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Hüseyin Çakallı, (Maltepe University, Istanbul, Turkey), Topology, Sequences, series, summaility, abstract metric
spaces

Mehmet Dik, (Rockford University, Rockford, IL, USA), Sequences, Series, and Summability

Robin Harte, (School of Mathematics, Trinity College, Dublin 2, Ireland), Spectral Theory

Ljubisa D.R. Kocinac, (University of Nis, Nis, Serbia), Topology, Functional Analysis

Richard F. Patterson, North Florida University, Jacksonville, FL, USA, Functional Analysis, Double sequences,

Marcelo Moreira Cavalcanti, Departamento de Matemática da Universidade Estadual de Maringá, Brazil, Con-
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A UNIFORMLY STABLE SOLVABILITY OF NLBVP FOR

PARAMETERIZED ODE

DOVLET DOVLETOV

NEAR EAST UNIVERSITY, MERSIN 10, TURKEY. ORCID NUMBER:0000-0001-9052-8359

Abstract. Nonlocal boundary value problem of the first kind for an ordinary

linear second order differential equation with positive parameter at the highest

derivative is considered. The existence and uniqueness, as well as, a uniformly
stable estimate of classical solution is established under accurate condition on

coefficients and location of nonlocal data carriers of multipoint boundary value

condition. An essentiality of the revealed condition is confirmed by ill-posed
problem examples.

1. Introduction

The article of A.N. Tikhonov [1] gave the reason for a wide range study in the
field of parameterized differential equations. The joint paper of A.V. Bitsadze and
A.A. Samarskii [2] motivated a lot of research in the field of differential problems
which are identifiable as nonlocal boundary problems.

In our paper, we consider nonlocal boundary value problem (NLBVP) of the first
kind1 for ordinary differential equation (ODE)

εu′′(x) + a(x)u′(x)− b(x)u(x) = −f(x), 0 < x < 1

with a positive parameter ε > 0. Herein, for an unknown solution, we consider the
nonlocal boundary value condition (NLBVC) which is given by linear combination
of the values in boundary and interior points of [0, 1]. Our task is to study the
question of a uniformly stable solvability of such NLBVP in respect of the classical
solution from C2(0, 1) ∩ C[0, 1].

In [3], for Sturm-Liouville operator the NLBVP of the first kind

[k(x)u′]′ − q(x)u = −f(x), 0 < x < 1, u(0) = 0, u(1) =

n∑
i=1

αiu(ξi)

was researched for k(x) ∈ C1[0, 1], f(x), q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, q(x) ≥ 0.
The existence, uniqueness and a priori estimate of classical solution was established

2020 Mathematics Subject Classification. Primary: 35J05; Secondaries: 35A09, 34B10, 65N06.
Key words and phrases. Poisson’s operator, nonlocal boundary value problem, integral kind

of nonlocal condition.
©2021 Proceedings of International Mathematical Sciences.
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1The term ”NLBVP of the first kind” was introduced by V.A. Il’in and E.I. Moiseev in [3].
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for the case if all coefficients αi, i = 1, ..., n have the same sign and satisfy the
condition

−∞ <

n∑
i=1

αi ≤ 1.

For the same problem, but under the condition that αi, i = 1, ..., n have an
arbitrary sign and satisfy the condition

n∑
i=1

(αi + |αi|)
2

ξi∫
0

1

k(τ)
dτ <

1∫
0

1

k(τ)
dτ,

the existence and uniqueness of classical solution was proved in [4].
In [5], it was proved that singularly perturbed NLBVP of the first kind

−ε2y′′(x) + g(x)y(x) = h(x), 0 < x < 1, y(0) = 0, ℓ̂y = d,

has a unique solution if and only if the solution of Dirichlet problem

ε2u′′(x)− g(x)u(x) = 0, u(0) = 0, u(1) = 1

satisfies the condition ℓ̂u ̸= 0, where g(x) ≥ K2 > 0, K ∈ R, ℓ̂y ≡ y(1)−
m∑
i=1

ciy(si),

si ∈ (0, 1).
In [6], the existence, uniqueness and a priori estimate of classical solution

||u||W 2
2 [0,1]

≤ C||f ||L2[0,1]

were proved for NLBVP{
[k(x)u′(x)]′ + r(x)u′(x)− q(x)u(x) = −f(x), 0 < x < 1,
u(0) = 0, u(1) = αu(ζ)− βu(η),

where k(x) ∈ C1[0, 1], f(x), r(x) and q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, |r(x)| < µ,
q(x) ≥ 0, x ∈ [0, 1], µ < m0, ζ ∈ (0, 1), η ∈ (0, 1), in addition, α > 0, β > 0,
−∞ < α− β ≤ 1 if ζ < η, α ≤ 1 if η < ζ.

In [7], the existence, uniqueness and a priori estimate of classical solution were
proved for NLBVP with double-side NLBVC of the first kind{

[k(x)u′(x)]′ + r(x)u′(x)− q(x)u(x) = −f(x), 0 < x < 1,
u(0) = α0u(ζ0)− β0u(η0), u(1) = α1u(ζ1)− β1u(η1)

where k(x) ∈ C1[0, 1], f(x), r(x), q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, q(x) ≥ 0,
x ∈ [0, 1], ζi ∈ (0, 1), ηi ∈ (0, 1), i = 0, 1, max{ζ0, η0} < min{ζ1, η1}, in addition,
αi > 0, βi > 0, i = 0, 1, S0 ≤ 1, S1 ≤ 1, S0+S1 < 2, herewith S0 = α0−β0 for
η0 ≤ ζ0, S0 = α0 for ζ0 < η0, S1 = α1 − β1 for ζ1 ≤ η1, S1 = α1 for η1 < ζ1.

In [8, p. 68-72], a uniformly stable solvability was reported for parameterized
NLBVP {

−εu′′(x) + b(x)u(x) = f(x), 0 < x < 1,
u(0)− αu(ζ) = ϕ0, u(1)− βu(η) = ϕ1

where ε > 0, b(x), f(x) ∈ C[0, 1], b(x) ≥ b∗ > 0, 0 < ζ < η < 1, −∞ < α < 1,
−∞ < β < 1, αβ ̸= 0, φi = const, i = 0, 1.

In [9], the solution of NLBVP, which was formulated in [5], was constructed by
using the truncated orthogonal series and corresponding solution of the reduced
problem.
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In [10], under the condition that classical solution of the Dirichlet problem

−εw′′ + a(x)w′ + b(x)w = 0, 0 < x < 1, w(0) = 0, w(1) = 1

satisfies the inequality w(1)−
m−2∑
i=1

ciw(si) ̸= 0, the behaviour of exact solution was

analized for NLBVP

−εu′′ + a(x)u′ + b(x)u = f(x), 0 < x < 1, u(0) = A, u(1) =

m−2∑
i=1

ciu(si) +B,

where 0 < ε << 1, a(x) ≥ α > 0, a(x), b(x) and f(x) are sufficiently smooth
functions on [0, 1], si ∈ (0, 1), i = 1, 2, ...,m− 2.

In summary, it is natural that NLBVP’s solvability, as well as, the behaviour of
its classical solution depends on coefficients, their signs, values, and, at least, data
carriers location of given nonlocal condition. It is the reason why the aim of our
paper is to reveal explicit condition of a uniform solvability for parameterized linear
second order ODE with abstract double-side nonlocal condition of the first kind.
In general, naturally that the information on a uniform solvability of differential
problem is also actual for its numerical interpretation.

Additionally, sufficiently detailed overview on NLBVP for ODE is enclosed in
[3, 4, 6, 7, 13], the survey on boundary value problems respectively parameterized
ODE is represented by [14].

2. Differential problem

We consider the NLBVP

Lu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = −f(x), 0 < x < 1, (2.1)

ℓ0(u) ≡ u(0)−
m0∑
k=1

αku(ζk) = φ0, ℓ1(u) ≡ u(1)−
m1∑
l=1

βlu(ηl) = φ1, (2.2)

where ε > 0 is a parameter, a(x), b(x), f(x) ∈ C[0, 1], mi ≥ 2, i = 0, 1,
φi ∈ R, i = 0, 1, ζk ∈ (0, 1), k = 1, ...,m0, ηl ∈ (0, 1), l = 1, ...,m1 are so that

0 < ζ1 < ζ2 < ... < ζm0
< η1 < η2 < ... < ηm1

< 1, (2.3)

in addition, αk ∈ R, k = 1, ...,m0, βl ∈ R, l = 1, ...,m1 are nonzero coefficients.
Next condition is denoted by A:
- if all αk are not of the same sign, then αk > 0 only for k = 1, ...,mι, or αk > 0
only for k = mι + 1, ...,m0, where mι is some natural number, 1 ≤ mι < m0;
- if all βl are not of the same sign, then βl > 0 only for l = 1, ...,mκ, or βl > 0
only for l = mκ + 1, ...,m1, where mκ is some natural number, 1 ≤ mκ < m1.
Further, we will use the designations:

α =

m0∑
k=1

αk, α+ =

m0∑
k=1

αk + |αk|
2

, α− =

m0∑
k=1

αk − |αk|
2

,

β =

m1∑
l=1

βl, β+ =

m1∑
l=1

βl + |βl|
2

, β− =

m1∑
l=1

βl − |βl|
2

,

S0 =

 α+ + α−, if αmι
< 0, αmι+1

> 0,
α+, if αmι

> 0, αmι+1
< 0,

α, if αk, k = 1, ...,m0 have the same sign,
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S1 =

 β+ + β−, if βmκ > 0, βmκ+1 < 0,
β+, if βmκ < 0, βmκ+1 > 0,
β, if βl, l = 1, ...,m1 have the same sign.

Definition. The function u(x) is a classical solution of NLBVP (2.1)-(2.2) if it
belongs to C2(0, 1) ∩ C[0, 1], satisfies the equation (2.1) and NLBVC (2.2).

Let each one of NLBVC (2.2) encloses different sign coefficients. Let us suppose
that classical solution u(x) of NLBVP (2.1)-(2.2) exists. Then, in view of the mean
value (MV) property [3, p. 1198-1199], by analogy with [13, p. 39], this classical
solution satisfies some reduced NLBVC

u(0)− α+u(ζ+)− α−u(ζ−) = φ0, u(1)− β+u(η+)− β−u(η−) = φ1, (2.4)

where ζ+ ∈ [ζ1, ζm0
], ζ− ∈ [ζ1, ζm0

], η+ ∈ [η1, ηm1
], η− ∈ [η1, ηm1

] and, therefore,
u(x) is classical solution of NLBVP (2.1),(2.4) too2. In respect of (2.4), we denote

ℓ0(u) ≡ u(0)− α+u(ζ+)− α−u(ζ−), ℓ1(u) ≡ u(1)− β+u(η+)− β−u(η−). (2.5)

Hence, for Si, i = 0, 1, we have

S0 =

 α+ + α−, if ζ− < ζ+,
α+, if ζ+ < ζ−,
α, if all αk, k = 1, ...,m0 have the same sign,

(2.6)

S1 =

 β+ + β−, if η+ < η−,
β+, if η− < η+,
β, if all βl, l = 1, ...,m1 have the same sign.

(2.7)

Additionally, in view of (2.3) and A, we have

ζ− ̸= ζ+, η− ̸= η+, max{ζ−, ζ+} < min{η−, η+}. (2.8)

Our first result is

Lemma 2.1. Let Si ≤ 1, φi ̸= 0, i = 0, 1. If u(x) is classical solution of the
problem (2.1),(2.4), then v(x) = u(x) + φ0q0(x) + φ1q1(x) is classical solution of
the problem

Lv(x) = −f1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0 (2.9)

for f1(x) = f(x) − φ0Lq0(x) − φ1Lq1(x), where qi(x), i = 0, 1 are some cubic
polinoms .
Let Si ≤ 1, i = 0, 1. Let only one of φ0, φ1 be nonzero, i.e., φi∗ ̸= 0, i∗ ∈ {0, 1}.
If u(x) is classical solution of (2.1),(2.4), then v(x) = u(x)+φi∗qi∗(x) is classical
solution of the problem (2.9) for f1(x) = f(x)−φi∗Lqi∗(x), where qi∗(x) is some
cubic polinom.

Proof. Assume that q0(x), q1(x) ∈ C2(0, 1) are an arbitrary functions. Then it is
obvious that

Lv(x) = −[f(x)− φ0Lq0(x)− φ1Lq1(x)] = −f1(x)

2Thus we will say: ”the problem (2.1),(2.2) is reduciable to (2.1),(2.4)”, or, for example,
”condition (2.2) is redused to (2.4)”, or ”condition (2.2) is reduciable to (2.4)”, or ”(2.4) is

reduced nonlocal condition” and etc..
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i.e., v(x) satisfies the differential equation (2.9). Let us construct some polinomials
q0(x) and q1(x), so that the function v(x) will satisfy NLBVC (2.9). Put φi ̸= 0,
i = 0, 1. We look for the functions

q0(x) = c0(1− x)(η+ − x)(η− − x), (2.10)

q1(x) = c1x(ζ
+ − x)(ζ− − x), (2.11)

where an unknown constants c0 and c1 have to be defined. Since

ℓ0(q1) = 0, ℓ1(q0) = 0, (2.12)

then, in view of (2.5) and (2.4),

ℓ0(v) = φ0 + φ0ℓ0(q0) + φ1ℓ0(q1) = φ0[1 + ℓ0(q0)], (2.13)

ℓ1(v) = φ1 + φ0ℓ1(q0) + φ1ℓ1(q1) = φ1[1 + ℓ1(q1)]. (2.14)

Since v(x) has to satify (2.9), then, in view of (2.13) and (2.14), the equalities

1 + ℓ0(q0) = 0, 1 + ℓ1(q1) = 0 (2.15)

have to be satisfied for qi(x), i = 0, 1. Hence, we have

c0 = −(E0)
−1, (2.16)

c1 = −(D0)
−1, (2.17)

for

E0 = η+η−−α+(1−ζ+)(η+−ζ+)(η−−ζ+)−α−(1−ζ−)(η+−ζ−)(η−−ζ−), (2.18)

D0 = (1−ζ+)(1−ζ−)−β+η+(ζ+−η+)(ζ−−η+)−β−η−(ζ+−η−)(ζ−−η−), (2.19)

where E0 ̸= 0, D0 ̸= 0 since E0 > 0, D0 > 0. Indeed, in view of (2.8), from
(2.18) and (2.19), correspondingly, we get

E0 >

{
(1− [α+ + α−])(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+,
(1− α+)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ+ < ζ−,

(2.20)

D0 >

{
(1− [β+ + β−])η−(η− − ζ+)(η− − ζ−), if η+ < η−,
(1− β+)η−(η− − ζ+)(η− − ζ−), if η− < η+.

(2.21)

Then from (2.20) and (2.21), correspondingly, in view of (2.6) and (2.7), we have

E0 >

 (1− S0)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+, 0 < S0 ≤ 1,
(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+, −∞ < S0 ≤ 0,
(1− S0)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ+ < ζ−, 0 ≤ S0 ≤ 1,

D0 >

 (1− S1)η
−(η− − ζ+)(η− − ζ−), if η+ < η−, 0 < S1 ≤ 1,

η−(η− − ζ+)(η− − ζ−), if η+ < η−, −∞ < S1 ≤ 0,
(1− S1)η

−(η− − ζ+)(η− − ζ−), if η− < η+, 0 ≤ S1 ≤ 1.

Hence, E0 > 0, D0 > 0, therefore, E0 ̸= 0, D0 ̸= 0. Thus, in view of (2.16) and
(2.17), the polinomials (2.10) and (2.11) are defined. In view of (2.12) and (2.15),
v(x) satisfies nonlocal conditions of (2.9). Since u(x) ∈ C2(0, 1) ∩ C[0, 1], then
v(x) ∈ C2(0, 1)∩C[0, 1] too, therefore, v(x) is classical solution of NLBVP (2.9).

By similar way, it is easy to prove the second statement for the case if one of two
data φi, i = 0, 1 is zero, but another one is nonzero. Lemma 2.1 is proved. □
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Let all coefficients αk, k = 1, ...,m0 have the same sign and all coefficients
βl, l = 1, ...,m1 have the same sign, (the signs of αk and βl can be different).
Then, by analogy with (2.4), the classical solution of NLBVP (2.1),(2.2) satisfies
the condition

u(0)− αu(ζ) = φ0, u(1)− βu(η) = φ1,

for some ζ ∈ [ζ1, ζm0
], η ∈ [η1, ηm1

], so that ζ < η in view of (3).

Corollary 2.2. Let Si ≤ 1, φi ̸= 0, i = 0, 1. If u(x) is some classical solution of
the problem

Lu(x) = −f(x), 0 < x < 1, u(0)− αu(ζ) = φ0, u(1)− βu(η) = φ1

for ζ < η, then v(x) = u(x)+φ0q0(x)+φ1q1(x) is classical solution of the problem

Lv(x) = −f1(x), 0 < x < 1, v(0)− αv(ζ) = 0, v(1)− βv(η) = 0

for f1(x) = f(x)−φ0Lq0(x)−φ1Lq1(x), q0(x) = c0(1−x)(η−x), q1(x) = c1x(ζ−x),
c0 = −[η − α(1− ζ)(η − ζ)]−1, c1 = −[(1− ζ)− βη(η − ζ)]−1.

Proof. This is provable by analogy with Lemma 2.1. Corollary 2.2 is proved. □

Corollary 2.3. The statement of Corollary 2.2 is true for the case if all coefficients
αk, k = 1, ...,m0 have the same sign, but there are different sign coefficients among
βl, l = 1, ...,m1 (or vice versa).

Proof. This is provable by analogy with Lemma 2.1. Corollary 2.3 is proved. □

3. A uniform stability estimate

Here, we establish a uniformly stable estimate. Our basic result is

Theorem 3.1. Let a(x) ≥ a0 > 0, b(x) ≥ b0 ≥ 0, x ∈ [0, 1]. Let conditions (2.3),
A hold. If S0 ≤ 1, S1 ≤ 1 and, in addition, S1 < 1 if b0 = 0, then a uniformly
stable estimate

|u(x)| ≤ C(|φ0|+ |φ1|+ max
0≤y≤1

|f(y)|), 0 ≤ x ≤ 1 (3.1)

holds for classical solution of NLBVP (2.1),(2.2).

Proof. Let u(x) be some classical solution of NLBVP (2.1),(2.2). Since (2.2) is
reduciable to (2.4), then u(x) is classical solution of NLBVP (2.1),(2.4). In view
of Lemma 2.1, the function v(x) = u(x) +φ0q0(x) +φ1q1(x) is classical solution of
NLBVP (2.9). Assume that a uniformly stable estimate holds for v(x), i.e.,

|v(x)| ≤ C1 max
0≤y≤1

|f1(y)|, 0 ≤ x ≤ 1 (3.2)

for some independent of ε constant C1, where f1(x) = f(x)−φ0Lq0(x)−φ1Lq1(x).
Then, by virtue of the triangle inequality,

|u(x)| ≤ C1 max
0≤y≤1

|f1(y)|+ |φ0| max
0≤y≤1

|q0(y)|+ |φ1| max
0≤y≤1

|q1(y)|, 0 ≤ x ≤ 1,

so that
|u(x)| ≤ C1 max

0≤y≤1
|f(y)|+ C2|φ0|+ C3|φ1|, 0 ≤ x ≤ 1.

Thus, if (3.2) is true, then (3.1) is also true for the constant C = max{C1, C2, C3}.
So, to prove (3.1) it will be sufficient to obtain the estimate (3.2) for the solution
of NLBVP (2.9). Further, to establish (3.2) we will consider three subcases:
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first - all coefficients αk, k = 1, ...,m0 have the same sign and all coefficients βl,
l = 1, ...,m1 have the same sign (the signs of αk and βl can be different);
second - each one of two nonlocal conditions (2.2) encloses different sign coefficients;
third - one condition of (2.2) has the same sign coefficients, but another one encloses
different sign coefficients.
Subcase 1. Put αk, k = 1, ...,m0 have the same sign, βl, l = 1, ...,m1 have the same
sign (the signs of αk and βl can be different). Our task is to prove the estimate (3.2)
for classical solution of NLBVP (2.9). By virtue of MV property [3, p. 1198-1199]
in respect of NLBVC (2.9), we get

v(0) = αv(ζ), v(1) = βv(η) (3.3)

for some ζ ∈ [ζ1, ζm0
], η ∈ [η1, ηm1

]. If α < 0, then, in view of Bolzano theorem,
v(x0) = 0 at some point x0 ∈ (0, ζ), i.e., v(x) satisfies boundary value condition
(BVC) of the first kind at x0. If α > 0, then ω0(0) = ω0(ζ) for the function

ω0(x) = v(x)
(α− 1)x+ ζ

ζ
. (3.4)

By virtue of Rolle’s theorem, ω′
0(x0) = 0 at some point x0 ∈ (0, ζ). Hence,

v′(x0)− h0v(x0) = 0, h0 =
1− α

ζ − x0(1− α)
, (3.5)

so that h0 ≥ 0 since our theorem condition requires the bound S0 ≤ 1. It means
that v(x) satisfies BVC of the third kind at x0 if 0 < α < 1, or of the second kind
if α = 1.

Similarly, for β < 0 we obtain BVC of the first kind v(x1) = 0 at some point
x1 ∈ (η, 1), as well as, for β > 0 we get BVC of the third kind if 0 < β < 1, or of
the second kind if β = 1 at some point x1 ∈ (η, 1), i.e.,

v′(x1) + h1v(x1) = 0, h1 =
1− β

β(1− x1) + x1 − η
, (3.6)

so that h1 ≥ 0 since the theorem condition requires the bound S1 ≤ 1. Note that
to get (3.6) we use the function

ω1(x) = v(x)
β(x− 1) + η − x

η − 1
(3.7)

and corresponding equalities ω1(1) = ω1(η), ω
′
1(x1) = 0.

In summary, we revealed that on some interval [x0, x1] the function v(x) satisfies
the boundary value problem (BVP)

Lv(x) = −f1(x), x0 < x < x1, δ0v
′(x0)− h0v(x0) = 0, δ1v

′(x1) + h1v(x1) = 0,

where δ0 = 1 if α > 0 and δ1 = 1 if β > 0, in addition, δ0 = 0, h0 = 1 if α < 0, and
δ1 = 0, h1 = 1 if β < 0. Hence, in view of the variable replacement

t = (x1 − x0)
−1(x− x0), (3.8)

we get that the function ṽ(t) = v(x(t)) satisfies the BVP{
L̃ṽ(t) ≡ εṽ′′(t) + ã(t)ṽ′(t)− b̃(t)ṽ(t) = −f̃1(t), 0 < t < 1,

h̃0ṽ(0)− δ0ṽ
′(0) = 0, h̃1ṽ(1) + δ1ṽ

′(1) = 0,
(3.9)

where

ã(t) = (x1 − x0)a(x(t)), b̃(t) = (x1 − x0)
2b(x(t)), f̃1(t) = (x1 − x0)

2f1(x(t)),



A UNIFORMLY STABLE SOLVABILITY OF NLBVP FOR PARAMETERIZED ODE 57

x(t) = (x1 − x0)t+ x0, ã(t) ≥ (η1 − ζm0
)a0, b̃(t) ≥ (η1 − ζm0

)2b0, 0 ≤ t ≤ 1,

in addition, h̃0, δ0, h̃1, δ1 are defined by the specification

δ0 = 0, h̃0 = 1 for α < 0,

δ0 = 1, h̃0 = (x1 − x0)h0 for 0 < α ≤ 1,

δ1 = 0, h̃1 = 1 for β < 0,

δ1 = 1, h̃1 = (x1 − x0)h1 for 0 < β ≤ 1,

herewith, h̃1 + (η1 − ζm0
)2b0 > 0 since the theorem condition requires S1 < 1 for

b0 = 0 (it means that 0 < β < 1 for b0 = 0) and, therefore, we have h̃1 > 0.
Further, for classical solution of BVP (3.9), by virtue of [12, p. 100-103], we get a
uniform on ε stability estimate

|ṽ(t)| ≤ C4 max
0≤y≤1

|L̃ṽ(y)|, 0 ≤ t ≤ 1, (3.10)

therefore, in view of the variable replacement,

|v(x)| ≤ C4 max
x0≤y≤x1

|f1(y)|, x0 ≤ x ≤ x1, (3.11)

where C4 is an ε-independent constant. Since ζ ∈ (x0, x1) and η ∈ (x0, x1), then

|v(ζ)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(η)| ≤ C4 max
x0≤x≤x1

|f1(x)|.

Hence, in view of NLBVC (2.9),

|v(0)| ≤ C5 max
0≤x≤1

|f1(x)|, |v(1)| ≤ C5 max
0≤x≤1

|f1(x)|, (3.12)

where C5 = C4 max{|α|, |β|}. Now, in view of (3.12), we interpret the solution of
NLBVP (2.9) as classical solution of Dirichlet problem

Lv(x) = −f1(x), 0 < x < 1, v(0) = γ0, v(1) = γ1, (3.13)

where
|γi| ≤ C5 max

0≤x≤1
|f1(x)|, i = 0, 1. (3.14)

Then, by virtue of [12, p. 100-103], we obtain a unifromly stable estimate

|v(x)| ≤ C6

(
|γ0|+ |γ1|+ max

0≤y≤1
|Lv(y)|

)
, 0 ≤ x ≤ 1, (3.15)

where C6 is some ε-independent constant. In view of (3.14), the estimate (3.2) is
true. Therefore, a uniform on ε stability estimate (3.1) is proved.
Subcase 2. Put that each one of two conditions (2.2) encloses different sign coeffi-
cients. Then u(x) satisfies some reduced condition (2.4). We will prove the estimate
(3.2). Further, we admit that v(0) ̸= 0 and v(1) ̸= 0, since for the case if v(0) = 0
or v(1) = 0 the estimate (3.2) is provable by the same approach which we use here.

Firstly, assume that ζ− < ζ+ in respect of (2.4).
a) If sign[v(0)v(ζ−)] ̸= 1 or sign[v(0)v(ζ+)] ̸= 1, then there is some point x0,
x0 ∈ (0, ζ−) or x0 ∈ (0, ζ+) correspondingly, so that v(x0) = 0.
b) If sign[v(0)v(ζ−)] = 1 and sign[v(0)v(ζ+)] = 1, then, by virtue of MV
propety[3, p. 1198-1199] in respect of the first nonlocal condition (2.4), we have

(1 + |α−|)v(ζ0) = α+v(ζ+)

for some ζ0 ∈ [0, ζ−], herewith ζ0 < ζ+. Then, in view of the condition S0 ≤ 1,

v(ζ0) = α0v(ζ
+), α0 =

α+

1 + |α−|
, 0 < α0 ≤ 1. (3.16)
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Hence, by using the function

ŵ0(x) = v(x)
(α0 − 1)x+ ζ+ − α0ζ0

ζ+ − ζ0
,

we get ŵ0(ζ0) = ŵ0(ζ
+), so that, by virtue of Rolle’s theorem, ŵ′(x0) = 0 at

some point x0 ∈ (ζ0, ζ
+), and, therefore,

v′(x0)− h0v(x0) = 0, h0 =
1− α0

(α0 − 1)x0 + ζ+ − α0ζ0
, h0 ≥ 0. (3.17)

Now, assume that ζ+ < ζ− in respect of (2.4).
a) If sign[v(0)v(ζ+)] ̸= 1 or sign[v(0)v(ζ−)] ̸= 1, then there is some point x0,
x0 ∈ (0, ζ+) or x0 ∈ (0, ζ−) correspondingly, so that v(x0) = 0.
b) If sign[v(0)v(ζ+)] = 1 and sign[v(0)v(ζ−)] = 1, then there is some value α̃0,
0 < α̃0 < α+, so that, in view of the condition S0 ≤ 1,

v(0) = α̃0v(ζ
+), 0 < α̃0 < 1. (3.18)

Hence, by using

ω̃0(x) = v(x)
(α̃0 − 1)x+ ζ+

ζ+
,

we get ω̃0(0) = ω̃0(ζ
+), then ω̃′(x0) = 0 at some point x0, x0 ∈ (0, ζ+), and,

therefore,

v′(x0)− h0v(x0) = 0, h0 =
1− α̃0

ζ+ − x0(1− α̃0)
, h0 > 0. (3.19)

In summary, we revealed that at some point x0 the solution of (2.9) satisfies one
of the left-side BVC:

ℓx0,1(v) ≡ v(x0) = 0, 0 < x0 < ζ− < ζ+,
ℓx0,2(v) ≡ v(x0) = 0, 0 < x0 < ζ+, 0 < ζ− < ζ+,
ℓx0,3(v) ≡ v′(x0)− h0v(x0) = 0, h0 ≥ 0, 0 < x0 < ζ+, 0 < ζ− < ζ+,
ℓx0,4(v) ≡ v(x0) = 0, 0 < x0 < ζ+ < ζ−,
ℓx0,5(v) ≡ v(x0) = 0, 0 < x0 < ζ−, 0 < ζ+ < ζ−,
ℓx0,6(v) ≡ v′(x0)− h0v(x0) = 0, h0 > 0, 0 < x0 < ζ+ < ζ−.

By similar way, we reveal that at some point x1 the solution of (2.9) satisfies one
of the right-side BVC:

ℓx1,1(v) ≡ v(x1) = 0, η+ < η− < x1 < 1,
ℓx1,2(v) ≡ v(x1) = 0, η+ < x1 < 1, η+ < η− < 1,
ℓx1,3(v) ≡ v′(x1) + h1v(x1) = 0, h1 ≥ 0, η+ < x1 < 1, η+ < η− < 1,
ℓx1,4(v) ≡ v(x1) = 0, η− < η+ < x1 < 1,
ℓx1,5(v) ≡ v(x1) = 0, η− < x1 < 1, η− < η+ < 1,
ℓx1,6(v) ≡ v′(x1) + h1v(x1) = 0, h1 > 0, η− < η+ < x1 < 1,

where similarly (3.16)-(3.17), by using

ŵ1(x) = v(x)
(β0 − 1)x+ η+ − β0η0

η+ − η0
,

we define

h1 =
1− β0

β0(η0 − x1) + x1 − η+
, β0 =

β+

1 + |β−|
,
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for ℓx1,3(v) = 0, as well as, similarly (3.18)-(3.19), by using

ω̃1(x) = v(x)
(β̃0 − 1)x+ η+ − β̃0

η+ − 1

for the case if sign[v(1)v(η+)] = sign[v(1)v(η−)] = 1, we define

h1 =
1− β̃0

β̃0(1− x1) + x1 − η+

for ℓx1,6(v) = 0. Here, β̃0 is an appropriate value, so that v(1) = β̃0v(η
+),

herewith 0 < β̃0 < β+, so 0 < β̃0 < 1 since S1 ≤ 1 in view of theorem condition.
Further, let v(x) satisfies some pair of BVC ℓx0,i(v) = 0, ℓx1,j(v) = 0,

i = 1, ..., 6, j = 1, ..., 6.
2.1. Assume, that ζ−, ζ+, η−, η+ ∈ (x0, x1). Note, it is always fulfiled for any pair
ℓx0,i(v) = 0, ℓx1,j(v) = 0, i = 1, 4, 6, j = 1, 4, 6. Similarly to the Subcase 1, by
virtue of (3.8), we obtain the BVP (3.9)

L̃ṽ(t) = −f̃1(t), 0 < t < 1, h̃0ṽ(0)− δ0ṽ
′(0) = 0, h̃1ṽ(1) + δ1ṽ

′(1) = 0,

where

δ0 = 0, h̃0 = 1 for conditions ℓx0,i(v) = 0, i = 1, 2, 4, 5,

δ0 = 1, h̃0 = (x1 − x0)h0 for conditions ℓx0,i(v) = 0, i = 3, 6,

δ1 = 0, h̃1 = 1 for conditions ℓx1,j(v) = 0, j = 1, 2, 4, 5,

δ1 = 1, h̃1 = (x1 − x0)h1 for conditions ℓx1,j(v) = 0, j = 3, 6,

herewith, h̃1 + (η1 − ζm0
)2b0 > 0 for ℓx1,j(v) = 0, j = 1, 2, 4, 5, 6 since h̃1 > 0,

in addition, h̃1 + (η1 − ζm0
)2b0 > 0 for ℓx1,3(v) = 0 in view of the theorem

requirement S1 < 1. Then the estimate (3.10) holds for ṽ(x). Since (3.10) results
in (3.11), then, in view of ζ−, ζ+, η−, η+ ∈ (x0, x1), we get

|v(ζ−)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(ζ+)| ≤ C4 max
x0≤x≤x1

|f1(x)|, (3.20)

|v(η−)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(η+)| ≤ C4 max
x0≤x≤x1

|f1(x)|. (3.21)

In view of (3.20) and (3.21), the estimate (3.12) follows from NLBVC (2.9) for
C5 = C4 max{|α−|+ |α+|, |β−|+ |β+|}. Therefore, we can interpret the solution of
NLBVP (2.9) as classical solution of the Dirichlet’s problem (3.13) and, by virtue of
[12, p. 100-103], state that a unifromly stable estimate (3.15) holds. Hence, in view
of (3.14), we get the estimate (3.11). At least, the validity of (3.11) is sufficient to
confirm that (3.1) is true.
2.2. Assume, that only one of two points ζ− or ζ+ belongs to (x0, x1), as well
as, only one of two points η− or η+ belongs to (x0, x1) (it is available in respect
of any pair of the conditions ℓx0,i(v) = 0, ℓx1,j(v) = 0, i = 2, 3, 5, j = 2, 3, 5).
Then, since (3.10)-(3.11) holds, then one of two estimates (3.20) holds, as well as,
one of two estimates (3.21) holds too. Thus, the NLBVP (2.9) is reduciable to the
problem

Lv(x) = −f1(x), 0 < x < 1, v(0) = α∗v(ζ∗) + φ∗
0, v(1) = β∗v(η∗) + φ∗

1, (3.22)

where

|φ∗
0| ≤ C5 max

0≤x≤1
|f1(x)|, |φ∗

1| ≤ C5 max
0≤x≤1

|f1(x)|, (3.23)
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C5 = C4 max{|α−| + |α+|, |β−| + |β+|}, the pair α∗ and ζ∗ is performed by α−

and ζ−, or by α+ and ζ+ correspondingly, the pair β∗ and η∗ is performed by β+

and η+, or by β− and η−. So, in view of the theorem condition, −∞ < α∗ ≤ 1,
−∞ < β∗ ≤ 1, β∗ < 1 if b0 = 0. Now, firstly by virtue of Lemma 2.1 in respect of
the problem (3.22), and then, by reasoning similar Section 1, we obtain the analogy
of (3.1) for the problem (3.22), i.e.,

|v(x)| ≤ C(|φ∗
0|+ |φ∗

1|+ max
0≤y≤1

|f1(y)|), 0 ≤ x ≤ 1. (3.24)

Then, in view of (3.23), the estimate (3.24) results in (3.2), and, therefore, the
estimate (3.1) is true.
2.3. Assume, that three of four points ζ−, ζ+, η−, η+ belong to (x0, x1). Then, by
combined reasoning of 2.1-2.2, one can prove that the estimate (3.1) is true.
Subcase 3. Assume, that one of two conditions (2.2) encloses the coefficients of the
same sign, but another one encloses different sign coefficients. Then (3.1) can be
proved by virtue of combined approach of Subcases 1-2. Theorem 3.1 is proved. □

4. The existence and uniqueness

Firstly, we prove

Lemma 4.1. Let (2.3) and the condition A are fulfiled, Si ≤ 1, φi ̸= 0, i = 0, 1.
If u(x) is some classical solution of NLBVP (2.1),(2.2), then

v(x) = u(x) + φ0q0(x) + φ1q1(x)

is classical solution of the problem

Lv(x) = −f1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0 (4.1)

for f1(x) = f(x) − φ0Lq0(x) − φ1Lq1(x), where q0(x) = c0(1 − x)
m1∏
l=1

(ηl − x),

q1(x) = c1x
m0∏
k=1

(x−ζk), herewith an appropriate constant ci ∈ R, ci ̸= 0, i = 0, 1.

If v(x) is some classical solution of (4.1), then u(x) = v(x)−φ0q0(x)−φ1q1(x)
is classical solution of NLBVP (2.1),(2.2) for f(x) = f1(x)+φ0Lq0(x)+φ1Lq1(x).

Let only one of φi, i ∈ {0, 1} be nonzero, put φi∗ ̸= 0, i∗ ∈ {0, 1}. If u(x)
is some classical solution of NLBVP (2.1),(2.2), then v(x) = u(x) + φi∗qi∗(x) is
classical solution of the problem (4.1) for the function f1(x) = f(x)− φi∗Lqi∗(x).
Vice versa, if v(x) is some classical solution of (4.1), then u(x) = v(x)−φi∗q∗(x)
is classical solution of NLBVP (2.1),(2.2) for f(x) = f1(x) + φi∗Lqi∗(x).

Proof. Put φi ̸= 0, i = 0, 1. Obviously that Lv(x) = −f1(x), 0 < x < 1 for
qi(x) and any nonzero ci, i = 0, 1. Let us find ci, i = 0, 1, so that the v(x) will
satisfy NLBVC (4.1). Note,

ℓ0(q1) = 0, ℓ1(q0) = 0. (4.2)

Since v(x) has to satisfy the NLBVC (4.1), then the expressions

l0(v) = φ0[1 + ℓ0(q0)] = 0, l1(v) = φ1[1 + ℓ1(q1)] = 0 (4.3)

have to be true, therefore,

1 + ℓ0(q0) = 0, 1 + ℓ1(q1) = 0 (4.4)
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have to be true too. Hence,

c0 = −(E0)
−1, c1 = −(D0)

−1, (4.5)

where

E0 =

m1∏
l=1

ηl −
m0∑
k=1

αk(1− ζk)

m1∏
l=1

(ηl − ζk), (4.6)

D0 =

m0∏
k=1

(1− ζk)−
m1∑
l=1

βlηl

m0∏
k=1

(ηl − ζk), (4.7)

herewith E0 ̸= 0, D0 ̸= 0, moreover, E0 > 0, D0 > 0. Actually, by virtue of the
condition S0 ≤ 1 in respect of (4.6), we have

E0 >



m1∏
l=1

ηl > 0, if αk < 0, k = 1, ...,m0,

(1− α)
m1∏
l=1

ηl ≥ 0, if αk > 0, k = 1, ...,m0,

(1− S0)
m1∏
l=1

ηl ≥ 0, if all αk, k = 1, ...,m0 have not the same sign,

where, in view of (2.6), S0 = α+ for ζ+ < ζ−, S0 = α− + α+ for ζ− < ζ+.
Indeed, it is clear for the case if all coefficients αk, k = 1, ...,m0 have the same
sign, as well as, for the case if ζ+ < ζ−. Let us confirm that E0 > 0 for the case
if all αk, k = 1, ...,m0 have not the same sign and ζ− < ζ+. In view of (4.6),

E0 >

m1∏
l=1

ηl − (1− ζmι
)α−

m1∏
l=1

(ηl − ζmι
)− (1− ζmι+1)α

+
m1∏
l=1

(ηl − ζmι+1),

then

E0 >

m1∏
l=1

ηl − (1− ζmι)(α
− + α+)

m1∏
l=1

(ηl − ζmι).

Hence, E0 >
m1∏
l=1

ηl > 0 for −∞ < S0 ≤ 0, E0 > [1 − (α− + α+)]
m1∏
l=1

ηl ≥ 0 for

0 < S0 ≤ 1, where S0 = α− + α+. Thus, we proved finally that E0 > 0, then
E0 ̸= 0, therefore, the constant c0 is definable by the first formula (4.5). Similarly,
by virtue of the condition S1 ≤ 1 for (4.7), it is easy to confirm that D0 > 0 and
prove that the constant c1 is definable by the second formula of (4.5).

Let us prove second statement of lemma. Obviously,

Lu(x) = Lv(x)−
2∑

i=1

φiLqi(x) = −f1(x)−
2∑

i=1

φiLqi(x) = −f(x), 0 < x < 1,

in addition, since v(x) satisfies NLBVC (4.1), then, in view of (4.2)-(4.5), we get

ℓ0(u) = ℓ0(v)− φ0ℓ0(q0)− φ1ℓ0(q1) = −φ0ℓ0(q0) = φ0,

ℓ1(u) = ℓ1(v)− φ0ℓ1(q0)− φ1ℓ1(q1) = −φ1ℓ1(q1) = φ1.

To finish this proof, by the same way as in above it is easy to confirm, that the
third statement of lemma is true. Lemma 4.1 is proved. □

Theorem 4.2. Let a(x) ≥ a0 > 0, b(x) ≥ b0 ≥ 0 for x ∈ [0, 1]. Let (2.3) and
the condition A are fulfilled. If Si ≤ 1, i = 0, 1 and, in addition, S1 < 1 if
b0 = 0, then classical solution of NLBVP (2.1),(2.2) exists and is a unique.
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Proof. Because all conditions of Theorem 3.1 are fulfiled, then the uniqueness of
classical solution follows from stabilty estimate (3.1).

In view of Lemma 4.1, to prove the existence, it is sufficient to establish that
classical solution of the differential problem (4.1) exists. The problem (4.1) is
equivalent to the differential problem

[k(x)v′]′ − q(x)v = −f̃1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0, (4.8)

where

k(x) = exp
(1
ε

x∫
0

a(t)dt
)
, q(x) = b(x)k(x), f̃1(x) = f1(x)k(x),

therefore, it will be sufficient to prove that classical solution of (4.8) exists. To
prove it let us use the fact that for any continuous function F (x), x ∈ [0, 1] the
differential problem

[k(x)v′]′ − v/k(x) = F (x), 0 < x < 1, ℓ0v = 0, ℓ1v = 0 (4.9)

has the solution

v(x) = A sinh(P (x)) +B cosh(P (x)) +

x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt, (4.10)

where

P (x) =

x∫
0

(
k(τ)

)−1
dτ, (4.11)

A = −
[
ℓ1(sP )

]−1{
Bℓ1(cP ) + ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)}
,

B = −
[
ℓ0(cP )− ℓ0(sP )

ℓ1(cP )

ℓ1(sP )

]−1{
ℓ0

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)

−ℓ0(sP )

ℓ1(sP )
ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)}
,

herewith for the convenience we use next designation

sP (x) = sinh(P (x)), cP (x) = cosh(P (x)). (4.12)

Actually, written in the square brackets expression is nonzero for A and B. Indeed,
since the function P (x) is nonnegative and strictly increasing in [0, 1], then

ℓ1(sP ) >

{
sP (1) > 0, if βl < 0, l = 1, ...,m1,
sP (1)− βsP (ηm1) > 0, if βl > 0, l = 1, ...,m1.

(4.13)

If all coefficients βl, l = 1, ...,m1 have not the same sign, then, in view of the MV
property [3, p. 1198-1199],

ℓ1(sP ) = sP (1)− β+sP (η̃
+)− β−sP (η̃

−), (4.14)
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where η̃+, η̃− ∈ [η1, ηm1
].3 In view of (4.14), if η̃− < η̃+, then

ℓ1(sP ) > sP (1)− β+sP (ηm1) > 0.

If η̃+ < η̃−, then β+ + β− = S1, then, in view of (4.14), we get

ℓ1(sP ) > sP (1)− S1sP (ηmκ
) > 0.

In summary, we proved that
ℓ1(sP ) > 0. (4.15)

Now, let us prove that the expression inside square brackets for B is nonzero too.
Let us denote this expression by G, i.e.,

G = ℓ0(cP )− ℓ0(sP )×
ℓ1(cP )

ℓ1(sP )
.

Additionally, we denote

Φ(x) = cP (x)− sP (x)×
ℓ1(cP )

ℓ1(sP )
.

Since

G = 1−
m0∑
k=1

αkcP (ζk) +

m0∑
k=1

αksP (ζk)×
ℓ1(cP )

ℓ1(sP )
,

then, by virtue of MV property, there are some points4 ζ̃, ζ̃+, ζ̃− ∈ [ζ1, ζm0
], so

that

G =

 1− αΦ(ζ̃), if αk, k = 1, ...,m0 have the same sign,

1− α+Φ(ζ̃+)− α−Φ(ζ̃−), if all αk, k = 1, ...,m0 have not
the same sign.

(4.16)

Further, in respect of Φ(x), x ∈ [0, ζm0 ], we have

Φ(x) = cP (x)− sP (x)×
cP (1)−

m1∑
l=1

βlcP (ηl)

sP (1)−
m1∑
l=1

βlsP (ηl)

=
[
sinh

(
P (1)− P (x)

)
−

m1∑
l=1

βl sinh
(
P (ηl)− P (x)

)]
× 1

ℓ1(sP )
.

Hence, by virtue of MV property [3, p. 1198-1199], for x ∈ [0, ζm0 ] we obtain that

Φ(x) =
sinh

(
P (1)− P (x)

)
− β sinh

(
P (η̂)− P (x)

)
ℓ1(sP )

for some η̂ ∈ [η1, ηm1
] if βl, l = 1, ...,m1 have the same sign. However, if all βl,

l = 1, ...,m1 have not the same sign5, then

Φ(x) =
sinh

(
P (1)− P (x)

)
− β+ sinh

(
P (η̂+)− P (x)

)
− β− sinh

(
P (η̂−)− P (x)

)
ℓ1(sP )

3Note, η̃+ < η̃− if η+ < η−, or, alternatively, η̃− < η̃+ if η− < η+, where η+ and η−

are some designated points respectively NLBVC (2.4).
4Note, ζ̃+ < ζ̃− if ζ+ < ζ−, or, alternatively, ζ̃− < ζ̃+ if ζ− < ζ+, where ζ+ and ζ−

are some designated points respectively NLBVC (2.4).
5Note, η̂+ < η̂− if η+ < η−, or, alternatively η̂− < η̂+ if η− < η+, where η+ and η−

are defined in respect of NLBVC (2.4).
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for some η̂+ ∈ [η1, ηm1
], η̂− ∈ [η1, ηm1

]. Hence, in view of (4.15), for x ∈ [0, ζm0
]

we have:

Φ(x) >
sinh(P (1)− P (x))

ℓ1(sP )
, if β < 0; (4.17)

Φ(x) >
sinh(P (1)− P (x))− β sinh(P (η̂)− P (x))

ℓ1(sP )
, if 0 < β ≤ 1; (4.18)

Φ(x) >
sinh(P (1)− P (x))− S1 sinh(P (η̂−)− P (x))

ℓ1(sP )
, if η̂+ < η̂−, (4.19)

herewith S1 = β+ + β−;

Φ(x) >
sinh(P (1)− P (x))− S1 sinh(P (η̂+)− P (x))

ℓ1(sP )
, if η̂− < η̂+, (4.20)

herewith S1 = β+. Since S1 ≤ 1, then for x ∈ [0, ζm0
], in view of (4.17)-(4.20),

we obtain the inequality

Φ(x) > 0. (4.21)

Further, for the case if βl, l = 1, ...,m1 have the same sign we get

Φ′(x) = −
sinh

(
P (1)− P (x)

)
− β sinh

(
P (η̂)− P (x)

)
k(x)ℓ1(sP )

,

for the case if all βl, l = 1, ...,m1 are not of the same sign we get

Φ′(x) = −
sinh

(
P (1)− P (x)

)
− β+ sinh

(
P (η̂+)− P (x)

)
− β− sinh

(
P (η̂−)− P (x)

)
k(x)ℓ1(sP )

.

Hence,

Φ′(x) = −Φ(x)

k(x)
.

Now, in view of (4.21), for x ∈ [0, ζm0
] we have

Φ′(x) < 0. (4.22)

Then Φ(x) is strictly decreasing positive function in [0, ζm0
], in addition, in view

of (4.11), Φ(0) = 1, therefore, 0 < Φ(x) < 1 for x ∈ (0, ζm0
]. Hence, in view of

(4.16)-(4.20), we get

G >

 1− (α+ + α−)Φ(ζ̃−), if ζ̃− < ζ̃+,

1− α+Φ(ζ̃+), if ζ̃+ < ζ̃−,
1− Φ(ζ1), if αk, k = 1, ...,m0 have the same sign.

(4.23)

Since S0 ≤ 1, then

G > 0. (4.24)

Thus, in view of (4.15) and (4.24), the coefficients A and B are uniquely definable
in respect of the formula (4.10), i.e., the function v(x) is the solution of the
differential problem (4.9). Further, by substituting

F (x) =
[
q(x)− 1/k(x)

]
v(x)− f̃1(x) (4.25)

into the equation (4.9), we obtain that the problem (4.9) is equivivalent to the
Fredholm’s integral equation of the second kind

v(x) =

1∫
0

K(x, t)v(t)dt+ f̂(x), (4.26)
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where 
K(x, t) = K0(x, t) +

m0∑
k=1

[Zk(x, t) + Z̃k(x, t)]

+
m1∑
l=1

[Hl(x, t) + H̃l(x, t)] +
3∑

i=1

Ri(x, t),
(4.27)

herewith:

K0(x, t) =

{
sinh

(
P (x)− P (t)

)[
q(t)− 1/k(t)

]
, if (x, t) ∈ Qx,

0, if (x, t) ∈ Qx

for Qx = {0 ≤ x ≤ 1, 0 ≤ t ≤ x}, Qx = {0 ≤ x ≤ 1, x ≤ t ≤ 1};

Zk(x, t) =

{
G−1αkcP (x) sinh(P (ζk)− P (t))[q(t)− 1/k(t)], if (x, t) ∈ Qζk ,
0, if (x, t) ∈ Qζk

and

Z̃k(x, t) = −ℓ1(cP )Zk(x, t)

ℓ1(sP )
tanh(P (x))

for Qζk = {0 ≤ x ≤ 1, 0 ≤ t ≤ ζk}, Qζk
= {0 ≤ x ≤ 1, ζk ≤ t ≤ 1}, k = 1, ...,m0;

Hl(x, t) =

{
[ℓ1(sP )G]−1βlℓ0(sP )cP (x) sinh(P (ηl)− P (t))[q(t)− 1/k(t)], if (x, t) ∈ Qηl

,
0, if (x, t) ∈ Qηl

and

H̃l(x, t) = −GHl(x, t)

ℓ1(sP )
tanh(P (x))

for Qηl
= {0 ≤ x ≤ 1, 0 ≤ t ≤ ηl}, Qηl

= {0 ≤ x ≤ 1, ηl ≤ t ≤ 1}, l = 1, ...,m1;
in addition, for (x, t) ∈ Q1, Q1 = {0 ≤ x ≤ 1, 0 ≤ t ≤ 1}

R1(x, t) =
ℓ0(sP )cP (x)

Gℓ1(sP )
sinh(P (1)− P (t))[q(t)− 1/k(t)],

R2(x, t) = −ℓ1(cP )R1(x, t)

ℓ1(sP )
tanh(P (x))

and

R3 = − sP (x)

ℓ1(sP )
sinh

(
P (1)− P (t)

)
[q(t)− 1/k(t)];

at least for x ∈ [0, 1] f̂(x) = −G−1cP (x)T2 + [ℓ1(sP )]
−1sP (x)T1

−[Gℓ1(sP )]
−1ℓ1(cP )sP (x)cP (x)T2 −

x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt,

(4.28)

where

T1 = ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt

)
,

T2 =
ℓ0(sP )

ℓ1(sP )
T1 − ℓ0

( x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt

)
.

Since the summands of (4.27) are continuous functions in [0, 1]×[0, 1], then the sum
K(x, t) is also the continuous function in [0, 1]× [0, 1]. Therefore, the Fredholm’s
alternative holds for the integral equation (4.26) in respect of the Hilbert space

L2(0, 1). Because f̃1(x) = f1(x)k(x), f1(x) ∈ C[0, 1], then, in view of the formula
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for f̂(x), we have f̂(x) ∈ C[0, 1]. Since K(x, t) ∈ C([0, 1]× [0, 1]), f̂(x) ∈ C[0, 1],
then, belonged to L2(0, 1) solution of the integral equation (4.26) belongs to C[0, 1]
actually. Then for v(x) ∈ C[0, 1], k(x) ∈ C1([0, 1] and q(x) ∈ C[0, 1], the integral
1∫
0

K(x, t)v(t)dt, as the function of x, belongs to C2[0, 1]. In addition, from the

formula for f̂(x) it follows that f̂(x) ∈ C2[0, 1] since f̃1(x) ∈ C[0, 1]. In summary,
any solution from L2(0, 1) of the integral equation (4.26) belongs to C2[0, 1]. Then

it is sufficient to prove that (4.26) has only the trivial solution if f̂(x) ≡ 0 on [0, 1].

Put f̂(x) ≡ 0 on [0, 1] for the integral equation (4.26). Then f̃1(x) ≡ 0 on [0, 1].

Indeed, since f̂(0) = 0, then, in view of (4.12) and (4.28), T2 = 0. Therefore,

f̂(x) =
sP (x)

ℓ1(sP )
T1 −

x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt.

Hence,

f̂ ′(x) =
cP (x)

k(x)ℓ1(sP )
T1 −

1

k(x)

x∫
0

cosh
(
P (x)− P (t)

)
f̃1(t)dt,

herewith, since we put f̂(x) ≡ 0, then f̂ ′(x) ≡ 0 on [0, 1]. Since f̂ ′(0) = 0, then
T1 = 0, therefore,

x∫
0

cosh
(
P (x)− P (t)

)
f̃1(t)dt ≡ 0

on [0, 1]. Hence, similarly [13, p. 46], we obtain that f̃1(x) ≡ 0 on [0, 1]. Since

f̃1(x) = f1(x)k(x), then f1(x) ≡ 0 on [0, 1]. Since f1(x) ≡ 0, then, in view of
Theorem 3.1, the NLBVP (4.1) has only trivial solution v(x) ≡ 0. Hence, because
the problem (4.1) is equivalent to the differential problem (4.8), (4.8) is equivalent
to the differential problem (4.9) for the defined by (4.25) function F (x) and (4.9)
is equivivalent to the integral equation (4.26), then (4.26) has only trivial solution

if f̂(x) ≡ 0 on [0, 1].
Thus we proved that the solution v(x) of the integral equation (4.26) exits and

belongs to C2[0, 1], then, in view of the equivalence, v(x) is classical solution of
NLBVP (4.1) at the same time. By virtue of Lemma 4.1, since classical solution
v(x) of NLBVP (4.1) exits, then classical solution u(x) of NLBVP (2.1),(2.2) exists
too. Theorem 4.2 is proved. □

5. Ill-posed statement examples

Next examples show that stated for NLBVP (2.1)-(2.2) condition on Si, i = 0, 1
is essential for well-posedness of the problem.
Example 1. The problem

εu′′(x) + a(x)u′(x) = 0, 0 < x < 1, u(0) = u(ζ), u(1) = u(η)

is ill-posed, it has infinite number of solutions u(x) = const. It shows the essentiality
of condition S1 < 1 for the case if b0 = 0.
Example 2. The problem

εu′′(x) + a(x)u′(x) = 0, 0 < x < 1, u(0) = u(ζ), u(1) = u(η) + 1
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is ill-posed, it has no solution for 0 < ζ < η < 1. Indeed, assume that some
solution of the problem exists, then u′(ξ) = 0 at some point ξ ∈ (0, ζ), therefore,
u′(x) ≡ 0 on [ξ, 1], then u(x) = const on [0, 1], so that it conflicts with the condition
u(1) = u(η) + 1. It shows the essentiality of condition S1 < 1 for the case b0 = 0.
Example 3. The problem

εu′′(x) + u′(x) = 1, 0 < x < 1, u(0) = 0, u(1) = u(η)

is ill-posed, it has the unstable on parameter solution

u(x) = −(1− η)[exp(−x/ε)− 1][exp(−1/ε)− exp(−η/ε)]−1 + x,

u(x) → −∞ at each nonzero point x if ε → 0. It shows the essentiality of condition
S1 < 1 for the case if b0 = 0.
Example 4. The problem

εu′′(x) + au′(x)− bu(x) = 0, 0 < x < 1, u(0) = 0, u(1) = βu(η) (5.1)

is ill-posed, in general, for each β > 1, η ∈ (0, β−1), a = const > 0, b = const ≥ 0.
It always has infinite number of solutions for some parameter value ε = ε∗. This fact
shows the essentiality of condition S1 ≤ 1, i = 0, 1. Let us confirm the ill-posedness.
(i) If b = 0, then for an arbitrary constant C the function

u(x) = C exp(−ax/ε)− C (5.2)

satisfies the equation (5.1) and the condition u(0) = 0. By choosing C ̸= 0 and
substituting (5.2) into nonlocal condition (5.1) we get

β =
1− e−a/ε

1− e−aη/ε
. (5.3)

Note, the equality (5.3) is impossible for −∞ < β ≤ 1, η ∈ (0, 1). However, for
β > 1 and for each η ∈ (0, β−1) the formula (5.3) is true for some value ε = ε∗.
Indeed, for each ε > 0 the function g(ε) = (1 − e−a/ε)/(1 − e−aη/ε) is positive
and continuous, limε→+0 g(ε) = 1, limε→+∞ g(ε) = η−1, the g(ε) reachs the
value β at some argument ε∗ since 1 < β < η−1. So, g(ε∗) = β, i.e., (5.3) is
true for ε = ε∗, therefore, u(x) is solution of (5.1). Since C ̸= 0 is an arbitrary
constant for (5.2), then (5.1) has infinite number of solutions.
(ii) If b > 0, then for an arbitrary constant C the function

u(x) = C exp(λ1x)− C exp(λ2x) (5.4)

satisfies the equation (5.1) and the condition u(0) = 0 for

λ1 = −a/2ε−
√
(a/2ε)2 + b/ε, λ2 = −a/2ε+

√
(a/2ε)2 + b/ε.

By choosing C ̸= 0 and substituting (5.4) into (5.1) we get

β = eλ1(1−η) 1− eλ2−λ1

1− eη(λ2−λ1)
=

eλ1 − eλ2

eλ1η − eλ2η
. (5.5)

The equality (5.5) is impossible for −∞ < β ≤ 0. Moreover, (5.5) is impossible
for 0 < β ≤ 1 too. It follows from the relation h(1) − βh(η) ̸= 0 for the
function h(t) = eλ1t − eλ2t, t ∈ (0, 1] in view of h(t) < 0, h′(t) < 0. However,
for β > 1, the formula (5.5) is true for some value ε = ε∗ in respect of each
η ∈ (β−1, 1). Indeed, since z(ε) = h(1)/h(η) is positive and continuous function
in (0,+∞), limε→+0 z(ε) = +∞, limε→+∞ z(ε) = η−1, then z(ε∗) = β for some
ε∗ ∈ (0,+∞). So, (5.5) is true for ε = ε∗, then u(x) is solution of (5.1) for
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λi = λi(ε
∗). Since C ̸= 0 is an arbitrary constant for (5.4), then (5.1) has infinite

number of solutions.

6. Conclusion

In this article we studied NLBVP of the first kind for linear second order ODE
with positive parameter at the highest derivative. We researched the well-posed
solvability of the problem in respect of classical solution. Under new and accurate
condition on coefficients and nonlocal carriers of NLBVC, we obtained a uniform on
parameter stability estimate of classical solution, proved existence and uniqueness.
We demonstrated examples of ill-posed problems for some cases if coefficients of
NLBVC does not satisfy stated herein well-posedness condition, i.e., we confirmed,
in general, that established in our paper condition is essential.
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FACTOR RELATIONS BETWEEN SOME SUMMABILITY

METHODS
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Abstract. In the present paper, using the result of Bennett [1] on character-

ization of factorable matrices, we give necessary and sufficient conditions in
order that Σλnxn is summable |R, pn|s whenever Σµnxn is summable |C, 0|k ,
and Σλnxn is summable |C, 0|s whenever Σµnxn is summable |R, pn|r , . where

1 < k ≤ s <∞. Therefore we also extend some known results.

1. Introduction

Consider an infinite series Σxn with partial sum sn, and by (σαn) , we denote the
n-th Cesàro means of order α with α > −1 of the sequence (sn) . The series Σxn is
said to be summable |C,α|k , k ≥ 1, if

(
n1−1/k

(
σαn − σαn−1

))
∈ `k (see [7]), where `k

is the set of all sequences consisting k- absolutely convergent series. Note that the
summability |C, 0|k reduces to

(
n1−1/kxn

)
∈ `k. Let (pn) be a sequence of positive

real numbers with Pn = p0+p1+ · · ·+pn →∞ as n→ n. The sequence-to-sequence
transformation

un =
1

Pn

n∑
n=0

pnsn. (1.1)

defines the sequence (un) of the (R, pn) Riesz means of the sequence (sn), gen-
erated by the sequence of numbers (pn). The series Σxn is said to be summable
|R, pn|k , k ≥ 1, if

(
n1−1/k (un − un−1)

)
∈ `k (see [19]).

A summability method Y is said to be include another summability method X,
if every series summable by X is also summable by Y. If the methods include each
other, then, these methods are called equivalent. Hereof, the inclusion relations of
the absolute summability methods of single series were studied by various authors
(see, for example, [2-24]).

The following result was established by Bor [2].
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Theorem 1.1. Let 1 < k <∞ and
∞∑
n=v

nk−1pkn
P knPn−1

= O

(
vk−1pkv−1
P kv−1

)
. (1.2)

If exists d > 1 such that
Pn+1

Pn
≥ d for all n ≥ 1, (1.3)

then, the summability methods |R, pn|k and |C, 0|k are equivalent.

Also, in [16], this result was extended as follows.
Theorem 1.2. Let 1 < k ≤ s <∞. Then, the necessary and sufficient condition

in order that the summability method |R, pn|s includes the summability method
|C, 0|k is {

m∑
v=1

P k
∗

v−1
v

}1/k∗ { ∞∑
n=m

(
n1/s

∗
pn

PnPn−1

)s}1/s

= O(1),

where k∗ denotes the conjugate of the index k > 1, i.e., 1/k + 1/k∗ = 1.
Theorem 1.3. Let 1 < k ≤ s <∞. Then, the necessary and sufficient condition

in order that the summability method |C, 0|s includes the summability method
|R, pn|k is

{
m∑

v=m−1

1

v

∣∣∣∣Pv−1Pvpv

∣∣∣∣k∗
}1/k∗ {m+1∑

n=m

ns−1

P sn

}1/s

= O(1).

2. The main Result

This paper gives necessary and sufficient conditions in order that Σλnxn is sum-
mable |C, 0|s whenever Σµnxn, is summable |R, pn|k , and also Σλnxn is summable
|R, pn|s whenever Σµnxn, is summable |C, 0|k , where1 < r ≤ s <∞, which gener-
alizes the above results.

A factorable matrix T is defined by

tnv =

{
bnav, 0 ≤ v ≤ n,
0, v > n.

where (bn) and (an) are sequences of real or complex numbers.

Now we prove the following theorems.

Theorem 2.1. Let 1 < k ≤ s < ∞ and λ = (λn) be a sequence of numbers.
Further, let µ = (µn) be a sequence of non-zero numbers. Then, necessary and
sufficient condition in order that Σλnxn is summable |R, pn|s whenever Σµnxn is
summable |C, 0|k is{

m∑
v=1

P k
∗

v−1
v

∣∣∣∣λvµv
∣∣∣∣k∗
}1/k∗ { ∞∑

n=m

(
n1/s

∗
pn

PnPn−1

)s}1/s

= O(1). (2.1)

Theorem 2.2. Let 1 < k ≤ s < ∞, λ and µ be as in Theorem 2.1. Then,
necessary and sufficient condition in order that Σλnxn is summable |C, 0|s whenever
Σµnxn is summable |R, pn|k is
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{
m∑

v=m−1

1

v

(
Pv−1Pv
pv

)k∗}1/k∗ {m+1∑
n=m

∣∣∣∣n1/s∗λnPnµn

∣∣∣∣s
}1/s

= O(1). (2.2)

It may be noticed that Theorem 2.1 and Theorem 2.2. are, in the special case
µn = λn = 1 for all n ≥ 0, reduced to Theorem 1.2. and Theorem 1.3, respectively.

Also, if pn = 1 for all n ≥ 0, then the summability|R, pn|k coincides with the
summability |C, 1|k . Further, Pn = n+ 1 and

∞∑
n=m

pn
Pn−1P sn

=

∞∑
n=m

1

n(n+ 1)s
= O

(
1

ms

)
.

Hence, the following results is immediately obtained.

Corollary 2.3. Let 1 < k ≤ s < ∞, λ and µ be as in Theorem 2.1. Then,
necessary and sufficient condition in order that Σxnλn is summable |C, 1|s whenever
Σxnµn is summable |C, 0|k is

m∑
v=1

vk
∗−1

∣∣∣∣λvµv
∣∣∣∣k∗ = O(mk∗).

Corollary 2.4. Let 1 < k ≤ s < ∞, λ and µ be as in Theorem 2.1. Then,
necessary and sufficient condition in order that Σxnλn is summable |C, 0|s whenever
Σxnµn is summable |C, 1|k is

m+1∑
n=m

1

P sn

∣∣∣∣λnµn
∣∣∣∣s = O(m1−2s−s/k).

Proof of Theorem 2.1. We first note a result of Bennett [1] that a factorable
matrix T defines a bounded linear operator LT : `k → `s such that LT (x) = T (x)
for all x ∈ `k if and only if(

m∑
v=0

|av|k
∗

)1/k∗ ( ∞∑
n=m

|bn|s
)1/s

= O(1), (2.3)

where k∗is the conjugate of indices k. Let σ0
n and un be Cesàro (C, 0) and Riesz

means (R, pn) of the series Σµnxn and Σλnxn, respectively. Then, by (1.1) ,

σ0
n =

n∑
v=0

µvxv

un =
1

Pn

n∑
v=0

pv

v∑
r=0

λrxr

and so ∆u0 = λ0x0,

∆un =
pn

PnPn−1

n∑
v=1

Pv−1λvxv, for n ≥ 1.



FACTOR RELATIONS 73

Now, say t′n = n1/s
∗
∆un and σ0′

n = n1/k
∗
µnxn for n ≥ 1. Then, it easily seen that

t′n =
n1/s

∗
pn

PnPn−1

n∑
v=1

Pv−1λv
v1/k∗µv

σ0′
v

=

∞∑
v=1

tnvσ
0′
v

where the matrix T = (tnv) is given by

tnv =

{
n1/s∗pnPv−1λv

PnPn−1v1/k
∗µv

, 1 ≤ v ≤ n,
0, v > n.

This means that Σxnλn is summable |R, pn|s whenever Σxnµn is summable |C, 0|k
if and only (t′n) ∈ `s for all

(
σ0′
n

)
∈ `k, or, T : `k → `s is a bounded linear operator.

Thus, by applying (2.3) to the matrix T, we have (2.1) .

Proof of Theorem 2.2. Let un and σ0
n be means of Riesz (R, pn) and Cesàro

(C, 0) of the series Σµnxn and Σλnxn, respectively. Then, as above, ∆σ0
n = λnxn,

and also ∆u0 = µ0x0,

∆un =
pn

PnPn−1

n∑
v=1

Pv−1µvxv, for n ≥ 1 (2.4)

By inversion of (2.4) , it can be stated that, for n ≥ 1,

xn =
1

µnPn−1

(
Pn−1Pn
pn

∆un −
Pn−1Pn−2
pn−1

∆un−1

)
Say t′n = n1/k

∗
∆un and σ0′

n = n1/s
∗
λnxn for n ≥ 1. Then, it can be written that

σ0′
n =

n1/s
∗
λn

µnPn−1

(
Pn−1Pnt

′
n

n1/k∗pn
−

Pn−1Pn−2t
′
n−1

(n− 1)
1/k∗

pn−1

)

=

∞∑
v=1

dnvt
′
v

where the matrix D = (dnv) is defined by

dnv =


n1/s∗λn

µnPn−1

(
− Pn−1Pn−2

(n−1)1/k∗pn−1

)
, v = n− 1

n1/s∗λn

µnPn−1

(
Pn−1Pn

n1/k∗pn

)
, v = n

0, v > n.

This gives that Σxnλn is summable |C, 0|s whenever Σxnµn is summable |R, pn|k if

and only if
(
σ0′
n

)
∈ `s for all (t′n) ∈ `k, or, D : `k → `s is a bounded linear operator.

Thus, by applying (2.3) to the matrix D, we get (2.2).
This completes the proof.
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Abstract. In this paper, we introduce the notions of S-proximal Berinde g-

cyclic contraction of two nonself mappings and S-proximal Berinde g-contractions

of the first kind and second kind in an S-metric space and prove some coinci-
dence best proximity point theorems for these types of nonself mappings in this

space. Also, we give two examples to analyze and support our main results.

The results presented here generalize some results in the existing literature.

1. Introduction

Let (X, d) be a metric space and J : X → X be a self mapping. A fixed
point problem is to find a point x in X such that Jx = x or d(x, Jx) = 0. In
this direction, Banach [1] proved his famous result “Banach contraction principle”,
which states that “let (X, d) be a complete metric space and J : X → X be
a contraction mapping, then J has a unique fixed point”. Later, many authors
studied the results dealing with “fixed point” in different spaces (see, e.g., [2]-[7]).

Let (X, d) be a metric space, Y and Z be two nonempty subsets of X and
J : Y → Z be a nonself mapping. A point x ∈ Y is called a best proximity point of
J if d(x, Jx) = △Y Z where △Y Z = d(Y,Z) = inf{d(x, y) : x ∈ Y , y ∈ Z}. Clearly,
if J is a self mapping, then the best proximity point problem reduces to a fixed
point problem. In this way, the best proximity point problem can be viewed as a
natural generalization of a fixed point problem.

A coincidence best proximity point problem is to find a point x in Y such that
d(gx, Jx) = △Y Z , where g is a self mapping on Y . If g is an identity mapping on
Y , then it can be observed that a coincidence best proximity point is essentially a
best proximity point. Hence, the coincidence best proximity point problem is an
extension of the best proximity point problem. There are several results dealing
with proximity point problem in different spaces (see [8]-[12]).
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In 2011, Basha [13] studied and established best proximity point theorems for
the proximal contractions of the first kind and second kind, and proximal cyclic
contractions in a metric space. More recently, Klanarong and Chaiya [14] presented
coincidence best proximity point theorems for the proximal Berinde g-contractions
of the first kind and second kind, and proximal Berinde g-cyclic contractions which
are more general than the nonself mappings considered in [13].

In 2012, Sedghi et al. [15] introduced the notion of S-metric space and investi-
gated the topology of this space. They also characterized some well-known fixed
point results in the context of S-metric space. Later, some authors have published
the best proximity point and coincidence best proximity point results on the setting
of S-metric space (for details, see [16]-[18]).

Inspired and motivated by the above results, in this paper, we introduce the
notions of S-proximal Berinde g-cyclic contractions of two nonself mappings and
S-proximal Berinde g-contractions of the first kind and second kind in an S-metric
space and establish some coincidence best proximity point theorems for these kinds
of nonself mappings in this space. We also give two examples to support our results.
The results presented in this paper can be regarded as an extension of corresponding
results from a metric space to an S-metric space.

2. Preliminaries and lemmas

In this section, we recall some definitions and lemmas which are needed in the
sequel.

The notion of an S-metric space is introduced as a generalization of a metric
space as follows.

Definition 2.1. (see [15, Definition 2.1]) Let X be a nonempty set and S : X ×
X ×X → [0,∞) be a function satisfying the following properties:

(S1) S(x, y, z) ≥ 0;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

for all x, y, z, a ∈ X. Then the function S is called an S-metric on X, and the pair
(X,S) is called an S-metric space.

Some geometric examples for S-metric spaces can be seen in [15].
The following lemma can be considered as the symmetry condition and it will

be used in the proofs of some theorems.

Lemma 2.1. (see [15, Lemma 2.5]) Let (X,S) be an S-metric space. Then

S(x, x, y) = S(y, y, x) for all x, y ∈ X.

We need the following result which can easily be derived from Definition 2.1 and
Lemma 2.1.

Lemma 2.2. (see [18, Remark 2.6]) Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ S(x, x, y) + 2S(y, y, z) for all x, y, z ∈ X.

Sedghi et al. [15, 19] defined some basic topological concepts in an S-metric
space as follow.

Definition 2.2. (see [15, Definition 2.6]) Let (X,S) be an S-metric space. For
r > 0 and x ∈ X, the open ball BS(x, r) is defined as follows:

BS(x, r) = {y ∈ X : S(y, y, x) < r}.
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Definition 2.3. (see [15, Definition 2.8 (3)-(5)]) Let (X,S) be an S-metric space.
(i) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as

n,m → ∞. That is, for any ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε
for all n,m ≥ n0,

(ii) A sequence {xn} in X is said to converge to x ∈ X if S(xn, xn, x) → 0 as
n,m → ∞. That is, for any ε > 0, there exists n0 ∈ N such that S(xn, xn, x) < ε
for all n,m ≥ n0. We write xn → x for brevity.

(iii) The S-metric space (X,S) is called complete if every Cauchy sequence in
(X,S) is convergent in (X,S).

Definition 2.4. (see [19, Corollary 2.4]) Let X and X
′
be two S-metric spaces,

and let f : X → X ′ be a function. Then f is continuous at x ∈ X if and only if
f(xn) → f(x) for any sequence {xn} in X such that xn → x. We say that f is
continuous on X if f is continuous at every point x ∈ X.

Özgür and Taş [20, 21] defined the concepts of cluster point and closed set in an
S-metric space.

Definition 2.5. Let (X,S) be an S-metric space and Y ⊆ X be any subset.
(i) (see [20, Definition 4.2]) A point x ∈ X is a cluster point of Y if

(BS(x, r)− {x}) ∩ Y ̸= ∅

for every r > 0. The set of all cluster points of Y is denoted by Y
′

S .
(ii) (see [21, Definition 3.3]) Let (X,S) be an S-metric space and Y ⊆ X. The

subset Y is called closed if the set of cluster points of Y is contained by Y , that is,
Y

′

S ⊂ Y.

Özgür and Taş [21] also defined the concept of sub-S-metric space and gave a
property for closed subsets in complete S-metric spaces.

Definition 2.6. (see [21, Definition 3.2]) Let (X,S) be an S-metric space and Y
be a nonempty subset of X. Let a function SY : Y × Y × Y → [0,∞) be defined by

SY (x, y, z) = S(x, y, z) for all x, y, z ∈ Y.

Then SY is called a reduced S-metric and (Y, SY ) is called a sub-S-metric space of
(X,S).

Proposition 2.3. (see [21, Proposition 3.4]) If (X,S) is a complete S-metric space
and Y is a closed set in (X,S), then (Y, SY ) is complete.

The relation between a metric and an S-metric was given in [22] as follows.

Lemma 2.4. (see [22, Lemma 1.12]) Let (X, d) be a metric space. Then the fol-
lowing properties are satisfied:

1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
2) xn → x in (X, d) if and only if xn → x in (X,Sd).
3) {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence

in (X,Sd).
4) (X, d) is complete if and only if (X,Sd) is complete.

In [23], the function Sd was called an S-metric generated by d. We know some
examples of an S-metric which are not generated by any metric (see [22, 23] for
more details).
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On the other hand, Gupta [24] claimed that every S-metric on X defines a metric
dS on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x), ∀x, y ∈ X. (2.1)

However, the function dS(x, y) defined in (2.1) does not always a metric because
the triangle inequality is not satisfied for all elements of X everywhere (see [23] for
more details).

Khanpanuk [18] defined the following concepts in an S-metric space.

Definition 2.7. (see [18, Definition 3.4]) Let (X,S) be an S-metric space. A
mapping g : X → X is called an isometry if

S(gx, gy, gz) = S(x, y, z), ∀x, y, z ∈ X.

Clearly, a self mapping which is an isometry is continuous.

Definition 2.8. (see [18, Definition 3.5]) Let (X,S) be an S-metric space and Y ,
Z be two nonempty subsets of X. Let J : Y → Z be a mapping and g : Y → Y be
an isometry. The mapping J is said to preserve the isometric distance with respect
to g if

S(Jgx, Jgy, Jgz) = S(Jx, Jy, Jz) ∀x, y, z ∈ Y.

Klanarong and Chaiya [14] introduced the following new classes of nonself map-
pings in a metric space.

Definition 2.9. (see [14, Definitions 3.2 and 3.4]) Let (X, d) be a metric space and
Y , Z be two nonempty subsets of X. Let J : Y → Z and g : Y → Y be mappings.
The mapping J is said to be

(i) a proximal Berinde g-contraction of the first kind if there exist α ∈ [0, 1) and
L1 ≥ 0 such that

d(gu1, Jx1) = d(gu2, Jx2) = △Y Z

=⇒
d(gu1, gu2) ≤ αd(gx1, gx2) + L1 min{d(gx1, gu2), d(gx2, gu1)}

for all x1, x2, u1, u2 ∈ Y ,
(ii) a proximal Berinde g-contraction of the second kind if there exist β ∈ [0, 1)

and L2 ≥ 0 such that

d(gu1, Jx1) = d(gu2, Jx2) = △Y Z

=⇒
d(Jgu1, Jgu2) ≤ βd(Jgx1, Jgx2) + L2 min{d(Jgx1, Jgu2), d(Jgx2, Jgu1)}

for all x1, x2, u1, u2 ∈ Y .

In the case L1 = 0 (or L2 = 0) and gx = x for all x ∈ Y , it is easy to see that
a proximal Berinde g-contraction of the first kind (or the second kind) reduces to
proximal contraction of the first kind (or the second kind) which was introduced in
[13]. But the converse is not true (see [14, Example 3.3]).

Definition 2.10. (see [14, Definition 3.5]) Let (X, d) be a metric space and Y , Z
be two nonempty subsets of X. Let J : Y → Z, T : Y → Z and g : Y ∪ Z → Y ∪ Z
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be mappings. The pair (J, T ) is said to be a proximal Berinde g-cyclic contraction
if there exist γ ∈ [0, 1) and L ≥ 0 such that

d(gu1, Jx1) = d(gu2, Tx2) = △Y Z

=⇒
d(gu1, gu2) ≤ γd(gx1, gx2) + (1− γ)d(Y, Z) + Ld(gx1, gu1)

for all x1, gu1 ∈ Y and x2, gu2 ∈ Z.

In the case L = 0 and gx = x for all x ∈ Y ∪Z, it is easy to see that a proximal
Berinde g-cyclic contraction reduces to a proximal cyclic contraction which was
introduced in [13].

3. Main Results

Let (X,S) be an S-metric space and Y , Z be two nonempty subsets of X. We
define the following sets:

△S
Y Z = S(Y, Y, Z) = inf{S(x, x, y) : x ∈ Y, y ∈ Z},
Y0 =

{
x ∈ Y : there exists some y ∈ Z such that S(x, x, y) = △S

Y Z

}
,

Z0 =
{
y ∈ Z : there exists some x ∈ Y such that S(x, x, y) = △S

Y Z

}
.

Definition 3.1. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z and g : Y → Y be mappings. A point x ∈ Y is said to be a
coincidence best proximity point of the pair (g, J) if S(gx, gx, Jx) = △S

Y Z .

Note that if g is the identity mapping on Y in Definition 3.1, then the point x
is the best proximity point of J .

Definition 3.2. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z, T : Z → Y and g : Y ∪Z → Y ∪Z be mappings. An element
(x, y) ∈ Y × Z is called a coincidence best proximity point of the triple (g, J, T ) if
(gx, gy) ∈ Y × Z and S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S

Y Z .

Note that if g is the identity mapping on Y ∪Z in Definition 3.2, then the point
x and y is the best proximity point of J and T, respectively.

Now, we introduce the S-proximal Berinde g-contractions of the first kind and
second kind in an S-metric space.

Definition 3.3. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z and g : Y → Y be mappings. The mapping J is said to be

(i) an S-proximal Berinde g-contraction of the first kind if there exist α ∈ [0, 1)
and L1 ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Jx2) = △S
Y Z

=⇒
S(gu1, gu1, gu2) ≤ αS(gx1, gx1, gx2)

+L1 min{S(gx1, gx1, gu2), S(gx2, gx2, gu1)} (3.1)

for all x1, x2, u1, u2 ∈ Y ,
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(ii) an S-proximal Berinde g-contraction of the second kind if there exist β ∈
[0, 1) and L2 ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Jx2) = △S
Y Z

=⇒
S(Jgu1, Jgu1, Jgu2) ≤ βS(Jgx1, Jgx1, Jgx2) + L2 min{S(Jgx1, Jgx1, Jgu2),

S(Jgx2, Jgx2, Jgu1)} (3.2)

for all x1, x2, u1, u2 ∈ Y.

Now, we define the S-proximal Berinde g-cyclic contraction in an S-metric space.

Definition 3.4. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z be mappings. The
pair (J, T ) is said to be an S-proximal Berinde g-cyclic contraction if there exist
γ ∈ [0, 1) and L ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Tx2) = △S
Y Z

=⇒
S(gu1, gu1, gu2) ≤ γS(gx1, gx1, gx2) + (1− γ)△S

Y Z + LS(gx1, gx1, gu1)

for all x1, gu1 ∈ Y and x2, gu2 ∈ Z.

Next, we give the following coincidence best proximity point result in an S-metric
space.

Theorem 3.1. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z satisfy the
following conditions:

(i) J and T are S-proximal Berinde g-contractions of the first kind, i.e., there
exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J and T satisfy the condition (3.1),
respectively;

(ii) J(Y0) ⊆ Z0 and T (Z0) ⊆ Y0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0).
(iv) The pair (J, T ) is an S-proximal Berinde g-cyclic contraction.

Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z . (3.3)

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x and there exists unique element y which satisfy the
equation (3.3).

Proof. Let x0 ∈ Y0 be given. Since J(Y0) ⊆ Z0, Jx0 ∈ Z0. Hence there is z1 ∈ Y
such that S(z1, z1, Jx0) = △S

Y Z which implies that z1 ∈ Y0. As Y0 ⊆ g(Y0), there
exists x1 ∈ Y0 such that gx1 = z1, so S(gx1, gx1, Jx0) = S(z1, z1, Jx0) = △S

Y Z . In
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a similar way, there is x2 ∈ Y0 such that S(gx2, gx2, Jx1) = △S
Y Z . Inductively, we

can construct a sequence {xn} in Y0 such that

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N.

Since J is an S-proximal Berinde g-contraction of the first kind, for xn−1, xn, xn+1 ∈
Y0, S(gxn, gxn, Jxn−1) = S(gxn+1, gxn+1, Jxn) = △S

Y Z implies that

S(gxn, gxn, gxn+1) ≤ αS(gxn−1, gxn−1, gxn)

+L1 min {S(gxn−1, gxn−1, gxn+1), S(gxn, gxn, gxn)}
= αS(gxn−1, gxn−1, gxn)

for all n ∈ N. It follows from g being an isometry that

S(xn, xn, xn+1) = S(gxn, gxn, gxn+1)

≤ αS(gxn−1, gxn−1, gxn)

≤ α2S(gxn−2, gxn−2, gxn−1)

...

≤ αnS(gx0, gx0, gx1)

= αnS(x0, x0, x1) (3.4)

for all n ∈ N. Since α ∈ [0, 1), then we have

lim
n→∞

S(xn, xn, xn+1) = 0.

For positive integers m and n with m > n, it follows that

S(xn, xn, xm)

≤ 2S(xm−1, xm−1, xm) + S(xn, xn, xm−1)

≤ 2S(xm−1, xm−1, xm) + 2S(xm−2, xm−2, xm−1) + S(xn, xn, xm−2)

≤ 2S(xm−1, xm−1, xm) + 2S(xm−2, xm−2, xm−1) + ...+ S(xn, xn, xn+1).

Now, for m = n+ r; r ≥ 1 and (3.4), we obtain

S(xn, xn, xn+r) ≤ 2αn+r−1S(x0, x0, x1)+2αn+r−2S(x0, x0, x1)+...+αnS(x0, x0, x1).

By taking limit as n → ∞, we deduce

lim
n→∞

S(xn, xn, xm) = 0.

That is, {xn} is a Cauchy sequence in Y . Since (Y, SY ) is a complete S-metric space,
so there exists x ∈ Y such that xn → x as n → ∞. Similarly, since T (Z0) ⊆ Y0 and
Z0 ⊆ g(Z0), there exists a sequence {yn} in Z0 such that

S(gyn+1, gyn+1, T yn) = △S
Y Z , ∀n ∈ N,

and which converges to some element y ∈ Z. Since the pair (J, T ) is an S-proximal
Berinde g-cyclic contraction and

S(gxn+1, gxn+1, Jxn) = △S
Y Z = S(gyn+1, gyn+1, Tyn), ∀n ∈ N,

there exist γ ∈ [0, 1) and L ≥ 0 such that

S(gxn+1, gxn+1, gyn+1) ≤ γS(gxn, gxn, gyn) + (1− γ)△S
Y Z +LS(gxn, gxn, gxn+1).

It implies that

S(xn+1, xn+1, yn+1) ≤ γS(xn, xn, yn) + (1− γ)△S
Y Z + LS(xn, xn, xn+1).
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Taking limit as n → ∞, we have

S(x, x, y) ≤ γS(x, x, y) + (1− γ)△S
Y Z + LS(x, x, x)

yields that

S(x, x, y) ≤ △S
Y Z .

Then S(x, x, y) = △S
Y Z , that is, x ∈ Y0 and y ∈ Z0. Since J(Y0) ⊆ Z0 and

T (Z0) ⊆ Y0, then Jx ∈ Z0 and Ty ∈ Y0. Hence there exists w ∈ Y0 and z ∈ Z0

such that

S(gw, gw, Jx) = △S
Y Z = S(gv, gv, Ty)

since Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0). Since J is an S-proximal Berinde g-contraction
of the first kind and

S(gw, gw, Jx) = S(gxn+1, gxn+1, Jxn) = △S
Y Z ,

we obtain that

S(gw, gw, gxn+1) ≤ αS(gx, gx, gxn) + L1 min {S(gx, gx, gxn+1), S(gxn, gxn, gw)}
= αS(gx, gx, gxn) + L1S(gx, gx, gxn+1)

for all n ∈ N. Taking limit as n → ∞, by the continuity of g, we get S(gw, gw, gx) =
0, and so, gx = gw. It is implies that

S(gx, gx, Jx) = △S
Y Z .

Similarly, it is easy to verify that S(gy, gy, Ty) = △S
Y Z . Thus, we can conclude that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z

Therefore, the pair (x, y) is a coincidence best proximity point of the triple (g, J, T ).
Next, we will show that the pair (x, y) is unique. Suppose that α+L1 < 1, β+L2 < 1
and there exists x ̸= x∗ ∈ Y such that

S(gx∗, gx∗, Jx∗) = △S
Y Z .

Since J is an S-proximal Berinde g-contraction of the first kind, it follows that

S(gx, gx, gx∗) ≤ αS(gx, gx, gx∗) + L1 min {S(gx, gx, gx∗), S(gx∗, gx∗, gx)}
= (α+ L1)S(gx, gx, gx

∗).

Since α + L1 < 1, then we have S(gx, gx, gx∗) = 0. It follows that x = x∗, which
implies that there exists a unique x ∈ Y such that S(gx, gx, Jx) = △S

Y Z . Similarly,
we can show that there exists a unique y ∈ Z such that S(gy, gy, Ty) = △S

Y Z .
Therefore, the pair (x, y) is the unique coincidence best proximity point of the
triple (g, J, T ).

Now, we give an example to illustrate Theorem 3.1.

Example 3.1. Let (R2, d) be the Euclidean metric space. Define

S(x, y, z) = max {d(x, y), d(y, z), d(z, x)} .

Then (R2, S) is an S-metric space. Let Y = {(0, y);−1 ≤ y ≤ 1} and Z =
{(1, y);−1 ≤ y ≤ 1} . Then △S

Y Z = 1, Y0 = Y and Z0 = Z. Define the mappings
J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z by

J(0, y) =
(
1,

y

2

)
, T (1, y) =

(
0,

y

2

)
and g(x, y) = (x,−y).
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Clearly, Y0 = g(Y0), Z0 = g(Z0), J(Y0) =
{(

1, y
2

)
;−1 ≤ y ≤ 1

}
⊂ Z0, T (Z0) ={(

0, y
2

)
;−1 ≤ y ≤ 1

}
⊂ Y0 and the mapping g is an isometry. Obviously, the map-

pings J and T are S-proximal Berinde g-contractions of the first kind and the pair
(J, T ) is an S-proximal Berinde g-cyclic contraction. Hence, the all conditions of
Theorem 3.1 are satisfied and the element {(0, 0), (1, 0)} in Y × Z is the unique
coincidence best proximity point of the triple (g, J, T ).

If we take L1 = 0, L2 = 0 and L = 0 in Theorem 3.1, then we obtain the following
coincidence best proximity theorem.

Theorem 3.2. Let X,Y, Z, Y0, Z0, J, T and g satisfy the hypotheses of Theorem
3.1. Then, there exists a unique point x ∈ Y and there exists a uniqe point y ∈ Z
such that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y.

If we take gx = x for all x ∈ Y ∪Z in Theorem 3.1, then we immediately obtain
the following theorem.

Theorem 3.3. Let X,Y, Z, Y0, Z0, J and T satisfy the hypotheses of Theorem 3.1.
Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(x, x, Jx) = S(y, y, Ty) = S(x, x, y) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(xn+1, xn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(yn+1, yn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
point x and y is the unique best proximity point of J and T, respectively.

If we suppose that J and T are continuous mappings instead of the condition
(iv) in Theorem 3.1, then we obtain the following theorem.

Theorem 3.4. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z satisfy the
following conditions:

(i) J and T are S-proximal Berinde g-contractions of the first kind, i.e., there
exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J and T satisfy the condition (3.1),
respectively;

(ii) J and T are continuous mappings such that J(Y0) ⊆ Z0 and T (Z0) ⊆ Y0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0).

Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(gx, gx, Jx) = S(gy, gy, Ty) = △S
Y Z . (3.5)
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Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x and there exists unique element y which satisfy the
equation (3.5).

Proof. By the proof of Theorem 3.1, we get that the sequences {xn} in Y0 and {yn}
in Z0 such that

S(gxn+1, gxn+1, Jxn) = S(gyn+1, gyn+1, Tyn) = △S
Y Z , ∀n ∈ N. (3.6)

converge to some elements x ∈ Y and y ∈ Z, respectively. Since J, T and g are
continuous mappings, then we have that Jxn → Jx, Tyn → Ty and gxn+1 →
gx, gyn+1 → gy. Taking limit in (3.6) as n → ∞, we conclude that

S(gx, gx, Jx) = S(gy, gy, Ty) = △S
Y Z .

The proof of uniqueness of the elements x and y follows as in Theorem 3.1.
Next, we establish a coincidence best proximity point result for an S-proximal

Berinde g-contraction of the first kind and second kind in an S-metric space.

Theorem 3.5. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z and g : Y → Y satisfy the following conditions:

(i) J is an S-proximal Berinde g-contraction of the first kind and second kind,
i.e., there exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J satisfies the conditions
(3.1) and (3.2), respectively;

(ii) J preserves the isometric distance with respect to g and J(Y0) ⊆ Z0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0).

Then, there exists a point x ∈ Y such that

S(gx, gx, Jx) = △S
Y Z . (3.7)

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x which satisfy the equation (3.7).

Proof. Following similar arguments to those given in proof of Theorem 3.1, we
deduce that the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

is convergent to some x ∈ Y . Since J is an S-proximal Berinde g-contraction of the
second kind and preserves the isometric distance with respect to g, then we have

S(Jxn, Jxn, Jxn+1)

= S(Jgxn, Jgxn, Jgxn+1)

≤ βS(Jgxn−1, Jgxn−1, Jgxn)

+L2 min{S(Jgxn−1, Jgxn−1, Jgxn+1), S(Jgxn, Jgxn, Jgxn)}
= βS(Jgxn−1, Jgxn−1, Jgxn)

= βS(Jxn−1, Jxn−1, Jxn).
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Similarly, in the proof of Theorem 3.1, we can show that {Jxn} is a Cauchy sequence
and converges to some element y ∈ Z. Therefore we can conclude that

S(gx, gx, y) = lim
n→∞

S(gxn+1, gxn+1, Jxn) = △S
Y Z ,

that is, gx ∈ Y0. Since Y0 ⊆ g(Y0), there exists z ∈ Y0 such that gx = gz and
so S(gx, gx, gz) = 0. By the fact that g is an isometry, we get S(x, x, z) =
S(gx, gx, gz) = 0. Hence x = z ∈ Y0 and so Jx ∈ J(Y0) ⊆ Z0. Then there
exists u ∈ Y0 such that

S(gu, gu, Jx) = △S
Y Z . (3.8)

It follows from J being an S-proximal Berinde g-contraction of the first kind that

S(gu, gu, gxn+1) ≤ αS(gx, gx, gxn) + L1 min{S(gx, gx, gxn+1), S(gxn, gxn, gu)}
≤ αS(gx, gx, gxn) + L1S(gx, gx, gxn+1) (3.9)

for all n ∈ N. Taking limit as n → ∞ in (3.9), we conclude that gu = gx. Therefore,
from (3.8), we have

S(gx, gx, Jx) = △S
Y Z ,

that is, x is a coincidence best proximity point of the pair (g, J). The proof of
uniqueness of the element x follows as in Theorem 3.1.

The following example illustrates the preceding coincidence best proximity point
theorem.

Example 3.2. Let X = R and S(x, y, z) = max {|x− y| , |y − z| , |z − x|} .Then
(R, S) is an S-metric space. Let Y = [−2, 2] and Z = {−3}∪ [3, 4]. Then △S

Y Z = 1,
Y0 = {−2, 2} and Z0 = {−3, 3} . Define the mappings J : Y → Z and g : Y → Y
by

Jx =

{
3, if x is rational
4, otherwise

and gx = −x.

Clearly, Y0 = g(Y0), J(Y0) = {3} ⊂ Z0 and the mapping g is an isometry. Obvi-
ously, the mapping J preserves the isometric distance with respect to g and it is
an S-proximal Berinde g-contraction of the first kind and second kind. Thus, the
all conditions of Theorem 3.5 are fulfilled and the element −2 in Y is the unique
coincidence best proximity point of the pair (g, J).

If we take L1 = 0 and L2 = 0 in Theorem 3.5, then we obtain the following
coincidence best proximity theorem.

Theorem 3.6. Let X,Y, Z, Y0, Z0, J and g satisfy the hypotheses of Theorem 3.5.
Then, there exists a unique point x ∈ Y such that

S(gx, gx, Jx) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x.

If we take gx = x for all x ∈ Y in Theorem 3.5, then we get the following
theorem.
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Theorem 3.7. Let X,Y, Z, Y0, Z0 and J satisfy the hypotheses of Theorem 3.5.
Then, there exists a point x ∈ Y such that

S(x, x, Jx) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(xn+1, xn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x. In addition, if α + L1 < 1 and β + L2 < 1, then the
element x is the unique best proximity point of J.

Remark. Since both the proximal contraction of the first kind and the proximal
Berinde g-contraction of the first kind are special cases of the S-proximal Berinde
g-contraction of the first kind, Theorems 3.1-3.3 generalize the corresponding results
for both the proximal contraction and the proximal Berinde g-contraction of the first
kind. Same is the case for Theorems 3.5-3.7 dealing with the S-proximal Berinde
g-contraction of the first kind and second kind.
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ON MULTISET MINIMAL STRUCTURE TOPOLOGICAL SPACE

RAKHAL DAS, SUMAN DAS, BINOD CHANDRA TRIPATHY

TRIPURA UNIVERSITY, AGARTALA, INDIA

Abstract. In this article we have established the concept of multi-continuity

in minimal structure spaces (in short M space) and the notion of product min-
imal space in Multiset topological space. Continuity between M -space, gener-

alized Multiset topology and Multiset ideal topological spaces. We have inves-

tigated some basic properties of M –continuity in Multiset topological space,
such as composition of M –continuous functions, product of M –continuous

functions in product Multiset topological space etc.

1. Introduction

Cantor’s set is not enough for representing the all kind of situations of our real
world. In Cantor’s set theory, repetition of elements is not allowed. however, there
are many situations where repetition of elements plays a vital role. This led the
introduction of the theory of the notion of Multisets, which was first studied by
Blizard [1] in the year 1989. Thus, a Multiset is a collection of elements in which
certain elements may occur more than once and number of times an element occurs
is called its multiplicity.
In this article our aim is to study the properties of continuous function on Multiset
minimal space and Multiset generalized topological spaces. Minimal stricture space
is the minimum restriction for the topology by containing empty set and whole set.
Many authors have studied in the direction of Multiset ideal and generalized Mul-
tiset topological spaces. This work aim is relating the Multiset ideal, Multiset filter
and generalized Multiset topological space
In 1991 Bilzard[2] designed the Multiset theory and further developed the Multiset
theory in 1989. Many researchers have defined the Multiset topological spaces; one
may refer to New axioms in topological spaces[4], Separation axioms on Multiset
topological Space [5], Relations and functions in Multiset context [6]. There af-
ter different properties of Multiset topological space, such as compactness studied
by Mahanta and Samanta [9], Multiset quasicoincidence studied by Shravan and
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Tripathy Multiset quasiconcidence between Multisets, continuous function on Mul-
tisets, generalized closed Multiset [12, 13, 14, 15]. Multiset mixed topological space
between two Multisets studied by Tripathy and Das [16].
In this article we have established many results between Multiset minimal stricture
space and Multiset ideal topological space.
We define different types of continuous function between two multiset generalized
topological space, Multiset ideal and generalized topological space. By the results
of this article we can study the ideal structure and generalized topological structure
at a time, and we can can find the similarity between the topological structures.
This paper is organized in the following way:
Section-1 is the introduction part. In this section, author focused on the previous
work and back ground of the research. In the Section-2, author provides some
preliminary results and definitions for the article which is necessary for the work.
Section-3 is the main section in which we established main results of this article.
In Section-4, we analyzed the continuous function from Multiset minimal stricture
to generalized Multiset topology and Multiset ideal topological spaces. Section-5
is the conclusion section in which the future plane and the application field have
been analyzed by the author.

2. Preliminaries and Definitions

In this section, we provide some basic definitions and notations those will be
used throughout this article.

A Multiset (M-set) with domain set X, in which no element occurs more than m
times is denoted by [X]m. The count function Cm on X represents the repetition
of an element, denoted by Cm(x), for x ∈ X. When Cm(x) = 1, for all x ∈ X, then
the Multiset becomes a Cantor’s set.

Thought the articles we shall use the definition of Multiset mixed topological
space (Shravan and Tripathy [13]) and ultra-Separation Axioms in Generalized
Topological Space (Powar and Rajak [10]) for the union, intersection, compliment,
support set, empty set, equality of M-sets, partial whole sub-M-sets etc.

Definition 2.1. A domain X is defined as a set of elements from which M-sets
are constructed. The M-set space [X]m is the set of all M-set whose elements are
in X such that no element in the M-set occurs more than m times. The set [X]∞

is the set of all M-sets over a domain X such that there is no limit on the number
of occurrences of an element in an M-set.
Let P,N ∈ [X]m. Then, the following relations between M-sets are defined:

(1) P is a sub-M-set of N denoted by P ⊆ N , if CP (x) ≤ CN (x) for all x ∈ X.

(2) P = N if P ⊆ N and N ⊆ P .

(3) P is a proper sub-M-set of N denoted by P ⊂ N , if CP (x) ≤ CN (x), for all
x ∈ X and there exists at least one element x ∈ X such that CP (x) < CN (x).
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(4) Q = P ∪N , if CQ(x) = max{CP (x), CN (x)}, for all x ∈ X.

(5) Q = P ∩N , if CQ(x) = min{CP (x), CN (x)}, for all x ∈ X.

(6) Addition of P and N is also a new M-set Q = P
⊕

N such that CQ(x) =
min{CP (x) + CN (x),m}, for all x ∈ X.

(7) Subtraction of P and N results is also an M-set Q = P ⊖ N such that
CQ(x) = max{CP (x)− CN (x), 0}, for all x ∈ X, where

⊕
and ⊖ represent M-set

addition and M-set subtraction, respectively.

(8) An M-set P is empty if CP (x) = 0, for all x ∈ X.

(9) The support set of P denoted by P ∗ is a subset of X and P ∗ = {x ∈ X :
CP (x) > 0}; that is, P ∗ is an ordinary set and it is also called root set.

(10) The cardinality of an M-set P drawn from a setX is Card(P ) =
∑

x∈X CP (x).

(11) P and N are said to be equivalent if and only if Card(P ) = Card(N).

Definition 2.2. Let M ∈ [X]m and N ⊆ M . Then, the complement N c of N
in [X]m is an element of [X]m such that N c = M −N .

Definition 2.3. Let M ⊆ [X]m and P ∗(M). Then τ is called a Multiset topol-
ogy of M if satisfies the following properties,
1. The whole M-set M and the empty M-set ∅ are in τ .
2. The M-set union of elements of any sub-collection of τ is in τ .
3. The M-set intersection of the elements of any finite sub-collection of τ is in τ .
Then, the pair (M, τ) is called an Multiset topological space (M -topological space).
The elements of τ are called open M-sets. The complement of an open M-set in
(M, τ) is said to be closed M-set.

Definition 2.4. Given a sub-M-set N of M -topological space. Then, the inte-
rior of N is denoted by int(N) and is defined as the M-set union of all open M-sets
contained in N , i.e., Cint(N)(x) = max{CG(x) : G ⊆ N}.

Definition 2.5. Given a sub-M-set A of an M -topological space (M, τ). Then,
the closure of A is defined as the M-set intersection of all closed M-sets containing
A and is denoted by cl(A), i.e., Ccl(A)(x) = min{CK(x) : A ⊆ K}.

Definition 2.6. Let (M, τ) be an M -topological space, and M1 is a sub-M-set

of M . The collection τN = {U ′
= U ∩M1 : U ∈ τ} is an M -topology on M1, called

the subspace M -topology. With this M -topology, M1 is called a subspace of M
and its open M-sets consisting of all M-set intersections of open M-sets of M with
M1.

Definition 2.7. A non-empty collection I of sub-M-sets of a non-empty M-set
M is said to be an M-set ideal on M , if it satisfies the following conditions:
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(i). N1 ∈ I and N2 ⊆ N1 with CN2
(x) ≤ CN1

(x), for all x ∈ X → N2 ∈ I.
(ii). N1 ∈ I,N2 ∈ I → N1 ∪ N2 ∈ I. The M-set ideal is abbreviated as M -ideal.
The triplet (M, τ, I) is called Multiset ideal topological space with the ideal I and
Multiset topology τ .

Definition 2.8. Let [X]w be a space of M-sets. A Multipoint is a M-set M in

X such that CM (x) =

{
k, forx ∈ M ;

0, otherwise,

where k ∈ {1, 2, 3, .......w} and CM (x) is the multiplicity of x in X.

A multipoint, denoted by {k/x} is a subset of a M-set M or {k/x} ∈ M if 0 ≤
k ≤ CM (x) and Singleton sub-M-set if k = CM (x), for all x ∈ X.

Let (M, τ) be a M -topological space and I be an M -ideal on M . Let N be
a sub-M-set of M . Then, the local function denoted by N∗(I, τ) is defined by,
N∗(I, τ) = {mi/xi ∈ M : CU (xj)−CNc(xj) > CI(xj), I ∈ I, for all U ∈ Nq(mi/xi)
and at least one xj ∈ X}, where Nq(mi/xi) is the set of q − nbhd of mi/xi. We
will write N∗(I) or N∗ in place of N∗(I, τ).

Definition 2.9. Let M be any non-empty M-set and τ be the collection of sub-
sets of the M-set M . the pair (M, τ) is said to be a generalized M-set topological
space if the following property holds
1. M, ∅ ∈ τ .
2. If H,G ∈ τ then H ∩G ∈ τ .
3. If ui∈Λ ∈ τ then ∪i∈Λui ∈ τ .

Note 2.1. The generalized M-set topological space is the generalized form of
M-set topology. Sometimes, we denote generalized M-set topology by (M(N), τ),
where ∪i∈Λui = N .

3. Main Results.

In this section we established a topology from the M-set minimal structure, and
study different properties on multi-continuity between the different types of M-set
topological space and M-set minimal space.

Definition 3.1. A family M ⊆ 2X(P(X) is said to be M-set minimal structure
on X if ∅, X ∈ M .

In this case (M,M ) is called a M-set minimal space. Throughout this paper
(X,M ) means M-set minimal space. The M-set minimal space is abbreviated as
M -minimal space.

Definition 3.2. A M -minimal space is called an M-set minimal topological
space if it satisfy the properties of finite intersection and arbitrary union property.
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Example 3.1. Let M be a nonempty M-set on [X]w. Then, the filter F and
the ideal do not form a M-set minimal structure on X. Since, F does not contain
emptyset ∅ and ideal does not contain the whole set M .

Definition 3.3. A set A ∈ P ∗(X) is said to be a M –open set if for A ∈ M ,
B ∈ P ∗(X) is a M –closed set if M ⊖B ∈ M . We get
M − int(A) = ∪{u : u ⊆ A, u ∈ M }.
M − cl(A) = ∩{F : A ⊆ F,M ⊖ F ∈ M }.

In view of above definition we formulate the following proposition:

Proposition 3.1.
1. M − int(A) is the largest M -open M-set contained in A.
2. M − cl(A) is the smallest M -closed M-set containing A.

Definition 3.4. Let (M,M ) be a M-set M -space on [X]w, and N be a sub-M-
set of M . We define the following
(i) A M -semi-open M-set if N ⊆ Cl(int(N)) with CN (x) ≤ Ccl(int(N))(x), for all
x ∈ X;
(ii) A M -semi-closed M-set if int(cl(N)) ⊆ N with Cint(cl(N))(x) ≤ CN (x), for all
x ∈ X;
(iii) A M -semi-pre-open M-set ifN ⊆ Cl(int(cl(N))) with CN (x) ≤ Ccl(int(cl(N)))(x),
for all x ∈ X;
(iv) A M -semi-pre closed M-set if int(cl(int(N))) ⊆ N with Cint(cl(int(N)))(x) ≤
CN (x), for all x ∈ X;
(v) A M -pre-open M-set if N ⊆ int(cl(N)) with CN (x) ≤ Cint(cl(N)))(x), for all
x ∈ X.

Theorem 3.1. Let (M,M ) be a M -minimal space. Then, for N,K ∈ P ∗(X),

1. M − int(N) ⊆ N and M − int(N) = N iff N is an M –open M-set.

2. M − cl(N) ⊆ N iff N is an M –closed M-set.

3. M − int(N) ⊆ M − int(K) and M − cl(N) ⊆ M − cl(K) if N ⊆ K.

4. M − int(N ∩K) ⊆ (M − int(N))∩ (M − int(K)) and (M − int(N))∪ (M −
int(K)) ∪ M − int(N ∪K).

5. M − cl(N ∪ K) ⊆ (M − cl(N)) ∪ (M − cl(K)) and M − cl(N ∩ K) ⊆
(M − cl(N)) ∪ (M − cl(K)).

6. M − int(M − int(N)) = M − int(N) and M − cl(M − cl(N)) = M − cl(N).

7. x ∈ M − cl(N) if and only if every M –open M-set U containing x such that
U ∩N ̸= ∅.
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8. (M⊖M−cl(N)) = M−int(M⊖N) and (M⊖M−int(N)) = M−Cl(M⊖N).

Proof (1) M − int(N) is the largest open M-set contained in N . So the proof is
clear. Now, let us consider N is M -open M-set. Then, N ⊆ M − int(N). There-
fore, N = M − int(N).
Let us consider N = M − int(N). Again M − int(N) is the largest open M-set
contained in N . Hence, N is M -open M-set.

(2). Let M − cl(N) be a small closed M-set containing N . Therefore, N ⊆
M − cl(N). Again, N is M -closed M-set. This implies, the closure of all mul-
tipoint of N contained in N with Ccl(N)(x) ≤ CN (x), for all x ∈ N . Hence the
theorem proved.

(3) From the definition we have M − int(N) ⊆ N and M − int(K) ⊆ K for
any M-set N,K ⊆ M . Given that N ⊆ K this implies, M − int(N) ⊆ N ⊆ K So,
M − int(N) ⊆ K. By the definition of M-set interior point set is the largest open
M-set of the M-set contained in the M-set. Hence, M − int(K) is the largest open
M-set in K. Again, M − int(N) is an open M-set contained in K. So the only
possible case M − int(N) ⊆ M − int(K).

(4) For any two M-sets N and K, we have N ∩K ⊆ N and N ∩K ⊆ K. Using
the above results we have, M − int(N ∩K) ⊆ M − int(N) and M − int(N ∩K) ⊆
M − int(K). This implies, M − int(N ∩K) ⊆ (M − int(N)) ∩ (M − int(K)).
Again, for any two M-set N and K, we have N ⊆ N ∪K and K ⊆ N ∪K. This
implies, M − int(N) ⊆ M − int(N ∪ K) and M − int(K) ⊆ M − int(N ∪ K).
Hence, (M − int(N)) ∪ (M − int(K)) ⊆ M − int(N ∪K).

(5) We have, N ⊆ (m− cl(N)), K ⊆ (M − cl(K)). Therefore, N ∪K ⊆ (M −
cl(N))∪(M −cl(K)) and so M −cl(N∪K) ⊆ M −cl((M −cl(N))∪(M −cl(K))) =
(M − cl(N)) ∪ M − cl(K)).
Hence, m−cl(N ∪K) ⊆ (m−cl(N))∪M −cl(K)) as union of two M -closed M-sets
is also a M -closed M-set and M -closure of a M -closed M-set is also a M -closed
M-set.
Similarly, for the M − cl(N ∩K) ⊆ (M − cl(N)) ∩ (M − cl(K)).

For (6), (7) and (8), the results are holds using the definition and above proofs.

Lemma 3.1. A sub-M-set N in a M-set minimal space (M,M ) is said to be
M -semi-pre-closed M-set if and only if N = spcl(N).

Definition 3.5. A sub-M-set N of a M-set topological space (M, τ) is called as
(1) M-set generalized semi-closed (briefly mgs-closed) set if msCl(N) ⊆ U when-
ever N ⊆ U and U is open M-set in generalized M - space.
(2) M-set generalized minimal semi-pre closed (briefly M − mgsp-closed) set if
spcl(N) ⊆ U whenever N ⊆ U and U is M -open M-set in generalized M space.
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Definition 3.6. Let (M1, τ1) and (M2, τ2) be two M-set minimal spaces. Then,
a function f : M1 → M2 is called as

(i) multi-semi-continuous if the inverse image of each M -open M-set of M2 is
M -semi-open M-set in M1.

(ii) multi minimal semi pre-continuous if the inverse image of each m-open M-set
of M2 is m−semi-pre open M-set in M1.

(iii) multiset minimal g-continuous if the inverse image of each m-open M-set of
M2 is M −mg-open M-set in M1.

(iv) multiset minimal gp-continuous if the inverse image of each m-open M-set
of M2 is M −mgp-open M-set in M1.

(v) multiset minimal gsp-continuous if the inverse image of each m-open M-set
of M2 is M − gsp-open M-set in M1.

(vi) multiset minimal pre-continuous if the inverse image of each m-open M-set
of M2 is m-pre open M-set in M1.

Definition 3.7. Let (M, I, τ) be an M-set ideal topological space on [X]w. A
subset A of M-set ideal space is said to be pre-I-open M-set if A ⊆ int(cl(A∗)) with
CA(x) ≤ Cint(cl(A∗))(x) for all x ∈ X. The compliment of pre-I-open M-set is called
pre-I-closed M-set.

Definition 3.8. Let (M, I, τ) be an M-set ideal topological space in [X]W . A
sub M -set A of M is called a semi-I-open M-set if A ⊆ cl(int(A∗)) with CA(x) ≤
Ccl(int(A∗))(x), for all x ∈ X. The complement of a semi-open M -set is called a
semi− I − closed M -set.

Proposition 3.2. Let (M1, τ1) and (M2, τ2) be two M-set minimal spaces on
M . A function f : M1 → M2 be a bijective mapping and {Ui : i ∈ ∆} be a family
of M -open M-sets of M2. Then, we have
(i) f−1(∪i∈∆Ui) = ∪i∈∆f

−1(Ui).
(ii) f−1(∩i∈∆Ui) = ∩i∈∆f

−1(Ui).

Lemma 3.2. Every M-set topological space is a M-set minimal space, but the
converse is not necessary.

Lemma 3.2. Every M-set minimal space is a generalized M-set minimal space,
but the converse is not necessary.



ON MULTISET MINIMAL STRUCTURE TOPOLOGICAL SPACE 95

4. Properties of M −msgp Generalized Multiset and
Ideal-Continuous Functions

We state the following two results without proof, which follow on using standard
theory.

Theorem 4.1. Let f : (M1, τ1) → (M2, τ2) and g : (M2, τ2) → (M3, τ3) be
any two maps. Then, g ◦ f is M -continuous if g is M -continuous and f is M -
continuous.
Proof: The proof is so easy, so omitted.

Proposition 4.1.. Let (M1, τ) be M-set minimal space, and M2 ⊆ M1. Then,
(M2, τ ∩M2) will be an M-set minimal structure. Further, for M2 ⊆ M1, (M2, τ ∩
M2) is a weaker M-set minimal structure space.

Definition 4.1. Let (M1, τ1) and (M2, τ2) be two M-set minimal spaces. A
function f : M1 → M2 is called Mmgsp-continuous if f−1(N) if M −mgsp-closed
in M1 for every closed M-set N of M2.

Lemma 4.1.

1. Every g-continuous function is M −mgsp-continuous function.

2. Every M− pre-continuous function is generalized semi-continuous function.

Theorem 4.2. Let (M1, τ1) be a M-set minimal space, and (M2, τ2) be a gen-
eralized M-set topology. If the bijective function f : M1 → M2 is M -semi-pre
continuous and M -open M-set, then f is M− pre-continious.
Proof: Let N be M -closed in M2 and let f−1(N) ⊆ K, where K is M -open set in
M1. Clearly, N ⊆ f(K). Since f(K) is open M-set in M2 as f is open, and as N is
M -closed in M2, then M −spCl(N) ⊆ f(K) and thus f−1(spCl(N)) ⊆ K. Since f
is bijective and M −mspCl(N) is a M semi-pre closed M-set, then f−1(spCl(N)) is
M -semi-pre closed M-set in M1. Thus, mspCl(f−1(N)) ⊆ spCl(f−1(mspCl(N)))
= f−1(mspCl(N)) ⊆ K. So, f−1(N) ismgsp-closed set and f is M−-pre-continious.

Theorem 4.3. Let f : M1 → M2 be a pre-M −mgsp-continuous and g : M2 →
M3 is M -semi-pre-continuous. Then, their composition g◦f is Mmgsp-continuous.
Proof: The proof is straight forward, so omitted.

Definition 4.2. A function f : M1 → M2 is called strongly M − mgsp-
continuous if the inverse image of every M -open M-set of M2 is M -open M-set
in M1.

Lemma 4.2. every strongly M−mgsp-continuous function is an M -continuous.

Definition 4.3. A function f : M1 → M2 is called strongly M -continuous if
the inverse image of every sub-M-set in M2 is M − cl − open in M1.
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On the basis of the above definition we give the following results:

Theorem 4.4. If the function f : M1 → M2 is strongly M -continuous, then f
is strongly M −mgsp-continuous.

Theorem 4.5 If f : M1 → M2 be an m − I − gn-continuous function from an
M-set ideal topological space to another M-set minimal space, then the following
are equivalent.

1. for every local function A∗ in M1 there exist an M-set local function f(A∗)
in M2.

2. For the M-set ideal I there exist an ideal f(I) in M2.

3. For every mgsp-closed (Open) set in M2 there exist an multiset-semi-pre-ideal
closed (M -open) set in M1.

Theorem 4.6. If the function f : M1 → M2 be m − I -continuous and the
function g : M2 → M3 be M -continuous, then g ◦ f : M1 → M3 is M -continuous.

Proof: Let N be an M -open M-set in M3. Since, g is M -continuous, so g−1(N)
is an m − I-semi-pre-open set in M2. Again, f is an m − I -continuous. Hence,
f−1(g−1(N)) is an m − I-open M-set in M1. But, f−1(g−1(N)) = (g ◦ f)−1(N).
So g ◦ f is an M -continuous.

5. Conclusion

In this article, we introduced the notion of M-set minimal space and M-set
minimal topological spaces. Besides, we defined different types of M-set minimal
continuous function between two M-set minimal space. M-set minimal continuous
functions can help to study the structure of M-set minimal spaces. The common
property between two M-set minimal structure can be analze by the continious
functions. Many interesting results can established between M-set ideal, general-
ized M-set topological and M-set minimal structure spaces. It is hoped that, in
future many new investigations can be done in this direction.
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Abstract. Determining the solvability of equations has been an extended

and fundamental study in Mathematics. The local-global principle states two
objects are equivalent globally if and only if they are equivalent locally at all

places. By applying this principle, the Hasse - Minkowski theorem is able to

identify the existence of rational solutions of an equation. This paper explores
the applications of the Hasse-Minkowski theorem to homogeneous quadratic

forms in two and three variables. After providing some of the necessary proofs

and definitions, we have been able to introduce some complete computer pro-
grams implementing the Hasse-Minkowski theorems and Legendre theorem

with some supporting functions like the Eratosthenes sieve.

Reasons for Retraction. Our paper was hugely inspired by Dr. Hohner’s
master thesis, “The Hasse-Minkowski Theorem in Two and Three Variables.” More
than half the length of our paper is our original programming implementation of
various theorems, like the Hasse-Minkowski theorem and Legendre’s theorem, and
many supporting concepts, along with the algorithm analysis. We also shorten
many proofs from Dr. Hohner’s paper by either providing an alternative shorter
version or summarizing them. We credit him in section 1 on the binary and ternary
quadratic form and the bibliography. However, the location of the credit section 1
was supposed to be before section 1, and this is a formatting mistake. Even though
we made an effort to credit Dr. Hohner’s work, it could still be insufficient. We
think it would be best to retract the paper for those listed reasons.

1. binary and ternary quadratic form

What follows has been inspired by The Hasse-Minkowski Theorem in Two and
Three Variables by Hoehner, S [1].
A quadratic form is a polynomial with all the terms of degree two. The 2-variable
quadratic form, which is also called binary form, has the following general form:

q(x, y) = ax2 + bxy + cy2. (1.1)
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Similarly, the 3-variable quadratic form is called the ternary form and has the
general form of:

q(x, y, z) = ax2 + bxy + cy2 + dyz + ez2 + fxz. (1.2)

Theorem 1.1. Every quadratic form q in n variables over a field of characteristic
not equal to 2 is equivalent to a diagonal form:

q(x) = a1x
2
1 + a2x

2
2 + . . . + anx

2
n. (1.3)

Since the general form is equivalent to diagonal form, we only need to consider the
diagonal form to determine the integral solvability. Hence, we just need to look
at the equations of form q(x, y) = ax2 + by2 for the binary case and q(x, y) =
ax2 + by2 + cz2, where a, b and c are integers.
Consider the binary diagonal form. If we have any rational coefficient, by the
homogeneity of the equation g(x, y) = 0, we could clear the denominators to obtain
an equation with integral coefficients. We also claim that the greatest common
divisor of a and b is 1. Given that gcd(a, b) = g and g > 1, we could divide
ax2 + by2 = 0 by g to get q(x, y) = a

gx
2 + b

gy
2 and obtain gcd(ag ,

b
g ) = 1.

Also, we assume that a and b are square-free. If a is not square-free, a = a′s2,
where a′ is an integer. Then, we have a = ax2 + by2 = a′(sx)2 + by2 = 0 . We could
repeat the same process to clear all the squares from a and b which eventually leads
to square-free coefficients.
Finally, we claim that ab < 0. If ab = 0, either one or both of the coefficients
is 0 and we could not obtain a non-trivial solution. And, if ab > 0, the equation
f(x, y) = ax2 + by2 will not have any solution since it would be either negative or
positive.
Similarly, following the same reasoning, we get pairwise relatively prime, square-free
coefficients for ternary form.

2. modular arithmetic

Definition 2.1. An integer is called a quadratic residue modulo n if there exists
an integer x such that

x2 ≡ q (mod n). (2.1)

Due to the Legendre symbol, we could speed up the process of determining if
a number is a quadratic residue modulo an odd prime. The Legendre symbol is
defined as below.

Definition 2.2. The Legendre symbol is a function of a and p, where p is an odd
prime, defined as:

(
a

p

)
=


1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

−1 if a is a non-quadratic residue modulo p,

0 if a ≡ 0 (mod p).

(2.2)

In addition, the Legendre symbol has the following properties:

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
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(2) If a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
(3)

(
−1
p

)
= (−1)

p−1
2

(4)
(

2
p

)
= (−1)

p2−1
8

(5)
(
p
q

)(
q
p

)
= (−1)

1
4 (p−1)·(q−1).

For the proof of above Legendre symbol properties, see pages 99, 100 and 102 in
[3].
Furthermore, if an odd integer n has the prime factorization of pa11 pa22 . . . pakk and
any integer a, we have a generalization of the Legendre symbol called the Jacobi
symbol, stating that: (a

1

)
= 1 (2.3)(a

n

)
=

(
a

p1

)α1
(

a

p2

)α2

· · ·
(

a

pk

)αk

. (2.4)

Similar to the Legendre symbol, the Jacobi symbol also has some properties that
we use to prove the Hasse-Minkowski theorem:

(1)
(
a1a2
n

)
=
(
a1
n

) (
a2
n

)
(2) If a1 ≡ a2 (mod n), then

(
a1
n

)
=
(
a2
n

)
(3)

(−1
n

)
= (−1)

n−1
2

(4)
(
2
b

)
= (−1)

b2−1
8

(5) If gcd(a, n) = 1, then
(
a
n

) (
n
a

)
= (−1)

1
4 (a−1)·(n−1)

3. the hasse-minkowski theorem for binary forms

In order to prove the Hasse-Minkowski theorem for binary forms, we need the
following theorems.

Theorem 3.1. The Chinese Remainder Theorem. Suppose ni are pairwise coprime
and a1, a2,. . . ,ak is any sequence of integers, then there exists an integer x such
that:

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

(3.1)

and the solution x is unique modulo n, where n =
∏k
i=1 ni.

Theorem 3.2. Suppose a is an integer, b is a natural number, and let b =
∏n
i=1 p

εi
i

be the prime factorization of b. Then a is a quadratic residue modulo b if and only
if a is a quadratic residue modulo pεii for i = 1, . . . , n.

Proof for Theorem 3.2. Suppose a is a quadratic residue modulo b. We then
have a ≡ x2 (mod b) for some integer x. Since pεii | b, we also have a ≡ x2 (mod
pεii ).
To prove the order direction, if a is a quadratic residue modulo pεii , we have a ≡ x2
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(mod pεii ), if j 6= k, gcd(p
εj
j , pεkk ). Thus, we could apply the Chinese Remainder

Theorem to the congruences x ≡ xi (mod pεii ) where i = 1, . . . , n. Obtaining
x2 ≡ x2

i ≡ a (mod pεii ) from the Chinese Remainder theorem, we thus have x2 ≡ a
(mod

∏n
i=1 p

εi
i ) or a is a quadratic residue modulo b.

Theorem 3.3. Dirichlet’s Theorem on Arithmetic Progressions. For any two pos-
itive coprime integers a and d, there are infinitely many primes of the form a+nd,
where n is also a positive integer

Theorem 3.4. The congruence x2 ≡ a (mod p) is solvable for every prime p if
and only if a = b2 for some b ∈ Z.

Proof for Theorem 3.4. Suppose a = b2 for some b, we have x2 ≡ a ≡ b2 (mod
p). Therefore, for all prime p, we have a solution x ≡ b (mod p).
To prove the other direction, we try to prove an equivalent statement “if a 6= b2 for
some b, a is not a quadratic residue modulo for every prime p.”
Suppose a is a positive non-square. Then, if a = 2, we could just choose p = 5

and apply property 4 from the Legendre symbol to get
(
2
5

)
= (−1)

52−1
8 = −1.

Otherwise, a could be factored into p1p2 . . . pk for p1, . . . , pk prime. Also, a has an
odd prime divisor pk. Now we choose a prime such that p ≡ 1 (mod 8), p ≡ 1
(mod pi) for i = 1, 2, . . . , k − 1 and p ≡ a (mod pk). Such a prime number p exists
according to Theorem 3.3. Then, since pk is not a quadratic residue modulo p, a is
not a quadratic non residue modulo p. Thus, we have proved Theorem 3.4 for the
case where a is positive.
If a number is negative, it is not a square. We present all negative numbers in
the form of −a where a is a positive integer. Let p be a prime number and apply

property 1 from the Legendre symbol to get
(
−a
p

)
=
(
−1
p

)(
a
p

)
. We then apply

property 3 to obtain
(
−1
p

)(
a
p

)
= (−1)

p−1
2

(
a
p

)
. If a is a square, we can choose

p = 3 to get (−1)
3−1
2

(
a
p

)
= (−1) · 1 = −1. If a is a non square, we choose p = 5 to

obtain (−1)
5−1
2

(
a
p

)
= 1 · (−1) = −1.

Theorem 3.5. The Hasse-Minkowski Theorem 1. Let a and b be nonzero, square-
free, relatively prime integers of opposite signs. If for each prime p the congruence
ax2 + by2 ≡ 0 (mod p) has a solution in integers (x, y) both not divisible by p, then
ax2 + by2 = 0 has a nontrivial integral solution.

Consider the first case where p - ab, we claim that gcd(x, p) = 1. We can prove
this statement by using contradiction. Suppose gcd(x, p) > 1, then we have p | x.
Hence, ax2 + by2 ≡ by2 ≡ 0 (mod p). Also, we could see that either p | b or
p | y. Since we assume that p - ab, we have p | y. Now that we have p | x and
p | y, this contradicts our assumption that the solution (x, y) to nontrivial modulo
p, establishing our claim that gcd(x, p) = 1. Now, from ax2 + by2 ≡ 0 (mod p),
we have ax2 ≡ −by2 (mod p) and by multiplying the congruence on both sides
by −b, we obtain −bax2 ≡ (by)2 (mod p). Since gcd(x, p) = 1, we could divide
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−bax2 ≡ (by)2 by x2 to obtain −ba ≡ ( byx )2. Thus, −ba is a quadratic residue

modulo p for all p - ab. Now, assume p | ab. We have −ab ≡ 02 (mod p), therefore
−ab is a quadratic residue modulo p for all p | ab.
Thus, −ba is a quadratic residue modulo for all primes p. According to Theorem
3.4, we have −ba = d2 for some integer d. Plugging the pair of integer (b, d) into
f(x, y), we obtain f(b, d) = ab2 + bd2 = ab2 + b(−ab) = 0. Hence, we have found a
nontrivial integral solution to equation f(x, y) = 0.

4. the hasse-minkowski theorem for ternary forms

Theorem 4.1. Legendre’s Theorem. Suppose a, b, c are non-zero square-free,
pairwise relatively prime integers not all of the same sign. Then the equation
ax2 + by2 + cz2 = 0 has a non-trivial solution if and only if the following condi-
tions are satisfied: (i) −bc is a quadratic residue modulo |a|, (ii) −ab is a quadratic
residue modulo |c|, and (iii) −ac is a quadratic residue modulo |b|.

Definition 4.1. Let (x0, y0, z0) be a nontrivial integral solution to the congruence
ax2 + by2 + cz2 ≡ 0 (mod p), and at most one of x0, y0, z0 is divisible by p, then we
call (x0, y0, z0) a p-focused solution.

Theorem 4.2. Hasse-Minkowski 2. Let a, b, c be nonzero, square-free, pairwise
relatively prime integers not all the same sign. If for each odd prime p | abc the
congruence ax2 + by2 + cz2 ≡ 0 (mod m) has a p-focused solution in integers (x, y,
z), then ax2 + by2 + cz2 = 0 has a nontrivial integral solution.

Proof for theorem 4.2. Let p be an odd prime, p | a and f(x, y, z) ≡ 0 (mod p)
has a p-focused solution. According to Theorem 3.2, to prove −bc is a quadratic
residue modulo |a|, it suffices to show −bc is a quadratic residue modulo p for all
p | a.
Suppose (x0, y0, z0) is a p-focused solution to the congruence. Since p | a, we have
by20 + cz20 ≡ 0 (mod p). If p = 2 or p | bc, we have −bc ≡ 0 (mod p) and it is a
quadratic residue modulo p. If p - bc, we obtain gcd(b, p) = gcd(c, p) = 1. We also
know that at most one of x0, y0, z0 is divisible by p. First, suppose p doesn’t divide
x0, y0 or z0. We have

− by20 ≡ cz20 (mod p). (4.1)

Divide both sides by z20 to get

− b(y0z
−1
0 )2 ≡ c (mod p). (4.2)

Multiply both sides by −b to obtain

− bc ≡ (by0z
−1
0 )2 (mod p). (4.3)

Now suppose p divides exactly one of x0, y0, z0. In the case where p | x0, we are
done. Suppose p | y0 and p - z0, we have

cz20 ≡ 0 (mod p). (4.4)

Divide both sides by z0 to get

c ≡ 0 (mod p). (4.5)
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Multiply both sides by −b to obtain

− bc ≡ 0 (mod p). (4.6)

So, we have −bc a quadratic modulo p. Hence, −bc is a quadratic residue modulo
p. The case where p | z0 and p - y0 could be proved using a similar procedure. Since
the congruence ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solution for all p | a,
we have −bc a quadratic residue modulo |a|. Similarly, we can determine that −ac
is a quadratic residue modulo |b| and −ab is a quadratic modulo c.
We do not need to consider the case where p is even or p = 2 since −bc, −ac, −ad
are either odd and even. Thus, they are congruent to 0 or 1 modulo 2 and both 0
and 1 are squares.
Finally, we need to show that if ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solu-
tion for all odd p | abc, then f(x, y, z) = 0 has a nontrivial integral solution. Since
ax2 + by2 + cz2 ≡ 0 (mod p) has a p-focused solution for all odd p | abc, it has a
p-focused solution for all odd p | a, p | b and p | c. We can also determine that
−bc is a quadratic residue modulo |a|, −ac is a quadratic residue modulo |b|, −ab is
a quadratic residue modulo |c|. Hence, according to the Legendre’s Theorem, the
equation ax2 + by2 + cz2 = 0 has a nontrivial integral solution.

5. hasse-minkowski and legendre theorem implementation

Let f(x, y, z) = ax2 + by2 + cz2. Obviously, since checking whether a congruence
f(x, y, z) ≡ 0 (mod p) has a p-focused solution is a tedious task in real life, especially
when abc has a lot of prime factors or when a, b, c are large, we could write a
computer program to check it.
Eratosthenes Sieve
Eratosthenes Sieve is an old algorithm used to rapidly identify all the primes to a
certain limit. The program first gets the integers a, b and c from the keyboard.
Then, it creates the Eratosthenes sieve of primes that are odd and divide abc. The
code below is the modified Eratosthenes sieve function written in C++.
The parameter upperBound is the maximum number which we would check if it is
a prime number. The program always calls the function with upperBound = abc.
Then, we create a bitset, a data structure that stores bits, named flag. Suppose i
is a number from 2 to upperBound, given that flag[i] = 1, then i is prime, and
vice versa. Next, we reset our bitset which would set all the value of flag to 1.
Our first loop iterates from 2 to upperBound and for every number, if flag[i] = 1.
Next, we process the second loop that iterates every multiple of that prime number
to upperBound. For every multiples of that prime, we set the corresponding flag
value to 0 since the multiple of a prime can not be a prime. After the second loop,
we would append our prime to a vector named primes to store it.
Function. sieve(upperBound)
Pseudocode
Input. upperBound, the maximum number to check if it is a prime number.
Determine. Every prime less than or equal to upperBound + 1.

(1) primes ← an empty dynamic array, flag ← an bitset
(2) upperBound← |upperBound|
(3) for i← 0 to 1000009
(4) flagi ← 1
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(5) for i← 2 to upperBound + 1
(6) if flagi = 1
(7) j ← 2i
(8) while j <= sievesize
(9) flagj ← 0

(10) if i 6= 2 and flagi ≡ 0 (mod upperBound)
(11) append i to primes

C++ Implementation

bitset<10000010> flag;

vector<int> primes;

int a, b, c;

void sieve(long upperBound) {

upperBound = abs(upperBound);

flag.set();

flag[0] = flag[1] = 0;

for (long long i = 2; i <= upperBound; i++)

if (flag[i]) {

for (long long j = i * i; j <= upperBound; j += i) flag[j] = 0;

if(i != 2 && upperBound % i == 0) primes.push_back((int)i);

}

}

The Hasse-Minkowski Theorem 2
Suppose p is a prime that divides abc. To check for p-focused solution, we write
a boolean method, pFocusedCheck, with parameter primes, the prime to check.
pFocusedCheck has three loops that create every combination of x, y, z, where x, y,
z are integer and less than primes. For every combination, if it is a primes-focused
solution we immediately return true. After it finishes three loops, we would haven’t
found a primes-focused solution, thus return false.
Function. pFocusedCheck(prime)
Pseudocode
Input. primes, the prime number to look for a primes-focused solution to the
congruence.
Output. Return true if there is a primes-focused solution, otherwise returns false.

(1) x ← an int, y ← an int, z ← an int
(2) for x← 0 to prime− 1
(3) for y ← 0 to prime− 1
(4) for z ← 0 to prime− 1
(5) if ax2 + by2 + cz2 ≡ 0 (mod primes) and at most one of x, y, z is

divisible by primes.
(6) return true
(7) return false

C++ Implementation

bool pFocusedCheck(int prime){

int x, y, z;
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for(x = 0; x < prime; ++x){

for(y = 0; y < prime; ++y){

for(z = 0; z < prime; ++z){

if((((a * (x * x)) + (b * (y * y)) + (c * (z * z))) % prime == 0)

&& (((x % prime) == 0) + ((y % prime) == 0) + ((z % prime) == 0) <= 1)){

return true;

}

}

}

}

return false;

}

Then, we create a function named HasseMinkowski2Check that loops through
the sieve vector to check whether the congruence ax2 + by2 + cz2 ≡ 0 (mod p) has
a p-focused solution. The function returns true if the congruence has a p-focused
solution to every p, otherwise, returns false.
Function. HasseMinkowski2Check()
Pseudocode
Output. Returns true if for every p, the congruence ax2 + by2 + cz2 ≡ 0 (mod p)
has a p-focused solution, otherwise, returns false.

(1) for every prime in primes
(2) if not pFocusedCheck(prime)
(3) return false
(4) return true

C++ Implementation

bool HasseMinkowski2Check(){

for(int i = 0; i < primes.size(); ++i){

if(!pFocusedCheck(primes[i])){

return false;

};

}

return true;

}

Legendre’s Theorem.
Initially, we want to implement the Legendre’s symbol. We define LegendreSymbol
function with two parameters, toCheck and modulo. The function returns 0 if
toCheck ≡ 0 (mod modulo) and returns 1 if there exists an x such that x2 ≡
toCheck (mod modulo), elsewise returns -1.
First, if toCheck ≡ 0 (mod modulo), the function immediately returns 0. Next,
if toCheck is negative, applying property 1 and 3 of the Legendre symbol, we can

calculate
(
−1
p

)
and save the result to a variable named offset. Otherwise, offset is

set as 1. We, then, apply property 2 of the Legendre symbol to make toCheck less
than modulo. Now, we make a loop that iterates from 1 to modulo − 1. If there
exists a number i in that range such that i2 ≡ toCheck (mod modulo), we return
1·offset. Otherwise, after finishing the loop, we return −1·offset
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Function. LegendreSymbol()
Pseudocode
Input. toCheck, the number to check if it is a quadratic residue

modulo, the modulo
Output. Returns 0 if toCheck ≡ 0 (mod modulo) and returns 1 if toCheck is a
quadratic residue modulo modulo, elsewise returns -1.

(1) if toCheck ≡ 0 (mod modulo)
(2) return 0
(3) if toCheck < 0

(4) offset ← −1
modulo−1

2

(5) else offset ← 1
(6) toCheck ← |toCheck|
(7) while toCheck > modulo
(8) toCheck ← toCheck mod modulo
(9) for i← 1 to modulo

(10) if i2 ≡ toCheck (mod modulo)
(11) return 1·offset
(12) return −1·offset

C++ Implementation

int LegendreSymbol(int toCheck, int modulo){

if(toCheck % modulo == 0) return 0;

int offset = (toCheck < 0) ? (int)(pow(-1, (modulo - 1) / 2)) : 1;

toCheck = aflag(toCheck);

while (toCheck > modulo){

toCheck %= modulo;

}

for(int i = 1; i < modulo; ++i){

if((i * i) % modulo == toCheck) return 1 * offset;

}

return -1 * offset;

}

Next, we only need to to write the Legendre theorem function. We will name it
LegendreCheck.
Function. LegendreCheck()
Pseudocode
Output. return true if −bc is a quadratic residue modulo |a|, −ab is a quadratic
residue modulo |c| and −ac is a quadratic residue modulo |b|. Otherwise, return
false.

(1) bool ans
(2) temp ← LegendreSymbol(−b ∗ c, abs(a))
(3) ans← temp = 0 or temp = 1
(4) temp ← LegendreSymbol(−a ∗ b, abs(c))
(5) ans← (temp = 0 or temp = 1) and ans
(6) temp ← LegendreSymbol(−a ∗ c, abs(b))
(7) ans← temp = 0 or temp = 1 and ans
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(8) reuturn ans

C++ Implementation

bool LegendreCheck(){

int temp = LegendreSymbol(-b * c, abs(a));

bool ans = (temp == 0 || temp == 1);

temp = LegendreSymbol(-a * b, abs(c));

ans &= (temp == 0 || temp == 1);

temp = LegendreSymbol(-a * c, abs(b));

return (ans & ((temp == 0 || temp == 1)));

}

Sample Program Run
We now add a few print functions to the code and try running two inputs in order
to test our program.
Input 1
Input.

a = 1

b = 1

c = -3

Output.

Legendre Theorem Check

-bc is a quadratic residue modulo |a|

-ab is not a quadratic residue modulo |c|

-ac is a quadratic residue modulo |b|

There is no nontrivial integral solution to f(x, y, z) = 0

Hasse-Minkowski Theorem Check

There is no 3-focused solution

There is no nontrivial integral solution to f(x, y, z) = 0

Input 2
Input.

a = -7

b = 15

c = 13

Output.

Legendre Theorem Check

-bc is a quadratic residue modulo |a|

-ab is a quadratic residue modulo |c|

-ac is a quadratic residue modulo |b|

There are nontrivial integral solutions to f(x, y, z) = 0

Hasse-Minkowski Theorem Check

There is a 3-focused solution: x = 1, y = 0, z = 1

There is a 5-focused solution: x = 1, y = 0, z = 2

There is a 7-focused solution: x = 0, y = 1, z = 1

There is a 13-focused solution: x = 1, y = 6, z = 0
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There are nontrivial integral solutions to f(x, y, z) = 0

We can see that in both cases the result is the same as the Legendre theorem
and the Hasse-Minkowski theorem. We can also modify the program or add more
functions depending on the task we intend to apply them to.

6. conclusion

We have proved two Hasse-Minkowski theorems which facilitate the problem of
determining the integral solvability of quadratic forms. After the Hasse-Minkowski
theorem, in the binary form, we could find a prime p which f(x, y) ≡ 0 (mod p)
does not have a solution (x, y) both not divisible by p to show that f(x, y) = 0 does
not have nontrivial integral solutions. In the ternary form, the Hasse-Minkowski
theorem reduces the problem to determining if there is a p-focused solution to the
congruence f(x, y, z) = 0 (mod p), which p is finite. The crux of this paper is the
introduction of a complete program implementing the Hasse-Minkowski theorems
and Legendre theorem with some supporting functions like the Eratosthenes sieve
and the Legendre symbol.
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