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OPTIMAL STEP STRESS ACCELERATED LIFE
TESTING FOR THE LENGTH-BIASED

EXPONENTIAL CUMULATIVE EXPOSURE MODEL

Çağatay Çetinkaya *
Department of Accounting and Taxation

Bingöl University
12000, Bingöl, Turkey

Abstract: This paper considers a simple step stress accelerated life test for units modeled by a length-biased
exponential distribution. The cumulative exposure model of time to failure holds in this accelerated life test
model. The optimal test plan is constructed by determining the optimal stress change time. Parameters of the
model are estimated by using the maximum likelihood estimation method. The corresponding approximate
confidence intervals are obtained by using the asymptotic normality features of the maximum likelihood
estimators. Theoretical outcomes are illustrated with simulation studies and a real data example.

Key words : Accelerated life test, cumulative exposure model,length-biased exponential distribution,
maximum likelihood estimation, optimal test plan, step-stress model

1. Introduction
Studies based on the accelerated life tests (ALT) have been popular since they let the experi-

menters control the higher stress levels to be used for components or units in the life tests. It is
clear that long lifetimes of highly reliable products make observing the experiment difficult. In such
cases, ALT approaches provide higher than usual stress conditions for units/components. These
tests are used for estimation of the lifetime of highly reliable components within an acceptable
period (for more details Nelson [14] is recommended to the readers). Various types of ALT plans
take part in reliability theory such as constant stress, step stress or progressive stress ALTs. These
plans differ from each other depending on how to apply stresses to components. In a constant stress
plan, the stress applied to a component does not vary with time. In contrast, there is a time point
in step stress and more time point to increase stress levels in progressively stress. Studies on these
different cases of ALTs take part in various studies by various authors.
Nelson [13] introduced the step-stress ALTs that allows test conditions to change during testing.
Among step stress experiments, the cumulative exposure model (CEM) is one of the most useful
and used models. A simple step stress model starts with initial low stress and if it does not fail
in a predetermined time point, τ , the stress level is increased. Simple step stress models contain
only one stress change point. The CEM defined by Nelson [13] for simple step-stress testing with
stresses and is given as

F0(t) =

{
F1(t) , t≤ τ

F2(t− τ + τ
′
) , t≥ τ

(1.1)

where τ
′
(the equivalent start time) is the solution of F1(τ) = F2(τ

′
).

The ALT plans are considered for many different probability distributions by various authors. For
instance; Miller and Nelson [12] considered optimum ALT plan under exponentially distributed life-
times. Chung and Bai [4] studied ALT for log-normal lifetime distributions, Ebrahem and Al-Masri

*E-mail: ccetinkaya@bingol.edu.tr
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[6] considered ALT for log-logistic distribution, Ma and Meeker [11] explored ALT for log-location-
scale distributions, Saxena et al. [16] considered ALT for Rayleigh distribution, Haghighi [10]
considered ALT for an extension of the exponential distribution, Abbas and Firdos [1] studied ALT
for Fréchet distribution. For more probability distribution, the literature list can be extended. On
the other hand, ALT plans mostly are also considered for censored cases. Based on many different
censoring schemes, ALT plans are considered for different probability models.
It is known that several probability models have been extensively used over the past decade in
describing lifetime data. The exponential distribution is one of the major distributions for modeling
lifetime datasets. For this purpose, many generalizations and modifications of exponential distri-
bution take part in the literature. For example, generalized exponential distribution by Gupta and
Kundu [9] and exponential-geometric distribution by Adamidis and Loukas [2] and etc. Length-
biased distributions have great importance in reliability, biomedicine, and ecology among other
distributions due to their greater flexibility in modeling data in different areas such as lifetime
analysis, engineering, economics, finance, demography, actuarial and medical sciences (Akhter et al.
[3]). Recently, Dara and Ahmed [5] proposed a new extension of exponential distribution denoted
by “moment exponential distribution”. Then, it is called as length-biased exponential (LBE) dis-
tribution by some authors.
The probability density (pdf) and distribution (cdf) function of the LBE distribution are given as

f(t) =
t

θ2
exp

{
− t

θ

}
, x > 0, θ > 0 (1.2)

F (t) = 1−
[
1+

t

θ

]
exp

{
− t

θ

}
(1.3)

where θ is the scale parameter.

The LBE distribution has never been studied for any ALT plans before. In this study, we aimed
to obtain parameter estimation of LBE distribution under simple step- stress cumulative exposure
model. Maximum likelihood estimation (MLE) method is used to obtain point estimates and their
credible intervals. For this purpose, in Section 2, we presented the model description. Following,
MLE and approximate confidence intervals are obtained in Section 3. An optimization criterion
to obtain optimum stress change time and its applications are given in Section 4. The simulation
studies and a real data example are given to illustrate the theoretical outcomes in Sections 5 and
6, respectively.

2. Model Description
The lifetime of a test unit or component follows a LBE distribution under any constant stress. We

assume that the scale parameter of the distribution is a log-linear function of stress. The following
assumptions are provided for a LBE distributed lifetime units.

• Test procedure is done at stresses S1 and S2(S1 <S2) levels.
• Under any level of stress, the lifetime of a test unit follows a LBE distribution with the given

cdf as

Fi(t) = 1−
[
1+

t

θi

]
exp

{
− t

θi

}
• The scale parameter θi is the log-linear function of stresses as log θi = β0+β1Si where i= 1,2,

β0 and β1(< 0) are unknown parameters depending on the nature of the product and the method
of the test.

• All test units are independently and identically distributed variables from the LBE distribu-
tion.
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• In this test, the cumulative exposure model which is defined by Nelson [14] for the simple
step-stress testing with stresses S1 and S2 is used.
• ni failure times tij, j = 1,2, · · · , ni of test units are observed under test operation at stress level

Si, i= 1,2.
Based on the given assumptions above, length-biased exponential cumulative exposure (LBECE)
model is given as follows. Firstly, the equivalent start time τ

′
for the LBECE model which is the

solution of F1(τ) = F2(τ
′
) is equal to

τ
′
=

(
θ2
θ1

)
τ

Then, by replacing τ
′
in (1) the cdf of a test unit is obtained as

F0(t) =

{
1− [

1+ t
θ1

]
exp

{− t
θ1

}
, t≤ τ

1− [
1+ t−τ

θ2
+ τ

θ1

]
exp

{− t−τ
θ2

− τ
θ1

}
, t≥ τ

(2.1)

and the pdf is given as

f0(t) =

{
t
θ21
exp

{− t
θ1

}
, t≤ τ

θ1t+(θ2−θ1)τ

θ1θ
2
2

exp
{− t−τ

θ2
− τ

θ1

}
, t≥ τ

(2.2)

3. Maximum Likelihood Estimation
This section considers obtaining MLEs of model parameters. Let tij denotes the observed failure

time of a test component j under i−th stress level. Also, n1 be the number of components failed
at stress S1 and n2 at stress S2. Corresponding likelihood function on the observed sample is given
as

L(θ) =

n1∏
j=1

f1(t1j, θ)

n2∏
j=1

f2(t2j, θ) (3.1)

where j = 1,2, · · · , ni and i = 1,2, f1(.) and f2(.) denotes the cases of the pdf due to the stress
levels. By replacing Equation (2.2) in Equation (3.1) we obtain the likelihood function as

L(θ1, θ2) =
1

θ2n1+n2
1

1

θ2n2
2

n1∏
j=1

t1jexp

{
− t1j

θ1

} n2∏
j=1

(
θ1t2j +(θ2 − θ1)τ

)
×exp

{
− t2j − τ

θ2
− τ

θ1

} (3.2)

and the log-likelihood function is obtained as

�(θ1, θ2) =− (2n1 +n2) log θ1 − 2n2 log θ2 +

n1∑
j=1

log(t1j)−
n1∑
j=1

t1j
θ1

+

n2∑
j=1

log
(
θ1t2j +(θ2 − θ1)τ

)− n2∑
j=1

t2j − τ

θ2
− τn2

θ1

(3.3)

By replacing the relation log θi = β0 +β1Si in log-likelihood function, we obtain

�(β0, β1) =− 2nβ0 − 2β1(n1S1 +n2S2)−n2(β0 +β1S1)+

n1∑
j=1

log(t1j)

− e−(β0+β1S1)

n1∑
j=1

t1j +

n2∑
j=1

log
[
e(β0+β1S1)(t2i − τ)+ e(β0+β1S2)τ

]

− e−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2τe
−(β0+β1S1)

(3.4)
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where n= n1+n2. To obtain the MLEs of the parameters, denoted by β̂0 and β̂1 we should equate
the partial derivates of �(β0, β1) to zero with respect to β0 and β1 respectively as given in the
following

∂�

∂β0

=−2n−n2 + e−(β0+β1S1)

n1∑
j=1

t1j + e−(β0+β1S2)

n2∑
j=1

(t2j − τ)+n2τe
−(β0+β1S1) (3.5)

and

∂�

∂β1

=− 2(n1S1 +n2S2)−n2S1 +S1e
−(β0+β1S1)

n1∑
j=1

t1j +S2e
−(β0+β1S2)

n2∑
j=1

(t2j − τ)

+S1n2τe
−(β0+β1S1) +

n2∑
j=1

S1e
(β0+β1S1)(t2j − τ)+S2e

(β0+β1S2)τ

e(β0+β1S1)(t2j − τ)+ e(β0+β1S2)τ

(3.6)

These non-linear equations can not be solved analytically and some iterative methods are needed.
Thus, approximate solutions of the system of these non-linear equations are the MLEs of the β0

and β1.

Approximate confidence intervals for MLEs of the parameters can be obtained by using the
inverse of the asymptotic Fisher information matrix. The inverse Fisher information matrix is given
as follows

F−1 =

⎡
⎢⎢⎣

−E

[
∂2�
∂β2

0

]
−E

[
∂2�

∂β0∂β1

]

−E

[
∂2�

∂β1∂β0

]
−E

[
∂2�
∂β2

1

]
⎤
⎥⎥⎦

−1

(β0,β1)=(β̂0,β̂1)

=

[
V ar( β̂0) Cov(β̂0β̂1)

Cov(β̂1β̂0) V ar(β̂1)

]

where
∂2�

∂β2
0

=−e−(β0+β1S1)

n1∑
j=1

t1j − e−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2τe
−(β0+β1S1)

∂2�

∂β0∂β1

=−S1e
−(β0+β1S1)

n1∑
j=1

t1j −S2e
−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2S1τe
−(β0+β1S1)

∂2�

∂β2
1

=−S2
1e

−(β0+β1S1)

n1∑
j=1

t1j −S2
2e

−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2S
2
1τe

−(β0+β1S1)

+(S1 −S2)
2e(β0+β1S1)e(β0+β1S2)τ

n2∑
j=1

t2j − τ[
e(β0+β1S1)(t2j − τ)+ e(β0+β1S2)τ

]2
Thus,

−E

[
∂2�

∂β2
0

]
= n1γ

(
3, τ/θ1

)
+n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2τ/θ1

−E

[
∂2�

∂β0∂β1

]
= S1n1γ

(
3, τ/θ1

)
+S2n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2S1τ/θ1

−E

[
∂2�

∂β2
1

]
= S2

1n1γ
(
3, τ/θ1

)
+S2

2n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2S

2
1τ/θ1

− (S1 −S2)
2τn2

θ1

{
e−τ/θ1

(
1−

√
τ

θ1
W− 1

2 ,0

(
θ1/τ

))}
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where θ1 = eβ0+β1S1 and θ2 = eβ0+β1S2 . Also, γ(a, b) denotes the lower incomplete gamma function
and Γ(a, b) denotes the upper incomplete gamma function as given in the following

γ(a, b) =

∫ b

0

ta−1e−tdt and Γ(a, b) =

∫ ∞

b

ta−1e−tdt

Further, the expression Wλ,μ(z) in −E

[
∂2�
∂β2

1

]
denotes the Whittaker functions and used for the

solution of the integral
∫∞
τ/θ1

u−1e−udu (Gradshteyn and Ryzhik [8], Eq. 3.381.6, pg. 346).
It is knows that the MLEs under some regularity conditions are consistent and normally distributed
(Godambe [7]). Thus, the a 100(1 − δ)% asymptotic confidence intervals of β0 and β1 can be
constructed by

β̂0 ∓Z δ
2

√
V ar(β̂0) and β̂1 ∓Z δ

2

√
V ar(β̂1)

where Zδ is 100 δth percentile of standard normal distribution N(0,1).

4. Optimal Test Plan
The optimal test plan emphasizes an optimum stress change timepoint τ which determines the

lifetime of lower stress level. In simple step stress accelerated life test plan, optimal stress change
time is determined by minimizing the asymptotic variance of MLEs of a given log 100p-th percentile
at the design stress level S0 (Ebrahem and Masri [6]). The 100p-th percentile of the length-biased
exponential distribution, denoted by Qp(S0) at the design stress level S0 is obtained as

Qp(S0) =−eβ0+β1S0

[
1+W−1

(
p− 1

e

)]

where W−1(.) is the negative branch of the Lambert W function (i.e., the solution of the equation
W (z)eW (z) = z). The asymptotic variance (AV) of the MLEs of the log 100p-th percentile at the
design stress level can be obtained by using

AV
{
log

[
Q̂p(S0)

]}
=AV

{
−β̂0 − β̂1S0 − log

[
1+W−1

(
p− 1

e

)]}
=HΣHT

where

H =

[
∂ log

[
Q̂p(S0)

]
∂β̂0

∂ log
[
Q̂p(S0)

]
∂β̂1

]
=
[− 1 −S0

]
and Σ is the variance-covariance matrix which is obtained by using the inverse of the Fisher
information matrix. Thus, the asymptotic variance of the MLEs of the log 100p-th percentile at
the design stress level can be obtained as follows

AV
{
log

[
Q̂p(S0)

}
=Σ11 +2S0Σ12 +S2

0Σ22

TheΣij values are already given in Section 3. Consequently, the optimal stress change time, denoted
by τ ∗ is the τ value that minimizing the AV

{
log

[
Q̂p(S0)

}
. The NMinimize option of Mathematica

11 is a very useful tool to obtain the optimal τ value that minimizing the asymptotic variance.

We performed a small numerical study to observe the existence and evaluate the optimal stress
change time with minimizing AV

{
log

[
Q̂p(S0)

}
. For given values of design stress level S0 and

parameters β0 and β1, different combinations of two levels of stress S1 and S2 as (S1 < S2), we
obtained the optimal stress-change times which provide variance optimality and reported in Table
1. We used the NMinimize option of Mathematica 11 for calculations.
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Table 1. Optimal time, τ∗, changing stress for s0 = 0.25, β0 = 2.5 and β1 =−1.5

s2
s1 1.25 1.50 1.75 2.00 2.50
0.30 5.55 6.46 7.32 8.15 9.74
0.40 4.38 5.17 5.92 6.63 7.99
0.50 3.44 4.12 4.77 5.38 6.54
0.75 1.78 2.28 2.74 3.16 3.96
1.00 0.80 1.19 1.52 1.82 2.37

It is observed that the optimal stress change time increases as parallel to increasing S2 stress

level when S1 is fixed. On the other hand, decreases are observed on optimal stress change time in

parallel to increasing on S1 stress level when S2 is fixed. These results are reasonable and acceptable.

5. Simulation Study

In this section, we provide a simulation study to illustrate the theoretical outcomes. We per-

formed simulations and obtained the MLEs of the parameters and their corresponding confidence

intervals.

We take the parameter values as β0 = 2.5 and β1 = −1.5, different stress levels as (S1, S2) =

(0.50,1.50), (S1, S2) = (0.50,2.00), (S1, S2) = (0.75,1.50) and (S1, S2) = (0.75,2.00) and the stress

change times τ as 4.12,5.38,2.28 and 3.16, respectively. We consider different sample sizes as

n= 25,50,100,250,500.

We first generate random samples of the LBECE model from the cdf in Eq. (2.1) with size n. Then,

we generate 10 000 samples with each size n. We use R software (Team R.C. [15]) to perform this

simulation. We obtained the maximum likelihood estimates of β0 and β1 with their mean squared

errors (MSE), relative errors (RE), the %95 approximate confidence intervals (CI) and coverage

probabilities (CP). We presented simulation results in Tables 2,3,4 and 5. The MSEs and REs for

an arbitrary parameter can be obtained as follows

MSEξ =Eξ[(ξ̂− ξ)2] and REξ =
|ξ− ξ̂|

ξ
100%

We observed that both estimates are obtained quite close to their actual values. In parallel to

increase sample sizes, estimations are almost same with the actual values. As expected, MSEs and

REs are getting smaller at the same time. Lengths of the approximate confidence intervals also

decrease with increasing sample sizes. Coverage probabilities of the CIs have quite close to their

actual value 0.95. In all cases of stress levels, consistent results are obtained. It is known that using

the optimal stress change time makes estimations better than using arbitrary stress change times.

However, it is clearly seen that differences between estimates for our examples are not very large.

Of course, various combinations can be worth trying according to the needs of many engineering

problems.
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Table 2. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 =
−1.5, τ = 4.12 and S1 = 0.50, S2 = 1.50)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.55967 0.00356 2.38671 1.58066 3.53867 96.33

β1 -1.55907 0.00349 3.93796 -2.36209 -0.75605 96.65

50 β0 2.55195 0.00270 2.07806 1.87081 3.23310 96.48

β1 -1.54341 0.00188 2.89384 -2.10417 -0.98265 96.43

100 β0 2.52732 0.00075 1.09283 2.05321 3.00143 96.29

β1 -1.52281 0.00052 1.52069 -1.91407 -1.13155 96.10

250 β0 2.50917 0.00008 0.36662 2.21222 2.80611 95.54

β1 -1.50768 0.00006 0.51176 -1.75317 -1.26218 95.93

500 β0 2.50381 0.00001 0.15248 2.2945 2.71312 95.88

β1 -1.50337 0.00001 0.22498 -1.67651 -1.33024 96.04

Table 3. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 =
−1.5, τ = 5.38 and S1 = 0.50, S2 = 2).

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.55861 0.00343 2.34421 1.81832 3.29889 97.01

β1 -1.54283 0.00183 2.85562 -2.04983 -1.03584 97.17

50 β0 2.53178 0.00101 1.27110 2.01902 3.04453 96.73

β1 -1.52261 0.00051 1.50708 -1.87412 -1.17109 96.63

100 β0 2.51489 0.00022 0.59551 2.15599 2.87379 96.25

β1 -1.51008 0.00010 0.67184 -1.75649 -1.26366 96.65

250 β0 2.50750 0.00006 0.30019 2.28171 2.73330 96.11

β1 -1.50571 0.00003 0.38041 -1.66080 -1.35061 96.54

500 β0 2.50312 0.00001 0.12484 2.3438 2.66244 95.87

β1 -1.50195 0.0000∗ 0.12979 -1.61142 -1.39247 96.33

(* denotes smaller values than ×10−5)
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Table 4. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 = 1.5, τ =
2.28 and S1 = 0.75, S2 = 1.5)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.61059 0.01223 4.42372 1.06294 4.15825 97.85

β1 -1.58820 0.00778 5.88030 -2.76213 -0.41428 98.51

50 β0 2.61029 0.01216 4.41170 1.52793 3.69266 96.98

β1 -1.58200 0.00672 5.46663 -2.40209 -0.76191 96.96

100 β0 2.54484 0.00201 1.79351 1.80052 3.28915 95.86

β1 -1.53358 0.00113 2.23876 -2.09971 -0.96746 95.96

250 β0 2.51936 0.00037 0.77450 2.05444 2.98428 95.88

β1 -1.51444 0.00021 0.96248 -1.86853 -1.16034 96.11

500 β0 2.50866 0.00007 0.34635 2.18138 2.83594 95.71

β1 -1.50673 0.00005 0.44882 -1.75615 -1.25732 95.85

Table 5. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 = 1.5, τ =
3.16 and S1 = 0.75, S2 = 2)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.59675 0.00936 3.87000 1.59086 3.60264 98.14

β1 -1.56215 0.00386 4.14333 -2.19076 -0.93354 97.94

50 β0 2.55287 0.00280 2.11473 1.85966 3.24607 96.58

β1 -1.53325 0.00111 2.21657 -1.96787 -1.09863 96.40

100 β0 2.52397 0.00057 0.95869 2.04077 3.00716 96.14

β1 -1.51480 0.00022 0.98642 -1.81849 -1.21110 9627

250 β0 2.51157 0.00013 0.46271 2.20816 2.81497 95.96

β1 -1.50817 0.00007 0.54448 -1.69906 -1.31727 96.27

500 β0 2.50405 0.00002 0.16189 2.29010 2.71800 95.56

β1 -1.50243 0.00001 0.16186 -1.63711 -1.36775 96.02

6. Real Data Example
In this section, a real data set is presented to illustrate the theoretical outcomes. We used the data

set of the amount of annual rainfall (in inches, from 1984 to 2008) recorded at the Los Angeles Civic
Center that is available on the website of Los Angeles Almanac: www.laalmanac.com. Recently,
Tarvirdizade and Ahmadpour [17] were used this data set in the reliability context. The data set
is given as in the following;

12.82,17.86,7.66,2.48,8.08,7.35,11.99,21.00,7.36,8.11,24.35,12.44,12.40
31.01,9.09,11.57,17.94,4.42,16.42,9.25,37.96,13.19,3.21,13.53,9.08
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We fit this data set to LBE distribution and we obtain MLE of the scale parameter as θ̂= 6.6114.
The corresponding Kolmogorov-Smirnov test statistics and associated p-values are obtained 0.16
and 0.915. Therefore, we can reject the null hypothesis that this dataset comes from the LBE
distribution. Also, the estimated density and the empirical cdf plots support these observations
(Figure 1). Then, we considered different stress levels S1, S2 and stress change times τ to exemplify
our findings.
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Figure 1. Estimated density and empirical cdf for real-data example fitted by the LBE distribution.

Table 6. Parameter estimates and their approximate confidence intervals for the real dataset.

S1 S2 τ β̂0 β̂1 θ̂1 θ̂2

0.5 1.5 7.5 2.4429 (1.7592;3.1266) -0.5342 (-1.1007;0.0324) 8.8096 5.1639

12.5 1.9753 (1.4205;2.5302) -0.1141 (-0.7407;0.5125) 6.8092 6.0749

15 1.8768 (1.3144;2.4392) -0.0172 (-0.6987;0.7331) 6.5890 6.7034

0.5 2 7.5 2.3543 (1.7556;2.9529) -0.3564 (-0.7341; 0.0213) 8.8118 5.1629

12.5 1.9564 (1.4891;2.4236) -0.0764 (-0.4941;0.3412) 6.8085 6.0711

15 1.8796 (1.4172;2.3419) -0.0118 (-0.4656;0.4892) 6.5895 6.7076

0.75 1.5 7.5 2.7112 (1.7614;3.6610) -0.7131 (-1.4686;0.0423) 8.8141 5.1629

12.5 2.0313 (1.1905;2.8722) -0.1513 (-0.9868;0.6842) 6.8063 6.0761

15 1.8681 (0.9765;2.7597) -0.0233 (-0.9314;0.9780) 6.5900 6.7061

0.75 1.5 7.5 2.4974 (1.7614;3.2334) -0.4279 (-0.8812;0.0254) 8.8147 5.1631

12.5 1.9866 (1.3768;2.5964) -0.0916 (-0.5927;0.4096) 6.8071 6.0710

15 1.8758 (1.2502;2.5014) -0.0129 (-0.5596;0.5854) 6.5897 6.6969

It is observed that estimates are getting closer to its MLE value under the normal conditions
when stress change time equal to 15 for all stress levels. Similarly, estimations are worsening with
decreasing stress change time. The mean of this real data set is 13.22. We may conclude that close
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values of stress change time to the mean of the sample help to obtain better estimates for these
determined stress levels.

7. Conclusions
The importance of length-biased distributions in especially reliability studies and their greater

flexibility in modeling data in different areas such as lifetime data analysis, engineering, actuarial
etc. inspired to consider accelerated life test plans under this distribution. Therefore, the length-
biased exponential distribution is used which is one of the most used length-biased distributions in
the literature. As a first attempt based on LBE distribution, we considered a cumulative exposure
model under simple step stress accelerated life test.
We see that maximum likelihood estimations are obtained using some iterative methods as in many
inference problems. Therefore, approximate confidence intervals are used in place of exact ones.
Nevertheless, performances of the estimator and its confidence intervals are quite well performed.
In addition, different combinations of the stress levels are compared with simulations and real data
examples. We see that for the high stress with fixed level, results for lower stress level gives better
result than higher ones. Similarly, results for higher stress level gives better result in the case of
fixed lower stress level. Even so, there are not very important differences between estimates for our
combinations. We also obtained optimal stress change times to construct the best ALT plans for
this cumulative exposure model. All simulations and real data studies were applied according to
this optimal plan.
As open problems, this ALT plan can be extended for cumulative exposure models under multiple
stress levels. Also, censored cases can be considered for these plans.
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Abstract: In this paper, a new probability distribution called Exponentiated Gompertz Exponential distribution was
introduced which can help researchers to model different types of data sets. In proposed distribution we introduce a
new shape parameter to Gompertz Exponential distribution, varied its tail weight such that it enhances its flexibility and
performance. Furthermore, the maximum likelihood method was used in estimating the model’s parameters. Simulation
method was used to investigate the behaviours of the parameters of the proposed distribution; the results showed that the
mean square error and standard error for the chosen parameter values decrease as the sample size increases. The proposed
distribution was tested on real life data, the results showed that EGoE performed better than the existing distribution in
the literature and a strong competitor to other distributions of the same class. The results also showed that the distribution
can be used as an alternative model in modelling lifetime processes.
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1. Introduction
The Gompertz distribution is a continuous probability distribution, named after Benjamen Gompertz.

It is often used by demographers and actuaries to describe the distribution of adult life spans. It is a two

parameter distribution that lies on support [0,∞]. In the fields of Science and Biology, Gompertz distribu-

tion was used for survival analysis. This paper proposed a new continuous distribution called Exponentiated

Gompertz Exponential distribution with increasing hazard rate. The proposed distribution added a shape

parameter to the existing Gompertz Exponential distribution using the gompertz generalized family of dis-

tribution to enhance flexibility and better performance. There are so many generalized forms of Gompertz

distribution in the literature. For instance, [1] extended Lomax distribution obtained by using Gompertz

generalized family of distribution proposed by [3]. Also, [2] studied Gompertz Exponential distribution

* Corresponding author. E-mail address:jadewara@unilag.edu.ng
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by extending exponential distribution using Gompertz family. [4] studied generalized Gompertz distribu-

tion by generalizing exponential and Gompertz distribution. The main advantage of [4] is that the shape

of the hazard function could be increasing, decreasing, constant or bathtub depending on the value of the

shape parameters thereby making it a suitable tool for reliability analysis. [5] introduced Beta Gompertz

distribution which is quite flexible and can be used effectively in modelling survival data and reliability

problems. Beta Gompertz distribution can have a decreasing, increasing, and bathtub-shaped failure rate

function depending on its parameters.

In recent time, [8] proposed Gompertz flexible weibull distribution by extending the flexible weibull distri-

bution using the gompertz generalized family of distributions proposed by [3] and used by [1]. The superi-

ority of Gompertz flexible weibull distribution over Gompertz Weibull, Gompertz Burr type XII, Gompertz

Lomax, exponentiated flexible weibull, exponentiated flexible weibull extension and Kumaraswamy flexible

weibull distributions was demonstrated through its application to real data sets.

The remaining part of this paper is organized as follows: In section 2, the densities of Exponentiated Gom-

pertz Exponential distribution which will henceforth be referred to as EGoE distribution are derived, its

statistical properties like reliability function, distribution of order statistics, quantile function, mode, mean

and variance (in integral form) are obtained ; including the estimation of the unknown parameters. In sec-

tion 3, a simulation study was carried out to assess the performance of the unknown parameters of EGoE

distribution. Applications to real data sets are provided in section 4 while concluding remark is provided in

section 5.

2. The Exponentiated Gompertz Exponential
(EGoE) distribution

The cdf of a random variable X from Exponentiated Gompertz Exponential distribution is derived by

raising the cdf of Gompertz Exponential distribution to a shape parameter α. The associated expression is

given as

F (x) =
{
1− e

θ
γ [1−eλxγ]

}α

x> 0, θ > 0 , γ > 0 , λ > 0, α > 0. (2.1)

where θ,λ and γ are the shape parameters. The resulting plot is shown in figure 1.

FIGURE 1. The plot of cumulative distribution function of EGoE distribution
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Its corresponding pdf is obtained by differentiating equation (2.1) with respect to x

f (x) = αθλeλxγe
θ
γ [1−eλxγ]

[
1− e

θ
γ [1−eλxγ]

]α−1

x> 0, θ > 0 , γ > 0 , λ > 0, α > 0 (2.2)

The expansion of the pdf will be of the form

f (x) = αθλ

∞∑
i,j,s=0

(−1)
i+s

j!

(
α− 1
i

)(
j
s

)(
iθ

γ
+

θ

γ

)j

e(s+1)λxγ . (2.3)

and its probability density function shown in figure 2.

FIGURE 2. Plot of the probability density function of EGoE distribution.

Reliability analysis
The reliability analysis of EGoE distribution discussed in this sub – section are survival function and hazard

function. Survival function is the probability that a system will survive beyond a specified time while hazard

function also known as failure rate can be interpreted as the conditional probability of failure, given it has

survived to time t. Survival and hazard functions are very important in Biological sciences for survival

analysis and engineering for reliability analysis.

Reliability or survival function can be obtained mathematically as the complement of the cumulative density

function (cdf) as follows:

S (x) = 1−F (x) (2.4)

Therefore, the reliability function of EGoE distribution is given by

S (x) = 1−
{
1− e

θ
γ [1−eλxγ]

}α

;x> 0, θ > 0 , γ > 0 , λ > 0, α > 0 (2.5)

Hazard function can be obtained from

h (x) =
f (x)

S (x)
. (2.6)
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FIGURE 3. Plot of the survival function of EGoE distribution.

Therefore the hazard function of EGoE distribution is given by

h (x) =
αθλeλxγe

θ
γ [1−eλxγ]

[
1− e

θ
γ [1−eλxγ]

]α−1

1−
{
1− e

θ
γ [1−eλxγ]

}α , x > 0, θ > 0 , γ > 0 , λ > 0, α > 0. (2.7)

FIGURE 4. Plot of the hazard function of EGoE distribution.

Quantile function and median of EGoE distribution
In this sub-section, quantile and median of EGoE distribution are derived as follows
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The quantile Xq of a random variable from EGoE distribution ( θ , γ , λ, α) random variable X is given

by

(Xq)EGoE =
1

λγ
ln
[
1− γ

θ
ln

(
1− q

1
α

) ]
The final form of the quantile function of Exponentiated Gompertz Exponential distribution can be written

as

(Xq)EGoE =
1

λγ
ln
[
1− γ

θ
ln

(
1− q

1
α

) ]
(2.8)

The median of EGoE can be derived from equation (2.8) by setting q= 0.5
Therefore,

median=
1

λγ
ln
[
1− γ

θ
ln

(
1− (0.5)

1
α

) ]
(2.9)

The mode
The mode of EGoE distribution can be derived by first differentiating its probability density function with

respect to x and then equating the resulting derivative to zero.[[
1− e

θ
γ [1−eλxγ]

]α−1 [
λ
(
γ− θe2λxγe

θ
γ [1−eλxγ]

)]
+
[
θλe2λxγe

2θ
γ [1−eλxγ]

] ]
= 0. (2.10)

gives the mode of EGoE distribution.

It should be noted that the non -linear equation (2.10) does not have analytical solution in x but can be

solved numerically when data sets are available with the use of statistical packages.

Order statistics
The pdf of the jth order statistics of the EGoE distribution is

fj:n (x) =
n!

(j−1)!(n−j)!
αθλeλxγe

θ
γ [1−eλxγ]

[
1− e

θ
γ [1−eλxγ]

]α−1

[{
1− e

θ
γ [1−eλxγ]

}α]j−1[
1−

{
1− e

θ
γ [1−eλxγ]

}α]n−j (2.11)

The distributions of minimum and maximum order statistics for the Exponentiated Gompertz Exponential

distribution are given below.

f1:n (x) = nαθλeλxγe
θ
γ [1−eλxγ]

[
1− e

θ
γ [1−eλxγ]

]α−1[
1−

{
1− e

θ
γ [1−eλxγ]

}α]n−1

. (2.12)

fn:n (x) = nαθλeλxγe
θ
γ [1−eλxγ]

[
1− e

θ
γ [1−eλxγ]

]α−1[{
1− e

θ
γ [1−eλxγ]

}α]n−1

. (2.13)

Moments of EGoE distribution
Let X be a random variable that has the EGoE distribution, then, the rth non-central moments is given by

E (Xr) =

∫ ∞

0

xrf (x)dx (2.14)

E (Xr) =

∫ ∞

0

xrαθλ

∞∑
i,j,s=0

(−1)
i+s

j!

(
α− 1
i

)(
j
s

)(
iθ

γ
+

θ

γ

)j

e(s+1)λxγ dx

= αθλ
∞∑

i,j,s=0

(−1)
i+s

j!

(
α− 1
i

)(
j
s

)(
iθ

γ
+

θ

γ

)j ∫ ∞

0

xre(s+1)λxγ dx.
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The first moment (r= 1) which is the mean of the distribution is given by

E (X) = αθλ

∞∑
i,j,s=0

(−1)
i+s

j!

(
α− 1
i

)(
j
s

)(
iθ

γ
+

θ

γ

)j ∫ ∞

0

xe(s+1)λxγ dx. (2.15)

The second moment (r= 2)is given by

E
(
X2

)
= αθλ

∞∑
i,j,s=0

(−1)
i+s

j!

(
α− 1
i

)(
j
s

)(
iθ

γ
+

θ

γ

)j ∫ ∞

0

x2e(s+1)λxγ dx. (2.16)

Thus, the variance of EGoE distribution using Equations (2.15) and (2.16) is given by

V ar(X) =E(X2)− [E(X)]2

V ar (X) = αθλ
∑∞

i,j,s=0
(−1)i+s

j!

(
α− 1
i

)(
j
s

)(
iθ
γ
+ θ

γ

)j ∫∞
0

x2e(s+1)λxγ dx

−
[
αθλ

∑∞
i,j,s=0

(−1)i+s

j!

(
α− 1
i

)(
j
s

)(
iθ
γ
+ θ

γ

)j ∫∞
0

xe(s+1)λxγ dx

]2

.

(2.17)

Maximum likelihood estimators
The parameters of the EGoE distribution can be estimated using the method of Maximum Likelihood Esti-

mation (MLE) as follows:

Let x1, x2, . . . , xn be a random sample from the Exponentiated Gompertz Exponential (EGoE) distribution.

Then, the likelihood function is given by

Thus,

f (x1, x2, . . . , xn;α, θ, γ,λ) = αnθnλneλγ
∑n

i=1 xe
θ
γ

∑n
i=1 [ 1−eλxγ]

n∑
i=1

[
1− e

θ
γ [1−eλxγ]

]α−1

Let l = logf (x1, x2, . . . , xn;α, θ, γ,λ) ,

l= nlogα+nlogθ+nlogλ+λγ
n∑

i=1

x +
θ

γ

n∑
i=1

[ 1− eλxγ ] + (α− 1)
n∑

i=1

log
[
1− e

θ
γ [1−eλxγ]

]
.

∂l

∂α
=

n

α
+

n∑
i=1

log
[
1− e

θ
γ [1−eλxγ]

]
.

Therefore,

∂l

∂θ
=

n

θ
+

1

γ

n∑
i=1

[ 1− eλxγ ] +
(1−α)(1− eλxγ)

γ

n∑
i=1

e
θ
γ [1−eλxγ]

1− e
θ
γ [1−eλxγ]

. (2.18)

∂l

∂λ
=

n

λ
+ γ

n∑
i=1

x− θ

n∑
i=1

xeλxγ +
θ (1−α)

∑n

i=1 xe
θ
γ [1−eλxγ][

1− e
θ
γ [1−eλxγ]

] . (2.19)

∂l
∂γ

= λ
∑n

i=1 x− θλ
γ

∑n

i=1 xe
λxγ − θ

γ2

∑n

i=1 [ 1− eλxγ ]

+
θ(α−1)

∑n
i=1

[
(λxeλxγ+ 1

γ ( 1−eλxγ))e
θ
γ [1−eλxγ]

]

γ

[
1−e

θ
γ [1−eλxγ]

] .
(2.20)
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Equating ∂l
∂α

= 0 , ∂l
∂θ

= 0, ∂l
∂λ

= 0 and ∂l
∂γ

= 0, which become

n

α
+

n∑
i=1

log
[
1− e

θ
γ [1−eλxγ]

]
= 0. (2.21)

n

θ
+

1

γ

n∑
i=1

[ 1− eλxγ ] +
(1−α)(1− eλxγ)

γ

n∑
i=1

e
θ
γ [1−eλxγ]

1− e
θ
γ [1−eλxγ]

= 0. (2.22)

n

λ
+ γ

n∑
i=1

x− θ
n∑

i=1

xeλxγ +
θ (1−α)

∑n

i=1 xe
θ
γ [1−eλxγ][

1− e
θ
γ [1−eλxγ]

] = 0. (2.23)

and

λ
∑n

i=1 x− θλ
γ

∑n

i=1 xe
λxγ − θ

γ2

∑n

i=1 [ 1− eλxγ ]

+
θ(α−1)

∑n
i=1

[
(λxeλxγ+ 1

γ ( 1−eλxγ))e
θ
γ [1−eλxγ]

]

γ

[
1−e

θ
γ [1−eλxγ]

] = 0.
(2.24)

The MLE of α can then be obtained from equation (2.21) for a given θ,λ and γ in the form below.

α=
−n∑n

i=1 log
[
1− e

θ
γ [1−eλxγ]

] . (2.25)

Substituting equation (2.25) into equations (2.22), (2.23) and (2.24) and by solving the resulting systems of

three non-linear equations numerically, we get the MLE of θ,λ and γ.
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3. Simulation study
Simulation study was conducted using R statistical software. Data sets were generated from EGoE dis-

tribution. Random samples of sizes n=10, 100 and 1000 were used. The simulation was conducted for

three different cases using varying true parameters in each case. The selected true parameter values are

θ = 0.5, λ= 0.5, γ = 0.5, and α= 0.5; θ = 1.0, λ= 1.0, γ = 1.0, and α= 1.0; θ = 0.5, λ= 0.5, γ =
0.5, and α = 0.5 for the first, second and third cases respectively. The maximum likelihood estimates of

the true parameters including the Bias, Standard Error and Root Mean Square Error (RMSE) were obtained

with the result of the simulation studies shown in Tables 3.1, 3.2, and 3.3.

Table 3.1: Simulation study at θ = 0.5 , λ= 0.5 , γ = 0.5 and α= 0.5
n Parameters Means Bias Std. Error RMSE

10

θ =0.5 2.3028 -1.8028 2.3183 0.4815

λ= 0.5 0.7712 -0.2712 7.5652 0.8698

γ = 0.5 1.3686 -0.8686 13.2869 1.1527

α= 0.5 0.2217 0.2783 2.2168 0.4708

100

θ=0.5 0.4251 0.0749 0.0681 0.0261

λ= 0.5 0.2363 0.2637 0.2333 0.0483

γ = 0.5 0.5676 - 0.0676 0.3534 0.0594

α= 0.5 0.6930 - 0.1930 0.3114 0.0558

1000

θ=0.5 0.4972 0.0028 0.0230 0.0048

λ= 0.5 0.3693 0.1307 0.0432 0.0066

γ = 0.5 0.6537 - 0.1537 0.0357 0.0060

α= 0.5 0.3632 0.1368 0.0483 0.0069

Table 3.2: Simulation study atθ= 1.0,λ= 1.0 , γ = 1.0 and α= 1.0
n Parameters Means Bias Std. Error RMSE

10

θ= 1.0 0.9102 0.0898 0.6518 0.2553

λ= 1.0 0.6371 0.3629 15.4529 1.2431

γ = 1.0 1.1214 - 0.1214 27.0708 1.6453

α= 1.0 1.2441 0.1368 29.9894 1.7317

100

θ= 1.0 0.7499 0.2501 0.1390 0.0373

λ= 1.0 0.3780 0.6220 1.9413 0.1393

γ = 1.0 1.4201 - 0.4201 7.2655 0.2695

α= 1.0 1.0126 - 0.0126 5.1842 0.2277

1000

θ= 1.0 1.0628 - 0.0628 0.0648 0.0080

λ= 1.0 1.1703 -0.1703 4.0535 0.0637

γ = 1.0 0.9296 - 0.0704 3.2057 0.0566

α= 1.0 0.9498 0.0502 3.2610 0.0571
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Table 3.3: Simulation study at θ= 1.5, λ= 1.5 , γ = 1.5 and α= 1.5
n Parameters Means Bias Std. Error RMSE

10

θ= 1.5 1.0776 0.4224 0.9760 0.3124

λ= 1.5 0.4382 1.0618 4.7415 0.6886

γ = 1.5 1.9782 - 0.4782 21.7080 1.4734

α= 1.5 2.3560 - 0.8560 26.3076 1.6220

100

θ= 1.5 2.0174 - 0.5174 0.4849 0.0696

λ= 1.5 1.5719 -0.0719 4.6175 0.2149

γ = 1.5 1.5852 - 0.0852 4.5838 0.2141

α= 1.5 1.6677 - 0.1677 4.8031 0.2192

1000

θ= 1.5 1.5388 - 0.0388 0.1102 0.0105

λ= 1.5 1.7839 -0.2839 1.3853 0.0372

γ = 1.5 1.2857 0.2143 0.9888 0.0314

α= 1.5 1.6850 - 0.1850 1.3079 0.0361

Application to real-life data sets
In this section, Exponentiated Gompertz Exponential distribution was compared with four other four –

parameter compound distributions – Gompertz Weibull distribution (GOWE), Gompertz Burrxii distri-

bution (GOBXII), Gompertz Lomax (GOLOM) distribution and Gompertz Flexible Weibull distribution

(GOFLWE). The distributions were fitted to three real data sets presented below:

Dataset I: The first data set represents the reproducibility of median – time – to – failure (t 50) measurements.

It has been previously used by [1].

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.12, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958,

4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024,

8.336, 9.218, 7.945, 6.869, 6.352, 4.7, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974,

8.799, 7.683, 7.224, 7.365, 6.923, 5.64, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923.

Dataset II: This data represents the waiting times (in minutes) before service of 100 Bank customers. It has

been used previously by [2], [3] and [4].

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4,

4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6,

7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,

11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9,

19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5 .

Dataset III: This data set represents the strength of carbon fibers tested under tension at gauge lengths of

10mm. It has been used previously by [5] and [6]. The observations are as follows:

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525,

2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,

2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,

3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,

4.225, 4.395, 5.020.

Table 3.4: The descriptive statistics for the three data sets above are provided in the table below.
Parameters N Min. Q1 Median Q3 Mean Max. Skewness Kurtosis Variance

Dataset 1 59 2.997 6.052 6.923 7.941 6.980 11.040 0.1932 3.0874 2.6051

Dataset II 100 0.800 4.675 8.100 13.02 9.877 38.500 1.4728 5.5403 52.3741

Dataset III 63 1.901 2.554 2.996 3.422 3.059 5.020 0.6328 3.2863 0.3855
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The goodness-of-fit statistics including Akaike Information Criterion (AIC), Corrected Akaike Information

Criterion (CAIC),Bayesian Information Criterion (BIC), Log-likelihood (LL), Hannan-Quinn Information

Criterion (HQIC), Shapiro – Wilk test (W), Anderson – Darling test (A) and Kolmogorov-Smirnov (K-S)

statistics are computed to compare the fitted models.

Table 3.5: Performance rating of EGoE distribution for data set 1
Distribution Parameter Estimates - LL AIC CAIC BIC HQIC

EGoE

α̂=1.7868

111.2993 230.5985 231.3395 238.9087 233.8425
θ̂=2.4673

λ̂=7.7670

γ̂=0.0866

GOWE

α̂=0.3838

111.7834 231.5668 232.3075 239.877 234.8107
θ̂=-0.0589

λ̂=0.1617

γ̂=5.3304

GOFLWE

α̂ =0.0507

111.8013 231.6027 232.3434 239.9128 234.8466
θ̂=15.4192

λ̂=-0.0115

γ̂=6.8100

GOLOM

α̂=0.0046

114.5715 237.0230 237.7638 245.3332 240.2670
θ̂=3.3722

λ̂=0.1747

γ̂=2.3061

GOBUXII

α̂ =0.0027

114.5667 237.1335 237.8742 245.4436 240.3774
θ̂=7.5043

λ̂=0.2720

γ̂=1.9276

Table 3.6: Test statistic of EGOE and the competing distributions using data set 1
Distribution W A KS p - value

EGoE 0.0380 0.2132 0.0664 0.9419

GOWE 0.0456 0.2567 0.0735 0.8842

GOFLWE 0.0511 0.2860 0.0760 0.8589

GOLOM 0.1232 0.7036 0.0979 0.5888

GOBUXII 0.0644 0.3602 0.1339 0.2198
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FIGURE 5. Graphical displays of EGoE and the competing distributions with respect to data set 1
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Table 3.7: Performance rating of EGoE distribution for data set II
Distribution Parameter Estimates - LL AIC CAIC BIC HQIC

EGoE

α̂=0.6558

317.0708 642.1415 642.5626 652.5622 646.3590
θ̂=-0.0146

λ̂ =2.2605

γ̂=0.2538

GOWE

α̂=1.1742

317.9028 643.8055 644.2266 654.2262 648.0230
θ̂ =-0.1589

λ̂ =0.0893

γ̂=1.6221

GOFLWE

α̂=0.1224

317.1068 642.2136 642.6347 652.6343 646.4311
θ̂=4.5968

λ̂=0.0061

γ̂=2.9838

GOLOM

α̂ =0.0159

319.3325 646.6649 647.0860 657.0856 650.8823
θ̂ =3.0670

λ̂=3.0723

γ̂=0.4841

GOBUXII

α̂ =0.1057

317.3427 642.6854 643.1065 653.1061 646.9028
θ̂=2.4126

λ̂ =0.1618

γ̂=3.4293
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Considering the values of the AIC, CAIC, BIC and HQIC; Exponentiated Gompertz Exponential distribu-

tion seems to perform better than the competing distributions since it has the lowest value. The graphical

representations of comparative analysis in table 3.7 are shown in figure 5.

Table 3.8: Test statistic of EGoE and the competing distributions using data set II
Distribution W A KS p - value

EGoE 0.0187 0.1320 0.0387 0.9983

GOWE 0.0373 0.2346 0.0447 0.9882

GOFLWE 0.0264 0.2074 0.0389 0.9981

GOLOM 0.0728 0.4578 0.0577 0.8926

GOBUXII 0.0321 0.2207 0.0573 0.9551
With EGoE having the lowest value of W, A and KS, it shows that it is the best among the competing

distributions.

Table 3.9: Performance rating of EGoE distribution for data set III
Distribution Parameter Estimates - LL AIC CAIC BIC HQIC

EGoE

α̂ =1.2366

56.2729 120.5458 121.2354 129.1183 123.9174
θ̂ =0.2069

λ̂=58.5181

γ̂=0.8998

GOWE

α̂ =0.0081

67.1454 142.2908 142.9805 150.8634 145.6624
θ̂ =5.6238

λ̂=0.3697

γ̂=0.7116

GOFLWE

α̂ =0.0076

58.3618 124.7236 125.4132 133.2961 128.0952
θ̂ =27.5730

λ̂=-0.0845

γ̂=3.0426

GOLOM

α̂ =0.0044

64.9569 137.9139 138.6035 146.4864 141.2855
θ̂ =5.3157

λ̂=0.4533

γ̂=1.4547

GOBUXII

α̂ =0.0074

62.4951 132.9903 133.6799 141.5628 136.3619
θ̂ =3.6613

λ̂=0.4632

γ̂=3.0294

Considering the values of the AIC, CAIC, BIC and HQIC; Exponentiated Gompertz Exponential distribu-

tion is having the lowest value, therefore, performs better than the competing distributions.
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FIGURE 6. Graphical displays of EGoE and the competing distributions with respect to data set II
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Table 3.10: Test statistic of EGoE and the competing distributions using data set III
Distribution W A KS p - value

EGoE 0.0583 0.3166 0.0798 0.8178

GOWE 0.2082 1.3967 0.1370 0.1877

GOFLWE 0.0801 0.5138 0.0914 0.6688

GOLOM 0.1624 1.1128 0.1282 0.2515

GOBUXII 0.1361 0.9429 0.0934 0.6411
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With EGoE having the lowest value of W, A and KS, it shows that it is the best among the competing

distributions.

FIGURE 7. Graphical displays of EGoE and the competing distributions with respect to data set III.

4. Discussion of results
Tables 3.1, 3.2 and 3.3 present simulation results performed using R statistical software. The results

showed that as parameter θ,λ, γ, andα; values increases and sample size n also increase then the root mean

square error (RMSE) and the standard error of the results decreases. Three different real data sets were used

for this study. The results are as shown in the Tables 3.5, 3.7, and 3.9 and Tables 3.6, 3.8 and 3.10.

Tables 3.5, 3.7 and 3.9 the descriptive statistics result showed that life data is positively skewed distribution.

Furthermore the test of performance rating was done as shown in the above table the result showed that

the proposed distribution Exponentiated Gompertz Exponential distribution has the lowest value of AIC,
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CAIC, BIC and HQIC. This implies that the distribution is better fit and performed better than the compared

distribution when compared with Gompertz Weibull distribution, Gompertz Flexible Weibull distribution,

Gompertz Lomax distribution and Gompertz Burr XII distribution. The goodness of fit for Tables 3.6, 3.8

and 3.10 showed that the performance of EGoE distribution over other distributions is with the lowest values

of W, A and KS. This implies that the proposed distribution is a strong competitor to other distribution of

the same class and can also be used as alternative model in modeling lifetime processes.

5. Conclusion
In this paper, a new continuous probability distribution with increasing hazard rate is introduced and dis-

cussed. Its statistical properties were investigated. The mean and variance of the proposed distribution were

obtained in integral form. The maximum likelihood method was used in estimating the parameters of the

distribution. Simulation study was carried out to assess the performance of the distribution and its stabil-

ity. Real life data was carried out on the proposed distribution. The result revealed that EGoE distribution

performed better with lower AIC and BIC than the existing distribution when compared with Gompertz

Weibull, Gompertz flexible Weibull, Gompertz Lomax and Gompertz Burr XII distributions.
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Department of Statistics,

Selcuk University,
42250, Konya, Turkey

Abstract: Kumaraswamy distribution is introduced by [7] and it is particularly useful for many natural
phenomena whose outcomes have lower and upper bounds or bounded outcomes in biomedical and epi-
demiological research (see [12]). In this paper, a new statistical distribution called DUS-Kumaraswamy is
introduced by using DUS transformation (which is recently introduced by [6]) on Kumaraswamy distribu-
tion. The proposed distribution has the same domain as Kumaraswamy and it can be used as an alternative
model to describe the natural phenomena mentioned above. Several distributional properties such as mean,
variance, skewness, kurtosis, Lorenz and Bonferroni curves are studied. The statistical inference on the
parameters of Dus-Kumaraswamy is discussed by maximum likelihood methodology. A simulation study is
conducted to observe the behaviors of maximum likelihood estimates under different conditions. A numerical
example is also presented.

Key words : Data analysis, Kumaraswamy distribution, maximum likelihood estimator, monte carlo
simulation

1. Introduction
In this study, the DUS transformation of [7] is used to introduce a new distribution bounded

within (0,1). The Kumaraswamy distribution is considered as a baseline distribution in their DUS
transformation. Let F (x) and f (x) denote respectively the cumulative distribution function (cdf)
and probability density function (pdf) of baseline distribution. Then the pdf and cdf of the DUS
family are given, respectively, by

fDUS (x) =
1

e− 1
f (x) eF (x), x∈D (1.1)

and

FDUS (x) =
1

e− 1

(
eF (x) − 1

)
, (1.2)

where D is a domain of the baseline distribution with cdf F .
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The DUS transformation with a exponential cdf is considered by [7]. Using DUS transforma-
tion, the DUS-Lomax distribution is proposed by [4]. [5] introduced a new lifetime distribution
called DUS-Weibull distribution by using same mechanism. Recently, [10] generalized the DUS
transformation and they studied the exponential baseline in their generalized DUS transformation.

It was reported in these studies that the DUS transformation increases the distribution flexibility.
It can also be said that the DUS transformation has become a center of attraction in recent years.
In this paper, the DUS transformation is applied to the Kumaraswamy cdf to get new distribu-
tion. The paper is organized as follows. In Section 2, moments, hazard rate, survival and quantile
functions are obtained. The maximum likelihood method is discussed in Section 3. In Section 4, a
simulation study is also performed to observe the performance of the maximum likelihood estimate.
A numerical example is given to illustrate the capability of the proposed distribution for modeling
a real data in Section 5. In Section 6, concluding remarks are provided.

2. DUS-Kumaraswamy distribution
In this section, DUS transformation is applied to Kumaraswamy cdf. The pdf and cdf of the

Kumaraswamy distribution are given, respectively, by

fK (x) = αβxα−1 (1−xα)
β−1

, 0<x< 1, (2.1)

and

FK (x) = 1− (1−xα)
β
, (2.2)

where α,β > 0 are the parameters.
Using Eqs. (2.1) and (2.2) in Eqs. (1.1) and (1.2), respectively, the pdf and cdf of the new

distribution are given, respectively, by

fDUS−K (x) = 1
e−1

αβxα−1 (1−xα)
β−1

e(1−(1−xα)β) , 0<x< 1 (2.3)

and

FDUS−K (x) =
1

e− 1

(
e(1−(1−xα)β)− 1

)
, (2.4)

with parameters α > 0 and β > 0. The random variable X with cdf (2.2) is said to have two-
parameter DUS-Kumaraswamy distribution and it is denoted by DUS−K(α,β).

Fig. 1 presents the plots of the DUS−K(α,β) probability density function for some choices of
α and β. From Fig. 1, it is concluded that the pdf of DUS −K(α,β) can be unimodal as well as
have decreasing and increasing forms.
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Figure 1. Pdf plots of the DUS−K distribution for selected parameters values
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The survival function, S(x), and the hazard rate function, h(x), for DUS−K(α,β) distribution
are in the following forms:

SDUS−K(α,β) (x) =
e− e(1−(1−xα)β)

e− 1
(2.5)

and

hDUS−K(α,β) (x) =
αβxα−1 (1−xα)

β−1
e(1−(1−xα)β)

e− e(1−(1−xα)β)
. (2.6)

Fig. 2 presents plots of the hazard rate function of DUS−K(α,β) for some selected values of α
and β. From Fig. 2, it is observed that the hazard function of introduced distribution is increasing.
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Figure 2. Hazard rate function plots of the DUS−K distribution for selected parameters values

The quantile function of the DUS−K(α,β) distribution is given by

Q (u;α,β) =
{
1− [1− log (1+u (e− 1))]

1
β

} 1
α

, u∈ (0,1) . (2.7)

Using Eq. (2.7), the median is obtained as

Q (0.5;α,β) =
{
1− [1+ log (2)− log (1+ e)]

1
β

} 1
α

.

Let X be an absolutely continuous random variable with distribution function F . Then, by using
probability integral transformation, we can write

E (Xi:n)� F−1

(
i

n+1

)
, i= 1,2, . . . ,m, (2.8)

where Xi:n is the ith order statistic of the sample of size n and F−1 is the inverse of F.
Let X be a random variable from DUS family with a baseline cdf F in (1.2). Using Taylor series

expansion, the distribution function of X can be written as

G (x) =
1

e− 1

(
eF (x) − 1

)
=

1

e− 1

∞∑
i=0

(F (x))
i

i!
− 1

=
1

e− 1

∞∑
i=0

FYi:i
(x)

i!
− 1, (2.9)
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where Yi:i is the ith order statistic of sample of size i from K(α,β) with cdf FYi:i
(x). Using (2.9),

the expected value of DUS−K(α,β) can be represented by

E (X) =
1

e− 1

∞∑
i=0

1

i!
E (Yi:i) , (2.10)

where fi:i (y) is pdf of Yi:i. Using (2.8) in (2.10) and quantile function of Kumaraswamy distribution,
the approximate expected value of DUS−K(α,β) is obtained as

E (X)� 1

e− 1

∞∑
i=0

1

i!

(
1−

(
i

n+1

)1/β
)1/α

. (2.11)

Let X be the DUS−K(α,β) random variable with pdf (2.3). Then, for r= 1,2, ..., the approximate
r-th moment of X is given by

μr =

∫ 1

0

xrf (x)dx

=

∫ 1

−1

1

2

(
y� +1

2

)r

f

(
y� +1

2

)
dy

�
N∑
l=1

��

1

2

(
y� +1

2

)r

f

(
y� +1

2

)
, (2.12)

where f (·) is the pdf given in Eq. (2.3), y� and �� are the zeros and the corresponding Christoffel
numbers of the Legendre-Gauss quadrature formula on the interval (−1,1), respectively, see [2]. It
is also noticed here, �� is given by

�� =
2

(1− y�)
2 [
L

′
N+1 (y�)

]2 , (2.13)

where

L
′
N+1 (y�) =

dLN+1 (y)

dy
(2.14)

at y= y� and LN+1 (·) is the Legendre polynomial of degree N .
The relation between the approximation of the mean and degree (N) of Legendre polynomial is

presented in Fig. 3. It can be observed that N = 30 is enough to reach the acceptable approximation
to the true mean.

For some selected parameters, the mean, variance, skewness and kurtosis ofDUS−K distribution
are presented in Table 1. The values of N has been taken to be N = 30 in the numerical calculations.

The Bonferroni and Lorenz curves are introduced by [1]. They have applications in economics
and insurance. In the following, we give the Bonferroni and Lorenz curves of DUS − K(α,β)
distribution.

Let the random variableX haveDUS−K(α,β) distribution with pdf (2.3). Then, the Bonferroni
and Lorenz curves are given, respectively, by

BC (ξ) =
q2

4ξμ1

N∑
�=0

��

(
y
�
+1

)
f
(q
2

(
y
�
+1

))
, (2.15)

and

LC (ξ) =
q2

4μ1

N∑
�=0

��

(
y
�
+1

)
f
(q
2

(
y
�
+1

))
, (2.16)

where �� is given by (2.13) and q= F−1 (ξ).
In the following, we compute the well-known stress-strength reliability R = P (Y <X) for the

model under concern.
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Figure 3. The relationship between approximated mean and degree (N) of Legendre polynomial

Table 1. The mean, variance, skewness and kurtosis of DUS−K(α,β) distribution for different values of α and β

α β Mean Variance Skewness Kurtosis

0.5 0.5 0.6251 0.1134 -0.5366 1.8555
1.5 0.2951 0.0680 0.7450 2.4860
3 0.1341 0.0237 1.6482 5.6597

1.5 0.5 0.7948 0.0592 -1.4293 4.2872
1.5 0.5822 0.0548 -0.3473 2.1865
3 0.4268 0.0432 0.1011 2.2450

3 0.5 0.8698 0.0341 -2.4082 9.7298
1.5 0.7411 0.0328 -0.9021 3.3317
3 0.6294 0.0307 -0.5212 2.7864
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Figure 4. The Bonferroni curves of DUS−K(α,β) distribution

Proposition 1. Let Y and X be independent stress and strength random variables that fol-
low Dus-K distribution with parameters (α,β1) and (α,β2), respectively. Then, the stress–strength
reliability R is

R =
1

(e− 1)
2

∞∑
n1=0

∞∑
n2=0

n1∑
i=0

n2∑
j=0

(−1)
j+i

n1!n2!

×
(
n1

i

)(
n2

j

)
β1

iβ1 + jβ2 +β1

− 1

e− 1
,

where β1 and β2 are positive integers.
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Figure 5. The Lorenz curves of DUS−K(α,β) distribution

Proof. The stress-strength reliability can be written as

R =

1∫
0

P (Y <X |X = x)fX (x)dx

=

1∫
0

FY (x)fX (x)dx

=
1

(e− 1)
2

1∫
0

(
exp

(
1− (1−xα)

β1
)
− 1

)
(2.17)

×αβ2x
α−1 (1−xα)

β2−1
exp

(
1− (1−xα)

β2
)
dx.

Hence the proof follows by using Taylor and binomial expansions on terms in (2.17).
It is said that X is smaller than Y according to likelihood ratio ordering if

fX (x)

fY (x)
is nondecreasing in x,

where fX (·) and fY (·) are the pdfs of X and Y random variables, respectively. We write X ≤lr Y
to represent that the random variable X is smaller than Y in the likelihood ratio ordering. The
following proposition gives likelihood ratio order properties for the random variables with Dus-K
distribution.

Proposition 2. Let X ∼DUS-K(α,β1) and Y ∼DUS-K(α,β2). If β1 >β2 then X ≤lr Y .

Proof. For any x∈ (0,1) the ratio of the densities of X and Y is given by

g (x) =
β1 (1−xα)

β1−1
exp

(
1− (1−xα)

β1
)

β2 (1−xα)
β2−1

exp
(
1− (1−xα)

β2
) .

X ≤lr Y is equivalent to g (x) is decreasing in x. Let us consider

d log (g (x))

dx
= r (x)h (x) ,
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where

r (x) =
αxα

x (1−xα)

and
h (x) = β1

[
(1−xα)

β1 − 1
]
−β2

[
(1−xα)

β2 − 1
]
.

It is pointed out that we can easily write r (x)> 0 for all α> 0 and x∈ (0,1) . It is also clearly that
(1−xα)

β
is decreasing function in β for x∈ (0,1) . Then we can write

(β1 >β2) =⇒ (1−xα)
β2 > (1−xα)

β1

=⇒ (1−xα)
β2 − 1> (1−xα)

β1 − 1

=⇒ β2

[
(1−xα)

β2 − 1
]
>β1

[
(1−xα)

β1 − 1
]

=⇒ β1

[
(1−xα)

β1 − 1
]
−β2

[
(1−xα)

β2 − 1
]
< 0

=⇒ h (x)< 0

Therefore, we have
d log (g (x))

dx
= r (x)︸︷︷︸

>0

h (x)︸︷︷︸
<0

< 0

for β1 > β2. The last inequality shows that g (x) is decreasing in x and it implies X ≤lr Y for
β1 >β2.

Corollary 1. It follows from [11] that X is also smaller than Y in the hazard rate, mean
residual life and stochastic orders under the conditions given in Proposition 2.

3. Maximum likelihood estimation
Let X1,X2, . . . ,Xn be the i.i.d sample from DUS−K(a,β), then the likelihood and log-likelihood

functions can be written as

L (α,β) =
n∏

i=1

(
1

e− 1
αβxα−1

i (1−xα
i )

β−1
e(1−(1−xαi )β)

)
(3.1)

and

� (α,β) = −n log (e− 1)+n log (α)+n log (β)+ (α− 1)
n∑

i=1

log (xi) (3.2)

+(β− 1)
n∑

i=1

log (1−xα
i )+

n∑
i=1

(
1− (1−xα

i )
β
)
,

respectively. The corresponding likelihood equations are found to be

∂� (α,β)

∂α
=

n∑
i=1

log (xi)+ (β− 1)
n∑

i=1

(
−xα

i log (xi)

1−xα
i

)
(3.3)

+
n∑

i=1

(1−xα
i )

β
βxα

i log (xi)

1−xα
i

+
n

α
= 0,

∂� (α,β)

∂β
=

n

β
+

n∑
i=1

log (1−xα
i )+

n∑
i=1

(
− (1−xα

i )
β
log ((1−xα

i ))
)
= 0. (3.4)
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The Eqs. (3.3) and (3.4) cannot be solved explicitly. It can be solved by some iterative methods.
In the next section, the fminsearch (MATLAB function) command is used for this purpose. fmin-
search function uses the simplex search method of [8].

4. Simulation study
In this section, a simulation study is conducted to observe the properties of MLE discussed in

the Section 3. In Table 2, for different choices of (n,α,β), we present the biases and mean squares
errors (MSEs) of the estimates with 5000 replications. From Tables 1, it is observed that the MLEs
are biased but asymptotically unbiased. Also, when the sample size n increases, the bias and MSEs
of the MLEs decrease to zero as desired.

Table 2. Bias and MSEs of MLE estimators for selected parameters

Bias MSE

α β n α̂ β̂ α̂ β̂
2 2 50 0.0870 0.1212 0.0075 0.0147

100 0.0466 0.0644 0.0021 0.0041
200 0.0256 0.0330 0.0006 0.0010
300 0.0162 0.0210 0.0002 0.0004
500 0.0098 0.0131 0.0001 0.0001

3 0.5 50 0.2787 0.0185 0.0787 0.0003
100 0.1429 0.0101 0.0204 0.0001
200 0.0749 0.0050 0.0056 0.0000
300 0.0467 0.0031 0.0021 0.0000
500 0.0283 0.0020 0.0008 0.0000

0.7 1.5 50 0.0348 0.0885 0.0012 0.0078
100 0.0179 0.0424 0.0003 0.0018
200 0.0099 0.0221 0.0001 0.0004
300 0.0062 0.0140 0.0000 0.0001
500 0.0038 0.0087 0.0000 0.0000

5. Real data application
In this section, we provide an application with real data to illustrate the flexibility of the DUS−

K(α,β) model. For illustrative purposes, we consider a real data set and compare with some
statistical distributions. The data set represents the total milk production in the first birth of 107
cows from the SINDI race. This data can be found in [3]. We consider the Kumaraswamy (Kw)
([7]), exponentiated Kumararaswamy (EKw) ([9]), Weibull (W) ([13]) and beta (B) distributions
to compare the fitting ability of the DUS−K(α,β) distribution.

The pdf of the distributions used in comparison study are given as follows:
Kw distribution:

fKw (x;α,β) = αβxα−1 (1−xα)
β−1

, α,β > 0

EKw distribution:

fEKw (x;θ,α,β) = αβθxα−1 (1−xα)
β−1

(
1− (1−xα)

β
)θ−1

, θ,α,β > 0

W distribution

fW (x;α, θ) =
α

θ

(x
θ

)α−1

exp
(
−
(x
θ

))α

, α, θ > 0
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B distribution

fB (x;a, b) =
1

B (a, b)
xa−1 (1−x)

b−1
, a, b > 0

The unknown parameters are estimated for each distribution by the maximum likelihood method.
The goodness-of-fit statistics including the values of the Akaike information criterion (AIC),
Bayesian information criterion (BIC) where the lower values of AIC,BIC and -2� values are pre-
sented in Table 3. From the Table 3, we observed that the DUS −K model is the best model to
fit the milk data.

Table 3. Results of AIC, BIC and log-likelihood for DUS−K and other distributions for the data set summaries

Model Parameters AIC BIC −2�

Dus-K α̂= 1.9198, β̂ = 3.6421 -50.360 -45.015 -54.361

Kw α̂= 2.1949, β̂ = 3.4363 -46.789 -41.443 -50.789

EKw θ̂= 0.3361, α̂= 5.315, β̂ = 7.141 -27.557 -49.114 -41.443

W α̂= 2.6012, θ̂= 0.5236 -38.695 -33.349 -42.695

B â= 2.4125, b̂= 2.8296 -43.554 -38.208 -23.777
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Figure 6. Empirical and fitted distribution function based on milk data

6. Conclusions
In this paper, we introduce a new lifetime distribution by using Dus transformation on

Kumaraswamy cdf. Several characteristics have been calculated for the new distribution. Based
on our example with the real data, we observed that Dus transformation increases the modelling
capability of Kumaraswamy distribution. The proposed distribution has been found to be better
than the other well-known distributions in terms of AIC.
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[4] Deepthi, K.S. and Chacko, V.M. (2020). An Upside-Down Bathtub-Shaped Failure Rate Model Using a
DUS Transformation of Lomax Distribution. In Stochastic Models in Reliability Engineering, 81-100. CRC
Press.

[5] Kavya, P. and Manoharan, M. (2020). On a Generalized Lifetime Model Using DUS Transformation. In
Applied Probability and Stochastic Processes, 281-291.

[6] Kumar, D., Singh, U. and Singh, S.K. (2015). A Method of Proposing New Distribution and its Appli-
cation to Bladder Cancer Patients Data. J. Stat. Appl. Pro. Lett., 2(2), 235-245.

[7] Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random pro-
cesses. Journal of Hydrology, 46(1-2), 79-88.

[8] Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998). Convergence Properties of the Nelder-
Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization, 9(1), 112-147.

[9] Lemonte, A.J., Barreto-Souza, W. and Cordeiro, G.M. (2013). The exponentiated Kumaraswamy distri-
bution and its log-transform. Brazilian Journal of Probability and Statistics, 27, 31-53.

[10] Maurya, S., Kaushik, A. Singh, S. and Singh, U. (2017). A new class of distribution having decreasing,
increasing, and bathtub-shaped failure rate. Commun Stat Theory Methods, 46(20), 10359-10372.

[11] Shaked, M., Shanthikumar, J.G. (1994). Stochastic Orders and Their Applications. Academic Press,
New York.

[12] Wang, B.X., Wang, X.K. and Yu, K. (2017). Inference on the Kumaraswamy distribution. Communi-
cations in Statistics - Theory and Methods, 46(5), 2079-2090.

[13] Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech. Trans, 18,
293-297.



ISSN: 1300-4077


