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Abstract
For a symmetric linear compact resp. symmetric densely defined linear operator with compact inverse, expansion
theorems in series of eigenvectors are known. The aim of the present paper is to generalize the known expansion
theorems to the case of corresponding operators without the symmetry property. For this, we replace the set of
orthonormal eigenvectors in the symmetric case by a set of biorthonormal eigenvectors resp. principal vectors in
the case of simple eigenvalues resp. general eigenvalues. The results for the operators without the symmetry
property are all new. Furthermore, if the operators are symmetric, the generalized results deliver the known
expansions. As an application of the results for nonsymmetric operators with simple eigenvalues, we obtain a
known expansion in a series of eigenfunctions for a non-selfadjoint Boundary Eigenvalue Problem with ordinary
differential operator discussed in a book of Coddington/Levinson. But, we obtain a new result if the eigenvalues
are general, that is, not necessarily simple. In addition, for a differential operator of 2nd order with constant
coefficients, the eigenfunctions and Green’s function are explicitly determined. This result is also new, as far as
the author is aware.
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1. Introduction
The paper is structured as follows.

Section 2 is of preparatory nature and of utmost importance for the subsequent sections; it discusses functions of an operator
in a Banach space.

Section 3 is on the expansion of a linear compact operator and of a pertinent projection operator in a series of eigenvectors
resp. principal vectors in a Hilbert space.

Section 4 treats densely defined linear operators T = L with compact inverse G = T−1 = L−1, derives for it expansions in
series of eigenvectors resp. of principal vectors and shows that G+ = G∗ not only for simple, but also for general eigenvalues,
where G+ = L−1

+ and L+ is the formal adjoint of L.
In Section 5, applications of the results of Section 4 are made to a non-selfadjoint BEVP taken from [2, Chapter 12],

delivering relation [2, Chapter 12, (5.6)]. Here, not only the expansion in a series of eigenfunctions is obtained in the Hilbert
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space H = L2(a,b) if the eigenvalues are simple, but also a corresponding expansion in a series of principal functions if the
eigenvalues are general.

In Section 6, beyond this, for a differential operator L defined by Lu(x) = Lp0,q0u(x) =−u′′(x)+ p0u′(x)+q0u(x), 0≤ x≤ l
with real constants p0 and q0, the eigenvalues µ j and pertinent eigenfunctions χ j(x) as well as the associated eigenvalues µ j = µ j
and eigenfunctions ψ j(x) of the formally adjoint operator L+ defined by L+v(x)= L−p0,q0v(x)=−v′′(x)− p0v′(x)+q0v(x), 0≤
x≤ l with the biorthonormality property are explicitly determined. Furthermore, the Green’s functions G(x,s) = G(x,s; p0,q0)
pertinent to the operator L = Lp0,q0 as well as the associated Green’s function G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0)
pertinent to the formally adjoint operator L+ = L−p0,q0 are also explicitly determined confirming the general result G+ = GT

for the linear compact operators G and G+ defined by the corresponding Green’s functions. In Section 7, we compare the
present expansion results in abstract Hilbert spaces with known ones. Finally, Section 8 contains the conclusions.

2. Functions of an Operator in a Banach Space
This section contains the basis for the convergence of the studied expansions and is thus of utmost importance for the whole
paper.

The method of deriving the expansions for symmetric linear compact operators is no longer applicable when the symmetry
property is missing. See, for example the derivation for a symmetric linear compact operator in [14, Theorem 6.4-B, pp.336-337].

A hint what can be done in the nonsymmetric case is found in [2, Chapter 12, 1. Introduction, p.298, first paragraph]. As
stated there, an appropriate approach is furnished by the Cauchy integral method. There, one can read: ”The method ... yields
complete information about the convergence of the expansion for any integrable function.”

We mention that most theorems of the classical Theory of Functions can be carried over to functions of a complex variable
z with values in a complex Banach space.

So, in particular, Cauchy’s integral method can be applied to functions with values in a Banach space, that is, in a complete
normed space, where the completeness property of the space is essential.

In [2], the special case of the Hilbert function space H = L2(a,b) is used, that is, a specific complete function space with
scalar product.

This is not general enough for our purposes, however. What we need is Cauchy’s integral method in a general Banach
space. This is treated in the book [6, Chapter I, §5]. However, there Kato assumes that the underlying normed space be
finite-dimensional. Then, of course, the space is complete. But, the assumption of finite dimension can be replaced by the
completeness of the space since this is the important condition to allow the transition from complex-valued functions of a
complex variable to vector-valued functions of a complex variable, as we have already mentioned above. This is done, for
instance, in Stummel’s paper [13], where Cauchy’s integral method is used to show the existence of the resolvent integral for a
pair of linear bounded operators A,B ∈ B(E,F) where E and F are Banach spaces and where it is proven that the completeness
property is even not necessary if the operator B is compact.

Here, we study only a single operator T ∈ B(E), i.e., the pair (A = T,B = I) with the identity operator I in F = E where,
for the time being, we assume that the space is complete. In a subsequent paper, we shall investigate whether the completeness
property of the space for the series expansion of T can be dropped if T is compact.

For the study of asymptotic expansions for discrete approximations of eigenvalue problems, we refer the reader to [4].
After these preliminary remarks, we turn to functions of an operator in a Banach space as announced in the heading of this

section.
We mention that here we use verbatim and almost verbatim passages from [6, Chapter I, §5].
Let {0} 6= E be a Banach space over the field IF =C . Whereas in [6, Chapter I] it is supposed that dimE < ∞, here we

assume that dimE = ∞. As already mentioned several times, the following results taken from [6] are valid for dimE < ∞ and
dimE = ∞ if the space is complete.

Let p(ζ ) be the polynomial

p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈C (2.1)

with α j ∈C , j = 0,1, · · · ,n. Then the polynomial p(T ) ∈ B(E) is defined by

p(T ) = α0 +α1T + · · ·αnT n, ζ ∈C , (2.2)

see [6, Chapter I, §3.3]. Making use of the resolvent

R(ζ ) := (T −ζ )−1, ζ ∈C , (2.3)
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one can now define the function φ(T ) of T for a more general class of functions φ(ζ ).
Before we do this, we mention that linear compact operators need not have eigenvalues. For example, Volterra integral

operators have no eigenvalues. On the other hand, consider a symmetric linear compact operator. Then, such an operator has at
least one eigenvalue, and all eigenvalues are real and simple. It may happen that there exits only a finite number of eigenvalues.
Further, there is at most a countable set of eigenvalues with the only possible accumulation point zero, and there exists a set of
pertinent pairwise orthonormal eigenvectors. Further, it is known that the non-zero elements of the spectrum consist solely
of eigenvalues and that, if there is a countable set of eigenvalues, the assocated sequence tends to zero. For all this, see [14,
Chapter 6].

Further, according to [5, Theorem 44.1, p.191], one has σ(T )\{0}= σP(T )\{0} where σ(T ) is the spectrum of T and
σP(T ) the point spectrum consisting of the eigenvalues of T .

Taking this into account, for our general linear compact operator T ∈ B(E), we suppose that the spectrum σ(T ) of T has a
countable set of non-zero eigenvalues λ j and that the sequence of eigenvalues tends to zero.

Additionally, we suppose that 0 6∈ σ(T ) so that N(T ) = {0} since without this condition, we cannot obtain relation (2.11)
resp.(2.14) below.

Now, suppose that φ(ζ ) is holomorphic in a domain D of the complex plane containing all the eigenvalues λ j 6= 0 of T , and
let C ⊂ D be a simple closed smooth curve with positive direction enclosing all the eigenvalues λ j in its interior. Then, φ(T ) is
defined by the Dunford-Taylor integral

φ(T ) =− 1
2πi

∫
C

φ(ζ )R(ζ )dζ =− 1
2πi

∫
C

φ(ζ )(T −ζ )−1 dζ . (2.4)

This is an analogue of the Cauchy integral formula in the Theory of Functions, see [7, Part I, §15, p. 61]. More generally, the
curve C may consist of several simple closed rectifiable Jordan curves Ck having positive direction with interiors D′k such that
the union of the D′k contains all the eigenvalues of T . We note that (2.4) does not depend on C as long as C satisfies these
conditions. For the Ck, we can use the circles Ck = {z ∈C | |z−λk|= rk} with sufficiently small radii rk.

It can be verified that for the polynomial

φ(ζ ) = p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈C (2.5)

with α j ∈C , j = 0,1, · · · ,n, the Dunford-Taylor integral (2.4) is equal to (2.2).
For the special case

φ(ζ ) = p(ζ ) = ζ , (2.6)

we obtain

T =− 1
2πi

∫
C

T R(ζ )dζ = T
(
− 1

2πi

∫
C

R(ζ )dζ

)
=

(
− 1

2πi

∫
C

R(ζ )dζ

)
T. (2.7)

Now, we set

P :=− 1
2πi

∫
C

R(ζ )dζ . (2.8)

According to [6, Chapter I, §5, Section 3], P is a continuous projection operator onto the algebraic eigenspace X = P(E) = R(P),
where R(P) means the range of P. Thus, from (2.7) and (2.8), one obtains

T = T P = PT = PT P. (2.9)

Now, let the radii rk be chosen such that

C j ∩Ck = /0, j 6= k, j,k = 1,2,3, · · · . (2.10)

Then,

P =− 1
2πi

∫
C

R(ζ )dζ =
∞

∑
j=1

(
− 1

2πi

∫
C j

R(ζ )dζ

)
=

∞

∑
j=1

Pj (2.11)

with

Pj =−
1

2πi

∫
C j

R(ζ )dζ , j = 1,2,3, · · · . (2.12)
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At this point, we needed the assumption 0 6∈ σ(T ) since otherwise any circle C0 about λ0 = 0 would eventually intersect with
the circles Ck for sufficiently large k so that we would not have (2.10) for j,k ∈ (1,2,3, · · ·). Let J be the sequence

J := (1,2,3, · · ·). (2.13)

Then, (2.11) can be written as

P =
∞

∑
j=1

Pj = ∑
j∈J

Pj. (2.14)

Because of (2.10), one has

PjPk = PkPj = Pjδ jk, j,k ∈ J. (2.15)

Herewith,

Pj(E) =: X j (2.16)

is the algebraic eigenspace of T associated with the eigenvalue λ j.
From (2.9), (2.11), and (2.15), we obtain

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj, (2.17)

and so

R(T ) = T (E) = (PT )(E) = (T P)(E) = (PT P)(E)

= ∑
j∈J

(PjT )(E) = ∑
j∈J

(T Pj)(E) = ∑
j∈J

(PjT Pj)(E).
(2.18)

3. Expansion of a Linear Compact Operator and of a Pertinent Projection Operator in
Hilbert Space

The aim of the present section is to specify the relation (2.17), i.e.,

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj,

in more detail. This can best be done in a Hilbert space since, for example, the orthogonal projection Pu of a vector u ∈ H onto
a unit vector e ∈ H can be written as

Pu = (u,e)e,

that is, by using a scalar product.
In our case, the projection operators Pj are not orthogonal, however. But, the dimension of R(Pj) = Pj(H) is finite-

dimensional and represents the geometric eigenspace N j := N(T − λ j) if the eigenvalue λ j is simple and the algebraic
eigenspace X j := Xλ j(T ) if λ j is not simple. Now, for finite-dimensional spaces, the author constructed, in earlier work, a
set of biorthonormal eigenvectors resp. principal vectors pertinent to a finite-dimensional mapping (usually represented by
a matrix with respect to a fixed basis of vectors); here, the mapping is given by Tj = T Pj = PjT = PjT Pj. Thus, using these
biorthonormal sets, it is possible to specify the expressions Tju = T Pju = PjTu = PjT Pju for elements u ∈ H in more detail
by using a scalar product. This leads to the desired expansion for Tu. Now, the announced details follow, first for the case of
simple eigenvalues, and then for the case of general, not necessarily simple eigenvalues.
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3.1 The Case of Simple Eigenvalues
In this subsection, in the case of simple eigenvalues, expansions in a series of eigenvectors are treated; it is organized as follows.
First, the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived. Finally,
the known expansions for a selfadjoint operator T = A are retrieved from the more general result obtained in this subsection.

(i) The Conditions (C1) - (C4)
We assume the following conditions:

(C1) {0} 6= H is a Hilbert space over the field IF =C with scalar product

(C2) 0 6= T ∈ B(H) is compact (or completely continuous) having countably many simple non-zero eigenvalues λ1,λ2,λ3, · · ·
with limk→∞ λk = 0 pertinent to the eigenvectors χ1,χ2,χ3, · · · . Further, 0 6∈ σ(T ).

(C3) The eigenvectors of the adjoint T ∗ of T with the eigenvalues λ 1,λ 2,λ 3, · · · are ψ1,ψ2,ψ3, · · ·

(C4) λi 6= λ j, i 6= j, i, j = 1,2,3 · · ·

(ii) Series Expansions of Tu as well as of Pu
One has the following theorem.
Theorem 3.1 (Biorthonormality relations for λ j 6= λk, j 6= k)
Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors χ1,χ2,χ3, · · · and

ψ1,ψ2,ψ3, · · · are orthonormal, that is,

(χ j,ψk) = δ jk, j,k ∈ J. (3.1)

Proof: Define the operators

P(n) :=
n

∑
j=1

Pj (3.2)

as well as

T (n) := T P(n) =
n

∑
j=1

T Pj. (3.3)

Here, R(T (n)) = (T (n))(H) is finite-dimensional with dimension n. From [8, Theorem1], one has

(χ j,ψk) = δ jk, j,k = 1, · · · ,n. (3.4)

and

T (n)
χ j = λ jχ j, j = 1, · · · ,n. (3.5)

Now, letting n→ ∞, relation (3.4) entails (3.1) since T = limn→∞ T (n) according to Section 2. �
Furthermore, we obtain the following theorem.
Theorem 3.2 (Expansions of Tu as well as of Pu in a series of eigenvectors)
Let the conditions (C1) - (C4) be fulfilled. Then,

Tu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H (3.6)

as well as

Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (3.7)

Proof: Let u ∈ H. Then, due to (3.1),

P(n)u =
n

∑
j=1

(u,ψ j)χ j (3.8)
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and thus

T (n)u = T P(n) =
n

∑
j=1

λ j(u,ψ j)χ j. (3.9)

Now, from Section 2, the limit

Pu = lim
n→∞

P(n)u =
∞

∑
j=1

(u,ψ j)χ j = ∑
j∈J

(u,ψ j)χ j (3.10)

exists entailing also the existence of the limit

Tu = lim
n→∞

T (n)u = lim
n→∞

T P(n)u =
∞

∑
j=1

λ j(u,ψ j)χ j = ∑
j∈J

λ j(u,ψ j)χ j. (3.11)

�
Remark: From (3.6) we conclude that

[χ1,χ2,χ3, · · · ] = T (H) = R(T ). (3.12)

Further,

P : H 7→ [χ1,χ2,χ3, · · · ]. (3.13)

�
Theorem 3.3
Let the conditions (C1) - (C4) be fulfilled. Then, we obtain

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H (3.14)

and the projection operator

P0 = I−P : H 7→ N(T ) = {0} ⇐⇒ P0 = 0. (3.15)

Proof: Evidently,

u = Pu+(I−P)u, u ∈ H. (3.16)

Further,

T (P0u) = T (I−P)u = Tu−T Pu = 0 (3.17)

where the last equal sign follows from (2.17). So, P0u ∈ N(T ) = {0}, i.e., P0u = 0, u ∈ H or P0 = 0. �
If condition (C4) is not fulfilled, one can remedy this by using a biorthonormalization pre-process, as the next lemma shows.
Lemma 3.4
Let the conditions (C1) - (C3) be fulfilled, and let, for instance, λ j1 ,λ j2 , · · · ,λ jp be eigenvalues of T with linearly independent

eigenvectors χ j1 ,χ j2 , · · · ,χ jp; further, let ψ j1 ,ψ j2 , · · · ,ψ jp be linearly independent eigenvectors pertinent to λ j1 ,λ j2 , · · · ,λ jp

of T ∗. Then, these eigenvectors can be biorthonormalized such that

(χ jk ,ψ jl ) = δkl , k, l = 1,2, · · · , p. (3.18)

Proof: See [9, Theorem 3]. �
After appropriate application of the biorthonormalization pre-process, condition (C4) is satisfied.
(iii) Special Case of a Selfadjoint Compact Operator T = A
If T = A is selfadjoint and compact and if there is a countable set of non-zero eigenvalues λ j, j ∈ J, then it is known that

the relation

lim
j→∞

λ j = 0 (3.19)
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is fulfilled. Further, the eigenvalues are real, and the pertinent eigenvectors ϕ j can be chosen real so that one has

ϕ j = χ j = ψ j, j ∈ J (3.20)

meaning that the biorthonormality relations (3.1) turn into the orthonormality relations

(ϕ j,ϕk) = δ j,k, j,k ∈ J. (3.21)

Thus, if 0 6∈ σ(A), the relations (3.6) and (3.14) turn into the known results

Au = ∑
j∈J

λ j(u,ϕ j)ϕ j, u ∈ H (3.22)

and

u = Pu = ∑
j∈J

(u,ϕ j)ϕ j, u ∈ H. (3.23)

3.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of T be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.
So, first the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived.

(i) The Conditions (C1′) - (C4′)
In the general case when the eigenvalues need not be simple, we assume the following conditions:

(C1′) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2′) 0 6= T ∈ B(H) is compact (or completely continuous) having countably many non-zero eigenvalues λ1,λ2,λ3, · · · with
limk→∞ λk = 0 and the pertinent algebraic eigenspaces Pj(H) = Xλ j(T ) spanned by the principal vectors

χ
( j)
1 ,χ

( j)
2 , · · · ,χ( j)

m j for j ∈ J, where χ
( j)
i is of stage i. Further, 0 6∈ σ(T ).

(C3′) ψ
( j)
1 ,ψ

( j)
2 , · · · ,ψ( j)

m j are the principal vectors corresponding to the eigenvalues λ j, j∈ J, spanning the algebraic eigenspaces
P∗j (H) = X

λ j
(T ∗) for j ∈ J

(C4′) λ j 6= λk, j 6= k, j,k ∈ J

(ii) Series Expansions of Tu as well as of Pu
As a preparation of the expansions in series of principal vectors, we begin with the detailed biorthonormalization process.

According to (C2′) and (C3′), we have

T χ
(i)
k = λi χ

(i)
k +χ

(i)
k−1, k = 1,2, · · · ,mi (3.24)

and

T ∗ψ( j)
l = λ j ψ

( j)
l +ψ

( j)
l−1, l = 1,2, · · · ,m j. (3.25)

Then, the fact can be used that the principal vectors of stage k are determined only up to a linear combination of principal
vectors of stages less than k which was applied in [8] to the chain ψ

( j)
1 ,ψ

( j)
2 , · · · ,ψ( j)

m j leading to

(χ
(i)
k ,ψ

(i)
l ) = 0, l 6= mi− k+1, k = 1, · · · ,mi (3.26)

and

(χ
(i)
k ,ψ

(i)
mi−k+1) 6= 0, l = mi− k+1, k = 1, · · · ,mi. (3.27)

So, with

υ
(i)
k = ψ

(i)
mi−k+1, (3.28)
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one has

(χ
(i)
k ,υ

(i)
k ) 6= 0, k = 1, · · · ,mi. (3.29)

Further, according to [8],

(χ
(i)
k ,υ

( j)
l ) = 0, i 6= j (3.30)

k = 1, · · · ,mi, l = 1, · · · ,m j.

Now, replace υ
(i)
k in (3,29) by

υ̃
(i)
k := ψ̃mi−k+1 := β

(i)
mi−k+1 ψmi−k+1 = β

(i)
mi−k+1 υ

(i)
k (3.31)

and determine the factor β
(i)
mi−k+1 such that

(χ
(i)
k , υ̃

(i)
k ) = 1. (3.32)

Then,

β
(i)
mi−k+1 = 1/(χ(i)

k ,υ
( j)
k ) = 1/(χ(i)

k ,ψmi−k+1), k = 1, · · · ,mi (3.33)

or

β
(i)
l = 1/(χ(i)

mi−l+1,υ
( j)
mi−l+1) = 1/(χ(i)

mi−l+1,ψl), l = 1, · · · ,mi. (3.34)

From (3.31), we obtain

ψ
(i)
l =

1

β
(i)
l

ψ̃
(i)
l , l = 1, · · · ,mi. (3.35)

Inserting this in (3.25) implies

T ∗(
1

β
(i)
l

ψ̃
( j)
l ) = λ j (

1

β
(i)
l

ψ̃
( j)
l )+(

1

β
(i)
l−1

ψ̃
( j)
l−1), l = 1,2, · · · ,m j

or

T ∗ψ̃( j)
l = λ j ψ̃

( j)
l + γ

( j)
l−1 ψ̃

( j)
l−1, l = 1,2, · · · ,m j (3.36)

with β
( j)
0 := 1 and ψ̃

( j)
0 := 0 as well as

γ
( j)
l−1 := β

(i)
l /β

(i)
l−1, l = 1,2, · · · ,mi. (3.37)

This means that in the canonical Jordan form of T restricted to the subspace spanned by the principal vectors ψ̃
( j)
1 , ψ̃

( j)
2 , · · · , ψ̃( j)

m j ,

the ones are to be replaced by the γ
( j)
l−1, l = 2, · · · ,mi.

Due to the above, one has the following lemma.
Lemma 3.5 (Biorthonormality relations for principal vectors)
Let the conditions (C1′) - (C4′) be fulfilled. Then, with the above notations,

(χ
(i)
k , υ̃

( j)
l ) = δklδi j, (3.38)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j ∈ J with

υ̃
( j)
l = ψ̃

( j)
m j−l+1 = β

( j)
m j−l+1 ψ

( j)
m j−l+1 = β

( j)
m j−l+1 υ

( j)
l , (3.39)
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l = 1, · · · ,m j, j ∈ J as well as

β
( j)
m j−l+1 = 1/(χ( j)

l ,υ
( j)
l ) = 1/(χ( j)

l ,ψm j−l+1), (3.40)

l = 1, · · · ,m j, j ∈ J. �
At this point, we mention that

(u,v) = (eϕ u,eϕ v), u, v ∈C n, 0≤ ϕ < 2π

which also applies to the pairs of vectors u = χ
(i)
k ,v = υ̃

( j)
l in (3.38).

Remark: We note that the matrix

((χ
(i)
k , ψ̃

(i)
l ))k,l=1,··· ,mi (3.41)

has the form
1

1
...

1

 (3.42)

which is called cross-diagonal in [12, p.3] and anti-diagonal by other authors. As opposed to this, the matrix ((χ(i)
k , υ̃

(i)
l ))k,l=1,··· ,mi ,

is equal to the identity matrix and thus diagonal. �
With Lemma 3.5, we can derive the next theorem that is an analogue to Theorem 3.2.
Theorem 3.6
Let the conditions (C1′) - (C4′) be fulfilled. Then,

Tu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H (3.43)

as well as

Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.44)

Proof: Define

P(n)u =
n

∑
j=1

Pj =
n

∑
j=1

Pλ j(T ). (3.45)

Since P(n)(H) is finite-dimensional, Lemma 3.4 entails

P(n)u =
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.46)

This leads to

T (n)u : = T P(n)u =
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )T χ

( j)
k

=
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H.

(3.47)

From this, it follows, based on Section 2,

P = lim
n→∞

P(n) (3.48)
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as well as

T = lim
n→∞

T (n) (3.49)

in the Banach space B(H). From (3.45) - (3.49), the relations (3.43) and (3.44) follow. �
Using (3.44), we obtain the next theorem.
Theorem 3.7
Let the conditions (C1′) - (C4′) be fulfilled. Then,

u = Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.50)

Proof: The proof is done in the same way as for Theorem 3.3 �
Remark: As in the case of simple eigenvalues of T , under the conditions (C1′) - (C4′) the relation N(T ) = {0} is equivalent

to the property that λ0 = 0 is not an eigenvalue of T which, in turn, is equivalent to λ 0 = 0 is not an eigenvalue of T ∗ or that
N(T ∗) = {0}. �

Remark: If condition (C4′) is not fulfilled, this again can be remedied by a biorthonormalization pre-process described in [9,
Theorem 4]. �

4. Series Expansions for a Densely Defined Linear Operator with Compact Inverse
The results on linear compact operators in Section 3 can be carried over to densely defined linear operators with compact
inverse. The obtained expansions have important applications to BEVPs for ordinary and partial differential equations, where in
Section 5, we restrict ourselves to BEVPs for ODEs. Again, it is natural to first handle the case of simple eigenvalues and then
the case of general eigenvalues.

4.1 The Case of Simple Eigenvalues
In this subsection, in the case of simple eigenvalues, expansions in series of eigenvectors are treated.

It is structured as follows. We begin with the conditions on the densely defined linear operator L, its formally adjoint
operator L+ and their pertinent compact inverses G and G+. Then, it is shown that G+ = G∗ where G∗ is the adjoint operator of
G. Next, the expansions for Gu and Pu in series of eigenvectors are derived.

(i) The Conditions (C1d) - (C5d)
We assume the following conditions:

(C1d) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2d) {0} 6= HD and HR are pre-Hilbert spaces with

HD ⊂ HR ⊂ H, HD = HR = H

and where

L : D(L) := HD 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1,µ2,µ3, · · · and the property lim j→∞ µ j = ∞ as well as pertinent eigenvectors χ1,χ2,χ3, · · · ∈ HD. Further, L possesses
a compact inverse

G := L−1 ∈ B(H)

(C3d) {0} 6= HD,+ and HR are pre-Hilbert spaces with

HD,+ ⊂ HR ⊂ H, HD,+ = HR = H

and where

L+ : D(L+) := HD,+ 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1,+,µ2,+,µ3,+, · · · and the property lim j→∞ µ j,+ = ∞ as well as pertinent eigenvectors ψ1,ψ2,ψ3, · · · ∈ HD,+. Further,
L+ possesses a compact inverse

G+ := L−1
+ ∈ B(H)
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(C4d) (Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+

(C5d) µ j 6= µk, j 6= k, j,k ∈ J

We mention that due to the above conditions, 0 6∈ σ(G).
(ii) Series Expansions of Gu and Pu
The first theorem reads as follows.
Theorem 4.1
Let the conditions (C1d) - (C5d) be fulfilled. Then,

µ j,+ = µ j, j ∈ J (4.1)

and

G+ = G∗ (4.2)

where G∗ ∈ B(H) is the adjoint operator of G defined by

(Gu,v) = (u,G∗u), u, v ∈ H. (4.3)

Further, the operator G has the eigenvalues λ j = 1/µ j as well as the eigenvectors χ j, and G+ = G∗ has the eigenvalues
λ j,+ = λ j = 1/µ j,+ = 1/µ j as well as the eigenvectors ψ j for j ∈ J. In addition, lim j→∞ λ j = 0.

Proof: Let ũ, ṽ ∈ HR and

u := L−1ũ = Gũ

as well as

v := L−1
+ ṽ = G+ṽ.

Then,

u ∈ HD, v ∈ HD,+.

Substituting this in (C4d) gives

(ũ,G+ṽ) = (Gũ, ṽ), ũ, ṽ ∈ HR

or, with new denotations,

(u,G+v) = (Gu,v), u, v ∈ HR,

i.e.,

(Gu,v) = (u,G+v), u, v ∈ HR,

and thus, because of HR = H, also

(Gu,v) = (u,G+v), u, v ∈ H.

On the other hand,

(Gu,v) = (u,G∗v), u, v ∈ H

and consequently

G+ = G∗.

The rest of the proof is obtained in a simple way. �
From Theorem 4.1 and the results of Subsection 3.1, we obtain the following corollary.
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Corollary 4.2
Let the conditions (C1d) - (C5d) be fulfilled. Then,

Gu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H, (4.4)

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (4.5)

Proof: Because of

Gχ j = λ jχ j

and

G∗ψ j = G+ψ j = λ j,+ψ j = λ jψ j,

j ∈ J, from Section 3.1 we obtain the relations (4.4) and (4.5). �

4.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of L be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.
So, first the conditions on the densely defined linear operator L, its formally adjoint operator L+ and their compact inverses

G and G+ are stated. Next, the expansions of Gu and Pu in series of principal vectors are derived.

(i) The Conditions (C1′d) - (C5′d)
We assume the following conditions:

(C1′d) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2′d) {0} 6= HD and HR are pre-Hilbert spaces with

HD ⊂ HR ⊂ H, HD = HR = H

and where

L : D(L) := HD 7→ HR

is a linear operator with the countably many general non-zero eigenvalues
µ1,µ2,µ3, · · · and the property lim j→∞ µ j = ∞ as well as pertinent principal vectors χ

( j)
1 ,χ

( j)
2 , · · ·χ( j)

m j ∈ HD j ∈ J, where

χ
( j)
i is of stage i. Further, L possesses a compact inverse

G := L−1 ∈ B(H)

(C3′d) {0} 6= HD,+ and HR are pre-Hilbert spaces with

HD,+ ⊂ HR ⊂ H, HD,+ = HR = H

and where

L+ : D(L+) := HD,+ 7→ HR

is a linear operator with the countably many general non-zero eigenvalues
µ1,+,µ2,+,µ3,+, · · · and the property lim j→∞ µ j,+ =∞ as well as pertinent principal vectors ψ

( j)
1 ,ψ

( j)
2 , · · ·ψ( j)

m j ∈HD,+ j ∈
J. Further, L+ possesses a compact inverse

G+ := L−1
+ ∈ B(H)
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(C4′d) (Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+

(C5′d) µ j 6= µk, j 6= k, j,k ∈ J

Again, we mention that due to the above conditions, 0 6∈ σ(G).

(ii) Series Expansions of Gu and Pu
The next theorem reads as follows.
Theorem 4.3
Let the conditions (C1′d) - (C5′d) instead of (C1d) - (C5d) be fulfilled. Then, the relations (4.1) - (4.3) as well as lim j→∞ λ j = 0

of Theorem 4.1 hold.
Proof: The proof of Theorem 4.3 is the same as for Theorem 4.1 since it does not depend on the condition that the

eigenvalues be simple. �
From Theorem 4.3 and the results of Subsection 3.2, we obtain the following corollary.
Corollary 4.4
Let the conditions (C1′d) - (C5′d) be fulfilled. Then,

Gu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H, (4.6)

u = Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (4.7)

�

5. Application to a General Non-Selfadjoint BEVP with Ordinary Differential Operator of
nth Order

In this section, we apply the results of Section 4 to a general non-selfadjoint BEVP for an ordinary differential operator L of nth
order. In doing so, we not only obtain the expansion (1.7) for simple eigenvalues, but also, in addition, those for Pu and Gu in
series of eigenfunctions, and further those for general eigenvalues in series of principal functions, which is much more than
what is obtained in [2] before.

We mention that this section contains a series of verbatim and almost verbatim passages from [2, Chapter 11].
Now, the details follow.
Let a≤ x≤ b be a closed bounded interval, and let L be the linear differential operator of nth order with n≥ 1 defined by

(Lu)(x) := an(x)u(n)(x)+an−1(x)u(n−1)(x)+ · · ·+a1(x)u′(x)+a0(x)u(x) (5.1)

where ak are complex-valued functions of class Ck[a,b] and an(x) 6= 0 on [a,b]. Given any set of 2mn complex constants
αi j, βi j, i = 1,2, · · · ,m, j = 0,1, · · · ,n−1 , define the m boundary operators or boundary forms R1, · · · ,Rm for the functions u
on [a,b], for which u( j), j = 1,2, · · · ,n exist at a and b by

Riu :=
n−1

∑
j=0
{αi ju( j)(a)+βi ju( j)(b)}= 0, i = 1,2, · · · ,m (5.2)

⇐⇒

Ru = 0. (5.3)

We suppose that R has rank m. Corresponding to any homogeneous boundary value problem (for short: BVP) is a well-defined
”adjoint” problem (which should better be called formally adjoint problem) with the Lagrange ”adjoint operator” given by

(L+v)(x) = (−1)n(an(x)v)(n)(x)+(−1)n−1(an−1(x)v)(n−1)(x)+ · · ·
+(−1)(a1(x)v)′(x)+a0(x)v(x)

(5.4)

and a set of adjoint boundary conditions

R+v = 0 (5.5)
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complementary in a sense to those for the problem pertinent L.
We mention that some authors denote the formally adjoint operator by L∗, see for instance [10]. But, we do not follow

this usage since this paper is functional-analysis-oriented and since L∗ could be misinterpreted as the adjoint of a densely
defined linear operator L, see [1, No.44]. Instead, as in [2], we use a plus sign to denote the formally adjoint operator, here as a
subscript instead of a superscript there.

We note that an adjoint boundary condition is not unique, see [2, Theorem 2.1].
Now, we define the pre-Hilbert spaces

HD := D(L) := {u ∈Cn[a,b] |Ru = 0} (5.6)

and

HD,+ := D(L+) := {v ∈Cn[a,b] |R+v = 0}. (5.7)

Then,

(Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+. (5.8)

We mention that

C∞
0 [a,b]⊂ HD ⊂ HR :=C2[a,b]⊂ L2(a,b) =: H (5.9)

where C2[a,b] is the function space C[a,b] endowed with the norm

‖u‖2 =

(∫ b

a
|u(x)|2dx

) 1
2

, (5.10)

and where the integral is taken in the sense of Riemann which is equal to the Lebesgue integral for u ∈C2[a,b]. The space
L2(a,b) is the space of measurable functions such that the above integral (taken in the sense of Lebesgue) is finite.

Corresponding to (5.9), one has

C∞
0 [a,b]⊂ HD,+ ⊂ HR =C2[a,b]⊂ L2(a,b) = H. (5.11)

It is known that

C∞
0 [a,b] = L2(a,b).

If R is a boundary form of rank m, the problem

πm : Lu = 0, u ∈ HD = D(L) (5.12)

is called a homogeneous BVP of rank m.
The problem

π2n−m,+ : L+v = 0, v ∈ HD,+ = D(L+) (5.13)

is called the adjoint BVP.
One has the following:
πn and πn,+ have the same number of independent solutions. see [2, p.293, last line].
The BEVP pertinent to πn is given by

πn,µ : Lu = µu, u ∈ HD = D(L) (5.14)

and that associated with πn,+ by

πn,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (5.15)

Now, let G(x,s) be the Green’s function pertinent to the BVP πn and G+(x,s) the Green’s function associated with πn,+.
Then, the pertinent compact operators G = L−1 and G+ = L−1

+ are given by

(Gu)(x) =
∫ b

a
G(x,s)u(s)ds, u ∈ L2(a,b) (5.16)



Eigenvalue Expansion of Nonsymmetric Linear Compact Operators in Hilbert Space — 69/74

and

(G+v)(x) =
∫ b

a
G+(x,s)v(s)ds, v ∈ L2(a,b) (5.17)

where

G+(x,s) = G(s,x), x,s ∈ [a,b], (5.18)

see [2, (4.15)] implying for the pertinent operators G in (5.15) and G+ in (5.17) the relations

G+ = G∗. (5.19)

If the conditions (C1d) - (C5d) for L in (5.1) and for L+ in (5.4) are fulfilled, then (5.19) follows also from the abstract results
of Section 4, and beyond this, one obtains also the expansions in series of eigenvectors (4.4) and (4.5) in Corollary 4.2 with
convergence in the norm ‖ · ‖2, whereas in [2, Chapter 12,(5.6)] only the relation (4.5), i.e.,

u =
∞

∑
j=1

(u,ψ j)χ j, u ∈ H = L2(a,b)

is given.
Beyond this, if the conditions (C1′d) - (C5′d) are fulfilled, then the expansions in series of principal vectors (4.6) and (4.7)

are valid in the norm ‖ · ‖2. This case when the eigenvalues are general is not treated in [2] and means a considerable progress
in the theory of non-selfadjoint BEVPs.

6. The Case of a Non-Selfadjoint BEVP of 2nd Order
In this section, we further specialize the BEVP discussed in Section 5 by restricting the order of L to n = 2 and by employing
very simple boundary values. The considered problem is often used as an example in books on Mathematical Physics and is
treated there in a special weighted norm. But when it comes to specific examples, the term with the first derivative usually is
omitted so that one obtains a selfadjoint problem. Here, we keep this term, and so we get a non-selfadjoint problem of 2nd
order.

This section is split up in two subsections.
In Subsection 6.1, the BEVP of 2nd order with real continuous coefficients is established. It goes without saying that the

series expansions obtained in Section 5 are valid if the corresponding conditions are fulfilled.
In Subsection 6.2, we further specialize the BEVP of 2nd order to the case when the coefficients are constant. Then, it is

possible to explicitly determine the eigenvalues, biorthonormal eigenfunctions, and the Green’s functions defining the inverse
operators G of L and G+ of L+.

6.1 The BEVP of 2nd Order with Real Continuous Coefficients
As a special case of the general differential operator of nth order in Section 5, in this subsection we consider the differential
operator of 2nd order

Lu(x) := a2(x)u′′(x)+a1(x)u′(x)+a0(x)u(x), 0≤ x≤ l (6.1)

with real functions ai ∈Ci[0, l], i = 0,1,2 and the boundary conditions

Ru = 0 ⇐⇒ u(0) = u(l) = 0, (6.2)

cf. e.g., [11, §75, p.362] where a2(x) =−1, a1(x) = p(x), a0(x) = q(x), l = 1.
We mention that we have chosen here the interval [0, l] since, in applications to mechanical problems, l means a length.
The formally adjoint operator L+ reads

L+v(x) := (a2(x)v)′′(x)− (a1(x)v)′(x)+a0(x)v(x), 0≤ x≤ l. (6.3)

As adjoint boundary condition, we choose

R+v = 0 ⇐⇒ v(0) = v(l) = 0 (6.4)
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so that R+v = Ru = 0 holds. Here, we have

HD = {u ∈C2[0, l] |u(0) = u(l) = 0}= HD,+ (6.5)

and

HR =C2[0, l] (6.6)

as well as

H = L2(0, l). (6.7)

Herewith,

(Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+ (6.8)

so that condition (C4d) is fulfilled.
We further suppose that the differential operator L in (6.1) has a countable set of simple non-zero eigenvalues µ1, µ2, µ3, · · ·

with lim j→∞ µ j = ∞. Then, the conditions (C1d) - (C5d) are fulfilled, and one has the expansions in series of eigenfunctions
(4.4) and (4.5).

6.2 The Special Case of Constant Coefficients
In this subsection, we treat the BEVP of Subsection 6.1 when a2(x) =−1, a1(x) = p(x) = p0, a0(x) = q(x) = q0 are constant
in the interval [0, l], that is, when Lu =−u′′+ p0 u′+q0 u and thus L+v =−v′′− p0 v′+q0 v .

In this special case, it is possible to explicitly determine the eigenvalues µ j of L resp. µ j of L+ and the pertinent
eigenfunctions χ j resp. ψ j, as the case may be. Further, the Green’s functions G(x,s; p0,q0) and G+(x,s; p0,q0) defining the
inverse compact operators G and G+ = GT are explicitly determined. As far as the author is aware, these results have not been
obtained, before.

For the sake of brevity, the details of the derivation of these quantities are left to the reader. However, we give some hints
for obtaining these results.

(i) The Differential Operators L and L+ and Pertinent BEVPs
As already announced, in this subsection, we choose constant coefficients in the differential operator L. More precisely, we

set

a2(x) =−1, a1(x) = p(x) = p0, a0(x) = q(x) = q0 (6.9)

with real constants p0 and q0 so that

(Lu)(x) =−u′′(x)+ p0u′(x)+q0u(x), 0≤ x≤ l (6.10)

and

(L+v)(x) =−v′′(x)− p0v′(x)+q0v(x), 0≤ x≤ l (6.11)

with the same boundary conditions (6.2) and (6.4) as in Subsection 6.1.
We restrict the constant q0 to q0 > 0.
The pertinent BEVPs read

π2,µ : Lu = µu, u ∈ HD = D(L) (6.12)

and that associated with π2,+ by

π2,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (6.13)

(ii) The Eigenvalues and Eigenfunctions
The eigenvalues of L and L+ are given by

µ = µ = µ j = µ j =
j2π2

l2 +D, j ∈ J (6.14)
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with the quantity

D = D(p0,q0) = (
p0

2
)2 +q0 > 0 (6.15)

so that

lim
j→∞

λ j = lim
j→∞

1
µ j

= 0 (6.16)

is fulfilled.
The biorthonormal eigenfunctions are found to be

χ j(x) =

√
2
l

exp(
p0

2
x)sin j π

x
l
, 0≤ x≤ l, j ∈ J (6.17)

and

ψk(x) =

√
2
l

exp(− p0

2
x)sink π

x
l
, 0≤ x≤ l, k ∈ J (6.18)

so that we have

(χ j,ψk) =
∫ l

0
χ j(x)ψk(x)dx =

2
l

∫ l

0
sin( j π

x
l
)sin(k π

x
l
)dx = δ jk, j,k ∈ J. (6.19)

Hint: To derive these results, use the ansatz u(x) = ceκx in order to solve the BEVP

Lp0,q0u = µu, u(0) = u(l) = 0. (6.20)

The eigenfunctions ψ j(x) are obtained from χ j(x) by just replacing p0 by −p0. �
(iii) The Green’s Function of Lp0,q0u = 0, u(0) = u(l) = 0
A set of fundamental solutions of the BVP Lp0,q0u = 0, u(0) = u(l) = 0, i.e., when µ = 0, is given by

u1(x) = exp
( p0

2
x
)

sinh
√

Dx, 0≤ x≤ l, (6.21)

u2(x) = exp
( p0

2
x
)

cosh
√

Dx, 0≤ x≤ l, (6.22)

with

D = D(p0,q0) = (
p0

2
)2 +q0 (6.23)

which is also obtained with the ansatz u(x) = ceκx by setting c = 1 and taking into account µ = 0 where here D is a discriminant.
Based on these fundamental solutions, we have calculated the Green’s functions by the method described in [10, pp.311].
Thus, one gets

G(x,s) =


G1(x,s) =

sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
, 0≤ x≤ s≤ l,

G2(x,s) =
sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
0≤ s≤ x≤ l.

(6.24)

For G+(x,s), we obtain

G+(x,s) =


G+,1(x,s) =

sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
, 0≤ x≤ s≤ l,

G+,2(x,s) =
sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
0≤ s≤ x≤ l.

(6.25)
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so that, because of D = D(p0,q0),

G(x,s) = G(x,s; p0,q0) (6.26)

and

G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0) (6.27)

in accordance with the fact that, for the pertinent operators, one has G+ = GT .

7. Comparison of Present Expansion Results
with Known Ones in an Abstract Hilbert Space

The oldest expansion result for compact operators in an abstract Hilbert space being of formal similarity to our results the
author found is that in [1, Section 64, pp.172-174]. There, under certain conditions, the expansions of the form

h = h0 + ∑
j∈J

(h,e j)e j, h ∈ H (7.1)

with an element h0 ∈ H0 := N(T ) as well as

T h = ∑
j∈J

µ j(h,e j)g j, h ∈ H (7.2)

can be found. Here, the vectors e j are the pairwise orthonormal eigenvectors of A := T ∗T . The associated eigenvalues λ j can
be written in the form

λ j = (Ae j,e j) = (T ∗Te j,e j) = (Te j,Te j)> 0. (7.3)

Therefore, one has λ j = µ2
j , where µ1 ≥ µ2 ≥ ·· ·> 0.

The vectors g j are defined by

Te j = µ jg j (7.4)

leading to

(g j,gk) = δ jk. (7.5)

Applying T to (7.1) and using (7.4), we obtain (7.2).
As opposed to this, our result is an expansion in series of eigenvalues and eigenvectors/principal vectors of the compact

operator T itself whereas in [1] one has an expansion in series of eigenvalues µ j = µ j(T ∗T ) and eigenvectors e j = e j(T ∗T ) of
T ∗T and the vectors g j defined in (7.4) that are left singular vectors in the denotation of [3, p.2].

The most recent publication on expansions of a compact operator in an abstract Hilbert space the author has found is [3].
There, it is used that the singular values and singular vectors of T are related to the nonzero eigenvalues and corresponding
eigenvectors of T ∗T and T T ∗. More precisely, one has

T φk = σkψk, (7.6)

T ∗T φk = σ
2
k φk, (7.7)

T T ∗ψk = σ
2
k ψk. (7.8)

The quantities σk are called singular values, the vectors φk are called right singular vectors and ψk left singular vectors in [3,
p.2]. Herewith, it is proven that the expansion

T =
∞

∑
k=1

σkψk⊗φk (7.9)

is valid in B(H). The difference to the present paper is that, in [3], the expansion is not in eigenvalues and eigenvectors/principal
vectors of the compact operator T itself.
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8. Conclusions
In this paper it is shown that expansions in series of eigenvectors valid for symmetric linear compact operators and symmetric
densely defined linear operators with compact inverse can be carried over to corresponding nonsymmetric operators where,
in the case of general eigenvalues, the expansions are in series of principal vectors. These results are all new and mean a
considerable progress in the Spectral Analysis of Nonsymmetric Linear Compact Operators in a Hilbert Space. The expansions
discussed in Section 7 are not in series of eigenvectors resp. principal vectors and thus are different from ours. Further, in
Natural Sciences and Engineering, expansions in series of eigenvectors and principal vectors are of particular importance.
Our results are applicable to general non-selfadjoint BEVPs pertinent to an ordinary differential operator of nth order and
deliver even there new results when the eigenvalues are general, that is, not necessarily simple. In a special example of a
differential operator of 2nd order with constant coefficients, the eigenvalues, eigenfunctions and the Green’s functions are
explicitly determined which also seems to be new, as far as the author is aware.
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1. Introduction
Plane trees (or ordered trees) have been studied extensively in the literature. These trees on n vertices are counted by the
(n−1)th Catalan number

Cn−1 =
1
n

(
2n−2
n−1

)
.

So if the vertices are labelled with labels 1,2, . . . ,n then the total number of these trees is n!Cn−1. A vertex j is reachable from
a vertex i if there is a sequence of oriented edges (paths) from vertex i to vertex j, and a path is of length ` if there are ` edges
on the path. In this context, degree of a vertex is the number of edges that come out of a vertex if the edges are oriented away
from the root. A vertex in which there is no edge that is oriented away from it is called a sink whereas a leaf sink is a vertex
with only one edge oriented towards it but no edge oriented away from it. The vertices with the same parent are called siblings.
Since the siblings are linearly ordered, they are always drawn in a left-to-right pattern where the leftmost sibling is referred to
as first child. At a given level `, the left most child is the eldest child. A left most path refers to a sequence of edges joining
eldest children at each level in a plane tree. In this work, we examine the number of reachable vertices from a given root i. We
also determine a formula for the number of labelled ordered trees on n vertices such that exactly k vertices are reachable from
the root. Plane trees considered here have their edges oriented from a vertex of lower label towards a vertex of higher label.
This orientation was introduced in [1]. Equivalent results for t-ary trees have been obtained by the present authors in [3]. We
will now refer to these plane trees simply as trees. In Section 2, we use path lengths to count the trees. The number of sinks and
leaf sinks are the statistics used in Section 3 while in Section 4, we use left most paths and first children. We enumerate trees by
non-first children and non-leaves in Section 5. We use mainly generating functions and Lagrange Inversion Formula [5] to
prove our results. In most cases, we give asymptotic results as well. Lastly, in Section 6 we give a bijective proof of a formula
for the number of trees in which a given number of vertices is reachable from the root.
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2. Enumeration by path lengths
In the sequel, we enumerate trees by path lengths. We start by proving the main result of this section.

Theorem 2.1. The number of trees on n vertices rooted at vertex i such that vertex j of degree d is reachable from the root in `
steps is given by

(n− `−1)!
2`+d

n+ `−1

(
j− i−1
`−1

)(
2n−d−3
n+ `−2

)
.

Proof. Let P(x) be the generating function for plane trees where x marks the number of non-root vertices. Consider a plane
tree rooted at vertex i such that there is a path of length ` starting at vertex i and ending at vertex i+ ` of degree d. This path
decomposes the tree into left and right plane subtrees upto length `. Thus (P(x)xP(x))` is the generating function for the
number of the trees with a path of length ` starting at i and ending at i+ `. Vertex i+ ` is joined to d other vertices which
are connected to other plane trees hence we have x(xP(x))d , to represent the vertex and the subtrees of its children. Putting
everything together, we obtain (P(x)xP(x))`x(xP(x))d = x`+d+1P(x)2`+d as the generating function of the unlabelled plane tree
rooted at vertex i with a path of length ` starting at i and ending at vertex i+ ` of degree d. The decomposition is represented by
Figure 2.1.

i+ `

i

d subtrees

length `

Figure 2.1. Unlabelled plane tree with path length `.

The generating function for unlabelled plane trees is P(x) = 1
1−P(x) . We let xP(x) = F(x) so that F(x) = x

1−F(x) . Applying
Lagrange Inversion Formula, we get

[xn]x`+d+1P(x)2`+d = [xn]x−`+1F(x)2`+d

= [xn+`−1]F(x)2`+d

=
2`+d

n+ `−1
[tn−`−d−1] (1− t)−(n+`−1)

=
2`+d

n+ `−1
[tn−`−d−1]∑

i≥0

(
−(n+ `−1)

i

)
(−t)i

=
2`+d

n+ `−1
[tn−`−d−1]∑

i≥0

(
n+ `+ i−2

i

)
t i

=
2`+d

n+ `−1

(
2n−d−3

n− `−d−1

)
.

This formula counts the number of unlabelled plane trees in which vertex i+ ` of degree d is reachable from the root in ` steps.
The number of ways of choosing a path of length ` from vertex i to vertex j is

( j−i−1
`−1

)
. Once the `+1 vertices on the path are

labelled, there are (n− `−1)! choices for labelling the remaining vertices. Thus, the number of plane trees in which vertex j of
degree d is reachable from root i in ` steps is given by

(n− `−1)!
2`+d

n+ `−1

(
j− i−1
`−1

)(
2n−d−3
n+ `−2

)
.

This completes the proof.
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Setting `= 0 in the just proved theorem, we get that there are

(n−1)!
d

n−1

(
2n−d−3

n−2

)
= d(n−2)!

(
2n−d−3

n−2

)
trees in which a root of any label has degree d.

Quite a number of corollaries of Theorem 2.1 follow:

Corollary 2.2. The total number of trees on n vertices rooted at vertex i such that vertex j is reachable from the root in ` steps
is given by:

(n− `−1)!
2`+1
2n−1

(
j− i−1
`−1

)(
2n−1
n+ `

)
. (2.1)

Proof. The result follows by summing over all d in Theorem 2.1.

By summing over all j in Equation (2.1), we get that

Corollary 2.3. The number of vertices in trees of order n that are reachable from root i in ` steps is given by

(n− `−1)!
2`+1
2n−1

(
n− i
`

)(
2n−1
n+ `

)
. (2.2)

Moreover, summing over all i in Equation (2.2), we get the total number of reachable vertices:

Corollary 2.4. There are a total of

(n− `−1)!
2`+1
2n−1

(
n

`+1

)(
2n−1
n+ `

)
(2.3)

vertices that are reachable from the root in ` steps, in trees with n vertices.

Now, summing over all ` in Equation (2.3) we obtain

Corollary 2.5. The total number of vertices in trees on n vertices that are reachable from the root is given by

n!
2n−1

n−1

∑
`=0

2`+1
(`+1)!

(
2n−1
n+ `

)
.

Corollary 2.6. On average, the number of vertices that are reachable from the root in ` steps in a random tree is 2`+1
(`+1)! .

Proof. Dividing the total number of vertices that are reachable from the root in ` steps in plane trees (See Equation (2.3)) by
the total number of labelled plane trees, we get

A =

(n− `−1)! 2`+1
2n−1

(
n

`+1

)(
2n−1

n− `−1

)
(n−1)!

(
2n−2
n−1

)
as the average number of vertices that are reachable in ` steps from the root in trees with n vertices. We simplify the average to
get

A =
2`+1
(l +1)!

(n−1)!n!
(n+ `)!(n− `−1)!

.

Now, taking limits as n→ ∞, we get

lim
n→∞

A =
2`+1
(`+1)!

lim
n→∞

(n−1)!n!
(n+ `)!(n− `−1)!

=
2`+1
(`+1)!

lim
n→∞

(n−1)(n−2)(n−3) · · ·(n− `)

(n+ `)(n+ `−1) · · ·(n+1)

=
2`+1
(`+1)!

lim
n→∞

(
n`+ · · ·
n`+ · · ·

)
=

2`+1
(`+1)!

.

Hence the desired result.
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Corollary 2.7. The number of trees of order n in which there is a path of length ` starting at the root and ending at a vertex of
degree d is given by

(n− `−1)!
2`+d

n+ `−1

(
n

`+1

)(
2n−d−3
n+ `−2

)
. (2.4)

Proof. We obtain the result by summing over all i and j in Theorem 2.1.

Setting `= 0 in Equation (2.4), we get

n!d
n−1

(
2n−d−3

n−2

)
,

as the formula which counts the number of trees on n vertices such that the root is of degree d. Also setting `= 1 in Equation
(2.4), we obtain

(d +2)(n−1)!
2

(
2n−d−3

n−1

)
.

This formula counts the total number of children of degree d, in all trees of order n.

3. Enumeration by sinks and leaf sinks
In this section, we enumerate trees with respect to sinks and leaf sinks.

Proposition 3.1. The number of trees of order n in which vertex j, a sink of degree d, is reachable from a root i in ` steps is
given by

(n− `−d−1)!
2`+d

n+ `−1

(
j− i−1
`−1

)(
j− `−1

d

)(
2n−d−3
n+ `−2

)
. (3.1)

Proof. From the proof of Theorem 2.1, it follows that there are

2`+d
n+ `−1

(
2n−d−3
n+ `−2

)
unlabelled trees with a path of length ` starting at a root i and terminating at vertex i+ ` of degree d. Now, consider a path of
length ` starting at root i and ending at vertex j. There are

( j−i−1
`−1

)
such paths. Since vertex j is a sink of degree d, the labels of

the d vertices must be less than j. Thus there are
( j−i−1

d

)
choices for the labels. Once the `+1 vertices on the path and the d

children of j are labelled, there are (n− `−d−1)! choices for the other labels in the tree. Collecting everything, we arrive at
the required formula.

As seen in the previous section, a number of corollaries follow. We obtain the following result by summing over all j in
Equation (3.1).

Corollary 3.2. The total number of sinks of degree d that are reachable, in ` steps, from the root i in trees with n vertices is
given by

(n− `−d−1)!
2`+d

n+ `−1

n

∑
j=`+i

(
j− i−1
`−1

)(
j− `−1

d

)(
2n−d−3
n+ `−2

)
.

Moreover, setting `= 0 and j = i in Equation (3.1) we obtain that the total number of trees with n vertices such that root i
is a sink of degree d is given by

(n−d−1)!
d

n−1

(
i−1

d

)(
2n−d−3

n−2

)
, (3.2)

and also by setting setting `= 1 in Equation (3.1), we get that there are

(n−d−2)!
2+d

n

(
j−2

d

)(
2n−d−3

n−1

)
(3.3)

children of the root labelled j having degree d in trees on n vertices.
Summing over all j in Equation (3.3) we obtain the number of children of the root, which are also sinks of degree d, in

trees of order n. By summing over all i in Equation (3.2), we obtain
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Corollary 3.3. The total number of trees of order n with root sinks of degree d is given by:

(n−d−1)!
d

n−1

(
n

d +1

)(
2n−d−3

n−2

)
. (3.4)

Next, we find an asymptotic result:

Corollary 3.4. On average there are

d
2d+1(d +1)!

(3.5)

root sinks of degree d in a random tree.

Proof. Diving the total number of labelled plane trees of order n with root sinks of degree d (Equation (3.4) ), by the total
number of labelled plane trees we get,

(n−d−1)! d
n−1

(
n

d +1

)(
2n−d−3

n−2

)
(n−1)!

(
2n−2
n−1

) ,

as the average number of root sinks of degree d in a random plane tree on n vertices. Simplifying the average and tending n to
infinity, we obtain the required result.

Setting d = 0 in Equation (3.5) we get that the average number of root sinks of degree 0 is zero. This implies that there is
no leaf sink which is also a root. For the remainder of this section, we enumerate the trees by leaf sinks.

Proposition 3.5. The total number of trees of order n in which vertex j, a leaf sink, is reachable from a root i in ` steps is given
by the formula,

(n− `−1)!
`

n−1

(
j− i−1
`−1

)(
2n−2

n+ `−1

)
. (3.6)

Proof. The result follows by setting d = 0 in Proposition 3.1. However, to show the decomposition we will construct the proof.
Let P(x) to be the generating function for plane trees where x is marking a non-root vertex. Consider a plane tree rooted at
vertex i such that there is a path of length ` starting at vertex i and terminating at a vertex of label i+ ` which is also a leaf sink.
The path decomposes the tree into left and right plane subtrees upto length `. See Figure 3.1.

i+ `

i

length `

Figure 3.1. Unlabelled plane tree with path length ` with vertex i+ ` as a leaf sink.

Vertex i+ ` is not connected to any other tree thus vertex is represented by x in the generating function. So we have
x(P(x)xP(x))` = x(xP(x)2)` as the generating function of the unlabelled trees rooted at vertex i with a path of length ` starting at
the root and ending at a leaf sink i+`. The generating function for the number of unlabelled plane trees satisfies P(x) = 1

1−xP(x) .

We set xP(x) = F(x) so that F(x) = x
1−F(x) . By Lagrange Inversion Formula, we obtain

[xn]x(xP(x)2)` = [xn+`−1]F(x)2` =
2`

n+ `−1
[tn−`−1]

(
(1− t)−(n+`−1)

)
=

2`
n+ `−1

[tn−`−1]∑
i≥0

(
−(n+ `−1)

i

)
(−t)i
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which reduces to

[xn]x(xP(x)2)` =
`

n−1

(
2n−2

n+ `−1

)
.

This formula counts the number of unlabelled plane trees with a path of length ` starting at a root i and ending at a leaf sink
i+ `. Consider a path of length ` starting at vertex i and ending at vertex j. There are

( j−i−1
`−1

)
possible paths. Once the `+1

vertices on the path have been labelled, there are (n− `−1)! ways of labelling the remaining vertices. Therefore, the total
number of labelled plane trees of order n in which vertex j is a leaf sink reachable from vertex i in ` steps is

(n− `−1)!
`

n−1

(
j− i−1
`−1

)(
2n−2

n+ `−1

)
.

This completes the proof.

We obtain the following result by summing over all j in Equation (3.6).

Corollary 3.6. The total number of leaf sinks that are reachable, in ` steps, from root i in trees with n vertices is given by

(n− `−1)!
`

n−1

(
n− i
`

)(
2n−2

n+ `−1

)
. (3.7)

Corollary 3.7. There are

(n− `−1)!
`

n−1

(
n

`+1

)(
2n−2

n+ `−1

)
, (3.8)

leaf sinks at step ` that are reachable from the root in trees with n vertices.

Proof. The result is evident by summing over all i in Equation (3.7).

The formula below follows by summing over all ` in Equation (3.8).

Corollary 3.8. The formula for the number of leaf sinks in trees of order n that are reachable from the root is

n!
n−1

n−1

∑
`=0

`

(`+1)!

(
2n−2

n+ `−1

)
.

Corollary 3.9. The average number of leaf sinks that are reachable from the root in ` steps in a random tree is

`

(`+1)!
.

Proof. The result follows by dividing the total number of leaf sinks that are reachable from the root in a labelled plane tree, i.e
Equation (3.8), by the total number of labelled plane trees, and tending n→ ∞.

4. Enumeration by left most paths and first children

In this section, we continue our investigation of reachable vertices but now according to lengths of left most paths and first
children. We begin by left most paths. Recall that a left most path refers to a path that joins the eldest children at each level in a
plane tree.

Proposition 4.1. The number of trees of order n in which there is a left most path of length ` from a root i to a vertex j is given
by

(n− `−1)!
`+1

n

(
j− i−1
`−1

)(
2n− `−2
n− `−1

)
. (4.1)
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Proof. Let P(x) be the generating function for plane trees. Here again, x marks vertices in unrooted plane trees. Figure 4.1
gives the decomposition of these trees by left most path.

i+ `

i

length `

Figure 4.1. Unlabelled plane tree with left most path of length `.

The decomposition shows that (xP(x))`+1 = x`+1P(x)`+1 is the generating function for the number of unlabelled trees in
which there is a left most path of length `. It now remains to extract the coefficient of xn in the generating function x`+1P(x)`+1.
We set xP(x) = F(x) so that F(x) = x

1−F(x) and by Lagrange Inversion Formula we get

[xn](xP(x))`+1 = [xn]F(x)`+1

=
`+1

n
[tn−`−1](1− t)−n

=
`+1

n
[tn−`−1] ∑

k≥0

(
−n
k

)
(−t)k

=
`+1

n
[tn−`−1]∑

k≥0

(
n−1+ k

k

)
tk

=
`+1

n

(
2n− `−2
n− `−1

)
.

There are
( j−i−1

`−1

)
choices for paths of length ` between vertices i and j. After the `+1 vertices on the path have been labelled,

by choice of paths, the remaining vertices are labelled in (n− `−1)! ways. Therefore, we find that the number of trees of order
n in which there is a left most path of length ` is given by

(n− `−1)!
`+1

n

(
j− i−1
`−1

)(
2n− `−2
n− `−1

)
.

Thus the proof.

By summing over all j in Equation (4.1) we find that there are

(n− `−1)!
`+1

n

(
n− i
`

)(
2n− `−2
n− `−1

)
(4.2)

trees on n vertices in which there is a left most path of length ` from root i. Also, summing over all i in Equation (4.2), we
obtain the formula for the number of trees of order n in which there is a left most path of length ` from the root as

(n− `−1)!
`+1

n

(
n

`+1

)(
2n− `−2
n− `−1

)
. (4.3)

Setting `= 0 in Equation (4.3) we rediscover the formula for the number of labelled plane trees, that is n!Cn−1 where Cn is the
nth Catalan number.

Corollary 4.2. The average number of eldest children at length ` from the root in a random tree is 1
`!2` .

Proof. As before, we divide the total number of labelled plane trees of order n in which there is a left most path of length `,
Equation (4.3), by the total number of labelled plane trees. We then simplify the resultant and tend n→ ∞.

We now switch our attention to leaf sinks and left most paths.
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Proposition 4.3. The number of trees of order n rooted at vertex i in which there is a left most path of length ` such that the
final vertex j is a leaf sink is given by

(n− `−1)!
`

n−1

(
j− i−1
`−1

)(
2n− `−3
n− `−1

)
. (4.4)

Proof. Let P(x) to be the generating function for plane trees where x is marking a non-root vertex. Consider a plane tree rooted
at vertex i such that there is a left most path of length ` starting at vertex i and ending at vertex i+ ` which is also a leaf sink.
The path decomposes the tree into right plane subtrees upto length `. See Figure 4.2.

i+ `

i

length `−1

Figure 4.2. Unlabelled plane tree with left most path of length ` and the final vertex is a leaf sink.

Vertex i+` is not connected to any other subtree. So we have x(xP(x))` = x`+1P(x)` as the generating function of the unlabelled
plane tree rooted at vertex i with a left most path of length ` starting at the root and ending at leaf sink i+`. We set xP(x) = F(x)
and apply Lagrange Inversion Formula, to get

[xn]x`+1P(x)` = [xn]xF(x)` = [xn−1]F(x)`

=
`

n− `
[tn−`−1](1− t)−(n−1)

=
`

n− `
[tn−`−1] ∑

k≥0

(
−(n−1)

k

)
(−t)k

=
`

n−1

(
2n− `−3
n− `−1

)
,

as the formula for the number of unlabelled plane trees with a left most path of length ` starting at a root and ending at a leaf
sink. Consider a path of length ` starting at vertex i and ending at vertex j. There are

( j−i−1
`−1

)
possible paths. Once the `+1

vertices on the path have been labelled, there are (n− `− 1)! ways of labelling the remaining vertices. Therefore, putting
everything together we obtain the desired formula.

By summing over all j in Equation (4.4) we get the total number of trees on n vertices in which there is a left most path of
length ` from root i and a final vertex is a leaf sink as

(n− `−1)!
`

n−1

(
n− i
`

)(
2n− `−3
n− `−1

)
. (4.5)

Also, by summing over all i in Equation (4.5) we get that the total number of trees on n vertices in which there is a left most
path of length ` from the root and the final vertex is a leaf sink as

(n− `−1)!
`

n−1

(
n

`+1

)(
2n− `−3
n− `−1

)
. (4.6)

Moreover, if we sum over all ` in Equation (4.6) and then simplify, we obtain the formula for number of trees of order n in
which there is a left most path starting from the root and the ending vertex is a leaf sink:

(n−2)!
n−1

∑
`=0

`

(`+1)!

(
2n− `−3
n− `−1

)
.

Corollary 4.4. On average, there are 1
(`+1)!2`+1 eldest children which are also leaf sinks in random tree.
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Proof. We divide the total number of labelled plane trees in which there is a left most path of length ` from the root and the
final vertex is a leaf sink (See Equation (4.6)), by the total number of labelled plane trees to obtain

(n− `−1)! `
n−1

(
n

`+1

)(
2n− `−3
n− `−1

)
(n−1)!

(
2n−2
n−1

)
as the average number of labelled plane trees in which there is a left most path and a final vertex is a leaf sink. We then simplify
and tend n→ ∞ to obtain the desired result.

Recall that in ordered trees, the children (or siblings) are linearly ordered and are drawn in a left-to-right pattern where the
left most child is called the first child to the parent. Enumerating the trees by first children we find that,

Proposition 4.5. The number of trees of order n with vertex i as a root and vertex j as a first child reachable from root in `
steps is given by

(n− `−1)!
`

n−1

(
j− i−1
`−1

)(
2n−2

n+ `−1

)
.

Proof. Let P(x) be the generating function for the plane trees where x represents non-root vertices. Consider a plane tree rooted
at vertex i such that there is a path of length ` starting at vertex i and terminating at vertex i+ ` which is a first child. The path
decomposes the tree into left and right plane subtrees upto vertex `−1. See Figure 4.3.

i+ `

i

length `−2

Figure 4.3. Unlabelled plane tree of order n with first child at length `.

Since vertex i+ `, which is the (`+1)th vertex, is a first child it’s parent has no left subtree. Vertex i+ ` can either have
children or not. Thus the decomposition gives (x(P(x)2)`−1xP(x)xP(x) = x`+1P(x)2` as the generating function for unlabelled
plane trees rooted at vertex i such that there is a path of length ` starting at the root and ending at a first child i+ `.

Since P(x) = 1/(1− xP(x)), we set xP(x) = F(x) and apply Lagrange Inversion Formula, to obtain

[xn]
(

x`+1P(x)2`
)
= [xn+`−1]F(x)2`

=
2`

n+ `−1
[tn−`−1](1− t)−(n+`−1)

=
2`

n+ `−1
[tn−`−1]∑

i≥0

(
n+ `+ i−2

i

)
t i

=
2`

n+ `−1

(
2n−3

n+ `−2

)
=

`

n−1

(
2n−2

n+ `−1

)
,

as the formula for unlabelled plane trees with a path of length ` starting at a root and terminating at a first child. The formula
then follows by choosing the choices of paths between i and j, and labelling the vertices which are not on the path.

By summing over all j in Equation (4.6), we see that the number of first children that are reachable from root i, at length `,
in trees on n vertices is given by

(n− `−1)!
`

n−1

(
n− i
`

)(
2n−2

n+ `−1

)
. (4.7)
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In addition, we have: The number of first children at level ` in trees of order n that are reachable from the root is given by

(n− `−1)!
`

n−1

(
n

`+1

)(
2n−2

n+ `−1

)
. (4.8)

This is arrived at by summing over all i in Equation (4.7). Also, by summing over all ` in Equation (4.8) and simplifying, we
obtain the formula for the total number of first children that are reachable from the root in trees of order n:

n!
n−1

n−1

∑
`=0

`

n−1

(
2n−2

n+ `−1

)
.

Corollary 4.6. The average number of first children that are reachable from the root in ` steps in a random tree is `
(`+1)! .

Proof. By dividing the total number of first children in a labelled plane tree that are reachable from the root (See Equation
(4.8)), by the total number of labelled plane trees we obtain,

(n− `−1)! `
n−1

(
n

`+1

)(
2n−2

n+ `−1

)
(n−1)!

(
2n−2
n−1

)
as the average number of first children in a labelled plane tree of order n that are reachable from the root in ` steps. We tend
n→ ∞ to obtain the required result.

Remark 4.7. Unlabelled plane trees with a path of length ` starting at a root i and terminating at a leaf sink j has similar
generating function as unlabelled trees with a path of length ` starting at a root i and terminating at a first child j. Therefore,
they pose similar results if we sum over i, j and `. Asymptotic results are also the same.

Remark 4.8. If the terminal vertex j is a first child which is also a leaf, then the generating function for trees with root i such
that there is a path of length ` from i to j is given as (xP(x)2)`−1xP(x)x. Thus there are

2`−1
n+ `−1

(
2n−3

n+ `−2

)
such trees on n vertices.

5. Enumeration by non-first children and non-leaves
In plane trees, any vertex (child) which is not leftmost child of the parent vertex is called a non-first child. A vertex which is not
a leaf is a non leaf. In this section, we enumerate trees with respect to number of non-first children as well as number of non
leaves.

Proposition 5.1. The number of trees on n vertices rooted at vertex i and having vertex j as a non-first child which is reachable
from i, at length `, is given by

(n− `−1)!
`+1
n−1

(
j− i−1
`−1

)(
2n−2
n+ `

)
. (5.1)

Proof. We obtain the generating function by considering a plane tree rooted at vertex i with a path of length ` starting at i and
terminating at a non-first child i+ `. The path decomposes the tree into left and right plane subtrees as shown in Figure 5.1.

i+ `

i

length `−1

Figure 5.1. Unlabelled plane tree with non-first children at length `.
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The decomposition gives x`+2P(x)2`+2 as the generating function for unlabelled plane trees, with a path of length ` starting
at a root and terminating at a non-first child. The generating function for unlabelled plane trees P(x) = 1

1−xP(x) . We set
xP(x) = F(x) and use Lagrange Inversion formula to obtain

[xn]x`+2P(x)2`+2 = [xn+`]F(x)2`+2 =
2`+2
n+ `

[tn−`−2]
(
(1− t)−1(n+`)

)
=

2`+2
n+ `

[tn−`−2]∑
i≥0

(
n+ `+ i−1

i

)
t i

=
`+1
n−1

(
2n−2
n+ `

)
,

as the formula for the number of non-first children that are reachable at length ` from the root in trees of order n. Upon
considering the choices for labels on and not on the path, we obtain the desired formula.

By summing over all j in Equation (5.1), we get that the total number of non-first children at level ` in trees of order n that
are reachable from vertex i is

(n− `−1)!
`+1
n−1

(
n− i
`

)(
2n−2
n+ `

)
. (5.2)

Also, by summing over all i in Equation (5.2), we obtain the following result: The total number of non-first children at level `
that are reachable from the root in a tree on n vertices is given by

(n− `−1)!
`+1
n−1

(
n

`+1

)(
2n−2
n+ `

)
. (5.3)

Moreover, the total number of non-first children in trees of order n that are reachable from the root is given by

n!
n−1

n−1

∑
`=0

1
`!

(
2n−2
n+ `

)
.

This formula is arrived at by summing over all ` in Equation (5.3), and simplifying. In a similar fashion as before we have:

Corollary 5.2. The average number of non-first children that are reachable at length ` from the root in a random tree is given
by 1

`! .

For the remainder of this section, we enumerate non-leaf sinks.

Proposition 5.3. The number of trees of order n with vertex i as a root and vertex j as non-leaf, which is reachable from the
root at length ` is given by

(n− `−1)!
`+1
n−1

(
j− i−1
`−1

)(
2n−2
n+ `

)
. (5.4)

Proof. Consider a tree rooted at vertex i with a path of length ` from the root to vertex i+ ` which is non-leaf. This path
decomposes the tree into left and right subtrees upto step `. Moreover, since vertex i+ ` is a non-leaf, there must be a subtree
of i+ ` which may be empty and a subtree, rooted at a child of i+ `. This subtree may also be empty. The decomposition is
therefore given by Figure 5.2.

i

i+ `

length `

Figure 5.2. Unlabelled plane tree with a non-leaf vertex at length `.
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The generating function for the trees is thus (xP(x)2)`xP(x)xP(x) = x`+2P(x)2`+2, where P(x) is the generating function for
unlabelled plane trees with x marking non-root vertices. The required result therefore follows by applying Lagrange Inversion
formula, upon setting xP(x) = F(x), and giving the number of choices for the labels on the path and those that are not on the
path.

Remark 5.4. The number of trees with a non-leaf vertex j which is reachable at length ` from a root i have similar generating
functions (though different decompositions) as for the case of non-first children. The results in the case of non-first children
therefore hold for non-leaf vertices.

6. Enumeration by exact number of vertices

The number of exact vertices that are reachable from a given vertex has been studied for the case of labelled ordinary trees.
Quite a number of results were obtained by Okoth in his PhD thesis, [2]. Similarly, Seo and Shin [4] established a formula for
rooted Cayley trees of order n in which there is a maximal increasing subtree of order k. In this section, we obtain a formula for
the number of ordered trees in which a given number of vertices are reachable from the root.

Theorem 6.1. The total number of trees of order n such that exactly k vertices are reachable from the root is given by

On,k = ∑
k≤m+1≤n

(
n

m+1

)
zm,k−1

m− k+1
n− k

(n− k)(n−m−1) (6.1)

for 0 ≤ k < n, On,n = (2n− 3)!!, where n(r) = n(n+ 1)(n+ 2) · · ·(n+ r− 1) is a rising factorial and zm,k is the number of
ordered trees on m+1 vertices with additional (m− k) decreasing leaves attached to an increasing tree with k edges.

A subtree of a rooted tree is said to be increasing if the labels in the subtree are increasing as one moves away from the root.
A maximal increasing subtree of a v-rooted tree is an increasing subtree rooted at v and having the highest number of vertices.
Seo and Shin [4], showed that Equation (6.1) gives the number of ordered trees on [n] with its maximal decreasing subtree
having k vertices. Now, orienting the edges of the ordered tree with n vertices from vertices of lower label towards vertices of
higher label, we obtain an ordered tree in which exactly k are reachable from the root if its maximal increasing subtree has k
vertices. This proves Theorem 6.1.

Corollary 6.2. The number of trees of order n having exactly k ≥ 2 vertices reachable from root 1 is given by

(2k−3)On−1,k−1 (6.2)

where On,k is given by Equation (6.1).

Proof. Consider an ordered tree P of order n− 1 such that the vertices are labelled 2,3, · · · ,n. Let the root be of label v1.
Moreover, let the number of vertices that are reachable from v1 be exactly k−1. We follow the following steps in obtaining
trees in which exactly k vertices are reachable from root of label 1:
Step 1: Let P0 be the maximal increasing subtree having vertex set {v1,v2, . . . ,vk−1} where vi < vi+1 for all i. In P, delete all
the edges in P0 to obtain non-single vertex subtrees P1,P2, · · · ,Pm.

7

3

11

6

10

4

859

2

P

7

3

114

89

11

6

103

7

5

P0 P1 P2

Figure 6.1. Diagram showing Step 1 in the proof of Corollary 6.2

Step 2: Relabel the vertices of the maximal increasing subtree P0 with the vertex v1 now as 1, v2 as v1, v3 as v2 and so on. The
maximal increasing tree P0 still has k−1 vertices. There are 2k−3 positions in the new maximal increasing subtree rooted at 1
to attach vertex vk−1. For each maximal increasing subtree previously rooted at v1 we obtain 2k−3 new subtrees rooted at
vertex 1 with k reachable vertices.
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P0 P1 P2

Figure 6.2. Diagram showing Step 2 in the proof of Corollary 6.2

Step 3: Identify vertex vi in the subtrees P1,P2, . . . ,Pk−1 with vertex vi in the new maximal increasing subtree, for all
i ∈ {1, . . . ,k−1}. for which vi occurs in one of the Pj.

4

1

93

78 11

6

102

5

Figure 6.3. Diagram showing Step 3 in the proof of Corollary 6.2

Theorem 6.1, gives the total number of ordered labelled trees of order n such that exactly k vertices are reachable from the
root. Now, for maximal increasing subtrees with k−1 vertices we substitute k and n in the Equation (6.1) above with k−1 and
n−1 respectively to obtain the formula for the number of labelled trees of order n having exactly k vertices reachable from
vertex 1 as

(2k−3)On−1,k−1.

Thus the proof is complete.

Corollary 6.3. There are

(2n−2i+1)!!(n− i+1)(n+1)(n+2) · · ·(n+ i−2)

trees on n vertices such that exactly n− i+1 reachable vertices from root i.

Proof. There are (2n−2i+1)!! recursive trees on n− i+1 vertices (See Lemma 2 in [4]). Since there are n−(n− i+1) = i−1
vertices which are not reachable from vertex i, then all the i− 1 vertices have labels less than i. The number of ways of
adding the i−1 vertices to recursive tree successively is given by (n− i+1)(n+1)(n+2) · · ·(n+ i−2)(See Lemma 2 in [4]).
Therefore the total number of trees on n vertices with exactly n− i−1 vertices reachable from vertex i is given by

(2n−2i+1)!!(n− i+1)(n+1)(n+2) · · ·(n+ i−2).

Hence the desired formula.
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Abstract
Mathematical trees are connected graphs without cycles, loops and multiple edges. Various trees such as Cayley
trees, plane trees, binary trees, d-ary trees, noncrossing trees among others have been studied extensively.
Tree-like structures such as Husimi graphs and cacti are graphs which posses the conditions for trees if, instead
of vertices, we consider their blocks. In this paper, we use generating functions and bijections to find formulas for
the number of noncrossing Husimi graphs, noncrossing cacti and noncrossing oriented cacti. We extend the
work to obtain formulas for the number of bicoloured noncrossing Husimi graphs, bicoloured noncrossing cacti
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1. Introduction
Husimi graph is a connected graph whose blocks are complete graphs. These graphs were introduced and enumerated by
Japanese physicist Kodi Husimi in [5]. If the blocks of a connected graph are polygons then the graph is called a cactus. Cacti
were introduced by Harary and Uhlenbeck in [4] where they appeared as Husimi trees. In 1996, Collin Springer [12] introduced
and enumerated oriented cacti. These are connected graphs whose blocks are oriented cycles. Formulas counting these tree-like
structures as well as their coloured counterparts, i.e. structures coloured with the property that blocks of the same colour are not
incident to one another, have been obtained. See [1, 3–5, 7, 8, 10, 12] for details. In this paper, we enumerate their noncrossing
and plane counterparts. The degree of a vertex in a tree-like structure is the number of blocks that are incident to it.

This paper is organized as follows: In Section 2, we enumerate noncrossing Husimi graphs, cacti and oriented cacti by
block type and number of blocks. A bijection between these structures and certain polygon dissections is also presented here.
Noncrossing tree-like structures whose blocks are coloured using two colours such that no blocks of the same colour are
incident to one another are enumerated in Section 3. Lastly in Section 4, we enumerate plane tree-like structures according to
block sizes, block types and number of leaves. Some of the results presented here were part of the author’s PhD thesis [10].

2. Noncrossing tree-like structures
In this section, we obtain equivalent results for Husimi graphs, cacti and oriented cacti whose blocks do not cross. We shall call
these structures as noncrossing Husimi graphs, noncrossing cacti and noncrossing oriented cacti respectively. The simplest of
the noncrossing structures is a noncrossing tree. This is a tree drawn in the plane with vertices on the boundary of a circle such
that the edges do not cross inside the circle. Marc Noy [9] showed that the number of noncrossing trees on n labelled vertices is
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given by

1
2n−1

(
3n−3
n−1

)
.

This result was later generalised to connected graphs by Flajolet and Noy [2]. Before we embark on the enumeration of
noncrossing Husimi graphs, let us review the notion of butterfly decomposition of noncrossing trees that was introduced in [2].
A butterfly is an ordered pair of trees that share a root. If a vertex v in a tree has degree d, then the tree can be decomposed into
d butterflies hanging from v.

1

v

2 x3

4

5 w

5

5

5

y

5

5

5z

5

Figure 2.1. Noncrossing tree

In Figure 2.1, there are 4 butterflies rooted at w,x,y and z. The aforementioned authors showed that if T (x) is the generating
function for trees and B(x) is the generating function for butterflies then we have the following equations:

T (x) =
x

1−B
and B(x) =

T 2

x
.

Theorem 2.1. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NHGn(n2,n3, . . .) of noncrossing Husimi graphs on [n] having n j blocks of size j is given by

NHGn(n2,n3, . . .) =
(2n+ k−2)!

(2n−1)!∏ j≥2 n j!
(2.1)

where k = ∑ j≥2 n j.

Proof. Let F(x) be the generating function for noncrossing Husimi graphs. Let yi mark the number of vertices in each block.
Adopting the butterfly decomposition of noncrossing trees to noncrossing Husimi graphs, we have that

F(x) =
x

1−∑i≥1 yi+1Bi

and

B(x) =
F2

x

where B(x) is the generating function for butterflies.
Therefore the generating function F(x) satisfies

F(x) =
x

1−∑
i≥1

yi+1

(
F2

x

)i .

Thus for G = F√
x we have

G(x) =
√

x
1−∑

i≥1
yi+1G2i .
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By the Lagrange Inversion Formula, we obtain

[xn]F(x) = [xn− 1
2 ]G(x) =

1
2n−1

[t2n−2]

(
1−∑

i≥1
yi+1t2i

)−(2n−1)

=
1

2n−1
[t2n−2] ∑

k≥0

(
−(2n−1)

k

)(
−∑

i≥1
yi+1t2i

)k

=
1

2n−1
[t2n−2] ∑

k≥0

(
2n+ k−2

k

)(
∑
i≥1

yi+1t2i

)k

=
1

2n−1 ∑
k≥0

(
2n+ k−2

k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 . . .

n2!n3! · · ·
. (2.2)

Therefore,

NHGn(n2,n3, . . .) =
1

2n−1

(
2n+ k−2

k

)
k!

∏ j≥2 n j!
.

Corollary 2.2. The number of noncrossing Husimi graphs on n≥ 2 vertices is given by

1
n−1

n−1

∑
k=1

(
2n+ k−2

k−1

)(
n−1

k

)
.

Proof. We need to show that the number of noncrossing Husimi graphs on n vertices with k blocks is given by the generalised
Narayana number,

1
n−1

(
2n+ k−2

k−1

)(
n−1

k

)
. (2.3)

Let [[n,k]] denote the set of all types of partitions of [n] of length k. Since

∑
P∈[[n−1,k]]

k!
n2!n3! · · ·

=

(
n−2
k−1

)
,

the result follows from Equation (2.2).

The formula (2.3) appears in [11] and [14] as the number of dissections of a convex polygon on 2n vertices with k− 1
noncrossing diagonals such that the number of edges enclosing each interior region is even. We now construct a bijection
between the set of these dissections and the noncrossing Husimi graphs.

Lemma 2.3. There is a bijection between the set of dissections of a convex polygon on 2n vertices with k−1 noncrossing
diagonals such that the number of edges enclosing each interior region is divisible by two and the set of noncrossing Husimi
graphs on n vertices with k blocks.

Proof. Consider a convex polygon on 2n vertices such that the vertices are labelled in clockwise direction as 1,1′,2,2′, . . . ,n,n′.
Let the number of noncrossing diagonal edges be k−1 and the number of edges of each interior region be divisible by 2. There
are k such regions. Create an edge between any two vertices of label 1,2, . . . ,n that are in the same region. A vertex which is
incident to more than one region is considered to belong to all the incident regions. The resultant graph is a noncrossing Husimi
graph on n vertices with k blocks. See Figure 2.2 for an example. The process can easily be reversed.
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1

1

2 2′35′

4

4

5 2

5 1′

5 3

5

3′

55

5

4′

56

56′

←→

1

1

2 2′35′

4

4

5 2

5 1′

5 3

5

3′

55

5

4′

56

56′

←→

1

4

2

35

6

Figure 2.2. Diagram showing the bijection in the proof of Lemma 2.3.

We obtain further corollaries of Theorem 2.1.

Corollary 2.4. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NCn(n2,n3, . . .) of noncrossing cacti on [n] having n j blocks of size j is given by

NCn(n2,n3, . . .) =
(2n+ k−2)!

(2n−1)!∏ j≥2 n j!
, (2.4)

where k = ∑ j≥2 n j.

Proof. In the noncrossing setting, there is only one way to turn a complete graph into a cycle thus the required equation follows
from Equation (2.1) i.e.,

NCn(n2,n3, . . .) = NHGn(n2,n3, . . .).

Corollary 2.5. The number of noncrossing cacti on [n], where n≥ 2, is

1
n−1

n−1

∑
k=1

(
2n+ k−2

k−1

)(
n−1

k

)
.

Proof. We obtain the formula by summing over all possibilities of n2,n3, . . . and k as in the proof of Corollary 2.2.

Corollary 2.6. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number NOCn(n2,n3, . . .) of noncrossing oriented cacti on [n] having n j blocks of size j is given by

NOCn(n2,n3, . . .) =
(2n+ k−2)!2k−n2

(2n−1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Proof. Since any polygon of size ≥ 3 has 2 orientations, we have

NOCn(n2,n3, . . .) = 2k−n2 ·NCn(n2,n3, . . .).

The formula thus follows from Equation (2.4).
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Corollary 2.7. The number of noncrossing oriented cacti on [n], where n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

(2n+ k−2)!2k−n2

(2n−1)!∏ j≥2 n j!
.

3. Bicoloured noncrossing tree-like structures
In the next proposition, we obtain a formula for the number of noncrossing Husimi graphs on n labelled vertices such that the
degrees of the vertices are less than or equal to 2. This will make 2-colouring possible. Recall, from Section 1, that the degree
of a vertex v in a Husimi graph is the number of blocks that are incident to it.

Proposition 3.1. Let NHGn,2(n2,n3, . . .) be the number of noncrossing Husimi graphs on [n] having ni blocks of size i such
that ∑i≥2(i−1)ni +1 = n and all the vertices have degree less than or equal to 2. Then

NHGn,2(n2,n3, . . .) =
n!2k−1

(n− k+1)!∏ j≥2 n j!
(3.1)

where k = ∑ j≥2 n j.

Proof. Let F(x) be the generating function for 2-colourable noncrossing Husimi graphs with root degree 1 (or 0). Let yi mark
blocks of size i. Since each vertex in the block is to have degree less than or equal to two, the generating function satisfies

F(x) = x(1+∑
i≥1

yi+1(2F− x)i). (3.2)

The butterflies of these graphs must be rooted at vertices of degree 1 (or consists of a single vertex). We subtract x to cater for
cases in which a butterfly consists of a single vertex.

Setting G = 2F− x in Equation (3.2) we obtain

G = x(1+2 ∑
i≥1

yi+1Gi).

G is the generating function for 2-coloured Husimi graphs with root degree 1 (in the case of a single vertex, there are no
blocks, thus nothing to be coloured; otherwise there are precisely two colourings). When y2 = y3 = · · ·= 1, then we obtain the
generating function for the large Schröder numbers.

Now, for arbitrary root degree, root degree 2 Husimi graphs are obtained by merging two root degree 1 Husimi graphs. We
subtract F for double counting root degree 1 Husimi graphs. The generating function is thus

H(x) =
F2

x
−F =

G2

4x
− x

4
.

This implies that

[xn]H =
1
4
[xn+1]G2.

By the Lagrange Inversion Formula, we have

1
4
[xn+1]G2 =

1
2(n+1)

[tn−1]

(
1+2 ∑

i≥1
yi+1t i

)n+1

=
1

2(n+1)
[tn−1] ∑

k≥0

(
n+1

k

)(
2 ∑

i≥1
yi+1t i

)k

=
1

2(n+1) ∑
k≥0

2k
(

n+1
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

Therefore,

NHGn,2(n2,n3, . . .) =
2k−1

n+1

(
n+1

k

)
· k!

n2!n3! · · ·
. (3.3)
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Corollary 3.2. There are n ·2n−3 noncrossing trees on n≥ 2 vertices such that all the vertices have degree less than or equal
to 2.

Proof. The result follows from Equation (3.3) by taking (n2,n3, . . .) = (n−1,0, . . .) so that k = n−1.
Observe that these trees are also noncrossing paths. The corollary thus follows by a simple counting argument as well: first

choose a root (in n ways), then 2 choices for each step.

Corollary 3.3. Let NHGn,2 be the number of noncrossing Husimi graphs on [n] in which all the vertices have degree at most 2.
Then

NHGn,2 =
1

n−1

n−1

∑
k=1

2k−1
(

n
k−1

)(
n−1

k

)
. (3.4)

Proof. To prove Formula (3.4), we need to show that the number of noncrossing Husimi graphs on n vertices with k blocks in
which each vertex has degree ≤ 2 is given by

2k−1

n−1

(
n

k−1

)(
n−1

k

)
.

Since

∑
P∈[[n−1,k]]

k!
n2!n3! · · ·

=

(
n−2
k−1

)
,

the result follows from Equation (3.3).

Lemma 3.4. The number of bicoloured noncrossing Husimi graphs on [n] having ni blocks of size i such that ∑i≥2(i−1)ni+1=
n is equal to

n!2k

(n− k+1)!∏ j≥2 n j!

where k = ∑ j≥2 n j.

Proof. Consider a noncrossing Husimi graph on [n] having ni blocks of size i such that ∑i≥2(i−1)ni +1 = n and with vertices
having degree less than or equal to 2. Let b be a block in the graph. There are two choices for colouring block b and one choice
for the remaining blocks. The result thus follows from Equation (3.1).

Corollary 3.5. The number of bicoloured noncrossing Husimi graphs on n vertices is given by

1
n−1

n−1

∑
k=1

2k
(

n
k−1

)(
n−1

k

)
. (3.5)

We obtain the following special case by setting k = n−1 in Equation (3.5).

Corollary 3.6. There are n ·2n−2 bicoloured noncrossing trees on n≥ 2 labelled vertices.

Corollary 3.7. The number of bicoloured noncrossing cacti on [n] having ni cycles of size i such that ∑i≥2(i−1)ni +1 = n is
equal to

n!2k

(n− k+1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Corollary 3.8. The number of bicoloured noncrossing cacti on [n], where n≥ 2, is

1
n−1

n−1

∑
k=1

2k
(

n
k−1

)(
n−1

k

)
.
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Corollary 3.9. The number of bicoloured noncrossing oriented cacti on [n] having ni cycles of size i such that ∑i≥2(i−1)ni+1=
n is equal to

n!22k−n2

(n− k+1)!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.

Corollary 3.10. The number of bicoloured noncrossing oriented cacti on [n], for n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

n!22k−n2

(n− k+1)!∏ j≥2 n j!
.

4. Plane tree-like structures
A plane Husimi graph (resp. plane cactus) is a Husimi graph (resp. cactus) drawn on the plane such that its blocks are ordered
(see, Figure 4.1 for plane cactus).

Figure 4.1. Plane cactus on 32 vertices.

In this section, we shall call the number of blocks coming out of a vertex as the degree of that vertex. A leaf is a non-root
vertex which is incident to exactly one block. A non-leaf vertex is referred to as internal vertex.

Theorem 4.1. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the coherence condition: n=∑ j≥2( j−1)n j+1.
The number PHGn(n2,n3, . . .) of plane Husimi graphs on n vertices having n j blocks of size j is given by

PHGn(n2,n3, . . .) =
(n+ k−1)!
n!∏ j≥2 n j!

, (4.1)

where k = ∑ j≥2 n j.

Proof. Let P(x) be the generating function for plane Husimi graphs. Let yi mark the number of vertices in each block. Then we
have

P(x) =
x

1−∑i≥1 yi+1Pi .

By the Lagrange Inversion Formula [13], we obtain

[xn]P(x) =
1
n
[tn−1]

(
1−∑

i≥1
yi+1t i

)−n

=
1
n
[tn−1] ∑

k≥0

(
−n
k

)(
−∑

i≥1
yi+1t i

)k

=
1
n
[tn−1] ∑

k≥0

(
n+ k−1

k

)(
∑
i≥1

yi+1t i

)k

=
1
n ∑

k≥0

(
n+ k−1

k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

. (4.2)
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Therefore,

PHGn(n2,n3, . . .) =
1
n

(
n+ k−1

k

)
k!

∏ j≥2 n j!
.

This completes the proof.

In the proof of the following corollary, we get a formula for the number of plane Husimi graphs with a given number of
blocks.

Corollary 4.2. The number of plane Husimi graphs on n≥ 2 vertices is given by

1
n

n−1

∑
k=1

(
n+ k−1

k

)(
n−2
k−1

)
.

Proof. We need to show that the number of plane Husimi graphs on n vertices with k blocks is given by,

1
n

(
n+ k−1

k

)(
n−2
k−1

)
. (4.3)

Let P(n,k) denote the set of all types of partitions of {1,2, . . . ,n} of length k. Since

∑
P∈P(n−1,k)

k!
n2!n3! · · ·

=

(
n−2
k−1

)
, (4.4)

then the formula follows from Equation (4.2).

Setting k = n− 1 in Equation (4.3), we recover the formula for plane trees on n vertices. Similarly, setting n = dn+ 1,
nd+1 = n and ni = 0 for all i 6= d +1, in Equation (4.1), we rediscover the formula

1
dn+1

(
(d +1)n

n

)
for the number of d-tuplet trees on dn+1 vertices obtained in [6]. Here, if d = 1 we get the number of plane trees on n+1
vertices.

Corollary 4.3. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number PCn(n2,n3, . . .) of plane cacti on n nodes and having n j blocks of size j is given by

PCn(n2,n3, . . .) =
(n+ k−1)!
n!∏ j≥2 n j!

, (4.5)

where k = ∑ j≥2 n j.

Proof. Since there is only one way to turn a complete graph into a cycle, the required equation follows from Equation (4.1) i.e.,

PCn(n2,n3, . . .) = PHGn(n2,n3, . . .).

Corollary 4.4. The number of plane cacti on n nodes, where n≥ 2, is

1
n

n−1

∑
k=1

(
n+ k−1

k

)(
n−2
k−1

)
.

Proof. We obtain the formula by summing over all possibilities of n2,n3, . . . and k as in the proof of Corollary 4.2.

Corollary 4.5. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the condition that n = ∑ j≥2( j−1)n j +1. The
number POCn(n2,n3, . . .) of plane oriented cacti on n vertices and having n j blocks of size j is given by

POCn(n2,n3, . . .) =
(n+ k−1)!2k−n2

n!∏ j≥2 n j!
,

where k = ∑ j≥2 n j.
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Proof. Since any polygon of size ≥ 3 has 2 orientations, we have

POCn(n2,n3, . . .) = 2k−n2 ·PCn(n2,n3, . . .).

The result follows from Equation (4.5).

Corollary 4.6. The number of plane oriented cacti on n vertices, where n≥ 2, is

∑
k≥0

∑
n2+n3+···=k

n2+2n3+···=n−1

(n+ k−1)!2k−n2

n!∏ j≥2 n j!
.

For the rest of this paper, we are interested in the number of plane tree-like structures with a given number of leaves.

Theorem 4.7. Let (n2,n3, . . .) be a sequence of non-negative integers satisfying the coherence condition: n=∑ j≥2( j−1)n j+1.
The number of plane Husimi graphs on n vertices with ` leaves and having n j blocks of size j is given by

1
n

(
n
`

)(
k−1

n− `−1

)
k!

∏ j≥2 n j!
(4.6)

where k = ∑ j≥2 n j.

Proof. Let F(x,u) be the bivariate generating function for the number of plane Husimi graphs such that x and u are marking
vertices and leaves respectively. Again yi will mark the number of vertices in each block.

Now,

F(x,u) = xu+
x

1−∑i≥1 yi+1F(x,u)i − x.

For convenience, let w = F(x,u) so that w = x
(

u+ ∑i≥1 yi+1wi

1−∑i≥1 yi+1wi

)
. We extract the coefficients of xn and u` in the generating

function.

[xnu`]F(x,u) = [xnu`]w =
1
n
[u`tn−1]

(
u+

∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n

=
1
n
[u`tn−1]

n

∑
j=0

(
n
j

)
u j
(

∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n− j

=
1
n

(
n
`

)
[tn−1]

(
∑i≥1 yi+1t i

1−∑i≥1 yi+1t i

)n−`

=
1
n

(
n
`

)
[tn−1]

(
∑
i≥1

yi+1t i

)n−`(
1−∑

i≥1
yi+1t i

)−(n−`)

=
1
n

(
n
`

)
[tn−1]

n−`

∑
j=0

(
−(n− `)

j

)(
−∑

i≥1
yi+1t i

) j(
∑
i≥1

yi+1t i

)n−`

=
1
n

(
n
`

)
[tn−1]

n−`

∑
j=0

(
n− `+ j−1

j

)(
∑
i≥1

yi+1t i

)n−`+ j

.

Let k = n− `+ j so that

[xnu`]F(x,u) =
1
n

(
n
`

) 2n−2`

∑
k=n−`

(
k−1

n− `−1

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

.

This completes the proof.
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From Equation (4.6) and summing over all n j as in Equation (4.4), it follows that there are

1
n

(
n
`

)(
k−1

n− `−1

)(
n−2
k−1

)
(4.7)

plane Husimi graphs on n vertices with k blocks and having exactly ` leaves. Setting k = n− 1, we rediscover the famous
Narayana number for the number of plane trees with a given number of leaves. Summing over all `, making use of Vandermonde
convolution, we obtain Equation (4.3) for the number of plane Husimi graphs on n vertices.

The expected number of leaves in plane Husimi graphs on n vertices with k blocks is

n−1

∑
`=1

`

n

(
n
`

)(
k−1

n− `−1

)(
n−2
k−1

)
=

(
n+ k−2

k

)(
n−2
k−1

)
and upon division by Equation (4.3), we get that on average there are (n2−n)/(n+ k−1) leaves in the aforementioned plane
graphs.

Setting r = n− ` in Equation (4.7), we obtain the following result.

Corollary 4.8. There are

1
n

(
n
r

)(
k−1
r−1

)(
n−2
k−1

)
plane Husimi graphs on n vertices with k blocks and having r internal vertices.
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1. Introduction and Preliminaries
We already know that the fundamentals of many applications used in physics go through mathematical calculations. Since the
theory of manifolds is used as configuration space in both mathematics and physics, the differential geometric methods used in
the theory of manifolds are very important.

The geometry of the contact manifolds is done with the help of odd-dimensional manifolds. The fact that contact geometry
can be applied in odd-dimensional manifolds has earned a prominent place in physics as well as differential geometry. Both
contact and symplectic manifolds have found application in classical mechanics. In line with these studies, contact geometry
was found to be under many physical phenomena and related to many other mathematical structures. Andrew Mclnerney’s
“First Steps in Differential Geometry” (Ref. [1]) is an important resource for the history of contact geometry and its significance
in physics.

Lie [2] was the first to study contact structures systematically. Contact structures were considered in Gibbs’ study of
thermodynamics [3], Huygens’ theory of light, geometric optics and Hamiltonian dynamics [4, 5].

Although the study of mathematical methods in classical mechanics dates back to old times [6], the issue of expressing
Hamiltonian dynamics with contact equations is quite new. If we mention some works on Hamiltonian systems with contact
equations, in 2016 contact Hamiltonian mechanics have been introduced by Bravetti and et al. [7]. In that paper, authors have
focused on the major features of standard symplectic Hamiltonian dynamics and they have showed that all of them can be
generalized to the contact case. Later, in Liu’s work, the connections between the notions of Hamiltonian system, contact
Hamiltonian system and nonholonomic system from the perspective of differential equations and dynamical systems have
been described [8]. Also in [9], Dündar has provided a simple contact Hamiltonian description of a system with exponentially
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vanishing (or zero) potential under a friction term that is quadratic in velocity.
In the light of these previous studies with this present paper, we have provided for contact Hamiltonian description of

1D frictional dynamics with no conserved force. In this way, we have applied contact geometric methods in systems with
frictional force (where friction force is not linearly dependent on velocity or where it is a polynomial of velocity). Friction
forces that are monomials of velocity, and the sum of two monomials are considered. For that purpose, quite general forms of
contact Hamiltonians are taken into account. Furthermore, we have given a conjecture that it is impossible to give a contact
Hamiltonian description dissipative systems where the friction force is not in the form considered.

In this article we consider a 1D frictional system. The independent variables are q, p,S. The contact 1-form is given
as follows: η = dS + pdq [7]. It is easy to check that this expression satisfies the nondegeneracy condition η ∧ dη =
dS∧d p∧dq 6= 0. Moreover, the readers may recognize the pdq term in the contact form as presymplectic potential.

In order to define contact system, we need a contact Hamiltonian. Contact Hamiltonian is a function of positions, momenta
and an extra variable S as opposed to usual Hamiltonian function which is a function of positions and momenta. The extra
variable, S, helps one describe dissipative systems. Now, we give a basic definition that we will use throughout this study. Let
H be a contact Hamiltonian, depending on three variables: q, p,S. The equations of motion are then as follows [7]:

q̇ =
∂H
∂ p

,

ṗ =−∂H
∂q
− p

∂H
∂S

,

Ṡ = p
∂H
∂ p
−H.

In this paper, we will investigate various forms of contact Hamiltonians to account for friction terms with no potential
function. The organization of the paper is as follows: In Section 2 we consider a friction term that is a monomial of q̇, in
Section 3 we handle the case where the friction term is a sum of two monomials of q̇, in Section 4 we give an applciation of
Section 3 to a friction term that has linear and quadratic dependence on q̇, and finally in Section 5 we conclude the paper by
also giving a conjecture.

2. Friction term that is a monomial of q̇

The goal of this Section is to find a contact Hamiltonian that will yield a friction term which is a monomial of q̇, that is an
equation of motion as seen in Equation (2.4). We consider a contact Hamiltonian of the following form:

H =
p2

2m
+λ pSa.

The case a = 1 gives a quadratic dependence on q̇ for the friction term, which is investigated in Ref. [9]. As an ansatz, we
let p = αmq̇ and S = S(q̇). The contact equations of motion are as follows:

q̇ =
p
m
+λSa, (2.1)

ṗ =−aλ p2Sa−1, (2.2)

Ṡ =
p2

2m
. (2.3)

Using the ansatz for p in Equation (2.1) gives us λSa = (1−α)q̇. We want our contact Hamiltonian to produce the
following equation of motion:

mq̈+ γ q̇n = 0. (2.4)

Let S′(q̇) = ∂q̇S(q̇). Using Equation (2.3) yields:

q̈S′ =
1
2

mα
2q̇2,
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Use q̈ =−(γ/m)q̇n

S′ =−1
2

m2α2

γ
q̇2−n,

S =−1
2

m2α2

γ

q̇3−n

3−n

We omit the integration constant. With an extra integration constant, the form we found here would not match λSa =
(1−α)q̇. Let us use the result we found so far in Equation (2.2) and obtain:

αmq̈ =−aλ p2Sa−1,

=−a(αmq̇)2 λSa

S
,

= 2aγ(1−α)(3−n)q̇n,

Use q̈ =−(γ/m)q̇n

2a =
α

1−α

1
n−3

Choose α = 2

a =
1

3−n

We finally obtain λ in terms of m,n,γ using the expression for S and λSa = (1−α)q̇:

λ =−
(

2m2

γ

1
n−3

) 1
n−3

.

The contact Hamiltonian is as follows:

H =
p2

2m
−
(

2m2

γ

1
n−3

) 1
n−3

pS1/(3−n).

This contact Hamiltonian gives us the following equation of motion:

mq̈+ γ q̇n = 0,

for n = 2 and n > 3.

3. Friction term that is the sum of two monomials of q̇

Our aim in this Section is to find a contact Hamiltonian that will yield a friction term that is a sum of two monomials of q̇, that
is, an equation of motion of the form mq̈+ γAq̇nA + γBq̇nB = 0. However we will soon see that the only allowed combination is
Equation (3.1). Let us consider the following contact Hamiltonian:

H =
p2

2m
+∑

k
λk pbk Sak ,

where k runs over natural numbers (or any other countable set). The extra terms includes all analytic functions of p,S as
well as other type functions with singularities. One can also absorb the first term into the sum, so this form is very general. This
type of contact Hamiltonian, though seems quite general, can only model the following type of a differential equation:

mq̈+ γAq̇nA + γBq̇nA+1 = 0. (3.1)
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Let us write down the equations of motion for q, p,S:

q̇ =
p
m
+∑

k
bkλk pbk−1Sak , (3.2)

ṗ =−∑
k

akλk pbk+1Sak−1, (3.3)

Ṡ =
p2

2m
+∑

k
(bk−1)λk pbk Sak . (3.4)

As an ansatz, let us write p = αmq̇ for some constant α . Then the first equation becomes:

q̇ = α q̇+∑
k

bkλk(αmq̇)bk−1Sak .

Then let S = β q̇c for some constants β ,c. We obtain:

(1−α)q̇ = ∑
bk 6=0

bkλk(αmq̇)bk−1(β q̇c)ak .

So we obtain the following condition by equating the powers of q̇:

cak +bk = 2, if bk 6= 0, (3.5)

and the remaining equation is the following:

1−α = ∑
bk 6=0

bkλk(αm)bk−1
β

ak . (3.6)

The Equation (3.3) becomes:

αmq̈ =−∑
k

akλk(αmq̇)bk+1(β q̇c)ak−1,

=− ∑
bk=0

akλkαmβ
ak−1q̇1+c(ak−1)

− ∑
bk 6=0

akλk(αm)bk+1
β

ak−1q̇3−c.

Hence we obtain:

mq̈ =− ∑
bk=0

akλkmβ
ak−1q̇1+c(ak−1)

− ∑
bk 6=0

akλk
(αm)bk+1

α
β

ak−1q̇3−c. (3.7)

3.1 When c 6= 0
In this Subsection we suppose c 6= 0.1 Then Equation (3.4) yields:

βcq̇c−1q̈ =
1
2

mα
2q̇2 +∑

k
(bk−1)λk(αmq̇)bk(β q̇c)ak .

1The case where c = 0 is investigated in Subsection 3.2 and causes a vanishing Hamiltonian, but included in this article for completeness.
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From this, we obtain:

mq̈ =
1
2

α2m2

βc
q̇3−c +∑

k
(bk−1)λk(αm)bk

m
c

β
ak−1q̇cak+bk+1−c.

When collected as a sum over bk = 0 and bk 6= 0 we obtain:

mq̈ =
1
2

α2m2

βc
q̇3−c− ∑

bk=0
λk

m
c

β
ak−1q̇1+ck(ak−1)+ ∑

bk 6=0
(bk−1)λk

(αm)bk m
c

β
ak−1q̇3−c. (3.8)

We now have two equations of motion mq̈. They need to be consistent with each other. So we equate (and suppose
1+ c(ak−1) 6= 3− c or cak 6= 2.) Equation (3.7) and Equation (3.8):

∑
bk=0

λkm
(

ak−
1
c

)
β

ak−1q̇1+c(ak−1) = 0, (3.9)

from which we obtain:

ak = 1/c, if bk = 0, (3.10)

and

1
2

α2m2

βc
+ ∑

bk 6=0
(bk−1)λk

(αm)bk m
c

β
ak−1 =− ∑

bk 6=0
akλk

(αm)bk+1

α
β

ak−1,

which yields

−1
2
= ∑

bk 6=0
λk(αm)bk−2mβ

ak .

Since c is a constant, we see that we can only obtain two powers of q̇ in the equation of motion. The first is a power of 3−c
(when bk 6= 0) and the second is a power of 1+ c(ak−1) = 2− c (when bk = 0). As a result, it is sufficient to consider two
types of variables (bk,ak) ∈ {(0,aA),(bB,aB)}. In this case the contact Hamiltonian is as follows:

H =
p2

2m
+λASaA +λB pbBSaB .

We equate Equation (3.7) to −γAq̇nA − γBq̇nB and obtain:

− ∑
bk=0

akλkmβ
ak−1q̇1+c(ak−1)− ∑

bk 6=0
akλk

(αm)bk+1

α
β

ak−1q̇3−c =−γAq̇nA − γBq̇nB

Putting the relations between the constants we found and their values we get:

nA = 2− c, (3.11)
nB = 3− c, (3.12)

λA =
cγA

m
β

1−1/c, (3.13)

λB =
γB

aBm
β 1−aB

(αm)bB
. (3.14)
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Moreoever for λB we have one more equation, namely Equation (3.6), which gives us the following constraint:

λB =
1−α

bB

(αm)1−bB

β aB
(3.15)

By equating Equation (3.14) and Equation (3.15) we obtain:

β =
m2α(1−α)

γB

aB

bB
=

m2α(1−α)

γB

aB

2− caB
.

All in all we have the following relations:

aA =
1

2−nA
=

1
3−nB

,

nB = nA +1,

nA = 2− 1
aA

,

λA =
γA

maA
β

1−aA ,

λB =
γB

maB

β 1−aB

(αm)bB
.

Only λA can vanish. By letting λA = 0 one can model a system where frictional force is proportional to a monomial of q̇.

3.2 When c = 0
In this Subsection we consider the case c = 0. Under this situation we have S = β . Hence Ṡ = 0. Equation (3.5) yields the
following:

if bk 6= 0,bk = 2.

When used in Equation (3.4) we obtain the following two equations:

∑
bk=0

λkβ
ak = 0, (3.16)

∑
bk=2

λkβ
ak =− 1

2m
(3.17)

Since there are two options, we can restrict the set of (bk,ak) to two values: (bk,ak) ∈ {(0,aD),(2,aE)}. Equation (3.16)
gives us λD = 0. So the contact Hamiltonian is of the following form:

H =
p2

2m
+λE p2SaE ,

with λE =−β−aE/(2m) obtained from Equation (3.17). Let us write the equation of motion derived by ṗ (Equation (3.7)):

mq̈ =− ∑
bk=0

akλkmβ
ak−1q̇1+c(ak−1)− ∑

bk 6=0
akλk

(αm)bk+1

α
β

ak−1q̇3−c,

=−aDλDmβ
aD−1q̇−aEλE

(αm)3

α
β

aE−1q̇3

First term vanishes since λD = 0. The second term is proportional to the derivative of λEβ aE = 1/(2m) (see Equation (3.17))
with respect to β and is thus zero.

= 0.

Finally we obtain the dynamics of a free particle in 1D. As a result, this case is not interesting and does not cause frictional
dynamics to appear.



Contact Hamiltonian Description of 1D Frictional Systems — 106/107

4. Friction term that has linear and quadratic dependence on q̇

In this Section, we give an application of Section 3 to the case where there are linear and quadratic dependencies of the friction
force on speed (q̇). The equation of motion is the following:

mq̈+ γAq̇+ γBq̇2 = 0.

The contact Hamiltonian is the following:

H =
p2

2m
+λASaA +λB pbBSaB .

Using the results of Section 3 we obtain:

nA = 1,
nB = 2,
aA = 1,

Let us choose aB = bB = 1 and α = 2

aB = 1,
bB = 1,
α = 2,

Then we obtain:

λA =
γA

m
,

λB =
γB

2m2 .

So the contact Hamiltonian is the following:

H =
p2

2m
+

γA

m
S+

γB

2m2 pS,

and it yields the following equation of motion:

mq̈+ γAq̇+ γBq̇2 = 0.

This is an important step, because in classical mechanics when the speed is low the friction is linear in velocity and when
the speed is high the frictional force is quadratic in velocity due to effect of turbulence.

5. Conclusion
In this paper, we mainly focused on contact Hamiltonian description 1D frictional systems. The contact Hamiltonians of the
form H = p2/2m+λ pSa can describe a situation where friction force is a monomial of q̇:

mq̈+ γ q̇n = 0, (5.1)

for n = 2 and n > 3. The case for n = 1 is given in Ref. [7] and the contact Hamiltonian for that case is H = p2/2m+
V (q)+ γS and it is the only contact Hamiltonian found so far to include an arbitrary potential. An exponentially decreasing
potential in the case of quadratic dependence on velocity of the friction term is found in Ref. [9].
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On the other hand, what we found is that a quite general contact Hamiltonian of the form H = p2/2m+∑k λk pbk Sak (which
includes all analytic functions of p,S) can at most describe a dissipative system in the following form:

mq̈+ γAq̇nA + γBq̇nA+1 = 0. (5.2)

In order to solve the contact equations of motion, we considered p,S to be functions of q̇ and used two different ansatzes
for this purpose. We conjecture that it is impossible to model a dissipative system with no potential that is not of the form
appearing in Equation (5.1) or Equation (5.2).

We also have given the contact Hamiltonian description of the following equation of motion:

mq̈+ γAq̇+ γBq̇2 = 0.

This form of frictional force is the most prevalent in nature. When the speed is low the linear term is dominant, and when
the speed is high the quadratic term becomes dominant due to turbulence.
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1. Preliminaries
Polynomial approach and the classical approximation theory constitute a basic research area in applied mathematics. The
development of the approximation theory played an important role in the numerical solution of partial differential equations,
data processing sciences, and many other disciplines. For example, it is widely used in geometric modeling in the aerospace
and automotive industries to calculate approximate values with basic functions. Work in this field goes back to the 18th century
and still continues as a powerful tool in scientific calculations. Furthermore, it is used in civil engineering projects to analyze
the energy efficiency and earthquake resistance data of different types of buildings in thermography calculations and earthquake
engineering. The purpose of the approximation theory is to provide an approach between function spaces. In this context, the
best approximation uses a linear positive operator. An operator that brings a function of positive value in one function space to
another function of positive value in another function space is called a positive operator; whereas the operators that are both
positive and linear are called linear positive operators. We will introduce a generalization of Bernstein operators that form the
basis of linear positive operators. This new generalization to be defined will be a better version of Bernstein operators that
contribute to all of the above mentioned fields of study. In this way, it is aimed to have a better approach. Before introducing
the operator, if we need to talk about previous studies. Weierstrass, who laid the foundations of the approach with a linear
positive operator, said in 1885, that each continuous function as an element of C [a, b] was a sequence that could be approached
with a polynomial in the same closed range, but he did not specify the properties of these sequences. In 1912 Bernstein, proved
that the sequences in the Weierstrass theorem were the polynomials referred to by his name and exposed them as follows:

Bn(h;x) =
n

∑
k=0

(
n
k

)
xk(1− x)n−kh

(
k
n

)
.
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The modified Bernstein polynomials,

Dn( f ;x) = (n+1)
n

∑
k=0

ϕ
k
n(x)

 1∫
0

ϕ
k
n(t) f (t)dt

 ,(n≥ 1),

where ϕk
n(x) =

(
n
k

)
xk(1− x)n−k ,(0≤ x≤ 1), were introduced by Durrmeyer [1] and Deriennic [2] gave some results

on approximation of function f on [0, 1] by (1)
In [2], it is shown that,for m ∈ N

Dn(tm;x) =
(n+1)!

(n+m+1)!

m

∑
r=0

(
m
r

)
m!
r!

n!
(n− r)!

xr.

Denoting by ∆ = {(x ,y) : x≥ 0, y≥ 0 and x+ y≤ 1} .Singh [3]defined new class of positive linear operators of order n
on ∆ by

Sn( f ;x, y) =
(n+2)!

n!

n

∑
k=0

n−k

∑
j=0

Pn,k, j(x, y)
∫ ∫

∆

Pn,k, j(u, v) f (u, v)dudv (1.1)

where Pn,k, j(x, y) =
(

n
k

)(
n− k

j

)
xky j(1− x− y)n−k− j . Singh proved some results on approximation of function f

on ∆ by (1.1).
Define ei :=ei(x)=xi, Ei := Ei(u, x) = (u− x)i, ei j :=ei j(x, y)=xiy j and Ei j := Ei j(u, v; x, y) = (u− x)i(v− y) j.
Lemma 1.1: ([3])

Sn(upvq;x, y) =
(n+2)!

(n+ p+q+2)!

p

∑
r=0

q

∑
l=0

(
p
r

)(
q
l

)
p!q!
r!l!

xryl

In particular,

Sn(e00;x,y) = 1,

Sn(e10;x,y) =
nx+1
n+3

,

Sn(e01;x,y) =
ny+1
n+3

, (1.2)

Sn(e20;x, y) =
n(n−1)x2 +4nx+2

(n+3)(n+4)
, (1.3)

Sn(e02;x, y) =
n(n−1)x2 +4nx+2

(n+3)(n+4)
, (1.4)

Sn(e30;x, y) =
n(n−1)(n−2)x3 +9n(n−1)x2 +18nx+6

(n+3)(n+4)(n+5)
,

Sn(e03;x, y) =
n(n−1)(n−2)y3 +9n(n−1)y2 +18ny+6

(n+3)(n+4)(n+5)
,

Sn(e40;x, y) =
αn(3)x4 +16αn(2)x3 +72αn(1)x+24

(n+3)(n+4)(n+5)(n+6)
,
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Sn(e04;x, y) =
αn(3)y4 +16αn(2)y3 +72αn(1)y+24

(n+3)(n+4)(n+5)(n+6)
.

Sn(E20;x, y) =
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
,

Sn(E02;x, y) =
2[1+(n−4)y−2(n−6)y2]

(n+3)(n+4)
,

Sn(E40;x, y) =
12[anx4−2bnx3 +anx2 +6(n−2)x+2]

(n+3)(n+4)(n+5)(n+6)
,

and

Sn(E04;x, y) =
12[any4−2bny3 +any2 +6(n−2)y+2]

(n+3)(n+4)(n+5)(n+6)
.

where αn(p) =
n!

(n− p−1)!
, an = (n2−31n+30),and bn = (n2−28n+20). For all x ∈ [0, 1] we have,

Sn(E20;x, y)≤



1
15

, n = 6

4
5

, n < 6

n+6
(n+3)(n+4)

, n > 6

The situation for Sn(E02;x, y) is the same (11). It is easy to see that

24
(n+3)(n+4)

<
12

5(n+3)

for all n > 6.
And also for all x ∈ [0, 1] we have,

Sn(E40;x, y)≤


15
32

, n≤ 30

24
(n+3)(n+4)

, n > 30

The situation for Sn(E04;x, y) is the same (12). It is easy to see that

24
(n+3)(n+4)

<
12

17(n+3)

for all n > 30.
Our aim is to extend the operator (1.1) to case B-continuous (Bögel continuous) functions. The term ”B-continous” first

was introduced by K. Bögel ([4], [5]). And then we shall present a GBS (Generalized Bögel Sum) operator of (1.1) and
some approximation of properties of this operator. The term GBS(Generalized Boolean Sum) operators were introduced by
Dobrescu and Matei [7]. The analogous of the well-known Korovkin theorem for approximation of B-continuous functions
using GBS operators was given by C.Badea, I. Badea and H. Gonska [8]. The analogous of first modulus of continuity for
bivariate B-continuous functions which is named ”mixed modulus of smoothness” was introduced by I. Badea[9]. (see Also H.
H. Gonska[10] , C.Badea and C. Cottin [11]).

We show that the operators (2.1) (GBS type the operators of (1.1)) have better approximation than the operators (1.1) in
fügures and numerical values.

Definition 1.1:
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a) ([4], [5]) A function f is called a B-Continuous function in (x0,y0) ∈ X×Y if

lim
(x,y)→(x0,y0)

∆ f [(x,y) ,(x0,y0)] = 0.

where ∆ f [(x,y) ,(x0,y0)] = f (x,y)− f (x0,y)− f (x,y0)+ f (x0,y0) represents the mixed difference of f .
b) ( [9]).Let f ∈ Bb(X×Y ). For any (δ1,δ2) ∈ R2

0,+ , the mixed modulus of smoothness is the function ωmixed( f ;δ1,δ2) :
R2

0,+→ R defined by

ωmixed( f ;δ1,δ2) = sup{|∆ f [(x,y),(u,v)]| : |u− x| ≤ δ1, |v− y| ≤ δ2} (1.5)

where R0,+ := [0, ∞).
c) ( [6]) A function f is called a B-Differentiable function in (x0,y0) ∈ X×Y if the following limit is exist and finite,

lim
(x,y)→(x0,y0)

∆ f [(x,y) ,(x0,y0)]

(x− y)(x0− y0)
.

This B-Differentiable of f in (x0,y0) is denoted by DB f (x0,y0).
Let F be the class of all functions f : X×Y → R. Then we use subsets of F which are given in the following:

B(X×Y ) = { f ∈ F : f bounded on X×Y}

with usual sup-norm ‖‖
∞
.

Bb(X×Y ) = { f ∈ F : |∆ f [(x,y) ,(x0,y0)]| ≤ K,on X×Y , K > 0}

is called B−bounded functions class with the norm
‖‖b = sup

(x,y),(x0,y0)∈X×Y
|∆ f [(x,y) ,(x0,y0)]| .

Cb(X×Y ) = { f ∈ F : f is B−Continuous on X×Y} ,
Db(X×Y ) = { f ∈ F : f is B−Differentable on X×Y}

If f : X×Y → R is a continuous function in (x0,y0), it is also B-Continuous function in (x0,y0). A B-continuous function
is not necessarily continuous(in usual sense), but the converse is true.

The approximation theorems for bivariate functions were first given by Volkov in [12] and approximation of the GBS
operators of associate with operators of two variables were established by [8].

The term GBS(Generalized Boolean Sum) operators were introduced by Badea and Kottin as the following [11]
Definition 1.2. Let L : Cb(X×Y )→ B(X×Y ) be a linear positive operator. The operator UL : Cb(X×Y )→ B(X×Y ) is

defined by

(UL f )(x,y) = (L( f (•,y)+ f (x,∗)− f (•,∗)))(x,y)

is called the GBS operator associated to the operator L, where ”•” and ”∗” stand for the first and second variable respectively.
From now on, we write L( f (u,v);x,y) and

UL( f (u,v);x,y) = L(( f (u,y)+ f (x,v)− f (u,v)) ;x,y)

instead of (1.2).
Theorem 1.1. ([8].) Let a,b,c,d be real numbers satisfying the inequalities a < b, c < d and let (Tn,m) (n,m ∈ Z+) be a

sequence of bivariate linear positive operators, applying C([a,b]× [c,d]) into itself. Suppose the following relations hold for
any (x,y) ∈ [a,b]× [c,d].

i)Tn,m(e00;x,y) = 1,
ii)Tn,m(e10;x,y) = x+un,m(x,y),
iii)Tn,m(e01;x,y) = y+ vn,m(x,y),
iv)Tn,m(e20 + e02;x,y) = x2 + y2 +wn,m(x,y)
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If each of the sequence of un,m(x,y),vn,m(x,y) and wn,m(x,y) converges to zero uniformly as n→ ∞, m→ ∞ , then the
sequence (T ∗n,m) (n,m ∈ Z+) converges to f uniformly on [a,b]× [c,d], where T ∗n,m represent the GBS operator associate with
Tn,m

Theorem 1.2 ([12] ). Let T : C([a,b]× [c,d])→C([a,b]× [c,d]) be a linear positive operator and T ∗ the GBS operator
associate with T.

Then, for any f ∈C([a,b]× [c,d]), (x,y) ∈ [a,b]× [c,d] and δ1,δ2 > 0, the following holds

|T ∗( f (u,v);x,y)− f (x,y)| ≤ | f (x,y)| |1−T (e00;x,y)|+
{
|T (e00;x,y)|+ 1

δ1

√
T (E20;x,y)+

1
δ2

√
T (E02;x,y)

+
1

δ1δ2

√
T (E20;x,y)T (E02;x,y)

}
ωmixed(δ1,δ2). (1.6)

Theorem 1.3 ([4], [5] , [6]). Let f : [u,v]× [x,y]→ R be a function. If f is B−differentiable on [u,v]× [x,y], there exist
(x0,y0) ∈ (u,v)× (x,y) such that

∆ f [(u,v) ,(x,y)] = (u− x)(v− y)DB f (x0,y0).

Theorem 1.4([13]).Let T : Cb(X ×Y )→ B(X ×Y ) be a linear positive operator and UT : Cb(X ×Y )→ B(X ×Y ) the
associated GBS operator. Then for any f ∈ Db(X×Y ) with DB f ∈ B(X×Y ), any (x,y) ∈ X×Y and δ1,δ2 > 0, we have

|UT ( f (u,v);x,y)− f (x,y)| ≤ | f (x,y)| |1−T (e00;x,y)|+3‖DB f‖
∞

√
T (E20;x,y)T (E02;x,y)

+

[√
T (E20;x,y)T (E02;x,y)+

1
δ1

√
T (E40;x,y)T (E02;x,y)

+
1
δ2

√
T (E20;x,y)T (E04;x,y)+

1
δ1δ2

T (E20;x,y)T (E02;x,y)
]

ωmixed(DB f , δ1,δ2).

2. Representation of bivariate GBS operator of Durrmeyer operator

For any f ∈ Cb(∆), ( Cb(∆) is the class of all B-continuous functions on ∆) ,representation of bivariate GBS operator of
Durrmeyer operator is

Fn( f ;x,y) =
(n+2)!

n!

n

∑
k=0

n−k

∑
j=0

Pn,k, j(x, y)
∫ ∫

∆

Pn,k, j(u, v) [ f (u,y)+ f (x,v)− f (u,v)]dudv. (2.1)

It is easy to see Fn( f ;x,y) is linear positive operator. Taking into account the relations (1.3), (1.4) and applying Theorem 1.1
we obtain the following theorem.

Theorem 2. 1: The sequence (Fn)n∈N converges to any f ∈Cb(∆) uniformly.
It easy tı see the following relation:

Fn(uiv j;x,y) = xiy j for all i, j = 0,1, 2, ....

That means there is no approximation for any usual continuous function f on [0,1]. Mean Fn( f ;x,y) = f for all f ∈C(∆).

Theorem 2. 2 : If f ∈Cb(∆), then for any (x,y) ∈ ∆, the following relation holds for all n > 6:

|Fn( f (u,v);x,y)− f (x,y)| ≤ 11
2

ωmixed( f ;

√
1

n+3
,

√
1

n+3
).
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Proof : Applying Theorem 1.2 , Lemma 1.1 and (11∗) we have

|Fn( f (u,v);x,y)− f (x,y)| ≤
(

1
δ1

√
Sn(E20;x,y)+

1
δ2

√
Sn(E02;x,y)+

1
δ1δ2

√
Sn(E20;x,y)Sn(E02;x,y)

)
ωmixed( f ;δ1,δ2)

≤

 1
δ1

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
+

1
δ2

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)

+
1

δ1δ2

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
.

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)

ωmixed( f ;δ1,δ2)

≤

(
1
δ1

√
12
5

√
1

n+3
+

1
δ2

√
12
5

√
1

n+3
+

1
δ1δ2

12
5

√
1

n+3

√
1

n+3

)
ωmixed( f ;δ1,δ2)

If we choose δ1 =

√
1

n+3
and δ2 =

√
1

n+3
, we get

|Fn( f (u,v);x,y)− f (x,y)| ≤

(
2

√
12
5

+
12
5

)
.ωmixed( f ;δ1,δ2)

and consider 2

√
12
5

+
12
5

<
11
2

, then the proof is beeing comlated.

Theorem 2. 3 : If f ∈ DB(R2
0,+) with DB f ∈ B(R2

0,+), then for any (x,y) ∈ ∆ and n > 30,

|Fn( f (u,v);x,y)− f (x,y)| ≤ 36‖DB f‖
∞

5(n+3)
+

17
10

.ωmixed(DB f ;

√
1

n+3
,

√
1

n+3
).

Proof: Applying Theorem 1.4 and Lemma 1.1 ( 11∗ and 12∗) ,we have

|Fn( f (u,v);x,y)− f (x,y)| ≤ 3‖DB f‖
∞

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
.

×

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
.

+

[√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)

+
1
δ1

√
12[anx4−2bnx3+anx2+6(n−2)x+2]

(n+3)(n+4)(n+5)(n+6)

√
2[1+(n−4)y−2(n−6)y2]

(n+3)(n+4)

+
1
δ2

√
2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4) .

√
12[any4−2bny3+any2+6(n−2)y+2]

(n+3)(n+4)(n+5)(n+6)

+
1

δ1δ2
. 2[1+(n−4)x−2(n−6)x2]

(n+3)(n+4)
2[1+(n−4)y−2(n−6)y2]

(n+3)(n+4)

]
ωmixed(DB f , δ1,δ2).

|Fn( f (u,v);x,y)− f (x,y)| ≤ 36‖DB f‖
∞

5(n+3)
+

[
12

5(n+3)
+

+
1
δ1

√
12

17(n+3)
12

5(n+3)
+

1
δ2

√
12

17(n+3)
12

5(n+3)

+
1

δ1δ2
.

12
5(n+3)

12
5(n+3)

]
ωmixed(DB f , δ1,δ2)

If we choose δ1 =

√
1

n+3
and δ2 =

√
1

n+3
and take into account that

1
n+3

<
1

33
for n > 30, then we get desired result.
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3. Conclusion
As a result, it is seen that the operator defined in GBS format takes a better approximation. In order to more visibly show that
this approximation is better, a numerical value table with the margin of error and a graph can be drawn at different points.
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