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1. Introduction

Let € be a smooth projective plane curve defined over K. For all algebraic extension field K of Q, we denote by & (K) the set of K-rational
points of € over K and ¢d) (Q) the set of algebraic points of < d over Q. The degree of an algebraic point R is the degree of its field of
definition on Q : deg(R) = [Q(R) : Q].

A famous theorem of Fatling show that if € is a smooth projective plane curve defined over K of genus g > 2, then ¢ (K) is finite. Fatling’s
proof is still ineffective in the sense that it does not provide an algorithm for computing % (K). A most precise theorem of Debarre and Klasen
[4] show that if € be a smooth projective plane curve defined by an equation of degree d > 7 with rational coefficients then ¢d-2) (Q) is
finite. This theorem often us to characterize the set ¢'(2) (Q) of all algebraic points of degree < 2 over Q.

Currently for curve € defined over a numbers field K of genus g > 2, there is no known algorithm for computing the set ¢ (K) or for
deciding if ¢ (K) is empty. But there is a bag of strikes that can be used to show that ¢ (K) is empty, or to determine ¢ (K) if it is not empty.
Among these methods, we can cite the local method, Chabauty method [2], Descent method [7], mordell-weil sieves method [1]. These
methods often succeed with less than full knowledge of the jacobian J (Q) of the curve . If J(Q) is finite then it is no hard to determine
% (Q) and to generalize for all number field K.

Previous works ([3] and [5]) have studied the algebraic points of degree at most 3 on the schaeffer curve of affine equation y2 =X +1
denoted ¥'. The curve % is hyperelliptic of genus g = 2 and of rank null by [3].

Let’s denote Py = (—1,0), P, =(0,1), P, = (0, —1), Q1 = (1+i,1=2i),0p = (1 —i, 1 +2i), Oy = (1 +i, =1 +2i), Qo = (1 —i, —1 —2i)
and oo the point at infinity.

The purpose of this note is to determine the algebraic parametrization of all algebraic points of degree at most four on the curve % over the
rationnal numbers field Q using ideas in [5] (Afr. Mat 29:1151-1157, 2018).

2. Auxiliary results

Lemma 2.1. Let x and y be the rational functions defined on € by x(X,Y,Z) = % andy(X,Y,Z) = % :
o div(y—1)=5P —500; div(y+1)=>5P| —500;
o div(x) =P +P)—20; div(x+1)=2P—2
o div(y) =Ag+A| +Ay+ A3+ Ay — 500 where A; = exp(i(2k+1)%).
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Denote by £ (meo) the Q—vector space of rational functions defined by £ (meo) = { f € Q(%;)" | div(f) > —meo} U{0} :
o L(o)=(1)
o L(200) = Z(300) = (1, x)
o P(4o0)=(1,x, x%)
o L(500)=(1,x, 2% y)
o Z(600) = (1,x,x%,y,x°)

Proof. See [5]
Lemma 2.2. We consider the divisor D on the curve €y :

e D=[(~1,0)+ (0 1) —200] = [Py + P — 209
« 2D =[2(0, 1)~ 200] = [2P, — 209
1

* 3D =[(1+14, 1 =2i)+ (1 —i, 1 +2i) —200] = [Q1 + O — 200]

© 4D =[(0, —1) —oco] = [P} — oo

* SD=[(—1, 0) =] = [Py — o]

* 6D =[(0, 1) —oo] = [P — 0] B

« ID=[(1+i, —142i)+ (1 —i, =1 —2i) —200] = [Q; + 0y — 20
* 8D =[2(0, —1) —200] = [2P] —2o0]

* 9D =[(—1, 0)+ (0, —1) —200] = [Py + P} — 2]

. 10D =0.

The Mordell-weil groupe of the curve 65 is J(Q) = (Z/10Z) = (D) = {mD | 0 <m < 9}.
Proof. See [3].

3. Main result

Our main result is the following theorem

Theorem 3.1. The algebraic points of degree 4 over Q on the curve € are given by the union of the following sets : GyU% U4 U4 UG, UYs
with

. %:{(x, i\/m)) \ [Q(X)IQ]:27x2—2x+2¢o};

. (—1—a+c)x—ax? —cx ) | a,c €Q,c#0eta+#c—1, x root of )
1= —czx4+(2acfc 71) +( 2+20+1)x2+(a2+2a72ac+c271)x+2a72c+2=0 ’
°(2:{ (x i(cx + ax? —1))\a,cGQ*,a#c—O—l,xmotafBz()—cx +2acx® —x3+d2x% —2ex—2a =0 }

—3—-2a-— 4c+(2+2a+2€)x ax* —cx?)) | a,c€Q, a;é—l 2¢, ¢ #0, x root of B3 (x) = c2x*+ )
26 +2ac—l)x +( 22 —4c+d? —2) +( dac—2c—2a> —4a— 2)x—|—8c2+8ac+12c+2a2+6a+4 ’

{ (v (1 +ax+cx ) |a,ceQ,a#0, x rootofB4(x):—x4+62x3+2acx2+(20+a2)x+2 }:
@ — (x, £(—a+(—a—c)x—cx?)) |,a,c € Q, a# £1, x root ofBs(x) = —x* + (* + 1) + (? +2ac — 1) x*
> +(2ac+a*+1)x+a*—1 '

Proof of thegreme.
Let R € €, (Q) with [Q(R) : Q] =4. Let Ry, Ry, R3, R4 be the Galois conjugates of R. We have

[Ri +Ry+R3+ Ry —4o0] € J(Q)

from lemma (2.2) , we get
[Ri+Ry+R3+Ry—4doo)=mD, 0<m<9

Now for any integer m such that 0 < m <9, we have mD = (m — 10)D, so
[Ri+Ry+R3+Ry—4oo]=(m—10)D, 0<m<9. (%)
Our proof is divided in five cases
Case m =0

Formula (x) becomes
[Ri+Ry+R3+Ry —4e0] =0

The Abel Jacobi theorem involves the existence of a function F such that
div(F) =R+ Ry +R3+ Ry — 4o

s0 F € . (4e0), and lemma (2.1) gives F (x,y) = a -+ bx +cx?; x must be in the Q such as [Q(x) : Q] =2 and x> —2x+2 #0. We geta
family of quartic points

g():{(x,:l: x5+1)) | xe[@(x):@]:27x2—2x+27é0}.

Casesm=1andm=9
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For m = 1: The formula (x) and lemma (2.2) give
[Ri+ Ry +R3+ Ry —4oo] = —9D = — [Py + P — 200] .
This means B
[Rl +Ry+R3+Ry+FPy+ Py — 600] =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F) =R| + Ry + R3 + Ry + Py + P| — 600.
So F € % (60), then F (x,y) = u~+vx+wx> +dx> +ey (e #0). We have F (P;) =F (Py)) =0,s0 u—e=0and u—v+w—d =0, thus

F(x,y) =u+ (ut+w—d)x+wx>+dx’ +uy u0.
2

w

At the points R;, we have y= —1+ (-1 —a+c¢)x —ax* — cx3 with a = 5 and c= %. By substituting y in y? — x> — 1 = 0 and simplifying

by x(x+ 1) we obtain
Bl(x):62x4+(2ac—cz—1)x3+(a2—62+26+1>x2+(a2+(2—26)a+02—1)x+2a—2c+2:0
We must have B; (0) # 0 and B (—1) # 0 which involves a # ¢ — 1 and ¢ # 0. We have a family of quartic points
91 :{ (x, +(71+(717a+c)x7ax27cx3)) |a,c€Q,a#c—1,¢#0,xrootof By (x) =0 }

For m =9 : The formula (x) and lemma (2.2) give

[Ri+Ry+R3+Ry—4oo] = —D = —[Py+ P — 29
This means

[Ri+Ry+R3+Rs+Py+ P —600] =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F)=R;+Ry+R3+ R4+ Py+ P — 600.

So F € % (60), hence F (x,y) = u-+vx+wx? +dx> +ey (e #0). We have F(P|) =F (B)) =0,s0 u—e=0etu—v+w—d =0, then

F(x,y) =u+(u+w—d)x+wx>+dx> +uy u#0.

w

At the points R;, we have y = 14 (1 +a — ¢)x+ax® + cx> with a = —% and c= f%. By substituting y in y> — x> — 1 = 0 and simplifying
by x(x+ 1), we have

B (x) = 2x* + <2acfczfl>x3+ (a27c2+20+1)x2+ (a2+(272c)a+c271>x+2a72c+2:0
We must have B (0) # 0 and Bj(—1) # 0 involving a # ¢ — 1 and ¢ # 0. We get a family of quartic points
Go={ (x, ~(-1+(-1—a+c)x—ax> —ex)) | a,c€Q,a#c—1,c#0,xr00t of By (x) =0 }.
Finally, we get a second family of quartic points ¢} = ¥ | U¥ ».

Casesm=2and m =8

For m = 2 : the formula (x) becomes
[R1 + R+ R3 + Ry — 4oo] = —8D = — 2P — 2c0]
This means
[Rl +Ry+R3+Ry +2P] — 600] =0
The Abel Jacobi theorem involves the existence of a function F such that
div(F) =R +Ry+R3+Ry +2ﬁ1— 600
So F € .2 (600), hence F (x,y) = a+ bx+cx?> +dx> +ey (e #0). The point P; is order 2, s0 u —e = 0 and v = 0, thus
F(x,y) = u+wx? +dx> +uy

At the points R;, we have —uy = u+wxl4+dx® w#£0),s0y=—1+ax?+cx> witha = —% and k= —%. Substuting y to V=x+1,we
have
% <a2x4 +2acx® — x> 4+ a*x® — 2cx— 2a> =0.

Simplifying by x2, we have
B (x) = x* 4+ 2acx® — x* + a*x® — 2cx — 2a.
We must have ac # 0 and a # ¢+ 1. We obtain a family of quartic points :

28 ={<x, <cx3+ax271>> | a,ceQac+1,x rootofBg(x)=O}.

For m = 8§ : by a similar argument as in case m = 2, we have

o= {(x, - (cx3+ax2 - 1>> | a,c€Q*,a#c+1,x root of B, (x) :0}.
Finally, we have the third family %> =% | U%, .
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Casesm=3andm =7

For m = 3 : the formula (x) becomes
[Ri+Ry+R3+Ry — 4] = —TD = — [0 + Q; — 2]

This means .
[Ri+Ry+R3+Ry+ 01+ 02— 6] =0

The Abel Jacobi theorem involves the existence of a function F such that
div(F) =Ry + Ry +R3 + Ry + Q1 + Q5 — 0.
Then F (x,y) = u+vx+wx> +dx> +ey (e #0). We have F (Q;) = F (0;) =0,s0 u+v—2d —e =0 and v+2w+2d +2e = 0, hence

F (x,y) = 2w—+4d +3e+ (—2w — 2d — 2¢) x+ wx> +dx°> + ey (e #0).

d
e

At points R;, we have y = (—3—2a—4c) + (2+2a+2c)x—ax> —cx® with a =% and ¢ =< . Substuting y into y> =x°+ 1 and

simplifying by x> — 2x +2, we have
B3 (x) = x* + (26‘24»2&6'7 1>x3+ (72C274C+0272)X2+ ((74a72)072a274a72>x+862+(8a+ 12)c+24a> 4+ 6a+4 = 0.
We must have ¢ # 0 and a # —1 —2¢. We get a family of quartic points
Si={ (x (—3—2a—4c+(2+2a+2c)x—ax2—cx3)) | a,c€Qc#0,a# —1—2c,x rootof B3 (x) =0 }
For m =7 : by a similar argument as in previous case, we get a family of quartic points
Do = { (x, —(—3—2a—4c+(2+2a+2c)x—ax2—cx3)) |a,c€Qc#0,a# —1—2c,xrootof B3 (x) =0 }

Therefore, we have the fourth family 43 = %3 | U%3 5.

Casesm=4andm==6

For m = 4 : it exists a fonction F such that div(F) = R; + R, + R3 + R4 + P; — 500, hence F € .Z (5),
F(x,y) =u+vx+wx> +dy (d#0).

We have F (P;) = 0, therefore u+d = 0, then F (x,y) = u+4vx+wx> —uy, (u #0). At points R;, we have y = 1 +ax + cx?. Substiting y to
y? = x>+ 1, we have

X (x4 +83 4 2acx®+ (2c+a2> x+2a) =0.
Simplifiying by x, we have the minimal polynomial
By(x) =x*+ 2% +2aex® + (26+a2) x+2a=0.
We must have a # 0. We obtain a family of quartic points :
Yy1 = {(x, +(1 +ax+cx2)) | a,c € Q,a#0,x root of By (x) = 0} .
For m = 6 : by a similar argument as in previous case, we get a family of quartic points :
Gy = {(x, —(1 +ax+cx2)) | a,c €Q,a#0,x root of B4 (x) = 0}

Therefore, we have the firth family : 94 =9, 1U% .

Casem =35
It exists F such that div(F) = Ry + Ry +R3 + R4 + Py — 500, 50 F € £ (500), then
F(x,y) =u+vx+wx>+dy (d+#0).

We have F (Py) =0, so v = u-+w, therefore F (x,y) = u+ (u+w)x+wx? +dy. At points R;, we have y = —a+ (—a —c¢)x —cx* witha = %
and ¢ = 7. Substiting y to y? = x>+ 1, we have

(x+1) (x4+ <c2+l) O+ (c2+2acf 1) X+ (2ac+a2+ 1) x+a*— 1) =0.
Simplifliying by x + 1, we have the polynomial
Bs(x) =x*+ <62+ 1) O+ <c2+2ac— 1) X+ (2ac+a2+ 1) x+a*—1.
We must have a # +1, therefore, we have the fifth family :

Ys = {(M (*a+(*afl)xfcx2)) | a,c € Q,a# +£1,x root of Bs (x) :0},
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Article Info Abstract
Keywords:  Mathematical Modelling, This paper evaluates the impact of an effective preventive vaccine on the control of some
Local Asymptotic Stability, Global At- infectious diseases by using a new deterministic mathematical model. The model is based on

tractivity, Global Asymptotic Stability,
Vaccine Effect, Disease-free Equilib-
rium Point, Basic Reproduction Num-

the fact that the immunity acquired by a fully effective vaccination is permanent. Threshold
X, defined as the basic reproduction number, is critical indicator in the extinction or spread
of any disease in any population, and so it has a very important role for the course of the

sz;o AMS: 34D05, 34D20, 34D23, disease that caused to an epidemic. In epidemic models, it is expected that the disease
34K20. 92B05. 92D25. 92D30. becomes extinct in the population if %y < 1. In addition, when %, < 1 it is expected that
Receiv’ed: 2] I:“eb 202} the disease-free equilibrium point of the model, and so the model, is stable in the sense of
Accepted: 19 August 2021 local and global. In this context, the threshold value %, regarding the model is obtained.
Available online: 31 August 2021 The local asymptotic stability of the disease-free equilibrium is examined with analyzing the

corresponding characteristic equation. Then, by proved the global attractivity of disease-free
equilibrium, it is shown that this equilibria is globally asymptotically stable.

1. Introduction

It has been seen that epidemics have had major effects and leave deep remains on human lives throughout history. To prevent and control
the spread of epidemic, the examination of its’ dynamics has an important role. In this context, mathematical modelling in epidemiology
provides understanding and explanation of the underlying mechanisms that influenced the spread of disease, and it suggests control strategies.
The COVID-19 pandemic, which emerged at the end of 2019 and is the most devastating epidemic of recent times, has seriously shaken
humanity as a global threat. Modeling and analysis studies in mathematical epidemiology have focused on this ground in conjunction with
this compelling and exhausting epidemic and many authors have made various contributions to this field with the help of the models they
have constituted. [1-3] and references therein are among some current studies on this subject.

While dealing with mathematical modeling spread of disease, in order to formulate the transmissions of an epidemic, the population in a
region is often divided into different compartments, and the models, which formulate the relations between these compartments, are called as
compartmental models. In the literature, there are many compartmental models provided basic principles for the spread of a disease in a
population. Kermack and McKendrick with their study [4] have pioneered in studies using compartmental mathematical models. In the
model proposed by Kermack and McKendrick in 1927, the population was divided into three compartments: a susceptible compartment
labelled S, in which all individuals are susceptible to the disease; an infected compartment labelled 7, in which all individuals are infected by
the disease and have infectivity; and a removed compartment labelled R, in which there exist the individuals consist whose infectiousness
finished. This model is called as ”SI/R model” based on the initials of the group names.

Then, a lot of authors have tackled with various details to carry further forward this model. Adding a vaccination compartment is just one of
these details. Immunization with vaccines is among the most effective methods of protection from infectious diseases which are common in
the society and which have high contamination properties. Until today, many studies including the epidemic models with vaccination have
been introduced. The references [5] and [6] are just two of them.

In mathematical epidemiology, the course of the disease in the population associates with whether the basic reproduction number is greater
than 1, or not. It can be made the comments “If % > 1, there is an increase in the speed of the spread; if Z; < 1, there is a decrease in the
epidemic rate and the epidemic is under control; if Zy = 1, speed of the spread is constant”. The value %, is very important since it can tell
us whether the population is at risk about the disease. Therefore, calculating this value for any disease in any population is unvaluable.

Email addresses and ORCID numbers: sumeyye.tay @inonu.edu.tr, 0000-0001-8761-8564 (S. Cakan),
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Considering the unfavorable conditions brought on by an epidemic disease in a population, studies to reduce the spread of the disease have,
of course, great significance. In order that the disease dies out in the population, it needs that %y < 1 and additionally the disease-free
equilibrium point of the projected model is stable when % < 1. In other words, the effort required to prevent an outbreak or to eliminate an
infection in a population should be directed towards ensuring that the value %) is less than 1. In addition, it is expected that the disease-free
equilibrium point of the model and so the model is stable in the sense of locally and globally, when %, < 1.

Hence, for the past decades, many studies have been proposed on local and global stabilities of the disease-free equilibria, [7-14].

The aim of this study is to present a model that reflects the fact that the protective effect may not occur immediately after the vaccine is
administered and the fact that this protection may not be fully effective even if the protective effect of the vaccine has started. The model
uses a system of nonlinear ordinary integro-differential equations with delay to explain this fact. The study focuses on the basic reproduction
number of this new compartmental epidemic model and on the local and global stabilities of the disease-free equilibria of model.

2. Model Description and Assumptions

In this study in which we aim to propose and analyze a new SV EIR epidemic model with delay, we divide a population (N), among which
some individuals are known to be exposed to infectious disease, into five classes shaped like Susceptible (S), Vaccinated (V), Exposed (E),
Infectious (/) and Removed (R) individuals.

The transitions between the compartments are expressed by the following system:

% — b BiS()I(1)—qS(t) —uS(t),

) -
dv T T B
= = qS(t)qﬁzl(t)O/ “HTS(t— 1) dT— vq/ RISt —1)dT— (1—V)gBsI (1) h/e“Strdr BV (1),
€ ﬁ1s<t>1<r)+qﬁ21<r>~/he“s<t—r>df+<1— Vbt [ HS 0 )05 ) ),

0 h

A ) —at()-81()-pI0), D
%f — vq/ooe‘P”S(t—T)df-l—nE(t)—i-OtI(l)—MR(Z)-

h

Where S(z), V(¢), E(¢), I(t) and R(¢) denote the numbers of susceptible, vaccinated, exposed, infectious, and removed individuals at time ¢,
respectively. The total population size at time 7 is N(¢) and N(t) = S(¢) + V() + E(¢t) +1(¢) + R(¢) for all # > 0. Also all these functions are
nonnegative.

All parameters belonging to the model are nonnegative constants and all newborn individuals get involved in the population by entering to
the susceptible class with a constant rate b.

The effective contact rate between infectious individuals and susceptibles is ;. Also 3, is the effective contact rate between infectious and
the individuals into the vaccinated group whose vaccinated at time ¢ — 7 and vaccine effect has not yet started. 33 represents the effective
contact rate between infectious and susceptibles whose vaccinated at time ¢ — T and vaccine effect has started, but whose their contribution
rate to the protection provided by the vaccine less than 1.

We assume that ¢ is the rate of vaccinated individuals within susceptible group and u is natural death rate in each compartment, § is death
rate derived from pathogen causing to outbreak. y indicates the rate at which exposed individuals become infectious. Also, & and 71 represent
the transition rates from compartments consist of infectious and exposed individuals to the compartment R, respectively.

Active immunization, the way of activating the body’s immune system through vaccination, is often applied before encountering with
microorganisms, that is, before encountering contamination, in order to create antibodies / antitoxins against infectious diseases having high
contagious properties and being severe consequences.

In immunization via vaccine, it requires a certain time (weeks or months) for antibody/antitoxin formation. In other words, protective effect
(antibody/antitoxin) does not occur immediately after the vaccine is administered or after the first dose of the vaccine. We assume that the
protective effect of the vaccine begins & time after vaccination. That is, protection of an individual who vaccinated at time #, begins at time

h
t+h. So the term ¢ [¢ 7S (r — 7) d7 indicates the number of individuals who have been vaccinated at time 7 — T and their protection effect
0

of vaccine has not yet started since the time threshold / does not completed, at time ¢. In this period that the vaccine does not yet form any
effect, a vaccinated individual who have not yet any protection enters to compartment E if exposing to the infectious agent with a sufficiently

effective contact with infectious individuals. This transition is expressed with the term g3, (¢) f e 1S (t — 1) d7 in the model.

It is also another fact that no vaccine has a 100% protective effect. In some individuals, the body s response to the vaccine may be weak
because of various reasons. Therefore, the vaccine protection is lower for such individuals, and it can be seen that the protective efficacy
in after vaccination is not fully formed. By considering this situation, the protection rate provided by the vaccine has been shown by v
in the model. As a result of effective contact between infectious individuals and the vaccinated (but are susceptible ) individuals whose
protection provided by the vaccine is less than 1, enter to latent compartment by exposing to the infectious agent. This transition is denoted

by (1—Vv)gBsl(r) [e 'S (t—1)dT.
n
On the other hand the individuals, whose protection level provided by the vaccine is 1 and so have full protection, include to the class R by

gaining immunity. This transition is represented by the term vq [ e 7S (r — 1) d7.
h
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2.1. Qualitative Analysis of the Model
In this section, we find the feasible positive invariant region, equilibrium points and basic reproduction number belong to the model.
2.1.1. Feasible Positive Invariant Region

Theorem 2.1. The set

Y= {s ec <[717,<>o), {o, SD , (V,E,LR)eC (R+, {0, %D CN(1) < s} 2.2

is positively invariant and bounded for the model.

Proof. Summing up the five equations of system (2.1), we obtain

N 9S4V dE I dR
O = wtatatata
b—u(S()+V (6)+E () +1(t)+R () - 81()

b—uN(r). 2.3)

IN

For the solution of this nonlinear differential inequality, we investigate the differential equation

N (t)+uN(t) =b.

From solving of this ordinary differential equation we get N(t) = b/ + ce ™. For the initial condition r = 0, we find the solution as
e b —ut
N(t) =N(0)e # +ﬁ(lfe ) (2.4)
The right side of the equality (2.4) is the maximal solution of (2.3) by Standard Comparison Theorem [15]. Hence we have the inequality
—pt b —pt
N () <N(0)e +ﬁ(l—e )

forevery t > 0. If N(0) < b/u then N(¢) < b/u for all # > 0 and so the set Y given by (2.2) is positively invariant for the system (2.1).
Also, it is clearly seen that N (¢) is bounded above with /1.
This region can be considered as a feasible bounded region which is enough to study epidemiologically and mathematically. O

Since the population V (7) and R (¢) do not feature in remainder equations of (2.1), we can study on the following reduced system (2.5):

§'(1) b—PpiS (1)1 ()—(qﬂt) OF

o

E'(t) = BiSE)I{F)+qBI(t / “HIS(t—T)dTt+(1—V )q[ﬁl(t)/e*’”S(t—T)dT—(}/+n+u)E(t), (2.5)
0 h
I'(t) = yE@)—(a+8+p)I(r).

2.1.2. Disease-Free Equilibrium Point

Now, let us find the disease-free equilibrium point of the model (2.5). To do this we take S (t) = So, V (1) =Vp, E(t) = Epand I () = Ip = 0.
So, for the system of algebraic equations

0 = b—PBiSolo—(g+u)So,
h o

0 = ﬁ15010+qﬁ25010/€7’”d7+(1—V)QﬁSSolo/fwdf—(7+71+li)Eo7
0 h

0 = 7yEy—(a+d8+u)h,

the disease-free equilibrium point is obtained as

b
Ppr = (So,Eo,Io) = [ ——,0,0) . (2.6)
oF = (S0, Eo, 1) <q+” )
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2.1.3. Basic Reproduction Number

As is known from mathematical epidemiology, the basic reproduction number % is used to measure the transmission potential of a
disease. It is the average number of secondary infections produced by a typical case of an infection in a population in which everyone is
susceptible, [16].

In the following part, we calculate this critical threshold value % for the model with the help of next generation matrix method, [17].

Let us take X = (E,1,5)T and write the system (2.5) in the form

E ﬁ1S(l)1(t)+qﬁzl(t).]fe’“75(l—T)df+(1 —V)qﬁsl(f)fe’“S(t—f)df (y+n+u)E{)
|- 0 . ' -| (e+s+win-vEW |,
S 0 BiS)I(t)+(q+u)S(t)—b
oX H(X) 7X)
that is
170.¢ ;
a =X (X)-Y(X).

The values at the disease-free equilibrium point Ppr of the derivatives of ¢ (X) and ¥ (X) with respect to E, I, S, respectively, come in
sight with the following Jacobian matrices:

0 J12(Ppr) J3(Por)

JyPor)=1 0 0 0
0 0 0
such that
h oo
T (Por) = B1So+qﬁzSo/e’”7dr+ (1 —V)qﬁaSo/e*‘”dr
0 h
and
h oo
7% (Ppr) =ﬁ110+61ﬁzlo/67“d17+(1 *V)Qﬁﬂo/fmdf
0 h
and also
Y+n+u 0 0
]»y(PDF): -y a+d+u 0
0 BiSo Bilo+(g+u)

Taking into account that infections can only exist in compartments E and / , the block matrices K and V are formed as

0 Ko
K=Jhp=
0 0
such that
h o
K2 :ﬁ150+Qﬁ250/€_“dT+(1 —V)CII%SO/e_”TdT,
{ h
and
Y+n+u 0
V="n= .
22 [ —y a+d+u ]
Thus

—1 —1
- KV KV},
0 0
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such that
h e
Y| BiSo+aB2So [ e HFdt+ (1—v)gBsSo [e HTdz
0 h
KVl =
" (y+n+u) (@+8+p)
and
h .
Bi1So+qB2So [e HTdT+ (1—Vv)gPsSo [e HTdT
KVl = 0 h
12 =

o+o+u

So the characteristic polynomial of KV ~! appears with
h oo

7| BiSo+aBa2So fe *Tdt+ (1 —Vv)gPsSo [ e HTdt
0 h

(y+n+u)(a+d+u)

Al A— =0.

Thus, the spectral radius of the next generation matrix is

h =]
’ (ﬁls" FapSo [erdr(1- v)qﬁ3s0fe—ﬂfdr>
0 h

(y+n+u)(a+d+u)

p ()=
Taking into

k

h oo
b 1—e Hh
So=—, /e*‘”dr - /e**”dr — lim [ e Hdr =
q+u . u ; k%oc.h u

e Hh

account that, the basic reproduction number of the system (2.5) is calculated in the form of
by (Bi+aB =5 + (1-v) g " )
(g+u)(y+n+u)(a+d+u)

by (uBi +qB2 (1 —e M) + (1 —v)gBze M)
plg+u)(y+n+p)(a+d+p) '

By — p(Kv*l):

2.1.4. Existence and Uniqueness of Endemic Equilibrium Point

In subsection 2.1.2, we see that the system (2.5) always has a disease-free equilibrium point. Now, we investigate the existence and
uniqueness of endemic equilibrium point. If the constant solution Pg (S*, E*,I*) is the endemic equilibrium of (2.5), the positive constants

S*, E* and I should satisfy the algebraic equations

0 = b-BST —(g+m)S"
h o0

0 = BST +qBST / AT 1 (1 v) gfsS°T* / e HTdT— (41 +p)E*,
0 A

0 = VvE'—(a+6+pu)l".

From second equation of this system, we have
* pk 1- eiuh eiuh *
S| B +qﬁ2T +(1 fV)qli'aT =(r+n+wE
and then

E*_ (upitabs(1=e )+ (1-v)gPse #)s"

iz w(y+n+u)

On the other hand, from third equation of the system (2.7), we write

E* a+dé+pu

I* b4
Considering (2.8) and (2.9), we get

«_ py+n+p)(a+d+u)
Y(uBi+qP (1—e #1) + (1 —v)gPseHr)’

2.7)

(2.8)

(2.9)
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By the way, let us express the S* in terms of %.

. b
CEIDE.Y
Also, from first equation of the system (2.7)
| b— (q + :u) s
BiS*
IRRCENIC )
B
and taking into account (2.9) we obtain
pro- letd+pl
Y
_ gt (e+8+u) (1)
B
Therefore, we say that the system (2.5) has a unique endemic equilibrium point
Pr = (SYE"T)
_ ( b (g+m)(a+8+u)(%—1) (‘H'.U)(e%’o—l))
(q+u) %o’ B 7 Bi

for Zo > 1.
2.2. Local and Global Stabilities of Disease-free Equilibria

In this part, local and global stability of disease-free equilibrium point Ppr of the model (2.5) are discussed.

Theorem 2.2. The disease-free equilibrium point Ppr is locally asymptotically stable in X for %o < 1.

Proof. The Jacobian matrix at Ppr = (So, Eg, lo) of the system (2.5) is

—Bilo— (g +u) 0 —BiSo
J(Ppr) = J21 (Ppr) —(y+n+p) J23 (Por)
0 Y —(a+6+pu)
where
h °
J21 (Por) :ﬁ110+¢1ﬁ210/€7md7+(1 —V)fIﬁﬂo/@*”TdT
0 h
and
h o
J23 (Por) =ﬁ150+t1ﬁ250/€7“1d‘5+(1 *V)Qﬁﬁo/f‘”df-
0 h
For the point (So, Eo,ly) = (ﬁ,070> ,J (PpF) corresponds to the following form
bB
—(q+u) 0 ~7te
J (Ppr) = 0 —(y+n+p) L ;
0 % —(a+0+n)

where

I b(uPi+qPs (1—e M)+ (1—v)gPseHh)
p(g+u) '

The characteristic equation for this Jacobian matrix is

—(y+n+p) -2 L
det(J (Ppp) —Alz) = (—(q+n)—2)

Y —(a+6+u)—2
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Hence
(—(g+1) = 2) (A2 +[(r+n+ )+ (@+8+ WA+ (r+0+p) +(a+8+p) —1L) =0, 2.10)

and so the characteristic equation (2.10) always have the negative root — (¢ + ) . The other eigenvalues of this equation come from the
equation

AP Hly+n+p)+ @+ S+ A+ [(y+n+p)+ (a+8+p)(1—%) =0. 2.11)
For this quadratic equation,
My =[(r+n+p)+ (a+ 8+l (1-Zo)
and
M+ =—(y+n+p)—(x+6+u)<O0.

If %y < 1 then A1 A, > 0 and so two roots of Eq. (2.11) are also negative. If %, = 1 we say that one of roots of Eq.(2.11) is zero. On the
other hand, when % > 1 one of roots of Eq. (2.11) has positive real parts. So the disease-free equilibrium Ppp is locally asymptotically
stable for % < 1; is stable for %y = 1, and is unstable for %, > 1. O

To prove that the disease-free equilibrium point Ppr is globally asymptotically stable for 2 < 1, we use to the global attractivity of it. To
see this property of the Ppr, we need the following lemma.

Lemma 2.3. [/8] Assume that f be a bounded, real-valued function defined on [0,0) and be twice differentiable with bounded second
derivative. Also, let us define notations fe and f as

fo=liminff (r), £ =limsupf (1),

where
inff(r) = inf{f(u):uclt,o),t>0},
supf(t) = sup{f(u):uclt,o),r>0}.

Letting k — oo, t, — o and f (t;) converges to fo and | then limy_, , o f' (t;) = 0.
Theorem 2.4. The disease-free equilibrium point Ppr is globally asymptotically stable in Y for %y < 1.

Proof. We investigate that Ppr is globally attractive. From the first equation of the system (2.5) we write

ds
7 St (a+w)SQ). (2.12)
Let us say % =b—(q+u)X (). Clearly, a solution of the equation % =b—(q+u)X(¢) is a supper solution of S(¢). Therefore
X (t) > S(¢) for every t > 0. We immediately note that X () — ﬁ while # — oo. Then for a given gg > 0, there exists a 7y such that
S(H<X() < b +g
< S——+&
q+u
fort > ty. So we say §° < # + &s. In the event of g — 0, we write
b
< —. (2.13)
q+u
From the third equation of the system (2.5) we obtain
ytlgrolo E (1) VE®

— < R
a+d6+u —a+d+u

as t — oco. SO we can say

YET

< — 2.14
Ta+dé+u @19

Taking into account the inequation (2.13), from the second equation of the system (2.5) we write

aBol (1) g%e*“TS(t —0dt (1-v)gBsl (1) ;fe*#fs (1—1)dt

BISOI0) s
Y+n+u Y+n+u Y+ntu

( B . baBy (1 —eHh) . b(1—v)gBse M >1°“

E()

(g+p)(r+n+u)  plg+u)(y+n+u) wlg+u)(y+n+p)
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ast — oo. So we get

. (2.15)

e < b (Iiﬁl +qpB> (1 fe—lvlh) +(1- V)qﬁ3e_“h)
- wig+mw(y+n+p

Substituting the inequality (2.15) into (2.14), we obtain

r by (s +aP (1<) + (1= v)aBse™") | .
t(g+p) (y+n+u)(o+8+u)

= Rl
Also, substituting (2.14) into the inequality (2.15), we attain

E” (by(“ﬁl"‘QﬁZ(l—e“h)+(l—v)qﬁ3euh))Eoo

IN

p(g+u) (y+n+u)(a+d+u)
= ZE”.

Hence if Zy < 1, we say that I < 0 and E~ < 0.
On the other hand, clearly I. > 0 and Ee > 0. S0 oo = I* = 0 and E.. = E* = 0. Therefore (E (¢),1(t)) — (0,0) while  — oo.
Now we show that

b
lim § (1) = ——.
S gt

According to Lemma 2.3, we can determine the sequences (r,,) and (s,) such that
S(rn) — Seo and S (s,) — ™

while (r,,) — oo and (s,) — co.
Again, in accordance with the same Lemma, we have

S (ry) = 0and §' (s,) — 0. (2.16)
From (2.12) and (2.16), we obtain

b— (q—i—u)htrgglfS(t) =0
and

0.

b—(q+ u)limsupS(r)

t—yoo

Therefore fli_}m S(t) = ﬁ. Consequently disease-free equilibrium point Ppr is global attractive for Zy < 1.

We have concluded that disease-free equilibrium point is locally asymptotically stable with previous theorem. Since Ppr is both locally
asymptotically stable and globally attractive, it is globally asymptotically stable in Y for %y < 1. O

3. Conclusion

When it is carried out immunization with the vaccine, not only the vaccinated individual is protected against infectious disease, but also
indirectly, it is prevented from infecting other individuals. Therefore, if the number of vaccinated individuals against the disease in the
society is how much higher, the probability of the occurrence of that disease is lower at that rate. It is even possible to eliminate some
diseases completely. For example, through successful vaccination programs, diseases such as smallpox, measles, polio have been completely
eradicated or have been reduced to almost non-existent levels. This situation has increased the interest to models with vaccine in dynamical
systems.

In this paper, it has been investigated the disease-free dynamics of a time delayed SV EIR epidemic model with a different perspective from
the models in the literature. For the model it has been obtained the threshold quantity %, called as the basic reproduction number. Next, as
o < 1, it has been shown that disease-free equilibrium is locally asymptotically stable and is globally attractive, and as a result of this, is
globally asymptotically stable. Vaccination always has a strong effect for disease control by decreasing the basic reproduction number. So,
when % < 1,with effective, preventative and sustained vaccinations the disease can disappear ultimately.
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Available online: 31 August 2021 where F is the real valued vector function, m : Z — Z*, which is bounded function and

maximum value of m is k and B (n) is a k X k variable coefficient matrix. We carry out the
proof of our results by using the Banach fixed point theorem and we use these results to
determine the asymptotic stability conditions of an example.

1. Introduction

Nonlinear difference equations are the proper mathematical representation for discrete processes, which have remarkable importance in
areas such as Nicholson’s blowflies model, bobwhite quail population model and predator-prey models. Recently, many researchers have
investigated asymptotic behaviour of the solutions of the nonlinear difference equations. Especially, Huong et al. [5,6,9,10,11,12,13, 14]
have done important studies in this area in the last 20 years. For instance Giang-Huong [5, 6] obtained some new results for the asymptotic
behaviour of solutions of nonlinear difference equations with time-invariant delay of the form

x(n+1)=2Ax(n)+F (x(n—m)) n=0,1,..,

where F : [0,00) — [0,e0) is a continuous function, m > 0 is a fixed integer and A € (0,1). In addition, Huong [10] studied nonlinear
difference equation with bounded multiple delay of the form

X(n+1)=7L(n)X(n)+;%(n)F(X(n*m(i)))v (1.1)

where n € N with n > a for some a € N, where r,m (i) > 1, 1 <i < r are fixed positive integers, the functions ¢; are defined on N and the
functions F are defined on R. Also, Huong [11] obtained some oscillatory results for equation (1.1). Huong and Nam [12] investigated the
oscillation, convergence and boundedness of solution of some nonlinear difference equations with multiple delay of the form

x(n+1)=Gx(n),x(n—my),... x(n—m;)) n=0,1,...,

where m; € Ny, Vi = 1,...,r and the function G : R”*! — R. After, Huong and Mau [9] studied on the stability of the zero of autonomous
nonlinear difference equation with variable delay of the form

x(n+1)=An)x(m)+a(n)F(x(n—m(n)) n=0,1,..

Email addresses and ORCID numbers: sudeger @kastamonu.edu.tr, https://orcid.org/0000-0001-9458-8930 (S. U. Deger), ybo-
lat@kastamonu.edu.tr, https://orcid.org/0000-0001-5215-427X (Y. Bolat)
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where the functions A, o are defined on the set of integers, the function m maps the set of integers to the set of positive integers, the function
F is defined on the set of real numbers. Moreover, Huong [14] gave the some new results stability and strict boundedness conditions of
non-autonomous nonlinear difference equation with time-varying delay of the form

x(n+1)=A(m)x(n)+a(n)F(n,x(n—m(n))) n=0,1,..

In addition to Huong’s investigations, in the last century, there has been many literature on stability of delay difference equations. In
particular, as examples of studies, Gy&ri, Ladas and Vlahos [8], Chen and Liu [2], Graef and Qian [7], Edwards and Neville [4], Rao and
Sudha [18], Asiri and Elsayed [19], Deger and Bolat [20], Muroya, Ishiwata and Guglielmi [16], Akgul, Inc and Karatas [22], Akgul [23],
Zhang [21], Liao [15] can be given. In this study, we obtain some new results on the equi-boundedness of solutions and asymptotic stability
for a class of nonlinear difference systems with variable delay of the form

x(n+1)=ax(n)+B(n)F (x(n—m(n))), n=0,1,2,... (1.2)

where F is the real valued vector function, m : Z — Z™, which is bounded function and maximum value of m is k and B (n) is a k x k variable
coefficient matrix. Let Z be as a set of integers belonging to the interval [ng — k, ng] for each integer ng > 0 (if m is unbounded, then Zg as a
set of integers belonging to the interval (—co, ng)). Also, let ¢ : Zgo — RR¥ be an initial discrete bounded vector function. Now, we can give
some definitions and proposition for the proof of the Lemma and Theorems.

Definition 1.1. Ifx(n) = ¢ (n) on Zy and satisfies (1.2) for n > ny, then x (n) = x(n,ng, ¢) is a solution of (1.2) [9].

Definition 1.2. If for any € > 0 and any integer ny > 0 there exists a 8 (ng,€) > 0 such that ||¢ (n)|| < 6 on Zg implies
[|x(n,no, )|l < & for n > no,

then the zero solution of (1.2) is Liapunov stable [9].

Definition 1.3. If the zero solution of (1.2) is Liapunov stable and if for any integer ng > 0 there exists p (ng) > 0 such that ||¢ (n)|| < p (ng)
on Zg implies

|lx (r,n0,9)]| = 0 asn— oo,

then the zero solution of (1.2) is asymptotically stable [9].

Definition 1.4. If there exists a B(ng,¢) > 0 such that ||x (n,ng,¢)|| < B(ng,¢) for n > ng, then a solution x (n) = x(n,ng,¢) of (1.2) is
said to be bounded [9).

Definition 1.5. If for any ng and any By > 0 there exists By = B (ng,B1) > 0 such that ¢ (n) < By on Z implies
[l (n,no, )|l < By for n > no,
then solutions of (1.2) is equi-bounded [9].
Definition 1.6. A Banach space is a complete, normed, vector space.
Definition 1.7. Let P : X — X be a mapping from a set X to itself. We call a point x € X a fixed point of P if P(x)=x [3].

Proposition 1.8. Let X be a Banach space and P : X — X be a map such that
[[Px—Py|| < aflx—y]| (1.3)

forsome 0 < ot < 1 and all x,y € X. Then P has a unique fixed point in X. Moreover for any xo € X the sequence of iterates xq, Pxy, PPxg, ...
converges to the fixed point of P [3].

When [|[Px— Py|| < a||x —y|| for some 0 < or < 1 and all x,y € X, P is called contraction. Also, the fact that P is contraction implies the

existence of a solution of equation (1.3). A contraction shrinks distances by a uniform factor « less than 1 for all pairs of points. Proposition
b b
1.8 is called the contraction mapping theorem or Banach’s fixed-point theorem. Also, for any sequence (x;), we denote Y x; =0, [Txp =1
k=a k=a

for any a > b.

2. Main Results

Proposition 2.1. Suppose that a € (—1,1) — {0} and B (n) is a nonsingular matrix function for all n € Z. Then x (n) is a solution of system
(1.2) if and only if

n—1
x(n) =x(ng)a" ™ + Z B(t)F (x(t—m(t)))ad" L. 2.1)

1=ngy
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n
Proof. Consider the system (1.2). We multiply both sides of equation (1.2) by ] a~!

S=n

S=n §=ngo

n—1 n
A <x(n) Ha1> =B(n)F (x(n—m(n))) I:chl 2.2)

is obtained. If equation (2.2) is summed from ng to n— 1,

n—1 n—1 n—1 1
ZA(x(n)Ha_l> = ZB(n)F(x(n—m(n)))Ha_l,

LA L 2, L8}
x(n) ﬁoal —x(ng) = ;_Z:OB (n)F(X(nm(n)))Sf’Ioa17
x(n)j_fiafl - x(no)+:§B(n)F(x(n—m(n))):Iia1‘
At last we have |
x() = x(no) H'+ZlB (W F (x(n _m(”)))sﬁl“ @3
The proof is completed. 0

Theorem 2.2. Suppose that the following conditions are satisfied:
(i) F(0) = 0 and F is locally Lipschitz in x. That is, there is a M > 0 such that if ||x||, ||y|| < M, then

[F(x) =F )l <Lllx—yl (2.4
for positive constant L.

(ii) There exists a € (—1,1) — {0}, b € (0,1) and ||B(t)|| = ||B(¢)|, such that

n—1
LY [B()|<b, 2.5)

=ngy

for n> ng. Then the solutions of (1.2) are equi-bounded.
Proof. Let B be a positive constant. We choose B, > 0 such that B; < (1 —b)B,. Also, let ¢ (n) be an initial discrete bounded function
which satisfies ||¢ (n)|| < By on Zg of (1.2) for n > ny. We define

H:{u:ZHRk\u(n):q)(n) on Zg and Huung}, 2.6)

where ||u|| = max |l (n)]| . Firstly, we must show that (H,||.||) is a complete metric space. (H,||.||) is a metric space. It is clear that the
ne

metric space conditions are provided. Now we shall prove that every Cauchy sequence of points in H has a limit that is also in H. Assume

that <uﬁ) is a Cauchy sequence in H. Then, we have

Ve >0, 3fy: Va,B>Po: Huﬁfu“H <g,
or
ve >0, 3o: Ve B> fo:max| (wf —u?) ()| <.
or
Ve >0, 3Py: Yo,B > Py : H(#ﬁ*M'X) (n)H <g& VneZ.

(uﬁ (n)) is a Cauchy sequence in R¥ for a fixed n € Z. we know that R¥ is a complete metric space and thus, we can write

w(n) = limuP (n), 3u(n) e R Q2.7

[—o0
Since uP € H, we get P (n) = ¢ (n) on Zg. By (2.6), we know that
u(n)=9(n).

Furthermore, we have ||u|| < B, with Huﬁ H < B,. That is u € H. We define a mapping P : H — H such that

(Pu) (n) = ¢ (n) on Zy,
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and

n—1

(Pu) (n) = ¢ (ng)a" ™™ + Y B(t)F (u(t —m(r)))a" """, (28)

t=ngp

Notice that P maps from H to itself. Indeed, the properties of norm

n—1
1(P) () = |[9 (mo) "™ + }_ B(t) F (u (t=m())a" ",
we have
n—1
[Py ()| < 119 (o) [ |+ X 1BON|[F (e =me)))a =" 29)
By ||u|| < By, ||u (t —m(t))|| < B,. Hence, we can write
[F (e =m@)Il < Llp(t —m ()| < LBa. (2.10)
Then, from (2.9) and (2.10), we obtain
n—1
[(Pu) ()| < Bi+BL ZB(t)a"”*l
n—1
< B1+B)L ZB(I)

< Bi+Byb<Bj.

So, we can say that P maps from H to H. Now, let i1, v € H, then we get

n—1 n—1
[[(Pr) (n) = (P) (n)| Y BOF(wa " = Y B@)F(v)a" !

1=ngy t=ngp
n—1 .
< LY Bl
1=ngp
< blu—vl.

Thus, we have shown that the mapping P is a contraction under the supremum norm. According to the contraction mapping principle, P has
a unique fixed point u* € H. So, we have (Pu*) (n) = u*(n). By ng € Zg and p* € H, we can write ¢ (ng) = u* (ng) . Hence

n—1

1) =0 (m)a" "0+ ¥ BOF (0 (t=m(e)a"",

t=ngy

that is, u* € H is a solution of (1.2) and solutions of (1.2) is equi-bounded. The proof is completed. O
Corollary 2.3. Suppose that the conditions of Theorem 2.1 are satisfied. Then the zero solution of (1.2) is Liapunov stable.

Proof. Let € > 0 be such that be € (0,1). If we choose 0 < 6 < £(1—b), then 8 +be < €. Also, let ¢ (n) be an initial discrete bounded
function which satisfies ||¢ (n)|| < & on Zg of (1.2) for n > ny. We define

H:{H:Z%Rk\u(n):q)(n) on Zg and H,que}, @.11)

where ||u|| = max || (n)]] - It can be shown easily that (H,||.||) is a complete metric space similar to proof of Theorem 2.1. Let us define the
ne

mapping P : H — H as follows

n—1

(Pu)(n) = ¢ (no)a" ™™ + Y B(t)F ((t =m(r)))a" """,

t=ny

Also, by proof of Theorem 2.1, we know that P is a contraction and ||Pu|| < € for any u € H. Hence, the zero solution of (1.2) is Liapunov
stable. Therefore, the proof is completed. O

Theorem 2.4. Suppose that the following conditions are satisfied:
(i) F(0) = 0 and F is locally Lipschitz in x. That is, there is a M > 0 such that if ||x||, ||y|| <M, then

IF (x) = F ()| < L{lx—yll (2.12)

for positive constant L.
(ii) There exist a € (—1,1) — {0}, b € (0,1) and ||B(t)|| = ||B(¢)||, such that

n—1
LY [B®)] <o, 2.13)
=ngy
forn > ny.
(iii) [n —m(n)| — o0 as n — co.
Then the zero solution of (1.2) is asymptotically stable.



Journal of Mathematical Sciences and Modelling 69

Proof. Let ¢ (n) be an initial discrete bounded function which satisfies ||¢ (n)|| < 11 (ng) on Zg of (1.2) for n > ny. We define
H* = {2 R | i (n) = 0 (n) on Zo, ] < and [[u ()| = 0asn— oo,

where ||u|| = max lee (n)|] - It can be easily shown that (H*, ||.||) is a complete metric space similar to proof of Theorem 2.1. Let us define
ne

the mapping P : H* — H* as follows

(Pu)(n) = ¢ (no)d" ™ + Y B(t)F (u(t —m(r)))a" """, (2.14)

From the proof of Theorem 2.1, P is a contraction and it maps from H to itself. For the asymptotic stability, we shall show that

(Pu)(n) — 0asn— co. (2.15)
Now, since |a| <1,
n—1
Ha:a"‘"“ —0asn— oo, (2.16)
s=ng

Thus, ¢ (ng)a” " — 0. In that case, it will be enough to show that
n—1
Y B(t)F(u(t—m(t))) —0asn— oo
t=ngy

Letu € H* then ||u (t —m(t))|| < €. Since u (t —m(t)) — 0as n—m(n) — oo, there exists an €; >0and n; > Osuchthat |u (r —m (t))|| < &

. €
for n > nj. Also, from (2.16), there exist an np > n; such that |a"*”°‘ < i for n > ny. Hence, for all n > ny

n—1 n—1
Y BOF(u—m@)a 1| < ¥

[BOF (e —m@)a",

t=ny e
ml 1 n—1 1
< Y [poF@e-mena= |+ ¥ [BOF @e—m@)a—|
t=ng et
m=l n—1
< LY [out-meya [ +LY [Bouc—n@)e |
1=no t=n,
m—1 n—1
< €Ly ’B(l)an_t_l"+£1LZ ’B(z)a"_’_lu
1=no t=n,
m—1 n—1
S T R | O
t=ny S
n—1 n—1 n-—1
< eLY |B) [] a[]a|+eb
1=no s=t+1 s=m
n—1 |n—1 ni—1
< eL|T]a| ¥ 1BO)II| T a| +eb
s=n| |t=ny s=t+1
< g +éb.

This implies that (2.15) is occurs. According to the contraction mapping principle, P has a unique fixed point which solves (1.2). The proof
is completed. O

Example 2.5. Consider difference equation system

1 n
x(n-i—l)zix(n)—o—B(n)F(x(n—HE‘D), n>0, (2.17)
2
where [|.|] denotes greater integer function, a = %, F(x)= ( iﬁ )forx = ( il ) 272t Am(n) 5 1 for m(n) = [|%H and
2 2
14224 2m(n) _p=2m(n) 2-mn)
B(n) = 3 A’z ) , for¥neN
22m(n)+2 ( 1 +272n+2m(n)) 22m(n)+2 ( 1 4-2-2n+2m(n) )

then the zero solution of (2.17) is asymptotically stable. Indeed,
(i) there is a L= 1 such that ||x||; = |x1| + |x2| < 1, then

IF@I = pd|+ P3| = b P+l
(bt |+ xal)?

Pt 4 2| = 1]l

IN A
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Figure 2.1: The behavior of the solution x (n) = ( 4-n

) of system (2.17)

for M = 1.
B y Lo
ji = ) = <
(i) 1Bl = max | & laij] | = 265 <
and im —— = 0. Furthermore, there exist b € (0,1) such that
n—se0 Qm(n)
n—1
Y B <o, 2.18)
=ng
forn > ny.

(iii) [n— [|5]]| = oo as n — oo.

Since the conditions of the theorem are provided, the system (2.17) is asymptotically stable. The behavior of the solutions of the system
(2.17) is as Figure 1.

3. Conclusion

In this paper, we investigate the asymptotic stability of zero solution of system (1.2) which as an generalization of [9]. We used the Banach’s
fixed point theorem for the proof of the results. In this study, by using the definition of equi-bounded, initially, we showed that equation (1.2)
is Liapunov stable after that we proved that this equation is asymptotically stable. Finally, we applied the these results to an example. As a
result of this application we verified that equation (2.17) is suitable to the example

x(n—O—l)z%x(n)—l—B(n)F(x(n—[g])), n>0,

where F is the real valued vector function, m : Z — Z™, which is bounded function and maximum value of m is k and B (n) is a k x k variable
coefficient matrix.
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vaccine and therapy). It establishes that the model is biologically meaningful and epidemi-
ologically well posed. Furthermore, simulations are carried out on the equations of the
model using MATLAB and the results indicate that; when ¢y (awareness) increase from 0.08
to 0.70, then the number of exposed HB individuals in the population will also increase.
Conversely, we notice a drastic decrease in the number of exposed HBD individuals in the
population when ¢ (awareness) increase from 0.08 to 0.70. Again, we observe a decrease in
the number of exposed treated individuals in the population when c(therapy) increase from
0.08 to 0.50. Similarly, we notice an increase in the number of recovered HBD individuals
in the population upon the increase of c(therapy) from 0.08 to 0.50. We therefore conclude
that awareness, vaccine and therapy are good measure which can be used to effectively
control HBV-HDV co-infection in a population. However, awareness and vaccine are better
control strategies than therapy. Hence, these simulation results provide the best framework
for the control of the disease; Hepatitis B virus-Hepatitis D virus (HBV-HDV) co-infection
in a population.
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1. Introduction

Hepatitis B virus (HBV) and Hepatitis D virus (HDV) infections are major health problem. HBV virus is a DNA virus from hepadnaviridae
family. Infected person or asymptomatic carriers with viral HBV are only reservoir of infection [1]. Researches show us that world prevalence
of Hepatitis B surface antigen (HBsAg) carriers is from 0.1 —20% with high percentage in tropical countries [1]. The risk of transmission of
HBYV via blood and blood product is much higher than Hepatitis C (HCV) and HIV. HBV may induce chronic hepatitis that could progress to
cirrhosis and hepatocellurar carcinoma [2].

Hepatitis D virus (HDV) sometimes called Hepatitis Delta Virus, was detected by Rizzetto among patients with a severe form of Hepatitis B
virus (HBV) infection in the year of 1977 [3]. Chronic Hepatitis D still remains a major cause of liver transplantation and death [4]. Cirrhosis
the final stage of chronic Hepatitis, has been considered to be irreversible [S]. HDV induces a broad range of clinical manifestations in
humans, ranging from asymptomatic cases to patients with fulminant hepatitis and hepatocellular carcinoma ( [6], [7]). HDV or Delta virus
is an incomplete defective RNA virus requiring concomitant presence of HBV for its survival and replication ( [8]; [9]; [10]; [11]). Thus,
HDV can replicate only in people who are also infected with HBV.

The epidemiology of HDV infection is similar to HBV with some exception ( [10]; [12]). It is estimated that approximately 5% of the HBV
carrier are co-infected with HDV infection worldwide [6]. However, the prevalence of HDV in HBV carriers varies around the world [13].

Email addresses and ORCID numbers: ajah.remigius@mouau.edu.ng, https://orcid.org/0000-0002-1697-127x (R. O. Aja), ti-
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0002-5395-8680, https://orcid.org/0000-0002-9208-5421 (G. C. E. Mbah)
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As mentioned above, HDV is a defective virus since it cannot produce infectious virions without the help of a co-infecting helper virus. The
helper virus is Hepatitis B that supplies the HBsAg surface protein. In budding out of the cell, HDV acquires a membrane containing HBsAg.
It uses HBsAg as its envelope protein; thus, HBV co-infection is necessary for the packaging and release of HDV virions from infected
hepatocytes. The smallest HBsAg is even sufficient to package the HDV genome.

Due to the complexity of the health problems caused by HBV infection and HDV infection as mentioned above, it becomes imperative
to study the co-infection of the two deadly diseases. Thus, [14] developed a mathematical model for Hepatitis B virus - Hepatitis D virus
(HBV-HDV) co-infection with controls. They obtained the basic reproduction number Ry for the model and consequently carried out
sensitivity analysis on the model using MATHCAD. [15], investigated stability analysis of Hepatitis B virus-Hepatitis D virus co-infection
using Jacobian method. Valid results were obtained by evaluating the Jacobian matrix formed numerically.

This paper investigates the impact of the various parameters of the mathematical model developed by [14]. It establishes that the model is
biologically meaningful and epidemiologically well posed. Furthermore, simulations are carried out on the equations of the model using
MATLAB and the results are vividly discussed. From the results, awareness and vaccine are better control strategies than therapy. Thus, the
results of the simulation provide the best framework for the control of HBV-HDV co-infection in a population.

2. Model formulation
Section 2 and its subheadings are taken from references [14] and [15]
2.1. Assumptions of the Model

The model is based on the following assumptions:

1. The individuals that make up the population are grouped into different compartments or groups according to their epidemiological
state.

2. The population size in a compartment varies with respect to time.

3. The population mixes homogeneously. That is, all susceptible individuals are equally likely to be infected by infectious individuals if
they come in contact with one another.

4. The infection does not confer immunity to the recovered individuals and so they can go back to the susceptible class at any given time.

5. The individuals in each compartment have equal natural death rate given as L.

6. The gain in the infectious class is at a rate proportional to the number of infectious and susceptible individuals. That is, SI, where
B > 0is a contact parameter (effective contact rate). The susceptible are lost at the same rate.

7. The rate of removal of infectious to the recovered or removed class is proportional to the number of infectious individuals.

2.2. Model Variables

The following variables are used in this study, thus:

S: The number of susceptible individuals

Epp: The number of individuals who are exposed to HBV

Eryp: The number of individuals who are exposed to HBV and are being treated

Igp: The number of individuals who are infectious of HBV

Ingp: The number of individuals who are infectious of HBV and not being treated

Ityp: The number of individuals who are infected with HBV and are being treated

Rpyp: The number of individuals who have been treated of HBV and have recovered

Engp: The number of individuals who are infectious of HBV and latently infected with HDV (exposed of HDV)
Erypp: The number of individuals who are infectious of HBV and now exposed to HDV and being treated
Iggp: The number of individuals who are infected with HBV and HDV at the same time

Ingsp: The number of individuals who are infected with HBV and HDV and not being treated of any

Itypp: The number of individuals who are infected with HBV and HDV and are being treated of both

Rugp: The number of individuals who have recovered from HBV-HDV co-infection after they have been treated

2.3. Parameters of the Model

We shall also use the following parameters in this model, thus:

7: The number of people that enter the population (the number of individuals that enter into the susceptible class)

B : Contact rate for Iyp with susceptible individuals (S). i.e., the rate at which individuals who had contact with HBV infectious person
become exposed to HBV

B> : Contact rate for Iypp with susceptible classes (Eyp, Ivupandlryp)

7: The rate at which individuals who are exposed to HBV become infectious of HBV

@: The rate at which individuals who are exposed to HBV enter into exposed and being treated compartment or class (Eryp )
p2: The rate at which individuals who are infectious of HBV enter into infectious and being treated HBV class (I7gp)

p1: The rate at which individuals who are infectious of HBV enter into infectious and not being treated of HBV (Iygp)

A1: The rate at which individuals that are infectious and being treated of HBV goes back to exposed HBV class

Ay: The rate at which individuals who are infectious and being treated of HBV recover from HBV

o: The rate at which individuals who are exposed and being treated of HBV recover

¢1: The rate at which individuals who recovered from HBV goes back to susceptible class

¢: The rate at which individuals that are infectious and being treated of HBV become exposed to HDV, that is Eypp

y: The rate at which individuals who are infectious of HBV and not being treated become exposed to HDV, that is Egpp
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B2 [1—(c1 +¢2)] : The rate at which individuals who are exposed of HBV become exposed to HDV (Egpp)

{: The rate at which HBV infectious individuals who are exposed to HDV enter into exposed HDV being treated class (Ergpp). that is the

rate at which individuals who are exposed of HBV-HDV co-infection enter into exposed HBV-HDV being treated class (ETugp)
k: The rate at which HBV infectious individuals who are exposed to HDV become infectious of HBV-HDV

€1: The rate at which individuals who are infectious of HBV-HDV enter into infectious HBV-HDV not being treated class (Inzgpp)
& The rate at which individuals who are infectious of HBV-HDV enter into infectious HBV-HDV being treated class (Irypp)

n: The rate at which individuals that are infectious of HBV-HDV and are being treated recover

€ : The rate at which HBV infectious individuals who are exposed to HDV and then being treated become infectious of HBV-HDV
0 (1+c): The rate at which HBV infectious individuals that are exposed to HDV and are being treated recover

¢,: The rate at which individuals who recovered from HBV-HDV goes back to susceptible class again
u: The natural mortality/death rate

0: HBV-induced mortality/death rate for people infectious of HBV treated class

61: HBV-induced mortality/death rate for people infectious of HBV but not being treated class

&,: HDV-induced mortality/death rate for HBV infectious individuals who are exposed and being treated of HDV
03: HBV-HDV-induced mortality/death rate for HBV infectious individuals who are infectious of HBV-HDV and are being treated
64: HBV-HDV-induced mortality/death rate for individuals who are infectious of HBV-HDV and are not being treated

0: Cure rate
c

cl : Infectivity controls; where c| is awareness, c; is vaccine and c is therapy

2

2.4. Model Description

Based on the standard SEIR model, the population is partitioned into thirteen compartments or classes namely: Susceptible (5), Exposed to
HBV (Eng), Exposed to HBV and Treated (E7gp), Infectious of HBV (1), Infectious of HBV and Treated (I7xp), Infectious of HBV
and not Treated (Iyyp), Recovered of HBV (Ryp), HBV infectious now Exposed to HDV (Egpp), HBV infectious now Exposed to HDV
and treated (E7gpp), Infectious of HBV-HDV co-infection (Igpp), Infectious of HBV-HDV co-infection and treated (I7gpp ), Infectious of

HBV-HDV co-infection and not treated (Iygpp), Recovered of HBV-HDV co-infection (Rypp) Compartments.

2.5. Model Equations

% =+ ¢1Rup + $2Rupp — P1SIup — 1S
dfllt-]B = Bi1SIgg — B2 [1 — (c1 +¢2)| Egplupp + MiItHB — WEyp — TEpp — WEHB
dEdg = WEpp — UETHB — OETHB
d;ﬂ =1Eyg — P1lyg — P21uB
t
dIZfB = ptlys — Vivuplupp — Winup — O1InuB
dI‘ThHB = polyp — QIrgp — MiIrap — Mo lrgp — Wryp — SlTyp
dIZIZB = Llryp + 0Eryp — ¢1Ryp — URHB
dEZBD = BoEnslusp + Wivaalasp + lrasEnsp — XExsp — CErsp — WEHBD
‘”52# = CEupp — 0 (1+¢)Erupp— € Erusp — WETHBD — S ETHBD
dIZ% = kEgpp+ € Erasp — €1luBp — €21HBD
dIyusp

et &11gpp — WInupp — d4lnHBD

2.1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

@2.11)
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dr
% = &lypp — Niruep — Wtaep — 831THBD (2.12)
dRuypp 0(1+c 51
i (1+c¢)Ermep +NIraep — KRup — 02RuBD (2.13)
N =S+Epp+Ergp+Inup+ I+ Rup + Eusp + Ernep + Inasp + ITHep + RHBD (2.14)

Susceptible individuals acquire HBV infection following effective contact with individuals infected with HBV (i.e. those in the Eyp, Ivup
and I7yp classes) at a rate 31, given by

0 (Enp + Uslvup + talrHp)
N

B = ; N=S+Eup+Ivup+ITHB

where Op is the effective contact rate for HBV transmission. Further, the modification parameters t3 = 1 and p4 < 1 account for the relative
infectiousness of individuals in the Iygp and ITgp classes in comparison to those in the Egp class. That is individuals in /ygyp are more
infectious than those individuals in the Eyp class, likewise, I7yp are less infectious than those in the Iygp class (because the use of treatment
significantly reduces the viral load in those being treated).

Similarly, individuals in the susceptible classes (Eyp, Ivgp and ITgp) acquire HBD, following effective contact with individuals infected
with HBD

(i.e., those in the Eypp, Ivgpp and ITypp) at a rate B,, given by

By — 0D (Ensp + UsInupp + UsITHBD)

N ; N=S+Enpp+Invupp +1Irusp

where Opp is the effective contact rate for HBD transmission. Further, the modification parameters ps = 1 and g < 1 account for the
relative infectiousness of individuals in the Iygpp and ITgpp classes in comparison to those in the Egpp class. That is, individuals in the
Ingpp class are more infectious than those in the Egpgp class, and likewise, I7ypgp are less infectious than those in Iygpp class (because the
use of treatment significantly reduces the viral load in those being treated)

3. Invariant Region

The HBV-HDV co-infection model will be analyzed in a validity region in order to show that it is biologically meaningful and the region is
feasible for human population. We assume that all the state variables and parameters are positive all the time, t > 0. We shall prove that the
HBV-HDV co-infection model is well-posed by proving the boundedness and positivity of the solutions of the model with the non-negative
initial solution for all time. We will obtain the region by considering the following theorems;

Theorem 3.1 (Boundedness). The solution set

{S(t),Enp(t) ,Erug (t),Iup (t) Inup (t) Irup (t) ,Rup (t) ,Eupp (t) ,Ermsp (t) . dusp (t) ,Inusp (t) . Irupp (1) ,Rusp (1)}

is contained and bounded in the feasible region D.

Proof. The total human population can be determined by
N@t)=S(t)+Eyp(t)+Erup (t) +Ivgp (1) + It (t) + Rup (1) + Egpp (1) + Ermpep (t) + Inasp (f) + Itapp (t) + Rpp (t)

Now adding the right hand side of equations (2.1) - (2.13)
So, the time derivatives, %, along solutions of system is obtained as

dN

w uS — uEyp — uErHp — wiypp — Wryp — URgp—UERBp — LWETHBD — WINHBD — WTHBD — WRHBD — OlTHB
—  Oiunu— 6:ETHp — O3lrHBDp — SalvuBp < T— UN.

Thatis, 4 = 7 — uUN — 8Irup — 81Ivts — S:ErHED — S31THED — S4lvpBD < T — N

Assume that the initial condition for model satisfies N (0) < ﬁ, where

N(0) =S(0)+Enp (0) +Erpp (0) +Ivup (0) +Irpp (0) + Ryp (0) + Eppp (0) + Erasp (0) + Ivusp (0) + Itaep (0) + Rusp (0)

Then, applying the Gronwall’s inequality gives
N(t) < ﬁ-O— (N(O) — g) e M whenever (0) < ﬁ

So, taking the limit as  — o yields (¢) < ﬁ . This shows that the feasible region for the model exists and is bounded by N(z) < Z. It means
that all the solutions of system are nonnegative in D for any time 7 > 0 and this represents human population. O

=8
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3.1. Positivity of solutions

Lemmal: Let the set of initial solution be

{(5(0),Enp (0),Erup (0) ,Iup (0) ,Inup (0) . I7H3 (0) ,Rup (0) , Enpp (0) ,Errep (0) ,Insp (0) , InuBp (0) , IrHBp (0) , RHBD (0)) € O} .

Then, the solution set

{8(t),Enp(t),Erup (t),Iup (t),Inup (t) , Iap (t) ,Ras (t) ,Eupp (t),Erasp (t) ,Iupp (t) ,Ivusp (t) . IrHBD (t) , Rupp ()}
of the HBV-HDV co-infection transmission model is non-negative for ¢ > 0.

Proof. Assume that the set of initial solutions,
{(5(0),Erp(0),Ermp (0) Iy (0) ,Inup (0) . I7H5 (0) ,Rup (0) , Ensp (0) ,ErHBD (0),InBD (0) . INuBD (0) , I7HBD (0) ,RHBD (0)) > 0},

then the first equation, that is equation (2.1) can be written as

—>n—(Bilgp—n)S=n—-B(1)S (3.1)

where B (1) = Bilup+ 1 .
Equation (3.1) is a linear first order ordinary differential equation in S with the solution

S(t) = 5 (0) exp (/Otfﬁ (S)ds) x/(:nexp (/Ouﬁ(w)dw) > 0.
Hence, S(r) > 0 V t>0.

In a similar manner, the remaining state variables are obtained such that
Epp(1) 2> Epp(0) Exp(—(1 +7+0)) > 0,

t) = Erpp(0) Exp(—(a+u)) = 0
> Inp(0)Exp (= (p2+p1)) 2 0
1) > Ingg(0) Exp(—(1+61)) = 0
Irup(t) 2 Itnp(0) Exp( —(L+241 +4+8)) > 0
Rip(t) = Rup(0) Exp(—(1 +¢1)) = 0
Eppp(t) = Enpp(0) Exp(—(1 +x+8)) = 0
Erupp(t) > Erupp(0) Exp( —(8(1+c)+pu+e+8)) > 0
) = 1upp (0) Exp(— (&2 +€1)) >0,
> Inupp(0) Exp( —(1+684)) = 0
Irupp(t) = Irusp(0) Exp( —(n+1+683)) = 0,
Ripp(t) = Rupp(0) Exp(—(1 +¢2)) = 0
This completes the proof of the lemma 1. O

Erup

Iyp (t

(
)

A%

Inus

(
(

V

Inpp (¢
t

~—

Inup(
(

t

~—

Therefore, the biological validity of the HBV-HDV co-infection model is stated in lemma 2.
Lemma 2: The HBV-HDV co-infection model is well posed and valid in the set

D = {S(t)yEHB(t)7ETHB(Z)JHB(Z)-,INHB(I)JTHB(t)>RHB(t)7EHBD(I)7ETHBD(I)»IHBD(t)>INHBD(f)7ITHBD(t)>RHBD(t)GRE
T
P N() < ﬁ}

According to [16], the HBV-HDV co-infection model is biologically meaningful and epidemiologically well posed in the region D.
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S/N Parameter Value Reference

1 u 0.021 [17] and [18]
2 T 1000 Assumed

3 Bi 0.37 Assumed

4 T 0.50 [19] and [20]
5 B 0.37 Assumed

6 c 0.08 [17]

7 ) 0.08 [17]

8 v 0.047 Assumed

9 o= 0.043 Assumed

10 M 0.01 Assumed

11 A 0.015 [17]

12 0] 0.02 Assumed

13 a 0.015 [17]

14 p1 0.33 [19] and [20]
15 o) 0.33 [19] and [20]
16 0 0.08 [17]

17 1 0.08 [17]

18 €] 0.038 Assumed

19 & 0.038 Assumed

20 n 0.028 Assumed

21 K 0.50 [19] and [20]
22 4 0.032 Assumed

23 € 0.035 Assumed

24 ol 0.92 Assumed

25 ) 0.92 Assumed

26 ) 0.068 [17]

27 0 0.068 [17]

28 & 0.068 [17]

29 03 0.068 [17]

30 Oy 0.068 [17]

Table 1: Parameters value for HBV-HDV co-infection

4. Simulation Results and Discussion

Here we investigates the impact of the various parameters of the model developed by [14] through simulation using MATLAB. This will help
provide the best framework for control strategies of the HBV-HDV co-infection in a population. Table 1 shows the set of parameter values
used in the simulation for HBV-HDV co-infection.

Dynamics of HBV/HDV Co-infection in a population

B s st s S

———

o—w-
o oz 0.0a 0.06 oos o1 o012 0.14 0.16 o.18 oz
timre(years)

Figure 4.1: A graph showing the dynamics of HBV-HDV co-infection in a population.

Figure 4.1, shows all the equations describing the dynamics of HBV-HDV co-infection in a population.
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Figure 4.2: Graphs showing the impact of B; (contact rate for Iyp with susceptible individuals) in the population.

Figure 4.2(a): The graph on the left, showing the impact of B on the susceptible class.

Figure 4.2(b): The graph on the right, showing the impact of B; on exposed of HB class.

From figure 4.2(a), increasing f; decreases the number of susceptible people in the population. On the contrary, increasing f3; increases the
number of individuals in the population who are exposed to HB (see figure 4.2b). Therefore, as a control strategy, efforts should be geared
towards ensuring that the contact rate is drastically reduced. This is achievable if more susceptible individuals are immunized against HBV
infection. This is so because upon immunization the individual will lose his/her potency of contacting the disease for a considerable period
of time. Active vaccination (Energix-B and Recombivax-HB) is recommended as this will offer long lasting active immunity against HBV
and invariably will help control the spread of HBV in the population.
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Figure 4.3: Graphs showing the impact of 3, (contact rate for Iygp with susceptible classes) in the population.

Figure 4.3(a): The graph on the left, showing the impact of 3, on exposed of HB class.

Figure 4.3(b): The graph on the right, showing the impact of 3, on exposed of HBD class.

In figure 4.3(a), we observe that increasing 3, brings about a decrease in the number of exposed of HB people in the population. On the
contrary, increasing f3; increases the number of individuals in the population who are exposed of HBD as can be clearly seen in figure 4.3(b)
above. Therefore, as a control strategy, we must increase awareness of the disease amongst the people. Once people are aware of the disease,
then they can indulge on other diligent preventive measures: vaccine, not sharing needles or other drug paraphernalia and not sharing items
such as tooth brushes and razors. Individuals can also get vaccinated against HBV once they become aware. Therefore, efforts should be
targeted at increasing the above mentioned strategies for effective control of HBV in the population. Once we are able to effectively reduce
the number of HBV individuals in the population through the above mentioned control strategies, then we would have succeeded in reducing
the contact rate of HB and exposed of HBD in the population.
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Figure 4.4: Graphs showing the impact of c¢|(awareness) in the population.

Figure 4.4(a): The graph on the left, showing the impact of ¢; on exposed of HB class.

Figure 4.4(b): The graph on the right, showing the impact of ¢; on exposed of HBD class.

In figure 4.4(a), increasing ¢ (awareness), shows an increase on the number of exposed of HB individuals in the population as compare to
the number of exposed of HBD individuals in the population. Conversely, in figure 4.4(b), increasing c¢; shows a drastic decrease on the
number of exposed HBD people in the population in contrast to HBV individuals in the population. From this we can see that awareness is a
very good control measure, this is so because when awareness increased more people will remain in exposed of HB class which is better and
much easier to treat than exposed of HBD patients. Therefore, to effectively control HBV-HDV co-infection in any given population, we
must increase awareness of the HBV disease amongst the people. Once people are aware of the disease, then they can indulge on other
diligent preventive measures: condom use, not sharing needles or other drug paraphernalia, not sharing items such as tooth brushes and
razors. Individuals can also get vaccinated against HBV once they become aware. Therefore, efforts should be targeted at increasing the
above mentioned strategies for effective control of HBV - HDV co-infection in the population.
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Figure 4.5: Graphs showing the impact of ¢(vaccine) in the population.

Figure 4.5(a): The graph on the left, showing the impact of ¢, on exposed of HB class.

Figure 4.5(b): The graph on the right, showing the impact of ¢, on exposed of HBD class.

Note: Vaccine is to prevent people from contracting the infection while therapy is used to cure those infected with the disease.
Again we see in figure 4.5(a), increasing cp(vaccine), shows a great increase on the number of exposed of HB individuals in the population
compare to the number of HBD individuals in the population. Subsequently, in figure 4.5(b), increasing ¢, shows a drastic decrease on the
number of exposed HBD people in the population compare to the number of HBV individuals in the population. From this we can see that
vaccine is a very good control measure, this is so because when more people are vaccinated even if they are already exposed to HB, their
condition will never deteriorate to exposed of HBD (that is HBV-HDV co-infection) which always has a worst outcome than exposed of
HBYV or even infectious of HBV. Therefore, to effectively control HBV-HDV co-infection in any given population, the need for people to be
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vaccinated against HBV is highly recommended as this will go a long way in helping to reduce HBV-HDV co-infection. Active vaccination
(Energix-B and Recombivax-HB) is recommended; this will offer long lasting active immunity against HBV and invariably will help control
HBV-HDV co-infection in the population.
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Figure 4.6: Graphs showing the impact of ¢ (therapy) in the population.

Figure 4.6(a): The graph on the left, showing the impact of ¢ on exposed treated HBD class.

Figure 4.6(b): The graph on the right, showing the impact of ¢ on recovered of HBD class.

Note: Vaccine is used as a preventive measure while therapy is used to cure those infected with the disease already.

From figure 4.6(a), the impact of c(therapy) as a control measure is noticeable. If c(therapy) increases, then there is a noticeable decrease
on the number of exposed and treated individuals in the population. Similarly, in figure 4.6(b), we can see an increase on the number of
recovered HBD individual in the population upon the increase of c(therapy). This implies that therapy has a positive impact as control
measure in the population. More exposed treated HBD individuals will recover after using the drug. The available drugs for the treatment of
HBYV which also should be used for patients exposed of HBD are: (1) Lamivudine (LMV) or Ribavirine (2) Eggylated Alpa-interferon (IFN).
However, it is worthy to note; (i) a large doses of Alpha-interferon may be given for up to 12 months (ii) Alpha-interferon can cause the
disease to go into remission (according to World Health Organisation).
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Figure 4.7: Graphs showing the impact of & (the rate at which individuals who are exposed and being treated of HBV recover) in the population.

Figure 4.7(a): The graph on the left, showing the impact of ¢ on exposed treated HB class.

Figure 4.7(b): The graph on the right, showing the impact of o on recovered of HB class.

In figure 4.7(a), we can clearly see that increasing alpha shows a reduction on the number of exposed treated individuals in the population. In
figure 4.7(b), increasing alpha shows an increase on the number of people who recovered from HB in the population. As a control measure,
people who are diagnosed of being exposed to HBV should be encouraged to go for treatment. From the graphs above, more than 80% of
exposed of HBV individuals who are treated of HBV recovered.
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Figure 4.8: Graphs showing the impact of @ (the rate at which individuals who are exposed to HBV enter into exposed and treated compartment) in the
population.

Figure 4.8(a): The graph on the left, showing the impact of @ on exposed HB class.

Figure 4.8(b): The graph on the right, showing the impact of ® on exposed treated HBD class. Graph in figure 4.8(a) shows a gradual
decrease on the number of exposed HB individuals in the population as the value of omega was increasing. In figure 4.8(b), an increase
in omega shows a great increase on the number of exposed treated of HB individuals in the population. The reason for the increase on
the number of treated people in the population could be as a result of awareness. When more people are aware of the disease and go for
screening, the infected ones will start treatment; this will eventually lead to recovery. Often time, people may not know that they are exposed
of HBV until irreversible damage is done to the liver before they will become aware of the infection so as a control strategy, awareness is
strongly recommended.
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Figure 4.9: Graphs showing the impact of p; in the population.

Figure 4.9(a): The graph on the left, showing the impact of p, on infectious HB class.

Figure 4.9(b): The graph on the right, showing the impact of p; on infectious treated HB class.

From figure 4.9(a), increasing p, shows a decrease in the number of infectious HB individuals in the population. Thus, an increase in py
shows a very high increase on the number of infectious treated HB people in the population (see figure 4.9b). From the above graphs, it is
obvious that the more people who are infected with HBV go for treatment the less the number of HBV infected individuals in the population.
Therefore, as a control strategy, people who are diagnosed of HBV should be encouraged to go for treatment. Government should also help
by providing free medical care for HBV infected persons. Also non-governmental organizations should even help in sponsoring medical
treatment for HBV patients. Therefore, as a control measure, HBV infected individuals should be made to go for treatment this will help
reduce HBV in a population and invariably reduce HBV-HDV co-infection in the population.
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Figure 4.10: Graphs showing the impact of p; (the rate at which individuals who are infectious of HBV enter into infectious and not being treated of HBV
class) in the population.

Figure 4.10(a): The graph on the left, showing the impact of p; on infectious HB class.

Figure 4.10(b): The graph on the right, showing the impact of p; on infectious not treated HB class.

From figure 4.10(a), increasing p; reduces the number of infectious of HB individuals in the population. Also in figure 4.10(b), increasing
p1 increases the number of infectious not treated HB individuals in the population. Actually, p; has a very negative impact or effect in the
population. People who are infectious of HBV should be encouraged to go for treatment as recommended earlier. For no reason should
people who are diagnosed of HBV stay without going for treatment. Therefore, p; is not contributing in any way to the control of HBV and
HBV/HDV co-infection in the population, concerted effort should be made to avoided this ugly scenario.
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Figure 4.11: Graphs showing the impact of A, (the rate at which individuals who are infectious and being treated of HBV recover from HBV) in the
population.

Figure 4.11(a): The graph on the left, showing the impact of A, on infectious treated HB class.

Figure 4.11(b): The graph on the right, showing the impact of A, on recovered HB class.

From figure 4.11(a) above, if A, increases then the number of infectious treated HB people decreases in the population. On the other hand, in
figure 4.11(b), increasing A, also increases the number of recovered of HB individuals in the population. This implies that treatment of HBV
infected people has a positive impact in the population as more infected individuals will recover after treatment as shown in the graph (figure
4.11b) above. If the infection of HBV is acute, then enough rest is highly recommended and also care should be taken to treat the exhibited
symptoms. But on the other hand, if the infection of HBV is chronic, then the use of HBV drugs is recommended. The available drugs for
the treatment of HBV are: (1) Lamivudine (LMYV) or Ribavirine (2) Eggylated Alpa-interferon (IFN). If more infected HBV people are
treated, it will help control HBV infection in the population and in turn control HBV-HDV co-infection . The recovered individuals can even
get immunized to avoid contracting it again.

Figure 4.12(a): The graph on the left, showing the impact of A; on exposed HB class.

Figure 4.12(b): The graph on the right, showing the impact of A; on infectious treated HB class.
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Figure 4.12: Graphs showing the impact of A; (the rate at which individuals that are infectious and being treated of HBV goes back to exposed HBV class) in
the population.

In figure 4.12(a) above, we will observe that increasing the value of A; does not show any noticeable increase or decrease on the exposed HB
class. On the contrary, in figure 4.12(b), it can be clearly seen that increasing A; decreases the number of infectious treated HB individuals in
the population. The condition such as shown here occurs when the disease (HBV) goes into remission in the body of the HBV infected
person who is receiving treatment for HBV. When this happens, the patient will not exhibit any symptom(s) of HBV again, and will conclude
that he or she has recovered from the infection. From the graphs above, we can see that this situation will arise when more people are
infected of HBV and are being treated, some will recover fully and move to recovered class while very few(unnoticeable number) will go
back again to exposed class (that is, the disease goes into remission in their body without their knowledge). This has a negative impact in
the population and should be avoided. Therefore, as a control strategy, we recommend that the blood of HBV patients who is receiving
treatment be screened thoroughly before they are certified recovered from HBV infection. This will help control HBV-HDV co-infection and
or HBV-HDV super-infection in the population.
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Figure 4.13: Graphs showing the impact of 7 (the rate at which individuals who are exposed to HBV become infectious of HBV) in the population.

Figure 4.13(a): The graph on the left, showing the impact of T on exposed HB class.

Figure 4.13(b): The graph on the right, showing the impact of 7 on infectious HB class.

From figure 4.13(a), increasing T decreases the number of individuals who are exposed of HBV in the population. On the contrary, increasing
7T increases the number of infectious individual in the population (see figure 4.13 b). Therefore, efforts should be made through awareness
for people to know their HBV status. This if done will help individuals who are exposed of HBV to discover on time and go for treatment
so that the person will not migrate to infectious stage. Therefore, as a control strategy, we recommend awareness and that people should
have a blood test for the antibody to hepatitis B surface antigen. Early dictation of HBV is an advantage in curing the disease than when it
has reached an advanced stage, often time the advance stage would have caused Fibrosis (scarring) and Cirrhosis (hardening of the liver).
These conditions are too hard to reverse. This explains why persons diagnosed of HBV that has reached advanced stage often do not survive
because of the irreversible damage already done to the liver as a result of the unawareness of the disease.
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Figure 4.14: Graphs showing the impact of ¢ (the rate at which individuals that are infectious and being treated of HBV become exposed to HDV) in the
population.

Figure 4.14(a): The graph on the left, showing the impact of ¢ (phi) on infectious treated HB class.

Figure 4.14(b): The graph on the right, showing the impact of ¢ (phi) on exposed HBD class.

From figure 4.14(a), increasing phi decreases the numbers of infectious treated HB individuals in the population compare to the number of
exposed HBD in the population. Also we notice an increase in the number of exposed of HBD people in the population by increasing phi
compare to the number of infectious treated HB individuals in the population (see figure 4.14b). This condition has a negative impact on the
control of HBV and the resulting consequence is that more people in the population will become exposed to HBD. As a control measure,
adequate care should be taken to ensure that HB infectious people who are being treated do not contact HDV, for this will worsen their
condition.
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Figure 4.15: Graphs showing the impact of y (the rate at which individuals who are infectious of HBV and not being treated become exposed to HDV ) in
the population.

Figure 4.15(a): The graph on the left, showing the impact of y (psi) on infectious not treated HB class.

Figure 4.15(b): The graph on the right, showing the impact of y (psi) on exposed HBD class.

In figure 4.15(a), increasing Y shows a very high decrease on the number of infectious not treated HB individuals in the population. Also in
figure 4.15(b), we notice a small increase in the number of exposed of HBD people in the population. This condition again has a negative
impact on the control of HBV; hence the resulting consequence is that more people in the population will become exposed to HBD. As a
control measure, HB infectious people should be given treatment.
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Figure 4.16: Graphs showing the impact of { (the rate at which HBV infectious individuals who are exposed to HDV enter into exposed HDV being treated
class) in the population.

Figure 4.16(a): The graph on the left, showing the impact of { (zeta) on exposed HBD class.

Figure 4.16(b): The graph on the right, showing the impact of { (zeta) on exposed treated HBD class.

Graph in figure 4.16(a) shows a gradual decrease on the number of exposed of HBD individuals in the population as omega values increases.
In figure 4.16(b), an increase in omega shows a great increase on the number of exposed treated of HBD individuals in the population. The
reason for the increase on the number of treated people in the population could be as a result of awareness. When more people are aware of
the disease and go for screening, the infected ones will start treatment; this will eventually lead to recovery. Often time, people may not
know that they are exposed of HBD until irreversible damage is done to the liver before they will become aware of the infection so as a
control strategy, awareness is strongly recommended.
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Figure 4.17: Graphs showing the impact of k (the rate at which HBV infectious individuals who are exposed to HDV become infectious of HBV-HDV ) in
the population.

Figure 4.17(a): The graph on the left, showing the impact of x (kappa) on exposed HBD class.

Figure 4.17(b): The graph on the right, showing the impact of k (kappa) on infectious HBD class.

From figure 4.17(a), increasing k decreases the number of individuals who are exposed of HBD in the population. Conversely, increasing K
increases the number of infectious of HBD individual in the population (see figure 4.17b). Therefore, intensive effort should be made by the
government through awareness so that people will become aware and have their blood tested for the antibody to hepatitis B surface antigen.
Hepatitis B surface antigen (HBsAg) is a platform for HDV to replicate and cause infection in the body, therefore early dictation of HBV and
or HDV is an advantage in curing the disease than when it has reached an advanced stage, often time the advance stage would have caused
Fibrosis (scarring) and Cirrhosis (hardening of the liver). These conditions are too hard to reverse. This explains why persons diagnosed
of HBV that has reached advanced stage often do not survive because of the irreversible damage already done to the liver as a result of
unawareness of the disease(s). The above measure if followed will help control HBV-HDV co-infection in a population.
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Figure 4.18: Graphs showing the impact of ] (the rate at which individuals that are infectious of HBV-HDV and are being treated recover in the population.

Figure 4.18(a): The graph on the left, showing the impact of 1 (eta) on infectious treated HBD class.

Figure 4.18(b): The graph on the right, showing the impact of 1) (eta) on recovered of HBD class.

From figure 4.18(a) above, if 1 increases then the number of infectious treated HBD people decreases in the population. On the other hand,
in figure 4.18(b), increasing 1 also increases the number of recovered of HBD individuals in the population. This implies that treatment
of HBD infected people has a positive impact in the population as more infected individuals will recover after treatment as shown in the
graph (figure 4.18b) above. Worthy to note are: (i) large doses of Alpha-interferon may be given for up to 12 months for HDV patients (ii)
Alpha-interferon can cause the disease (HDV) to go into remission (according to World Health Organisation) (iii) after treatment , people
with HDV can still test positive for the condition. Therefore, the best control strategy for HDV and HBV-HDV co-infection in a population is
to avoid exposure to HBV (that is, to effectively control HBV in the population).
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Figure 4.19: Graphs showing the impact of € (the rate at which HBV infectious individuals who are exposed to HDV and then being treated become infectious
of HBV-HDV) in the population.

Figure 4.19(a): The graph on the left shows the impact of € (epsilon variant) on exposed treated HBD class.

Figure 4.19(b): The graph on the right shows the impact of € (epsilon variant) on infectious of HBD class.

From figure 4.19(a), increasing epsilon variant decreases the number of exposed treated HBD individuals in the population. Also we notice
an increase in the number of infectious of HBD people in the population by increasing epsilon variant (see figure 4.19b). This condition has
a negative impact on the control of HBD in the population. As a control measure, adequate care should be taken to ensure that HBD exposed
treated people are faithful to their drugs, this will go a long way in helping them recover completely instead of deteriorating to infectious of
HBD class .



Journal of Mathematical Sciences and Modelling 87

8
N

— gpsilan1=0.038
== gpsilon1=0.40
—— gpsilon1=0.80

3
B

8
3

8

8

8
2

Inpect of epsilon1 oninfectious HBD dass
Inpact of epsilon1 on infected Nt treated HBD dass
)

I I I 10 I I
0.1 02 03 04 05 o] Qa1 02 03 04 05

time(year) tirre(year)

Figure 4.20: Graphs showing the impact of €; (the rate at which individuals who are infectious of HBV-HDV enter into infectious HBV-HDV not being
treated class) in the population.

Figure 4.20(a): Graph on the left, showing the impact of €; (epsilon 1) on infectious of HBD class.

Figure 4.20(b): Graph on the right, shows the impact of €; (epsilon 1) on infectious not treated HBD class.

From figure 4.20(a), increasing €; reduces the number of infectious HBD individuals in the population. Also in figure 4.20(b), increasing &;
increases the number of infectious not treated HBD individuals in the population. Actually, €; has a very negative impact or effect in the
population. People who are infectious of HBD should be encouraged to go for treatment as recommended earlier. For no reason should
people who are diagnosed of HBD be allowed to go away without receiving treatment. Therefore, €; is not contributing in any way to the
control of HBV in the population, this should be avoided.
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Figure 4.21: Graphs showing the impact of &, (the rate at which individuals who are infectious of HBV-HDV enter into infectious HBV-HDV being treated
class) in the population.

Figure 4.21(a): Graph on the left, showing the impact of & (epsilon 2) on infectious of HBD class.
Figure 4.21(b): Graph on the right, shows the impact of & (epsilon 2) on infectious treated HBD class.

From figure 4.21(a), increasing & shows a decrease in the number of infectious of HBD individuals in the population. Conversely, an
increase in & shows a very high increase on the number of infectious treated HBD people in the population (see figure 4.21b). From
the above graphs, it is obvious that the more people who are infected with HBD go for treatment the less the number of HBD infected
individuals in the population. Therefore, as a control strategy, people who are diagnosed of HBD should be encouraged to go for treatment.
Government should also help by providing free medical care for HBD infected persons. Also non-governmental organizations should even
help in sponsoring medical treatment for HBD patients. Therefore, as a control measure, HBD infected individuals should be made to go for
treatment this will help reduce HBV-HDV co-infection in the population.
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5. Conclusion

We investigates the impact of the various parameters of the mathematical model for Hepatitis B virus - Hepatitis D virus (HBV - HDV)
co-infection with controls (awareness, vaccine and therapy). Furthermore, simulations are carried out on the equations of the model using
MATHLAB and the results are discussed. From the results of the simulation, we observe that awareness, vaccine and therapy are good
measure which can be used to effectively control HBV-HDV co-infection in a population. However, awareness and vaccine are better control
strategies than therapy. Hence, these simulation results provide the best framework for the control of Hepatitis B virus-Hepatitis D virus
(HBV-HDV) co-infection in a population, and effective control of HBV implies effective control of HBV-HDV co-infection in a population.
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and o, B, v, 8 are positive constants. Also we obtain the closed form of the solutions of
some special cases of this equation.

1. Introduction
This paper deals with the solution behaviour of the difference equation

Bsusn 4

Sppl = 0Sp + ———c——
s " YSn—a + 63/175

, n=0,1,.. (1.1
where the initial conditions s_s, s_4, S_3, s_2 s_1, So, are arbitrary positive real numbers and ¢, 3, v,  are positive constants. Also we
obtain the form of solution of some special cases of this equation.

Various biological systems naturally leads to their study by means of a discrete variable. Appropriate examples include population dynamics
and medicine. Some fundamental models of biological phenomena, including harvesting of fish, a single species population model, ventilation
volume and blood CO2 levels, the production of red blood cells, a simple epidemics model, and a model of waves of disease that can be
analyzed by difference equations are shown in [1]. Newly, there has been interest in so-called dynamical diseases, which correspond to
physiological disorders for which a generally stable control system becomes unstable. One of the first papers on this subject was that of
Mackey and Glass [2]. In which they investigated a first-order difference-delay equation that models the concentration of blood-level CO2.
They also discussed models of a second class of diseases associated with the production of red cells, white cells, and platelets in the bone
marrow. The dynamical characteristics of population system have been modeled, among others by differential equations in the case of
species with overlapping generations and by difference equations in the case of species with non-overlapping generations. In process, one
can developed a discrete model directly from observations and experiments. Periodically, for numerical purposes, one wants to propose
a finite-difference scheme to numerically solved a given differential equation model, especially when the differential equation cannot be
solved explicitly. For a given differential equation, a difference equation approximation would be most acceptable if the solution of the
difference equation is the same as the differential equation at the discrete points [3]. But unless we can explicitly solve both equations, it
is impossible to satisfy this requirements. Most of the time, it is fascinating that a differential equation, when extracted from a difference
equation, marmalade the dynamical features of the corresponding continuous-time model such as equilibria, their local and global stability
characteristics, and bifurcation behaviors. If alike discrete models can be derived from continuous time models, and it will preserve the
considered realities, such discrete-time models can be called ‘dynamically consistent” with the continuous-time models.
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The study of oscillatory and asymptotic stability properties of solution behavior of difference equations is extremely advantageous in the
behavior of various biological system and other applications. This is because difference equations are relevant models for expressing
situations where the variable is assumed to take only a discrete set of values and they appear frequently in the formulation and analysis of
discrete time systems, in the study of biological systems, the study of deterministic chaos, the numerical integration of differential equations
by finite difference schemes and so on. Difference equations are good models for describing situations where population growth is not
continuous but seasonal with overlapping generations. ’For example, the difference equation

&

@y 1 = Wye k

has been expressed to model different animal populations.
The generalized Beverton-Holt stock recruitment model has been investigated in [4, 5].

Bz,

Z :AZ +
e Y a1 + Dzn

Several other researchers have studied the behavior of the solution of difference equations for example in [6] E. M. Elsayed investigated the
solution of the following non-linear difference equation.

n bw?
Wpil =awy + ——F——.
mt T ewn +dwy_y

Elabbasy et al. [7] studied the boundedness, global stability, periodicity character and gave the solution of some special cases of the difference
equation.
Vil = Ayp_+Byn

" oyp—| + ﬁynfk

Keratas et al. [8] gave the solution of the following difference equation

fnfﬁ

by = —"=>
n+1 144, 20, s

Elabbasy et al. [9] investigated the global stability, periodicity character and gave the solution of some special cases of the difference equation
X _ aXp—1Xn—k
ntl bxp_p+cxn—q
Yalginkaya et al. [10] has studied the following difference equation
Xp—
Xpyl =0+ = km
xn

Saleh et. al. [11] study the solution of difference

)i
Ynr1 =A+ =
Yn—k

Elsayed et al. [12] studied the global behavior of rational recursive sequence

bxy_j 4 cxpy—g

Xpt+1 = aX,_|+
n+ n—l d+tex,;

As a matter of fact, numerous papers negotiate with the problem of solving nonlinear difference equations in any way possible, see, for
instance [4]-[6], [13]-[18]. The long-term behavior and solutions of rational difference equations of order greater than one has been
extensively studied during the last decade. For example, various results about periodicity, boundedness, stability, and closed form solution of
the second-order rational difference equations have been investigated see [12]-[15], [19]-[25]. Other related work on rational difference
equations see in refs. [26]-[28].

Here, we recall some basic definitions and some theorems that we need in the sequel.

2. Basic definitions

Let 7 be some interval of real numbers and let
F:I o,
be a continuously differentiable function. Then for every set of initial conditions s_, s_j41,..., So € I, the difference equation
Sne1 = F(SnySn—1yeeySn_k)y n=0,1,..., 2.1)

has a unique solution {s, };__,.
A point 5 € [ is called an equilibrium point of 2.1 if

5s=F(5,5,...,5).

That is, s, =5 for n > 0, is a solution of 2.1 or equivalently 5 is a fixed point of F.
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Definition 2.1. (Periodicity) A Sequence {sn},__, is said to be periodic with period p if spyp = sy for all n > —k.

Definition 2.2. (Fibonacci Sequence). The sequence {Fy}y_| ={1,2,3,5,8,13,...}i.e. Fy=Fy 1+ F, 2>0, F,=0,F_1=1is
called Fibonacci Sequence.

Definition 2.3. (Stability) (i) The equilibrium point s of Eq.(1.2) is locally stable if for every € > 0, there exists 6 > 0 such that for all
Sy S—ft1s---58—1,80 € I with

s— =S|+ |s—ts1 =53]+ ...+ [so = 5] < 8,
we have
|sn —5| <€ forall n>—k.

(ii) The equilibrium point s of 2.1 is locally asymptotically stable if s is locally stable solution of Eq.(1.2) and there exists Y > 0, such that
forall s_j,s_yi1,...,5-1, so € I with

|s—k = 5]+ [s—k1 =5+ ... +]s0 =53] <7,
we have
lim s, =5.
n—yo0

(iii) The equilibrium point s of 2.1 is global attractor if for all s_j,s_j+1,...,5_1, So € I, we have

lim s, =5.
n—soo

(iv) The equilibrium point s of 2.1 is globally asymptotically stable if s is locally stable, and s is also a global attractor of 2.1.
(v) The equilibrium point’s of 2.1 is unstable if s is not locally stable.
(vi) The linearized equation of 2.1 about the equilibrium s is the linear difference equation

k OF(5,5,....5)
Ynt1= 2, — . Yn-—i-
n+ 1;0 asn,i n—i

Theorem 2.4. [2] Assume that p,q € Rand k € {0,1,2,...}. Then
lpl+lql <1,
is a sufficient condition for the asymptotic stability of the difference equation
Spt1+0Sn+gs—r =0, n=0,1,....
Remark 2.5. Theorem 2.4 can be easily extended to a general linear equation of the form
Sptk + P1Sptk—1+ -eee +pesn =0, n=0,1,... 2.2)

where p1, pa,...,px € Rand k € {1,2,...}. Then 2.2 is asymptotically stable provided that

k
Y Ipil <1.
i=1
Consider the following equation

Snt1 = 8(Sny Su—1 »sn72)~ (2.3)
The following theorem will be useful for the proof of our results in this paper.

Theorem 2.6. [1] Let [c, B] be an interval of real numbers and assume that

g: [o, B’ = [a, B,

is a continuous function satisfying the following properties:

(a) g(x,y,z) is non-decreasing in x and y € [, B] for each fixed z € [o,B].and g(x,y,z) is non-increasing in z € [o,B] for each fixed
xandy € [a, B]

(b) If (A, 1) € [a,B] x [a, B] is a solution of the system

p=g(u, u, A)  and A=g(A, A, w),

then u=A2,
and 2.3 has a unique equilibrium’s € [, B] and every solution of 2.3 converges t0’s.”
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3. Main results

3.1. Local stability of the equilibrium point of equation 1.1

This section elaborates the equilibrium point is local stable. Following relation shows the equilibrium points of 1.1
ps*

S=us .
s s+y§+6§

or

$(1-a)(y+8) =5’

If (1—a)(y+9)# B, then the unique equilibrium point is 5§ =0
Let f:(0,00)3 — (0,c0) be a continuously differentiable function defined by

B&n
m+déw’

Then the linearized equation of 1.1 about 5 is

Ynt1— (tH (mﬁiv&og Yot (Wﬁfiu;;)z) Yno1+ (%) Yn—2 =0. (32)

Theorem 3.1. The equilibrium point5 =0 of (1) is locally asymptotically stable if B(y+38) < (y+8)*(1— ), o <l.

f(&n 0)=al+

Therefore at 5= 0

Proof. It is follows by Theorem A that 3.2 is asymptotically stable if

o e | * [ o]l <
or
BTNy
and so
B(y+38) < (r+6)*(1-a).
Which completes the proof. O

3.2. Global attractivity of the equilibrium point of equation 1.1

This section investigate the global attractivity character of solutions of 1.1.

Theorem 3.2. The equilibrium point’s of 1.1 is global attractor. if
v(l—o)#B

then we can

Proof. Let o, 3 are real numbers and assume that g : [a, 8] — [a, B8], be a function defined by g(u,v,w) = ot +

Buv
v+ Sw
easily see that the function g(u,v,w) is increasing in u,v and decreasing in w.

Suppose that (A, w) is a solution of the system

u=g(u, u, &) and A =g, u).

Then from 1.1 we see that

_ Bu? _ BA*
iy R Ly orh
Therefore, R )
v Bu B2
n(l a)_yu+5/l’ A1 a)_y7L+5u’
or
Bu?=y(1—a)u’+8(1—o)ur  andBA®=y(1 —a)A?>+8(1—a)uA,
subtracting
Y-’ =A%) =Bu* =A%),  y(l-a)#B.
Thus

u=A.
It follows by the Theorem B that X is a global attractor of 1.1 and then the proof is complete. O
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4. Boundedness of solutions of 1.1

In this section we study the boundedness of solution of 1.1.

Theorem 4.1. Every solution of 1.1 is bounded if

(ot + E) <1.
Y
Proof. Let {s,},__s be asolution of 1.1. It follows from 1.1 that O
ﬁsnsn74 ﬁsnsn74 B
= —— < — =(o+ =
Spt1 Sp+ Tonat 08, = Sn+ ona (a+=)sn

Then
Spt1 < sy, foralln>0

Then the sub-sequence {ss,—1}5__s, {S5n—2} ' _s5: {S5n—3} 55 {Ssn—a}p__s,and {ss5, 4} _s are decreasing and so are bounded from
above by M = max {s_s, s_4, 5_3, S_2, S_1, S0}

Example 4.2. Let o« =0.03,5 = 0.6, y=10.8, 6 =0.0land o = 0.3, B =0.06, y=0.7 § = 0.01 Then 1.1 in this case will be

0.65,5,_4
—0.03s5y 4 — - onSnd 4.1
Sntl 1t 085, 4 +001s, 5 @D

0.06s,,5,_4
=0.3 —_— 4.2
Snt St 075 2 +0.15, 3 4.2)
with initial condition for 4.1 s_5=9,s_4=4,5s 3="7,5_2=1, s_1 =10, s9 = 8. The plot for solution of s, is shown in (Figure 4.1)
andfor4.2 s _5=5.2,5_4=23,5_3=12,5_9=0.07, s_1 =0.2, 59 = 0.01. The plot for solution of s, is shown in (Figure 4.2.)

plot of S.1= 0.033n+((0.63nsn_4)/(0.83n_4+ 0.01sn_5))
10 T T T

30 40 50

Figure 4.1: Shows Bounded Solution of 4.1
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plot of S.1= 0.33n+((O.OGSnsn_4)/(0.7sn_4+ 0.1sn_5))
6 T T T

0 Il L L L
0 10 20 30 40 50

n—itteration

Figure 4.2: Shows Bounded Solution of 4.2

5. Some special cases of 1.1

5.1. First equation
Here we will find the closed form expression of solution of special case of 1.1

SnSn—4

_ ot =01,
Sp—4 +Sp—5

Sp+1 =Sp+

where the initial conditions s_s, s_4, s_3, S_2, s_1, §o are arbitrary positive real numbers.

Theorem 5.1. Let {s,};>__s be a solution of 5.1. Then forn=0,1,2,....

S5p = 7

= <fzi+38+f2i+28) (f2i+3P +f2i+28) (f2i+3l+fzi+zp> (f21+36+f2i+21) <f2;+3%+f2i+20>

0 \J2i2€+ f2i11€ ) \ f2i2P + f2i+1€ ) \ f2iv2l + f2iv1P ) \ f2i+20 + f2iv11 ) \ faiv2+ f2i410

S5n41 = #

a (f2i+38+f2i+2€) (f21+1P +f25€> (f2i+1l+f2ip) (f2[+10+f2il) (f2i+1%+f2i0)

i \J2it2€+ f2ir1€ ) \ f2iP + f2i-1€ ) \ fait + f2i-1P ) \ J2i0 + f2i-11 fil+ fri-10

o (f2i+38+f2i+28) (f2i+3p +f2i+2€) (f2i+1l+f2ip) (f2i+10'+f2il) (fzt+1%+f2i0)

S5p42 =
" Sri2€+ 1€ ) \ faiv2P + f2ir1€ ) \ f2it + f2ic1P ) \ 210 + fai—11 Sl + fri1k

i=0

S5n4+3 = X%

! (f2i+3€+f2i+28) (f2i+3p +f2i+28) (f2i+3l+f2i+2p) (f2i+10+f2il) <f2i+1%+f2i0)

i \J2i+2€+ f2i+1€ ) \ f2i+2P + f2i+1€ ) \ f2ir2l + f2i+1P ) \ J2i0 + f2i-11 ) \ f2ixc+ f2i-10

& (f2i+3€+f2i+2€) (f2i+3p+f2i+28) (f2i+3l+f2i+2p) (f2i+30+f2i+2l) (f2i+1%+f2i0)

SSn+4 = X
Nrir2€+ friv1€ ) \ f2ir2P + f2i1€ ) \ f2it2l + f2iv1P ) \ J2i420 + foiv1l ) \ f2ix+ f2i-10

i=0

where s_s =€, 5 4=€,53=p,52=1,51=0,5=2x, {futm =11,1,2,3,5,8,13,....... o foi=fo=1

(5.1)
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Proof. For n =0 result holds. Now suppose that » > 0 and that our assumption holds forn—1, n—2. Thatis,

55— %"72 (f2i+33+f25+28) (f25+3p +f2i+28) (f25+3l+f2i+2p) <f25+30+f2i+21) (f2i+1%+f21 )
o frir2€+ 1€ ) \ friv2P + faiv1€ ) \ f2iv2l + f2iv1P ) \ f2ir20 + f2iv1l ) \ f2ixc+ fri10

s s :%"_2 <f2i+3€+f2i+28) (f2i+3P+f2i+28) (f2i+3l+f2i+2p) (f2i+30+f2i+2l> (f2i+3%+f2i+20)

i€+ frir1€ ) \ foiz2P + friv1€ ) \ f2ir2l + f2ix1P ) \ f2i420 + friv11 ) \ f2iy2¢+ f2ir10

S5y = 52 (f2i+3€+f2i+2€) (f2i+1p +f2i€) (f2i+1l+f2ip) (f2i+16+f21 ) (f2i+1%+f21 )
" im0 \J2i2€ + f2i11€ ) \ f2iP + f2i-1€ ) \ fait + f2i-1P ) \ J2iO + f2i-11 ) \ fai+ f2i-10
s 3 :%"71 (f2i+38+f25+25> (f2i+3P +f25+2€> (f2i+1l+f21 ) (f25+10+f21 ) (f2i+1%+f2, )
" im0 \J2i2€+ f2i11€ ) \ f2ir2P + f2iv1€ ) \S2il + f2i-1P ) \ f2i0 + fai-11 ) \ f2ixc+ f2i-10
- :%"I:Il (f2i+38+f2i+28> (f2i+3P +f2i+28> (f21+3l+f21+2p) <f2i+10+f21 ) (f2i+1%+f21 )
" im0 \S2i+2€ + f2i+1€ ) \ f2it2P + f2iv1€ ) \ f2is2l + f2i+1P ) \ f2i0 + fai-11 ) \ f2ire+ faic1 O
S5 :%”71 (f2i+3€+f2i+2€) (f2i+3p +f2i+28> (f2i+3l+f2i+2p) (f21+36+f21+2l) (f2i+1%+f21 )
" N2ir2€+ frir1€ ) \ f2ir2P + f2i+1€ ) \ S2iv2l + f2iv1P ) \ f2i420 + faiv1l ) \ foix+ f2i-10

Now, we see from 5.1 that
S5nS5n—4

S5p+1 = S5+ m
n— n—

(ﬂ"l (f2i+33+f25+28) <f25+3p +f2i+28) (f25+3l +f2i+2P) <f2i+30+f2i+21) (f25+3l + f2i420 ))

fri2€+ 1€ ) \ friv2P + f2iv1€ ) \ f2ir2l + f2iv1P ) \ f2ir20 + faiv1l ) \ f2it2+ f2ir10

%nﬁl frir3€+frin2€ o3P+ frira€ Dl +hrip Sris30+ frisal Szt frin 0 «
=0 frir2€+faiv1€ ) \ fairaPthaiv1q ) \ frir2l+fair1p Sair20+fairit friv2xtfoir10
%nﬁl foir3€tHin€ \ [ Lr1P+fri€ \ ( faritthoip \ [ frr1O+foit Drir17+fri0
-0 friv2€t+friv1 € faip+hi-1€ fitthiap hic+ it firtfio

%nﬁl frir3€thin€ )\ ( L3P +hHina€ \ [ farsltfoisap \ ( frrzO+fauol ) [ Lzt hino
frin€tfiri€ Srir2pt+faiv1€ ) \ fait2lt+faiv1p Jfrir20+ fai1l Jaivaztfaiv1k

-2
+%nn [rir3€+ i€ \ [ fair3PtSoin2€ Lttt frivap [2i+30+faital Szt a0
; frir2€+fain1€ ) \ frir2Pt+fain1€ ) \ frir2l+fain1P ) \ frir20+fairit ) \ fair2setfaiv1O

%"_l (f2i+3€+f2i+28> <f2i+3P +f2i+2€) <f2i+3l+f2i+zp) <f2i+30+f2i+zl) (f2i+3%+f2i+2<7)
0 \S2i+28+ f2it1€ ) \ f2i42P + 2i+1€ ) \ faital + f2iv1P ) \ f2i+20 + faiv1l ) \ faiv22e+ fait10

—1 . . . . .
%nH Sriv3€t+frita€ o3P +fri2€ \ [ friraltfrivap 30+ frisal faiv3xt 1420\ [ fant1E+fon€
friv2€+faiy1€ friv2p+faiv1€ ) \ fair2l+faiv1p Srit20+frital Jfrirast foir10 fon€tfon1€

Joni1€+fon€
(finzl‘"onleg) +1

i=!

_ %”71 (f2i+3€+f2i+2€) (f2f+3p +f25+2€> (f2i+3l +f25+2p) (f2i+30+f2i+2p) (f2i+3%+f2i+20)

S2it2€+ 1€ ) \ fait2P + f2iv1€ ) \ fait2l + f2it1P frir20+ faint frivax+ frin10

n—1 . . . . . .
friv3€tfrira€ Jrir3ptfoi2€ \ [ friraltfrirap Srir30+ frival a3+ frit20
%ILIO (fzu2£+fzi41€> <fznzp+fzm€ fir2t+foiv1p ) \ fair20+fai1l ) \ faiv2set friv10 (f2n€ + fon-1€)

Foni1€+ fon€ + fon€ + fon-1€
%"_] <f2i+3€+fzi+28> (f2i+3P +fzi+28) (f2i+3l+f2i+2p) (f2i+30+f2i+2l) (f2i+3%+f2i+20> (H— Sont1€+ fon€ >
0

i€+ fiv1€ ) \ friv2p + friv1€) \ frit2l + f2ir1P ) \ f2i420 + frix1l ) \ f2is2+ fois10 Son2€+ fant1€

i=!

Thus,

S %H (f21+38+f21+28> (f2i+lp +f2i8) <f2i+l 1 +f2ip) (f2i+16+f2il) (f2i+1%+f2i0>
" fair2€+ friv1€ ) \ f2ip + fai1€ ) \ f2it + f2i-1P ) \ f2i0 + faim1l ) \ faixe+ faim10

Again, it follows from equation 5.1 that,

S5n+255n—2

S5p+3 = S5p42 + Sor2+ 5573
n— n—
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=X

a (f2i+38+f2i+28) (f2i+3P +f2i+28) (f2i+1l+f2ip> (f2i+10+f2il <f2i+1%+f2i0)

=0 \S2it28+ oir1€ ) \ foir2P + faiv1€ ) \ il + faic1p ) \ 2iO + foic1l ) \ faize+ foim10

» ﬁ Lir3€+ i€ \ [ foir3P+Soinn€ \ [ friv1l+Soip Soit10+ it vt foi0 %
=0 frir2€t+faiv1€ ) \ fair2P+fair1€ ) \ fail+faic1p fri0+fimt frixtfri10

%nﬁl foiv3€t frir2€ Lir3p+foia€ \ [ friraltfairap frit10+fail friv17+ 0
=0 frir2€t 1€ frir2pt+far1€ ) \ frir2l+foir1p hri0+fi-at frirtfri10
%nﬁl foir3€t i€ Jrir3pt+faia€ \ [ fairsltfaivap frit10+ il Dir17+fri0
=0 frir2€+ 1€ frir2pt+fair1€ ) \ frit2l+foir1p fri0+fri-1t frirtfri10
+ %nﬁl Joir3€+frii2€ (f2i+3p+fzi+2£ fzi+1l+f2iP) frir10+fit Jaiv15+fri0
0 Sfrir2€+frin1€ ) \ frir2Pt+fain1€ ) \ fail+faic1P fri0+fri1l frirtfri10

a <f2i+3€+f2i+28) (f2i+3p +f2i+28) (f2i+ll+f2ip> (f2i+10+f2il) (f2i+1%+f2i0)
S2it2€+ 1€ ) \ fair2P + faiv1€ ) \ fait + f2i-1P ) \ 2O + f2i-11 ) \ foi+ f2i-10

i=0

Sfrir2€+fair1€ frivapthriv1€ ) \ fal+faic1p fric+hicit izt fri10 ) \ foanl+fon-1p

Sons1l+fmp
<f211:+f2n71p> +1

P ﬁ (f2i+3€+fzi+28> (f2i+3p+f2i+2€> (f2i+11+f2ip) (_féi+15+f2il> (le'+1%+fzi<7) (fzu+1l+fznp)
i=0

=z

d Kfzi+3€+fzt+2€> (f2i+3P +f25+28) (f25+1l+f2il3) <f2i+10+f2il) (f2i+1%+f250> (1+ Sons11+ fanp )}
fir2€+ frir1€ ) \ foir2P + f2i1€ ) \ it + f2ic1P ) \ f2i0 + faic1l ) \ faire+ f2i10 St + fouP + fonl + fon-1p

a Kfzi+3€+fzi+28> (f2i+3P +f25+28) (f2i+ll+f2ip> <f2i+10+f2il) (f2i+1%+f2;0> (1+ Sons11+ fonp )}
fir2€+ frir1€ ) \ faiv2P + f2ix1€ ) \ f2it + f2ic1P ) \ f2i0 + faic1l ) \ faire+ f2i10 Sfan2t + fon1p

i=0

i=0

Therefore

S5n+3 = %

L (f2i+38+f2i+2€) (f2i+3P +f2i+2€) (f2i+3l+f2i+2p> (f2i+10'+f2il> (f2i+1%+f2i0').

im0 \J2i42€8+ f2i+1€ ) \ f2ir2p + f2it1€ ) \ faival + f2ip1P ) \ f2i0 + fai1l ) \ 2+ fai1 O

Other relations can be done similarly. So, the proof is completed.

O

Example 5.2. To confirm the result in this case we consider numerical example. Let a =1, B =1, Y =1, 8 = 1. Then 1.1 in this case will be

SpSn—
Snil = sn —nt (5.2)
Sp—4 +Sp—5

with initial condition s_5=2,5_4=28,s_3=5,5_0=3,5s_1 =1, so = 6. The plot for solution of s, is shown in Figure 5.1.)

8 plot of Spyi= sn+((snsn_4)/(sn_4+sn_5))
18 T ‘

0 L L L
0 10 20 30

n—itteration

Figure 5.1: Shows Unbounded Solution of 5.2
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5.2. Second equation

In this section we solve the specific form of the 1.1

SnSn—4
Spp1=Sh+—7—, n=0,1,... (5.3)
Sn—4 = Sp—5
where the initial conditions s_s, s_4, S_3, S_2, §_1, So are arbitrary positive real numbers.

Theorem 5.3. Let {s,}__s be a solution of 5.3. Then forn=0,1,2,....

n (mgo—mlw) (fi+3p—fi+10) (mgr—mlp) (fi+3k—fi+1") (fi+3l9—fi+1k)
fir1o—fim10 ) \ fiyip — fic10 ) \ fix1ir— fic1p ) \Jir1k— ficir ) \fir1® — fiiik )’

S5n =

i=0

M)"*l (fi+40*fi+zw) (fiHP*fiHG) (fi+3r*fi+1p) <fi+3kffi+1r> (fi+319*fi+lk)

s =9 -
e (T=5 =0 \ fit20— fi® Jir1p = fi10 ) \ fixir—fic1ip ) \ fixr1k— ficrr ) \ fir10 — fio1k

Ssmia — 0 (22=2) (2pfc)rﬁ (fi+40'*fi+2w) (fi+4P*fi+2G) (fi+3r*fi+lp> (fi-&-Sk*fi-Hr) (fi+319*fi+1k)
oW\ PO/ fir20 - fiw fivap — fio firir—ficip ) \ firik—ficir ) \ fix1® — fi1k )’

i=0

Sspi3 = g(M) (Zp;cr) (2r;p>,H] <fi+40—fi+260) <fi+4p—fi+20) <fi+4”—fi+2p) (fi+3k—fi+1r) <fi+319—fi+1k)
" OO INP=O NP )25\ fir20 — fio fitap — fio Sivar—fip fivik—ficir ) \ fi1® = fisik )’

n—1
a= 9 (20=0) (200 (2r=p) (2r <fi+46—fi+2w) (fi+4P—fi+20') (fi+4"—fi+2P) <fi+4k_fi+2'") (fi+319_fi+1k>7
s =0 (50 (57) (50) () 5o ) Ui e ) U ) Ui ) Giio— i

i=0

where s _ 5=0,5 4=0,5 3=p,s 2=rs_1=k so=9, {futr_;,=1{1,1,2,3,5,8,13,....... Y fai=fo=1

m=1 "

Proof. Same as the Theorem 5.1 and is omitted. O

Example 5.4. We will confirm our result by considering some numerical examples. Assume s_s=1,5_4=3,5 3=2,5 p=9, 5 1=
6, so =7 (see Figure 5.2) ands_5 =13, s_4 =12, s_3=18, s_p =16, s_1 =15, 59 = 10 (see behavior of solution of 5.3 Figure 5.3).

< 10% plot of S 1= sn+((snsn_4)/( S 4™ Sn—S))
0.5 ‘ ‘

_4 L L L L
0 20 40 60 80 100

n-itteration

Figure 5.2



98 Journal of Mathematical Sciences and Modelling

< 102 plot of S 1= sn+((snsn_4)/( S 4~ Sn—5))
4 T T

3.5F b

25

1.51

051

_05 L L L L
0 10 20 30 40 50

n—itteration

Figure 5.3

5.3. Third equation

In this section we deal with the specific form of the 1.1

SnSn—4

S e S 3 T (5.4)
Sp—4 +Sp—5

Sp4+1 = Sn —
where the initial conditions s_s5, s_4, s_3, S_2, §_1, So are arbitrary positive real numbers.
Theorem 5.5. Let{s,}__sbe a solution of 5.4. Then forn=0,1,2,....

o — lkrpqt
n (fnq+fn+1t) (fnp+fn+1‘I) (fnr+fn+lp) (fnk+fn+1r) (fnl+fn+1k) ’

_ lkrpqt
S h1a+ fual) Fnb+ Jui1@) Ut + fas1 D) Gk 4 fus17) ful + 1K)

lkrpgt
o1+ fas2t) (fop1 2+ fri2q) (fur + frs1P) (fak =+ fag17) (ful + fag1k) '

S5n+2 = (

lkrpgt
fn+1CI+fn+2t) (far1P+ fur29) (fn+lr+fn+2p) (fnk+fn+1r) (ful + fay1k) ’

S5p43 = (

lkrpgt
Sus1q+ fus2t) (for1 P+ far2q) (Fap17 + forap) (1K + fug2r) (ful + fus1k) .

Where s_s=t,s_4=q,53=p,so=rs5_1=k so=1, {futy_=1{1,1,2,3,5,8,13,...... } o fo=1.

S5n+4 = (

Proof. For n = 0, the result holds. Now suppose that # > 0 and that our supposition holds for n — 1, n —2. That is

s _ lkrpgt
T g+ fat) Fur P+ 12@) Fno1 7+ fu2) G ak+ fur) (faal + fr1k)

s _ lkrpgt
n (fum1g+ fut) (fum1P + [2@) (fam17 + fuP) (fao1k+ fur) (fu—1] + fuk) ’

s _ lkrpgt
e (fnq+fn—lt) (fnp+fn+lq) (fnr+fn+lp) (fnk+fn+lr) (fnl+fn+1k) ’
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s _ lkrpgt
3T+ Fuirt) Fap + for1@) Gnot 7+ fap) otk + fur) (1l + fuk)”

s _ lkrpgt
2T (fug+ furt) np + fu1@) Far & Fs1P) etk far) (e L+ fuk)

s _ lkrpgt
T Faa+ fuirt) b + fu1@) Far + Fs1P) k& frg17) (e L+ fk)

Now, from equation 5.1, we see that,

S5y = Ssy_| — —on=155n=5
S5p—5 1+ 5506
_ lkrpqt
(fuq + fus1t) (fap + far19) (far + fus1 D) (fak + fas1r) (fam1 1+ fuk)
lkrpqt
(fnq+fn+lt) (fnp+fn+14) (fnr+ﬁz+117) (fnk+fn+lr) (fnfll‘f‘fnk)
lkrpgt
_ (fn71q+fn[) (fnflPJan‘I) (fn71r+fnp) (fnflkJanr) (fnfll+fnk)
lkrpgt )
(frhl‘]‘l'fn[) (fn71P+fan) (fnflr“’fnp) (fnflk'i'fnr) (fnfll“‘fnk)
lkrpqt
(fu—1g+ fut) (fum1P + [2q) (fu—17+ fuP) (fa—1k + fur) (fa—2l + fu—1k)
lkrpqt

(fug+ fas1t) (fup + fus19) (far + fas10) (fuk + fug17) (fam1l + fuk)

lkrpqt ( 1 )
(fn51+fn+1t) (fnP"‘fnJrlq) (fnr+fn+ll7) (fnk+fn+1r) (fnfll + fuk) \ fu—1l+ fuk

1 1
ntl 1 fk) © (fnle+fn71k)}

lkrpgt
(fn‘]+fn+1t) (fnP"‘fnJrlCI) (fnr+fn+ll7) (fnk+fn+1r) (fnfll + fuk)

lkrpgt
) a_1k
((fnq+fn+1z>(fnp+fnﬂq> Gar + fura?) Uk Jaa?) <fnflz+fnk>) Un—al + fu-1k)

fnfll +ﬁ1k+fn72l+fn71k

lk}’pql (] _ fn72l+fn71k)

(fuq + fus1t) (fap + for19) (far + fus1D) (fak + far1r) (fam1l + fuk) Sal + frv1k
lkrpqt So—1l+ fuk

(fnq + for1t) (fup + fos19) (far + fus1P) (fuk + frp17) (fa—1l + fuk) (fnl+fn+lk)

Therefore,

oo — lkrpqt
ne (fug 4 fas1t) (fup + fa19) (fur + fas1p) (fak + fui1r) (fal + fri1k)

Now, from equation 5.4

Ssmid =  Ssni3 S5n+355n—1
n+ - Sn+3
S5p—1 1+ S50-2

Lkrpgt

(far1a+ fusat) (fur1P+ fus2q) (fns17 + fusa D) (k4 fug17) (ful 4 fug1k)

( lkrpqt ) "
(fn+1‘I+fn+21) (fn+1p+fn+2‘I) (fn?klr‘anJer) (fnk+fn+lr) (fnl+fn+lk)
rpqt
(fug + fros1t) (fup + frr19) (far + fus12) (fuk + fug17) (fam1l + fuk)

lkrpgt
|: (fnq+fn+ll)(fnp+fn+lq)(fnr+fn+1p)(fnk+fn+lr)(fn—ll+ﬁlk) ]
n lkrpqt

(an+ﬁl+lt) (fn[’+fn+IQ) (fnr+fn+lp) (fn—lk+fnr) (fn—ll""fnk)
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lkrpqt > < 1 >
<(fn+1q+fn+2t) (fur1P + for2q) (17 + farap) (nk + fur1r) (ful + fur1k) Sk + fur1r

- 1 1
4
Suk+ fopar fn—lk+fnr:|

_ lkrpgt { B Jn—1k+ fur }
(fn+lq +fn+2l) (fn+lp +fn+ZQ) (fn+1r+fn+2p) (fnk+fn+lr) (fnl +fn+1k) (fnflk"‘fnr) + (fnk+fn+1r)
B lkrpgt {1 _ famtk A+ far }
(fn+1q+fn+21) (fI‘IJrIP +fn+2‘I) (fn+1r+fn+2p) (fnk+fn+1r) (fnl +fn+1k) Jnrrk+ fuiar
Therefore,
s _ lkrpqt
T Gunra+ fuat) Unir 0+ Fui2@) U1 7+ Fuap) Gtk + fuar) (fal  fu1k)”
Remaining relations can be found similarly. Hence, the proof is completed. O

Example 5.6. Assume s_s5=1,5_4=3,5_3=06,5_2=05,s5s_1=2, 50 ="7.(Figure 5.4, shows behavior of solution of 5.4)

plotofs .=s -((s;s,_g/(s _4+5s 5)
7 ‘ ‘

0 5 10 15 20
n—itteration

Figure 5.4: Shows behavior of Solution of 5.4

5.4. Fourth equation

In this section we deal with the specific form of the 1.1

SnSn—4
Spp] =Sp——, n=0,1,... 5.5)
Sn—4 = Sp—5

where the initial conditions s_5, s_4, s_3, S_2, 5_1, §o are arbitrary non-zero real numbers with s_5 # s_4# s_3%# s_2# s_| # 0.

Theorem 5.7. Let {s,};__sbe a solution of 5.2. Then every solution of it is periodic with period 24. Moreover, {s,}__s takes the form

¢ okl o tql tqpl tqprl tqprkl —tprkl
2D P T =) (g-p) @)1 @) p-n0—K’ a—p)p-nT-RED)’ Gp)p-—r)r—Rk-1)’
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or,
$24n-5 = I, $24n—4 = ¢,
$24p-3 = P, $24p—2 =T,
sun-1 = k, s24n =1,
s t! s tql
2n+l = T 2Wn42 =
nt I~k " (t—q)(g—p)
tqpl tqprl
$24p43 = ) $24n+4 = )
" (t—q)(g—p)(p—1) " (=) (q-p) (p—r)(r—Fk)
tqprkl —tprkl
$24n+5 = 5 $24n+6 = >
" (t—q)(q—p)(p—r)(r—k)(k—1) " g=p)(p—r) (r—k)(k—1)
s B trkl s B —tkl
24n+17 - (p_r)(r_k)(k_l)7 24n+8 — (r—k)(k_l)’
tl
S24n+9 = *k—1)’ S24n+10 = —1,
S24n+11 = ¢, $24n+12 = —P,
S24n+13 =~ $24n+14 = —Kk,
—1l
S2ny1s = —L S2n+16 = gy
s —tql s —tgqpl
2n+17 = T 24n+18 = )
" (t—q)(g—p) "R =g g-p)(p—1)
s —tqprl s —tgprkl
2An419 = ) 240420 = )
" (t—a)(qg—p)(p—r)(r—k) T t—q)(g—p) (p—7) (r=k)(k—1)
s _ tprkl s _ —trkl
T (g=p) (p=n) r= R k=1) BT =) (r=R)(k=1)’
B tkl ol
$24n423 = 70 “Hk=1) $24n4+24 = 7(]( —y
where s_s=t,5 4=¢q, 5 3=p,S_o=rs_1=k so=1
Proof. The proof is left to the reader. O

Example 5.8. Assume s_5=2,5 4=17,5 3=15,5 =14, 5 1 =19, 5o = 11. (See Figure 5.5 for the periodic behavior of 5.5)
ands_s=—-2,5 4=17, 5 3=15 5 0=-8,5s_1 =19, so = 1. (See Figure 5.6)

plot of X,
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Figure 5.5: Shows periodic solution of 5.5
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plot of X 1= xn—((xnxn_4)/( X 4= %, 5))
20 ‘ ‘

101 1

—10} 4

_20 L L
0 20 40 60 80 100

n—itteration

Figure 5.6: Shows periodic solution of 5.5

6. Conclusion

In This paper we studied global stability, boundedness and the solutions of some special cases of equation 1.1. In Section 3 we proved when
B(y+38) < (y+8)*(1 —a), 1.1 has local stability. We proved in the same section that the unique equilibrium of equation 1.1 is globally
asymptotically stable if y(1 — o) # B. In Section 4 we showed that the solution of equation 1.1 is bounded if (o + E) < 1. In Section 5, we
obtained the expression and closed form solution of four special cases of equation 1.1 and gave numerical examples of each of the case, with
different initial values.
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