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The Evolution of Fractional Calculus
J. A. Tenreiro Machado ID ∗,1

∗Institute of Engineering of Porto, Polytechnic of Porto, Portugal.

ABSTRACT Fractional Calculus started in 1695 with Leibniz discussing the meaning of Dny for n = 1/2.
Many mathematicians developed the theoretical concepts, but the area remained somewhat unknown from
applied sciences. During the eighties FC emerged associated with phenomena such as fractal and chaos
and, consequently, in nonlinear dynamical. In the last years, Fractional Calculus became a popular tool for the
modeling of complex dynamical systems with nonlocality and long memory effects.

KEYWORDS

Fractional calcu-
lus
Non-locality
Long range mem-
ory

INTRODUCTION

The generalization of the concept of derivative Dα f (x) to
non-integer values of α goes back to the beginning of the
theory of differential calculus in the follow-up of the bril-
liant ideas of Gottfried Leibniz (Machado and Kiryakova
2019). The development of this area of knowledge is due
to the contributions of important scientists such as Euler,
Liouville and Riemann (Machado et al. 2010; Valério et al.
2014) as represented in Fig. 1. In the fields of physics and
engineering, Fractional Calculus (FC) is presently associated
with the modelling of complex phenomena with nonlocal-
ity and long memory effects (Tarasov 2019a,b; Băleanu and
Lopes 2019a,b). This paper introduces the fundamentals of
this tool, its application in the control of dynamical systems,
and present day state of development.

MATHEMATICAL FUNDAMENTALS OF FRAC-
TIONAL CALCULUS

The most used definitions of a fractional derivative of order
α are the Riemann-Liouville (RL, t > a, Re (α) ∈ ]n − 1, n[),
Grünwald-Letnikov (GL, t > a, α > 0) and Caputo (C, t > a,
n− 1 < α < n) formulations (Kochubei and Luchko 2019a,b;
Karniadakis 2019):

Manuscript received: 9 September 2021,
Accepted: 11 September 2021.

1 jtm@isep.ipp.pt (Corresponding author)

RL
a Dα

t f (t) =
1

Γ (n − α)

dn

dtn

t∫
a

f (τ)

(t − τ)α−n+1 dτ, (1a)

GL
a Dα

t f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
k=0

(−1)k

 α

k

 f (t − kh) , (1b)

C
a Dα

t f (t) =
1

Γ (n − α)

t∫
a

f (n) (τ)

(t − τ)α−n+1 dτ, (1c)

where Γ (·) is Euler’s gamma function, [x] means the integer
part of x, and h is the step time increment.

These operators capture the history of all past events, in
opposition to integer derivatives that are ‘local’ operators.
This means that fractional order systems have a memory
of the dynamical evolution. This behaviour has been rec-
ognized in several natural and man made phenomena and
their modelling becomes much simpler using the tools of
FC, while the counterpart of building integer order mod-
els leads often to complicated expressions Machado and
Lopes (2020b,a). The geometrical interpretation of fractional
derivatives has been the subject of debate and several per-
spectives have been proposed (Machado 2003, 2021).
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Figure 1 The FC timeline

Using the Laplace transform we have the expressions:

L
{

RL
0 Dα

t f (t)
}
= sαL { f (t)} −

n−1

∑
k=0

sk RL
0 Dα−k−1

t f
(
0+

)
,

(2a)

L
{

C
0 Dα

t f (t)
}
= sαL { f (t)} −

n−1

∑
k=0

sα−k−1 f (k) (0) ,

(2b)

where s and L denote the Laplace variable and operator,
respectively.

The Mittag-Leffler function (MLF), Eα (t), is defined as:

Eα (t) =
∞

∑
k=0

tk

Γ (αk + 1)
, α ∈ C, Re (α) > 0. (3)

The MLF represents a bridge between the exponential
and the power law functions. In particular, when α = 1 the
MLF simplifies and we have E1 (t) = et, while, for large val-
ues of t, the asymptotic behaviour yields Eα (−t) ≈ 1

Γ(1−α)
1
t ,

α ̸= 1, 0 < α < 2.
Since the Laplace transform leads to:

L {Eα (±atα)} =
sα−1

sα ∓ a
(4)

we observe a generalization of the Laplace transform pairs
from the exponential towards the ML, namely from integer

up to fractional powers of s. The more general MLF, often
called two-parameter MLF, is given by:

Eα,β (t) =
∞

∑
k=0

tk

Γ (αk + β)
, α, β ∈ C, Re (α) , Re (β) > 0. (5)

The function defined by (3) gives a generalization of (5),
since Eα (t) = Eα,1 (t).

FRACTIONAL CONTROL
Let us consider an elemental feedback control system of
fractional order α, with unit feedback and transfer func-
tion G (s) = K

sα , 1 < α < 2, in the direct loop (Machado
1997, 2001). The open-loop Bode diagrams of amplitude
and phase have a slope of −20 dB/dec and a constant phase
of −α π

2 rad, respectively. Therefore, the closed-loop sys-
tem has a constant phase margin of π

(
1 − α

2
)

rad, that is
independent of the system gain K.
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Assume that K = 1, so that G (s) = 1
sα , and that the

closed-loop system is excited by an unit step input R (s) = 1
s .

The output response will be C (s) = 1
s(sα+1) , or, in the time

domain, c (t) = 1− Eα (−tα). Figure 2 depicts the responses
for α = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. We observe
that the fractional values ‘interpolate’ the cases of integer
orders α = {0, 1, 2}. We note a fast initial transient followed
by a slow convergence for the steady-state value, which is
typical of many fractional order systems.

A popular application of FC is in the area of control
(Petráš 2019) and corresponds to the generalization of
the Proportional, Integral and Derivative (PID) algorithm,
namely to the fractional PID. The PIλDµ control algorithm
has a transfer function given by:

Gc (s) = KP + KIs−λ + KDsµ, (6)

where KP, KI and KD are the proportional, integral and
differential gains, and λ and µ are the fractional orders of
the integral and derivative actions, respectively. The cases
(λ, µ) = {(0, 0) , (1, 0) , (0, 1) , (1, 1)}, correspond to the P,
PI, PD and PID, respectively.

Figure 2 Time response c (t) = 1 − Eα (−tα) of the fractional
closed-loop system for a unit step reference input and α =
{0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

PROGRESS OF THE FRACTIONAL CALCULUS
We can estimate of the present day state of FC using publicly
available information, just to remind that until 1974 there
were only 1 book devoted to FC as a topic, while by 2018
the number of FC books were estimated to be more than
240 Machado and Kiryakova (2017). For that purpose we se-
lected the program VOSviewer van Eck and Waltman (2009,
2017) as the tool for processing bibliographic information.

Let us consider (i) data is available at Scopus database,
(ii) papers published during year 2020, and (iii) 8 search key-
words, namely {Fractional calculus, Fractional derivative,
Fractional integration, Fractional dynamics, Mittag-Leffler,
Derivative of non-integer order, Integral of non-integer or-
der, Derivative of complex order, Integral of complex order}
that yields 6,589 records. The VOSViewer allows several
perspectives of bibliographic analysis, but let us start by
considering a network plot for the options ‘Co-occurrence’,
‘All keywords’, ‘Full counting’, ‘Minimum number of occur-
rence of a keyword=4’. This search gives 2,764 keywords, as
shown in Fig. 3. On the other hand Fig. 4 depicts the net-
work plot for the options ‘Co-authotship’, ‘Countries’, ‘Full
counting’, ‘Minimum number of occurrence of a country=4’,
, ‘Minimum number of citations of a country=2’ that gives
77 cases. The two network plots show that FC is presently
applied in all fields of science, going from the areas of math-
ematics, physics, engineering and economy, up to medicine,
biology and genetics, and the topic is presently very popular
in all countries of the globe.
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CONCLUSIONS

This work introduced and discussed several aspects of the
FC. The history, fundamentals and the use of FC in control
were described. The present day areas of application of
FC and its evolution were also analyzed using a computer
package for processing bibliographic information.
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Experimental Validation of a Chaotic Jerk Circuit Based
True Random Number Generator
R. Chase Harrison ID ∗,1, Benjamin K. Rhea ID ∗,2, Ariel R. Oldag ID ∗,3, Robert N. Dean ID ∗,4 and Edmon Perkins ID †,5

∗Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, United States, †LAB2701, Department of Mechanical and
Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, United States.

ABSTRACT A method for true random number generation by directly sampling a high frequency chaotic jerk
circuit is explored. A method for determination of the maximum Lyapunov exponent, and thus the maximum bit
rate for true random number generation, of the jerk system of interest is shown. The system is tested over
a wide range of sampling parameters in order to simulate possible hardware configurations. The system is
then implemented in high speed electronics on a small printed circuit board to verify its performance over
the chosen parameters. The resulting circuit is well suited for random number generation due to its high
dynamic complexity, long term aperiodicity, and extreme sensitivity to initial conditions. This system passes
the Dieharder RNG test suite at 3.125 Mbps.

KEYWORDS

Random number
generation
Dieharder
Chaotic circuits
Chaos theory
Nonlinear dynam-
ics
Jerk oscillator

INTRODUCTION

Chaos and randomness have gone hand-in-hand since the incep-
tion of the idea that both natural and man-made systems could
produce wildly different behaviors given seemingly identical con-
ditions. There has always been a struggle to determine the outcome
of future processes given only present information, but the feasibil-
ity of these endeavors has only recently been quantified in terms
of entropy and randomness. Efforts to achieve this understand-
ing have shed light on the inherent nonlinear dynamics. As such,
these properties can be exploited to achieve a randomness that can
be understood and measured, yet retain the useful unpredictable
nature of these dynamics.

Security and communications systems today, including finan-
cial security, RFID, and cryptography, rely on this idea of random-
ness Sundaresan et al. (2015); Volos (2013). Specifically, these tech-
nologies depend heavily on random bits being readily available
to process into various encryption schemes. It is important that
the random numbers in these systems exhibit various statistical
properties that are indicative of a theoretically perfect random se-
quence. These are qualitatively grouped into terms such as “strong”

Manuscript received: 11 May 2022,
Revised: 4 June 2022,
Accepted: 5 June 2022.
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2 bkr0001@auburn.edu
3 anr0025@auburn.edu
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or “weak” random numbers. If the random numbers are less than
ideal or lack statistical randomness, the biases and dependencies
in the bit stream can potentially compromise encrypted systems.
Thus, it is imperative that the random numbers can be trusted
to be theoretically random. In order to evaluate the statistical
properties of random numbers, the bit sequences are submitted to
various RNG tests, many of which are bundled into test suites such
as NIST’s Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications and Duke
University’s Dieharder Random Number Test Suite Bassham III
et al. (2010); Brown et al. (2013). Most systems today use a pseudo-
random number generator (PRNG), since they are easily integrated
into electronic systems; however, true random number generators
(TRNGs) provide fundamental advantages since their numbers are
truly “random” in addition to statistical randomness.

PRNGs are exceptional choices for producing statistically ran-
dom numbers quickly, even though they lack true randomness.
These pseudorandom bit sequences are produced using various
algorithms, which range in both computational requirements and
complexity Akhshani et al. (2014); Han and Kim (2017); Li et al.
(2010). Because there are no physical processes limiting these al-
gorithms, the implementation of the algorithm can be made as
fast as possible, and pseudorandom numbers can be made when
needed without regard to lack of supply. However, the fact that
these RNG schemes are entirely software based presents inherent
weaknesses to the strength of these schemes. First, an exact replica
of the scheme can be copied across many systems. For this reason,
if a portion of the sequence is known, the rest of the sequence
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can be extrapolated. Second, the initial state of the system (e.g.,
the “seed”) exactly determines all future outputs of the system.
Hence, the true randomness of PRNGs is extremely low despite
their adoption throughout electronic, security, and communication
systems.

Rather than producing statistically random numbers that can
be replicated at will, true random number generators instead are
based on a physical process (here, a chaotic circuit) that generates
entropy. After the chaotic circuit generates entropy, a method is
used to extract a bit of information from the dynamic response.
Together, the chaotic system and the method of bit extraction may
be considered a TRNG. One method for quantifying the entropy in
a system of interest is in terms of a maximum Lyapunov exponent
(MLE). This is the rate of divergence of two trajectories with almost
identical initial conditions that are allowed to propagate in time.
The maximum Lyapunov exponent also determines the maximum
rate at which truly random bits can be extracted from the system
Wolf et al. (1985). In essence, new information is available from the
system at a specified rate, and once that information is extracted,
there is a period of time before new information is available to be
extracted again. Thus, a system with a large MLE gets this new
information, and thus random bits, faster than a system with a
small MLE.

Characteristics such as sensitivity to initial conditions, aperiod-
icity, and spread spectrum power density make chaotic systems
ideal candidates for true random number generation Guinee and
Blaszczyk (2009); Ergun and Ozoguz (2007); Pareschi et al. (2009);
Blaszczyk and Guinee (2008). Chaotic systems that can be rep-
resented by sets of differential equations have the ability to be
quantified as potential RNGs both from the ideal equations and
from the implementation in hardware Valtierra et al. (2017); Sprott
(2000); Tavas et al. (2010); Saito and Fujita (1981). Unfortunately,
most chaotic systems that can be easily described with differential
equations often do not lend themselves to simple electronic circuit
implementation, while processes that are seemingly chaotic can
be difficult to quantify accurately without prior knowledge of the
underlying mechanics of the system.

Since the final goal of a TRNG is to get bits from a physical
hardware process into a digital system, a scheme for forming these
random bits from a process must be chosen. Many methods to
achieve this are available, including sampling the process with an
analog-to-digital converter, observing resulting clock jitter, and
multiple oscillator sampling Cicek et al. (2014). Although the cal-
culation of a maximum Lyapunov exponent in a system sets the
maximum rate at which bits can be extracted from the system, there
is no information determined about which bit sampling method to
use. Often, the bit sampling method will necessitate using various
post processing techniques to correct for the biases inherent in
most sampling techniques of these physical systems. This is done
to ensure the statistical randomness needed in order to pass the
stringent testing that is required for random number generators
Pareschi et al. (2010).

THE IDEAL JERK CHAOTIC SYSTEM

Many third order differential equations that exhibit chaotic behav-
ior have previously been explored by Sprott Sprott (2010). These
systems are known as “jerk” systems, because of their dependence
on the third derivative with respect to time. Jerk systems have
been implemented as a Josephson junction circuit Yalçin (2007), a
diode-based circuit design Njitacke et al. (2017), and a smoothly-
adjustable nonlinearity circuit Kengne et al. (2019).

This work focuses on a jerk oscillator that has a nonlinear term

that is easily implemented in electronics: a signum function. Specif-
ically, each of the integration stages can be implemented with op-
erational amplifiers, and the signum function can be implemented
as a high speed comparator Harrison et al. (2016). The jerk system
of interest is given below as a third order differential equation in
(1) and (2).

...
x = −0.5ẍ − ẋ − x + sgn(x) (1)

where

sgn(x) =

{
+1, x ≥ 0

−1, x < 0
(2)

The nonlinearity in this system is caused by the signum function.
The nonlinear dynamics for this type of system was well-defined
by Sprott Sprott (2010). A modern implementation of this circuit
using a comparator instead of a saturated operational amplifier
is used in the current paper. A phase space plot of this system is
shown in Fig. 1.

Figure 1 The ideal jerk equation’s simulated phase space.

Next, the maximum Lyapunov exponent of the system needs
to be estimated so that the maximum bit rate for random num-
ber generation can be found. The method chosen to accomplish
this is a direct measurement of the divergence rate for many pairs
of simulated trajectories that have almost identical initial condi-
tions. The sensitivity of these chaotic systems to initial conditions
causes trajectories that are different only by an amount well below
measurement thresholds of real systems to quickly diverge. The
MLE is then calculated by comparing the inital offset between the
two systems with the time it takes for the difference in trajectories
to reach a chosen threshold. This calculation is given with the
following equation:

MLE =
ln( threshold

o f f set )

time
(3)

where threshold is the chosen divergence limit, offset is the initial
difference in states of the two trajectories, and time is the final time
taken to reach the threshold. Then, this translates into a theoretical
maximum bit rate as follows:
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bitrate =
MLE
ln 2

≈ 1.443 ∗ MLE (4)

The bit rate given in eq. (4) has units of s−1.
For the jerk system, 1000 time domain simulations are per-

formed in order to determine the MLE by using a MATLAB script
to implement the differential equations with a fixed time step.
Initial conditions for both systems (the x, ẋ, and ẍ states) are ran-
domized such that they were between −1 and +1, so that the
trajectories remain in the chaotic region of the attractor rather
than becoming globally unstable. Then, a very small offset (be-
tween 10−12 and 10−8) is applied to the second system’s x state.
The threshold limit is chosen to be between 10−4 and 10−1. The
systems are then simulated forward in time until they reach the
specified threshold. After this point, the systems diverge quickly.

The resulting MLE from many simulations with various initial
conditions, thresholds, and offsets are between 0.152 and 0.153 for
the jerk system. The MLE calculated in Sprott (2000) for the same
system when using another method with some approximations is
similar to this value. This then gives a bit rate of 0.218 and 0.221
bits per second. Examination of the system reveals that the system
has a natural “pseudo frequency” of oscillation (when considering
the time to complete one orbit around half of the attractor) of
approximately 0.2 Hz. Thus, the bit rate of the system itself is
approximately 1 bit per cycle. By framing the bit rate this way,
the system can be scaled to any frequency, and the bit rate will
remain constant with respect to the system. Specifically, when the
system is implemented at high frequency in an electronic circuit,
the circuit will be able to generate random bits at this higher natural
frequency, as long as the system is represented accurately.

RANDOM NUMBER GENERATION

In order to obtain random bits from the system, the system is
sampled at a fixed rate using an analog-to-digital converter (ADC).
There are a number of different parameters for an ADC that can be
chosen in regards to sampling, including voltage range, sampling
frequency, and bits of resolution. In order for the jerk system to
be a true random number generator, the sampling parameters
of the ADC, which samples the system to produce bits that are
statistically random, must be determined. These parameters are
then replicated in hardware, and the physical electronic circuit is
sampled in order to get truly random bits.

Simulation of an ADC sampling the system is achieved in MAT-
LAB by implementing the jerk system equation. The 32-bit floating
point value for x (since the x variable is sampled in hardware)
is then converted to an n-bit sample value based on the chosen
resolution of n bits and the ADC’s maximum voltage. Successive
samples are taken at approximately the natural pseudo frequency
of the jerk system (i.e., at 0.2 Hz). For each sample, every bit of the
sample except the lowest bit is discarded, and the lowest remaining
bits are concatenated to form 8-bit random bytes.

The Dieharder test suite is used to evaluate the bit sequences
generated from this simulation. There are 114 tests of randomness
in this suite, but some tests are simply variations of other tests.
However, in evaluating the sequences for randomness, the 114 tests
are viewed as independent. Each test returns a P-value between 0
and 1, which is interpreted as follows: a P-value that is between
0.005 and 0.995 is considered to have passed that test, and a P-
value of exactly 0 or 1 is considered to have failed. P-values that
are under 0.005 and above 0.995 are “weak” and can be further
resolved to either pass or fail through more testing. Due to the
amount of data that Dieharder requires, some sequences that are

actually random will produce weak P-values in approximately 1%
of tests. An example output of Dieharder is shown in Fig. 2.

Figure 2 Partial output of Dieharder testing. More tests and re-
sults are given than are shown here.

The P-values returned by the Dieharder tests are such that if
the tested bit sequence is statistically random, the P-values are
uniformly distributed from 0 to 1. This allows for both individual
test results and the results from the Dieharder suite as a whole to
be analyzed quickly. This can be visually represented by plotting
the test results versus a uniform distribution, in order to see the
agreement. An example of this process is shown in Fig. 3 for simu-
lation and hardware results. The P-values are sorted in ascending
order (the type of test for each P-value is not taken into account)
when plotted as a cumulative frequency against a straight line (the
uniform distribution). Although this is only simulated data, it
provides a baseline from which to build a hardware system that
closely matches the parameters from the simulation equation and
the analog-to-digital converter. From this testing, it is discovered
that bit sequences gathered from ADC resolutions below 10-bits
do not pass the Dieharder suite, indicating that these sequences
are not statistically random. Above the 10-bit resolution mark, the
P-values from the generated bit sequences are close to the desired
uniform distributions.

These simulation test results are performed by sampling at 1
bit per cycle, and almost ideal results are obtained at the 12-bit
resolution level. When the sampling frequency is increased to 2.5
bits and 5 bits per cycle at 12-bits of resolution, the bit sequences
still pass most or all of the Dieharder test suite. These plots indicate
that statistically random bits can be obtained from a system that
is sampled faster than the maximum Lyapunov exponent dictates
for true random number generation. Thus, it is imperative that
the implementation of the random number generation take into
account the theoretical limitation for true randomness. Beyond
this limit, the system as a whole cannot be truly random, even
though statistical randomness might be achieved at a higher bit
rate.

HARDWARE CIRCUIT DESIGN AND TESTING

The circuit presented in this paper, which is shown in Fig. 4,
includes additional components to make testing easier. Preliminary
simulations of this circuit were presented in Harrison et al. (2019),
and a preliminary design of this circuit was described in Harrison
et al. (2016) and Harrison et al. (2017). Specifically, the current
circuit has pin headers used to power the board that are exchanged
with a micro USB connector to enable power to come directly from
a number of readily available power sources, including a host
computer with an open USB port or a mobile battery bank for
testing inside of an enclosed space. A PMOS transistor is placed
after this connector in order to apply power to the rest of the circuit
in a more controlled fashion (via unshorting a jumper on the board
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Figure 3 Cumulative frequency plot of Dieharder test results from simulating the 16th bit of an ADC in software, and hardware imple-
mentation of ADC sampling of the jerk circuit at 3.125 MSPS.

from ground) than just plugging in the connector. Also, in testing
previous versions of the board, it was discovered that the circuit
could enter a periodic railing state upon being powered, but it
could then be forced into the normal chaotic state by temporarily
shorting the x node of the op amp integrators to ground.

A small momentary switch is added to this node to facilitate
this correction. Finally, the signum output is taken from the –Q pin
on the comparator so as to not interfere with the Q signal in the
feedback path. The Q pin is the signum output of the comparator,
which is directly connected to the rest of the feedback summing
circuitry. In earlier versions of the board, probing this pin directly
caused some undesired changes to the chaotic attractor, since the
oscilloscope loaded the pin. Essentially, if probed, the signum
output would no longer be accurate. To remedy this, the chip has
a –Q output that can be probed instead, which can be inverted if
needed. By probing the –Q pin, this leaves the Q output undis-
turbed. As another solution, the Q output could instead have been
buffered with another chip (e.g., an operational amplifier), but the
current board was designed with a minimal part count in mind.
The pseudo-fundamental frequency of the board was maintained
at 4 MHz. A picture of the front and back of the updated board is
shown in Fig. 5.

It should be noted that the 15kΩ resistors are a deviation from
the ideal operational amplifier integration circuit, and, in fact, these
convert the ideal integrators into active amplifier circuits with a
low pass filter. Since the gain of these integrators was high, the
operational amplifier integrators could easily saturate on startup,
which would prevent oscillations from occurring. The 15kΩ resis-
tors prevent saturation of the feedback capacitors. The 15kΩ value
for these resistors was found from trial and error: a resistance that
is too high causes the capacitor to saturate, while a resistance that is
too low causes the oscillations to be considerably damped (e.g., the
chaotic signal would stay on each side of the attractor for too long
before switching, which reduces the Lyapunov exponent of the
implemented circuit). This value was chosen for good oscillation
characteristics compared with the ideal circuit.

Figure 4 A schematic of the electronic implementation of the jerk
oscillator.

For testing of this circuit as a true random number generator,
ADC sampling is achieved using a Handyscope HS6 USB Oscil-
loscope from TiePie Engineering connected to a host computer
running the provided MultiChannel software. The circuit is pow-
ered from a USB port on the same computer. The HS6 allows for
up to 16 bit streaming ADC sampling, but at that resolution the
sampling speed is limited to 3.125 MS/s, slightly less than the
desired 4 MS/s to achieve a 1 bit per cycle random output. The
full scale voltage of the ADC is chosen to be ±2 V since the circuit
has peaks of approximately ±1 V when AC coupled to the oscillo-
scope and powered using the single 5V supply from the USB port.
This results in a loss of approximately 1 bit of resolution when
compared to a full scale voltage that is smaller, but the next lowest
supported by the MultiChannel software is 800 mV. A screenshot
of the circuit being sampled in this software is shown in Fig. 6.

CHAOS Theory and Applications 67



Figure 5 The front and back of the populated circuit board that
implements the jerk equation at 4 MHz.

Figure 6 Data readout from the Handyscope HS6 from the hard-
ware circuit.

32 GB of data is collected from the x node of the circuit at 3.125
MS/s and then split using a MATLAB script into sixteen 2 GB
files, one with each separate bit of the 16-bit samples concatenated
together. These files are then subjected to Dieharder testing in the
same manner as the jerk equation simulation data. These results
are shown in Fig. 3.

For the hardware circuit, the bit sequences pass most of the
Dieharder tests starting at the 13th bit and do not fail any tests
at the 16th bit of the ADC sample. At the 12th bit and above, the
sequences systematically fail certain sets of tests, most notably the
sts_serial and rgb_lagged_sum series of tests. These tests involve
skipping many bits in a row and thus the input file is rewound
multiple times for each of these tests. This can potentially make the
bit sequence seem like it is repeating itself, but this is unavoidable
with this setup of Dieharder without a much larger input file size.

A concern for this method of sampling (i.e., taking one bit per
sample of a high resolution sample) is that the lowest bits are
masked by noise in the system, and thus the randomness ulti-
mately achieved may be due to noise and not to the chaotic dynam-
ics in the system. Although the noise floor is a useful metric for
linear systems, noise and nonlinearity can produce unintuitive dy-
namics. For instance, noise can cause a system undergoing chaos
to become regular Lepik and Hein (2005), but it can also drive a
system undergoing regular motion to become chaotic Perkins and
Balachandran (2012). Further, noise can cause stochastic resonance
Perkins and Balachandran (2015), modify the hysteresis curve of
nonlinear oscillators Perkins (2017); Perkins and Fitzgerald (2018),
affect the dynamics of intrinsic localized modes in coupled oscil-
lator arrays Perkins et al. (2016); Balachandran et al. (2015), and
cause learning to be degraded in an adaptive oscillator circuit Li
et al. (2021).

In order to investigate whether the noise had an effect on the
randomness of the jerk oscillator, two additional tests are per-
formed using Dieharder. In the first test, the +5V power rail on
the board is used to generate random bits using the same sam-
pling parameters at the 16th bit of resolution. In the second test,
a separate chaotic circuit with higher fundamental frequency is
likewise sampled. Both of these bit sequences fail the majority of
the Dieharder suite with 2 GB input files. If the sampling or ther-
mal noise in the jerk chaos board was providing the randomness
in order to pass Dieharder, then the sequences generated from the
noise should pass the test suite. These results show that the statis-
tical randomness achieved using this particular nonlinear circuit
and bit extraction technique is likely coming from the nonlinear
dynamics, instead of from electronic noise.

Although there is no real way to prove randomness, the results
from the Dieharder RNG test suite indicate that the jerk circuit is
able to provide statistically random bits from a hardware source
under various circumstances. This test suite is widely used to strin-
gently test pseudorandom number generators with much larger
bit sequences available on demand. Since the chaotic jerk circuit is
implemented in a small form factor with commercial off the shelf
components, it can easily be integrated into other systems requir-
ing truly random bits at high speeds. The test results from both
the simulated and hardware TRNG are in good agreement with
each other. Overall, the jerk oscillator circuit is an ideal candidate
for random number generation.
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CONCLUSION

A scheme for extracting true random numbers directly from a
chaotic jerk system is shown. This system is implemented in high
speed electronics on a small printed circuit board and sampled in
accordance with the necessary parameters found from the simula-
tion results. The bit sequences generated from the physical system
pass the Dieharder Random Number Generator test suite, which
enables this system to function as a fast random bit generator for
many different applications. Overall, this system shows high dy-
namic complexity in a compact form, which is desirable for a true
random number generator.
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ABSTRACT A fractional-order Leslie-Gower prey-predator-parasite system with delay is proposed in this
article. The existence and uniqueness of the solutions, as well as their non-negativity and boundedness, are
studied. Based on the characteristic equations and the conditions of stability and Hopf bifurcation, the local
asymptotic stability of each equilibrium point and Hopf bifurcation of interior equilibrium point are investigated.
Moreover, a Lyapunov function is constructed to prove the global asymptotic stability of the infection-free
equilibrium point. Lastly, numerical examples are studied to verify the validity of the obtained newly results.
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INTRODUCTION

Ecosystem is an extremely complex dynamics system. Mathemati-
cians have great interest in dynamical characteristics of ecosystem.
Especially, ecology and epidemiology attract more and more math-
ematicians’ attention. Although ecology and epidemiology are
two different fields, they get closer and closer for years(Anderson
and May 1980; Zhou et al. 2010; Mbava et al. 2017; Shaikh et al.
2018; Adak et al. 2020). In 1980, Anderson and May first to study
the eco-epidemiological model with disease in the prey(Anderson
and May 1980). Recently, Zhou et al considered a predator-prey
model with modified Leslie-Gower functional response and stud-
ied the Hopf bifurcation of this model(Zhou et al. 2010). They
found that when the rate of infection exceeds a critical value, the
strictly positive interior equilibrium experiences Hopf bifurcation.
The eco-epidemic predator-prey model exhibits interesting dynam-
ics with infected predators. So, Shaikh et al considered the stability
of a Holling type III response mechanism for predation(Shaikh
et al. 2018). The predator faced enormous competition from super-
predators and even faced extinction. The disease was regarded as
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a biological control that allowed predator populations to recover
from low numbers. Hence, Mbava et al considered a predator-prey
model with disease in super-predator and studied its dynamic
properties(Mbava et al. 2017). In addition, Adak et al analyzed
the chaos and Hopf bifurcation of the delay-induced Leslie-Gower
predator-prey-parasite model(Adak et al. 2020). It can be seen that
research on eco-epidemiological models is a hot topic.

Fractional calculus is an extension of classical calculus. In re-
cent years, fractional calculus has developed rapidly, which has
gradually penetrated into scientific and engineering application
fields. Furthermore, it also has become an important tool in many
fields(Kilbas et al. 2006; Rajagopal et al. 2020; Li and Chen 2004).
Compared with integer-order derivative, the fractional derivative
has better memory. It can excellently describe long-range tempo-
ral memory(Rihan and Rajivganthi 2020). Since most biological
models have long-range temporal memory, it is significant to con-
sider the fractional derivative into account. Currently, research on
this area has some outstanding results(Yousef et al. 2021; Li et al.
2017a; Boukhouima et al. 2017; Moustafa et al. 2020). Yousef et
al analyzed the influence of fear and fractional-order derivative
on system dynamics(Yousef et al. 2021). Li et al investigated the
stability of a fractional-order predator-prey model, which incor-
porates a prey refuge(Li et al. 2017a). Boukhouima et al studied a
fractional-order model to describe the dynamics of human immun-
odeficiency virus infection(Boukhouima et al. 2017). Mousfata et
al consider a fractional-order eco-epidemiological system of prey
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population with disease. Moreover, the dynamics of this model
was analyzed(Moustafa et al. 2020).

Delay plays an important part in ecosystem and it exists uni-
versally. Different models take different biological delays into
account(Tao et al. 2018; Shi et al. 2022; Chinnathambi and Rihan
2018; Fernández-Carreón et al. 2022; Rihan and Rajivganthi 2020;
Xu and Zhang 2013; Huang et al. 2019; Mahmoud et al. 2017; Pu
2020; Alidousti and Mostafavi Ghahfarokhi 2019; Huang et al. 2020;
Deng et al. 2007; Kashkynbayev and Rihan 2021; Yuan et al. 2013).
Compared with the systems without delay, the systems with de-
lays will show more complex nonlinear dynamic behavior. Delay
may cause the equilibrium points instability. Moreover, spreading
of disease is not happen immediately. In general, infectious disease
has an incubation period. Therefore, it is important to take delay
into account for biological model, and it will describe real life more
accurately.

In (Zhou et al. 2010), Zhou et al formulated the following system

dS(t)
dt

= rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

dy(t)
dt

= y(t)(a2 −
c2y(t)

I(t) + K2
),

(1)

and studied the dynamics of (1). Based on the importance of
delay, Adak et al considered delay into account and formulated
the following system(Adak et al. 2020)

dS(t)
dt

= rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

dI(t)
dt

= βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

dy(t)
dt

= y(t)(a2 −
c2y(t)

I(t) + K2
).

(2)

They exhibited the dynamic behavior of system (2), such as chaos
and Hopf bifurcation. However, Zhou and Adak et al did not
take the good memory characteristics of fractional derivative
into account, which can well describe long-range temporal mem-
ory. Hence, we consider the fractional derivative into account
for system (2) and establish a fractional-order Leslie-Gower prey-
predator-parasite system with delay

DαS(t) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

Dα I(t) = βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

Dαy(t) = y(t)(a2 −
c2y(t)

I(t) + K2
).

(3)

The initial conditions of (3) are as follows:

S(t) = η1(t), I(t) = η2(t), y(t) = η3(t), t ∈ [−τ, 0], (4)

where S(t), I(t), y(t) represent the growth rates of susceptible prey,
infected prey and predator population at time t respectively. r
represents intrinsic growth rate of susceptible prey. K represents
environmental prey carrying capacity. β represents infection rate.
c represents predation-independent death rate of infectious prey.
c1 represents maximum predation rate of predator on an infec-
tious prey. K1 represents half-saturation density. a2 represents
intrinsic growth rate of predator. c2 and K2 are positive constants.
Dα denotes α-order Caputo differential derivative, α ∈ (0, 1], and

r, K, β, c, c1, K1, a2, c2, K2 are all nonnegetive. Label R3
+ as the non-

negative cone, η = (η1(t), η2(t), η3(t)) ∈ C([−τ, 0], R3
+), the Ba-

nach space of continuous real-valued functions on the interval
[−τ, 0] with norm ||η|| = sup−τ≤t≤0 |η(t)|, and η1(t) ≥ 0, η2(t) ≥
0, η3(t) ≥ 0, η1(0) > 0, η2(0) > 0, η3(0) > 0.

We aim to investigate the stability of system (3) and how the
delay affects the dynamics of this system. Firstly, we investigate
the existence and uniqueness of the solutions, as well as their
non-negativity and boundedness. Furthermore, we derive the
local asymptotic stability of every equilibrium point. Then, we
demonstrate the global asymptotic stability of the infection-free
equilibrium point by formulating a Lyapunov function. Moreover,
we choose delay as the bifurcation parameter to show interior
equilibrium point occurs Hopf bifurcation under some conditions.
Lastly, we give the numerical examples to back up our results.

The structure of this article is as follows. We describe basic con-
cepts in section 2. The existence and uniqueness of the solutions,
as well as their non-negativity and boundedness are investigated
in section 3. Besides, we derive equilibrium points and the lo-
cal asymptotic stability corresponding to each equilibrium point.
Then, we analyze the Hopf bifurcation of the interior equilibrium
point. We provide two illustrative examples to back up our find-
ings in section 4. Finally, we close the paper in last section.

MATHEMATICAL PRELIMINARIES

Definition 1. (Kilbas et al. 2006) The Riemann-Liouville’s fractional
integral of order α > 0 for a function f is defined as

D−α f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0,

where Γ(·) is the Gamma function.

Definition 2. (Kilbas et al. 2006) The Caputo’s fractional derivative
of order α for a function f is defined as

Dα f (t) =
1

Γ(m − α)

∫ t

0
(t − s)m−α−1 f (m)(s)ds, t > 0,

where 0 ≤ m − 1 ≤ α < m, m ∈ Z+.

.

Lemma 1. (Wang et al. 2011) Consider the following nonlinear
differential equation with Caputo fractional derivative

DαX(t) = f (X(t)) + g(X(t − τ)),

X(t) = Φ(t), t ∈ [−τ, 0],
(5)

where α ∈ (0, 1], X(t) ∈ Rn, τ ≥ 0, then the characteristic equation
of system is

|sαE − A − Be−sτ | = 0,

where A and B is the Jacobian matrix of the function f (X(t)) and
g(X(t)) at the equilibrium point of the system (5). The zero solu-
tion of system (5) is locally asymptotically stable if all the roots of
the characteristic equation restricted to arg(λ) > πα

2 have negative
real parts.

Lemma 2. (Odibat and Shawagfeh 2007) Suppose that f (t) ∈
C[a, b] and Dα f (t) ∈ C[a, b] for 0 < α ≤ 1. If Dα f (t) ≥ 0, ∀t ∈
[a, b], then f (t) is non-decreasing for each t ∈ [a, b]. If Dα f (t) ≤
0, ∀t ∈ (a, b), then f (t) is non-increasing for each t ∈ [a, b].
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Lemma 3. (Li et al. 2010) Consider the system

Dαx(t) = f (t, x), t > t0, (6)

with initial condition x(t0) , where α ∈ (0, 1], f : [t0, ∞)× Ω →
Rn, Ω ⊆ Rn, if f (t, x) satisfies the locally lipschitz condition with
respect to x, then there exists a unique solution of (6) on [t0, ∞)×Ω.

Lemma 4. (Cruz 2015) Let x(t) ∈ R+ be a continuous and deriva-
tive function. Then, for any time instant t ≥ t0,

t0 Dα
t (x(t)− x∗ − x∗ ln

x(t)
x∗

) ≤ (1 − x∗

x(t)
)t0 Dα

t x(t), (7)

where ∀α ∈ (0, 1), x∗ ∈ R+.

Lemma 5. (Li et al. 2017b) Let u(t) ∈ C([0,+∞)). If u(t) satisfies
Dαu(t) ≤ a − bu(t), u(0) = u0, where α ∈ (0, 1], (a, b) ∈ R2 and
b ̸= 0, then

u(t) ≤ (u0 −
a
b
)Eα(−btα) +

a
b

.

MAIN RESULTS

Existence and Uniqueness of solutions

Theorem 6. For any non-negative initial conditions the fractional-
order system (3) has a unique solution.

Proof. Consider the region Π = {(S, I, y) ∈ R3 :
max{|S|, |I|, |y|} ≤ M}, and denote X = (S, I, y), X̂ = (Ŝ, Î, ŷ),
then define a mapping f (X) = ( f1(X), f2(X), f3(X)), where

f1(X) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

f2(X) = βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

f3(X) = y(t)(a2 −
c2y(t)

I(t) + K2
).

For X, X̂ ∈ Π, then

∥ f (X)− f (X̂)∥ = | f1(X)− f1(X̂)|+ | f2(X)− f2(X̂)|
+ | f3(X)− f3(X̂)|

= |r(S − Ŝ)− r
K
(S2 − Ŝ2)− (

r
K
+ β)(SI − Ŝ Î)|

+ |βI(t − τ)(S(t − τ)− Ŝ(t − τ)) + βŜ(t − τ)×

(I(t − τ)− Î(t − τ))− c(I − Î)− c1 I Î(y − ŷ)
(I + K1)( Î + K1)

− c1K1 I(y − ŷ) + c1K1ŷ(I − Î)
(I + K1)( Î + K1)

|+ |a2(y − ŷ)

− K2c2(y + ŷ)(y − ŷ) + c2 I(y2 − ŷ2)− c2y2(I − Î)
(I + K2)( Î + K2)

|

≤ (r + 3
Mr
K

+ βM)|S − Ŝ|+ M(
r
K
+ β)|I − Î|

+ βM|S(t − τ)− Ŝ(t − τ)|+ βM|I(t − τ)− Î(t − τ)|

+ (c +
c1K1 M

K2
1

)|I − Î|

+ (
c1 M2 + c1K1 M

K2
1

+ a2 +
2MK2c2 + 2M2c2

K2
2

)|y − ŷ|

+
c2 M2

K2
2

|I − Î|

= (r + 3
Mr
K

+ 2βM)|S − Ŝ|+ (M
r
K
+ 2βM + c

+
c1K1 M

K2
1

+
c2 M2

K2
2

)|I − Î|+ (
c1 M2 + c1K1 M

K2
1

+ a2

+
2MK2c2 + 2M2c2

K2
2

)|y − ŷ|

≤ L∥X − X̂∥,

where L = max{(r + 3 Mr
K + 2βM), ( Mr

K + 2βM + c + c1K1 M
K2

1
+

c2 M2

K2
2
), ( c1 M2+c1K1 M

K2
1

+ a2 +
2MK2c2+2M2c2

K2
2

)}. Hence, Lipschitz con-

dition is satisfied for f (X). There exist a unique solution of system
(3) on the basis of Lemma 3. □

Non-negativity of solutions
Theorem 7. All the solutions of system (3) starting from

D+ = {(S, I, y) ∈ R3 : S, I, y ∈ R+},

are non-negative.

Proof. Above all, we derive that the solution S(t) starting from D+

is non-negative, i.e. S(t) ≥ 0 for t ≥ t0. Suppose that is not true,
then there exist t1 > t0 such that S(t) > 0, t0 ≤ t < t1, S(t1) =
0, S(t1

+) < 0. From the first equation of system (3), we get

DαS(t1)|S(t1)=0 = 0.

Based on the Lemma 2, there exsits S(t1
+) = 0 and it contradicts

with S(t1
+) < 0. Hence, we can get S(t) ≥ 0 for t ≥ t0.

If there exist t2 > t0 such that I(t) > 0, t0 ≤ t < t2, I(t2) =
0, I(t2

+) < 0, then we get

Dα I(t2)|I(t2)=0 = βS(t2 − τ)I(t2 − τ) > 0.

Based on the Lemma 2, there exsits I(t2
+) > 0 and it contradicts

with I(t2
+) < 0. So, we get I(t) ≥ 0 for t ≥ t0.
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If there exist a constant t3 > t0 such that y(t) > 0, t0 ≤ t <
t3, y(t3) = 0, y(t3

+) < 0, then we get

Dαy(t3)|y(t3)=0 = 0.

Similarly, we have y(t3
+) = 0, which contradicts with y(t3

+) <
0. Hence, we obtain y(t) ≥ 0 for t ≥ t0. □

Boundedness of solutions

Theorem 8. All solutions of system (3) starting from R3
+ are

bounded.

Proof. Denote

f (S(t)) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

F(S(t)) = rS(t)(1 − S(t)
K

),

and let
DαS(t) = f (S(t)), (8)

DαS(t) = F(S(t)). (9)

Assume h(t) is the solution of (8) and H(t) is the solution of (9).
Since f (S(t)) ≤ F(S(t)), we can derive h(t) ≤ H(t) according
to the comparison theorems of fractional-order differential equa-
tions(Hu et al. 2009). Let z1(t) =

rS(t)
K , then (9) become

Dαz1(t) = z1(t)(r − z1(t)). (10)

Denote H̄(t) is the solution of (10), then H̄(t) = rH(t)
K . Based

on the methods in (Li et al. 2019), we can get lim
t→∞

sup z1(t) ≤ m̂,

thus we can derive lim
t→∞

sup S(t) ≤ Km̂
r , denote m = Km̂

r , then

lim
t→∞

sup S(t) ≤ m. Define a function W(t) = S(t − τ) + I(t). Then

DαW(t) = DαS(t − τ) + Dα I(t)

= rS(t − τ)(1 − S(t − τ) + I(t − τ)

K
)

− cI(t)− c1 I(t)y(t)
I(t) + K1

≤ rS(t − τ)− cI(t)
= 2rS(t − τ)− dW(t)
≤ 2rm − dW(t),

where d = min{r, c}. From Lemma 5, we can get

0 ≤ W(t) ≤ (W(0)− 2rm
d

)Eα(−dtα) +
2rm

d
,

where Eα is the Mittag-Leffler function. Hence, we can obtain
lim
t→∞

sup W(t) ≤ 2rm
d . Then lim

t→∞
sup I(t) ≤ 2rm

d . For the third

equation of system (3), we can obtain

Dαy(t) ≤ y(t)(a2 −
dc2y(t)

2rm + dK2
). (11)

Denote dc2
2rm+dK2

= a1, and let z2(t) = a1y(t), then (11) become

Dαz2(t) = z2(t)(a2 − z2(t)). (12)

Based on the methods in (Li et al. 2019), we also can get
lim
t→∞

sup y(t) ≤ m̂. Hence, the proof is completed and the region

is Ω′ = {(S, I, y) ∈ R3
+ : S(t) ≤ m, I(t) ≤ 2rm

d , y(t) ≤ m̂}, where
d = min{r, c}. □

Equilibrium points

Set

DαS(t) = 0, Dα I(t) = 0, Dαy(t) = 0,

then the equilibrium points can be determined.
(1)The trivial equilibrium point is E0(0, 0, 0).
(2)The infection-free and predator-free equilibrium point is
E1(S1, 0, 0), where S1 = K.
(3)The predator-only equilibrium point is E2(0, 0, y2), where y2 =
a2K2

c2
.

(4)The predator-free equilibrium point is E3(S3, I3, 0), where S3 =
c
β , I3 =

r(βK−c)
β(r+βK) . E3 exists if β > β1, where β1 = c

K .
(5)The infection-free equilibrium point is E4(S4, 0, y4), where S4 =

K, y4 = a2K2
c2

.
(6)The interior equilibrium point is E′(S′, I′, y′), where S′ =

1
β [c +

c1a2
c2

K2+I ′
K1+I ′ ], y′ = a2(I ′+K2)

c2
, I′ = −∆2+

√
∆2

2−4∆1∆3
2∆1

, ∆1, ∆2 and

∆3 are the coefficients of the equation ∆1 I′2 + ∆2 I′ + ∆3 = 0, and
∆1 =

r+βK
K > 0, ∆2 = rc1a2

Kβc2
+

K1(r+βK)
K +

r(c−βK)
βK , ∆3 = r

βK [
c1a2K2

c2
+

(c − βK)K1]. E′ exists if β > β2, where β2 = β1 +
c1a2K2
c2KK1

, β1 = c
K .

Suppose E∗(S∗, I∗, y∗) is arbitrary equilibrium point, we trans-
form E∗ into the origin. Let

U1(t) = S(t)− S∗, U2(t) = I(t)− I∗, U3(t) = y(t)− y∗,

then we can rewrite system (3) as

DαU1(t) = r(U1(t) + S∗)(1 − U1(t) + S∗ + U2(t) + I∗

K
)

− β(U1(t) + S∗)(U2(t) + I∗),
DαU2(t) = β(U1(t − τ) + S∗)(U2(t − τ) + I∗)

− c(U2(t) + I∗)− c1(U2(t) + I∗)(U3(t) + y∗)
U2(t) + I∗ + K1

,

DαU3(t) = (U3(t) + y∗)(a2 −
c2(U3(t) + y∗)

U2(t) + I∗ + K2
).

(13)

Taking advantage of Taylor expansion formula and linearizing the
system (13), we can get

DαU1(t) = (r − 2rS∗

K
− rI∗

K
− βI∗)U1(t)

− (
r
K
+ β)S∗U2(t),

DαU2(t) = −(c +
c1K1y∗

(I∗ + K1)2 )U2(t)−
c1 I∗

I∗ + K1
U3(t)

+ βI∗U1(t − τ) + βS∗U2(t − τ),

DαU3(t) =
c2(y∗)2

(I∗ + K2)2 U2(t) + (a2 −
2c2y∗

I∗ + K2
)U3(t).

(14)

Stability

According to Lemma 1, we obtain

V1 =


m11 m12 0

0 m22 m23

0 m32 m33

 , V2 =


0 0 0

n21 n22 0

0 0 0

 , (15)
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where

m11 = r − 2rS∗

K
− rI∗

K
− βI∗, m12 = −(

r
K
+ β)S∗,

m22 = −(c +
c1K1y∗

(I∗ + K1)2 ), m23 = − c1 I∗

I∗ + K1
,

m32 =
c2(y∗)2

(I∗ + K2)2 , m33 = a2 −
2c2y∗

I∗ + K2
,

n21 = βI∗, n22 = βS∗.

(16)

Denote V = V1 + V2e−sτ , then the Jacobi Matrix of the system (14)
is

V =


m11 m12 0

n21e−sτ m22 + n22e−sτ m23

0 m32 m33

 , (17)

thus the characteristic equation of (14) can be obtained as:

det


sα − m11 −m12 0

−n21e−sτ sα − m22 − n22e−sτ −m23

0 −m32 sα − m33

 = 0, (18)

i.e.(sα − m11)(sα − m22 − n22e−sτ)(sα − m33) − m12n21e−sτ(sα −
m33)− m23m32(sα − m11) = 0.

(i) For equilibrium point E0(0, 0, 0), (18) becomes

(sα − r)(sα + c)(sα − a2) = 0. (19)

Suppose sα = λ, then (19) has eigenvalues λ1 = r > 0, λ2 = −c <
0, λ3 = a2 > 0, thus |arg(λi)| = 0 < πα

2 , i = 1, 3. According to
Lemma 1, equilibrium point E0 is unstable.

(ii) For equilibrium point E1(S1, 0, 0), (18) becomes

(sα + r)(sα + c − βKe−sτ)(sα − a2) = 0. (20)

Let sα = λ, then (20) has a positive eigenvalue λ1 = a2 > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E1
is unstable.

(iii) For equilibrium point E2(0, 0, y2), (18) reduces to

(sα − r)(sα + (c +
c1a2K2
c2K1

))(sα + a2) = 0. (21)

Let sα = λ, then (21) has a positive eigenvalue λ1 = r > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E2
is unstable.

(iv) For equilibrium point E3(S3, I3, 0), (18) reduces to

(sα − a2)[(sα −m11)(sα −m22 − n22e−sτ)−m12n21e−sτ ] = 0, (22)

where m11|E3 = r − 2rS3
K − rI3

K − βI3, m12|E3 = −( r
K +

β)S3, m22|E3 = −c, m23|E3 = − c1 I3
I3+K1

, m32|E3 = 0, m33|E3 =

a2, n21|E3 = βI3, n22|E3 = βS3, and S3 = c
β , I3 =

r(βK−c)
β(r+βK) . Let

sα = λ, then (22) has a positive eigenvalue λ1 = a2 > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E3
is unstable.

We derive the following theorem based on the above analysis.

Theorem 9. E0, E1, E2, E3 are unstable for all τ ≥ 0.

(v) For equilibrium point E4(S4, 0, y4), (18) reduces to

(sα + r)(sα − m22 − n22e−sτ)(sα + a2) = 0. (23)

where m11|E4 = −r, m12|E4 = −( r
K + β)K, m22|E4 = −(c +

c1a2K2
c2K1

), m23|E4 = 0, m32|E4 =
a2

2
c2

, m33|E4 = −a2, n21|E4 =

0, n22|E4 = βK. Let sα = λ, then two eigenvalues of (23) are
λ1 = −r < 0, λ2 = −a2 < 0, thus |arg(λi)| = π > απ

2 , i = 1, 2. By
solving the following equation

sα − m22 − n22e−sτ = 0, (24)

we can gain other eigenvalues.
When τ = 0, the other eigenvalue is λ3 = (βK − c)− c1a2K2

c2K1
.

λ3 < 0 if β < β2 = c
K + c1a2K2

c2KK1
. Then we acquire |arg(λi)| >

απ
2 , i = 1, 2, 3, thus all characteristic roots of (23) have negative real

parts. E4 is locally asymptotically stable on the basic of Lemma 1.
When τ > 0, assume that s = iω = ω(cos π

2 + i sin π
2 )(ω > 0)

is a root of (24). Separating real and imaginary parts

|ω|α cos
π

2
α − n22 cos ωτ − m22 = 0, |ω|α sin

π

2
α + n22 sin ωτ = 0.

(25)
From (25) we can obtain

cos ωτ =
1

n22
|ω|α cos

π

2
α − m22

n22
, sin ωτ = − 1

n22
|ω|α sin

π

2
α.

(26)
Add up the squares of both equations of (26)

|ω|2α − 2m22 cos(
π

2
α)|ω|α + m2

22 − n2
22 = 0, (27)

Let ωα = t, then we can get

t2 − 2m22 cos(
π

2
α)t + m2

22 − n2
22 = 0. (28)

Since α ∈ (0, 1], m22|E4 = −(c + c1a2K2
c2K1

) < 0, n22|E4 = βK,

then −2m22 cos π
2 α > 0, m2

22 − n2
22 = (c + c1a2K2

c2K1
)2 − β2K2 =

(K( c
K + c1a2K1

c2K1K ))2 − β2K2 = K2(β2)
2 −K2β2 = K2(β+ β2)(β2 − β).

We derive m2
22 − n2

22 > 0 if β < β2. According to Routh-Hurwitz
theorem, (28) has no positive real part. Then (24) has no pure
imaginary root. Therefore, equilibrium point E4 is locally asymp-
totically stable. We derive the following theorem based on the
above analysis.

Theorem 10. E4 is locally asymptotically stable for τ ≥ 0 if β <

β2 = c
K + c1a2K2

c2KK1
.

Furthermore, we obtain the globally asymptotically stable of
system (3) at E4. To investigate the globally asymptotically stable
of system (3) at E4, we introduce the following assumption.
(H1) ( r

K + β)S4 − c ≤ 0,
(H2) (c2y4 − K2c1)I + K1c2y4 − K2

2c1 ≤ 0.
Motivated by (Sene 2021), we define a Lyapunov functional as

V(t) = S(t)− S4 − S4 ln
S(t)
S4

+ I(t) + y(t)− y4 − y4 ln
y(t)
y4

.

Taking fractional-order derivative on both sides, according to
Lemma 4, we get
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DαV(t) ≤ (
S(t)− S4

S(t)
)DαS(t) + Dα I(t) +

y(t)− y4
y(t)

Dαy(t)

= (S(t)− S4)(r(1 −
S(t) + I(t)

K
)− βI(t))+

(βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

)+

(y(t)− y4)(a2 −
c2y(t)

I(t) + K2
)

= (S(t)− S4)(−
r
K
(S(t)− S4)− (

r
K
+ β)I(t))

+ (βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

)

+ (y(t)− y4)(
c2y4
K2

− c2y(t)
I(t) + K2

)

= − r
K
(S(t)− S4)

2 − (
r
K
+ β)I(t)(S(t)− S4)

+ βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

+

c2(y(t)− y4)(
y4
K2

− y(t)
I(t) + K2

)

= − r
K
(S(t)− S4)

2 − (
r
K
+ β)S(t)I(t)+

(
r
K
+ β)S4 I(t) + βS(t − τ)I(t − τ)

− cI(t)− c1 I(t)y(t)
I(t) + K1

+ c2(y(t)− y4)×

(− y(t)− y4
I(t) + K2

+
I(t)y4

K2(I(t) + K2)
)

= − r
K
(S(t)− S4)

2 + (−(
r
K
+ β)S(t)I(t)+

βS(t − τ)I(t − τ)) + ((
r
K
+ β)S4 − c)I(t)

− c2
K2 + I(t)

(y(t)− y4)
2 − c2 I(t)(y4)

2

K2(I(t) + K2)

+
c2y4 I(t)y(t)

K2(I(t) + K2)
− c1 I(t)y(t)

I(t) + K1

= − r
K
(S(t)− S4)

2 + (β − (
r
K
+ β))S(t)I(t)

+ ((
r
K
+ β)S4 − c)I(t)− c2

K2 + I(t)
×

(y(t)− y4)
2 − c2 I(t)(y4)

2

K2(I(t) + K2)
+

(c2y4 − K2c1)I(t) + (K1c2y4 − K2
2c1)

K2(I(t) + K2)(I(t) + K1)
I(t)y(t)

= − r
K
(S(t)− S4)

2 − r
K

S(t)I(t)

+ ((
r
K
+ β)S4 − c)I(t)− c2

K2 + I(t)
(y(t)− y4)

2

− c2 I(t)(y4)
2

K2(I(t) + K2)
+

(c2y4 − K2c1)I(t) + (K1c2y4 − K2
2c1)

K2(I(t) + K2)(I(t) + K1)
I(t)y(t).
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Figure 1 Waveform plots of system (49) with τ = 0.4.
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Figure 2 Waveform plots of system (50) with τ = 0 < τ0.

Based on the assumption ( r
K + β)S4 − c ≤ 0 and (c2y4 −

K2c1)I + K1c2y4 − K2
2c1 ≤ 0, we can get DαV(t) ≤ 0. Accord-

ing to (Huo et al. 2015), we can derive the system (3) is globally
asymptotically stable at E4.

Therefore, We derive the following theorem.

Theorem 11. Assume that ( r
K + β)S4 − c ≤ 0 and (c2y4 − K2c1)I +

K1c2y4 − K2
2c1 ≤ 0, then the system (3) is globally asymptotically

stable at E4.

(vi) For equilibrium point E′(S′, I′, y′), the characteristic equa-
tion at E′ is:

s3α + δ2s2α + δ1sα + δ0 + e−sτ(ϑ2s2α + ϑ1sα + ϑ0) = 0, (29)

where

δ2 = −(m11 + m22 + m33),

δ1 = m11m22 + m22m33 + m11m33 − m23m32,

δ0 = m11m23m32 − m11m22m33,

ϑ2 = −n22,

ϑ1 = m11n22 − m12n21 + m33n22,

ϑ0 = m12m33n21 − m11m33n22.

When τ = 0, (29) can be expressed as

s3α + (δ2 + ϑ2)s2α + (δ1 + ϑ1)sα + δ0 + ϑ0 = 0, (30)

Let z = sα, then

z3 + (δ2 + ϑ2)z2 + (δ1 + ϑ1)z + δ0 + ϑ0 = 0. (31)

According to the Routh-Hurwitz theorem, (30) has no positive real
part if δ2 + ϑ2 > 0 and (δ2 + ϑ2)(δ1 + ϑ1)− δ0 + ϑ0 > 0. Thus (29)
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has no pure imaginary root. Hence, E′ is locally asymptotically
stable.

We obtain the following theorem on the basic of our analysis.

Theorem 12. The equilibrium point E′ is locally asymptotically
stable for τ = 0 if δ2 + ϑ2 > 0 and (δ2 + ϑ2)(δ1 + ϑ1)− δ0 + ϑ0 > 0.

Assume that s = iξ = ξ(cos π
2 + i sin π

2 )(ξ > 0) is a root of (29).
Separating real and imaginary parts,

Ψ cos ξτ + Ω sin ξτ = Φ1, (32)

Ω cos ξτ − Ψ sin ξτ = Φ2, (33)

where

Ψ = ϑ0 + ϑ1ξα cos(α
π

2
) + ϑ2ξ2α cos(2α

π

2
),

Ω = ϑ1ξα sin(α
π

2
) + ϑ2ξ2α sin(2α

π

2
),

Φ1 = −(δ0 + δ1ξα cos(α
π

2
) + δ2ξ2α cos(2α

π

2
)+

ξ3α cos(3α
π

2
)),

Φ2 = −(δ1ξα sin(α
π

2
) + δ2ξ2α sin(2α

π

2
)+

ξ3α sin(3α
π

2
)).

Add up the squares of both equations (32) and (33),

G(ξα) = ξ6α + H5ξ5α + H4ξ4α + H3ξ3α

+ H2ξ2α + H1ξα + H0

= 0,

(34)

where

H5 = 2δ2 cos(α
π

2
),

H4 = δ2
2 − ϑ2

2 + 2δ1 cos(2α
π

2
),

H3 = (2δ1δ2 − 2ϑ1ϑ2) cos(α
π

2
) + 2δ0 cos(3α

π

2
),

H2 = δ2
1 − ϑ2

1 + (2δ0δ2 − 2ϑ0ϑ2) cos(2α
π

2
),

H1 = (2δ0δ1 − 2ϑ0ϑ1) cos(α
π

2
),

H0 = δ2
0 − ϑ2

0 .

According to the Routh-Hurwitz theorem, we can get the routh list

1 H4 H2 H0

H5 H3 H1 0

b5 b3 b1 0

d5 d3 0 0

u5 u3 0 0

v5 0 0 0

h5

(35)

where b5 = − H3−H4 H5
H5

, b3 = − H1−H2 H5
H5

, b1 = H0, d5 =

− H5b3−H3b5
b5

, d3 = − H5b1−H1b5
b5

, u5 = − b5d3−b3d5
d5

, u3 = b1, v5 =

− d5u3−d3u5
u5

, h5 = u3.
When (35) satisfies some conditions(Li et al. 2021), there will be a
change of sign, then (34) at least has one positive root. Thus, there
exists a pair of purely imaginary roots of (29), which satisfy one of
the conditions of Hopf bifurcation.
From (32) and (33), we can derive

cos ξτ =
ΨΦ1 + ΩΦ2

Ω2 + Ψ2 ,

sin ξτ =
ΩΦ1 − ΨΦ2

Ω2 + Ψ2 .
(36)

According to (36), we can get

τ(k) =
1
ξ
(arctan

ΩΦ1 − ΨΦ2
ΨΦ1 + ΩΦ2

+ kπ), k = 0, 1, 2, . . . , (37)

then we define the bifurcation point

τ0 = min τ(k), k = 0, 1, 2, . . . (38)

We introduce the following assumption to obtain the conditions
of Hopf bifurcation.
(H3) A1 N1+A2 N2

N2
1+N2

2
̸= 0,

where A1, A2 are defined by (43), and N1, N2 are defined by (48).

Lemma 13. Let s(τ) = γ(τ) + iω(τ) be the root of (29) near τ = τj
meeting γ(τj) = 0 and ω(τj) = ω0, then the following transversal-
ity condition meets

Re[
ds
dτ

]|τ=τ0,ω=ω0 ̸= 0. (39)

Proof. Let P1(s) = s3α + δ2s2α + δ1sα + δ0, P2(s) = ϑ2s2α + ϑ1sα +
ϑ0, then (29) can be rewritten as

P1(s) + P2(s)e−sτ = 0. (40)

Derivation on both sides of (40) respect to τ,

P′
1(s)

ds
dτ

+ P′
2(s)e

−sτ ds
dτ

+ P2(s)e−sτ(−τ
ds
dτ

− s) = 0, (41)

where P′
i (s) are the derivatives of Pi(s)(i = 1, 2).

Then,
ds
dτ

=
M(s)
N(s)

, (42)

where

M(s) = s(ϑ2s2α + ϑ1sα + ϑ0)e−sτ ,

N(s) = 3αs3α−1 + 2αδ2s2α−1 + αδ1sα−1

− τe−sτ(ϑ2s2α + ϑ1sα + ϑ0)

+ e−sτ(2αϑ2s2α−1 + αϑ1sα−1).

By straightforward computation,

[
ds
dτ

]|τ=τ0,ω=ω0 =
A1 + iA2

(B1 + C1 + D1) + i(B2 + C2 + D2)
,

where

A1 = (−ϑ2ω2α+1
0 sin(

π

2
2α)− ϑ1ωα+1

0 sin(
π

2
α))×

cos(ω0τ0) + (ϑ2ω2α+1
0 cos(

π

2
2α)+

ϑ1ωα+1
0 cos(

π

2
α) + ω0ϑ0) sin(ω0τ0),

A2 = (ϑ2ω2α+1
0 sin(

π

2
2α) + ϑ1ωα+1

0 sin(
π

2
α))×

sin(ω0τ0) + (ϑ2ω2α+1
0 cos(

π

2
2α)+

ϑ1ωα+1
0 cos(

π

2
α) + ω0ϑ0) cos(ω0τ0),

(43)
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B1 = 3αω3α−1
0 cos(

(3α − 1)π
2

) + 2αδ2ω2α−1
0 ×

cos(
(2α − 1)π

2
) + αδ1ωα−1

0 cos(
(α − 1)π

2
),

B2 = 3αω3α−1
0 sin(

(3α − 1)π
2

) + 2αδ2ω2α−1
0 ×

sin(
(2α − 1)π

2
) + αδ1ωα−1

0 sin(
(α − 1)π

2
),

(44)

C1 = −τsinω0τ0(ϑ2ω2α
0 sin(

π

2
2α) + ϑ1ωα

0 sin(
π

2
α))

− τ cos ω0τ0(ϑ2ω2α
0 cos(

π

2
2α) + ϑ1ωα

0 cos(
π

2
α)

+ ϑ0),

C2 = −τ cos ω0τ0(ϑ2ω2α
0 sin(

π

2
2α) + ϑ1ωα

0 sin(
π

2
α))

+ τsinω0τ0(ϑ2ω2α
0 cos(

π

2
2α) + ϑ1ωα

0 cos(
π

2
α)

+ ϑ0),

(45)

D1 = cos(ω0τ0)(2αϑ2ω2α−1
0 ×

cos
(2α − 1)π

2
+ αϑ1ωα−1

0 cos
(α − 1)π

2
)+

sin(ω0τ0)(2αϑ2ω2α−1
0 sin

(2α − 1)π
2

+

αϑ1ωα−1
0 sin

(α − 1)π
2

),

D2 = − sin(ω0τ0)(2αϑ2ω2α−1
0 cos

(2α − 1)π
2

+

αϑ1ωα−1
0 cos

(α − 1)π
2

) + cos(ω0τ0)×

(2αϑ2ω2α−1
0 sin

(2α − 1)π
2

+

αϑ1ωα−1
0 sin

(α − 1)π
2

).

(46)

Hence,

Re[
ds
dτ

]|τ=τ0,ω=ω0 =
A1N1 + A2N2

N2
1 + N2

2
, (47)

where
N1 = B1 + C1 + D1, N2 = B2 + C2 + D2. (48)

The proof is completed. □
Hence, we obtain the following theorem.

Theorem 14. Suppose that (H3) holds, we can gain the following
results:
(i) E′ is locally asymptotically stable for τ ∈ [0, τ0).
(ii) System (3) undergoes a Hopf bifurcation at E′ when τ = τ0.
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Figure 3 Waveform plots of system (50) with τ = 0.1 < τ0.

NUMERICAL SIMULATIONS

Diethem et al proposed the Adams-Bashforth-Moulton prediction-
correction numerical algorithm of fractional differential equa-
tions defined by Caputo(Kai et al. 2002), and Bhalekar et al ex-
tended it to fractional differential equations with delay(Bhalekar
and Daftardar-Gejji 2011). Here, the modified Adams-Bashforth-
Moulton prediction-correction numerical algorithm is used to ver-
ify our theoretical analysis(Bhalekar and Daftardar-Gejji 2011).

Example 1
According to the numerical simulations of (Zhou et al. 2010) and
(Adak et al. 2020), we make two examples and set the following
values for the parameters. When the order is close to 1, the dynamic
properties of fractional-order system will be close to the dynamic
properties of integer-order system. Hence, we choose the order
α = 0.96 and the other parameters are taken from (Zhou et al.
2010),r = 2, a2 = 1, c = 0.3, c1 = 1, c2 = 1, K = 3, K1 = 0.6, K2 =
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0.5. Then, we choose β = 0.37 < β2, which satisfy the Theorem 10,
then system (3) is

D0.96S(t) = 2S(t)(1 − S(t) + I(t)
3

)− 0.37S(t)I(t),

D0.96 I(t) = 0.37S(t − τ)I(t − τ)− 0.3I(t)− I(t)y(t)
I(t) + 0.6

,

D0.96y(t) = y(t)(1 − y(t)
I(t) + 0.5

).

(49)

It is not difficult to get equilibrium point E4(S4, I4, y4) = (3, 0, 0.5).
Fig. 1 exhibits that E4 is locally asymptotically stable.
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Figure 4 Waveform plots of system (50) with τ = 0.1 for α =
0.92, α = 0.94, α = 0.96.

Example 2
Choose β = 2.1 > β2, thus E′ exists. The system (3) is

D0.96S(t) = 2S(t)(1 − S(t) + I(t)
3

)− 2.1S(t)I(t),

D0.96 I(t) = 2.1S(t − τ)I(t − τ)− 0.3I(t)− I(t)y(t)
I(t) + 0.6

,

D0.96y(t) = y(t)(1 − y(t)
I(t) + 0.5

).

(50)

We acquire E′(S′, I′, y′) = (0.5788, 0.5834, 1.0834). It is not difficult
to check system (50) satisfys δ2 + ϑ2 = 0.9345 > 0 and (δ2 +
ϑ2)(δ1 + ϑ1)− (δ0 + ϑ0) = 0.0923 > 0. Thus, system (50) at E′ is
locally asymptotically stable for τ = 0. We calculate that ω0 =
1.3490, τ0 = 0.1689. Fig. 2 and Fig. 3 show that E′ is locally
asymptotically stable when τ = 0 < τ0 and τ = 0.1 < τ0. For Fig.
3, we draw waveform plots every 20 points as a point. Motivated
by the investigation on the different orders in (Sene 2019) and
(Sene 2022), we show that the waveform plots of system (50) with
τ = 0.1 for different orders α in Fig. 4. The numerical simulation
results implies that the lower values of α, the oscillating behavior
is suppressed. E′ is unstable of system (50) when τ = 0.2 > τ0,
which is shown in Fig. 5. Here, we give the waveform plot of S(t).
The waveform plots of I(t) and y(t) are omitted. Furthermore, we
give the phase portraits in I-y plane for τ = 1, τ = 3 and τ = 6.
Fig. 6 exhibits the development of chaos.

Remark. In system (3), the order is 0 < α ≤ 1. When α = 1, this
system is reduced to system (2). Therefore, our research extends
the results of system (2).

Remark. The difference between the integer-order system (2) and
the fractional-order system (3) are as follows. E0, E1, E2, E3 of sys-
tem (3) are unstable for all τ ≥ 0, and if β ≤ β2, equilibrium
point E4 is locally asymptotically stable for τ ≥ 0. In integer-order
system (2), it also has the same results. However, the conditions
of the global asymptotically stability for equilibrium point E4 is
different from system (2). And the conditions of the occurrence of
Hopf bifurcation of equilibrium point E′ are related to the order α,
which is different from integer-order system (2). Besides, the nu-
merical results indicate that the oscillation behavior is suppressed
when the order α is lower. And the chaos gradually arise when the
delay τ increases. These results are not shown in the integer-order
system (2).
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Figure 5 Waveform plots of system (50) with τ = 0.2 > τ0.
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Figure 6 Phase portraits of system (50) in I-y plane for τ = 1, τ =
3, τ = 6 respectively.

CONCLUSION

A fractional-order Leslie-Gower prey-predator-parasite system
with delay is considered in this article. We investigate the existence
and uniqueness of the solutions, as well as non-negativity and
boundedness. We also show E0, E1, E2, E3 are unstable for τ ≥ 0
and if β < β2, E4 is locally asymptotically stable for τ ≥ 0. If
the conditions of Theorem 10 are meeted, the system (3) at E4 is
globally asymptotically stable. If the conditions of Theorem 12 are
satisfied, E′ is locally asymptotically stable for τ = 0 by Routh-
Hurwitz theorem. In addition, E′ occurs Hopf bifurcation when the
conditions of Theorem 14 are meeted. We can change the critical
value τ0 to control the stability of system. Moreover, the system
exhibits different results for different order α. The numerical results
indicate that the oscillation behavior is suppressed for τ = 0.1
when the order α is lower. The chaos gradually arise when the
delay τ increases. Finally, we hope to explore chaos of this system.
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ABSTRACT Classification and counting of cells in the blood is crucial for diagnosing and treating diseases
in the clinic. A peripheral blood smear method is a fast, reliable, robust diagnostic tool for examining blood
samples. However, cell overlap during the peripheral smear process may cause incorrectly predicted results
in counting blood cells and classifying cell types. The overlapping problem can occur in automated systems
and manual inspections by experts. Convolutional neural networks (CNN) provide reliable results for the
segmentation and classification of many problems in the medical field. However, creating ground truth labels
in the data during the segmentation process is time-consuming and error-prone. This study proposes a new
CNN-based strategy to eliminate the overlap-induced counting problem in peripheral smear blood samples and
accurately determine the blood cell type. In the proposed method, images of the peripheral blood were divided
into sub-images, block by block, using adaptive image processing techniques to identify the overlapping cells
and cell types. CNN was used to classify cell types and overlapping cell numbers in sub-images. The proposed
method successfully counts overlapping erythrocytes and determines the cell type with an accuracy rate of
99.73%. The results of the proposed method have shown that it can be used efficiently in various fields.
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Classification

INTRODUCTION

Developing fast and reliable methodologies and equipment that
solve problems in the field of health provides various advantages
to clinical staff and positively affects the quality of life of societies.
Eliminating this developed equipment’s cost and negative aspects
is as essential as the development phase. Microscopes used in the
laboratory are the most common example of this type of equipment.
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However, detecting and counting objects in complex images or
videos from microscopes is a challenging and time-consuming
task that is encountered in many traditional applications (Aliyu
2017). The reliability of the applications, especially in the medical
field, is critical in the accurate and successful implementation
of the diagnosis and treatment processes of the specialists. For
this reason, systems that provide decision-support mechanisms to
experts in the field are critical (Alimadadi et al. 2020).

Today, hematological tests, the standard procedure of every
laboratory, are significant for the clinical diagnosis of cancer, ane-
mia, and other blood diseases. However, analyzing the obtained
data is a susceptible process (Ahn et al. 2018). Although there are
various automated systems for performing these tests, one of the
most used methods today is the examination of blood samples
with peripheral smears under the microscope. Even today, this
examination method is performed manually by trained hematol-
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ogists. Experts obtain results by evaluating the morphological
characteristics of blood cells, such as size and shape, by examining
blood cells under a light microscope. This method, which has a
high potential for obtaining erroneous results, requires effort (Bain
2005). One of the primary problems is the increase in morpho-
logical diversity due to intracellular and intercellular variations
producing false results. The cells can be spread on the slide with
concentric or edge overlapping in the peripheral spreading process.
In addition, the variable properties of the image, such as color and
contrast caused by the imaging system, cause differences between
the same samples. In addition to all these physical factors, the
skill and experience of the hematologist examining the sample also
creates a subjective evaluation of the results. Quantitative analysis
methods are gaining importance in overcoming these problems
(Mohammed et al. 2014).

Blood consists of two separate components: plasma and blood
cells. In the samples prepared by peripheral smear, three different
types of cells can be observed: red blood cells (RBC), white blood
cells (WBC), and platelets. Healthy adult individuals typically
have 4, 500 × 103/µL RBCs, 8 × 103/µL WBCs, and 300 × 103/µL
platelets. Platelets are the smallest cells of the blood, with an
average diameter of 2 − 4µm, disc-shaped morphology, and no
nuclei. Granules in platelets contain substances that will insti-
gate clot formation activity in case of bleeding. Therefore, the
main task of platelets are hemostasis and prevention and control
of bleeding. White blood cells, also known as leukocytes, have
significant morphological differences compared to other blood
cells and have a diameter of 10 − 20µm. White blood cells do not
contain hemoglobin, and the cytoplasm density is low, while the
nuclear densities are high. An essential part of the immune system,
Leukocytes move from the blood fluid to the tissues and protect
the body. It counteracts damage by deactivating bacteria, viruses,
or other foreign organisms and provides a defense mechanism
by producing antibodies (Beydoun et al. 2016). Therefore, the to-
tal leukocyte concentration in the blood is a vital indicator of the
human immune system, and many diseases can be detected only
by calculating the leukocyte count. There are five different types
of leukocytes: eosinophils, lymphocytes, neutrophils, monocytes,
and basophils. Red blood cells, also known as erythrocytes, are the
most common cell type in the blood, with a diameter of 7 − 10µm
and a biconcave disc-shaped erythrocyte with a thickness of 2.2µm
(Aliyu 2017). Their main functions in the body are to transmit oxy-
gen to the tissues in circulation and to remove wastes and carbon
dioxide from the tissues. Their color is red because they contain
hemoglobin protein.

Researchers are making significant efforts to count the cells in
the images obtained from a peripheral smear. As a result of these ef-
forts, systems that produce results with remarkable accuracy have
emerged. These traditional systems produce results by applying
the steps of pre-processing, segmentation, feature extraction, and
classification steps to the obtained images, respectively (Gonzalez
et al. 2004). Pre-processing steps are used to remove the images’
noise and the colors’ distortions. In general, images are corrected
by applying spatial or frequency plane operations. Examples are
pre-processing algorithms’ histogram correction, average receiver,
and median filter. The most optimal images should be obtained
for the segmentation step. The next step, segmentation, plays the
most crucial role in the defined system and significantly affects its
accuracy. There are various traditional or hybrid algorithms for
segmentation and many methods developed for pre-processing
(Kibunja 2021; Gould et al. 2009; Li et al. 2017; Çimen et al. 2019).
In the feature extraction steps, the image segments’ morphology,

color coefficient, or other descriptive properties are obtained from
the segmentation process (Zhang et al. 2019). The defining features
obtained in this step are essential as they reveal the success of the
classification. The primary purposes of feature extraction are to en-
sure that the images taken as input are defined as fingerprints and
to identify the numerical or vector quantities obtained as output
(Nixon and Aguado 2019). Various feature extraction methods that
are flexible and adaptively may be preferred to improve perfor-
mance rates. Various algorithms such as artificial neural networks,
support vector machines, Naive Bayes networks, linear discrim-
inant analysis, and multilayer networks are used in order to use
the property values obtained from blood cells for counting and
classification (Bayat et al. 2018; Ye et al. 2004).

This study proposes a new CNN-based strategy to eliminate
the overlap-induced counting problem in blood samples prepared
with peripheral smear and determine the blood cell type. In the
proposed method, the images of the entire peripheral blood slide
were divided into sub-images using adaptive image processing
techniques to identify the overlapping cells and cell types. Each
cropped image was labeled by the number of overlapping cells
with hematology expert opinion, thus providing ground truth
data. In addition, white blood cells are labeled as a separate class.
CNN was used to classify cells divided into sub-images as blocks
from the original images. The proposed method achieved 99.73%
accuracy in counting overlapping red blood cells and separating
RBC-WBC blood cell types. The results show that the proposed
method can be adapted to areas where high-resolution images are
found and reliable results.

PROPOSED METHOD

With the increased processing capacity of graphics processor units
in recent years, deep learning methods have started to be used
frequently in classification, recognition, and detection tasks, es-
pecially in the medical field (McLeod and Ozcan 2016; Chiroma
et al. 2019; Jang and Cho 2019). Considering the problems related
to blood count, using deep learning methods in blood count and
classification steps can bring many advantages. The first of these
advantages is that high image quality input is not required for
deep learning methods, so problems arising from physical condi-
tions are avoided (Wang et al. 2015). Secondly, it does not need to
perform feature extraction and segmentation operations outside
the system due to its convolutional layers. It produces results by
applying straightforward approaches to solving complex problems
that require high processing power (Dodge and Karam 2016). A
Convolutional Neural Network (CNN), which is defined in liter-
ature as a unique structure of deep learning methods, is widely
used to classify blood images and solve problems in other fields
(Rere et al. 2016; Xue et al. 2016; Pala et al. 2022).

Convolutional neural networks are a learning architecture in-
spired by the visual perception mechanism of living things. CNN
methods follow end-to-end training metrology, eliminating the
pre-processing steps of complex images. CNN techniques are
more similar to biological neural networks than other machine
learning methods due to the layers – and it works very effectively
on displaced, scaled, bent, or deformed images (Choi et al. 2017;
Sun et al. 2019). The convolutional layer in the CNN architecture
aims to learn the basic parameters that represent the features in
the input images. Convolutional layers consist of various filters
that allow the learning of different properties. These filters have
various magnitudes and shift coefficients and are convoluted with
the input image. As a result, each image taken as input is pro-
cessed and given as output as a new feature image. By applying
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more than one convolution operation to the input layer, the depth
of the network is increased, and with the network, more accurate
results can be produced. The new feature layers obtained as the
output of the convolutional layer can be high-valued compared
to the inputs due to the multiplication process (Xue et al. 2016).
This situation can cause overfitting in the network structure. In
order to prevent this situation and increase the training perfor-
mance, normalization layers can be added to the network structure
(Huang et al. 2019). The main task of the normalization layer is to
bring the values formed as a result of multiplications to a specific
range and transmit the appropriate values to the next layer. Since
images have a static structure, distinctive features found at one
point in the image can also be found in other areas. This feature
makes it possible to express the defining features of images with
smaller areas. The pooling layers in the CNN structure enable
these features that spread over large areas to be expressed in small
areas. Pooling layers filter the input images with a specific size,
like convolution layers. The pooling layer prevents situations such
as memorization that will occur in the network structure. The
outputs of the pooling layer are smaller than the input image, with
the size depending on the filter size (Barbastathis et al. 2019; Liu
et al. 2019; Strumberger et al. 2019).

Many high-performance methods have been proposed to clas-
sify non-overlapping blood cells. However, the overlap prob-
lem in blood cells counted using the peripheral smear method is
widespread, and these processes are ignored when creating data
sets. This is most commonly seen in the count of erythrocytes.
Counting problems occur when at least two or more erythrocytes
overlap. In this study, CNN was used to count the erythrocytes
with overlapping observed in the samples prepared by the pe-
ripheral smear method and simultaneously make the RBC-WBC
classification. The steps in this study are shown in Fig. 1.

Figure 1 A brief schema of the proposed method

Data Set
LISC dataset was used in this study (Rezatofighi and Soltanian-
Zadeh 2011). The LISC database was digitized in the hematology
laboratory by preparing the blood samples collected from healthy
individuals by the peripheral smear method. Different peripheral
smear slides were prepared from 8 individuals, and 117 whole
slide images were collected. The Gismo-Wright staining technique
was used in the peripheral smear, and a microscope with a 100x
optical lens was used to collect images. The obtained images were
transferred to digital media using a camera. The images in the
dataset are 720 × 576 resolution.

Proposed Cell Localization Method
A simple and adaptive pre-processing algorithm is intended to
separate peripheral slide images into sub-images. Pre-processing

step aims to divide the overlapping cells into sub-images and input
them into the deep learning model more effectively. This way, the
deep learning-based segmentation problem, which requires high
computational operations, has been transferred to the classifica-
tion problem. All the applied pre-processing steps are adaptive
and can be used in applications such as real-time and various
other datasets. Applying this pre-processing step to images al-
lows for higher resolution blood image classification. In addition,
giving the data as input to the CNN model by dividing it into
sub-images provides computational efficiency during training and
testing. First, the images in the RBC color space in the data set were
converted to gray-level images. Gray-level 256-bit images were
converted to binary images adaptively using the Otsu method
(Otsu 1979). In binary-level images, the centers of erythrocytes
and leukocytes resemble the background due to the cytoplasm
structure. Therefore, the holes-filled method was applied to the
centers of the obtained binary level images. While determining the
center of the images at the binary level, the morphological erosion
operator is applied to ensure the clarity of the edges. Finally, the
centers of the blocks in the binary images were found. The bound-
ing boxes’ positions were mapped onto the RGB images in the
original dataset. Bounding boxes in blocks were cropped from the
original images, and a window size of 128 × 128 was transferred.
The applied pre-processing steps are shown in Figure 2.

In Figure 3, the results of the applied pre-processing steps used
to separate images into sub-images are given. RGB images were
used during the training and testing times, and the pre-processing
steps were used only to divide into sub-images.

Figure 4 shows images of randomly selected overlapping ery-
throcytes from the cropped sub-images.

Different numbers of erythrocytes overlap in the sub-images
recorded due to pre-processing from the original dataset. The
cropped sub-images were counted and labeled with the opinion of
the hematologist. The number of overlapping cells in each image is
labeled, and all WBC cells are labeled as a separate class. 117 RGB
images with 720 × 576 resolution were found from the dataset,
and 13345 RGB images with 128x128 sub-images were cropped
and labeled. All sub-images were used during CNN training and
testing. The distribution of the labels resulting from sub-images is
given in Table 1.

Proposed CNN Model

In the proposed model, the images taken as input data during the
training phase are forwarded to each layer, and then the model
produces a result for each image. The loss function calculated the
difference between the results obtained as the model output and
the actual results. As a result of the loss obtained from each image,
the model updates its internal weights to increase the learning
rate. In the training phase of the model, the gradient descent
optimization algorithms were used to update the optimum internal
weights. After the training phase was completed, test images were
used to test the model’s success.

The general structure of the proposed CNN model is shown in
Figure 5. In our proposed CNN model, we use four convolutional
layers, three max-pooling layers, and two fully connected layers,
which means two hidden layers and one output layer. 128 × 128 ×
3 sub-image from the data set normalized and applied to the model
as input. To construct the 1st, 2nd, 3rd, and 4th convolutional
layers, we used filter sizes of 3x3, 2x2, 3 × 3, and 3 × 3 and stride
sizes of all layers are 1 × 1. The ReLU activation function and the
same padding technique are used in all convolution layers. 2x2
kernel max-pooling with 2 × 2 stride is applied for the mapping
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Figure 2 Applied pre-processing steps

Figure 3 Cropping images into sub-images with pre-processing steps

■ Table 1 Data distribution

Number of overlapped RBCs WBC

Class 1 2 3 4 5 6 7 8 9 10 Total

Number
of sam-
ples

2545 1041 2040 2779 2553 1346 422 113 155 351 13345

Figure 4 Examples of erythrocytes with different numbers overlap-
ping

feature. A dropout layer of 0.25 was used at the output of all
pooling layers. ReLU activation function is used in all convolution
layers. The maximum-pooling layer’s output matrix in the second
block is flattened and transferred to the dense block. There is a
neural network in the last layer for classifying the number and
type of blood samples. The fully connected layer consists of two
dense layers of 512 and 256 neurons and an output layer of 10. In
order to prevent overfitting, 0.2 dropout was used in the second
dense layer. The dropout rate is chosen experimentally. We use
the softmax activation function in the output layer. The Adam

optimization function is used in the training steps, and the batch
size is 64. Early stopping was used depending on the accuracy
rate during the proposed CNN model training. The best weights
obtained during the training process were saved.

Experimental Results

Various performance criteria were used to test the performance of
the proposed CNN model. Early stopping was used depending
on the accuracy during the proposed CNN model training. The
training was stopped at the 50 epochs when the accuracy and loss
stabilized. The weights with the highest accuracy and lowest loss
value were recorded. Figure 6 shows the accuracy and loss graphs
of the training and validation results. The proposed CNN model
reached the highest accuracy value of 99.73% in 50 epochs. The
hardware environment includes an Intel Core i7-7700 HQ CPU, 16
GB of RAM, and the Windows 10 operating system (64-bit mode)
to implement the model. In order to accelerate the computations
and improve efficiency, GPU-accelerated computing with NVIDIA
GTX 1050 is also utilized.
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Figure 5 Proposed CNN model

(a) Accuracy of train and validation

(b) Loss of train and validation

Figure 6 Results of the proposed CNN model performance re-
sults

Classification results were evaluated using other performance
criteria such as Precision, Recall, and F1-Score. Precision, Recall,
and F1-Score in the proposed CNN model were 93.42%, 96.27%,
and 94.73%, respectively. In addition, the confusion matrix was
used to show the success of the proposed method in the test data.
The confusion matrix shows the correct and incorrect classification
of the test data of the proposed method in detail. The confusion
matrix of the proposed model is shown in Figure 7.

CONCLUSION

Accurate counting and classifying of blood samples are critical
in diagnosing diseases and following treatments. The peripheral
smear method is the most commonly used method in laboratories
and clinics for cell counting and determining type. However, over-
lapping erythrocytes is one of the biggest obstacles to a reliable
counting process. This study proposes a new CNN-based strategy
to eliminate the overlap-induced counting problem in peripheral
smear blood samples and accurately determine the blood cell type.

Figure 7 The confusion matrix of the proposed CNN model

In order to count the overlapping cells, the segmentation problem
was transformed into a classification problem. In addition, giving
the data as input to the CNN model by dividing it into sub-images
provides computational efficiency during training and testing. In
the proposed method, peripheral blood images were divided into
sub-images, block by block, using adaptive image processing tech-
niques to identify overlapping cells and cell types. Each image
was labeled with an expert opinion. Each overlap number in red
blood cells is labeled as a separate class. In addition, white blood
cells are labeled as a separate class. Data augmentation methods
were applied to ensure data distribution. Convolutional neural
networks were used for classification. Convolutional neural net-
works can learn the properties of erythrocytes and leukocytes with
more than one overlap in the image, thus producing more suc-
cessful results than the methods used. The proposed CNN model
consists of three blocks and has significantly less computational
complexity. Classifier performances are measured using accuracy,
precision, recall, and F1-Score metrics. Validation of results has
been carried out by tenfold cross-validation. CNN-based approach
counts overlapping cells and determines cell type with 99.73%
accuracy. Precision, Recall, and F1-Score in the proposed CNN
model were 93.42%, 96.27%, and 94.73%, respectively. It is seen that
the proposed method performs multitasking with higher accuracy
compared to other methods.
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ABSTRACT The electrical transmission, which occurs on the surface of the neuron membranes, is based
on the flow of charges such as calcium, potassium and sodium. This potential change means a current flow
and if there is a variable current flow, a flux change comes into question. Accordingly, recent studies have
suggested that these electrophysiological neuronal activities can induce a time-varying electromagnetic field
distribution. The electric field is usually defined as an external stimulation variable of the biological neuron
models in literature. However, the electric field is included in the biological neuron models as a new state
variable in another perspective and it is described the polarization modulation of media. Here, this study
focused on that the electric field is a state variable in the biological neuron model. The numerical simulations
of the FitzHugh-Nagumo neuron, which is improved by including the electromagnetic effect, are re-executed in
this study. Then, the hardware realization of this system is built on the FPGA device. Therefore, it is shown
that it is also possible to perform the hardware realizations of the neuronal systems, which have a new state
variable for the electric field definition.

KEYWORDS

Electromagnetic
field
Biological neuron
model
Hardware realiza-
tion
Field Pro-
grammable Gate
Array (FPGA)
FitzHugh-
Nagumo

INTRODUCTION

The basic unit of the nervous system is neuron cells and it also con-
stitutes the main unit of the communication system, which is based
on electrical transmission, in the living beings. The electrical trans-
mission, which occurs on the surface of the neuron membranes,
is based on the flow of charges such as calcium, potassium and
sodium. This potential change means a current flow and if there is
a variable current flow, a flux change comes into question [Ma and
Tang 2015; Lv et al. 2016; Lv and Ma 2016; Wu et al. 2017; Xu et al.
2017; Ma et al. 2017; Ge et al. 2018]. Accordingly, recent studies
have suggested that these electrophysiological neuronal activities
can induce a time-varying electromagnetic field distribution.

In [Lv et al. 2016], the expression magnetic flux is associated
with a memristor element. The membrane potential definition
is combined with the memristor definition. Thus, it has been
suggested that magnetic flux can be used to explain the effect of
electromagnetic induction. Based on the result in [Lv et al. 2016],
different studies have also been put forward. For example in [Wu
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et al. 2016], the electromagnetic radiation has been considered as
an external stimuli of the FitzHugh-Nagumo model and it have
been observed the electrical activates of the neuron by relating
with the sudden heart disorder under the heavily electromagnetic
radiation. An improved cardiac model has been exposed to an
external electromagnetic radiation in [Ma et al. 2017] and it has been
founded that the electromagnetic radiation causes the quiescent
state of the membrane potentials.

When the electric field distribution induced by the fluctuations
in the action potential becomes apparent, this effect has been in-
cluded in the definitions of the biological neuron models. For
example, in [Bao et al. 2018], Hindmarsh–Rose neuron model has
been modified by utilizing the memristor device characteristic. It
has been thought to observe neuronal dynamics under the electro-
magnetic induction and these studies have been confirmed by the
circuit breadboard based experimental results. In [Bao et al. 2019],
an electromagnetic induction current has been generated by the
threshold memristor. This current has been applied to Hindmarsh-
Rose neuron model instead of the external current definition. This
neuron model has been presented as a memristive defined system
and this system has been implemented with discrete device on
hardware breadboards for validating electronic neuron.

A locally active memristive defined neuron model has been pro-
posed by using the FitzHugh-Nagumo neuron model in [Lin et al.
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2020]. The firing patterns and multistability of this neuronal sys-
tem have been investigated and these systems have been realized
by emulating the memristor definition with the analog electronic
elements. In [Bao et al. 2021], a memristive neuron model with the
adapting synapse has been imitated by a flux controlled memristor
and a memristive mono-neuron model has been implemented by
a fitting activation function circuit.

The electric field has been defined as an external stimulation
variable of the biological neuron models in the outlined systems in
above. However, the electric field has been included in the biologi-
cal neuron models as a new state variable in [Ma et al. 2019] and it
has been described the polarization modulation of media that is re-
sulted from the external electric field or the intrinsic change of ions
on the membrane surface in mentioned study. Inspiring by [Ma
et al. 2019], the numerical simulations of the FitzHugh-Nagumo
neuron, which is improved by including the electromagnetic effect,
are re-executed in this study. Then, the hardware realization of
this system has been built on the FPGA device for the first time.
Therefore, it is shown that it is also possible to perform the hard-
ware realizations of the neuronal systems, which have a new state
variable for the electric field definition, similar to the memristive
defined ones.

In this context, firstly after the introducing of the improved the
FitzHugh-Nagumo neuron model by including the electromag-
netic effect, the repeated numerical simulation results are given
in Section 2. The FPGA-based hardware implementation stages
of the relevant model and its obtained experimental results are
presented in Section 3. The outputs of this study are discussed in
the last section.

THE INVESTIGATING OF THE ELECTROMAGNETIC EF-
FECT DEFINED FITZHUGH-NAGUMO NEURON MODEL

The electrical transmission, which occurs on the surface of the neu-
ron membranes, is based on the flow of charges such as calcium,
potassium and sodium. This potential change means a current
flow and if there is a variable current flow, a flux change comes
into question [Ma and Tang 2015; Lv et al. 2016; Lv and Ma 2016;
Wu et al. 2017; Xu et al. 2017; Ma et al. 2017; Ge et al. 2018]. Accord-
ingly, recent studies have suggested that these electrophysiological
neuronal activities can induce a time-varying electromagnetic field
distribution. In order to describe this electromagnetic field distri-
bution, the membrane surface has been considered as a charged
plate and the charge density τ of its surface has been written as the
ratio of the electrical charge ‘q’ to the surface area ‘S’ of the plate,
namely.

When the dielectric constant is ‘ϵ’, the induced electromagnetic
field has been given as ‘E = (q/2Sϵ)’ or ‘E = (q/2ϵ)’ for a sphere
shape neuron with the ‘r’ radius. The voltage difference between
the charged plates can be defined by depending on the electromag-
netic field as in ’V = rE ∼= E

√
S’. In neurons, the lipid layers of the

neuron membrane are considered as conductive material and the
space between these layers as an insulating material, so a capacitor
definition ‘C’ is usually added to the biological neuron models
[Hodgkin and Huxley 1952; Morris and Lecar 1981]. Similarly, the
induced electromagnetic field ‘E’ has been considered as a new
state variable in [Ma et al. 2019] by taking into consideration the
inductance ‘L’ of the media ‘p’. This assumption is formulated in
general terms as in Eq.1.

C
dV
dt

= f (V, i, p)

L
di
dt

= g(V, i) + rE

dE
dt

=
1

2Sϵ

dq
dt

=
1

2Sϵ
i = ki

(1)

In Eq.1, ‘ f ’ and ‘g’ functions are the nonlinear expressions
and they represent the membrane potential and the trans-
membrane current. These features have been adapted to the
FitzHugh–Nagumo neuron model and the electromagnetic effect
defined FitzHugh-Nagumo neuron model has been improved as
in Eq.2 [Ma et al. 2019].

τ
dx
dt

= x − x3

3
− y + Iext

dy
dt

= ax + by + d + rE

dE
dt

= ky

(2)

where, while the ‘x’ state variable describes activation of the
membrane potential, the ‘y’ state variable represents the inactiva-
tion of the neuron. The ‘a’, ‘b’, ‘d’ and ‘τ’ are the model parameters.
The external current stimulates are given by the ‘Iext’ parameter.
In biological neuron models that do not include the electromag-
netic field effect, the external currents applied to the neurons are
generally defined as the DC currents [Izhikevich 2003; Fitzhugh
1965; Hindmarsh and Rose 1984]. However, a flux change, namely
a time-depended current, requires for seeing the effect of the elec-
tromagnetic field. Thus, the external current in the electromagnetic
effect defined FitzHugh-Nagumo neuron model can be formed as
a sinusoidal source. In fact, the amplitude and the frequency of
this current affect the dynamical behaviors of the neuron model.
The effect of the frequency on the dynamical behaviors of the elec-
tromagnetic effect defined FitzHugh-Nagumo neuron model have
been observed via a bifurcation diagram in Figure 1 by fixing the
amplitude to 0.1 in here.

The numerical simulation results re-executed for four different
frequency values of the sinusoidal source are given in Figure 2,
respectively. In these numerical simulations, the values of ‘a’, ‘b’,
‘d’ and ‘τ’ parameters have been chosen as follows: a = 3, b =
−3, d = 5, k = 15, r = 0.0001 and τ = 0.1.

THE FPGA-BASED REALIZATION PROCESS

Some specialties are desired in the electronic equipment that is
used in the hardware realization studies of the bio-inspired sys-
tems. Some of these most preferred ones are low power and low de-
vice consumption, allowing different designs to be tested without
the need for additional processes, and rapid prototyping. While
there are studies in which biological neuron models are supported
by the discrete device based hardware for providing advantages
in terms of material supply and practical implementation in the
literature [Sánchez-Sinencio and Linares-Barranco 1989; Linares-
Barranco et al. 1991], the studies using programmable and recon-
figurable analog/digital devices have also attracted attention in
recent years [Korkmaz et al. 2016; Korkmaz and Kilic 2014; Karataş
et al. 2022]. The programmable and re-configurable analog/digital
devices combine many features mentioned above.

In this study, the Field Programmable Gate Array (FPGA) de-
vice is used for the hardware implementation of the electromag-
netic effect defined FitzHugh-Nagumo neuron model. In addition
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Figure 1 Bifurcation diagram of the membrane potential that is plotted by applying different frequencies in external stimulus within 200 time
sample.

Figure 2 Numerical simulation results of the electromagnetic effect defined FitzHugh-Nagumo neuron model for different frequencies [a) 0.15,
b) 0.3, c) 0.7 and d) 1.5] of the external stimulus.

to features mentioned above, the FPGA device is a digital elec-
tronic equipment operating with a parallel working procedure
and having the programmability and reconfigurability features.
The FPGA is preferred for the prototype realization of many mod-
els. Since the FPGA device is digital electronic equipment; the
electromagnetic effect defined FitzHugh-Nagumo neuron model,
which is defined by the ordinary differential equations, must be
converted to a discrete-time expression for the FPGA-based imple-
mentation. Here, the Euler discretization method is used for this
conversion process and the step size is set as ∆ h = 0.01. After ap-
plying the discretization method to the model in Eq.2, the obtained
final definition is given in Eq.3.

xi+1 = [
xi − x3

3 − y + Iext

τ
] ∗ ∆h + xi

yi+1 = [axi + byi + d + rEi] ∗ ∆h + yi

Ei+1 = [kyi] ∗ ∆h + xi

(3)

The "System Generator for DSP − XILINXTM" program
tool is used for the FPGA-based implementation of the elec-
tromagnetic effect defined FitzHugh-Nagumo neuron model
in Eq.3. This program provides an automatic conversion
between the MATLAB − SIMULINKTM and the XILINXTM

codes. After the conversion process, the system built on
MATLAB − SIMULINKTM can be embedded into the FPGA de-
vice produced by XILINXTM, directly [Xilinx July, 2022]. Figure 3
shows a diagram that is designed with the System Generator for
DSP tool for the electromagnetic effect defined FitzHugh-Nagumo
neuron model.

A multiplexer is added to this design for the selection of the
frequency values as ω(rad/s) = [0.15, 0.3, 0.7, 1.5]. Thus, instead
of adjusting the frequency to four different values separately, the
all frequency values are embedded to the FPGA in the same de-
sign. Thus, the implementation results could be easily observed by
changing the switch positions on the FPGA development board.
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Figure 3 System Generator for DSP tool based design schema for the electromagnetic effect defined FitzHugh-Nagumo neuron model.

The electromagnetic effect defined FitzHugh-Nagumo neuron
model has been built by using the predefined blocks in the System
Generator for DSP − XILINXTM tool and it has been given by
a subsystem illustrations named by “EE_defined_FHN” in Fig-
ure 3. The fixed-point arithmetic Q = (32, 18) has been used in
the design. After the automatic conversion process, the VHDL
codes have embedded to the SPARTAN-3AN development board
of XILINXTM company. A digital-to-analog converter (LTC2624)
is available on this development board. The measurement results
performed for the ω(rad/s) = [0.15, 0.3, 0.7, 1.5] frequency values
have recorded by using the mentioned digital-analog converter.
The FPGA-based realization results of the electromagnetic effect
defined FitzHugh-Nagumo neuron model are given in Figure 4 for
these frequencies. Therefore, it has been proved that it is also pos-
sible to perform the hardware realizations of the neuronal systems,
which have a new state variable for the electric field definition.

This realization results are very similar to the obtained results
for the numerical simulation in Figure 2. According to this similar-
ity, the FPGA-based hardware implementation of the electromag-
netic effect defined FitzHugh-Nagumo neuron model has been
completed successfully. Some synthesis results of the FPGA-based
realized model are presented in Table 1.

CONCLUSION

In this study, the FPGA-based hardware realization of the elec-
tromagnetic effect defined FitzHugh-Nagumo neuron model has
been handled. This biological neuron model stands out in terms
of explaining the effect of the electric field on the neuron with a
new state variable. In this context, after the investigating of the
electromagnetic effect defined FitzHugh-Nagumo neuron model
briefly, a bifurcation diagram has been plotted to observe the effect
of the external time-depended sources on the dynamical behaviors
of this neuron model. Numerical simulation studies have been
carried out to observe neuron dynamics for different angular fre-
quency values. Then, in order to demonstrate the adaptability of
this biological definition to an electronically platform, the elec-
tromagnetic effect defined FitzHugh-Nagumo neuron model has
been implemented with the FPGA device.

In the model definition, a time-depended current requires for
seeing the effect of the electromagnetic field and a sinusoidal signal
has been included in the model definition. In this study, this

■ Table 1 Area usages and synthesis results in the FPGA-
based implementation of the electromagnetic effect defined
FitzHugh-Nagumo neuron model.

Area Usages Name Area Usages Rate%

The used amount from 11776
REGISTER

184 (1%)

The used amount from 11776
4-INPUT LUT

1825 (15%)

The used amount from 5888
SLICE

975 (16%)

The used amount from 24
BUFGMUX

2 (8%)

The used amount from 20
MULT18X18SIO

19 (95%)

Maximum Delay (ns) 1083

sinusoidal external signal in continuous time has been constructed
on the FPGA device without requiring the usage of a LUT block or
an external ADC. The System Generator for DSP tool has been used
in this implementation process. The recorded experimental results
show that an electromagnetic effect defined FitzHugh-Nagumo
neuron model can be implemented with FPGA device, successfully.
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Figure 4 FPGA-based experimental realization results of the electromagnetic effect defined FitzHugh-Nagumo neuron model for different
frequencies [a) 0.15, b) 0.3, c) 0.7 and d) 1.5] of the external stimulus.
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ABSTRACT Prediction techniques have the challenge of guaranteeing large horizons for chaotic time series.
For instance, this paper shows that the majority of techniques can predict one step ahead with relatively
low root-mean-square error (RMSE) and Symmetric Mean Absolute Percentage Error (SMAPE). However,
some techniques based on neural networks can predict more steps with similar RMSE and SMAPE values.
In this manner, this work provides a summary of prediction techniques, including the type of chaotic time
series, predicted steps ahead, and the prediction error. Among those techniques, the echo state network
(ESN), long short-term memory, artificial neural network and convolutional neural network are compared with
similar conditions to predict up to ten steps ahead of Lorenz-chaotic time series. The comparison among
these prediction techniques include RMSE and SMAPE values, training and testing times, and required
memory in each case. Finally, considering RMSE and SMAPE, with relatively few neurons in the reservoir, the
performance comparison shows that an ESN is a good technique to predict five to fifteen steps ahead using
thirty neurons and taking the lowest time for the tracking and testing cases.
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Chaotic time se-
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Neural network
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work
Long short-term
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INTRODUCTION

Chaos has been a research area that includes several physical phe-
nomena that can be modeled by deterministic mathematical equa-
tions, applied to real life problems and predicted applying artificial
intelligence based techniques. For example: one can take a chaotic
system as the well-known Lorenz oscillator to generate chaotic
time series; afterwards, one can use the time series to try to predict
several steps ahead applying prediction techniques. In this predic-
tion problem one has the challenge of choosing the appropriate
technique, which depends on the nature of the data to validate the
prediction, e.g. some data can have slow variations and others fast
changes in their dynamics. Some examples of chaotic time series
in the real world are for example: sunspots, water run-off, electric
changes, temperature, rainfalls, voice signals Lau and Wu (2008);
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Yang et al. (2005); Dhanya and Nagesh Kumar (2010); Jingjing et al.
(2018), and so on. Clearly, these data is different and therefore
the challenge is the development or application of known pre-
diction techniques that guarantee a large prediction horizon with
minimum error.

Some of the main characteristics that try to quantify chaotic
behavior was introduced by Li and Yorke (1975). From this seminal
work, one understand important concepts as fractal dimension,
Lyapunov exponents, Fourier transform, Hilbert transform and the
reconstruction of an attractor Liu (2010). Another seminal work
was introduced by Wolf et al. (1985), for determining Lyapunov
exponents from a time series, where the chaotic time series can be
experimental or taken from simulation. In this manner, one can
evaluate the Lyapunov exponent of a chaotic time series to validate
if it is chaotic or not, and therefore, it is chaotic if the Lyapunov
exponent is positive. On another point of view, it is said that
chaotic time series present characteristics seemingly unpredictable
due to their complexity Han et al. (2019c), and due to their high
sensitivity to the initial conditions, as shown by Wolf et al. (1985).
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One can find a huge number of chaotic time series from phys-
ical phenomena or generated from mathematical models. For
instance, the authors in Liu (2010) talk about tornadoes and hu-
man brain, in which the challenge is predicting the future behavior,
thus requiring the development of prediction techniques. Fortu-
nately, nowadays one can find contributions to chaotic time series
prediction applying artificial intelligence, statistics, mathematics,
electronics among other research areas. On this direction, some
authors have shown the usefulness of applying Artificial Neural
Networks (ANN) Ong and Zainuddin (2019); Chen and Han (2013);
Pano-Azucena et al. (2021), fuzzy logic Miranian and Abdollahzade
(2013); Heydari et al. (2016); Goudarzi et al. (2016), Bayes theoremLi
et al. (2016); Wang et al. (2020b), Machine Learning (ML) Alemu
(2018); Gromov and Borisenko (2015), multilayer Perceptrons Dalia
Pano-Azucena et al. (2018); Zhao et al. (2014), recurrent neural net-
works (RNN) Li et al. (2012); Ardalani-Farsa and Zolfaghari (2010);
Chandra and Zhang (2012); Xu et al. (2019), linear and nonlinear
filters Wu and Song (2013); Ma et al. (2017); Yumei et al. (2019), op-
timization by evolutionary computation Samanta (2011); Chandra
et al. (2017); Guo et al. (2016b), approximation by recursion Wang
et al. (2017); Li-yun (2010); Han et al. (2019b), statistical methods
Kurogi et al. (2018); Xu et al. (2019); Jokar et al. (2019), Wavelet
transform Zhongda et al. (2017); Feng et al. (2019b), Lyapunov ex-
ponents Yong (2013), computer algorithms Guo et al. (2020); Hua
et al. (2013); Jingjing et al. (2018); Zhou et al. (2017) and hybrid
architectures Xiao et al. (2019); Fu et al. (2010); Han et al. (2017).

Among these techniques, the optimization by evolutionary com-
putation and hybrid architectures have shown good results. In the
case of optimization by evolutionary computation, one can find
the application of Particle Swarm Optimization (PSO) Eberhart
and Kennedy (1995), Differential Evolution (DE) Price et al. (2006),
Cuckoo Search Yang and Deb (2010), Ant Colony Optimization
(ACO) Dorigo et al. (2006), Fruit Fly Optimization Algorithm Xing
and Gao (2014), Whale Optimization Algorithm Mirjalili and Lewis
(2016), grey wolf optimizer Mirjalili et al. (2014) and co-evolution,
where different optimization methods work together.

In the case of hybrid architectures for chaotic time series predic-
tion, the most known are: Bayes theorem Swinburne (2004), Echo
State Network (ESN) Jaeger (2007), ANN Drew and Monson (2000),
Wavelet transform Zhang (2019a), long short-term memory (LSTM)
and Least Square Support Vector Machine (LSSVM) Suykens and
Vandewalle (1999).

In this manner, this paper provides a summary on chaotic time
series prediction techniques and compares the performance of
four techniques based on neural networks to predict chaotic time
series from Lorenz chaotic system. The next section shows the
most used models of Lorenz system and Mackey-Glass, and others,
and shows a Table summarizing different prediction techniques,
comparing the predicted steps, data used for the prediction and
the associated root-mean-square error (RMSE) for each case. Af-
terwards, this paper compares four prediction techniques based
on neural networks, namely: ESN, LSTM, ANN and 1-Dimension
Convolutional Neural Network (1D-CNN). The prediction results
are shown in the section before concluding this work.

TECHNIQUES FOR CHAOTIC TIME SERIES PREDICTION

In the current state of the art, one can find different techniques
oriented to predict chaotic time series. The following papers were
used for the classification of prediction techniques, predicted steps,
number of points used for the prediction, and the associated RMSE:
Alemu (2018); Shinozaki et al. (2020); Zhang and Jiang (2020); Su
and Yang (2021); Zhang et al. (2020). The chaotic time series data

was mainly taken from two chaotic systems: Lorenz and Mackey-
Glass.

1. Lorenz:
This is a deterministic system modeled by three ordinary
differential equations (ODEs) introduced by Lorenz (1963),
and given by (1), where chaotic behavior exists by setting
σ = 10, ρ = 28 and β = 8

3 .

dx(t)
dt = σ[y(t)− x(t)]

dy(t)
dt = x(t)[ρ − z(t)]− y(t)

dz(t)
dt = x(t)y(t)− βz(t)

(1)

2. Mackey-Glass:
This chaotic system was introduced by Mackey and Glass
(1977), and denoted by (2), where τ is a delay parameter, and it
can be set to τ ≤ 4.43 to produce a fixed point, 4.43 ≤ τ ≤ 13.3
to produce a stable limit cycle, 13.3 ≤ τ ≤ 16.8 to produce
a double limit attraction, and 16.8 ≤ τ to generate chaotic
behavior.

dx(t)
dt

=
ax(t − τ)

1 + xc(t − τ)
− bx(t) (2)

When simulating a chaotic system, the amplitudes of the state
variables can be as large as possible, however, for hardware imple-
mentation, it is desired to have amplitudes within the range [−1, 1]
or [0, 1]. In the validation of the steps predicted by each technique,
the authors use different errors, such as: RMSE, Mean Square Error
(MSE), Mean Absolute Error (MAE), Normalized RMSE (NRMSE),
R2, among others. However, in the majority of works, the most
used measure is RMSE, which is defined by (3), where N is the
total of attributes, ỹn is the predicted value and ytarget

n the reference
value.

RMSE =

√
ΣN

n=1(ỹn − ytarget
n )

2

N
(3)

In addition, Symmetric Mean Absolute Percentage Error (SMAPE)
is implemented like an accuracy measure based on percentage
errors. This error is described in equation (4) and indicates the
percent of accuracy of the real value versus the forecast value
in descendent form, where N is the total of attributes, Fn is the
predicted value and An is the actual value.

SMAPE =
100%

n
ΣN

n=1
|Fn − An|
(|Fn |+|An |)

2

(4)

In Table 1, we list some prediction techniques including the
type of chaotic data used by the associated technique, the pre-
dicted steps ahead, number of test points, and RMSE. It can be
appreciated that hybrid and optimized techniques have low RMSE,
and also, the low errors are associated to the techniques predicting
1 step ahead of chaotic time series. The minimum number of points
for testing each technique is 500.
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■ Table 1 Prediction techniques for chaotic time series, ordered from the lowest to the highest RMSE value.
Technique Chaotic serie Prediction Test data RMSE
Combining the phase space
reconstruction and fuzzy
logic Gholizade-Narm and
Shafiee-Chafi (2015)

Mackey-Glass 1 step 600 2.26E-10

Hybrid Empirical Mode De-
composition - Neural Net-
works (HEMD-NN) Tang
et al. (2020)

Mackey-Glass 1 step 2,000 5.31E-08

Efficient Extreme Learning
Machine - Differential Evo-
lution (EELM-DE) Guo et al.
(2016b)

Lorenz 1 step 500 7.67E-08

Kernel Local Polynomial co-
efficient autoregressive Pre-
diction (KLPP) Su and Li
(2015b)

Henon 1 step 500 8.44E-07

Hybrid Elman-NARX neu-
ral networks Ardalani-Farsa
and Zolfaghari (2010)

Mackey-Glass 1 step 1,000 3.72E-05

Radial Basis Function
(RBF) neural network
Zhang et al. (2013)

Drift sensor 2 step 4,000 4.87E-05

ESN optimized by Selec-
tive Opposition Grey Wolf
Optimizer (SOGWO-ESN)
Chen and Wei (2021)

Mackey-Glass 25 step 800 1.46E-04

Artificial Neural Networks
(ANNs), Adaptive Neuro-
Fuzzy Inference System
(ANFIS) and Least-Squares
Support Vector Machines
(LSSVM) Dalia Pano-
Azucena et al. (2018)

Chaotic system 6 step 2,000 2.98E-04

Local Neuro-Fuzzy (LNF)
- Least-Squares Support
Vector Machines (LSSVMs)
Miranian and Abdollahzade
(2013)

Mackey-Glass 6 step 500 7.90E-04

Local Functional Coefficient
Autoregressive (LFAR) Su
and Li (2015a)

Mackey-Glass 500 step 500 1.30E-03

Structured Manifold - Broad
Learning System (SM-BLS)
Han et al. (2019a)

Lorenz 10 step ≈ 4,400 2.45E-03

Hierarchical Delay-Memory
Echo State Network
(HDESN) Na et al. (2021)

Lorenz 12 step 2,000 2.65E-03

The Elman recurrent net-
workChandra and Zhang
(2012)

Mackey-Glass 500 step 500 6.33E-03

Local Volterra model based
on phase points clustering
Han et al. (2018)

Lorenz 50 step 4,976 8.10E-03
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PREDICTION TECHNIQUES BASED ON NEURAL NET-
WORKS

This section shows a comparison among prediction techniques
based on most used neural networks.

Echo State Network
The prediction technique based on ESN was introduced by Jaeger
(2007). It becomes to behave as a recurrent neural network and
includes a reservoir that assigns random weights while a certain
percentage or neurons are connected by accomplishing the prop-
erty of echo, as shown by Lukoševičius (2012). The update equa-
tions are given in equations (5) and (6). In these equations x(n)
denotes the activation vector of the neurons in the reservoir, where
n is the value of each neuron in the reservoir, α is the leaking rate
denoted by ∈ (0, 1] for the training. x̌(n) is the update for each n,
where tanh(·) holds the vertical concatenation of matrix Win and
W represents the inputs and recurrent weights of the matrices. The
output layer is defined by equations (7) and (8).

x̃(n) = tanh(Win[1; u(n)] + W × (n − 1)) (5)

x(n) = (1 − α)× (n − 1) + αx̃(n) (6)

Wout = YtargetXT(XXT + βI)−1 (7)

y(n) = Wout[1; u(n); x(n)] (8)

In equation (8), y(n) is the output layer, Wout is the weights output
matrix determined by Ridge regression or also known as Tikhonov
regularization, where β it’s regularization coefficient. On other
hand, [·; ·; ·] holds the verticality in the concatenation of the vector
as mentioned above; X is the collect data of W (it mean the percent
of connection in the reservoir).The simulation of this prediction
technique includes a reservoir of 30 neurons and a spectral radius
(SP) of 2.5.

Long Short-Term Memory
The technique known as Long Short-Term Memory (LSTM) is a
kind of recurrent neural network that was introduced by Hochre-
iter and Schmidhuber (1997). Its main characteristic is the ability
to retain one state of a sequence in a long term. An LSTM has three
inputs and two outputs: xt is the current input value as denoted
by equations (10) and (11); while at the same time shares the input
with ht−1, that is the previous output value of the net, as described
by equations (10) and (11). ct−1 denotes the input to the cell state;
the outputs ht are denoted by equations (13) and (14), and Ct is the
unitary state of the current LSTM net given by equation (12). This
LSTM in addition includes update gates of information to forget
and update the cell state values. The description of the forget gate
is given in ft by equation (9) and the update gate is given in Ct by
(12).

ft = σ(W f · [ht−1, xt] + b f ) (9)

it = σ(Wi · [ht−1, xt] + bi) (10)

C̃t = tanh(WC · [ht−1, xt] + bC) (11)

Ct = ft ∗ Ct−1 + it ∗ C̃t (12)

ot = σ(Wo[ht−1, xt] + bo) (13)

ht = ot ∗ tanh(Ct) (14)

In these equations σ is a sigmoid function scaled within the val-
ues [0, 1] for the updating of the Ct (cell state) for the consumption

of the next time step LSTM. tanh denotes the activation function,
W[·] is the weight matrix for learning, b[·] is the bias or every neu-
ronal network in the LSTM, and xt denotes the inputs to the LSTM
net, ht−1 and ct−1 are the inputs from the previous time step and
ft means the forget gate. The simulation of this technique consists
of the series connection of four LSTM.

Artificial Neural Network

The ANN was introduced by McCulloch and Pitts (1943), as a
mathematical model described by a bio-inspiration of the neurons
in the human brain. An ANN consists of an array of artificial
neurons connected in a feed forward way. In this manner, it consists
of at least three layers, namely: input layer, hidden layer and
output layer. The input layer can be described by vector xi; in the
hidden layer take place the operations evaluated by the weights
wi and bias b, it includes the activation functions to each neuron
denoted as f . The hidden layer operates on equation (15), and
it can include more than one layer. In the output layer, the last
evaluations take place to provide the learned data. The training
of an ANN consists of epochs, and the most used training method
is known as Backpropagation that is denoted by equations (16) and
(17).

i=n

∑
i=1

(wi ∗ xi) + b (15)

E =
∑i=n

i=1 (ti − ai)
2

2
(16)

∆W = −α
∂EW
∂W

(17)

In this case, equation (16) evaluates the mean square error of the
target ti and the output of the neuron ai, which updates the weights
by (17) when the net is back-propagated to learn in each epoch.
The simulation of this technique was performed considering a
hidden layer of 20, 15 and 10 neurons.

Convolutional Neural Network

The Convolutional Neural Network (CNN) is a kind of ANN
introduced by Fukushima (1980). The difference with an ANN
is the application devoted to bidirectional matrices, being quite
effective for artificial vision tasks. However, its application is also
suitable for time series prediction, plain images and signals from
functional magnetic resonance images. The CNN consists of the
main layers: Convolutional layer, which performs the convolution
of the inputs with a kernel given in equation (18); the Max-pooling
layer, which extracts the main characteristics form the convolution;
and the third layer is a fully connected network (feed forward).

Yj = g(bj + ∑
i

Kij ⊗ Yi) (18)

In equation (18), Yj is the output of neuron j evaluated through
a linear combination of the outputs Yi of the neurons in the pre-
vious layer, each one operated with the convolutional core Kij
corresponding to that connection. This value is added to bj and af-
terwards send to an activation function g(·) of non-linear type. For
chaotic time series prediction, the CNN has a kernel that moves in
one direction, i.e. guided by the time series. The simulation of this
technique was performed using a Max-pooling layer (MP) and 50
neurons that are full-connected among them.
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SIMULATION RESULTS

The simulation of the four prediction techniques described in the
previous section, was performed using a personal computer with
Intel i5-11400H processor of 64 bit at 2.70 GHz, with 8 Gb of RAM.
The four techniques have similar characteristics to perform the
prediction and was executed each one five times. In this manner,
the training was executed using a random seed trying to get similar
results. In all the cases, the Lorenz and Mackey-Glass systems was
simulated to generate a data of 1500 points that were used for the
training and 800 points for the test during the prediction, omitting
the first 200 points that are the transitory state of the chaotic system.
The four techniques were executed using a leaking rate of 0.001
with 180 epochs for the learning, except for the ESN. The prediction
of the steps ahead was performed in an adjacent way with respect
to the inputs and predicted steps.

The prediction capabilities of the four techniques is given con-
sidering four characteristics: (I) predicted steps, (II) errors (RMSE
and SMAPE), (III) training and test time, and (IV) memory required
during the training and test, as listed in Tables 2 and 3. In each pre-
diction technique, five runs were executed for each step prediction,
reporting the best result of this five executed. The RMSE is the total
over the 800 test data of the predicted values. As one can see, the
lowest RMSE at one step is provided by LSTM, while the lowest
RMSE with the highest predicted steps ahead (15) was provided by
CNN. However, the ESN provides the results in general with low
RMSE for the prediction with different steps ahead, in addition the
SMAPE presents de low variance that others models. Figures 1, 2,
3 and 4 show the better prediction for the chaotic time series results
reaching 15 steps ahead applying ESN, LSTM, ANN and CNN
techniques, respectively. In the experiments, considering Lorenz
time series the techniques reported lower RMSE and SMAPE than
when using Mackey-Glass time series, as shown in Tables 2 and 3.

The determination of the maximum predicted steps ahead given
in Tables 2 and 3 was done according to the steps ahead (1, 3, 5, 10
and 15 steps). Details of the topologies of each prediction technique
are also given in the Tables. For example, one can see the quantity
of layers and neurons in each case. It is worth noting the stability
of ESN, considering the RMSE and SMAPE, it has low execution
time and memory requirement with respect to the results provided
by the other prediction techniques. From the results shown in
Figures 1, 2, 3, and 4, one can see that some models present high
variance in the prediction, as reported in Tables 2 and 3, where
SMAPE presents high values. One can also see that the prediction
using Lorenz time series is much better providing low RMSE and
SMAPE for ESN. However, when using the Mackey-Glass time
series the prediction techniques present a similar RMSE result, as
shown Table 3. ESN presented a low accuracy in Mackey-Glass
with respect to the Lorenz time series. The reason for this are the
values of the parameters, since it is a time series with a different
behavior. Parameters such as number of neurons, spectral radius,
among others, must be adjusted to obtain good results, compared
to the other three models, since they adapt to the series with the
passage of time. Finally, in Table 4 we show the best results of our
experiments with each prediction technique and compared with
results in the state of the art.

0 100 200 300 400 500 600 700 800
Points

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Va
lu

e

Target signal
Predicted signal

Figure 1 Lorenz time series prediction results by ESN reaching 15
steps ahead.
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Figure 2 Lorenz time series prediction results by LSTM reaching 15
steps ahead.
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■ Table 2 Comparison of the best executions in the four prediction techniques with Lorenz time series, listing the predicted steps
ahead, RMSE, SMAPE, training and testing times, and training and testing memory.
ESN: Step ahead Training-time Testing-time Training-

memory
Testing-
memory

RMSE SMAPE

Train=1,500 1 0.0156 Sec. 0.0625 Sec. 1.7728 Mb 0.2901 Mb 2.86E-02 12.52%
Test=800 3 0.0375 Sec. 0.0531 Sec. 1.8654 Mb 0.3746 Mb 2.11E-03 4.69%
Neurons=30 5 0.0317 Sec. 0.2157 Sec. 1.9689 Mb 0.5094 Mb 8.21E-04 0.75%
SP=2.5 10 0.0312 Sec. 0.0562 Sec. 2.1878 Mb 0.9013 Mb 1.30E-03 0.86%
Leaking
rate=0.001

15 0.0316 Sec. 0.0467 Sec. 2.3818 Mb 1.2797 Mb 5.76E-03 1.47%

LSTM: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 364.0543 Sec. 0.9687 Sec. 5.2716 Mb 1.9529 Mb 2.22E-02 11.63%
Test=800 3 404.6772 Sec. 0.9218 Sec. 5.5292 Mb 1.9757 Mb 3.04E-02 4.71%
LSTMs=4 5 446.3018 Sec. 0.9278 Sec. 5.3843 Mb 1.9955 Mb 4.51E-03 3.17%
Epochs=180 10 556.7754 Sec. 0.9322 Sec. 5.2363 Mb 2.2375 Mb 6.89E-03 7.64%
Leaking
rate=0.001

15 365.8241 Sec. 0.9443 Sec. 5.2806 Mb 1.9483 Mb 1.50E-02 7.86%

ANN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 265.9227 Sec. 0.1718 Sec. 1.7933 Mb 0.5118 Mb 2.59E-02 14.91%
Test=800 3 266.1119 Sec. 0.1812 Sec. 1.7667 Mb 0.6770 Mb 5.02E-03 11.63%
Layers=20,15,10 5 262.3324 Sec. 0.1624 Sec. 1.7926 Mb 0.7977 Mb 5.85E-03 3.65%
Epochs=180 10 263.9948 Sec. 0.1673 Sec. 1.8077 Mb 1.1445 Mb 6.28E-03 8.65%
Leaking
rate=0.001

15 263.7734 Sec. 0.1685 Sec. 1.7948 Mb 1.4987 Mb 7.07E-03 6.81%

CNN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 268.1515 Sec. 0.1781 Sec. 1.8653 Mb 0.5576 Mb 2.27E-02 12.01%
Test=800 3 265.2860 Sec. 0.1875 Sec. 1.8602 Mb 0.6726 Mb 4.72E-03 6.76%
Layers=1MP,50 5 269.0973 Sec. 0.1866 Sec. 1.7919 Mb 0.8411Mb 6.64E-03 6.72%
Epochs=180 10 274.2548 Sec. 0.1875 Sec. 1.8689 Mb 1.1925 Mb 7.41E-03 8.92%
Leaking
rate=0.001

15 274.9681 Sec. 0.1866 Sec. 1.8156 Mb 1.5433 Mb 5.45E-03 6.32%
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Figure 3 Lorenz time series prediction results by ANN reaching 15
steps ahead.
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Figure 4 Lorenz time series prediction results by CNN reaching 15
steps ahead.
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■ Table 3 Comparison of the best executions in the four prediction techniques with Mackey-Glass time series, listing the predicted
steps ahead, RMSE, SMAPE, training and testing times, and training and testing memory.
ESN: Step ahead Training-time Testing-time Training-

memory
Testing-
memory

RMSE SMAPE

Train=1,500 1 0.2656 Sec. 0.3125 Sec. 2.9410 Mb 0.3280 Mb 3.74E-02 8.23%
Test=800 3 0.0468 Sec. 0.0624 Sec. 3.0219 Mb 0.3865 Mb 1.49E-02 2.76%
Neurons=30 5 0.0312 Sec. 0.0468 Sec. 3.1151 Mb 0.5333 Mb 1.96E-02 3.14%
SP=2.5 10 0.0312 Sec. 0.0624 Sec. 3.3470 Mb 0.9001 Mb 8.47E-02 12.01%
Leaking
rate=0.001

15 0.0312 Sec. 0.0624 Sec. 2.5823 Mb 1.2691 Mb 7.79E-02 11.41%

LSTM: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 363.7754 Sec. 0.9218 Sec. 5.2639 Mb 1.9470 Mb 3.49E-02 7.46%
Test=800 3 412.3002 Sec. 0.9446 Sec. 5.1749 Mb 1.9738 Mb 1.27E-02 2.26%
LSTMs=4 5 462.1199 Sec. 1.2499 Sec. 7.9011 Mb 2.4232 Mb 2.52E-02 3.96%
Epochs=180 10 555.2916 Sec. 0.9218 Sec. 5.1964 Mb 2.2387 Mb 2.38E-02 4.72%
Leaking
rate=0.001

15 647.9304 Sec. 1.2812 Sec. 5.1711 Mb 2.6389 Mb 1.82E-02 3.60%

ANN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 266.2632 Sec. 0.1562 Sec. 1.7642 Mb 0.5119 Mb 3.59E-02 7.86%
Test=800 3 263.4166 Sec. 0.1562 Sec. 1.7559 Mb 0.6515 Mb 1.58E-02 2.37%
Layers=20,15,10 5 268.1604 Sec. 0.1874 Sec. 1.7469 Mb 0.7927 Mb 3.30E-02 4.65%
Epochs=180 10 266.1194 Sec. 0.1562 Sec. 1.7969 Mb 1.1753 Mb 1.52E-02 2.58%
Leaking
rate=0.001

15 268.1438 Sec. 0.1528 Sec. 2.0190 Mb 0.1528 Mb 1.04E-02 2.00%

CNN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 267.5832 Sec. 0.1875 Sec. 1.8019 Mb 0.5631 Mb 3.51E-02 8.45%
Test=800 3 264.8904 Sec. 0.1875 Sec. 1.8881 Mb 0.7009 Mb 2.14E-02 4.37%
Layers=1MP,50 5 269.0176 Sec. 0.2031 Sec. 1.7811 Mb 0.8507 Mb 3.63E-02 6.83%
Epochs=180 10 272.9374 Sec. 0.1718 Sec. 1.7973 Mb 1.1921 Mb 1.61E-02 2.89%
Leaking
rate=0.001

15 272.2324 Sec. 0.1875 Sec. 1.7894 Mb 1.5429 Mb 9.52E-03 2.14%

■ Table 4 Comparison of our better results with the state of the art
Technique Chaotic serie Prediction RMSE
Our approach with LSTM Lorenz 1 step 2.22E-02
Deep Hybrid Neural Network with
Differential Neuroevolution Huang
et al. (2020)

Lorenz 1 step 7.56E-02

Our approach with ESN Lorenz 5 steps 8.21E-04
Adaptive Sparse Quantization Ker-
nel Least Mean Square Algorithm
Zhao et al. (2021)

Beijing PM 2.5 5 steps 3.15E-02

Improved Kernel Recursive Least
Squares Algorithm Han et al.
(2019b)

Lorenz 5 steps 4.41E-02

Co-evolutionary predictive algo-
rithm Chandra et al. (2017)

Mackey-Glass 5 steps 5.90E-02

Our approach with ESN Lorenz 10 steps 1.30E-03
Structured Manifold - Broad Learn-
ing System (SM-BLS) Han et al.
(2019a)

Lorenz 10 steps 2.45E-03

Robust manifold broad learning
system for large-scale noisy
chaotic time series prediction Feng
et al. (2019a)

Lorenz 10 steps 1.82E-01
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CONCLUSION

This paper showed the state of the art in chaotic time series pre-
diction using different prediction techniques. From Table 1, it was
observed the usefulness of neural networks, so that four techniques
were chosen to perform the prediction of time series taken data
from Lorenz and Mackey-Glass systems. Tables 2 and 3 summa-
rizes the prediction results provided by applying four techniques
that are based on ESN, LSTM, ANN and CNN. As a result, one
can see that the ESN is the technique providing better prediction
results in its stability of results in the five executions realized. In
addition, ESN obtained the low RMSE and SMAPE values. This
means that the results provided by ESN have the lower variance in
average compared to the other prediction technqiues, and it also
requires lower computing resources.

Conflicts of interest
The authors declare that there is no conflict of interest regarding
the publication of this paper.

Availability of data and material
Not applicable.

LITERATURE CITED

Alemu, M. N., 2018 A fuzzy model for chaotic time series predic-
tion. International Journal of Innovative Computing Information
and Control 14: 1767–1786.

Ardalani-Farsa, M. and S. Zolfaghari, 2010 Chaotic time series
prediction with residual analysis method using hybrid elman-
narx neural networks. Neurocomputing 73: 2540–2553.

Chandra, R., Y.-S. Ong, and C.-K. Goh, 2017 Co-evolutionary multi-
task learning with predictive recurrence for multi-step chaotic
time series prediction. Neurocomputing 243: 21–34.

Chandra, R. and M. Zhang, 2012 Cooperative coevolution of elman
recurrent neural networks for chaotic time series prediction.
Neurocomputing 86: 116–123.

Chen, D. and W. Han, 2013 Prediction of multivariate chaotic time
series via radial basis function neural network. Complexity 18:
55–66.

Chen, H.-C. and D.-Q. Wei, 2021 Chaotic time series prediction
using echo state network based on selective opposition grey
wolf optimizer. Nonlinear Dynamics 104: 3925–3935.

Cheng, W., Y. Wang, Z. Peng, X. Ren, Y. Shuai, et al., 2021 High-
efficiency chaotic time series prediction based on time convolu-
tion neural network. Chaos Solitons & Fractals 152.

Dalia Pano-Azucena, A., E. Tlelo-Cuautle, S. X. D. Tan, B. Ovilla-
Martinez, and L. Gerardo de la Fraga, 2018 Fpga-based imple-
mentation of a multilayer perceptron suitable for chaotic time
series prediction. Technologies 6.

Dhanya, C. and D. Nagesh Kumar, 2010 Nonlinear ensemble pre-
diction of chaotic daily rainfall. Advances in Water Resources
33: 327–347.

Dorigo, M., M. Birattari, and T. Stutzle, 2006 Ant colony optimiza-
tion. IEEE computational intelligence magazine 1: 28–39.

Drew, P. J. and J. R. Monson, 2000 Artificial neural networks.
Surgery 127: 3–11.

Eberhart, R. and J. Kennedy, 1995 Particle swarm optimization. In
Proceedings of the IEEE international conference on neural networks,
volume 4, pp. 1942–1948, Citeseer.

Feng, S., W. Ren, M. Han, and Y. W. Chen, 2019a Robust manifold
broad learning system for large-scale noisy chaotic time series
prediction: A perturbation perspective. Neural Networks 117:
179–190.

Feng, T., S. Yang, and F. Han, 2019b Chaotic time series predic-
tion using wavelet transform and multi-model hybrid method.
Journal of Vibroengineering 21: 1983–1999.

Fu, Y.-Y., C.-J. Wu, J.-T. Jeng, and C.-N. Ko, 2010 Arfnns with svr for
prediction of chaotic time series with outliers. Expert Systems
with Applications 37: 4441–4451.

Fukushima, K., 1980 Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaffected
by shift in position. Biological Cybernetics 36: 193–202.

Ganjefar, S. and M. Tofighi, 2018 Optimization of quantum-
inspired neural network using memetic algorithm for function
approximation and chaotic time series prediction. Neurocom-
puting 291: 175–186.

Gholizade-Narm, H. and M. R. Shafiee-Chafi, 2015 Using repeti-
tive fuzzy method for chaotic time series prediction. Journal Of
Intellıgent & Fuzzy Systems 28: 1937–1946.

Goudarzi, S., M. B. Khodabakhshi, and M. H. Moradi, 2016 Inter-
actively recurrent fuzzy functions with multi objective learning
and its application to chaotic time series prediction. Journal Of
Intellıgent & Fuzzy Systems 30: 1157–1168.

Gromov, V. A. and E. A. Borisenko, 2015 Predictive clustering on
non-successive observations for multi-step ahead chaotic time
series prediction. Neural Computing & Applications 26: 1827–
1838.

Gromov, V. A. and A. N. Shulga, 2012 Chaotic time series prediction
with employment of ant colony optimization. Expert Systems
With Applıcations 39: 8474–8478.

Guo, F., L. Lin, and C. Wang, 2016a Novel continuous function
prediction model using an improved takagi-sugeno fuzzy rule
and its application based on chaotic time series. Engıneering
Applications Of Artificial Intelligence 55: 155–164.

Guo, W., T. Xu, and Z. Lu, 2016b An integrated chaotic time series
prediction model based on efficient extreme learning machine
and differential evolution. Neural Computing & Applications
27: 883–898.

Guo, X., Y. Sun, and J. Ren, 2020 Low dimensional mid-term chaotic
time series prediction by delay parameterized method. Informa-
tion Sciences 516: 1–19.

Han, F., S. Yang, and S. Song, 2018 Local volterra multivariable
chaotic time series multi-step prediction based on phase points
clustering. Journal of Vibroengineering 20: 2486–2503.

Han, M., S. Feng, C. L. P. Chen, M. Xu, and T. Qiu, 2019a Structured
manifold broad learning system: A manifold perspective for
large-scale chaotic time series analysis and prediction. IEEE
Transactıons On Knowledge And Data Engıneerıng 31: 1809–
1821.

Han, M., W. Li, S. Feng, T. Qiu, and C. L. P. Chen, 2021 Maxi-
mum information exploitation using broad learning system for
large-scale chaotic time-series prediction. IEEE Transactions On
Neural Networks And Learning Systems 32: 2320–2329.

Han, M., R. Zhang, and M. Xu, 2017 Multivariate chaotic time
series prediction based on elm-plsr and hybrid variable selection
algorithm. Neural Processing Letters 46: 705–717.

Han, M., S. Zhang, M. Xu, T. Qiu, and N. Wang, 2019b Multi-
variate chaotic time series online prediction based on improved
kernel recursive least squares algorithm. IEEE Transactions On
Cybernetics 49: 1160–1172.

Han, M., K. Zhong, T. Qiu, and B. Han, 2019c Interval type-2 fuzzy
neural networks for chaotic time series prediction: A concise
overview. IEEE Transactions on Cybernetics 49: 2720–2731.

Heydari, G., M. Vali, and A. A. Gharaveisi, 2016 Chaotic time series
prediction via artificial neural square fuzzy inference system.

CHAOS Theory and Applications 101



Expert Systems with Applications 55: 461–468.
Hochreiter, S. and J. Schmidhuber, 1997 Long Short-Term Memory.

Neural Computation 9: 1735–1780.
Hua, Q., M. Wen-Tao, Z. Ji-Hong, and C. Ba-Dong, 2013 Kernel

least mean kurtosis based online chaotic time series prediction.
Chinese Physics Letters 30.

Huang, W., Y. Li, and Y. Huang, 2020 Deep hybrid neural network
and improved differential neuroevolution for chaotic time series
prediction. IEEE Access 8: 159552–159565.

Jaeger, H., 2007 Echo state network. scholarpedia 2: 2330.
Jian-Ling, Q., W. Xiao-Fei, Q. Yu-Chuan, G. Feng, and D. Ya-Zhou,

2014 An improved local weighted linear prediction model for
chaotic time series. Chinese Physics Letters 31.

Jianshan, L., W. Changming, Z. Aijun, and X. Xiaomin, 2012 Resid-
ual gm(1,1) model-based prediction method for chaotic time
series. Journal of Grey System 24: 379–388.

Jingjing, L., Z. Qijin, Z. Yumei, W. Xiaojun, W. Xiaoming, et al.,
2018 Hidden phase space reconstruction: A novel chaotic time
series prediction method for speech signals. Chinese Journal of
Electronics 27: 1221–1228.

Jokar, M., H. Salarieh, and A. Alasty, 2019 On the existence of
proper stochastic markov models for statistical reconstruction
and prediction of chaotic time series. Chaos Solitons & Fractals
123: 373–382.

Kurogi, S., M. Toidani, R. Shigematsu, and K. Matsuo, 2018 Per-
formance improvement via bagging in probabilistic prediction
of chaotic time series using similarity of attractors and loocv
predictable horizon. Neural Computing & Applications 29: 341–
349.

Lau, K. W. and Q. H. Wu, 2008 Local prediction of non-linear
time series using support vector regression. Pattern Recogn. 41:
1539–1547.

Li, D., M. Han, and J. Wang, 2012 Chaotic time series prediction
based on a novel robust echo state network. IEEE Transactions
On Neural Networks and Learning Systems 23: 787–799.

Li, Q. and R.-C. Lin, 2016 A new approach for chaotic time se-
ries prediction using recurrent neural network. Mathematical
Problems in Engineering 2016.

Li, T.-Y. and J. A. Yorke, 1975 Period three implies chaos. The
American Mathematical Monthly 82: 985–992.

Li, Y., X. Jiang, H. Zhu, X. He, S. Peeta, et al., 2016 Multiple
measures-based chaotic time series for traffic flow prediction
based on bayesian theory. Nonlinear Dynamics 85: 179–194.

Li-yun, S., 2010 Prediction of multivariate chaotic time series with
local polynomial fitting. Computers & Mathematiıcs with Appli-
cations 59: 737–744.

Liu, Z., 2010 Chaotic time series analysis. Mathematical Problems
in Engineering 2010: 720190.

Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
Atmospheric Sciences 20: 130 – 141.
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Stability Analysis of Bitcoin using Recurrence
Quantification Analysis
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ABSTRACT Cryptocurrencies are new kinds of electronic currencies based on communication technologies.
These currencies have attracted the attention of investors. However, cryptocurrencies are very volatile
and unpredictable. For investors, it is very difficult to make investment decisions in cryptocurrency market.
Therefore, revealing changes in the dynamics of cryptocurrencies are valuable for investors. Bitcoin is the most
popular and representative cryptocurrency in cryptocurrency market. In this study how dynamical properties of
Bitcoin changed through time is analyzed with recurrence quantification analysis (RQA). RQA is a pattern
recognition-based time series analysis method that reveals dynamics of the time series by calculating some
metrics called RQA measures. This method has been successfully applied to nonlinear, nonstationary, short
and chaotic time series and does not assume a statistical model. RQA can reveal important properties of
time series data such as determinism, laminarity, stability, randomness, regularity and complexity. By using
sliding window RQA we show that in 2021 RQA measures for Bitcoin prices collapse and Bitcoin becomes
more unpredictable, more random, more unstable, more irregular and less complex. Therefore, dynamics and
stability of the Bitcoin prices significantly changed in 2021.
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INTRODUCTION

In the age of information and communication, new digital cur-
rencies called cryptocurrencies have emerged (Härdle et al. 2020).
These cryptocurrencies are operating without a central bank. The
decentralized nature of these cryptocurrencies is the result of a
technology called blockchain (Yuan and Wang 2018; Tredinnick
2019). These cryptocurrencies have received a lot of attention from
investors. Therefore, it is important for investors to reveal the
critical changes in the cryptocurrency market.

Cryptocurrency market is a self-organized complex system
formed from complex network of traders (Aste 2019). Cryptocur-
rency prices are output of this complex system. Cryptocurrency
prices exhibit high level of nonlinearity, uncertainty and volatility
(Chaim and Laurini 2019; Alqaralleh et al. 2020). Therefore, pre-
diction of cryptocurrency prices is very difficult (Mezquita et al.
2022). However, critical changes in cryptocurrency market can be
diagnosed by using recurrence quantification analysis (RQA).
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RQA is a pattern recognition-based time series analysis method
which is applied to recurrence plots (RP). Theoretical background
of RQA and RP methods is based on how the states of the system
is repeated (recurred) during its time evolution. Both RP and RQA
reveal the recurrence structure of states of the system in phase
space. By analyzing these recurrence structures several judgements
can be made on the dynamical properties of the system. A RP can
be analyzed visually. In a RP vertical or diagonal lines or isolated
points indicate different dynamical properties for the system. In
RQA several metrics (measures) are calculated from a RP. These
metrics are calculated from the lengths of the vertical and diagonal
lines on a RP and reflects dynamical properties of the system.
While the RP analysis is dependent on the subjective judgments of
the observer, RQA presents a more objective analysis.

Bitcoin is the main cryptocurrency in the cryptocurrency market
thus a representative cryptocurrency. In this study our main re-
search question is how stability and dynamic properties of Bitcoin
prices have changed during the period 17-08-2017 and 05-10-2021.
To carry out this task we utilized sliding window RQA to demon-
strate how RQA measures changes through time for Bitcoin. Since
RQA measures reflects important characteristics of a time series
such as determinism, predictability, randomness, laminarity, sta-
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bility, regularity and complexity, changes in the RQA measures of
Bitcoin reveal the changes of the such characteristics of the Bitcoin
prices through time. Our findings reveal that dynamics and stabil-
ity characteristics of Bitcoin prices significantly changed in 2021.
Before 2021 Bitcoin prices quite stable. However, after 2021 Bitcoin
prices becomes very unstable and unpredictable. Therefore, we
can distinguish two periods in terms of stability for Bitcoin prices.
Our main contribution to the literature is that by using RQA we
diagnosed dynamical changes in the cryptocurrency market by
using the representative cryptocurrency Bitcoin. As far as we know
our study is the first study analyzing stability and dynamics of
Bitcoin prices using RQA covering the period between 17-08-2017
and 05-10-2021.

Organization of our study is as follows. In the second part we
review literature on sliding window RQA. In the third part the
methodology is demonstrated. In the fourth part application and
results are presented. In the last part study is concluded.

LITERATURE REVIEW

There is a comprehensive bibliography on recurrence plots (RPs),
RQA and their applications at the Marwan et al. (2013) web site.
In this work we utilized sliding window RQA methodology to
reveal changes in dynamical properties of Bitcoin through time.
In the literature there are few studies applied sliding window
RQA to financial time series. Bastos and Caiado (2011) applied
RQA to daily data of 23 developed and 23 emerging stock markets
between the dates January 1995 and December 2009. By using
sliding window RQA, authors demonstrated that during critical
economic events such as dot-com bubble, Asian financial crisis and
2008 subprime mortgage crisis, RQA measures laminarity (LAM)
and determinism (DET) decline.

Piskun and Piskun (2011) investigated several stock market
crashes by using sliding window RQA and show that RQA mea-
sure LAM can be used to identify market bubbles. Authors demon-
strated that LAM measure can be used to distinguish different
market periods such as normal functioning, instability, critical
period and relaxation.

Sasikumar and Kamaiah (2014) analyzed two Indian stock mar-
ket indices between 2 January 2002 and 10 October 2013 with
sliding window RQA. Authors concluded that Indian equity mar-
ket has chaotic nature. Also, they demonstrated that RQA measure
determinism collapse during the 2008 subprime mortgage crisis
and 2010 Euro zone debt crisis. The authors concluded that after
2008 subprime mortgage crisis the market was in turbulent state.
Additionally, authors investigated the change in RQA measure
LAM through time. They showed that laminarity collapsed dur-
ing the 2008 subprime mortgage crisis. Authors’ results for RQA
measure trapping time (Vmean) confirm that after 2008 subprime
mortgage crisis market becomes turbulent.

Moloney and Raghavendra (2012) utilized sliding window RQA
to analyze the transition of Dow Jones Industrial Index from bull
market to bear market. Authors have particularly interested with
events of peaks and subsequent crashes in the dates 1929, 1973,
2000, 2007. Authors discovered that the RQA measures fall soon
before or around market peaks. This means that around market
peaks, dynamics of the market lose its deterministic structure.
Authors detected phase transitions when market transforms from
bull state to bear state.

Soloviev et al. (2020) analyzed 9 critical periods in the Dow Jones
Industrial Average (DJIA) index for the period between 1 January
1990 and 1 June 2019 by using sliding window RQA. Authors
demonstrated that during all critical periods RQA measure DET

shows a downward trend and can detect critical phenomenon.
They indicated that DET, LAM, longest diagonal line (Lmax) and
trapping time (Vmean) are the RQA measures most sensitive to
critical events.

Soloviev and Belinskiy (2018) demonstrated possibility of con-
structing indicators of critical and crisis events in Bitcoin prices
using RQA. Authors used daily Bitcoin prices covering the period
between 16 July 2010 and 10 February 2018. Authors concluded
that RQA measures such as recurrence rate (REC), determinism
(DET) and entropy (ENTR) are excellent candidate for a fast, robust,
and useful screener and detector of unusual patterns in complex
time series.

Soloviev and Belinskiy (2019) used complexity measures to
investigate crashes and critical phenomena in the cryptocurrency
market. Authors showed that before the crashes and the actual
periods of crashes complexity of the market system changes.

In the literature there are few studies applying RQA method-
ology to Bitcoin. These are Soloviev and Belinskiy (2018, 2019),
Kucherova et al. (2021) and Bielinskyi and Serdyuk (2021). How-
ever, focus of these studies is not to evaluate the dynamical stability
of the Bitcoin and these studies do not evaluate the full spectrum of
RQA measures but only consider a small subset of RQA measures.
Also, data utilized in these studies do not cover recent 2021 data.
Focus of Soloviev and Belinskiy (2018, 2019) and Bielinskyi and
Serdyuk (2021) is to evaluate the suitability of RQA measures as
precursors of crisis and crashes in cryptocurrency market. Focus
of Kucherova et al. (2021) is to reveal the relationship between the
time series of the price of Bitcoin and the frequency of online re-
quests for Bitcoin. The authors used this relationship to illuminate
the behavior of agents in the digital economy. After all, as far as
we know our study is the first study investigating stability and
dynamic properties of Bitcoin prices using broad spectrum of RQA
measures and up to date 2021 data.

METHODOLOGY

Recurrence plots (RPs) (Packard et al. 1980; Takens 1981; Eckmann
et al. 1987) are visual analysis tools which portray repetitions of
the states of the time series. By visual inspection of RPs dynamics
of the underlying time series can be identified. However visual
inspection of the RPs has some limitations such as subjective judge-
ment of the observer. To overcome these limitations recurrence
quantification analysis (RQA) is developed (Zbilut and Webber
1992; Webber Jr and Zbilut 1994; Marwan et al. 2002). In RQA
simple pattern recognition algorithms are applied to a RP and
measures that describe various properties of the time series are
obtained. These analysis tools are successfully applied to nonlin-
ear, nonstationary and chaotic time series in the literature. Main
advantages of these tools are that they do not require assumptions
such as stationarity, statistical distributions or necessary number
of observations. A RP can be expressed by following formula:

RPij = Θ(T − ∥Vi(x)− Vj(x)∥) (1)

In the expression above Θ denotes Heaviside step function
and T denotes threshold value. If the distance between two state
vectors is lower than a threshold value corresponding elements of
the recurrence matrix takes the value of one.

In RPs adjacent points have a special meaning. When adjacent
points form diagonal lines, this means that states visit same region
at different times. Length of these diagonal lines reflects duration
of these visits. When adjacent points form vertical or horizontal
lines, this means states stay in same region for a duration. RPs
belong to deterministic systems display long diagonal lines and
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few isolated points and RPs belong to stochastic systems display
isolated points or very short diagonal lines. In RQA following
measures can be calculated:

REC (recurrence rate) quantifies fraction of points in the RP.
This metric reflects the likelihood of recurrence of a state. REC can
be calculated by the following formula:

REC =
1

N2

N

∑
i,j=1

RP (i, j) (2)

In the formula above, N denotes the number of points on the
constructed phase space.

DET (determinism) quantifies fraction of points in the RP which
forms diagonal lines. This metric reflects determinism and ran-
domness in the system. DET can be calculated by the following
formula:

DET =
∑N

l=lmin
lP (l)

∑N
l=1 lP (l)

(3)

In the formula above P (l) represents the frequency distribution
of the diagonal lines with length l.

Lmax is the longest diagonal line’s length. This metric reflects
the stability of the system. High Lmax value means high stability
and low Lmax value means low stability. This metric is also in-
versely related with largest positive Lyapunov exponent. Lmax
can be calculated by the following formula:

Lmax = max ({li; i = 1, . . . , Nl}) (4)

In the formula above Nl represents the number of diagonal lines
in the RP.

ENTR is the Shannon entropy of the diagonal line length dis-
tribution. This metric reflects the diversity and the complexity of
diagonal lines. A high ENTR value means complexity is high and
a low ENTR value means complexity is low. ENTR value can be
obtained from following formula:

ENTR = −
N

∑
l=lmin

p (l) lnp (l) (5)

In the formula above p (l) denotes probability of a diagonal line
has length l.

LAM (laminarity) quantifies fraction of points in the RP which
forms vertical lines. This metric reflects laminar states in the sys-
tem. A higher LAM values mean higher regularity in the system.
This measure can detect chaos-chaos transitions. LAM value can
be calculated by the following formula:

LAM =
∑N

v=vmin
vP (v)

∑N
v=1 vP (v)

(6)

In the formula above P (v) denotes frequency distribution of
vertical lines with length v.

Vmean is the average length of vertical lines. This metric reflects
the average trapping time of the system in particular states. Vmean
can be calculated by the following formula:

Vmean =
∑N

v=vmin
vP (v)

∑N
v=vmin

P (v)
(7)

Lmean is average length of the diagonal lines. It is the average
amount of time that the two segments of the trajectory are in close
proximity to one another. It can be considered as average time for
forecast. Lmean can be calculated by the following formula:

Lmean =
∑N

l=lmin
lP (l)

∑N
l=lmin

P (l)
(8)

APPLICATION AND RESULTS

In this study hourly prices of Bitcoin between dates 17 August
2017 and 5 October 2021 are used. Data is obtained from the cryp-
tocurrency market Binance. In this study also sliding window
methodology is adopted. Window size is selected as 1000 and win-
dow step size for sliding is selected as 200. The calculations were
performed using the nonlinearTseries package of the R software.

First step in the analysis of a time series with a RP and RQA
is embedding the original univariate time series to obtain multi-
dimensional state vectors. In this procedure a univariate time
series such as x (9) is converted to multivariate time series such as
V (10). This procedure is called phase space reconstruction. In this
procedure two parameters must be defined. These are embedding
dimension (D) and time delay (τ). To determine these parameters,
methods such as false nearest neighbors and mutual information
are suggested (Huffaker et al. 2017).

However, Zbilut (2005) asserted that for economic time series
embedding dimension can be selected as 10 and time delay can be
selected as 1. In this study we followed Zbilut (2005) suggestion
and selected embedding parameters likewise. Percentage of false
nearest neighbors graph is presented in Figure 1. From this figure
it is seen that after the embedding dimension of 10, percent of false
nearest neighbors does not decline much. Therefore, selecting em-
bedding dimension as 10 is an appropriate choice. Average mutual
information graph is presented in Figure 2. In the literature it is
recommended to choose time delay as the first local minimum of
the average mutual information graph. As seen from Figure 2 there
is no local minimum. Therefore, by following suggestion of Zbilut
(2005) we set time delay as 1 and do not skip any observation. This
parameter setting is coherent with the works of Strozzi et al. (2007),
Strozzi et al. (2008), Bastos and Caiado (2011) and Xing and Wang
(2020).
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x = (x1, x2, x3, . . . , xn) (9)

V =



V1

V2

...

Vn−(D−1)τ


(10)

V =



x1 x1+τ

x2 x2+τ

. . . x1+(D−1)τ

. . . x2+(D−1)τ
...

...

xn−(D−1)τ xn−(D−2)τ

. . .
...

. . . xn


(11)
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Figure 3 Hourly Bitcoin prices

Graph of hourly Bitcoin prices are presented in Figure 3. As
seen from this there is a sharp increase of Bitcoin prices in 2021.
Also, Bitcoin prices become more volatile in that time. Changes in
the RQA measure recurrence rate (REC) through time is presented
in Figure 4. As seen from this figure recurrence rate exhibit a
fluctuating pattern until 2021. However, in 2021 recurrence rate
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Figure 4 Changes in recurrence rate (REC)

collapse. This means repetitions of the states are significantly
reduced in 2021.
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Figure 5 Changes in determinism (DET)
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Figure 6 Changes in the longest diagonal line (Lmax)

Changes in the RQA measure determinism (DET) through time
is depicted in Figure 5. In this figure there is a local dip in determin-
ism in the beginning of the 2018. However more noticeably there
is a collapse in determinism in 2021. Since RQA measure deter-
minism reflects the predictability and the randomness of the time
series this collapse means Bitcoin becomes more unpredictable
and more random in 2021. In the Figure 6 how RQA measure
the longest diagonal line (Lmax) changes through time is demon-
strated. In this Figure until 2021 several local dips are observed.
But in 2021 there is a total collapse in Lmax values. Since Lmax
reflects the stability of the dynamics and related inversely with
largest positive Lyapunov exponent, collapse in 2021 reflects that
stability of Bitcoin is significantly reduced in 2021. Changes in the
RQA measure laminarity (LAM) through time is shown in Figure 7.
This figure is similar to the Figure 5 for determinism. In the Figure
7 there is also a local dip in the beginning of the 2018. However,
laminarity collapse in 2021 similar to determinism.
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Figure 7 Changes in the laminarity (LAM)

Since RQA measure LAM is sensitive to critical changes in the
dynamics, collapse in 2021 indicates that dynamics of the Bitcoin
is substantially changed and Bitcoin entered a critical state in 2021.
Changes in the RQA measure mean length of the diagonal lines
(Lmean) is presented in Figure 8. This RQA measure gauge the
average time for forecast. From this figure it is seen that average
time for forecast is greatly reduced in 2021. This again confirms
that predictability of the Bitcoin is reduced in 2021.
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Figure 8 Changes in mean length of the diagonal lines (Lmean)

In Figure 9 changes in the RQA measure average length of
vertical lines (Vmean) are shown. This RQA measure gauge average
trapping time of the system in particular states. From this figure it
can be seen that trapping time in particular states are significantly
reduced and transitions between states are accelerated in 2021.
Changes in the RQA measure Shannon entropy (ENTR) is depicted
in Figure 10. In this figure it is seen that Shannon entropy is
collapsed in 2021. Since Shannon entropy reflects the complexity
of the system this collapse reflects that complexity of the Bitcoin is
reduced in 2021.
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Figure 9 Changes in average length of vertical lines (Vmean)
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Figure 10 Changes in Shannon entropy (ENTR)

To facilitate ease of comparison, in Figures 11-14 Bitcoin prices
and RQA measures are shown on the same graphs. In these figures
red curves represents Bitcoin prices and blue curves represents
RQA measures. To make a meaningful comparison, Bitcoin prices,
Lmax and ENTR are normalized to the range between 0 and 1.
Since DET and LAM measures take values between 0 and 1, nor-
malization is not required for these variables. As seen from Figures
11-14 the increase in Bitcoin prices is accompanied by a decrease in
RQA measures. These graphs reveal that Bitcoin price dynamics
are significantly changed in 2021.
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Figure 11 Determinism vs. Bitcoin prices. Red curve denotes Bit-
coin prices and blue curve denotes determinism
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Figure 12 Laminarity vs. Bitcoin prices. Red curve denotes Bitcoin
prices and blue curve denotes laminarity
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Figure 13 Longest diagonal line’s length (Lmax) vs. Bitcoin prices.
Red curve denotes Bitcoin prices and blue curve denotes Lmax
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Figure 14 Shannon entropy vs. Bitcoin prices. Red curve denotes
Bitcoin prices and blue curve denotes Shannon entropy

CONCLUSION

In this study recurrence quantification analysis is applied to Bitcoin
prices to reveal how dynamic properties and stability of Bitcoin
prices changed through time. In this analysis change in RQA
measures are demonstrated by using sliding window methodology.
In the literature it is shown that during or at the beginning of the
critical periods such as crisis RQA measures collapse. In this study
we demonstrated that RQA measures for Bitcoin prices collapsed
in 2021. This means Bitcoin prices become more unpredictable,
more random, more unstable, more irregular and less complex in
2021.

Therefore, stability and dynamic characteristics of Bitcoin have
been significantly changed in 2021. From this analysis we also
can distinguish two different periods for Bitcoin, namely stable
and unstable periods. Period before 2021 can be labelled as stable
period and period after 2021 can be labelled as unstable period.
Therefore, Bitcoin enters a state of turbulence in 2021. From the in-
vestors’ point of view this means that making investment decisions
for Bitcoin becomes much more difficult in 2021. So, what is the
reason for this change? Further studies are required to answer this
question. Possible explanations can be increase in transaction vol-
umes in the cryptocurrency markets, changes in traders’ behaviors,
changes in the market conditions and the COVID-19 pandemic.

For traditional currencies when a currency become unstable the
corresponding central bank intervenes in the market to stabilize
the currency. However, for Bitcoin there is no central bank which
decides the amount of emission of the currency. Therefore, since
there is no policy maker for Bitcoin, we have no policy implications
for Bitcoin. However, we have some implications for investors.
Since Bitcoin lost its deterministic structures in 2021 mathematical
and statistical models which explain future Bitcoin prices with past
realizations become infeasible. Therefore, mathematical models

such as difference and differential equations or statistical models
such as ARIMA become unsuitable for forecasting future bitcoin
prices using past bitcoin prices in 2021. Therefore, investors should
consider this situation when creating their investment strategies.
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