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Research Article

Hermite-Hadamard Type Inclusions for m-Polynomial
Harmonically Convex Interval-Valued Functions

EZE R. NWAEZE*

ABSTRACT. We introduce the notion of m-polynomial harmonically convex interval-valued function. A relation-
ship between a given interval-valued function and its component real-valued functions is pointed out. Moreover, some
new Hermite-Hadamard type results are established for this class of functions. In particular, we show that if a non-
negative interval-valued function F', defined on a harmonically convex set S, is m-polynomial harmonically convex
witha < Band a, 3 € S, then

27'm F(2a6)2 aB /f”@de(aHF(ﬁ)m P
m+2"m—1 \a+p B a 72

—« r m p:1p+1

where F' is Lebesgue integrable on [a, 8]. Our results complement and extend existing results in the literature. By
taking m > 2, we derive loads of new and interesting inclusions. We anticipate that the idea outlined herein will
trigger further investigations in this direction.

Keywords: Hermite-Hadamard, m-polynomial harmonically convex, interval-valued function.

2010 Mathematics Subject Classification: 26D15, 26E25, 28B20.

1. INTRODUCTION

The Hermite-Hadamard inequality (HHI) stipulates that the average value of a convex func-
tion on an interval is bounded below by the value of the function at the midpoint of the interval
and above by the average value of the function at the endpoints of the interval. Whenever a
new class of function is introduced, researchers want to know if the analogue of the HHI can
be established for such class. Loads of articles, in this direction, are bound in the literature. See
for example, [3, 4, 9, 10, 12, 13, 14, 15, 22, 23, 26, 24] and the references cited therein. One of
such is the harmonically convex function: a set S C R\ {0} is called a harmonically convex set

if
ry

e+ (1—71)y
forall z,y € S and 7 € [0, 1]. In 2014, Iscan [11] proposed and defined a harmonically convex
function as follows: a real valued function f : S — R™ := (0, 00) is harmonically convex if

xy
f (7’33—|—(1—7')y> <7f(y)+ (1 —-1)f(x)

forall z,y € Sand 7 € [0,1]. In the same paper, the author established the following Hermite—
Hadamard type inequality for this class of functions:

€S
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Theorem 1.1 ([11]). Let f : S — R be a harmonically convex function. If o, B € S with oo < §, and f
is Lebesgue integrable on o, 3], then the following Hermite—Hadamard type inequality holds:

203 af [P fr) _ f@) + f(B)
f(a—&-ﬁ)gﬁ—a o T2 dr < 2

Recently, Awan et al. [1] introduced the notion of m-polynomial harmonically convex func-
tions as a generalization of the harmonically convex functions, and then proved, among other
things, the result that follows:

Definition 1.1 ([1]). Let m € N. Then, a real-valued function f : S — R™ is said to be m-polynomial
harmonically convex (concave) if

'I:y 1 m » 1 m »
Haries;) <@ -0 P1f@) + - 311 = 715

p=1 p=1
forall z,y € Sand T € [0,1]. The sets of all m-polynomial harmonically convex and m-polynomial
harmonically concave functions from S into R is denoted by HXP,, (S,RT) and HVP,, (S,R"),
respectively.

Theorem 1.2 ([1]). Let f : [, 8] — R be an m-polynomial harmonically convex function. If f is
Riemann integrable on [o, (), then

2 m f<2a,3>§ af  [P10) 4 SO+ FB)SS P
m+2"m—-1" \a+p B—a ), r? m p:1p+1

In 1966, the late American Mathematician Ramon E. Moore initiated the theory of interval
analysis [18]: simply put, the analysis of interval-valued functions. Ever since, this field has
received great deal of attention from researchers in various areas of the mathematical sciences
(like experts in global optimization and constraint solution algorithms) and has grown steadily
in popularity over the past four decades. Interval analysis has been found to be valuable to
engineers and scientists interested in scientific computation, especially in reliability, effects of
roundoff error, and automatic verification of results, see [7, 8, 6, 5]. With the advent of interval
analysis, mathematicians, those who work in the field of mathematical inequalities, want to
know if the inequalities in the above mentioned results can be replaced with inclusions. In
some cases, the answer to the question is in the affirmative. In lieu of this, E. Sadowska (see
also [17]) established the following result for a given interval-valued function:

Theorem 1.3 ([25]). Let F be a nonnegative continuous convex set-valued function on [c, 8]. Then,

(1.1) F<a+ﬂ>3ﬁia/fF(r)dr3F(a)+F(ﬁ).

2 2

Results akin to (1.1), for different classes of set-valued convex functions, have been estab-
lished. For example, see the papers [28, 27,21, 16,7, 8, 6,5, 2, 29]. Motivated by the above men-
tioned articles, it is our goal in this article to introduce a new class of interval-valued function
called the m-polynomial harmonically convex function and then obtain the interval-valued
counterpart of Theorem 1.2. Thereafter, we will establish four more results in this direction.
Our results complement and extend known results in the literature. The paper is organized
in the following manner: Section 2 contains some brief background information in the theory
of interval analysis. In Section 3, we state and prove our main results; followed by an open
problem in Section 4.
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2. PRELIMINARIES

In this section, we give a brief overview of the theory of interval analysis. For an indepth
study of this subject, we invite the interested reader to see the books [18, 19, 20]. We shall call
K. the class of all bounded closed nonempty intervals in R, i.e.,

K. := {[a‘,aﬂ la”,a™€R and o < a+}.
The numbers o~ and o™ are called the left and right endpoints of [a~, at], respectively. The
interval [a~, o] is called degenerated if = = «; positive if = > 0 and negative if o™ <
0. We denote the sets of all negative intervals and positive intervals in R by K, and K},
respectively. That is;

K, :={[a",a"] eK.| at <0}

and
Kf:={[a",a"] €eK.| o~ > 0}.

Let A =[a",a"],B=[3",8"] € K.andy € R. Wesay A C B (or B 2 A) if and only if
B~ < a” and at < g*. The following arithmetic operations are defined thus
[ya=,va*] if 4 >0
vA = ¢ {0} if v=0
[yat,ya”] if 4 <0

A+ B = [a‘,oﬁ] + [ﬂ_,ﬁﬂ = [oz_ +B_,a++6+];
A-B=[a", | - [7,8"] = [a” =Bt a" - 57];

A-B:= [min {a‘,@‘,a‘ﬁ+,a+ﬁ_,a+6+} ,max {a‘ﬁ_,a_,é’+,a+ﬁ_,a+6+}] ;

A {m'n { -~ a at at } a { -~ a at at H 0¢B
— = i , max .
B B~ Bt B~ Bt B~ Bt B~ gt

The Pompieu-Hausdorff distance dy : K. x K. — R U {0} is defined by

dy = max {ma/)‘( d(a, B), rﬂneaé( d(ﬂ,A)} with d(3,A) = min I8 — al.

aec

It is generally known that (K., dy) is a complete metric space. The concept of a convergent se-
quence of intervals (A, )nen, An € K. is considered in the complete metric space K., endowed
with the dy distance. We say that le A, = Aif and only if for any real number ¢ > 0 there
exists an N, € N such that

dy(A,,A) <e forall n>N,.

Next, we turn our attention to interval-valued functions.

Definition 2.2. An interval-valued function is defined to be any F : [o, 8] — K. with F(z) =
[f~(z), fT(z)] € Keand f~(z) < fH(z) forall x € |a, B]. We say that F' is Lebesque integrable on
(v, B if the real-valued functions f~ and fT are Lebesgue integrable on e, 8], and then write

/QBF(T) dr = l/j f ) dr,/j f+(r)dr] .
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3. MAIN RESULTS

We start by introducing the concept of m-polynomial harmonically convex interval-valued
function in the following definition.

Definition 3.3. Let S be a harmonically convex set, F : S — KT an interval-valued function and
m € N. We say that F' is m-polynomial harmonically convex (concave) if and only if

1 & 1 & v Ty
(3.2) %Z (1—71)P %; [1—7P]F(y) C (D)F (m+(1—7)y>

p=1

forall z,y € Sand v € [0,1]. In what follows, we shall denote the sets of all m-polynomial harmon-
ically convex and m-polynomial harmonically concave interval-valued functions from S into KF by
HXP,, (S,K}) and HVP,, (S,K/"), respectively.

Remark 3.1. For a specific value of m, we get a corresponding set inclusion. For instance,

(1) If m = 1, then we get the definition of harmonically convex interval-valued function:

zy

F|l———— | D7F 1-7)F

(o) 2 7P + - DFG)
forall z,y € Sand 7 € [0, 1].

(2) For m = 2, we get the following inclusion for a 2-polynomial harmonically convex
interval-valued function:

2

Ty 3r—12 2—T7—1T
F D F —F
<Tx +(1- T)y> -2 (z) + 2 ()

forallz,y € Sand 7 € [0, 1].
(3) For m = 3, we deduce the succeeding relation for a 3-polynomial harmonically convex
interval-valued function:

xy 67 — 472 + 73 3—r—72_73
D F _—_—
(Tx+ (1 —T)y> 3 (@) +

forall z,y € Sand 7 € [0, 1].

The following theorem gives a relationship between a given interval-valued function F' and
its component real-valued functions f~ and f*.

Theorem 3.4. Let F : S — K[ be an interval-valued function such that F(z) = [f~(z), f*(z)] € K
and f~(z) < f*(z) forallz € |, B]. Then, F € HXP,, (S,K}) ifand only if f~ € HXP,, (S,R*
and f+ € HVP,, (S,R).

)
Proof. Letz,y € Sand 7 € [0, 1]. Then,

F € HXP,, (S,K)

if and only if

1 1 & zy
- (1-— — [1—77] cFP——+
mZ ) +mz ’ <T:E+(17)y)

p=1 p=1
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if and only if
[1 S - @+ 23 - )
m m ’
p=1 p=1
LD ST T NI R f*(y)]
m m
p=1 p=1
_ Ty + xy
C - 7 vy
| (extt=) 7 (=)
if and only if
1 & 1 & Ty
- (11— - — 77 ) > L
m;1 (1—7)P +m;1 T f- (Tx+(17)y>
and
" 1 & Ty
(1- N -7ty <ff| —FF
mpzz:1 ) +mp=1 RO <Tm+(1—7’)y>
if and only if
/=~ € HXP,, (S,R+) and fT e HVP,, (S,]R*) )
That completes the proof in both directions. O

Following a similar line of argument, one can easily prove the following result.

Theorem 3.5. Let F' : S — K be an interval-valued function such that F(x) = [f~(z), fT(z)] € K.
and f~(z) < fT(x) forallz € |, B]. Then, F € HVP,, (S,K}) ifand only if f~ € HVP,, (S,R™)
and f+ € HXP,, (S,R™).

For the remaining part of this article, we shall assume that F : S — K is always of the
form F(z) = [f~(z),f"(z)] € K. and f~(z) < f*(z) for all z € [a, 3]. We are now ready
to formulate and prove some Hermite-Hadamard type results for m-polynomial harmonically
convex (concave) interval-valued functions.

Theorem 3.6. Let F': S — K be an interval-valued function with o < B and «, 3 € S, and Lebesgue
integrable on [, B]. If F € HXP,, (S,K{), then

(33) 271m 1F( 203 ) 5 Baﬁ FR) L F@) £ FB) R _p

m+ 2™ — a+ 3 -af, 12 = m pzlp—i-l'

The inclusions are reversed if ' € HVP,, (S, K{).
Proof. Assuming F' € HXP,, (S,K/), we get from (3.2) the following relation:

(2p)2 b sl L 3w

p=1

This implies that for all z,y € S

(3.4 Z[ 21]( >+F<y))gF<ijy).
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Now, let z = and y = . Then, (3.4) becomes:

af
T8+(1-7)«

69 23 (i) s i) e (35).

p=

af
Ta+(1-7)8

Integrating both sides of (3.5) with respect to 7 over [0, 1], we get

(3.6)

! 2a0
/0 F <a+ﬁ> "

D Geeies) 7 (i)} o
%M)”%Mf—rﬁ}dﬂ
( )[204[3’/1‘ 2a6 fié) ]

B[

S
Il
-

3= h 3=
—
—

U
3|~
NE
Y
—
|
%3

ilNgE
s
\
%

Ms

&
S
=l

On the other hand,
1 2a3 _ v 2a8 ! L+ [ 2ap
L) =L (@55) o [ (355)
| 208 2a3
G2 _[f (a+ﬂ>’f+(a+6>}
B 2a8
F<a+6>'

Using (3.7) in (3.6), one gets

m 2a0 208 [P F(r)
3.8) m+2m—1F(a+ﬂ>2a+ﬁ e dr.
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Next, we substitute x = avand y = § into (3.2) and integrate the resulting inclusion with respect
to 7 over [0, 1], to obtain

af BF() ! of
B—al, r? d/oF(mHl—r)ﬁ)dT

= {;Z[l—(l—ﬂp}F(aH;Z[l—T”}F(ﬁ)} dr

p=1 p=1
N
:—Z/ [1—(1—7)]F(a )dr+m;/0 [1— 7Pl F(B)dr
_F)+FB)~ »
m p:1p+1'

This gives

a [P F(r) Fla)+F(B)x~ P
(3.9) ol 2 dr D — ZPH.

p=1

Combining (3.8) and (3.9), we get the desired result (3.3). If F € HVP,, (S,K}), then we
establish the reverse inclusions in a similar manner. O

Remark 3.2. Using Theorem 3.6, we obtain the following corollaries:

(1) For m = 1, we deduce the result for 1-polynomial harmonically convex interval-valued
functions:

B
F 2a3 5 af F(r) & F(a) + F(B)
a+p B—a), r? 2
(2) If m = 2, then we obtain the result for 2-polynomial harmonically convex interval-
valued functions:

;F(jiﬁﬂ) / F(r d 5 Fla ) (5).

Theorem 3.7. Let F': S — K be an interval-valued function with o < B and «, 3 € S, and Lebesgue
integrable on [, B]. If F € HXP,, (S,K{"), then

2 B
310) * (m> F( 208 ) S0, 0 - F) 05 q,

4 \m+2m—-1 B — « r2

m2—|—2m—|—21’m—22m: P
2m?

_71 m 4ap 4af3 .
h '4m—|—2_m—1{F<a+3ﬂ)+F<ﬁ+3a)}’

|:F(a) + F(8) +2F (%) ]

> (F(a)+ F([J’))

where

QQ =

[N

m

The inclusions are reversed if F € HVP,, (S,K7).
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Proof. Using the fact that F € HXP,, (S,K}) and recalling (3.4)

1 — 1 21y
. - —— C
(3.11) m; {1 QP} (F(x)JrF(y)) _F<x+y>
forall z,y € S. So, in particular for
a a 2a8
* Ta+ (1—71)A and v TA+ (1 —7)a’ where a+pj’

the inclusion in (3.11) becomes:

P(o55) 2w () [ (estmn) (st )

Integrating both sides of the above relation with respect to 7 over [0, 1], one gets

4a3 1 — 1 ! al
F(a+3ﬁ> 2% — (1_217)/0 {F<7'oz—|—(1—7'))\>+F
_|_

> (i)
o (3 [ Gariman) o7 (v} o
/JV%MM)”%M%)W@

I
3~
ANgE

(8) )

1
_m+27" -1 daf / T)dr.
m B—a), 12

f f+1

Thus, we have

4af m+2""—1 4a8 [ F(r)

. B .
(3.12) F(a+36> - F-al. 2 dr
If we also let

B B B B
S TA+(1-7)8 and yiTﬁ—‘r(l—T)/\

and then proceed as outlined above, we obtain

403 m+2""—1 4a8 [? F(r)
1 F ) :
G139 <ﬂ+3a>_ m ol 2
Also, by setting z = — +3 ﬁ and y = B +3a into (3.11) and then using (3.12) and (3.13), we obtain
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1 4af 4o
1_21’) {F<a+3ﬂ> +F(ﬁ+3a>}

—m A
1_1){m—|—2 1 4a5/ F(r)

m 8-« r2

203 1 &
F(a+ﬁ> P

(3.14) +

m —-_m __ B
:lz<1_lp)m+2 1 4af F(;)dr
m = 2 m B—aj, T

-m _ 2 B
_4 m+ 2 1 af F(r)dr
m B—af, 12

From (3.14), we get the following chain of inclusions:

1 m * [ 2ap 1 m 4af 4o
(3.15) 4<m—|—2—m—1> F<a+5> 4m+2—m—1{F(a+35)+F<ﬁ+3a)}

aB (7 F(r)

Bfa a 7"2

V)

J

dr.

Employing the second inclusion of (3.3) from Theorem 3.6 and (3.11), we get

af /ﬂ F(r) dr*l [ 208 /m F(r) i 208 [P F(r) dr]

8-« 72 2 |-« r2 rJr,B—a 2a8 r2
r 2a3 2af m
51 F(a)+F(m)+F(ﬁ)+F<m) 3 p
-2 m m p+1

1 [F(@) + F(B) +2F (%@) mo
L " p=1 p +
Fla)+ F(B) m+2"" -1 " p
D) _r
o | KO 2 B2 (pla) + £ (9)) >
m24+2m+2--" -2~ p
= (F(e)+ F(8)) " >
We get the intended result by putting together (3.15) and (3.16). O

Theorem 3.8. Let F, G : S — K be two interval-valued functions with o < 8 and o, 3 € S, and
suppose FG is Lebesque integrable on (o, B]. If F € HXP,,, (S,K) and G € HXP,,, (S,K}), then



Hermite-Hadamard Type Inclusions for m-Polynomial Harmonically Convex Interval-Valued Functions 269

af [P F(r)G(r)

5_04 «@ 7"2

(3.17) SF(a)G(a) /0 Ay(7) dr + F(a)G(8) /0 Ao(r)dr

dr

+F(8)G(a) / As(r) dr + F(B)G(B) / Au(7) dr,

where

Ay(7) = %%Z[l—(1—7’)1)}2[1_(1_7—)17];
1 1 & m2

Bo(r)im =D M= (L= )1y =)
1 1 & e

As(r) := E@Z[l_Tp]Z[l—(l—T)p];
1 1 & e

Ay(r) := m—lnTQZ[l_Tp]Z[l_Tp].

The inclusions are reversed if F € HVP,,,, (S,K})and G € HVP,,, (S,K}).
Proof. Given that F € HXP,,, (S,K) and G € HXP,,, (S,K), we get

619 LS h-(-rPlF@ Y bl @ e F ()
{— my

= Ta+ (1—7)8
and
e p R ot P __ B
G193 - (-Gl oo -6l <o (rtis)-
This implies
aff af
F (Ta +(1- T)ﬂ) G <7'04 +(1- T)ﬂ)
;mimi S h-a-171Y -0 -7 F@)G(a)
p=1 p=1
(3.20) +mii S - 1-17 Y [ - ) Fa)G(8)
1Mm2 p=1 p=1
+mimi S -3 [1- (1 =7 F(B)G(a)
p=1 p=1

+mL1mL2 S-S (1 - P F(B)G(B)
=1 p=

1
=811 F()G(@) + Aa(1) F(a)G(B) + As(1) F(B)G () + Au(T) F(B)G(B).
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Now, integrating both sides of (3.20) with respect to T over [0, 1], gives

/01 i (m + ?15— T)ﬁ) ¢ (m + ?f— r)ﬂ) .
| I Gert)r (vt
<m+ 1—7) > i (Toz—&—?lﬁ—r)ﬁ)} ar
- i) (i) o
/0 7 (avti=m) 7 (Gastizms) ]
_ [;Ba /j Fore,, ﬂoiﬁa j MG dr}
af_ 7 F(r)G(r)

:chv 2 dr

SF(a) / Ba()dr + Pla)G(B) [ ") dr

+F(B)G(a) /O As(r)dr + F(B / Aulr

Hence that completes the proof. O

Theorem 3.9. Let F, G : S — K be two interval-valued functions with o < 8 and o, € S,
and suppose FG is Lebesque integrable on |a, B]. If F € HXP,,, (S,KI), G € HXP,,, (S,K/),
R(a, ) = F(a)G(a) + F(B)G(B) and Q(a, B) = F(a)G(B) + F(B)G(«), then

mimsg 2a3 203
(my +27m —1)(mg +27™2 — 1)F (04 +B) “ <a+5>

208 [P F(r)G(r) ! . -
2o T dr Rl p) / [Am(r)AmQ(r)+Am1<r>Am2<r>} ar

+Q(a, B) /01 {Am1 (T) Ay (T) + Am1

where A (7) = & 300 [1 = (L= 7)Pland Ay (1) = & 320" [1 — 77). The inclusions are reversed
if F € HVP,, (S,K+)and G € HVP,,, (S, K+).

Proof. Let 7 € [0, 1]. From the definition of A,, and A,,, above, one observes that

~ 1 1 m+2"" -1
o (2) < (1) e 0L

Hence, from (3.5), one gets

PodF (o) +F (a2 7 (053)

pe{e (marit=) + ¢ (vt 24 (295)

and
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Now,

2a3 2a3
F <a+3> ¢ <a+ﬂ>
[ af afl
=Fra Pz | 7 <m+<1—7>5> ¢ <m+(1—7)ﬂ>

o (75 s T>a) ¢ (Tﬂ e T)a)]
o af

#Posb [F (oot =75) ¢ (=)
o <Tﬁ + ?15— T)a) ¢ <m + ?15_ 7)5)]

+F<Tﬁ+(alﬁT) )G(Tﬂ+ : m)a )]

-
Py Py { [y (1) F (@) + Ao, (1) F (8 >} Az (1)G(B) + Ry ()G
G2+ [An (DF(B) + Ay (VF(@)] [Ama ()G (@) + Ao (1)G(8)] |

=Fma Foms F(mﬂaﬁ )> <m+?16 ™) )
+F<TB+((11B ) ) (T,BJr 1- T)a)]

+ Py P 2{{Am1<T>Am<> s (T)Am <r>}[ (0)G(a) + F(B)G(B)]
A (7) A (7) Rona(7)] [P(@)G(8) + F(B)G ()]}
=P | (m )G<m+?f 5 )
+F<rﬁ+?lﬁ Mo ) <Tﬁ+?lﬁ 7 )]

Py Pz { [ Moy ()R (7) + By (7)Ao (7)| R(cv, B)

(A () (7) + Ry () Aa (7)] Qe B) }

Integrating with respect to 7 over [0, 1], we get from (3.21) the following inclusion:

1 2a3 2a3
Pmlpsz(aJrﬁ)G(aJﬁB)

208 [P F(r)G(r) ! . -
o) e A Rep) /O [ A, ()R (7) + Ry (7)Ao (7)]

+Q(a, B) /01 |:Am1 (T) A, (7) + /~\m1 (7')1~Xm2 (T)} dr.

That completes the proof. O
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4. CONCLUSION

A new class of interval-valued function has been proposed. We show that an interval-
valued function F(z) = [f~(x), fT(z)] is m-polynomial harmonically convex if and only if
its component real-valued functions f~ and f* are m-polynomial harmonically convex and
m-polynomial harmonically concave, respectively. Furthermore, some new set-inclusions of
the Hermite-Hadamard type are hereby established. We therefore pose the following open
question:

Open question 1. Let my, mo € N. Is it possible to compare HXP,,,, (S, KI) and HXP,,,, (S,K})?
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1. INTRODUCTION
Letp € [1,00],I =Ry orI =Rand f: I — Ris twice differentiable with f, f” € L, (I), then
[’ € L, (I). Moreover, there exists a constant C, (I) > 0 independent of f, such that
1 1
ey 1 s < Co (DA 1505

where |[|-[|,, ; is the p-norm on the interval , see [1], [5]. The research on these inequalities
started by E. Landau [10] in 1913. For the case of p = oo, he proved that

) Co (Ry) =2 and Co (R) = V2

are the best constants in (1). In 1932, G. H. Hardy and J. E. Littlewood [7] proved (1) for p = 2,
with the best constants

©) Oy (Ry) =+2 and Oy (R) = 1.

In 1935, G. H. Hardy, E. Landau and J. E. Littlewood [8] showed that the best constants C), (R)
in (1) satisfies the estimate

) C, (Ry) <2 for pe[1,00),

which yields C,, (R) < 2 for p € [1, 00). In fact, in [6] and [9] was shown that C,, (R) < /2. We
need the following concept from abstract fractional calculus. Our integral next is of Bochner
type [11]. We need

Definition 1.1. ([4], p. 105) Let [a,b] C R, (X, ||-||) @ Banach space, g € C* ([a, b]) and increasing,
feC(ab,X) v>0.
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*Corresponding author: George A. Anastassiou; ganastss@memphis.edu
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We define the right Riemann-Liouville generalized fractional Bochner integral operator

1 b 1
©) (Boof) @ = 557 [ @) =@ ™o (201 ()

Yz € [a,b], whereT is the gamma function. The last integral is of Bochner type. Since f € C ([a,b] , X),
then f € Loo (Ja,b], X). By Theorem 4.11, p. 101, [4], we get that (Jg_;g f) e C([a,b], X). Above

we set Jy) . f = f and see that (Jb”ﬁgf> (b) = 0.

We also need

Definition 1.2. ([4], p. 107) Let o > 0, [o] = n, [-] the ceiling of the number. Let f € C" ([a,b] , X),
where [a,b] C R, and (X,|-||) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
g teC™(lg(a),g(b)]). Wedefine the right generalized g-fractional derivative X -valued of f of order
a as follows:

_1\" b
© D@t [ GO -g@)y T O feg ) (00) i

V x € [a, b]. The last integral is of Bochner type. Ordinary vector valued derivative is as in [12], similar
to numerical one. If « ¢ N, by Theorem 4.11, p. 101, [4], we have that (Dg‘f;gf> € C([a,b],X). We
see that

) (i (1" (Fog™) ™ og)) () = (Diyf) (@), Y € [a,b].
We set
®) Dy of (#) = (=1)" (Fog™")" 0g) (#) € C([a,], X), n €N,

Dl?f;gf(x) =f(z), Yz €la,b].
When g = id, then
(9) Dl()yF;gf :Dl()):;idf = Dl()"ffa
the usual left X-valued Caputo fractional derivative, see [4], Chapter 2.

By convention, we suppose that
(10) (D2 _.,f) (x) =0, forz >z

Zo—39
for any z, zo € [a,b].
Denote the sequential (also called iterated) generalized left fractional derivative by
(11) Dy, =Dy Dy ,..Dy_., (ntimes), n € N.
We need the following g-right generalized modified X-valued Taylor’s formula.

Theorem 1.1 ([4, p. 120]). Let 0 < a < 1, n € N, f € C' ([a,b],X), g € C* ([a,b]) strictly
increasing, such that g=' € C'([g(a), g (b)]). Let Fy := Dy f, k = 1,...,n, that fulfill F}, €
C! ([a,b],X), and F,, 1 € C([a,b],X) . Then,

) —g@)
(12) T@ =3 ety (P ®

=0
b
+ m/ (g(t)—g (l.))(n+1)a—1 g (1) (Dz(;j_gl)af> (1) dt,

V€ la,b].
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We make
Remark 1.1 (to Theorem 1.1). When 0 < o < 1, by (6), we get
1 D))= e [ GO0 O G
Va € la,bl.
Hence,
|MD&wf)uw|§IW{[a>[f@<wgcwrﬂg%wH(fog1Y<gu»Hﬁ
fog™t "o
(14) < HH( gr(j—j)ww[a’b] (/: (g(t) —g(x) " (t)dt>
(fog™) o
Wl e
That is
a Moo ool s
(15) [(DF=g f) (@)]| < (g(b) —g(z)) " < oo,

r2-o
V€ la,b],0 < a < 1. Hence, it holds
H(Dl?f;gf) (b)H =0,

ie.

(16) (Dg_.,f) (b) =0,

when 0 < a < 1.

The author has already done an extensive amount of work on fractional Landau inequalities,
see [3], and on abstract fractional Landau inequalities, see [4]. However, there the proving
methods came out of applications of fractional Ostrowski inequalities ([2], [4]). Usually there
the domains, where [A, +00) or (—oo, B], with A, B € R and in one mixed case the domain was
all of R.

In this work with less assumptions, we establish uniform and L,, type right Caputo-Bochner
abstract sequential generalized fractional Landau inequalities over R_. The method of prov-
ing is based on right Caputo-Bochner sequential generalized fractional Taylor’s formula with
integral remainder, see Theorem 1.1.

We give also an application for a = 3. Clearly we are also inspired by [3], [4].

2. MAIN RESULTS

We present the following abstract sequential generalized fractional Landau inequalities over
R_.

Theorem 2.2. Let g € C' (R_) strictly increasing, with g=' € C'(g(R_)). Let 0 < o < 1,
fe @ X) with I flle_ ||| (Fos7) 00|,
D’b‘"'f;gf € C' ((—o0,b], X) and Dy f € C ((—o0,b], X), ¥V b € R_. We further assume that
17) Ky = HHDgg;g (t)HHOO,RE < 0,

< oo. For k = 1,2,3, we assume that




Sequential Abstract Generalized Right Side Fractional Landau Inequalities

where (b,t) € R%. Then

‘ . [(2a+1) [230+1 (280 1 1) (20 1 1) _
(18) bﬁg [(Dp2of) B)] < 220—1 (20 — 1)\/ T (4 + 1) Mo K
and

AVAT 3o+ 1) (T (4o + 1)) 7 (222 41 1 s
19 s [[(pie, ) o] < PLELDEUT DT EEAD )yt o

(¥V3)" (v2)" (2 - 1)

That is su H D22 £) (b
be]Rp_ ( b=ig )()

s [(Di2,r) ) < oo

277

Proof. We notice easily again here that (Df,‘ﬂ g f) (b) = 0,V b € R_. We make use of Theorem
1.1for 0 < o < 1 and n = 3, applied for any b € R_ and a = —oo. Momentarily, we fix b € R_.

Let zo < z1 < b, then g (z2) < g (z1) < g (b), and

(g (b) — g(x1))>"

) (b)

P )= WO ICDT (e gy ) 5 GO Z9CDT (e
(20) + ﬁ / b (9(0) =g (@)™ g (1) (D32, f) (1),
and
@ s = QI oy WO 9 EDT e
t i [ 00 -9 0 (D)
That is
ey WO gy )4 QO IEDT (e gy
ORI | b (9(6) ~ g (20))" " o (8) (DI 1) (0) b = A
and
@ QIO e gy LI ey
OB (9(0) — g (@2))" o (0) (DA, 1) () dt = B
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We are solving the above system of two equations with two unknowns (D?,ﬁ; 9 ) (0), (Dgf; p ) (d).
The main determinant of system is

(g(b)—g(z1))>" (g(b)—g(z1))*"
T(2a+1) T(3a+1)

D:=

(9(b)—g(x2))** (9(b)—g(x2))**
I'(2a+1) T'(3a+1)

1
I'2a+1)T'(Ba+1)

x |(g(®) =g (1)) (g (b) — g (22))>* = (g (b) — g (21))’* (g (b) — g (w2))**

— sl @O0 (g 0) - g2 - (00) - g 20)] >0

i.e.

2« 2a
@ p= S A ) g (22)" - (9 8) g (0))7] > 0.

We obtain the unique solution

(g(b)—g(z1))**
A ‘ r(3i+i)

B (g(®)—g(w2))**
CEMICE TeatD — |

b —a(zx 2a
s

(25)

CIORTTERV L
(D, f) () = =5

Therefore, we have

(g(b)—g(x2))3% (g(b)—g(x1))3*
4 A— T 3a+11 B

(Dgg;g ) (b) = —F= T )

(26) and
(g)—9(@1))2* B (9(b) —g(wa))>* 4
D3a f (b) _ T(2a+1) T(2a+1)
b—;g - D

We have the following

1

b
4] = Hf(xl)—f(b)—r [ =o' 0 (k)

Iptar e .
@7) <2 oo+ Fpary) @)~ 9 )

under the assumption ||[| f||[|, g_ < oo. Thatis

8) 141 < 2 W+ g (00— 9 )™
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and similarly,

) 1B < 20+ Frrgay (90 =9 (e2) ™

where by assumption

(30) 79 = HHDgg;gf (t)HHoo,RE < 00,

with (b,t) € R%. Consequently, we have

[(D22,0) 0 H_F(MH) (00~ 9 (@)™ (20 + (4M1><g<b) s0)")
@) @0 =90 (20 lln + et @O -]
and

102201 Ol < s [0 - 9@ (21llor + Fas; 0O - 9™

) @) - 9™ (20 lln + et 0O - s

Set now g (x1) := ¢ (b) — h, g(x2) := g(b) — 2h, where h > 0, so that g (b) — g(z1) = h,
g (b) — g (x2) = 2h. Hence, we get

22ah5a (204 _ 1)

33) “T@a+ ) BarD)
Therefore, we derive (from (26))
F(2a—|—1) K,
D20z 23(1 3a 2 g 4o
K,
4 3a 9 g 24a 4o
649 +h ( Al + Fra 2
2a+]‘ 3a 3o 75] 3a 4o Ta
— o [P W (5% #1157 4+ it (42
(35) 2a+1 2%+ 1) Moo 23 (2 + 1)z 50
22’JK 20 — 1 h2a I(da+1) 9 '
That is
I'(2a+1)
2a
(D=, 1) W) < (2 o)
22+ DI lloor_ | 2% (2% + 1)~
oo, R_ K 2c
(36) h2e I'(da+1) e
VbeR_,Vh>0.lLe.,itholds
I'(2a+1)
D
sup [ (03,) 0] < ( grarae )
2%+ 1) M Moo 23 (20 +1)——
7 == K, h*
37) h2a Mo 1) Dl | <00
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Vh>0,0<a< 1 By(26), we derive

3a+1) Ky
D3 (— 20 9 7924@( 4o
||( b—3g IC H—22ah a (20 — )[h ( H||f||H°°7R*+F(4a+1) h )
K,
207 2a 9 o
a2 (2|||f||oo,R el ﬂ
B P(30[+1) 20 20 4o 2a) 1,6
8) — o 201 (24 1) 14 e ()
_(TBa+1) 2 (22& =+ 1) ||Hf||||OO,R, 2% (22a + Ufha
Gy 3 I'(da+1) *
CTBat+ ) +1) 2 Mller. | 2K,
220 (2a _ 1) h3a F(40é+ 1)
That is
(08 1) )] < I'(3a+1) (22 +1)
= 22a 20 ]_)
2 Moo 22K, .,
(39) x l o Fdat1D)

VbeR_,Vh>D0.lLe,itholds
[ (3a+1) (22 +1)

bsup || (D ,g.f) b)H < 22 (2a _ 1)
21[1171 0 220K,

4 o0, R g9 o
40 X[ 30 Tdat1) | =%
Vh>0,0<a<l1 Cal
(41) =2 (24 1) 1 oo

230 (20 + 1) K,
42 =2 = "7
(42) b I'(da+1) 7
both are greater than zero. Set also p := 2a; 0 < p < 2. We consider the function
(43) y (h) :=ph™? +6h?, Vh>0.
We have
(44) y' (h) = —pph™"~" + pon?~' =0,
then

Oh*’ = p,

with a unique solution

s = (B)7
(45) hO = hcmt.no, <9) .

We have that
(46) y' (W) =plp+ 1) puh™" >+ p(p—1)0h 2
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We see that

—p—2 p—2

7 o (H % _ LANER _ Y 2o
y" (ho) =y ((9) )—p(p+1)u<9) +p(p 1)0(9)
0\ 7
—o(9) [to+ 1 Vil + (o~ 1) Vil
BN o, 0\ "
—P(u) (20\/@)—20 \//E<M> > 0.
Therefore, y has a global minimum at ho = (&) ﬁ, which is

y(ho):,LL(%)_%%—@(%)% —u<z>é—|— O = 2+/0p.

We have proved that (see (37))

sup [[(D52f) @) < m
W) . \/ 2ot (I?S(zoffl(f“ D il R
Call
& =201l
(48) ..
U= T

both are greater than zero. We consider the function

(49) v (h) := ERT3* 4 h®, YV h > 0.
We have
v (h) = =3ach™3*7t £ aph*~! =0,
then
hi* = 3¢,
with unique solution
(50) hO = hcrit.no. = (?f) " .
We have that
(51) 7" (h) = 3a (3a+ 1) A3 2 4 a (o — 1) Yh* 2.
We see
" (ho) = 3a (Ba+1)& <i’f)4a +a(a—1)9 (if)m
—a @5) [3(3%1)5;2 +(a— 1)¢]
(52) =a (‘:’f) N (4anp) = 4aep (‘?f) o > 0.
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1

Therefore, v has a global minimum at hy = (f) . , which is
e\ (88
o (ho) = §<w) W(w)
3¢\ T (L 3¢
53 Y e} b
52 (%) (e+)- “’(w)

Consequently,
64 3 (ho) = 30 (i’f) -G

We have proved that (see (40))

N 4r (3a+ 1) (22 +1)
be]Rp, H(Db— qf) (b)H - (\/g) 220 (2 — 1)

% 2af %
M Mer ) (o)

4V/2T (3a + 1)T (da + 1) 77 (220 1)
55 -
5) B o A 2 %o

The theorem is proved. U

X

We continue with abstract L,, right sequential generalized fractional Landau inequalities over
R_.

Theorem 2.3. Let g € C' (R_) strictly increasing, with g=' € C' (g (R-)) . Letp,q > 1: L +¢ =1,
0<a<l LetfeC R, X)with || flllcg. ||| (Fog™) og]|| . <oo Fork=1,23we
assume that D, f € C* ((—o0,b], X) and D}, f € C ((—o0,b], X),V b € R_. We further assume
that

. 4o
o (s 112kl ) <o

Then
1) under 55 < o < 1, we get

sup [[(D32.,7) )] < (”F (20) 10 - i)) <4a (14 2—3a>> (%=%)
beR_

200 — 1

X

142075 ><4‘3f37) (j:j>

(F(4a) (¢ (4o — 1) +1)7 11l o,k

& ot ) <
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2) under <a <1, weget

s [(Di,1) )] < (F (30) (ta - p)> <6a (1+ 21-2a)> (%)

1o} >(4;11,) (k)
2

) ( IS
I'(4) (¢ (4 — 1)+ 1)

o [T e

|| (D7) @] < oo

That is sup H(Dgf,g )
bER_ '

Proof. As in the proof of Theorem 2.2, we have that

b
1412 | @) = 1 0) = gy [ 00 =9@0) g 0 (Dl 1) 1)
L 401
<2l + gy [ @O =g g @ (D, 1) ()]

(a(da—1)+1)
1 b) — a
) <2MWlex * gy e (bset%p HHDz*“;ngHp,R)

q
(9(b)—g(1)=:h>0) 1 pl4a=3) .
oA gy MR e pmTaTed b (1 D2z 1

with ﬁ < a < 1. Thatis

- |||\Dbagfur|,,R) »

h4a7%
©0) Al <20 llr + (

I (4a) (q (4o — 1) + 1)%

where ﬁ < a < 1. We also have

b
@) IBIE | (@)~ 1)~ 5 [ 00 =9@)™ o (D, ) (O
(g4a—1)+1)
(g(b) —g(xa)) -

(61) <2 Mlocn + DT ( up [[[[D5% £, 5 )

(9(0)—g(w2)=:2h) 2l ptey

2 M + o 1)H)é<sup ll|Die. f||||pR>~

That is

@ B2+ — sup |[[|Die, £l
ST TUa)(qUa -+ \per T T )



284 George A. Anastassiou

where ﬁ < a < 1. We have assumed that

@ = (s 119kl ) <o

For convenience, we call

Q=

(64) c:=T4a)(g(da—-1)+1)7 >0.

So, we have

1

,EE

c

h4a

A< 2l m +
(65) and

Bll <2 24@—%h4a—%ﬁ
1Bl < 2[[I1flll oo p_ + =My,

c

where ﬁ < a < 1. Next, we estimate the (26)-quantities and we have

1
[(D2200) O < prgay 20 141+ 12 B

@3 h%T (2a+1)

(66) = Soappe (20— 1) [2°*]|All + || BI]
©9) T (20 +1) N gsapla—y
< P (20 — 1) 2o ng N Moo + — M
24a7%h4a7%
+ 2|1 f oo + — M
(2541 42) ] (2% +2t7)
_ I'2a+1) oo, R_ n ﬁhza—%
220 (20 — 1) h2 c g
a—L1\ 77
o _2reaty [20425) Wl (427H) 0
(22 —1) h2« c
That is

. 2T 20+ 1)) [200+27%) [/ (1+2°7F) 0 ,
) (03,0 0] < () TSN L L

VbeR_,Vh>D0.lLe,itholds

20T (20 + 1)
20 — 1

sup [[(0f,7) )] < (

beR_

1
h2a—; ,

Oé—l r
2(1+27%) s (1+2°7%) 3,

h2« c

(69)

)



Sequential Abstract Generalized Right Side Fractional Landau Inequalities 285
Y h > 0, under ﬁ <a<l. Again from (26), we get

|(Dje., f) B)]| < 5 [P 1B] +2%h%* || 4]

I‘(2a+ 1D
h2°T (30 + 1) o
(70) = Jrapga (20— 1) [1BI + 22« || All]

h2OZF (3@ + ]_) 240‘_%h40‘—% o
() (21 + 22—,

2a+1 22ah4a_% EVE
+ 2O o+ ———

o 2c da—g
IBa+1) |(2+2° +1)HllfllHoo,]R,Jr(2 +277)

_— 1
71 = - Myh®~%
1) 920 (20 — 1) hBo c d
_2a 200—1
TGat ) [20427) Wl (HF)
(20 —1) h3e c g
That is

Gat 1)\ [20+272) [1£] L+275)
o o o< (D) [ Wiles, () oy,

VbeR_,Vh>D0.lLe,itholds

3a+1)
sup [[(Df,1) )] < (=)
beR_
2(1+27% 142%7%)
- ( hli|||f|||oo,R+( c jJ—

Vh>0,4—1p<oz<1.Call

=2 (104279 [ Al

b (1+2”’%>E

= = s

(74)

both are greater than zero. We consider the function

(75) y(h) = ph ™2 + 0h°* "%, Y h > 0.

We have

(76) Y (h) = —2aph—22"1 4 (m _ p) or2e-31 g,
then

1
<2a - ) oR2e vt = 20yh =271,
p
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ie.,
1
(2a - > Onte s = 20,
p

with a unique solution

1
4a—-1
9 P
(77) hO = hcm’t.no. == (Oélul>

(assuming 2—117 < a < 1). We have that

1 1
(78) y' (h) = 2a (2a + 1) ph™272 <2a - ) <2a ——— 1) OR> "2,
p p
We see that
2a0—2
4a-—1
2 P
y" (ho) = 20 (2a + 1) p | ——E
(Qa - %) 0

+(2a_;)(2a_;_1)9(m)m

(79) - ((20‘—1)9) o {m (20 + 1) 1 + 20 <2a - % _ 1)}

2004
ho = (2a - %) ; )
which is
B Mfu 4;ia% 20&7’11'
(80) y“@”(@a_ge> +9(@a—39)
200 423@% 2ap
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“2043 201 .
o :@%i)))(mf)m(mz%@».

(2a)<4"2f% g
That is
—2a+1
o oy ) )T ey
(2a)<4“2fl>
Therefore, we derive (see (69))
(20-3)

o (012, 0] < (2;5(_2?)) (2@26—)[ 11)) (0 1) <4a - ;)

2a-1 a1l (4;‘,’;) a1
T 297 P L
X (2 (1+2_30‘))<4”’l> (F(4a)<1+ ) ) |||f||||(‘:;p>

Il

o0

@ [

where i < a<1.Cal

€= 2(1+272) [l -

(84) 2o 1
<1+2 ey
Y=t My,
both are greater than zero. We consider the function
(85) v (h) = Eh™3% 4 ph®" 5, ¥ h > 0.
We have
1 1
7' (h) = —=3ath™3"1 4 <a - p) YRt =0,
then
1 1
<a - ) Yhr T = 3agh 3!
p
and

(a - 1) R = 3ag,
p

with unique solution

(86) ho := heritno. = ((a?ia;)w) o
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(assuming > < a < 1). We have that
(87) 7" (h) = 3a (3o + 1) ER™3972 ¢ (a — ;) <a — % — 1) YR B2,
We observe
(2%)
v (ho) = 3a (3a+ 1) & ( 3as )
(a=3)v
1 1 3a <%>
+(a—) <a——1)w YO
3 3 (a=3)v
(227)
- _ (( Baf)w) [3a(3a+1)§+<a—;—1) 304
— 3a¢ 3at (%> <4 1) >0
(o=3) B
Therefore, y has a global minimum at
_ 3ag ﬁ
: (<a -3) )
which is
(89) (ho) = €hg*® + yhy 7 = hy™ (5 + by )
(=)
B 3aé P 3al
@5 ()
(o )““%) (24)
(a=3)v i
That is
(=)
(90) 7(%)—5( . )( o )
WANCERE
(=) (o
(o) ) (@;)) )
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I.e., we have found

1) ¥ (ho) = (1) g<53;i)¢f4jaé>.

(a _ %) (%) (304)(4;?%)

We have proved that (see (73))
92)

40[—% I' (3a) o (4&1%%>
sup [[(Dy2,f) )] < (< 2621 ) (i;)
ol 20-1 (Jj> oy
—2a (ﬁ) (1+2 p) ’ (“‘%)
x (2 (1+272%)) ™ N 1)% LA o
(=)
ot ) <

where % < a < 1. The theorem is proved. O

We give an application when a = § and g (t) = e'[g_.

Corollary 2.1. Let f € C" (R, X) with ||| fllllooz_, |[|(f oln) o €![|]| o < oo, where (X[}

is a Banach space. For k = 1,2,3, we assume that D f;e f et ((-o0 b] X) and D:ietf €
C ((—00,b], X),V b € R_. We further assume that

(93) |22 et 0 < o0,

...

where (b,t) € R%. Then,

on s [(D}r) @ H( Sas )wamR(MD ol ) <o

and

-

| (525) )

9y/m 1
5) <(( s (¢)QWMWR(MD A0l ) <

That is sup H( 25 etf> (b)H7 sup H( ) (b)H < 00

beER _ beR_

Proof. By Theorem 2.2. O
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1. INTRODUCTION

Let the function 3 be continuous and concave by [0, 1], 1(0) = 0 and 0 < ¢ < co. Such functions
are called @ functions. The generalized Lorentz space Ly, , is the set of measurable functions f

on [0, 1] for which
[ AN
o= ([ 1 @00F) " <o
0

where f* is the non-increasing rearrangement of the function | f| (see e.g. [36]).
For a given function ¢ (), ¢ € [0, 1], we define

w2
o(t)’

It is known that 1 < oy < Sy < 2 (see e.g. [35]) .
Note that for ¢ (t) = t'/7, the space L, , coincides with the Lorentz space L, ,, 0 < ¢,p < oo,
which consists of all functions f such that (see e.g. [38, p. 228])

P(2t)
t—0 1,[)(t) .

ﬁd’ ::m

o = lim, .,

1/q

1 g = /f*q 5t
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In particular, for the case p = ¢, we have the usual Lebesgue space with the norm (quasi-norm

if0<g<l)
/1 1/q
||fq:=( If(a:)qux>  0<q<oo
0

Letg,p € (0,+00) and o € R = (—00, +00). The Lorentz-Zygmund space L,, ,(log L) is the set
of all functions f measurable on [0, 1] for which (see e.g. [37])

1 q
1fllp.g.0 := {/(f*(t))q(l + |10gt|)aqt§_1dt} < +o0.
0

For A, B the notation A =< B means that there exits positive constants C, C3 such that C1 A <
B < CA.

We consider the orthonormal system {y,, }nen C L2[0, 1] (see [22, p. 58]) satisfying the condi-
tion

1 1
lealle = ([ len@lrds)” <My, neN 1)

for some r € (2, +0c]. Here, we assume that {M,,} is a non-decreasing sequence.
Let f(n) be the Fourier coefficients of the function f with respect to the orthonormal system

{Son}nGN'

J. Marcinkiewicz and A. Zygmund [22] proved some inequalities for the sums of the Fourier
coefficients of the orthogonal system {¢,, } ,en satisfying condition (1) and norms of the func-
tion f € L,, 1 < p < oo. Later, many authors investigated this problem in other functional
spaces (for example, see [3], [6], [7], [8], [11], [13], [21], [30], [32], [33], [42] and bibliographic
references in them).

In particular, the following statement is known (see S.V. Bochkarev [11]):

Theorem 1.1. Let {¢,, }nen be an orthonormal system of complex-valued functions
lonlloc < M, n=1,2,.... (2)
for some M < oo. Then, for any 2 < q < oo and n = 2,3, ..., the following inequality holds:

n

[Z(f*(k))ﬂ < OM||f||24(logn)* 7.

k=1

In the case ¢ = oo, Theorem 1.1 was previously proved by V.I. Ovchinnikov, V.D. Raspopova
and V.A. Rodin [32].

In the case when {¢), }ren is a trigonometric system, in the Lorentz-Zygmund space Lo , (log L)
H. Oba, E. Sato and Y. Sato [30] stated and proved the following;:

Theorem 1.2. Let 2 < g < 0o, n > 3and a € R. Then the following inequality holds:

n

S (F @] < CAul g

k=1
for some constant C which is independent of n and f, and A,, is as follows:

(1ogn)%_%_a ifoz<%f§,
An = (1og(logn))a, ifO( = % - §7
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A generalization of this theorem for the orthonormal system {,, },en satisfying condition (2)
was proved by L.R.Ya. Doktorski (see [13]). Moreover, N. Tleukhanova and G. Mussabaeva
[42] for the orthonormal system {gpn}neN satisfying condition (2) proved the inequality

1_ Zf

nel nl/2(log(n + 1))2 4

3)

for any function f € Ly 4,2 < g < 00

Most results concerning Fourier inequalities are derived for bounded orthonormal systems.
However, for several applications it is also important to derive such results for unbounded
orthonormal systems like those described in our final Remark 4.11. One aim of this paper is to
further complement our recent research in this direction (see [6], [7] and [8]) and also prove and
discuss some new related Nikol’skii type inequalities of this type. Let us first mention that in
[3] for an unbounded orthonormal system {¢,, } ,en, the following statement was proved (for
the case a = 0, see [2]).

Theorem 1.3. Let the orthonormal system {@y, nen for some r € (2, +o0] satisfy the condition (1).
Then, for any function Lo 4(log L)*,2 < q < 00, @ < 5 — 7, n € N, the following inequality holds:

[En:\f(’fﬂzf < Cllf 2. I 1+ZM2 )]
k=1

For a trigonometric polynomial

—-i-a
q

lv\»—t

the following Jackson-Nikol’skii inequality is well known (see [17], [27])
|1 Tally < 202 7P| Tl (4)

for 1 < p < ¢ < oo. This inequality is also called the inequality of different metrics for a
trigonometric polynomial.

For case 0 < p < g < o0, inequality (4) was proved in [16] and [10]. Moreover, forp =0 < ¢ <
00, it was proved by V.V. Arestov [10].

Nowadays, there are various generalizations of the Jackson-Nikol’skii inequality (see [5], [12],
[29] and the bibliography therein). One of the generalizations is its extension to polynomi-
als in orthonormal systems of functions. In particular, M.F. Timan [40] proved the following
statement:

Theorem 1.4. Let 1 < p < 2, p < q < oo and {p,}>2, be a uniformly bounded sequence of orthonor-
mal systems of functions. Then for the polynomial

x) = chgok(x),n eN,

holds the following inequality:
1fnllg < CRYP=H4) fol. ()

A multidimensional version of inequality (5) in the spaces L, was established by R.]. Nessel
and G. Wilmes [25], [26]. The Jackson-Nikol’skii inequality for polynomials in a uniformly
bounded system of functions in some symmetric spaces was proved by V.A. Rodin [34]. More-
over, L.R.Ya. Doktorski and D.Gendler [14] proved the inequality of different metrics for poly-
nomials in a uniformly bounded orthonormal system of functions in the Lorentz—Zygmund



294 Gabdolla Akishev and Lars Erik Persson and Harpal Singh

space. Jackson—Nikol’skii inequality is also known for polynomials in an unbounded orthonor-
mal system of functions (see, for example, [19], [20], [23], [24]).

In this paper, we complement the results above by proving some new Fourier and Jackson-
Nikol’skii type inequalities in the generalized Lorentz space Ly , and in unbounded systems
satisfying (1).

In Section 2, we present and discuss our main results. The announced generalizations and
unifications of Fourier type inequalities can be found in Theorem 2.1 while the corresponding
results concerning Jackson-Nikol’skii type inequalities are given in Theorem 2.2. These detailed
proofs are presented; in Section 3 and Section 4 is reserved for some concluding remarks and
result (see Proposition 4.1).

2. THE MAIN RESULTS

We denote by SV L (slowly varing) the set of all non-negative functions on [0, 1] of ¥(¢) for
which (log 2/t)%4(t) 1 +o00 and (log 2/t) =<y (¢) 4 0 for ¢t | O (see e.g. [8]).

First, we formulate the following generalization and unification of Theorem 1.1, Theorem 1.2
for the case a < % — %, assertion 1) of Theorem 1.3 and inequality (3):

Theorem 2.1. Let v a function satisfying the conditions 1 < oy = By = 2'/2, %

¥(t)

sup —= < 00,
te(o.1] tH/?

e SVL,

and assume that the orthonormal system {¢y, }nen for some r € (2,400] satisfies the condition (1).
Then, for any function f € Ly 4,2 < q < 00, the following inequality holds:

R \/(1+ZjeAMJZ)_1
W][ln(l +;4Mj )} D+ X jea MF)H)

> 1Fwr] <

keA

where A is a non-empty set in N and C'is positive constant which depends only on q and r.

Corollary 2.1. Let v be a function satisfying the conditions of Theorem 2.1 and the orthonormal system
{@n }tnen for some r € (2, +00] satisfying the condition (2). Then, for any function f € Ly, 4,2 < g <
oo, we have the inequality

|A|

DNGIN

k=1

(1 +[A]p2)~
(1 +[A[pM2)~1)

Nl

< Ol ll.q |log(1 -+ |4102%) |77

where | A| is the number of elements in the set A C N.

Corollary 2.2. Let ¢ be a function satisfying the conditions of Theorem 2.1 and let the orthonor-
mal system {¢n}nen for some r € (2,4o00] satisfying the condition (2). Then, for any function
f € Ly.q,2 < q < o0, the following inequality holds:

-1
%7% 721 n_oo
sup /2 [log(1 + nM?)| (W) S 7 k) < Clflua
k=1

neN

Remark 2.1. In the case 1 (t) = t'/2 from Corollary 2.1 and Corollary 2.2, we accordingly obtain the
statement of Theorem 1.1 and inequality (3).

Remark 2.2. In the case ¢ (t) = t'/2(1 + |logt|)® and {@,} the trigonometric system from Corollary

2.2, we obtain the statement in Theorem 1.2 for a < 5 — .
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Remark 2.3. If¢(t) = t*/2(1 + | log t|)® and the orthonormal system {©, }nen for some r € (2, +00]
satisfies condition (2), then from Corollary 2.2, we obtain assertion 1) of Theorem 1.3.

Remark 2.4. In the case (t) = t*/? and A = {1,...,n}, it was proved in [11] that the inequality
in Corollary 2.1 is exact for the multiplicative Crestenson—Levy system . This fact for a trigonometric
system in the Lorentz—Zygmund space Lo 4 (log L)* was proved in [30]. By also using Theorem 2 in
[5], we obtain the following statement:

Corollary 2.3. Let v be a function satisfying the conditions of Theorem 2.1,2 < q < oo and {e""*},,cz
be the trigonometric system. Then

n P 2\ /2 o

oo £ Toa S (00

Next, we state a Jackson—-Nikol’skii type inequality which generalizes some results for the
trigonometric system in [17] and [27], [28] (for a complementary bibliography see also [4], [5]).

Theorem 2.2. Let the function ) satisfy the conditions 1 < cvy, = By = 21/2 v e SV,

7 $1/2
sup —— < 00, 6
te(0,1] Y(1) (6)
let the orthonormal system {p.,}nen for some r € (2,+oc] satisfy the condition (1) and fp(x) =

D1 ().
DIf1 < q<2,then

-1

1_1
q 2

\/(1 £ M) (1og(1+ z":M,f)) 1l

W1, M2 2

[ fallp.e < €

for some constant C depending only on q.
2)If1 <p<2<q< oo, then

[ frllep < C, D)l frllp.qg <10g(1 + Z Ml?))

for some constant C' depending only on p and q.
3)If2 <p<q< +oo,then

[fallep < CO DN fnllv.q <10g(1 Y M;f))

for some constant C' depending only on p and q.

3. PROOFS
Proof of Theorem 2.1. Let f € Ly 4. This function can be represented as f(z) = fi(z) + fz(z),
where
fi() = { f(x), when |f(z)| < f*(r).
0, when |f(x)| > f*(7),
fo(z) = f(z) — fi(z), O0<7 <1
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Then, by the Minkowski inequality, we have that
. 1/2 . 1/2 . 1/2
(S F®E] T < [ IA®E] T+ [ 1AmE] (7)
keA keA keA
Now, we prove that each of the functions f;, i = 1,2, satisfies the inequality

ROV 10+ Sy, MY T
L;sz(k)IQ] < C(q, )(ln 1—|—]§;‘Mk ) PEES Mj2) =

According to the Parseval equality for an orthonormal system and Holder’s inequality for § =
>1, é + & = 1 for the function f, we find that

[ llya (®)

A 9 9 Lo, 5 L4172 20/ L
< < * < — -
Zumn\mm\[fum\wmiﬁgm)tdd )
keA
Since £ w(t) € SVL, then ! 1/)(0  log® 2/t < [1,1], Ve > 0. Therefore

1
o7

) log 2/7 [ / 1(1og 2/t)*2€9’fldt]# (10)

T

[ Ga) "’ (

Choose the number ¢ € (0,1 — 5). Then, 1 — 260" > 0 so that

1
’ 1 ’
—2e0’ ;—1 _ 1-2¢60"
/T (log2/t) t7dt = 1o [(1og 2/t) 1]

Therefore, from inequality (10), it follows that

L4172 20/ . 1 172 )
UT (W) tildt} S 1—259/(¢(T)) (log 2/t)7". (11)
Now by using inequalities (9) and (11), we obtain that
1 r1/2 1_1
(S 1hmPR) < < T3 g0y 1082/ Wl (12)

keA

In this formula, we put 7 = (1 + 3,4 )*%2 Then, for the function f; from (12), we can
conclude that

OAGLE

keA
<C(In(1+ M?)
( ,;1 ) (142 jea M7) T

so (8) holds with ¢ = 1. For the function f> € L, by the definition of the coefficient expansions
and Holder’s inequality (2 < r < 400,77 = 7 ), we have that

——
Nl

11 \/( +Z]€AM) 2(i:))(hl(l_;_z:M,?) N F g

keA

1
) =| [ fol@ort@da] < el el < Ml 1

Hence,

NG nhWXM@—(/f wfwinﬁ. (13)

keA kecA keA
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Since the function f* is non-increasing and 1 is non-decreasing, then

T (/f (et dt)

z/2

r 1/q
> e [F) = reuemt e o

x/2

Therefore, from inequality (13), it follows that

A T / 2/r!
S k)P < |f||i,q( [o <t/2>dt) Sz (14)

kEA 3 kEA

S1nce t) € SV L, then

(/w (t/2) dt) = (0/ e t/2) T//th>2/w
2/r'

< (w(r/z) log® 72/2)2(0/(1 tfz) = (t/2)~ T’/th) . (15)

If 0 < t < 7, then (log t/%)_s < (log %/2)_5, for ¢ > 0. Therefore, by using (15), we obtain that

(O/Twr'(t/g)dth < (w(://j)>2<0/7(t/2)r'/?dt)z/rl

:(2_2r,)2/rl(w(://22)) (r/2)7 " = (2_2T )2”'(1&(71/2))227%7%.(16)

Now, it follows from inequalities (14) and (16) that

(Z100R) " < vt (X )"

keA keA

In this formula, we put 7= (1 + 3, 4 Mf)‘rfr2 Then

O (e 3om2) 7 (o)

k=1 (14205 M) =) j=1 k=1

e (4 5) e

Now, taking into account that 1/2 —1/g > 0, we get from here that

(X 1hwr) "

keA

1/2—1/q

e (1 ) (1 ) "l

2
YL+ 2 jea M) jea jeA
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so (8) holds also for i = 2. From inequalities (7) and (8), it follows that

(X 1fwe) "

keA

DT zj:A = T 22) T (g (143 02)) T e 07)

JEA JEA

1/2 —3r=3) -1
Sincefz}T/t) € SVL and (1+Ej€AM]2) P (1+Zj€AMj2) , then

—€ 2 [
—1 ) <10g —___r )
(r—2)

(1 +2jea Mf) (1 +2jea Mf)

N (e ) (el )

J jEA jEA

r \/(1 + ZJ'EA Mj’z)_l

= . 18
r2 {0+ Ty M) %)
It follows from inequalities (17) and (18) that
1
2
R 142 r \/(1+ZjeAMj) 1/2-1/q
F(R)?) < — (log(1+ )  M? 1 [l.q-
(];4 ) r—29((1+3c4 M) 1)( ( ;1 J)) W
The proof is complete. U

Proof of Corollary 2.1. In view of the fact that M; = M, j = 1,2,... and the property of non-
increasing rearrangement of numbers, it yields that

]|
d_FRP =D (F k),
keA k=1
so the proof follows by just applying Theorem 2.1. O

Proof of Corollary 2.2. According to Holder’s inequality, we have that

n 1/2

> < (0 07)

k=1 k=1

Therefore, the assertion of Corollary 2.2 follows by applying Corollary 2.1 with A = {1,2,...,n}.
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Proof of Corollary 2.3. For the set A = {—n,...,—1,0,1,...,n} from Corollary 2.1, we get

S 1/2 .
(T ) <oyt log(1+m)] " *

s £l SYR( )

To prove the reversed inequality, we consider the trigonometric polynomial

fulz) = Z apet*®.

k=—n
Then, by using Theorem 2 in [5] for 11 (t) = t1/2, 7y = 2,92 (t) = ¥(t), 2 = ¢, we have that
[ fnll2 (I+n)—t e
sup > C — |log(1 +n)
0 [fullog — (A 4+n)71) [ }
Therefore
. 1/2
2n+1/ px 2
k) A (Ifn) -1
sup > sup ——— > C — |log(1 +n) .
f#0 1f1l.q £a70 Ifnllog — (1 +n)71) { }

The proof is complete.

Proof of Theorem 2.2. For the generalized Lorentz space Ly, 5, we have the relation (see [2])

/0 ' f(@)g(a)ds

[flly.g = sup
17115 <1

)

299

(19)

where () = ﬁ, t€(0,1],1 < g <oo,q = ;1. Since the system {¢,,} is orthonormal, then

n

1
/0 ful@)g(@)dz =S exd(k), g € Ly,
k

=1
for any n € N.
Note that condition (6) implies that

b(t
sup % < 00.
te(0,1] t

By applying Holder’s inequality, Theorem 2.1, and Parseval’s equality, we obtain that
n 172 L 1/2
<(Xlel?) (X latk)?)
k=1 k=1
n 2 -1
\/ (1+5023)

" 1/2-1/q
<O, (et 2 00)) T gl ol

j=1

| / @)@

Therefore, in virtue of relation (19), we have that

Il < C?(((l - z_l M))) (os(1 3 3)) s
L+ 370 M; 7=

and 1) is proved.
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We will now prove the second statement. Since 1 < p < 2, according to item 1), it yields that

1+ 3, M2 o n i
Ifallow < C y(g:z@_lw))—l) (og(1+ > 82))" “lfale 0)

k=1

Moreover, since 2 < ¢ < oo, by Theorem 2.1 and Parseval’s equality, we find that

\/(1+Z] 1M2) B

Il < s a1 1 (log(1 +ZM2)> T (21)

Now from inequalities (20) and (21), it follows that

Il < C(10g(14 3 22)) " 11

j=1

and 2) is proved.
Finally, let 2 < p < ¢ < +00. In the generalized Lorentz space Ly, 4, the following inequality
hold (see [36], p. 491):

4\;

I =
b =

1
P
q

-]

»Q\»—l

gl (22)

forl < 7 < p < g < +o00. Choose the number 7 € (1,2). Then, according to the second
statement, we have that

e < C(10g(1+3°322)) " 11l (23
=1

UBS ||g||¢q ||9||wr

Now by in equality (22) setting g = f,, and taking into account (23), we obtain that

1_1
p_4q

1_1 T _1
T n 1/7—1/q T4
Wallio < Ifall g * 4 C (108 (143 82) ) il
j=1
- 1/p=1/q
= C(10g(1+ 3 M2)) " il
j=1
and also 3) is proved. The proof is complete. O

4. CONCLUDING REMARKS RESULT

Remark 4.5. In the case 1(t) = t*/P(1 4 |logt|)*, 1 < p < oo, Theorem 2.2 was previously proved in
[3]. For the case oo = O see also [2].

Remark 4.6. In the case 1(t) = t*/P(1 + |logt|)*, 0 < p < 2, Theorem 2.2 for polynomials in a
uniformly bounded system was proved in [14], Theorem 3 i).

Remark 4.7. A similar statement as that in Theorem 2.1 was recently proved and discussed in [8].

Remark 4.8. It is well-known that each concave function 1 = 1(t) has the quasi-monotonicity prop-

erties that @ is non-increasing and 1(t) is non-decreasing. Moreover, the definition of the SV L clam
means that the functions satisfy two quasi-monotonicity conditions but now on a logarithmic scale.
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These facts opens the possibility that some of the results in this paper can be further generalized in this
direction.

From Theorem 2.1 and Theorem 2.2, we can also derive the following generalization of a result
in [5]:

eye . . . 1/2
Proposition 4.1. Let the functions vy and o satisfy the conditions 1 < ay, = By, = 2'/2, N0

1172
SVL, L5 € SV,

t
sup va(t) < 00 (24)
te(0,1] z/’1 (t)
and assume that the orthonormal system {@p }nen for some r € (2,+o00] satisfies condition (1). If
1 < p <2< q< oo, then for any polynomial

) = Z crpr()
k=1

the following inequality holds:

da((1+ 5, M2) ! s
L A (ES > Tk 1)(1og(1+ZMk)) ol

Proof. Since - w ( € SVLand 1 < p < 2, according to the first statement of Theorem 2.2, the
following inequality holds:

-1

\/(1+Z;‘_1 Mf)_l n

il <€ | Sirse | (os(e 2 0)) sl

k=1

N

(t) € SVLand 2 < g < oo by Theorem 2.1, we have that

\/(1 +30, Mj?)fl

¢2((1 + Z?:l sz)fl) (10g<1 + i Mﬁ))%_q Hf7l||¢ZVQ'

k=1

1

[fnllz < C

From these inequalities, it follows that

-1

1 i M i -3
Ifallo < © ( 112 1M23 5| (oe(t+ X))
(

1+ 5" 1M2 n -
Pa( (1+Z] 1]\42 )1 (log(lJrZM/?)) an”ll&q
J= k=1
Y1+ 37, M7)™Y) - ih
RE TS s TR G CR IRL)) M A

for 1 < p <2 < ¢ < oo. The proof is complete. O
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Remark 4.9. To investigate a statement as that Proposition 4.1 in the case of 1 < p < q¢ < 2is
an interesting open question. This case for polynomials in the trigonometric system was investigated
in [5]. Furthermore, it seems to be possible to consider Proposition 4.1 also in the more general case
1< By, <oy, <2.

Remark 4.10. In [4], it was proved that condition (24) implies that Ly, , C Ly, ¢, 1 < p < ¢ < 00,
in the case 1, = 1 see [36].

Remark 4.11 (Final Remark). Most results concerning Fourier and Jackson—Nikol'skii type inequal-
ities are derived for the case with bounded orthonormal systems. But since there are many important
unbounded orthonormal systems, it is of importance to develop the theory to cover such cases too. Ex-
amples of such unbounded systems are the following:

(a) {xn }-orthonormal system of Haar functions (see e.g. [9]). The functions x (t) are defined as follows:
x1(t) :=1fort € [0,1)andforn =2"+k, k=1,...,mand m=0,1,... put

VT, te(3h Bah),

Xn(t): 7\/2ma te (§§1+1723ﬁ1)
0 té [L 7"“}
) my My

The value of x,,(t) in a discontinuity point t is defined as

Xn(t) = 3 T+ €) + xa(t — <))

(b) Let there be given an infinite sequence of integers {p, } such that p, > 2 (n = 1,2,...). We put
My = P1...pn, n = 1. Then for any point t € [0, 1] \ A, there exists the unique expansion

- an(t)

t= — t)=0,1,.. -1

; mk ) ak( ) ) ) ’pk ?
where A = {-L -}, 1=0,1,...,my. The generalized Haar system x{px} := {x»(t)} on [0, 1] is defined
as follows (see [15])
x1(t) = 1fort € [0,1) and if n > 2, then n = my, + r(pr+1 — 1) + s, where my = 1 and my, =
pip2..prik=1,..5r=0,1,...omg — 1;5s=1,2, ..., pg41 — 1.

We put
27”50%4—1() rr+l
(1) = Xy = 4 VT e e (s )0,
Xn Xk:'r . 0 té |: r T+1:|
mk’ mpg ?

where B := [0,1] \ A. At the remaining points of the interval (0,1), x»(t) is equal to the half-sum of
its right-hand and left-hand limits on the set [0, 1] \ A, and at the endpoints of [0, 1], to the limits from
within the interval.

(c) Other generalizations of the Haar system were defined by A.M. Olevskii [31] and A. Kamont [18].
Jackson—Nikol'skii inequalities for polynomials in the x{p.,} system in the Lebesgue spaces L, and
Lorentz spaces L,, - were proved in [1], [19], [39] and [41].

Acknowledgement: We thank two careful referees for generous advices, which have improved
the final version of this paper.
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ABSTRACT. Given a weight function 7, we introduce a new class of Banach function algebras with respect to 7,
denoted by Co (X, 7). We provide a complete solution to the isomorphism problem in this class. We further charac-
terize the BSE-extension and the Inoue-Doss ideal associated with it. As an application of our results, we show the
equivalence of the four statements: (i) Co, (X, ) is of BSE, (ii) Co, (X, 7) is of BED, (iii) Co (X, ) is Tauberian and (iv)
T is bounded.
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1. INTRODUCTION AND MAIN RESULTS

Let X be a locally compact Hausdorff space and C},(X ) be the Banach algebra of all bounded
complex-valued continuous functions on X with supremum norm ||- || «. Define Cyp(X) = {f €
Cy(X) : f vanishes at infinity}. Let 7 be a positive continuous function on X with inf,ec x 7(z) >
1. Define

Coo(X,7)={f € Co(X) : fr € Co(X)},

Cop(X,7) ={f € Co(X) : fr € Ch(X)},

Cop(X,7)={f € Cp(X) : fr e Cp(X)}
and

[fllo,r = Sup [f(@)lr(@)  (f € Gp(X)).

Then both Cy (X, 7) and Coy(X, 7) are subalgebras of Cy(X), and Cy,(X, 7) is a subalgebra of
Cy(X). Moreover, these algebras become Banach algebras with norm | - ||«,-, and they have
the inclusion relation

Co(X) C Cho(X,T) C Cop(X,7) C Cip(X,7) C Cp(X),

where C,(X) is the set of all complex-valued continuous functions on X with compact sup-
ports.

Remark 1.1. Put Cyo(X,7) = {f € Co(X) : fr € Co(X)}. Then, it follows that Coo(X,7) =
Chro(X, T) holds.
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*Corresponding author: Kiyoshi Shirayanagi; kiyoshi.shirayanagi@is.sci.toho-u.ac.jp
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Note that 7 is a Cy(X)-local function on X, and hence the algebra Cy(X), (1) is defined (see
[5, Definitions 5.1 and 5.3] for definition). Since Co(X),1y = Coo(X,7), it follows from [5,
Theorem 5.4 (ii)] that Cyo(X, 7) is a Segal algebra in Cy(X) with norm || - ||, and hence its
Gelfand space can be identified with X (see [5, Theorem B’]). Moreover, Cyo(X, 7) is always a
BED-algebra of type I, but it is not a BSE-algebra if 7 is unbounded (see [2, Theorem 6.2]). On
the other hand, Cy, (X, 7) is generally not a Segal algebra in Cy(X). However, J. Inoue et al.
have shown that Co, (X, 7) is a Banach algebra of type I but is neither Tauberian nor of BSE nor
of BED if 1/7 vanishes at infinity (see [2, Theorem 7.3]). The aim of this paper is to investigate
this algebra in greater detail. We refer the reader to [4, 5, 6, 9, 10, 11, 13] for more details on
Segal algebras, BSE-algebras, BED-algebras and type I Banach algebras.

We first give a complete solution to the isomorphism problem in Co (X, 7). To state this, let
Y be another locally compact Hausdorff space and ¢ be another positive continuous function
onY with inf,cy o(y) > 1. Then we have:

Theorem 1.1. The following three statements are equivalent:
(i) Coo(X, ) is isomorphic to Coo(Y, o).
(ii) Cop(X, ) is isomorphic to Cop(Y, o).
(iii) There exists a homeomorphism n from'Y onto X such that mo < Ton < Mo for some positive
constants m and M.

Next we have:

Theorem 1.2. The following two statements are equivalent:
(i) Coo(X, ) is isomorphic to Cop(Y, 0).
(ii) Both X andY are homeomorphic and both T and o are bounded.

Moreover, we show that the BSE-extension and the Inoue-Doss ideal associated with Coy, (X, 7)
are equal to Ci, (X, 7) and Cyo(X, 7), respectively. The details will be described in Section 5.

As an application of the above results, we show the following result which is a generalization
of [2, Theorem 7.3].

Theorem 1.3. The following five statements are equivalent:
(i) Con(X,T) is of BSE.
(i) Cop(X,T)is of BED.
(iii) Cop(X,T) is Tauberian.
(iv) Cop(X,T) has a bounded X-weak approximate identity.
(v) 7 is bounded.

2. PRELIMINARIES

In what follows, let X be a locally compact Hausdorff space and 7 be a positive continuous
function on X with

inf > 1.
2T 2

Let A be a natural Banach function algebra on X. Then the natural embedding x from X
to the Gelfand space ® 4 of A is surjective, and hence dx is homeomorphic by [12, Theorem
3.2.4]. Thus we may identify ®4 with X if it will cause no confusion. Then the multiplier
algebra M(A) of A is described as {f € Cp(X) : fg € A (g € A)}. We say that A is of type
Iif M(A) = Cy(X). We denote by span(X) the linear span of X in the dual space A* of A.
Therefore, an arbitrary element p in span(X) has the unique expression

p=>_ bz,

zeX
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where p is a complex-valued function on X with finite support. A function f € C,(X) is said
to be a BSE-function associated with A if there exists a constant 5 > 0 such that

> bla)f(x)

zeX

< Blpl

A*

for all p € span(X). The BSE-norm of f, denoted by || f| zsz(a), is the infimum of all such £.
Let Cpsp(a)(X) be the set of all BSE-functions on X associated with A. Then it is a semisim-
ple commutative Banach algebra with the BSE-norm (see [13, Lemma 1]).

Definition 2.1. We refer to Cpsp(a)(X) as the BSE-extension associated with A.

An algebra A is said to be a BSE-algebra if M (A) = Cpspa)(X) (see [13, p.151, Definition]).
If {e,} is a net in A satisfying the condition

11)1\116)\(.%) =1 (zeX),

then we call it a X-weak approximate identity of A. We note that M(A) C Cpgp(a)(X) if and
only if A has a bounded X-weak approximate identity (see [13, Corollary 5]). For the details
on X-weak approximation identity, refer to [3, 8].

Let K£(X) be the directed set consisting of all compact subsets of X with respect to the inclu-
sion order. For f € Cpgp(a)(X) and K € K(X), define

I fllBsE(a),x = sup Z p(x)f(z)| : p € span(X), ||p|lax <1 ;,
zEX\K
and put
Chspa)(X) = {f € Cpspa)(X): Kéilcff(lx) I fllBsEa),x = 0} :
Then C% B(A) (X) is a closed ideal of Cgsp(a)(X) (see [4, Corollary 3.9]). This is an important
ideal in our argument.

Definition 2.2. We refer to C%¢ () (X) as the Inoue-Doss ideal® associated with A.

An algebra A is said to be a BED-algebra if A = C%¢ p(a)(X) (see [4, Definition 4.13]). A
Banach function algebra B on X is called a Banach ideal of Cy(X) if B is an ideal of C(X) and
Ifalle < lflleollgllz holds for all f € Cy(X) and g € B (see [5, Definition 3.1]).

Lemma 2.1. The algebra Co, (X, T) is a dense natural Banach ideal in Cy(X).

Proof. 1t is clear that Cy, (X, 7) is a dense Banach ideal in Cy(X). Hence it suffices to show that
Coy(X, 7) is natural, that is, the natural embedding éx from X to ®¢,, x ) is surjective. To do
this, let ¢ be an arbitrary element of ®¢,, x 7). Take h € Coy(X, 7) with ¢(h) # 0, and define

P(f) = e(fh)/¢(h) (f € Co(X)).
This is well-defined because the right hand side of the above equation is independent of the
choice of h € Cop(X, ) with ¢(h) # 0. By an easy calculation, we see that ¢ € ®¢,(x) with

?leo(x,7) = ¥, and hence there exists 2 € X such that 0x (z) = ¢, namely, dx is surjective, as
required. O

By Lemma 2.1, @, (x,) can be identified with X under the natural embedding.

1 The first author personally learned this important ideal from Professor Jyunji Inoue in the old days. The ideal was
first introduced by him, but the underlying idea behind it had appeared in R. Doss [1].
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Lemma 2.2. The algebra Co, (X, 7) is of type .

Proof. Since ®¢,, (X, 7) can be identified with X, it follows that M (Cy,(X, 7)) C Cy(X). Also,
since Cop(X, 7) is an ideal of Cy,(X), it follows that C,(X) C M (Coy(X,7)). Thus we obtain
M(Cop(X, 7)) = Cp(X), thatis, Cop(X, 7) is of type L O

3. PROOF OF THEOREM 1.1

Let Y be another locally compact Hausdorff space and o be another positive continuous
function on Y with inf, ey o(y) > 1.

(i)=-(iii) Suppose that there is an isomorphism p from Cyo (X, 7) onto Cyo(Y, o). Then there
are positive constants m, M such that

G.1) mlp(f)llcoc < [ flloc.r < Mllp(f)lloc,o (f € Coo(X,7)).

Let p* be the dual map of p from Coo(Y,0)* onto Coo(X,7)*. Then we have p* (¢, (v,s)) =
®cyo(x,r)- Let 0x and dy be the natural embedding from X onto ®¢,,(x,-) and the natural
embedding from Y onto ®¢,(v,s), respectively. Define

n= ((SX)*l Op*‘@cm(y,a) O(sy.

Then 7 is a homeomorphism from Y onto X. We shall show that

(3.2) p(f) = fon (f € Coo(X,T)).

In fact, let us take f € Cyo(X, 7) arbitrarily. Then we have

p(N)(y) = (p(f): 0y () = {f, 0" (v () = (f, P |y (v (O (1))
= (£,0x{0%" (0" |9y vy Gy () )
= (f,9x(n(y))) = f(n(y))
= (fon(y)

forall y € Y, thatis, (3.2) holds as required. By (3.2), fon € Cyo(Y, o) holds forall f € Coo(X, 7).

It remains to show that mo < 7on < Mo. To show this, let us take y € Y and ¢ > 0 arbitrarily.
Since 7 is continuous, there exists a neighbourhood U of 7(y) such that |7(z) — 7(n(y))| <
e for all v € U. Also since o is continuous, there exists a neighbourhood V' of y such that
lo(y') —o(y)| <eforally € V.PutW = UnNn(V). Then W is a neighbourhood of 7(y). Take a
function fo € C.(X) such that fo(n(y)) = 1, folx\w = 0and 0 < fy < 1. By (3.1) and (3.2), we
have

(3.3) m|| fo o 77”00,0 < ||f0||oo,7' < M| fo OUHOOJ-

Therefore, it follows from the first half of (3.3) that

mo(y) = m[fo(n(y))lo(y) < mllfoonllece < |l folleo,r
|

= sup | fo(2)|7(x) = sup |fo(z)|7(x) < sup 7(x)
reX xeW xeU

<7(n(y)) +e.



Isomorphism problem in a special class of Banach function algebras and its application 309

Since y € Y and ¢ > 0 are arbitrary, we have mo < 7 o 7. Moreover, it follows from the latter
half of (3.3) that

(ron)(y) =7(nw)) = fow)|T(ny) < I folloo,
< M| foonle,e = Mys/t;}; [fo(n(y' )l (y")

=M sup |fo(n(y))lo(y) <M sup o(y)
y'en—1(W) y'en—1(W)

< M sup o(y') < M(o(y) +¢).
y'eVv

Since y € Y and € > 0 are arbitrary, we have r o < Mo.
(iif)=(i) Suppose that there is a homeomorphism 7 from Y onto X such that mo < 707 <
Mo for some positive constants m and M. Define

(" F)y) = f(n(y)) (f € Coo(X,7),y €Y).

In this case, we see easily that n* is a homomorphism from Cyo (X, 7) to Cy(Y"). We shall show
that 7*(Coo(X, 7)) = Coo(Y,0). To do this, let us take f € Cyo(X, 7) arbitrarily. It is clear that
n*f € Cy(Y'). Moreover, the inequality

(34 (" W)lo(y) < [fn)lr(n(y))/m (y € Y),
implies that (n*f)o € Cy(Y) since fr € Cy(X), and so n*f € Cyo(Y, o). Namely, we obtain
7*(Coo(X, 7)) C Coo(Y, o). To show the opposite inclusion, for g € Cyo(Y, o), let us define
f@) =g~ (x)) (x € X).
It is clear that f € Cy(X). Moreover, the inequality

(3.5) [f(@)|7(x) < lg(n~ " (2))[Ma(n~ () (x € X)
implies that fr € Cy(X) since go € Cyp(Y), and so f € Cyo(X, 7). Moreover, since

" N ) = fn(y) =g () =9(y) (yeY)

holds, we have

(3.6) n'f=g,

namely, we obtain Cyo(Y, o) C n*(Coo(X, 7)). Therefore, we have the desired equality. By (3.4),
(3.5) and (3.6), we have

mHn*fHoo,U < ||f||oo,7 < M||77*fHoo,U (f € Coo(X, 7)),

and hence n* is an isomorphism from Cyo (X, 7) onto Cyo (Y, o).
(if)=-(iii) This can be shown in the same manner as the proof of (i)=-(iii).
(iif)=-(ii) This can be shown in the same manner as the proof of (iii)=(i).
This completes the proof of Theorem 1.1.

Corollary 3.1. The following four statements are equivalent:

(i) Cop(X,T) is of BSE and of BED.
(ii) 7 is bounded.
(iii) Cop(X,7) = Co(X).
(iv) Cop(X,T) is isomorphic to some commutative C*-algebra.
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Proof. (i)« (iv) This immediately follows from Lemma 2.2 and [2, Corollary 4.2].

(ii)=-(iii) Obvious.

(iii)=(iv) Obvious.

(iv)=(ii) Suppose that C; (X, 7) is isomorphic to Cy(Y") for some locally compact Hausdorff
space Y and define

ly(y)=1(y€Y).

Then Cy, (X, 7) is isomorphic to Coy (Y, 1y) since Cpp (Y, 1y) = Co(Y'). By Theorem 1.1, we can
find a homeomorphism 7 from Y onto X such that mly < 7on < M1y for some positive
constants m and M. Therefore, we have that 7(z) < M forall z € X. O

Corollary 3.2. The following three statements are equivalent:

(1) 7 is unbounded.
(if) Cop(X, ) has no bounded X -weak approximate identity.
(iil) Coy(X, ) is not of BSE.

Proof. (i)=(ii) Suppose that 7 is unbounded. If C;(X, 7) has a bounded X-weak approximate
identity, say, {ex}rea bounded by 3, then we can take 29 € X and Ay € A such that 7(z¢) >
26 4+ 1and |ey,(zo) — 1] < 1/2 since 7 is unbounded. Then we have

26+1 1
3 Pty

B = llexolloo,r = sup lexo (2)[7(2) = lex, (zo)|(z0) =
fAS

which is a contradiction.

(if)=(iii) This immediately follows from [13, Corollary 5].

(iif)=(i) This immediately follows from Corollary 3.1 since an arbitrary commutative C*-
algebra is of BSE (see [13, Theorem 3]). |

4. PROOF OF THEOREM 1.2

Let Y be another locally compact Hausdorff space and ¢ be another positive continuous
function on Y with inf,cy o(y) > 1.

(i)=(ii) Suppose that there is an isomorphism p from Cyo(X, 7) onto Co;,(Y, o). Let p* be the
dual map of p from Cop(Y,0)* onto Coo(X,7)*, and then we have p* (P, (v,o)) = Peyo(x,m)-
Let 0x and dy be the natural embedding of X onto ®¢,(x ) and the natural embedding of Y’
onto ¢, (v,r), respectively. Define

n= (5X)71 o p*|q>00b(yya) [¢] 5y.

Then 7 is a homeomorphism from Y onto X. Moreover, as observed in the proof of (i)=-(iii)
in Theorem 1.1, the equality p(f) = f o n holds for all f € Cyo(X,7) and there are positive
constants m and M such that mo < 7 on < Mo. Define

" N) = f(n(y)) (f € Coo(X,7),y €Y).

Then, as observed in the proof of (iii)=-(i) in Theorem 1.1, the equality n*(Coo (X, 7))
= Cyo(Y, o) holds. However since p = n*, it follows that

Con(Y,0) = p(Coo(X, 7)) = 1" (Coo(X,7)) = Coo(Y, 0),
and hence we have
(4-1) C()()(K U) = Cob(Y, 0)~

Assume that ¢ is unbounded. Then we can find a sequence {yi,y2,---} in Y and a sequence
{n1,ng,---}in N such that

ny <o(y1) <ng <o(y2) <ng <o(ys) <ng <-+--- ,
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where n; = 1. In this case, lim,,_,o ¥n = wy holds, where wy is the point of Y at infinity. In
fact, let K be an arbitrary compact subset of " and put ax = max{o(y) : y € K}. Takeip € N
with ax < n;,. Then we can easily see that y; € Y \ K for all j > i, that is, lim,, 00 ¥y = wy.

Take m € N arbitrarily. Since o is continuous on Y, we can find a compact neighbourhood
K, of y, such that K, € {y € Y : nyp, < 0(y) < ng1} and |o(ym) —o(y)| < 1 (y € Kp).
Then K; N K; = 0 (i # j). Take a continuous positive function g,,, on Y such that

1
= 0<gn<—— and C K.
Since 1 — 7Y} < 1/0(y,,) < 1forall y € K, it follows that
a(y)
0<gm(y)o(y) < <2(y€ Kn).
(W)o(y) o () ( )

Define -
9W) = gmy) (WeY).

Then it is clear that g is continuous on X such that 0 < go < 2, and hence go is bounded.
Moreover, we shall show that g € Cy(Y'). To do this, let € be an arbitrary positive number. Take
Jjo € Nwith 1/n;, < e and put

Ko=K UKyU---UK

7lj0 .

Then K| is a compact setin Y. Take y € Y\ K arbitrarily. Then we have two cases:
@y ¢ Uz K

and

(b) y € Ky, for some ko > nj,.

In case (a), we have g(y) = 0 < . In case (b), we have

0<9(y) = gk (y) < 1/0(yro) < 1/ny < 1/ko <1/nj, <e.
Then g € Cy(Y) as required. Thus we get g € Co(Y, o). Therefore, it follows from (4.1) that
g € Cpo(Y,0), and hence lim,,_, g(yn)o(y,) = 0. But since g(yn)o(yn) = gn(yn)o(yn) = 1
holds for all n € N, we arrive at a contradiction. Hence we conclude that o is bounded. This
implies that 7 is also bounded because 7 o < Mo.

(ii)=-(i) Suppose that both 7 and o are bounded. Then we see that Cyo(X,7) = Cp(X) and
Cop(Y,0) = Co(Y). If X is homeomorphic to Y, then Cy(X) is isomorphic to Cy(Y'), and hence
Coo(X, 7) must be isomorphic to Co, (Y, o).

This completes the proof of Theorem 1.2.

Corollary 4.3. The following two statements are equivalent:
(i) Cop(X,T) is Tauberian.
(ii) 7 is bounded.

Proof. (i)=(ii) Suppose that Cy, (X, 7) is Tauberian. Then Cyo (X, 7) = Cou(X, 7) holds. In fact,
take f € Cop(X, 7) and ¢ > 0 arbitrarily. Then f € Cy(X). Also since C(X, 7) is Tauberian, it
follows that there is g € C.(X) with || f — g||c,» < €. Therefore, g7 € Co(X) and || f7 — g7||oc =
lf — glloo,r < &, and hence fr € Cy(X) because ¢ is arbitrary. Thus we have f € Cyo(X,7),
namely, Coo(X, 7) = Cop(X, 7) holds as required. Consequently, Cyo(X, 7) must be isomorphic
to Cop(X, 7), and hence 7 must be bounded by Theorem 1.2.

(ii)=(i) Suppose that 7 is bounded. Then we have Cy,(X, 7) = Cy(X), and hence Co,(X, 7)
must be Tauberian. O
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5. BSE-EXTENSION AND INOUE-DOSS IDEAL

Let Abe Coo(X, T) or Cop(X, 7). In this section, we investigate the BSE-extension associated
with A and the Inoue-Doss ideal associated with A. The obtained result is as follows:
Theorem 5.4.

(i) The BSE-extensions associated with Coo(X, 7) and Coy (X, 7) are both equal to Cyy (X, 7), that
is,
CBSE(Coo(x.7)(X) = CBsE(Coy(x,7)) (X) = Cop(X, 7).

(ii) The Inoue-Doss ideals associated with Coo(X, ) and Co,(X, ) are both equal to Coo(X, 7),
that is,

Chsm(Coo(x,7)(X) = CBsm(cop(x.79)(X) = Coo(X, 7).

Proof. Denote by A any one of the algebras Cyo (X, 7) and Co(X, 7), and then A C C.(X).
(i) We shall show Cpsg(a)(X) = Cw(X, 7). To do this, we claim that

G.1) Ipll.as =Y [p(2)l/7(x) (p € span(X))

reX

holds. In fact, let us take p € span(X) and 0 < e < 1 arbitrarily. Then we can write p =
>on_, akzry, where ay,--- ,a, € C\ {0} and zy,--- ,z, € X with z; # z; (i # j). For each
1 < k < n, we can take a compact neighbourhood K}, of xj such that K; N K; = () (i # j) and
(1 —¢)/7(xx) < 1/7(x) for all z € K} because

1-— 1
foex:izS<
T(zx)  7(2)
is an open neighbourhood of z;,. Take a continuous positive function g; on X such that

1—c¢ 1—¢
0 < gr(z) <

gr(z)) = (z € Ki) and supp(gx) C Ky,

3
Bl

~

and define

ng (z € X).

Therefore, we can easily show that gy € C’C( ), go(zx) = 1 —¢e)/7(z) (1 < k < n) and
0 < go(z) <1/7(z) (x € X). Moreover, we can find a function hy € C.(X) such that ||ho||cc =1
and ho(xg) = |ax|/ax for all 1 < k < n. Put fo = goho. Then we can see that fy € A,
I folloo.r < 1,|fo(zk)|T(xk) =1 — ¢ and ak fo(x,) > 0 for all 1 < k < n. Therefore, we have

Ax = Sup {
> arfola) Z|ak|T($zc)_1|f0($k)|T($k)
k=1

(1—¢ Z|ak\/7$k (1-¢) ZU? )/ 7(x

zeX

Ip|

)| f €A flloor < 1}

and hence ||p|

A+ > Y cx [P()|/7(x) because ¢ is arbitrary.
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On the other hand, we have

Ipl[a- = sup {

< sup {Z jaxlr (@) " f @)l (@) : £ € A, flloor < 1}

k=1

<Y lakl/7(@k) = Z|p )/7(
k=1

reX

Zakf(xk)

k=1

f e A flloor < 1}

Consequently, we have proved (5.1).
Now, by (5.1), for all f € Cy(X, 7), we have

1flBsEa) = SHP{ Z p(x)f(z)| : p € span (X), ||pllax < 1}

zeX

<sup{Z|p x) 7 f(2)|7(z) : p € span (X), ||p|| - <1}
reX

< ||fooTSUP{Z [p(2)|/7(x) : p € span (X), [Ip[|la~ < 1}

zeX
= [[flloe.r sup {[[pl[ - : p € span (X), []pl[a- <1} (by (5.1))
= || flloo,r < o0,

thatis, f € Cpgpa)(X). Therefore, we have Cy,(X,7) € Cpgpga)(X). To show the opposite
inclusion, take f € Cpgp(a)(X) arbitrarily. Then f € Cy(X). For each z € X, put p, = 7(z)z,
thatis, p,(f) = 7(x)f(z) (f € A). Then we have

[Pzllas = sup{lp(f)] : f € A, || flloc,r <1}
= sup{|f(2)[7(2) : f € A, |flloo,r <1}
<1
holds for all x € X. Therefore, we have

|f (@) (@)] = [Pz (2) f(2)] < [IfllBsE(a)
forallz € X,and hence || f7||oc < | fllBsE(a) < 00,50 fT € Cy(X), thatis, f € Cypp(X, 7). There-

fore, we have Cpgp(a)(X) C Cbb_(X, 7). This completes the proof of the equality Cpsp4)(X) =
Crp(X, 7).

(ii) Let f € Cpp(X,7) and K € K(X). Since

Y Bla)f(@)

zeX\K

||f||BSE(A),K = sup {

:p € span (X), |Ip|la~ < 1}
zeX\K

< sup { S [5@)[r(@) S @)lr () : p € span (X), [plla- < 1}

< sup | f(x)lr(z) % Sup{ > 1p(@)|/7(2) : p € span (X), [[p]la- < 1}

reX\K EX\K



314 S.-E. Takahasi, K. Shirayanagi, and M. Tsukada

< sup |f(=) XSUP{ZIp )|/7(x) : p € span (X), ||p|| a- §1}
reX

zeX\K

A= :p € span (X)), [Iplla- <1} (by (5.1))

= sup [f(z)|7(x)
zeX\K

= sup [f(z)|7(2),

zeX\K
it follows that

I fllBsEcay,x < sup |f(z)|7(x).
zeX\K

To show the reverse of the above inequality, put p, = 7(x)z for each z € X. Then we have
lpzllax <1 (x € X) as observed in the proof of (i). Then we have

[f(2)7(2)] = |p2(2) f(2)] < [ flBsE).k (x € X\ K),

and hence
sup |[f(2)|7(x) < [|fllBsE(a).K
zeEX\K
Therefore, we have
(5.2) 1 £l BsE(Coox,)) .5 = I fllBSECon(x,)). 5 (f € Con(X, 7), K € K(X)).

Hence it follows from (i) and (5.2) that

CBSE(COO(X,T)) (X) = C%SE(Cob(X,T)) (X)
Recall that Cyo (X, 7) is of BED, and hence C%SE(COO(XJ))(X) = Cpo(X, 7) holds. O

Remark 5.2.
(i) If 7 is bounded, then Coo(X,T) = Cop(X,7) = Co(X) and Cpp(X,7) = Cp(X), and hence
Theorem 5.4 obviously holds.
(ii) As observed in the proof of Theorem 5.4 (i),
1l BsB(Coox,r)) = IflBSECowx,m) = [Ifllso,r
holds for all f € Cypp(X, 7).
(iii) As observed in the proof of Theorem 5.4 (ii),

| fllBsE(Coon(x.m)).x = I fllBSE(COw(x.).x = sup |f(z)7T(z)
zeX\K

holds for all f € Cyp(X, 7) and K € K(X).
Corollary 5.4. If T is unbounded, then Co,(X, 7) is not of BED.

Proof. Suppose that 7 is unbounded. Then Coo(X,7) & Cop(X, 7) holds. In fact, suppose on
the contrary that Cyo(X, 7) = Cop(X, 7) holds. Then Cyo(X, 7) is isomorphic to Co (X, 7), and
hence 7 must be bounded by Theorem 1.2. This is impossible because 7 is unbounded by
hypothesis. Now if Cq, (X, 7) is of BED, then we have from Theorem 5.4 (ii) that

Coo(X,7) = Chsp(coo () (X) = Chsr(co (x.m)(X) = Cop(X, 7).

Thus we arrive at a contradiction. O
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6. PROOF OF THEOREM 1.3

We can see that:

(1) (v)e(iv)«e(i) are derived from Corollary 3.2.
(2) (v)«(iii) is exactly the same as Corollary 4.3.
(3) (ii)e(v) is derived from Corollary 5.4.

By combining (1), (2) and (3), we have proved Theorem 1.3.

Remark 6.3. The following four statements are equivalent:

(i) 7 is bounded.

(if) Coo(X,T) is isomorphic to some commutative C*-algebra.
(iii) Cop(X,T) is isomorphic to some commutative C*-algebra.
(iv) Cwp(X, T) is isomorphic to some commutative C*-algebra.

In fact, since Cop(X, 7) is a closed ideal of Cy, (X, 7), it follows that (iv) implies (iii). Also
since Coo (X, 7) is a closed ideal of Cp, (X, 7), it follows that (iii) implies (ii). If Coo(X, 7) is iso-
morphic to some commutative C*-algebra, then it must be of BSE, and hence M (Cqo(X, 7)) =
CBSE(Coo(x,7)) (X). Moreover, we have from Theorem 5.4 (i) that Cpgp(cy, (x,r)) (X) = Cop (X, 7),
and hence M (Cyo(X,7)) = Cpp(X, 7). Define 1x(x) =1 (z € X). Then 1x € M(Coo(X, 7)),
and hence 1x € Cy (X, 7) by the above equality. Then 7 must be bounded. Consequently,
(ii) implies (i). If 7 is bounded, then Cy, (X, 7) = Cy(X), and so Cp,(X, 7) is isomorphic to the
C*-algebra C,(X). Then (i) implies (iv).

7. EXAMPLES

Let R be the space of real numbers with usual topology and Homeo(R) be the set of all
homeomorphisms from R onto itself. Let 7 (R) be the set of all positive continuous functions
7on R with inf{7(z) : € R} > 1. Let 7,0 € T(R). If there are m, M > 0 and h € Homeo(R)
such that mm < oo h < M7, 7 and ¢ are said to be equivalent, and written as 7 = o.

(i) Take 7 € T(R) and h € Homeo(R) arbitrarily. Then we have 7 = 7 o h because
T=(roh)oh L
(ii) Define

( (n+1)(|z| —2n) +1 (2n < |z <2n+1)

T p—

' Dz -2 —2)+1 @n+1<|z]<2m+2),

wheren = 0,1,2,---. Then 71 € T(R). Since 71 is unbounded, it follows from Corol-

lary 4.3 that Co (R, 71) is not Tauberian. However, we can confirm this by a concrete
calculation as follows. Define
1

o EnE D

Then we can easily see f € Cop(R, 7). Also since 71(2n) = 1foralln =0,+1,£2,---,
it follows that

(r € R).

_
1 (m — 1)

for all g € C.(R). In other words, C¢, (R, 71 ) is not Tauberian.
(iii) Define

If = glloo,r, = sup —g(x)n(z)| > 1
z€R

T0(x) =1+ |z|] (z € R).
Then 79 € T(R) and we can easily see 79 2 7. Therefore, Cy, (R, 79) is not isomorphic
to Cop(R, 71) by Theorem 1.1.
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(iv) Let f be a strictly increasing continuous function on [0, o) such that f(0) = 0 and
lim, 4o f(x) = +o00. Let g be a strictly decreasing continuous function on (—oo, 0]
such that g(0) = 0 and lim,_,_ g(x) = +o0. Define

L+ f(z) (z=0)
P Vi tee) @<0)
Then we see 74, € T(R) and 79 = 7 4. In fact, it is clear that 77, € T (R). Define
@) (@20
hx) = { B
g (=x) (¢<0)

Then we see h € Homeo(R) and 774 o h = 7y by an easy calculation. Therefore,
we obtain 77, = 7y from (i), and hence Cy(R,7,4) is isomorphic to Coy(R, 79) by
Theorem 1.1.

8. OPEN PROBLEMS

Finally, let us list some open problems for further study.

Problem on vector-valued functions: Let X be a locally compact Hausdorff space, T be
a positive continuous function on X with inf,cx 7(x) > 1 and A be a unital commu-
tative C*-algebra. Moreover, let Cy(X, A) be the commutative Banach algebra of all
continuous A-valued functions on X vanishing at infinity and C, (X, A) be the com-
mutative Banach algebra of all bounded continuous A-valued functions. Define

Cop(X;A,7)={feCo(X,A):7f € Cp(X,A)}.

Then, solve the isomorphism problem in the Banach algebra Cy,(X; A, 7).
Moreover, what are the BSE-extension and the Inoue-Doss ideal associated with
Con(X;A,7)?
Problem on Lipschitz algebras: Let Lip;(R) and Lip](R) be the Lipschitz algebras as
defined in [4, Definition 5.8] and 7 be a positive continuous function on R with
infoex 7(z) > 1. Define

Lipg; (R,7) = {f € Lip}(R) : 7f € Lip;(R)}.
Then, what are the BSE-extension and the Inoue-Doss ideal associated with the Banach
algebra Lipy; (R, 7)?
Problem on differentiable functions: Let Cj'(R%) and C§(R?) be the differential alge-
bras as defined in [7, §2] and 7 be a positive continuous function on R with inf ¢ x 7(z) >
1. Define
Coi(RY,7) = {f € Cf(RY) : 7f € CJ'(RY)}.

Then, what are the BSE-extension and the Inoue-Doss ideal associated with the Banach
algebra Cfy (R4, 7)?
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ABSTRACT. The class IV2 of 2-nondegenerate constant Levi rank 1 hypersurfaces M® C C? is governed by Poc-
chiola’s two primary invariants Wy and Jo. Their vanishing characterizes equivalence of such a hypersurface M? to
the tube MEC over the real light cone in R3. When either Wg # 0 orJo # 0, by normalization of certain two group
parameters c and e, an invariant coframe can be built on M®, showing that the dimension of the CR automorphism
group drops from 10 to 5.

This paper constructs an explicit {e}-structure in case Wy and Jy do not necessarily vanish. Furthermore, Pocchi-
ola’s calculations hidden on a computer now appear in details, especially the determination of a secondary invariant
R, expressed in terms of the first jet of Wy. All other secondary invariants of the {e}-structure are also expressed
explicitly in terms of Wo and Jo.

Keywords: Levi degenerate CR manifolds, 2-nondegeneracy, G-structures, Cartan method of equivalence, Cartan
Lemma, Pocchiola invariants.
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1. INTRODUCTION

We study the equivalence problem under biholomorphisms of real hypersurfaces M°® C
C? — hence of CR dimension 2 — whose Levi form is degenerate of constant rank 1, and
whose Freeman form is nowhere zero, or equivalently, which are 2-nondegenerate. There are
previous approaches to this problem, and we refer our readers to the the articles of Medori-
Spiro [12, 13], in which a Cartan connection was adressed.

In a recently published article [18], the authors exhibited two important primary invariants,
Wy and J,, whose existence was not previously discovered prior to Pocchiola’s prepublica-
tion [25], and which, in depth, required the help of a computer algebra system. These invari-
ants have useful applications, such as in Isaev’s study [9] of tube hypersurfaces in C? that are
2-nondegenerate and uniformly Levi degenerate of rank 1.

Our first objective here is to reconstruct Wy and Jy, by presenting fully detailed computa-
tions, only by hand, without the help of any computer. In contrast to [25, 18], the present text
has the ambition of exhibiting all calculations, without requiring any extra work from the read-
ers: ‘no pen needed, no computer needed’. Within the Cartan theory, this sounds quite like a
challenge opposite to a certain tradition of hiding a lot of computations. But we believe that
fully detailed articles can be read, checked and studied more rapidly.

As a second objective, we construct an explicit {e}-structure which characterizes equiva-
lences under biholomorphisms of these types of hypersurfaces M> C C3. This way, we give a
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theoretical proof which will provide a definitive confirmation of the existence of exactly 2 pri-
mary invariants, Wy and Jy. Unlike the approach of [25, 18] which proceeded at each step with
systematic and explicit calculations of all torsion coefficients, we will bypass some of these steps,
thereby economizing some computations. On the way, we will closely observe the evolution of
the modified Maurer-Cartan 1-forms during the Cartan process.

The basic principle of Cartan’s approach is to create a collection of 1-forms (a coframe), by
absorbing as many as possible torsion terms, in order that the structure of this coframe be as
close as possible to the structure of the Maurer-Cartan coframe on the (prolongation of the)
model M- C C?, the tube over the real light cone {z} + 23 = 23} in R%:

MPc = {(21,22,23) € C*: (Re21)” + (Rez2)” = (Re23)*}

whose local CR automorphism group is known to be isomorphic to SO3 2(R).
Recall that a Maurer-Cartan form w valued in some Lie algebra g satisfies the structure equa-
tion with no curvature:

dw+ 2w Aw] = 0.

In practice, as in our current case, the right-hand side of the equation is not always zero, and
this constitutes the default of w being a Maurer-Cartan form. This happens when an invariant
is written as a linear combination of torsion terms, and such a linear combination fails to follow
the structure equations, thus obstructing the absorption process.

We now give a summary of our results. Recall that if J denotes the complex structure of
TC3, then the tangent bundle TM?® has a distribution T°M?® := TM® N JTM®> C TM?> of
codimension 1 which is invariant under J at each point of M5. Let p be a real 1-form with
Kerp = T°M?®. The Levi form is a bilinear map on T°M°® defined as (X,Y) +— dp(X, JY) for
any two sections X, Y of TM?>.

Letting CT'M® := C®rTM® be the complexification of the tangent bundle of M°, by defining
TYOMS := CTM® N T"OC? together with its complex conjugate 70! M® := T1.0M5, we have
the (classical) direct sum decomposition CT°M® = TOM® G T M®. Let {£1, L2} be two local
generators of T10M?5, i.e. a frame for TH0M.

Section 2 provides more information, while complete background may be found in [19].

By the assumption that the Levi form is uniformly of rank 1 at each point of M, there exists
by [19] a uniquely determined slant function k: M —: C such that the vector field:

]C = k£1 +£2

generates the kernel of the Levi form, of constant rank 2 — 1 = 1. If we let 7 denote a vector
field with p(7) = 1, we may consider the coframe {p, ko, (o} dual to {7, £;,K}. In fact, the
conjugates %o, ¢, and £;, K also come into play in order to really make up a (co)frame on
CTM?, whilep = pand T = T are real. A certain appropriate real 1-form p will be chosen, and
denoted pqg.

Performing the Cartan process, we will make a series of changes to these 1-forms:

(p07 Ro, <0) ~ (p07 ’%67 <(/]/)

and after (really a lot of) computations, we will obtain a 4-dimensional G-structure whose lifted
1-forms write up as:

p cc 0\ /[po
— e /

k| :=1| —ticCe 0 Ko
C _ 4 cee c 11
2 c c 0
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Also, after a long process, we will construct modified Maurer-Cartan forms:
7= a— (tf%ImZz)p— (Rl —F6> k—R*¢C - KSR -0,
72 = ﬁ—ile— <t—%|mZQ+K1)H—K2C—K3E—K4Z7

with R, K*, Z' being some explicit functions on M> x G*, where t is a new real variable, and
then, after meticulous absorption work, we will obtain as is stated below in Theorem 13.1 on
p- 366, three finalized structure equations of the neat shape:

dp (7r1+ﬁ1)/\p+i/<;/\ﬁ,

dk = T Ap+ 1 Ak + (AR,

d¢ = (7' =7Y)AC+it* Ak
+RpANCH+IpANE+W KA,

in which are present Pocchiola’s two primary invariants:
1 -
W:*WO and J:f,Jo,
c
together with a single secondary (derived) invariant:

. e 1 T — i 1 1—
R = Re [ZmW0+m<— 251(Wg)+2(— 3[,1(k)+3P)WO>‘|

We would like to mention that the two invariants that Pocchiola denoted W and J are now
denoted in our paper Wy and oJ,, with the subscript (+), designating functions defined on M?®
alone, independently of any extra group variable.

The expression of R was discovered by Pocchiola in [25, 18] thanks to intensive computer
explorations, but no details of proof appeared in print at all. In Section 12 of this paper, a
complete, detailed, hand-done proof, will be provided, thus verifying that R is indeed a function
of the first jet of Wy, hence a secondary invariant.

We will also construct a certain real 1-form A = dt + ---, and in Section 14, the final {e}-
structure that we obtain will take the following form (conjugate equations are unwritten):

dp =T Np+T ' Ap+ik AR,

de =T Ak + 72 Ap+ (AR,

dC=im* N+ 7 AC—T'AC+WRrACHRpAC+ Jp AR,
dr' =ANp—im2AK+CAC+ O,
d7r2:A/\/f+7r2/\ﬁ1—ﬁ2/\§—|—§2+hp/\/£,

AN =AAT  + AAT +in? AT2 + D,
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with
O =—2Wr Ap+ SWrt A p— LRy —T)p Ak — LRepAC

+ 3(Re — J)p AR+ 5Rzp AC+ (éWH—iR)m\n—Wm\g—Wg/\m,

Qo= —Rr*Ap— WP Ak + 2WF Ak —i(W, — 2R, + Jo)p A ¢
—i(WJ = Jo)p AR —iJp AC = §ReE AC+ 5(Rr — JO)R AR + 3Rz AC
— R(AR.

Furthermore, we will show that h and ® can be expressed in terms of ﬁl, of QQ and of their
first-order derivatives. Thus, this demonstrates that there are exactly 2 primary invariants.
Clearly, when W = J = 0, the {e}-structure collapses to:

dp=7T'ANp+T ' Ap+ik AR,
di =" AN+ 72 Ap+ (AR,
dC =im> Ak + 71 AC =T AC,
drt =ANp—iT2 A+ C NG,
dr? = ANk + 72 AT -T2 AC,
dA = AAT + AAT 4 in® AT

and these constant coefficients equations correspond to the structure equations of the tube M-
over the light cone, which is the reference model for this equivalence problem.

We would like to mention that, strictly speaking, Cartan’s equivalence method of producing
homogeneous models requires to normalize any group variable which occurs in some essential
torsion term, and this is what Pocchiola did in Section 7 of [25] for ¢ := (J;)'/? and in Section 8
for c := Wy, showing afterwards that e can also be normalized in both cases.

For this deep reason, Pocchiola then disregarded the — essentially useless — task of con-
structing a general {e}-structure, since, when Jy = W = 0, the final Section 9 of [25] shows
that one comes uniquely to the structure equations of the model M, without any further nonzero
essential torsion appearing. And this was really a discovery, because most of the times in CR ge-
ometry, primary invariants appear after a first prolongation.

However, because there is a tradition of setting up {e}-structures, even in absence of explicit
computations, even without discovering invariants at all, and because the needs for verifiable
computations has been expressed by some experts, we decided to set up the present article.
While re-building this chapter [25] of Pocchiola’s Ph.D. (Orsay University, September 2014),
we found a few copying mistakes in some intermediate formulas of [25, 18], but no error in
either statements or final formulas, e.g. Wy and J are correct.

For a more informative exposition of introductory aspects, the reader should read now the
brief and complementary Introduction to the Addendum to [18].

This paper is organized as follows. In Section 2, we recall the local geometry of 2-nondegenerate
Levi rank 1 real hypersurfaces M® in C?. In Section 3, we give a description of the G;-structure
of the biholomorphic equivalences of such real hypersurfaces. Section 4 gives a quick glimpse
of a series of normalizations of parameters, which will be detailed in Sections 5 to 10, with the
first appearance of Wy in Section 8. The explicit expression of the invariant J is given in Sec-
tion 11, and a complete proof of the above formula for R is detailed in Section 12. Section 13
gives a short summary of the things that have been done in the previous sections, and finally
Section 14 gives a proposed {e}-structure for the equivalence problem.
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2. LocAL GEOMETRY OF 2-NONDEGENERATE LEVI RANK 1 HYPERSURFACES M?® c C?

This section only summarizes what has been presented and detailed in [19, 17, 18]. Let
M5 C C3 be a C¥ (real-analytic) smooth, local or global, real hypersurface and let p, € M. In
any affine holomorphic coordinate system:

(zl,zg, w) eC? with w=u-+1iv,

centered at py = (0,0,0) = 0 in which a%’ o & ToM, there is a local C¥ graphing function
F=F (zl, 29,Z1, 22, v) with F(0) = 0 such that M is represented, in some (possibly small) open
neighborhood of the origin 0 by

u = F(Zla’ZszlaZQav)'

Convention 2.1. From now on, the hypersurface will be identified with its localization in some
small open neighborhood of the origin, and it will always be denoted by M.

As is known (see [19] for detailed background), the complexified tangent bundle CT'M :=
C ®g TM inherits from CTC := C ®g TC? two biholomorphically invariant complex rank 2
vector subbundles

TYOM = TYOC3NnCTM and 7'M = TOIC3NCTM = TYOM

which are conjugate one to another. Then a check shows that the two vector fields written in
the intrinsic coordinates (21, 22, %1, Z2,v) on M:

0 e 0 9 0
= —+A — d = — +A"—
= 0% + Ov an = 0z + ov’
whose coefficients are defined by:
; F
A= i ) =1,2
T, (=LY

generate T19M, locally. Hence their two conjugates £;, £ generate the bundle 79! M, also of
complex rank 2.
Then visibly the differential 1-form

0o ‘= d’l) 7A1 le — 142 dZQ — Kl dfl 722 dfg
has kernel
{o0=0} = T"'M & T™' M.

There are various (equivalent) aspects of the concept of Levi form of M, but they will not be
recalled here, since several sources treat that. Here, the Levi form of M can be represented as a
function of the points

b= (217 22,21, 22, U) € M7
valued in the space of Hermitian 2 x 2 matrices, and in terms of gy and of the Lie brackets of
the above vector fields, it writes as

_(00(i[L1,L1])  00(i[L2, L4])
LEn(p) = (Qg(i (L1, L5]) gg(i (L2, L>]) ) (p).

As is known, the biholomorphic invariance of the Levi form legitimates our current

Hypothesis 2.2. [Uniform Levi rank 1] At all points p € M, the Levi matrix (form) LF;(p) has
constant rank 1.
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After a linear change of coordinates in the (21, z2) space, we may assume that its (1, 1)-entry
vanishes nowhere on M:
00 (Z [ﬁl,zﬂ)(p) #0 (Vp e M).
This means that the real vector field
. —= ) —1, = ) O 0
T=i[Ln D] = i (L@A) -Ti(AY)) 5 = €

has nowhere vanishing real coefficient that will be abbreviated as
0= (K; +A'A, —AL —KlAi) £ 0.

Furthermore, since the 2 x2 Levi matrix has constant rank 1, the collection of its 1-dimensional
kernels at all points p € M spans a C* smooth subdistribution KM C T'°M which satisfies
([19], pp. 72-73):

[KYOM, K*YM] ¢ KYOM,
[K%'M, K%' M| ¢ K*'M,
(KM, K'M] ¢ K"M & K"'M (K%'M := K'OM).

With this, a vector field generator K of K'Y M writes uniquely as
K :=kLi+ Lo,

where the function £ — very important in the theory — is the negative of the quotient of two
entries of the Levi matrix

LA - L (4Y)

k= — .
Li(A)) = L (A)

Hypothesis 2.3. [2-nondegeneracy] At all points p € M, the Freeman form has constant (max-
imal possible) rank 1.

For a detailed presentation of this second concept of form, also biholomorphically invariant,
see [19].

Proposition 2.4. ([19]) In this formalism, M is 2-nondegenerate if and only if:
L1(k) # 0 (everywhere on M).

In summary, two functions will be assumed to be nowhere vanishing on M, corresponding
to the two Hypotheses 2.2 and 2.3:

Up) #0 and Li(k)(p) #0 (Vp € M).
Next, along with &, introduce a second and last fundamental function

L, + AN, — (A

P 7

All invariants and semi-invariants in this paper will express in terms of 2 and P.
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Next, according to [17, 25, 18], there are 10 Lie bracket identities

(7.0 =-P-T,
[T,K] = Li(k) - T+ T(k) - L1,
[T, =-P-T,

[T.K]| =Li(k) - T +T (k) L1,
[ﬁl,/q =Lq(k) - Ly,
(L1, L1) =—iT,
[£1,K] = L1(R) - L1,
(K, L1] = — La(k) - L1,
[, K] =0,
2.K ~Z.(F) T

Lemma 2.5. ([19, 17]) The following 3 functional identities hold identically on M.

K(k) =0,
K(P) = —PLi(k) — L1(L1(R)),
K(P) = — PLy(k) — L1 (L1 (R)) — i T(R). 0

Then the coframe

{po, Ko, Co, Fo, Co}
dual to the frame

{T. L1, K, L1, K},
i.e. which satisfies by definition

po(T) =1, po(L1) =0, po(K) =0, po(£L1) =0, po(K) =0,
I{Q(T) = 0, Iio([q) = ]., Ko(IC) = 0, Iio(él) = O7 lﬁo(E) = 07
G(T) =0, Go(£L1) =0, G(K) =1, Go(£1) =0, G(K) =0,
Fo(T) =0, Fo(L£1) =0, Fo(K) =0, Fo(£L1) =1, Fo(K) =0,
CO(T) =0, Co(ﬁl) =0, Co(’c) =0, Co(ﬁl) =0, Co(’c) =1,

has its 5 component 1-forms given explicitly by

dv—Aldz — A’dz — A dz, —Adz,

Po

ko = dz1 — kdzs, ‘
Co = dzz,

Fo = dz1 — k dZo,

(o = dza.

Notice that a different notation py # 0o has been employed just now. Hence using a classical
formula which goes back at least to Lie ([11, Chap. 5]) which holds for two arbitrary vector
fields X and Y and for any differential 1-form w

dw(X,Y) = X (w(Y)) - Y (w(X)) —w([X,Y]),
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by representing the 10 Lie brackets in some appropriate array

T L1 K L1 K

dpo dC
[T.£1) = -P-T + 0 + 0+ 0 + 0
[T,K] = £Litk)-T + Tk)-L1 + 0 + 0 + 0
[T.2,) = -P-T + 0 + 0+ 0 + 0 po Ao
[T,K] = Li(k)- T + 0 + 0 + TE Li + 0 po A Co
[£1, K] = 0 +  Li(k)-L1  + 0 + 0 + 0 ko A Co
[£1, L) = —-i-T + 0 + 0+ 0 + 0 ko AEo
[£1,K] = 0 + 0 + 0 + Lik)-L1 + O ko Ao
K, L] = 0 + —Lik)-L1 + 0 + 0 + 0 ¢o A Ro
K. K] = 0 + 0 + 0+ 0 + 0 Co Ao
[, K] = 0 + 0-Ly + 0 + Li(k) + 0 %o A G

and by reading this array vertically, we obtain the initial Darboux-Cartan structure:

dpo =P -poNko—L1(k)-poACo+P-poNFo—L1(k) poAy+i

dry =~ T(k)-

dCO = 01

po ACo— L1(R) - ko Ao+ L1(k) - Co Ao,

dRo = _T(E) " Po /\ZO_El(E) 'HOAZO_Zl(E) -Fo A o,

)

R0 /\EO7

325

The fact that the frame {7, £1,K, £;,K} is dual to the coframe {po, ro, (o, Ro, (o} yields a
formula that shall be used several times later.

Lemma 2.6. The exterior differential of any function G = G(z1, 22, %1, %2,v) on M expresses as

dG = T(G) po + L1(G) ko + K(G) Co + £1(G) Fo + K(G) ¢o.

Proof. Indeed, starting from the definition

G = Z—Gd gcid gidzz—i—gcjcf +g—gdzz,
and inverting the above coframe
dza = Qo,
dz1 = ko + ko,
dv = Lpo+A" (ko + k) +A%Co+A (Ro+ECo) +A° G,

Cpo+At ko + (A2 + kAl) Co + conjugates

we can replace, reorganize — unwritting the redundant conjugates — and reach the formula

oG

oG
dG = — (Epo +A ko + (A2+kA1)go) +— (ko + ko) +

ov

0
0z2
o o

G
oot —Co

9 9 E) 9
=(¢=)(6)- = +A* 2\ (G) - A2 b2 pAl
(Bv)( ) p0+(8z1+ 81})( ) no+(al+ Rl s

35) @
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For later much deeper computations, we need strong notational conventions. The order
succession for our five 1-forms which we will constantly use
{pO; ko, CO) E07ZO7 }7

induces an order succession for the ten generated 2-forms on the 5-dimensional CR manifold
M

po N Ko po A Co po N\ Ko po A Co
1 2 3 4
ko A Co Ko A\ Ko ko A Cy
5 6 7
Co N Ro Co A Go
8 9
Ko A Co-
10

With such a numbering, we can abreviate the structure equations as — dropping their conju-
gates —

dpy = R(l)po/\fﬁ() +Rgp0/\C0 +Rgp0/\R0+Rép0/\Zo+ilio/\Eo,
dro = Kg po A Co + K} ko A o + K Co A Fo,
d¢o = 0.

Convention 2.7. All functions of p = (z1, 22,%1,Z2,v) € M will be denoted with a lower index
(+)o, always employing the special auxiliary font characters A, B, C, . ...

After some transformations in the next sections, this initial coframe will change and become
more complicated (unwriting the conjugates)

{PO; Ko, CO} ~ {[)07 Ko, C[/)} ~ {P07 "{6’ C(/)} ~ {pOa "{/Oa C(/)/}a

and new structure function R}, Kj,, Z{,, ... will appear.

We end up this section by stating some technical commutation relations that shall be con-
stantly necessary to normalize incoming (complicated) expressions in order to avoid ambigu-
ities. In fact, we can take advantage of (k) = 0 from Lemma 2.5, to make K ‘jump’ above
iterated derivatives like e.g. in

/N /N

K (L1(%)) , K (L1(L:(R))) -
Precisely, the last, 10" Lie bracket relation preceding Lemma 2.5
(2.8) —Li(k) - Li(+) = [K,L1] (),
when applied to the function « := k& yields

— L1 (k) L1(k) = [K,L1](k) = K(L1(k)) — L1 (K(k)o)
= K(L1(k))
Lemma 2.9. One has the 3 relations
1) K(L1(k)) = —Li(k) L1(R),
(2) K(Li(L1(k))) = —2L1 (k) L1(L1(k)) — L1(L1(R)) Li(k),
3) R(L1(L1(L1(R)))) = =3 Li(R) L1 (L1(L1(R)))
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Proof. As (1) is done, we can apply £ () to it, reversing sides

- Zl (Zl (k)) Zl (k) - Zl (k) L1 (Zl (k)) = Zl (’C (51 (k)))-
Similarly, we apply (2.8) to « := L (k) and we reach (2) after a replacement

“Li(R) Ta(La(k) = [K.L](La(k)) = K(L.(Za(R))) - L (K(Z1(R))) -

Now, as (2) is done, we can apply £;(+) to it, and get after reorganization

LT E®) = —22(F) T (B (B #) — 32 (B (B) T (B )
— Li(L1(L1(R))) La(R).
Lastly, we apply (2.8) to « := £1 (L1 (k)) and we reach (3) after a replacement

~Li(k) L (Li(k) = K2 (L1 (Ea(k)

= KT (ZR) - T (KT (T k). 0

replace

3. INITIAL G;-STRUCTURE FOR LOCAL BIHOLOMORPHIC EQUIVALENCES h: M — M’

Now, let h: U = U’ C C? be a (local) biholomorphism from an open set U C C? containing
U > 0 the origin onto its image

WU) = U’ 5 0 = h(0),

which is also an open set U’ C C"* containing the origin 0’ in another target complex Euclidean
space C’* having the same dimension.

(CS

U

| e— |

V 0 \

As in Cartan’s equivalence theory, assume that h(M NU) C M’ is contained in another real
hypersurface M’ C C'?, also passing through the origin 0’ € M’, represented in holomorphic
coordinates (2], z5, w’ = v’ + iv') by a similar C* graphed equation
u = F'(2], 2,7, 75,0").

We now make the convention of not mentioning the open sets that must sometimes be shrunk,
so that we think of h: M — M’ as being a CR equivalence between hypersurfaces M C C3
and M’ c C"°.
In the target space, introduce similar generators £}, £} for T*:°M’. Since h is holomorphic, its
differential h,: CTC?® — CTC’® stabilizes holomorphic (1,0) and holomorphic (0,1) vector
fields

h.(TV0C?) = TtoC” and he(TO1M) = T,
Furthermore, by invariancy of the Freeman form, h respects the Levi-kernel distributions

hy(KM°M) = KMOM'.
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Consequently, there exist functions f/, ¢/, ¢’ on M’ such that
he(K) = f' K,
hi(Ly) = LY+ € K,

whence by conjugation
— —

h(K) = F K,
he(L)) =L, +eK.
On the other hand, there is a priori no special condition that shall be satisfied by h.(7), except

that it be a real vector field, because 7 is real. Thus, there are a real-valued function ¢’ and two
complex-valued ¥’ and d’ on M’ such that

hoT)=d T +V L, +d K +b L, +d K.
In fact, the function a’ is determined, because
hi(T) = hi(i [L1,L1]) = i [ha(L1), he(L1)]
i[eLy+ K, @L, +eK ]
= 7 i [L], Zlﬂ mod (T°M' & T%'M'),

whence necessarily
a = 7.

Summarizing, we have the following matrix relations

T ey d b d T
L1 0 ¢ ¢ 0 0 1
|l K|l =10 0 f 0 0 K’
ol o 0o o0 ¢ e||ZL
K o 0 0 0 f K

As h, is invertible, the function f’, and then the fugction ¢’ too, must be nowhere vanish-
ing. The relation between the coframe { 00, K0, Cos Ko, C 0} in the source space and the coframe

{ b, Kb, Co- Fo, o) in the target space is therefore given by a plain transposition

o d¢ 0 0 0 0 o
K ¥ ¢ 0 0 0 Ko
el = d ¢ f 0 0 Co
RO b 0 0 @ 0 Ro
I d 0 0 e F) \&

These preliminaries, also explained in [16, 25, 18], justify that the initial G-structure for such
equivalences of CR manifolds is the matrix ambiguity group G is constituted of 5 x 5 matrices
of the form

c€c 00 00
b ¢ 0 0 0
d e f 0 0
b 0 0 € 0
d 0 0 & f

with free variable complex entries
c, f € C\{0} and b,d, e € C,
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namely
p cc 00 0O 00
K b ¢ 0 0 O Ko
¢ = § e f 0 O o
7l |poocofl®
¢ d 0 0 & f Co

Eliminating the conjugate 1-forms &, { for which the structure equations are redundant, this
can be abbreviated as

p cc 0 O 00
K = b ¢ 0 Ko
C d e f CO

4. A LABYRINTHMAP TO POCCHIOLA’S CALCULATIONS

The successive reductions of this G; structure will look as

cc 0 O cc 0 O cc 0 0
g=|b ¢ 0 ~ g:=1b ¢ 0 ~ g:= [ —ice ¢ 0
d e f d e ¢ d e
cc 0 0
~> g = —1Ce c 0 ,
i ce? [
T2 ¢ <

thanks to successive normalization of some group parameters (offered by some essential tor-
sion coefficients yielding invariants that are deeper than Levi and Freeman forms)

c— . { 1 Cee . C
f = Eﬁl(k), b := —ZCG—FgCBo, d:= —5?4‘2%1{07
in terms of the following two function on M
7 (7 (b B
By = Li(Li (k) -P,
Ly (k)
Ly (L1 (L (k L(Li(k) | 1 Li(Lk)P 1 1
H, = 1 1 i( 18)) 2 1£ 1(k)) L 1(71( ) +161(P)71P2'
6 Li(k) 9 Zi(k)2 18  Ly(k) 9

This function H, coincides with Pocchiola’s function H.

The next sections will present in details these successive reductions of G-structures, by these
normalizations of the group parameters f, b, d. Contrary to [18, 25], all computations will be
progressive, simple, detailed, readable, clear, without needing any help of either a computer or
a pen. A great care will be devoted to readability.

5. FIRST LOOP: REDUCTION OF THE GROUP PARAMETER f

We recall that the initial Darboux-Cartan structure of the coframe { po, o, (o, %o, o } is, with-
out writing conjugate equations — remind p, = po —
dpy = Ppo A —ﬁl(k)po A o +PPO N Ro —Zl(ﬁ) £0 /\ZO + 1 ko A\ Ro,
(5.1) dko = —T(k) po A Co — L1(k) ko A Go + L1(k) Co A Fo,
¢y = 0.
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With the first G-structure exhibited above, introduce the lifted differential forms, defined by

P cc 0 0 Po
Kk | = b ¢ 0 ko |,
¢ d e f Co
id est
p = cCpo,

K = bpg + cko,
¢ = dpo+ekro+fCo.

Here, c,f € C* and b,e,d € C. Mind that conjugate equations giving % and ( are not written,
but will be used.
An inversion yields

_ 1
PO = CEpa
1 b
(5.2) Ko = —K— —=p,
c ccc
be — cd e 1
G = ccef p_EH+fC'

With the above 3 x 3 matrix g representing the general element of a 10-dimensional (real) group
G1Y C GL3(C), the Maurer-Cartan matrix is

Cdc+cdc 0 0 i 0 0
dg-g~' = b de 0 || -2 1
dd de df be—cd e 1

a+a 0 0

= B a 0

~ 0 €

in terms of the group-invariant 1-forms

dc
o= —,
C
db  bcdc
B = c©  cc’
—cd
o @_bd:e+be 7c n
cc ccc cccf
de edf
6= — — —,
C cf
_df
€ = 2

As is known, after painful computations whose outcomes are presented extensively in [25, 18],
one can re-express, using (5.1) and (5.2), the exterior differentials of the 3 lifted 1-forms p, ¢,
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as
dp = aANp+aip

+ RPN+ REpACHR pAR+ R pAC+ ik AR,
dk = BAp+alAk
+K'pAR+K2pACHE3pAR+ K pAC
+ESKACHES AR+ K| AR,
dC =vyAp+dAK+eA(
+ZY oA+ ZPpANCHZBp AT+ ZApAC
+ 25k ANC+Zk AR+ Z8CAR
in terms of certain complicated functions R?, K%, Z* of the horizontal variables and of the group
parameters as well

(21,22,31752,’()) X (C,E,f,?, b,B,d,a,e,é) e M5 x Glo,

but we shall not need the expressions of all these functions, and focus only on the boxed one,
K?®, since it will bring an interesting normalization for the diagonal group parameter f.

Notation 5.3. Given a differential 2-form Q € T'(M, A>T* M) on an n-dimensional manifold M

equipped with a coframe {w',...,w"} for its cotangent bundle T* M, which is expanded as
O = Z Ai,j wi A\ on,
1<i<jsn

with uniquely determined coefficients-functions A, ., for fixed i < j, the coefficient A; ; of
w’ A w’ will be denoted by
[oﬂ A wj} {Q} = Ai,j~
To capture K 8 without pain, the computation / re-expression of dx starts from x = b py + c kg
as follows to see how Maurer-Cartan forms enter the play
dk = db A pg+dc A kg + bdpy + cdkg
=dbA (Zp) +dcA (L — L2 p)+ Torsion
= (db— 2% ) A p+ (£) Ak + Torsion
= B A p+ a Ak + Torsion.
Certainly, K® belongs to the torsion remainder, and we want to determine only
K® = [¢AR]{dr} = [¢ AR]{bdpo + cdno).

For the first term b dp,, we look at (5.1) in which we replace visually po, (o, K0 by p, ¢, K watching
simultaneously (5.2) — no pen needed! computers shut down! — and we get

b[¢ AR|{dpo} = 0+0+04+0+0 = 0.

Proceeding similarly, just with eyes

c[CAR]{dro} = 040+ Ly (k) [C/\/ﬁ]{(becc_cfdp—;ﬁ+:C)/\(— 2 ot 7

whence adding
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Furthermore, without computation, we see that K 8 is not absorbable in the Maurer-Cartan part
B A p+ a A k by means of any replacement

a=d +ap+ask+azl+as®+as(,
B=p+bip+brr+byC+biE+b5(,
because the result will always be
something A p + something A &,

whereas K® ( A is not A-divisible by either Ap or Ak.

Consequently, K® is an essential torsion coefficient, and by general Cartan theory, K® may
bring a group parameter normalization.

In fact, since the diagonal coefficients ¢ # 0 # f of the invertible triangular matrix must be
nonvanishing, and since £ (k) # 0 is nowhere vanishing by our assumption of 2-nondegeneracy,
it is natural, then, to normalize K8 to be constant nonzero, eg. K 8 := 1, and this yields a re-
duction of the G'°-structure to an eight-dimensional G®-structure by setting

fi= %Zl(k).

Inserting this in the lifted coframe

p cc 0 0 00
k| = b ¢ 0 ko |,
¢ d e £Lyi(k) Co
we are conducted to change the initial coframe by introducing the new horizontal — i.e. de-
fined on M — 1-form
(5.4) G = Li(k) Co-
As anticipated in a summary supra, we are thus changing of horizontal coframe

{p()a Ko, <07 EOa ZO} ~ {PO: Ro, C(/)y EO? Zé)}a

and unavoidably, we have to set up its Darboux-Cartan structure.
Thanks to Lemma 2.6, we can compute

Gy = d(Ly(R)) A Co+ La(k) AdSo
= T(Zl (k)) po N C() + L1 (Zl (k)) Ko N\ C() + K(Zl (k)) CO A COO + Zl (Zl (k)) Ro N\ CO
+ K(L1(k)) Co Ao +0,

and next, replacing everywhere (; =

Zcé)k) , reorganizing, and transforming the last term above
1

in application of Lemma 2.9 (1), we obtain the structure equations enjoyed by this new initial
base coframe

dpo :PpO/\HO_ﬁig:;pO/\Cé—i_PpO/\Ko_lﬁ:iE:; po/\zg—l—iﬁio/\ﬁo,
(5.5)
TR , Lk , ;o
dro = =7 k)) oA £1Ek) Fo Mo+ Go Mo,
, T(Li(R)) L1 (L1 (k) , Li(L®) (k)
d¢y = 72 ") po A Co + (k) ko A Co k) Go A LR Co A Co
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Sometimes, it can be useful to abbreviate these formulas as
dpy = Répo A Ko —|—Rgpo A ¢ —|—Répo A Ro —|—Egp0 /\Zg + 1 ko A\ Ro,
dro = Kg po A ¢+ Kg w0 A C+ ¢ A o,
dCh = Zg po NG+ Ziy ko A Gy + Zg G Ao + Z9 G A Coy

and no primes will be appended to these coefficients-functions, for the reason that exactly two
further changes of initial base coframes

R = =N
{PO, Ko, C(/)v Ko, CO} ~ {PO> "{67 C(/)v "{6, CO} ~ {pO» "{6, C(/)/a Ké)a CO}
will force us to introduce e.g. Zj and Z};’, so that we will avoid to use primes trice.

6. SECOND LOOP: REDUCTION OF THE GROUP PARAMETER b

With this new reduced (real) eight-dimensional group G, the lifted coframe, in which for
simplicity, we use the same letters p, «, { as before, becomes

1= cCpp,
o @ 0 0 00 p Po
k]l=b c 0 Ko — k= bpo + cro,
c C
¢ d e ¢ 5 ¢ = dpo+eno+ =G,
and inverse formulas are
_ 1
Po = e P
b 1
(6.1) kg = ——p+ — K,
ccc c
be — cd Ce C
I _ € e
G = ccc P’ + c ¢
The Maurer-Cartan matrix becomes
Cdc+cde 0 0 1 0 0
dg-g~' = db dc 0 -5 1 9
dd  de de—ck |\ b e o
at+a 0 0
= g a 0 ;

~ 6 a—a

in terms of the group-invariant 1-forms

dc
o= —,
C
db bdc
pi==-—
cc ccc
dd bde be—cd be —cd _
¥i=—=—-—++ — dc — —— dc,
cc ccc cccc cccc
5. de_edc ed
¢ cc cc

Now, let us exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates

(21,22751,52,11) X (C,E, b,B,d,d,e,é) e M5 xG8.
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The computation starts as

dp = (EdC+CdE) /\p() +CEdp(],
(6.2) dk = db A pg + dc A kg + bdpg + cdky,
dc cdc

dCde/\p()‘Fde/\I{o‘i’(**j
C CcC

)/\C()erdpoJredﬁoJr%d((’).

As is known, one must replace in second lines dpg, dko, d¢, by the structure equations (5.5),
and after, replace everywhere py, Ko, (), using the inversion formulas (6.1).

However, contrary to Pocchiola’s systematic approach, we will not perform these calcula-
tions completely, but select only meaningful terms.

At least, at the level of Maurer-Cartan forms, after replacements of py, ko, ¢{ in the first lines
of (6.2) above using (6.1), we have as usual

dp = (a—i—a) A p + Torsion,
dk = BAp+ aA K+ Torsion,
d¢ = 7/\p+5/\m+(o¢—&)/\C+Torsion.

Question 6.3. Without computing everything, what are the shapes of the three Torsion remain-
ders?

Consider for instance what happens of the last term £ d¢j in d¢, when performing the re-
quired replacements, and restrict attention even to the last term of £ d( in (5.5), which becomes

cLi(k) , = _ cLi(k) (be—cd Ce < be—cd & c-
Egl(E)CO/\CO_E[:l(E) ccc p_ccﬁ+c< 4 cc p_&K+EC ’
After expansion, we see that are present the eight 2-forms
() p AR, ()P A, ()P AF, () pAG,
(s) K AR, (o) AC, (o) C AR, (o) CAC

Doing the same for all torsion terms, we may realize — although it is not necessary to check
this for what follows — with almost no computation that the nonexplicit shape of the structure
equations of the lifted coframe is

dp = (a+a)Ap+R1pAm+R2pAg+pAR+R2pAZ+mAE,
di = BAp+ank+ K ' pAk+K2pACHK3pAR+ K pAC
+K5/$/\§+/€/\E+1-C/\E,
d{ =vAp+dAk+ (a—a)A(
+ 2o AN+ ZPpANCHZPp AR+ ZpAC
+Z5/1/\C+Z6/£/\E+Z7n/\z+C/\EJngC/\Z.
Of course, the preceding normalization f := £ £; (k) forces
1 = [(AR|[{dr},
a fact that can also be confirmed by a direct computation of this torsion coefficient (exercise).

So we do not compute all torsion coefficients like Pocchiola did, but we determine before
some essential torsions, so that we may focus on just the useful torsion terms. In advance, we
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have boxed above the 3 useful ones, shown by Pocchiola. The subtle thing is that all three
structure equations are needed.

Lemma 6.4. Here is an essential linear combination of torsion terms
R —2K°+ 7%
Proof. In order to "absorb’ as many torsion coefficients as possible, let us substitute
=1 d +aptazk+as(+ask+asC,
= B +bip+bak+bsC+bsE+bs(,

=y 4+cpteartces(+eak+cesC,
= 5/+d1p+dgli+d3C+d4E+d5Z.

o, 2 ™ °
|

At first, we have to transform the structure equations after such a substitution, the task is easy,
and we write out the details so that the reader needs no pen and no computer.
Substituting, the Maurer-Cartan part of dp becomes

(a+a@)Ap=(a/+a)Ap+0+askAp+as(Ap+asRAp+as(Ap
+0+amrAp+asCAp+assAp+asCAp,

hence adding and reorganizing visually, we get

dp = (/ +@) Ap

+p/\f<;(R1—a2—a4) +pA§(R2—a3—65> +p/\E(§1—a4—62)

+p/\2(§27a5763)+i/<;/\ﬁ.
Next
BAp+ank =B Ap+0+bakAp+bsCAp+biRAp+bsCAp
+d ANk+arpAk+0+a3CANk+asRAK+asC Ak,
hence
de = B'Ap+ad Ak
+p/\li(K1+a1—b2)+p/\C<K2—b3)+p/\E(K3—b4>+p/\Z(K4—b5)

+HA§(K5—a3)+,<;/\E(>+fmf(—a5)+§/\ﬁ.

Lastly

YAp+oAK+ (a—a)A( =7 Ap+0+cakAp+cs(Ap+caaRAp+esCAp
+ 0 Ak+dipAE+0+ds(Ar+dyFAK+dsCAK
+d ACHarpACHak ANC+HO0+asBAC+asCAC
— A NC—a pAC—@RAC—a3CAC—agk AC—0,
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hence

dC =7 Ap+& AN+ (o =) A ¢
+p/\f€(Z1—02+d1) +p/\C(Z2—03+a1—61) +pAE(Z3—C4) +pAZ(Z4—65)
+m<(257d3+a2754) +/<;AE(ZG—d4) +m2(zld5)
+C/\R(Zg—a4+ﬁg ) +<AZ(Z9—a5+ag).

Extracting the boxed three new torsion coefficients

—=17 —=1

R =R —a4 — G2,
KG/ — K6 — au,
Zgl = ZS — a4 +52,

we see well the announced essentiality /invariancy of this torsion combination
R'—2K% 4+ 7% = R —2K%+ 2% O

Consequently, we may restrict ourselves to computing only these three torsion coefficients.

Lemma 6.5. Their explicit expressions are

El E ce Zl (E) b
C

K8 =

g 1olb®) &L
C

Proof. We proceed by chasing coefficients. Let us treat R'. From (6.2), replacing in (5.5) by
means of (6.1), we reach its expression

-1

—/1 b 1
R [pAn]{ccdpo}0+0+[pAn]{ccP(ccp>A<Cccp+cn)
 _Li(k) (1 be—cd & c-
«c L1 (k) (cé p) A ( cc / EH+ EC)
1 b 1_
+CCZ(_EP+EH /\(_a +C:‘€)}
=cc P ! 1—|—CE ZI(E) L E—icé b 1
T &, € T Ly(k) <K, cC ~Cccc, ©

Next, from (6.2), let us treat

Kb = [/i/\ﬁ]{bdpo —|—cd/£0}.
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In b dpy, the first four terms in (5.5) have zero contribution, since they are multiples of py, hence
of p, whence

[ AE|{bdpo} = 0+0+0+0+ [ AE|{birg ARo}

[nAH]{ib(clc)cerin)A(cicerin)}
b

=1—.

Also, in c dky, the first two terms contribute 0, and it remains
[k AE|{cdro} = 040+ [ AR]{c(y AFo}

= [I{/\H]{C(zin)/\<iﬂ)}

e

c
Lastly

c
78 = [ AT {d dpo + edro + Edgg)}.
Here, d dpg contributes 0. Next, the first two terms in e dkg contribute 0, and it remains

[CAE]{edro} = [CAE]{eliAro}

{9 (67))

e
.

Also, in £ d(;, the first two terms contribute 0, and the last two terms are

ermfgs) - - 2 o (G ()

c Ly(k . c ce
+c§1§k§ [CAH] {(CC) A (‘cc“)}
1 L (L1(k))  ce Ly(k)

Adding, we get Z8. O

Observing that necessarily —as = 0 from [k A (] {dk}, we realize that some other invariant
relations between torsion coefficients appear

RQI*KE), _ R2 *KS
R'+7” =R+ 2°
that could potentially bring normalizations of some group parameters, but will not, as it will

come out that they are identically satisfied. However, knowing them will be very useful later,
hence we state a supplementary:

Assertion 6.6. Three other torsion coefficients have the common explicit expression
—=9 C ﬁl (k)

RP=K'=_-7 = — 22222
c Ly(k)
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Proof. Our technique gives

R? = [pA(]{ccdpo}
_Lik) 1 ¢

~—

Next
K® = [¢AE]{bdpo + cdro}
= 0+ [ AK]{cdro}
(O
Li(k) cc
Lastly

Z9

[/ A C){ddpo +edio + = dy}

0+0-+ [RAc]{<dc}
Cﬂl(E

~—

O

Coming back to Lemma 6.5, we can now compute in details, emphasizing one annihilation,
the expression of the interesting invariant torsion combination

R —oKS 4+ 78 =

Since the group parameter b € C is not on the diagonal, there is no restriction for it to be
nonzero, hence we can normalize it by requiring that

0=R —2KS+ 75,
and this produces the announced normalization

i (ElLR) 5
6.7 b:= —ice+ -c —-P].
(6.7) iCet g ( o)
For convenience, let us abbreviate

_ Li(Li(R)) P
0o -— Zl<k) ’

which is function on M, as its lower index o points out, so that

b:= —ice+ %CBO.
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After this normalization, the lifted coframe becomes

P cC 0 0 25
K = —1Ce + %CBO c O Ko
¢ d ¢ 0

Consequently, we can transform /rewrite in a natural way

K = (—iEe—i—%cBo)po—i—cno

. i
(—ice)py+c (Ko+ gBopo),
———

=: K

and this conducts us to change of initial coframe on M
= ., =
{va Ko, C(,),Iio, CO} ~ {va Hé)a C(/Jv n67<0}7
by introducing
i
(6.8) K = ko + §B0 00-
It follows that )
c i c
¢ =dpg+ero+ %C(’) =dpy+e (56 - gBopo) + %C{)

) C
= (d— geBo)p(ﬂ—e%—I— EC(/)
d/

Before, d € C was a parameter representing some unknown function. Introducing the new
unknown /parameter

1

d :=d——e,
3

we come to a new G-structure of real dimension 6 parametrized by c,e € C* and d’ € C whose
lifted coframe writes

1) cc 0 0 Po
k| =1 —ice ¢ 0 K(
¢ d’ g G

We will write again d instead of d’.

—/
7. DARBOUX-CARTAN STRUCTURE OF THE COFRAME { po, k§, {5, Ko, Co }

Before continuing, we must compute the Darboux-Cartan structure of this new initial coframe

{po. K}, (6,%6,28}, for which absolutely no details were provided in [25, 18]. Here, we offer
complete explanations.
Abstractly, the structure in question will have the shape

dpo = RY po Akl + R po A+ Ry po N+ R po ACo+ ikl N,
(7.1) dry = Ky po Ak + K5 po A Gy + Kg' po ARy
+ K k) ACh+ K Ky AR 4 Co ARy,
dCh = Zg po A Gy +Zg kg A G+ 25 G Ao + 25 6 A G

Our goal is to compute explicitly all these coefficients, and the answer is stated as follows:
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Proposition 7.2. The Darboux-Cartan structure for the initial coframe { po, r{), (), Ry, Z{)} expands as

= <m+§P>poAﬂa—‘1(k) pAG

1 Ly (£1(k)) . Li(k)
+<3 Z ) +3P>p0/\/€0—£1(k)

Lo /\CO+Z’%O/\E65

L, (P) —9PP> po Ny +0po Ay

+ - P) ko NG + (o A R,

d¢y =

Observe from these explicit expressions that
51
2KY = R, + 7% and RY = KY.

Proof. We treat first dpy and d(;, which are easier than dx;. Observing from (6.8), that

po N ko = po A Kg and po NRo = po AR,
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it comes by replacement in (5.5)

= Li(k —
E ; 0 A Co+Ppo ANFo — ilgk; po A Co

3B )} (4580)

and a plain expansion yields the stated expression of dpg. Next, again from (6.8), it comes by
replacement in (5.5)

iy = TEE) gy A0 ®) (mo—é( éfk(f))—l’) o)Aca

dpo = P po N kg —

) (k)
L1(L1(R)) E1(£1 Li(k
7£1( 7 o A ( 3 < Lo ) + Co/\Co

and visually — no pen needed —, we obtain the stated result. To treat d/—@o, we start from
/ 1
Ky = ko + 3 By po

and we exterior differentiate

(7.3) drly = drsg + %dBO A po+ %BO dpo.
As a preliminary, we need to know dBy. Let us recall that
L1(L1(k — - Li(Li(k
O:M—P whence 3071(77()),13.
Li(k) Li(k)

A plain application of Lemma 2.6 provides this exterior differential

Ly(Li(k) 5\ _ (T(Li(La(R)) T (La(R) Li(La(R)
I6 s ‘P>‘< Lk Gep T(P)>p°

. (& GER) _ HEOLE®) £1<p)>
. (K(ﬁz(j,iﬁk))) B ’C(ﬁl(kg (k12(£1<k>> ) ,C(P)> G
(B 2 s).

N (’C(ﬁlﬁ(j}gk))) _ KRz <k21 (»212(&1 (k) ,C(P)> Z

an expression that we will abbreviate as
dBy = Uy po + Vo ko + Wo (o + XoFo + Yo (-
Assertion 7.4. After simplifications
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Proof. In the first two terms of Yy, we replace from Lemma 2.9
K(E(La(k)) = 2
K(Li(k)) = = L1 (k) L1(k)
and in the third term of Y, we replace from Lemma 2.5
K(P) = —PL(k) — L1(L1(E)),
which yields the result after one (underlined) pair cancellation

_ 2Li(k) Ly (L(R)) e
N7 Li(La(R)) |+

+PLi(R) + L (L)) 0

Temporarily, let us work with the abbreviations Uy, Vo, Wy, Xy, Yo. So, using the previous
structure formulas (5.5) in which, directly we replace

¢

CO El(k)7

let us add line-by-line all three terms of (7.3)

T (k) L1(k) _
drh = — — A -2 A /+ I AR
Ko . (k) po N Gy Zi(k) Ko A\ Gy + Co A Ko
+£U N +£V/<;/\ +£W Cé Npo+ = X/<;/\ E’Y 76 N
3 0P0 N Po, 3 Voko Po 3 Z1(k) Po 30 ko Po 3 Oﬁl@) Po
i Li(k) TR Ly (k)
4+ =BoPpo A fB ANCy+ =BoPpg A fB Bli/\li,
3 0L pPo /NkKo — Ol.ll(k) Po Co 3 0L Po /Nko — 0£1<k) Co 0 ko 0

hence after collecting coefficients of basic 2-forms, we get

TR i Wo o i, La(R)
d“o—m“o[*m*ﬁm*ﬁ Tt 5 v gmr
+p0/\f€0[ §X0+ BOP +p0/\C0|:—£— OZEZ;]

+ROAC6[—%1EZ;]+n0/\no[—fBo:|+Co/\no

Next, replace everywhere
, 0
Ro = Ko — gBOpo.

Then using again ko A po = K({ A po, only the last line changes, as it becomes

(-3 am) 6 [ 280 (o) 1 (3= ) [- 48] 61 (o § o)
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Expanding and collecting visually — no pen needed —, we get

Tk) i Wo Lik) | ip Lik) ig

= ponch|— LB 1 Wo ip L £
S S VA RE "Tik) 3Lk 3

+ po A g —%Vo+ %BOP+ ;B030:|

+ po /\RIO —2X0+ EBop—f— ;BQB():l

| 3 3
-/ [ ) YO 2 Zl(ﬁ)
+ po A —-—-———--B —
po A Co 3£1(k) 3 Oﬁl(k)o

[ Li(R 1
+ ko A ngkﬂ + Ky AR {330} + () A Ro.
L 1

To finish, we must yet replace V,, Wy, Xy, Y, by their complete values, and we will realize, as

indicated by anticipation above, that the coefficient of py A Zg vanishes identically.
Firstly, a replacement followed by a visual expansion finalizes

i£12121k iﬁlzlk Z1Zlk 7 —_
i L1 (Z1(k)) io— i (L (71(/%)) =\ [ L: (ﬁ1(%))
Secondly
, N T(k) i /C(Zl(21(k))) i K(Z1(k)) 71(51(]8))
on G} = = s T L B Li(k)®

i |K@)| i Ly(LiR)) i
T3 3 o@ 3l

but here, we must still replace the boxed term using Lemma 2.5

, N T(R) i /C(Zl(zl(k))) i K(Zl(k)) Zl(Zl(k))
P NGIRINE = C G T T D T3 Ly

3
ip i LLk) 1 TR i Li(Lk)

3 . 3 Lik) 3Li(k) 3 Lyi(k)
A pair cancellation makes the obtained expression match precisely with what Proposition 7.2

stated, after some permutation of terms.
The third replacement conducts directly to the stated result

i T1(C1 (Z1 (R i T (R)) il -
(oo AFo) {drg} = — 5 1(21((k1)( ) +3 121(115)2)) +5L1(P)

P .

o

1
3

1 Zl (Zl(k)) = 1 ==
e P—_-PP
MERATS) 3
J— S 2 3 —
n 2 £1££1(k ) _ ﬁ £1££1(k)) P+ EFP,
9 L k)2 9 L4 k) 9
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while the fourth (last) brings an identically zero result

—r iy b Zl(E) L (71(]%)) ) Zl(E) = i Ly (71(]%)) Zl(E)
79 lenGln) = s B TR Sam . 3 L) L),
i L1(k)
NN .

8. THIRD LOOP: REDUCTION OF THE GROUP PARAMETER d

After normalization of the group parameter b from (6.7), we have a new reduced group G°
of real dimension 6, and the lifted coframe is

= cC
p & 00\ [ P ,
(8.1) k| == —tce c 0 K — K 1= —1Cepo + CKy,
/ C
¢ d e £ 0 (::dp0+en6+EC{),
with inverse formulas
1
PO = —= P,
cc
e
(82) Kg = 1—p + — K,
cc
Cee d ce C
G (- ), BT
ccc  cc cc c
The Maurer-Cartan matrix becomes
Cdc+cdc 0 0 i 0 0
dg-g~* = | —iedc—icde dc 0 Qs : 0
at+a 0 0
=: 8 « 0 ,
~ 18 a—a
in terms of the group-invariant 1-forms
dc
a = —,
c
.edc .edc . de
Bi=t——1i— —1i—,
cc cc c
cd + i cee dc dc dd . ede
v = (f) -t =+t —=+1—.
ccc c c cc cc

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates

(2’1,22751,52,11) X (c,E,d,a,e,é) e M5 x GG,
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after some computations, we may come to structure equations of the abstract shape
dp = (a+@)Ap
LR YAR T REpACHR pAR+ R pACHik AR,
dk = BAp+aiEk
+K1p/\H+K2p/\C+p/\E—|—K4p/\Z
+ K5k ANC+ KSk AR+ CAR,
d{ =vAp+iBAE+ (a—a)AC
+Z oA+ ZPpNCH ZPp AR+ ZEpAC
+Z5/£/\C+HAE+Z7/<L/\Z+ZSC/\E+ZQC/\Z.

Before really computing explicitly some of these torsion coefficients, let us examine what are
the absorption equations. For this, we replace

a=ad+aptazk+azl+as®+as(,
B =B +bip+bar+bs{+biE+bs5C,
y=94captertce(+aur+cl
A moment of reflection convinces that the result for dp is the same as in the proof of Lemma 6.4:
dp = (&' +@) Ap
+p/\m<R1—a2—a4> +pA§(R2—a3—a5) +pAR(R1—a4—62)
+p/\Z(E2—a5—63) +iKkAR.
Similarly, dx is unchanged
de = ' Ap+ad Ak
-‘rp/\li(Kl-i-al—bg)—&-p/\C(K2—b3>+p/\E(K3—b4)—‘y-p/\Z(K4—b5)
+/</\C(K5—a3)+/<a/\E<K6—a4)+nAZ(—a5)+C/\E.
However, for d¢, we have to compute
YAp+iBAE+ (a—a)AC =7 Ap+04+cokApt+esCAp+eaRAp+esCAp
+iB ANk+ibipAk+0+ibs( Ak +ibyRAK+ibsCAK
+a' ANCH+arpACHask ANCHOF+asRACH+HasCAC
— @A NC—TapAC—aRAC—a3CAC—TauwAC—0
and we get
dC =" Np+iB A+ (o —a) AC
—|—p/\f-£<Z1—|—ibl—CQ)+p/\C(Z2—03—|—a1—61)+p/\E(Z3—C4)—|—p/\Z(Z4—C5)
+/</\C(Z5—ibg+a2—64) +m\E(ZG—ib4> +mAZ(Z7—ib5)

+C/\E(Z8—a4+dg> +§AZ<Zg—a5+63).
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Lemma 8.3. Here is an essential linear combination of torsion terms
iK®—Z°.
Proof. Indeed,
K% = K3 — by,
Z% = Z° —iby,
whence
iKY — 7% = iK® - Z°. O

Proposition 8.4. Their explicit expressions are

K3 — _i+i _%Zl(il(k)) _EP _Z§Z1(k)
@ Li(k) 3 < Lo (k)
L (P L(G(E®R) 4 Li(Lak)
T <_3 ik 9 Lik?
? El(zl(k))— 1 — 21 =
9 Lik) +:sﬁl(lp)_gplp>’
go_ ;4 e e <1p 2£1(£1(k>)> e Li(k)
€ cc cc\3 3 Li(k) o Ly(k)

Proof. We start by differentiating (8.1), finalizing directly the Maurer-Cartan part, thanks to the
Maurer-Cartan matrix shown above, and setting aside dp for the moment

de = BAp+alAEk
— icedpo + cdky,
d{ =yAp+iB A+ (a—a)A(
+ddpy +edip + < dGj,
So we have to compute first

K3

[p ANE]{dr}
= —ice[pAE|{dpo} +c[p AE|{drj}.
The first term is, by (7.1), using the inversion formulas (8.2)
L
c

D (67 R () (g0 i) (6]

[0 AR {dpo) = [pm]{owm;’(c
_ iﬁé/—iﬁél— e

cce ccc ccc’

Similarly

DRE
ekt () () ¢ (2 2)0) 0 ()

1 5 e .
= tKO/‘i"LiKgI—Zi—i.
CCcC CcCcC



Differential {e}-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M° C C* 347

Hence
3/ ee 3/ ;o d
K = —szU +sz0 i = K +i —Kﬁ — ——
_Cc, &O cc
. d e 1 £1(£1(k)) 20 = 1= = ee Li(k) 1 4
__cc+cc<_3 L. (k) _?P_§£1(£1(k))+3p ﬂ%g(%)’L%KO'

Replacing this last term K’ by its value from Proposition 7.2, we reach the stated explicit ex-
pression of K*. Next

78 = [n AR {dC)
= d [ AR {dpo} +e [w AR {dr} + = [ A ] {dGG ).
Separately
_ _ 1 d
[/{/\n]{ddpo} = 0+0+0+0+dz§ = ZCE7

ol —
|
| ®
oY
|
18

[k AR]{edny} = 0+0+0+0+eK6’%+e(_6£)
r{gac) o s0s (-2 ()05 () (-
- Sz =2y,
cc cC

hence summing and inserting the explicit expressions from Proposition 7.2, we conclude

70 =i L SRy _E gy g
cc cc cc cc cc
_ 4 e e flp 20(0K)) & Lik) -
cc cc cc\3 3 Li(k) < Ly(k)

Once we have reached the explicit expressions of both K and Z°, when we perform the
essential combination i K — Z5, we see that both the coefficients of £ and of £ disappear, and
it remains

d

iK3— 75 = —2i —+—C+ —K3’
:—%%+§
1 (ILEEER) 1LEER) 1LEER) 5 1, )+ 2PP
cc\ 3 L1(k) 9 Li(k)? 9 Li(k) 37" 9

We introduce, as is underbraced
ILEEER)  2LEE) | 1 GEER) 5, 1
6 Li(k) 9 Li(k)? 18  Li(k) 6

a function which coincides with Pocchiola’s function H. Then by means of the invariant con-
dition

HQ = —

L,(p)- ;PP

0=iK"—Z2°
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we reach a convenient normalization of the group parameter

d = - 5%4’2%[{0
e o 1LU(L(E®R))  2L(LiR)° 1 L(LR) 5 1w s los
___ZC_%C<_6 L o maer Tn onw Ltefh®)-gPP)

Before we really perform this normalization of the group parameter d, let us point out that
some other invariant relations between torsion coefficients appear. In fact, we see above that:

iKY = i K*—ibs,
Z" = Z7 —ibs,
whence
iKY -Z" = iK'~ Z".
However, the next lemma shows that no group parameter can be normalized so.

Lemma 8.5. Their explicit expressions are

|
~—

_ezl(

iKf=7"=-2
¢ Ly(k)

Proof. Indeed, by (7.1), replacing Ril from Proposition 7.2, we can compute using (8.2)
K* = [pA(]{ —icedpo + cdrj}
= —ice[pA(|{dpo} +c[pA]{drp}

— _ice (0+0+0+R§' (i)(i)) Yc0
e Zl(ﬁ)
%(@@J’

[ 7 Cl{ddpo +edry + = dcy |

= d[kAC]{dpo} +e [k AT {dih} + < [ ACT){dc))

©)

and similarly

Z7

0+0+C(0+0+0+Zg’(—ce)(
C CcC

C Li(k)

Another invariant torsion combination is the following.

| @
=

Lemma 8.6. Here is an essential linear combination of torsion terms

K24 257"

Proof. A glance at what precedes shows
K = K* —bs,
VA4 —ibs + ag — ay,
Z8 = 78 — a4 + a,
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whence indeed
8/ —8

—iK¥4+2Y -7 = —iK*+2°-7". O

Lemma 8.7. Their explicit expressions are:

. :ml( i K(E (5 ®)))

70 = -2 ==
c  Li(k) cc Ly(k)’
78 _ 27121(71(13)) 7521(]@)
T c T Li(k) o Ly(k)

Proof. Recall

dp = (a+@) Ap+ ccdpo,

dk = BAp+aAk—icedpy + cdrg,

¢ = 7/\p+iﬁ/\/<;+(a—a)/\p—&-ddpo—i-ed/ig—&-%d({),
hence

K? = [p/\g]{— z'éedp0+cdf<;g}.
Visually
1 C 1

pAc{dp}y = RBY (Z)(5) = RS,

cc C cc

pAdasg) = & (2)(O) & (1 ) () - (9)(-:5)

hence

Next, treat
75 = [kA(] {d dpo + edrly + %dg’)},

using
[H A C] {dpo} = Oa

i) 5 ()(8) - £
enciti) =% () - £
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SO
g _ <_ a(k)) 1 <£1(c1<k>)> |
cc\ Li(k)) <\ Li(k)
Lastly treat
Z8 = [CAF] {ddpo Vedw) + %dgg},
using

cl
[C/\K}]{dh}() —E%:E,
cl1 c ce 1 e
[CAE[{dG} = Zglgg +Zglg (‘ g) = CZ§/ ~--Zy,
which concludes
78 = Sy lgy _Eg
C C CC
e 1Ly(Li(R) ce Li(k)

= - T - =0 T — —. D

Thanks to these explicit expressions, we can compute the essential linear combination of
torsion terms, emphasizing two important annihilations by pairs

) 5 -8 o e 1 1 K(Zl (Zl(k))) 1 K:(Zl(k) Zl (Zl(k))
—iK?*+2°-Z _C+<—3 T ACEREAE L)

Lik) e Lik)
Also, in order to match exactly with Pocchiola’s function W introduced in [25, 18], we decom-
pose the last term of the second line as

2i T (k) _ 1 L1(L1(k)) 1 L1 (L1 (k)) i T(k)

3 Li(k) 3 Li(k) 3 Li(k) 3 Li(k)’

so that a third pair of terms disappears, and after reorganization — no pen needed —, the
result is

iK'+ 757 — i( 1 K(Z,(Z1(k)))

and this defines a new horizontal function Wy, equal to Pocchiola’s function .
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For now, we will not use the potential normalization ¢ = W, on the open subset of M° C C3
on which
0 # Wy (217 22,21, 22, U),
if nonempty — a hypothesis must be set up —, but we will deal with this discussion later. In
fact, before proceeding, we state a technical differential relation useful later, whose proof can
be skipped in a first reading.

Lemma 8.8. One has - o
K(Hy) = —2Ly(k) H.

Proof. Apply the derivation K to Hy

_ IRGEG®) | 1 KE®) L ()
KH) = =5=—Zm T Li(k)?
ARE(L®)) Li(L(k) 4 K(La(k) L(La(k))*
9 L (k)? 9 L (k)3
| R(Z1(R)) = 1 Li(La(k)) K(P)
BT o T Lk
K(Ly(k)) L1(Lo(R)) P 1 — — —
- LRI )Zl(k)(z WP k@ @) - 2P
perform replacements using Lemmas 2.9 and 2.5

— 1 Li(k) L1(L1(L1(R))) 1 Li(L1(R)) L1(L1(R)) 1o — — 7 1 L1(k) L1 (L1 (L1(R)))

KHo) = 3 Z1(k) T3 Z1 (k) teh@b®)) -5 Z1 (k)
8 L1(L1(k)” L1(k) 4 L1(L1(k)) L1(L1(k)) 4 Li(k) La (L1(k))?
9 L1(k) 9 L1(k) R 9 L1(k)?
3 121(£1(k)) Lyi(k) P 1 v (E))P_ifl(zl(k)) Li(k) P _izl(fl(k)) L1(L1(R))
9 Z1(k) 18 18 Zi(k) 18 Z1(k) )
b PO RBOLE LR @)+ S PRI + S PEE )

00

and observe some (underlined) cancellations to get an expression in which the last three terms
must yet be transformed

1Lk L (Li(R) 4 LiR) Li(La(R)” 1
3 Li(k) 9 L1(k)? 9 Li(k)

Lemma 8.9. One has
Ly (L1(L1 (k) + L1 (L1(R) P+ K(L1(P)) = —2L:(R) £
Proof. Apply the vector field £; to Lemma 2.5
LK) = ~T1(P) 1 (B) — PZ (24 () — s (s (B (B))).
K}()

On the other hand, apply the Lie bracket [£;,
known commutation relation shown in Section 2

Li(K(P)) =K(£:(P)) = [£1,K](P)

Y

S
—
S—

to the function P, using the concerned

~ LB ().
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and replace the first term £, (IC(P)) by its value above to get the result. O

Consequently, after this transformation, we see that E(H 0) is a multiple of £; (E) in which
we recognize —2 Hj, as stated

~ 1 L (L (L (k)

PR lelkp —_
Mm)—g@<3 X (Li(R)P 1

1 — 2 2
\ _14 _lnm P,
ke 0 mw  30PTg )

O

As we already observed, the essential (invariant) torsion i K? — Z5 can be set 0 to normalize
the group parameter d as

G it ey
2 c [
whence inserting in (8.1)
0 cc 0 0 00
k| = _—ice c 0 K
¢ —5 = +itHy e ¢ ¢

Thus, we are naturally led to change the initial coframe on M

{va 567 (l)vﬁé)vzg} ~ {va Hé)v (,)/,Eé)vzg}v
by introducing the new 1-form
0 = Go+iHo po,
so that a new, reduced by two real dimensions, G-structure, appears
0 cc 0 0 00
L ra

11
0

=
I
|
D
(g}
ol O

o
which is justified by the computation /reorganization
i Cee . C C
¢ = (—*f—ﬁ-Z:Ho)Po-f-e%-ﬁ-:Cé
2 c c c
1 Cee

C .

*§7P0+6H6+: (C6+ZH0P0)~
C C \'—_———

= ¢y

Back to previous expressions, this last coframe writes out as
1 —1 -2
po = E(dU—Aldzl —A2d2’2—A dEl —A d§2)7

ko = dzy —kdz + %Bo 00,

6/ : Zl(k) dZQ +ZHO £0-

9. DARBOUX-CARTAN STRUCTURE OF THE COFRAME { o, ), 6’,%,23}
The present change of initial coframe expresses as
0 = ¢+ 1Hppo — ¢ = ¢ —iHoy.
The exterior differentiation of {j comprises 3 terms that we shall compute soon

d¢ = d¢l +idHg A po +iHo dpo.
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Back to the previous structure equations written in the abbreviated form (7.1), we may start by
replacing (; in dpo, while observing that

=/ =4
po NGy = po A G and po N Co = poACos
we come to unchanged coefficients for
51 52 — . —
dpo = RY po Akl +RY po AC) + Ry po ATy + Ry po ACy + i Ky ATl
hence without computation, the third term is
=1 —2 —
’iHO dp() = ZHoR(l)/ Lo A :‘<66 + ’LH()R%/ Lo A C(/) + ’iHoRO/ £o /\EB + iHoRO/ Lo A CE) —Ho Ko /\Eé.
Next, we do the same replacement of ¢/ in
dely = Ky po A kly + Ko po A (C(’)’ —iHy po) + K3 po A
+ K k) A ( v —iH, po) +KY k) NFH + (g‘()’ —iH, p0> AR,
hence
d ! Kl/ .KSIH / KQ/ " KS/ i H —/
ko = | Ko +1Ky Ho | po A kg +Kqg po Ay + | Ky —iHg ) po ARy
~—_——— ——
=: K} =: K’
+ K ki NG+ KSRl ANl + G AR,
Similarly, do the same for
dy = Zg po (C(I)/ —iHy Po) +Zg Ko A (Zg +iHo Po)
+Z(8)/ ( 6’ — ZHO po) /\EB +Zgl ( 6/ — ZHO po) A (Zg + iﬁop0>,
hence
dC(/) = ZZS/HO Lo A :‘ﬁ() + (Z%/ — zZS’ITIO) L0 A\ C(/)I — ’LZ(8)/HQ Po /\Eé)
— i ZY Hopo ACo +Z3 k) NG+ Z8 CU AR+ Z8 ¢ A Co.
Next, we have to compute the second term in d¢{/, and using

dHoy = T (Ho) po + £1(Ho) ko + K(Ho) Co + L1 (Ho) Fo + K (Ho) (o,

it comes
dHo A po = 0— L1 (Ho) po A ko — K(Ho) po A Co — L1 (Ho) po ANFo — K(Ho) po Ao
_ ;4 _ G = iy
= —L1(Ho) po A (Ko 3 By Po) K(Ho) po N T (k) L1(Ho) po A (Ho + 3 By Po)
—/
- Co
— K(H, po N\ —
(Ho) Ly(k)
K(Hy) = _,  K(H,) -
= —L(H A Ky — = ANC)— L (H N — ACo,
1 (Ho) po A K Z.(k) po A ¢y — L1(Ho) po AR o) po A Co
hence multiplying by i, we get the expression of the second term
. _ K(H, = _, . K(H, —
idHy N\ pg = 7Z£1(H0) po N Ky — i E(l(ko)) po Al 71£1(H0) po N R z‘c(l(]:))po /\§g.
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Summing and collecting the three computed terms yields

/ . Hy) .
el = po A [zzg Hy—iLy(Ho) + ZHOR(%’] +po A cg[z” iZY Hy — ’Z( (k)) + zHoRS’}
1
=: Z}'
- Z2//
— - - IC H
+ po /\E{)[—iZS/HO — i Ly (Hp) +iH0R§’] + po A Cy [ iz Hy— i M) g B ]
=: Z3" - ©
+ZY KL NG+ R /\lﬁ:o[ —HO} FZ8 Ny +ZY ¢ NGy

=:Z8"

Lemma 9.1. One has the identical vanishing of the coefficient of po A Zg in d¢y
ZY = —iZyHy—i KHo) +iH, 73(2)'
1
= 0.
Proof. This is equivalent to
= ? . =2
’C(Ho) = El (k) HO ( - Zg/ +R0/>
and after a replacement using Proposition 7.2, to
_ ? — E k Li(k
]C(H()) = ,Cl (k) Ho 1(7) 1(7) 5
Li(k)  Li(k)

an identity which was already seen by Lemma 8.8. O

In summary
_ pls ’ 2/ n | pl — P =y
dpo = Ry po AN kg +Ry po NGy + Ry po ARy + Ry po Ay + ik ARy,
drgy = Ky po Ao+ Ko po A GG+ Ky po ARG
+ Ky ki ANCY 4+ KY Kl AR+ G AR,
¢y = Zy" po Ak + 23" po NG+ Zg" po ARy
FZY KNG+ Z8 Ry ARy + 2 G Ny + 28 G A .-

Notice that new coefficients Z3", Z3", Z" appear in d¢}/, which were absent in d(}, as they are
coming from the second term i dH( A po.

10. ABSORPTION AND APPARITION OF TWO 1-FORMS 7!, 72

With the 4-dimensional group parametrized by (c, e, é), the lifted coframe writes:

p = cCpog,
P c 0 - K = —icCepy + CK|
K = —iCe 0 K = : ro 0
i Cee < 1 1 Cee
e ¢
¢ 2 ¢ < 0 C:———f—po—i—e/ﬁ(ﬁ— C

2
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with inverse formulas

1
PO = e P
e 1
10.1 Kh = i—p+ =k,
( ) 0 cc P c
1 Cee ce c
a3
ccc cc c
The Maurer-Cartan matrix becomes
Cdc + cdc 0 0 i 0 0
dg-g~* = —iedc — icde dc 0 i 10
_ieede _ ;Tede | iteede go do _ cde _ice _Te <
2 c c 2 cc c cc 2 ccc cc c
at+a 0 0
= B a 0 ;
0 i a—a
in terms of the group-invariant 1-forms
dc

o= —,

Bi=i— i i —.

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates

(21,22,%1,%2,v) x (c,C,e,8) € M® x G,
after hard computations, we may come to structure equations of the abstract shape
dp = (@ +@)Ap+ R pAK+REpACHR pAF+R pAC+ik AT,
di = BAp+ank+K'pAk+K*pACHK3pAR+K* pAC
+ Kk ANC+ KSk AR+ C AR,
dd =vAp+ifAr+ (a—a)A¢
+Z oA+ ZPpNCH ZBp AR+ ZpAC
+ 2Pk NCHZORANFR+ZTkNCH+Z8CAR+ZYCAC.
A moment of reflection convinces of the truth of

Assertion 10.2. The relations coming from the normalizations of the group parameters f, b, c are
preserved

1 = [¢AR]{dkr},

0=R —2KS 4+ Z8,
0=iK>—Z2°
as well as the auxiliary relations
K° = R?
ZT =iK*

)

70— _R. 0
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Now, we want to absorb as many as possible of these torsion coefficients. So we introduce
modified Maurer-Cartan forms — mind notations

ali=a—aip—ayk—a3( —as® —as(,

72 = B—bip—bak—bg( —bsR—b5C

and we try to determine (fix) the unknown coefficients a;, b;. By replacement, setting ¢; := 0 in
the formula seen above for d¢, we obtain without pain

dp = (71+ﬁ1)+p/\/<;<R17a2764>+p/\§(R2—a3—ﬁ5)
+pAE(§1—a4—ag)+pAZ(§2—a5—ag>+mAE,
dfi:7T2/\p+771/\ﬁ+p/\/i(K1+a1—b2)+pAC<K2—b3)
+pAE(K3—b4)+pA6(K4—b5)+Mg(K5—a3)
+1€/\E<K6—a4)+/€AZ(—CL5)+C/\E,
dc :m2m+(wl—fl)Achpm(lebl)+pA§(ZZ+a1—al)
+p/\E(Z3)+p/\Z(Z4)+m/\C<Z5—ib3+a2—a4>+/<;/\E(Z6—ib4>
+nAZ(Z7—z'b5)+<AE(ZB—a4+ag)+<AZ(Z9—a5+63).
Now, replacing from Assertion 10.2
78 .= ~R +2K°, 78 .= i K3, K® = RZ, 77 = i K4, 79 .= - R,
the absorption equations write out as

as +dy = R, —ay +by = K, iby = — 2,
az +as = R?, by = K? —ay+ay = 77,

by = K3, 0:,
b5:K4, 0:7

a5 = R, —aytay+ibs = 75,
as = K°, iby = i K,
= =9, ibs = iKY,
— Tyt a4 = —E1+2K6,
—Gs+as = —R.

The boxed Z* and Z* are clearly essential torsions, since they cannot be annihilated by any
choice of a;, b;. We will compute them explicitly a bit later.
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At the end of the second colon, a5 = 0, whence at the ends of the other two colons, we get
as := R?, hence all the 4 underlined equations drop. Also, unique assignments exist for

by = K2, by == iZ',
by = K°, by = K3,
bs == K*, by = K*
as = K°,
and it remains to solve
a;+K° =R, —ai+by = K, —ata = 2%
—a+ K +ik? 2 75,
G+ K2 _R' 4 2KS.
Certainly
by = K'+ay

and the two equations = for a; are equivalent — this comes from the normalization relation
0=TR —2K®+ Z8 already taken account of —, yielding

as == R! _K

However, the equation Z cannot be satisfied automatically, and this provides an essential tor-
sion combination
R+ K +K +iK? =27 = —iK*+2°-7" =0,
which was already seen in Lemma 8.6. The last remaining equation
—ai+a = Z°

shows that one can annihilate Im Z?2 by choosing

Ima; = — = ImZ?

2
and it still remains precisely one real degree of freedom, a free variable that we will re-denote

t := Reay.
In summary, we have established a fundamental

Proposition 10.3. With t € R being a free variable, by defining the precise modified Maurer-Cartan
forms

pel a—(t—%lmZ2)p— (Rl—FG)/@—}FC—Kﬁ*—O,

w2 B—z‘lef(t—%ImZ2+K1)/€7K2C—K3E7K4Z,

it holds
dp = (7" +T) Ap+ikAF,
de = T2 Ap+ 7t Ak +C AR,
d¢ = (7' =FY)AC+it* Ak

+(ReZ*) pACH+ ZPp AR+ Z p A+ <Z5+R1—2F6—iK2)/i/\C. O
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We yet have to compute the remaining 4 essential torsion coefficients

Re 72, A 74, 75+ R' 2K’ — i K2
Fortunately, by anticipation, we have already explored and finalized
PR —2K° —iK? = —iK>4+2°-7"
~Lw,
c

Assertion 10.4. One torsion coefficient vanishes identically
0= 7%
Proof. Recall
Z4

[on c]{dc}

, Cee C
[pAﬂ{ - %poo—l—edng—kgdg{)’}.

Compute separately

i Cee 1 cee =2 (1 /cC 1 ee 2
ye Tty = -5 TR () () = R

e[pAn{]{dry} =0, B
SloaTagy = 22 () (5) 22 (-5 (5)
1 ee g,
=0-35%

and since we have already seen in Lemma 9.1 that Z3” = 0, in the proof of which we have used
R, +Z) =0, the sum of these 3 terms is indeed zero, and we done. O

It remains to analyze Z* and Re Z?, a substantial task to which the two next sections are
devoted. At least, we know that

d¢ = (ﬂl—fl)/\p—kin/\ﬁ

1
+(ReZ2)p/\C+Z3p/\E+EW0m/\C.

11. COMPUTATION OF POCCHIOLA’S INVARIANT

We now determine
Z3

I
<
>
2L
—~
QL
~
—

= [p AR {dpo} +e [p AR {drt} + = [p AF]{dcf'}
=R (0B ]

O+ (520 ]
@O OO m (O (-2 (E)]



Differential {e}-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces M° C C* 359

hence after collecting

ee i =17 ) eee |1 =2 1
z3 = — {R +iK6’Z8’] + = [R +-ZY ]
270 0 270 ccc v Oo

ccc 2
€ 31/ . 7611 1 311
+ = KO + ZZ() + — ZO .
ccc ccc
As we already know, the second term vanishes, the third one as well

KY' +iZ) = 2iHy—iH,—iH,,

and also the first one

_1—1/ . ,_z 8/__2 lfl(zl(k)) 2 — . _lzl(il(k)) lf
2R0+2K§ 520 = 2<3 +3P|+il 5=+ 3P

It remains only one term

ZS — ézg//
Ccc
1 . = |
= — (~iZY Ho—iLi(Ho) + iHoRy)
i (T(Ek) | 7.(C, (8) .
= - Hy — L (Hp) + = == Hy+ ~H,P
= ( T (k) 0 1( 0)+3 Zi(k) o+ 0
i (AL(Li(R)
= ccc<3 7 3 HQ-F*PUHU—El(Ho)

Then a direct expansion of the derivative £, (Hy) which uses neither Lemma 2.5, nor Lemma 2.9,
provides (exercise) exactly the same expression as the one of Pocchiola

= 1L(Li(L1(L4(R))) 5 La(La(La(R))) Li(La(R) 1 Li(L1(L1(R))) P
" 6 L. (k) 6 L1(k)? 6  Li(k)
20 Zlﬁzl(k ) i 5 Z1&71 (k))2 o 1 L (Zlik)) Ly (P) 1 Z1£71(k)) PP
27 Li(k)? 18 Li(k)? 6 Z1(k) 9 Li(k)
-G G(E(P) + 3 T(P) P~ - PPP
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12. COMPUTATION OF THE DERIVED INVARIANT R := Re Z?2

Next, we determine

relmi(@ O (DO - O (&)

QO BEDO -2 (2B

hence after collecting

72 =iZ 4 =2 (—;RS’JriKg’) L= (JZQ'>

i cee

2 ccc

cC  ccc 270
+ é (K?)’ + z‘ZS’) + % (izg') - C—l,Zg”,
that is to say
o _ € Tee (i Li(k) ‘El(k)> cee (i Li(k)
@ e (2 Lik) ik T\ 2Lk
e (i K(Li(Li(k))) LL K(L1(k) L1(L1(R) i L1(L1(R))
cc\ 3 Lik)? 3 L1(k)3 3 Li(k)
i Li(Li(R) 2 T(R) +i£1( 1(%))
3 Li(k) 3 Lyi(k) Ly (k)
C§ (—z Eﬁﬁ))) +C—1E (—iZS’HO +iH Ry +Z2 —i ’C(f%)) .
on hold

Now, observe firstly that when we consider
2ReZ% = 22+ 7,

the real part of the sum of the first three terms of Z>

_ee  Cee i L1(k) cee i L1(k)
Yo e (_2£1<k)) T (‘2 z:1<k)>

)
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vanishes, visibly. Secondly, in the sum Z? +72, if the terms multiples of = are grouped together,
we realize that we recover Wy exactly

e (1 K(L1(L1(R))) +1 K(L1(k)) L1(L1(R))
cc 3 Li(k)? 3 Ly(k)3

_y e (L1EEL(L®m)) 1 Li(Li(k) | 2 La(£1(R))
e\ 3 LRE 3 LR L1(k)
2 Li(Lik) i T(R)
3 Z1(k) 321(/6)
=i =W,

as we remember its explicit expression from Section 8.
In addition thirdly, using the explicit expressions from Proposition 7.2

2= _ Lilk) and Y = Zl(@,
L1(k) L1(k)
and the explicit expression of
Ly (L (Ca(k L(Lk) | 1 L(Ck) 5 1o 5 1o
jy - ADEEE) 2LEE) L LER) 5 1y o 1o,

2
6 Li(k) 9 Lik) 18 Lk 6

we verify by a direct computation the identical vanishing

= —iZ)Hy+iHyR) +—iZ) Hy +iHyRY,
which means that the term “on hold’ underbraced above disappears when taking 2 Re Z?2, and
we receive

. R 1 . ’C(Ho) =2/ . K(ITI())
2Re 7% = i—Wo—i—Wo+— 22 —i =2 4+ 7 + = .
° P 0Tt T e (P ZLl(k) 0 Z£1(k)
Fourthly and lastly, by replacing
H, = —%Kg’,
we get
1 1 K(Ky)
12.1 2Re 7% = 2Re i — Wy + — (22 —= ==L ) ).
(12.1) Re Re(zCCWo+CC( " T2 T
—_——
on hold

A miraculous re-expression of 2Re Z2 was discovered by Pocchiola on his computer, and
was shown in [25, 18], but without any details of proof.

Lemma 12.2. One has in fact

2Re Z? = 2Re [icecWO’Ll(_ ;cl(Wo)+;<— :151(1())+;P> W0>].

ccC
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This expression shows that Re(Z?) depends on the first jet of Wy, that it vanishes when
Wy = 0, and therefore, Re Z? is not a primary invariant. We provide details of proof, with no
computer help.

Proof. To transform the term ‘on hold’ above, we need a technical lemma, whose proof, to be
done afterwards, uses mainly the Poincaré relation d o d = 0 applied to the structure equa-
tions (7.1).

Lemma 12.3. The following two identities hold identically
IC (KSI)

(12.4) o - L&) KK - K + R, + 22,
(12.5) L(ZY) + £1(ZY) = ZUKY + ZV K, +iZ2.

Admitting these identities temporarily, let us prove the proposition. In order to replace the
term ‘on hold’ in (12.1) above, let us multiply by —1 the first identity (12.4), and take 2 Re(-)

(- 1) (-

We yet have to transform the boxed term. To this aim, we conjugate the second identity (12.5)

M| —

g JRy— 1
L1(K3) +§K§K§ +o—2z§’>.

L(Z))+ L1 (Zy) = Zy Ry +Zo K —iZy ,
and to this identity multiplied by 4, we subtract (12.4) also multiplied by 4, to get
—iLy(2Y 20 ) +iLi(Zo - 2) = —iKy (20 -2 ) +iKy (20 - 2) + 2 + 2y
But here, remembering that, by definition of W
ZY -7y = Wy +iK?,
we can replace to get
T (W) 4T () 4 £ (o) 421 (B) = — iKY Wo s K K i B Wor B B+ 224+ 7
that is to say for the mentioned boxed term

2re (L (K3) ) = 2re (wl (Wo) — iK% Wo + K2 KS +zg’>.

Multiplying this result by — 1, and replacing above yields

1 K(Ky) i — i e i o Lo 1
Re( 5 El(k)) = 2Re<—2£1(W0>+K6 Wo— K K6 Zo +2K0Kgo—220)

and a final replacement in (12.1) concludes, if one remembers that
1 1
- T = - + - P. D
3 Ly(k) 3
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Proof of Lemma 12.3. To treat the first identity (12.4), apply the exterior differentiation operator
d to the structure equation for dxy from (7.1)

0 = d*ky,
= dK} A po A Ky + Kb dpo A Ky — Kb po A dr),
+dKg A po A Gy + Ky dpo A Gy — Ky po A dGy
+dKy A po ARl +KY dpo ARy — Ko po A dRy
T reaed
+dKg' A kg A G+ KRG dr A Gy — Ko kg A dG
+ dKy' Ak ARy + Ky dig ARy — Ko kg A dR
+d¢) N Ry — Ch A dRy.

Because we are dealing with K (K}, ), we can wedge throughout with «{, AC, to obtain K (Ko') /L1 (k)
from the term marked ‘needed’, and we get

0=0 +0 — KY po Adil Akl ACy
+dK3 A po NG ARG Ao +KS dpo NG ARG ATy — K po AdCh Akl A G

+dRY A po NFY ARG ACy + K dpo AFY A K ACy — K2 po A dR) A Kl A C

+0 + K drhy ANCONKYACy —0
+0 +KY Akl AR AL ACy — 0
+0 +dC) ARy A Ky A G — ¢ ARy A K A Cy.

In the left column, observe that two exterior differentials appear, dKg , dKy . Already in Sec-
tion 9, we have implicitly used the following companion of Lemma 2.6.

Lemma 12.6. The exterior differential of any function G = G(z1, 22, %1, Z2,v) on M expresses as

G = (T(6)~ S Bu+ §Bo) o+ £2(G) i + G L@+ Z((?)cé-

Proof. Replacing k¢ by k( — %Bo po from (6.8), and ¢y by %ﬁ’k) from (5.4), we indeed obtain

dG = T(G) po + L1(G) ko + K(G) ¢ + L£1(G) o + K(G) ¢

= T(G) po + L1 (G) (ng . %Bo po) +K(G) L‘f(ék)
+24(G) (R + 5 Bopo) +K(G) cffk)' =
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Using this lemma for dK¢', dK5', and replacing also dpo, dr), d¢), dr), dzz, by means of (7.1),
we have

0=0 +0 — K po ACLAFY A K A Cy
_ _ —1 _ _
+ L1 (K3 Rl A po A Co A w Ao + Ko Ry po Ny ACh Ak A Cy — Ky po NZY G N A
ICKS/ _ B
LG Ny iy ATy B 0 1 Gy Ny Ty =0
+0 + Ky Ky po ARy ACh ARG ACy— 0
+0 +KY K po AChATY A Ky ACy—0
. —1 -
+0 FZY po NG ATONKOACy  — AR, Apo ATy AK)ACy,

hence caring about signs when factoring by the naturally appearing 5-form

O:poAmgAg’)AEgAZg(o +0  —KY
L.(KY)-KYRy — K2 Z¥
K(Kg/) 3/ P2/
- = +K,Rj —0
+0 KK} —0
+0 +KVKY -0
+0 +Zy +EKy ),

whence we arrive at the announced first identity (12.4) by remembering some useful relations

K(KD)
Ly(k)

— Z,(K¥) + KYKY —K? (E})’ +Z§’) +KY (R?; —K?/) “KY+R +z2.
——— —_———

= 2K¢' = 0!

For the second identity (12.5), we proceed similarly, applying the exterior differentiation oper-
ator d to the structure equation for d¢/, from (7.1)

0= d*¢}
= d(Z3') A po A Gy 25 dpo A Gy — Zg po A dGg
don’t want

+d(Z) N Ky N CAZY drl A Ch — Z Kl A dC)
T

+d(ZY) N NFY+ZY dCh NFy — Z8 ¢ A dR,
——

+d(Z3) A GG N Co+23 dGh A Co — 2 ¢ A dCy.

don’t want
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Observe that the desired identity involves the derivatives of Z3' and Z;'. Hence we may con-
serve those terms marked ‘want’ by wedging with the appropriate 2-form py A Zi)
—/
0=0 +Z2 dpo NCh A po ACo+0
-/ —=/ =/
+dZg N rg A Gy A po Ao + 2o dr A Gy A po A Co — Zg kg A dGh A po A Gy
-/ —/ —/
+dZy N NFY A po Ao+ Zy dCh ATl A po ACy — 28 Co NdRl A po A

+0 +0 —ZY A NdCy A po A Cy.
Using Lemma 12.6 for dZj)', dZ3', and replacing also dp, dr, dC), drp, dZ/O by means of (7.1),
we have
20 1N —) / =/
0=0 +Z5ikg NRg A ApoNCy +0

+ L (ZY) Rl A Ky A Ch A po A Co + Z5 KS Kkl AT A G A po A Co + 25 1y NZY Ch ATy A po Ao

8 ~ el 8/ 75 ~ S 8 - el
+L1(Zy) ko A Gy Ao Apo A Co +2Zo' Zg kg A Gy AR A po A Co +Zg C(/)/\KGO ARy A kg A po A G
40 10 —0,

hence caring about signs when factoring by the naturally appearing 5-form, we arrive at the
announced second identity (12.5)

O:poAngAg’JAE{)AZg(O +iZ¥ 40
— L1(Z8) + Z3 Ky + 2o Zy
@) BB ABE

+0 10 ~0 ) O

13. SUMMARIZED STRUCTURE EQUATIONS

All this work conducted us to finalize the statement of Proposition 10.3, but before, let us
make an ample summary.

After normalizations of the group parameters f, b, d, the equivalence problem for 2-nondegenerate

(constant) Levi rank 1 C¥ or C* real hypersurfaces M® C C? conducts to a 4-dimensional G-

structure
cc 0 0
—tce ¢ 0 |,
_ i Cee c
2 ¢ c
where ¢ € C* and e € C, with Maurer-Cartan forms (conjutates are not written)
dc
a = —,
c

Bi=i——i——1i—.
Furthermore, 2 fundamental primary differential invariants occur

i = 1
J = —J, and W = -W,,
CCC C
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where Jy and Wy are explicit functions on M, together with 1 secondary invariant
R :=ReZ?

iCiWO—i—ch(— ;cl(wo)+"(_ ;Wl(k))ﬁp)woﬂ.

=R
¢ 2 k) 3

On the 10-dimensional manifold M?® x G* x R equipped with coordinates
(Zla 22,31752,1)) X (CaEa eaé) X (t)7
there are two modified-prolonged Maurer-Cartan forms
= a— (t—%ImZ2)p— (R1 —FG) k—R2(C— KS% —0,
7= B—iZ p— (t—%ImZ2+K1)n—K2C—K3E—K4Z,
where R, K*, Z' are explicit functions on M® x G*.
Theorem 13.1. After finalization of absorption, the structure equations read
dp = (7' +7T) Ap+iKAF,
dk = T ANp+ 1 A+ C AR,
d¢ = (7' =F)AC+in® Ak
+RpANCH+HIpAR+WEAC. O
14. THE FINAL {e}-STRUCTURE
Let ; and Q5 be the two 2-forms defined by:
O =drt —ik AT —CAC,
Oy = dr? — 2 AT — (/\fQ.

When the two fundamental invariants J/y = 0 = W, vanish identically, since we know that

R = Re [icecWo—i-l(— ;cl(wo)+;<_ ;W—i—;P)Wo)}?

« Zi(k)
J = éj()a
CcC
1
W = 7W01
C

it comes
O0=R=J=W.

Independently, the addendum to [18] shows that in the case where all invariants vanish, these
auxiliary 2-forms Q; and (2, satisfy

(Ql —|—§1)/\,0 = 0,
QANp+ Q1 AK 0,
(Ql—ﬁl)A<+iﬂg/\I€ = 0.

In general, the right-hand sides of these structure equations are not necessarily zero, and they
depend on the invariants R, J, W.
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Proposition 14.1. The two 2-forms 4 and €, satisfy

(14.2) Q14+ Q) Ap =0,

(14.3) QAp+U AL =—RpAN(AR—WKA(AR,

(14.4) iQ A+ (2 —U)AC = —dRApANC—R(n' +7)ApAC—iRT* Ap Ak
+iREACAC —dIANpAR—=3JT ApAR
—JpAKAC—dW ARNC =W T2 ApAC
— Wl AKAC=WJIpAKAR.

Proof. These relations come from Poincaré’s identities

0 =dodp =dodk = dod(,

applied to the finalized structure equations of Theorem 13.1, in which dp, dx, d¢ should be
replaced again using Theorem 13.1, followed by a reorganization of the obtained 3-forms.
For the first line (14.2)

0 =dodp
= (dﬂ'l—l—dfl)/\p— (7r1—|—ﬁ1)/\dp+id/£/\ﬁ—iﬁ/\dﬁ
= (dr' +d7' ) Ap— (7' +7') A ((w1+ﬁlo)Ap+im\E)

+i(7r2Ap+7r1/\p+C/\EO) AR —ik A <ﬁ2/\p+?1/\ﬁ+6/\ﬁo).

Afer simplification, this becomes
0= (dwl —z‘fmﬁ?) Ap+ (ﬁl +mmr2) A p,
and after insertion of twice —( A ¢ which is purely imaginary — hence disappears —, we ob-
tain (14.2)
0= (dwl — ik AT chZ) Ap+ (dﬁlﬂ‘EAw?—ZAg) Ap
=W Ap+QAp.
For (14.3), we proceed analogously, starting from the second structure equation of Theorem 13.1
0=dodk
=drPAp—7? ANdp+dr* Nk — 7' Ndk +dC AR — C AN dR
=dr’Ap—72NA ((7r1+ﬁ1) Ap+mAE) +drt Ak —mt A (7T2/\p—|-C/\E)
+ ((7r1 — ) Ac+m2Am+RpAc+WnAg) AR—CA (fQ/\p-l—ﬁl/\E—i-Z/\n).

After four annihilations by pairs and a reorganization, this becomes

0=dr*Ap—7° AT  ANp, =T AT Ap—im® Ak ABy +dr' Ak =1 A? Ap — 7' ACAR,

+ T ACAR, —T ACAR, +im? AK ARy + RoACAR+WRACAR = CAT Ap

—CATEAR, —CACAK
= (dw2—w2Aﬁ1—(/\ﬁ2)/\p+(d7r1—(AZ)A/-e

+RpANCAR+WEKEACAR,
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which is (14.3), since we can insert ( — ik A7) Ak = 0. Lastly
0 =dod(
= idr* Ak —im* ANds +drnt AC— 7t AdC —dTt NG+ T AAC
+dRApAN(+RdpANC—RpANdQ
+dJANpANE+JdpANE—JpANdR
+dW ARANCH+W Ak AN —W Kk AdC,

whence by replacements

0= idﬂ'Z/\m—iWQ/\(7?1/\/1+(/\E)—|—dﬂ'1/\C—7r1/\(iﬂQ/\n—ﬁl/\C—l-Rp/\C
+me+Wm<) - dﬁl/\c—l—fl/\(i7T2/\/i+7r1/\C—i—Rp/\C—&-Jp/\E—i—W/@/\C)
+dRApAC+R((7r1+%1)Ap+ifmﬁ)/\g—RpA(mQAnJr(wl—ﬁl)A(JerA()
+dIAp AR+ T (T +T ) ApAR—=JpA (T AR+ CAR)
+dWAnA<+W(7r2Ap+7rlm<;)A(—me((wl—ﬁl)A<+RpA§+JpAﬁ).

Let us expand this and underline the eight annihilating pairs

0 =idr® ANk —im® Am' Ary —im® ACAR+drt AC—in An® Awy + 7" AT AC,
—RT'ApAL —JT Ap AR, =W ARAC — dT ACHIT AT AR+ T AT AL,
+RT APAG +IT ApAR+WT ARAC+HARApAC+RT ApAC,+RT ApAC
+iR/£/\E/\C—iRp/\7r2/\/<—Rp/\ﬂ'1/\C+Rp/\f1/\§4—RWp/\n/\C5
+AI NP AR+ I T NP AR A+ TT ApAR=Jp AT AR —=JpACAK+dW AKAC
W ApACHW T ARANCG = WRAT ACHWRAT AC —WRKApAC,
—WJKApAE.

After simplification and reorganization
0= i(dﬁ2 —7r2/\ﬁ1) A K+ (dwl S —iﬁ/\wg) AC
+dRAPpACHRTAPpAC—iREANCAR+IRTPApAK+RT ApAC
+dJApAE+3IT ApAR+TpAKAC
+dAWARACHW TP ApACHW T ARACHWIpAKAR.
To reach (14.4) completely, only the first line must yet be transformed, and it suffices to insert
into it two terms which cancel together

z‘(dw2—7r2Aﬁ1 —g/\#o) A K+ (dwl — ik AT, —d7! —iE/\wQ) AC. O

Remind that all present considerations hold on the 9-dimensional manifold M® x G* equipped
with the coordinates
(Zl,Z2,21722,'U) X (Ca eaEaé)v
the supplementary real variable t € R being considered as a parameter until it becomes a
variable at the very end of the process for an {e}-structure on the 10-dimensional manifold
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M?® x G* x R. In order to build up such an {e}-structure, the goal now is to fully determine the
two 2-forms (2, ()5, and precisely, to determine how they express in terms of the coframe

{x*, 77,7, p,K, (R, C}.
To begin with, suppose that there are two ways of solving for {1, } the structure equations
of Proposition 14.1, leading to another set of solutions {€2{, €% }. Then their differences I'y :=
Q) — Qq and I'y := Q) — Qs must necessarily satisfy the homogeneous equations
(T1+T1) Ap =0,
FoAp+T1AK =0,
iTs A+ (1 —T1)A¢ = 0.
The addendum to the article [18] provides a detailed proof of the elementary

Proposition 14.5. The general solution {I'1,T's} to these homogeneous equations is given by
'y == AAp, Iy := AANK+hpAR,
where A is a real 1-form and h is purely imaginary function. O

This means that the two sets of solutions are related to each other by
Q) = +AAp, b =Q+AANE+hpAc.

Due to this flexibility represented by A, h, it will be necessary to prolong the structure equa-

tions by adding this real 1-form:

A=dt+---,
the remainder terms being very complicated, while the function & could be some new invariant.
However, it will be later shown that h expresses in terms of the 3d_order jets of W and J, thus
eliminating the possibility of appearance of new primary CR invariants. On the other hand,
the existence of A can be explained by an application (not detailed here) of Cartan’s test, due to
the fact that there is one degree of real-valued indeterminancy during the fourth absorption.

It therefore suffices to find a particular set of solution 2; and {25, and then to parametrize the
solution space by means of A, h. We will adopt the following strategy. First, we will find the
simplest forms for €}y and (), restrained by the first two equations (14.2), (14.3) of the starting
Proposition 14.1. Then we will simplify these 2-forms by means of Cartan’s lemma to eliminate
as many unknown variables as possible using the third, more subtle, equation (14.4). At the
end of the elimination, those remaining unknowns which cannot be computed due to the lack
of information turn out to behave like A and h, and hence we will terminate the process of
solving for solutions.

In M® x G4, it will be useful to adopt the following notations for the covariant derivatives

dR=Rum +Reen’+ Ra® + Ree® + Ryp+ Re i+ Re( + ReE + Rz C,
(14.6) dJ = Jam' +Jen’+Ja 7 4 Jem +Jyp+ ek + Jc C+ Jr R+ J2C,
AW = Wan' + W n® + War & 4+ W 7 + W, p+ Wik + We ( + We R+ We (.

Some of these coefficients will be revealed during the course of solving the structure equa-
tions. We first turn ourselves to finding the simplest form of €24, {2 satisfying only the first two
equations (14.2), (14.3).

Proposition 14.7. There exists a real-valued function p and two differential 1-forms I1, U such that
Y =TAp+pe ANE—WkrAC—-WC(CAR,
Qo = VUAp+IIAK—RCAR.
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Proof. We can rearrange the terms in (14.3)
(14.8) 0= (U +WCAR) A+ (Q2+RCAR) Ap,
in order that an application of the Cartan Lemma yield functions A, ©, I1”, ¥ so that
W +W(EAR = AANK+0OAp,
Qo+ RCAR =T"Ar+ T Ap,
with a double prime on II” meaning that we will soon modify it two times.
In fact, substituting these representations back into (14.8), we see that there are constraints

on © and I1”
0= (AAK,+OAp) A+ (T"A+TAp )Ap

= (©-1")ApAE.

By the Cartan Lemma again, this implies the existence of two functions a, b so that © and I1”
are related to each other by

O =1I"+ap+bs.
Next, putting this into the expression of 1, while letting II" := II” + b x, it follows that
D =AA+OAp—W(AR
= AN+ (" +ap +br) Ap—W(AR
= AN+ Ap—WC(AR,

while 25 becomes
Qo =II"Ak+VUAp—R(AR

= (I"+br) AN+ T Ap—R(AR
=I'Ak+¥Ap—R(AR.
The next observation is that A can be further simplified. Indeed, let us replace 2; in (14.2)
0= (U+D)Ap
= AANKAp—WCCARAp+AANREAp—WEAKADP.
Then decomposing A as a linear combination along the coframe
A=dirt+dom®+dsT +dyT +dsp+dgr+dr C+dsF+dyC,
we obtain the following values for these coefficients
di =dy =ds =dy =0, dg=ds, dy=W,
except for ds and dg which on which no constraint is deduced so, and hence
A =dsp+dsgrk+dgi+WC.
Finally, if we write p := — dg and if we set IT := II' — d5 k, we obtain by reorganization
M =AA+IIAp—WC(CAR
= (d5p+Mo+dgE+W2) Ae+TAp—W (AR
= —dsk AR+ (I' =ds k) Ap—=W KA =W (AR
= prAR+TIAp—WKAC—-WC(AR,
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and moreover
Qo =VAp+T'Ak—R(AR
=VUAp+ (II'—dsk) ANk — R(AR
=UAp+IIANK—R(AE. O
Now, using the representations of {2; and of €, offered by this Proposition 14.7, we can
therefore rewrite the third (still not taken account of) equation (14.4) as
iUAPpAK—iRCARAK+ (T=T) ApAC+2pe ARAC—2W KACAC
(14.9) = —dRApANC—R(r" +7)ApA(—iRT*ApAK+iREANCAR
—dJApAR=3JT ApAR—JTpAKAC
— AW ARANC=WAApAC =W T ARANC=WIpAKAR.

But before we commence with analyzing this equation (a long task), we make a side remark.
As we can rewrite

Q=5+ Ap+5I-I)Ap+psANE-—WrKA(—WC(AR,
Q=VAp+ i+ As+ 5 (II-I) Ak — RCAF,

we remark that Proposition 14.5 already tells us that the real part 3 (I + II) of II is a priori not
fully determined, as can be formulated by an

Observation 14.10. For an arbitrary real 1-form A, the 2-forms
Q= +AAp and Q= QW+AAK
still satisfy the structure equations of Proposition 14.1.

Proof. For the sake of completeness, let us detail the arguments. The first equation (14.2) is
clear

(A +0)Ap = (Ql+AApO+§1+AApO>Ap = (2 +Q) Ap.
The second equation (14.3) also
BAp+ QAL = (Q+AAR)Ap+ (Q+AAp) Ak
QAp+ANENp + I AE+ANP AR
= QW Ap+ Q1 AR,

and the third one as well
iQ/Q/\FhL(Q’l—ﬁIl)/\C = i(QQ+A/\/<;o)A/<;+(QlJrA/\pofﬁlfA/\po)/\C
:iQQ/\/€+(Ql—§1)/\C. O

Now, coming back to (14.9), we remember that we should insert the covariant derivatives dR,
dJ, dW from (14.6), and we will do this in a progressive way, not in one stroke.
Indeed, by wedging (+) A p both sides of (14.9), we get rid of d.J, dR and it remains only

—iRCARAKAP+2DEARACAp—2WKACACAp
= iREACARAp—dW ARANCAp—Wat A ACAp,
that is to say after putting everything to the right
0=—dWApAEAC— (2p+2iR)pAEACAR+2WPARACAC =W ApAKAC
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Thus, inserting the expansion of dIW from (14.6)
—dWAPAKAC = =W T ApABAC =W T2 ApAAC—Wa T ApAKAC
~WaT? ApARAC=WrEApARAC=WzCApARAG,
we get
0= —(Wa +W)m' ApAKAC =W ApAKAC—Wa T ApAKAC—We T ApAKAC
—(2p+2iR—Wx) pAACAR— (2W +Ws) p AL ACAC,
whence by identification of coefficients of these independent 4-forms
W = —W, W, = 0, W = 0, Wee = 0,
Wi = 2p+2iR, Wz = —2W,
while no condition is imposed so on W,, W, W, and thus
AW = =Wl + W,p+Wek+We(+ (2p+2iR)E—2W (.

Next, putting this expression of dWW back into (14.9) allows us to eliminate p so that we can
focus only on IT — IT and ¥, which we place on the left

iOApAE+ (M=) ApAC =iRCARAR —2pKARAC, —2WKEACAC, — dRAPAC
—R(r' +7T)ApAC—iRT*NpAK+iRENCAFR,

—dJANpAFR=3JT ApARE—JpAKAC
+ Wt ARAC —prAﬁAC—(Zl2+2iR1)RAmAC
F2WEARAG = WrP ApAC—Wa ' AKAC, —WIpAKAFE.

Here, four simplifications by pairs are underlined, in which we observe that p eliminates itself,
and if we collect at first the terms divisible by p A k, we get

i‘PA,O/\H‘F(H*ﬁ)/\p/\CZ (fiRWZfJZfW,,CfWJE)/\p/\H
—dRApANC—R(r'+7 ) ApAC
—dJANpAFR—=3JT ApAR—WalApAC.
By introducing the modified 1-form
Vo= \If—i(z‘Rw2+JZ+ng+WJE),
the equation becomes
iV ApAE+ (TI-T)ApAC = —dRApAC—R(r'+7) ApAC
(14.11) —~dJApANE—3JT NpAR— W2 ApAC.
Now, let us wedge (+) A kA ¢ all this to make ¥ and II — II disappear, replacing simultaneously
dJ = Jom' + Je2 7 + I T 4+ S T+ Jyp+ Je i+ Je (C+ TR+ I G,
to obtain
= —J AT APARAKAC = J 2 T APARARAC —Ja T ApARAKAC — T2 TEAPARAKAC
— JeCAPpARAKNC=3IT ApAEAKAC
= —Jua T ApARACAR = T2 m ApAKRACAR — (Jmt +3) T ApAKACAR — Je2 T ApAKACAR
— JepARACARENAC,
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and since these 5-forms are linearly independent, we get by identification
J =0, Jp2 =0, Jm = —3J, Jm2 =0, Jz =0,
while no condition is imposed in this way on J,, J., J¢, Jz. Consequently, the 1-form dJ
contracts as
dJ = =3J7 + J,p+ Jok+ Jc ( + J5FR,
hence putting this expression back into (14.11), we obtain
iV ApAKR+ (T—T) ApAC = —dRApAC—R (7" +T) ApAC
+3JF APpAR — Juk ApAE—JcCApAR—3JT ANpAR —Wa2 ApAC.
We can yet absorb in ¥’ one term from the right-hand side by introducing
U= U+ i J,. R,
so that our equation becomes
iV ApAk+(T-T)ApAC =—dRApAC—R(n' +7 ) ApAC
+J<p/\§/\E7W7r2/\p/\C.

Now, observe that all terms except the first one i U A p A k are multiple of p A (. Consequently,
wedging on both sides by (+) A ¢, we annihilate everything except

iV ApAKAC = 0.
Thanks to the Cartan Lemma, there exist function ¢, f, g so that
V' =ep+fr+gcC.
For later use, we also observe in passing that
(14.12) U =" +iW,(+iWJE—Rr*+iJ(
=0 — i JR+iW,(+iWJR—Rn*+iJ(
= —Rrl+ep+fr+(iW,+9)(+i(WJ—J,)E+iJC.
Inserting this just above conducts to an identity
igpANEAC+H (I -T) ApAC = —dRApAC—R(r'+7) ApAC
+JepANCAR—W T2 ApAC,

in which all terms are now multiples of p A (. Consequently, the Cartan Lemma implies the
existence of functions r and s such that

M- =igk—dR—Rr' —R7T +J;R—Wr+rp+s(.

But here, we can take advantage of the fact that II — II is purely imaginary to obtain some
information about g, 7, s. Indeed, conjugating

O-0=-igi—dR—R7 —Rn' —Jcx - WT2 +Tp+3¢,
and summing, we eliminate II — TI, hence we are left after reorganization with
0= —2dR—2R7' —Wn’ —2R7' —W7°
+(r+7)p+ (ig+J)r+s(+(—ig+J)R+5C.
Naturally, one has to use the expansion of dR from (14.6) to continue the computation
0=-—(2Ru+2R)n' — (2R +W)n’ — (2R +2R) 7 — (2R + W) 7
-~ (2R, —r—T)p— (2R —ig—Jc)k— (2R —5)(— (2Rr+ig—Jo)F— (2R; —5) (.
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An identification to zero of all the nine coefficients of 7!, =

2,7, 7, p, K, (R, C gives
R = —R, Ry = —3 W, R = —R, Re = —1W,
R, = 5 (r+7), Re = 3 (ig+Jc), R = 35, Re = 1 (—ig+Jo), Rg
and so:
dR = —R7' —Wx? = R7T' — W7 + R,p+ Rk + R + Rek + R C.

Inserting this back into what precedes, we can therefore obtain both

M=M= —3Wn? + 3Wa* + ReC = ReC + (Ry = Jo)r = (B = JO)R + 5(95 = Gp)p;
and replacing g = — 2i R, + i J; in (14.12)

U =—Rr?+ep+ fr+i(W, = 2R, + J )¢ +i(WJ — J )& +iJC.

Thus
N =ps ANE+TAp+W(CAK—-W(AR
=pr AR+ I —I)Ap+W(AK—WCAR+ LM+ Ap
=—IWr Ap+IWT Ap—3(Re —J)pANKE—LRpANC+ A (Re — Jo)p AR
+5Rep ACH (GWr — iRk AR = WK A= WCAR + 5(IT+T0) A p,
and
0, =

—Rr* Ap— AW Ak + WA Ak —i(W, — 2R, + Jc)p AC
—i(WJ = J)p AE—iJpAC = Rk AC+ 5(Re — Jo)k AR+ §Rer AC
—R(CAR+ M+ Ak+ (3(r—7)— flp Ak

If we define

A

$(IT+1I) + real part of (3(g, — 7,) — dw)p
and

h := imaginary part of (3(g, — 7,) — dx),
we conclude that

Qi =—-WrAp+iWr Ap—L(Re— Je)p Nk — 2Rep AN+ 2 (Rr

+3Rep AC+ (5Wr —iR)R AR = WrAC—WCAR+AAp,
Q= —

—J)pAE

Rr* Ap— W Ak + 2WT Ak —i(W, — 2R, + Jc)p A ¢

—i(WJ = Jo)p AR —iJp AC— SRk A+ 5(Rr — JOR AR+ §Rer AC
—RCAR+ANE+hp Ak,

Notice that all coefficients of 2-forms — except only h — depend on R, J, W and their coframe
derivatives.
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We are now close to the termination towards an {e}-structure. In summary, we have ob-
tained the following structure equations
dp=7m'"Np+T ' Ap+ik AR,
de =7 A+ 72 Ap+ (AR,
dC =im* N+ 7' AC—=T'AC+WRrACHRpAC+ Jp AR,
drt :A/\p*iWWZ/\p+%Wﬁ2/\p7iﬁ2/\I{
—3(Re = J)p Nk — 5Rcp ANC+ 5 (R — JO)p AR+ 3Rep A C
+ (3Ws —iR) kAR —WrAC—WCAR+CAC,
dr® = AN+ T AT =T AN(—Rr*Ap— IWn? Ak + WA Ak
+hp Ak —i(W, =2R;+ J:)p ANC —i(WJ = J)p ANE—idp A
— 3R AC+ 5(Re — JO)R AR+ Rk A C — RCAK.

But at this stage, we cannot directly deduce from these equations an appropriate expression
for h. For example, any attempt to isolate h by wedging the equation dn? = --- with any
appropriate differential form will include a component of Maurer-Cartan type. This is to be
expected, because h will soon be shown below to depend on higher order jets of R, J, W,
while the torsions above only depend up to the 2"d-order jets of these invariants. Therefore,
an application of the exterior differentiation on both sides of the equation dn? = - - appears
necessary to reach an expression for i from the Poincaré relation d o d = 0.

To facilitate the discussion, we set

QO =—-tWrP Ap+IWaAp—L(R. —J)p Ak — 3Rep A C
+ 5(Re = JO)p ANE+ 5 Rep AC+ (%WH—iR)ﬁ/\/ﬁ—Wn/\C—WC/\H,
Qo=—Rr>Ap—tWr* A+ 2WF Ak —i(W, — 2R, + Jo)p A ¢

*Z.(WJ*JK),D/\E*in/\Z*%Rgli/\(+%(RE*JC)K/\E+%REK/\Z
— R AR,

so that

dr' =AAp—iT2 A+ CAC+ 8,

A2 = AN+ T2 AT —F2AC+ Qo + hp A K.
Proposition 14.13. The function h is a function of the 3"-order jets of W and J.

Proof. By applying exterior differentiation d to the equation of dr?, while wedging on both
sides with k A 7! AT A 12 A T2, we obtain

Qhp AEARACAT AT ATEATE =~ ARACAT AT A2 AT
—dOo AR AT ATIATE AR O
At this point, let ® be the auxiliary real 2-form

D :=dA—AAT = AAT —ix? AT
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Again this comes from the consideration of the model case. The structure equations therefore

become
dp=7'ANp+T Ap+ik AR,

de =T ' A+ 72 Ap+ (AR,
dC=im* N+ AC—T'AC+WrACHRpAC+ Jp AR,
dr' =AANp—im2AK+CAC+
dr? = AN+ T2AT —T2AC+ Qo+ hp Ak,
dA = AAT  + AANT +in? AT+ .
Proposition 14.14. The real 2-form ® is a function of the 4"-order jets of W and J.

Proof. By taking exterior derivative of dr! and dr? again, this time using the expression of dA,
we have

@Ap:z’ﬁzAnﬂ‘hpAnAE—WHACAE+W§AEAZ—2R/)A<AZ
—JpARACHIpAKAC—d,
DAk= Qo AT —hp ARAT 412 A D + Qo AC—hp ARAC — WREAKAC
—RFE2APAC—JR2EAp AT —dQy — d(hp A K).
Writing ® as R
® =03 +upAk,

where SAZJ is the 2-form not containing p A &, then each of the coefficients in ﬁ3 is a function of
the 4™"-order jet of W and J. Since ® is real, taking conjugate on both sides, we must have

ﬁg—l—up/\fi:ﬁg—i—ﬂp/\ﬁ.

Therefore by inspection, 7 is also a function of the 4-order jets of W and .J, and therefore so is
u. This finishes the proof. O

With this proposition, we have therefore fully constructed an {e}-structure.
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