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WEAKLY LOCALLY ARTINIAN SUPPLEMENTED MODULES

BURCU NİŞANCI TÜRKMEN

0000-0001-7900-0529

Abstract. In this study, by using the concept of locally artinian supple-

mented modules, we have obtained weakly locally artinian supplemented mod-

ules as a proper generalization of these modules in module theory. Our results
generalize and extend various comparable results in the existing literature. We

have proved that the notion of weakly locally artinian supplemented modules

inherited by factor modules, finite sums and small covers. We have obtained
that weakly locally artinian supplemented modules with small radical coin-

cide with weakly (radical) supplemented modules which have locally artinian

radical. Also, we have shown that if N and M
N

are weakly locally artinian

supplemented for some submodule N ⊆ M which has a weak locally artinian
supplement in M then M is weakly locally artinian supplemented.

1. Introduction

Throughout this paper, the ring R will denote an associative ring with identity
element and modules will be left unital. We will use the notation U �M to stress
that U is a small submodule ofM . A submoduleN ⊆M is said to be essential in M,
denoted as NEM , if N∩K 6= 0 for every non-zero submodule K ⊆M . By Rad(M)
we denote the sum of all small submodules of M or, equivalently the intersection
of all maximal submodules of M . Soc(M) will indicate socle of M which is sum of
all semisimple submodules of M . A non-zero module M is called hollow if every
proper submodule of M is small in M , and M is called local if the sum of all proper
submodules of M is also a proper submodule of M . A module M is called semilocal
if M

Rad(M) is semisimple. A ring R is said to be semilocal if R
Rad(R) is semisimple.

By [5, Proposition 20.2], a commutative ring R is semilocal if and only if R has only
finitely many maximal ideals. M is called locally artinian if every finitely generated
submodule of M is artinian [10, 31]. A submodule V of M is called a supplement
of U in M if M = U + V and U ∩ V � V . A submodule V of M is called a
weak supplement of U in M if M = U + V and U ∩ V � M . The module M is
called (weakly) supplemented if every submodule of M has a (weak) supplement in
M . In [1], it is proved that the class of weakly supplemented modules need not be

Date: Received: 2021-07-08; Accepted: 2021-07-29.

2000 Mathematics Subject Classification. 16D10, 16N20; 16D99.
Key words and phrases. Locally artinian module, (Weak) supplement, (Weak) locally artinian

supplement, (Weakly) locally artinian supplemented module.
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closed under extensions, that is if U and M/U are weakly supplemented for some
submodule U of M then M need not be weakly supplemented. A submodule U of
M has ample supplements in M if every submodule V of M such that M = U + V
contains a supplement V

′
of U in M . The module M is called amply supplemented

if every submodule of M has ample supplements in M [10].
Let R be a a principal ideal domain (PID) with exactly one non-zero maximal

ideal, then R is said to be a Discrete valuation ring (DVR). By [13, Lemma 2.1] that
every module with small radical over a Discrete Valuation Ring, is the direct sum
of a finitely generated free module and a bounded module. In [12], he generalized
the concept of modules with small radical to radical supplemented modules. M is
called radical supplemented if Rad(M) has a supplement in M . These modules are
also a proper generalization of supplemented modules. Then, in [2], it is defined
as a module M strongly radical supplemented (or briefly srs) if every submodule
N of M with Rad(M) ⊆ N has a supplement in M . Then it is introduced that
modules whose every submodule containing the radical has a weak supplement (in
particular, over dedekind domains the radical has a weak supplement) in the module
as weakly radical supplemented module (wrs) which is a generalization of strongly
radical supplemented modules [7].

In [11], a generalization of concept of socle as a Socs(M) =
∑
{U � M |U is

simple }. Here Socs(M) ⊆ Rad(M) and Socs(M) ⊆ Soc(M). In [3], a module M is
called strongly local if it is local and Rad(M) is semisimple. A submodule U of M is
called an ss-supplement of U in M if M = U+V and U∩V ⊆ Socs(V ). The module
M is called ss-supplemented if every submodule of M has an ss-supplement in M .
A submodule U of M has ample ss-supplements in M if every submodule V of M
such that M = U + V contains an ss-supplement V

′
of U in M . The module M is

called amply ss-supplemented if every submodule of M has ample ss-supplements
in M . In [8], strongly local and (amply) ss-supplemented modules are generalized
as RLA-local and (amply) locally artinian supplemented modules, respectively. A
local module M is called RLA-local if Rad(M) is a locally artinian submodule of
M . A module M is called locally artinian supplemented if every submodule U of
M has a locally artinian supplement in M , that is, V is a supplement of U in M
such that U ∩V is locally artinian. M is called amply locally artinian supplemented
if every submodule U of M has ample locally artinian supplements in M . Here a
submodule U of M has ample locally artinian supplements in M if every submodule
V of M such that M = U + V contains a locally artinian supplement V

′
of U in

M .
In Section 2, it is proved that a module with a small radical is weakly locally

artinian supplemented if and only if M is weakly supplemented and Rad(M) is
locally artinian. It is also proved that finite sum of weakly locally artinian supple-
mented modules is weakly locally artinian supplemented and every factor module
of a weakly locally artinian supplemented module is weakly locally artinian supple-
mented. It is shown that a notion of weakly locally artinian supplemented modules
inherited by small cover. It is also shown that if N and M

N are weakly locally ar-
tinian supplemented for some submodule N ⊆M which has a weak locally artinian
supplement in M , then M is weakly locally artinian supplemented.
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2. Weakly Locally Artinian Supplemented Modules

Definition 1. Let M be a module. Then M is called weakly locally artinian
supplemented if every submodule N of M has a weak supplement K in M with
N ∩K is locally artinian, i.e. N has a weak locally artinian supplement K in M .

By the definition, it is clear that every weakly locally artinian supplemented
module is weakly supplemented. The following example shows that the converse is
not always true.

Example 1. Consider the Z-module Q. By [1, Lemma 2.8], M =Z Q is weakly

supplemented. So Q
Z is weakly supplemented because of Q is weakly supplemented.

But Q
Z is not locally artinian by [9, Theorem 3]. Since Rad(Q

Z ) = Q
Z , Q

Z is not weakly
locally artinian supplemented.

Lemma 1. Let M be a weakly supplemented module and Rad(M) be a locally
artinian submodule of M . Then M is weakly locally artinian supplemented.

Proof. Let N ⊆ M . By the hypothesis, there exists a submodule K of M such
that M = N +K, N ∩K �M . So N ∩K ⊆ Rad(M). Since Rad(M) is a locally
artinian submodule of M , N ∩K is a locally artinian submodule of M by [10, 31.2
(ii)]. Thus M is weakly locally artinian supplemented. �

Theorem 1. Let M be a module with small radical. Then the following statements
are equivalent.

(1) M is weakly locally artinian supplemented;
(2) M is weakly supplemented and Rad(M) has a weak locally artinian supple-

ment in M ;
(3) M is weakly supplemented and Rad(M) is locally artinian.

Proof. (1) ⇒ (2) Since M is weakly locally artinian supplemented, M is weakly
supplemented and Rad(M) has a weak locally artinian supplement in M .

(2) ⇒ (3) Since Rad(M) � M , M is a weak locally artinian supplement of
Rad(M) in M . Thus we have M = Rad(M) +M , Rad(M) = Rad(M) ∩M � M
and Rad(M) is locally artinian.

(3)⇒ (1) Clear by Lemma 1. �

Since every finitely generated module has a small radical, we have:

Corollary 1. Let M be a finitely generated module. Then M is weakly locally
artinian supplemented if and only if M is weakly supplemented with locally artinian
radical.

Proposition 1. Let M be a weakly locally artinian supplemented module and
N,K ⊆ M be submodules with M = N + K. Then K contains a weak locally
artinian supplement K

′
of N in M .

Proof. Let N ∩ K = U . Since M is weakly locally artinian supplemented, there
exists a submodule V of M such that M = U + V , U ∩ V � M and U ∩ V is
locally artinian. Then K = K ∩ (U + V ) = U + (K ∩ V ) and M = N + K =
N + [U + (K ∩ V )] = N + (K ∩ V ). It follows that N ∩ (K ∩ V ) = U ∩ V � M

and U ∩ V is locally artinian, say K
′

= K ∩ V . Then we obtain that K
′

is a weak
locally artinian supplement of N in M , as required. �
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Proposition 2. Let M be a weakly locally artinian supplemented module and N
be a small submodule of M . Then N is locally artinian.

Proof. By the hypothesis, there exists a submodule K of M such that M = N+K,
N ∩K � M and N ∩K is locally artinian. Since N � M , M = K. So N ∩K =
N ∩M = N is locally artinian. �

Corollary 2. LetM be a weakly locally artinian supplemented module andRad(M)
�M . Then Rad(M) is locally artinian.

Proof. Clear by Proposition 2. �

With the help of the next theorem, we verify that under special conditions,
notions of weakly locally artinian supplemented modules and weakly radical sup-
plemented modules are the same.

Theorem 2. Let M be a module with Rad(M) � M . Then the following state-
ments are equivalent.

(1) M is weakly locally artinian supplemented;
(2) M is weakly supplemented and Rad(M) has a weak locally artinian supple-

ment in M ;
(3) M is weakly supplemented and Rad(M) is locally artinian;
(4) M is weakly radical supplemented and Rad(M) is locally artinian.

Proof. (1)⇔ (2)⇔ (3) Clear by Theorem 1.
(3)⇒ (4) Obvious.
(4)⇒ (1) Let N ⊆M . By the hypothesis, N +Rad(M) has a weak supplement

K in M . Then we have M = (N+Rad(M))+K. Since Rad(M)�M , M = N+K,
N ∩K ⊆ (N+Rad(M))∩K �M . So N ∩K �M . Thus N ∩K ⊆ Rad(M). Since
Rad(M) is locally artinian, N ∩K is locally artinian by [10, 31.2 (ii)]. Therefore
K is a weak locally artinian supplement of N in M , as desired. �

We will show that in the factor modules, the property is preserved in weakly
locally artinian supplemented modules just as it is in weakly supplemented modules.

Proposition 3. If M is a weakly locally artinian supplemented module, then every
factor module of M is weakly locally artinian supplemented.

Proof. Let M be a weakly locally artinian supplemented module and M
N be a factor

module of M . By the assumption, for any submodule N ⊆ U ⊆ M , there exists a
submodule V of M such that M = U+V , U ∩V �M and U ∩V is locally artinian.
Let π : M −→ M

N be the canonical projection. Then we have M
N = U

N + V +N
N ,

U
N ∩

V +N
N = π(U ∩ V ) � M

N and U
N ∩

V +N
N = π(U ∩ V ) is locally artinian by [10,

31.2 (i)], as required. �

The following lemma plays a key role in showing that the notion of weakly locally
artinian supplemented modules is inherited by finite sum.

Lemma 2. Let M be a module, M1 ⊆ M , N ⊆ M and M1 be weakly locally
artinian supplemented. If M1 + N has a weak locally artinian supplement in M ,
then N has a weak locally artinian supplement in M .

Proof. Let K be a weak locally artinian supplement of M1 +N in M . Then we can
write M = (M1 +N)+K, (M1 +N)∩K �M and (M1 +N)∩K is locally artinian.
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Since M1 is weakly locally artinian supplemented, (N +K)∩M1 has a weak locally
artinian supplement L in M1, i.e. M1 = (N + K) ∩M1 + L, (N + K) ∩ L � M1

and (N +K)∩L is locally artinian. Then M = M1 + (N +K) = [(N +K)∩M1 +
L] + (N +K) = N + (K + L) and N ∩ (K + L) ⊆ K ∩ (N + L) + L ∩ (N +K) ⊆
K ∩ (N +M1) +L∩ (N +K)�M . By [10, 31 (2) (i), (ii)], N ∩ (K +L) is locally
artinian and so K + L is a weak locally artinian supplement of N in M . �

Corollary 3. Let M be an R-module, N ⊆ M and Mi ⊆ M for i = 1, 2, . . . , n.
If N + M1 + · · · + Mn has a weak locally artinian supplement in M and Mi is a
weakly locally artinian supplemented module for every i = 1, 2, . . . , n, then N has
a weak locally artinian supplement in M .

Corollary 4. Let M = M1 + M2. If M1 and M2 are weakly locally artinian
supplemented modules, then M is a weakly locally artinian supplemented module.

The following corollary is obtained from the previous result by applying induc-
tion.

Corollary 5. A finite sum of weakly locally artinian supplemented modules is
weakly locally artinian supplemented.

Recall from [6] that N is a small cover of a module M if there exists an epimor-
phism f : N −→M such that Ker(f)�M .

Lemma 3. Let M be a weakly locally artinian supplemented module. Then every
small cover of M is weakly locally artinian supplemented.

Proof. LetN be a small cover ofM . Then there exists an epimorphism f : N −→M
such that Ker(f) � N . Note that f−1(K) � N for every K � M holds since
Ker(f)� N . Let L ⊂ N . Then f(L) has a weak locally artinian supplement of X
in M . Note that M = X + f(L), X ∩ f(L)�M and X ∩ f(L) is locally artinian.
Again it is easy to check that f−1(X) is a weak locally artinian supplement of L in
N . �

Proposition 4. Let M be a weakly locally artinian supplemented module. Then
every locally artinian supplement in M is weakly locally artinian supplemented.

Proof. Let K be a locally artinian supplement of N in M . Then we have M =
N +K, N ∩K � K and N ∩K is locally artinian. M

N
∼= K

(N∩K) is weakly locally

artinian supplemented by Proposition 3. By Lemma 3, K is weakly locally artinian
supplemented. �

Corollary 6. Let M be a weakly locally artinian supplemented module. Then
every locally artinian direct summand in M is weakly locally artinian supplemented.

Proof. Since every locally artinian direct summand is locally artinian supplement,
the proof follows from Proposition 4. �

Recall that a submodule N ⊆M is called closed in M if NEK for some K ⊆M
implies K = N . A submodule N ⊆M is called coclosed in M if N

K �
M
K for some

K ⊆M implies K = N .

Theorem 3. Let 0 −→ K −→ M −→ N −→ 0 be a short exact sequence. If
K and N are weakly locally artinian supplemented and K has a weak locally ar-
tinian supplement in M then M is weakly locally artinian supplemented. If K
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is coclosed locally artinian submodule in M then the converse holds, that is if M
is weakly locally artinian supplemented then K and N are weakly locally artinian
supplemented.

Proof. Without restriction of generality we will assume that K ⊆ M . Let T be a
weak locally artinian supplement of K in M i.e. M = K+T , K∩T �M and K∩T
is locally artinian. Then we have, M

(K∩T ) = K
(K∩T ) ⊕

T
(K∩T ) . Since K

(K∩T ) is a factor

module of K, K
(K∩T ) is weakly locally artinian supplemented by Proposition 3. On

the other hand, T
(K∩T )

∼= M
K
∼= N is weakly locally artinian supplemented by the

hypothesis. Then, by Corollary 5, M
(K∩T ) is weakly locally artinian supplemented

as a finite sum of weakly locally artinian supplemented modules. It follows from
Lemma 3 that M is weakly locally artinian supplemented.

Suppose that M is weakly locally-artinian supplemented and K is a coclosed
locally-artinian submodule in M . Then K ∩ T � K by [4, Lemma 1.1] and K ∩ T
is locally artinian by [10, 31.2 (ii)] i.e. K is a locally artinian supplement of T in
M . Therefore K is weakly locally artinian supplemented by Proposition 4. �

Recall from [6, Theorem 3.5] that a ring R is semilocal if and only if every R-
module with small radical is weakly supplemented. By using Theorem 1, we have
the following Proposition.

Proposition 5. LetR be a semilocal ring andM be anR-module. SupposeN ⊆M
such that M

N is finitely generated and Rad(M
N ) is locally artinian. If N is weakly

locally artinian supplemented then M is weakly locally artinian supplemented.

Proof. Suppose M
N is generated by m1 +N,m2 +N, . . . ,mn+N . For the submodule

K = Rm1 + Rm2 + · · · + Rmn, we have M = N + K. Then M is weakly locally
artinian supplemented by Corollary 4. �

3. Conclusion

The aim of this paper is to reveal the existence of the concept of weakly locally
artinian supplemented modules. Our results improve and generalize some known
results on locally artinian supplemented modules.
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Abstract. The object of this paper is to investigate the properties of the

ruled surface which direction vector has a constant slope with osculating plane

of the base curve in Galiean 3−space. We obtain some properties of this
kind of ruled surface by calculating the geometric invariants. Also, we give

an application on the example and their graphs are visualized by using the

Mathematica program.

1. Introduction

Inertial reference frame is defined as a coordinate system moving at a constant
velocity. In 1632, Galileo first described the principle ”the laws of motion are
the same in all inertial frames” using the example of a ship travelling at constant
velocity. According to this principle, any observer below the deck would not be able
to tell whether the ship was moving or stationary. The Galilean transformation
between two inertial frames (x, y, z) and (x′, y′, z′) is defined as

x′ = a+ x,

y′ = b+ cx+ (cosϕ) y + (sinϕ) z,

z′ = d+ ex− (sinϕ) y + (cosϕ) z,

where a, b, c, d, e, and ϕ are some constants. In Galilean space, since two inertial
frames are related by a Galilean transformation, all physical laws are the same in
all inertial reference frames.

In differential geometry, various surfaces have been extensively studied by the
authors in the special spaces: extrinsically and intrinsically [3, 5, 6, 7, 8, 11, 12].
Ruled surface is one of these surfaces and is defined as a surface formed by mov-
ing the generating vector along a base curve [14]. Many authors studied on the
characaterizations of the ruled surfaces [1, 4, 9, 10, 13].
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In this paper, we investigate the ruled surface whose generator vector has a
constant slope according to osculating plane of the base curve in Galilean 3−space
and we obtained some important results of this ruled surface. Also, we give some
properties of this kind of ruled surface using its invariant curvatures. Finally, we
present an example of such a ruled surface in Galilean 3−space.

2. Preliminaries

The standard metric of Galilean 3−space G3 is defined as

〈x, y〉 =

 x1y1, x1 6= 0 or y1 6= 0
x2y2 + x3y3, x1 = 0 = y1,(2.1)

where xi and yj (i, j = 1, 2, 3) are shown the coefficients of the vectors x and y,
respectively. The cross product in Galilean 3−space is defined by

x× y =



∣∣∣∣∣∣
0 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ , x1 6= 0 or y1 6= 0,

∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ , x1 = 0 = y1,

(2.2)

[12].
Let α : I ⊂ R→G3 be a unit speed curve with the parametrization

α(s) = (s, y(s), z(s)). The Frenet frame is defined {T (s) = α′(s), N(s), B(s)} for
the curve α(s) in Galilean 3−space. The Frenet equations are given by

T ′ (s) = κ (s)N (s) ,(2.3)

N ′ (s) = τ (s)B (s) ,

B′ (s) = −τ (s)N (s) ,

with the curvature κ(s) = ‖α′′(s)‖ and the torsion τ(s) = 1
κ2(s) det(α′, α′′, α′′′) [2].

LetX(u, v) = (x(u, v), y(u, v), z(u, v)) be a parametric surface in Galilean 3−space.
The interior geometry of the parametric surface X(u, v) at the point X(u0, v0) is
obtained by the first fundamental form. The first fundamental form of the surface
is

(2.4) I = (g1du+ g2dv)2 + ε(huudu
2 + 2huvdudv + hvvdv

2)

where g1 := xu = ∂x
∂u , g2 := xv, huv := yuyv + zuzv, huu := y2

u + z2
u, hvv := y2

v + z2
v ,

and

ε =

{
0, if the direction du : dv is non-isotropic,
1, if the direction du : dv is isotropic.

The Gauss map of the surface X(u, v) is defined as

(2.5) U =
1

W
(0,−xuzv + xvzu, xuyv − xvyu)
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where W =

√
(xuzv − xvzu)

2
+ (xvyu − xuyv)2

. The second fundamental form is

given by

II = L11(du)2 + 2L12dudv + L22(dv)2

where

(2.6) Lij =
1

g1
〈g1 (0, y,ij , z,ij) + gi,j (0, yu, zu) , U〉 for g1 6= 0

or

Lij = 1
g2
〈g2 (0, y,ij , z,ij) + gi,j (0, yv, zv) , U〉 for g2 6= 0

where y,ij = ∂y
∂uiuj

, j = 1, 2 and u1 := u, u2 := v. The invariant curvatures K

and H of the surface are calculated as:

(2.7) K :=
L11L22 − L2

12

W 2
and H :=

g2
2L11 − 2g1g2L12 + g2

1L22

2W 2

where K, H are called as Gaussian curvature and mean curvature of the surface,
respectively. A surface in Galilean 3−space is called as flat (resp. minimal) surface
if its Gaussian (resp. mean) curvature is zero [3, 11]. The principal curvatures k1

and k2 of the surface X are given as

(2.8) k1 = 2H and k2 =
L11L22 − L2

12

g2
2L11 − 2g1g2L12 + g2

1L22
.

3. Constant Slope Ruled Surface in Galilean 3−space

In this section, we will analyze the properties of the ruled surfaces whose director
vector make a constant slope with the osculating plane of the base curve α. Then,
we will obtain some properties of this kind of surfaces.

In Galilean 3−space, we construct the ruled surface with constant slope according
to the osculating plane of the base curve as follows:

(3.1) X(s, λ) = α(s) + λD(s)

where α(s) = (s, y(s), z(s)) is the director curve and D(s) = cos (θ(s))T (s) +
sin (θ(s))N(s) + ωB(s) is the generator vector of the ruled surface X(s, λ). The
coefficients of the principal fundamental form are given by

(3.2)
g1 = 1− λθ′(s) sin (θ(s)) , g2 = cos (θ(s)) ,

g1,1 = d
ds (1− λθ′(s) sin (θ(s))) , g1,2 = −θ′(s) sin (θ(s)) , and g2,2 = 0.

The normal vector U of the surface X(s, λ) is calculated as

U =
1

κW
{0,−A(z′′ sin θ + ωy′′) + λ cos θ (Bz′′ + τ sin θy′′) ,(3.3)

A(y′′ sin θ − ωz′′)− λ cos θ (By′′ − τ sin θz′′)}

where W =
(
A2(sin2 θ + ω2) + λ2 cos2 θ(B2 + τ2 sin2 θ)

)1/2
, A = 1− λθ′ sin θ, and

B = κ cos θ + θ′ cos θ − ωτ . The coefficients of the second fundamental form are
calculated as follows:
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L11 = 1
κW


[−A(z′′ sin θ + ωy′′) + λ cos θ (Bz′′ + τ sin θy′′)][

2Asy
′ +Ay′′ +

(
λAs
κA −

λκ′

κ2

)
(By′′ − τ sin θz′′) + λ

κ (By′′ − τ sin θz′′)s

]
+ [A(y′′ sin θ − ωz′′)− λ cos θ (By′′ − τ sin θz′′)][

2Asz
′ +Az′′ +

(
λAs
κA −

λκ′

κ2

)
(Bz′′ + τ sin θy′′) + λ

κ (Bz′′ + τ sin θy′′)s

]
 ,

L12 = 1
κWA


[−A(z′′ sin θ + ωy′′) + λ cos θ (Bz′′ + τ sin θy′′)][
−2Ay′θ′ sin θ + 1

κ (A− λθ′ sin θ) (By′′ − τ sin θz′′)
]

+ [A(y′′ sin θ − ωz′′)− λ cos θ (By′′ − τ sin θz′′)][
−2Az′θ′ sin θ + 1

κ (A− λθ′ sin θ) (Bz′′ + τ sin θy′′)
]
,

 ,

and L22 = 0, where the derivatives are taken according to the parameter s.
Now, we will examine some properties of the ruled surfaces with constant slope

relative to special curves in Galilean space.
Case 1. If the base curve α(s) of the ruled surface is a plane curve with the

parametric equation α(s) = (s, y(s), 0), then the ruled surface with constant slope
is given by

X(s, λ) = α(s) + λD(s)

where D(s) = cos θ(s)T (s) + sin θ(s)N(s) + ω−→e 3 is the generator vector, ω is an
arbitrary constant, and −→e 3 = (0, 0, 1). The Gauss map of the ruled surface is
calculated as follows:

U(s, λ) =
1

W
(0,−ω(1− λθ′ sin θ), (1− λθ′ sin θ) sin θ − λ cos2 θ(θ′ + κ))

where W =
(
ω2(1− λθ′ sin θ)2 + (sin θ − λθ′ − λκ cos2 θ)2

)1/2
.

Theorem 3.1. The ruled surface X(s, λ) with the base curve α(s) = (s, y(s), 0) is
developable if and only if the following equation is satisfied

(1− λθ′ sin θ)(cos θ(θ′ + κ)− 2θ′ sin θy′)− λθ′ sin θ cos θ(θ′ + κ) = 0.

Proof. From Eq. (2.6), the coefficients of the first and second fundamental forms
of X(s, λ) are calculated as

g1 = 1− λθ′ sin θ and g2 = cos θ,

L11 = − ω

W
(1− λθ′ sin θ)

 (1− λθ′ sin θ)κ+ 2y′ d(1−λθ′ sin θ)
ds

−λθ′ sin θ(θ′ + κ) + λ cos θ(θ′′ + κ′)

+
λ cos θ(θ′+κ)

d(1−λθ′ sin θ)
ds

1−λθ′ sin θ

 ,(3.4)

L12 = − ω

W
(1− λθ′ sin θ)

(
−2θ′ sin θy′ + cos θ(θ′ + κ)

−λθ
′ cos θ sin θ(θ′+κ)

1−λθ′ sin θ

)
,

L22 = 0.

The Gauss curvature of the surface X(s, λ) is

K = − ω2

W 4
(1− λθ′ sin θ)2

(
−2θ′ sin θy′ + cos θ(θ′ + κ)

−λθ
′ cos θ sin θ(θ′+κ)

1−λθ′ sin θ

)2

.

The ruled surfaceX(s, λ) with the base curve α(s) = (s, y(s), 0) is to be developable,
its Gauss curvature must be zero. So, we obtain the desired result. �
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Theorem 3.2. The ruled surface X(s, λ) with the base curve α(s) = (s, y(s), 0) is
minimal if and only if

cos θ


−(1− λθ′ sin θ)κ
+2y′ d(1−λθ′ sin θ)

ds
+λθ′ sin θ(θ′ + κ)
+λ cos θ(θ′′ + κ′)

+
λ cos θ(θ′+κ)

d(1−λθ′ sin θ)
ds

1−λθ′ sin θ

− 2θ′(1− λθ′ sin θ) (−2 sin θy′ + cos θ) = 0.

Proof. If we substitute the components of Eq. (3.4) into the Eq. (2.7), we obtain
the mean curvature of the ruled surface X(s, λ). For the surface to be minimal, its
mean curvature is equal to zero. So, we get the desired differential equation for
1− λθ′ sin θ 6= 0. �

Corollary 3.3. If the function θ is a constant, then the ruled surface X(s, λ) has
the Gauss curvature and the mean curvature as follows:

K = − ω2

W 4
(κ2(s) cos2 θ) and H = −ω cos2 θ

2W 3
(−κ(s) + λκ′(s) cos θ).

Corollary 3.4. If the function θ is a constant and the surface X(s, λ) is devel-
opable, then the base curve is the straight line in Galilean space.

Corollary 3.5. If the function θ is a constant and the surface X(s, λ) is minimal,
then the base curve α has the curvature κ(s) = es/λ cos θ + c.

There exists a common perpendicular to two constructive rulings in the ruled
surface, then the foot of the common perpendicular on the main rulings is called a
central point. The locus of the central point is called the striction curve.

Theorem 3.6. The following conditions are satified for the striction curve of the
ruled surface X(s, λ) :
(i) If the function θ is an arbitrary constant, then the striction curve is

β(s) =
(
s− 1

κ(s) , y(s)− 1
κ(s) cos θ (cos θy′(s) + sin θ),− ω

κ(s) cos θ

)
.

(ii) If the function θ is not a constant, then the striction curve is

β(s) =
(
s− 1

(θ′(s))2 cot2 θ(s), y(s)− cos θ(s)
(θ′(s))2 sin2 θ(s)

(cos θ(s)y′(s) + sin θ(s)),− ω cos θ
(θ′(s))2 sin2 θ(s)

)
.

Proof. The striction curve of the ruled surface is two types depending on whether
D′ is isotropic, or non-isotropic vector in Galilean space. The striction curve of the
ruled surface is calculated the following formula

β(s) = α(s)− 〈T (s), D(s)〉
〈D′(s), D′(s)〉

D(s).

If the derivative of the generator vector with respect to s is an isotropic vector,
then the striction curve is calculated in (i) and if D′(s) is a non isotropic vector,
then the striction curve is calculated as in (ii). �

Case 2. If the base curve α(s) of the ruled surface is a plane curve with the
parametric expression α(s) = (s, 0, z(s)), then the ruled surface with constant slope
is given by

X(s, λ) = α(s) + λD(s)
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where D(s) = cosφ(s)T (s) + sinφ(s)N(s) − σ−→e 2 is the generator vector, σ is an
arbitrary constant, and −→e 2 = (0, 1, 0). The Gauss map of the ruled surface is
calculated as follows:

U(s, λ) =
1

W
(0,−(1− λφ′ sinφ) sinφ− λ cos2 φ(φ′ + κ),−σ(1− λφ′ sinφ))

where W =
(
σ2(1− λφ′ sinφ)2 + ((1− λφ′ sinφ) sinφ+ λ cos2 φ(φ′ + κ))2

)1/2
.

Theorem 3.7. The ruled surface X(s, λ) with the base curve α(s) = (s, 0, z(s)) is
developable if and only if the differential equation is satisfied

(1− λφ′ sinφ)(cosφ(φ′ + κ)− 2φ′ (sinφ) z′)− λφ′ sinφ cosφ(φ′ + κ) = 0.

Proof. From Eq.(2.6), the coefficients of the first and second fundamental forms of
X(s, λ) are calculated as

g1 = 1− λφ′ sinφ and g2 = cosφ,

L11 = − σ

W
(1− λφ′ sinφ)

 (1− λφ′ sinφ)κ+ 2z′ d(1−λφ′ sinφ)
ds

−λφ′ sinφ(φ′ + κ) + λ cosφ(φ′′ + κ′)

+
λ cosφ(φ′+κ)

d(1−λφ′ sinφ)
ds

1−λφ′ sinφ

 ,(3.5)

L12 = − σ

W
(1− λφ′ sinφ)

(
−2φ′ sinφz′ + cosφ(φ′ + κ)

−λφ
′ cosφ sinφ(φ′+κ)

1−λφ′ sinφ

)
,

L22 = 0.

The Gauss curvature of the surface X(s, λ) is

K = − σ2

W 4
(1− λφ′ sinφ)2

(
−2φ′ sinφz′ + cosφ(φ′ + κ)

−λφ
′ cosφ sinφ(φ′+κ)

1−λφ′ sinφ

)2

.

The ruled surface X(s, λ) with the base curve α(s) = (s, 0, z(s)) is to be devel-
opable, its Gauss curvature must be zero. So, we obtain the desired result. �

Theorem 3.8. The ruled surface X(s, λ) with the base curve α(s) = (s, 0, z(s)) is
minimal if and only if the following differential eqaution is fulfilled

cosφ


−(1− λφ′ sinφ)κ

+2z′ d(1−λφ′ sinφ)
ds

+λφ′ sinφ(φ′ + κ)
+λ cosφ(φ′′ + κ′)

+
λ cosφ(φ′+κ)

d(1−λφ′ sinφ)
ds

1−λφ′ sinφ

− 2φ′(1− λφ′ sinφ) (−2 sinφz′ + cosφ) = 0.

Proof. If we substitute the components of Eq. (3.5) into the Eq. (2.7), we obtain
the mean curvature of the ruled surface X(s, λ). For the surface to be minimal,
its mean curvature is zero. From here, we get the desired differential equation for
1− λφ′ sinφ 6= 0. �

Corollary 3.9. If the function φ is a constant, then the ruled surface X(s, λ) has
the Gauss curvature and the mean curvature as follows:

K = − σ2

W 4
(κ2(s) cos2 φ) and H = −σ cos2 φ

2W 3
(−κ(s) + λκ′(s) cosφ).
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Corollary 3.10. If the function φ is a constant and the surface X(s, λ) is devel-
opable, then the base curve is the straight line in Galilean space.

Corollary 3.11. If the function φ is a constant and the surface X(s, λ) is minimal,
then the base curve α has the curvature κ(s) = es/λ cosφ + c1.

Theorem 3.12. The following conditions are satified for the striction curve of the
ruled surface X(s, λ) :

(i) If the function φ is an arbitrary constant, then the striction curve is β(s) =(
s− 1

κ(s) ,
σ

κ(s) cosφ , z(s)−
1

κ(s) cosφ (cosφz′(s) + sinφ)
)
.

(ii) If the function φ is not a constant, then the striction curve is β(s) =(
s− 1

(φ′(s))2 cot2 φ(s), σ cosφ
(φ′(s))2 sin2 φ(s)

, z(s) + cosφ(s)
(φ′(s))2 sin2 φ(s)

(cosφ(s)z′(s) + sinφ(s))
)
.

Proof. The striction curve of ruled surface is two types depending on whether the
vector D′ is isotropic or non-isotropic in Galilean space. The striction curve of the
ruled surface is calculated from the formula

β(s) = α(s)− 〈T (s), D(s)〉
〈D′(s), D′(s)〉

D(s).

If the derivative of the generator vector with respect to s is isotropic vector, then
the striction curve is calculated in (i) and if D′(s) is non isotropic vector, then the
striction curve is calculated as in (ii). �

Example
In this section, we give the ruled surface whose base curve is α(s) and generator
vector D(s). Let α = α(s) be an admissible unit speed curve with the parametriza-
tion

α(s) =

(
s,

1

4

[
(3− 4s) cos(2

√
s) + 6

√
s sin(2

√
s)
]
,

1

4

[
(3− 4s) sin(2

√
s)− 6

√
s cos(2

√
s)
])

with the Frenet frame apparatus

T (s) =

(
1,

1

2
cos(2

√
s) +

√
s sin(2

√
s),

1

2
sin(2

√
s)−

√
s cos(2

√
s)

)
,

N(s) =
(
0, cos(2

√
s), sin(2

√
s)
)
,

B(s) =
(
0,− sin(2

√
s), cos(2

√
s)
)
,

κ(s) = 1 and τ(s) = 1/
√
s. The ruled surface X(s, λ) with constant slope according

to osculating plane of the curve α(s) is given as follows

X(s, λ) = α(s) + λD(s),

where D(s) = cos s3T (s) + sin s3N(s) + ωB(s) and ω is an arbitrary constant in
Figure 1.

4. Conclusion

This study is important in terms of finding invariants of the ruled surface with
constant slope in Galilean 3−space. The striction curve of this surface is calculated.
Also, the conditions for the surface to be minimal and developable are obtained. It
is also examined the special cases and the results are obtained.
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Figure 1. The ruled surface with constant slope ω = 3.
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Abstract. The main goal of this work is to study the inital boundary value
problem for a higher-order parabolic equation with logarithmic source term

ut + (−∆)mu = u ln |u| .
We obtain blow-up at +∞ of weak solutions, by employing potential well
technique. This improves and extends some previous studies.

1. Introduction

In this paper, we cosider the following higher-order parabolic problem with log-
arithmic nonlinearity

(1.1)

 ut +Au = u ln |u| , x ∈ Ω, t > 0,
Dγu(x, t) = 0, |γ| ≤ m− 1, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

where A = (−∆)m, m ≥ 1 a positive integer, Ω is a bound domain in Rn with
smooth boundary ∂Ω, γ = (γ1, γ2, ..., γn) is multi-index, γi (i = 1, 2, ..., n) are non-

negative integers, |γ| = γ1 + γ2 + ... + γn, D
γ = ∂|γ|

∂x
γ1
1 ∂x

γ2
2 ...∂xγn

n

are multi-index

derivative operator, ∆ =
n∑
i=1

∂2

∂x2
i

is the Laplace operator.

When m = 1, the equation (1.1) becomes a heat equation as follows

(1.2) ut −∆u = u ln |u| .
In the equation (1.2), Chen et al. [2] obtained under some suitable conditions
for the global existence, decay estimate and blow-up at +∞ of weak solutions,
via the logarithmic Sobolev inequality and potential well technique. Also, Han [5]
obtained the blow-up at infinity of solutions, via the logarithmic Sobolev inequality.
Additionally, Chen and Tian [3] obtained the global existence of solution, blow-up
at +∞ of solution, by adding strong damping term to the equation (1.2).
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Peng and Zhou [10] studied the following semilinear heat equation with logarith-
mic nonlinearity

ut −∆u = up−2u ln |u| ,
where 2 < p. They studied the existence of the unique global weak solutions and
blow-up in the finite time of weak solutions, via potential well technique and energy
technique.

Li and Liu [8] established a class of fourth-order parabolic equation with loga-
rithmic source term as follows

ut + ∆2u = up−2u ln |u| ,
where 2 < p. They studied the existence of global solutions, by using potential well
technique. In addition, they also studied result of decay and finite time blow-up
for weak solutions.

Nhan and Truong [9] studied the following nonlinear pseudo-parabolic equation

ut −∆ut − div
(
|∇u|p−2∇u

)
= |u|p−2

u log |u| .

They obtained results as regard the existence or non-existence of global solutions.
Also, He et al. [6] proved the decay and the finite time blow-up for weak solutions
of the equation.

Resently many other authors investigated higher-order hyperbolic and parabolic
type equation [4, 7, 11, 12, 13, 14, 15]. Ishige et al. [7] studied the Cauchy problem
for nonlinear higher-order heat equation as follows

ut + (−∆)mu = |u|p .
They obtained existence of solutions of the Cauchy problem by introducing a new
majorizing kernel. In addition, they studied the local existence of solutions under
the different conditions.

Xiao and Li [13] considered initial boundary value problem for nonlinear higher-
order heat equations of

ut + (−∆)mut + (−∆)mu = f(u).

They established the existence of weak solution to the static problem, by using the
potential well technique.

The remainder of our work is organized as follows. In Section2, some important
Lemmas are given. In Section 3, the main result is proved.

2. Preliminaries

Let ‖u‖Hm(Ω) =

( ∑
|γ|≤m

‖Dγu‖2L2(Ω)

) 1
2

denote Hm(Ω) norm, let Hm
0 (Ω) denote

the closure in Hm(Ω) of C∞0 (Ω). Let ‖.‖r and ‖.‖ denote the usual Lr(Ω) norm and
L2(Ω) norm.

For u ∈ Hm
0 (Ω)\{0}, we define the energy functional

(2.1) J(u) =
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖2 ,

and Nehari functional

(2.2) I(u) =
∥∥∥A 1

2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx.
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By (2.1) and (2.2), we obtain

(2.3) J(u) =
1

2
I(u) +

1

4
‖u‖2 .

Further, let

(2.4) d = inf
u∈N

J(u),

denote the potential depth, where N is the Nehari manifold, which is defined by

N = {u ∈ Hm
0 (Ω)\{0} : I(u) = 0}.

Lemma 2.1. [1]. Let k be a number with 2 ≤ k < +∞, n ≤ 2m and 2 ≤ k ≤ 2n
n−2m ,

n > 2m. Then there is a constant C depending

‖u‖k ≤ C
∥∥∥A 1

2u
∥∥∥ , ∀u ∈ Hm

0 (Ω) .

Lemma 2.2. J(t) is a nonincreasing function for t ≥ 0 and

(2.5) J ′ (u) = −
∫
Ω

u2
tdx ≤ 0.

Proof. Multiplying the equation (1.1) by ut and integrating on Ω, we get∫
Ω

u2
tdx+

∫
Ω

Auutdx =

∫
Ω

uut ln |u| dx.

By straightforward calculation, we obtain∫
Ω

u2
tdx+

1

2

d

dt

∥∥∥A 1
2u
∥∥∥2

=
1

2

d

dt

∫
Ω

|u|2 ln |u| dx− 1

4

d

dt
‖u‖2 ,

which yields that

1

2

d

dt

∥∥∥A 1
2u
∥∥∥2

− 1

2

d

dt

∫
Ω

|u|2 ln |u| dx+
1

4

d

dt
‖u‖22 = −

∫
Ω

u2
tdx.

Thus, we get

(2.6)
d

dt

(
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖22

)
= −

∫
Ω

u2
tdx.

By 2.1 and 2.6, we obtain

(2.7)
d

dt
J(u) = −

∫
Ω

u2
tdx.

Moreover, Integrating (2.7) with respect to t on [0, t], we arrive at

(2.8)

∫ t

0

‖us(s)‖2 ds+ J(u(t) = J(u0).

�

Lemma 2.3. Let u ∈ Hm
0 (Ω)\{0} and j (λ) = J(λu). Then we get

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞,
(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0,
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(iii) j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the maxi-
mum at λ∗,

(iv) I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0.

Proof. By the definition of j, for u ∈ H1
0 (Ω)\{0}, we get

(2.9) j(λ) =
λ2

2

∥∥∥A 1
2u
∥∥∥2

− λ2

2

∫
Ω

|u|2 ln |u| dx− λ2

2
lnλ ‖u‖22 +

λ2

4
‖u‖2 .

By (2.9), we have

d

dλ
j(λ) = λ

∥∥∥A 1
2u
∥∥∥2

− λ
∫

Ω

|u|2 ln |u| dx

−λ lnλ ‖u‖2 − λ

2
‖u‖2 +

λ

2
‖u‖2

= λ

(∥∥∥A 1
2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx− lnλ ‖u‖2
)
.

Moreover, by taking

λ∗ = λ∗(u) = exp


∥∥∥A 1

2u
∥∥∥2

−
∫

Ω
|u|2 ln |u| dx

‖u‖2


By (2.2), we get

I(λu) =
∥∥∥A 1

2 (λu)
∥∥∥2

−
∫

Ω

|λu|2 ln |λu| dx

= λ2
∥∥∥A 1

2u
∥∥∥2

− λ2

∫
Ω

|u|2 ln |u| dx− λ2 lnλ ‖u‖2

= λj′(λ).

So, I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0.
Therefore, the proof is completed. �

Lemma 2.4. d defined by (2.4) is positive and there exists a positive function
u ∈ N such that J(u) = d.

Proof. Let {ur}∞r ⊂ N be a minimizing sequence for J, which means that

(2.10) lim
r→∞

J(ur) = d.

We can easy show that {|ur|}r ⊂ N is also a minimizing sequence for J due to
|ur| ∈ N and J(|ur|) = J(ur). Therefore, we can suppose that ur > 0 a.e. Ω for all
r ∈ N.

Moreover, we have already observed that J is coercive on N which satisfies that
{ur}∞r is bounded in Hm

0 (Ω). Let µ > 0 be small enough such that 2 + µ < 2n
n−2 .

Since Hm
0 (Ω) ↪→ L2+µ(Ω) is compact, so there exists a function u and a subsequence

of {ur}∞r , still denote by {ur}∞r , such that

ur → u weakly in Hm
0 (Ω),

ur → u strongly in L2+µ(Ω),

ur(x)→ u(x) a.e. in Ω.
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Also, u ≥ 0 a.e. in Ω. First, we prove u 6= 0. From the dominated convergence
theorem, we have

(2.11)

∫
Ω

|u|2 ln |u| dx = lim
r→∞

∫
Ω

|ur|2 ln |ur| dx,

and

(2.12)

∫
Ω

|u|2 dx = lim
r→∞

∫
Ω

|ur|2 dx.

From the weak lower semicontinuity of Hm
0 (Ω), we get

(2.13)
∥∥∥A 1

2u
∥∥∥2

≤ lim inf
r→∞

∥∥∥A 1
2ur

∥∥∥2

.

Then it follows from (2.1), (2.10), (2.11), (2.12) and (2.13) that

J(u) =
1

2

∥∥∥A 1
2u
∥∥∥2

− 1

2

∫
Ω

|u|2 ln |u| dx+
1

4
‖u‖2

≤ lim inf
r→∞

1

2

∥∥∥A 1
2ur

∥∥∥2

− lim
r→∞

1

2

∫
Ω

|ur|2 ln |ur| dx+ lim
r→∞

1

4
‖ur‖2

= lim inf
r→∞

(
1

2

∥∥∥A 1
2ur

∥∥∥2

− 1

2

∫
Ω

|ur|2 ln |ur| dx+
1

4
‖ur‖2

)
= lim inf

r→∞
J(ur) = d.(2.14)

Using (2.2), (2.11) and (2.13), we have

I(u) =
∥∥∥A 1

2u
∥∥∥2

−
∫

Ω

|u|2 ln |u| dx

≤ lim inf
r→∞

∥∥∥A 1
2ur

∥∥∥2

− lim
r→∞

∫
Ω

|ur|2 ln |ur| dx

= lim inf
r→∞

(∥∥∥A 1
2ur

∥∥∥2

−
∫

Ω

|ur|2 ln |ur| dx
)

= lim inf
r→∞

I(ur) = 0.(2.15)

Since ur ∈ N , we have I(ur) = 0. So, by Lemma 1 and the fact x−µ lnx ≤ (eµ)−1

for x ≥ 1, we get ∥∥∥A 1
2ur

∥∥∥2

=

∫
Ω

|ur|2 ln |ur| dx

≤ (eµ)−1

∫
Ω

|ur|2+µ
dx

= (eµ)−1 ‖ur‖2+µ
2+µ

≤ C
∥∥∥A 1

2ur

∥∥∥2+µ

2
,

where C is Sobolev emdedding constant. This satisfies that

(2.16)

∫
Ω

|ur|2 ln |ur| dx =
∥∥∥A 1

2ur

∥∥∥2

≥ C.

By (2.11) and (2.16), we have ∫
Ω

|u|2 ln |u| dx ≥ C.
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Thus, we have u ∈ Hm
0 (Ω)\{0}.

If I(ur) < 0, from Lemma 3, there exists a λ∗ such that I(λ∗u) = 0 and 0 <
λ∗ < 1. Thus, λ∗u ∈ N . It follows from (2.3), (2.4), (2.12) and (2.13) that

d ≤ J(λ∗u)

=
1

2
I(λ∗u) +

1

4
‖λ∗u‖2

=
(λ∗)2

4
‖u‖2

≤ (λ∗)2lim inf
r→∞

1

4
‖ur‖2

= (λ∗)2lim inf
r→∞

J(ur)

= (λ∗)2d,

which indicates λ∗ ≥ 1 by d > 0. It contradicts 0 < λ∗ < 1. By (2.15), we have
I(u) = 0. For this reason, u ∈ N . From (2.10), we have J(u) ≥ d. From (2.14), we
have J(u) ≤ d. So, J(u) = d. �

3. Main results

Definition 3.1. (Maximal Existence Time). Assume that u(t) be weak solutions
of problem (1.1). We define the maximal existence time Tmax as follows

(i) If u(t) exists for all 0 ≤ t <∞, then Tmax = +∞ ;
(ii) If there exists a t0 ∈ (0,∞) such that u(t) exists for 0 ≤ t < t0, but doesn’t

exists at t = t0, then Tmax = t0.

Definition 3.2. (Blow-up at +∞). Let u(t) be a weak solution of (1.1). We call
u(t) blow-up at +∞ if the maximal existence time Tmax = +∞ and

lim
t→+∞

‖u(t)‖2 = +∞.

Theorem 3.3. Assume that u0 ∈ Hm
0 (Ω)\{0}, J(u0) < d and I(u0) < 0. Let u(t)

be a weak solution to the problem (1.1). Then u(t) blows up at +∞ such that

lim
t→+∞

‖u(t)‖2 =∞.

Proof. Let u(t) be weak solution of (1.1) with J(u0) < d and I(u0) < 0. Let F :
[0,∞)→ R+, and

(3.1) F (t) =

∫ t

0

‖u(s)‖2 ds.

Then, a direct calculation gives

(3.2) F ′(t) = ‖u(t)‖2 .

From (2.2) and (3.2), we get

F ′′(t) = 2

∫
Ω

uutdx

= 2

∫
Ω

u2 ln |u| dx− 2

∫
Ω

Au2dx

= −2I(u).(3.3)
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By (3.2) and (3.3), we get

F ′(t) lnF ′(t)− F ′′(t) = ‖u(t)‖2 ln ‖u(t)‖2 + 2I(u)

= 2 ‖u(t)‖2 ln ‖u(t)‖+ 2
∥∥∥A 1

2u
∥∥∥2

− 2

∫
Ω

|u|2 ln |u| dx

≥ 0,

which, in turn, yields that

(lnF ′(t))
′ ≤ lnF ′(t).

This means

lnF ′(t) ≤ et lnF ′(0) = et ln ‖u0‖2 .

Then

‖u(t)‖2 ≤ ‖u0‖e
t

, ∀t ≥ 0,

which yields that u(t) does not blow up in finite time.
On the other hand, using the Hölder inequality and combining (3.3), we have

1

4
(F ′(t))

2
=

1

4

(∫ t

0

F ′′(s)ds

)2

=

(∫ t

0

∫
Ω

uusdxds

)2

≤
∫ t

0

‖u(s)‖2 ds
∫ t

0

‖us‖2 ds.(3.4)

From (2.3) and (3.3), it follows

F ′′(t) = −2I(u)

= −4J(u) + ‖u‖2

≥ −4J(u0) + 4

∫ t

0

‖us(s)‖2 ds+ ‖u‖2 .(3.5)

By Lemma 3, there exists a λ∗ ∈ (0, 1) such that I(λ∗u(t)) = 0. Thus, by the
definition of d, it follows that

d = inf
u∈N

J(u) ≤ J(λ∗u(t))

=
1

2
I(λ∗u(t)) +

1

4
‖λ∗u(t)‖2

=
1

2
I(λ∗u(t)) +

(λ∗)
2

4
‖u(t)‖2

≤ 1

4
‖u(t)‖2 .(3.6)

Combining (3.5) and (3.6), we have

F ′′(t) ≥ −4J(u0) + 4

∫ t

0

‖us(s)‖2 ds+ ‖u‖2

≥ 4 (d− J(u0)) + 4

∫ t

0

‖us(s)‖2 ds.(3.7)
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Using (3.1), (3.4) and (3.7), we get

F (t)F ′′(t) ≥ 4 (d− J(u0))F (t) + 4

∫ t

0

‖u(s)‖2 ‖us(s)‖2 ds

≥ 4 (d− J(u0))F (t) + (F ′(t))
2
.(3.8)

Then, we see that

F (t)F ′′(t)− (F ′(t))
2 ≥ 4 (d− J(u0))F (t).

By J(u0) < d and I(u) < 0, then we know

F (t)F ′′(t)− (F ′(t))
2
> 0.

On the other hand, by straightforward calculation, it is clear that

(3.9) (lnF (t))
′

=
F ′(t)

F (t)
,

and

(3.10) (lnF (t))
′′

=
F (t)F ′′(t)− (F ′(t))

2

(F (t))
2 > 0.

From (3.10), we know that (lnF (t))
′

is increasing with respect to t, using this fact,
integrating (3.9) from t0 to t, we get

(lnF (t))
′

= (lnF (t0))
′
+

∫ t

t0

F (s)F ′′(s)− (F ′(s))
2

(F (s))
2 ds,

and

lnF (t)− lnF (t0) =

∫ t

t0

(lnF (s))
′
ds

=

∫ t

t0

F ′(s)

F (s)
ds

≥ F ′(t0)

F (t0)
(t− t0) ,

where 0 ≤ t0 ≤ t. Then

F (t) ≥ F (t0) exp

(
F ′(t0)

F (t0)
(t− t0)

)
.

Since F (0) = 0 and F ′(0) > 0, we can take t0 small enough such that F ′(t0) > 0
and F (t0) > 0. Then for sufficiently large t,

‖u(t)‖2 = F ′(t)

≥ F ′(t0)

F (t0)
F (t)

≥ F ′(t0) exp

(
F ′(t0)

F (t0)
(t− t0)

)
= ‖u(t0)‖2 exp

(
F ′(t0)

F (t0)
(t− t0)

)
≥ ‖u0‖2 exp

(
F ′(t0)

F (t0)
(t− t0)

)
, t ≥ t0,
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i.e.,

lim
t→+∞

‖u(t)‖2 = +∞.

This shows that weak solution u(t) of the problem (1.1) blows up at +∞. �

4. Conclusion

In this paper, we examined the initial boundary value problem for a higher-order
parabolic equation with logarithmic nonlinearity. We obtained blow-up at infinity
of weak solution, by using the potential well method and logarithmic convexity
method.
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Abstract. In this paper, we consider a nonlinear viscoelastic plate equation

with distributed delay. Under suitable conditions, we obtain the blow-up of

solutions with distributed delay and source terms. Time delays often appear
in many practical problems such as thermal, economic phenomena, biological,

chemical, physical, electrical engineering systems, mechanical applications and

medicine.

1. Introduction

In this paper, we consider the following viscoelastic plate equation with dis-
tributed delay and source terms

(1.1)



utt + ∆2u−
∫ t

0
g (t− s) ∆2u (s) ds + µ1ut

+
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq

= b |u|p−2
u, (x, t) ∈ Ω× (0,∞) ,

u (x, t) = ∂u(x,t)
∂υ = 0, x ∈ ∂Ω,

ut (x,−t) = f0 (x, t) , (x, t) ∈ Ω× (0, τ2) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

where b, µ1 > 0, p > 2 and τ1, τ2 are the time delay with 0 ≤ τ1 < τ2, µ2 is an L∞

function, and g is a differentiable function under the assumptions (A1), (A2), and
(A3). υ is the unit outward normal vector.

Problems about the mathematical behavior of solutions for PDEs with time de-
lay effects have become interesting for many authors mainly because time delays
often appear in many practical problems such as thermal, economic phenomena,
biological, chemical, physical, electrical engineering systems, mechanical applica-
tions and medicine. Moreover, it is well known that delay effects may destroy the
stabilizing properties of a well-behaved system. In the literature, there are sev-
eral examples that illustrate how time delays destabilize some internal or boundary
control system [6, 7]. Viscous materials are the opposite of elastic materials that
posses the ability to dissipate and store the mechanical energy. The mechanical
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properties of these viscous substances are of great importance when they seem in
many applications of natural sciences [3].

In 1986, Datko et al. [5] indicated that delay is a source of instability. In [12],
Nicaise and Pignotti considered the following wave equation with a linear damping
and delay term

(1.2) utt −∆u+ µ1ut (x, t) + µ2ut (x, t− τ) = 0.

They obtained some stability results in the case 0 < µ2 < µ1. In the absence of
delay, Zuazua [26] looked into exponentially stability for the equation (1.2).

Cavalcanti et al. [2], studied the model as follows:

(1.3) utt + γ∆utt + ∆2u−
∫ t

0

g (t− s) ∆2u (s) ds+ a (t)ut = 0,

in Ω×(0,∞), where a (t) is a nonlocal nonlinearity type function. They established
the exponential decay result when γ = 0, of the energy in general domains of (1.3).
Rivera et al. [25], coupled (1.3) with a dynamic boundary condition and indicated
that the sum of the first and second energies decay polynomially and exponentially,
according as the relaxation function g decays polynomially or exponentially. Also,
for more results on (1.3), see also Lagnese [8].

Mukiawa [9], considered the viscoelastic plate equation as follows

(1.4) utt + ∆2u−
∫ t

0

g (t− s) ∆2u (s) ds+ µ1ut + µ2ut (t− τ) = 0,

with a constant time delay and partially hinged boundary condition. The author
proved a general decay result of the equation (1.4).

In [10], Mustafa and Kafini studied the infinite memory-type plate equation in
the presence of constant time delay as follows

(1.5) utt + ∆2u−
∫ ∞

0

g (s) ∆2u (t− s) ds+ µ1ut + µ2ut (t− τ) = u |u|γ .

The authors proved an explicit and general decay result for the energy, under the
condition that |µ2| ≤ µ1, without restrictive assumptions on the behavior of the
relaxation function g at infinity of the equation (1.5).

In [3], Choucha et al. considered the following equation

(1.6)
utt −∆u− ω∆ut +

∫ t
0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (ρ)|ut (x, t− ρ) dρ = b |u|p−2

u.

The authors obtained the blow-up of solutions under appropriate conditions of the
equation (1.6). In [4], the authors showed the exponential growth of solution for
the equation (1.6).

The authors obtained the blow-up of solutions under appropriate conditions of
the equation (1.6). In [4], the authors showed the exponential growth of solution
for the equation (1.6). In recent years, some other authors investigate hyperbolic
type equations (see [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

In this paper, we consider the nonlinear viscoelastic plate equation (1.1) with

distributed delay (
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq) and source (b |u|p−2

u) terms. Our aim

is to get the blow-up results under appropriate conditions for the problem (1.1).
The paper is organized as follows: In section 2, we give some materials that will

be used later. In section 3, we state and prove our main result.
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2. Preliminaries

In this part, we prepare some materials for the proof of our result. As usual, the
notation ‖.‖p denotes Lp norm, and (., .) is the L2 inner product. In particular, we

write ‖.‖ instead of ‖.‖2.
Now, we give some assumptions used later:
(A1) g : R+ → R+ is a decreasing and differentiable function satisfies

(2.1) g (t) ≥ 0, 1−
∫ ∞

0

g (s) ds = l > 0.

(A2) There exists a constant ξ > 0 such that

(2.2) g′ (t) ≤ −ξg (t) , t ≥ 0.

(A3) µ2 : [τ1, τ2]→ R is an L∞ function such that

(2.3)

(
2δ − 1

2

)∫ τ2

τ1

|µ2 (q)| dq ≤ µ1, δ >
1

2
.

Let Bp > 0 be the constant satisfying [1]

(2.4) ‖∇v‖p ≤ Bp ‖∆v‖p , for v ∈ H2
0 (Ω) .

It holds

(2.5)

∫ t
0
g (t− s) (∆u (s) ,∆ut (t)) ds

= − 1
2g(t) ‖∆u (t)‖2 + 1

2 (g′o∆u) (t)

− 1
2
d
dt

[
(go∆u) (t)−

(∫ t
0
g (s) ds

)
‖∆u (t)‖2

]
,

where

(2.6) (go∆u) (t) =

∫
Ω

∫ t

0

g (t− s) |∆u (t)−∆u (s)|2 ds.

Firstly, similar to [11], we introduce the new variable

y (x, ρ, q, t) = ut (x, t− qρ) ,

thus, we get

(2.7)

{
qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,

y (x, 0, q, t) = ut (x, t) .

Hence, problem (1.1) is equivalent to:

(2.8)


utt + ∆2u−

∫ t
0
g (t− s) ∆2u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dq

= b |u|p−2
u,

x ∈ Ω, t > 0,

qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,

with initial and boundary conditions

(2.9)

 u (x, t) = ∂u(x,t)
∂υ = 0, x ∈ ∂Ω,

y (x, ρ, q, 0) = f0 (x, qρ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) ,

where

(x, ρ, q, t) ∈ Ω× (0, 1)× (τ1, τ2)× (0,∞) .
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Theorem 2.1. Suppose that (2.1), (2.2) and (2.3) hold. Let

(2.10)

{
p ≥ 2, n = 1, 2, 3, 4,

2 < p < 2(n−2)
n−4 , n ≥ 5.

Thus, for any initial data

(u0, u1, f0) ∈ H2
0 (Ω)×H2

0 (Ω)× L2 ( Ω× (0, 1)× (τ1, τ2)) ,

the problem (2.8)-(2.9) has a unique solution

u ∈ C
(
[0, T ] ;H2

0 (Ω)
)

,

for some T > 0.

Now, we define the energy functional as follows:

Lemma 2.2. Assume that (2.1), (2.2), (2.3) and (2.10) hold. Let u be a solution
of (2.8)-(2.9). Then, E (t) is nonincreasing, such that

(2.11)
E (t) = 1

2 ‖ut‖
2

+ 1
2

(
1−

∫ t
0
g (s) ds

)
‖∆u‖2 + 1

2 (go∆u) (t)

+ 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx− b

p ‖u‖
p
p ,

which satisfies

(2.12) E′ (t) ≤ −c1
(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx) .

Proof. By multiplying the first equation of (2.8) by ut and integrating over Ω, we
obtain

(2.13)

d
dt

{
1
2 ‖ut‖

2
+ 1

2

(
1−

∫ t
0
g (s) ds

)
‖∆u‖2

+ 1
2 (go∆u) (t)− b

p ‖u‖
p
p

}

= −µ1 ‖ut‖2 −
∫

Ω
ut
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dqdx

+ 1
2 (g′o∆u) (t)− 1

2g (t) ‖∆u‖2 ,

and

(2.14)

d
dt

1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx

= − 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1

2 |µ2 (q)| yyρdqdρdx

= 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 0, q, t)
∣∣ dqdx

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx

= 1
2

(∫ τ2
τ1
|µ2 (q)| dq

)
‖ut‖2

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx.
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Thus,

d

dt
E (t) = −µ1 ‖ut‖2 −

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uty (x, 1, q, t)| dqdx

−1

2
g (t) ‖∆u‖2 +

1

2

(∫ τ2

τ1

|µ2 (q)| dq
)
‖ut‖2

+
1

2
(g′o∆u) (t)− 1

2

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx.(2.15)

By using (2.13) and (2.14), we obtain (2.11). Utilizing Young’s inequality, (2.1),
(2.2), (2.3) and (2.15), we get (2.12). Consequently, the proof is completed. �

Lemma 2.3. [3] There exists c > 0, depending on Ω only, such that

(2.16)

(∫
Ω

|u|p dx
)s/p

≤ c
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

From above lemma and by using Sobolev Embedding theorem, we have the
following corollary:

Corollary 2.3.1. There exists c > 0, depending on Ω only, such that

(2.17)

(∫
Ω

|u|p dx
)s/p

≤ c
[
‖∆u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

Using the fact that ‖u‖22 ≤ c ‖u‖
2
p ≤ c

(
‖u‖pp

)2/p

, we have the following corollary:

Corollary 2.3.2. There exists C > 0, depending on Ω only, such that

(2.18) ‖u‖22 ≤ c
[
‖∆u‖4/p2 +

(
‖u‖pp

)2/p
]

.

Lemma 2.4. [3] There exists C > 0, depending on Ω only, such that

(2.19) ‖u‖sp ≤ C
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

From above lemma and by using Sobolev Embedding theorem, we have the
following corollary:

Corollary 2.4.1. There exists C > 0, depending on Ω only, such that

(2.20) ‖u‖sp ≤ c
[
‖∆u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.
Now, we define the functional as follows:

H (t) = −E (t)

=
b

p
‖u‖pp −

1

2
‖ut‖2 −

1

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2

−1

2
(go∆u) (t)− 1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(2.21)
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3. Blow-up results

In this part, we establish the blow-up of solutions for the problem (2.8)-(2.9).

Theorem 3.1. Suppose that (2.1)-(2.3) and (2.10) hold. Suppose further that
E (0) < 0 holds. Then, the solution of the problem (2.8)-(2.9) blows up in finite
time.

Proof. By (2.11), we have

(3.1) E (t) ≤ E (0) ≤ 0.

Hence,

H ′ (t) = −E′ (t) ≥ c1
(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx)
≥ c1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx ≥ 0,(3.2)

and

(3.3) 0 ≤ H (0) ≤ H (t) ≤ b

p
‖u‖pp .

Set

(3.4) K (t) = H1−α (t) + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx,

here ε > 0 to be specified later and

(3.5)
2 (p− 2)

p2
< α <

p− 2

2p
< 1.

We multiply the first equation of (2.8) by u and with a derivative of (3.4), we
obtain

K′ (t) = (1− α)H−α (t)H ′ (t)

+ε ‖ut‖2 + ε

∫
Ω

∆u

∫ t

0

g (t− s) ∆u (s) dsdx

−ε ‖∆u‖2 + εb

∫
Ω

|u|p dx

−ε
∫

Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx.(3.6)

By using

ε

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx

≤ ε

{
δ1

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

+
1

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx} ,(3.7)
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and

ε

∫ t

0

g (t− s) ds
∫

Ω

∆u∆u (s) dxds

= ε

∫ t

0

g (t− s) ds
∫

Ω

∆u (∆u (s)−∆u (t)) dxds

+ε

∫ t

0

g (s) ds ‖∆u‖2

≥ ε

2

∫ t

0

g (s) ds ‖∆u‖2 − ε

2
(go∆u) (t) ,(3.8)

combining with (3.6), we get

K′ (t) ≥ (1− α)H−α (t)H ′ (t) + ε ‖ut‖2

−ε
(

1− 1

2

∫ t

0

g (s) ds

)
‖∆u‖2

+εb ‖u‖pp − εδ1
(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

− ε

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx
+
ε

2
(go∆u) (t) .(3.9)

By using (3.2) and setting δ1 such that, 1
4δ1c1

= κH−α (t), we obtain

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε ‖ut‖2

−ε
[(

1− 1

2

∫ t

0

g (s) ds

)]
‖∆u‖2 + εb ‖u‖pp

−εH
α (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2 +

ε

2
(go∆u) (t) .(3.10)

From (2.21), for 0 < a < 1

εb ‖u‖pp = εp (1− a)H (t) +
εp (1− a)

2
‖ut‖2 + εba ‖u‖pp

+
εp (1− a)

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2

+
ε

2
p (1− a) (go∆u) (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx,(3.11)
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with (3.10) implies

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε

[
p (1− a)

2
+ 1

]
‖ut‖2

+ε

[(
p (1− a)

2

)(
1−

∫ t

0

g (s) ds

)
−
(

1− 1

2

∫ t

0

g (s) ds

)]
‖∆u‖2

−εH
α (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2 + εp (1− a)H (t) + εba ‖u‖pp

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx
+
ε

2
(p (1− a) + 1) (go∆u) (t) .(3.12)

By using (2.18), (3.3) and Young’s inequality, we obtain

Hα (t) ‖u‖22 ≤
(
b

∫
Ω

|u|p dx
)α
‖u‖22

≤ c

{(∫
Ω

|u|p dx
)α+2/p

+

(∫
Ω

|u|p dx
)α
‖∆u‖4/p2

}

≤ c

{(∫
Ω

|u|p dx
)(pα+2)/p

+ ‖∆u‖22 +

(∫
Ω

|u|p dx
)pα/(p−2)

}
.(3.13)

By exploiting (3.5), we obtain

2 < αp+ 2 ≤ p and 2 <
αp2

p− 2
≤ p.

Consequently, by Lemma 2.2

(3.14) Hα (t) ‖u‖22 ≤ c
(
‖u‖pp + ‖∆u‖22

)
.

By combining (3.12) and (3.14), we have

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t)

+ε

[
p (1− a)

2
+ 1

]
‖ut‖2 +

ε

2
(p (1− a) + 1) (go∆u) (t)

+ε

{(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)}
‖∆u‖2

+ε

[
ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)]
‖u‖pp + εp (1− a)H (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(3.15)

Taking a > 0 small enough such that

α1 =
p (1− a)

2
− 1 > 0
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and suppose

(3.16)

∫ ∞
0

g (s) ds <
p(1−a)

2 − 1(
p(1−a)

2 − 1
2

) =
2α1

2α1 + 1
.

Choosing κ such that,

α2 =

(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)

> 0

and

α3 = ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
> 0.

Fixing κ and a, we have ε small enough

α4 = (1− α)− εκ > 0.

Hence, for some β > 0, (3.15) becomes

K′ (t) ≥ β
{
H (t) + ‖ut‖2 + ‖∆u‖2 + (go∆u) (t) + ‖u‖pp

+

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx} .(3.17)

Thus, it follows that

(3.18) K (t) ≥ K (0) > 0, t > 0.

Now, utilizing Holder’s and Young’s inequalities, we obtain

‖u‖2 =

(∫
Ω

u2dx

) 1
2

≤

[(∫
Ω

(
|u|2
)p/2

dx

) 2
p
(∫

Ω

1dx

)1− 2
p

] 1
2

≤ C ‖u‖p(3.19)

and ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ ≤ ‖ut‖2 ‖u‖2 ≤ c ‖ut‖2 ‖u‖p .

Therefore, ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c ‖ut‖
1

1−α
2 ‖u‖

1
1−α
p

≤ c

[
‖ut‖

θ
1−α
2 + ‖u‖

µ
1−α
p

]
,(3.20)

here 1
µ + 1

θ = 1. Taking θ = 2 (1− α) , we obtain

µ

1− α
=

2

1− 2α
≤ p.
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For s = 2
(1−2α) , we get ∣∣∣∣∫

Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
(
‖ut‖22 + ‖u‖sp

)
.

Hence, Corollary 2.3.1 gives that∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
[
‖ut‖22 + ‖u‖pp + ‖∆u‖22

]
≤ c

[
‖ut‖22 + ‖u‖pp + ‖∆u‖22 + (go∆u) (t)

]
.(3.21)

Therefore,

K
1

1−α (t) =

(
H (t)

1−α
+ ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx

) 1
1−α

≤ c

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

+ ‖u‖
2

1−α
2 + ‖∆u‖

2
1−α
2

]
≤ c

[
H (t) + ‖ut‖2 + ‖u‖pp + ‖∆u‖2 + (go∆u) (t)

]
.(3.22)

By (3.17) and (3.22), we get

(3.23) K′ (t) ≥ λK
1

1−α (t) ,

here λ > 0, which depends on β and c. An integration of (3.23), we have

K
α

1−α (t) ≥ 1

K
−α
1−α (0)− λ α

(1−α) t
.

Thus, K (t) blows up in a finite time

T ≤ T ∗ =
1− α

λαKα/(1−α) (0)
.

As a result, we complete the proof. �

4. Conclusion

In recent years, there has been published much work concerning the wave equa-
tions (Kirchhoff, Petrovsky, Bessel,... etc.) with different state of delay time (con-
stant delay, time-varying delay,... etc.). However, to the best of our knowledge,
there were no blow-up results for the nonlinear viscoelastic plate equation with
distributed delay. We have been obtained the blow-up of solutions with distributed
delay and source terms under suitable conditions.
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Abstract. In this study, we focus on Smarandache curves which are a special
class of curves. These curves have previously been studied by many authors

in different spaces. We will re-characterize these curves with the help of an

alternative frame different from Frenet frame. Also, we will obtain frame
vectors curvature and torsion of these curves.

1. Introduction

Curves, which have an important position in differential geometry, have enabled
many studies. Many theories have been developed by establishing relations be-
tween Frenet frame. One of the special curves studied in differential geometry is
Smarandache curve. Smarandache curve is defined as the regular curve drawn by
these vectors, when the Frenet vectors of the unit speed regular curve are taken
as position vectors [2]. A.T. Ali introduce special Smarandache curves in the Eu-
clidean space. Some special Smarandache curves are expressed in 3-dimensional
Euclidean space and introduced the Serret-Frenet elements of a special case [3].
NC-Smarandache curve with Frenet vectors {T,N,B} and unit Darboux vector C of
the curve α is defined in the study titled ”An application of Smarandache curves”
[4]. In [5], authors obtain results about the characterization of Smarandache curves
according to the Sabban frame formed on the S2 unit sphere. In [7], authors clas-
sify general results of Smarandache curves with respect to the causal character of
the curve. In her master’s thesis named ”Smarandache Curves of Bertrand Curve
Pair According to Frenet Frame”, she define Smarandache curves according to the
Frenet vectors of the Bertrand partner curve and found some characterizations be-
longing to these curves [8]. In the study titled ”Smarandache Curves According
to Bishop Frame in Euclidean 3-Space”, Smarandache curves belonging to Bishop
frame are examined and they give some characterizations of these curves [6].
In this present paper, we introduce Smarandache curves according to the alter-
nate frame defined by Uzunoglu et al. of a unit speed curve in Euclidean 3-Space.
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Firstly, we give Frenet frame, alternative frame and its properties. After that we
mentione the relationship with alternative frame and Frenet frame. Then we define
the special Smarandache curves according to alternative frame and we calculate
the curvature, torsion, Frenet frame elements and alternative frame elements of
this curves.

2. Preliminaries

In this section, basic definitions and theories about the Frenet frame and the Serret-
Frenet formulas and the alternative frame will be given.

Definition 2.1. Let α : I ⊂ R→ E3 be a unit speed curve. The vectors {T,N,B}
Frenet frame along the α can be defined as follows

(2.1) T (s) = α
′
(s), N(s) =

T
′
(s)

||T ′(s)||
, B(s) = T (s)×N(s)

where T is the unit tangent vector field, N is the principal normal vector field, B is
the binormal vector field. Frenet derivative formulas can be given as follows

(2.2)

 T
′
(s)

N
′
(s)

B
′
(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 T (s)
N(s)
B(s)


where κ is the curvature and τ is the torsion of the curve α [1]. The curvature and
the torsion of the curve α are calculated as follows

(2.3)

{
κ(s) = ||α′′(s)||
τ(s) = <α

′
∧α
′′
,α
′′′
>

‖α′∧α′′‖2
.

Definition 2.2. Let α : I ⊂ R → E3 be a unit speed curve. Each unit speed
curve has at least four continuous derivatives one can associate three orthogonal
unit vector field. T, N and B are tangent, the principal normal and the binormal
vector fields, respectively. Uzunoğlu et al. [9] defined the alternative moving frame
denote by {N,C,W} along the curve α in Euclidean 3-space as

(2.4) N(s) = N(s), C(s) =
N
′
(s)

‖N ′(s)‖
, W (s) = N(s)× C(s).

For the derivatives of the alternative moving frame, we have

(2.5)

 N
′
(s)

C
′
(s)

W
′
(s)

 =

 0 f(s) 0
−f(s) 0 g(s)
0 −g(s) 0

 N(s)
C(s)
W (s)


where f and g are curvatures of the curve α as

(2.6)

{
f =
√
κ2 + τ2

g = (τ/κ)
′

1+τ2/κ2

.
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Definition 2.3. Let α : I → E3 be a unit speed curve denote by {T,N,B} the
moving Frenet frame. Smarandache curve is called the regular curve drawn by the
vector whose position vector is

β(s) =
a(s)T (s) + b(s)N(s) + c(s)B(s)√

a2(s) + b2(s) + c2(s)

where a,b,c are real functions [4].

3. Smarandache Curves In Euclidean 3-Space

In this section, TN, TB, NB and TNB-Smarandache curves will be introduced
and their curvature and torsion will be expressed in Euclidean 3-space.

Definition 3.1. [3] Let α(s) be a unit speed regular curve in E3 and {T,N,B} be
its moving Frenet-Serret frame. TN-Smarandache curve is defined by

(3.1) βTN (s) =
1√
2

(T +N).

Theorem 3.2. [3] Let α(s) be a unit speed regular curve in E3. The curvature and
torsion of the TN-Smarandache curve are as follows, respectively.

(3.2)


κβTN =

√
2

(2κ2+τ2)2

√
δ2
1 + µ2

1 + η2
1

τβTN =
√

2[(τ3+2κ2τ−τκ′+κτ ′)δ̄1+(κτ ′−κ′τ)µ̄1+(2κ3+κτ2)η̄1]

(τ3+2κ2τ−τκ′+κτ ′ )2+(κτ ′−κ′τ)2+(2κ3+κτ2)2

where

(3.3)

 δ1 = −[κ2(2κ2 + τ2) + τ(τκ
′ − κτ ′)]

µ1 = −[κ2(2κ2 + 3τ2)− τ(τ3 + κτ ′ − τκ′)]
η1 = κ[τ(2κ2 + τ2)− 2τκ

′ − κτ ′ ]

(3.4)


δ̄1 = κ3 + κ(τ2 − 3κ

′
)− κ′′

µ̄1 = −κ3 − κ(τ2 + 3κ
′
)− 3ττ ′ + κ

′′

η̄1 = −κ2τ − τ3 + 2τκ
′
+ κτ

′
+ τ ′′

Definition 3.3. [3] Let α(s) be a unit speed regular curve in E3 and {T,N,B} be
its moving Frenet-Serret frame. TB-Smarandache curve is defined by

(3.5) βTB(s) =
1√
2

(T +B).

Theorem 3.4. [3] Let α(s) be a unit speed regular curve in E3. The curvature and
torsion of the TB-Smarandache curve are as follows, respectively.

(3.6)


κβTB =

√
2(δ22+µ2

2)

(κ−τ)4

τβTB =
√

2[κ2τδ̄2−2κτ2δ̄2+τ3δ̄2+κ3η̄2−2κ2τη̄2+κτ2η̄2]
(τ(κ−τ)2)2+(κ(κ−τ)2)2

where

(3.7)

 δ2 = −κ4 + 3κ3τ − 3κ2τ2 + κτ3

µ2 = 0
η2 = κ3τ − 3κ2τ2 + 3κτ3 − τ4
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(3.8)

 δ̄2 = −3κκ′ + 2κτ ′ + κ
′
τ

µ̄2 = (τ − κ)(τ2 + κ2) + κ
′′ − τ ′′

η̄2 = −3ττ ′ + 2τκ′ + κτ ′

Definition 3.5. [3] Let α(s) be a unit speed regular curve in E3 and {T,N,B} be
its moving Frenet-Serret frame. NB-Smarandache curve is defined by

(3.9) βNB(s) =
1√
2

(N +B).

Theorem 3.6. [3] Let α(s) be a unit speed regular curve in E3. The curvature and
torsion of the NB-Smarandache curve are as follows, respectively.

(3.10)


κβNB =

√
2

(κ2+2τ2)2

√
δ2
3 + µ2

3 + η2
3

τβNB =
√

2[(2τ3+τκ2)δ̄3+(τ
′
κ−τκ′)µ̄3+(κ3+2κτ2+κτ ′−τκ′)η̄3]

(2τ3+τκ2)2+(τ ′κ−τκ′)2+(κ3+2κτ2+κτ ′−τκ′)2

where

(3.11)

 δ3 = (κ2 + 2τ2)κτ + 2τ(κτ
′ − τκ′)

µ3 = −(κ2 + 2τ2)(κ2 + τ2) + κ(κ′τ − τ ′κ)
η3 = (κ2 + 2τ2)(−τ2) + κ(κτ ′ − κ′τ)

(3.12)


δ̄3 = κ3 + κ(τ2 − 3κ

′
)− κ′′

µ̄3 = −κ3 − κ(τ2 + 3κ
′
)− 4ττ ′ + κ

′′

η̄3 = −κ2τ − τ3 + 2τκ
′
+ κτ

′
+ τ ′′

Definition 3.7. [3] Let α(s) be a unit speed regular curve in E3 and {T,N,B} be
its moving Frenet-Serret frame. TNB-Smarandache curve is defined by

(3.13) βTNB(s) =
1√
3

(T +N +B).

Theorem 3.8. [3] Let α(s) be a unit speed regular curve in E3. The curvature and
torsion of the TNB-Smarandache curve are as follows, respectively.
(3.14)

κβTNB =
√

3
(2κ2+2τ2−2κτ)2

√
δ2
4 + µ2

4 + η2
4

τβTNB =
√

3[(κ2τ+κτ ′−2κτ2−ττ
′
+2τ3−τκ

′
+τκ2)δ̄4+(κτ

′
−τκ′)µ̄4+(2κ3−τκ

′
)η̄4]

(κ2τ+κτ ′−2κτ2−ττ ′+2τ3−τκ′+τκ2)2+(κτ ′−τκ′)2+(2κ3−τκ′ )2

where

(3.15)

 δ4 = κτ [4κ(κ− τ) + 2(τ ′ + τ2) + κ
′
]− κ2(2κ2 + τ

′
)− 2κ′τ2

δ4 = 2κτ [(κ− τ)2 + 2τ − 2τ ′]− 2(κ4 + τ4) + κ
′
τ2 − κ2τ ′

δ4 = τ [2κ(κ2 + 4τ2 − κ′ − 2κτ) + (τκ′ + τ ′ − 2τ3)]

(3.16)


δ̄4 = κ3 + κ(τ2 − 3κ

′
)− κ′′

µ̄4 = −κ3 − κ(τ2 + 3κ
′
)− 3ττ ′ + κ

′′

η̄4 = −κ2τ − τ3 + 2τκ
′
+ κτ

′
+ τ ′′
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4. Smarandache Curves According to Alternative Frame In E3

In this section, these special curves will be re-examined on an alternative frame
inspired by Smarandache curves defined according to the Frenet frame in Euclidean
3-space.

Definition 4.1. Let β(s) be a unit speed regular curve in E3 and {N,C,W} be its
moving alternative frame. NC-Smarandache curve is defined by

(4.1) βNC(s) =
1√
2

(N + C).

Theorem 4.2. Let β(s) be a unit speed regular curve in E3. The curvature and
torsion of NC-Smarandache curve are as follows, respectively.

(4.2)



f =

√
[
√

2·
√
δ25+µ2

5+η25
(2f2+g2)2 ]2 + [

√
2·(δ̃5δ̂5+µ̃5µ̂5+η̃5η̂5)

δ̃25+µ̃5
2+η̃52

]2

g =

[

√
2·(δ̃5 δ̂5+µ̃5µ̂5+η̃5η̂5)

˜
δ25+

˜
µ25+

˜
η25

√
2·
√
δ25+µ25+η25

(2f2+g2)2

]′

1+[

√
2·(δ̃5 δ̂5+µ̃5µ̂5+η̃5η̂5)

˜
δ25+

˜
µ25+

˜
η25

√
2·
√
δ25+µ25+η25

(2f2+g2)2

]2

where

(4.3)

 δ5 = −[f2(2f2 + g2) + g(gf
′ − fg′)]

µ5 = −[f2(2f2 + 3g2)− g(g3 + fg′ − gf ′)]
η5 = f [g(2f2 + g2)− 2(gf

′ − fg′)]

(4.4)


δ̄5 = [(δ

′

5 − fµ5)(δ2
5 + µ2

5 + η2
5)− δ5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)]

µ̄5 = [(fδ5 + µ
′

5 − gη5)(δ2
5 + µ2

5 + η2
5)− µ5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)]

η̄5 = [(gµ5 + η
′

5)(δ2
5 + µ2

5 + η2
5)− η5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)]

(4.5)


δ̂5 = (−2ff

′ − f ′′ + f3 − ff ′ + fg2)

µ̂5 = (−f3 − ff ′ − 2ff
′
+ f

′′ − 2gg
′ − fg2 − gg′)

η̂5 = (−f2g − g3 + 2gf
′
+ fg

′
+ g

′′
)

(4.6)


δ̃5 = (g3 + 2f2g − gf ′ + fg

′
),

µ̃5 = (fg
′ − f ′g),

η̃5 = (−f2g − g3 + 2gf
′
+ fg

′
+ g

′′
)

Proof. Let β(s) be a unit speed regular NC-Smarandache curve as in (4.1). If we
take the derivative of the Smarandache curve according to arclenght parameter, we
have

(4.7)
dβNC
dsβ

dsβ
ds

=
1√
2

(−fN + fC + gW ),

and since ∥∥∥∥dβNCdsβ

∥∥∥∥ = 1,
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we can see

(4.8)
dsβ
ds

=

√
1

2
(f2 + f2 + g2) =

√
2f2 + g2

2
.

From the equations (4.7) and (4.8), the tangent vector of βNC is

(4.9) TβNC =
−fN + fC + gW√

2f2 + g2
.

If we take derivate this expression is again, we can see that

(4.10) T
′

βNC =

√
2

(2f2 + g2)2
(δ5N + µ5C + η5W )

where  δ5 = −[f2(2f2 + g2) + g(gf
′ − fg′)],

µ5 = −[f2(2f2 + 3g2)− g(g3 + fg′ − gf ′)],
η5 = f [g(2f2 + g2)− 2(gf

′ − fg′)].
The curvature of the βNC is indicated by the κβNC taking the norm of equation
(4.10).

(4.11) κβNC =

√
2

(2f2 + g2)2

√
δ2
5 + µ2

5 + η2
5

If the principal normal of βNC is indicated by NβNC , it is found in the form of

(4.12) NβNC =
δ5N + µ5C + η5W√

δ2
5 + µ2

5 + η2
5

.

If we take the derivative of the equation (4.12), we obtain

(4.13) N
′

=

√
2√

2f2 + g2

δ̄5N + µ̄5C + η̄5W

(2f2 + g2)
3
2

.

where 
δ̄5 = [(δ

′

5 − fµ5)(δ2
5 + µ2

5 + η2
5)− δ5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)],

µ̄5 = [(fδ5 + µ
′

5 − gη5)(δ2
5 + µ2

5 + η2
5)− µ5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)],

η̄5 = [(gµ5 + η
′

5)(δ2
5 + µ2

5 + η2
5)− η5(δ5δ

′

5 + µ5µ
′

5 + η5η
′

5)].

If we take the norm of the equation (4.13), we get

(4.14) ‖N
′

βNC‖ =

√
2√

2f2 + g2

√
δ̄2
5 + µ̄2

5 + η̄2
5

(δ̄2
5 + µ̄2

5 + η̄2
5)

3
2

.

Since CβNC =
N
′
βNC

‖N ′βNC ‖
, if necessary calculations are made from the equations (4.13)

and (4.14)

CβNC =
δ̄5N + µ̄5C + η̄5W√

δ̄2
5 + µ̄2

5 + η̄2
5

.

From the definition of Darboux vector, we know WβNC = NβNC × CβNC . So we
have

WβNC =
1√

δ2
5 + µ2

5 + η2
5 ·
√
δ̄5

2
+ µ̄5

2 + η̄5
2

∣∣∣∣∣∣
N C W
δ5 µ5 η5

δ̄5 µ̄5 η̄5

∣∣∣∣∣∣
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and so on

(4.15) WβNC =
(µ5η̄5 − η5µ̄5)N − (δ5η̄5 − η5δ̄5)C + (δ5µ̄5 − µ5δ5)W√

δ2
5 + µ2

5 + η2
5 ·
√
δ̄5

2
+ µ̄5

2 + η̄5
2

.

To find the torsion, we need to find the second and third derivates of the βNC curve.
These derivates are available below.

(4.16) βNC(s) =
1√
2

(N + C),

(4.17) β
′

NC =
1√
2

(fC − fN + gW ),

(4.18) β
′′

NC =
1√
2

(−(f2 + f
′
)N + (−f2 + f

′
− g2)C + (fg + g

′
)W ),

(4.19) β
′′′

NC =
1√
2

(δ̂5N + µ̂5C + η̂5W )

where 
δ̂5 = (−2ff

′ − f ′′ + f3 − ff ′ + fg2),

µ̂5 = (−f3 − ff ′ − 2ff
′
+ f

′′ − 2gg
′ − fg2 − gg′),

η̂5 = (−f2g − g3 + 2gf
′
+ fg

′
+ g

′′
).

In equation (2.3), if the expressions (4.17), (4.18) and (4.19) are written in their
places and the necessary calculations are made, torsion is found as

(4.20)

τβNC =

√
2 ·
[

(g3 + 2f2g − gf ′ + fg
′
)δ̂5 + (fg

′ − f ′g)µ̂5 + (2f3 + fg2)η̂5

]
(g3 + 2f2g − gf ′ + fg′)2 + (fg′ − f ′g)2 + (2f3 + fg2)2

In equation (2.6), if the expressions (4.11) and (4.20) are written in their places and
the necessary calculations are made, curvature and torsion according to alternative
frame are obtained as

(4.21) f =

√√√√[

√
2 ·
√
δ2
5 + µ2

5 + η2
5

(2f2 + g2)2
]2 + [

√
2 · (δ̃5δ̂5 + µ̃5µ̂5 + η̃5η̂5)

δ̃2
5 + µ̃5

2 + η̃5
2

]2

and

(4.22) g =

[

√
2·(δ̃5 δ̂5+µ̃5µ̂5+η̃5η̂5)

˜
δ25+

˜
µ25+

˜
η25

√
2·
√
δ25+µ25+η25

(2f2+g2)2

]′

1 + [

√
2·(δ̃5 δ̂5+µ̃5µ̂5+η̃5η̂5)

˜
δ25+

˜
µ25+

˜
η25

√
2·
√
δ25+µ25+η25

(2f2+g2)2

]2

where 
δ̃5 = (g3 + 2f2g − gf ′ + fg

′
),

µ̃5 = (fg
′ − f ′g),

η̃5 = (−f2g − g3 + 2gf
′
+ fg

′
+ g

′′
).

�
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Definition 4.3. Let β(s) be a unit speed regular curve in E3 and {N,C,W} be its
moving alternative frame. NW-Smarandache curve is defined by

(4.23) βNW (s) =
1√
2

(N +W ).

Theorem 4.4. Let β(s) be a unit speed regular curve in E3. The curvature and
torsion of NW-Smarandache curve are as follows, respectively.

(4.24)



f =

√
[
√

2·
√
f2+g2

(f−g) ]2 + [
√

2·(δ̃6δ̂6+η̃6η̂6)

δ̃26+η̃62
]2

g =

[

√
2·(δ̃6 δ̂6+η̃6η̂6)

˜
δ26+

˜
η26√

2·
√
f2+g2

(f−g)

]′

1+[

√
2·(δ̃6 δ̂6+η̃6η̂6)

˜
δ26+

˜
η26√

2·
√
f2+g2

(f−g)

]2

where

(4.25)

 δ̄6 = (−f ′f2 − f ′g2 + f2f
′
+ fgg

′
)

µ̄6 = (−f4 − f2g2 − g2f2 − g4)

η̄6 = (g
′
f2 + g

′
g2 − gff ′ − g2g

′
)

(4.26)


δ̂6 = (−3ff

′
+ 2fg

′
+ gf

′
)

µ̂6 = (f2 + g2)(−f + g) + f
′′ − g′′

η̂6 = (−3gg
′
+ 2gf

′
+ fg

′
)

(4.27)

 δ̃6 = (f2g − 2fg2 + g3),
µ̃6 = 0,
η̃6 = (f3 − 2f2g + fg2).

Proof. Let β(s) be a unit speed regular NW-Smarandache curve as in (4.23). If
we take the derivative of Smarandache curve according to arclenght parameter, we
have

(4.28)
dβNW
dsβ

dsβ
ds

=
(f − g)C√

2
,

and since ∥∥∥∥dβNWdsβ

∥∥∥∥ = 1,

we can see

(4.29)
dsβ
ds

=

√
(f − g)2

2
=
|f − g|√

2
.

From the equations (4.28) and (4.29), tangent vector of βNW is

(4.30) TβNW =

{
C f > g
−C f < g

.

If we take derivate this expression is again, we can see that

(4.31) T
′

βNW =

√
2(−fN + gW )

|f − g|
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The curvature of the βNW is indicated by the κβNW taking the norm of equation
(4.31).

(4.32) κβNW =

√
2

(f − g)

√
f2 + g2

If the βNW is indicated by principal normal NβNW , it is found in the form of

(4.33) NβNW =
1√

f2 + g2
(−fN + gW )

If we take the derivative of the equation (4.33), we obtain that

(4.34) N
′

=

√
2

|f − g|
· δ̄6N + µ̄6C + η̄6W

(f2 + g2)
3
2

.

where  δ̄6 = (−f ′f2 − f ′g2 + f2f
′
+ fgg

′
)

µ̄6 = (−f4 − f2g2 − g2f2 − g4)

η̄6 = (g
′
f2 + g

′
g2 − gff ′ − g2g

′
)

If we take the norm of the equation (4.34), we get

(4.35) ‖N
′

βNW ‖ =

√
2

(f2 + g2)
3
2 |f − g|

·
√
δ̄2
6 + µ̄2

6 + η̄2
6 .

Since CβNW =
N
′
βNW

‖N ′βNW ‖
, if necessary calculations are made from the equations

(4.34) and (4.35),

CβNW =
N
′

βNW

‖N ′βNW ‖
=
δ̄6N + µ̄6C + η̄6W√

δ̄2
6 + µ̄2

6 + η̄2
6

.

From the definition of Darboux vector, we know WβNW = NβNW × CβNW ,

WβNW =
1√

δ̄2
6 + µ̄2

6 + η̄2
6 ·
√
f2 + g2

∣∣∣∣∣∣
N C W
−f 0 g
δ̄6 µ̄6 η̄6

∣∣∣∣∣∣
and so on

WβNW =
−gµ̄6N + (fη̄6 + gδ̄6)C − fµ̄6W√

δ̄2
6 + µ̄2

6 + η̄2
6 ·
√
f2 + g2

.

To find the torsion, we need to find the second and third derivatives of the βNW
curve. The derivates are available below.

(4.36) βNW (s) =
1√
2

(N +W ),

(4.37) β
′

NW =
1√
2

(fC − gC),

(4.38) β
′′

NW =
1√
2

(−f2 + gf)N + (f
′
− g

′
)C + (fg − g2)W ),

(4.39) β
′′′

NW =
1√
2

(δ̂6N + µ̂6C + η̂6W )
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where 
δ̂6 = (−3ff

′
+ 2fg

′
+ gf

′
)

µ̂6 = (f2 + g2)(−f + g) + f
′′ − g′′

η̂6 = (−3gg
′
+ 2gf

′
+ fg

′
)

In equation (2.3), if the expressions (4.37), (4.38) and (4.39) are written in their
places and the necessary calculations are made, torsion of βNW is found as

(4.40) τβNW =

√
2 ·
[

(f2g − 2fg2 + g3)δ̄5 + 0 + (f3 − 2f2g + fg2)η̄5,
]

(f2g − 2fg2 + g3)2 + (f3 − 2f2g + fg2)2

In equation (2.6), if the expressions (4.32) and (4.40) are written in their places and
the necessary calculations are made, curvature and torsion according to alternative
frame are obtained as

(4.41) f =

√√√√[

√
2 ·
√
f2 + g2

(f − g)
]2 + [

√
2 · (δ̃6δ̂6 + η̃6η̂6)

δ̃2
6 + η̃6

2
]2

and

(4.42) g =

[

√
2·(δ̃6 δ̂6+η̃6η̂6)

˜
δ26+

˜
η26√

2·
√
f2+g2

(f−g)

]′

1 + [

√
2·(δ̃6 δ̂6+η̃6η̂6)

˜
δ26+

˜
η26√

2·
√
f2+g2

(f−g)

]2

where  δ̃6 = (f2g − 2fg2 + g3),
µ̃6 = 0,
η̃6 = (f3 − 2f2g + fg2).

�

Definition 4.5. Let β(s) be a unit speed regular curve in E3 and {N,C,W} be its
moving alternative frame. CW-Smarandache curve is defined by

(4.43) βCW (s) =
1√
2

(C +W ).

Theorem 4.6. Let β(s) be a unit speed regular curve in E3. The curvature and
torsion of CW-Smarandache curve are as follows, respectively.

(4.44)



f =

√
[
√

2·
√
δ27+µ2

7+η27
(f2+2g2)2 ]2 + [

√
2·(δ̃7δ̂7+µ̃7µ̂7+η̃7η̂7)

δ̃27+µ̃7
2+η̃72

]2

g =

[

√
2·(δ̃7 δ̂7+µ̃7µ̂7+η̃7η̂7)

˜
δ27+

˜
µ27+

˜
η27

√
2·
√
δ27+µ27+η27

(f2+2g2)2

]′

1+[

√
2·(δ̃7 δ̂7+µ̃7µ̂7+η̃7η̂7)

˜
δ27+

˜
µ27+

˜
η27

√
2·
√
δ27+µ27+η27

(f2+2g2)2

]2
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where

(4.45)


δ7 = (fg(f2 + 2g2)) + 2g(fg

′ − gf ′)
µ7 = −(f2 + 2g2)(f2 + g2) + f(f

′
g − g′f)

η7 = −g2(f2 + 2g2) + f(fg
′ − gf ′)

(4.46)


δ̄7 = [(δ

′

7 − fµ7)(δ2
7 + µ2

7 + η2
7)− δ7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

µ̄7 = [(fδ7 + µ
′

7 − gη7)(δ2
7 + µ2

7 + η2
7)− µ7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

η̄7 = [(gµ7 + η
′

7)(δ2
7 + µ2

7 + η2
7)− η7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

(4.47)


δ̂7 = (−f ′′ + f(2g

′
+ f2) + g(f

′
+ gf))

µ̂7 = (f(−3f
′
+ gf) + g(−3g

′
+ g2)− g′′)

η̂7 = −g(f2 + g2 + 3g
′
) + g

′′

(4.48)


δ̃7 = (2g3 + gf2)

µ̃7 = (g
′
f − gf ′)

η̃7 = (f3 + 2fg2 + fg
′ − gf ′)

Proof. Let β(s) be a unit speed regular CW-Smarandache curve as in (4.43). If
we take the derivative of Smarandache curve according to arclenght parameter, we
have

(4.49)
dβCW
dsβ

dsβ
ds

=
1√
2

(−fN + gW − gC),

and since ∥∥∥∥dβCWdsβ

∥∥∥∥ = 1,

we can see

(4.50)
dsβ
ds

=

√
1

2
(f2 + g2 + g2) =

√
f2 + 2g2

2

From the equations (4.49) and (4.50), tangent vector of βCW is

(4.51) TβCW =
−fN + gW − gC√

f2 + 2g2
.

If we take derivate this expression is again, we can see that

(4.52) T
′

βCW =
δ7N + µ7C + η7W

(f2 + 2g2)
3
2

·
√

2√
(f2 + 2g2)

where 
δ7 = (fg(f2 + 2g2)) + 2g(fg

′ − gf ′)
µ7 = −(f2 + 2g2)(f2 + g2) + f(f

′
g − g′f)

η7 = −g2(f2 + 2g2) + f(fg
′ − gf ′)

The curvature of the βCW is indicated by the κβCW taking the norm of equation
(4.52).

(4.53) κβCW =

√
2

(f2 + 2g2)2

√
δ2
7 + µ2

7 + η2
7

If the principal normal of βCW is indicated by NβCW , it is found in the form of
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(4.54) NβCW =
δ7N + µ7C + η7W√

δ2
7 + µ2

7 + η2
7

If we take the derivative of the equation (4.54), we obtain

(4.55) N
′

=

√
2√

f2 + 2g2

δ̄7N + µ̄7C + η̄7W

(2f2 + g2)
3
2

where 
δ̄7 = [(δ

′

7 − fµ7)(δ2
7 + µ2

7 + η2
7)− δ7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

µ̄7 = [(fδ7 + µ
′

7 − gη7)(δ2
7 + µ2

7 + η2
7)− µ7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

η̄7 = [(gµ7 + η
′

7)(δ2
7 + µ2

7 + η2
7)− η7(δ7δ

′

7 + µ7µ
′

7 + η7η
′

7)]

If we take the norm of the equation (4.55), we get

(4.56) ‖N
′

βCW ‖ =

√
2√

f2 + 2g2

√
δ̄2
7 + µ̄2

7 + η̄2
7

(δ̄2
7 + µ̄2

7 + η̄2
7)

3
2

Since CβCW =
N
′
βCW

‖N ′βCW ‖
, if necessary calculations are made from the equations

(4.55) and (4.56)

CβCW =
δ̄7N + µ̄7C + η̄7W√

δ̄2
7 + µ̄2

7 + η̄2
7

.

From the definition of Darboux vector, we know WβCW = NβCW × CβCW . So we
have

WβCW =
1√

δ2
7 + µ2

7 + η2
7 ·
√
δ̄7

2
+ µ̄7

2 + η̄7
2

∣∣∣∣∣∣
N C W
δ7 µ5 η7

δ̄7 µ̄7 η̄7

∣∣∣∣∣∣
and so on

(4.57) WβCW =
(µ7η̄7 − η5µ̄7)N − (δ7η̄7 − η7δ̄7)C + (δ7µ̄7 − µ7δ7)W√

δ2
7 + µ2

7 + η2
7 ·
√
δ̄7

2
+ µ̄7

2 + η̄7
2

.

To find the torsion, we need to find the second and third derivates of the βCW
curve. These derivates are available below.

(4.58) βCW (s) =
1√
2

(C +W ),

(4.59) β
′

CW =
1√
2

(−fN + gW − gC),

(4.60) β
′′

CW =
1√
2

(−f
′
+ gf)N + (−f2 − g2 − g

′
)C + (g

′
− g2)W ),

(4.61) β
′′′

CW =
1√
2

(δ̂7N + µ̂7C + η̂7W )
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where 
δ̂7 = (−f ′′ + f(2g

′
+ f2) + g(f

′
+ gf))

µ̂7 = (f(−3f
′
+ gf) + g(−3g

′
+ g2)− g′′)

η̂7 = −g(f2 + g2 + 3g
′
) + g

′′

In equation (2.3), if the expressions (4.59), (4.60) and (4.61) are written in their
places and the necessary calculations are made, torsion is found as
(4.62)

τβCW =

√
2 ·
[

(2g3 + gf2)δ̂7 + (g
′
f − gf ′)µ̂7 + (f3 + 2fg2 + fg

′ − gf ′)η̂7

]
(2g3 + gf2)2 + (g′f − gf ′)2 + (f3 + 2fg2 + fg′ − gf ′)2

In equation (2.6), if the expressions (4.53) and (4.62) are written in their places and
the necessary calculations are made, curvature and torsion according to alternative
frame are obtained as

(4.63) f =

√√√√[

√
2 ·
√
δ2
7 + µ2

7 + η2
7

(f2 + 2g2)2
]2 + [

√
2 · (δ̃7δ̂7 + µ̃7µ̂7 + η̃7η̂7)

δ̃2
7 + µ̃7

2 + η̃7
2

]2

and

(4.64) g =

[

√
2·(δ̃7 δ̂7+µ̃7µ̂7+η̃7η̂7)

˜
δ27+

˜
µ27+

˜
η27

√
2·
√
δ27+µ27+η27

f2+2g2

]′

1 + [

√
2·(δ̃7 δ̂7+µ̃7µ̂7+η̃7η̂7)

˜
δ27+

˜
µ27+

˜
η27

√
2·
√
δ27+µ27+η27

f2+2g2

]2

where 
δ̃7 = (2g3 + gf2),

µ̃7 = (g
′
f − gf ′),

η̃7 = (f3 + 2fg2 + fg
′ − gf ′).

�

Definition 4.7. Let β(s) be a unit speed regular curve in E3 and {N,C,W} be its
moving alternative frame. NCW-Smarandache curve is defined by

(4.65) βNCW (s) =
1√
3

(N + C +W ).

Theorem 4.8. Let β(s) be a unit speed regular curve in E3. The curvature and
torsion of NCW-Smarandache curve are as follows, respectively.

(4.66)



f =

√
[
√

3·
√
δ28+µ2

8+η28
(2f2+2g2−2gf)2 ]2 + [

√
3·(δ̃8δ̂8+µ̃8µ̂8+η̃8η̂8)

δ̃28+µ̃8
2+η̃82

]2

g =

[

√
3·(δ̃8 δ̂8+µ̃8µ̂8+η̃8η̂8)

˜
δ28+

˜
µ28+

˜
η28

√
3·
√
δ28+µ28+η28

(2f2+2g2−2gf)2

]′

1+[

√
3·(δ̃8 δ̂8+µ̃8µ̂8+η̃8η̂8)

˜
δ28+

˜
µ28+

˜
η25

√
3·
√
δ28+µ28+η28

(2f2+2g2−2gf)2

]2
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where
(4.67)

δ8 = gff
′ − 2f

′
g2 − 2f4 − 4f2g2 + 4f3g + 2g3f + 2fgg

′ − f2g
′

µ8 = f2(−2f2 − 4g2 − 2fg − g′) + g2(−2g4 + 2fg − g′ + fg(f
′ − g′))

η8 = 2f2(fg − 2g2 + g
′
) + g2(4fg − 2g2 + f

′
)− fg(g

′
+ 2f

′
)

(4.68)


δ̄8 = [(δ

′

8 − fµ8)(δ2
8 + µ2

8 + η2
8)− δ8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

µ̄8 = [(fδ8 + µ
′

8 − gη8)(δ2
8 + µ2

8 + η2
8)− µ8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

η̄8 = [(gµ8 + η
′

8)(δ2
8 + µ2

8 + η2
8)− η8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

(4.69)


δ̂8 = (f3 + fg2 − 3ff

′ − f ′′ + 2g
′
f + gf

′
)

µ̂8 = (g3 − f3 − 3(ff
′
+ gg

′
)− (−f ′′ + g

′′
) + fg(f − g))

η̂8 = (g
′′ − f2g − 3gg

′ − g3 + 2gf
′
+ fg

′
)

(4.70)


δ̃8 = (2f2g − 2fg2 + fg

′ − gf ′)
µ̃8 = (fg

′ − f ′g)

η̃8 = (2f3 + 2fg2 − 2gf2 − gf ′ + fg
′
)

Proof. Let β(s) be a unit speed reguler NCW-Smarandache curve as in (4.65). If
we take the derivative of the Smarandache curve according to arclenght parameter,
we have

(4.71)
dβNCW
dsβ

dsβ
ds

=
1√
3

(fC − fN + gW − gC),

and since ∥∥∥∥dβNCWdsβ

∥∥∥∥ = 1,

we can see

(4.72)
dsβ
ds

=

√
2

3
(f2 + g2 − gf).

From the equations (4.71) and (4.72) tangent vector of βNCW is

(4.73) TβNCW =
fC − fN + gW − gC√

2(f2 + g2 − gf)

If we take derivate this expression is again, we can see that

(4.74) T
′

βNCW =
δ8N + µ8C + η8W

(2f2 + 2g2 − 2gf)
3
2

√
3√

(2f2 + 2g2 − 2gf)

where
δ8 = gff

′ − 2f
′
g2 − 2f4 − 4f2g2 + 4f3g + 2g3f + 2fgg

′ − f2g
′

µ8 = f2(−2f2 − 4g2 − 2fg − g′) + g2(−2g4 + 2fg − g′ + fg(f
′ − g′))

η8 = 2f2(fg − 2g2 + g
′
) + g2(4fg − 2g2 + f

′
)− fg(g

′
+ 2f

′
)

The curvature of the βNCW is indicated by the κβNCW taking the norm of equation
(4.74)

(4.75) κβNCW =

√
3

(2f2 + 2g2 − 2gf)2

√
δ2
8 + µ2

8 + η2
8 .

If the principal normal of βNCW is indicated by NβNCW , it is found in the form of
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(4.76) NβNCW =
δ8N + µ8C + η8W√

δ2
8 + µ2

8 + η2
8

.

If we take the derivative of the equation (4.76), we obtain

(4.77) N
′

=

√
3√

2f2 + 2g2 − 2gf

δ̄8N + µ̄8C + η̄8W

(δ̄2
8 + µ̄2

8 + η̄2
8)

3
2

where 
δ̄8 = [(δ

′

8 − fµ8)(δ2
8 + µ2

8 + η2
8)− δ8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

µ̄8 = [(fδ8 + µ
′

8 − gη8)(δ2
8 + µ2

8 + η2
8)− µ8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

η̄8 = [(gµ8 + η
′

8)(δ2
8 + µ2

8 + η2
8)− η8(δ8δ

′

8 + µ8µ
′

8 + η8η
′

8)]

If we take the norm of the equation (4.77), we get

(4.78) ‖N
′

βNCW ‖ =

√
3√

2f2 + 2g2 − 2gf

√
δ̄2
8 + µ̄2

8 + η̄2
8

(δ̄2
8 + µ̄2

8 + η̄2
8)

3
2

Since CβNCW =
N
′
βNCW

‖N ′βNCW ‖
, if necessary calculations are made from the equations

(4.77) and (4.78)

CβNCW =
δ̄8N + µ̄8C + η̄8W√

δ̄2
8 + µ̄2

8 + η̄2
8

.

From the definition of Darboux vector, we know WβNCW = NβNCW × CβNCW . So
we have

WβNCW =
1√

δ2
8 + µ2

8 + η2
8

√
δ̄8

2
+ µ̄8

2 + η̄8
2

∣∣∣∣∣∣
N C W
δ8 µ8 η8

δ̄8 µ̄8 η̄8

∣∣∣∣∣∣
and so on

WβNCW =
(µ8η̄8 − η8µ̄8)N − (δ8η̄8 − η8δ̄8)C + (δ8µ̄8 − µ8δ8)W√

δ2
8 + µ2

8 + η2
8 ·
√
δ̄8

2
+ µ̄8

2 + η̄8
2

To find the torsion, we need to find the second and third derivates of the βNCW
curve. These derivates are available below.

(4.79) βNCW (s) =
1√
3

(N + C +W ),

(4.80) β
′

NCW =
1√
3

(fC − fN + gW − gC),

(4.81) β
′′

NCW =
1√
3

((−f
′
−f2 +gf)N +(−f2 +f

′
−g

′
−g2)C+(fg−g2 +g

′
)W ),

(4.82) β
′′′

NCW =
1√
3

(δ̂8N + µ̂8C + η̂8W )
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where 
δ̂8 = (f3 + fg2 − 3ff

′ − f ′′ + 2g
′
f + gf

′
)

µ̂8 = (g3 − f3 − 3(ff
′
+ gg

′
)− (−f ′′ + g

′′
) + fg(f − g))

η̂8 = (g
′′ − f2g − 3gg

′ − g3 + 2gf
′
+ fg

′
)

In equation (2.3), if the expressions (4.80), (4.81) and (4.82) are written in their
places and the necessary calculations are made, torsion is found as

(4.83)

τβNCW =

√
3 ·
[

(2f2g − 2fg2 + fg
′ − gf ′)δ̂8 + (fg

′ − f ′g)µ̂8 + (2f3 + 2fg2 − 2gf2 − gf ′ + fg
′
)η̂8

]
(2f2g − 2fg2 + fg′ − gf ′)2 + (fg′ − f ′g)2 + (2f3 + 2fg2 − 2gf2 − gf ′ + fg′)2

In equation (2.6), if the expressions (4.75) and (4.83) are written in their places and
the necessary calculations are made, curvature and torsion according to alternative
frame are obtained as

(4.84) f =

√√√√[

√
3 ·
√
δ2
8 + µ2

8 + η2
8

(2f2 + 2g2 − 2gf)2
]2 + [

√
3 · (δ̃8δ̂8 + µ̃8µ̂8 + η̃8η̂8)

δ̃2
8 + µ̃8

2 + η̃8
2

]2

and

(4.85) g =

[

√
3·(δ̃8 δ̂8+µ̃8µ̂8+η̃8η̂8)

˜
δ28+

˜
µ28+

˜
η28

√
3·
√
δ28+µ28+η28

2f2+2g2−2gf

]′

1 + [

√
3·(δ̃8 δ̂8+µ̃8µ̂8+η̃8η̂8)

˜
δ28+

˜
µ28+

˜
η28

√
3·
√
δ28+µ28+η28

2f2+2g2−2gf

]2

where 
δ̃8 = (2f2g − 2fg2 + fg

′ − gf ′),
µ̃8 = (fg

′ − f ′g),

η̃8 = (2f3 + 2fg2 − 2gf2 − gf ′ + fg
′
).

�

5. Conclusion

Smarandache curves have been studied many times since they were defined. The
importance of this study is that, unlike the studies in the literature, these curves are
re-characterized with the help of an alternative frame different from Frenet frame.
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Email address, Beyhan YILMAZ: beyhanyilmaz@ksu.edu.tr



Journal of Universal Mathematics
Vol.4 No.2 pp.157-165 (2021)

ISSN-2618-5660
DOI: 10.33773/jum.962880
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Abstract. In this paper, connectedness in temporal intuitionistic fuzzy topol-

ogy in Chang’s sense is introduced and investigated. In the content of the

paper, basic definitions, theorems and propositions about connectedness in
temporal intuitionistic fuzzy topology in Chang’s sense are given.

1. Introduction

Fuzzy logic was firstly defined by Zadeh in 1965 [21]. Then,Intuitionistic fuzzy
set (shortly IFS) was defined by K.Atanassov [1, 2]. Intuitionistic fuzzy logic comes
into play in situations where fuzzy logic cannot respond or is insufficient. The in-
tuitionistic fuzzy set theory is useful in various application areas such as; medicine,
medical diagnosis, medical application, career determination, real life situations,
education, decision making, multi criteria decision making, artificial intellligence,
networking, computer,smart systems, economy and various fields. The concept of
fuzzy topology was defined by Chang in 1968 [4]. Çoker generalized the concept of
fuzzy topology in the sense of intuitionistic fuzzy set theory in 1997. The fuzzifying
of the concept of topology was made by Šostak in 1985 [19]. Coker and Demirci [6]
defined the concept of intuitionistic fuzzy set in Šostak’s sense in 1996. Temporal
intuitionistic fuzzy set, another approach in which temporal variables also partici-
pated in calculating the membership and non-membership degrees, was defined by
Atanassov in 1991 [3]. This is one of the most important extensions of IFS. In recent
years, Šostak’s mean temporal intuitionistic fuzzy topology was defined by Kutlu
and Bilgin [9]. Also, the other fundamental concepts of Šostak’s mean temporal
intuitionistic fuzzy topology defined by the author in [10, 9, 11]. The concepts of
temporal and overall intuitionistic fuzzy topology in Chang’s sense firstly defined
by Kutlu in 2019 [13]. In this study, Kutlu gave basic definitions and theorems and
explained them in detail. The concept of temporal intuitionistic fuzzy has recently
started to attract the attention of researchers [13, 12, 14]. The concept of connect-
edness in intuitionistic fuzzy topological spaces in Šostak’s sense is investigated by
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2000 Mathematics Subject Classification. 47S4.
Key words and phrases. Intuitionistic Fuzzy Topology, Temporal Intuitionistic Fuzzy Sets,

Temporal Intuitionistic Fuzzy Topology, Connectedness.
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El-Latif and Khalaf [7]. Connectedness in intuitionistic fuzzy special topological

spaces is researched by Özçağ and Çoker [17]. Connectedness in intuitionistic fuzzy
topological spaces is investigated by Kim and Abbas [8]. In this paper, connected-
ness in temporal intuitionistic fuzzy topology in Chang’s sense is introduced and
investigated. Basic definition, theorem and propositions about connectedness in
temporal intuitionistic fuzzy topology in Chang’s sense are given.

2. Preliminaries

Definition 2.1. [1] An intuitionistic fuzzy set in a non-empty set X given by a set
of ordered triples A = {(x, µA (x) , ηA (x)) : x ∈ X} where µA (x) : X → I,ηA (x) :
X → I and I = [0, 1], are functions such that 0 ≤ µ (x) + η (x) ≤ 1for all x ∈ X.
For x ∈ X, µA (x) and ηA (x) represent the degree of membership and degree of
non-membership of x to A respectively. For each x ∈ X; intuitionistic fuzzy index
of x in A can be defined as follows πA (x) = 1 − µA (x) − ηA (x). πA is the called
degree of hesitation or indeterminacy.

By IFS (X), we denote to the set of all intuitionistic fuzzy sets.

Definition 2.2. [1] LetA,B ∈ IFS (X). Then,
(i) A ⊆ B ⇔µA (x) ≤ µB (x) and ηA (x) ≥ ηB (x)for∀x ∈ X,
(ii) A = B ⇔A ⊆ B and B ⊆ A,
(iii) Ac = {(x, ηA (x) , µA (x)) : x ∈ X},
(iv)

⋂
Ai = {(x, ∧µAi

(x) ,∨ηAi
(x)) : x ∈ X},

(v)
⋃
Ai = {(x, ∨µAi

(x) ,∧ηAi
(x)) : x ∈ X},

(vi) 0̃ = {(x, 0, 1) : x ∈ X} and 1̃ = {(x, 1, 0) : x ∈ X}.

Definition 2.3. [5, 1] Let a and b be two real numbers in [0, 1] satisfying the
inequalitya+ b ≤ 1. Then, the pair 〈a, b〉 is called an intuitionistic fuzzy pair. Let
〈a1, b1〉 and 〈a2, b2〉be two intuitionistic fuzzy pair (briefly IF-pair). Then define

(i) 〈a1, b1〉≤〈a2, b2〉⇔a1≤a2 and b1 ≥ b2,
(ii) 〈a1, b1〉=〈a2, b2〉⇔a1=a2 and b1 = b2,
(iii) If {〈ai, bi〉 ; i ∈ J} is a family of intuitionistic fuzzy pairs, then

∨ 〈ai, bi〉 = 〈∨ai,∧bi〉 and ∧ 〈ai, bi〉 = 〈∧ai,∨bi〉,
(iv) The complement of 〈a, b〉is defined by 〈a, b〉 = 〈b, a〉,
(v) 1∼ = 〈1, 0〉 and 0∼ = 〈0, 1〉. .

Definition 2.4. [6] An intuitionistic fuzzy topology in Chang’s sense (briefly, CT-
IFS) on a non-empty set X is a family τt of TIFSs satisfying the following axioms:

I. 0̃ ∈ τ and 1̃ ∈ τ ,
II. A1 ∩A2 ∈ τ for each A1, A2 ∈ τ ,
III.

⋃
i∈I

Ai ∈ τ For any arbitrary family {Ai; i ∈ I} ∈ τ ,

Definition 2.5. [3]. Let E be an universe and T be a non-empty time-moment
set. We call the elements of T “time moments”. Based on the definition of IFS,
a temporal intuitionistic fuzzy set (breifly TIFS) A is defined as the following:
A (T ) = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ E × T} where:

(a) A ⊆ E is a fixed set
(b) µA (x, t) + ηA (x, t) ≤ 1 for every (x, t) ∈ E × T
(c) µA (x, t) and ηA (x, t) are the degrees of membership and non-membership,

respectively, of the element x ∈ E at the time moment t ∈ T
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By TIFS(X,T ), we denote to the set of all TIFSs over nonempty set X and time-
moment set T . For brevity, we write A instead ofA (T ). The hesitation degree of
a TIFS is defined asπA (x, t) = 1− µA (x, t)− ηA (x, t). Obviously, every ordinary
IFS can be regarded as TIFS for which T is a singleton set. All operations and
operators on IFS can be defined for TIFSs.

Definition 2.6. [13] Let A (T ′) = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ X × T ′}
and B (T ′′) = {(x, µB (x, t) , ηB (x, t) ) : (x, t) ∈ X × T ′′} whereT ′and T ′′have

finite number of distinct time-elements or they are time intervals. Then,

A (T ′)∩B (T ′′) = {(x, min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t)) : (x, t) ∈ X × (T ′ ∪ T ′′) )

A (T ′)∪B (T ′′) = {(x, max (µ̄A (x, t) , µ̄B (x, t)) , min (η̄A (x, t) , η̄B (x, t)) : (x, t) ∈ X × (T ′ ∪ T ′′) )

Also from definition of subset in IFS theory, Subsets of TIFS can be defined as the
follow: A (T ′) ⊆ B (T ′′) ⇔ µ̄A (x, t) ≤ µ̄B (x, t) and η̄A (x, t) ≥ η̄B (x, t) for every
(x, t) ∈ X × (T ′ ∪ T ′′) where

µ̄A (x, t) =

{
µA (x, t) , if t ∈ T ′
0, if t ∈ T ′′ − T ′

µ̄B (x, t) =

{
µB (x, t) if t ∈ T ′′
0, if t ∈ T ′ − T ′′

η̄A (x, t) =

{
ηA (x, t) , if t ∈ T ′
1, if t ∈ T ′′ − T ′

η̄B (x, t) =

{
ηB (x, t) , if t ∈ T ′′
1, if t ∈ T ′′ − T ′

It is obviously seen that µ̄A (x, t) = µA (x, t), µ̄B (x, t) = µB (x, t), η̄A (x, t) =
ηA (x, t), η̄B (x, t) = ηB (x, t) when T ′ = T ′′.

Let Jbe an arbitrary index set. Then we define that T =
⋃
i∈J

Tiwhere Ti is a time

set for each i ∈ J . Thus, we can extend the definition of union and intersection
of TIFSs family F = {Ai (Ti) = (x, µAi

(x, t) , ηAi
(x, t) ) : x ∈ X × Ti, i ∈ J} as

follows:

⋃
i∈J

A (Ti) =

{(
x, max

i∈J
(µ̄Ai

(x, t)) , min
i∈J

(η̄Ai
(x, t)) : (x, t) ∈ X × T

)
,

⋂
i∈J

A (Ti) =

{(
x, min

i∈J
(µ̄Ai

(x, t)) , max
i∈J

(η̄Ai
(x, t)) : (x, t) ∈ X × T

)
,

where

µ̄Aj (x, t) =

{
µAj

(x, t) , if t ∈ Tj
0, if t ∈ T − Tj

and

η̄Aj
(x, t) =

{
ηAj

(x, t) , if t ∈ Tj
1, if t ∈ T − Tj

.

The operations defined above are defined over all of the time moments. In the
following definition, these operations will be defined for an individual time moment.
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Definition 2.7. [13] Let

A (T ′) = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ X × T ′}

B (T ′′) = {(x, µB (x, t) , ηB (x, t) ) : (x, t) ∈ X × T ′′}
where T ′ and T ′′have finite number of distinct time-elements or they are time
intervals. Then, the definitions of instant intersection and instant union of TIFSs
are defined as follows:

A (T ′)∩t0B (T ′′) = {(x, min (µ̄A (x, t0) , µ̄B (x, t0)) , max (η̄A (x, t0) , η̄B (x, t0)) :
(x, t0) ∈ X × (T ′ ∪ T ′′) },

A (T ′)∪t0B (T ′′) = {(x, max (µ̄A (x, t0) , µ̄B (x, t0)) , min (η̄A (x, t0) , η̄B (x, t0)) :
(x, t0) ∈ X × (T ′ ∪ T ′′) }.

Also from definition of subset in IFS theory, instant subsets of TIFS can be de-
fined as the following: A (T ′)⊆t0B (T ′′) ⇔ µ̄A (x, t0) ≤ µ̄B (x, t0) and η̄A (x, t) ≥
η̄B (x, t) for every (x, t0) ∈ X × (T ′ ∪ T ′′) where

µ̄A (x, t0) =

{
µA (x, t0) , if t0 ∈ T ′
0, if t0 ∈ T ′′ − T ′

µ̄B (x, t0) =

{
µB (x, t0) , if t0 ∈ T ′′
0, if t0 ∈ T ′ − T ′′

η̄A (x, t0) =

{
ηA (x, t0) , if t0 ∈ T ′
1, if t0 ∈ T ′′ − T ′

η̄B (x, t0) =

{
ηB (x, t0) , if t0 ∈ T ′′
1, if t0 ∈ T ′′ − T ′

[13] Let J be an arbitrary index set. Then we define that T =
⋃
i∈J

Tiwhere Ti is a

time set for each i ∈ J . Thus, we can extend the definition of union and intersection
of TIFSs family Ft0 = {Ai (Ti) = (x, µAi

(x, t0) , ηAi
(x, t0) ) : (x, t0) ∈ X × Ti, i ∈ J}

as follows:⋃
i∈J

t0A (Ti) =

{(
x, max

i∈J
(µ̄Ai (x, t0)) , min

i∈J
(η̄Ai (x, t0)) : (x, t0) ∈ X × T

)
⋂
i∈J

t0A (Ti) =

{(
x, min

i∈J
(µ̄Ai (x, t0)) , max

i∈J
(η̄Ai (x, t0)) : (x, t0) ∈ X × T

)
where

µ̄Aj
(x, t0) =

{
µAj

(x, t0) , if t0 ∈ Tj
0, if t0 ∈ T − Tj

η̄Aj (x, t0) =

{
ηAj

(x, t0) , if t0 ∈ Tj
1, if t0 ∈ T − Tj

.

In fact, these TIFS operators can be seen as IFS operators over TIFSs, since they
are defined for a single time moment.

Definition 2.8. [13] 0
∼

t and 1
∼

t∈ TIFS(X,T ) are defined as:

0
∼

t = {(x, 0, 1) : (x, t) ∈ X × T}

and

1
∼

t = {(x, 1, 0) : (x, t) ∈ X × T}
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for each time moment t, i.e. µ0
∼

t (x, t) = 0, η0
∼

t (x, t) = 1 and µ1
∼

t (x, t) = 1,

η1
∼

t (x, t) = 0 for each (x, t) ∈ X × T .

Definition 2.9. 0
∼

t0 and 1
∼

t0 ∈ TIFS(X,T ) are defined as:

0
∼

t0 =
{(
x, µ0

∼
t0 (x, t) , η0

∼
t0 (x, t)

)
: (x, t) ∈ X × T

}
and

1
∼

t0 =
{(
x, µ1

∼
t0 (x, t) , η1

∼
t0 (x, t)

)
: (x, t) ∈ X × T

}
for individual time moment t0 ∈ T , i.e. µ0

∼
t (x, t0) = 0, η0

∼
t (x, t0) = 1 and

µ1
∼

t0 (x, t0) = 1, η1
∼

t0 (x, t0) = 0 for each (x, t0) ∈ X × {t0} .

3. MAIN RESULTS

Definition 3.1. [13] An temporal intuitionistic fuzzy topology in Chang’s sense
(briefly, CT-TIFS) on a non-empty set X is a family τt0 of TIFSs satisfying the
following axioms for fixed time moment t0

I. 0
∼

t0 ∈ τt0 and 1
∼

t0 ∈ τt0 ,

II. For eachA1, A2 ∈ τt0 , there exist a F ∈ τt0 such that µF (x, t0) = µA1∩t0
A2 (x, t0),

ηF (x, t0) = ηA1∩t0
A2 (x, t0) for each (x, t0) ∈ X × {t0} .

III. For any arbitrary family {Ai; i ∈ I} ∈ τt0 , there exist a D ∈ τt0 such that
µD (x, t0) = µ ⋃

i∈I

t0Ai
(x, t0) and ηD (x, t0) = η ⋃

i∈I

t0Ai
(x, t0) for each (x, t0) ∈ X ×

{t0}.
The pair ((X,T ) , τt0) is called temporal intuitionistic fuzzy topological space

in Chang’s sense. Any member of τt0 is called temporal intuitionistic fuzzy open
set (TIFOS). On the other hand, the complement of any member of τt0 is called
intuitionistic fuzzy closed set (TIFCS). It is obtained intuitionistic fuzzy topological
space in Chang’s sense from every temporal intuitionistic fuzzy topological space
in Chang’s sense by the following method.

Proposition 1. [13] Let τt0 is an temporal intuitionistic fuzzy topological space
in Chang’s sense on non-empty set X and time moment set T , Then we define
IFS’s from every A ∈ τt0TIFSs by following way: µÂ (x) = µAi (x, t0) and ηÂ (x) =

ηA (x, t0). So that the new family τ t0 =
{
Â : A ∈ τt0

}
obtained from τt0 is a

intuitionistic fuzzy topology in Chang’s sense.

Definition 3.2. [13] Let τt0 is an temporal intuitionistic fuzzy topological space in
Chang’s sense on non-empty set X and time moment set Tand A ∈ τt0 . Then tem-
poral intuitionistic fuzzy interior and temporal intuitionistic fuzzy closure of A de-
fined as follows: intt0 (A) = ∪{G ; G ∈ τt0 , G ⊆ A}, clt0 (A) = ∩

{
C ; C̄ ∈ τt0 , A ⊆ C

}
.

Following propositions are valid for both of fuzzy and intuitionistic fuzzy case
[19, 4, 5, 6, 18, 16, 15], it can be proved as in the above-mentioned articles.

Definition 3.3. Let τt0 be a temporal intuitionistic fuzzy topological space in
Chang’s sense on non-empty set X and time moment set. Then,

i. A is a TIFCS in τt0⇔ clt0 (A) = A,
ii. A is a TIFOS in τt0⇔ intt0 (A) = A,

iii. clt0 (A) = intt0 (A) for any A ∈ TIFS(X,T ),

iv. intt0 (A) = clt0 (A) for any A ∈ TIFS(X,T ),
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v. intt0 (A) ⊆ A for any A ∈ TIFS(X,T ),
vi. A ⊆ clt0 (A) for any A ∈ TIFS(X,T ),
vii. A ⊆ B ⇒ intt0 (A) ⊆ intt0 (B) for any A,B ∈ TIFS(X,T ),
viii. A ⊆ B ⇒ clt0 (A) ⊆ clt0 (B) for any A,B ∈ TIFS(X,T ),
ix. clt0 (clt0 (A)) = clt0 (A) for any A ∈ TIFS(X,T ),
x. intt0 (intt0 (A)) = intt0 (A) for any A ∈ TIFS(X,T ),
xi. intt0 (A ∩B) = intt0 (A) ∩ intt0 (B) for any A,B ∈ TIFS(X,T ),
xii. clt0 (A ∪B) = clt0 (A) ∪ clt0 (B) for any A,B ∈ TIFS(X,T ),

xiii. intt0

(
1
∼

t0
)

= 1
∼

t0 ,

xiv. clt0

(
0
∼

t0
)

= 0
∼

t0 . We will give definitions of temporal intuitionistic fuzzy

continuous functions and open function definitions, which are defined for fuzzy and
intuitionistic fuzzy sets in [19, 4, 5, 6, 18, 16, 15], respectively.

Theorem 3.4. ((X,T ) , τt0) is an temporal intuitionistic fuzzy topology in Chang’s
sense on nonempty set x an time moment T and X1, X2 6= ∅, X = X1∪t0X2 and
X1∩t0X2 = ∅t0 are subsets; the following expressions are equivalent:
(i) ((X,T ) , τt0) temporal intuitionistic fuzzy topology in Chang’s sense is the topo-
logical sum of X1 and X2 spaces.
(ii) X1 and X2 sets are both temporal intuitionistic fuzzy open set (TIFOS) and
temporal intuitionistic fuzzy closed set (TIFCS) in X.
(iii) X1 (or X2) is both TIFOS and TIFCS.
(iv) clt0(X1) ∩t0 X2 = ∅t0 and X1 ∩t0 clt0(X2) = ∅t0
Definition 3.5. Let τt0 is a temporal intuitionistic fuzzy topology in Chang’s sense
on nonempty set X and time moment set t0 ∈ T and A,B ∈ τt0 . ((X,T ) , τt0) is
called to be temporal disconnected at time moment t0 if there are sets of A and B
nonempty set with;

A ∪t0 B = X

A ∩t0 clt0(B) = ∅t0
clt0(A) ∩t0 B = ∅t0

otherwise ((X,T ) , τt0) is called to be temporal connected.

Proposition 2. Let ((X,T ) , τt0) is a temporal intuitionistic fuzzy topology in
Chang’s sense, the following expressions are equivalent:
(i) ((X,T ) , τt0) temporal intuitionistic fuzzy topological space is temporal discon-
nected.
(ii) ((X,T ) , τt0) has at least both open and closed subset that is nonempty and
distinct from itself.

Proposition 3. A temporal intuitionistic fuzzy topological space ((X,T ) , τt0) is
temporal connected at time moment t0 if and only if it has no subset, both open
and closed, other than empty and itself.

Proof. (i)⇒ (ii) If the temporal intuitionistic fuzzy topological space ((X,T ) , τt0)
is temporal disconnected, there are sets A and B different from the empty set as
A ∪t0 B = X, A ∩t0 clt0(B) = ∅t0 and clt0(A) ∩t0 B = ∅t0 . Since B = (clt0(A))c

and A = (clt0(B))c; A and B sets are open. But since A = Bc; A is both open and
closed and A 6= ∅t0 , A 6= X
(ii)⇒ (i) If A ∈ X is subset of both open and closed, which is different from the
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empty and itself, A∪t0B = X and A∩t0B = ∅t0 as B = Ac. Since A 6= X; B 6= ∅t0 .
Since A is closed; clt0(A) = A and clt0(A)∩t0 B = ∅t0 . Since A is open, B is closed
and A∩t0 clt0(B) = ∅t0 . Then ((X,T ) , τt0) temporal intuitionistic fuzzy topological
space is temporal disconnected. �

Proposition 4. ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in
Chang’s sense is temporal connected at time moment t0, if and only if it has no
subset, both open and closed, other than empty and itself.

Theorem 3.6. ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s
sense, the following expressions are equivalent:
(i) ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s sense is
temporal disconnected at time moment t0.
(ii) ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s sense is
the topological sum.
(iii) X is the union of two distinct open sets other than empty.
(iv) X is the union of two distinct closed sets other than empty.
(v) X has at least one subset, both open and closed that is distinct from empty and
itself.

Theorem 3.7. ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s
sense, the following expressions are equivalent:
(i) ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s sense is
temporal connected at time moment t0.
(ii) ((X,T ) , τt0) temporal intuitionistic fuzzy topological space in Chang’s sense
cannot be any topological sum.
(iii) X cannot be written as the union of two distinct open sets other than empty.
(iv) X cannot be written as the union of two distinct closed sets other than empty.
(v) Both open and closed subsets of X are only X and the empty set.

4. Conclusion

In this paper, connectedness in temporal intuitionistic fuzzy topology in Chang’s
sense is introduced and investigated. Basic definition, theorem and propositions
about connectedness in temporal intuitionistic fuzzy topology in Chang’s sense are
given.
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Abstract. In this paper, we analysis and introduce the concepts of regular
closed (open) sets and regular generalized closed (open) sets in Čech closure

spaces. Also, we investigate the properties such as intersection, union, sub-

spaces of regular generalized closed (open) sets of a Čech closure spaces. More-
over, by giving counter examples of one-sided theorems, it has been shown that

the converse situation is not realized.

1. INTRODUCTION

In a topological space, many types of sets such as open set, closed set, generalized
closed set, generalized open set, regular generalized closed set, regular open, regular
closed are defined. Firstly, studies in this area started with the generalized closed
set model that Levine [8] put forward by generalizing closed sets of any topological
space. For example, it was shown that completeness, normality, compactness in a
uniform space are inherited by generalized closed subsets. Balachandran et al. [9]
introduced the concept of generalized continuous maps by using generalized closed
sets. In the following years, Palaniappan and Chandrasekhara Rao [10] introduced
regular generalized closed sets in topological spaces.

There are many methods researchers can use to define a topology. Čech closure
space, one of these methods, are a set of axioms used to define a topology on a set
other than any null set by E. Čech in [3]. After defining Čech closure spaces, it has
managed to attract the attention of many researchers and then studied on these
spaces, see e.g. [4, 5, 6, 7].

Thanks to this paper, regular generalized closed (open) sets and regular closed
(open) sets, which are two new concepts for Čech closure spaces, are brought into
literature. Moreover, the given sets were analyzed in detail and their properties
such as subspaces, intersection, union were examined. In addition, the types of sets
such as closed sets, generalized closed sets given previously for Čech closure spaces
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and the new set types given in this paper were compared and the relationships
between each other were studied.

2. PRELIMINARIES

In this section, we recall some basic notions in Čech closure spaces.

Throughout this paper, let U 6= ∅ be a set, 2U denotes the power set of U and
X, Y be non-empty subsets of U .

Definition 2.1. [1] An operator c : 2U → 2U defined satisfying the axioms:
[c1] c(∅) = ∅,
[c2] X ⊆ c(X) for all X ⊆ U ,
[c3] c(X ∪ Y ) = c(X) ∪ c(Y ) for all X,Y ⊆ U
is called a Čech closure operator (briefly closure operator) and the pair (U , c) is
called a Čech closure space (briefly closure space). Here, for X ⊂ U , we call c(X)
the closure of X.

Definition 2.2. [1] Let c be a closure operator and (U , c) be a closure space. Then,
for ∅ 6= X ⊆ U ,
(i) A c on U is called idempotent if c(X) = c(c(X)).
(ii) X is closed set (briefly c-set) in (U , c) if X = c(X).
(iii) X is open set (briefly o-set) in (U , c) if its complement is c-set.
(iv) The ∅ and U are both o-set and c-set.

Definition 2.3. [1] Let (U , c) be a closure space. A closure space (V, cV) is called
a subspace of (U , c) if V ⊆ U and cV(X) = c(X) ∩ V, for all X ⊆ V.

Definition 2.4. [1] Let (V, cV) be a Čech closure subspace of (U , c). If K is a
closed subset of (V, cV), then K is a closed subset of (U , c).

Definition 2.5. [2] Let (U , c) be a closure space. Then,
(i) A X ⊆ U is called a generalized closed set (briefly gc-set), if c(X) ⊆ K whenever
K is an open subset of (U , c) with X ⊆ Y .
(ii) A X ⊆ U is called a generalized open set (briefly go-set), if its complement is
gc-set.
(iii) If X and Y are generalized closed subsets of (U , c), then X ∪ Y is gc-set.
Moreover, the X ∩ Y need not be a gc-set.

Remark 2.6. [2] Every c-set is gc-set. The converse need not be a c-set.

Definition 2.7. [1] An interior operator on U is a map int : 2U → 2U which satis-
fies
(i) int(U) = U ,
(ii) int(X) ⊆ X for all X ⊆ U ,
(iii) int(X ∩ Y ) = int(X) ∩ int(Y ) for all X,Y ⊆ U .

In other words, the set int(X) with respect to the closure operator c is defined
as int(X) = U–c(U −X).
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3. REGULER GENERALIZED CLOSED SETS

Definition 3.1. Let (U , c) be a closure space. A X ⊆ U is called a regular closed set
(briefly rc-set) [regular open set (briefly ro-set)], if X = c(int(X)) [X = int(c(X))].

Remark 3.2. Every ro-set is o-set. The converse need not be a ro-set as can be seen
from the following example.

Example 3.3. Let U = {m,n} and define a closure operator c on U by c(∅) = ∅
and c({m}) = c({n}) = c(U) = U . Then {m} and {n} are o-sets but they are not
ro-sets.

Definition 3.4. Let (U , c) be a closure space. A X ⊆ U is called a regular gen-
eralized closed set (briefly rgc-set) iff c(X) ⊆ K whenever X ⊆ K, where K is
ro-set.

Proposition 1. Let (U , c) be a closure space. If X and Y are regular generalized
closed subsets of (U , c), then X ∪ Y is rgc-set.

Proof. Let K be a regular open subset of (U , c) such that X ∪ Y ⊆ K. Then
X ⊆ K and Y ⊆ K. Since X and Y are rgc-set, c(X) ⊆ K and c(Y ) ⊆ K.
Therefore c(X) ∪ c(Y ) ⊆ K and hence c(X ∪ Y ) ⊆ K. Consequently X ∪ Y is
rgc-set. �

Remark 3.5. The intersection of two rgc-sets is generally not a rgc set.

Example 3.6. Let U = {m,n, r} and define a closure operator c on U by c(∅) = ∅,
c({m}) = {m,n}, c({n}) = c({r}) = c({n, r}) = {n, r}, c({m,n}) = c({m, r}) =
c(U) = U . Then {m,n} and {m, r} are rgc-set but {m,n} ∩ {m, r} = {m} is not
rgc-set.

Proposition 2. Let (U , c) be a closure space. If X is a rgc-set and K is a c-set in
(U , c), then X ∩K is rgc-set.

Proof. Let G be an regular open subset of (U , c) such that X ∩ K ⊆ G. Then
X ⊆ G ∪ (U −K) and so c(X) ⊆ G ∪ (U −K). Therefore c(X) ∩K ⊆ G. Since K
is a c-set, c(X ∩K) ⊆ G. Hence, X ∩K is a rgc-set. �

Proposition 3. Let (V, cV) be a closed subspace of (U , c). If K is a regular
generalized closed subset of (V, cV), then K is a regular generalized closed subset
of (U , c).

Proof. Let G be an regular open subset of (U , c) such that K ⊆ G. Then K ⊆ G∩V.
Since K is a rgc-set and G∩V is a ro-set in (V, cV), c(K)∩V = cV(K) ⊆ G. But V
is a closed subset of (U , c) and c(K) ⊆ G. Hence, K is a regular generalized closed
subset of (U , c). �

Theorem 3.7. Let (U , c) be a closure space and c be idempotent. If X is a regular
generalized closed subset of (U , c) and X ⊆ Y ⊆ c(X), then c(Y ) − Y contains no
nonempty rc-set.

Proof. Since Y ⊆ c(X) and c is idempotent, then c(Y ) ⊆ c(c(X)) = c(X). That is
c(Y ) ⊆ c(X). Since X ⊆ Y , we obtain U − Y ⊆ U − X. Form c(Y ) ⊆ c(X) and
U − Y ⊆ U −X, (u(Y )∩ (U − Y )) ⊆ (c(X)∩ (U −X)) which implies (c(Y )− Y ) ⊆
(c(X) − X). Now X is a rgc-set. Hence c(X) − X has no nonempty regular
generalized closed subset, neither does c(Y )− Y . �
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Theorem 3.8. Let (U , c) be a closure space and X ⊆ U . If X is a rgc-set, then
c(X)−X contains no nonempty rc-set.

Proof. Suppose that X is a rgc-set. Let Y be a regular generalized closed subset
of c(X) − X. Then Y ⊆ c(X) ∩ (U − X) and so X ⊆ U − Y . But X is a rgc-
set. Therefore c(X) ⊆ U − Y . Consequently Y ⊆ U − c(X). Since Y ⊆ c(X),
Y ⊆ c(X) ∩ (U − c(X)) = ∅. Thus B = ∅. Therefore c(X) − X contains no
nonempty rc-set. �

The converse of this theorem is not true in general as can be seen from the
following example.

Example 3.9. Let U = {x, y, z} and define a closure operator c on U by c(∅) = ∅,
c({x}) = {x, y}, c({y}) = c({z}) = c({y, z}) = {y, z}, c({x, y}) = c({x, z}) =
c(U) = U . Then c({x})− {x} = {y} does not contain nonempty rc-set. But {x} is
not rgc-set.

Corollary 1. Let (U , c) be a closure space and X be a rgc-subset of (U , c). Then
X is a rc-set if and only if c(int(X))−X is a rc-set.

Proof. Let X be regular generalized closed subset of (U , c). If X is a rc-set, then
c(int(X))−X = ∅. But ∅ is always a rc-set. Therefore c(int(X))−X is a rc-set.

Conversely, suppose that c(int(X)) − X is a rc-set. But X is a rgc-set. Also
c(X)−X contains the rc-set c(int(X))−X. By Theorem 3.8, we have c(int(X))−
X = ∅. Hence c(int(X)) = X. Therefore X is a rc-set. �

Theorem 3.10. Let (U , c) be a closure space and X ⊆ U . If X is a gc-set, then
X is a rgc-set.

Proof. Suppose that X ⊆ K, where K is a ro-set. Now K is a ro-set, implies that
K is a open. Since X is a gc-set, then c(X) ⊆ K. Therefore X is a rgc-set. �

The converse of this theorem is not true in general as can be seen from the
following example.

Example 3.11. Let U = {1, 2, 3, 4} and define a closure operator c on U by

c(∅) = ∅, c({1}) = c({1, 2}) = {1, 2}, c({2}) = {2},
c({3}) = c({2, 3}) = {2, 3}, c({4}) = {4}, c({2, 4}) = {2, 4},

c({1, 3}) = c({1, 2, 3}) = {1, 2, 3}, c({1, 4}) = c({1, 2, 4}) = {1, 2, 4},
c({3, 4}) = c({2, 3, 4}) = {2, 3, 4}, c({1, 3, 4}) = c(U) = U .

Then {1, 3} is a rgc-set but it is not gc-set.

Definition 3.12. Let (U , c) be a closure space. A X ⊆ U is called a regular
generalized open set (briefly a rgo-set) if and only if its complement is a rgc-set.

Theorem 3.13. Let (U , c) be a closure space. A set X ⊆ U is a rgo-set if and only
if H ⊆ int(X) whenever H is a rc-set and H ⊆ X.

Proof. Let H ⊆ int(X) whenever H is a rc-set, H ⊆ X and K = U −X. Suppose
that K ⊆ G where G is a ro-set.

Now T ⊆ G implies H = U − G ⊆ X and H is a rc-set which implies H ⊆
int(X). Also H ⊆ int(X) implies U − int(X) ⊆ U −H = G. This inturn implies
U − int(U −K) ⊆ G. Or equivalently c(K) ⊆ G. Thus K is a rgc-set. Hence we
obtain X is a a rgo-set.
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Conversely, suppose that X is a rgo-set, H ⊆ X and H is a rc-set. Moreover
U−H is a ro-set. Then U−X ⊆ U−H. Since U−X is a rgc-set, U−c(X) ⊆ U−H.
Therefore H ⊆ U − (U − c(X)) = int(X). �

Theorem 3.14. Let (U , c) be a closure space. If X is a rgo-subset of (U , c), then
G = U whenever G is a ro-set and int(X) ∪ (U −X) ⊆ G.

Proof. Suppose that X is a rgo-set in (U , c). Let G be a ro-set and int(X) ∪
(U − X) ⊆ G. This implies U − G ⊆ (U − int(X)) ∩ (U − (U − X)). That is
U − G ⊆ (U − int(X)) ∩ X or equivalently U − G ⊆ (U − int(X)) − (U − X) =
(U − (U − c(U −X)))− (U −X) = c(U −X)− (U −X) = c(U −X)− (U −X). Now
U −G is a rc-set and U −X is rgc-set. By Theorem 3.8, it follows taht U −G = ∅.
Hence we obtain G = U . �

Theorem 3.15. Let (U , c) be a closure space. If X is a rgc-subset of (U , c), then
c(X)−X is a rgo-set.

Proof. Suppose that X is a rgc-set and H ⊆ c(X) − X, where H is a rc-set. By
Theorem 3.8, H = ∅ and so H ⊆ int(c(X)−X). By Theorem 3.13, c(X)−X is a
rgo-set. �

The converse of this theorem is not true in general as can be seen from the
following example.

Example 3.16. Let U = {m,n, r, s} and define a closure operator c on U by

c(∅) = ∅, c({m}) = c({m,n}) = {m,n}, c({n}) = {n},
c({r}) = c({n, r}) = {n, r}, c({s}) = {s}, c({n, s}) = {n, s},

c({m, r}) = c({m,n, r}) = {m,n, r}, c({m, s}) = c({m,n, s}) = {m,n, s},
c({r, s}) = c({n, r, s}) = {n, r, s}, c({m, r, s}) = c(U) = U .

Then c({r})− {r} = {n} is a rgo-set. But {r} is not a rgc-set in (U , c).

4. Conclusion

In the present paper, we have introduced regular closed (open) sets and regular
generalized closed (open) sets in Čech closure spaces. In addition, some basic prop-
erties of new concepts for Čech closure spaces were examined. We have investigated
behavior relative to union, intersection, subspaces of regular closed (open) sets and
regular generalized closed (open) sets. We hope that the findings in this paper will
help researcher enhance and promote the further study on Čech closure spaces to
carry out a general framework.
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472, (1968).
[4] J. Chvalina, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta

Fac. Sci. Nat. UJEP Brunensis, Vol.12, pp.107-116, (1976).
[5] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of

mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, Vol.17, pp.81-86, (1981).

[6] L. Skula, Systeme von stetigen abbildungen, Czech. math. J., Vol. 17, No.92, 45-52, (1967).
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Abstract. This paper deals with the system of a class of nonlinear higher-
order Kirchhoff-type equations with logarithmic nonlinearities. Under the ap-

propriate assumptions, the theorem of global nonexistence is established at
positive initial energy levels.

1. Introduction

In this paper, we study the following initial-boundary value problem
(1.1)

utt +M
(
‖Dmu‖2 + ‖Dmv‖2

)
(−4)

m
u+ (−4)

m
ut = |u|r−2

u ln |u| , x ∈ Ω, t > 0,

vtt +M
(
‖Dmu‖2 + ‖Dmv‖2

)
(−4)

m
v + (−4)

m
vt = |v|r−2

v ln |v| , x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,
∂i

∂νiu (x, t) = 0, ∂i

∂νi v (x, t) = 0, i = 0, 1, 2, ...m− 1, x ∈ ∂Ω, t ≥ 0,

where Du = ∇u =
(
∂u
∂x1

, ∂u∂x2
, ... ∂u∂xn

)
and r ≥ 2γ + 2 are real numbers and m ≥ 1

are positive integers. The Kirchhoff term M (s) = β1 +β2s
γ , γ > 0, β1 ≥ 1, β2 ≥ 0.

We will take β1 = β2 = 1 for simplify. Ω ⊂ Rn is a regular and bounded domain
with smooth boundary ∂Ω. And v denotes the outer normal.

Problem (1.1) is a generalization of a model considered by Kirchhoff [9]. Kirch-
hoff type equation has in the mathematical description of small amplitude vibra-
tions of an elastic string. In the case M (s) = 1, m = 1 and p ≥ 2, a problem of
the single wave equation of the (1.1) form becomes

(1.2) utt −4u+ f (ut) = |u|p−2
u ln |u| .

Several results of the problem (1.2) concerning local or global existence and qual-
itative theory have been studied by many mathematicians(see [1, 2, 4, 5, 6, 7, 10,
13, 19]). In the case M (s) 6= 1, m = 1 and p ≥ 2, a problem of the single wave

Date: Received: 2021-06-23; Accepted: 2021-07-29.
2000 Mathematics Subject Classification. 35B44, 35K52.
Key words and phrases. Global nonexistence, System of higher-order, Kirchhoff type equation.
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equation of (1.1) becomes the Kirchhoff-type equation which has been investigated
by many authors [3, 14, 18].

In the case M (s) 6= 1, m > 1 the single form of the problem (1.1) without
logarithmic source terms have been discussed by many authors (see [12, 16, 15, 11]).

Let us finally mention that wave equation system with logarithmic nonlinearies
was studied by Wang et al [17].They proved global existence and finite time blow up
under the different conditions by employing the potential well method and concavity
method. In [8], the authors studied (1.1) problem with nonlinear damping terms.
They established global existence and decay estimates.

The rest of this work is organized as follows. In Section 3, our aim is to prove
the blow up of solution for E (0) > 0. In section 2, we give some lemmas which will
be useful.

2. Preliminaries

Now we define the potential energy functional of problem (1.1)

J(u, v) =
1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr)(2.1)

and the Nehari functional

I(u, v) =
(
‖Dmu‖2 + ‖Dmv‖2

)
+
(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

 .(2.2)

By (2.1) and (2.2) we obtain

J(u, v) =
I(u, v)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr) .(2.3)

Then we can introduce the stable set

W = {(u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) : I(u, v) > 0} ∪ {0} ,

the outer space of the potential well

V = {(u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) : I(u, v) < 0} .



174 NAZLI IRKIL AND ERHAN PIŞKIN

We introduce the total energy

E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr) .(2.4)

For (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , t ≥ 0

E(0) =
1

2

(
‖u1‖2 + ‖v1‖2

)
+

1

2

(
‖Dmu0‖2 + ‖Dmv0‖2

)
+

1

2γ + 2

(
‖Dmu0‖2 + ‖Dmv0‖2

)γ+1

−1

r

∫
Ω

|u0|r ln |u0| dx+

∫
Ω

|v0|r ln |v0| dx

+
1

r2
(‖u0‖rr + ‖v0‖rr) .(2.5)

is the initial total energy. We introduce by (2.4) and (2.3)

(2.6) E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+ J (u, v) ,

Lemma 2.1. Let k be a number with 2 ≤ k < ∞ if n ≤ 2s and 2 ≤ k ≤ 2n
n−2k if

n > 2s. Then there is a constant such that

‖u‖k ≤ C ‖D
mu‖ ,∀(u, v) ∈ Hm

0 (Ω)×Hm
0 (Ω) .

Lemma 2.2. E(t) is a nonincreasing function for t ≥ 0 and

(2.7) E′ (t) = −
(
‖Dmut‖2 + ‖Dmvt‖2

)
≤ 0.

Proof. Multiplying the first equation of (1.1) by ut and the second equation of (1.1)
by vt, and integrating on Ω, we have

1

2

d

dt
‖ut‖2 +

d

dt

 1

r2
‖u‖rr −

1

r

∫
Ω

|u|r ln |u| dx


1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt
‖Dmu‖2

= −
∫
Ω

|Dmut|2 dx,(2.8)

and

1

2

d

dt
‖vt‖2 +

d

dt

 1

r2
‖v‖rr −

1

r

∫
Ω

|v|r ln |v| dx


1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt
‖Dmv‖2

= −
∫
Ω

|Dmvt|2 dx.(2.9)
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A summarization of (2.8) and (2.9) hence gives

1

2

d

dt

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt

(
‖Dmu‖2 + ‖Dmv‖2

)
d

dt

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr)


= −

∫
Ω

|Dmut|2 dx+

∫
Ω

|Dmvt|2 dx

 .(2.10)

Integrating (2.10) with respect to t on [0, t], we arrive at

1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx


+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖u1‖2 + ‖v1‖2

)
+

1

2

(
‖Dmu0‖2 + ‖Dmv0‖2

)
+

1

2γ + 2

(
‖Dmu0‖2 + ‖Dmv0‖2

)γ+1

+
1

r2
(‖u0‖rr + ‖v0‖rr)

−1

r

∫
Ω

|u0|r ln |u0| dx+

∫
Ω

|v0|r ln |v0| dx

 .(2.11)

By using the definition of total energy and initial total energy, we restate (2.11) as

(2.12) E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ

 = E (0) .

�

Now, we give some properties related with J(u, v) and I(u, v), respectively.

Lemma 2.3. For any (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , ‖Dmu‖ 6= 0 and ‖Dmu‖ 6= 0,let
g (λ) = J (λu, λv). Then we have

i) lim
λ→0

g (λ) = 0, lim
λ→∞

g (λ) = −∞,
ii) There is a unique λ∗ such that g′ (λ) = 0,
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iii) Then we have

I (λu, λv) = λg′ (λ)

 > 0, 0 ≤ λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ.

Proof. By the definition of J (u, v) , we obtain

g (λ) = J (λu, λv)

=
1

2
λ2
(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

r2
λr (‖u‖rr + ‖v‖rr)

−1

r
ln |λ|λr (‖u‖rr + ‖v‖rr)−

1

r
λr

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx


+

1

2γ + 2
λ2γ+2

(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

.(2.13)

Since ‖Dmu‖ 6= 0, and ‖Dmv‖ 6= 0, lim
λ→0

g (λ) = 0, lim
λ→∞

g (λ) = −∞. Now, differen-

tiating g (λ) with respect to λ, we have

g′ (λ) = λ
(
‖Dmu‖2 + ‖Dmv‖2

)
+ λ2γ+1

(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−1

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx

− λr−1 ln |λ| (‖u‖rr + ‖v‖rr)

= λ

((
‖Dmu‖2 + ‖Dmv‖2

)
+ β2λ

2γ
(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−2

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx

− λr−2 ln |λ| (‖u‖rr + ‖v‖rr)

 .(2.14)

Let

ψ (λ) = λ2γ
(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−2

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx


−λr−2 ln |λ| (‖u‖rr + ‖v‖rr) .

Then from 2γ ≤ r − 2 we can deduce that lim
λ→∞

ψ (λ) = −∞, ψ (λ) is monotone

decreasing when λ > λ1 and there exists a unique λ1 such that ψ
(
λ1
)

= 0. Then we

obtain there is a λ∗ > λ1 such that λ
[(
‖Dmu‖2 + ‖Dmv‖2

)
+ ψ (λ)

]
= 0, which

means g′ (λ) = 0.
The last property (iii), is only a simple corollary of the fact that

(2.15) λ
dJ (λu, λv)

dλ
= λg′ (λ) = I (λu, λv) .

�
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Lemma 2.4. i) The definition of the potential well depth

(2.16) d = inf
u∈N

J (u, v) ,

where

N = {(u, v) : (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) \ {0} : I (u, v) = 0} ,
is equivalent to
(2.17)

d = inf

{
sup
λ≥0

J (λu, λv) | (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , ‖Dmu‖2 6= 0, ‖Dmv‖2 6= 0

}
.

ii) The constant d in (2.16) satisfies

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

where C1 is the optimal constant of Lemma 2.1 (Hm
0 (Ω) ↪→ Lr+1) and

(2.18)

{
2γ + 2 ≤ r ≤ n+2m

n−2m , n > 2m,

2γ + 2 ≤ r ≤ ∞, n ≤ 2m.

Proof. i) The definition of d from (iii) of Lemma 2.3 it implies that for any (u, v) ∈
Hm

0 (Ω)×Hm
0 (Ω) , there exist a λ∗ such that I (λ∗u, λ∗v) = 0, that is (λ∗u, λ∗v) ∈

N. By the definition of d we obtain

(2.19) J (λ∗u, λ∗v) ≥ d for any (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) / {0} .

And because of Lemma 2.3

sup
λ≥0

J (λu, λv) = J (λ∗u, λ∗v) ,

which by virtue of (2.19) means

(2.20) inf
(u,v)∈Hm0 (Ω)×Hm0 (Ω)

sup
λ≥0

J (λu, λv) = inf
(u,v)∈Hm0 (Ω)×Hm0 (Ω)

J (λ∗u, λ∗v) ≥ d,

As (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) / {0} , we obtain d is not equivalent to 0, which gives
(2.17). On the other hand, from the definition of d given by (2.17) it implies that
there exists λ1 such that

sup
λ≥0

J (λu, λv) = supJ
(
λ1u, λ1∗v

)
.

Then from Lemma 2.3 we can deduce λ∗ = λ1. And it shows that

I
(
λ1u, λ1v

)
= I (λ∗u, λ∗v) = 0,

which means
(
λ1u, λ1v

)
∈ N. By the definition of d, we get,

d = inf
(λ∗u,λ∗v)∈N

J
(
λ1u, λ1v

)
,

that is

(2.21) d = inf
(u,v)∈N

J (u, v) .

This complete our proof for (i).
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ii) By virtue of I (u, v) = 0 and definition of I (u, v) and the embedding theorems
we obtain(
‖Dmu‖2 + ‖Dmv‖2

)
+
(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

=

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx,

(
‖Dmu‖2 + ‖Dmv‖2

)
≤

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

≤ ‖u‖r+1
r+1 + ‖v‖r+1

r+1

≤ Cr+1
1

(
‖Dmu‖r+1

+ ‖Dmv‖r+1
)

≤ Cr+1
1

(
‖Dmu‖2 + ‖Dmv‖2

) r−1
2
(
‖Dmu‖2 + ‖Dmv‖2

)
,(2.22)

which means

(2.23) ‖Dmu‖2 + ‖Dmv‖2 ≥
(

1

Cr+1
1

) 2
r−1

.

From the definition of d, we have (u, v) ∈ N. By the definition of J (u, v), (2.22),
(2.3) and I (u, v) = 0, we get

J (u, v) =
I (u, v)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

≥ (r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

where 2γ ≤ r − 2 . Combining of (2.21) and (2.23), we can see clearly that

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

.

�

Lemma 2.5. Let (u, v) be a weak solution problem of (1.1) and (u0, v0) ∈ Hr1
0 (Ω)×

Hr2
0 (Ω) , (u1, v1) ∈ L2 (Ω)× L2 (Ω). Suppose that E (0) < d
i) if (u0, v0) ∈W, then (u, v) ∈W for 0 ≤ t ≤ T ;
ii) if (u0, v0) ∈ V, then (u, v) ∈ V for 0 ≤ t ≤ T,
where T is the maximum existence time of (u (t) , v (t)) .

Proof. We only prove case (i), case (ii) is similar. Let (u (t) , v (t)) be a weak solution
problem of (1.1) under the conditions and (u0, v0) ∈ W and T can define of the
maximum existence time of (u (x, t) , v (x, t)) . Then by (2.7) the energy functional
is nonincreasing about t. So that, we have E ((u (t) , v (t))) < E (0) < d which
means I ((u (t) , v (t))) > 0 for 0 < t < T. We will use contradiction and we suppose
that; there is a t1 ∈ (0, T ) such that I (u (t1) , v (t1)) < 0. In this way there is
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a t∗ ∈ (0, T ) to make I (u (t∗) , v (t∗)) = 0 because of continuity of I (u (t) , v (t))
about time. Then by (2.16), we get

d > E (0) ≥ E (u (t∗) , v (t∗)) ≥ J (u (t∗) , v (t∗)) ≥ d,

which is a contradiction. �

Lemma 2.6. Under the condition of Lemma 2.5 (ii), we get

d <
(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
.

Proof. By using definition of the d, we get

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

which together I (u, v) < 0. Then similar calculations at (2.22), we get

(2.24) ‖Dmu‖2 + ‖Dmv‖2 ≥
(

1

Cr+1
1

) 2
r−1

,

which means

d <
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

.

�

3. Finite time blow up of solutions for positive initial energy

In tis part we introduce the finite time blow up solution to problem (1.1) with
E (0) > 0. Now we give some lemmas which will be used the proof of the Theorem
3.3.

Lemma 3.1. Let (u, v) be a weak solution problem of (1.1) and (u0, v0) ∈ Hm
0 (Ω)×

Hm
0 (Ω) , (u1, v1) ∈ Hm

0 (Ω) × Hm
0 (Ω). Suppose that E (0) > 0 and initial data

supplies

(3.1) ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1) >
2r (C + 2)

(r − 2)C
E (0) > 0,

where C is the best constant of Lemma 2.1.

By (u, v) ∈ V, the map{
t 7→ ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

}
is strictly increasing.

Proof. Defining the following auxiliary function

(3.2) G (t) = ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt) ,

where

(3.3) G (0) = ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1) .
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By taking derivative of above function, we get

G′ (t) = 2 (Dmu,Dmut) + 2 (Dmv,Dmvt)

+2
(
‖ut‖2 + ‖vt‖2

)
+ 2 [(u, utt) + (v, vtt)]

= 2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v) .

By I (u, v) < 0, for all t ∈ [0,∞) it gives that

(3.4) G′ (t) > 0.

From (3.1), (3.3) and (3.4) we obtain

G (t) > G (0) > 0,

which gives that the map{
t 7→ ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

}
is strictly increasing. �

Lemma 3.2. Under the conditions of Lemma 3.1 (u, v) is the solution of problem
(1.1) with the maximum existence time interval [0, T ) and T ≤ ∞. If (u0, v0) ∈ V,
then the all solutions (u, v) belong to V .

Proof. Our purpose is to show that (u, v) ∈ V. Arguing by contradiction, we con-
sider that t∗ ∈ (0, T ) is the first time which satisfies

I (u (t∗) , v (t∗)) = 0,

and

I (u (t) , v (t)) < 0 for t ∈ [0, t∗) .

Then from Lemma 3.1 and the continuity of (u, v) and (ut, vt) in t, for t ∈ (0, t∗)
we get

‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

> ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1)

>
2r (C + 2)

(r − 2)C
E (0) .(3.5)

By (2.3), (2.6) and (2.12) we arrive at

E (0) = E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖ut‖2 + ‖vt‖2

)
+
I(t)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


≥ 1

2

(
‖ut‖2 + ‖vt‖2

)
+
I(t)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
.(3.6)
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By using r ≥ 2γ + 2, I (u (t∗) , v (t∗)) = 0 , Young’s inequality and Lemma 211, we
conclude that

E (0) ≥ E (t∗)

≥ 1

2

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+
I(t∗)

r
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥

(
1

2
− 1

r

)(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
=

(r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2 + ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
+

(r − 2)

r (C + 2)

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2 + ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
+

(r − 2)C

r (C + 2)

(
‖u(t∗)‖2 + ‖v(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

[
‖ut(t∗)‖2 + ‖vt(t∗)‖2

+ ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2 +
(
‖u(t∗)‖2 + ‖v(t∗)‖2

)]
≥ (r − 2)C

2r (C + 2)
{[2 (ut(t

∗), u(t∗)) + 2 (vt(t
∗), v(t∗))]

+ ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2
}
.(3.7)

Clearly, we show that (3.7) contradicts (3.5). This completes the proof of lemma.
�

Theorem 3.3. Let (u, v) be a weak solution of problem of (1.1) and (u0, v0) ∈
Hm

0 (Ω)×Hm
0 (Ω) , (u1, v1) ∈ Hm

0 (Ω)×Hm
0 (Ω). Suppose that (3.1) holds. Therefore

the solution of problem (1.1) blows up in finite time as long as E (0) > 0 and
(u0, v0) ∈ V.

Proof. We prove the finite time blow up of solution to (1.1). If it is not this case ,
we suppose existence time T =∞. For any T0 > 0, we define the auxiliary function

Φ (t) = ‖u‖2 + ‖v‖2 +

t∫
0

(
‖Dmu‖2 + ‖Dmv‖2

)
dτ

(T0 − t)
(
‖Dmu‖2 + ‖Dmv‖2

)
.(3.8)

It is clear that Φ (t) > 0 for all t ∈ [0, T0] . In view of continuity of Φ (t) in t, we
obtain that there is a ξ > 0 which is independent on T0 such that

(3.9) Φ (t) > ξ.
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Then by t ∈ [0, T0] ,we derive

Φ′ (t) = 2

∫
Ω

uutdx+

∫
Ω

vvtdx


+
(
‖Dmu‖2 + ‖Dmv‖2

)
−
(
‖Dmu0‖2 + ‖Dmv0‖2

)
= 2

∫
Ω

uutdx+

∫
Ω

vvtdx


+2

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ))

 ,(3.10)

and

Φ′′ (t) = 2
(
‖ut‖2 + ‖vt‖2

)
+ 2 (u, utt) + 2 (v, vtt)

2 (Dmu,Dmut) + 2 (Dmv,Dmvt)

= 2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v) .(3.11)

From (3.10) it implies

(B′ (t))
2

= 4
(

(u, ut)
2

+ (v, vt)
2
)

+4

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ))

2

+8

 (
t∫

0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ

)
((u, ut) + (v, vt))

 .(3.12)

Our aim is to estimate each terms in (3.12) by Cauchy-Schwarz and Young’s in-
equalities. We obtain the first and second terms as follow

(u, ut)
2

+ (v, vt)
2 ≤ (‖u‖ ‖ut‖+ ‖v‖ ‖vt‖)2

≤
(
‖u‖2 + ‖v‖2

)(
‖ut‖2 + ‖vt‖2

)
,(3.13)
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and

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ

2

≤

 t∫
0

‖Dmu (τ)‖ ‖Dmuτ (τ)‖+ ‖Dmv (τ)‖ ‖Dmvτ (τ)‖ dτ

2

≤

 t∫
0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

) 1
2

+
(
‖Dmuτ (τ)‖2 ‖Dmvτ (τ)‖2

) 1
2

dτ

2

≤
t∫

0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ.(3.14)

For the last term by using again Cauchy-Schwarz and Young’s inequalities we obtain

2

((u, ut) + (v, vt))

t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ


≤ 2

((
‖u‖2 + ‖v‖2

) 1
2
(
‖ut‖2 + ‖vt‖2

) 1
2

)
 t∫

0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ


1
2

≤
(
‖ut‖2 + ‖vt‖2

) t∫
0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

+
(
‖u‖2 + ‖v‖2

) t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ.(3.15)

Substituting (3.13)-(3.15) into (3.12) becomes
(3.16)

(Φ′ (t))
2 ≤ 4Φ (t)

(‖ut‖2 + ‖vt‖2
)

+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .
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Combining (3.11) and (3.16) we obtain

Φ′′ (t) Φ (t)− ζ

4
(Φ′ (t))

2

≥ Φ (t)

Φ′′ (t)− ζ


(
‖ut‖2 + ‖vt‖2

)
+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ




≥ Φ (t)
(

2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v)

−ζ

(‖ut‖2 + ‖vt‖2
)

+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .(3.17)

Let

η (t) = (2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v)

−ζ

 t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .(3.18)

By Lemma 2.2 we get

E (0) = E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖ut‖2 + ‖vt‖2

)
+
r − 2

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+
r − 2γ − 2

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

I(u, v)

r
+

1

r2
(‖u‖rr + ‖v‖rr)

+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ

 .(3.19)
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Then by combining (3.18) and (3.19), noting ζ = 4C+2r+4
C+2 , which guarantees

2 < ζ < r + 2, and using Lemma 2.1 again, it gives that

ζ (t) = (r + 2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+ (2r − ζ)

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

+ (r − 2)
(
‖Dmu‖2 + ‖Dmv‖2

)
+
r − 2γ − 2

γ + 1

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
2

r
(‖u‖rr + ‖v‖rr)

≥ (r + 2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+ (r − 2)
(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r + 2− ζ)

(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+
2 (r + 2− ζ)

C

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(
(r − 2)− 2 (r + 2− ζ)

C

)(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r + 2− ζ)

(
‖ut‖2 + ‖vt‖2 + 2

(
‖u‖2 + ‖v‖2

))
− 2rE (0)

+

(
(r − 2)− 2 (r + 2− ζ)

C

)(
‖Dmu‖2 + ‖Dmv‖2

)
≥ C (r − 2)

C + 2

[
‖ut‖2 + ‖vt‖2 + 2

(
‖u‖2 + ‖v‖2

)
+ ‖Dmu‖2 + ‖Dmv‖2

]
− 2rE (0)

≥ C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2

]
−2rE (0) .(3.20)

Therefore by Lemma 3.1 and Lemma 3.2, we conclude that

ζ (t) ≥ C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2

]
− 2rE (0)

=
C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2 − 2r (C + 2)

C (r − 2)

]
≥ C (r − 2)

C + 2

[
2 (u0, u1) + 2 (v0, v1) + ‖Dmu0‖2 + ‖Dmv0‖2 −

2r (C + 2)

C (r − 2)

]
> σ2 > 0,

which shows that

Φ′′ (t) Φ (t)− ζ

4
(Φ′ (t))

2
> Φ (t)σ2 > 0.
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Let y (t) = Φ (t)
− ζ−4

4 , then we obtain

y′′ (t) ≤ −ζ − 4

4
σ2y (t)

ζ
ζ−4 , t ∈ [0, T0] ,

where ζ = 4C+2r+4
C+2 ≥ 4.

That is

lim
t→T∗

y (t) = 0,

where T ∗ is independent of initial choice of T0 and T ∗ < T0. Therefore, we can
conclude that

lim
t→T∗

Φ (t) =∞.

�

4. Conclusion

This paper has been able to prove the blow up result for a higher order Kirchhoff
type system with logarithmic nonlinearities. This result is new for these types of
systems, and it generalises many related problems in the literature.
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Abstract. Let ωi be weight functions on R, (i=1,2,3,4). In this work, we
define CW p,q,r,s,τ

ω1,ω2,ω3,ω4 (R) to be vector space of (f, g) ∈
(
Lpω1 × L

q
ω2

)
(R) such

that the τ−Wigner transforms Wτ (f, .) and Wτ (., g) belong to Lrω3

(
R2

)
and

Lsω4

(
R2

)
respectively for 1 ≤ p, q, r, s < ∞, τ ∈ (0, 1). We endow this space

with a sum norm and prove that CW p,q,r,s,τ
ω1,ω2,ω3,ω4 (R) is a Banach space. We

also show that CW p,q,r,s,τ
ω1,ω2,ω3,ω4 (R) becomes an essential Banach module over(

L1
ω1
× L1

ω2

)
(R). We then consider approximate identities.

1. Introduction

In this paper S (R) denotes the space of complex-valued continuous functions
on R rapidly decreasing at infinity, respectively. The space Lp (R) , (1 ≤ p <∞)
denotes the usual Lebesgue space. Let ω be weight function on R, i.e., positive
real valued, measurable and locally bounded function which satisfy ω (x) ≥ 1,
ω (x+ y) ≤ ω (x)ω (y) for all x, y ∈ R. For a ≥ 0, a weight ω (x, t) = (1 + |x|+ |t|)a
which is defined on R2 is called weight of polynomial type. The weighted Lebesgue
space is defined by Lpω (R) = {f : fω ∈ Lp (R)} for 1 ≤ p < ∞. It is known that
Lpω (R) is a Banach space under the norm ‖f‖p,ω = ‖fω‖p , [9]. For any function f :
R −→ C, the translation, modulation and dilation operators Tx, Mω and Ds are

given by Txf (t) = f (t− x), Mωf (t) = e2πiωtf (t) and Dsf (t) = |s|−
1
2 f
(
t
s

)
for

all x, ω ∈ R, 0 6= s ∈ R, respectively. The parameters in wavelet theory are “time”
x and “scale” s. Dilation operator Ds preserves the shape of f , but it changes the
scale, [7].

Given any fixed 0 6= g ∈ L2 (R)(called the window function), the short-time
Fourier transform (STFT) of a function f ∈ L2 (R) with respect to g is defined by

Vgf (x, ω) =

∫
R

f (t) g (t− x)e−2πitωdt,
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for x, ω ∈ R. The short-time Fourier transform is written as convolution Vgf (x, ω) =

e−2πixω (f ∗Mωg
∗) (x), where g∗ (t) = g (−t). It is easy to see that Vgf (x, ω) =

e−2πixωVfg (−x,−ω). If g is a compact supported function with its support centered
at the origin, then the short-time Fourier transform Vgf (x, .) is the Fourier Trans-
form of a segment of f centered in a neighborhood of x, [7]. Let τ ∈ (0, 1) and let
0 6= g ∈ L2 (R) be any fixed window function. The τ−short-time Fourier transform

of a function f ∈ L2 (R) with respect to g is given by V τg f (x, ω) = Vgf
(

x
1−τ ,

ω
τ

)
for x, ω ∈ R, [1,2,10]

The cross-Wigner distribution of f, g ∈ L2 (R) is defined to be

W (f, g) (x, ω) =

∫
R

f

(
x+

t

2

)
g

(
x− t

2

)
e−2πitωdt

for x, ω ∈ R. If f = g, then W (f, f) = Wf is said the Wigner distribution of
f ∈ L2 (R) . The Wigner distribution is a quadratic time-frequency representation
and it measures how much of the signal energy during the any time period which
is concentrated in a frequency band. In this way, information about the energy
density in the time-frequency plane is taken. It also gives the joint probability
density function of the position and momentum variables, [7]. Let τ ∈ [0, 1] and let
f, g be in L2 (R), the τ−Wigner transform is given by

Wτ (f, g) (x, ω) =

∫
R

f (x+ τt) g (x− (1− τ) t)e−2πitωdt, x, ω ∈ R

[1,2,10]. Let (X, ‖.‖X) be a Banach space and let (Y, ‖.‖Y ) be a Banach algebra. If
X is an algebric Y−module, and ‖yx‖X ≤ ‖y‖Y ‖x‖X for all y ∈ Y , x ∈ X, then X
is called a Banach Y -module, [12]. If a net (eα)α∈I in a Banach algebra (E, ‖.‖E)
satisfies lim

α∈I
eαx = x for all x ∈ E, then (eα)α∈I is called a left approximate

identity. Also if a net (eα)α∈I in a Banach algebra (E, ‖.‖E) satisfies lim
α∈I

xeα = x

for all x ∈ E, then (eα)α∈I is called a right approximate identity. If a net (eα)α∈I
is a left approximate identity and right approximate identity, then (eα)α∈I is called
an approximate identity. Moreover if there exists C > 0 such that ‖eα‖E ≤ C for
all α ∈ I, then (eα)α∈I is said a bounded approximate identity, [3].

2. Main Results

Definition 2.1. Let ωi (i = 1, 2, 3, 4) be weight functions on R and let 1 ≤ p, q, r, s <
∞, τ ∈ (0, 1). The space CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) consists of all (f, g) ∈

(
Lpω1
× Lqω2

)
(R)

such that their binary τ−Wigner transforms (Wτ (f, .) ,Wτ (., g)) are in
(
Lrω3
× Lsω4

)(
R2
)
. It is easy to see that

‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(f, g)‖Lpω1
×Lqω2

+ ‖(Wτ (f, .) ,Wτ (., g))‖Lrω3
×Lsω4

is a norm on the vector space CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). Also, there exist sum and maxi-

mum norms on the spaces
(
Lpω1
× Lqω2

)
(R) and

(
Lrω3
× Lsω4

) (
R2
)
.

Theorem 2.2.
(
CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) , ‖.‖CWp,q,r,s,τ

ω1,ω2,ω3,ω4

)
is a Banach space.

Proof. Assume that ((fn, gn))n∈N is a Cauchy sequence in CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). Clearly

((fn, gn))n∈N and ((Wτ (fn, .) ,Wτ (., gn)))n∈N are Cauchy sequences in
(
Lpω1
× Lqω2

)
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(R) and
(
Lrω3
× Lsω4

) (
R2
)
, respectively. Since

(
Lpω1
× Lqω2

)
(R) and

(
Lrω3
× Lsω4

) (
R2
)

are Banach spaces, there exist (f, g) ∈
(
Lpω1
× Lqω2

)
(R) and (h, k) ∈

(
Lrω3
× Lsω4

) (
R2
)

such that ‖fn − f‖p,ω1
−→ 0, ‖gn − g‖q,ω2

−→ 0, ‖Wτ (fn, .)− h‖r,ω3
−→ 0 and

‖Wτ (., gn)− k‖s,ω4
−→ 0. This implies ‖Wτ (fn, .)− h‖r −→ 0 and

‖Wτ (., gn)− k‖s −→ 0. Then ((Wτ (fn, .) ,Wτ (., gn)))n∈N has a subsequence
((Wτ (fnk , .) ,Wτ (., gnk)))nk∈N which converges pointwise to (h, k) almost every-

where. Also it is easy to show that ‖fnk − f‖p −→ 0 and ‖gnk − g‖q −→ 0. On the

other hand, if we use the Hölder inequality, then for any u ∈ S (R) we find

|Wτ (fnk , u) (x, ω)−Wτ (f, u) (x, ω)| =

=

∣∣∣∣∣∣
∫
R

fnk (x+ τt)u (x− (1− τ) t)e−2πiωtdt−
∫
R

f (x+ τt)u (x− (1− τ) t)e−2πitωdt

∣∣∣∣∣∣
≤
∫
R

∣∣∣(fnk − f) (x+ τt)u (x− (1− τ) t)e−2πitω
∣∣∣ dt

≤
(

1

τ

) 1
p
(

1

1− τ

) 1
p′

‖fnk − f‖p ‖u‖p′ ,

(2.1)

where 1
p + 1

p′ = 1. Then by (2.1), we obtain

|Wτ (f, u) (x, ω)− h (x, ω)| ≤ |Wτ (fnk , u) (x, ω)−Wτ (f, u) (x, ω)|+
+ |Wτ (fnk , u) (x, ω)− h (x, ω)| ≤

≤
(

1

τ

) 1
p
(

1

1− τ

) 1
p′

‖fnk − f‖p ‖u‖p′ + |Wτ (fnk , .) (x, ω)− h (x, ω)|(2.2)

for any u ∈ S (R). By using the inequality (2.2), it is easily seen that Wτ (f, .) = h
almost everywhere. So the equivalence classes of Wτ (f, .) and h are equal. Using a
similar method, we find that Wτ (., g) = k almost everywhere. Then the equivalence
classes of Wτ (., g) and k are equal. Hence

‖(fn, gn)− (f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(fn − f, gn − g)‖Lpω1
×Lqω2

+

+ ‖(Wτ (fn − f, .) ,Wτ (., gn − g))‖Lrω3
×Lsω4

−→ 0

and (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). That means CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) is a Banach space.
�

Theorem 2.3. Let ωi (i = 1, 2, 3, 4) be weight functions of polynomial type. Then
(S × S) (R) is dense in CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R).

Proof. Take any (f, g) ∈ (S × S) (R). Then (Wτ (f, .) ,Wτ (., g)) ∈ (S × S)
(
R2
)
.

Since ωi (i = 1, 2, 3, 4) are weight functions of polynomial type, we have (f, g) ∈(
Lpω1
× Lqω2

)
(R) and (Wτ (f, .) ,Wτ (., g)) ∈

(
Lrω3
× Lsω4

) (
R2
)
. That means (f, g) ∈

CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). Hence we have (S × S) (R) ⊂ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R).

Now take any (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). Then we have (f, g) ∈
(
Lpω1
× Lqω2

)
(R)

and (Wτ (f, .) ,Wτ (., g)) ∈
(
Lrω3
× Lsω4

) (
R2
)
. Since (S × S) (R) =

(
Lpω1
× Lqω2

)
(R)

and (S × S) (R2) =
(
Lrω3
× Lsω4

) (
R2
)
, there exist ((hn, kn))n∈N ⊂ (S × S) (R) and
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((Hn,Kn))n∈N ⊂ (S × S)
(
R2
)

such that

(2.3) ‖(f, g)− (hn, kn)‖Lpω1
×Lqω2

→ 0

and

(2.4) ‖(Wτ (f, .) ,Wτ (., g))− (Hn,Kn)‖Lrω3
×Lsω4

→ 0.

Then by (2.4), we have ‖Wτ (f, .)−Hn‖r → 0 and ‖Wτ (., g)−Kn‖s → 0. So
(Hn)n∈N and (Kn)n∈N have subsequences (Hnk)nk∈N and (Knk)nk∈Nwhich converge

pointwise to Wτ (f, .) and Wτ (., g) almost everywhere, respectively. Then, we easily
show that

(2.5) ‖Wτ (f, .)−Hnk‖r,ω3
→ 0, ‖Wτ (., g)−Knk‖s,ω4

→ 0.

Using Hölder inequality, we have for any u ∈ S (R)

|Wτ (hn, u) (x, ω)−Hnk (x, ω)| ≤ |Wτ (f, u) (x, ω)−Hnk (x, ω)|+
+ |Wτ (f, u) (x, ω)−Wτ (hn, u) (x, ω)|

≤ |Wτ (f, u) (x, ω)−Hnk (x, ω)|+
∫
R

|(f − hn) (x+ τt)| |u (x− (1− τ) t)| dt

≤ |Wτ (f, u) (x, ω)−Hnk (x, ω)|+
(

1

τ

) 1
p
(

1

1− τ

) 1
p′

‖f − hn‖p ‖u‖p′ ,

(2.6)

where 1
p + 1

p′ = 1. By (2.3) and (2.6), we achieve Wτ (hn, .) = Hnk . Similarly, we

can write Wτ (., kn) = Knk . Then by (2.5), we find

‖Wτ (f, .)−Wτ (hn, .)‖r,ω3
→ 0, ‖Wτ (., g)−Wτ (., kn)‖s,ω4

→ 0.

This implies

(2.7) ‖(Wτ (f, .) ,Wτ (., g))− (Wτ (hn, .) ,Wτ (., kn))‖Lrω3
×Lsω4

→ 0.

Finally combining (2.3) and (2.7), we get

‖(f, g)− (hn, kn)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(f, g)− (hn, kn)‖Lpω1
×Lqω2

+

+ ‖(Wτ (f, .) ,Wτ (., g))− (Wτ (hn, .) ,Wτ (., kn))‖Lrω3
×Lsω4

−→ 0.

Therefore the proof is completed. �

Definition 2.4. Let ω1 and ω3 be weight functions on R and let be 1 ≤ p, r <∞,
τ ∈ (0, 1). The space CW p,r,τ

ω1,ω3
(R) consists of all f ∈ Lpω1

(R) such that their

τ−Wigner transforms Wτ (f, .) are in Lrω3

(
R2
)
. We endow this space with the sum

norm
‖f‖CWp,r,τ

ω1,ω3
= ‖f‖p,ω1

+ ‖Wτ (f, .)‖r,ω3
.

Let ω2 and ω4 be weight functions on R and let be 1 ≤ q, s <∞, τ ∈ (0, 1). The
space CW q,s,τ

ω2,ω4
(R) consists of all g ∈ Lqω2

(R) such that their τ−Wigner transforms

Wτ (., g) are in Lsω4

(
R2
)
. This space is equipped with the sum norm

‖g‖CW q,s,τ
ω2,ω4

= ‖g‖q,ω2
+ ‖Wτ (., g)‖s,ω4

.

By using the method in Theorem 1, it is easy to see that this spaces CW p,r,τ
ω1,ω3

(R)
and CW q,s,τ

ω2,ω4
(R) are Banach space with these sum norm.

Lemma 2.5. The space CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) is isomorphic to
(
CW p,r,τ

ω1,ω3
× CW q,s,τ

ω2,ω4

)
(R).
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Proof. Take the mapping I : CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R)→
(
CW p,r,τ

ω1,ω3
× CW q,s,τ

ω2,ω4

)
(R), I ((f, g))

= (f, g). It is clear that this mapping is linear and bijective. Also, since

‖H ((f, g))‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(f, g)‖Lpω1
×Lqω2

+ ‖(Wτ (f, .) ,Wτ (., g))‖Lrω3
×Lsω4

= ‖f‖p,ω1
+ ‖g‖q,ω2

+ ‖Wτ (f, .)‖r,ω3
+ ‖Wτ (., g)‖s,ω4

= ‖f‖p,ω1
+ ‖Wτ (f, .)‖r,ω3

+ ‖g‖q,ω2
+ ‖Wτ (., g)‖s,ω4

= ‖f‖CWp,r,τ
ω1,ω3

+ ‖g‖CW q,s,τ
ω2,ω4

= ‖(f, g)‖CWp,r,τ
ω1,ω3

×CW q,s,τ
ω2,ω4

,

The mapping I is isometry of CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) into
(
CW p,r,τ

ω1,ω3
× CW q,s,τ

ω2,ω4

)
(R).

Therefore, we obtain that CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) ∼=
(
CW p,r,τ

ω1,ω3
× CW q,s,τ

ω2,ω4

)
(R). �

Definition 2.6. Let f and g be any functions on R. The binary translation map-
ping is defined by

Tx (f, g) (t) = (Txf (t) , Txg (t)) = (f (t− x) , g (t− x)) , x, t ∈ R.

The following lemma is written easily from Proposition4 in [11]

Lemma 2.7. For τ ∈ (0, 1) and z ∈ R, we have

Wτ (Tzf, h) (x, ω) = e−2πiωzT(z(1−τ),0)Wτ (f, h) (x, ω)

and

Wτ (k, Tzg) (x, ω) = e2πiωzT(zτ,0)Wτ (k, g) .

Theorem 2.8. Assume that ω3 is symmetric weight function. The space CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R)
is invariant under binary translations. Moreover,

‖Tz (f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

≤ (u (z) + v ((z, 0)) v ((zτ, 0))) ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

,

where u = max {ω1, ω2} and v = max {ω3, ω4}.

Proof. Let (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). Then, we write (f, g) ∈
(
Lpω1
× Lqω2

)
(R) and

(Wτ (f, .) ,Wτ (., g)) ∈
(
Lrω3
× Lsω4

) (
R2
)
. Also, since ‖Tzf‖p,ω1

≤ ω1 (z) ‖f‖p,ω1

and ‖Tzg‖q,ω2
≤ ω2 (z) ‖f‖q,ω2

[5], we have

‖Tz (f, g)‖Lpω1
×Lqω2

= ‖Tzf‖p,ω1
+ ‖Tzg‖q,ω2

≤ ω1 (z) ‖f‖p,ω1
+ ω2 (z) ‖f‖q,ω2

≤ u (z) ‖(f, g)‖Lpω1
×Lqω2

,(2.8)

where u = max {ω1, ω2}. Then, we write Tz (f, g) ∈
(
Lpω1
× Lqω2

)
(R) for all z ∈ R.

By Lemma 2.7, we have

‖(Wτ (Tzf, .) ,Wτ (., Tzg))‖Lrω3
×Lsω4

= ‖Wτ (Tzf, .)‖r,ω3
+ ‖Wτ (., Tzg)‖s,ω4

=
∥∥e−2πiωzT(z(1−τ),0)Wτ (f, .)

∥∥
r,ω3

+
∥∥e2πiωzT(zτ,0)Wτ (., g)

∥∥
s,ω4

≤ ω3 ((z (1− τ) , 0)) ‖Wτ (f, .)‖r,ω3
+ ω4 ((zτ, 0)) ‖Wτ (., g)‖s,ω4

≤ ω3 ((z, 0))ω3 ((zτ, 0)) ‖Wτ (f, .)‖r,ω3
+ ω4 ((z, 0))ω4 ((zτ, 0)) ‖Wτ (., g)‖s,ω4

≤ v ((z, 0)) v ((zτ, 0)) ‖(Wτ (f, .) ,Wτ (., g))‖Lrω3
×Lsω4

,

(2.9)
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where v = max {ω3, ω4} . Combining (2.8) and (2.9),

‖Tz (f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(Tzf, Tzg)‖Lpω1
×Lqω2

+ ‖(Wτ (Tzf, .) ,Wτ (., Tzg))‖Lrω3
×Lsω4

≤ u (z) ‖(f, g)‖Lpω1
×Lqω2

+ v ((z, 0)) v ((zτ, 0)) ‖(Wτ (f, .) ,Wτ (., g))‖Lrω3
×Lsω4

≤ u (z) ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

+ v ((z, 0)) v ((zτ, 0)) ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= (u (z) + v ((z, 0)) v ((zτ, 0))) ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

.

Finally, we say Tz (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) . �

Definition 2.9. Let f , g, h, k be Borel measurable functions on R. The binary
convolution is defined by (f, g) ∗ (h, k) = (f ∗ h, g ∗ k), where ”∗” denotes usual
convolution. The following conditions must be required for the binary convolution
to be defined; ∫

R

|f (y)h (x− y)| dy <∞

and ∫
R.

|g (y) k (x− y)| dy <∞

Theorem 2.10. a)Assume that ω3 is symmetric weight function. The binary
translation mapping (f, g) −→ Tz (f, g) is continuous from CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) into

CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) for every fixed z ∈ R.
b) The binary translation mapping z → Tz (f, g) is continuous from R into

CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R).

Proof. a) Let (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) be given. It is enough to prove the
theorem for (f, g) = (0, 0). Let ε > 0 be given. Choose an δ > 0 such that
δ = ε

u(z)+v((z,0))v((zτ,0)) . Thus, if ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

< δ, then by (2.9)

‖Tz (f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

≤ (u (z) + v ((z, 0)) v ((zτ, 0))) ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

< δ (u (z) + v ((z, 0)) v ((zτ, 0))) = ε.

b) Take any (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R). It is known that the translation mapping
is continuous from R into Lpω1

(R) and Lqω2
(R), [5]. So for any given ε > 0, there

exists δ1 (ε) > 0 such that if |z − u| < δ1 for z, u ∈ R, then

‖Tz (f, g)− Tu (f, g)‖Lpω1
×Lqω2

= ‖(Tzf − Tuf−, Tzg − Tug)‖Lpω1
×Lqω2

= max
{
‖Tzf − Tuf‖p,ω1

, ‖Tzg − Tug‖q,ω2

}
<
ε

2
(2.10)

Also since the modulation mapping is continuous from R into Lrω3

(
R2
)

and Lsω4

(
R2
)

[5], for the same ε > 0, there exists δ2 (ε) > 0 such that if |z − u| < δ2 for z, u ∈ R,
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then

‖(Wτ (Tzf − Tuf, .) ,Wτ (., Tzg − Tug))‖Lrω3
×Lsω4

=

= ‖Wτ (Tzf − Tuf, .)‖r,ω3
+ ‖Wτ (., Tzg − Tug)‖s,ω4

=

= max{
∥∥e−2πiωzT(z(1−τ),0)Wτ (f, .)− e−2πiωuT(u(1−τ),0)Wτ (f, .)

∥∥
r,ω3

,∥∥e2πiωzT(zτ,0)Wτ (., g)− e2πiωuT(uτ,0)Wτ (., g)
∥∥
s,ω4
} =

= max{
∥∥M(0,−z)T(z(1−τ),0)Wτ (f, .)−M(0,−u)T(u(1−τ),0)Wτ (f, .)

∥∥
r,ω3

,∥∥M(0,z)T(zτ,0)Wτ (., g)−M(0,u)T(uτ,0)Wτ (., g)
∥∥
s,ω4
} < ε

2
(2.11)

Set δ = min {δ1, δ2} . From (2.10) and (2.11), if |z − u| < δ for z, u ∈ R, then

‖Tz (f, g)− Tu (f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(Tzf − Tuf−, Tzg − Tug)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(Tzf − Tuf−, Tzg − Tug)‖Lpω1
×Lqω2

+

+ ‖(Wτ (Tzf − Tuf, .) ,Wτ (., Tzg − Tug))‖Lrω3
×Lsω4

<
ε

2
+
ε

2
= ε.

�

Corollary 1. a) The binary translation mapping z → Tz (f, g) is continuous from
R into CW p,r,τ

ω1,ω3
(R).

b) The binary translation mapping z → Tz (f, g) is continuous from R into
CW q,s,τ

ω2,ω4
(R).

Lemma 2.11. Let f , g ∈ S (R). If τ ∈ (0, 1), then

Wτ (f, g) (x, ω) = e
2πixω
τ

1√
τ (1− τ)

V τD τ
τ−1

gf (x, ω)

holds for all x, ω ∈ R.

Proof. Assume that f , g ∈ S (R). If we make the substitution u = x+ τt, then we
have

Wτ (f, g) (x, ω) =

∫
R

f (x+ τt) g (x− (1− τ) t)e−2πiωtdt

=

∫
R

f (u) g

(
u− u− x

τ

)
e−2πiω(u−xτ ) du

τ

=

∫
R

f (u) g

(
u

(
τ − 1

τ

)
+
x

τ

)
e−2πiω(u−xτ ) du

τ

=
1

τ
e2πi xωτ

∫
R

f (u) g

((
τ − 1

τ

)(
u− x

1− τ

))
e−2πiωuτ du

=
1

τ
e2πi xωτ

∣∣∣∣ τ

τ − 1

∣∣∣∣ 12 ∫
R

f (u)D τ
τ−1

g

(
u− x

1− τ

)
e−2πiωuτ du

= e
2πixω
τ

1√
τ (1− τ)

V τD τ
τ−1

gf (x, ω)

for all x, ω ∈ R. �
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Theorem 2.12. Let f , h, g, k, f1, f2 ∈ S (R). If τ ∈ (0, 1), then

Wτ (f ∗ h, f1) (x, ω) =
1√

τ (1− τ)
e
−2πixω

1−τ

(
h ∗
(
f ∗Mω

τ

(
D τ

τ−1
f1

)∗))( x

1− τ

)
and

Wτ (f2, g ∗ k) (x, ω) =
1

τ
e

2πixω(1+τ)
τ(1−τ)

(
D τ

τ−1
k ∗
(
D τ

τ−1
g ∗M−ω

τ
f∗2

))( −x
1− τ

)
holds for all x, ω ∈ R.

Proof. Take any f , h, f1 ∈ S (R). Then by Lemma 2.11, we have

Wτ (f ∗ h, f1) (x, ω) = e
2πixω
τ

1√
τ (1− τ)

V τD τ
τ−1

f1 (f ∗ h) (x, ω)

= e
2πixω
τ

1√
τ (1− τ)

VD τ
τ−1

f1 (f ∗ h)

(
x

1− τ
,
ω

τ

)
= e

2πixω
τ

1√
τ (1− τ)

e
−2πixω
τ(1−τ)

(
(f ∗ h) ∗Mω

τ

(
D τ

τ−1
f1

)∗)( x

1− τ

)
=

1√
τ (1− τ)

e
−2πixω

1−τ

(
h ∗
(
f ∗Mω

τ

(
D τ

τ−1
f1

)∗))( x

1− τ

)
.

Now take any g, k, f2 ∈ S (R). Again by Lemma 2.11, we get

Wτ (f2, g ∗ k) (x, ω) = e
2πixω
τ

1√
τ (1− τ)

V τD τ
τ−1

(g∗k)f2 (x, ω)

= e
2πixω
τ

1√
τ (1− τ)

VD τ
τ−1

(g∗k)f2

(
x

1− τ
,
ω

τ

)
= e

2πixω
τ

1√
τ (1− τ)

e
−2πixω
τ(1−τ) Vf2D τ

τ−1
(g ∗ k)

(
−x

1− τ
,
−ω
τ

)
= e

2πixω
τ

1√
τ (1− τ)

e
−2πixω
τ(1−τ) e

−2πi(−x)ω
τ(1−τ)

(
D τ

τ−1
(g ∗ k) ∗M−ω

τ
f∗2

)( −x
1− τ

)

=
1√

τ (1− τ)
e

2πixω(1+τ)
τ(1−τ)

∣∣∣∣ τ

τ − 1

∣∣∣∣−1
2 ((

D τ
τ−1

g ∗D τ
τ−1

k
)
∗M−ω

τ
f∗2

)( −x
1− τ

)
=

1

τ
e

2πixω(1+τ)
τ(1−τ)

(
D τ

τ−1
k ∗
(
D τ

τ−1
g ∗M−ω

τ
f∗2

))( −x
1− τ

)
.

�

Theorem 2.13. Suppose that ω3 = k1 and ω4 = k2 such that k1 and k2 are
constant numbers. Then CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) is an essential Banach module over(

L1
ω1
× L1

ω2

)
(R).

Proof. Let ω3 and ω4 be constant weight functions. It is known that CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R)
is a Banach space by Theorem 2.2. Now we take any (f, g) ∈ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R)

and (h, k) ∈
(
L1
ω1
× L1

ω2

)
(R). Since Lpω1

(R) and Lqω2
(R) are Banach convolution

module over L1
ω1

(R) and L1
ω2

(R) respectively, we have

(2.12) ‖f ∗ h‖p,ω1
≤ ‖f‖p,ω1

‖h‖1,ω1
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and

(2.13) ‖g ∗ k‖q,ω2
≤ ‖g‖q,ω2

‖k‖1,ω2
.

Take any f1 ∈ S (R). By Theorem 2.12, we get

‖Wτ (f ∗ h, f1)‖r,ω3
=

∥∥∥∥∥ 1√
τ (1− τ)

e
−2πixω

1−τ

(
h ∗
(
f ∗Mω

τ

(
D τ

τ−1
f1

)∗))( x

1− τ

)∥∥∥∥∥
r,ω3

=
1√

τ (1− τ)

∥∥∥∥∥∥
∫
R

h (u)Tu

(
f ∗Mω

τ

(
D τ

τ−1
f1

)∗)( x

1− τ

)
du

∥∥∥∥∥∥
r,ω3

=
1√

τ (1− τ)

∫
R

|h (u)|
∥∥∥∥Tu (f ∗Mω

τ

(
D τ

τ−1
f1

)∗)( x

1− τ

)∥∥∥∥
r,ω3

du

=
1√

τ (1− τ)

∫
R

|h (u)|
∥∥∥∥(f ∗Mω

τ

(
D τ

τ−1
f1

)∗)( x

1− τ

)∥∥∥∥
r,ω3

du

=
1√

τ (1− τ)

∫
R

|h (u)|
∥∥∥∥e 2πixω

τ(1−τ) e
−2πixω
τ(1−τ)

(
f ∗Mω

τ

(
D τ

τ−1
f1

)∗)( x

1− τ

)∥∥∥∥
r,ω3

du

=
1√

τ (1− τ)

∫
R

|h (u)|
∥∥∥∥e 2πixω

τ(1−τ)VD τ
τ−1

f1f

(
x

1− τ
,
ω

τ

)∥∥∥∥
r,ω3

du

=
1√

τ (1− τ)

∫
R

|h (u)|
∥∥∥∥V τD τ

τ−1
f1f (x, ω)

∥∥∥∥
r,ω3

du

=

∫
R

|h (u)|

∥∥∥∥∥e−2πixω
τ

1√
τ (1− τ)

e
2πixω
τ V τD τ

τ−1
f1f (x, ω)

∥∥∥∥∥
r,ω3

du

=

∫
R

|h (u)|
∥∥∥e−2πixω

τ Wτ (f, f1)
∥∥∥
r,ω3

du

= ‖Wτ (f, f1)‖r,ω3
‖h‖1

≤ ‖Wτ (f, f1)‖r,ω3
‖h‖1,ω3

<∞.
(2.14)

Thus Wτ (f ∗ h, .) ∈ Lrω3

(
R2
)
. Now take f2 ∈ S (R). Again by Theorem 2.12, we

have

‖Wτ (f2, g ∗ k)‖s,ω4
=

∥∥∥∥∥1

τ
e

2πixω(1+τ)
τ(1−τ)

(
D τ

τ−1
k ∗
(
D τ

τ−1
g ∗M−ω

τ
f∗2

))( −x
1− τ

)∥∥∥∥∥
s,ω4

=
1

τ

∥∥∥∥(D τ
τ−1

k ∗
(
D τ

τ−1
g ∗M−ω

τ
f∗2

))( −x
1− τ

)∥∥∥∥
s,ω4

=
1

τ

∥∥∥∥∥∥
∫
R

D τ
τ−1

k (u)Tu

(
D τ

τ−1
g ∗M−ω

τ
f∗2

)( −x
1− τ

)
du

∥∥∥∥∥∥
s,ω4

=
1

τ

∫
R

∥∥∥∥D τ
τ−1

k (u)Tu

(
D τ

τ−1
g ∗M−ω

τ
f∗2

)( −x
1− τ

)∥∥∥∥
s,ω4

du
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=
1

τ

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ∥∥∥∥e 2πixω

τ(1−τ) e
−2πixω
τ(1−τ)

(
D τ

τ−1
g ∗M−ω

τ
f∗2

)( −x
1− τ

)∥∥∥∥
s,ω4

du

=
1

τ

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ∥∥∥∥e 2πixω

τ(1−τ)Vf2D τ
τ−1

g

(
−x

1− τ
,
−ω
τ

)∥∥∥∥
s,ω4

du

=
1

τ

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ∥∥∥∥e 4πixω

τ(1−τ) e
−2πixω
τ(1−τ) Vf2D τ

τ−1
g

(
−x

1− τ
,
−ω
τ

)∥∥∥∥
s,ω4

du

=
1

τ

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ∥∥∥∥e 4πixω

τ(1−τ)VD τ
τ−1

gf2

(
x

1− τ
,
ω

τ

)∥∥∥∥
s,ω4

du

=
1

τ

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ∥∥∥∥∥√τ (1− τ)e

−2πixω
τ

1√
τ (1− τ)

e
2πixω
τ V τD τ

τ−1
gf2 (x, ω)

∥∥∥∥∥
s,ω4

du

=
1

τ

√
τ (1− τ)

∫
R

∣∣∣D τ
τ−1

k (u)
∣∣∣ ‖Wτ (f2, g)‖s,ω4

du

=

√
1− τ
τ
‖Wτ (f2, g)‖s,ω4

∥∥∥D τ
τ−1

k
∥∥∥

1

=

√
1− τ
τ
‖Wτ (f2, g)‖s,ω4

√
τ

1− τ
‖k‖1

≤ ‖Wτ (f2, g)‖s,ω4
‖k‖1,ω4

<∞.
(2.15)

So Wτ (., g ∗ k) ∈ Lsω4

(
R2
)
. Combining (2.12), (2.13), (2.14) and (2.15), we achieve

‖(f, g) ∗ (h, k)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(f ∗ h, g ∗ k)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

=

= ‖(f ∗ h, g ∗ k)‖Lpω1
×Lqω2

+ ‖(Wτ (f ∗ h, .) ,Wτ (., g ∗ k))‖Lrω3
×Lsω4

= max
{
‖f ∗ h‖p,ω1

, ‖g ∗ k‖q,ω2

}
+ max

{
‖Wτ (f ∗ h, .)‖r,ω3

, ‖Wτ (., g ∗ k)‖s,ω4

}
= max

{
‖f‖p,ω1

‖h‖1,ω1
, ‖g‖q,ω2

‖k‖1,ω2

}
+ max

{
‖Wτ (f, .)‖r,ω3

‖h‖1,ω3
, ‖Wτ (., g)‖s,ω4

‖k‖1,ω4

}
= max

{
‖f‖p,ω1

, ‖g‖q,ω2

}
max

{
‖h‖1,ω1

, ‖k‖1,ω2

}
+

+ max
{
‖Wτ (f, .)‖r,ω3

, ‖Wτ (., g)‖s,ω4

}
max

{
‖h‖1,ω3

, ‖k‖1,ω4

}
= max

{
‖f‖p,ω1

, ‖g‖q,ω2

}
max

{
‖h‖1,ω1

, ‖k‖1,ω2

}
+

+ max
{
‖Wτ (f, .)‖r,ω3

, ‖Wτ (., g)‖s,ω4

}
max

{
‖h‖1,ω1

, ‖k‖1,ω2

}
=
{

max
{
‖f‖p,ω1

, ‖g‖q,ω2

}
+ max

{
‖Wτ (f, .)‖r,ω3

, ‖Wτ (., g)‖s,ω4

}}
max

{
‖h‖1,ω1

, ‖k‖1,ω2

}
=
{
‖(f, g)‖Lpω1

×Lqω2
+ ‖(Wτ (f, .) ,Wτ (., g))‖Lrω3

×Lsω4

}
‖(h, k)‖L1

ω1
×L1

ω2

= ‖(f, g)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

‖(h, k)‖L1
ω1
×L1

ω2

.

(2.16)

Therefore we obtain that CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) is a Banach module over
(
L1
ω1
× L1

ω2

)
(R).
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Now we will show that CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) is an essential Banach module over(
L1
ω1
× L1

ω2

)
(R) and use Module Factorization Theorem [12]. For this, it suffices to

prove that
(
L1
ω1
× L1

ω2

)
(R) ∗ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) is dense in CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R). By

(2.16), we can write(
L1
ω1
× L1

ω2

)
(R) ∗ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) ⊂ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) .

Also it is known that L1
ω1

(R) and L1
ω2

(R) have bounded approximate identity,
[6]. Let U and V be compact neighbourhoods of the unit element of R. We can
choose approximate identities (eα)α∈I and (eβ)β∈I which are positive bounded and

suppeα ⊂ U , suppeβ ⊂ V , ‖eα‖1 = 1 and ‖eβ‖1 = 1 for all α, β ∈ I. Let
(h, k) ∈ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R). For fixed α0, β0 ∈ I, we get

‖(eα0 , eβ0) ∗ (h, k)− (h, k)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

= ‖(eα0 ∗ h− h, eβ0 ∗ k − k)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

≈ ‖(eα0
∗ h− h, eβ0

∗ k − k)‖CWp,r,τ
ω1,ω3

×CW q,s,τ
ω2,ω4

(2.17) = ‖eα0
∗ h− h‖CWp,r,τ

ω1,ω3
+ ‖eβ0

∗ k − k‖CW q,s,τ
ω2,ω4

.

On the other hand, since the translation mapping is continuous by Corollary 1, we
have ‖Tzh− h‖CWp,r,τ

ω1,ω3
< ε

2 for given any ε > 0. Hence

‖eα0
∗ h− h‖CWp,r,τ

ω1,ω3
=

∥∥∥∥∥∥
∫
R

eα0
(z) (Tzh (y)− h (y)) dz

∥∥∥∥∥∥
CWp,r,τ

ω1,ω3

≤
∫
Rd

eα0 (z) ‖Tzh− h‖CWp,r,τ
ω1,ω3

dz <
ε

2
.(2.18)

Similarly we write for the same ε > 0,we can make

(2.19) ‖eβ0
∗ k − k‖CW q,s,τ

ω2,ω4
<
ε

2
.

Then, by (2.17), (2.18) and (2.19), we obtain

‖(eα0
, eβ0

) ∗ (h, k)− (h, k)‖CWp,q,r,s,τ
ω1,ω2,ω3,ω4

<
ε

2
+
ε

2
= ε.

That means
(
L1
ω1
× L1

ω2

)
(R) ∗ CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R) is dense in CW p,q,r,s,τ

ω1,ω2,ω3,ω4
(R).

Therefore from Module Factorization Theorem, the proof is completed. �

By using Theorem 6, it easy to prove following Corollary

Corollary 2. Assume that ω3 = k1 and ω4 = k2 such that k1 and k2 are constant
numbers. Then,

a) CW p,r,τ
ω1,ω3

(R) is an essential Banach module over L1
ω1

(R).

b) CW q,s,τ
ω2,ω4

(R) is an essential Banach module over L1
ω2

(R).

Theorem 2.14. Let ω3 = k1 and ω4 = k2 be constant weight functions. Then
there exists ((eα, eβ))α,β∈I is an approximate identity of the space

(
L1
ω1
× L1

ω2

)
(R)

such that

lim
α,β∈I

(eα, eβ) ∗ (f, g) = (f, g)

for all (f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R).
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Proof. Using the fact that L1
ω1

(R) and L1
ω2

(R) have bounded approximate identi-
ties (eα)α∈I and (eβ)β∈I , respectively, we easily obtain that ((eα, eβ))α,β∈I is an

approximate identity in
(
L1
ω1
× L1

ω2

)
(R). On the other hand, from Corollary 2 and

by [3], we get

(2.20) lim
α∈I

eα ∗ f = f , lim
β∈I

eβ ∗ g = g

for all f ∈ CW p,r,τ
ω1,ω3

(R) and g ∈ CW q,s,τ
ω2,ω4

(R) . Therefore by (2.20), we obtain

lim
α,β∈I

(eα, eβ) ∗ (f, g) = lim
α,β∈I

(eα ∗ f, eβ ∗ g) = (f, g)

(f, g) ∈ CW p,q,r,s,τ
ω1,ω2,ω3,ω4

(R) . �

3. Conclusion

Wigner transform, which is a quadratic time-frequency representation; it is very
ideal in the mathematical description of the time-frequency information of the sig-
nals. The reasons for its preference can be summarized as follows: The Wigner
transform measures the energy of a given signal in any frequency band and in any
time period. Thus, in signal analysis, the information of the energy density in
the time-frequency plane is obtained. It also gives the joint probability distribu-
tion for position and momentum variables in physics, [7]. In our previous papers,
we have characterized function spaces using the wavelet transform and fractional
wavelet transform, [4,8]. In this study, we defined a new function space using the
τ−Wigner transform, which is a quadric time-frequency transform. We then have
studied the Banach module structure of this space, the continuity of the translation
mapping and its approximate units. In this way, a new function space with rich
features was characterized thanks to the τ−Wigner transform, which is frequently
used in harmonic analysis, signal analysis and operator theory.
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Abstract. In this article, a number of properties have been obtained by ex-

amining Ricci solitons and gradient Ricci solitons on nearly cosymplectic man-

ifolds.

1. Introduction

In 1959, Liberman [22] and in 1967 Blair [8] have described as odd-dimensional
cosymplectic manifolds similar to Kähler manifolds. Later in 1970, nearly Kähler
manifolds with the structure (M,J, g) have been introduced as almost Hermitian
manifolds by Gray. Based on this study, almost complex structure’s covariant
derivative is skew symmetric operator according to the Levi-Civita connection.
Also the covariant derivative operator satisfies

(∇XJ)X = 0,

for every vector field X on M [18]. Following year, Blair has defined an almost con-
tact manifold with Killing structure tensors which is a nearly cosymplectic manifold
[7]. Nearly cosymplectic manifolds have defined by the same viewpoint as cosym-
plectic ( and also called coKähler) manifolds. Almost contact metric structure
(ϕ, ξ, η, g) that provides the condition

(1.1) (∇Xϕ)X = 0,

is called a nearly cosymplectic structure. Also a smooth manifold M with nearly
cosymplectic structure which endowed with almost contact metric structure (ϕ, ξ, η, g)
is said to be nearly cosymplectic manifold. Recently, nearly cosymplectic manifolds
have been studied by many researchers (e.g. [1], [15], [26], [27]). Ricci solitons have
recently become an important research topic due to the Ricci flow on many mani-
folds. Firstly, the definition of Ricci soliton, Ricci solitons have been introduced by
Hamilton [19] and can be obtained as a generalization of Einstein metrics. By the
way on a manifold M , a Ricci flow is defined as

∂g/∂t = −2Ric(g)
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(we will use S instead of Ric) in the space of metrics.We can express that Ricci
solitons move under the Ricci flow easily with difeomorphisms in the first metric,
which are the static points of the Ricci flow. In a Riemannian manifold (M, g)
admits a smooth vector field V , a Ricci soliton provides the following condition:
[20]

(1.2) (£V g + 2S + 2λg)(X,Y ) = 0,

where S is the Ricci tensor, £ is the Lie derivative and λ is a constant. Depends on
the announcements of λ, that is λ < 0, λ = 0 or λ > 0, the Ricci soliton is said to be
shrinking, steady or expanding. Ricci solitons have an important place not only in
mathematics but also in physics. Theoretical physicists have studied the equations
of Ricci soliton in relation to string theory. At the same time, in physics, metrics
which satisfy some special conditions (1.2) are mainly practical and generally use
as quasi-Einstein metrics (e.g. [17], [12]). The first contribution to these studies
have come from Friedan, who has conducted research on some aspects of Ricci
solitons [17]. According to this study, a Ricci soliton is said to be a gradient Ricci
soliton (called the potential function), if the vector field Y can be replaced by the
gradient of some smooth function f on M . Thus, the concept of gradient Ricci
soliton emerged and equation (1.2) consider as the form

(1.3) ∇∇f = S + λg.

After the study of Ricci solitons and gradient Ricci solitons on contact metric
manifolds [23], Ricci solitons and gradient Ricci solitons have been studied on sev-
eral manifolds. Some of those are: in 2008, Sharma [25] studied Ricci solitons in
K−contact manifolds with the structure field ξ is killing. In [14],Ricci solitons in
P−Sasakian manifolds have been studied by De and recently in [5], Barua and De
have studied Ricci solitons in Riemannian manifolds. Subsequent studies have been
on nearly contact manifolds as nearly Sasakian and nearly Kenmotsu manifolds. In
2019, Ayar and Yıldırım have studied Ricci solitons and gradient Ricci solitons
on nearly Kenmotsu manifolds and they have reached important results ([3], [4]).
In the light of these studies, by taking these works into consideration, we study
Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds.In this
study, after the intoduction section, the definition and basic curvature properties of
the nearly cosymplectic manifolds are given. In the next section, according to the
conditions provided by Ricci soliton and Gradient Ricci soliton, manifolds where a
nearly cosymplectic manifold is locally isomorphic are processed and we have shown
that if a metric of a nearly cosymplectic manifold is a Ricci soliton, then either it is
an Einstein or a η−Einstein manifold. Finaly we give some important results and
theorems related to this topic.

2. Nearly Cosymplectic Manifolds

In this section, first of all, let us give some information about the nearly cosym-
plectic manifolds that we examined on Ricci solitons and gradient Ricci solitons.
Let (M,ϕ, ξ, η, g) be an (n = 2m + 1)− dimensional almost contact Riemannian
manifold, an endomorphism ϕ of tangent bundle of Γ(M), a vector field ξ, called
structure vector field, η dual form of ξ and g is the Riemannian metric. Under the
above condition almost contact structure (ϕ, ξ, η, g) satisfies following: [6],

(2.1) ϕξ = 0, η(ϕX) = 0, η(ξ) = 1,
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(2.2) ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ),

(2.3) g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

for any X, Y tangent on M . Almost contact manifold is called nearly cosymplectic
manifold if the equality

(2.4) (∇Xϕ)Y + (∇Y ϕ)X = 0,

X, Y ∈ Γ(M).It is known that in a nearly cosymplectic manifold with the Reeb
vector field ξ is Killing and satisfies the ∇ξξ = 0 and ∇ξη = 0 conditions. Also the
tensor field h of type (1, 1) defined by

(2.5) ∇Xξ = hX,

is skew symmetric and anti-commutative with ϕ. Also h providing hξ = 0, η ◦h = 0
features and

(∇ξϕ)X = ϕhX =
1

3
(∇ξϕ)X.

In a nearly cosymplectic manifolds some formulas given by ([15], [16]):

(2.6) g((∇Xϕ)Y, hZ) = η(Y )g(h2X,ϕZ)− η(X)g(h2Y, ϕZ),

(2.7) (∇Xh)Y = g(h2X,Y )ξ − η(Y )h2X,

(2.8) tr(h2) = constant,

(2.9) R(Y, Z)ξ = η(Y )h2Z − η(Z)h2Y,

(2.10) S(ξ, Z) = −η(Z)tr(h2),

(2.11) S(ϕY,Z) = S(Y, ϕZ), ϕQ = Qϕ,

(2.12) S(ϕY, ϕZ) = S(Y,Z) + η(Y )η(Z)tr(h2).

where R is Riemann curvature tensor and S is Ricci tensor.

Definition 2.1. An n−dimensional Riemann manifold (M, g) is said to be Einstein
Manifold if the Ricci Tensor satisfies;

(2.13) S(X,Y ) = ρg(X,Y ),

for every X,Y ∈ χ(M), where ρ : M → R is a function [11].

Definition 2.2. Let M be a nearly cosymplectic manifold, for every X,Y ∈ χ(M),
if M satisfies the condition [11].

(2.14) S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

then M is an η−Einstein manifold where α, β : M −→ R is a function.

Lemma 2.3. If M a n−dimensional η−Einstein nearly cosymplectic manifold,
the η−Einstein condition for nearly cosymplectic manifolds is characterized by the
following equality [2],

(2.15) S(X,Y ) =

{
r + tr(h2)

n− 1

}
g(X,Y ) +

{
−n tr(h2)− r

n− 1

}
η(X)η(Y ).
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Proposition 1. ( [15])Let (M,ϕ, ξ, η, g) be a nearly cosymplectic manifold. Then
h = 0 if and only if M is locally isometric to the Riemannian product R×N , where
N is a nearly Kähler manifold.

3. Ricci Solitons and Gradient Ricci Solitons on Nearly
Cosymplectic Manifolds

Theorem 3.1. In a nearly cosymplectic manifold if the metric g is a Ricci soliton
and Y is point-wise collinear with ξ, then Y is a constant multiple of ξ provided
λ = tr(h2).

Proof. In particular, let Y be point-wise collinear with ξ i.e. V = fξ in where f is
a function on the nearly cosymplectic manifold Then

(3.1) (£V g + 2S + 2λg)(X,Y ) = 0

which states that

(3.2) g(∇Xfξ, Y ) + g(∇Y fξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Using (2.5) and (2.2)

(3.3) X(f)η(Y ) + Y (f)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0.

Putting ξ in the equation instead of Y in (3.3) we get

X(f) + ξ(f)η(X) + 2S(X,Y ) + 2λη(X) = 0,

(3.4) X(f) + ξ(f)η(X)− 2tr(h2) + 2λη(X) = 0.

Again putting X = ξ in (3.4)

2ξ(f)− 2tr(h2) + 2λ = 0,

(3.5) ξ(f) = tr(h2)− λ,
from (3.4) and (3.5)

X(f) = (tr(h2)− λ)η(X).

Consequently we get λ = tr(h2) if and only if X(f) = 0,under the condition X /∈
ker(η). �

Theorem 3.2. In a nearly cosymplectic manifold with the Ricci soliton metric g
and vector field Y which is point-wise collinear with ξ, then the manifold is an
Einstein and Ricci soliton depends on tr(h2) which is

i) if tr(h2) < 0 then Ricci soliton is shrinking,
ii) if tr(h2) = 0 then Ricci soliton is steady,
iii) if tr(h2) > 0 then Ricci soliton is expanding.

Proof. In particular, let Y = ξ in (3.1), then from (3.3)

(3.6) S(X,Y ) = −λg(X,Y ).

Putting Y = ξ in (3.6) ,

(3.7) S(X, ξ) = −λη(X),

from (2.10)

−trh2η(X) = −λη(X),
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then we get

λ = tr(h2).

Hence we get desired results. Also, using (3.6) equation takes the form

S(X,Y ) = tr(h2)g(X,Y ),

that is, an Einstein manifold. �

Corollary 1. Let a nearly cosymplectic manifold with the Ricci soliton metric
g and vector field Y which is point-wise collinear with ξ. If the Ricci soliton is
steadily then the manifold is locally isometric to the Riemannian product R ×N ,
where N is a nearly Kähler manifold.

Proof. From Theorem 3.2 and Theorem 1 the proof is clear. �

Theorem 3.3. An η−Einstein nearly cosymplectic manifold admits a Ricci soliton
(g, ξ, tr(h2)) and Ricci soliton is shrinking.

Proof. Let M be an η−Einstein nearly cosymplectic manifold then,

(3.8) S(X,Y ) =

{
r + tr(h2)

n− 1

}
g(X,Y ) +

{
−n tr(h2)− r

n− 1

}
η(X)η(Y ).

Taking Y = ξ in (3.1) and from (3.3) we get

2S(X,Y ) + 2λg(X,Y ) = 0,

and

(3.9)

{
r + tr(h2)

n− 1

}
g(X,Y ) +

{
λ+
−n tr(h2)− r

n− 1

}
η(X)η(Y ) = 0.

Putting Y = ξ in (3.9)

r + tr(h2)

n− 1
+ λ+

−n tr(h2)− r
n− 1

= 0,

so we have λ = tr(h2). Since tr(h2) < 0, λ < 0 so the Ricci soliton is shrinking. �

Theorem 3.4. If an η−Einstein nearly cosymplectic manifold admits a gradient
Ricci soliton then the manifold is locally isometric to the Riemann product R ×
N ,where N is a nearly Kähler manifold.

Proof. When the vector field Y is the gradient of a potential function −f , then
we can call g as a gradient Ricci soliton. (1.2) And here we can give the following
equation,

(3.10) ∇∇f = S + λg.

From (3.10)

(3.11) ∇YDf = QY + λY,

in where D symbolize the gradient operator of g. From (3.11) it is obviously that

(3.12) R(X,Y )Df = (∇XQ)Y − (∇YQ)X.

Putting X = ξ with g this implies

(3.13) g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ)− g((∇YQ)ξ, ξ).
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Then
(3.14)

g(QX,Y ) = S(X,Y ) =

{
r + tr(h2)

n− 1

}
g(X,Y ) +

{
−n tr(h2)− r

n− 1

}
η(X)η(Y ),

from above equation

(3.15) QX =

{
r + tr(h2)

n− 1

}
X +

{
−n tr(h2)− r

n− 1

}
η(X)ξ,

taking r+tr(h2)
n−1 = A, −n tr(h

2)−r
n−1 = f and also using (2.1),(2.2) and (2.5),

(3.16) (∇YQ)X = fg(X,∇Y ξ)ξ + fη(X)∇Y ξ,

(3.17) (∇YQ)X = fg(X,hY )ξ + fη(X)hY.

Putting Y = ξ in (3.17) we have

(3.18) (∇ξQ)(X) = 0,

and putting X = ξ in (3.17) we have

(3.19) (∇YQ)ξ = fhY.

Furthermore from (3.13) we get

g(R(ξ, Y )∇f, ξ) = 0.

Since g(R(ξ, Y )∇f, ξ) = g(R(Df, ξ)ξ, Y ) one can easily obtain that

g(R(Df, ξ)ξ, Y ) = g(η(Df)h2ξ − η(ξ)h2Df, Y ) = 0,

so, we have
g(h2Df, Y ) = 0.

Consequently we get tr(h2) = 0 and and it is clear from here h = 0. So the manifold
is locally isometric to the Riemann product R × N , where N is a nearly Kähler
manifold. The proof is complete. �

4. Conclusion

Ricci solitons have an important application for many sciences such as physics
and mathematical physics. Researchers have increased studies on this field from
different areas in recent years. In this paper, the idea of examining Ricci solitons
and gradient Ricci solitons on nearly cosymplectic manifolds is emphasized. The
works on this subject will be useful tools for the applications of Ricci Solitons on
different manifolds.
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Abstract. In this paper, we investigate the spherical images of null curves
and null helixes in Minkowski 3-space. We provide the spherical indicatrices

of null curves in Minkowski 3-space with their causal characteristics. We also

show the conditions of spherical indicatrices of null curves to be a curve lying
on pseudo-sphere in Minkowski 3-space. In addition, we give the properties of

spherical indicatrices of null curves satisfying generalized helices and lying on

pseudo-sphere in Minkowski 3-space.

1. Introduction

Since the second mid of 20th-century mathematicians and physicist have actively
studied about differential geometry of Riemannian manifold and its applications. It
is because theories in differential geometry connect mathematics with real problems,
especially physics. Many topics in classical differential geometry of Riemannian
space are then extended into those of Lorentz-Minkowski space since its impor-
tant use in physics especially related to general relativity theory. Some literatures
providing an explanation about differential geometry in Riemannian space can be
seen in [2, 12, 13] while the theory of differential geometry in the semi-Riemannian
manifold can be seen in [5].

One theory of differential geometry in Riemannian space that can be extended
to Lorentz-Minkowski space is the spherical indicatrix of curves. The idea has been
existed for a long time ago to the tie of Gauss. The idea is essentially simple. if
there is some group of the set of lines in space in some organized relationship with
another, one might construct and examine the relevant spherical indicatrix [14].
The theory of spherical indicatrix of curves in Riemannian space can be found in
[1, 15, 17]while in the case of Lorentz-Minkowski space can be seen in [16].

In Lorentz-Minkowski space, a curve can locally be timelike, spacelike or null
depending on the casual character of the tangent vector along the curves. Some
studies about the theory of curves in Minkowski space and its applications have been
studied by [3, 4, 6]. In Lorentzian geometry, the properties of spacelike curves and
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timelike curves can be studied by approaches similar to those in Riemann geometry.
However, it does not work for null curves or it can be said that the theory of null
curves has many results which have no Riemannian analogues. It is because, in the
case of the null curves, the arc length vanishes so that it is impossible to normalize
the tangent vector in the usual way as in spacelike and timelike curve cases.

In the mathematical study of relativity theory, it is known that a lightlike particle
is a future-pointing null geodesic in spacetime which is a connected and time-
oriented 3-dimensional Lorentzian manifold [5]. The study of null curves also plays
an important role in the physical theories that the classical relativistic string is a
surface or world-sheet in Minkowski space which satisfies the Lorentzian analogue
of the minimal surface equations [10]. In another finding, Nersian and Ramos [11]
show that there exists a geometrical particle model based entirely on the geometry
of null curves in Minkowski 4-dimensional spacetime.

Since its important roles both in mathematics and physics, many mathematicians
and physicist are interested in studying the theory of null curves. For instance,
Duggal and Jin [8] write a comprehensive book related to the theory of null from
its introduction, properties until its applications. Inoguchi and Lee also explained
the theory of null curves comprehensively in another article [3].

In this paper, we study the spherical indicatrices of null curves parametrized by
distinguished parameter in Minkowski 3-space. In this work, we assume that the
null curve is a space curve such that its curvature and torsion are not vanish. After
the preliminary section, we give the Frenet frames of the spherical indicatrices of
a null curve in term of the Frenet frame of the null curve. We also provide the
curvatures and torsions of the spherical indicatrices. We also then show the condi-
tions of spherical indicatrices of null curves to be a curve lying on pseudo-sphere in
Minkowski 3-space. In addition, we give the properties of spherical indicatrices of
null curves satisfying generalized helices and lying on pseudo-sphere in Minkowski
3-space.

2. Preliminaries

Minkowski space E3
1 is the real vector space R3 equipped with the standard

indefinite Lorentzian metric g defined by

(2.1) g(x, y) = −x1y1 + x2y2 + x3y3

for any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1. The cross product in

Minkowski 3-space is defined by

(2.2) x× y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y3).

In Minkowski 3-space, v is timelike if g(v, v) < 0, spacelike if g(v, v) > 0 or v = 0,
or null (lightlike) if g(v, v) = 0 and v 6= 0. The norm of a vector in E3

1 is defined

by ||v|| =
√
|g(v, v)|.

Let α : I → E3
1 be a curve in Minkowski 3-space. Locally, α can be timelike,

spacelike or null if its tangent vectors along the curve are timelike, spacelike or null,

respectively. For non null curves, the arc length s is defined by s =
∫ t

0

√
|g(α′, α′)|dt.

If g(α′, α) = ±1, the non null curves are called curves parametrized by arc length.
For a null curve, since g(α′, α′) = 0 then the pseudo-arc length s is defined by

s =
∫ t

0
g(α′′, α′′)

1
4 dt and if g(α′′, α′′) = 1 the the null curve is parametrized by

pseudo-arc length.
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Let {T,N,B} is the Frenet frame of α in E3
1. T,N and B are called tangent

vector, principal normal vector and binormal vector of α, respectively.
If α is a non null curve with non null normals parametrized by arch length, then

the Frenet equations of α are given by [21]

T ′ = κN, N ′ = −ε0ε1κT + τB, B′ = −ε1ε2τN(2.3)

where

g(T, T ) = ε0 = ±1, g(N,N) = ε1 = ±1, g(B,B) = ε2 = ±1,

g(T,N) = g(T,B) = g(N,B) = 0.

The vector products of Frenet vectors of α in Minkowski 3-space are given by

(2.4) T ×N = B, N ×B = −ε1T, B × T = −ε0N.

If α is a pseudo null curve, that is α is a spacelike curve with a null principal
normal N , then the Frenet equations of α are given by [20]

(2.5) T ′ = κN, N ′ = τN, B′ = −κT − τB

where

g(T, T ) = g(N,B) = 1, g(N,N) = g(B,B) = g(T,N) = g(T,B) = 0

and

(2.6) T ×N = N, N ×B = T, T ×B = −B.

Here, κ can only two values:, κ = 0 if α is a straight line and κ = 0, otherwise.
If α is a null curve parametrized by distingushed parameter, then the Frenet

equations of α are given by [18]

(2.7) T ′ = κN, N ′ = τT − κB, B′ = −τN

where

g(T, T ) = g(B,B) = 0, g(T,B) = g(N,B) = 0, g(N,N) = g(T,B) = 1

and

(2.8) T ×B = N, T ×N = −T, N ×B = −B.

Here, κ and τ are called the curvature and the torsion if α is a timelike curve or a
spacelike curve with non null Frener frame. In case α is a pseudo null curve or a
null curve then τ is called pseudo torsion.

Let C : I → E3
1 be a null curve paremetrized by pseudo arc length s. A curve

α : I → E3
1 generated by the unit tangent vector along a curve C(s), i.e., α(s) =

T (s) on the sphere of radius 1 about the origin is called tangent indicatrix of C(s).
Similarly, α(s) = N(s) and α(s) = B(s) are called the principal indicatrix and
binormal indicatrix of C(s)

3. Spherical Indicatrices of Null Curves

In this section, we provide the causal characteristics of spherical indicatrices of
null curves in Minkowski 3-space. In this section we assume that the null curve is
not a straight line so that the null curve has non null curvature anywhere.
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3.1. Tangent indicatrix.

Theorem 3.1. Let α(s) = T (s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. Then α is a spacelike curve.

Proof. From equation (2.7), we have α′(s) = κ(s)N(s). Therefore, g(α′, α′) =
κ2(s) > 0. It implies that α is a spacelike curve. �

Theorem 3.2. Let α(s) = T (s) be a tangent indicatrix of null curves parametrized
by distinguished parameter s. If the null curve is not a plane curve, then α(s) is a
spacelike curve with non null Frenet frame satisfying

(3.1)

 T̄N̄
B̄

 =

 0 1 0
τ√
|2κτ |

0 −κ√
|2κτ |

τ√
|2κτ |

0 κ√
|2κτ |


TN
B

 .
Proof. Let s̄ be arc length of the α(s). Then, since α is spacelike curve with non
null Frenet frame, then by taking derivative of α with respect to the pseudo arc
length s using equations (2.5) and (2.7), we have

(3.2)
dα

ds̄

ds̄

ds
= κN ⇒ T̄ · ds̄

ds
= κN.

Taking the norm of equation (3.2), we have ds̄
ds = ±κ. Take ds̄

ds = κ so that

(3.3) T̄ = N.

Differentiating equation (3.3), yields

(3.4)
dT̄

ds̄

ds̄

ds
= τT − κB ⇒ κ̄N̄κ = τT − κB.

Since the null curve is not a straight line and not a plane curve then κ 6= 0 and
τ 6= 0, by taking the norm of equation (3.4), we have

(3.5) κ̄κ =
√
| − 2κτ | =

√
|2κτ |.

Therefore, from equation (3.4), we find

(3.6) N̄ =
τT − κB√
|2κτ |

.

Consequently, N̄ is timelike or spacelike if κτ > 0 or κτ < 0, respectively. Therefore,
from equations (2.6) and (2.8), we have

B̄ = · T̄ × N̄

= ·N ×

(
τT − κB√
|2κτ |

)

=
τT + κB√
|2κτ |

.

Hence, the proof is completed. �

Theorem 3.3. Let α(s) = T (s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. If α(s) = T (s) has non null Frenet frame then the
curvature and torsion of α(s) are respectively given by

(3.7) κ̄ =

√
|2κτ |
κ

and τ̄ = −κ
′τ − κτ ′

2κ2τ
.
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Proof. It is clear from equation (3.5) that

κ̄ =

√
|2κτ |
κ

.

Taking derivative of B̄ in equation (3.1) with respect to the pseudo arc length s
yields

dB̄

ds̄

ds̄

ds
=
τ ′T + κτN + κ′B − κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(τT + κB)

2| − 2κτ | 32
dB̄

ds̄
κ =

(−2κτ)(τ ′T + κ′B) + (κ′τ + κτ ′)(τT + κB)

| − 2κτ | 32
dB̄

ds̄
=
τ(κ′τ − κτ ′)T − κ(κ′τ − κτ ′)B

κ| − 2κτ | 32

=
(κ′τ − κτ ′)(τT − κB)

κ| − 2κτ | 32
.

By applying equations (2.5) and (2.7), we get

τ̄ = · g
(
dB̄

ds̄
, N̄

)
= · g

(
(κ′τ − κτ ′)(τT − κB)

κ| − 2κτ | 32
,
τT − κB
| − 2κτ | 12

)
=

(κ′τ − κτ ′)(−2κτ)

κ| − 2κτ |2

=− κ′τ − κτ ′

2κ2τ
.

�

3.2. Principal Normal Indicatrix.

Theorem 3.4. Let α(s) = N(s) be a principal normal indicatrix of a null curve
parametrized by pseudo arc length s. Then if α(s) is not a plane curve then it is a
spacelike or a timelike curve and if α(s) is a plane curve then it is a null curve.

Proof. From equation (2.7), we have α′(s) = −τ(s)T (s) + κ(s)B(s). Therefore,
g(α′(s), α′(s)) = 2κ(s)τ(s). As a consequence, if α(s) is not a plane curve, then
it is a spacelike or a timelike curve if κ and τ have different sign or same sign,
respectively. If α(s) is a plane curve then τ(s) = 0 which implies α(s) is a null
curve. �

Theorem 3.5. Let α(s) = N(s) be a principal normal indicatrix of a non plane
null curve parametrized by pseudo arc length s. Then the Frenet frame of α(s) is
given by

(3.8)

 T̄N̄
B̄

 =


τ√
|λ|

0 −κ√
|λ|

τµ√
µ2λ+λ4

−λ2√
µ2λ+λ4

κµ√
µ2λ+λ4

τλ√
µ2+λ2

µ√
µ2+λ2

κλ√
µ2+λ2


TN
B


where λ = 2κτ and µ = κ′τ − κτ ′.
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Proof. Let s̄ be the arc length of the curve α(s). Taking derivative of α with respect
to the pseudo arc length s, we have

(3.9)
dα

ds̄

ds̄

ds
= τT − κB ⇒ T̄

ds̄

ds
= τT − κB.

Taking the inner product of equation (3.9), we get

(3.10)
ds̄

ds
=
√
| − 2κτ |.

Therefore,

(3.11) T̄ =
τT − κB√
| − 2κτ |

.

Differentiating equation (3.11) and using equation (3.10), we have

dT̄

ds̄

ds̄

ds
=
τ ′T + κτN − κ′B + κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(τT − κB)

2| − 2κτ | 32

κ̄N̄ =
(−2κτ)(τ ′T + 2κτN − κ′B) + (κ′τ + κτ ′)(τT − κB)

| − 2κτ |2

=
(−2κττ ′ + κ′τ2 + κττ ′)T − 4κ2τ2N + (2κκ′τ − κ′κτ − κ2τ ′)B

| − 2κτ |2

=
τ(κ′τ − κτ ′)T − 4κ2τ2N + κ(κ′τ − κτ ′)B

| − 2κτ |2

=
(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

4κ2τ2
.

Taking the norm of the equation above yields

(3.12) κ̄ =
|2κτ(κ′τ − κτ ′)2 + 16κ4τ4| 12

4κ2τ2
.

Therefore,

(3.13) N̄ =
(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

|2κτ(κ′τ − κτ ′)2 + 16κ4τ4| 12
.

As a consequence,

B̄ =T̄ × N̄

=

(
τT − κB√
| − 2κτ |

)
×
(

(κ′τ − κτ ′)(τT + κB)− 4κ2τ2N

4κ2τ2

)
=
κτ(κ′τ − κτ ′)(T ×B)− 4κ2τ3(T ×N)− κτ(κ′τ − κτ ′)(B × T ) + 4κ3τ2(B ×N)

2κτ |(κ′τ − κτ ′)2 + 8κ3τ3)| 12

=
2κτ(κ′τ − κτ ′)N + 4κ2τ2(τT + κB)

2κτ |(κ′τ − κτ ′)2 + 8κ3τ3)| 12

=
(κ′τ − κτ ′)N + 2κτ(τT + κB)

|(κ′τ − κτ ′)2 + 8κ3τ3)| 12
.

Setting λ = 2κτ and µ = κ′τ − κτ ′ completes the proof. �
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Theorem 3.6. Let α(s) = N(s) be a principal normal indicatrix of a null curve
parametrized by distinguished parameter s. If the null curve is not a plane curve,
then the curvature and torsion of α are given by

(3.14) κ̄ =
|λµ2 + λ4| 12

λ2

and

τ̄ =
−(µ2 + λ3)(λ2κ′τ + λ2κτ ′ + 2κτλλ′) + (2µµ′ + 3λ2λ′)κτλ2

(λµ2 + λ4)
3
2 (µ+ λ)

1
2

+
(µ2λ3)µ2µ′ − µ3(2µµ′ + 3λ2λ′)

2(λµ2 + λ4)
3
2 (µ+ λ)

1
2

.

(3.15)

Proof. From equation (3.11), we have

κ̄ =
|2κτ(κτ ′ − κ′τ)2 + 16κ4τ4| 12

4κ2τ2
=
|λµ2 + λ4| 12

λ2
.

Taking derivative of B̄ in equation (3.8) with respect to the pseudo arc length s,
we have

dB̄

dd̄

ds̄

ds
=

2(µ2 + λ3)(τ ′λ+ τλ′ + µτ)− (2µµ′ + 3λ2λ′)τλ

2(µ2 + λ3)
3
2

T

+
2(µ2 + λ3)µ′ − (2µµ′ + 3λλ′)µ

2(µ2 + λ3)
3
2

N

2(µ2 + λ3)(κ′λ+ κλ′ − κµ)− (2µµ′ + 3λ2λ′)κλ

2(µ2 + λ3)
3
2

B

dB̄

ds
=

2(µ2 + λ3)(τ ′λ+ τλ′ + µτ)− (2µµ′ + 3λ2λ′)τλ

2λ
1
2 (µ2 + λ3)

3
2

T

+
2(µ2 + λ3)µ′ − (2µµ′ + 3λλ′)µ

2λ
1
2 (µ2 + λ3)

3
2

N

2(µ2 + λ3)(κ′λ+ κλ′ − κµ)− (2µµ′ + 3λ2λ′)κλ

2λ
1
2 (µ2 + λ3)

3
2

B.

Therefore,

τ̄ =− g
(
dB̄

ds̄
, N̄

)
=
−(µ2 + λ3)(λ2κ′τ + λ2κτ ′ + 2κτλλ′) + (2µµ′ + 3λ2λ′)κτλ2

(λµ2 + λ4)
3
2 (µ+ λ)

1
2

+
(µ2λ3)µ2µ′ − µ3(2µµ′ + 3λ2λ′)

2(λµ2 + λ4)
3
2 (µ+ λ)

1
2

.

�

3.3. Binormal Indicatrix.

Theorem 3.7. Let α(s) = B(s) be a binormal indicatrix of a null curve parametrized
by distinguished parameter s. Then α is a spacelike or a null curve.
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Proof. From equation (2.7), we have α′(s) = −τ(s)N(s). Therefore, g(α′, α′) =
τ2(s) > 0. It implies that α is a spacelike curve if the null curve is not a plane
curve and α is a null curve is the null curve is a plane curve. �

Theorem 3.8. Let α(s) = B(s) be a binormal indicatrix of a non plane null curves
parametrized by distinguished parameter s. If α is a spacelike curve with non null
Frenet frames, then the Frenet frame of α(s) is given by

(3.16)

 T̄N̄
B̄

 =

 0 −1 0
−τ√
|2κτ |

0 κ√
|2κτ |

−τ√
|2κτ |

0 −κ√
|2κτ |


TN
B


where ε = 1 or ε = −1 when α is a spacelike curve or timelike principal normal,
respectively.

Proof. Let s̄ be arc length of the α(s). Then, since α is a spacelike curve with non
null Frenet frame, then by taking derivative of α with respect to the pseudo arc
length s using equations (2.5) and (2.7), we have

(3.17)
dα

ds̄

ds̄

ds
= −τN ⇒ T̄ · ds̄

ds
= −τN.

Taking the norm of equation (3.17), we have ds̄
ds = ±τ . Take ds̄

ds = τ so that

(3.18) T̄ = −N.
Differentiating equation (3.18), yields

(3.19)
dT̄

ds̄

ds̄

ds
= −τT + κB ⇒ κ̄N̄τ = −τT + κB.

Since α is not a straight line and not a plane curve then κ 6= 0 and τ 6= 0, by taking
the norm of equation (3.19), we have

(3.20) κ̄τ =
√
| − 2κτ | =

√
|2κτ |.

Therefore, from equation (3.19), we find

(3.21) N̄ =
−τT + κB√
|2κτ |

.

Consequently, N̄ is timelike or spacelike if κτ > 0 or κτ < 0, respectively. Therefore,
from equations (2.6) and (2.8), we have

B̄ = · T̄ × N̄

= ·N ×

(
−τT + κB√
|2κτ |

)

=
−τT − κB√
|2κτ |

.

Hence, the proof is completed. �

Theorem 3.9. Let α(s) = B(s) be a tangent indicatrix of a null curve parametrized
by distinguished parameter s. If α(s) = B(s) is not a plane curve then the curvature
and torsion of α(s) are respectively given by

(3.22) κ̄ =

√
|2κτ |
τ

and τ̄ =
κ′τ − κτ ′

2κ2τ
.
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Proof. It is clear from equation (3.20) that

κ̄ =

√
|2κτ |
τ

.

Taking derivative of B̄ in equation (3.1) with respect to the pseudo arc length s
yields

dB̄

ds̄

ds̄

ds
=
−τ ′T − κτN − κ′B + κτN

| − 2κτ | 12
− (−2κ′τ − 2κτ ′)(−τT − κB)

2| − 2κτ | 32
dB̄

ds̄
κ =

(−2κτ)(−τ ′T − κ′B) + (κ′τ + κτ ′)(−τT − κB)

| − 2κτ | 32
dB̄

ds̄
=
τ(κτ ′ − κ′τ)T − κ(κτ ′ − κ′τ)B

κ| − 2κτ | 32

=
(κτ ′ − κ′τ)(τT − κB)

κ| − 2κτ | 32
.

By applying equations (2.5) and (2.7), we get

τ̄ = · g
(
dB̄

ds̄
, N̄

)
= · g

(
(κτ ′ − κ′τ)(τT − κB)

κ| − 2κτ | 32
,
τT − κB
| − 2κτ | 12

)
=

(κτ ′ − κ′τ)(−2κτ)

κ| − 2κτ |2

=
κ′τ − κτ ′

2κ2τ
.

�

4. Spherical Image of Spherical Indicatrices

In this section, we provide the properties of spherical indicatrices of null curves
on pseudo sphere in Minkowski 3-space. In this section we assume the null curve
is neither a plane curve nor a straight line.

Definition 4.1. [5] Pseudo sphere in semi-Riemannian space of center c and radius
r is defined by

(4.1) S2
1 = {α ∈ E3

1 : g(α− c, α− c) = r2}.

Theorem 4.2. Let α(s) = T (s) be a unit speed tangent indicatrix of a null curve.
If α lies on the pseudo sphere of center c and radius r, then

(4.2) α− c = ρN̄ + σB̄,

where ρ = − 1
κ̄ and σ = κ̄′τ̄

κ̄2 .

Proof. Let α(s) = T (s) is a unit speed curve lying on a pseudo sphere S2
1 of center

c and radius r. Therefore, it satisfies g(α − c, α − c) = r2. Differentiating this
equation yields

(4.3) g(T̄ , α− c) = 0.
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Taking the derivative of equation (4.3)

(4.4) g(T̄ , T̄ ) + κ̄g(α− c, N̄) = 0⇒ g(α− c, N̄) = − 1

κ̄
.

Differentiating equation (4.4) and using the fact that α − c is perpendicular to T̄ ,
we have

g(T̄ , N̄) + g(α− c,−ε0ε1κ̄T̄ + τ̄ B̄) =
κ̄′

κ̄2

τ̄ g(α− c, B̄) =
κ̄′

κ̄2

g(α− c, B̄) =
κ̄′τ̄

κ̄2
.(4.5)

On the other hand, since α− c is perpendicular to T̄ , then we can express

α− c = ρN̄ + σB̄

where ρ = g(α − c, N̄) and σ = g(α − c,B). Consequently, by equation (4.4) and
(4.5), we find equation (4.2). Hence the proof is completed �

Corollary 4.1. Let α(s) = T (s) be unit tangent indicatrix of a space null curve. If
α lies on the pseudo sphere, then the center c and the radius r f the curve α are
respectively given by

(4.6) c = α+
1

κ̄
N̄ − κ̄′τ̄

κ̄2
B̄ and r =

1

κ̄2

√
|κ̄2 + ε0(κ̄′τ̄)2|.

Theorem 4.3. Let α(s) = T (s) be unit speed tangent indicatrix of a space null
curve. If α lies on pseudo sphere of center c, radius r and positive curvature, then
α has curvature κ̄ ≥ 1

r .

Proof. Let α lies on the pseudo sphere of center c and radius r. Then, we have
g(α− c, α− c) = r2. From equation (4.4) we have

κ̄ =
1

g(α− c, N̄
.

By Schwarz inequality, ||g(α − c, N̄ || ≤ ||α − c||||N̄ || = a, we have κ̄ ≥ 1
r and the

proof is completed. �

Remark 4.4. The theorem 4.2 and 4.3 is similar in case α is the principal normal
indicatrix or binormal indicatrix of a space null curve.

Definition 4.5. [7] A null curve α : I → E3
1 is called generalized helix is there

exist a non-zero vector v in E3
1 such that g(α′, v) = constant.

Theorem 4.6. [7] A non-geodesic null Frenet curve is a null generalized helix if
and only if its slope τ

κ is constant.

Theorem 4.7. Let C : I → E3
1 be a null generalized helix in E3

1. Then the tangent
indicatrix α(s) = T (s) of the generalized null helix C lies on the osculating plane

of radius r = 1
2

√
2κ
τ and center c = T̄ + rN̄ .
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Proof. Let C : I → E3
1 be a null generalized helix, then τ

κ = constant. From
equation (3.7), we have

κ̄ =

√
|2κτ |
κ

= constant

and

τ̄ = −κ
′τ − κτ ′

2κ2τ
= −

[
d

ds

( τ
κ

)′] 1

2τ
= 0.

Therefore, α(s) = T (s) is a circle in E3
1 which lies on the plane spanned by {T̄ , N̄}

or osculating plane. From equation (4.6), the radius and the center of α are given
by

r =
1

κ̄
=

1

2

√
2κ

τ

and

c = α+
1

κ̄
N̄ = α+ rN̄ .

�

Remark 4.8. The theorem 4.7 is similar in case α is the principal normal indicatrix
or binormal of indicatrix lying on pseudo sphere.

Example 4.9. Define a null curve C : I → E3
1 parametrized by distinguished

parameter s defined by

α(s) = (s, cos s, sin s).

With simple calculation, we have

T = (1,− sin s, cos s), N = (0,− cos s,− sin s), B =

(
−1

2
,− sin s

2
,

cos s

2

)
and

κ = 1 and τ = −1

2
.

Since τ
κ = − 1

2 = constant, the curve C is a helix in E3
1.

1. Tangent indicatrix
The curve α(s) = T (s) = (1,− sin s, cos s) is the tangent indicatrix of C. By using
equations (3.1) and (3.7) we get

T̄ = (0,− cos s,− sin s), N̄ = (0, sin s,− cos s), B̄ = (−1, 0, 0)

and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 with radius 1 and centered in (1, 0, 0).
2. Principal normal indicatrix
The curve α(s) = N(s) = (0,− cos s,− sin s) is the principal normal of C. By using
equations (3.8), (3.14) and (3.15) we get

T̄ = (0, sin s,− cos s), N̄ = (0, cos s,− sin s), B̄ = (−1, 0, 0)
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and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 of radius 1 and centered in (1, 0, 0).
3. Binormal indicatrix
The curve α(s) = B(s) =

(
− 1

2 ,−
sin s

2 , cos s
2

)
is the binormal indicatrix of C. By

using equations (3.16) and (3.22) we get

T̄ = (0, cos s, sin s), N̄ = (0,− sin s, cos s), B̄ = (1, 0, 0)

and

κ̄ = 1, τ̄ = 0.

It can be seen that α is a spacelike helix with spacelike principal normal vector.
Furthermore, by theorem 4.7, α lies on S2

1 with radius 1 and centered in (1, 0, 0).

5. Conclusion

Spherical indicatrices of a space null curve in Minkowski 3-space are spacelike
curves with non null Frenet frame. Sphaerical indicatrices lying on the pseudo
sphere of a space null curve with positive curvature has a curvature κ̄ ≥ 1

r where r
is the radius of the pseudo sphere.
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Abstract. Let R be a ring. A right R-module A is said to be C-flat if the
kernel of any epimorphism B → A is C-pure in B, i.e. the induced map

Hom(C,B) → Hom(C,A) is surjective for any cyclic right R-module C. Pro-

jective modules are C-flat and C-flat modules are weakly-flat and neat-flat. In
this article, it is discussed the connections between C-flat, weakly-flat, neat-

flat and singly flat modules. It is shown that C-flat modules coincide with

singly-projective modules over arbitrary rings. Next, several characterizations
of certain classes of rings and modules via C-purity are considered. We prove

that every C-flat module is injective if and only if R is a QF ring. Moreover,

we show that R is a CF ring if and only if every FP-injective right R-module
is C-flat.

1. Introduction

Throughout, R will denote an associative ring with identity, and modules will
be unital R-modules unless otherwise stated.

There are many submodule structures, but the most commonly studied struc-
tures are closed submodule and pure submodule, due to their important role played
in Module and Ring Theory. A submodule B of a right R-module A is called closed
(in A) provided B has no proper essential extension in A. Let ε : 0 → B → A →
C → 0 be an exact sequence of right R-modules. ε is called (Cohn) pure exact if,
every finitely presented right R-module F is projective with respect to ε (see [22]).
The sequence ε is called C-pure (resp. neat) if every cyclic (resp. simple) right
R-module is projective with respect to ε (see [19, 16], respectively). C-pure (resp.
neat) and pure are in general inequivalent, none implies the other. In general, C-
pure submodules are closed and closed submodules are neat, and the converses are
true if R is a right CPS ring, i.e. every cyclic right R-module is a direct sum of a
projective module and a semisimple module (see [9]).

Recently, there is a significant interest in some classes of modules that are defined
via closed submodules, neat submodules and C-pure submodules (see [1, 4, 6, 23]).
A right R-module A is called weakly-flat [23](resp. neat-flat [4]) if the kernel of any
epimorphism B → A is closed (resp. neat) in B.
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In this article, motivated by the weakly-flat and neat-flat modules, we continue
the study and investigation of modules A, for which any short exact sequence ending
with A is C-pure. Namely, a right R-module A is said to be C-flat if the kernel of any
epimorphism B → A is C-pure in B, i.e. the induced map Hom(C,B)→ Hom(C,A)
is surjective for any cyclic right R-module C ([11]). Projective modules are C-flat
and C-flat modules are weakly-flat and neat-flat. It is discussed the connections
between C-flat, weakly-flat and neat-flat modules. In [3], a right R-module A is
called singly-projective if for any cyclic right R-module C, every homomorphism
f : C → A factors through a finitely generated free right R-module F . It is shown
that C-flat modules coincide with singly-projective modules over arbitrary rings.
Next, several characterizations of certain classes of rings and modules via C-purity
are considered. We prove that every C-flat module is injective if and only if R is a
QF ring. Moreover, we show that R is a CF ring if and only if every FP-injective
right R-module is C-flat.

2. C-flat modules

Let ε : 0 → B
f−→ A

g−→ C → 0 be an exact sequence of right R-modules. ε
is called C-pure exact if, f(B) is a C-pure submodule of A (see [19]). In this case,
f and g are called C-pure monomorphism and C-pure epimorphism, respectively.
By definition, the class of C-pure exact sequences is projectively generated by the
class of cyclic right R-modules. Hence C-pure exact sequences form a proper class
in the sense of Bushbaum, (see [11, Proposition 1.7]).

Proposition 1. The following are equivalent for a right R-module A.

(1) A is C-flat.
(2) Every exact sequence 0→ C → B → A→ 0 is C-pure.
(3) There exists a C-pure exact sequence 0 → C → P → A → 0 with P

projective.
(4) There exists a C-pure exact sequence 0→ C → F → A→ 0 with F C-flat.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) are clear.

(4) ⇒ (1) Let 0 → C → B
g−→ A → 0 be any short exact sequence. We claim

that g is a C-pure epimorphism, i.e., Ker(g) is a C-pure submodule of B. By

(4), there exists a C-pure exact sequence 0 → C → F
h−→ A → 0 with F C-flat.

Considering the pullback of g and h, we obtain a commutative diagram with exact
rows

0 //C //D
β //

α

��

F //

h
��

0

0 //C //B
g //A //0

Since F is C-flat, β is a C-pure epimorphism. Also, since h is C-pure epimor-
phism, gα = hβ is again C-pure epimorphism. This means that g is a C-pure
epimorphism by [11, Proposition 1.7], and this completes the proof.

�

Remark 2.1. (1) If an R-module A is C-flat then A is torsion-free by [11, Proposition
4.3] but not conversely. If R is a commutative integral domain, then every torsion-
free module is C-flat by [11, Proposition 4.4].
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(2) Obviously, projective modules are C-flat. But the converse is not true in
general. Let R = k[X,Y ] be a polynomial ring in two variables X,Y over a field
k. Here the ideal (X,Y ) of R is torsion-free, and so is C-flat by (1) since R is
a commutative integral domain. But it is not flat as R-module by [2, Chapter I,
Exercise 2.3], and so is not projective.

(3) C-flat and flat are in general inequivalent and none implies the other by [11,
Remarks 4.6 and 4.7].

(4) Note that a cyclic right R-module is C-flat if and only if it is projective. Thus
R is a semisimple Artinian ring if and only if every right R-module is C-flat.

The following observation is easy to show by Proposition 1 and useful for the
further characterization of C-flat modules.

Lemma 2.2. Let R be a ring. An R-module A is singly projective if and only if A
is C-flat.

Let A be a finitely presented right R-module. Then there exists a short exact
sequence 0 → G → F → A → 0 with F and G finitely generated free. If we
apply the functor HomR(−, R) to this exact sequence, we obtain the sequence
0 → A∗ → F ∗ → G∗ → Tr(A) → 0 where Tr(A) is the cokernel of the dual
map F ∗ → G∗. Note that Tr(A) is a finitely presented left R-module. The left
R-module Tr(A) is called an Auslander-Bridger Transpose of the right R-module
A (see [20, §5]). Over a right Noetherian ring, every cyclic right R-module C and
its transpose Tr(C) are finitely presented.

Proposition 2. Let R be a right Noetherian ring and A a right R-module. Then
A is C-flat if and only if Tor1(A, Tr(C)) = 0 for each cyclic right R-module C.

Proof. Let 0 → G → F → A → 0 be an exact sequence with F projective. If we
assume that A is C-flat right R-module, then 0 → Hom(C,G) → Hom(C,F ) →
Hom(C,A)→ 0 is exact for any cyclic right R-module C. Since R is right Noether-
ian, C is finitely presented, and so 0→ G⊗Tr(C)→ F ⊗Tr(C) is left exact by [20,

Theorem 8.3]. Hence TorR1 (A, Tr(C)) = 0. Conversely, suppose TorR1 (A, Tr(C)) =
0 for each cyclic right R-module C. Thus 0 → G ⊗ Tr(C) → F ⊗ Tr(C) is left
exact, and so 0 → Hom(C,G) → Hom(C,F ) → Hom(C,A) → 0 is exact again by
[20, Theorem 8.3]. This means that A is C-flat by Proposition 1. �

Recall that a right R-module A is called singly injective if Ext1R(F/K,A) = 0 for
any cyclic submodule K of any finitely generated free right R-module F . A right
R-module A is called singly flat if Tor1R(A,F/K) = 0 for any cyclic submodule K
of any finitely generated free right R-module F (see [14]).

Proposition 3. Let R be a right Noetherian ring and A a left R-module. A is
singly injective if and only if Ext1R(Tr(C), A) = 0 for any cyclic right R-module C.

Proof. Let 0→ A→ E(A)→ E(A)/A→ 0 be an exact sequence. If we assume that
A is singly injective left R-module, then 0→ C⊗A→ C⊗E(A)→ C⊗E(A)/A→
0 is exact by [7, Lemma 2.1 and Proposition 2.2]. So Hom(Tr(C), E(A)) →
Hom(Tr(C), E(A)/A) is epic by [20, Theorem 8.3], whence Ext1R(Tr(C), A) = 0.
Conversely, if we assume that Ext1R(Tr(C), A) = 0 for each cyclic right R-module
C, then Hom(Tr(C), E(A)) → Hom(Tr(C), E(A)/A) is epic. So 0 → C ⊗ A →
C ⊗ E(A) is left exact by [20, Theorem 8.3], whence A is singly injective by [7,
Lemma 2.1 and Corollary 2.6]. �
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Corollary 1. Let R be a right Noetherian ring. Then the following are true:

(1) A is C-flat right R-module if and only if A+ is singly injective.
(2) A is singly-injective left R-module if and only if A+ is C-flat.
(3) A is C-flat right R-module if and only if A is singly flat.
(4) A is C-flat right R-module if and only if A++ is C-flat.

Proof. (1) For any cyclic right R-module C, Tr(C) is finitely presented. Thus the
result follows by the standard isomorphism Ext1R(Tr(C), A+) ∼= Tor1(A, Tr(C))+

and Propositions 2 and 3.
(2) Let A be a left R-module and C a cyclic right R-module. Then we have

Tor1(A+, T r(C)) ∼= Ext1R(Tr(C), A)+ by [18, Theorem 9.51]. Hence the result
follows also by Propositions 2 and 3.

(3) follows by (1) and [14, Lemma 2.4].
(4) follows by (1) and (2). �

Recall that a ring R is said to be left hereditary (respectively, left semihered-
itary, left PP) if every left ideal (respectively, finitely generated left ideal, prin-
cipal left ideal) of R is projective. A right R-module A is called FP-injective if
Ext1R(F/K,A) = 0 for any finitely generated submodule K of any finitely gener-
ated free right R-module F (see [13]).

Corollary 2. The following are equivalent for a right Noetherian ring R.

(1) Every singly injective left R-module is FP-injective.
(2) Every C-flat right R-module is flat.

Moreover, if R is a commutative PP ring, then the above conditions are
equivalent to:

(3) R is hereditary.

Proof. (1)⇔ (2) follows by Corollary 1 and [14, Corollary 2.11].
(1) ⇔ (3) follows by [7, Theorem 3.9] and by the fact that Noetherian semi-

hereditary rings are hereditary. �

In [12], a ring R is called right CPS if every cyclic right R-module is a direct
sum of a projective module and a semisimple module.

Remark 2.3. (1) Following [9], C-pure submodules are closed, but not conversely.
(2) Since closed submodules are neat by [21], C-pure submodules are neat.
(3) A ring R is right CPS ring if and only if neat submodules are C-pure. In

particular, if R is a right CPS ring, then closed submodules are also C-pure (see
[9]).

Since C-pure submodules are closed and closed submodules are neat, we have
the following implications in our concepts:

C-flat ⇒ weakly flat ⇒ neat-flat.
Recall that a ring R is said to be a right C-ring if Soc(R/I) 6= 0 for every essential

right ideal I of R. Right CPS rings, left perfect rings and right semiartinian rings
are well known examples of right C-rings ([5, 10.10]). Together with Remark 2.3(3)
and [4, Proposition 2.9], we obtain the following.

Corollary 3. Let R be a right CPS ring and A be a right R-module. The following
statements are equivalent:

(1) A is C-flat.
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(2) A is weakly-flat.
(3) A is neat-flat.
(4) Soc(A) = A.Soc(RR).

A right R-module M is called CS if every closed submodule of M is a direct
summand of M and a ring R called right CS if RR is CS. A ring R is called right
Σ-CS (respectively, right finitely Σ-CS) if every (respectively, finite) direct sum of
copies of RR is CS (the reader might consult [8]).

Proposition 4. If every neat-flat right R-modules is C-flat, then R is a right CS
and right C-ring.

Proof. The hypothesis implies that every neat-flat right R-module weakly-flat, and
so R is a C-ring by [4, Proposition 2.7]. Let I be a closed right ideal of R. Then
I is neat in R, and so R/I is neat-flat by [4, Lemma 2.1]. Thus by the hypothesis,
R/I is C-flat and also 0 → I → R → R/I → 0 is C-pure. Since R/I is projective
with respect to C-pure exact sequences, the exact sequence 0→ I → R→ R/I → 0
splits. Thus I is a direct summand of R, that is R is a right CS ring. �

Recall by [17] that a ring R is a right SC-ring if every cyclic singular right R-
module is semisimple. By Remark 2.3(3) and [4, Proposition 2.9], we obtain the
following.

Corollary 4. Let R be a right SC-ring. The following are equivalent:

(1) R is right CPS.
(2) Every neat-flat right R-module is C-flat.
(3) Every weakly-flat right R-module is C-flat.

Proof. (1)⇒ (2) This follows directly by Corollary 3. (2)⇒ (3) is clear.
(3) ⇒ (1) Let I be a closed right ideal of R. Then R/I is weakly-flat. Thus by

the hypothesis, R/I is C-flat and also 0 → I → R → R/I → 0 is C-pure. Similar
to the proof of Proposition 4, R is a right CS ring. Thus R is a right CPS ring by
the fact that R is a right SC-ring (see [12, Corollary 4.4]). �

Remark 2.4. IfR is a right Σ-CS ring, then every C-flat rightR-module is projective
by [4, Theorem 2.10.]. The converse is also true if R is a right CPS-ring by Corollary
3 and [4, Theorem 2.10].

Proposition 5. If R is right finitely Σ-CS, then every finitely generated C-flat
right R-module is projective.

Proof. Let A be a finitely generated C-flat right R-module and consider the short
exact sequence ε : 0 → K → F → A → 0 with F finitely generated free. By
Proposition 1, ε is C-pure, and so is closed. This means that ε splits by the
hypothesis. Thus A is projective. �

A ringR is called right CF if every cyclic rightR-module embeds in a free module.
R is said to be a left AFG ring in case the left annihilator of every nonempty subset
of R is a finitely generated left ideal, equivalently every right R-module has a singly
projective preenvelope (see [15]).

Proposition 6. Let R be a ring. The following are equivalent:

(1) R is right CF.
(2) Every FP-injective right R-module is C-flat.
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(3) Every injective right R-module is C-flat.
Moreover, if R is left AFG, then the above conditions are equivalent to:

(4) Every right R-module has a monic C-flat preenvelope.

Proof. (1) ⇒ (2) Let E be an FP-injective right R-module and C a cyclic right
R-module. Since R is a CF ring, C can be embedded in a finitely generated free
right R-module F . Consider the inclusion map i : C ↪→ F and a homomorphism
f : C → E. As E is FP-injective, there exists a homomorphism g : F → E such
that gi = f . Thus E is C-flat by Lemma 2.2 and [15, Lemma 2.1].

(2)⇒ (3) Since injective modules are FP-injective, it is clear.
(3)⇔ (4)⇒ (1) Follows by Lemma 2.2 and [15, Lemma 3.6]. �

Recall that R is said to be a QF -ring if R is left Noetherian and left self-injective,
or equivalently every injective (resp. projective) right R-module is projective (resp.
injective) (see [10]). In the following result, we give a new characterization of a QF
ring.

Proposition 7. Let R be a ring. The following are equivalent:

(1) R is a QF ring.
(2) R is a right CF ring and every C-flat right R-module is projective.
(3) Every C-flat right R-module is injective.

Proof. (1) ⇒ (2) It is clear that R is a right CF and right Σ-CS ring. Thus (2)
follows by Remark 2.4.

(2)⇒ (1) is clear by Proposition 6.
(1) ⇒ (3) Let A be a C-flat right R-module. Since R is QF , R is right Σ-CS,

and so A is projective by Remark 2.4. Being R is QF implies that A is injective.
(3)⇒ (1) Clear since projective right modules are C-flat. �

3. Conclusion

In this paper, we continue the study and investigation of C-flat modules and
we discuss the connections between C-flat, weakly-flat, neat-flat and singly flat
modules. Then we investigate basic properties of the C-flat modules and some
characterizations of CF and QF rings. We show that C-flat modules coincide with
singly-projective modules over arbitrary rings. This work provides a new approach
to singly projective modules in terms of C-pure submodules.
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[1] Y. Alagöz, E. Büyükaşık, On max-flat and max-cotorsion modules. AAECC, 32, 195-215,

(2021).

[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules. 2nd ed. Grad. Texts in Math.,
Vol. 13. Berlin: Springer-Verlag. (1992).

[3] G. Azumaya, Finite splitness and finite projectivity. J. Algebra, 106, 114-134, (1987).
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Abstract. The aim of this paper we establish some new inequalities of Hermite-

Hadamard type by using (η1, η2)−strongly convex function whose nth deriva-

tives in absolute value at certain powers. Moreover, we also consider their
relevances for other related known results.

1. Introduction

In the following integral inequalities which are well known in the literature as
the Hermite-Hadamard inequality.

(1.1) f
(
a+b

2

)
≤ 1

b−a
∫ b
a
f (x) dx ≤ f(a)+f(b)

2 .

where f : I ⊆ R→ R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b.

Many authors have studied and generalized the Hermite-Hadamard inequality
in several ways via different classes functions. For some recent result related to
the Hermite-Hadamard inequality, we refer the interested reader to the papers.
[4− 15] . Convex functions have played an important role in the development of
various fields in pure and applied sciences. A significant class of convex functions
is strongly convex functions. The strongly convex functions also play an important
role in optimization theory and mathematical economics.

Now let’s state the definitions necessary for our work.

Definition 1.1. [11]A set I ⊆ R is invex with respect to a real bifunction η :
I × I → R, if

(1.2) x, y ∈ I, λ ∈ [0, 1] =⇒ y + λη (x, y) ∈ I.
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If I is an invex set with respect to η, then a function f : I → R is called preinvex ,
if x, y ∈ I and λ ∈ [0, 1] .

(1.3) f (y + λη (x, y)) ≤ λf (x) + (1− λ) f(y).

In 2016,Gordji et al. [11] introduced the concept η−convexity as follows:

Definition 1.2. A function f : I → R is called convex with respect to η−convex,
if

(1.4) f (tx+ (1− t)y) ≤ f (y) + tη (f(x), f(y))

for all x, y ∈ I and t ∈ [0, 1] .

Definition 1.3. [24] Let I ⊆ R be an invex set with respect to η1 : I × I →
R. Consider f : I → R and η2 : f (I) × f (I) → R. The function f is said to be
(η1, η2)− convex, if

(1.5) f (x+ λη1 (y, x)) ≤ f (x) + λη2 (f(y), f(x))

for all x, y ∈ I and λ ∈ [0, 1] .

Definition 1.4. Let I ⊆ R be an invex set with respect to η1 : I×I → R. Consider
f : I → R and η2 : f (I)×f (I)→ R. The function f is said to be (η1, η2)− strongly
convex, if c ≥ 0,

(1.6)
f (x+ λη1 (y, x))
≤ f (x) + λη2 (f(y), f(x))− cλ (1− λ) η1 (y, x) η2 (y, x)

for all x, y ∈ I and λ ∈ [0, 1] .

Definition 1.5. An (η1, η2)− strongly convex function reduces to

Remark 1.6. (i) If we choose c = 0 in definition 1.4 we obtain (η1, η2)− convex
function.

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in definition 1.4 we
obtain η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in definition 1.4
we obtain preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in definition 1.4 we
obtain classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in definition 1.4 we obtain strongly
convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in definition 1.4 we obtain
η − strongly convex function.

2. Main Results

In this section, we establish some new inequalities of Hermite-Hadamard type
by using (η1, η2)−strongly convex function whose n th derivatives in absolute value
at certain powers. Moreover, we also consider their relevances for other related
known results.

Lemma 2.1. Let I ⊆ R be an invex set with respect to η1 such that for all x ∈
I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions on
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I◦ with a < b, and n ∈ N+. For any a, b ∈ I◦ with η1 (b, a) > 0, suppose that
fn ∈ L1 [a, a+ η1 (b, a)] . Then for α > 0, the following equality holds;

(2.1)

1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx

−
∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

= η1(b,a)nthis

2(n!)

∫ 1

0
tnf (n) (a+ tη1 (b, a)) dt

Proof. By integration by parts, it follows that
(2.2)

η1(b,a)n+1

2(n!)

∫ 1

0
tnf (n) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) f (n−1) (a+ η1 (b, a)) + η1(b,a)n

2[(n−1)!]

∫ 1

0
tn−1f (n−1) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) f (n−1) (a+ η1 (b, a))− η1(b,a)n−1

2[(n−1)!] f
(n−2) (a+ η1 (b, a))

+η1(b,a)n−1

2[(n−2)!]

∫ 1

0
tn−2f (n−2) (a+ tη1 (b, a)) dt

= −
∑n−1
k=1

η1(b,a)k+1f(k)(a+η1(b,a))
2(k!) + η1(b,a)2

2

∫ 1

0
tf
′
(a+ tη1 (b, a)) dt

= −
∑n
k=1

η1(b,a)kf(k−1)(a+η1(b,a))
2(k!) + 1

2

∫ a+η1(b,a)

a
f (x) dx.

with the same argument as the above we have
(2.3)

η1(b,a)n+1

2(n!)

∫ 1

0
(t− 1)

n
f (n) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) (−1)
n
f (n−1) (a) + η1(b,a)n

2[(n−1)!]

∫ 1

0
(t− 1)

n−1
f (n−1) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) (−1)
n
f (n−1) (a)− η1(b,a)n−1

2[(n−1)!] (−1)
n
f (n−2) (a)

+η1(b,a)n−1

2[(n−2)!]

∫ 1

0
(t− 1)

n−2
f (n−2) (a+ tη1 (b, a)) dt

= −
∑n
k=1

η1(b,a)k(−1)kf(k−1)(a)
2(k!) + 1

2

∫ a+η1(b,a)

a
f (x) dx.

Adding these two equations leads to Lemma 2.1. �

Lemma 2.2. Let I ⊆ R be an invex set with respect to η1 such that for all x ∈
I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions on
I◦ with a < b, and n ∈ N+. For any a, b ∈ I◦ with η1 (b, a) > 0, suppose that
fn ∈ L1 [a, a+ η1 (b, a)] .Then for α > 0, the following equality holds;

(2.4)

1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

×
[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]

= η1(b,a)n

2(n!)

[∫ 1
2

0
(−t)n f (n) (a+ tη1 (b, a)) dt

+
∫ 1

1
2

(1− t)n f (n) (b+ tη1 (a, b)) dt
]
.

Proof. This follows from integration by parts immediately. �

Theorem 2.3. Let I ⊆ R be an invex set with respect to η1 such that for all
x ∈ I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions
on I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is
an integrable bi functionon f(I)× f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
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α > 0, the following inequality holds;

(2.5)

∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

(
2

n+1

)1− 1
q

×
(

2
n+1 (|fn (a)|q) + 1

n+1η2 (|fn (b)|q , |fn (a)|q)− 2cη1(b,a)η2(b,a)
(n+2)(n+3)

) 1
q

.

Proof. By using Lemma 1, the power mean inequality and the (η1, η2)−strongly
convex function of |fn|q , we have
(2.6)∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n] dt

)1− 1
q
(∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt) 1

q

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

)1− 1
q

×
(∫ 1

0
[tn + (1− t)n] [|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

)1− 1
q

×
(

(|fn (a)|q)
∫ 1

0
[tn + (1− t)n] dt+ η2 (|fn (b)|q , |fn (a)|q)

(∫ 1

0
t [tn + (1− t)n] dt

)
−cη1 (b, a) η2 (b, a)

∫ 1

0
t (1− t) [tn + (1− t)n] dt

) 1
q

= η1(b,a)n

2(n!)

(
2

n+1

)1− 1
q
(

2
n+1 (|fn (a)|q) + 1

n+1η2 (|fn (b)|q , |fn (a)|q)− 2cη1(b,a)η2(b,a)
(n+2)(n+3)

) 1
q

where

(2.7)
∫ 1

0
[tn + (1− t)n] dt = 2

n+1

(2.8)
∫ 1

0
t [tn + (1− t)n] dt = 1

n+1

and

(2.9)
∫ 1

0
t (1− t) [tn + (1− t)n] dt = 2

(n+2)(n+3)

This completes the proof of the theorem. �

We will give some special cases of Theorem 2.3 which show that our result
generalize several results obtained previous works.

Remark 2.4. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.3 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.3 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.3
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.3 the
results are we obtain also provided for classical convex function.
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(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.3 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.3 we obtain
η − strongly convex function.

Theorem 2.5. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;
(2.10)∣∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(
|fn (a)|q + 1

2η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

,

where 1
p + 1

q = 1.

Proof. By using Lemma 1, the Hölder’s inequality and the (η1, η2)−strongly con-
vexity of |fn|q , we have
(2.11)∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p
(∫ 1

0

∣∣f (n) (a+ tη1 (b, a))
∣∣q) 1

q

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(∫ 1

0
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(
|fn (a)|q

∫ 1

0
1dt+ η2 (|fn (b)|q , |fn (a)|q)

∫ 1

0
tdt− cη1 (b, a) η2 (b, a)

∫ 1

0
t (1− t) dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p
(
|fn (a)|q + 1

2η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

.

It can easily be verified that tn + (1− t)n ≤ 1 for t ∈ [0, 1] . So, it follows that

(2.12)
∫ 1

0
[tn + (1− t)n]

p
dt ≤

∫ 1

0
[tn + (1− t)n] dt = 2

n+1

Hence, the desired inequality follows from 2.11 and 2.12. This completes the proof
of the theorem. �

We will give some special cases of Theorem 2.5 which show that our result
generalize several results obtained previous works.

Remark 2.6. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.5 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].
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(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.5 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.5
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.5 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.5 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.5 we obtain
η − strongly convex function.

Theorem 2.7. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)∣∣× [f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣

(2.13)

≤ η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q

×
[(

1
2n+1(n+1) |f

n (a)|q + 1
2n+2(n+2)η2 (|fn (b)|q , |fn (a)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
+η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q[(

1
2n+1(n+1) |f

n (b)|q + n+3
2n+2(n+2)(n+1)η2 (|fn (a)|q , |fn (b)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
.

Proof. By using Lemma 2, the Power mean inequality and the (η1, η2)−strongly
convexity of |fn|q , we have∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣∣∣

≤ η1(b,a)n

(n!)

[∫ 1
2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣ dt+

∫ 1
1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣ dt]
≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q
(∫ 1

2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣q) 1

q

dt

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q
(∫ 1

1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣q dt) 1
q

]
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≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q

×
(∫ 1

2

0
(t)

n
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q

×
(∫ 1

1
2

(1− t)n [|fn (b)|q + tη2 (|fn (a)|q , |fn (b)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt
) 1

q

]
(2.14)

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q
((
|fn (a)|q

∫ 1
2

0
(t)

n
dt
)

+ η2 (|fn (b)|q , |fn (a)|q)
∫ 1

2

0
tn+1dt

−cη1 (b, a) η2 (b, a)
∫ 1

2

0
tn+1 (1− t) dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q
((
|fn (b)|q

∫ 1
1
2

(1− t)n
)

+ η2 (|fn (a)|q , |fn (b)|q)
∫ 1

1
2
t (1− t)n

−cη1 (b, a) η2 (b, a)
∫ 1

1
2
t (1− t)n+1

) 1
q

]
≤ η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q
[(

1
2n+1(n+1) |f

n (a)|q + 1
2n+2(n+2)η2 (|fn (b)|q , |fn (a)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
+η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q
[(

1
2n+1(n+1) |f

n (b)|q + n+3
2n+2(n+2)(n+1)η2 (|fn (a)|q , |fn (b)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
.

This completes the proof of the theorem. �

We will give some special cases of Theorem 2.7 which show that our result
generalize several results obtained previous works.

Remark 2.8. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.7 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.7 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.7
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.7 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.7 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.7we obtain
η − strongly convex function.

Theorem 2.9. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
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η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;

∣∣∣∣∣ 1

η1 (b, a)

∫ a+η1(b,a)

a

f (x) dx+
1

η1 (b, a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
n∑
k=1

η1 (b, a)
k
[
1 + (−1)

k
]

2k (k!)

×
[
f (k−1)

(
a+

1

2
η1 (b, a)

)
+ f (k−1)

(
b+

1

2
η1 (a, b)

)]∣∣∣∣

≤ η1 (b, a)
n

2 (n!)

(
1

2np (np+ 1)

) 1
p

(2.15)

×

[(
|fn (a)|q +

1

4
η2 (|fn (b)|q , |fn (a)|q)− cη1 (b, a) η2 (b, a)

6

) 1
q

+

(
|fn (b)|q +

3

4
η2 (|fn (a)|q , |fn (b)|q)− cη1 (b, a) η2 (b, a)

6

) 1
q

]
,

where 1
p + 1

q = 1.

Proof. Again, using Lemma 2, the Hölder’s inequality and the (η1, η2)−strongly
convexity of |fn|q , we have

∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣∣∣

≤ η1(b,a)n

(n!)

[∫ 1
2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣ dt+

∫ 1
1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣ dt]
≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p
(∫ 1

2

0

∣∣f (n) (a+ tη1 (b, a))
∣∣q dt) 1

q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p
(∫ 1

1
2

∣∣f (n) (b+ tη1 (a, b))
∣∣ dt) 1

q

]

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p

×
(∫ 1

2

0
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p

×
(∫ 1

1
2

[|fn (b)|q + tη2 (|fn (a)|q , |fn (b)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt
) 1

q

]
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(2.16)

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p

×
(
|fn (a)|q

∫ 1
2

0
1dt+ η2 (|fn (b)|q , |fn (a)|q)

∫ 1
2

0
tdt− cη1 (b, a) η2 (b, a)

∫ 1
2

0
t (1− t) dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p

×
(
|fn (b)|q

∫ 1
1
2

1dt+ η2 (|fn (a)|q , |fn (b)|q)
∫ 1

1
2
tdt− cη1 (b, a) η2 (b, a)

∫ 1
1
2
t (1− t) dt

) 1
q

]
≤ η1(b,a)n

(n!)

(
1

2np(np+1)

) 1
p

[(
1
2 |f

n (a)|q + 1
8η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)

12

) 1
q

]
+η1(b,a)n

(n!)

(
1

2np(np+1)

) 1
p

[(
1
2 |f

n (b)|q + 3
8η2 (|fn (a)|q , |fn (b)|q)− cη1(b,a)η2(b,a)

12

) 1
q

]
= η1(b,a)n

2(n!)

(
1

2np(np+1)

) 1
p

[(
|fn (a)|q + 1

4η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

+
(
|fn (b)|q + 3

4η2 (|fn (a)|q , |fn (b)|q)− cη1(b,a)η2(b,a)
6

) 1
q

]
This completes the proof of the theorem. �

We will give some special cases of Theorem 2.9 which show that our result
generalize several results obtained previous works.

Remark 2.10. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.9 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.9 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.9
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.9 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.9 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.9 we obtain
η − strongly convex function.

3. Conclusion

In this study, we present some inequalities for (η1, η2)−strongly convex functions
involving whose nth derivatives in absolute value at certain powers. It is also shown
that the results proved here are the strong generalization of some already published
ones. It is an interesting and new problem that the forthcoming researchers can
use the techniques of this study and obtain similar inequalities for different kinds
of strongly convexity in their future work.
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Email address: hyildir@ksu.edu.tr



Journal of Universal Mathematics
Vol.4 No.2 pp.241-251 (2021)

ISSN-2618-5660
DOI: 10.33773/jum.954104

ON *-BOUNDEDNESS AND *-LOCAL BOUNDEDNESS OF

NON-NEWTONIAN SUPERPOSITION OPERATORS IN c0,α AND

cα TO `1,β
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Abstract. Many investigations have been made about of non-Newtonian
calculus and superposition operators until today. Non-Newtonian superpo-

sition operator was defined by Sağır and Erdoğan in [9]. In this study, we

have defined *- boundedness and *-locally boundedness of operator. We have
proved that the non-Newtonian superposition operator NPf : c0,α → `1,β is

*-locally bounded if and only if f satisfies the condition (NA′
2). Then we have

shown that the necessary and sufficient conditions for the *-boundedness of

NPf : c0,α → `1,β . Finally, the similar results have been also obtained for

NPf : cα → `1,β .

1. Introduction and Preliminaries

Non-Newtonian calculus was firstly introduced and worked by Michael Grossman
and Robert Katz between years 1967 and 1970. They published the book about
fundamentals of non-Newtonian calculus and which includes some special calculus
such as geometric, harmonic, quadratic. Çakmak and Başar [5] obtained some
results on sequence spaces with respect to non-Newtonian calculus. Duyar and
Erdogan [7] worked on non-Newtonian real number series. Also, Güngör [11] studied
on some geometric properties of `p(N).

Many studies are done until today on superposition operator which is one of
the non-linear operators. Dedagich and Zabreiko [2] studied on the superposition
operators in the space `p. After, some properties of superposition operator, such
as boundedness, continuity, were studied by Tainchai [3], Sama-ae [4], Sağır and
Güngör [6] and many others. Non-Newtonian superposition operator was defined
and characterized in some non-Newtonian sequence spaces by Sağır and Erdoğan in
[9]. In this article, we define *- boundedness and *-locally boundedness of operator.
We prove that the non-Newtonian superposition operator NPf : c

0,α
→ `1,β is *-

locally bounded if and only if f satisfies the condition (NA′2). Then we show that
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the necessary and sufficient conditions for the *-boundedness of NPf : c
0,α
→ `1,β .

Also the similar results are obtained for NPf : cα → `1,β .
A generator is defined as an injective function with domain R and the range of

generator is a subset of R. Let take any α generator with range A = Rα. Let define
α−addition, α−subtraction, α−multiplication, α−division and α−order as follows;

α−addition x+̇y = α
(
α−1 (x) + α−1 (y)

)
α−subtraction x−̇y = α

(
α−1 (x)− α−1 (y)

)
α−multiplication x×̇y = α

(
α−1 (x)× α−1 (y)

)
α−division x/̇y = α

(
α−1 (x) /α−1 (y)

)
(y 6= 0̇)

α−order x<̇y
(
x≤̇y

)
⇔ α−1 (x) < α−1 (y)

(
α−1 (x) ≤ α−1 (y)

)
for x, y ∈ Rα [1].

(Rα, +̇, ×̇, ≤̇) is totally ordered field [5].
The numbers x>̇0̇ are α−positive numbers and the numbers x<̇0̇ are α−negative

numbers in Rα. α−integers are obtained by successive α−addition of 1̇ to 0̇ and
successive α−subtraction of 1̇ from 0̇. For each integer n, we set ṅ = α (n).
α−absolute value of a number x ∈ Rα is defined by

|x|α = α
(∣∣α−1 (x)

∣∣) =


x if x>̇0̇
0̇ if x = 0̇

0̇−̇x if x<̇0̇

.

For x ∈ Rα, p
√
x
α

= α
(
p
√
α−1 (x)

)
and xpα = α

{[
α−1 (x)

]p}
.

Grossman and Katz described the *-calculus with the help of two arbitrary se-
lected generators. In this paper, we study according to *-calculus. Let take any
generators α and β and let * (”star”) is shown the ordered pair of arithmetics
(α−arithmetic, β−arithmetic). The following notations will be used.

α−arithmetic β − arithmetic
Realm A (= Rα) B (= Rβ)
Summation +̇ +̈
Subtraction −̇ −̈
Multiplication ×̇ ×̈
Division /̇ /̈
Ordering <̇ <̈

In the ∗−calculus, α−arithmetic is used on arguments and β−arithmetic is used
on values.

The isomorphism from α−arithmetic to β−arithmetic is the unique function
ı(iota) that possesses the following three properties.

1. ı is one-to-one.
2. ı is on A and onto B.
3. For any numbers u and v in A,

ι
(
u+̇v

)
= ι (u) +̈ι (v) , ι

(
u−̇v

)
= ι (u) −̈ι (v) ,

ι
(
u×̇v

)
= ι (u) ×̈ι (v) , ι

(
u/̇v

)
= ι (u) /̈ι (v) , v 6= 0̇

u <̇ v ⇐⇒ ι (u) <̈ι (v) .

It turns out that ι (x) = β
{
α−1 (x)

}
for every number x in A and that ι (ṅ) = n̈

for every integer n [1].
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In non-Newtonian metric space, the definitions of α−accumulation point of a
set, α−convergence of a sequence and α−bounded sequence have been given in the
studies which are numbered[5, 10]. The definitions of *-limit and *-continuity of
the function f : X ⊂ Rα → Rβ have been introduced by Sağır and Erdogan[10].
Duyar and Erdogan introduced α−series and its α−convergence[7].

Let X be a vector space over the field Rα and ‖.‖X,α be a function from X to

R+
α ∪

{
0̇
}

satisfying the following non-Newtonian norm axioms. For x, y ∈ X and
λ ∈ Rα,

(NN1) ‖x‖X,α = 0̇⇔ x = 0̇,

(NN2)
∥∥λ×̇x∥∥

X,α
= |λ|α ×̇ ‖x‖X,α ,

(NN3)
∥∥x+̇y

∥∥
X,α
≤̇ ‖x‖X,α +̇ ‖y‖X,α .

Then
(
X, ‖.‖X,α

)
is said to be a non-Newtonian normed space.

The non-Newtonian sequence spaces Sα, `∞,α, cα, c0,α and `p,α over the non-
Newtonian real field Rα are defined as following:
Sα = {x = (xk) : ∀k ∈ N, xk ∈ Rα}

`∞,α =

{
x = (xk) ∈ Sα : α sup

k∈N
|xk|α <̇+̇∞

}
,

cα =

{
x = (xk) ∈ Sα : ∃l ∈ Rα 3 α lim

k→∞

∣∣xk−̇l∣∣α = 0̇

}
,

c0,α =

{
x = (xk) ∈ Sα : α lim

k→∞
|xk|α = 0̇

}
,

`p,α =

{
x = (xk) ∈ Sα : α

∞∑
k=1

|xk|pαα <̇+̇∞
}

(1 ≤ p <∞) .

The sequence spaces `∞,α, cα, c0,α are non-Newtonian normed spaces with the
non-Newtonian norm ‖.‖`∞,α

which is defined as ‖x‖`∞,α
= α sup

k∈N
|xk|α and the

sequence space `p,α is a non-Newtonian normed space with the non-Newtonian norm

‖.‖`p,α which is defined as ‖x‖`p,α =

(
α

∞∑
k=1

|xk|pαα

)(1

p

)
α [5]. The α−sequence e

(k)
n

is defined as e
(k)
n =

{
1̇, k = n
0̇, k 6= n

.

Let SN be space of non-Newtonian real number sequences, Xα be a sequence
space on Rα and Yβ be a sequence space on Rβ . A non-Newtonian superposi-
tion operator NPf on Xα is a mapping from Xα into SN defined by NPf (x) =
(f (k, xk))

∞
k=1 where f : N× Rα → Rβ satisfies condition (NA1) as follows;

(NA1) f(k, 0̇) = 0̈ for all k ∈ N.
If NPf (x) ∈ Yβ for all x = (xk) ∈ Xα, we say that NPf acts from Xα into Yβ

and write NPf : Xα → Yβ [9].
Also, we shall assume the following conditions:

(NA2) f(k, .) is *-continuous for all k ∈ N.
(NA′2) f(k, .) is β−bounded on every α−bounded subset of Rα for all k ∈ N.

Sağır and Erdoğan [9] have characterized the non-Newtonian superposition op-
erators NPf on c0,α and cα as the following.

Theorem 1.1. Let f : N × Rα → Rβ satisfies the condition (NA′2). Then NPf :

c0,α → `1,β if and only if there exist a α−number µ>̇0̇ and a β−sequence (ck) ∈ `1,β
such that |f (k, t)|β ≤̈ck when |t|α ≤̇µ for all k ∈ N.
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Theorem 1.2. Let f : N × Rα → Rβ satisfies the condition (NA′2). Then NPf :

cα → `1,β if and only if there exist a α−number µ>̇0̇ and a β−sequence (ck) ∈ `1,β
such that |f (k, t)|β ≤̈ck when

∣∣t−̇z∣∣
α
≤̇µ for all z ∈ Rα and for all k ∈ N.

2. Main Results

Definition 2.1. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian sequence spaces. An

operator F : Xα → Yβ is *-bounded if F (A) is β−bounded for every α−bounded
subset A of Xα .

Definition 2.2. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian sequence spaces.

An operator F : Xα → Yβ is *-locally bounded at x0 ∈ Xα if there exist α−number

µ>̇0̇ and β−number η>̈0̈ such that F (x) ∈ Bd′β [F (x0) , η] for x ∈ Bdα [x0, µ]. F

is *-locally bounded if it is *-locally bounded for every x ∈ Xα.

Theorem 2.3. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian metric sequence spaces.

An operator F : Xα → Yβ is *-locally bounded if F is *-bounded.

Proof. Let x ∈ Xα with x ∈ Bdα [x0, µ] for x0 ∈ Xα and µ>̇0̇. Since F is *-
bounded, F (Bdα [x0, µ]) is β−bounded set. Then there exists a β−number η>̈0̈
such that d′β (F (x) , F (x0)) ≤̈η. So we obtain that F (x) ∈ Bd′β [F (x0) , η]. Thus

F is *-locally bounded at x0 ∈ Xα. �

Corollary 2.4. Let Xα be an α−sequence space. F : Xα → `1,β is *-locally
bounded if F is *-bounded.

Theorem 2.5. If the function f : N×Rα → Rβ is *-locally bounded, it is satisfies
the condition (NA′2).

Proof. Let A be an α−bounded subset of Rα. Then there exists [̇a, b]̇ ⊂ Rα such

that A ⊂ [̇a, b]̇. Let c ∈ [̇a, b]̇. Since f is *-locally bounded, there exists δc>̇0̇ and
γc>̈0̈ such that ∣∣f (x) −̈f (c)

∣∣
β
≤̈γc with

∣∣x−̇c∣∣
α
≤̇δc .

Then it is written that f (x) ∈ Bβ [f (c) , γc] for x ∈ Bα [c, δc]. Since∣∣∣|f (x)|β −̈ |f (c)|β
∣∣∣
β
≤̈
∣∣f (x) −̈f (c)

∣∣
β
≤̈γc ,

we get

|f (x)|β ≤̈γc+̈ |f (c)|β
when x ∈ Bα [c, δc]. Every α−closed interval [̇a, b]̇ on Rα is α−compact by *-

Heine Borel Theorem in [9]. Then there exist c1, c2, ..., cn ∈ [̇a, b]̇ such that [̇a, b]̇ ⊂
n⋃
k=1

Bα [ck, δck ], since [̇a, b]̇ ⊂
⋃

c∈[̇a,b]̇

Bα [c, δc]. So we have |f (x)|β ≤̈ι (ck) +̈ |f (ck)|β

for each x ∈ Bα [ck, δck ] where 1 ≤ k ≤ n. If M = β max
{
ι (ck) +̈ |f (ck)|β : 1 ≤ k ≤ n

}
,

then |f (x)|β ≤̈M for x ∈
n⋃
k=1

Bα [ck, δck ]. Since A ⊂ [̇a, b]̇ ⊂
n⋃
k=1

Bα [ck, δck ], we get

|f (x)|β ≤̈M for x ∈ A. �
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Theorem 2.6. Let f : N × Rα → Rβ. Then the non-Newtonian superposition
operator NPf : c0,α → `1,β is *-locally bounded if and only if f satisfies the
condition (NA′2).

Proof. Assume that f satisfies the condition (NA′2). Let z = (zk) ∈ c0,α. Since

NPf : c0,α → `1,β and f satisfies (NA′2), by Theorem 1.1, there exist µ>̇0̇ and
(ck) ∈ `1,β such that

(2.1) |f (k, t)|β ≤̈ck whenever |t|α ≤̇µ

for all k ∈ N. Let ϕ =
µ

2̇
α and x ∈ c0,α such that

∥∥x−̇z∥∥
c0,α
≤̇ϕ. Since α lim

k→∞
|zk|α =

0̇, there exists a positive integer r such that |zk|α ≤̇ϕ for all k ≥ r. Then

(2.2) ‖zλ‖c0,α = α sup
k≥r
|zk|α ≤̇ϕ

for λ ∈ {r, r + 1, ...}. Since
∥∥x−̇z∥∥

c0,α
≤̇ϕ, we get that

(2.3) α sup
k

∣∣xk−̇zk∣∣α ≤̇ϕ
By (2.2) and (2.3), it is written that

|xk|α ≤̇ α sup
n≥r
|xn|α

= α sup
n≥r

∣∣xn−̇zn+̇zn
∣∣
α

≤̇ α sup
n≥r

∣∣xn−̇zn∣∣α +̇ α sup
n≥r
|zn|α

≤̇ ϕ+̇ϕ

= µ

for all k ≥ r. From (2.1), we have |f (k, xk)|β ≤̈ck for all k ≥ r. Then

(2.4) β

∞∑
k=r

|f (k, xk)|β ≤̈ β

∞∑
k=r

ck = β

∞∑
k=r

|ck|β ≤̈ β

∞∑
k=1

|ck|β = ‖(ck)‖`1,β .

Let mk = β sup
|t−̇zk|

α
≤̇ϕ
|f (k, t)|β for all k ∈ N. Since f satisfies the condition (NA′2),

it is seen that mk<̈+̈∞ for all k ∈ N. So we get
∣∣xk−̇zk∣∣α ≤̇ϕ for all k ∈ N by (2.3).

Then we have

(2.5) |f (k, xk)|β ≤̈mk

for all k ∈ N. Using the relations (2.4) and (2.5), it is obtained that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β

= β

r−1∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=r

|f (k, xk)|β

≤̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β .
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Then we have∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β

≤̈ ‖NPf (x)‖`1,β +̈ ‖NPf (z)‖`1,β

≤̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β +̈ ‖NPf (z)‖`1,β .

Therefore we get that

∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β
≤̈γ when γ = ‖NPf (z)‖`1,β +̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β .

Hence, the non-Newtonian operator NPf *-locally bounded at z.
Conversely assume that NPf : c0,α → `1,β is *-locally bounded. Let k ∈ N and

b ∈ Rα. Let y = (yn) be defined as yn =

{
b , n = k
0̇ , n 6= k

. Then (yn) ∈ c0,α. By

assumption, there exist µ>̇0̇ and η>̈0̈ such that

(2.6)
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈η whenever

∥∥x−̇y∥∥
c0,α
≤̇µ.

Let a ∈ Rα with
∣∣a−̇b∣∣

α
≤̇µ and let x = (xn) with xn =

{
a , n = k
0̇ , n 6= k

. Then

x ∈ c0,α. Since ∥∥x−̇y∥∥
c0,α

= α sup
n

∣∣xn−̇yn∣∣α =
∣∣a−̇b∣∣

α
≤̇µ,

we get
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈η by (2.6). Then we have

∣∣f (k, a) −̈f (k, b)
∣∣
β
≤̈ β

∞∑
n=1

∣∣f (n, xn) −̈f (n, yn)
∣∣
β

=
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β

≤̈ η

Hence f (k, .) is *-locally bounded at b. Since b ∈ Rα is arbitrary, f (k, .) is *-locally
bounded. Thus f (k, .) satisfies the condition (NA′2). �

Corollary 2.7. Let f : N × Rα → Rβ satisfies the condition (NA2). The non-
Newtonian superposition operator NPf is *-locally bounded if NPf : c0,α → `1,β .

Corollary 2.8. Let f : N×Rα → Rβ . If NPf : c0,α → `1,β is *-bounded, f satisfies
the condition (NA′2).

Proposition 2.9. Assume that f : N×Rα → Rβ satisfies the condition (NA′2). If

for each µ>̇0̇ there exists a β−number η (µ) >̈0̈ such that

β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ) whenever |xk|α ≤̇µ

for all k ∈ N, then there exists a c (µ) = (ck (µ)) ∈ `1,β with ck (µ) ≥̈0̈ and

‖c (µ)‖`1,β ≤̈η (µ) for all k ∈ N such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ .
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Proof. Let µ>̇0̇. We define

A (µ) =
{
t ∈ Rα : |t|α ≤̇µ

}
and ck (µ) = β sup

{
|f (k, t)|β : t ∈ A (µ)

}
for all k ∈ N. Then |f (k, t)|β ≤̈ck (µ) where |t|α ≤̇µ. Since f satisfies the condition

(NA′2), it is obtained that 0̈≤̈ ck (µ) <̈+̈∞ for all k ∈ N. For each ε>̈0̈. there exists
an α-sequence x = (xk) when |xk|α ≤̇µ such that

(2.7) ck (µ) ≤̈ |f (k, xk)|β +̈
ε

2̈kβ
β

for all k ∈ N. By (2.7), we have

β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β ≤̈ β

∞∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=1

ε

2̈kβ
β≤̈η (µ) +̈ε .

Thus, ‖ck (µ)‖`1,β ≤̈η (µ) +̈ε. Since ε is arbitrary, it is written that ‖c (µ)‖`1,β ≤̈η (µ)

with c (µ) = (ck (µ)). So there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

ck (µ) ≥̈0̈ and ‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for

each k ∈ N. �

Theorem 2.10. Let f : N×Rα → Rβ. The non-Newtonian superposition operator

NPf : c0,α → `1,β is *-bounded if and only if for all µ>̇0̇ there exists a β-sequence
c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ

for each k ∈ N.

Proof. Let x ∈ c0,α and µ>̇0̇ with ‖x‖c0,α ≤̈µ. Then |xk|α ≤̇µ for all k ∈ N.

By the hypothesis, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) for each k ∈ N. Then

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈ β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β = ‖c (µ)‖`1,β .

Thus, NPf : c0,α → `1,β is *-bounded.

Conversely, assume that NPf : c0,α → `1,β is *-bounded. Let µ>̇0̇. Then for

each x ∈ c0,α with ‖x‖c0,α ≤̈µ, it is obtained that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ) <̈+̈∞

for a β-positive integer η (µ). By Corollary 2.8, f satisfies the condition (NA′2).
In view of Proposition 2.9, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for each k ∈ N. �

Example 2.11. Let function f : N×Rα → Rβ be defined by f (k, t) =
|ι (t)|β

5̈kβ
β for

all k ∈ N and t ∈ Rα. Since there exist γ = 1̇ and (ck) =

(
1̈

5̈kβ
β

)
∈ `1,β such that

|f (k, t)|β ≤̈ck whenever |t|α ≤̇1̇ for each k ∈ N, the non-Newtonian superposition
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operator NPf acts from c0,α to `1,β . Let µ>̇0̇ and t ∈ Rα with |t|α ≤̇µ. Then, for
all k ∈ N

|f (k, t)|β =
|ι (t)|β

5̈kβ
β≤̈ ι (µ)

5̈kβ
β and β

∞∑
k=1

ι (µ)

5̈kβ
β =

(
ι (µ)

4̈kβ
β

)
.

Hence we obtaine that |f (k, t)|β ≤̈ck (µ) whenever (ck (µ)) =

(
ι (µ)

5̈kβ
β

)
∈ `1,β for

all k ∈ N. Then, NPf : c0,α → `1,β is *-bounded by Theorem 2.10.

Theorem 2.12. Let f : N×Rα → Rβ. The non-Newtonian superposition operator

NPf : cα → `1,β is *-locally bounded if and only if f satisfies the condition (NA′2).

Proof. Assume that f satisfies the condition (NA′2). Let z = (zk) ∈ cα. By
Theorem 1.2 there exist µ>̇0̇ and (ck) ∈ `1,β such that

(2.8) |f (k, t)|β ≤̈ck whenever
∣∣t−̇a∣∣

α
≤̇µ

for each a ∈ Rα and for all k ∈ N. Let η>̇0̇ and x ∈ cα with
∥∥x−̇z∥∥

c,α
≤̇η. Since

x ∈ cα, there exists a ∈ Rα such that

(2.9) α lim
k→∞

∣∣xk−̇a∣∣α = 0̇ .

From (2.8), there exist a ρ>̇0̇ and a (ck) ∈ `1,β such that

(2.10) |f (k, t)|β ≤̈ck whenever
∣∣t−̇a∣∣

α
≤̇ρ

for all k ∈ N. By (2.9), there exists i ∈ N

(2.11)
∣∣xk−̇a∣∣α ≤̇ρ

for all k ≥ i. By (2.10) and (2.11), we obtaine that |f (k, xk)|β ≤̈ck for all k ≥ i.
Then

(2.12) β

∞∑
k=i

|f (k, xk)|β ≤̈ β

∞∑
k=i

ck = β

∞∑
k=i

|ck|β ≤̈ β

∞∑
k=1

|ck|β = ‖ck‖`1,β

Let mk = β sup
|t−̇zk|

α
≤̇η
|f (k, t)|β for each k ∈ N. Since f satisfies the condition

(NA′2), mk<̈+̈∞ for all k ∈ N. Since
∥∥x−̇z∥∥

c,α
≤̇η, we have that

∣∣xk−̇zk∣∣α ≤̇η for

all k ∈ N. Then, for all k ∈ N

(2.13) |f (k, xk)|β ≤̈mk

By (2.12) and (2.13),

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β

= β

i−1∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=i

|f (k, xk)|β

≤̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β .
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Then ∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β

≤̈ ‖NPf (x)‖`1,β +̈ ‖NPf (z)‖`1,β

≤̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β +̈ ‖NPf (z)‖`1,β .

Therefore we have that∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β
≤̈γ when γ = ‖NPf (z)‖`1,β +̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β .

Hence NPf *-locally bounded at z.
Conversely, assume that NPf : cα → `1,β is *-locally bounded. Let k ∈ N and

b ∈ Rα. Let y = (yn) be as follows

yn =

{
b , n = k
0̇ , n 6= k

for all k ∈ N and b ∈ Rα. Then y ∈ cα. By the hypothesis, there exist µ>̇0̇ and
ϕ>̈0̈ such that

(2.14)
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈ϕ whenever

∥∥x−̇y∥∥
c,α
≤̇µ .

Let a ∈ Rα with
∣∣a−̇b∣∣

α
≤̇µ and x = (xn) with xn =

{
a , n = k
0̇ , n 6= k

. Then x ∈ cα.

Since ∥∥x−̇y∥∥
c,α

= α sup
n

∣∣xn−̇yn∣∣α =
∣∣a−̇b∣∣

α
≤̇µ,

by virtue of (2.14), it is written that
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈ϕ. Then we have

∣∣f (k, a) −̈f (k, b)
∣∣
β
≤̈ β

∞∑
n=1

∣∣f (n, xn) −̈f (n, yn)
∣∣
β

=
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β

≤̈ ϕ

Therefore f (k, .) is *-locally bounded at b. Since b ∈ Rα is arbitrary, f (k, .) is
*-locally bounded. Hence f (k, .) satisfies the condition (NA′2). �

Corollary 2.13. Let the function f : N × Rα → Rβ satisfy the condition (NA2).
Then NPf : cα → `1,β is *-locally bounded.

Corollary 2.14. Let f : N×Rα → Rβ . If NPf : cα → `1,β is *-bounded, f satisfies
the condition (NA′2).

Theorem 2.15. Let f : N × Rα → Rβ. NPf : cα → `1,β is *-bounded if and only

if for every µ>̇0̇ there exists a sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ

for all k ∈ N.
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Proof. Let µ>̇0̇ and x ∈ cα with ‖x‖c,α ≤̇µ. Then |xk|α ≤̇µ for all k ∈ N. By the

hypothesis, for each k ∈ N there exists a sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, xk)|β ≤̈ck (µ). Then it is written that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈ β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β = ‖c (µ)‖`1,β .

Thus NPf : cα → `1,β is *-bounded.

Conversely, assume that NPf : cα → `1,β is *-bounded. Let µ>̇0̇. There exists a
positive β−number η (µ) such that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ)

for each x ∈ cα with ‖x‖c,α ≤̇µ. From Corollary 2.13, f satisfies the condition

(NA′2). By Proposition 2.9, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for all k ∈ N. �

Example 2.16. Let f : N× Rα → Rβ be as follows

f (k, t) =
(ι (t))

2β

5̈kβ
β

for all k ∈ N. Let µ>̇0̇ and t ∈ Rα with |t|α ≤̇µ. Then

|f (k, t)|β =
(ι (t))

2β

5̈kβ
β≤̈ (ι (µ))

2β

5̈kβ
β

for each k ∈ N. Since

β

∞∑
k=1

(ι (µ))
2β

5̈kβ
β = (ι (µ))

2β ×̈ β

∞∑
k=1

1̈

5̈kβ
β = (ι (µ))

2β ×̈ 1̈

5̈
β×̈ 1̈

1̈−̈ 1̈

5̈
β

β =
(ι (µ))

2β

4̈
β<̈+̈∞,

we have |f (k, t)|β ≤̈ck when ck =
(ι (µ))

2β

5̈kβ
β for each k ∈ N. Hence NPf : cα → `1,β

is *-bounded by Theorem 2.15.

3. Conclusion

In this paper, the well-known boundedness and locally boundedness in classical
calculus were extended to non-Newtonian calculus. Also their properties on some
non-Newtonian sequence spaces were investigated.
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[8] O. Oğur, “On characterization of boundedness of superposition operators on the Maddox

space Cr0(p) of double sequences”, New Trends in Mathematical Sciences, 4, 80-88, (2017).
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Abstract. The aim of this paper is to investigate generalizations of locally

artinian supplemented modules in module theory, namely locally artinian rad-
ical supplemented modules and strongly locally artinian radical supplemented

modules. We have obtained elementary features of them. Also, we have char-

acterized strongly locally artinian radical supplemented modules by left perfect
rings. Finally, we have proved that the reduced part of a strongly locally ar-

tinian radical supplemented R-module has the same property over a Dedekind

domain R.

1. Introduction

Throughout this paper, the ring R will denote an associative ring with identity
element and modules will be left unital. We will use the notation U �M to stress
that U is a small submodule of M . Rad(M) will indicate radical of M which is
sum of all small submodules of M , and Soc(M) will indicate socle of M which is
sum of all semisimple submodules of M . A non-zero module M is called hollow
if every proper submodule of M is small in M , and M is called local if the sum
of all proper submodules of M is also a proper submodule of M . A module M
is called semilocal if M

Rad(M) is semisimple. M is called locally artinian if every

finitely generated submodule of M is artinian [8, 31]. A submodule V of M is
called a supplement of U in M if M = U + V and U ∩ V � V . The module M is
called supplemented if every submodule of M has a supplement in M . A submodule
U of M has ample supplements in M if every submodule V of M with M = U +V
contains a supplement V

′
of U in M . The module M is called amply supplemented

if every submodule of M has ample supplements in M [8]. Moreover, it is called
⊕-supplemented if every submodule of M has a supplement in the form of a direct
summand of M . Clearly, the ⊕-supplemented modules are supplemented.

In [10], Zöschinger introduced a notion of modules with radical which has sup-
plements and called them radical supplemented. In the same paper and in [12],
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the structure of radical supplemented modules is determined. Motivated by this,
Büyükaşık and Türkmen call a module M strongly radical supplemented (or, briefly,
a srs-module) if every submodule containing the radical has a supplement [2]. In
[4], it is introduced another notion of ⊕-radical supplemented modules. A module
M is called ⊕-radical supplemented if Rad(M) has a supplement which is a direct
summand of M . In this paper, a module M is called strongly ⊕-radical supple-
mented provided that every submodule containing the radical has a supplement
which is a direct summand of M .

In [9], a generalization of concept of socle as a Socs(M) =
∑
{U � M |U is

simple } is defined. Here Socs(M) ⊆ Rad(M) and Socs(M) ⊆ Soc(M). In [3],
a module M is called strongly local if it is local and Rad(M) is semisimple. A
submodule U of M is called an ss-supplement of U in M if M = U + V and
U ∩ V ⊆ Socs(V ). The module M is called ss-supplemented if every submodule of
M has an ss-supplement in M . A submodule U of M has ample ss-supplements in
M if every submodule V of M such that M = U +V contains an ss-supplement V

′

of U in M . The module M is called amply ss-supplemented if every submodule of M
has ample ss-supplements in M . In [6], strongly local and (amply) ss-supplemented
modules are generalized as RLA-local and (amply) locally artinian supplemented
modules, respectively. A local module M is called RLA-local if Rad(M) is a locally
artinian submodule of M . A module M is called locally artinian supplemented if
every submodule U of M has a locally artinian supplement in M , that is, V is a
supplement of U in M such that U ∩V is locally artinian. M is called amply locally
artinian supplemented if every submodule U of M has ample locally artinian sup-
plements in M . Here a submodule U of M has ample locally artinian supplements
in M if every submodule V of M such that M = U + V contains a locally artinian
supplement V

′
of U in M .

Motivated by this, we define locally artinian radical supplemented modules as a
generalization of locally artinian supplemented modules and also define the concept
of strongly locally artinian radical supplemented modules which is contained in
the concept of locally artinian radical supplemented modules. In Section 2, it
is shown that a module M with small radical is strongly locally artinian radical
supplemented if and only if M is strongly radical supplemented and Rad(M) is
locally artinian if and only if M is locally artinian supplemented. It is also shown
that every factor module of a strongly locally artinian radical supplemented module
is strongly locally artinian radical supplemented. It is proved that any finite sum
of strongly locally artinian radical supplemented module is strongly locally artinian
radical supplemented. It is also proved that R is a left perfect ring and Rad(M) is
locally artinian if and only if every R-module is a strongly locally artinian radical
supplemented module. Finally, it is obtained that over a Dedekind domain R, an
R-module M is strongly locally artinian radical supplemented if and only if the
reduced part N of M is strongly locally artinian radical supplemented.

2. Strongly Locally Artinian Radical Supplemented Modules

Definition 1. Let M be a module. Then M is called a locally artinian radical
supplemented module if Rad(M) has a locally artinian supplement in M . A module
M is called strongly locally artinian radical supplemented if every submodule which
contains Rad(M) in M has a locally artinian supplement in M .
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Proposition 1. Let M be a module with Rad(M) = 0. Then M is a locally
artinian radical supplemented module.

Proof. Since M is a locally artinian supplement of Rad(M) in M , the proof is
clear. �

Recall that a module M is called radical if Rad(M) = M .

Proposition 2. Let M be a radical module. Then M is strongly locally artinian
radical supplemented.

Proof. Let U be a submodule with Rad(M) ⊆ U . Since Rad(M) = M , U = M .
So 0 is a locally artinian supplement of U in M . Therefore M is strongly locally
artinian radical supplemented. �

Recall that P (M) is the sum of all radical submodule of a module M and P (M)
is a largest radical submodule of M . So, note that Rad(P (M)) = P (M).

Proposition 3. P (M) is a strongly locally artinian radical supplemented module
for every module M .

Proof. Since Rad(P (M)) = P (M), the proof follows from Proposition 2. �

It is clear that every locally artinian supplemented modules are locally artinian
radical supplemented. Definition 1, notice that every strongly locally artinian sup-
plemented module is locally artinian radical supplemented. The following example
shows that the converse of these situations are not always true.

Recall that an integral domain R is a Dedekind domain if every non-zero ideal
of R is invertible.

Example 1. (i) Let M =Z Z. Since Rad(Z) = 0, M is locally artinian radical
supplemented by Proposition 1. But M is not a locally artinian supplemented
module.

(ii) Let R be a local Dedekind domain and K be a quotient field of R. Since
Rad(K) = K, K is strongly locally artinian radical supplemented by Proposition
2. It follows from [6, Example 2.7] that K is not locally artinian supplemented.

Proposition 4. Let M be a module with small radical. Then M is locally artinian
radical supplemented if and only if Rad(M) is a locally artinian submodule of M .

Proof. (⇒) Since M is locally artinian radical supplemented, there exists a sub-
module N of M such that M = Rad(M) +N , Rad(M)∩N � N and Rad(M)∩N
is locally artinian. Since Rad(M)�M , then N = M . So Rad(M)∩M = Rad(M)
is locally artinian.

(⇐) By the hypothesis, M is a locally artinian supplement of Rad(M) in M , as
desired. �

Corollary 1. Let M be a finitely generated module. Then M is locally artinian
radical supplemented if and only if Rad(M) is a locally artinian submodule of M .

Proof. Since M is finitely generated, M has a small radical. So the proof follows
from Proposition 4. �

Example 2. (see [6, Example 2.2]) Consider Z-module M = Z8. Since Rad(M) =
〈2〉 �M and M is locally artinian, M is an RLA-local module. It follows from [6,
Theorem 2.11] that M is locally artinian supplemented. Then Rad(M) is locally
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artinian by [8, 31.2.(1)(i)]. So M is locally artinian radical supplemented by Propo-
sition 4. In addition, as M is locally artinian supplemented, M is strongly locally
artinian radical supplemented. But Rad(M) has not an ss-supplement in M .

Recall that a ring R is called a left max ring if every non-zero R-module has a
maximal submodule.

Corollary 2. Let R be a left max ring and M be an R-module. Then M is locally
artinian radical supplemented if and only if Rad(M) is a locally artinian submodule
of M .

Proof. By the hypothesis, there exists a submodule N of M such that M =
Rad(M) +N . It follows that Rad(M

N ) = M
N . Since R is a left max ring, M

N = 0. So
M = N . Thus Rad(M)�M . The proof follows from Proposition 4. �

Proposition 5. Every factor module of a strongly locally artinian radical supple-
mented module is strongly locally artinian radical supplemented.

Proof. Let M be a strongly locally artinian radical supplemented module with
N ⊆ K ⊆ M and Rad(M

N ) ⊆ K
N . Let π : M −→ M

N be a canonical projection.

Then π(Rad(M)) = Rad(M)+N
N ⊆ Rad(M

N ) ⊆ K
N . So Rad(M) ⊆ K. By the

hypothesis, there exists a submodule T of M such that M = K + T , K ∩ T � T

and K ∩T is locally artinian. Then M
N = K

N + (T+N)
N , K

N ∩
(T+N)

N � (T+N)
N . By [8,

31.2 (1)(i)], K
N ∩

(T+N)
N is locally artinian. Therefore M

N is strongly locally artinian
radical supplemented. �

Corollary 3. Every homomorphic image of a strongly locally artinian radical sup-
plemented module is strongly locally artinian radical supplemented.

Proposition 6. Let M be a module and N ⊆ M . If N is a strongly locally
artinian radical supplemented module and Rad(M

N ) = M
N , then M is a strongly

locally artinian radical supplemented module.

Proof. Let U be a submodule of M with Rad(M) ⊆ U . Since Rad(M
N ) = M

N ,
M = Rad(M) +N . So M = U +N . Then Rad(N) ⊆ Rad(M) ⊆ U and Rad(N) ⊆
N . Note that Rad(N) ⊆ U ∩ N . Since N is strongly locally artinian radical
supplemented, N = (U ∩ N) + K, (U ∩ N) ∩ K = U ∩ K � K and U ∩ K is
locally artinian for some submodule K of M . Then we have M = Rad(M) + (U ∩
N) +K = U + (U ∩N) +K = U +K. Thus M is strongly locally artinian radical
supplemented. �

Lemma 1. Let M be a module, M1 and K be submodules of M and Rad(M) ⊆ K.
If M1 is a strongly locally artinian radical supplemented and M1 +K has a locally
artinian radical supplement in M , then K has a locally artinian supplement in M .

Proof. Let N be a locally artinian supplement of M1 +K in M and T be a locally
artinian supplement of (N + K) ∩M1 in M1. Then we have M = N + K + T ,
(M1 +K)∩N is locally artinian. Also we have (N +K)∩T � T and (N +K)∩T
is locally artinian. Since (M1 + K) ∩N is locally artinian, N ∩ (K + T ) is locally
artinian by [8, 31.2(1)(i)]. It follows from (M1 +K)∩N � N and (N+K)∩T � T
that K∩(N+T ) ⊆ N∩(K+T )+T∩(K+N) ⊆ N∩(K+M1)+T∩(K+N)� N+T .
So T ∩ (K +N) is locally artinian by [8, 31.2(2)], as required. �
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Proposition 7. Let M = M1 +M2 be a module with submodules M1,M2 ⊆M . If
M1 and M2 are strongly locally artinian radical supplemented, then M is strongly
locally artinian radical supplemented.

Proof. Let K be a module with Rad(M) ⊆ K. Since M1 + M2 + K has a locally
artinian radical supplement 0 in M , M1 + K has a locally artinian supplement in
M by Lemma 1. Applying again Lemma 1, we obtain that M is strongly locally
artinian supplemented. �

Corollary 4. Every finite sum of strongly locally artinian radical supplemented
modules is a strongly locally artinian radical supplemented module.

Proposition 8. Let M be a module with Rad(M) � M . Then M is strongly
locally artinian radical supplemented if and only if M is locally artinian supple-
mented.

Proof. (⇒) Let N be a submodule of M . Then Rad(M) ⊆ Rad(M) + N . By the
hypothesis, Rad(M) + N has a locally artinian supplement K in M . So, M =
Rad(M) + N + K, (Rad(M) + N) ∩ K � K and (Rad(M) + N) ∩ K is locally
artinian. Since Rad(M)�M , then M = N +K. It is clear that N ∩K � K. By
[8, 31.1(i)] N ∩K is locally artinian. Thus M is locally artinian supplemented.

(⇐) It is clear. �

Recall from a module M is called coatomic if every proper submodule of M is
contained in a maximal submodule of M , equivalently, for a submodule N of M ,
whenever Rad(M

N ) = M
N , then M = N . Since every coatomic module has small

radical, the following corollary is obtained clearly.

Corollary 5. Let M be a coatomic module. Then M is locally artinian supple-
mented if and only if M is strongly locally artinian radical supplemented.

Corollary 6. Let M be a module with Rad(M) � M . Then the following state-
ments are equivalent.

(1) M is locally artinian supplemented;
(2) M is supplemented and M is locally artinian radical supplemented;
(3) M is strongly radical supplemented and Rad(M) is locally artinian;
(4) M is strongly locally artinian radical supplemented.

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) Clear by Proposition 4.
(3) ⇒ (4) Let K be a module with Rad(M) ⊆ K. Since M is strongly radical

supplemented, there exists a submodule L of M such that M = K+L, K ∩L� L.
Then K ∩ L ⊆ Rad(L) ⊆ Rad(M). It follows from [8, 31.2(1)(i)] that K ∩ L is
locally artinian, as desired.

(4)⇒ (1) Since M is strongly locally artinian radical supplemented, M is locally
artinian radical supplemented. The proof follows from Proposition 8. �

It follows from [8, 43.9] that a ring R is left perfect if and only if R is semilocal
and Rad(R) is right T-nilpotent if and only if every R-module has a projective
cover, that is, for any R-module M , there exists a projective module P and an
epimorphism f : P −→M with small kernel.

Theorem 1. Let R be a ring. Then the following statements are equivalent.
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(1) R is a left perfect ring and Rad(R) is locally artinian;
(2) every free R-module is strongly locally artinian radical supplemented;
(3) every R-module is strongly locally artinian radical supplemented.

Proof. (1) ⇒ (2) Let F be free R-module R(I) for some index set I. It follows
from [8, 31.2(2)and 43.9] that Rad(F ) = Rad(R)(I) is locally artinian and F is
supplemented. Since Rad(F )� F , F is locally artinian supplemented by [6, The-
orem 2.9]. We obtain that F is strongly locally artinian radical supplemented by
Proposition 8.

(2) ⇒ (3) Since every R-module is a homomorphic image of a free R-module,
the proof is obvious by Proposition 5.

(3)⇒ (1) Clear by Proposition 8 and [8, 43.9]. �

Recall that P (M) is the divisible part of M for an R-module M over a Dedekind
domain R. According to [1, Lemma 4.4], P (M) is (divisible) injective, and so there
exists a submodule N of M such that M = P (M)⊕N . Here, N is called the reduced
part of M . Note that P (M) ⊆ Rad(M). By Proposition 3, P (M) is strongly locally
artinian radical supplemented. Using these facts, we obtain the following result.

Proposition 9. Let R be a Dedekind domain and M be an R-module. Then M
is strongly locally artinian radical supplemented if and only if the reduced part N
of M is strongly locally artinian radical supplemented.

Proof. (⇒) Since N is a homomorphic image of M , N is strongly locally artinian
radical supplemented by Proposition 5.

(⇐) Clear by Proposition 7. �

3. Conclusion

In this paper, we obtain new classes of modules from locally artinian supple-
mented modules. To obtain these class of modules, we have associated with radical
of the module and every submodule that contains radical of the module. Also, we
study on the algebraic structure of these modules. We characterize strongly locally
artinian radical supplemented modules over a left perfect ring.
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[11] H. Zöschinger. Komplementierte moduln über dedekindringen. Journal of Algebra, Vol. 29,

pp. 42-56 (1974).
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Abstract. In our study, we gave a new definition for bipolar soft topology and
we were able to examine the concept of bipolar soft ordered topology using the

base concept we defined on this new bipolar soft topology. We also define the

concept of bipolar soft set relation by defining an R relation on a bipolar soft
set. Thus, we have defined the concept of bipolar soft interval and presented

the bipolar soft ordered topology structure using these intervals in our study.

Then, we expressed some applications of bipolar soft order topology.

1. Introduction

Traditional methods fail to solve many complex problems especially in decision
making due to uncertainty problems encountered in fields such as economy, engi-
neering, environment. One of the theories put forward to eliminate uncertainty is
the soft (briefly s-)set theory introduced by Molodtsov [2]. Then, Maji et al. [1]
introduced some new concepts such as subset and complement to s-set theory. The
studies on this set theory are increasing and there are many applications especially
on s-sets in recent years [8, 11, 12, 13].

In 2010, Babitha and Sunil [14] defined the relation and the ordering in s-sets.
Moreover, Park et. al [15] studied the equivalence relations, partitions and func-
tions. In the following years, the notions of symmetric kernel, anti-reflexive kernel,
symmetric clousure and reflexive clousure of a s-set relationship was given by Yang
and Guo [16] and they proposed s-set relation mappings and inverse s-set relation
mappings. The definition of supremum and infimum of the s-set, directed complete
s-set were given by Tanay and Yaylalı [17].

The topology structure of s-set has been studied by many researchers and differ-
ent definitions have been made: Shabir and Naz [18] introduced the soft topological
spaces. They studied many concepts such as s-open set, s-neighbourhood of a point
in s-topological spaces. As a different approach to s-topology; Cağman et al. [19]
defined the concepts of s-closure, s-Hausdorff space, s-limit point, s-interior, s-open
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set and the structure of s-topology was improved by Roy and Samanta [8]. In addi-
tion, many researchers such as Aygünoğlu and Aygün [20], Min [24], Zorlutuna et
al.[21], Hussain and Ahmad [22], Varol and Aygün [23] studied s-topological spaces.

In last years, the concept of bipolar soft (briefly bs-)set defined by Shabir and
Naz [25] and Karaaslan and Karatas[26]. After this set theory has been proposed,
the structure of bs-topology has been defined by many researchers: Shabir M. and
Bakhtawar A.[27] introduced the bs-topological spaces. Then, Öztürk Y.T.[28]
introduced some properties of the bs-topological space.

In our study, we first defined a new bs-topological structure. Using this defi-
nition, we gave the concepts of bs-base and bs-intervals on this structure. Then,
the bs-order topology is introduced and some applications of bs-order topology are
expressed. At the same time, examples are added for easy understanding of the
concepts and structures given in our study.

2. Preliminaries

In this section, we recall some basic notions in s-sets and bs-sets. Let U be an
initial universe, E = {e1, e2, ..., en} be a set of parameters, ∅ 6= V, Y, Z ⊆ E and
P (U) denotes the power set of U .

Definition 2.1. [2] A pair (Γ, V ) is called a s-set over U , where Γ is a mapping
given by Γ : V → P (U).

From now on, S(U) denotes the family of all s-sets over U .

Definition 2.2. [1] Let (Γ, V ), (Λ, Y ) ∈ S(U). Then, (Γ, V ) is a s-subset of (Λ, Y )
if V ⊆ Y and Γ(e) ⊆ Λ(e); ∀e ∈ V .
We write (Γ, V )⊆̃(Λ, Y ).

Definition 2.3. [1] Let (Γ, V ), (Λ, Y ) ∈ S(U). Then,
(i) the union of (Γ, V ) and (Λ, Y ) over U is the s-set (Ω, Z), where Z = V ∪ Y and

Ω(e) =

 Γ(e) if e ∈ V − Y
Λ(e) if e ∈ Y − V
Γ(e) ∪ Λ(e) if e ∈ V ∩ Y

for each e ∈ Z. We write (Γ, V )∪̃(Λ, Y ) = (Ω, Z).

(ii) the intersection of (Γ, V ) and (Λ, Y ) over U is the s-set (Ω, Z), where Z = V ∩Y
and Ω(e) = Γ(e) ∩ Λ(e); ∀e ∈ Z. We write (Γ, V )∩̃(Λ, Y ) = (Ω, Z).

Definition 2.4. [5] Let (Γ, V ) ∈ S(U). Then, the complement of (Γ, V ) is a s-set
(Γ, V )c = (Λ, V ) where Λ(e) = U − Γ(e); ∀e ∈ V .

Definition 2.5. [1] Let (Γ, E) ∈ S(U). Then, (Γ, E) is called:

(i) A null s-set, denoted by ∅̃, if Γ(e) = ∅; ∀e ∈ E.

(ii) An absolute s-set, denoted by Ũ , if Γ(e) = U ; ∀e ∈ E.

Definition 2.6. [1] The NOT set of E denoted by ¬E is defined by ¬E =
{¬e1,¬e2, ...,¬en} where ¬ei = not ei; ∀i.

Definition 2.7. [3] A (Γ,Λ, V ) is called a bs-set over U where Γ, Λ are mappings
given by Γ : V → P (U), Λ : ¬V → P (U) such that Γ(e) ∩ Λ(¬e) = ∅; ∀e ∈ V .

From now on, BS(U) denotes the family of all bs-sets over U .
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Definition 2.8. [3] Let (Γ,Λ, V ), (Γ1,Λ1, Y ) ∈ BS(U). Then; (Γ,Λ, V ) is a bs-
subset of (Γ1,Λ1, Y ), if
(i) V ⊆ Y ,
(ii) Γ(e) ⊆ Γ1(e), Λ1(¬e) ⊆ Λ(¬e); ∀e ∈ V .
We write (Γ,Λ, V )⊆̃(Γ1,Λ1, Y ).

Definition 2.9. [3] Let (Γ,Λ, V ) ∈ BS(U). Then, the complement of a bs-set
(Γ,Λ, V ) is denoted by (Γ,Λ, V )c and is defined by (Γ,Λ, V )c = (Γc,Λc, V ) where
Γc, Λc are mappings given by Γc(e) = Λ(¬e), Λc(¬e) = Γ(e); ∀e ∈ V .

Definition 2.10. [9] Let (Γ,Λ, V ) ∈ BS(U). Then,

(i) (Γ,Λ, V ) is said to be relative null bs-set, denoted by (Φ, Ũ , V ), if Γ(e) = ∅;
∀e ∈ V and Λ(¬e) = U ; ∀¬e ∈ ¬V .

(ii) the relative null bs-set with respect to U of E is called a NULL bs-set over

U and is denoted by (Φ, Ũ , E).

(iii) (Γ,Λ, V ) over U is said to be relative absolute bs-set, denoted by (Ũ ,Φ, V ), if
Γ(e) = U ; ∀e ∈ V and Λ(¬e) = ∅; ∀¬e ∈ ¬V .

(iv) the relative absolute bs-set with respect to U of E is called a ABSOLUTE

bs-set over U and is denoted by (Ũ ,Φ, E).

Definition 2.11. [3] Let (Γ,Λ, V ), (Γ1,Λ1, Y ) ∈ BS(U). Then;
(i) extended union of (Γ,Λ, V ) and (Γ1,Λ1, Y ) over U is the bs-set (Ω,f, Z) over
U , where Z = V ∪ Y and

Ω(e) =

 Γ(e) if e ∈ V − Y
Γ1(e) if e ∈ Y − V
Γ(e) ∪ Γ1(e) if e ∈ V ∩ Y

and

f(¬e) =

 Λ(¬e) if ¬e ∈ (¬V )− (¬Y )
Λ1(¬e) if ¬e ∈ (¬Y )− (¬V )
Λ(¬e) ∩ Λ1(¬e) if ¬e ∈ (¬V ) ∩ (¬Y )

for all e ∈ Z. We denote it by (Γ,Λ, V )∪̃(Γ1,Λ1, Y ) = (Ω,f, Z).

(ii) extended intersection of (Γ,Λ, V ) and (Γ1,Λ1, Y ) over U is the bs-set (Ω,f, Z)
over U , where Z = V ∪ Y and

Ω(e) =

 Γ(e) if e ∈ V − Y
Γ1(e) if e ∈ Y − V
Γ(e) ∩ Γ1(e) if e ∈ V ∩ Y

and

f(¬e) =

 Λ(e) if e ∈ (¬V )− (¬Y )
Λ1(e) if e ∈ (¬Y )− (¬V )
Λ(e) ∪ Λ1(e) if e ∈ (¬V ) ∩ (¬Z)

for all e ∈ Z. We denote it by (Γ,Λ, V )∩̃(Γ1,Λ1, Y ) = (Ω,f, Z).

(iii) restricted union of (Γ,Λ, V ), (Γ1,Λ1, Y ) over U is the bs-set (Ω,f, Z), where
∅ 6= Z = V ∩ Y and

Ω(e) = Γ(e) ∪ Λ(e) and f(¬e) = Γ1(¬e) ∩ Λ1(¬e)
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for all e ∈ Z. We denote it by (Γ,Λ, V ) ∪R (Γ1,Λ1, Y ) = (Ω,f, Z).

(iv) restricted intersection of (Γ,Λ, V ) and (Γ1,Ω1, Y ) over U is the bs-set (Ω,f, Z),
where ∅ 6= Z = V ∩ Y and

Ω(e) = Γ(e) ∩ Λ(e) and f(¬e) = Γ1(¬e) ∪ Λ1(¬e)
for all e ∈ Z. We denote it by (Γ,Λ, V ) ∩R (Γ1,Λ1, Y ) = (Ω,f, Z).

Definition 2.12. [8] Let (Γ, V ) ∈ S(U). Then; a s-topology τ̃ on (Γ, V ) is a family
of s-subsets of (Γ, V ) if
(i) (Γ, V ),Φ ∈ τ̃ ,
(ii) if (Ω, Z), (Λ, Y ) ∈ τ̃ , then (Ω, Z)∩̃(Λ, Y ) ∈ τ̃ ,
(iii) if (Γα, Vα) ∈ τ̃ , ∀α ∈ ∧; then (Γα, Vα)α∈∧ ∈ τ̃ .

If τ̃ is a s-topology on (Γ, V ), then (Γ, V, τ̃) is called the soft topological space.
Moreover; the member of τ̃ is called an open s-set in (Γ, V, τ̃). Then, (Γ, V ) is said
to be closed s-set if the complement of (Γ, V ) is open s-set.

Definition 2.13. [10] Let ˜̃τ be the collection of bs-sets over U with E. If

(i) (Φ, Ũ , E), (Ũ ,Φ, E) ∈ ˜̃τ ,

(ii) the union of any number of bs-sets in ˜̃τ belong to ˜̃τ ,

(iii) the intersection of finite number of bs-ets in ˜̃τ belong to ˜̃τ ;

then ˜̃τ is said to be a bs-topology over U and (U, ˜̃τ, E,¬E) is called a bs-topological
space over U .

Moreover; the members of ˜̃τ are said to be bs-open sets in U . A bs-set (Γ,Λ, E)
over X is said to be a bs-closed set in X, if its bs-complemet (Γ,Λ, E)c belongs to
˜̃τ .

Definition 2.14. [10] Let (Γ,Λ, E) ∈ BS(U) and (X, ˜̃τ, E,¬E) be a bs-topological
space over X ⊆ U . (Γ,Λ, E) over X is said to be a bs-clopen set in X, if it is both
a bs-open set and a bs-closed set over X.

3. A New Definition for Bipolar Soft Topology

Definition 3.1. Let (Γ,Λ, E) ∈ BS(U). Then, a bs-topology ˜̃τ on (Γ,Λ, V ) is a
family of bs-subsets of (Γ,Λ, V ) if it satisfies the following properties

i) (Φ, Ũ , V ), (Γ,Λ, V ) ∈ ˜̃τ ,

ii) If (Γ1,Λ1, Y ), (Γ2,Λ2, Z) ∈ ˜̃τ , then (Γ1,Λ1, Y )∩̃(Γ2,Λ2, Z) ∈ ˜̃τ ,

iii) If (Γα,Λα, Vα) ∈ ˜̃τ , ∀α ∈ ∧; then (Γα,Λα, Vα)α∈∧ ∈ ˜̃τ .

If ˜̃τ is a bs-topology on (Γ,Λ, V ), then (Γ,Λ, V, ˜̃τ) is called the bs-topological
space.

Definition 3.2. Let (Γ,Λ, E) ∈ BS(U). Then, if ˜̃τ is a bs-topology on (Γ,Λ, V ),

then the member of ˜̃τ is called an open bs-set in (Γ,Λ, V, ˜̃τ).

Definition 3.3. Let (Γ,Λ, V, ˜̃τ) be a bs-topological space and (Γ1,Λ1, Y ) ⊆ (Γ,Λ, V ).
Then, (Γ1,Λ1, Y ) is said to be closed bs-set if the complement of (Γ1,Λ1, Y ) is open
bs-set.

Definition 3.4. A collection
˜̃
β of some bs-subsets of (Γ,Λ, V ) is called a bs-base

for some bs-topology on (Γ,Λ, V ) if

(i) (Φ, Ũ , V ) ∈ ˜̃
β,
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(ii)
˜̃
β = (Γ,Λ, V ) i.e. ”x ∈ Γ(e) and y ∈ Λ(¬e)”, ∀e ∈ V ; there exits (K,L, Y ) ∈ ˜̃

β
such that x ∈ K(e) and y ∈ L(¬e), where Y ⊆ V ,

(iii) If (Γ1,Λ1, Y ), (Γ2,Λ2, Z) ∈ ˜̃
β then x ∈ Γ1(e)∩Γ2(e) and y ∈ Λ1(¬e)∪Λ2(¬e),

∀e ∈ Y ∩ Z; there exists (Γ3,Λ3, D) ⊆ ˜̃
β such that

(Γ3,Λ3, D)⊆̃(Γ1,Λ1, Y )∩̃(Γ2,Λ2, Z)

and ”x ∈ Γ3(e) and y ∈ Λ3(¬e)”, where D ⊆ Y ∩ Z.

Theorem 3.5. Let (Γ,Λ, V, ˜̃τ) be a bs-topological space.
˜̃
β is a bs-base if and only

if

(i)
˜̃
β⊆̃˜̃τ ,

(ii) (M,N, Y ) =
⋃̃
for some(K,L,Z)∈ ˜̃

β
(K,L,Z); ∀(M,N, Y ) ∈ ˜̃τ .

Proof. (⇒) (i) By Definition 3.4.

(ii) Let (M,N, Y ) ∈ ˜̃τ . If (M,N, Y ) = (Φ, Ũ , B) then (M,N, Y ) =
⋃̃
i∈∅(Ki, Li, Zi).

If (M,N, Y ) 6= (Φ, Ũ , Y ) then y ∈ N(¬e), ∀x ∈ M(e); there exists a bs-set

(K,L,Z) ∈ ˜̃
β such that (K,L,Z)⊆̃(M,N, Y ) and ”x ∈ K(e) and y ∈ L(¬e)”

where Z ⊂ Y then (M,N, Y ) =
⋃̃
for some(K,L,Z)∈ ˜̃

β
(K,L,Z).

(⇐) (i) (Φ, U, Y ) =
⋃̃
i∈∅(Ki, Li, Zi),

(ii) Since ˜̃τ is a bs-topology then (Γ,Λ, V ) ∈ ˜̃τ and by (2) (Γ,Λ, V ) =
⋃̃ ˜̃
β,

(iii) Let (M1, G1, Y1), (M2, G2, Y2) ∈ ˜̃
β then (M1, G1, Y1), (M2, G2, Y2) ∈ ˜̃τ since

(M1, G1, Y1)∩̃(M2, G2, Y2) ∈ ˜̃τ then by (ii)

(M1, G1, Y1)∩̃(M2, G2, Y2) =
⋃̃

for some(K,L,Z)∈ ˜̃
β
(K,L,Z).

Then for e ∈ Y1 ∩Y2 that (K,L,Z)⊆̃(M1, G1, Y1)∩̃(M2, G2, Y2) and ”x ∈ K(e) and
y ∈ L(¬e)” where Z ⊂ Y1 ∩ Y2. �

4. Main Results

Definition 4.1. Let (Γ1,Λ1, V ), (Γ2,Λ2, Y ) ∈ BS(U). Then, (Γ1,Λ1, V )×(Γ2,Λ2, Y ) =
(Ω,f, V × Y ) is the cartesian product of (Γ1,Λ1, V ) and (Γ2,Λ2, Y ), such that
(v, y) ∈ V × Y , Ω : V × Y → P (U × U) and (¬v,¬y) ∈ ¬V ×¬Y , f : ¬V ×¬Y →
P (U × U) where Ω(v, y) = Γ1(v)× Γ2(y) = {(hi, hj) : hi ∈ Γ1(v), hj ∈ Γ2(y)} and
f(¬v,¬y) = Λ1(¬v)× Λ2(¬y) = {(ti, tj) : ti ∈ Λ1(¬v), tj ∈ Λ2(¬y)}.

Definition 4.2. Let (Γ1,Λ1, V ), (Γ2,Λ2, Y ) ∈ BS(U). Then, a bs-set relation

R̃ from (Γ1,Λ1, V ) to (Γ2,Λ2, Y ) is a bs-subset of (Γ1,Λ1, V ) × (Γ2,Λ2, Y ). In

other words, a bs-set relation R̃ from (Γ1,Λ1, V ) to (Γ2,Λ2, Y ) is of the form R̃ =
(Ω1,f1, S) where S ⊂ V × Y and Ω1(v, y) = Ω(v, y), f1(¬v,¬y) = f(¬v,¬y),
∀(v, y) ∈ S where (Ω,f, V × Y ) = (Γ1,Λ1, V )× (Γ2,Λ2, Y ).

Definition 4.3. Let (Γ,Λ, V ) ∈ BS(U) and R̃ be a bs-set relation on (Γ,Λ, V ),
then
(1) R̃ is called reflexive if Ω1(v, v) ∈ R̃, f1(¬v,¬v) ∈ R̃; ∀v ∈ V .

(2) R̃ is called symmetric if Ω1(v, y) ∈ R̃ ⇒ Ω1(y, v) ∈ R̃, f1(¬v,¬y) ∈ R̃ ⇒
f1(¬y,¬v) ∈ R̃; ∀v, y ∈ V .

(3) R̃ is called transitive if Ω1(v, y) ∈ R̃, Ω1(y, z) ∈ R̃⇒ Ω1(v, z) ∈ R̃, f1(¬v,¬z) ∈
R̃, f1(¬y,¬z) ∈ R̃⇒ f1(¬v,¬z) ∈ R̃; ∀v, y, z ∈ V .
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Definition 4.4. Let (Γ,Λ, V ) ∈ BS(U) and the a binary bs-set relation R̃ on

(Γ,Λ, V ) is called an antisymmetric relation if Γ(v) × Γ(y) ∈ R̃, Γ(y) × Γ(v) ∈ R̃,

Λ(¬v)×Λ(¬y) ∈ R̃ and Λ(¬y)×Λ(¬v) ∈ R̃, ∀Γ(v),Γ(y) ∈ (Γ, A) and Λ(¬v),Λ(¬y) ∈
(Λ,¬A) imply Γ(y) = Γ(v) and Λ(¬v) = Λ(¬y).

Definition 4.5. Let (Γ,Λ, V ) ∈ BS(U) and the a binary bs-set relation ≤ on
(Γ,Λ, V ) which is reflexive, transitive and antisymmetric is called a partial ordering
on a bs-set (Γ,Λ, V ). The quadruple (Γ,Λ, V,≤) is called a partially ordered bs-set.

Definition 4.6. Let (Γ,Λ, V ) ∈ BS(U) and ≤ be an ordering of (Γ,Λ, V ) and
(Γ(v),Λ(¬v)), (Γ(y),Λ(¬y)) be any two elements in (Γ,Λ, V ). If ”Γ(v) ≤ Γ(y) and
Λ(¬y) ≤ Λ(¬v)” or ”Γ(y) ≤ Γ(v) and Λ(¬v) ≤ Λ(¬y)” then (Γ(v),Λ(¬v)) and
(Γ(y),Λ(¬y)) are comparable in the ordering. If they are not comparable, then
(Γ(v),Λ(¬v)) and (Γ(y),Λ(¬y)) are incomparable.

Definition 4.7. Let (Γ,Λ, Y ) ∈ BS(U). Then, if (Γ,Λ, Y,≤) is a partially ordered
bs-set then,

a) For y ∈ Y ; if Γ(y) ≤ Γ(β), Λ(¬β) ≤ Λ(¬y), ∀β ∈ Y ; then (Γ(y),Λ(¬y)) is the
least element of (Γ,Λ, Y ) in the ordering ”≤”.

b) For y ∈ Y ; if there exists no β ∈ Y such that ”Γ(β) ≤ Γ(y) and Λ(¬y) ≤
Λ(¬β)” and ”Γ(β) 6= Γ(y) and Λ(¬y) 6= Λ(¬β)”, then (Γ(y),Λ(¬y)) is a minimal
element of (Γ,Λ, Y ) in the ordering ”≤”.

a′) For y ∈ Y ; if Λ(¬y) ≤ Λ(¬β), ∀β ∈ Y Γ(β) ≤ Γ(y); then (Γ(y),Λ(¬y)) is the
greatest element of (Γ,Λ, Y ) in the ordering ”≤”.

b′) For y ∈ Y ; if there exists no β ∈ Y such that ”Γ(y) ≤ Γ(β) and Λ(¬β) ≤
Λ(¬y)” and ”Γ(β) 6= Γ(y) and Λ(¬β) 6= Λ(¬y)”, then (Γ(y),Λ(¬y)) is a maximal
element of (Γ,Λ, Y ) in the ordering ”≤”.

Definition 4.8. Let (Γ1,Λ1, V ), (Γ2,Λ2, Y ) ∈ BS(U), ≤ be an ordering of (Γ1,Λ1, V )
and (Γ2,Λ2, Y ) ⊆ (Γ1,Λ1, V ).

a) For v ∈ V , (Γ1(v),Λ1(¬v)) is a lower bound of (Γ2,Λ2, Y ) in the partially
ordered bs-set (Γ1,Λ1, V,≤) if Γ1(v) ≤ Γ2(β) and Λ2(¬β) ≤ Λ1(¬v); ∀β ∈ Y .

b) For v ∈ V , (Γ1(v),Λ1(¬v)) is called infimum of (Γ2,Λ2, Y ) in (Γ1,Λ1, V,≤) if
it is the greatest element of the set of all lower bounds of the bs-subset (Γ2,Λ2, Y )
in (Γ1,Λ1, V,≤).

Similarly,

a′) For v ∈ V , (Γ1(v),Λ1(¬v)) is an upper bound of (Γ2,Λ2, Y ) in the partially
ordered bs-set (Γ1,Λ1, V,≤) if Γ2(β) ≤ Γ1(v), Λ1(¬v) ≤ Λ2(¬β); ∀β ∈ Y .

b′) For v ∈ V , (Γ1(v),Λ1(¬v)) is called supremum of (Γ2,Λ2, Y ) in (Γ1,Λ1, V,≤)
if it is the least element of the set of all upper bounds of the s-subset (Γ2,Λ2, Y ) in
(Γ1,Λ1, V,≤).
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4.1. Bipolar Soft Intervals.

Definition 4.9. Let (Γ,Λ, V ) ∈ BS(U) and R̃ be a bs-set relation on (Γ,Λ, V ). If

for no v ∈ V , Γ(v) and Λ(¬v) the s-set relation Γ(v)R̃Γ(v) and Λ(¬v)R̃Λ(¬v) hold,

the bs-set relation R̃ is called nonreflexive.

Definition 4.10. Let (Γ,Λ, V ) ∈ BS(U) and a bs-set relation R̃ on (Γ,Λ, V ) is
called simple order bs-set relation if it is comparable, nonreflexive and transitive.
(Γ,Λ, V ) is called a simple ordered bs-set a the simple order bs-set relation R̃.

Definition 4.11. Let ≤ be a bs-set relation on (Γ,Λ, V ), then restriction of a bs-
set relation ≤ to a bs-subset (Γ1,Λ1, Y ) is defined as follows:
We denote Γ1(v) ≤(Γ1,Λ1,Y ) Γ1(y) and Λ1(¬y) ≤(Γ1,Λ1,Y ) Λ1(¬v): if and only if
Γ(v) ≤ Γ(y) and Λ(¬y) ≤ Λ(¬v); ∀v, y ∈ B.

Example 4.12. Let V = {m1,m2,m3} be a parameter set and U = {u1, u2, u3, u4, u5, u6}
be a universe set. Γ(m1) = {u1}, Γ(m2) = {u2, u4, u5}, Γ(m3) = {u3} Λ(¬m1) =
{u3, u4}, Λ(¬m2) = {u1, u5}, Λ(¬m3) = {u2}; Y = {m1,m2}, Γ1(m1) = {u1},
Γ1(m2) = {u2, u4}, Λ1(¬m1) = {u4}, Λ1(¬m2) = {u1}. Then (Γ1,Λ1, Y ) ⊆
(Γ,Λ, V ).

≤(Γ,Λ,V ) =

{
Γ(m1)× Γ(m2),Γ(m2)× Γ(m3),

Λ(¬m1)× Λ(¬m2),Λ(¬m2)× Λ(¬m3)

}
=

{
(u1, u2), (u1, u4), (u1, u5), (u2, u3), (u4, u3), (u5, u3),
(u3, u1), (u3, u5), (u4, u1), (u4, u5), (u1, u2), (u5, u2)

}
Then ≤(Γ1,Λ1,Y )=

{
Γ1(m1)× Γ1(m2),

Λ1(¬m1)× Λ1(¬m2)

}
= {(u1, u2), (u1, u4), (u4, u1)}.

Definition 4.13. Assume that (Γ,Λ, V ) is a bs-set having a simple order bs-set
relation < and (Γ(v),Λ(¬v)) and (Γ(y),Λ(¬y)) be elements of (Γ,Λ, V ) such that
Γ(v) < Γ(y) and Λ(¬y) < Λ(¬v). Then we can define following four bs-subsets of
(Γ,Λ, V ) which are called bs-intervals (respectively; bs-closed interval, bs-half open
intervals, bs-open interval) determined by (Γ(v),Λ(¬v)) and (Γ(y),Λ(¬y)):

a) bs-Open Interval: The bs-open interval is a bs-subset (Γ1,Λ1, Y ) of (Γ,Λ, V )
where ”Y1 = {x : Γ(v) < Γ(x) < Γ(y)} and Y2 = {¬x : Λ(¬y) < Λ(¬x) < Λ(¬v)}”,
”Γ1 = Γ|Y and Λ1 = Λ|Y ” and denoted by (Γ(v),Γ(y)) = {Γ(x) : Γ(v) < Γ(x) <
Γ(y)} and (Λ(¬y),Λ(¬v)) = {Λ(¬x) : Λ(¬y) < Λ(¬x) < Λ(¬v)}.

b) bs-Half Open Interval:

(i) The bs-open interval is a bs-subset (Γ1,Λ1, Y ) of (Γ,Λ, V ) where B1 =
{x : Γ(v) < Γ(x) < Γ(y) or Γ(x) = Γ(y)} and Y2 = {¬x : Λ(¬y) < Λ(¬x) <
Λ(¬a) or Λ(¬x) = Λ(¬y)}, ”Γ1 = Γ|Y and Λ1 = Λ|Y ” denoted by (Γ(v),Γ(y)] =
{Γ(x) : Γ(v) < Γ(x) < Γ(y) or Γ(x) = Γ(y)} and (Λ(¬y),Λ(¬v)] = {Λ(¬x) :
Λ(¬y) < Λ(¬x) < Λ(¬v) or Λ(¬x) = Λ(¬y)} .

(ii) The bs-open interval is a bs-subset (Γ1,Λ1, Y ) of (Γ,Λ, V ) where Y1 =
{x : Γ(v) < Γ(x) < Γ(y) or Γ(x) = Γ(v)} and Y2 = {¬x : Λ(¬y) < Λ(¬x) <
Λ(¬v) or Λ(¬x) = Λ(¬v)}, ”Γ1 = Γ|Y and Λ1 = Λ|Y ” and denoted by [Γ(v),Γ(y)) =
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{Γ(x) : Γ(v) < Γ(x) < Γ(y) or Γ(x) = Γ(v)} and [Λ(¬y),Λ(¬v)) = {Λ(¬x) :
Λ(¬y) < Λ(¬x) < Λ(¬v) or Λ(¬x) = Λ(¬v)} .

d) bs-Closed Interval: The bs-open interval is a bs-subset (Γ1,Λ1, Y ) of (Γ,Λ, V )
where Y1 = {x : Γ(v) < Γ(x) < Γ(y) or Γ(x) = Γ(v) or Γ(x) = Γ(y)} and
Y2 = {¬x : Λ(¬y) < Λ(¬x) < Λ(¬v) or Λ(¬x) = Λ(¬y) or Λ(¬x) = Λ(¬v)},
”Γ1 = Γ|Y and Λ1 = Λ|Y ” and denoted by [Γ(v),Γ(y)] = {Γ(x) : Γ(v) < Γ(x) <
Γ(y) or Γ(x) = Γ(v) or Γ(x) = Γ(y)} and [Λ(¬y),Λ(¬v)] = {Λ(¬x) : Λ(¬y) <
Λ(¬x) < Λ(¬v) or Λ(¬x) = Λ(¬v) or Λ(¬x) = Λ(¬y)}.

These are the bs-intervals on an arbitrary simple ordered bs-set.

Example 4.14. Let V = {v1, v2, v3, v4, v5} be the parameter set and U = {m1,m2,m3,m4,m5,m6}
be the universe set. Lets define a bs-set (Γ,Λ, V ) such that Γ(v1) = {m1,m4},
Γ(v2) = {m1,m2,m6}, Γ(v3) = {m2,m3,m5}, Γ(v4) = {m2,m3}, Γ(v5) = {m1},
Λ(¬v1) = {m2,m3}, Λ(¬v2) = {m3,m4,m5}, Λ(¬v3) = {m1,m4,m6}, Λ(¬v4) =
{m1,m4}, Λ(¬v5) = {m2} . Consider a bs-set relation on (Γ,Λ, V ) defined by

<(Γ,Λ,V )=



Γ(v2)× Γ(v3),Γ(v1)× Γ(v2),Γ(v2)× Γ(v4),
Γ(v2)× Γ(v5),Γ(v1)× Γ(v3),Γ(v3)× Γ(v4),
Γ(v3)× Γ(v5),Γ(v1)× Γ(a4),Γ(v1)× Γ(v5),

Γ(v4)× Γ(v5),Λ(¬v3)× Λ(¬v2),Λ(¬v2)× Λ(¬v1),
Λ(¬v4)× Λ(¬v2),Λ(¬v5)× Λ(¬v2),Λ(¬v3)× Λ(¬v1),
Λ(¬v4)× Λ(¬v3),Λ(¬v5)× Λ(¬v3),Λ(¬v4)× Λ(¬v1),

Λ(¬v5)× Λ(¬v1),Λ(¬v5)× Λ(¬v4)


.

The bs-set relation ”<” is comparable, nonreflexive, transitive so it is simple
ordered bs-set relation.

Definition 4.15. Let (Γ,Λ, V ) be an simple ordered bs-set with a bs-set relation
< and (Γ(v),Λ(¬v)) be in (Γ,Λ, V ). Then there are four soft subsets of (Γ,Λ, V )
which are called bs-rays determined (Γ(a),Λ(¬v)). They are following:

i) ((Γ(v), ∗) ∪ (∗,Λ(¬v)) = {(Γ(x),Λ(¬x)) : Γ(v) < Γ(x) and Λ(¬x) < Λ(¬v)}
is called bs-open ray,

ii) (∗,Γ(v)) ∪ (Λ(¬v), ∗) = {(Γ(x),Λ(¬x)) : Γ(x) < Γ(v) and Λ(¬v) < Λ(¬x)}
is called bs-open ray,

iii) [Γ(v), ∗) ∪ (Λ(¬v), ∗] =


(Γ(x),Λ(¬x)) :

 Γ(v) < Γ(x)
or

Γ(v) = Γ(x)


and Λ(¬x) < Λ(¬v)
or

Λ(¬x) = Λ(¬v)




is called bs-

closed ray,
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iv) (Γ(v), ∗] ∪ [Λ(¬v), ∗) =


(Γ(x),Λ(¬x)) :

 Γ(x) < Γ(v)
or

Γ(x) = Γ(v)


and Λ(¬v) < Λ(¬x)
or

Λ(¬v) = Λ(¬x)




is called bs-

closed ray.

4.2. Bipolar Soft Ordered Topology.

Theorem 4.16. Let (Γ,Λ, V ) be a bs-set with a simple ordered bs-set relation;

assume that (Γ,Λ, V ) has more then one element. Let
˜̃
β be a collection of all bs-

subsets of (Γ,Λ, V ) of the following types:

(1) (Φ, Ũ , V ),
(2) All bs-open intervals (Γ(v),Γ(y)) and (Λ(¬y),Λ(¬v)) in (Γ,Λ, V ),
(3) All bs-intervals of from [Γ(v0),Γ(y)) and (Λ(¬y),Λ(¬v0)], where Γ(v0) is the
least element of (Γ, V ) and Λ(¬v0) is the greatest element of (Λ,¬V ),
(4) All bs-intervals of the form (Γ(v),Γ(y0)] and [Λ(¬y0),Λ(¬v)), where Γ(y0) is
the greatest element of (Γ, V ) and Λ(y0) is the least element of (Λ,¬V ).

Then the collection
˜̃
β is a bs-base for a bs-topology on (Γ,Λ, V ).

If (Γ, V ) has no least element or (Λ,¬V ) has no greatest element, there is no
s-sets in type (3). Moreover; if (Γ, V ) has no greatest element or (Λ,¬V ) has no
least element, there is no s-sets in type (4).

Proof. Lets check
˜̃
β satisfies the requirements for being a bs-base given in the Def-

inition 3.4.

(1) (Φ, Ũ , V ) ∈ ˜̃
β,

(2) Take e ∈ V , x ∈ Γ(e) and y ∈ Λ(¬e). By comparability there exists a bs-interval
(Γ1,Λ1, B), where x ∈ Y ⊂ V and x ∈ Γ1(e) and y ∈ Λ1(¬e).

(3) Let (Γ1, G1, Y ), (Γ2,Λ2, Z) ∈ ˜̃
β, where (Γ1,Λ1, Y ) =

(
(Γ(v),Γ(y)),

(Λ(¬y),Λ(¬v))

)
,

(Γ2,Λ2, Z) =

(
(Γ(z),Γ(d)),

(Λ(¬d),Λ(¬z))

)
. Then

(Γ1, G1, Y )∩̃(Γ2,Λ2, Z) =

(
(Γ(v),Γ(y)),

(Λ(¬y),Λ(¬v))

)
∩̃
(

(Γ(z),Γ(d)),
(Λ(¬d),Λ(¬z))

)
=

(Φ, Ũ , V ) (Γ(y) < Γ(z)) ∨ (Λ(¬z) < Λ(¬y))

(Φ, Ũ , V ) (Γ(d) < Γ(v)) ∨ (Λ(¬v) < Λ(¬d))
(Γ(z),Γ(y)) ∧ (Λ(¬y),Λ(¬z)) (Γ(z) < Γ(y)) ∨ (Λ(¬y) < Λ(¬z))
(Γ(v),Γ(d)) ∧ (Λ(¬d),Λ(¬v)) (Γ(v) < Γ(d)) ∨ (Λ(¬d) < Λ(¬v))
(Γ(z),Γ(d)) ∧ (Λ(¬d),Λ(¬z)) ((Γ(v) < Γ(z)) ∧ (Γ(y) < Γ(d)))
(Γ(z),Γ(d)) ∧ (Λ(¬d),Λ(¬z)) ((Λ(¬z) < Λ(¬v)) ∧ (Λ(¬d) < Λ(¬y)))
(Γ(v),Γ(d)) ∧ (Λ(¬d),Λ(¬v)) ((Γ(z) < Γ(v)) ∧ (Γ(d) < Γ(y)))
(Γ(v),Γ(d)) ∧ (Λ(¬d),Λ(¬v)) ((Λ(¬v) < Λ(¬z)) ∧ (Λ(¬y) < Λ(¬d)))
(Γ(v′),Γ(d′)) ∧ (Λ(¬d′),Λ(¬v′))

�
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Example 4.17. Let V = {v1, v2, v3} be a parameter set and U = {u1, u2, u3, u4, u5}
be a universe set. K(v1) = {u1, u2}, K(v2) = {u2}, K(v3) = {u3, u4, u5};

<=(K,L,M)=

{
K(v1)×K(v2),K(v2)×K(v3),K(v1)×K(v3),

L(¬v2)× L(v1), L(¬v3)× L(¬v2), L(¬v3)× L(¬v1)

}
.

Then the bs-ordered topology is;

˜̃τ =


(Φ, Ũ , A), [Γ(v1),Γ(v2)), (Γ(v1),Γ(v2)), [Γ(v1),Γ(v3)),

(Γ(v1),Γ(v3)), [Γ(v1),Γ(v3)], (Γ(v2),Γ(v3)), (Γ(v2),Γ(v3)],
(Λ(¬v2),Λ(¬v1)], (Λ(¬v2),Λ(¬v1)), (Λ(¬v3),Λ(¬v1)],

(Λ(¬v3),Λ(¬v1)), [Λ(¬v3),Λ(¬v1)],
(Λ(¬v3),Λ(¬v2)), [Λ(¬v3),Λ(¬v2))

 .

Example 4.18. Let U = R, V = [ 3
2 ,∞), ¬V = (¬∞,¬ 3

2 ] and (Γ,Λ, V ) be a

bs-set where Γ(v) = ( 3
2 , v] and Λ(¬v) = (¬v,¬ − 3

2 ]; ∀v ∈ V . Lets define simple

ordered on (Γ,Λ, V ) as follows: Γ(v) < Γ(y) :⇔ v < y :⇔ ( 3
2 , v] ⊆ ( 3

2 , y] and

Λ(¬y) < Λ(¬v) :⇔ ¬y < ¬v :⇔ (¬v,¬ − 3
2 ] ⊆ (¬y,¬ − 3

2 ]. Γ( 3
2 ) is the smallest

element and ,Λ(¬ − 3
2 ) is the biggest element, so

˜̃
β =

 [Γ( 3
2 ),Γ(v)), [Λ(¬v),Λ(¬ − 3

2 )),
(Γ(v),Γ(y)), (Λ(¬v),Λ(¬y))

:
Γ(v),Γ(y) ∈ (Γ, V )

and
Λ(¬v),Λ(¬y) ∈ (Λ,¬V )


is a bs-base for the bs-ordered topology on (Γ,Λ, V ).

Example 4.19. Let U = (−∞,−1] ∪ [1,∞) be the initial universe and V = Z−

be the parameter set and ¬V = Z+, let (Γ,Λ, V ) be a bs-set, defined by (Γ, V ) =
{Γ(v) = (v,−1] : v ∈ V } and (Λ, V ) = {Λ(¬v) = (¬v,¬1] : ¬v ∈ ¬V }. Consider
the bs-set relation < on (Γ,Λ, V ), which is defined by Γ(v) < Γ(y) :⇔ v < y and
Λ(¬y) < Λ(¬v) :⇔ y < v. (Γ,Λ, V ) is a simple ordered bs-set with the relation <.
By examining the bs-subsets of (Γ,Λ, V ), F (−1) is the biggest element and Λ(¬1) is

the smallest element .
˜̃
β = {(Γ(v),Γ(−1)], (Γ(v),Γ(y)), [Λ(¬1),Λ(¬v)), (Λ(¬y),Λ(¬v)) :

Γ(v),Γ(y) ∈ (Γ, V ) and Λ(¬v),Λ(¬y) ∈ (Λ,¬V )} is a base for the bs-ordered topol-
ogy.

Definition 4.20. Let (Γ,Λ, V, ˜̃τ) be a bs-topological space and B̃S be a collection

of nonnull bs-open subsets of (Γ,Λ, V ). If finite intersection of the elements of B̃S
is a base for ˜̃τ then ˜̃BS is called bs-subbase, ie.;

ỸB̃S = {∩̃j∈J(Yj , Sj , Vj) : J is a finite and for all j ∈ J, (Yj , Sj , Vj) ∈ B̃S}

Theorem 4.21. Let (Γ,Λ, V ) be a nonnull bs-set and B̃S be a collection of bs-
subsets of (Γ,Λ, V ). Then there exists a bs-topology on (Γ,Λ, V ) which has as a

subbase B̃S.

Proof. Lets show that ỸB̃S = {∩̃j∈J(Yj , Sj , Vj) : J is a finite and for all j ∈
J, (Yj , SjVj) ∈ B̃S} satisfies the conditions of being a bs-base

(1) (Γ,Λ, V ) = ∩̃j∈J(Yj , Sj , Vj) then (Γ,Λ, V ) ∈ ỸB̃S .

(2) Let (Γ1,Λ1, Y ), (Γ2,Λ2, B) ∈ ỸB̃S ⇒ If (Γ1,Λ1, Y )∩̃(Γ2,Λ2, Y ) = (Φ, Ũ , Y ) ⇒
(Γ1, v1, Y )∩̃(Γ2,Λ2, Y ) = ∪̃j∈∅(Γj ,Λj , Yj).
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If (Γ1,Λ1, Y )∩̃(Γ2,Λ2, Y ) 6= (Φ, U, Y ) ⇒ since (Γ1,Λ1, Y ) = ∪̃ni=1(Yi, Si, Vi),
(Γ2,Λ2, Y ) = ∪̃mj=1(Yj , Sj , Vj),

(Γ1,Λ1, Y )∩̃(Γ2,Λ2, Y ) = ∪̃ni=1(Yi, Si, Vi) ∩̃ ∪̃
m
j=1(Yj , Sj , Vj) = ∪̃mj=1(Yj , Sj , Vj).

This is finite intersection of elements of B̃S so in ỸB̃S . Therefore ỸB̃S is a bs-
base. �

5. Conclusion

The aim of this study is to give some applications by defining the concept of
bipolar soft ordered topology and to lead the studies that can be done on this
bipolar soft ordered topological structure. For this, we first gave a new concept for
the bipolar soft topology. We also established a relationship R̃ on a bipolar soft
set by completing the concept of bipolar soft interval. Finally, thanks to R̃, the
concept of bipolar soft ordered topology and some examples on this bipolar soft
ordered topology are given.
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[5] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., Vol.62, pp.351-258,

(2011).

[6] K.V. Babitha, J.J. Sunil, Transitive Closures and Ordering on Soft Sets, Comput. Math. Appl.,
Vol.62, pp.2235-2239, (2011).

[7] B. Tanay, G. Yaylalı, New structures On Partially Ordered Soft Sets and Soft Scott Topology,

Ann. Fuzzy Math. Inform., Vol.7, pp.89-97, (2014).
[8] S. Roy, T.K. Samanta, An Introduction of a Soft Topological Spaces Proceeding of UGC

sponsored National seminar on Recent trends in Fuzzy set theory, Rough set theory and Soft

set theory at Uluberia College on 23rd and 24th September, ISBN 978-81-922305-5-9, pp.9-12,
(2011).

[9] M. Shabir, M. Naz, On bipolar soft sets, Retrieved from https://arxiv.org/abs/1303.1344,

(2013).
[10] M. Shabir, A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft

compact spaces, Songklanakari J. Sci. Technol., Vol.39, No.3, pp.359-371, (2017).
[11] X. Guan, Y. Li, F. Feng, A new order relation on fuzzy soft sets and its applications, Soft

Compt., Vol.17, pp.63-70, (2013).

[12] I.A. Onyeozili, T.M. Gwary, A study the Fundamentals of Soft Set Theory, International of
Sciences and Technology Research, Vol.3, No.4, pp.132-143, (2014).

[13] D.K. Sut, An Application of Fuzzy Soft Relation in Decision Making Problems, International

Journal of Mathematics Trends and Technology, Vol.3, No.2, (2012).
[14] K.V. Babitha, J.J. Sunil, Soft Set Relations and Functions, Comput. Math. Appl., Vol.60,

pp.1840-1849, (2010).

[15] J.H. Park, O.H. Kim, Y.C. Kwun, Some properties of equivalence soft set relations, Comput.
Math. Appl., Vol.63, pp.1079-1088, (2012).

[16] H. Yang, Z. Guo, Kernels and Closures of Soft Set Relations, and Soft Set Relation Mappings,

Comput. Math. Appl., Vol.61, pp.651-662, (2011).
[17] B. Tanay, G. Yaylalı, New structures On Partially Ordered Soft Sets and Soft Scott Topology,

Ann. Fuzzy Math. Inform., Vol.7, pp.89-97, (2014).
[18] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., Vol.61, pp.1786-1799,

(2011).
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[28] Y.T. Öztürk, On Bipolar Soft Topological Space, Journal of New Theory, Vol.20, pp.64-75,
(2018).

(Naime DEMİRTAŞ) Mersin University, Faculty of Science and Art, Department of
Mathematics, Mersin, Turkey

Email address, Naime DEMİRTAŞ: naimedemirtas@mersin.edu.tr
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Abstract. In this paper, we consider a Kirchhoff-type viscoelastic equation

with distributed delay and source terms. We obtain the nonexistence of global
solutions under suitable conditions.

1. Introduction

In this paper, we consider the following Kirchhoff-type viscoelastic equation with
distributed delay and source terms

(1.1)



utt −M
(
‖∇u‖2

)
∆u+

∫ t
0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq

= b |u|p−2
u, (x, t) ∈ Ω× (0,∞) ,

u (x, t) = 0, x ∈ ∂Ω,
ut (x,−t) = f0 (x, t) , (x, t) ∈ Ω× (0, τ2) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

where b, µ1 > 0, p > 2 and τ1, τ2 are the time delay with 0 ≤ τ1 < τ2, µ2 is an
L∞ function, and g is a differentiable function under the assumptions (A1), (A2),
and (A3). M (s) is a nonnegative function of C1 for s ≥ 0 satisfy, M (s) = m0+αsγ ,
m0 > 0, α ≥ 0 and γ ≥ 0, specially we take M (s) = 1 + sγ where m0 = 1, α = 1.

Problems about the mathematical behavior of solutions for PDEs with time de-
lay effects have become interesting for many authors mainly because time delays
often appear in many practical problems such as thermal, economic phenomena,
biological, chemical, physical, electrical engineering systems, mechanical applica-
tions and medicine. Moreover, it is well known that delay effects may destroy the
stabilizing properties of a well-behaved system. In the literature, there are sev-
eral examples that illustrate how time delays destabilize some internal or boundary
control system [5, 6]. Viscous materials are the opposite of elastic materials that
posses the ability to dissipate and store the mechanical energy. The mechanical
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properties of these viscous substances are of great importance when they seem in
many natural sciences applications [2]. The problem (1.1) is a general form of a
model introduced by Kirchhoff [7]. To be more precise, Kirchhoff recommended a
model denoted by the equation for f = g = 0,

(1.2) ρh
∂2u

∂t2
+ δ

∂u

∂t
+ g

(
∂u

∂t

)
=

{
ρ0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f (u) ,

for 0 < x < L, t ≥ 0, where u (x, t) is the lateral displacement, E is the Young
modulus, ρ is the mass density, h is the cross-section area, L is the lenght, ρ0 is the
initial axial tension, δ is the resistance modulus, and f and g are the external forces.
Furthermore, (1.2) is called a degenerate equation when ρ0 = 0 and nondegenerate
one when ρ0 > 0.

In 1986, Datko et al. [4] indicated that delay is a source of instability. In [9],
Nicaise and Pignotti considered the following wave equation with a linear damping
and delay term

(1.3) utt −∆u+ µ1ut (x, t) + µ2ut (x, t− τ) = 0.

They obtained some stability results in the case 0 < µ2 < µ1. In the absence of
delay, Zuazua [23] looked into exponentially stability for the equation (1.3).

Wu and Tsai [24], considered the following Kirchhoff-type equation

(1.4) utt −M
(
‖∇u‖22

)
∆u+ |ut|r−2

ut = |u|p−2
u,

with the positive upper bounded initial energy and they obtained the blow-up of
solutions for the equation (1.4). In 2013, Ye [22], considered the global existence
results by constructing a stable set in H1

0 (Ω) and showed the decay by using a
lemma of Komornik for the nonlinear Kirchhoff-type equation (1.4) with dissipative
term.

When M (s) = 1, the equation (1.1) becomes the following form

(1.5)

utt −∆u− ω∆ut +
∫ t

0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (ρ)|ut (x, t− ρ) dρ

= b |u|p−2
u.

In [2], Choucha et al. obtained the blow-up of solutions under appropriate con-
ditions of the equation (1.5). In [3], the authors showed the exponential growth
of solution for the equation (1.5). In recent years, some other authors investigate
hyperbolic type equations (see [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]).

In this paper, we consider the Kirchhoff-type (M
(
‖∇u‖2

)
) viscoelastic equa-

tion (1.1) with distributed delay (
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq) and source (b |u|p−2

u)

terms. Our aim is to obtain the nonexistence of global solutions for the equation
(1.1).

The paper is organized as follows: In section 2, we give some materials that will
be used later. In section 3, we state and prove our main result.
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2. Preliminaries

In this part, we give materials for the proof of our result. As usual, the notation
‖.‖p denotes Lp norm, and (., .) is the L2 inner product. In particular, we write ‖.‖
instead of ‖.‖2.

Now, we denote some assumptions used in this paper:
(A1) g : R+ → R+ is a decreasing and differentiable function, that

(2.1) g (t) ≥ 0, 1−
∫ ∞

0

g (s) ds = l > 0.

(A2) There exists a constant ξ > 0, that

(2.2) g′ (t) ≤ −ξg (t) , t ≥ 0.

(A3) µ2 : [τ1, τ2]→ R is an L∞ function, that

(2.3)

(
2δ − 1

2

)∫ τ2

τ1

|µ2 (ρ)| dρ ≤ µ1, δ >
1

2
.

Let Bp > 0 be the constant satisfies [1]

(2.4) ‖v‖p ≤ Bp ‖∇v‖p , for v ∈ H1
0 (Ω) .

It holds
(2.5)∫ t

0
g (t− s) (∇u (s) ,∇ut (t)) ds = − 1

2g(t) ‖∇u (t)‖2 + 1
2 (g′o∇u) (t)

− 1
2
d
dt

[
(go∇u) (t)−

(∫ t
0
g (s) ds

)
‖∇u (t)‖2

]
,

where

(2.6) (go∇u) (t) =

∫
Ω

∫ t

0

g (t− s) |∇u (t)−∇u (s)|2 ds.

Firstly, as in [8], we introduce the new variable

y (x, ρ, q, t) = ut (x, t− qρ) ,

thus, we get

(2.7)

{
qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,
y (x, 0, q, t) = ut (x, t) .

Hence, problem (1.1) is equivalent to:

(2.8)


utt −M

(
‖∇u‖2

)
∆u+

∫ t
0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dq

= b |u|p−2
u, x ∈ Ω, t > 0,

qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,

with initial and boundary conditions

(2.9)

 u (x, t) = 0, x ∈ ∂Ω,
y (x, ρ, q, 0) = f0 (x, qρ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) ,

where

(x, ρ, q, t) ∈ Ω× (0, 1)× (τ1, τ2)× (0,∞) .
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Theorem 2.1. Suppose that (2.1), (2.2) and (2.3) hold. Let

(2.10)

{
p ≥ 2, n = 1, 2,
2 < p < 2n−2

n−2 , n ≥ 3.

Thus, for any initial data

(u0, u1, f0) ∈ H1
0 (Ω)×H1

0 (Ω)× L2 ( Ω× (0, 1)× (τ1, τ2)) ,

the problem (2.8)-(2.9) has a unique solution

u ∈ C
(
[0, T ] ;H1

0 (Ω)
)

,

for some T > 0.

Now, we define the energy functional as follows:

Lemma 2.2. Suppose that (2.1), (2.2), (2.3) and (2.10) hold. Let u be a solution
of (2.8). Then, E (t) is nonincreasing, such that

(2.11)

E (t) = 1
2 ‖ut‖

2
+ 1

2

(
1−

∫ t
0
g (s) ds

)
‖∇u‖2

+ 1
2(γ+1) ‖∇u‖

2(γ+1)
+ 1

2 (go∇u) (t)

+ 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx− b

p ‖u‖
p
p ,

which satisfies

(2.12) E′ (t) ≤ −c1
(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx) .

Proof. By multiplying the first equation of (2.8) by ut and integrating over Ω, we
obtain

(2.13)

d
dt

{
1
2 ‖ut‖

2
+ 1

2

(
1−

∫ t
0
g (s) ds

)
‖∇u‖2

+ 1
2(γ+1) ‖∇u‖

2(γ+1)
+ 1

2 (go∇u) (t)− b
p ‖u‖

p
p

}
= −µ1 ‖ut‖2 −

∫
Ω
ut
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dqdx

+ 1
2 (g′o∇u) (t)− 1

2g (t) ‖∇u‖2 ,

and

(2.14)

d
dt

1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx

= − 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1

2 |µ2 (q)| yyρdqdρdx

= 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 0, q, t)
∣∣ dqdx

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx

= 1
2

(∫ τ2
τ1
|µ2 (q)| dq

)
‖ut‖2

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx.
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Therefore,

d

dt
E (t) = −µ1 ‖ut‖2 −

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uty (x, 1, q, t)| dqdx+
1

2
(g′o∇u) (t)

−1

2
g (t) ‖∇u‖2 +

1

2

(∫ τ2

τ1

|µ2 (q)| dq
)
‖ut‖2

−1

2

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx.(2.15)

By using (2.13) and (2.14), we obtain (2.11). Utilizing Young’s inequality, (2.1),
(2.2), (2.3) and (2.15), we get (2.12). Hence, we complete the proof. �

Lemma 2.3. [2] There exists c > 0, depending on Ω only, such that

(2.16)

(∫
Ω

|u|p dx
)s/p

≤ c
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

Using the fact that ‖u‖22 ≤ c ‖u‖
2
p ≤ c

(
‖u‖pp

)2/p

, we have the corollary as follows:

Corollary 2.3.1. There exists C > 0, depending on Ω only, that

(2.17) ‖u‖22 ≤ c
[
‖∇u‖4/p2 +

(
‖u‖pp

)2/p
]

.

Lemma 2.4. [2] There exists C > 0, depending on Ω only, such that

(2.18) ‖u‖sp ≤ C
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

Now, we define the functional as follows:

H (t) = −E (t)

=
b

p
‖u‖pp −

1

2
‖ut‖2

−1

2

(
1−

∫ t

0

g (s) ds

)
‖∇u‖2

− 1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

2
(go∇u) (t)

−1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(2.19)

3. Nonexistence of solutions

In this part, we obtain the nonexistence of global solutions for the problem
(2.8)-(2.9).

Theorem 3.1. Suppose that (2.1)-(2.3) and (2.10) hold. Suppose further that
E (0) < 0 holds. Then, the solution of the problem (2.8)-(2.9) blows up in finite
time.
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Proof. By (2.11), we get

(3.1) E (t) ≤ E (0) ≤ 0.

Hence

H ′ (t) = −E′ (t)

≥ c1

(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx)
≥ c1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx ≥ 0,(3.2)

and

(3.3) 0 ≤ H (0) ≤ H (t) ≤ b

p
‖u‖pp .

Set

(3.4) K (t) = H1−α (t) + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx,

here ε > 0 to be specified later and

(3.5)
2 (p− 2)

p2
< α <

p− 2

2p
< 1.

We multiply the first equation of (2.8) by u and with a derivative of (3.4), to
obtain

K′ (t) = (1− α)H−α (t)H ′ (t)

+ε ‖ut‖2 + ε

∫
Ω

∇u
∫ t

0

g (t− s)∇u (s) dsdx

−ε ‖∇u‖2 − ε ‖∇u‖2(γ+1)
+ εb

∫
Ω

|u|p dx

−ε
∫

Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx.(3.6)

By using

ε

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx

≤ ε

{
δ1

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

+
1

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx} ,(3.7)
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and

ε

∫ t

0

g (t− s) ds
∫

Ω

∇u∇u (s) dxds

= ε

∫ t

0

g (t− s) ds
∫

Ω

∇u (∇u (s)−∇u (t)) dxds

+ε

∫ t

0

g (s) ds ‖∇u‖2

≥ ε

2

∫ t

0

g (s) ds ‖∇u‖2 − ε

2
(go∇u) (t) .(3.8)

By (3.6), we get

K′ (t) ≥ (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε
(

1− 1

2

∫ t

0

g (s) ds

)
‖∇u‖2

−ε ‖∇u‖2(γ+1)
+ εb ‖u‖pp − εδ1

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

− ε

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx+
ε

2
(go∇u) (t) .(3.9)

By using (3.2) and setting δ1 such that, 1
4δ1c1

= κH−α (t), we obtain

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε ‖ut‖2

−ε
[(

1− 1

2

∫ t

0

g (s) ds

)]
‖∇u‖2 − ε ‖∇u‖2(γ+1)

+εb ‖u‖pp − ε
Hα (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2 +

ε

2
(go∇u) (t) .(3.10)

For 0 < a < 1, by (2.19)

εb ‖u‖pp = εp (1− a)H (t) +
εp (1− a)

2
‖ut‖2 + εba ‖u‖pp

+
εp (1− a)

2

(
1−

∫ t

0

g (s) ds

)
‖∇u‖2

+
εp (1− a)

2 (γ + 1)
‖∇u‖2(γ+1)

+
ε

2
p (1− a) (go∇u) (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx,(3.11)
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with (3.10), it gives

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε

[
p (1− a)

2
+ 1

]
‖ut‖2

+ε

[(
p (1− a)

2

)(
1−

∫ t

0

g (s) ds

)
−
(

1− 1

2

∫ t

0

g (s) ds

)]
‖∇u‖2

+ε

(
p (1− a)

2 (γ + 1)
− 1

)
‖∇u‖2(γ+1) − εH

α (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx
+εp (1− a)H (t) + εba ‖u‖pp +

ε

2
(p (1− a) + 1) (go∇u) (t) .(3.12)

By using (2.17), (3.3) and Young’s inequality, we obtain

Hα (t) ‖u‖22 ≤
(
b

∫
Ω

|u|p dx
)α
‖u‖22

≤ c

{(∫
Ω

|u|p dx
)α+2/p

+

(∫
Ω

|u|p dx
)α
‖∇u‖4/p2

}

≤ c

{(∫
Ω

|u|p dx
)(pα+2)/p

+ ‖∇u‖22 +

(∫
Ω

|u|p dx
)pα/(p−2)

}
.(3.13)

By exploiting (3.5), we obtain

2 < αp+ 2 ≤ p and 2 <
αp2

p− 2
≤ p.

As a result, by Lemma 2.2, such that

(3.14) Hα (t) ‖u‖22 ≤ c
(
‖u‖pp + ‖∇u‖22

)
.

By combining (3.12) and (3.14), we have

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t)

+ε

[
p (1− a)

2
+ 1

]
‖ut‖2 +

ε

2
(p (1− a) + 1) (go∇u) (t)

+ε

{(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)}
‖∇u‖2

+ε

[
ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)]
‖u‖pp

+ε

(
p (1− a)

2 (γ + 1)
− 1

)
‖∇u‖2(γ+1)

+ εp (1− a)H (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(3.15)
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Taking a > 0 small enough, that

α1 =
p (1− a)

2
− 1 > 0

and suppose

(3.16)

∫ ∞
0

g (s) ds <
p(1−a)

2 − 1(
p(1−a)

2 − 1
2

) =
2α1

2α1 + 1
.

Choosing κ such that,

α2 =

(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)

> 0

and

α3 = ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
> 0 and

p (1− a)

2 (γ + 1)
− 1 > 0.

Fixing κ and a, we have ε small enough,

α4 = (1− α)− εκ > 0.

Hence, for some β > 0, (3.15) becomes

K′ (t) ≥ β
{
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1)

+ (go∇u) (t)

+ ‖u‖pp +

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx} .(3.17)

Therefore,

(3.18) K (t) ≥ K (0) > 0, t > 0.

Now, utilizing Holder’s and Young’s inequalities, we obtain

‖u‖2 =

(∫
Ω

u2dx

) 1
2

≤

[(∫
Ω

(
|u|2
)p/2

dx

) 2
p
(∫

Ω

1dx

)1− 2
p

] 1
2

≤ C ‖u‖p(3.19)

and ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ ≤ ‖ut‖2 ‖u‖2 ≤ c ‖ut‖2 ‖u‖p .

Hence, ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c ‖ut‖
1

1−α
2 ‖u‖

1
1−α
p

≤ c

[
‖ut‖

θ
1−α
2 + ‖u‖

µ
1−α
p

]
,(3.20)
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here 1
µ + 1

θ = 1. Taking θ = 2 (1− α), we have

µ

1− α
=

2

1− 2α
≤ p.

For s = 2
(1−2α) , we get

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
(
‖ut‖22 + ‖u‖sp

)
.

Hence, Lemma 2.3 gives∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
[
‖ut‖22 + ‖u‖pp + ‖∇u‖22

]
≤ c

[
‖ut‖22 + ‖u‖pp + ‖∇u‖22 + ‖∇u‖2(γ+1)

+ (go∇u) (t)
]

.(3.21)

Therefore,

K
1

1−α (t) =

(
H (t)

1−α
+ ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx

) 1
1−α

≤ c

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

+ ‖u‖
2

1−α
2 + ‖∇u‖

2
1−α
2

]
≤ c

[
H (t) + ‖ut‖2 + ‖u‖pp + ‖∇u‖2 + ‖∇u‖2(γ+1)

+ (go∇u) (t)
]

.(3.22)

By (3.17) and (3.22), we obtain

(3.23) K′ (t) ≥ λK
1

1−α (t) ,

here λ > 0, which depends on β and c. An integration of (3.23), we get

K
α

1−α (t) ≥ 1

K
−α
1−α (0)− λ α

(1−α) t
.

Therefore, K (t) blows up in time

T ≤ T ∗ =
1− α

λαKα/(1−α) (0)
.

Then, the proof is completed. �

4. Conclusion

In recent years, there has been published much work concerning the wave equa-
tions (Kirchhoff, Petrovsky, Bessel,... etc.) with different state of delay time (con-
stant delay, time-varying delay,... etc.). However, to the best of our knowledge,
there were no nonexistence of global results for the Kirchhoff-type viscoleastic
equation with distributed delay and source terms. We have been obtained the
nonexistence of global solutions under suitable conditions.
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ABSTRACT. In this study, starting with the researches method and studies, which 
scale used and in accordance with this scale, which data statistical relationship 
measures to be applicated were given. In accordance with this aim, 18 tests were 
taken into consideration which consisted of statistical relationship measures tests. 
Also, data sets which were taken from2148 students from three different high 
schools in Kahramanmaraş were examined practically on statistical relationship 
measures. With the aim of this, knowledge that were taken from the students from 
Science High School and Vocational High School were used. In the study, the effects 
of the factors like gender, education status of the father, private room status, 
number of siblings, computer status, living place,taking private lesson status, age of 
the student, body weight of the student and the income of the family on the effect of 
high school type were evaluated with the statistical relationship measures. 
Parametric test were applied to the data sets which are intermittent scale or 
proportional scale. And non parametric testa were applied to the data sets which are 
classifier scale or sequential scale. As a result, in the thesis study, the effect of factors 
that were thought to effect the student’s high school type, effect degree and 
direction were tried to be determined with the relationship measures test.  

 
1. INTRODUCTION 

The word statistics comes from the root of the Latin word "status". Statistics; collecting data, 
summarizing and presenting in the form of figures and graphics, tables, texts is the science that 
creates methods and theories about data analysis, evaluation, interpretation, decision making. Also, 
to observe, count and measure a large number of units to investigate collective (collective) events; It 
is a method of analyzing the results in order to group and interpret them (Alpar, 1995). As a result of 
field studies, tests are needed to interpret scientific and objective results. No matter how good the 
theoretical part of a study is, if the statistical tests used for the application of the study are not 
scientifically appropriate, the expected results from the studies are not obtained. In this case, when 
deciding on the statistical tests of a study, it should be well determined which statistical techniques 
can be analyzed for the data obtained. The degree of relationship between the data is shown by the 
correlation coefficients. Parametric tests are used if the received data is intermittent or proportional, 
non-parametric tests are used if it is classifier or sequencer.  
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Parametric tests are inflexible statistical methods applied according to the relevant parameter, an 
appropriate distribution and variance. Non-parametric tests, on the other hand, are statistical 
methods that do not depend on the relevant parameter, an appropriate distribution and variance, 
and are performed by taking their ranking scores instead of the data. In order to apply parametric 
tests, the data should be normally distributed and the variances should be homogeneous. On the 
other hand, non-parametric tests do not need these requirements and do not make assumptions 
about sample distribution [14]. 
In the study, information is given about which scale the data will be handled and which statistical 
method will be applied to the data in line with this scale when starting the researchers' methods and 
studies. For this purpose, a total of 18 tests consisting of statistical measures tests were examined. In 
addition, using the data obtained from 2148 students in three different types of high schools in 
Kahramanmaras, the correlation coefficients that can determine the relationship between the 
variables are emphasized. As an application, the information obtained from the students studying at 
Science High School, Anatolian High School and Vocational High School in Kahramanmaras was used. 
In the study, correlation coefficients were applied to determine whether factors such as gender, 
father's education level, private room status, number of siblings, computer status, place of residence, 
taking private tutoring, student's age, student's body weight and family income are related to high 
school type. Different test statistics should be applied according to the data obtained from students 
studying in different high school types. Parametric tests are used if the received data is intermittent 
or proportional, and non-parametric tests are used if it is classifier or sequencer [7,12]. 
 

2. MATERIAL 
 

In the study, preliminary information was given about the relationship measures tests, and then a 
questionnaire about these tests was applied. From the results of the survey, it is shown whether there is a 
relationship in the correlation coefficients. In addition, hand-solved examples of relationship measure tests are 
included in the appendix. 

In the study, it was determined whether factors such as gender, father's education level, private room status, 
number of siblings, computer status, place of residence, taking private lessons, student's age, student's body 
weight and family income are related to high school type, and if there is a relationship, the direction of this 
relationship. and its degree are shown with the correlation coefficients. 

The survey study consists of students who have been educated in three different types of high schools, residing 
in the province, district and surrounding villages of Kahramanmaras. Students who did not want to participate 
in the application were excluded from the scope of the research and the questionnaire was applied to 2148 
students in total. 

Frequency and percentage distributions for the demographic data of the participants are shown as follows. 
Percent Residence Frequency Percent 

Table 1. Distributions by Demographic Characteristics of Participants 

Gender Frequency  Percent Residence Frequency Percent  

Female 1198 55,3 Provincial 1304 60,7 

Male 960 44,7 Town 308 14,3 

Father Educational Status   Village 536 25,0 

Primary school 764 35,6 Private Lesson 
Status 

  

Middle School 616 28,7 Yes 160 7,4 
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High school 492 22,9 No 1988 92,6 

University 276 12,8 High School Type   

Private Room Status   Vocational high 
School 

556 25,9 

Yes 1340 62,4 Anatolian High 
School 

1068 49,7 

No 800 37,6 Science High 
School 

524 24,4 

Number of siblings   Family Income 
Status 

  

0 36 1,7 2000 and below 1032 48,0 

1 136 6,3 2000-3000 672 31,3 

2 432 20,1 3000-4000 276 12,8 

3 and more 1544 71,9 4000 and over 168 7,8 

Computer Status    

Yes 1184 55,1 

No 964 44,9 

 
3.METHOD 

In this study, statistical terms and descriptive statistics are defined and then given in detail on statistical 
measure tests. The solution of a numerical example for each test is also shown. 

In general, a statistical test generalized to the determination of a hypothesis (𝐻0), 

  Test statistic =
statistics−parameter

√var(statistics)
                                                                                     (1) 

is in the form. As shown in the equation, it is created for the distribution of the statistics and is determined by 
comparing it with the critical values showing the rejection regions of 𝐻0with a certain probability (type error) 
[4,8]. 

Relationship Measures Tests 

It is desired to know how the relationship between two different data sets is. It is necessary to create a 
separate test statistic according to the data taken from the data set [10,13]. The data are analyzed under the 
headings of classifier, ordinal, interval, interval or proportional scale, and classifier or ordinal scale variables. 

Classifier Scale Variables 

Goodman and Kruskal Gamma Statistics 

Goodman and Kruskal Gamma statistics, known as the gamma test, creates a symmetric measure of the 
measurement link in two ordinal variables. Goodmann and Kruskal Gamma statistics indicate a difference 
between the (P) congruent and (Q) discordant pair. When the value of the Goodman and Kruskal Gamma 
statistic is 1 or close to 1, the connection level increases, and when it is close to 0, the connection level 
decreases. The same method is used to calculate the Somers D statistics [1,3]. 
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Cramer V Statistics 

Although the probability coefficient is widely used in social sciences and sciences, it also has a disadvantage. In 
order to calculate the Cramer V statistic, nxn of the tables, that is, rows and columns, must be equal. For 
example, it is applied to tables created as 3x3, 4x4, 5x5 … instead of 2x3, 3x4, 5x4 tables. [2,9]. 

Phi Coefficient 

Phi coefficient is explained as a non-parametric test applied to find the correlation coefficient of data in 2x2 
size tables created with nominal scales. It is also known as a correlation coefficient that calculates the size of 
the link between two variables. Phi coefficient is also known as Kendall's correlation coefficient. It explains the 
relationship dimension of the variables that are qualitatively dichotomous (hardworking-lazy, bad-good, thin-
fat) between two variables. Phi coefficient is determined by the symbol  . 

Lambda λ Statistic 

Lambda λ statistics, also called Gutman's estimation coefficient, in which dependent and independent variables 
affect each other, are applied in error rates. Lambda λ statistics, which is a classifying scale, is applied as a 
correlation statistic that compares more than one group or category, as in Cramer V, Phi and Probability 
coefficient. The feature that distinguishes the lambda λ statistic from other statistics is that it has  an 
asymmetric structure. Lambda λ statistic is also applied symmetrically. In the Lambda λ statistic, it takes values 
between [5]. 

Probability Coefficient C Statistic 

Probability coefficient C statistic, created with a classifier scale, is defined as a non-parametric statistics created 
to indicate the correlation coefficient of groups or figures rather than 2x2 tables. The probability coefficient C 
statistic is determined as a symmetrical structure [3,4]. 

Relative Risk 

It shows the measure of the connection between the occurrence or absence of a situation or an event. Relative 
Risk also creates risk estimates for the future. 

Odds Ratio 

The 'odds ratio', also known as the relative odds ratio or estimated relative risk, is defined as a measure of 
effect size. Odds ratio is applied to determine the risk of the population as a result of retrospective studies of 
the variables [2,6]. 

Sorter Scale Variables 

Somers D Statistics 

Somers D statistic is preferred for asymmetric measurements calculated to show the compatibility or 
connection between two ordinal variables such as x and y. Somers D Coefficient is expressed between (-1,1) 
values. That is, it takes a value between −1 < 𝑆𝑑 < +1. Somers D Statistics model is created as at least 2x2. 

Kendall Tau b Statistics 

It is among the non-parametric tests. Bi-order variables are also statistical measures that indicate the strength 
and wool of the connection. Kendall Tau b statistic takes a value between −1 ≤ 𝜏 ≤ +1. In Kendall Tau b 
statistics, when the number of samples is more than 10, it approaches the normal distribution [9,10]. 
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Kendall Tau c Statistics 

The Kendall Tau c statistic is calculated in cases that are rectangular or square. In cases where the Kendall Tau 
b statistic is not calculated, it is the statistical test that can be calculated. The Kendall tau c statistic is also called 
Stuart's Tauc or Kendall-Stuart Tau c. In addition, in this test, at least one of the data must be ordinal [9]. 

Kendall Goodness of Fit Coefficient W Statistic 

Spearman, Kendall Tau b and Kendall Tau c statistics are applied to calculate the correlation between two 
ordinal variables. However, when the ordinal variable value is greater than 3, Kendall W statistics is applied. 
The Kendall W statistic can be calculated until the ordinal variable value, that is, is 𝑛 ≤ 7. In case the ordinal 
variable value is greater than 7, the distribution of the sample constitutes the Chi-square distribution. 
Therefore, it is calculated with the chi-square ruler. Kendall W statistics are formed between 0 ≤ 𝑊 ≤ 1  values 
[3,12]. 

Spearman Rank Correlation Coefficient 

Spearman Rho is applied when there is a linear relationship between the two ordinal variables or between the 
variables for which the connection is investigated, when one of the variables moves away from the normal 
distribution. That is, it is used to investigate the connection between two ordinal variables. Spearman Rho is 
explained as the non-parametric Pearson Correlation coefficient. The most important difference between the 
two tests is that Spearman deals with Rho's ordinal numbers and Pearson's raw values. 

Linear by Linear Relationship Statistics 

Variables must be obtained in ordinal scale and created in double-order rxc size. Chi-square test statistics are 
applied until the sample number of linear statistics is 0. Linear by Linear relationship statistics are also defined 
as Mantel-Haenszel test [9]. 

Cohen Kappa Statistics 

Evaluation at different locations or by a different observer also examines the similarities between the observer 
or two different places. Cohen Kappa coefficient takes values between -1 and +1. When the value of Cohen 
Kappa coefficient approaches 1, it explains a complete fit, a value close to 0 explains inconsistency, and a value 
close to -1 explains the reverse fit [13,15]. 

Interval Scale Variables 

Pearson Correlation Coefficient 

It is used to give information about the strength and direction of the linear relationship between two variables 
indicated by measurement. When both variables are normally distributed, the graph is continuously variable. 
To properly use the Pearson correlation coefficient, the data between variables should be applied with an 
interval scale, both variables should be normally distributed, and both variables should be randomly selected 
from the population. In other words, it is applied when the relationship between two different x and y variables 
is linear [4]. 

Intermittent and Proportional Scale Variables 

Eta Coefficient 

The eta coefficient is a nonlinear correlation coefficient. It is used for two continuous variables that do not have 
a linear relationship between them. For this reason, it is also called the relationship ratio. It is also applied for 
data created with interval and proportional scale. Eta coefficient takes a value between 0 and 1. When the value 
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of Eta is close to 1, the relationship level increases, and when it takes a value close to 0, the relationship level 
decreases. The eta coefficient is a special case of the Pearson coefficient. 

Classifier or Orderer Scale Variables 

Yule Q Statistics 

The Yule Q statistic is explained as a symmetric measure based on the difference in congruent and 
incompatible pairs. Yule Q statistic is calculated in 2x2 size tables. Unlike the Phi coefficient, the data can be 
calculated on a scaled or ordinal scale. Yule takes a value in the range of −1 ≤ 𝛾 ≤ +1 [11]. 

Yule Y Statistics 

The Yule Y statistic is shown as the rank coefficient. In this test, it is obtained by taking the geometric mean of 
Yule. In Yule Y statistics, the difference between the marginal distribution (which can be variable in unit sense) 
between two variables is weaker than Yule Q statistics [3,14]. 

4. FINDINGS AND DISCUSSION 

In the study, correlation coefficients were applied to determine whether factors such as gender, father's 
education level, private room status, number of siblings, computer status, place of residence, taking private 
tutoring, student's age, student's body weight and family income are related to high school type. Analyzes were 
created according to the 5% significance level. Therefore, the results are stated as 'relation' if the sign value is 
less than 0.05, and 'no relationship' if the sign value is greater than 0.05. 

Table 2. Analysis of High School Type by Gender 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 899,215 0,000 

Linear by Linear Relation 759,545 0,000 

Lambda Statistics 0,343 0,000 

Goodman and Kruskal Statistics 0,301 0,000 

Uncertainty Coefficient 0,559 0,000 

Somers D Statistics 0,633 0,000 

Eta Coefficient 0,595 0,000 

Phi Coefficient 0,647 0,000 

Cramer V Statistics 0,647 0,000 

Kendal Tau b Statistics 0,562 0,000 

Kendal Tau c Statistics 0,626 0,000 

Spearman Rank Correlation Coefficient 0,593 0,000 

Cohen Koppa Statistics 0,023 0,000 
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As a result of the analysis of the relationship measures tests according to Table 2, it was decided that the type 
of high school was dependent on gender (𝑝 < 0,01). 

Table 3. Analysis of High School Type by Father's Educational Status 

Relationship Measures Coefficients  P 

Pearson Correlation Coefficient 416,557 0,000 

Linear by Linear Relation 280,227 0,000 

Lambda Statistics 0,089 0,000 

Goodman and Kruskal Statistics 0,76 0,000 

Uncertainty Coefficient 0,312 0,000 

Somers D Statistics 0,292 0,000 

Eta Coefficient 0,365 0,000 

Phi Coefficient 0,440 0,000 

Cramer V Statistics 0,311 0,000 

Kendal Tau b Statistics 0,313 0,000 

Kendal Tau c Statistics 0,316 0,000 

Spearman Rank Correlation Coefficient 0,351 0,000 

Cohen Koppa Statistics 0,131 0,106 

 

According to Table 3, it is seen that there is an independent relationship between father's education level and 
high school type in Cohen Koppa statistical analysis (𝑝 > 0,05). However, in the analysis of other relationship 
measures, it is seen that there is a positive significant relationship between father's education status and high 
school type(𝑝 < 0,01). 

Table 4. Analysis of High School Type by Private Room Status 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 17,328 0,008 

Linear by Linear Relation 0,980 0,322 

Lambda Statistics 0,002 0,045 

Goodman and Kruskal Statistics 0,005 0,007 

Uncertainty Coefficient 0,002 0,915 

Somers D Statistics 0,002 0,915 



MURAT SÖZEYATARLAR, MUSTAFA ŞAHİN AND ESRA YAVUZ* 

 

290 

 

Eta Coefficient 0,036 0,000 

Phi Coefficient 0,90 0,008 

Cramer V Statistics 0,64 0,008 

Kendal Tau b Statistics 0,002 0,915 

Kendal Tau c Statistics 0,002 0,915 

Spearman Rank Correlation Coefficient 0,21 0,916 

Cohen Koppa Statistics 0,11 0,322 

 

According to Table 4, in the statistical analysis of Eta Coefficient, it is seen that there is a positive significant 
relationship between private room status and high school type (𝑝 < 0,01). However, in the analysis of other 
relationship measure tests, it is seen that there is no relationship between private room status and high school 
type (𝑝 > 0,05). 

Table 5. Analysis of High School Type by Number of Siblings 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 31,211 0,000 

Linear by Linear Relation 14,164 0,000 

Lambda Statistics 0,002 0,689 

Goodman and Kruskal Statistics 0,008 0,000 

Uncertainty Coefficient -0,069 0,001 

Somers D Statistics -0,058 0,001 

Eta Coefficient 0,105 0,000 

Phi Coefficient 0,121 0,000 

Cramer V Statistics 0,085 0,000 

Kendal Tau b Statistics -0,070 0,001 

Kendal Tau c Statistics -0,055 0,001 

Spearman Rank Correlation Coefficient -0,130 0,001 

Cohen Koppa Statistics -0,076 0,000 

 

According to Table 5, it is seen that there is no relationship between the number of siblings and the type of high 
school in the Lambda statistical analysis (𝑝 > 0,05). However, in the analysis of other relationship measure 
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tests, it is seen that there is a positive significant relationship between the number of siblings and high school 
type (𝑝 < 0,01). 

Table 6. Analysis of High School Type by Computer Status 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 75,232 0,000 

Linear by Linear Relation 69,742 0,000 

Lambda Statistics 0,041 0,000 

Goodman and Kruskal Statistics 0,021 0,000 

Uncertainty Coefficient -0,170 0,000 

Somers D Statistics -0,153 0,000 

Eta Coefficient 0,180 0,000 

Phi Coefficient 0,187 0,000 

Cramer V Statistics 0,132 0,000 

Kendal Tau b Statistics -0,172 0,000 

Kendal Tau c Statistics -0,144 0,000 

Spearman Rank Correlation Coefficient -0,304 0,000 

Cohen Koppa Statistics -0,181 0,000 

 

According to Table 6, it is seen that there is a positive significant relationship between the number of siblings 
and the type of high school in the analysis of all relationship measure tests (𝑝 < 0,01). 

Table 7. Analysis of High School Type by Place of Residence 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 27,926 0,000 

Linear by Linear Relation 0,957 0,328 

Lambda Statistics 0,000 0,000 

Goodman and Kruskal Statistics 0,007 0,000 

Uncertainty Coefficient -0,011 0,576 

Somers D Statistics -0,010 0,576 

Eta Coefficient 0,063 0,000 
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Phi Coefficient 0,114 0,000 

Cramer V Statistics 0,081 0,000 

Kendal Tau b Statistics -0,011 0,576 

Kendal Tau c Statistics -0,010 0,576 

Spearman Rank Correlation Coefficient -0,019 0,576 

Cohen Koppa Statistics -0,011 0,595 

 

According to Table 7, in the statistical analysis of Pearson Correlation Coefficient, Lambda statistic, Goodman 
and Kruskal statistic, Eta Coefficient and Phi Coefficient, it is seen that there is a positive significant relationship 
between the place of residence and the type of high school (𝑝 < 0,01).  However, in the analysis of other 
relationship measures, it is seen that there is no relationship between the place of residence and the type of 
high school (𝑝 > 0,05) 

Table 8. Analysis of High School Type by Taking Private Lessons 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 5,525 0,063 

Linear by Linear Relation 1,242 0,265 

Lambda Statistics 0,000 0,000b 

Goodman and Kruskal Statistics 0,002 0,056 

Uncertainty Coefficient 0,017 0,234 

Somers D Statistics 0,011 0,234 

Eta Coefficient 0,051 0,000 

Phi Coefficient 0,051 0,063 

Cramer V Statistics 0,051 0,063 

Kendal Tau b Statistics 0,023 0,234 

Kendal Tau c Statistics 0,013 0,234 

Spearman Rank Correlation Coefficient 0,079 0,234 

Cohen Koppa Statistics 0,024 0,271 

 

According to Table 8, in the statistical analysis of Lambda Statistics and Eta Coefficient, it is seen that there is a 
positive significant relationship between taking private lessons and high school type(𝑝 < 0,01).  However, in 
the analysis of other relationship measure tests, it is seen that there is no relationship between taking private 
lessons and high school type(𝑝 > 0,05). 
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Table 9. Analysis of High School Type by Family Income Status 

Relationship Measures Coefficients P 

Pearson Correlation Coefficient 244,789 0,000 

Linear by Linear Relation 182,873 0,000 

Lambda Statistics 0,027 0,002 

Goodman and Kruskal Statistics 0,055 0,000 

Uncertainty Coefficient 0,230 0,000 

Somers D Statistics 0,234 0,000 

Eta Coefficient 0,316 0,000 

Phi Coefficient 0,338 0,000 

Cramer V Statistics 0,239 0,000 

Kendal Tau b Statistics 0,230 0,000 

Kendal Tau c Statistics 0,220 0,000 

Spearman Rank Correlation Coefficient 0,352 0,000 

Cohen Koppa Statistics 0,081 0,000 

 

According to Table 9, it is seen that there is a positive significant relationship between family income status 
and high school type in the analysis of all relationship measure tests (𝑝 < 0,01).   

 
5. CONCLUSIONS 

 
In this study, correlation measures tests were examined under the headings of classifier scaled 
variables, ordinal scaled variables, intermittent scaled variables, interval scaled-ratio scaled 
variables, and classifier-ordered scaled variables. For this purpose, a total of 18 tests consisting of 
statistical measures tests were examined. In the study, the correlation coefficients that can 
determine the relationship between the variables were emphasized by using the data obtained 
from 2148 students in three different types of high schools in Kahramanmaras. As an application, 
the information obtained from the students studying at Science High School, Anatolian High School 
and Vocational High School in Kahramanmaras was used. 
In line with this study, factors such as gender, father's education level, private room status, number 
of siblings, computer status, place of residence, taking private lessons, student's age, student's body 
weight, and family income were determined  correlation coefficients were applied to determine 
whether it is related to the type of high school. Different test statistics were applied according to 
the data obtained from students studying in different types of high schools. Parametric tests were 
used if the data were intermittent or proportional, and non-parametric tests were used if they were 
classifiers or sequencers. 
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As a result, in the analysis of all statistical relationship measures between the type of high school 
and gender, computer status and income status of the family, it was seen that there was a positive 
significant relationship (𝑝 < 0,05). In the Cohen Koppa statistic analysis made between high school 
type and father's education level, it was found that there was no relationship. However, in the 
analysis of other statistical measures tests, it was observed that there was a positive significant 
relationship (𝑝 < 0,05). In the statistical analysis of the Eta coefficient between the high school type 
and the private room status of the student, it was seen that there was a positive significant 
relationship (𝑝 < 0,05). No relationship was found in the analysis of other statistical measures tests 
(𝑝 > 0,05). It was revealed that there was no relationship in the Lambda statistic analysis made 
between the type of high school and the number of siblings, but there was a positive significant 
relationship in the analysis of other statistical measures tests. In the statistical analysis of Pearson 
Correlation Coefficient, Lambda statistic, Goodman and Kruskal statistic, Eta Coefficient and Phi 
Coefficient between high school type and place of residence, there was a positive significant 
relationship (𝑝 < 0,05). However, in the analysis of other relationship measure tests, no 
relationship was found between the place of residence and the type of high school (𝑝 > 0,05). In 
the statistical analysis of Lambda statistics and Eta coefficient between the high school type and the 
student's taking private lessons, it was seen that there was a positive significant relationship 
(𝑝 < 0,05). In the analysis of other relationship measure tests, it was seen that there was no 
relationship (𝑝 > 0,05). 
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ABSTRACT. The Intuitionistic fuzzy set theory gives quite successful results in 
decision-making processes when compared to other set theories. For this reason, it 
finds application areas in many areas of daily life such as political science, robotic 
systems, economic research, medical studies. The success of the IFS concept in 
decision-making processes in these areas has also been proven. In this study, it is 
aimed to create an IFS model that can make suggestions to support the end user in the 
process of choosing a product. Hamming measure will be used to achieve this goal. As 
per the definition of this measure, the degree of non-membership of the data is as 
important as the degree of membership. These values also determine the degree of 
intuition. However, the easier it is to estimate the yield value of a property of an 
object, the more difficult it is to estimate the non-fulfillment value. For this reason, in 
this study, the data will be intuitiveized by the controlled set theory and the 
relationships with the results will be determined. In all these processes The Microsoft 
SQL Server data structure for coding  was used and algorithms were created 
according to this coding. A healthy evaluation of the data is as important as the value 
of the data's feature of not having that feature. This situation is the most important 
factor determining the value of intuition. 

 
1. INTRODUCTION 

The concept of fuzzy cluster, membership degrees and the degree of non-membership given by the 
fuzzy logic rules are easily obtained. Thus, the classification of an object is easily made over a chain, 
specifically unit range. However, the heuristic fuzzy set theory revealed that this situation would not 
be so clear and the degree of intuition was also important. The biggest problem in this theory is 
determining the degree of non-membership rather than determining the degree to which an object 
has a feature. Because the degree of intuition also appears depending on these two values. In fact, in 
heuristic fuzzy set theory, the fact that an object has a property is explained by two independent 
variables and the third dependent variable connected to them. The biggest challenge faced by many 
scientists working in this field is choosing two independent variables separately. Because this choice 
determines the degree of intuition. For example, in determining the height degree of a person whose 
height is 180 cm as 0.825 and the degree of not being as 0.175, what criterion has been set for the 
value 0.175? The intuition level for this person is 0.1.  
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Is this intuition a human intuition? It is clear that the answer is no. Because, some different methods 
can be followed in determining the degree of membership, but the degree of non-membership should 
be linked to our intuition. It is our experience that strengthens our intuition.  Then the degree of non-
membership of a person whose height is 180 cm should vary according to the group to which he 
belongs. For example, a value of 0.175 may be acceptable according to people in a city, but in the 
group with basketball athletes this value is 0 or the membership level should be re-examined. 
 
To solve the above-mentioned situation, controlled sets were defined by Çuvalcıoğlu [3] in 2014, and 
the fact that an object has a property is expressed by one independent two dependent variables. 
 
Due to the conflicts in the results obtained in the decision-making processes made so far, some 
improvements have been made or given as they are. The reason for this is that the degree of non-
membership and the degree of intuition cannot be determined exactly. However, distance measures 
use all three values. In that case, the relationship results to be obtained from the distance measures 
by not being a member closest to the line and using the degree of intuition will be successful. The 
resulting models will have a more similar structure to human intuition. For distance measurements, 
see [4,5] respectively. 
 
In this study, the purpose of using this method is to successfully complete the relation of hundreds of 
features of thousands of products with hundreds of products in a short time and successfully. 
The article is organized as follows. In Chapter 2, some basic concepts are given, and in Chapter 3, the 
controlled set theory to be used in heurization is mentioned. In addition, information was given 
about the dimensions and properties used in the study. In the section, coding, obtaining the results 
and evaluating the results were made. 

 
2. PRELIMINARY PREPARATIONS 

 
We recall some basic concepts of IFS, [1, 2]. 
 
Definition 2.1. A fuzzy set A in a nonempty set X is an object having the formA =  {(x, μA(x),1 −
μA(x))xX} 
where the function μA: X → [0,1] denoted the degree of membership and 1-μA denoted degree of non 
membership degree of x. 
 
Definition 2.2. An Intuitionistic fuzzy set ( briefly I F S see[1]) A in a nonempty set  X is an object 
having the form  A =  {(x, μA(x), γA(x))xX} where the functions μA, γA: X → [0,1] denote the degree of 
membership and degree of non membership, respectively and  0 ≤ μA(x), γA(x) ≤ 1 for all xX. The 
value πA(x) = 1 − μA(x) − γA(x) is called hesitation degree of x. 
 
Example 2.3. Let X = {a,b,c,d} an universal and 

A =  {(a, 0.875, 0.125), (b, 0.54, 0.16), (c, 0.25, 0.35), (d, 0.95,0.0)} 
Intuitionistic fuzzy set on X.The hesitation degrees of  a,b,c,dX are as follow, respectively 

πA(a) = 0, πA(b) = 0.3, πA(c) = 0.4, πA(d) = 0.05 
 
Definition 2.4. Let A, B ∈ IFS (X). 
i. A ⊆  B ⇔ μA(x) ≤ μB(x)  ve γA(x) γB(x)  ∀x ∈  X. 
ii. A =  B ⇔ A ⊆ B ve B ⊆ A 
iii. Ac = {(x, γA(x), μA(x))xX}  
iv. AB =  {(x, max{μA(x), μB(x)}, min{γA(x), γB(x)}) | x ∈  X} 
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v. AB =  {(x, min{μA(x), μB(x)}, max{γA(x), γB(x)}) | x ∈  X}  
 
Örnek 2.5. X =  {a, b, c}  be an universal.  
A =  {(a, 0.45, 0.25), (b, 0.75, 0.25), (c, 0.50, 0.15)}, 
B =  {(a, 0.35, 0.15), (b, 0.90, 0.05), (c, 0.65, 0.45)}  
Intuitionistic fuzzy sets on X. Then,  
Ac = {(a, 0.25, 0.45), (b, 0.25, 0.75), (c, 0.15, 0.50)}   
AB =  {(a, 0.45, 0.15), (b, 0.90, 0.05), (c, 0.65, 0.15)}   
AB =  {(a, 0.35, 0.25), (b, 0.75, 0.25), (c, 0.50, 0.45)}  
 

3. CONTROLLED SET THEORY 
 
Hesitation value is of great importance in applications made using more data than theoretical studies 
on intuitionistic fuzzy sets, in the general name of decision-making processes. As can be seen from its 
definition, the calculation of the hesitation value is directly related to the membership degree and 
non-membership degree. In conventional methods, whether the degree of hesitation is effective on 
the degree of membership or non-membership is not taken into account. In many studies, the degree 
of non-membership is tried to be given without any justification. That is, the more concrete the 
determination of the degree of membership, the more abstract the degree of non-membership or, 
provided that the condition is met, it is random. This situation negatively affects the role of the 
hesitation value of the data in the decision-making process. 
 
The Hamming measure to be used in this study works on all these values. Therefore, not only 
membership degree but also non-membership and hesitation value will be decisive for interpreting 
the decision-making process in a way that is close to correct. 
Due to the situations discussed above, the method of forming controlled sets will be used to 
consistently determine the non-membership and hesitation value using the membership degrees of 
the obtained data. Controlled sets were first described by Çuvalcıoğlu [3] in 2014. 
Zadeh’s example about long peoples, the membership degree of one whose lenght 170 cm is almost 1, 
say 0.8. But, if we choose the universal as the people whose lenght is longer than 170 cm then the 
membership degree of the person 171 cm tall is subject of discussion. Because, in this universal, 
while the membership degree of the person 190 cm tall is almost 1, how can we say taht the 
membership degree of the person 171 cm tall is 0.8? In Zadeh’s example (171)=0.8, 1-(171)=0.2. 
But, if we choose the universal as above, then we are in the expectations that the universal have an 
element which membership degree is 0.2. Hence, the membership degree of the persons which 
171cm is  0.8. This  is a contradiction. In this statement, the best solution can be the membership 
degree of the persons which 171cm is  0.5. Also in this case, the membership degree of the persons 
which 180cm is  0.9 thus the non-membership degree of the persons which 180cm is  0.1. This is a 
contradiction, too. 
 
This problem can be solve by defining a bijective and order preserving function between the image of 
fuzzy set on Zadeh’s universal as above and the image of fuzzy set on subset of Zadeh’s same 
universal.  However, in this case, problems associated with the concept appears to be taller. So, in 
order to find any element in universal with its membership and non-membersip degree, there must 
also have an element such that it control the other. With this idea, if we use the Zadeh’s universal for 
the long people then the membership degree of the persons which 171cm is  0.8 and thus the non-
membership degree of the persons which 171cm is  0.2. But, If we use the subuniversal of the Zadeh’s 
universal then the membership degree of the persons which 171cm is  0.8 and thus the non-
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membership degree of the persons which 171cm is  0.0. Because, there is not an element which 
control the non-membership degree of the persons which 171cm. 
 
An extension of the fuzzy theory  is the intuitionistic fuzzy theory which have the hessitation degree 
that is not belong the fuzzy theory. But, there are same problems in Intuitionistic fuzzy theory like 
Fuzzy theory’s. Because, there is not any criterion for non-membership degree of an element. For 
example, the set A={(x, 0.8, 0.2), (y, 0.4, 0.3)} is an intuitionistic fuzzy set on U={x,y}. But, there is 
not any controller element for x, like y. 
 
As a result of these discussions, controlled sets were defined by Çuvalcıoğlu [3] as follows. 
 
Definition 4.1: Let E be an universal,  μ is a fuzzy set on E. The set E is called μ-controlled set if  
∀x∈E, ∃ y∈E  ∍ 1- μ(x) = μ(y) . 
If E is μ-controlled set then we write E∈CS(μ). 
 
Example4.2: Let X =  {a, b, c, d, e, f}  be an universal.  
A =  {(a, 0.45), (b, 0.05), (c, 0.50), (d, 0.35), (e, 0.90), (f, 0.65)} is not a controlled set. But,  
B =  {(a, 0.45), (b, 0.10), (c, 0.50), (d, 0.45), (e, 0.90), (f, 0.55)} is a controlled set. In B, a is controled 
by f, c is controlled by itself, f controlled by a and d, etc. 
 

4.1  Controlled sets on classical set theory 
 
In this study, it has been shown that the 𝒞 ={X⊂E: X ∈CS(μ) } family has the maximal element 
property. We define the set ã = {b ∈E : 1- μ(a) = μ(b) }. 
 
Proposition4.1.1: Let E be an universal, μ is fuzzy set,  𝒞 ={X⊂E: X ∈CS(μ) } and A∈ 𝒞. For a∈A, we 
define 𝒞’ = {Ya : a∈A } ⊂ 𝒞 where ǎ = {cã ∶ cA},  Ya={a}∪ǎ then, we get A=∪ 𝒞’ 
 
With the above proposition, it can be easly seen the family 𝒞 has a base as following,  

A = A ∪ Ã 

where  Ã = ⋃a∈Aã. 
 
Theorem 4.1.2:  Let E be an universal, μ is fuzzy set, A∈𝒫(E).  The mapping J: P(E) ⟶ P(E) defined by  
J(X) = X  is a closure operator. 

 
From this theorem, it is concluded that the 𝒞 family is a closed system, (𝒞,⊆) is complete lattice, and 
every closed subsystems C' of 𝒞 is complete lattice. As a result of these, it was obtained that 𝒞 is a 
Moore family. It has also been shown that the 𝒞 closed system is algebraic. According to Schimid's 
theorem 𝒞 closed system is inductive, as a result every chain in 𝒞 have a supremum in 𝒞. 
As a result of these properties, it can be easily seen that cluster theoretic properties are workable on 
controlled sets. 
 

4.2. (𝛂, 𝛂∗)-Controlled sets 
 
Another problem is whether a fuzzy set can be created as a controlled set. Considering the studies on 
intuitionistic fuzzy sets, the main reason for this problem can be explained as follows, 
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The membership degree is very important for an element in any set. But the non-membership degree 
is very important, too. We can not claim that all sets are controlled set. However, it is possible to 
construct a set in such a way that it can have a controlled set property. We can introduce controlled 
set using the membership degrees of elements. The study on the solution of this problem is given by 
Çuvalcıoğlu [3] as follows. 
 
Definition 4.2.1:  Let E be an α-set. We define the following mapping on E as following, 

α∗(x) = {supy∈Eα(y), α(x) ≤ 1 − α(y)  0          , otherwise   

It is clear that α∗  is a mapping from E to I. In addition, it can be easily seen that the sum of α  and α∗ is 
less or equal than 1. From this properties, we can give the following definition 
 
Definition 4.2.2: Let E be α-set. Then the set A = {< x, α(x), α∗(x)x ∈ E}  is called (α, α∗)-controlled set. 
 
Example 4.2.3: If we use the set A used in above example, A is not a controlled set. But if we use the 
definition5. We get a new set A∗ of which element's membership degrees have the same membership 
with the same elements of A 
A∗  =  {(a, 0.45,0.50), (b, 0.05,0.90), (c, 0.50,0.50), (d, 0.35,0.65), (e, 0.90,0.05), (f, 0.65,0.35)}  
In this set, a and c are controlled by c, e is controlled by  b, etc. 
 
If we examine the controlled set B using Definition 5., then we get, B∗  =
 {(a, 0.45,0.55), (b, 0.10,0.9), (c, 0.50,0.50), (d, 0.45,0.55), (e, 0.90,0.10), (f, 0.55,0.45)} is a controlled 
set. In B∗, like as B, a is controled by f, c is controlled by itself, f controlled by a and d, etc. 
 
From the definition, it can be easily seen that every (α, α∗)-controlled set is an intuitionistic fuzzy set. 
But the converse of this is not true generaly. 
 

5. HAMMING DISTANCE BETWEEN IFSS 
 
In this section, we will provide information about the Hamming measure between IFSs, which we will 
use in the process of deciding the relationship between our data. The hamming measure, like other 
measures, can be associated with a similarity measure between IFSs.. 
 
Tanım 5.1: Let X be a nonempty set and A, B, C IFS (X). The distance measure between A and B is a 
function d: IFS × IFS → [0, 1].  
i. 0 d (A, B) 1  
ii. d (A, B)  =  0  A =  B 
iii. d (A, B)  =  d (B, A) 
iv. d(A, C)  +  d (B, C)  ≥  d (A, B)  
v. If A ⊆  B ⊆  C then d (A, C)  ≥  d (A, B) and d (A, C)  ≥  d (B, C). 
 
Hamming measure is defined as follow; 
 d (A, B)  = ∑n

i=1 (|μA(x) − μB(x)| +  |γA(x) −  γB(x)| + |πA(x) − πB(x)| )    
 

6. MAIN RESULTS 
 
In this study, the Hamming measure will be run on controlled sets. Therefore, in this section, first of 
all, controlled sets will be created with the data obtained by experts in the field. For this purpose, 
blurring will be done with SQL (Structured Query Language) using Microsoft SQL Server program. 

6.1. Case study. 
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Let A = {GR1, GR2, GR3, GR4, GR5} grape varieties, 
Let C = {x x property of beverage product} be properties of product obtained from grapes. 
Let S = {xx types of food} be the set of foods to be consumed according to product characteristics. 
The membership degrees of the relations of these data with each other were determined by experts 
as follows. 
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0,495 0,85
5 

0,3
5 

0,4
5 

0,1
5 

0,015 0,2
55 

0,35
5 

NARENCİY
E 

0,35 0,55 0,5
5 

0,85
3 

0,952 0,89
5 

0,8
5 

0,7
85 

0,4
25 

0,865 0,8
45 

0,84
5 

D. HARD 0,12
5 

0,125 0,1
25 

0,12
5 

0,125 0,12
5 

0,2
25 

0,1
25 

0,4
25 

0,125 0,1
25 

0,54
5 

O. HARD 0,25
5 

0,425 0,4
25 

0,25
5 

0,255 0,74
5 

0,4
55 

0,3
45 

0,1
25 

0,255 0,2
55 

0,34
5 

Y. HARD 0,85
5 

0,753 0,7
53 

0,95
2 

0,955 0,12
5 

0,7
5 

0,8
5 

0,0
15 

0,855 0,8
5 

0,24
5 

GRAMINE
OUS 

0,42
5 

0,75 0,7
5 

0,85
3 

0,952 0,89
5 

0,8
5 

0,7
85 

0,9
25 

0,865 0,8
45 

0,84
5 

SPICE 0,75
5 

0,75 0,8
9 

0,74
5 

0,745 0,85 0,9
85 

0,1
25 

0,8
55 

0,95 0,7
25 

0,56 

RED FRUIT 0,75 0,55 0,4
55 

0,85
5 

0,745 0,85
4 

0,8
55 

0,1
25 

0,2
55 

0,125 0,1
25 

0,32
5 

PIPER 0,85
5 

0,865 0,9
85 

0,84
5 

0,845 0,75
2 

0,9
85 

0,1
25 

0,7
55 

0,95 0,8
25 

0,12
5 

FRUIT 
FLAVORS 

0,54
6 

0,325 0,2
56 

0,32
5 

0,325 0,12
5 

0,7
25 

0,1
25 

0,1
25 

0,526 0 0,12
5 

Table2 
 

6.2 Data Structure 
The Microsoft SQL Server data structure is created as follows. 
Beverage Products Chart 
Food Types Chart 
Table of features of the product 

CREATE TABLE [dbo].[TBL_PROPERTY]( 

 [ID] [bigint] IDENTITY(1,1) NOT NULL, 
 [DESCRIPTION] [nvarchar](50) NULL, 

 CONSTRAINT [PK_TBL_PROPERTY] PRIMARY KEY CLUSTERED  
( 

 [ID] ASC 
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, 

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 
) ON [PRIMARY] 
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Veri Tablosu 
 

6.3 Data Arrangement 
 
Data entry on Microsoft SQL Server is done as followsTBL_DRINK 
 
ID DESCRIPTION 
1 DRINK NO.1 
2 DRINK NO.2 
3 DRINK NO.3 
4 DRINK NO.4 
5 DRINK NO.5 
6 DRINK NO.6 

Table-3 
 
TBL_FOOD 
ID DESCRIPTION 
1 RED MEAT 
2 OILY RED MEAT 
3 VENISON 
4  CHICKEN 
5 TURKEY 
6 FISH 
7 CHEESE 
8 FRUIT 
9 VEGETABLES 
10 PORK 
11 SHRIMP 
12 SPICE 

Table-4 
 
TBL_PROPERTY 

CREATE TABLE [dbo].[TBL_DATA]( 

 [ID] [bigint] IDENTITY(1,1) NOT NULL, 
 [TYPE] [int] NULL, 

 [TYPE_ID] [bigint] NULL, 
 [PROPERTY_ID] [bigint] NULL, 

 [MU] [float] NULL, 
 [NU] [float] NULL, 

 [PI] [float] NULL, 
 CONSTRAINT [PK_TBL_DATA] PRIMARY KEY CLUSTERED  

( 
 [ID] ASC 

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] 

) ON [PRIMARY] 
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ID DESCRIPTION 
1 RED 
2 WHITE 
3 ACIDITYL 
4 ACIDITYM 
5 ACIDITYH 
6 ALCOHOLL 
7 ALCOHOLM 
8 ALCOHOLH 
9 SWEETL 
10 SWEETM 
11 SWEETH 
12 CITRUS 

Table-5 
 
Each value that gives the relationship between the elements of the A-C and C-S sets is determined by 
the degree of membership, degree of non-membership, and degree of intuition. 
 
The C property of each element of A is entered one by one. 
 
S relation of each element of C is entered one by one. 
 
TBL_DATA 
ID TYPE TYPE_ID PROPERTY_ID MU 
2 1 1 1 0 
3 1 1 2 1 
4 1 1 3 0,001 
5 1 1 4 0,255 
6 1 1 5 0,985 
7 1 1 6 0,755 
8 1 1 7 0,625 
9 1 1 8 0,245 
10 1 1 9 0,255 
11 1 1 10 0,355 
12 1 1 11 0,785 
13 1 1 12 0,025 
14 1 1 13 0,155 
15 1 1 14 0,955 
16 1 1 15 0,125 
17 1 1 16 0,925 
18 1 1 17 0,785 
19 1 1 18 0,001 
20 1 1 19 0,91 
21 1 1 20 0,895 
22 1 2 1 0 
23 1 2 2 1 
24 1 2 3 0,865 
25 1 2 4 0,625 
26 1 2 5 0,165 
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27 1 2 6 0,125 
28 1 2 7 0,945 
29 1 2 8 0,345 
30 1 2 9 0,125 
31 1 2 10 0,255 
32 1 2 11 0,852 
33 1 2 12 0,125 
34 1 2 13 0,755 
35 1 2 14 0,455 
36 1 2 15 0,352 
37 1 2 16 0,652 
38 1 2 17 0,698 
39 1 2 18 0,021 
40 1 2 19 0,569 
41 1 2 20 0,825 
42 1 3 1 1 
43 1 3 2 0 
44 1 3 3 0,125 
45 1 3 4 0,355 
46 1 3 5 0,854 
47 1 3 6 0,055 
48 1 3 7 0,255 
49 1 3 8 0,945 
50 1 3 9 0,855 
51 1 3 10 0,455 
52 1 3 11 0,145 
53 1 3 12 0,256 
54 1 3 13 0,325 
55 1 3 14 0,955 
56 1 3 15 0,255 
57 1 3 16 0,254 
58 1 3 17 0,985 
59 1 3 18 0,985 
60 1 3 19 0,254 
61 1 3 20 0,785 
62 1 4 1 1 
63 1 4 2 0 
64 1 4 3 0,125 
65 1 4 4 0,855 
66 1 4 5 0,245 
67 1 4 6 0,155 
68 1 4 7 0,455 
69 1 4 8 0,845 
70 1 4 9 0,125 
71 1 4 10 0,255 
72 1 4 11 0,865 
73 1 4 12 0,452 
74 1 4 13 0,855 
75 1 4 14 0,455 
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76 1 4 15 0,015 
77 1 4 16 0,845 
78 1 4 17 0,254 
79 1 4 18 0,654 
80 1 4 19 0,125 
81 1 4 20 0,645 
82 1 5 1 1 
83 1 5 2 0 
84 1 5 3 0,015 
85 1 5 4 0,985 
86 1 5 5 0,255 
87 1 5 6 0,255 
88 1 5 7 0,455 
89 1 5 8 0,652 
90 1 5 9 0,008 
91 1 5 10 0,125 
92 1 5 11 0,912 
93 1 5 12 0,024 
94 1 5 13 0,125 
95 1 5 14 0,125 
96 1 5 15 0,867 
97 1 5 16 0,256 
98 1 5 17 0,456 
99 1 5 18 0,985 
100 1 5 19 0,854 
101 1 5 20 0,856 
102 1 6 1 1 
103 1 6 2 0 
104 1 6 3 0,005 
105 1 6 4 0,955 
106 1 6 5 0,455 
107 1 6 6 0,355 
108 1 6 7 0,5 
109 1 6 8 0,736 
110 1 6 9 0,125 
111 1 6 10 0,255 
112 1 6 11 0,721 
113 1 6 12 0,362 
114 1 6 13 0,855 
115 1 6 14 0,455 
116 1 6 15 0,236 
117 1 6 16 0,352 
118 1 6 17 0,845 
119 1 6 18 0,995 
120 1 6 19 0,785 
121 1 6 20 0,886 
122 2 1 1 0,855 
123 2 1 2 0,245 
124 2 1 3 0,015 
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125 2 1 4 0,225 
126 2 1 5 0,952 
127 2 1 6 0,125 
128 2 1 7 0,425 
129 2 1 8 0,853 
130 2 1 9 0,745 
131 2 1 10 0,525 
132 2 1 11 0,125 
133 2 1 12 0,35 
134 2 1 13 0,125 
135 2 1 14 0,255 
136 2 1 15 0,855 
137 2 1 16 0,425 
138 2 1 17 0,755 
139 2 1 18 0,75 
140 2 1 19 0,855 
141 2 1 20 0,546 
142 2 2 1 0,855 
143 2 2 2 0,015 
144 2 2 3 0,015 
145 2 2 4 0,225 
146 2 2 5 0,952 
147 2 2 6 0,015 
148 2 2 7 0,225 
149 2 2 8 0,952 
150 2 2 9 0,525 
151 2 2 10 0,325 
152 2 2 11 0,125 
153 2 2 12 0,55 
154 2 2 13 0,125 
155 2 2 14 0,425 
156 2 2 15 0,753 
157 2 2 16 0,75 
158 2 2 17 0,75 
159 2 2 18 0,55 
160 2 2 19 0,865 
161 2 2 20 0,325 
162 2 3 1 0,925 
163 2 3 2 0,15 
164 2 3 3 0,015 
165 2 3 4 0,225 
166 2 3 5 0,952 
167 2 3 6 0,015 
168 2 3 7 0,225 
169 2 3 8 0,952 
170 2 3 9 0,525 
171 2 3 10 0,325 
172 2 3 11 0,125 
173 2 3 12 0,55 
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174 2 3 13 0,125 
175 2 3 14 0,425 
176 2 3 15 0,753 
177 2 3 16 0,75 
178 2 3 17 0,89 
179 2 3 18 0,455 
180 2 3 19 0,985 
181 2 3 20 0,256 
182 2 4 1 0,555 
183 2 4 2 0,853 
184 2 4 3 0,125 
185 2 4 4 0,425 
186 2 4 5 0,853 
187 2 4 6 0,625 
188 2 4 7 0,425 
189 2 4 8 0,125 
190 2 4 9 0,325 
191 2 4 10 0,825 
192 2 4 11 0,455 
193 2 4 12 0,853 
194 2 4 13 0,125 
195 2 4 14 0,255 
196 2 4 15 0,952 
197 2 4 16 0,853 
198 2 4 17 0,745 
199 2 4 18 0,855 
200 2 4 19 0,845 
201 2 4 20 0,325 
202 2 5 1 0,245 
203 2 5 2 0,952 
204 2 5 3 0,015 
205 2 5 4 0,225 
206 2 5 5 0,952 
207 2 5 6 0,625 
208 2 5 7 0,425 
209 2 5 8 0,125 
210 2 5 9 0,325 
211 2 5 10 0,825 
212 2 5 11 0,495 
213 2 5 12 0,952 
214 2 5 13 0,125 
215 2 5 14 0,255 
216 2 5 15 0,955 
217 2 5 16 0,952 
218 2 5 17 0,745 
219 2 5 18 0,745 
220 2 5 19 0,845 
221 2 5 20 0,325 
222 2 6 1 0,855 
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223 2 6 2 0,895 
224 2 6 3 0,325 
225 2 6 4 0,555 
226 2 6 5 0,75 
227 2 6 6 0,625 
228 2 6 7 0,425 
229 2 6 8 0,125 
230 2 6 9 0,325 
231 2 6 10 0,825 
232 2 6 11 0,855 
233 2 6 12 0,895 
234 2 6 13 0,125 
235 2 6 14 0,745 
236 2 6 15 0,125 
237 2 6 16 0,895 
238 2 6 17 0,85 
239 2 6 18 0,854 
240 2 6 19 0,752 
241 2 6 20 0,125 
242 2 7 1 0,955 
243 2 7 2 0,85 
244 2 7 3 0,225 
245 2 7 4 0,425 
246 2 7 5 0,85 
247 2 7 6 0,545 
248 2 7 7 0,45 
249 2 7 8 0,785 
250 2 7 9 0,825 
251 2 7 10 0,455 
252 2 7 11 0,35 
253 2 7 12 0,85 
254 2 7 13 0,225 
255 2 7 14 0,455 
256 2 7 15 0,75 
257 2 7 16 0,85 
258 2 7 17 0,985 
259 2 7 18 0,855 
260 2 7 19 0,985 
261 2 7 20 0,725 
262 2 8 1 0,655 
263 2 8 2 0,785 
264 2 8 3 0,245 
265 2 8 4 0,585 
266 2 8 5 0,785 
267 2 8 6 0,625 
268 2 8 7 0,425 
269 2 8 8 0,125 
270 2 8 9 0,845 
271 2 8 10 0,545 
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272 2 8 11 0,45 
273 2 8 12 0,785 
274 2 8 13 0,125 
275 2 8 14 0,345 
276 2 8 15 0,85 
277 2 8 16 0,785 
278 2 8 17 0,125 
279 2 8 18 0,125 
280 2 8 19 0,125 
281 2 8 20 0,125 
282 2 9 1 0,15 
283 2 9 2 0,825 
284 2 9 3 0,455 
285 2 9 4 0,325 
286 2 9 5 0,015 
287 2 9 6 0,525 
288 2 9 7 0,125 
289 2 9 8 0,15 
290 2 9 9 0,425 
291 2 9 10 0,125 
292 2 9 11 0,15 
293 2 9 12 0,425 
294 2 9 13 0,425 
295 2 9 14 0,125 
296 2 9 15 0,015 
297 2 9 16 0,925 
298 2 9 17 0,855 
299 2 9 18 0,255 
300 2 9 19 0,755 
301 2 9 20 0,125 
302 2 10 1 0,525 
303 2 10 2 0,865 
304 2 10 3 0,225 
305 2 10 4 0,425 
306 2 10 5 0,865 
307 2 10 6 0,015 
308 2 10 7 0,225 
309 2 10 8 0,952 
310 2 10 9 0,425 
311 2 10 10 0,15 
312 2 10 11 0,015 
313 2 10 12 0,865 
314 2 10 13 0,125 
315 2 10 14 0,255 
316 2 10 15 0,855 
317 2 10 16 0,865 
318 2 10 17 0,95 
319 2 10 18 0,125 
320 2 10 19 0,95 
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321 2 10 20 0,526 
322 2 11 1 0,425 
323 2 11 2 0,845 
324 2 11 3 0,225 
325 2 11 4 0,425 
326 2 11 5 0,845 
327 2 11 6 0,625 
328 2 11 7 0,425 
329 2 11 8 0,125 
330 2 11 9 0,325 
331 2 11 10 0,845 
332 2 11 11 0,255 
333 2 11 12 0,845 
334 2 11 13 0,125 
335 2 11 14 0,255 
336 2 11 15 0,85 
337 2 11 16 0,845 
338 2 11 17 0,725 
339 2 11 18 0,125 
340 2 11 19 0,825 
341 2 11 20 0 
342 2 12 1 0,852 
343 2 12 2 0,845 
344 2 12 3 0,225 
345 2 12 4 0,425 
346 2 12 5 0,845 
347 2 12 6 0,125 
348 2 12 7 0,425 
349 2 12 8 0,853 
350 2 12 9 0,825 
351 2 12 10 0,425 
352 2 12 11 0,355 
353 2 12 12 0,845 
354 2 12 13 0,545 
355 2 12 14 0,345 
356 2 12 15 0,245 
357 2 12 16 0,845 
358 2 12 17 0,56 
359 2 12 18 0,325 
360 2 12 19 0,125 
361 2 12 20 0,125 

Table-6 
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These values are as in Table-1 and Table-2 and as in Table-6, “TYPE=1” Beverage Products, 
“TYPE=2” Food Types are arranged with TYPE_ID connections on Microsoft SQL Server. 
 
By using the controlled set feature, these values are controlled through Description-1 and 
Description-2. 
TYPE TYPE_ID PROPERTY_ID MU NU PI 

1 2 15 0,352 0,352 0,296 

1 5 15 0,867 0,125 0,008 

1 1 17 0,785 0 0,215 

1 2 10 0,255 0,455 0,29 

1 6 15 0,236 0,352 0,412 

2 10 19 0,95 0 0,05 

1 3 18 0,985 0,001 0,014 

1 2 5 0,165 0,455 0,38 

2 3 17 0,89 0 0,11 

2 12 15 0,245 0,753 0,002 

2 8 4 0,585 0,325 0,09 

2 6 20 0,125 0,725 0,15 

2 9 4 0,325 0,585 0,09 

2 4 20 0,325 0,546 0,129 

1 4 9 0,125 0,855 0,02 

2 9 2 0,825 0,15 0,025 

2 11 5 0,845 0,015 0,14 

1 3 7 0,255 0,625 0,12 

2 5 16 0,952 0 0,048 

2 12 2 0,845 0,15 0,005 

2 10 20 0,526 0,325 0,149 

2 11 2 0,845 0,15 0,005 

1 6 4 0,955 0 0,045 

2 9 8 0,15 0,785 0,065 

1 1 1 0 1 0 

1 2 8 0,345 0,652 0,003 

WITH M_SUBCALCULATE AS  
(SELECT TBL_DATA.ID, TBL_DATA.TYPE, TBL_DATA.PROPERTY_ID, TBL_DATA.TYPE_ID, TBL_DATA.MU, 
TBL_DATA_1.MU AS MU_S, TBL_DATA_1.ID AS ID_S, TBL_DATA_1.TYPE_ID AS TYPE_ID_S, 
TBL_DATA_1.PROPERTY_ID AS PROPERTY_ID_S, CASE WHEN (TBL_DATA.MU + TBL_DATA_1.MU) > 1 THEN 0 ELSE 
TBL_DATA_1.MU END AS CONTROL FROM TBL_DATA INNER JOIN TBL_DATA AS TBL_DATA_1 ON TBL_DATA.TYPE = 
TBL_DATA_1.TYPE AND TBL_DATA.PROPERTY_ID = TBL_DATA_1.PROPERTY_ID) 
, 
 
M_CALCULATE AS(SELECT TOP (100) PERCENT TYPE, TYPE_ID, PROPERTY_ID, MU, MAX(CONTROL) AS NU, 1 - 
MU - MAX(CONTROL) AS PI FROM M_SUBCALCULATE GROUP BY TYPE, TYPE_ID, MU, PROPERTY_ID) 
 
SELECT * FROM M_CALCULATE 
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2 4 11 0,455 0,495 0,05 

1 2 4 0,625 0,355 0,02 

2 12 16 0,845 0 0,155 

1 3 3 0,125 0,865 0,01 

1 5 12 0,024 0,452 0,524 

2 10 8 0,952 0 0,048 

2 1 5 0,952 0,015 0,033 

2 1 13 0,125 0,545 0,33 

2 5 2 0,952 0,015 0,033 

2 9 19 0,755 0,125 0,12 

2 6 5 0,75 0,015 0,235 

2 7 16 0,85 0 0,15 

2 2 11 0,125 0,855 0,02 

2 3 12 0,55 0,425 0,025 

2 8 6 0,625 0,125 0,25 

1 1 10 0,355 0,455 0,19 

2 2 9 0,525 0,425 0,05 

2 11 16 0,845 0 0,155 

2 1 17 0,755 0,125 0,12 

2 7 7 0,45 0,45 0,1 

2 8 1 0,655 0,245 0,1 

2 7 10 0,455 0,545 -1,11E-
16 

1 5 20 0,856 0 0,144 

2 4 4 0,425 0,555 0,02 

2 5 15 0,955 0,015 0,03 

1 5 8 0,652 0,345 0,003 

2 5 13 0,125 0,545 0,33 

1 2 2 1 0 0 

1 3 10 0,455 0,455 0,09 

1 4 6 0,155 0,755 0,09 

2 6 4 0,555 0,425 0,02 

1 1 13 0,155 0,755 0,09 

2 10 12 0,865 0 0,135 

1 2 20 0,825 0 0,175 

1 3 6 0,055 0,755 0,19 

1 5 10 0,125 0,455 0,42 

2 2 1 0,855 0 0,145 

2 6 18 0,854 0,125 0,021 

2 8 18 0,125 0,855 0,02 

1 5 13 0,125 0,855 0,02 

1 6 9 0,125 0,855 0,02 

2 3 14 0,425 0,455 0,12 

2 9 15 0,015 0,955 0,03 
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1 6 14 0,455 0,455 0,09 

1 1 4 0,255 0,625 0,12 

1 3 14 0,955 0 0,045 

2 5 9 0,325 0,525 0,15 

2 3 2 0,15 0,85 0 

2 4 5 0,853 0,015 0,132 

2 5 3 0,015 0,455 0,53 

2 5 5 0,952 0,015 0,033 

2 7 11 0,35 0,495 0,155 

1 6 8 0,736 0,245 0,019 

2 11 3 0,225 0,455 0,32 

1 1 16 0,925 0 0,075 

1 6 1 1 0 0 

1 6 11 0,721 0,145 0,134 

2 10 14 0,255 0,745 0 

1 3 9 0,855 0,125 0,02 

2 7 18 0,855 0,125 0,02 

1 3 16 0,254 0,652 0,094 

1 1 20 0,895 0 0,105 

1 6 19 0,785 0,125 0,09 

2 8 7 0,425 0,45 0,125 

2 10 17 0,95 0 0,05 

2 12 17 0,56 0,125 0,315 

1 4 20 0,645 0 0,355 

2 6 8 0,125 0,853 0,022 

2 9 13 0,425 0,545 0,03 

2 1 3 0,015 0,455 0,53 

2 8 13 0,125 0,545 0,33 

2 1 1 0,855 0 0,145 

2 4 14 0,255 0,745 0 

2 7 15 0,75 0,245 0,005 

2 10 15 0,855 0,125 0,02 

2 9 17 0,855 0,125 0,02 

2 1 7 0,425 0,45 0,125 

1 5 14 0,125 0,455 0,42 

1 6 6 0,355 0,355 0,29 

2 3 4 0,225 0,585 0,19 

2 5 6 0,625 0,125 0,25 

2 5 7 0,425 0,45 0,125 

2 12 13 0,545 0,425 0,03 

1 4 15 0,015 0,867 0,118 

1 6 10 0,255 0,455 0,29 

2 4 6 0,625 0,125 0,25 

2 5 1 0,245 0,655 0,1 
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2 3 20 0,256 0,725 0,019 

2 4 13 0,125 0,545 0,33 

2 8 19 0,125 0,865 0,01 

2 2 12 0,55 0,425 0,025 

2 8 12 0,785 0 0,215 

2 7 2 0,85 0,15 2,78E-
17 

2 12 18 0,325 0,55 0,125 

1 6 13 0,855 0,125 0,02 

2 1 11 0,125 0,855 0,02 

2 4 12 0,853 0 0,147 

2 8 14 0,345 0,455 0,2 

2 7 19 0,985 0 0,015 

1 1 19 0,91 0 0,09 

1 3 19 0,254 0,569 0,177 

2 2 6 0,015 0,625 0,36 

2 2 18 0,55 0,325 0,125 

2 12 9 0,825 0 0,175 

1 1 14 0,955 0 0,045 

2 1 15 0,855 0,125 0,02 

1 4 17 0,254 0,698 0,048 

2 7 8 0,785 0,15 0,065 

2 5 18 0,745 0,255 0 

2 9 3 0,455 0,455 0,09 

2 12 19 0,125 0,865 0,01 

1 4 4 0,855 0 0,145 

1 5 2 0 1 0 

1 1 6 0,755 0,155 0,09 

1 3 4 0,355 0,625 0,02 

2 2 19 0,865 0,125 0,01 

2 5 11 0,495 0,495 0,01 

2 6 2 0,895 0,015 0,09 

2 1 16 0,425 0,425 0,15 

2 4 10 0,825 0,15 0,025 

1 4 14 0,455 0,455 0,09 

1 6 2 0 1 0 

1 2 18 0,021 0,654 0,325 

1 5 6 0,255 0,355 0,39 

1 6 18 0,995 0,001 0,004 

2 3 19 0,985 0 0,015 

2 12 8 0,853 0,125 0,022 

2 11 6 0,625 0,125 0,25 

2 7 3 0,225 0,455 0,32 

1 1 18 0,001 0,995 0,004 



Gökhan ÇUVALCIOĞLU1 and  Serkan Ural VAROL2 

 

316 
 

2 12 5 0,845 0,015 0,14 

1 5 16 0,256 0,652 0,092 

1 1 7 0,625 0,255 0,12 

2 10 3 0,225 0,455 0,32 

2 12 1 0,852 0 0,148 

2 8 9 0,845 0 0,155 

1 5 1 1 0 0 

1 5 9 0,008 0,855 0,137 

2 2 14 0,425 0,455 0,12 

2 3 7 0,225 0,45 0,325 

2 5 8 0,125 0,853 0,022 

2 9 14 0,125 0,745 0,13 

2 8 10 0,545 0,455 -5,55E-
17 

2 11 9 0,325 0,525 0,15 

2 7 5 0,85 0,015 0,135 

1 2 6 0,125 0,755 0,12 

2 2 20 0,325 0,546 0,129 

2 4 9 0,325 0,525 0,15 

2 9 20 0,125 0,725 0,15 

1 4 11 0,865 0 0,135 

2 6 1 0,855 0 0,145 

2 2 17 0,75 0,125 0,125 

2 9 11 0,15 0,495 0,355 

2 11 18 0,125 0,855 0,02 

2 9 6 0,525 0,125 0,35 

2 5 14 0,255 0,745 0 

2 9 5 0,015 0,952 0,033 

1 6 3 0,005 0,865 0,13 

2 1 8 0,853 0,125 0,022 

2 4 1 0,555 0,425 0,02 

1 1 5 0,985 0 0,015 

2 8 3 0,245 0,455 0,3 

2 11 1 0,425 0,555 0,02 

1 2 9 0,125 0,855 0,02 

2 12 12 0,845 0 0,155 

2 12 20 0,125 0,725 0,15 

1 2 11 0,852 0,145 0,003 

2 10 9 0,425 0,525 0,05 

1 5 19 0,854 0,125 0,021 

1 3 1 1 0 0 

1 5 5 0,255 0,455 0,29 

2 2 15 0,753 0,245 0,002 

2 3 6 0,015 0,625 0,36 
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2 5 12 0,952 0 0,048 

2 2 3 0,015 0,455 0,53 

2 6 10 0,825 0,15 0,025 

2 11 7 0,425 0,45 0,125 

2 3 13 0,125 0,545 0,33 

1 4 16 0,845 0 0,155 

2 10 5 0,865 0,015 0,12 

2 12 10 0,425 0,545 0,03 

2 8 17 0,125 0,855 0,02 

2 11 19 0,825 0,125 0,05 

2 11 13 0,125 0,545 0,33 

1 3 5 0,854 0 0,146 

2 3 16 0,75 0 0,25 

2 5 19 0,845 0,125 0,03 

2 11 11 0,255 0,495 0,25 

2 12 11 0,355 0,495 0,15 

2 2 4 0,225 0,585 0,19 

2 7 4 0,425 0,555 0,02 

2 6 6 0,625 0,125 0,25 

2 7 17 0,985 0 0,015 

1 4 2 0 1 0 

2 3 5 0,952 0,015 0,033 

2 7 14 0,455 0,455 0,09 

1 1 2 1 0 0 

1 3 12 0,256 0,452 0,292 

2 3 3 0,015 0,455 0,53 

2 11 14 0,255 0,745 0 

2 1 19 0,855 0,125 0,02 

1 3 13 0,325 0,325 0,35 

2 1 6 0,125 0,625 0,25 

2 1 20 0,546 0,325 0,129 

1 2 12 0,125 0,452 0,423 

2 6 14 0,745 0,255 0 

1 1 12 0,025 0,452 0,523 

2 11 4 0,425 0,555 0,02 

2 10 6 0,015 0,625 0,36 

1 4 10 0,255 0,455 0,29 

2 12 14 0,345 0,455 0,2 

1 1 8 0,245 0,736 0,019 

2 11 12 0,845 0 0,155 

2 6 13 0,125 0,545 0,33 

2 8 8 0,125 0,853 0,022 

2 10 16 0,865 0 0,135 

2 3 1 0,925 0 0,075 
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2 3 9 0,525 0,425 0,05 

1 2 16 0,652 0,256 0,092 

2 2 7 0,225 0,45 0,325 

1 3 20 0,785 0 0,215 

2 4 18 0,855 0,125 0,02 

1 4 19 0,125 0,854 0,021 

2 4 8 0,125 0,853 0,022 

2 12 7 0,425 0,45 0,125 

2 1 14 0,255 0,745 0 

1 4 1 1 0 0 

1 4 5 0,245 0,455 0,3 

2 7 6 0,545 0,125 0,33 

2 8 20 0,125 0,725 0,15 

1 1 3 0,001 0,865 0,134 

2 10 2 0,865 0,015 0,12 

2 6 3 0,325 0,455 0,22 

2 6 16 0,895 0 0,105 

2 10 7 0,225 0,45 0,325 

2 10 18 0,125 0,855 0,02 

1 4 13 0,855 0,125 0,02 

1 5 18 0,985 0,001 0,014 

2 3 8 0,952 0 0,048 

2 10 1 0,525 0,425 0,05 

2 9 18 0,255 0,745 0 

2 3 10 0,325 0,545 0,13 

2 4 19 0,845 0,125 0,03 

2 8 11 0,45 0,495 0,055 

1 3 8 0,945 0 0,055 

1 6 17 0,845 0 0,155 

2 5 10 0,825 0,15 0,025 

2 8 5 0,785 0,015 0,2 

1 6 7 0,5 0,5 0 

2 1 9 0,745 0 0,255 

1 4 3 0,125 0,865 0,01 

2 9 9 0,425 0,525 0,05 

1 2 3 0,865 0,125 0,01 

2 1 10 0,525 0,455 0,02 

1 1 15 0,125 0,867 0,008 

2 5 17 0,745 0,125 0,13 

2 7 1 0,955 0 0,045 

1 1 11 0,785 0,145 0,07 

1 5 3 0,015 0,865 0,12 

2 5 4 0,225 0,585 0,19 

2 9 7 0,125 0,45 0,425 
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1 4 7 0,455 0,5 0,045 

2 1 2 0,245 0,245 0,51 

1 4 12 0,452 0,452 0,096 

1 5 11 0,912 0 0,088 

1 6 20 0,886 0 0,114 

2 10 11 0,015 0,855 0,13 

2 12 4 0,425 0,555 0,02 

2 5 20 0,325 0,546 0,129 

1 2 13 0,755 0,155 0,09 

2 11 15 0,85 0,125 0,025 

2 7 13 0,225 0,545 0,23 

2 4 15 0,952 0,015 0,033 

2 10 13 0,125 0,545 0,33 

1 3 15 0,255 0,352 0,393 

2 3 11 0,125 0,855 0,02 

2 8 16 0,785 0 0,215 

1 6 12 0,362 0,452 0,186 

2 11 17 0,725 0,125 0,15 

1 3 17 0,985 0 0,015 

2 4 3 0,125 0,455 0,42 

2 4 7 0,425 0,45 0,125 

2 7 20 0,725 0,256 0,019 

2 10 10 0,15 0,845 0,005 

1 6 16 0,352 0,352 0,296 

2 8 2 0,785 0,15 0,065 

1 2 17 0,698 0,254 0,048 

1 2 19 0,569 0,254 0,177 

2 2 16 0,75 0 0,25 

2 2 5 0,952 0,015 0,033 

2 2 13 0,125 0,545 0,33 

2 7 12 0,85 0 0,15 

2 1 18 0,75 0,125 0,125 

1 2 1 0 1 0 

1 4 8 0,845 0 0,155 

2 1 4 0,225 0,585 0,19 

2 4 16 0,853 0 0,147 

1 5 7 0,455 0,5 0,045 

2 6 19 0,752 0,125 0,123 

2 10 4 0,425 0,555 0,02 

1 6 5 0,455 0,455 0,09 

1 1 9 0,255 0,255 0,49 

2 4 2 0,853 0,015 0,132 

2 9 12 0,425 0,55 0,025 

2 9 10 0,125 0,845 0,03 
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2 9 16 0,925 0 0,075 

1 2 7 0,945 0 0,055 

2 7 9 0,825 0 0,175 

1 2 14 0,455 0,455 0,09 

2 4 17 0,745 0,125 0,13 

2 2 2 0,015 0,952 0,033 

2 11 10 0,845 0,15 0,005 

2 6 15 0,125 0,855 0,02 

2 6 9 0,325 0,525 0,15 

2 11 8 0,125 0,853 0,022 

2 3 18 0,455 0,455 0,09 

2 6 11 0,855 0,125 0,02 

2 12 6 0,125 0,625 0,25 

2 3 15 0,753 0,245 0,002 

2 8 15 0,85 0,125 0,025 

2 1 12 0,35 0,55 0,1 

1 5 17 0,456 0,456 0,088 

1 3 11 0,145 0,852 0,003 

1 5 4 0,985 0 0,015 

2 9 1 0,15 0,655 0,195 

1 4 18 0,654 0,021 0,325 

1 3 2 0 1 0 

2 6 12 0,895 0 0,105 

2 2 10 0,325 0,545 0,13 

2 6 17 0,85 0,125 0,025 

2 11 20 0 0,725 0,275 

2 12 3 0,225 0,455 0,32 

2 2 8 0,952 0 0,048 

2 6 7 0,425 0,45 0,125 

Table-7 
 
The clusters obtained as in Table-7 are intuitive fuzzy sets. 
Description-3 
When Hamming measure is applied to these clusters using definition-3, the relationship between A 
and S can be seen as in Table-8. 
DRINK_ID DRINK FOOD_ID FOOD DISTANCE 
4 DRINK 

NO.4 
4  CHICKEN 21,062 

2 DRINK 
NO.2 

4  CHICKEN 18,612 

3 DRINK 
NO.3 

4  CHICKEN 18,516 

5 DRINK 
NO.5 

4  CHICKEN 17,674 

6 DRINK 4  CHICKEN 17,41 
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NO.6 
1 DRINK 

NO.1 
4  CHICKEN 15,002 

2 DRINK 
NO.2 

7 CHEESE 19,302 

4 DRINK 
NO.4 

7 CHEESE 18,028 

5 DRINK 
NO.5 

7 CHEESE 16,242 

1 DRINK 
NO.1 

7 CHEESE 15,434 

6 DRINK 
NO.6 

7 CHEESE 14,214 

3 DRINK 
NO.3 

7 CHEESE 13,11 

5 DRINK 
NO.5 

6 FISH 18,3 

4 DRINK 
NO.4 

6 FISH 18,088 

2 DRINK 
NO.2 

6 FISH 17,864 

3 DRINK 
NO.3 

6 FISH 17,774 

6 DRINK 
NO.6 

6 FISH 16,218 

1 DRINK 
NO.1 

6 FISH 13,61 

6 DRINK 
NO.6 

8 FRUIT 20,962 

5 DRINK 
NO.5 

8 FRUIT 19,944 

2 DRINK 
NO.2 

8 FRUIT 19,186 

4 DRINK 
NO.4 

8 FRUIT 19,174 

3 DRINK 
NO.3 

8 FRUIT 19,122 

1 DRINK 
NO.1 

8 FRUIT 17,284 

2 DRINK 
NO.2 

3 VENISON 20,774 

1 DRINK 
NO.1 

3 VENISON 18,044 

4 DRINK 
NO.4 

3 VENISON 17,184 

5 DRINK 
NO.5 

3 VENISON 16,798 

6 DRINK 
NO.6 

3 VENISON 14,89 
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3 DRINK 
NO.3 

3 VENISON 12,33 

2 DRINK 
NO.2 

2 OILY RED 
MEAT 

20,386 

1 DRINK 
NO.1 

2 OILY RED 
MEAT 

18,404 

4 DRINK 
NO.4 

2 OILY RED 
MEAT 

16,012 

5 DRINK 
NO.5 

2 OILY RED 
MEAT 

15,696 

6 DRINK 
NO.6 

2 OILY RED 
MEAT 

14,228 

3 DRINK 
NO.3 

2 OILY RED 
MEAT 

11,758 

4 DRINK 
NO.4 

10 PORK 20,64 

5 DRINK 
NO.5 

10 PORK 19,416 

6 DRINK 
NO.6 

10 PORK 18,72 

2 DRINK 
NO.2 

10 PORK 18,206 

1 DRINK 
NO.1 

10 PORK 16,454 

3 DRINK 
NO.3 

10 PORK 16,08 

2 DRINK 
NO.2 

1 RED MEAT 20,526 

4 DRINK 
NO.4 

1 RED MEAT 18,65 

1 DRINK 
NO.1 

1 RED MEAT 18,396 

5 DRINK 
NO.5 

1 RED MEAT 15,464 

6 DRINK 
NO.6 

1 RED MEAT 15,1 

3 DRINK 
NO.3 

1 RED MEAT 11,666 

4 DRINK 
NO.4 

11 SHRIMP 22,502 

3 DRINK 
NO.3 

11 SHRIMP 20,264 

5 DRINK 
NO.5 

11 SHRIMP 19,93 

6 DRINK 
NO.6 

11 SHRIMP 19,506 

2 DRINK 
NO.2 

11 SHRIMP 17,832 

1 DRINK 11 SHRIMP 14,144 
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NO.1 
5 DRINK 

NO.5 
12 SPICE 20,286 

2 DRINK 
NO.2 

12 SPICE 18,256 

1 DRINK 
NO.1 

12 SPICE 17,602 

6 DRINK 
NO.6 

12 SPICE 17,322 

4 DRINK 
NO.4 

12 SPICE 15,002 

3 DRINK 
NO.3 

12 SPICE 14,406 

4 DRINK 
NO.4 

5 TURKEY 22,59 

3 DRINK 
NO.3 

5 TURKEY 20,296 

5 DRINK 
NO.5 

5 TURKEY 19,426 

6 DRINK 
NO.6 

5 TURKEY 19,124 

2 DRINK 
NO.2 

5 TURKEY 18,764 

1 DRINK 
NO.1 

5 TURKEY 13,802 

3 DRINK 
NO.3 

9 VEGETABLES 21,66 

5 DRINK 
NO.5 

9 VEGETABLES 21,222 

4 DRINK 
NO.4 

9 VEGETABLES 20,454 

6 DRINK 
NO.6 

9 VEGETABLES 19,152 

2 DRINK 
NO.2 

9 VEGETABLES 16,362 

1 DRINK 
NO.1 

9 VEGETABLES 14,832 

Table-8 
 
 
When the results in Table-8 are evaluated, the beverage consumed with "Chicken" food should be 
Drink no.4. It is clear that Drink no.1 and Drink no.2 drinks can be found in a service with "oily red 
meat" and "Venison", considering that there will be no fish and red meat in the same service, but fish 
and vegetable dishes. 
As a different evaluation of the results, considering the Table-8, it can be considered that the Drink 
no.1 drink and the Drink no.2 drink have similar properties. 
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7. CONCLUSION 
 
It is considered as an important problem that data with different characteristics reach the same 
results in studies conducted through the Hamming measure. In this study, it will be more difficult to 
associate data with different characteristics with the same data, since the data that does not provide 
a characteristic by means of controlled sets is expressed with data within its own universal region. At 
the very least, it is not possible for elements that control each other to match the same data. The 
method followed in this study can be tested by using it in old applications. In addition, these criteria 
can be taken into account so that they can be easily applied to multi-criteria decision making 
problems in future studies. 
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