`−2},

3 if j ∈ {2,5,8, . . . ,2`−1}.

Remaining edges are colored 4.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are:

Sσ(v j ) =


{1,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,2,4} if j ∈ {1,4,7, . . . ,2`−2},

{2,3,4} if j ∈ {2,5,8, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Thus, χ ′
as(Br (2`,1,r )) = 4.

5.χ ′
as(Br (2`,2,r ))

By the definition of Br (2`,2,r ), r is even.

Theorem 5.1. For `≡ 0 (mod 3), χ ′
as(Br (2`,2,r )) = 4.

Proof.
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Let G = Br (2`,2,r ). I am consider two cases.

Case 1. r ∉ {4,10,16, . . . }.

Define σ : E(G) → {1,2,3,4} as follows:

σ(v0, j v0, j+1) =


1 if j ∈ {0,3,6, . . . ,2`−3},

2 if j ∈ {1,4,7, . . . ,2`−2},

3 if j ∈ {2,5,8, . . . ,2`−1};

σ(v1, j v1, j+1) =


3 if j ∈ {0,3,6, . . . ,2`−3},

1 if j ∈ {1,4,7, . . . ,2`−2},

2 if j ∈ {2,5,8, . . . ,2`−1}.

Remaining edges are colored 4.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

Sσ(v0, j ) =


{1,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,2,4} if j ∈ {1,4,7, . . . ,2`−2},

{2,3,4} if j ∈ {2,5,8, . . . ,2`−1};

Sσ(v1, j ) =


{1,2,4} if j ∈ {0,3,6, . . . ,2`−3},

{2,3,4} if j ∈ {1,4,7, . . . ,2`−2},

{1,3,4} if j ∈ {2,5,8, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Case 2. r ∈ {4,10,16, . . . }.

Define σ : E(G) → {1,2,3,4} as follows:

σ(v0, j v0, j+1) =


1 if j ∈ {0,3,6, . . . ,2`−3},

2 if j ∈ {1,4,7, . . . ,2`−2},

3 if j ∈ {2,5,8, . . . ,2`−1};

σ(v1, j v1, j+1) =


2 if j ∈ {0,3,6, . . . ,2`−3},

3 if j ∈ {1,4,7, . . . ,2`−2},

1 if j ∈ {2,5,8, . . . ,2`−1}.

Remaining edges are colored 4.

By the construction, σ is a proper edge-coloring.
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The induced vertex-color sets are given below:

Sσ(v0, j ) =


{1,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,2,4} if j ∈ {1,4,7, . . . ,2`−2},

{2,3,4} if j ∈ {2,5,8, . . . ,2`−1};

Sσ(v1, j ) =


{1,2,4} if j ∈ {0,3,6, . . . ,2`−3},

{2,3,4} if j ∈ {1,4,7, . . . ,2`−2},

{1,3,4} if j ∈ {2,5,8, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Thus, χ ′
as(Br (2`,2,r )) = 4.

This completes the proof.

6.χ ′
as(Br (2`,5,r ))

By the definition of Br (2`,5,r ), r is odd.

Theorem 6.1. For `≡ 0 (mod 3), χ ′
as(Br (2`,5,r )) = 4.

Proof.

Let G = Br (2`,5,r ). I am consider two cases.

Case 1. r ∉ {3,9,15, . . . }.

Define σ : E(G) → {1,2,3,4} as follows:

for i ∈ {0,2,4},

σ(vi , j vi , j+1) =


1 if j ∈ {0,3,6, . . . ,2`−3},

2 if j ∈ {1,4,7, . . . ,2`−2},

3 if j ∈ {2,5,8, . . . ,2`−1};

for i ∈ {1,3},

σ(vi , j vi , j+1) =


3 if j ∈ {0,3,6, . . . ,2`−3},

1 if j ∈ {1,4,7, . . . ,2`−2},

2 if j ∈ {2,5,8, . . . ,2`−1}.

Edges {v0, j v1, j , v2, j v3, j : j ∈ {1,3,5, . . . ,2`−1}}∪
{v1, j v2, j , v3, j v4, j , v0, j v4, j+r : j ∈ {0,2,4, . . . ,2`−2}} are colored 4.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i ∈ {0,2,4},

Sσ(vi , j ) =


{1,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,2,4} if j ∈ {1,4,7, . . . ,2`−2},

{2,3,4} if j ∈ {2,5,8, . . . ,2`−1};
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for i ∈ {1,3},

Sσ(vi , j ) =


{2,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,3,4} if j ∈ {1,4,7, . . . ,2`−2},

{1,2,4} if j ∈ {2,5,8, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Case 2. r ∈ {3,9,15, . . . }.

Define σ : E(G) → {1,2,3,4} as follows:

for i ∈ {0,2},

σ(vi , j vi , j+1) =


1 if j ∈ {0,3,6, . . . ,2`−3},

2 if j ∈ {1,4,7, . . . ,2`−2},

3 if j ∈ {2,5,8, . . . ,2`−1};

for i ∈ {1,3},

σ(vi , j vi , j+1) =


3 if j ∈ {0,3,6, . . . ,2`−3},

1 if j ∈ {1,4,7, . . . ,2`−2},

2 if j ∈ {2,5,8, . . . ,2`−1};

for i = 4,

σ(vi , j vi , j+1) =


2 if j ∈ {0,3,6, . . . ,2`−3},

3 if j ∈ {1,4,7, . . . ,2`−2},

1 if j ∈ {2,5,8, . . . ,2`−1}.

Remaining edges are colored 4.

By the construction, σ is a proper edge-coloring.

The induced vertex-color sets are given below:

for i ∈ {0,2},

Sσ(vi , j ) =


{1,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,2,4} if j ∈ {1,4,7, . . . ,2`−2},

{2,3,4} if j ∈ {2,5,8, . . . ,2`−1};

for i ∈ {1,3},

Sσ(vi , j ) =


{2,3,4} if j ∈ {0,3,6, . . . ,2`−3},

{1,3,4} if j ∈ {1,4,7, . . . ,2`−2},

{1,2,4} if j ∈ {2,5,8, . . . ,2`−1};

for i = 4,

Sσ(vi , j ) =


{1,2,4} if j ∈ {0,3,6, . . . ,2`−3},

{2,3,4} if j ∈ {1,4,7, . . . ,2`−2},

{1,3,4} if j ∈ {2,5,8, . . . ,2`−1}.

Observe that σ is an AVD proper edge-coloring of G .

Thus, χ ′
as(Br (2`,5,r )) = 4. We finish this paper with the following problem.
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i) For `≡ 3 (mod 6) and r ∈ {3,9,15,21, . . . }, compute χ ′
as(Br (2`,1,r )).

ii) For ` 6≡ 3 (mod 6), compute χ ′
as(Br (2`,1,r )).

iii) For ` 6≡ 0 (mod 3), compute χ ′
as(Br (2`,2,r )).

iv) For ` 6≡ 0 (mod 3), compute χ ′
as(Br (2`,5,r )).
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1. Introduction

An arithmetical function is a complex valued function defined on the set of positive integers and the set

of these functions is denoted by A. The (Dirichlet) convolution
(
g ∗h

)
of g and h is defined by

(
g ∗h

)
(n) =∑

d |n g (d)h
(n

d

)
for all g ,h ∈ A. Rearick [2] introduced the notions of Logarithm and Exponential operators of

arithmetic functions. These operators were inverses of one another. The Logarithm operator takes Dirichlet

products to sums in A, and the Exponential operator takes sums to Dirichlet products. Inspired by Rearick’s

work Li and MacHenry introduced LOG and EXP operators. The LOG operates on generalized Fibonacci

polynomials(Fk,n(t )) giving generalized Lucas polynomials(Gk,n(t )). The EXP is the inverse of LOG[1]. Then

Li and MacHenry defined the "Hyperbolic" SINE and "Hyperbolic" COSINE functions with the help of the

EXP operator. First, let’s give the definitions necessary to make sense of these definitions.

Definition 1.1. [1] An isobaric polynomial is a polynomial in the variables t1, t2, . . . , tk for k ∈ {1,2, . . .}, with

coefficients in Z, of the form

Pk,n(t1, t2, . . . , tk ) = ∑
α`n

Cαtα1
1 tα2

2 . . . tαk

k

where α= {α1,α2, . . .αk } and α` n means that
k∑

j=1
jα j = n.
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Adem ŞAHİN et al. / IKJM / 3(1) (2021) 15-19 16

Definition 1.2. [1] A weighted isobaric polynomial given by the following explicit expression:

Pw,k,n(t1, t2, . . . , tk ) = ∑
α`n

(
|a|

α1,α2, . . . ,αk

)∑k
j=1 w jα j

|α| tα1
1 tα2

2 . . . tαk

k

where w is the weight vector (w1, w2, . . . , wk ), w j ∈Z and |α| =α1 +α2 + . . .+αk .

Fk,n(t ) and Gk,n(t ), are defined inductively by as follows:

Fk,0(t ) = 1, Fk,n+1(t ) = t1Fk,n(t )+·· ·+ tk Fk,n−k+1(t )(n > 1),

and

Gk,0(t ) = k, Gk,1(t ) = t1, Gk,n(t ) =Gk−1,n(t )(1 ≤ n ≤ k),

Gk,n(t ) = t1Gk,n−1(t )+·· ·+ tkGk,n−k (t )(n > k),

where the vector t = (t1, t2, . . . , tk ) and ti (1 ≤ i ≤ k) are constant coefficients of the core polynomial

P (x; t1, t2, . . . , tk ) = xk − t1xk−1 −·· ·− tk .

Li and MacHenry [1] defined two operators L (LOG) and E (EXP).

Definition 1.3. [1] For a fixed k and n ≥ 1,

L (Pn) =−tn−1P1 −2tn−2P2 − ...− (n −1)t1Pn−1 +nPn

where Pn is weighted isobaric polynomial and ti = 0 for i > k.

Definition 1.4. [1] For a fixed k, E (Gk,0) = 1,

E (Gk,n) = 1

n
(Fk,n−1Gk,1 +Fk,n−2Gk,2 + ...+Fk,1Gk,n−1 +Gk,n).

Lemma 1.5. [1]L and E are inverses of one another on F and G, i.e.,

L (Fn) = Gn

E (Gn) = Fn

Definition 1.6. [1] "Hyperbolic" SINE and "Hyperbolic" COSINE functions are defined as;

C (G) = 1

2
(E (G)+E (G))

S(G) = 1

2
(E (G)−E (G)).

2. "Hyperbolic" Trigonometric Operators

The purpose of this article is to give proofs of some properties provided by "Hyperbolic" trigonometric

functions defined in [1].
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Theorem 2.1. [1] Let δ be the function whose values are (1,0,0, ...,0, ...),

C (G)∗2 −S(G)∗2 = δ.

Theorem 2.2. [1] Let F and G be induced by the core
[
t1,...,tk

]
, F

′
and G

′
be induced by the core

[
t
′
1,...,t

′
k

]
with L (F ) =G and L (F

′
) =G

′
, then

C (G +G
′
) = C (G)∗C (G

′
)+S(G)∗S(G

′
),

S(G +G
′
) = S(G)∗C (G

′
)+C (G)∗S(G

′
).

Theorem 2.3. Let F and G be induced by the core
[
t1,...,tk

]
, with L (F ) =G then,

S(2G) = 2(S(G)∗C (G))

Proof.

2(S(G)∗C (G)) = 2(
1

2
(E (G)−E (G))∗ 1

2
(E (G)+E (G)))

= 1

2
(E (G)−E (G))∗ (E (G)+E (G))

= 1

2
(E (G)∗E (G)+E (G)∗E (G)−E (G)∗E (G)−E (G)∗E (G))

= 1

2
(E (2G)−E (2G))

= S(2G).

Theorem 2.4. Let F and G be induced by the core
[
t1,...,tk

]
, with L (F ) =G then,

C (2G) = 2(C (G))∗2 −δ.

Proof.

2(C (G))∗2 −δ = 2

(
1

2
(E (G)+E (G))

)∗2

−δ

= 1

2

(
E (G)+E (G)

)∗2 −δ

= 1

2
(E (G)∗E (G)+2E (G)∗E (G)+E (G)∗E (G)−2δ)

= 1

2
(E (2G)+2δ+E (2G)−2δ)

= 1

2
(E (2G)+E (2G))

= C (2G).
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Theorem 2.5. Let F and G be induced by the core
[
t1,...,tk

]
, with L (F ) =G then,

C (2G) = (C (G))∗2 + (S(G))∗2

Proof.

(C (G))∗2 + (S(G))∗2 =
(

1

2
(E (G)+E (G))

)∗2

+
(

1

2
(E (G)−E (G))

)∗2

= 1

4

((
E (G)+E (G)

)∗2 +
(
E (G)−E (G)

)∗2
)

= 1

4
(E (G)∗E (G)+2E (G)∗E (G)+E (G)∗E (G)

+E (G)∗E (G)−2E (G)∗E (G)+E (G)∗E (G))

= 1

4
(E (2G)+E (2G)+E (2G)+E (2G))

= 1

4
(2

(
E (2G)+E (2G)

)
)

= 1

2
(E (2G)+E (2G))

= C (2G).

Theorem 2.6. Let F and G be induced by the core
[
t1,...,tk

]
, with L (F ) =G then,

C (2G) = 2(S(G))∗2 +δ

Proof.

2(S(G))∗2 +δ = 2

(
1

2
(E (G)−E (G))

)∗2

+δ

= 1

2
(
(
E (G)−E (G)

)∗2
)+δ

= 1

2
(E (G)∗E (G)−2E (G)∗E (G)+E (G)∗E (G)+2δ)

= 1

2
(E (2G)−2δ+E (2G)+2δ)

= 1

2
(E (2G)+E (2G))

= C (2G).
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Abstract − In this study, we introduce a new moving frame on regular surfaces for trajectories

with non-vanishing angular momentum and give the angular velocity vector for this frame. Then,

we consider the special trajectories generated by Smarandache curves according to this frame in

three-dimensional Euclidean space and investigate the Serret-Frenet apparatus of them. Moreover,

we provide an illustrative example explaining how this frame is constructed and how the aforemen-

tioned special trajectories are generated. This moving frame is a new contribution to the field and

we expect that it will be useful in some specific applications of differential geometry and kinematics

in the future.
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1. Introduction

In differential geometry, the theory of surfaces in 3-dimensional Euclidean space has an important place.

Although the theory of surfaces in 3-dimensional Euclidean space had already been developed widely when

the Serret-Frenet frame was introduced by Serret and Frenet, Serret-Frenet frame helped developing this

theory further by researchers. This theory is still an issue of interest despite its long history. The approaches

followed by Serret and Frenet led to the success of adapting the method of moving frames to the surface

curves. This was carried out by Jean Gaston Darboux. He introduced a moving frame which is constructed

on a surface. It is called as Darboux frame. At all non-umbilic points of a surface, Darboux frame exists.

Thus, it exists at all the points of a curve on a regular surface [9, 12]. Darboux frame is a useful tool for

investigating the theory of surfaces. From the discovery of this frame until now, many researchers have

carried out lots of interesting studies on this theory by using this frame. Some of these studies can be found

in [2, 7, 8, 10, 14, 17].

In Euclidean 3-space, a point particle of constant mass moving on a regular surface curve has a position

vector according to Darboux frame of this curve. So, an arbitrary point of the trajectory can be represented

by the aforesaid particle. As a result of this case, there is a very close relationship between the differential

geometry of the trajectory, the differential geometry of the surface and the kinematics of the moving parti-

cle. This relationship has motivated us to prepare this study. In this study, a new moving frame on regular
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surfaces for trajectories with non-vanishing angular momentum has been constructed by considering the

Darboux frame of the trajectory. It is expected that this moving frame will enable more convenient observa-

tion environment for the researchers studying on modern robotics. Note that we carried out a similar study

[11] for trajectories, not necessarily lying on a surface, by considering Serret-Frenet frame. The present

study includes similar techniques and approaches given in [11].

Let E 3 be endowed with the standard inner product 〈D,E〉 = d1e1 +d2e2 +d3e3 where D = (d1 , d2 , d3), E =
(e1 , e2 , e3) are arbitrary vectors in this space. The norm of the vector D is stated as ‖D‖ = p〈D , D〉. If a

differentiable curve χ = χ (s) : I ⊂ R → E 3 satisfies the equality
∥∥∥dχ

d s

∥∥∥ = 1 for all s ∈ I , this curve is called

a unit speed curve. In this case, s is said to be arc-length parameter of χ. A differentiable curve is called

regular curve if its derivative is nonzero along the curve. Regular curves can be reparameterized by the arc-

length [13]. In the rest of the paper, the differentiation with respect to the arc-length parameter s will be

shown with a dash.

The Serret-Frenet frame of the curve χ = χ (s) is denoted by {T (s) ,N (s) ,B (s)}. The unit vectors T (s) , N (s)

and B (s) are called the unit tangent, unit principal normal and unit binormal vectors, respectively. On the

other hand, the Serret-Frenet formulas are given by
T′

N′

B′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B

 (1.1)

where κ (s) = ∥∥T ′ (s)
∥∥ is the curvature function and τ (s) =−〈

B ′ (s) ,N (s))
〉

is the torsion function [13].

Suppose that χ : I ⊂ R → M ⊂ E 3 is a unit speed curve which lies on a regular surface M . In that case, there

exists Darboux frame denoted by {T,Y,U} along the curve χ. T is the unit tangent vector of χ, U is the unit

normal vector of M restricted to χ and Y is the unit vector given by Y = U×T. The derivative formulas of

Darboux frame are as follows: 
T′

Y′

U′

 =


0 kg kn

−kg 0 τg

−kn −τg 0




T

Y

U

 . (1.2)

Here, the functions kg , kn and τg are called geodesic curvature, normal curvature and geodesic torsion of

the curve χ, respectively [6, 9].

This study is organized as follows. In Section 2, we explain how our frame is constructed and give the relation

matrix between this frame and Darboux frame. Afterwards, we obtain derivative formulas and complete the

set of apparatus of this frame. Also, angular velocity vector is obtained for this frame. In Section 3, we study

the special trajectories generated by Smarandache curves according to this frame in three-dimensional Eu-

clidean space.

2. Positional Adapted Frame on Regular Surfaces

In E 3, let a point particle of constant mass m move on a curve which lies on a regular surface M . Denote

by x the position vector of this particle relative to fixed origin O at time t . Let the curve χ= χ(s) be the unit

speed parametrization of the trajectory of the particle where the arc-length s of χ corresponds to time t . In
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that case, the unit tangent vector, velocity vector and linear momentum vector at the point χ(s) (at time t )

are given by

T(s) = dx

d s

v(t ) = dx

d t
=

(
d s

d t

)
T(s) (2.1)

p(t ) = mv(t ) = m

(
d s

d t

)
T(s),

respectively [4]. Also, we can write

x = 〈
χ(s),T(s)

〉
T(s)+〈

χ(s),Y(s)
〉

Y(s)+〈
χ(s),U(s)

〉
U(s) (2.2)

at the point χ(s) (at time t ) with respect to Darboux frame. By vector product of x and p(t ), the angular

momentum vector (at time t ) of the particle about O is found as:

HO = m
〈
χ(s),U(s)

〉(
d s

d t

)
Y(s)−m

〈
χ(s),Y(s)

〉(
d s

d t

)
U(s). (2.3)

Throughout the paper, we suppose that angular momentum vector of the aforementioned particle never

vanishes. In other words, we restrict ourselves to the trajectories having non-vanishing angular momentum.

This assumption ensures that the coefficient functions
〈
χ(s),Y(s)

〉
and

〈
χ(s),U(s)

〉
of the position vector are

not zero simultaneously. That is, we ensure that the tangent line never passes through the origin along the

trajectory. Let us return to the position vector. The opposite of this vector is given as in the following:

−x = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),Y(s)
〉

Y(s)+〈−χ(s),U(s)
〉

U(s). (2.4)

The projections of it on the instantaneous planes Sp {T(s),Y(s)} and Sp {T(s),U(s)} yield two vectors playing

important roles to construct a new moving frame on M along χ. These roles are stated in detail below.

The vector, whose starting point is χ (s) and endpoint is the foot of perpendicular (from O to Sp {T(s),Y(s)}),

can be given by

r(s) = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),Y(s)
〉

Y(s) (2.5)

and corresponds to the aforementioned projection on Sp {T(s),Y(s)}. On the other hand the vector, whose

starting point is χ (s) and endpoint is the foot of the perpendicular (from origin to Sp {T(s),U(s)}), can be

given by

r∗(s) = 〈−χ(s),T(s)
〉

T(s)+〈−χ(s),U(s)
〉

U(s) (2.6)

and corresponds to the aforementioned projection on Sp {T(s),U(s)}. From the Equation 2.5 and Equation

2.6, we can get the vector

r(s)− r∗(s) = 〈−χ(s),Y(s)
〉

Y(s)+〈
χ(s),U(s)

〉
U(s) (2.7)

whose starting point is χ (s) and which lies on the instantaneous plane Sp {Y(s),U(s)}. We must empha-
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size that the vector r(s) − r∗(s) is equivalent to the vector whose starting point is the aforesaid foot on

Sp {T(s),U(s)} and endpoint is the other aforesaid foot on Sp {T(s),Y(s)} (see Figure 1).

Let us talk about the determination of unit vector in direction r(s)− r∗(s). If both planes Sp {T(s),Y(s)} and

Sp {T(s),U(s)} do not contain the origin, the foots are distinct from each other and from the origin. There-

fore, two distinct foots generate the non-zero vector r(s)− r∗(s). In this case, the desired unit vector can be

obtained. When only one of the planes Sp {T(s),Y(s)} and Sp {T(s),U(s)} passes through the origin, the foot

of the perpendicular on the plane, containing origin, is taken as the origin. Certainly, the other foot is dis-

tinct from the origin. In that case, the desired unit vector is determined similarly. The case both the planes

Sp {T(s),Y(s)} and Sp {T(s),U(s)} include the origin simultaneously causes not to be determined of the de-

sired unit vector because the both of the aforesaid foots correspond to the origin. This situation occurs only

when the tangent line contains the origin. Fortunately, the assumption on the angular momentum vector

averts this. Let the unit vector in direction r(s)− r∗(s) be denoted by H(s). Namely,

H(s) = r(s)− r∗(s)

‖r(s)− r∗(s)‖ =
〈−χ(s), Y(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
Y(s)+

〈
χ(s), U(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
U(s). (2.8)

By vector product H(s) and T (s), we can get the another basis vector. We show it with G(s). Then we obtain

G(s) = H(s)∧T (s) =
〈
χ(s), U(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
Y(s)+

〈
χ(s), Y(s)

〉√〈
χ(s), Y(s)

〉2 +〈
χ(s), U(s)

〉2
U(s). (2.9)

This completes the positively oriented orthonormal moving frame {T (s) ,G(s),H(s)}.

Since the vectors Y(s),U(s),G(s) and H(s) lie on the plane {T (s)}⊥, there is a relation between the Darboux

frame and this frame as follows:
T (s)

G(s)

H(s)

=


1 0 0

0 cosΩ(s) −sinΩ(s)

0 sinΩ(s) cosΩ(s)




T(s)

Y(s)

U(s)

 (2.10)

whereΩ(s) is the angle between the vectors U(s) and H(s) which is positively oriented from U(s) to H(s) (see

Figure 1). By using the Equation 1.2 and Equation 2.10, we can write

G′(s) = (cosΩ(s)Y(s)− sinΩ(s)U(s))′

= −Ω′(s)sinΩ(s)Y(s)+cosΩ(s)
(−kg (s)T(s)+τg (s)U(s)

)
−Ω′(s)cosΩ(s)U(s)+ sinΩ(s)

(
kn(s)T(s)+τg (s)Y(s)

)
= (−kg (s)cosΩ(s)+kn(s)sinΩ(s)

)
T(s)+ (

τg (s)−Ω′(s)
)

[sinΩ(s)Y(s)+cosΩ(s)U(s)]

= (−kg (s)cosΩ(s)+kn(s)sinΩ(s)
)

T(s)+ (
τg (s)−Ω′(s)

)
H(s)
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and

H′(s) = (sinΩ(s)Y(s)+cosΩ(s)U(s))′

= Ω′(s)cosΩ(s)Y(s)+ sinΩ(s)
(−kg (s)T(s)+τg (s)U(s)

)
−Ω′(s)sinΩ(s)U(s)−cosΩ(s)

(
kn(s)T(s)+τg (s)Y(s)

)
= (−kg (s)sinΩ(s)−kn(s)cosΩ(s)

)
T(s)+ (

Ω′(s)−τg (s)
)

[cosΩ(s)Y(s)− sinΩ(s)U(s)]

= (−kg (s)sinΩ(s)−kn(s)cosΩ(s)
)

T(s)+ (
Ω′(s)−τg (s)

)
G(s).

In that case, differentiating the vector G(s)∧H(s) gives us the following:

T′(s) = (G(s)∧H(s))′

= G′(s)∧H(s)+G(s)∧H′(s)

= [(−kg (s)cosΩ(s)+kn(s)sinΩ(s)
)

T(s)+ (
τg (s)−Ω′(s)

)
H(s)

]∧H(s)

+G(s)∧ [(−kg (s)sinΩ(s)−kn(s)cosΩ(s)
)

T(s)+ (
Ω′(s)−τg (s)

)
G(s)

]
= (

kg (s)cosΩ(s)−kn(s)sinΩ(s)
)

G(s)+ (
kg (s)sinΩ(s)+kn(s)cosΩ(s)

)
H(s).

Therefore, the derivative formulas are given by
T′(s)

G′(s)

H′(s)

 =


0 k1(s) k2(s)

−k1(s) 0 k3(s)

−k2(s) −k3(s) 0




T(s)

G(s)

H(s)

 (2.11)

where

k1(s) = kg (s)cosΩ(s)−kn(s)sinΩ(s)

k2(s) = kg (s)sinΩ(s)+kn(s)cosΩ(s) (2.12)

k3(s) = τg (s)−Ω′(s).

Based on the relationship of the frame {T(s),G(s),H(s)} to the position vector, we call it as "Positional Adapted

Frame on Regular Surface". We will use the abbreviation PAFORS for it in the rest of the study. Also, we call

the set {T(s),G(s),H(s),k1(s),k2(s),k3(s)} as PAFORS apparatus of the regular surface curve χ=χ (s).
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O 

r(s) 

r*(s) 

χ(s) 
χ 

T(s) ‒r*(s) 

‒x(s) 

U(s) 

Y(s) 

Ω(s) 

Sp{T(s),Y(s)} 

M 

H(s) 

(a)

 U(s) 

Y(s) 

H(s) 

‒Y(s) 

‒U(s) 

Ω(s) 

H(s)ʌT(s)=G(s) 

χ(s) 

Sp{Y(s),U(s)} 

(b)

Figure 1. An illustration for explaining the construction of PAFORS

From the Equation 2.8, Equation 2.9 and Equation 2.10, the followings can be written easily:

sinΩ(s) = −〈
χ(s),Y(s)

〉√〈
χ(s),Y(s)

〉2 +〈
χ(s),U(s)

〉2
(2.13)

cosΩ(s) =
〈
χ(s),U(s)

〉√〈
χ(s),Y(s)

〉2 +〈
χ(s),U(s)

〉2
. (2.14)

Then we obtain

tanΩ(s) =−
〈
χ(s),Y(s)

〉〈
χ(s),U(s)

〉 . (2.15)

Taking into consideration Figure 1 and Equations 2.13, 2.14, 2.15, the rotation angleΩ(s) is determined as

Ω(s) =



arctan
(
− 〈χ(s),Y(s)〉

〈χ(s),U(s)〉
)

i f
〈
χ(s),U(s)

〉> 0

arctan
(
− 〈χ(s),Y(s)〉

〈χ(s),U(s)〉
)
+π i f

〈
χ(s),U(s)

〉< 0

−π
2 i f

〈
χ(s),U(s)

〉= 0 ,
〈
χ(s),Y(s)

〉> 0

π
2 i f

〈
χ(s),U(s)

〉= 0 ,
〈
χ(s),Y(s)

〉< 0.

(2.16)

When
〈
χ(s),U(s)

〉 = 0,
〈
χ(s),Y(s)

〉 > 0, PAFORS apparatus {T(s),G(s),H(s),k1(s),k2(s),k3(s)} correspond to{
T(s),U(s),−Y(s),kn(s),−kg (s),τg (s)

}
. Similar to above, in the case

〈
χ(s),U(s)

〉= 0,
〈
χ(s), Y(s)

〉< 0,

{T(s), G(s), H(s), k1(s), k2(s), k3(s)} correspond to the apparatus
{

T(s),−U(s),Y(s),−kn(s), kg (s),τg (s)
}
.
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Now, we will get the angular velocity vector for PAFORS. A better insight into the structure of the derivative

formulas, given in (2.11), is presented by the help of the angular velocity vector ω(s). The evolution of

PAFORS {T(s),G(s),H(s)} is specified by its angular velocity via

T′(s) = ω(s)∧T(s)

G′(s) = ω(s)∧G(s) (2.17)

H′(s) = ω(s)∧H(s).

Let us obtain the vector ω(s). Assume that it is written with respect to PAFORS as follows:

ω(s) =λ1(s)T(s)+λ2(s)G(s)+λ3(s)H(s)

where λ1(s), λ2(s) and λ3(s) are real-valued functions of s. In this case, (2.17) becomes

T′(s) = −λ2(s)H(s)+λ3(s)G(s)

G′(s) = λ1(s)H(s)−λ3(s)T(s) (2.18)

H′(s) = −λ1(s)G(s)+λ2(s)T(s).

By comparing (2.11) with (2.18) we find

λ1(s) = k3(s)

λ2(s) = −k2(s)

λ3(s) = k1(s).

Consequentially, the angular velocity vector is given as

ω(s) = [
τg (s)−Ω′(s)

]
T(s)− [

kg (s)sinΩ(s)+kn(s)cosΩ(s)
]

G(s)+ [
kg (s)cosΩ(s)−kn(s)sinΩ(s)

]
H(s)

for PAFORS.

3. Some Special Trajectories Generated by Smarandache Curves According to PAFORS

In the study [1], author defined special Smarandache curves in the Euclidean space. Author considered a

unit speed regular curve γ= γ(s) with its Serret-Frenet frame {T, N, B} and defined TN, NB, TNB− Smaran-

dache curves as follows:

β(s∗) = 1p
2

(T+N)

β(s∗) = 1p
2

(N+B)

β(s∗) = 1p
3

(T+N+B),

respectively. There can be found some studies [1, 3, 5, 15, 16, 18] on Smarandache curves in the literature.

In this section, we investigate special trajectories generated by Smarandache curves according to PAFORS

in 3-dimensional Euclidean space.
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3.1. Special Trajectories Generated by TG Smarandache Curves

Definition 3.1. In E 3, assume that a point particle P of constant mass moves on the regular surface M along

the trajectory χ = χ(s) which is a unit speed curve. Let PAFORS be shown with
{

Tχ, Gχ, Hχ

}
for χ = χ(s).

Then, special trajectories generated by TχGχ−Smarandache curves may be defined as follows:

σ(s∗) = 1p
2

(
Tχ+Gχ

)
. (3.1)

For convenience, we call these trajectories as TχGχ−Smarandache trajectories.

Note that PAFORS apparatus of χ= χ (s) will be denoted by
{

Tχ(s),Gχ(s),Hχ(s),k1(s),k2(s),k3(s)
}

in the rest

of the paper.

Now, we will discuss Serret-Frenet apparatus of TχGχ−Smarandache trajectories. Differentiating the Equa-

tion 3.1 with respect to the arc-length parameter s of χ=χ(s), we obtain

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
and so

Tσ
d s∗

d s
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.2)

From the Equation 3.2, one can easily find

d s∗

d s
=

√
k1

2 + (k2 +k3)2

2
. (3.3)

Thus, we can rewrite the Equation 3.2 as

Tσ

√
k1

2 + (k2 +k3)2

2
= 1p

2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.4)

The Equation 3.4 gives us the tangent vector of σ:

Tσ = 1√
2k1

2 + (k2 +k3)2

(−k1Tχ+k1Gχ+ (k2 +k3)Hχ

)
. (3.5)

Differentiating the last equation with respect to the arc-length parameter s of χ=χ(s), we get

dTσ
d s∗

d s∗

d s
= (

2k1
2 + (k2 +k3)2)−3/2 (

ξ1Tχ+ξ2Gχ+ξ3Hχ

)
(3.6)

where

ξ1 = (k2 +k3)
[
k1k ′

2 +k1k ′
3 −k1

2k2 −k1
2k3 −k ′

1 (k2 +k3)−k2
(
2k1

2 + (k2 +k3)2)]−2k1
4

ξ2 = (k2 +k3)
[−k1k ′

2 −k1k ′
3 −k1

2k2 −k1
2k3 +k ′

1 (k2 +k3)−k3
(
2k1

2 + (k2 +k3)2)]−2k1
4

ξ3 = k1 (k2 +k3)
[−2k ′

1 −k2
2 +k3

2]+2k1
2 [

k ′
2 +k ′

3 +k1k3 −k1k2
]

.
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Considering the Equation 3.3 in the Equation 3.6, we find

dTσ
d s∗

=p
2
(
2k1

2 + (k2 +k3)2)−2 (
ξ1Tχ+ξ2Gχ+ξ3Hχ

)
.

In that case, the curvature and principal normal vector of σ are obtained as in the following:

κσ =
∥∥∥∥dTσ

d s∗

∥∥∥∥=
√

2
(
ξ1

2 +ξ2
2 +ξ3

2)(
2k1

2 + (k2 +k3)2)2

and

Nσ = 1√
ξ1

2 +ξ2
2 +ξ3

2

(
ξ1Tχ+ξ2Gχ+ξ3Hχ

)
.

Where

ζ1 = k1ξ3 −k2ξ2 −k3ξ2

ζ2 = k2ξ1 +k3ξ1 +k1ξ3

ζ3 = −k1ξ2 −k1ξ1,

we can get the binormal vector of σ as

Bσ = 1√(
2k1

2 + (k2 +k3)2)(ξ1
2 +ξ2

2 +ξ3
2)

∣∣∣∣∣∣∣∣
Tχ Gχ Hχ

−k1 k1 k2 +k3

ξ1 ξ2 ξ3

∣∣∣∣∣∣∣∣
= 1√(

2k1
2 + (k2 +k3)2)(ξ1

2 +ξ2
2 +ξ3

2) (
ζ1Tχ+ζ2Gχ+ζ3Hχ

)

by vector product of Tσ and Nσ.

3.2. Special Trajectories Generated by TH Smarandache Curves

Definition 3.2. In E 3, suppose that a point particle P of constant mass moves on the regular surface M along

the trajectory χ= χ(s) which is a unit speed curve. Let PAFORS be denoted by
{

Tχ, Gχ, Hχ

}
for χ= χ(s). In

this case, special trajectories generated by TχHχ−Smarandache curves may be defined by

σ(s∗) = 1p
2

(
Tχ+Hχ

)
. (3.7)

For convenience, we call these trajectories as TχHχ−Smarandache trajectories.

Now, we will investigate Serret-Frenet apparatus of TχHχ−Smarandache trajectories. Differentiating the

Equation 3.7 with respect to the arc-length parameter s of χ=χ(s), we find

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
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and so

Tσ
d s∗

d s
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.8)

From the Equation 3.8, one can easily obtain

d s∗

d s
=

√
k2

2 + (k1 −k3)2

2
. (3.9)

Therefore we can rewrite the Equation 3.8 as in the following:

Tσ

√
k2

2 + (k1 −k3)2

2
= 1p

2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.10)

The Equation 3.10 yields the tangent vector of σ:

Tσ = 1√
2k2

2 + (k1 −k3)2

(−k2Tχ+ (k1 −k3)Gχ+k2Hχ

)
. (3.11)

Differentiating the Equation 3.11 with respect to s, we get

dTσ
d s∗

d s∗

d s
= (

2k2
2 + (k1 −k3)2)−3/2 (

µ1Tχ+µ2Gχ+µ3Hχ

)
(3.12)

where

µ1 = (k3 −k1)
[−k2

(
k ′

1 −k ′
3
)+2k1k2

2 −k ′
2 (k3 −k1)−k2

2 (k3 −k1)+k1(k3 −k1)2]−2k2
4

µ2 = k2 (k1 −k3)
[−2k ′

2 −k1
2 +k3

2k2
(
k ′

1 −k ′
3
)]+2k2

2 [
k ′

1 −k ′
3 −k1k2 −k2k3

]
µ3 = (k3 −k1)

[
k2

(
k ′

1 −k ′
3
)−2k3k2

2 +k ′
2 (k3 −k1)−k2

2 (k3 −k1)−k3(k3 −k1)2]−2k2
4.

Taking into consideration the Equation 3.9 in the Equation 3.12, we find

dTσ
d s∗

=
p

2
(
2k2

2 + (k1 −k3)2)−2 (
µ1Tχ+µ2Gχ+µ3Hχ

)
.

In this case, the curvature and principal normal vector of σ are obtained as follows:

κσ =
∥∥∥∥dTσ

d s∗

∥∥∥∥=
√

2
(
µ1

2 +µ2
2 +µ3

2
)

(
2k2

2 + (k1 −k3)2)2

and

Nσ = 1√
µ1

2 +µ2
2 +µ3

2

(
µ1Tχ+µ2Gχ+µ3Hχ

)
.
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Where

η1 = k1µ3 −k3µ3 −k2µ2

η2 = k2µ1 +k2µ3

η3 = −k2µ2 +k3µ1 −k1µ1,

we can immediately obtain the binormal vector of σ as

Bσ = 1√(
2k2

2 + (k1 −k3)2)(µ1
2 +µ2

2 +µ3
2
)
∣∣∣∣∣∣∣∣

Tχ Gχ Hχ

−k2 k1 −k3 k2

µ1 µ2 µ3

∣∣∣∣∣∣∣∣
= 1√(

2k2
2 + (k1 −k3)2)(µ1

2 +µ2
2 +µ3

2
) (
η1Tχ+η2Gχ+η3Hχ

)

by vector product of Tσ and Nσ.

3.3. Special Trajectories Generated by GH Smarandache Curves

Definition 3.3. In E 3, assume that a point particle P of constant mass moves on the regular surface M along

the trajectory χ = χ(s) which is a unit speed curve. Let
{

Tχ, Gχ, Hχ

}
be PAFORS for χ = χ(s). Then, special

trajectories generated by GχHχ−Smarandache curves can be defined as follows:

σ(s∗) = 1p
2

(
Gχ+Hχ

)
. (3.13)

For convenience, we call these trajectories as GχHχ−Smarandache trajectories.

Now, we will investigate Serret-Frenet apparatus of GχHχ−Smarandache trajectories. Differentiating the

Equation 3.13 with respect to the arc-length parameter s of χ=χ(s), we get

σ′ = dσ

d s∗
d s∗

d s
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
and so

Tσ
d s∗

d s
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.14)

From the Equation 3.14, one can easily obtain

d s∗

d s
=

√
k3

2 + (k1 +k2)2

2
. (3.15)

Therefore we can rewrite the Equation 3.14 as in the following:

Tσ

√
k3

2 + (k1 +k2)2

2
= 1p

2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.16)
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The Equation 3.16 yields the tangent vector of σ:

Tσ = 1√
2k3

2 + (k1 +k2)2

(
(−k1 −k2)Tχ−k3Gχ+k3Hχ

)
. (3.17)

Differentiating the Equation 3.17 with respect to s, we get

dTσ
d s∗

d s∗

d s
= (

2k3
2 + (k1 +k2)2)−3/2 (

υ1Tχ+υ2Gχ+υ3Hχ

)
(3.18)

where

υ1 = k3 (k1 +k2)
[
2k ′

3 +k1
2 −k2

2]+2k3
2 [

k1k3 −k2k3 −k ′
1 −k ′

2
]

υ2 = (k1 +k2)
[
k3

(
k ′

1 +k ′
2
)−2k1k3

2 −k ′
3 (k1 +k2)−k3

2 (k1 +k2)−k1(k1 +k2)2]−2k3
4

υ3 = (k1 +k2)
[−k3

(
k ′

1 +k ′
2
)−2k2k3

2 +k ′
3 (k1 +k2)−k3

2 (k1 +k2)−k2(k1 +k2)2]−2k3
4.

Taking into consideration the Equation 3.15 in the Equation 3.18, we find

dTσ
d s∗

=p
2
(
2k3

2 + (k1 +k2)2)−2 (
υ1Tχ+υ2Gχ+υ3Hχ

)
.

In this case, the curvature and principal normal vector of σ are obtained as follows:

κσ =
√

2
(
υ1

2 +υ2
2 +υ3

2
)

(
2k3

2 + (k1 +k2)2)2

Nσ = 1√
υ1

2 +υ2
2 +υ3

2

(
υ1Tχ+υ2Gχ+υ3Hχ

)
.

By vector product of Tσ and Nσ, we can immediately obtain the binormal vector of σ as

Bσ = 1√(
2k3

2 + (k1 +k2)2)(υ1
2 +υ2

2 +υ3
2
)
∣∣∣∣∣∣∣∣

Tχ Gχ Hχ

−k1 −k2 −k3 k3

υ1 υ2 υ3

∣∣∣∣∣∣∣∣
= 1√(

2k3
2 + (k1 +k2)2)(υ1

2 +υ2
2 +υ3

2
) (
ψ1Tχ+ψ2Gχ+ψ3Hχ

)

where

ψ1 = −k3υ3 −k3υ2

ψ2 = k3υ1 +k2υ3 +k1υ3

ψ3 = −k1υ2 −k2υ2 +k3υ1.

Note that the torsions of TχGχ, TχHχ, GχHχ-Smarandache trajectories can be obtained by following the

similar steps given in this section. We leave this to the readers.

Example 3.4. In E 3, assume that a point particle P of constant mass moves on the regular surface

M = {(
x, y, z

)
: x2 + y2 = 64, z ≥ 0

}
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along the trajectory

δ : (0, 255) → M ⊂ E 3, δ (t ) =
(
8cos

t

17
,8sin

t

17
,

t

17

)
.

Reparameterization of δ= δ(t ) in terms of arc-length parameter is given as follows:

χ(s) =
(
8cos

sp
65

, 8sin
sp
65

,
sp
65

)

where s =
p

65
17 t . One can easily calculate Darboux apparatus of this trajectory as in the following:

T(s) =
( −8p

65
sin

sp
65

,
8p
65

cos
sp
65

,
1p
65

)
U(s) =

(
cos

sp
65

, sin
sp
65

, 0

)
Y(s) =

(
1p
65

sin
sp
65

,
−1p

65
cos

sp
65

,
8p
65

)
kg (s) = 0

kn(s) = −8

65

τg (s) = 1

65
.

Then,
〈
χ(s), Y(s)

〉= 8
65 s and

〈
χ(s), U(s)

〉= 8 are obtained. Since
〈
χ(s), U(s)

〉> 0 for all the values of param-

eter, we getΩ(s) = arctan
(− s

65

)
. The above information yields the PAFORS apparatus as follows:

T(s) =
( −8p

65
sin

sp
65

,
8p
65

cos
sp
65

,
1p
65

)

G(s) =


1p
65

sin sp
65

cos
(
arctan

(−s
65

))−cos sp
65

sin
(
arctan

(−s
65

))
,

−1p
65

cos sp
65

cos
(
arctan

(−s
65

))− sin sp
65

sin
(
arctan

(−s
65

))
,

8p
65

cos
(
arctan

(−s
65

))


H(s) =


1p
65

sin sp
65

sin
(
arctan

(−s
65

))+cos sp
65

cos
(
arctan

(−s
65

))
,

−1p
65

cos sp
65

sin
(
arctan

(−s
65

))+ sin sp
65

cos
(
arctan

(−s
65

))
,

8p
65

sin
(
arctan

(−s
65

))


k1(s) = 8

65
sin

(
arctan

(−s

65

))
k2(s) = − 8

65
cos

(
arctan

(−s

65

))
k3(s) = 1

65
+ 65

s2 +652

in the light of the Equation 2.10 and Equation 2.12. We can give the following figure for this example:
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(a) The trajectory of the particle P (b) TχGχ−Smarandache trajectory

(c) TχHχ−Smarandache trajectory (d) GχHχ−Smarandache trajectory

Figure 2. An illustration including special Smarandache trajectories
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Abstract − Let A represent the class of analytic functions f defined in the open unit disk

U := {z ∈C : |z| < 1} such that f (0) = f ′(0)−1 = 0 and let P represent the well-known class of

Carathéodory functions p such that p(0) = 1 and Re p(z) > 0, z ∈ U. A functions p analytic

in U such that p(0) = 1 belongs to the class Pk for k ≥ 2, if and only if

p (z) = 1

2π

2π∫
0

1+ ze−iθ

1− ze−iθ
dα(θ) (z ∈U) ,

where α(θ) : 0 ≤ θ ≤ 2π is a function of bounded variation with
2π∫
0

dα(θ) = 2π and
2π∫
0
|dα(θ)| ≤

kπ. For some η ∈R,ς< 1,k ≥ 2 and γ≥ 0, let R
η

k (γ,ς) denote the class of functions f ∈A satis-

fying the condition: eiη
((

1−γ) f (z)
z +γ f ′ (z)−ς

)
∈ Pk (z ∈U) . For f ∈ R

η

k (γ,ς), we define

the integral transform ℑm
(

f
)

(z) =
1∫

0
m (t )

f (t z)
t d t , where m is a non-negative real-valued

weight function with
1∫

0
m (t )d t = 1. The main objective of this paper is to study conditions

for invariance of the integral transforms ℑm and other relevant properties in connection

with functions in the class R
η

k (γ,ς). Also by varying parameters, we encompass a large

number of previously known results.
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1. Introduction and Definitions
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f ∈H (U) : f (z) = a +an zn +an+1zn+1 + . . . (z ∈U)
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Also, the subclass A of the class H [a,n] is defined as:

A := {
f ∈H [0,1] : f ′(0) = 1

}
. (1.1)

The class of univalent functions is represented by S and it is a subclass of the class A , whereas, S ∗,C ,K

and Q are the well-known classes of starlike, convex, close-to-convex and quasi-convex functions respec-

tively.

For f , g ∈A , we define the Hadamard product or convolution f ∗ g by

(
f ∗ g

)
(z) = z +

∞∑
n=2

anbn zn (z ∈U) ,

where f is defined by (1.1) and

g (z) = z +
∞∑

n=2
bn zn (z ∈U) .

Let P denote the well-known class of Carathéodory functions p such that p ∈H (U), with

p(0) = 1 and Re p(z) > 0 (z ∈U) .

Also P (ς) represents the class of Carathéodory functions p such that p ∈H (U) with

p(0) = 1 and Re p(z) > ς (0 ≤ ς< 1, z ∈U) .

For details of these classes, we refer [7]. The function p ∈P k, if and only if it satisfies the conditions p(0) = 1

and

p (z) = 1

2π

2π∫
0

1+ ze−iθ

1− ze−iθ
dα(θ) (z ∈U) ,

where α(θ) : 0 ≤ θ ≤ 2π is a function of bounded variation satisfies the conditions

2π∫
0

dα(θ) = 2π and

2π∫
0

|dα(θ)| ≤ kπ.

or equivalently, p ∈Pk if and only if there exist p1, p2 ∈P such that

p(z) =
(

k

4
+ 1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (k ≥ 2, z ∈U) .

Let p be an analytic function defined in the open unit disk U. Then p ∈ P k(ς), if and only if p(0) = 1 and

p(z) =
(

k

4
+ 1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (0 ≤ ς< 1,k ≥ 2, z ∈U) ,

where p1, p2 ∈P (ς). For detail of the classes P k and P k(ς), see [17] and [18] respectively.

For some η ∈ R,ς < 1,k ≥ 2 and γ ≥ 0, let R
η

k (γ,ς) denote the class of functions f ∈ A satisfying the condi-

tion:

e iη
((

1−γ) f (z)

z
+γ f ′ (z)−ς

)
∈Pk (z ∈U) . (1.2)
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where A is defined by (1.1) . For various related classes, we refer [1, 5, 9, 11, 13, 14].

The well-known Gaussian hypergeometric function F is defined as:

F
(
α,β;λ; z

)
:=

∞∑
n=0

(α)n
(
β
)

n

(λ)n n!
zn (z ∈U) , (1.3)

where α,β,λ ∈C, λ ∉ {0,−1,−2, ...} . Here for α 6= 0, we have

(α)n =
{
α (α+1)(α+2) ... (α+n −1) , n = 1,2,3....

1, n = 0

If Reλ> Reβ> 0, then

F
(
α,β;λ; z

)= Γ (λ)

Γ (α)Γ
(
λ−β) 1∫

0
tβ−1 (1− t )λ−β−1 (1− t z)−αdt (z ∈U) .

Moreover, for Reα> 0, Reβ> 0 and Re(λ+1) > Re
(
α+β)

, we have

F
(
α,β;λ; z

)= Γ (λ)

Γ (α)Γ
(
β
)
Γ

(
λ−α−β+1

) 1∫
0
λ1 (t )

1

(1− t z)
dt (z ∈U) ,

where

λ1 (t ) = tβ−1 (1− t )λ−α−βF
(
λ−α,1−α;λ−α−β+1;1− t

)
,

for detail, see [3, 8]. For special choices of parameters, F
(
α,β;λ; z

)
contains Noor integral operator [12, 15],

Ruscheweyh derivative [23] and others. For a function f ∈R
η

k (γ,ς), we define the integral transform

ℑm
(

f
)

(z) =
1∫

0
m (t )

f (t z)

t
dt , (1.4)

where m is a non-negative real-valued integrable weight function such that
1∫

0
m (t )dt = 1 and f ∈ R

η

k (γ,ς)

satisfies (1.2). The operator ℑm
(

f
)

contain Libera, Bernardi, and Komatu operators as special cases. For

f ∈R
η
2(γ,ς), ℑm

(
f
)

has been investigated by various authors, for reference, see [3, 10, 19−−22].

2. A Set of Preliminary Results

To establish our main results, we will use the following lemmas.

Lemma 2.1. [20] Let ς1,ς2 < 1 and let the functions p and q be analytic in U with p (0) = q (0) = 1. Then the

conditions

Re p (z) > ς1 (z ∈U) and Ree iηq (z)−ς2 > 0 (z ∈U)

imply

Re
(
e iη (

p ∗q
)

(z)−δ
)
> 0 (z ∈U) ,

where 1−δ= 2(1−ς1) (1−ς2) .

Lemma 2.2. Let ς1 < 1, γ≥ 1 and ς= ς(
ς1,γ

)
be such that

ς= 1− 1−ς1

2
{1− 1

γ

∫ 1

0

m (t )

1+ t
dt + (

1

γ
−1)

∫ 1

0
m (t ) (

∫ 1

0

du

1+ tuγ
)dt }−1. (2.1)
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If F
(
α,β;λ; z

)=F
(
2, 1

γ ,1+ 1
γ ; z

)
, then

Re
∫ 1

0
m (t )F

(
2,

1

γ
,1+ 1

γ
; t z

)
dt > 1− 1−ς1

2(1−ς)
,

where m is a real-valued non-negative weight function with
∫ 1

0 m (t )dt = 1 and F
(
α,β;λ; z

)
is defined by

(1.3). The value of ς is sharp.

Lemma 2.3. Let 0 <α≤ 1 and β<λ−α≤ 1
α . Then

Re M (z) = Re
{
(1−α)F

(
α,β;γ; z

)+αF
(
α+1,β;λ; z

)}≥ M (−1) = ς1 (z ∈U) .

This result is sharp.

Lemma 2.4. Let −1 <α< 0 and β>α. Then for

M (z) =


(1+α)(1+β)

β−α
1∫

0

βtβ−αtα

1−t z dt , for β 6=α

(1+α)2
1∫

0

tα(1+α log t )
1−t z dt , for β=α

(z ∈U) ,

we have

Re M (z) > M (−1) = ς1 =


(1+α)(1+β)

β−α
1∫

0

βtβ−αtα

1+t dt , for β 6=α

(1+α)2
1∫

0

tα(1+α log t )
1+t dt , for β=α

(z ∈U) .

These inequalities are sharp.

Lemma 2.5. Let −1 <α≤ 0, q > 1 and

M (z) = (1+α)q

Γ
(
q
) 1∫

0
tα log

(
1

t

)q−2 q −1−α log
(1

t

)
1− t z

dt (z ∈U) .

Then

Re M (z) ≥ M (−1) = ς1 = (1+α)q

Γ
(
q
) 1∫

0
log(

1

t
)q−2

(
q −1−α log(

1

t
)

)
tα

1+ t
dt .

For the proof of Lemma 2 to Lemma 5, we refer, [4].

3. Main Results

In the following theorem, we find the conditions such that ℑm( f ) ∈Rk (1,ς1) whenever f ∈R
η

k (γ,ς).

Theorem 3.1. Letς1 < 1, γ≥ 1, k ≥ 2 and let ς= ς(
ς1,γ

)
be defined by (2.1). If f ∈R

η

k (γ,ς), thenℑm( f ) defined

by (1.4) also belongs to the class Rk (1,ς1). The value of ς is sharp.

Proof.

Let (
1−γ) f (z)

z
+γ f ′ (z) = p(z) (z ∈U) , (3.1)

where p (0) = 1. If f ∈R
η

k (γ,ς), then by (3.1), we have

p(z) =
(

k

4
+ 1

2

)
p1 (z)−

(
k

4
− 1

2

)
p2 (z) ∈Pk (ς) (z ∈U) , (3.2)
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pi ∈P (ς) , i = 1,2 and conversely. For γ 6= 0, from (3.2) , we write

{
1+ (

1+γ)
z + (

1+2γ
)

z2 + ...
}∗ f (z)

z
=

(
k

4
+ 1

2

)
p1 (z)−

(
k

4
− 1

2

)
p2 (z) .

On further simplification, we obtain

f ′ (z) =
[(

k

4
+ 1

2

)
p1 (z)−

(
k

4
− 1

2

)
p2 (z)

]
∗

∞∑
n=0

n +1

1+nγ
zn (z ∈U) , (3.3)

which is equivalent to

f ′ (z) =
[(

k

4
+ 1

2

)
p1 (z)−

(
k

4
− 1

2

)
p2 (z)

]
∗F (2,

1

γ
;1+ 1

γ
; z) (z ∈U) (3.4)

where F (2, 1
γ ;1+ 1

γ ; z) is defined by (1.3) . For γ= 0, we write

f ′ (z) =
(

k

4
+ 1

2

)(
zp1 (z)

)′−(
k

4
− 1

2

)(
zp2 (z)

)′
=

[(
k

4
+ 1

2

)
p1 (z)−

(
k

4
− 1

2

)
p2 (z)

]
∗F (2,1;1; z).

This is the limiting case of (3.3) for γ−→ 0. Differentiating (1.4) and then simplifying, we have

ℑ′
m( f ) (z) = d

dz

1∫
0

m(t )
f (t z)

t
dt = f ′ (z)∗

1∫
0

m(t )

1− t z
dt (z ∈U) , (3.5)

where m a non-negative real-valued weight function such that
1∫

0
m (t )d t = 1. Both (3.4) and (3.5) yield

ℑ′
m( f ) (z) = k1p1 (z)∗

1∫
0

m(t )F (2,
1

γ
;1+ 1

γ
; t z)dt −k2p2 (z)∗

1∫
0

m(t )F (2,
1

γ
;1+ 1

γ
; t z)dt . (3.6)

For γ= 0, we have

ℑ′
m( f ) (z) =

(
k

4
+ 1

2

)p1 (z)∗
1∫

0

m(t )

(1− t z)2 dt

−
(

k

4
− 1

2

)
p2 (z)∗

1∫
0

m(t )

(1− t z)2 dt ,

which is just the limiting case of (3.5) for γ −→ 0 and m a non-negative real-valued weight function such

that
1∫

0
m (t )d t = 1. For γ≥ 1, using Lemma 2, we write

Re

1∫
0

m(t )F (2,
1

γ
;1+ 1

γ
; t z)dt > ς1 = 1− 1−ρ

2(1−ς)
,ς1 < 1 (z ∈U) ,

where ς is given by (2,1) the condition mentioned above in the statement of the theorem and m a non-
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negative real-valued weight function such that
1∫

0
m (t )d t = 1. Again using Lemma 1, we obtain

pi (z)∗
1∫

0

m(t )F (2,
1

γ
;1+ 1

γ
; t z)dt ∈P (ς1) for i = 1,2 (z ∈U) . (3.7)

From (3.5), (3.6) and (3.7), we obtain ℑm( f ) ∈ Rk (1,ρ). To prove the sharpness, we consider the function

f ∈Rk (γ,ς) determined by the relation

(
1−γ) f (z)

z
+γ f ′ (z) = (1−ς)

1+kz + z2

1− z2 +ς (z ∈U) .

On simplification, we obtain

f ′(z) = 1+ (1−ς)k

{
2z

1+γ + 4z3

1+3γ
+ ....

}
+ (1−ς)

{
6z2

1+2γ
+ 10z4

1+4γ
+ ....

}
.

This implies that

f (z) = z + (1−ς)
∞∑

n=1

[
k

1+ (2n −1)γ
z2n + 2

1+2nγ
z2n+1

]
(z ∈U) . (3.8)

Now, using (3.8) in (1.4), we have

ℑm f (z) = z +k(1−ς)
∞∑

n=1

µn

1+ (2n −1)γ
z2n +2(1−ς)

∞∑
n=1

υn

1+2nγ
z2n+1 (z ∈U) , (3.9)

where

µn =
1∫

0
m (t ) t 2n−1dt and υn =

1∫
0

m (t ) t 2ndt .

The function given in (3.9) is the required extremal function for the parameter ς.

Theorem 3.2. Let 0 <α≤ 1, β<λ−α≤ 1
α and let F be the convolution operator defined as:

F (z) := f (z)∗ zF
(
α,β;λ; z

)
(z ∈U) . (3.10)

Suppose that f ∈Rk (0,ς). Then,

F ∈Rk (1,γ= 1−2(1−ς)1−ς1))

with

ς1 = M (−1) = (1−α)F
(
α,β;λ;−1

)+αF
(
α+1,β;λ;−1

)
.

In particular

(i ) e iη
(

f (z)
z − 1−2ς1

2(1−ς1)

)
∈Pk implies that e iη F′ (z) ∈Pk

and

(i i ) e iη
(

f (z)
z − 1

2

)
∈Pk yields

(
e iη F′ (z)−ς1

) ∈Pk .

Proof.
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Rewriting (3.10), we have F (z) := f (z)∗ zF
(
α,β;λ; z

)
, where f ∈Rk (0,ς). This implies that

F′ (z) = f (z)

z
∗ (

zF
(
α,β;λ; z

))′ = f (z)

z
∗M (z) , (3.11)

where M (z) = (
zF

(
α,β;λ; z

))′ . Now, taking derivative of hypergeometric function and using

λF
(
α+1,β;λ; z

)=βzF
(
α+1,β+1;λ+1; z

)+λF
(
α,β;λ; z

)
,

we obtain

M (z) = (1−α)F
(
α,β;λ; z

)+αF
(
α+1,β;λ; z

)
(z ∈U) .

For λ>α+β, we write

M (z) = Γ (λ)

Γ (α)Γ
(
β
)
Γ

(
λ−α−β) 1∫

0
m1 (t )

1

1− t z
dt (z ∈U) ,

where

m1 (t ) = (1−α) tβ−1 (1− t )λ−α−β

λ−α−β F
(
λ−α,1−α;λ−α−β+1;1− t

)
+ tβ−1 (1− t )λ−α−β−1 F

(
λ−α−1,−α;λ−α−β;1− t

)
.

For β<λ−α≤ 1 and α ∈ (0,1], using Lemma 3, we see that

Re M (z) > M (−1) = ς1, (3.12)

where

ς1 = (1−α)F
(
α,β;λ;−1

)+αF
(
α+1,β;λ;−1

)
.

For f ∈Rk (0,ς), we have
f (z)

z
=

(
k

4
+ 1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (z ∈U) ,

where pi ∈P (ς) for i = 1,2. This implies that

f (z)

z
∗M (z) =

(
k

4
+ 1

2

)
p1(z)∗M (z)−

(
k

4
− 1

2

)
p2(z)∗M (z) (z ∈U) . (3.13)

Using (3.12) and Lemma 1, we write

pi ∗M ∈P
(
γ
)

for i = 1,2 (z ∈U) , (3.14)

where γ= 1−2(1−ς)1−ς1). On combining (3.11) , (3.13) and (3.14), we obtain

F′(z) = f (z)

z
∗M (z) ∈Pk

(
γ
)

.

This implies that F ∈ Rk (1,γ). Let f ∈ Rk (0,ς). For the extremal function which gives the sharpness, con-
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sider
f (z)

z
=

(
k

4
+ 1

2

)[
1+2(1−ς)

z

1− z

]
−

(
k

4
− 1

2

)[
1−2(1−ς)

z

1+ z

]
(z ∈U)

and

M (z) = 1+2(1−ς1)
z

1− z
.

Now
f (z)

z
∗M (z) = M (z)∗

{(
k

4
+ 1

2

)(
1+ 2(1−ς) z

1− z

)
−

(
k

4
− 1

2

)(
1− 2(1−ς) z

1+ z

)}
which on simplification yields

f (z)

z
∗M (z) =

(
k

4
+ 1

2

)[
1+ 4(1−ς) (1−ς1) z

1− z

]
−

(
k

4
− 1

2

)[
1− 4(1−ς) (1−ς1) z

1+ z

]
. (3.15)

Thus from (3.15), we obtain the required extremal function.

Theorem 3.3. Let −1 <α< 0, β>α and f ∈Rk (0,ς) . Then

G ∈Rk (1,1−2(1−ς) (1−ς1)) ,

where

G (z) =
∞∑

n=1

(1+α)
(
1+β)

(n +α)
(
n +β) zn ∗ f (z) =G ( f )(z) (z ∈U) , (3.16)

and

ς1 =


(1+α)(1+β)

β−α
1∫

0

βtβ−αtα

1+t dt , for β 6=α,

(1+α)2
1∫

0

tα(1+α log t )
1+t dt , for β=α.

This result is sharp.

Proof.

Let α ∈ (−1,0) ,β>α and G be defined by (3.16) . Then

G ′ (z) = 1

(1− z)2 ∗
∞∑

n=0

(1+α)
(
1+β)

(n +α)
(
n +β) zn ∗ f (z)

z
(z ∈U)

or

G ′ (z) =
∞∑

n=0

(1+α)
(
1+β)

(n +1)

(n +α)
(
n +β) zn ∗ f (z)

z
= f (z)

z
∗M (z) (z ∈U) , (3.17)

where

M (z) = (1+α)
(
1+β)

β−α
[
−α

∞∑
n=0

zn

(n +α+1)
+β

∞∑
n=0

zn(
n +β+1

)]
(z ∈U) .

The function M can also be written as

M (z) = 1

β−α (1+α)
(
1+β) 1∫

0

βtβ−αtα

1− t z
dt (z ∈U) . (3.18)

Using Lemma 4, from (3.18), we have

Re M (z) > M (−1) = ς1 =
(1+α)

(
1+β)

β−α
1∫

0

βtβ−αtα

1+ t
dt . (3.19)
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Now for f ∈Rk (0,ς), consider

f (z)

z
=

(
k

4
+ 1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (z ∈U) ,

where pi ∈P (ς) for i = 1,2. This implies that

f (z)

z
∗M (z) =

(
k

4
+ 1

2

)
p1(z)∗M (z)−

(
k

4
− 1

2

)
p2(z)∗M (z) (z ∈U) . (3.20)

Using (3.19) and Lemma 1, we write

pi (z)∗M (z) ∈P (1−2(1−ς)1−ς1)) for i = 1,2 (z ∈U) . (3.21)

On combining (3.17), (3.20) and (3.21), we obtain

G ′ (z) = f (z)

z
∗M (z) ∈Pk (1−2(1−ς)1−ς1)) (z ∈U) .

This implies that

G ∈Rk (1,1−2(1−ς)1−ς1)).

For β=α, the similar result for the conditions described in the theorem can be obtained by taking the limit

β−→α in the previous case α<β. Sharpness can be obtained as in previous theorems.

Theorem 3.4. Let −1 <α≤ 0, q > 1 and f ∈Rk (0,ς) . Then the the operator Fα,q defined by

Fα,q (z) =Fα,q
(

f
)

(z) =
∞∑

n=1

(1+α)q

(n +α)q zn ∗ f (z) (z ∈U)

is in the class Rk (1,1−2(1−ς) (1−ς1)) with

ς1 = M (−1) = (1+α)q

Γ
(
q
) 1∫

0
log

(
1

t

)q−2 (
q −1−α log

(
1

t

))
tα

1+ t
dt .

Proof.

For q > 0 and α>−1, the operator Fα,q is defined as

Fα,q
(

f
)

(z) = (1+α)q

Γ
(
q
) 1∫

0
log

(
1

t

)q−1

tα−1 f (t z)dt (z ∈U) .

Now for −1 <α≤ 0, q > 1 and f ∈Rk (0,ς),

Fα,q
(

f
)

(z) =
∞∑

n=1

(1+α)q

(n +α)q zn ∗ f (z) (z ∈U)

or

F′
α,q

(
f
)

(z) =
∞∑

n=1

n (1+α)q

(n +α)q zn−1 ∗ f (z)

z
= M (z)∗ f (z)

z
(z ∈U) . (3.22)

By Lemma 5, we see that

Re M (z) > M (−1) = (1+α)q

Γ
(
q
) 1∫

0
log

(
1

t

)q−2 (
q −1−α log

(
1

t

))
tα

1+ t
dt .
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Now for f ∈Rk (0,ς), consider

f (z)

z
=

(
k

4
+ 1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (z ∈U) ,

where pi ∈P (ς) for i = 1,2. This implies that

f (z)

z
∗M (z) =

(
k

4
+ 1

2

)
p1(z)∗M (z)−

(
k

4
− 1

2

)
p2(z)∗M (z) (z ∈U) . (3.24)

Using (3.23) and Lemma 1, we write

pi ∗M ∈P (1−2(1−ς)1−ς1)) for i = 1,2. (3.25)

On combining (3.22), (3.24) and (3.25), we obtain

F′
α,q

(
f
)

(z) = f (z)

z
∗M (z) ∈Pk (1−2(1−ς)1−ς1)) .

This implies that F′
α,q ∈Rk (1,γ). The sharpness of the above result is straight forward.

For special choices of parameter, we also refer [2, 6, 16, 24].
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