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TÜRKİYE
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Abstract

In this article, we characterize interpolating sesqui-harmonic spacelike curves in a four-
dimensional conformally and quasi-conformally flat and conformally symmetric Lorentzian
Para-Sasakian manifold. We give some theorems for these curves.

1. Introduction

Let (M1,g1) and (M2,g2) be Riemannian manifolds and σ : (M1,g1)→ (M2,g2) be a smooth map. The equation

L(σ) =
1
2

∫
M1

| dσ |2 ϑg1

gives the critical points of energy functional The Euler-Lagrange equation of the energy functional gives the harmonic equation defined by
vanishing of

τ(σ) = trace∇dσ ,

where τ(σ) is called the tension field of the map σ .
Biharmonic maps between Riemannian manifolds were studied in [1]. Biharmonic maps between Riemannian manifolds ψ : (M1,g1)→
(M2,g2) are the critical points of the bienergy functional

L2(σ) =
1
2

∫
M1

| τ(σ) |2 ϑg1 .

In [2], G.Y. Jiang derived the variations of bienergy formulas and showed that

τ2(σ) = −Jσ (τ(σ))

= −4τ(Ψ)− traceRN(dσ ,τ(σ))dσ ,

where Jσ is the Jacobi operator of σ . The equation τ2(σ) = 0 is called biharmonic equation.
Interpolating sesqui-harmonic maps were studied by Branding [3]. The author defined an action functional for maps between Riemannian
manifolds that interpolated between the actions for harmonic and biharmonic maps. Ψ is interpolating sesqui-harmonic if it is critical point
of δ1,δ2

(Ψ),

Lδ1,δ2
(Ψ) = δ1

∫
M1

|dΨ|2vg1 +δ2

∫
M1

|τ(Ψ)|2vg1 , (1.1)

where δ1,δ2 ∈ R [3].
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For δ1,δ2 ∈ R the equation

τδ1,δ2
(Ψ) = δ2τ2(Ψ)−δ1τ(Ψ) = 0, (1.2)

is the interpolating sesqui-harmonic map equation [3].
An interpolating sesqui-harmonic map is biminimal if variations of (1.1) that are normal to the image Ψ(M1)⊂M2 and δ2 = 1, δ1 > 0 [4].
In a 3-dimensional sphere, interpolating sesqui-harmonic curves were studied in [3]. Interpolating sesqui-harmonic Legendre curves in
Sasakian space forms were characterized in [5]. Recently, Yüksel Perktaş et all. introduced biharmonic and biminimal Legendre curves
in 3-dimensional f -Kenmotsu manifold [6]. Moreover, spacelike and timelike curves characterized in a four dimensional manifold to be
proper biharmonic in [7]. Motivated by the above studies, in this paper, we examine interpolating sesqui-harmonic curves in 4-dimensional
LP-Sasakian manifold.

2. Preliminaries

2.1. Lorentzian almost paracontact manifolds

Let M be an n-dimensional differentiable manifold equipped with a structure (φ ,ζ ,η), where φ is a (1,1)-tensor field, ξ is a vector field, η

is a 1-form on M such that [8]

φ
2 = Id +η⊗ζ (2.1)

η(ζ ) =−1. (2.2)

Also, we have

η ◦φ = 0, φζ = 0, rank(φ) = n−1.

If M admits a Lorentzian metric g, such that

g(φV,φW ) = g(V,W )+η(V )η(W ), (2.3)

then M is said to admit a Lorentzian almost paracontact structure (φ ,ζ ,η ,g).
The manifold M endowed with a Lorentzian almost paracontact structure (φ ,ζ ,η ,g) is called a Lorentzian almost paracontact manifold [8,9].
In equations (2.1) and (2.2) if we replace ζ by −ζ , we obtain an almost paracontact structure on M defined by I. Sato [10].
A Lorentzian almost paracontact manifold (M,φ ,ζ ,η ,g) is called a Lorentzian para-Sasakian manifold [8] if

(∇V φ)W = g(V,W )ζ +η(W )V +2η(V )η(W )ζ . (2.4)

It is well konown that, conformal curvature tensor C̃ is given by

C̃(V,W )Z = R(V,W )Z− 1
n−2

{
S(W,Z)V −S(V,Z)W +g(W,Z)V −g(V,Z)QW

}
+

(
r

(n−1)(n−2)

)
{g(W,Z)V −g(V,Z)W} ,

where S is the Ricci tensor and r is the scalar curvature. If C = 0, then Lorentzian para-Sasakian manifold is called conformally flat.
Also, quasi conformal curvature tensor Ĉ is defined by

Ĉ(V,W )Z = αR(V,W )Z−β
{

S(W,Z)V −S(V,Z)W +g(W,Z)QV −g(V,Z)QW
}
−
(

r
n

(
α

(n−1)
+2β

))
{g(W,Z)V −g(V,Z)W} ,

where α,β constants such that αβ 6= 0. If Ĉ = 0, then Lorentzian para-Sasakian manifold is called quasi conformally flat.
A conformally flat and quasi conformally flat LP-Sasakian manifold Mn (n > 3) is of constant curvature 1 and also a LP-Sasakian manifold
is locally isometric to a Lorentzian unit sphere if the relation R(V,W ) ·C = 0 holds [11]. For a conformally symmetric Riemannian
manifold [12], we have ∇C = 0. So, for a conformally symmetric space R(V,W ) ·C = 0 satisfies. Therefore a conformally symmetric
LP-Sasakian manifold is locally isometric to a Lorentzian unit sphere [11].
In this case, for conformally flat, quasi conformally flat and conformally symmetric LP-Sasakian manifold M, for every V,W,Z ∈ T M [11],
we have

R(V,W )Z = g(W,Z)V −g(V,Z)W. (2.5)

3. Main results

In this section, we give our main results about interpolating sesqui-harmonic curves in a conformally flat, quasi conformally flat and
conformally symmetric LP-Sasakian manifold M̃. From now on, we will consider such a manifold as M̃.

Theorem 3.1. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that first binormal vector b1 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) γ is a circle with ρ1 =
√

1− δ1
δ2

,
or
ii) γ is a helix with ρ2

1 −ρ2
2 = 1− δ1

δ2

where δ1
δ2

< 1.
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Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the first binormal vector b1 of {t,n,b1,b2}
orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 ρ2 0 ρ3
0 0 ρ3 0




t
n
b1
b2

 (3.1)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve γ [13].
By using (3.1) and equation (2.5), we obtain

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 +ρ1ρ

2
2 )n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1ρ2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 −ρ

2
2 = 1− δ1

δ2
,

ρ2ρ3 = 0.

So, we get the proof.

Theorem 3.2. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that second binormal vector b2 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if
either
i) γ is a circle with ρ1 =

√
1− δ1

δ2
,

or
ii) γ is a helix with ρ2

1 +ρ2
2 = 1− δ1

δ2

where δ1
δ2

< 1.

Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the vector b2 of {t,n,b1,b2} orthonormal
Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 −ρ2 0 ρ3
0 0 ρ3 0




t
n
b1
b2

 (3.2)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
From (3.2) and (2.5), we get

∇tt = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 −ρ1ρ

2
2 )n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 −ρ1ρ2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.
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In this case, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 +ρ

2
2 = 1− δ1

δ2
,

ρ2ρ3 = 0.

This equation proves our assertion.

Theorem 3.3. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that binormal vector b1 is null. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) ρ1 =
√

1− δ1
δ2

and
and
ii) ρ2 = 0 or |ln|ρ2(s) =−

∫
ρ3(s)ds.

Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the first binormal vector b1 of {t,n,b1,b2}
orthonormal Frenet frame is a null(lightlike) vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 0 ρ3 0
0 ρ2 0 −ρ3




t
n
b1
b2

 (3.3)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
By use of (3.3) and equation (2.5), we have

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 +ρ1)n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

In view of (1.2), we arrive at

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1)δ2
−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1ρ
′
1 = 0

(ρ ′′1 −ρ
3
1 +ρ1)δ2−ρ1δ1 = 0,

2ρ
′
1ρ2 +ρ1ρ

′
2 +ρ1ρ2ρ3 = 0.

If we consider non-geodesic solution, we obtain

ρ1 =

√
1− δ1

δ2
,

ρ
′
2 +ρ2ρ3 = 0,

where δ1
δ2

< 1.

Theorem 3.4. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that normal vector n is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) γ is a circle with ρ1 =
√

δ1
δ2
−1 ,

or
ii) γ is a helix with ρ2

1 +ρ2
2 = δ1

δ2
−1

where δ1
δ2

> 1.
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Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the normal vector n of {t,n,b1,b2}
orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
ρ1 0 ρ2 0
0 ρ2 0 ρ3
0 0 −ρ3 0




t
n
b1
b2

 (3.4)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
By using (3.4) and equation (2.5), we obtain

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 +ρ

3
1 +ρ1ρ

2
2 +ρ1)n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1k2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 +ρ

2
2 =

δ1

δ2
−1,

ρ2ρ3 = 0.

So, we get the proof.

4. Conclusion

In this paper we charaecterized spacelike curves to be Sesqui-harmonic curves in LP-Sasakian manifolds. We gave four theorems about these
curves. These theorems showed that if we change the vector fields of the Frenet frame {t,n,b1,b2}, then the equation of Sesqui-harmonic
curves change. So, we introduced four different spacelike Sesqui-harmonic curves in this manner.
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Abstract

In this paper, we introduce difference double sequence spaces I2
(µ,υ)(M,∆) and

I0
2
(µ,υ)

(M,∆) in the intuitionistic fuzzy normed linear spaces. We also investigate some
topological properties of these spaces.

Introduction

Fuzzy set theory firstly defined by Zadeh [39] has been applied many fields of engineering such as in non-linear dynamic systems [10] ,
in the population dynamics [5], in the quantum physics [27], but also in various fields of mathematics such as in metric and topological
spaces [7,9,12], in the theory of functions [11,38] , in the approximation theory [4]. Fuzzy topology plays an essential role in fuzzy theory. It
deals with such conditions where the classical theories break down. The intuitionistic fuzzy normed space and intuitionistic fuzzy n-normed
space which were investigated in [32] and [36] are the most important improvements in fuzzy topology. In the last years, the concepts of
intuitionistic fuzzy I-convergent difference sequence spaces and intuitionistic fuzzy I-convergent difference double sequence spaces have
been studied in [21]- [?] and [23]- [24], respectively.

The concept of statistical convergence was given by Steinhaus [34] and Fast [8] using the definition of density of the set of natural numbers.
Many years later, statistical convergence was discussed by many researchers in the theory of Fourier analysis, ergodic theory and number
theory. Some statistical convergence types were studied in [1]- [3] and [29]. As an extended definition of statistical convergence, definition
of I-convergence was introduced by Kostyrko, Salat and Wilczynski [26] by using the idea of I of subsets of the set of natural numbers.
I-convergence of double sequences x = (xi j) has been studied in [30]- [31]. Recently, I- and I∗- convergence of double sequences have been
studied by Das et. al [6]. Also, related studies can be found in [13]- [17].

Some new sequence spaces were introduced by means of various matrix transformations in [18], [19], [28] and [35]. Kızmaz [25] defined the
difference sequence spaces with the difference matrix as follows:

X(∆) = {x = (xk) ∈ ω : ∆x ∈ X}

for X = l∞, c, c0, where ∆xk = xk− xk+1 and ∆ denotes the difference matrix ∆ = (∆nk) defined by

∆nk =

{
(−1)n−k, if n≤ k ≤ n+1,

0, if 0≤ k < n.

Email addresses: e.burdurlu87@gmail.com, (E. Kamber), scaylan@sakarya.edu.tr, (S. Altundağ)
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In this paper, we introduce difference double sequence spaces I2
(µ,υ)(M,∆) and I0

2
(µ,υ)

(M,∆) in the intuitionistic fuzzy normed linear
spaces. We also investigate some topological properties of these new spaces.

Basic definitions

In this section, we give some definitions and notations which will be used for this study.

Definition 2.1. ( [33]) A binary operation ∗ : [0,1]× [0,1]→ [0,1] is said to be a continuous t-norm if it satisfies the following con-
ditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,

(iii) a∗1 = a for all a ∈ [0,1],
(iv) a∗b≤ c∗d whenever a≤ c and b≤ d for each a, b , c,d ∈ [0,1].

Definition 2.2. ( [33]) A binary operation ◦ : [0,1]× [0,1]→ [0,1] is said to be a continuous t-conorm if it satisfies the following conditions:

(i) ◦ is associative and commutative,
(ii) ◦ is continuous,

(iii) a◦0 = a for all a ∈ [0,1],
(iv) a◦b≤ c◦d whenever a≤ c and b≤ d for each a, b , c,d ∈ [0,1].

Definition 2.3. ( [32]) The five-tuple (X , µ,υ ,∗,◦) is said to be intuitionistic fuzzy normed linear space (or shortly IFNLS) is where X is a
linear space over a field F , ∗ is a continuous t-norm, ◦ is a continuous t-conorm, µ , υ are fuzzy sets on X× (0,∞), µ denotes the degree of
membership and υ denotes the degree of nonmembership of (x, t) ∈ X× (0,∞) satisfying the following conditions for every x,y ∈ X and
s, t > 0:

(i) µ (x, t)+υ (x, t)≤ 1,
(ii) µ (x, t)> 0,

(iii) µ (x, t) = 1 if and only if x = 0,

(iv) µ (αx, t) = µ

(
x, t
|α|

)
if α 6= 0,

(v) µ (x, t)∗µ (y,s)≤ µ (x+ y, t + s),
(vi) µ (x, .) : (0,∞)→ [0,1] is continuous,

(vii) lim
t→∞

µ (x, t) = 1 and lim
t→0

µ (x, t) = 0,

(viii) υ (x, t)< 1,
(ix) υ (x, t) = 0 if and only if x = 0,

(x) υ (αx, t) = υ

(
x, t
|α|

)
if α 6= 0,

(xi) υ (x, t)◦υ (y,s)≥ υ (x+ y,s+ t),
(xii) υ (x, .) : (0,∞)→ [0,1] is continuous,

(xiii) lim
t→∞

υ (x, t) = 0 and lim
t→0

υ (x, t) = 1.

In this case (µ,υ) is called intuitionistic fuzzy norm.

Example 2.1. ( [32]) Let(X,‖.‖) be a normed space, and let a ∗ b = ab and a ◦ b = min{a+b,1} for all a,b ∈ [0,1]. For all x ∈ X
and every t > 0, consider

µ (x, t) := t
t+‖x‖ and υ (x, t) := ‖x‖

t+‖x‖ .

Then (X , µ,υ ,∗,◦) is an IFNLS.

Definition 2.4. ( [32]) Let (X , µ,υ ,∗,◦) be an IFNLS. For t > 0, the open ball Bx(r, t) with center x ∈ X and radius r ∈ (0,1) is de-
fined as

Bx(r, t) = {y ∈ X : µ (x− y, t)> 1− r and υ (x− y, t)< r}.

Definition 2.5.( [26]) If X is a non-empty set, then a family of sets I ⊂ P(X) is called an ideal in X if and only if

(i) /0 ∈ I,
(ii) A,B ∈ I implies that A∪B ∈ I, and

(iii) for each A ∈ I and B⊂ A we have B ∈ I,

where P(X) is the power set of X .

Definition 2.6.( [26]) If X is a non-empty set, then a non-empty family of sets F ⊂ P(X) is called a filter on X if and only if

(i) /0 /∈ F ,
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(ii) A,B ∈ F implies that A∩B ∈ F , and
(iii) for each A ∈ F and A⊂ B, we have B ∈ F .

An ideal I is called non-trivial if I 6= /0 and X /∈ I. A non-trivial ideal I ⊂ P(X) is called an admissible ideal in X if and only if it contains all
singletons, i.e., if it contains {{x} : x ∈ X}.
A relation between the concepts of an ideal and a filter is given by the following proposition.

Proposition 2.1. ( [26]) Let I ⊂ P(X) be a non-trivial ideal. Then the class F = F(I) = {M ⊂ N : M = X −A, f or some A ∈ I} is a
filter on X . F = F(I) is called the filter associated with the ideal I.

Definition 2.7 ( [30]) Let I2 be a non-trivial ideal of N×N and (X , µ,υ ,∗,◦) be an IFNLS. A double sequence x = (xi j) of elements of X is
said to be I2-convergent to L ∈ X with respect to the intuitionistic fuzzy linear norm (µ,υ) if, for every ε > 0 and t > 0, the set{

(i, j) ∈ N×N : µ
(
xi j−L, t

)
≤ 1− ε or υ

(
xi j−L, t

)
≥ ε
}
∈ I2.

In this case, we write I(µ,υ)2 − limx = L.

Definition 2.9. ( [20]) An Orlicz function is a function M : [0,∞)→ [0,∞) which is continuous, non-decreasing and convex with M(0) = 0,
M(x)> 0 for x > 0 and M(x)→ ∞ as x→ ∞. If the convexity of Orlicz function M is replaced by M(x+ y)≤M(x+ y)+M(y), then this
function is called modulus function.

Remark 2.1. ( [20]) If M is an Orlicz function, then M(λx)≤ λM(x) for all λ with 0 < λ < 1.

Main results

In this paper, we introduce a variant of ideal convergent difference double sequence spaces in the intuitionistic fuzzy normed linear spaces.
We also investigate some topological properties of these new spaces.
Let w2 be the space of all double sequences in the intuitionistic fuzzy normed linear spaces. We define the following sequence spaces:

I2
(µ,υ)(M,∆) =

{(xi j) ∈ w2 :

{
(i, j) ∈ N×N : M(

µ
(
∆xi j−L, t

)
ρ

)≤ 1− ε or M(
υ
(
∆xi j−L, t

)
ρ

)≥ ε

}
∈ I2}

and

I0
2
(µ,υ)

(M,∆) =

{(xi j) ∈ w2 :

{
(i, j) ∈ N×N : M(

µ
(
∆xi j, t

)
ρ

)≤ 1− ε or M(
υ
(
∆xi j, t

)
ρ

)≥ ε

}
∈ I2}.

Theorem 3.1. The spaces I2
(µ,υ)(M,∆) and I0

2
(µ,υ)

(M,∆) are linear spaces.

Proof. We prove the result for I2
(µ,υ)(M,∆). Similarly, it can be proved for I0

2
(µ,υ)

(M,∆). Let (xi j),(yi j) ∈ I2
(µ,υ)(M,∆) and α,β

be scalars. The proof is trivial for α = 0 and β = 0. Let α 6= 0 and β 6= 0. For a given ε > 0, choose s > 0 such that (1− ε)∗ (1− ε)> 1− s
and ε ◦ ε < s. Hence, we have

A1 =

(i, j) ∈ N×N : M(
µ

(
∆xi j−L1,

t
2|α|

)
ρ

)≤ 1− ε or M(
υ

(
∆xi j−L1,

t
2|α|

)
ρ

)≥ ε

 ∈ I2,

A2 =

(i, j) ∈ N×N : M(
µ

(
∆xi j−L1,

t
2|β |

)
ρ

)≤ 1− ε or M(
υ

(
∆xi j−L1,

t
2|β |

)
ρ

)≥ ε

 ∈ I2,

Ac
1 =

(i, j) ∈ N×N : M(
µ

(
∆xi j−L1,

t
2|α|

)
ρ

)> 1− ε and M(
υ

(
∆xi j−L1,

t
2|α|

)
ρ

)< ε

 ∈ F(I2),

and

Ac
2 =

(i, j) ∈ N×N : M(
µ

(
∆xi j−L1,

t
2|β |

)
ρ

)> 1− ε and M(
υ

(
∆xi j−L1,

t
2|β |

)
ρ

)< ε

 ∈ F(I2).

Let define the set A3 = A1 ∪A2. Hence A3 ∈ I2. It follows that Ac
3 is a non-empty set in F(I2). We will prove that for every (xi j),(yi j) ∈

I2
(µ,υ)(M,∆),

Ac
3 ⊂

{
(i, j) ∈ N×N : M(

µ((α.∆xi j+β .∆yi j)−(α.L1+β .L2),t)
ρ

)> 1− s

and M(
υ((α.∆xi j+β .∆yi j)−(α.L1+β .L2),t)

ρ
)< s

}
.
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Let (m,n) ∈ Ac
3. In this case,

M(
µ

(
∆xmn−L1,

t
2|α|

)
ρ

)> 1− ε and M(
υ

(
∆xmn−L1,

t
2|α|

)
ρ

)< ε,

and

M(
µ

(
∆ymn−L2,

t
2|β |

)
ρ

)> 1− ε and M(
υ

(
∆ymn−L2,

t
2|β |

)
ρ

)< ε .

Then

M(
µ((α.∆xmn +β .∆ymn)− (α.L1 +β .L2), t)

ρ
)

≥M(
µ(α.∆xmn−α.L1, t/2)

ρ
)∗M(

µ(β .∆ymn−β .L2, t/2)
ρ

)

= M(
µ

(
∆xmn−L1,

t
2|α|

)
ρ

)∗M(
µ

(
∆ymn−L2,

t
2|β |

)
ρ

) > (1− ε)∗ (1− ε)> 1− s

and

M(
υ((α.∆xmn +β .∆ymn)− (α.L1 +β .L2), t)

ρ
)

≤M(
υ(α.∆xmn−α.L1, t/2)

ρ
)◦M(

υ(β .∆ymn−β .L2, t/2)
ρ

)

= M(
υ

(
∆xmn−L1,

t
2|α|

)
ρ

)◦M(
υ

(
∆ymn−L2,

t
2|β |

)
ρ

) < ε ◦ ε < s.

This proves that

Ac
3 ⊂

{
(i, j) ∈ N×N : M(

µ((α.∆xi j+β .∆yi j)−(α.L1+β .L2),t)
ρ

)> 1− s

and M(
υ((α.∆xi j+β .∆yi j)−(α.L1+β .L2),t)

ρ
)< s

}
.

Hence I2
(µ,υ)(M,∆) is a linear space.

Theorem 3.2. Every closed ball Bc
x(r, t)(M) is an open set in I2

(µ,υ)(M,∆).

Proof. Let Bx(r, t)(M) be an open ball with centre x ∈ I2
(µ,υ)(M,∆) and radius r ∈ (0,1) with respect to t, i.e.

Bx(r, t)(M) = {y ∈ I2
(µ,υ)(M,∆) :{

(i, j) ∈ N×N : M(
µ
(
∆xi j−∆yi j, t

)
ρ

)≤ 1− r or M(
µ
(
∆xi j−∆yi j, t

)
ρ

)≥ r

}
∈ I2}.

Let y ∈ Bc
x(r, t)(M). So M(

µ (∆x−∆y, t)
ρ

)> 1− r and M(
υ (∆x−∆y, t)

ρ
)< r.

Since M(
µ (∆x−∆y, t)

ρ
)> 1− r, there exists t0 ∈ (0, t) such that M(

µ (∆x−∆y, t0)
ρ

)> 1− r and M(
υ (∆x−∆y, t0)

ρ
)< r.

Let r0 = M(
µ (∆x−∆y, t0)

ρ
). Since r0 > 1− r, there exists s ∈ (0,1) such that r0 > 1− s > 1− r and so there exists r1,r2 ∈ (0,1) such that

r0 ∗ r1 > 1− s and (1− r0)◦ (1− r2)< s.

Let r3 = max{r1,r2}. Then 1− s < r0 ∗ r1 ≤ r0 ∗ r3 and (1− r0)◦ (1− r3)≤ (1− r0)◦ (1− r2)< s.

Consider the closed balls Bc
y(1− r3, t− t0)(M) and Bc

x(r, t)(M). We prove that Bc
y(1− r3, t− t0)(M) ⊂ Bc

x(r, t)(M). Let z ∈ Bc
y(1− r3, t−
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t0)(M). Then M(
µ (∆y−∆z, t− t0)

ρ
)> r3 and M(

υ (∆y−∆z, t− t0)
ρ

)< 1− r3. Hence

M(
µ (∆x−∆z, t)

ρ
)≥M(

µ (∆x−∆y, t0)
ρ

)∗M(
µ (∆y−∆z, t− t0)

ρ
)> r0 ∗ r3 ≥ r0 ∗ r1 > 1− s > 1− r,

and

M(
υ (∆x−∆z, t)

ρ
)≤M(

υ (∆x−∆y, t0)
ρ

)◦M(
υ (∆y−∆z, t− t0)

ρ
)

< (1− r0)◦ (1− r3)< s < r.

Thus z ∈ Bc
x(r, t)(M) and it proves that Bc

y(1− r3, t− t0)(M)⊂ Bc
x(r, t)(M).

Remark 3.1. It is clear that I2
(µ,υ)(M,∆) is an IFNLS. Define

τ2
(µ,υ)(M,∆) = {A⊂ I2

(µ,υ)(M,∆) :
f or each x ∈ A, there exist t > 0 and r ∈ (0,1) such that Bc

x(r, t)(M)⊂ A}.

Then τ2
(µ,υ)(M,∆) is a topology on I2

(µ,υ)(M,∆).

Theorem 3.3. The topology τ2
(µ,υ)(M,∆) on I0

2
(µ,υ)

(M,∆) is first countable.

Proof. It is clear that {Bc
x(

1
n ,

1
n )(M) : n ∈ N} is a local base at x ∈ I2

(µ,υ)(M,∆). Then, the topology τ2
(µ,υ)(M,∆) on I0

2
(µ,υ)

(M,∆)
is first countable.

Theorem 3.4. I2
(µ,υ)(M,∆) and I0

2
(µ,υ)

(M,∆) are Hausdorff spaces.

Proof. Let x,y ∈ I2
(µ,υ)(M,∆) such that x 6= y. Then 0 < M(

µ (∆x−∆y, t)
ρ

)< 1 and 0 < M(
υ (∆x−∆z, t)

ρ
)< 1.

Define r1,r2 and r such that r1 = M(
µ (∆x−∆y, t)

ρ
), r2 = M(

υ (∆x−∆y, t)
ρ

) and r = max{r1,1− r2}. Then for each r0 ∈ (r,1) there

exist r3 and r4 such that r3 ∗ r4 ≥ r0 and (1− r3)◦ (1− r4)≤ (1− r0).

Let r5 = max{r3,(1− r4)} and consider the closed balls Bc
x(1− r5,

t
2 )(M) and Bc

y(1− r5,
t
2 )(M). Then, clearly Bc

x(1− r5,
t
2 )(M)∩Bc

y(1−
r5,

t
2 )(M) = /0.

Suppose that z ∈ Bc
x(1− r5,

t
2 )(M)∩Bc

y(1− r5,
t
2 )(M). So,

r1 = M(
µ (∆x−∆y, t)

ρ
)≥M(

µ (∆x−∆z, t/2)
ρ

)∗M(
µ (∆y−∆z, t/2)

ρ
)

≥ r5 ∗ r5 ≥ r3 ∗ r4 ≥ r0 > r and

r2 = M(
υ (∆x−∆y, t)

ρ
)≤M(

υ (∆x−∆z, t/2)
ρ

)◦M(
υ (∆y−∆z, t/2)

ρ
)

≤ (1− r5)◦ (1− r5)≤ (1− r3)◦ (1− r4)≤ (1− r0)< 1− r,

which is a contradiction. Hence I2
(µ,υ)(M,∆) is a Hausdorff space.

Theorem 3.5. Let I2
(µ,υ)(M,∆) be an IFNLS, τ2

(µ,υ)(M,∆) be a topology on I2
(µ,υ)(M,∆) and (xi j) be a sequence in I2

(µ,υ)(M,∆). Then

a sequence (xi j) is ∆-convergent to ∆x0 with respect to the intuitionistic fuzzy linear norm (µ,υ) if and only if M(
µ
(
∆xi j−∆x0, t

)
ρ

)−→ 1

and M(
υ
(
∆xi j−∆x0, t

)
ρ

)−→ 0 as i, j −→ ∞.

Proof. Let Bx0(r, t)(M) be an open ball with centre x0 ∈ I2
(µ,υ)(M,∆) and radius r ∈ (0,1) with respect to t, i.e.

Bx0(r, t)(M) = {(xi j) ∈ I2
(µ,υ)(M,∆) :{

(i, j) ∈ N×N : M(
µ
(
∆xi j−∆x0, t

)
ρ

)≤ 1− r or M(
µ
(
∆xi j−∆x0, t

)
ρ

)≥ r

}
∈ I2}.

Suppose (xi j) is ∆-convergent to ∆x0 with respect to the intuitionistic fuzzy linear norm (µ,υ). Then for r ∈ (0,1) and t > 0, there
exists k0 ∈ N such that (xi j) ∈ Bc

x0
(r, t)(M) for all i, j ≥ k0. Thus,{

(i, j) ∈ N×N : M(
µ
(
∆xi j−∆x0, t

)
ρ

)> 1− r and M(
υ
(
∆xi j−∆x0, t

)
ρ

)< r

}
∈ F(I2).
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So 1−M(
µ
(
∆xi j−∆x0, t

)
ρ

)< r and M(
υ
(
∆xi j−∆x0, t

)
ρ

)< r, for all i, j≥ k0. Then M(
µ
(
∆xi j−∆x0, t

)
ρ

)−→ 1 and M(
υ
(
∆xi j−∆x0, t

)
ρ

)−→
0 as i, j −→ ∞.

Conversely, if for each t > 0,

M(
µ
(
∆xi j−∆x0, t

)
ρ

)−→ 1 and M(
υ
(
∆xi j−∆x0, t

)
ρ

)−→ 0 as i, j−→∞. Then for r∈ (0,1), there exists k0 ∈N such that 1−M(
µ
(
∆xi j−∆x0, t

)
ρ

)<

r and M(
υ
(
∆xi j−∆x0, t

)
ρ

) < r for all i, j ≥ k0. So, M(
µ
(
∆xi j−∆x0, t

)
ρ

) > 1− r and M(
υ
(
∆xi j−∆x0, t

)
ρ

) < r for all i, j ≥ k0. Hence

(xi j) ∈ Bc
x0
(r, t)(M) for all i, j ≥ k0. This proves that a sequence (xi j) is ∆-convergent to ∆x0 with respect to the intuitionistic fuzzy linear

norm (µ,υ).
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Abstract

In this paper, we define the concept of almost contraction in extended b-metric spaces. We
prove some common fixed point theorems for mappings satisfying almost contractions in
extended b-metric spaces. These results extend and generalize the corresponding results
given in the literature.

1. Introduction and Preliminaries

Main and earlier result of fixed point theory is the Banach contraction principle which guarantees existence and uniqueness of fixed point. It
was proved in complete metric spaces by Banach in 1922. Banach contraction principle was applied as a important method in mathematics
and other sciences. Some problems of Mathematics and other sciences didn’t solve using Banach contraction principle. Thus, more general
fixed point theorems be needed. Some of these theorems were gived in more general spaces of metric spaces, some of them were gived by
new contaction mappings which are more general than Banach contraction principle. b−metric spaces was introduced by Bakhtin [3] and
Czerwik [8] as a generalizations of metric spaces. They proved the contraction mapping principle in b-metric spaces. Recently, Kamran [11]
introduced extended b-metric spaces using the idea of b-metric spaces as a new type of generalized metric space and they proved some fixed
point theorems on this space. Also some generalized fixed point theorems proved in extended b-metric spaces [1, 2, 6, 7, 9, 10, 12–14].
In this work, we define almost contraction in extended b-metric spaces which was defined in metric spaces by Berinde [4, 5]. And we prove
fixed point theorems for mappings satisfying these type contractions.

Definition 1.1. [11] Let X be a nonempty set and θ : X ×X → [1,∞) be a mapping. A function dθ : X ×X → [0,∞) is called extended
b-metric if it satisfies, for all x,y,z ∈ X

(dθ 1) dθ (x,y) = 0 if and only if x = y,
(dθ 2) dθ (x,y) = dθ (y,x) ,
(dθ 3) dθ (x,y)≤ θ (x,y) [dθ (x,z)+dθ (z,y)].

In this case, the pair (X ,dθ ) is called extended b-metric space, in short extended-bMS.

Example 1.2. [11] Let X = {1,2,3}and θ : X×X → [1,∞) , θ (x,y) = 1+ x+ y. Define dθ : X×X → [0,∞) as

dθ (x,y) = 0 for x = y

dθ (1,2) = 80, dθ (1,3) = 1000, dθ (2,3) = 600.

Then, (X ,dθ ) is an extended-bMS.
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Example 1.3. [1] Let X = [0,1] and θ : X×X → [1,∞) ,

θ (x,y) =
x+ y+1

x+ y
for x,y ∈ (0,1]

θ (x,y) = 1, for x,y = 0

Define dθ : X×X → [0,∞) as

dθ (x,y) =
1
xy

for x,y ∈ (0,1] , x 6= y,

dθ (x,y) = 0 for x,y ∈ [0,1] , x = y,

dθ (x,0) =
1
x

for x ∈ (0,1] .

Then, (X ,dθ ) is an extended-bMS.

Definition 1.4. [11] Let (X ,dθ ) be an extended-bMS.
(i) A sequence {xn} in X is said to converge to x ∈ X , if for every ε > 0, there exists N = N (ε) ∈ N such that dθ (xn,x)< ε for all n≥ N. In
this case, we write

lim
n→∞

xn = x.

(ii) A sequence {xn} in X is said to be Cauchy if for every ε > 0, there exists N = N (ε) ∈ N such that dθ (xn,xm)< ε for all n,m≥ N.
(iii) (X ,dθ ) is said to be complete if every Cauchy sequence in X is convergent.

Let (X ,dθ ) be extended-bMS. If dθ is continuous, then every convergent sequence has a unique limit.

2. Fixed point theorems

Theorem 2.1. Let (X ,dθ ) be a complete extended-bMS and f ,g : X → X be two self mappings satisfying

dθ ( f x,gy)≤ δM (x,y)+LN (x,y) (2.1)

for all x,y ∈ X , where δ ∈ [0,1) and L≥ 0 such that for each x0 ∈ X, limn,m→∞ θ (xn,xm)<
1
δ

with x2n+1 = f x2n and x2n+2 = gx2n+1 for
n≥ 1 and

M (x,y) = max{dθ (x,y) ,dθ (x, f x) ,dθ (y,gy)}

N (x,y) = min{dθ (x, f x) ,dθ (y,gy) ,dθ (x,gy) ,dθ (y, f x)} .

Then f and g have a unique fixed point.

Proof. Let x0 be an arbitrary point in X . Define the sequence {xn} in X as x2n+1 = f x2n and x2n+2 = gx2n+1 for n≥ 1. Suppose that there
is some n≥ 1 such that xn = xn+1. If n = 2k, then x2k = x2k+1 and from (2.1),

dθ (x2k+1,x2k+2) = dθ ( f x2k,gx2k+1)≤ δM (x2k,x2k+1)+LN (x2k,x2k+1)

where

M (x2k,x2k+1) = max{dθ (x2k,x2k+1) ,dθ (x2k, f x2k) ,dθ (x2k+1,gx2k+1)}
= max{dθ (x2k,x2k+1) ,dθ (x2k,x2k+1) ,dθ (x2k+1,x2k+2)}
= max{0,0,dθ (x2k+1,x2k+2)}

and

N (x2k,x2k+1) = min{dθ (x2k, f x2k) ,dθ (x2k+1,gx2k+1) ,dθ (x2k,gx2k+1) ,dθ (x2k+1, f x2k)}
= min{dθ (x2k,x2k+1) ,dθ (x2k+1,x2k+2) ,dθ (x2k,x2k+2) ,dθ (x2k+1,x2k+1)}
= 0

Thus, we have

dθ (x2k+1,x2k+2)≤ δdθ (x2k+1,x2k+2)

which is a contradiction with δ ∈ [0,1) . Therefore x2k+1 = x2k+2. Hence, we have x2k = x2k+1 = x2k+2. It means that x2k = f x2k = gx2k,i.e.
x2k is a common fixed point of f and g.
If n = 2k+1, then using same arguments, it can be shown that x2k+1 is a common fixed point of f and g.
Now, suppose xn 6= xn+1 for all n≥ 1.

dθ (x2n+1,x2n+2) = dθ ( f x2n,gx2n+1)≤ δM (x2n,x2n+1)+LN (x2n,x2n+1) (2.2)

where
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M (x2n,x2n+1) = max{dθ (x2n,x2n+1) ,dθ (x2n, f x2n) ,dθ (x2n+1,gx2n+1)}
= max{dθ (x2n,x2n+1) ,dθ (x2n,x2n+1) ,dθ (x2n+1,x2n+2)}
= max{dθ (x2n,x2n+1) ,dθ (x2n+1,x2n+2)}

and

N (x2n,x2n+1) = min{dθ (x2n, f x2n) ,dθ (x2n+1,gx2n+1) ,dθ (x2n,gx2n+1) ,dθ (x2n+1, f x2n)}
= min{dθ (x2n,x2n+1) ,dθ (x2n+1,x2n+2) ,dθ (x2n,x2n+2) ,0}
= 0.

If M (x2n,x2n+1) = dθ (x2n+1,x2n+2), then by (2.2)

dθ (x2n+1,x2n+2)≤ δdθ (x2n+1,x2n+2)

which is a contradiction. Thus M (x2n,x2n+1) = dθ (x2n,x2n+1) and from (2.2)

dθ (x2n+1,x2n+2)≤ δdθ (x2n,x2n+1) .

Similarly it can be proved that

dθ (x2n+3,x2n+2)≤ δdθ (x2n+2,x2n+1) .

So,

dθ (xn+1,xn)≤ δdθ (xn,xn−1)≤ δ
ndθ (x1,x0)

for all n≥ 1.
We show that {xn} is a Cauchy sequence. For all p≥ 1,

dθ

(
xn,xn+p

)
≤ θ

(
xn,xn+p

)[
dθ (xn,xn+1)+dθ

(
xn+1,xn+p

)]
≤ θ

(
xn,xn+p

)
[δ ndθ (x0,x1)+dθ

(
xn+1,xn+p

)
]

...

≤ θ
(
xn,xn+p

)
δ

ndθ (x0,x1)+θ
(
xn,xn+p

)
θ
(
xn+1,xn+p

)
δ

n+1dθ (x0,x1)

+...+θ
(
xn,xn+p

)
...θ
(
xn+p−1,xn+p

)
δ

n+p−1dθ (x0,x1)

= dθ (x0,x1)
n+p−1

∑
i=1

δ
i

i

∏
j=1

θ
(
xn+ j,xn+p

)
.

The last inequality is dominated by

n+p−1

∑
i=1

δ
i

i

∏
j=1

θ
(
xn+ j,xn+p

)
≤

n+p−1

∑
i=1

δ
i×

i

∏
j=1

θ
(
x j,xn+p

)
.

By the ratio test, the series∑
∞
i=1 Si where Si = δ i

i
∏
j=1

θ
(
x j,xn+p

)
converges to some z∈ (0,∞) . Indeed, limi→∞

Si+1
Si

= limi→∞ δθ
(
xi,xi+p

)
<

1.

Thus, we have a = ∑
∞
i=1 δ i

i
∏
j=1

θ
(
x j,xn+p

)
with the partial sum an = ∑

n
i=1 δ i

i
∏
j=1

θ
(
x j,xn+p

)
.

Hence, for n≤ 1, p≤ 1 we have

dθ

(
xn,xn+p

)
≤ δ

ndθ (x0,x1)
[
Sn+p−1−Sn−1

]
. (2.3)

Letting n→ ∞ in (2.3), we conclude that the sequence {xn} is a Cauchy sequence. By completeness of (X ,dθ ) , there exists r ∈ X such that
xn→ r as n→ ∞.
Now, we prove that f r = r. By b−rectangular inequality ,

dθ (x2n+1,gr) = dθ ( f x2n,gr)≤ δM (x2n,r)+LN (x2n,r)

where

M (x2n,r) = max{dθ (x2n,r) ,dθ (x2n,x2n+1) ,dθ (r,gr)}→ dθ (r,gr) ,

as n→ ∞ and

N (x2n,r) = min{d (x2n,x2n+1) ,d (r,gr) ,d (x2n,gr) ,d (r,x2n+1)}→ 0.

Hence, taking the limit as n→ ∞, we obtain

dθ (r,gr)≤ δdθ (r,gr)+L.0
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that is f r = r. Hence r is a fixed point of g.
Now, we show r = f r. Suppose r 6= f r, By (2.1)

dθ ( f r,r) = dθ ( f r,gr)≤ δM (r,r)+LN (r,r)

where

M (r,r) = max{dθ (r,r) ,dθ (r, f r) ,dθ (r,gr)}
= max{0,0,dθ (r, f r)}
= dθ (r,gr)

and

N (r,r) = min{dθ (r, f r) ,dθ (r,gr) ,dθ (r,gr) ,dθ (r, f r)}
= 0.

Thus, we have

dθ ( f r,r)≤ δdθ ( f r,r)

which is a contradiction. Thus r = f r.
Now, we show that uniqueness, Suppose r and t are different common fixed points of f and g. By (2.1),

dθ (r, t) = dθ ( f r,gt)≤ δM (r, t)+LN (r, t) (2.4)

where

M (r, t) = max{dθ (r, t) ,dθ (r, f r) ,dθ (t,gt)}
= dθ (r, t)

and

N (r, t) = min{dθ (r, f r) ,dθ (t,gt) ,dθ (r,gt) ,dθ (t, f r)}
= 0.

From (2.4)

dθ (r, t)≤ δdθ (r, t)

So dθ (r, t) = 0, i.e. r = t.

Example 2.2. Let X = [0,1] and θ : X×X → [1,∞) , θ (x,y) = 1+ x+ y. Define dθ : X×X → [0,∞) such that dθ (x,y) = (x− y)2 with for
all x,y ∈ X . Let f ,g : X → X be defined as

f (x) =
x
2
, g(x) =

3x
4
.

Then, dθ is complete extended b−metric on X. We have

dθ ( f x,gy) =
(

x
2
− 3y

4

)2
≤ δM (x,y)+LN (x,y)

where

M (x,y) = max
{
(x− y)2 ,

( x
2

)2
,
( y

4

)2
}

N (x,y) = min

{( x
2

)2
,
( y

4

)2
,

(
x− 3y

4

)2
,
(

y− x
2

)2
}
.

with δ = 3
4 and L≥ 0.

If x = y,

dθ ( f x,gy) =
(

x
2
− 3y

4

)2
=
( x

4

)2
≤ 3

4

( x
2

)2
+L

( x
4

)2
.

If x = 0,y 6= 0

dθ ( f x,gy) =
(

0− 3y
4

)2
=

(
3y
4

)2
≤ 3

4
y2 +L.0.
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If y = 0,x 6= 0,

dθ ( f x,gy) =
( x

2
−0
)2
≤ 3

4
x2 +L.0.

If x 6= y 6= 0,

dθ ( f x,gy) =
(

x
2
− 3y

4

)2
≤ 3

4
M (x,y)+LN (x,y)

Also, for each x ∈ X f nx = x
2n , we have

lim
n,m→∞

θ (xn,xm) = lim
n,m→∞

θ

( x
2n +

x
2m +1

)
<

4
3
.

Thus all conditions of Theorem 2.1 are satisfied and x = 0 is a unique fixed point of f and g.

Corollary 2.3. Let (X ,dθ ) be a complete extended-bMS space and f ,g : X → X be self mappings satisfying

dθ ( f x,gy)≤ δdθ (x,y)+Lmin{dθ (x, f x) ,dθ (y,gy) ,dθ (x,gy) ,dθ (y, f x)}

for all x,y ∈ X , where δ ∈ [0,1) and L≥ 0 such that for each x0 ∈ X, limn,m→∞ θ (xn,xm)<
1
δ

with x2n+1 = f x2n and x2n+2 = gx2n+1 for
n≥ 1. Then f and g have a unique fixed point.

Corollary 2.4. Let (X ,dθ ) be a complete extended-bMS space and f : X → X be a self mapping satisfying

dθ ( f x, f y)≤ δM (x,y)+LN (x,y)

for all x,y ∈ X , where δ ∈ [0,1) and L≥ 0 such that for each x0 ∈ X, limn,m→∞ θ (xn,xm)<
1
δ

with xn+1 = f xn, where

M (x,y) = max{dθ (x,y) ,dθ (x, f x) ,dθ (y, f y)}

N (x,y) = min{dθ (x, f x) ,dθ (y, f y) ,dθ (x, f y) ,dθ (y, f x)} .

Then f has a unique fixed point.

Corollary 2.5. Let (X ,dθ ) be a complete extended-bMS space and f : X → X be a self mapping satisfying

dθ ( f x, f y)≤ δdθ (x,y)+Lmin{dθ (x, f x) ,dθ (y, f y) ,dθ (x, f y) ,dθ (y, f x)}

for all x,y ∈ X , where δ ∈ [0,1) and L≥ 0 such that for each x0 ∈ X, limn,m→∞ θ (xn,xm)<
1
δ

with xn+1 = f xn. Then f has a unique fixed
point.

3. Conclusion

The development of the field of fixed point theory depends on the generalization of the Banach Contraction principle on complete metric
spaces. This generalization or extension comes up by either introducing new types of contractions or by working on a more general structured
space such as extended b-metric spaces. In this article, we have proven some fixed point theorems for almost contraction in extended b-metric
spaces and hence our results generalize many existing results in the literature.
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Abstract

A rectifying curve in Euclidean n-space En is defined as an arc-length parametrized curve
γ in En such that its position vector always lies in its rectifying space (i.e., the orthogonal
complement of its principal normal vector field) in En. In this paper, in analogy to this, we
introduce the notion of an f -rectifying curve in En as a curve γ in En parametrized by its
arc-length s such that its f -position vector field γ f , defined by γ f (s) =

∫
f (s)dγ , always lies

in its rectifying space in En, where f is a nowhere vanishing real-valued integrable function
in parameter s. The main purpose is to characterize and classify such curves in En.

1. Introduction

Let E3 denote the Euclidean 3-space (i.e., the three-dimensional real vector space R3 endowed with the standard inner product 〈· , ·〉). Let
γ : I −→ E3 be a unit-speed curve (i.e., a curve in E3 parametrized by arc length function s) of class at least C 3 (i.e., possessing continuous
derivatives at least up to third order). Needless to mention, I denotes a non-trivial interval in R, i.e., a connected set in R containing at
least two points. We consider the Frenet apparatus {Tγ ,Nγ ,Bγ ,κγ ,τγ} for the curve γ which is defined as follows: Tγ = γ ′ is the unit
tangent vector field along γ; Nγ is the unit principal normal vector field along γ obtained by normalizing the acceleration vector field T ′γ ;
Bγ = Tγ ×Nγ is the unit binormal vector field along γ and it is the unique vector field along γ orthogonal to both Tγ and Nγ so that the
dynamic Frenet frame {Tγ ,Nγ ,Bγ} is positive definite along γ having the same orientation as that of E3; κγ is the curvature and τγ is the
torsion of γ . If γ is of class at least C 5, then its curvature κγ and torsion τγ are at least twice differentiable. Moreover, γ reduces to a tortuous
curve in E3 if it has nowhere vanishing curvature κγ and torsion τγ (cf. [1] or [2]).

At each point γ(s) on γ , the planes spanned by {Tγ (s),Nγ (s)}, {Tγ (s),Bγ (s)} and {Nγ (s),Bγ (s)} are respectively called the osculating plane,
rectifying plane and normal plane of γ ( [1, 2]). It is well known from elementary Differential Geometry that a space curve γ lies in a plane
in E3 if its position vector field always lies in its osculating planes, and it lies on a sphere in E3 if its position vector field always lies in
its normal planes. In this point of view, it is natural to inquire the geometric question: Does there exist a space curve γ : I −→ E3 whose
position vector field always lies in its rectifying planes? The existence of such space curves was introduced by B.Y. Chen in his paper [3] and
named as rectifying curves. Thus, the position vector field of a rectifying curve γ : I −→ E3 parametrized by arc length function s satisfies
the equation

γ(s) = λ (s)Tγ (s)+µ(s)Bγ (s)

for some smooth functions λ ,µ : I −→ R. In [3], B.Y. Chen explored some characterizations of rectifying curves in E3 in terms of distance
functions, tangential, normal and binormal components of their position vector field and also in terms of ratios of their curvature and torsion.
Also, he attempted for a classification of such curves in E3 based on a sort of dilation applied on unit-speed curves on the unit sphere S2(1).

In [4], B.Y. Chen and F. Dillen observed that rectifying curves can be viewed as centrodes and extremal curves in E3. Moreover, they
found a relation between rectifying curves and centrodes which performs a significant role in defining the curves of constant procession
in Differential Geometry as well as in Kinematics or, in general, Mechanics. Thereafter, several characterizations of rectifying curves in
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Euclidean spaces were evolved in [5–8]. Meanwhile, the notion of rectifying curves were extended to several ambient spaces, e.g., 3D sphere
S3(r) [9], 3D hyperbolic space H3(−r) [10], Minkowski 3-space E3

1 [11, 12], Minkowski space-time E4
1 [13–15]. Furthermore, a new kind

of curves were studied in E3 which generalizes rectifying curves and helices [16]. Also, some characterizations and classification of non-null
and null f -rectifying curves (which are a sort of generalization of rectifying curves) were investigated in Minkowski 3-space E3

1 [17, 18],
Minkowski space-time E4

1 [19] and Euclidean 4-space [20].

In section 2, we give requisite preliminaries and then, in section 3, we introduce the notion of f -rectifying curves in En. Thereafter, section 4
is devoted to investigate some simple geometric characterizations of f -rectifying curves in En. Afterwards, section 5 is dedicated to classify
f -rectifying curves in terms of their f -position vectors in En. Finally, we conclude our study in section 6. This is how the paper is organised.

2. Preliminaries

The Euclidean n-space En is the n-dimensional real vector space Rn equipped with the standard inner product 〈· , ·〉 defined by

〈x,y〉 :=
n

∑
i=1

xiyi

for all tangent vectors x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) to Rn. As usual, the norm or length of a tangent vector x = (x1,x2, . . . ,xn) to
Rn is denoted and defined by

‖x‖ :=
√
〈x,x〉=

√
n

∑
i=1

x2
i .

Let γ : J −→ En be an arbitrary differentiable curve parametrized by t and γ ′ denotes its velocity vector field in En. Also, we assume that γ

is regular, i.e., its velocity vector field γ ′ is nowhere vanishing. If we change the parameter t by arc-length function s : J −→ I based at t0
given by

s(t) =
∫ t

t0

∥∥γ
′(u)
∥∥ du

such that ‖γ ′(s)‖=
√
〈γ ′(s),γ ′(s)〉= 1, i.e., 〈γ ′(s),γ ′(s)〉= 1, then γ : I −→ En is referred to as an arc-length parametrized or a unit-speed

curve in En. We may consider that γ is of class at least C 4. Now, let Tγ , Nγ denote respectively the unit tangent vector field and the
unit principal normal vector field of γ and for each i ∈ {1,2, . . . ,n− 2}, let Bγ i denote the unit i-th binormal vector field of γ so that
{Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2} forms the positive definite dynamic Frenet frame along γ having the same orientation as that of En. Also, for
each i ∈ {1,2, . . . ,n−1}, let κγ i denote the i-th curvature of γ . Then the Frenet-Serret formulae for the curve γ are given by ( [21, 22])

T ′γ
N′γ
Bγ
′
1

Bγ
′
2

...
Bγ
′
n−2


=



0 κγ 1 0 0 · · · 0 0
−κγ 1 0 κγ 2 0 · · · 0 0

0 −κγ 2 0 κγ 3 · · · 0 0
0 0 −κγ 3 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · κγ n−1 0





Tγ

Nγ

Bγ 1
Bγ 2

...
Bγ n−2


. (2.1)

From the above formulae, it follows that κγ n−1 6≡ 0 if and only if the curve γ lies wholly in En. This is equivalent to saying that κγ n−1 ≡ 0 if
and only if the curve γ lies wholly in a hypersurface in En (cf. [21, 22]). We recall that the hypersurface in En defined by

Sn−1(1) := {x ∈ En : 〈x,x〉= 1}

is called the unit sphere with centre at the origin in En. We also recall that the rectifying space of the curve γ in En is the orthogonal
complement Nγ

⊥ of its principal normal vector field Nγ in En defined by

Nγ
⊥ :=

{
x ∈ En : 〈x,Nγ 〉= 0

}
.

3. Notion of f -rectifying curves in En

Let γ : I −→ En be a unit-speed curve (parametrized by arc length s) with Frenet apparatus {Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2,κγ 1,κγ 2, . . . ,κγ n−1}.
As found in [8], γ is a rectifying curve in En if and only if its position vector field always lies in its rectifying space, i.e., if and only if its
position vector field satisfies

γ(s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s)

for some differentiable functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R. Now, let f : I −→ R be a nowhere vanishing integrable function. Then the
f -position vector field of γ is denoted by γ f and is defined by

γ f (s) =
∫

f (s) dγ.

Here, the integral sign is used in this sense that on differentiation of previous equation, one finds

γ
′
f (s) = f (s)Tγ (s)

so that γ f is an integral curve of the vector field f Tγ along γ in En. Using this concept of f -position vector field of a curve in En, we define
an f -rectifying curve in En as follows:
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Definition 3.1. Let γ : I −→ En be a unit-speed curve with Frenet apparatus {Tγ ,Nγ ,Bγ 1,Bγ 2, . . . ,Bγ n−2,κγ 1,κγ 2, . . . ,κγ n−1} and f : I −→
R be a nowhere vanishing integrable function in arc-length parameter s of γ with at least (n−2)-times differentiable primitive function
F. Then γ is referred to as an f -rectifying curve in En if its f -position vector field γ f always lies in its rectifying space in En, i.e., if its
f -position vector field γ f satisfies the equation

γ f (s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s) (3.1)

for some differentiable functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R.

Remark 3.2. In particular, if the function f is a non-zero constant on I, then, up to isometries (rigid motions) of En, an f -rectifying curve
γ : I −→ En is congruent to a rectifying curve in En and the study coincides with the same incorporated in [8].

4. Some geometric characterizations of f -rectifying curves in En

In this section, we present some geometrical characterizations of unit-speed f -rectifying curves in En in terms of the norm functions,
tangential components, normal components, binormal components of their f -position vector field.

Theorem 4.1. Let γ : I −→ En be a unit-speed curve (parametrized by arc length s) having nowhere vanishing n− 1 curvatures
κγ 1,κγ 2, . . . ,κγ n−1 and let f : I −→ R be a nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive
function F. If γ is a f -rectifying curve in En, then the following statements are true:

1. The norm function ρ = ‖γ f ‖ is given by ρ(s) =
√

F2(s)+ c2, where c is a non-zero constant.
2. The tangential component

〈
γ f ,Tγ

〉
of γ f is given by

〈
γ f (s),Tγ (s)

〉
= F(s).

3. The normal component γ
Nγ

f of γ f has a constant length and the norm function ρ is non-constant.
4. The first binormal component

〈
γ f ,Bγ 1

〉
and the second binormal component

〈
γ f ,Bγ 2

〉
of γ f are respectively given by

〈
γ f (s),Bγ 1(s)

〉
=

κγ 1(s)
κγ 2(s)

F(s),
〈
γ f (s),Bγ 2(s)

〉
=

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)

and for each i ∈ {2,3, . . . ,n−3}, the (i+1)-th binormal component
〈

γ f ,Bγ i+1

〉
of γ f is given by〈

γ f (s),Bγ i+1(s)
〉
=

1
κγ i+2(s)

[
κγ i+1(s)

〈
γ f (s),Bγ i−1(s)

〉
+
〈
γ f (s),Bγ i(s)

〉]
.

Conversely, if γ : I −→ En is a unit-speed curve having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1, and f : I −→R is a nowhere
vanishing integrable function with at least (n−2)-times differentiable primitive function F such that any one of the statements (1), (2), (3)
or (4) is true, then γ is an f -rectifying curve in En.

Proof. First, for some nowhere vanishing integrable function f : I −→ R with at least (n−2)-times differentiable primitive function F , let
γ : I −→ En be an f -rectifying curve in En having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1. Then for some differentiable
functions λ ,µ1,µ2, . . . ,µn−2 : I −→ R, the f -position vector field γ f of γ satisfies

γ f (s) = λ (s)Tγ (s)+
n−2

∑
i=1

µi(s)Bγ i(s). (4.1)

Differentiating (4.1) and then applying the Frenet-Serret formulae (2.1), we obtain

f (s)Tγ (s) = λ
′(s)Tγ (s)+

(
λ (s)κγ 1(s)−µ1(s)κγ 2(s)

)
Nγ (s)+

(
µ
′
1(s)−µ2(s)κγ 3(s)

)
Bγ 1(s)

+
n−3

∑
i=2

(
µi−1(s)κγ i+1(s)+µ

′
i (s)−µi+1(s)κγ i+2(s)

)
Bγ i(s)+

(
µn−3(s)κγ n−1(s)+µ

′
n−2(s)

)
Bγ n−2(s)

which gives the following set of relations

λ
′(s) = f (s),

λ (s)κγ 1(s)−µ1(s)κγ 2(s) = 0,

µ
′
1(s)−µ2(s)κγ 3(s) = 0,

µi−1(s)κγ i+1(s)+µ
′
i (s)−µi+1(s)κγ i+2(s) = 0 for i ∈ {2,3, . . . ,n−3},

µn−3(s)κγ n−1(s)+µ
′
n−2(s) = 0.

(4.2)

From the first n−1 relations of (4.2), we find

λ (s) = F(s),

µ1(s) =
κγ 1(s)
κγ 2(s)

F(s),

µ2(s) =
1

κγ 3(s)
d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
,

µi+1(s) =
1

κγ i+2(s)

[
µi−1(s)κγ i+1(s)+µ

′
i (s)
]

for i ∈ {2,3, . . . ,n−3}.

(4.3)
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On the other hand, from the last n−2 relations of (4.2), we get

µ1(s)
(
µ
′
1(s)−µ2(s)κγ 3(s)

)
+

n−3

∑
i=2

µi(s)
(

µi−1(s)κγ i+1(s)+µ
′
i (s)−µi+1(s)κγ i+2(s)

)
+µn−2(s)

(
µ
′
n−2(s)+µn−3(s)κγ n−1(s)

)
= 0

which reduces to

n−2

∑
i=1

µi(s)µ ′i (s) = 0. (4.4)

Integrating (4.4), we obtain

n−2

∑
i=1

µ
2
i (s) = c2, (4.5)

where c is an arbitrary non-zero constant. Using (4.1), (4.3) and (4.5), the norm function ρ = ‖γ f ‖ is given by

ρ
2(s) =

∥∥γ f (s)
∥∥2

=
〈
γ f (s),γ f (s)

〉
= F2(s)+

n−2

∑
i=1

µ
2
i (s) = F2(s)+ c2.

This proves the statement (1). Again, using (4.1) and (4.3), the tangential component
〈
γ f ,Tγ

〉
of γ f is given by〈

γ f (s),Tγ (s)
〉
= λ (s) = F(s).

This proves the statement (2). Now, for each s ∈ I, γ f (s) can be decomposed as

α f (s) = ν(s)Tγ (s)+α
Nγ

f (s)

for some differentiable function ν : I −→ R, where γ
Nγ

f denotes the normal component of γ f . Thus, in view of (4.1), γ
Nγ

f is given by

γ
Nγ

f (s) =
n−2

∑
i=1

µi(s)Bγ i(s).

Therefore, we have

∥∥∥γ
Nγ

f (s)
∥∥∥=√〈γ

Nγ

f (s),γNγ

f (s)
〉
=

√√√√n−2

∑
i=1

µ2
i (s). (4.6)

Now, by using (4.5) in (4.6), we find ‖γNγ

f (s)‖= c. This proves the statement (3). Finally, using (4.1) and (4.3), the first binormal component〈
γ f ,Bγ 1

〉
of γ f is given by

〈
γ f (s),Bγ 1(s)

〉
= µ1(s) =

κγ 1(s)
κγ 2(s)

F(s),

the second binormal component
〈
γ f ,Bγ 2

〉
of γ f is given by

〈
γ f (s),Bγ 2(s)

〉
= µ2(s) =

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)

and for each i ∈ {2,3, . . . ,n−3}, the (i+1)-th binormal component
〈

γ f ,Bγ i+1

〉
of γ f is given by〈

γ f (s),Bγ i+1(s)
〉
= µi+1(s) =

1
κγ i+2(s)

[
κγ i+1(s)

〈
γ f (s),Bγ i−1(s)

〉
+
〈
γ f (s),Bγ i(s)

〉]
.

Thus the statement (4) is proved.

Conversely, let γ : I −→ En be a unit-speed curve having nowhere vanishing n− 1 curvatures κγ 1,κγ 2, . . . ,κγ n−1, and f : I −→ R be a
nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive function F such that the statement (1) or the
statement (2) is true. Then, in either case, we must have〈

γ f (s),Tγ (s)
〉
= F(s). (4.7)

Differentiating (4.7) and then using the Frenet-Serret formulae (2.1), we finally obtain〈
γ f (s),Nγ (s)

〉
= 0.

This implies that γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

Next, we assume that the statement (3) is true. Then ‖γNγ

f ‖= a constant = c, say. Again, the normal component γ
Nγ

f is given by

γ f (s) = F(s)Tγ (s)+ γ
Nγ

f (s)
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and hence we have 〈
γ f (s),γ f (s)

〉
=
〈
γ f (s),Tγ (s)

〉2
+ c2. (4.8)

Differentiating (4.8) and then applying the Frenet-Serret formulae (2.1), we obtain〈
γ f (s),Nγ (s)

〉
= 0.

This proves that γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

Finally, we assume that the statement (4) is true. Then the first binormal component and the second binormal component of γ f are respectively
given by

〈
γ f (s),Bγ 1(s)

〉
=

κγ 1(s)
κγ 2(s)

F(s), (4.9)

〈
γ f (s),Bγ 2(s)

〉
=

1
κγ 3(s)

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
. (4.10)

Differentiating (4.9) and by using the Frenet-Serret formulae (2.1), we obtain

−κγ 2(s)
〈
γ f (s),Nγ (s)

〉
+κγ 3(s)

〈
γ f (s),Bγ 2(s)

〉
=

d
ds

(
κγ 1(s)
κγ 2(s)

F(s)
)
. (4.11)

Combining (4.10) and (4.11), we find 〈
γ f (s),Nγ (s)

〉
= 0.

Consequently, γ f lies in the rectifying space of γ and hence γ is an f -rectifying curve in En.

5. Classification of f -rectifying curves in En

In many papers (e.g., [3], [7], [8], [11] etc.), several interesting results were found primarily attempting towards the classification of rectifying
curves which are mostly based on their parametrizations. In this section, we attempt for the same in En and this classification is totally based
on the parametrizations of their f -position vector field.

Theorem 5.1. Let γ : I −→ En be a unit-speed curve (parametrized by arc-length s) having nowhere vanishing n− 1 curvatures
κγ 1,κγ 2, . . . ,κγ n−1 and let f : I −→ R be a nowhere vanishing integrable function with at least (n− 2)-times differentiable primitive
function F. Then γ is an f -rectifying curve in En if and only if, up to a parametrization, its f -position vector field γ f is given by

γ f (t) = c sec
(

t + arctan
(

F(s0)

c

))
β (t),

where c is a positive constant, s0 ∈ I and β : J −→ Sn−1(1) is a unit-speed curve having t : I −→ J as arc length function based at s0.

Proof. First, for some nowhere vanishing integrable function f : I −→ R with at least (n−2)-times differentiable primitive function F ,
let γ : I −→ En be an f -rectifying curve having nowhere vanishing n−1 curvatures κγ 1,κγ 2, . . . ,κγ n−1. Then by Theorem 4.1, the norm
function ρ = ‖γ f ‖is given by

ρ(s) =
√

F2(s)+ c2, (5.1)

where we may choose c as a positive constant. Now, we define a curve β : I −→ En by

β (s) :=
1

ρ(s)
γ f (s). (5.2)

Then we find

〈β (s),β (s)〉= 1. (5.3)

Therefore, β is a curve in the unit-sphere Sn−1(1). Differentiating (5.3), we get〈
β (s),β ′(s)

〉
= 0. (5.4)

Now, from (5.1) and (5.2), we obtain

γ f (s) = β (s)
√

F2(s)+ c2. (5.5)

Again, differentiating (5.5), we obtain

f (s)Tγ (s) = β
′(s)
√

F2(s)+ c2 +
β (s) f (s)F(s)√

F2(s)+ c2
. (5.6)
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Using (5.3), (5.4) and (5.6), we obtain 〈
β
′(s),β ′(s)

〉
=

c2 f 2(s)(
F2(s)+ c2

)2 . (5.7)

Therefore, we get ∥∥β
′(s)
∥∥=√〈β ′(s),β ′(s)〉= c f (s)

F2(s)+ c2 . (5.8)

Now, for some s0 ∈ I, let t : I −→ J be arc-length parameter of β given by

t =
∫ s

s0

∥∥y′(u)
∥∥du. (5.9)

Then we have

t =
∫ s

s0

c f (u)
F2(u)+ c2 du

=⇒ t = arctan
(

F(s)
c

)
− arctan

(
F(s0)

c

)
=⇒ s = F−1

(
c tan

(
t + arctan

(
F(s0)

c

)))
. (5.10)

Substituting (5.10) in (5.5), we obtain the f -position vector field of γ as follows:

γ f (t) = c sec
(

t + arctan
(

F(s0)

c

))
β (t).

Conversely, let γ be a unit-speed curve in En such that, up to a parametrization, its f -position vector field γ f is defined by

γ f (t) := c sec
(

t + arctan
(

F(s0)

c

))
β (t), (5.11)

where c is a positive constant and β : J −→ Sn−1(1) is a unit-speed curve having t : I −→ J as arc length function based at s0. Differentiating
(5.11), we obtain

γ f
′(t) = c sec

(
t + arctan

(
F(s0)

c

))[
tan
(

t + arctan
(

F(s0)

c

))
β (t)+1

]
β
′(t). (5.12)

Since β is a unit-speed curve in the unit-sphere Sn−1(1), we have 〈β ′(t),β ′(t)〉= 1, 〈β (t),β (t)〉= 1 and consequently 〈β (t),β ′(t)〉= 0.
Therefore, from (5.11) and (5.12), we have〈

γ f (t),γ f (t)
〉

= c2 sec2
(

t + arctan
(

F(s0)

c

))
, (5.13)

〈
γ f (t),γ f

′(t)
〉

= c2 sec2
(

t + arctan
(

F(s0)

c

))
tan
(

t + arctan
(

F(s0)

c

))
, (5.14)

〈
γ f
′(t),γ f

′(t)
〉

= c2 sec4
(

t + arctan
(

F(s0)

c

))
. (5.15)

Now, if we put

t = arctan
(

F(s)
c

)
− arctan

(
F(s0)

c

)
,

then s becomes arc length parameter of γ and equations (5.13), (5.14), (5.15) reduce to〈
γ f (s),γ f (s)

〉
= c2 sec2

(
F(s)

c

)
, (5.16)

〈
γ f (s),γ f

′(s)
〉

= c2 sec2
(

F(s)
c

)
tan
(

F(s)
c

)
, (5.17)

〈
γ f
′(s),γ f

′(s)
〉

= c2 sec4
(

F(s)
c

)
. (5.18)

Again, the normal component γ
Nγ

f of γ f is given by〈
γ

Nγ

f (s),γNγ

f (s)
〉
=
〈
γ f (s),γ f (s)

〉
−
〈
γ f (s),γ f

′(s)
〉2〈

γ f
′(s),γ f

′(s)
〉 .

Then substituting (5.16), (5.17)) and (5.18) in the previous equation, we obtain〈
γ

Nγ

f (s),γNγ

f (s)
〉
=
∥∥∥γ

Nγ

f (s)
∥∥∥2

= c2.

This implies that the normal component γ
Nγ

f of γ f has a constant length. Also, the norm function ρ = ‖γ f ‖ is given by

ρ(s) =
√〈

γ f (s),γ f (s)
〉
= c sec

(
F(s)

c

)
and it is non-constant. Therefore, by applying the Theorem 4.1, we conclude that γ is an f -rectifying curve in En.
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6. Conclusion

It goes without saying that f -rectifying curves in Euclidean spaces are a sort of generalizations of rectifying curves therein. In this paper,
we presented a study on f -rectifying curves in Euclidean n-space En. Predominantly, we explored two main theorems demonstrating
some necessary and sufficient conditions for a regular curve to be an f -rectifying curve in En. The first theorem portrays some geometric
characterizations of f -rectifying curves in En in connection with norm functions, tangential, normal and n−2 binormal components of their
f -position vector field. Whereas the second theorem classifies such curves based on parametrization of their f -position vector field. Moreover,
it yields an important characterization: namely, the f -position vector field of an f -rectifying curve in En is a dilation of a unit-speed curve in
the unit (n−1)-sphere Sn−1(1) with dilation factor c sec

(
t + arctan

(
F(s0)

c

))
for some constants c > 0 and s0. Extensions of such study to

other ambient spaces may be considered as problems of interest.
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Abstract

In this paper, we establish some Hermite-Hadamard type inequalities for s-convex functions
in the first and second sense. Some applications to special means for real numbers are also
given.

1. Introduction

Let f : I ⊂ R→ Rbe a convex function on the interval I of real numbers and a,b ∈ I with a < b. The inequality

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
.

is known as Hermite-Hadamard’s inequality for convex functions [4].
In [13] and [4, pp.278]), the following concept was introduced by Orlicz.
A function f : R+→ R, where R+ = [0,∞), is said to be s-convex in the first sense if:

f (α1u+β1v)≤ α1
s f (u)+β1

s f (v),

for all u,v ∈ R+, α1,β1 ≥ 0and s ∈ (0,1] with α1
s +β1

s = 1. The class of s-convex
functions in the first sense is usually denoted with K1

s .
In [9] and [4, pp.288]), Hudzik and Maligranda considered, among others, the class of functions which is s-convex in the second sense. This
class is defined in the following way:
f : [0,∞)→ R is called s-convex in the second sense if

f (λx+(1−λ )y)≤ λ
s f (x)+(1−λ )s f (y)

holds for all x,y ∈ [0,∞),λ ∈ [0,1] and for some fixed s ∈ (0,1]. The class of s-convex functions in the second sense is usually denoted with
K2

s .
In [5], S.S. Dragomir and S. Fitzpatrick proved a variant of Hadamard’s inequality which holds for s-convex functions in the second sense:

Theorem 1.1: Suppose that
∣∣∣ 1

b−a
∫ b

a f (x)dx− f
(

a+b
2

)∣∣∣≤ (b−a)
( 1

8
)1− 1

q (M1/q +N1/q)(| f ′(a)|+ | f ′(b)|) is an s-convex function in the

second sense, where s ∈ (0,1)and let a1 = | f ′(a)|p ,b1 = 2 | f ′(b)|p ,a2 = 2 | f ′(a)|p ,b2 = | f ′(b)|p. If f ∈ L1([a,b]), then the following
inequalities hold:

2s−1 f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

s+1
. (1.1)
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The constant k = 1/(s+1) is the best possible in the second inequalitiy in (1.1).
In [6], S.S. Dragomir presented the following result:
Theorem 1.2: Let f : [a,b]→ R be a L-Lipschitzian mapping on [a,b]. Then

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ 5
36

L(b−a)2. (1.2)

In [7], S.S. Dragomir et al. gave the following result:
Theorem 1.3: Suppose f : [a,b]→ R is a differentiable mapping whose derivative is continuous on (a,b) and f ′ ∈ L1([a,b]). Then

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ (b−a)
3

∥∥ f ′
∥∥

1, (1.3)

where ‖ f ′‖1 =
∫ b

a | f ′(x)|dx.
Note that the bound of (1.3) for L-Lipschitzian is 5

36 L(b−a) [7].
In [16], Y. Shuang and F. Qi established the following results:
Theorem 1.4 ([16,Theorem 3.5]): Let f : Ro = (0,∞]→ R be a differentiable function on Ro, a,b ∈ Ro with a < b and f ′ ∈ L1([a,b]). If
| f ′|qis (α,m)-convex on [0, b

m ] for (α,m) ∈ (0,1]2 and q > 1, then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 3

4
f
(

a+b
2

)
− f (a)+ f (b)

8

∣∣∣∣

≤ b−a
4

 (q−1)(3
2q−1
q−1 +1)

2
2(2q−1)

q−1 (2q−1)

1−1/q [
1

α +1

∣∣ f ′ (a)∣∣q + mα

α +1

∣∣∣∣ f ′(a+b
2m

)∣∣∣∣q]1/q

+

[
1

α +1

∣∣∣∣ f ′(a+b
2

)∣∣∣∣q + mα

α +1

∣∣∣∣ f ′( b
m

)∣∣∣∣q]1/q

Theorem 1.5 ([16,Corollary 3.6]): Under the assumptions of Theorem 1.4, if α = m = 1, then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 3

4
f
(

a+b
2

)
− f (a)+ f (b)

8

∣∣∣∣

≤ (b−a)
4

 (q−1)(3
2q−1
q−1 +1)

2
2(2q−1)

q−1 (2q−1)

1− 1
q


 | f ′ (a)|q +

∣∣∣ f ′( a+b
2

)∣∣∣q
2

1/q

+


∣∣∣ f ′( a+b

2

)∣∣∣q + | f ′ (b)|q
2

1/q . (1.4)

In [17], Y. Shuang et al. gave the following results:
Theorem 1.6 ([17,Theorem 3.2]): Let f : I ⊂ Ro→ R be a differentiable function on Io, a,b ∈ I with a < b and f ′ ∈ L1([a,b]). If | f ′|qis
s-convex function on [a,b] for some fixed s ∈ (0,1] and q > 1, then∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− 4

5
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣
≤ (b−a)

4

 (q−1)(4
2q−1
q−1 +1)

5
(2q−1)

q−1 (2q−1)

1− 1
q


 | f ′ (a)|q +

∣∣∣ f ′( a+b
2

)∣∣∣q
s+1

1/q

+


∣∣∣ f ′( a+b

2

)∣∣∣q + ∣∣∣ f ′(b)∣∣∣q
s+1

1/q .

Theorem 1.7 ([17,Corollary 3.3]): Under the assumptions of Theorem 1.6, for s=1, then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 4

5
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣

≤ (b−a)
4

 (q−1)(4
2q−1
q−1 +1)

5
(2q−1)

q−1 (2q−1)

1− 1
q



∣∣∣ f ′(a)∣∣∣q + ∣∣∣ f ′( a+b

2 )
∣∣∣q

2

1/q

+


∣∣∣ f ′( a+b

2 )
∣∣∣q + ∣∣∣ f ′(b)∣∣∣q

2

1/q . (1.5)

In [8], T. Du et al. gave the following results:
Theorem 1.8 [8,Corollary 2.8]): Let f : I ⊂ Ro → R be a differentiable function on Io, where a,b ∈ Io such that 0 < a < b. If t = k =
1
2 , −1 < s≤ 1 and m = 1, the inequality holds for (s,m)-convex functions:∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

81− 1
q

(
1

2s+2 (s+1)(s+2)

) 1
q

×{
[∣∣∣ f ′(b)∣∣∣q +(s2s+1 +1

)∣∣∣ f ′(a)∣∣∣q] 1
q
+
[∣∣∣ f ′(a)∣∣∣q +(s2s+1 +1

)∣∣∣ f ′(b)∣∣∣q] 1
q }. (1.6)
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Theorem 1.9 ([8,Corollary 2.5]): Let f : I ⊂ Ro→ R be a differentiable function on Io, where a,b ∈ Io such that 0 < a < b. If the mapping
| f ′|p/(p−1) is (s,m)-convex on [a,b], then we get, for t = k = 1

2 and m = 1,∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

(p+1)
1
p

(
1

2(s+1)

) 1
q
(

1
2

)1+ 1
p

×
{[∣∣∣ f ′(a)∣∣∣q + ∣∣∣ f ′( a+b

2 )
∣∣∣q]1/q

+
[∣∣∣ f ′( a+b

2 )
∣∣∣q + ∣∣∣ f ′(b)∣∣∣q]1/q

}
. (1.7)

In [12], U.S. Kırmacı et al. gave the following result:
Theorem 1.10 ([12,Theorem 3]): Let f : I→ R, I ⊂ [0,∞) be a differentiable function on Io such that f ′ ∈ L1([a,b]), where a,b ∈ I, a < b.
If | f ′|qis s-convex function on [a,b] for some fixed s ∈ (0,1) and q > 1, then∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a
2

×
{[∣∣∣ f ′(a)∣∣∣q + ∣∣∣ f ′( a+b

2 )
∣∣∣q]1/q

+
[∣∣∣ f ′( a+b

2 )
∣∣∣q + ∣∣∣ f ′(b)∣∣∣q]1/q

}
. (1.8)

In [10], author gave some inequalities for differentiable convex and concave mappings with applications to special means of real numbers.
The aim of this paper is to establish refinements inequalities of Hermite-Hadamard type for s-convex functions in the second sense.
In the development of pure and applied mathematics, convexity has played a key role. In linear programing, combinatory, orthogonal
polynomials, quantum theory, number theory, optimization theory, dynamics and in the theory of relativity, integral inequalities have various
applications.
For several recent results concerning integral inequalities for convex, quasi-convex, s-convex and (α,m)−convex functions, we refer the
reader to [1-18].
Throughout we suppose I is an interval on R and a,b,c,A,B ∈ I0 with a≤ A≤ c≤ B≤ b. (c 6= a,b), p,q ∈ R and f : I0→ R is differentiable.
(I0denotes the interior of I.)

2. Main Results

First, we give the following Lemma.
Lemma 2.1 [10]: Let f : I0 ⊂ R→ R be a differentiable mapping on I0, a,b ∈ I0 with a < b. If f ′ ∈ L1([a,b]), then we have

f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1
b−a

∫ b

a
f (x)dx

= (a−b)
[∫ c

0
(t−A) f ′(ta+(1− t)b)dt +

∫ 1

c
(t−B) f ′(ta+(1− t)b)dt

]
,

where a,b,c,A,B ∈ I0 with a≤ A≤ c≤ B≤ b.

Proof: Let S:[a,b]→ R be defined by

S(t) =
{

t−A , t ∈ [0,c]
t−B , t ∈ (c,1]

,
.

Integrating by parts and using the change of the variable x = ta+(1− t)b, we have∫ 1

0
S(t) f ′(ta+(1− t)b)dt =

∫ c

0
(t−A) f ′(ta+(1− t)b)dt +

∫ 1

c
(t−B) f ′(ta+(1− t)b)dt

=
1

a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a

∫ b

a
f (x)dx

]
.

Hence we have the conclusion.

Remark 2.2: i). Applying Lemma 2.1 for c = 1/2, then we obtain the Lemma 2.1 given by T. Du et al. in [8, (for m=1)].
ii). Applying Lemma 2.1 for A = 1

6 , B = 5
6 and c = 1/2 , then we obtain the Lemma 2.1 given by Qaisar and He in [15,(for m=1)].

iii). Applying Lemma 2.1 for A = B = c = 1
2 , then we get the Lemma 2.1 given by S.S.Dragomir and R.P. Agarwal in [3].

iv). Applying Lemma 2.1 for A = 0, B = 1 and c = 1
2 , then we get the Lemma 2.1 given by author in [11].

In the following theorems, we present generalized integral inequalities via s-
convex mappings in the first and second sense.
Theorem 2.3: Let f : I0 ⊂ R→ R be a differentiable mapping on I0 and let p > 1. If
| f ′|p/(p−1) is s-convex mapping in the second sense on [a,b] for some fixed s ∈ (0,1], then we have
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∣∣∣ 1
a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a
∫ b

a f (x)dx
]∣∣∣

≤
[

Ap+1+(c−A)p+1

p+1

]1/p( cs+1| f ′(a)|q+(1−(1−c)s+1)| f ′(b)|q
s+1

)1/q
+
[
(B−c)p+1+(1−B)p+1

p+1

]1/p( (1−cs+1)| f ′(a)|q+(1−c)s+1| f ′(b)|q
s+1

)1/q
.

(2.1)

Proof: From Lemma 2.1, we have

∣∣∣ 1
a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a
∫ b

a f (x)dx
]∣∣∣

≤
∫ c

0 |t−A| | f ′(ta+(1− t)b)|dt +
∫ 1

c |t−B| | f ′(ta+(1− t)b|dt.
(2.2)

Using the Hölder’s inequality for p > 1, we have

∣∣∣∣ 1
a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a

∫ b

a
f (x)dx

]∣∣∣∣ (2.3)

≤
(∫ c

0
|t−A|p dt

)1/p(∫ c

0

∣∣ f ′(ta+(1− t)b)
∣∣q dt

)1/q
+

(∫ 1

c
|t−B|p dt

)1/p(∫ 1

c

∣∣ f ′(ta+(1− t)b
∣∣q dt

)1/q

,

where 1
p +

1
q = 1.Since | f ′|q is s- convex mapping in the second sense on [a,b], we

obtain ∫ c

0

∣∣ f ′(ta+(1− t)b)
∣∣q dt ≤

∫ c

0

[
ts ∣∣ f ′(a)∣∣q +(1− t)s ∣∣ f ′(b)∣∣q]dt =

cs+1 | f ′(a)|q +(1− (1− c)s+1) | f ′(b)|q

s+1
(2.4)

and ∫ 1

c

∣∣ f ′(ta+(1− t)b)
∣∣q dt ≤

∫ 1

c

[
ts ∣∣ f ′(a)∣∣q +(1− t)s ∣∣ f ′(b)∣∣q]dt =

(1− cs+1) | f ′(a)|q +(1− c)s+1 | f ′(b)|q

s+1
. (2.5)

Where, ∫ 1

c
tsdt =

1− cs+1

s+1
,
∫ 1

c
(1− t)sdt =

(1− c)s+1

s+1
,

∫ c

0
(1− t)sdt =

1− (1− c)s+1

s+1
,

∫ c

0
tsdt =

cs+1

s+1
.

Also, we have

Pp =
∫ c

0
|t−A|p dt =

∫ A

0
(A− t)pdt +

∫ c

A
(t−A)pdt =

Ap+1 +(c−A)p+1

p+1
, (2.6)

Mp =
∫ 1

c
|t−B|p dt =

∫ B

c
(B− t)pdt +

∫ 1

B
(t−B)pdt =

(B− c)p+1 +(1−B)p+1

p+1
. (2.7)

A combination of (2.3)-(2.7) gives the required inequality (2.1).

Corollary 2.4: Under the assumptions of Theorem 2.3,
i). When A = 0, B = 1, c = 1/2, we have∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣
≤ b−a

(p+1)
1
p 2

p+1
p (s+1)

1
q

[[(
1

2s+1

∣∣∣ f ′(a)∣∣∣q +(1− 1
2s+1

)∣∣∣ f ′(b)∣∣∣q) 1
q

]
+

[(
1− 1

2s+1

)∣∣∣ f ′(a)∣∣∣q +( 1
2s+1

∣∣∣ f ′(b)∣∣∣q) 1
q

]]
.

Using the fact that

n

∑
k=1

(ak +bk)
s ≤

n

∑
k=1

as
k +

n

∑
k=1

bs
k, (2.8)

for 0≤ s < 1, we obtain∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

(p+1)
1
p 2

p+1
p (s+1)

1
q

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .

For p > 1, then p+1 > 2 and so
1

(p+1)
1
p

<
1

2
1
p

and also
1

(s+1)
1
q

≤ 1,
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for s ∈ (0,1) , q ∈ (1,∞). Hence, we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

2.4
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣).

ii). When A = B = c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

2.4
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣).

iii). When A = 1
4 ,B = 3

4 ,c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 1

2
( f
(

a+b
2

)
+

f (a)+ f (b)
2

)

∣∣∣∣
≤ b−a

4.4
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
iv). When A = 1

6 ,B = 5
6 ,c = 1/2, we get

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ (b−a)
(
2p+1 +1

) 1
p

6.(12)
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
v). When A = 1

8 , B = 7
8 ,c =

1
2 , we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 3

4
f
(

a+b
2

)
− f (a)+ f (b)

8

∣∣∣∣≤ (b−a)
(
3p+1 +1

) 1
p

8.(16)
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
vi). When A = 1

10 ,B = 9
10 ,c =

1
2 , we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 4

5
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣≤ (b−a)
(
4p+1 +1

) 1
p

10.(20)
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
vii). When A = 1

12 ,B = 11
12 ,c =

1
2 , we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 5

6
f
(

a+b
2

)
− f (a)+ f (b)

12

∣∣∣∣≤ (b−a)
(
5p+1 +1

) 1
p

12.(24)
1
p

(
1

2
(s+1)

q

+

(
1− 1

2s+1

) 1
q

)(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
Theorem 2.5: Let f : I0 ⊂ R→ R be a differentiable mapping on I0 and let p > 1. If
| f ′|p/(p−1) is s-convex mapping in the first sense on[a,b] for some fixed s ∈ (0,1], then we have∣∣∣∣ 1

a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a

∫ b

a
f (x)dx

]∣∣∣∣ (2.9)

≤ Pp
1/p
(

cs+1 | f ′(a)|q +(c(s+1)− cs+1) | f ′(b)|q

s+1

)1/q

(2.10)

+ Mp
1/p
(
(1− cs+1) | f ′(a)|q +((1− c)(s+1)− (1− cs+1)) | f ′(b)|q

s+1

)1/q

(2.11)

Where Pp and Mp are as in (2.6) and (2.7) respectively.

Proof: From Lemma 2.1 and using the Hölder’s inequality for p > 1, we get inequality (2.3). Since | f ′|qis s- convex mapping in the first
sense on [a,b], we obtain∫ c

0

∣∣ f ′(ta+(1− t)b)
∣∣q dt ≤

∫ c

0

[
ts ∣∣ f ′(a)∣∣q +(1− ts)

∣∣ f ′(b)∣∣q]dt =
cs+1 | f ′(a)|q +(c(s+1)− cs+1) | f ′(b)|q

s+1
(2.12)

and ∫ 1

c

∣∣ f ′(ta+(1− t)b)
∣∣q dt ≤

∫ 1

c

[
ts ∣∣ f ′(a)∣∣q +(1− ts)

∣∣ f ′(b)∣∣q]dt

=
(1− cs+1) | f ′(a)|q +((1− c)(s+1)− (1− cs+1)) | f ′(b)|q

s+1
, (2.13)
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where,∫ 1
c tsdt = 1−cs+1

s+1 ,
∫ 1

c (1− ts)dt = 1− c− 1−cs+1

s+1 ,
∫ c

0 (1− ts)dt = c− cs+1

s+1 ,
∫ c

0 tsdt = cs+1

s+1 . From (2.3),(2.6),(2.7),(2.12) and (2.13), we

deduce required inequality (2.9).
Theorem 2.6: Let f : I0 ⊂ R→ R be a differentiable mapping on I0 and let p > 1. If
| f ′|p/(p−1) is s-convex mapping in the second sense on [a,b] for some fixed s ∈ (0,1), then we have∣∣∣∣ 1

a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a

∫ b

a
f (x)dx

]∣∣∣∣ ≤ Pp
1/p
(

c
| f ′ (ca+(1− c)b)|q + | f ′(b)|q

s+1

)1/q

(2.14)

+ Mp
1/p
(
(1− c)

| f ′(a)|q + | f ′ (ca+(1− c)b)|q

s+1

)1/q

.

Where Pp and Mp are as in (2.6) and (2.7) respectively.

Proof: : From Lemma 2.1 and using the Hölder’s inequality for p > 1, we get inequality (2.3). Let us substitute x = ta+(1− t)b and dx =
(a−b)dt, we get∫ c

0

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ 1

a−b

∫ ac+(1−c)b

b

∣∣ f ′(x)∣∣q dx =
c

(a−b)c

∫ ac+(1−c)b

b

∣∣ f ′(x)∣∣q dx

and ∫ 1

c

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ 1

a−b

∫ a

ac+(1−c)b

∣∣ f ′(x)∣∣q dx =
1− c

(a−b)(1− c)

∫ a

ac+(1−c)b

∣∣ f ′(x)∣∣q dx.

Since | f ′|qis s-convex mapping in the second sense on [a,b], using the above inequalities and by inequality (1.1), we have∫ c

0

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ c

| f ′ (ca+(1− c)b)|q + | f ′(b)|q

s+1
(2.15)

and ∫ 1

c

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ (1− c)

| f ′(a)|q + | f ′ (ca+(1− c)b)|q

s+1
. (2.16)

From (2.3),(2.6),(2.7),(2.15) and (2.16), we obtain required inequality (2.14).
Corollary 2.7: Under the assumptions of Theorem 2.6, using the inequality (2.8) and
since 1

(p+1)
1
p
< 1

2
1
p

and 1

(s+1)
1
q
≤ 1,

i). When A = 0, B = 1, c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

4.2
1
p

(
2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .

ii). When A = B = c = 1/2, we get∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

4.2
1
p

(
2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) . (2.17)

iii). When A = 1
4 ,B = 3

4 ,c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 1

2
( f
(

a+b
2

)
+

f (a)+ f (b)
2

)

∣∣∣∣≤ b−a

8.4
1
p

(
2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .

iv). When A = 1
6 ,B = 5

6 ,c = 1/2, we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ (b−a)
(
2p+1 +1

) 1
p

12.6
1
p

(2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣++

∣∣ f ′(b)∣∣).
v). When A = 1

8 ,B = 7
8 ,c = 1/2, we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 3

4
f
(

a+b
2

)
− f (a)+ f (b)

8

∣∣∣∣≤ (b−a)
(
3p+1 +1

) 1
p

16.8
1
p

(2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+ +

∣∣ f ′(b)∣∣). (2.18)

vi). When A = 1
10 ,B = 9

10 ,c = 1/2, we get

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 4

5
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣≤ (b−a)
(
4p+1 +1

) 1
p

20.10
1
p

(2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+

+
∣∣ f ′(b)∣∣). (2.19)
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vii). When A = 1
12 ,B = 11

12 ,c = 1/2, we get

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 5

6
f
(

a+b
2

)
− f (a)+ f (b)

12

∣∣∣∣≤ (b−a)
(
5p+1 +1

) 1
p

24.12
1
p

(
2
∣∣∣ f ′( a+b

2 )
∣∣∣+ ∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .

Remark 2.8: The followings are observed that:
i) The inequality (2.18) is a refinement of inequality (1.4) presented by Y. Shuang and
F. Qi in [16]
ii) The inequality (2.19) ) is a refinement of inequality (1.5) presented by Y. Shuang
et al. in [17]
iii) The inequality (2.17) is both a refinement of inequality (1.7) given by T. Du et al.
in [8] and the inequality (1.8) given by Kirmaci et al. in [12].
Theorem 2.9: Let f : I0 ⊂ R→ R be a differentiable mapping on I0 and let p > 1.
If | f ′|p/(p−1) is s-concave mapping on[a,b] for some fixed s ∈ (0,1), then we have

∣∣∣∣ 1
a−b

[
f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1

b−a

∫ b

a
f (x)dx

]∣∣∣∣ (2.20)

≤ Pp
1/p
(

2s−1
∣∣ f ′ ( c

2 a+ 2−c
2 b
)∣∣q)1/q

+Mp
1/p
(

2s−1
∣∣ f ′ ( 1+c

2 a+ 1−c
2 b
)∣∣q)1/q

.

Where Pp and Mp are as in (2.6) and (2.7) respectively.

Proof: : From Lemma 2.1 and using the Hölder’s inequality for p > 1, we get inequality (2.3). Since | f ′|qis s-concave mapping on [a,b] and
using inequality (1.1), we have

∫ c

0

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ 2s−1

∣∣∣∣ f ′( c
2

a+
2− c

2
b
)∣∣∣∣q (2.21)

and ∫ 1

c

∣∣ f ′ (ta+(1− t)b)
∣∣q dt ≤ 2s−1

∣∣∣∣ f ′(1+ c
2

a+
1− c

2
b
)∣∣∣∣q . (2.22)

From (2.3),(2.6),(2.7),(2.21) and (2.22), we obtain required inequality (2.20).

Corollary 2.10: Under the assumptions of Theorem 2.9, using the inequality (2.8) and since 2(s−1)/q < 1 and 1

(p+1)
1
p
< 1

2
1
p

f or s ∈

(0,1) and q ∈ (1,∞),

i). When A = 0, B = 1, c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

(p+1)
1
p 2

p+1
p

2
s−1

q

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣]

≤ 1

2.4
1
p

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

ii). When A = B = c = 1
2 , we get∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ 1

2.4
1
p

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

iii). When A = 1
4 ,B = 3

4 ,c = 1/2, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 1

2
( f
(

a+b
2

)
+

f (a)+ f (b)
2

)

∣∣∣∣
≤ b−a

4.4
1
p

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

iv) When A = 1
6 ,B = 5

6 ,c = 1/2, we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ (b−a)
(
2p+1 +1

) 1
p

6
1
p +1

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .
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v). When A = 1
8 ,B = 7

8 ,c = 1/2, we have

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 3

4
f
(

a+b
2

)
− f (a)+ f (b)

8

∣∣∣∣≤ (b−a)
(
3p+1 +1

) 1
p

8
1
p +1

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

vi). When A = 1
10 ,B = 9

10 ,c = 1/2, we get

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 4

5
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣≤ (b−a)
(
4p+1 +1

) 1
p

10
1
p +1

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

vii). When A = 1
12 ,B = 11

12 ,c = 1/2, we get

∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 5

6
f
(

a+b
2

)
− f (a)+ f (b)

12

∣∣∣∣≤ (b−a)
(
5p+1 +1

) 1
p

12
1
p +1

[∣∣∣ f ′( a+3b
4 )
∣∣∣+ ∣∣∣ f ′( 3a+b

4 )
∣∣∣] .

Theorem 2.11: Let f : I0 ⊂ R→ R be a differentiable mapping on I0, a,b ∈ I0 with a < b and let p≥ 1. If the mapping | f ′|p is s-convex in
the first sense on [a,b] for some fixed s ∈ (0,1], then we have

∣∣∣ f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1
b−a

∫ b
a f (x)dx

∣∣∣
≤ (a−b)

{
P

1− 1
p

2
[
T1 | f ′(a)|p +(P2−T1) | f ′(b)|p

]1/p
+M

1− 1
p

2
[
N1 | f ′(a)|p +(M2−N1) | f ′(b)|p

]1/p
}
,

(2.23)

where,

P2 =
A2 +(c−A)2

2
,T1 =

2
(s+1)(s+2)

As+2 + cs+1
[

c
s+2

− A
s+1

]
,

M2 =
(B− c)2 +(1−B)2

2
,N1 =

2
(s+1)(s+2)

Bs+2 + cs+1
[

c
s+2

− B
s+1

]
+

1
s+2

− B
s+1

.

Proof: From Lemma 2.1, we get the inequality (2.2). By the power-mean inequality, we obtain

∫ c

0
|t−A|

∣∣ f ′(ta+(1− t)b
∣∣dt ≤

(∫ c

0
|t−A|dt

)1− 1
p
(∫ c

0
|t−A|

∣∣ f ′(ta+(1− t)b
∣∣p dt

)1/p
(2.24)

and ∫ 1

c
|t−B|

∣∣ f ′(ta+(1− t)b
∣∣dt ≤

(∫ 1

c
|t−B|dt

)1− 1
p
(∫ 1

c
|t−B|

∣∣ f ′(ta+(1− t)b)
∣∣p dt

)1/p

. (2.25)

Since | f ′|pis s-convex in the first sense, we have∫ c

0
|t−A|

∣∣ f ′(ta+(1− t)b
∣∣p dt ≤

∫ c

0
|t−A|

(
ts ∣∣ f ′(a)∣∣p +(1− ts)

∣∣ f ′(b)∣∣p)dt (2.26)

≤ T1

∣∣∣ f ′(a)∣∣∣p +(P2−T1)
∣∣ f ′(b)∣∣p

and ∫ 1

c
|t−B|

∣∣ f ′(ta+(1− t)b
∣∣p dt ≤

∫ 1

c
|t−B|

(
ts ∣∣ f ′(a)∣∣p +(1− ts)

∣∣ f ′(b)∣∣p)dt (2.27)

≤ N1
∣∣ f ′(a)∣∣p +(M2−N1)

∣∣ f ′(b)∣∣p .
where,

P2 =
∫ c

0
|t−A|dt =

∫ A

0
(A− t)dt +

∫ c

A
(t−A)dt =

A2 +(c−A)2

2
,

T1 =
∫ c

0
|t−A| tsdt =

∫ A

0
(A− t)tsdt +

∫ c

A
(t−A)tsdt =

2
(s+1)(s+2)

As+2 + cs+1
[

c
s+2

− A
s+1

]
,

M2 =
∫ 1

c
|t−B|dt =

∫ B

c
(B− t)dt +

∫ 1

B
(t−B)dt =

(B− c)2 +(1−B)2

2
,

N1 =
∫ 1

c
|t−B| tsdt =

∫ B

c
(B− t)tsdt +

∫ 1

B
(t−B)tsdt =

2
(s+1)(s+2)

Bs+2 + cs+1
[

c
s+2

− B
s+1

]
++

1
s+2

− B
s+1

(2.28)
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and

P2−T1 =
∫ c

0
|t−A|(1− t)dt =

∫ A

0
(A− t)(1− t)dt +

∫ c

A
(t−A)(1− t)dt,

M2−N1 =
∫ 1

c
|t−B|(1− t)dt =

∫ B

c
(B− t)(1− t)dt +

∫ 1

B
(t−B)(1− t)dt.

A combination of (2.2) and (2.24)-(2.28) gives the required inequality (2.23).
Theorem 2.12: Let f : I0 ⊂ R→ R be a differentiable mapping on I0, a,b ∈ I0 with a < b and let p≥ 1. If the mapping | f ′|p is s-convex in
the second sense on [a,b] for some fixed s ∈ (0,1], then we have

∣∣∣ f (ca+(1− c)b)(B−A)+ f (a)(1−B)+ f (b)A− 1
b−a

∫ b
a f (x)dx

∣∣∣
≤ (a−b)

{
P

1− 1
p

2
[
T1 | f ′(a)|p +T2 | f ′(b)|p

]1/p
+M

1− 1
p

2
[
N1 | f ′(a)|p +N2 | f ′(b)|p

]1/p
}
,

(2.29)

where,

T2 =
A

s+1
+

2(1−A)s+2

(s+1)(s+2)
− (1− c)s+1

[
c−A
s+1

+
1− c

(s+1)(s+2)

]
− 1

(s+1)(s+2)
,

N2 =
2(1−B)s+2

(s+1)(s+2) +(1− c)s+1
[

B−c
s+1 −

1−c
(s+1)(s+2)

]
andP2,M2,T1,N1 are as in (2.28).

Proof: From Lemma 2.1, we have the inequality (2.2). By the power-mean inequality, we get inequalities (2.24) and (2.25). Since | f ′|pis
s-convex mapping in the second sense on [a,b], we have∫ c

0
|t−A|

∣∣ f ′(ta+(1− t)b
∣∣p dt ≤

∫ c

0
|t−A|

(
ts ∣∣ f ′(a)∣∣p +(1− t)s ∣∣ f ′(b)∣∣p)dt ≤ T1

∣∣ f ′(a)∣∣p +T2
∣∣ f ′(b)∣∣p (2.30)

and ∫ 1

c
|t−B|

∣∣ f ′(ta+(1− t)b
∣∣p dt ≤

∫ 1

c
|t−B|

(
ts ∣∣ f ′(a)∣∣p +(1− t)s ∣∣ f ′(b)∣∣p)dt ≤ N1

∣∣ f ′(a)∣∣p +N2
∣∣ f ′(b)∣∣p . (2.31)

Where,

T2 =
∫ c

0
|t−A|(1− t)sdt =

∫ A

0
(A− t)(1− t)sdt +

∫ c

A
(t−A)(1− t)sdt

=
A

s+1
+

2(1−A)s+2

(s+1)(s+2)
− (1− c)s+1

[
c−A
s+1

+
1− c

(s+1)(s+2)

]
− 1

(s+1)(s+2)
,

N2 =
∫ 1

c
|t−B|(1− t)sdt =

∫ B

c
(B− t)(1− t)sdt +

∫ 1

B
(t−B)(1− t)sdt

=
2(1−B)s+2

(s+1)(s+2)
+(1− c)s+1

[
B− c
s+1

− 1− c
(s+1)(s+2)

]
(2.32)

and T1,N1 are as in (2.28). A combination of (2.2),(2.24),(2.25), (2.30),(2.31) and
(2.32) gives the required inequality (2.29).
Corollary 2.13: Under the assumptions of Theorem 2.12 and using the inequality (2.8),
i) When A = 0, B = 1, c = 1/2, we have∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

81− 1
p

[(T
1
p

1′ +N
1
p

1′ )
∣∣∣ f ′(a)∣∣∣+(T

1
p

2′ +N
1
p

2′ )
∣∣∣ f ′(b)∣∣∣], (2.33)

where,

T1′ =
1

2s+2(s+2)
, N1′ =

2s+2− s−3
2s+2(s+1)(s+2)

, T2′ =
2s+2− s−3

2s+2(s+1)(s+2)
, N2′ =

s+1
2s+2(s+1)(s+2)

.

Taking s=1 and p=1 in (2.33) yields∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (

a+b
2

)

∣∣∣∣≤ b−a

81− 1
p

[(
1

24

1
p
+

1
12

1
p
)(
∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣)]

≤ b−a
8

(
∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣).

ii) When A = B = c = 1
2 , we have∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

81− 1
p

[(T
1
p

1′′ +N
1
p

1′′)
∣∣∣ f ′(a)∣∣∣+(T

1
p

2′′ +N
1
p

2′′)
∣∣∣ f ′(b)∣∣∣], (2.34)
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where,

T1′′ =
1

2s+2(s+1)(s+2)
, N1′′ =

s2s+1 +1
2s+2(s+1)(s+2)

, T2′′ =
s2s+1 +1

2s+2(s+1)(s+2)
, N2′′ =

1
2s+2(s+1)(s+2)

.

Taking s=1 and p=1 in (2.34) yields∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ b−a

81− 1
p

[(
1
48

1
p
+

5
48

1
p
)(
∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣)]

≤ b−a
8

(∣∣∣ f ′(a)∣∣∣+ ∣∣∣ f ′(b)∣∣∣) .
iii) When A = 1

6 , B = 5
6 , c = 1

2 and s = 1, we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ (b−a)
(

5
72

)1− 1
p

(
90

1296
)
1/p

(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣)

≤ 5(b−a)
72

(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣).

If | f ′(x)| ≤ L, then we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 2

3
f
(

a+b
2

)
− f (a)+ f (b)

6

∣∣∣∣≤ 5(b−a)
36

L. (2.35)

iv) When A = 1
10 , B = 9

10 , c = 1
2 and s = 1, we have∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− 8

10
f
(

a+b
2

)
− f (a)+ f (b)

10

∣∣∣∣≤ (b−a)
(

17
200

)1− 1
p

(
17
200

)
1/p

(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣)

≤ 17(b−a)
200

(
∣∣∣ f ′(a)∣∣∣+ ∣∣ f ′(b)∣∣).

Remark 2.14: The followings are observed that
i)The inequality (2.34) is a refinement of inequality (1.6) presented by Du et al. in [8]
ii) The inequality (2.35) is a refinement of inequality (1.2) established by Dragomir et al. in [6] and the same as inequality (1.3) presented by
Dragomir in [7].

3. Applications To Special Means

We shall consider the means for arbitrary real numbers α ,β ,α 6=β . We take
A(α ,β ) = α+β

2 , α ,β∈R, (arithmetic mean)

Ln(α ,β ) =
[

β n+1−αn+1

(n+1)(β−α)

]1/n
, n∈Z\{-1,0}, α ,β∈R, α 6=β , (generalized log-mean)

In [9] and [4, pp 288], the following example is given:
Let s ∈ (0,1)and a,b,c ∈ R. We define function f : [0,∞)→ R as

f (t) =
{

a, t = 0
bts + c, t > 0

if b≥ 0 and 0≤ c≤ a, then f ∈ K2
s . Hence, for a = c = 0,b = 1, we have f (t) = ts, f : [0,1]→ [0,1], f ∈ K2

s .

Now, using the results of Section 2, we give some applications to special means of real
numbers.

Proposition 3.1: Let a,b ∈ Io, 0 < a < b and 0 < s < 1. Then we have, for all p > 1

i) |Ls
s (a,b)−As(a,b)| ≤ s(b−a)

4
1
p

( 1

2
(s+1)

q
+
(
1− 1

2s+1

) 1
q )A(|a|s−1, |b|s−1).

ii) |Ls
s (a,b)−A(as,bs)| ≤ s(b−a)

4
1
p

( 1

2
(s+1)

q
+
(
1− 1

2s+1

) 1
q )A(|a|s−1, |b|s−1).

Proof: The assertions follow from Corollaries 2.4-i and 2.4-ii applied to the mapping f (x) = xs, f : [0,1]→ [0,1], respectively.
Proposition 3.2: Let a,b ∈ Io, 0 < a < b and 0 < s < 1. Then we have, for all p > 1
i)|Ls

s (a,b)−As(a,b)| ≤ s(b−a)

2
1
p +1

(|A(a,b)|s−1 +A(|a|s−1, |b|s−1)).

ii) |Ls
s (a,b)−A(as,bs)| ≤ s(b−a)

2
1
p +1

(|A(a,b)|s−1 +A(|a|s−1, |b|s−1)).

iii)
∣∣∣ Ls

s(a,b)−
3As(a,b)

4 − A(as,bs)
8

∣∣∣≤ s(b−a)(3p+1+1)
1
p

8
1
p +1

(
(
|A(a,b)|s−1 +A

(
|a|s−1, |b|s−1

))
.

Proof: The assertions follow from Corollaries 2.7-i, 2.7-ii and 2.7-v applied to the mapping f (x) = xs, f : [0,1]→ [0,1], respectively.
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Proposition 3.3: Let a,b ∈ Io, 0 < a < b and 0 < s < 1. Then we have, for all p≥ 1

i)|Ls
s (a,b)−As(a,b)| ≤ s(b−a)

4.8−
1
p

A(

T
1
p

1′+N
1
p

1′

 |a|s−1,

T
1
p

2′+N
1
p

2′

 |b|s−1).

ii) |Ls
s (a,b)−A(as,bs)| ≤ s(b−a)

4.8−
1
p

A(
(

T
1
p

1′′
+N

1
p

1′′

)
|a|s−1,

(
T

1
p

2′′
+N

1
p

2′′

)
|b|s−1).

iii)
∣∣∣Ls

s(a,b)−
2As(a,b)

3 − A(as,bs)
6

∣∣∣≤ 5s(b−a)
36 A

(
|a|s−1, |b|s−1

)
.

Proof: The assertions follow from Corollaries 2.13-i, 2.13-ii and 2.13-iii applied to the mapping f (x) = xs, f : [0,1]→ [0,1], respectively.
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