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Research Article

Continuous prime systems satisfying N(x) = c(x− 1) + 1

JAN-CHRISTOPH SCHLAGE-PUCHTA*

ABSTRACT. Hilberdink showed that a continuous prime system for which there exists a constant A such that the
function N(x)− Ax is periodic satisfies N(x) = c(x− 1) + 1. He further showed that there exists a constant c0 > 2,
such that there exists a continuous prime system of this form if and only if c ≤ c0. Here, we determine c0 numerically
to be 1.25479 · 1019 ± 2 · 1014. To do so we compute a representation for a twisted exponential function as a sum
over the roots of the Riemann zeta function. We then give explicit bounds for the error obtained when restricting the
occurring sum to a finite number of zeros. .

Keywords: Beurling primes, explicit formulae, continuous prime systems, Riemann zeta function.

2020 Mathematics Subject Classification: 11N80, 11Y60, 30A10, 33E20, 65E05.

1. INTRODUCTION AND RESULTS

Let S be the space of right-continuous functions f : R → R of bounded local variation, for
which f(x) = 0 for x < 1. Let S+ be the subset consisting of non-decreasing functions. For
functions f, g ∈ S define the Mellin-Stieltjes convolution f ∗ g by means of the equation

(f ∗ g)(x) =

x∫
1−

f(x/t)dg(t),

and the convolution exponential exp∗ g as

exp∗ g =

∞∑
n=0

g∗n

n!
,

where g∗n denotes n-fold iterated convolution. For π ∈ S+ define Π(x) =
∑
k≥1

1
kπ(x1/k) and

N = exp∗Π. If the sum defining Π converges for all x, then we call the pair (Π, N) a continuous
prime system with prime counting function π. Note that if π(x) denotes the number of ordinary
primes below x, we obtain N(x) = bxc, and Π(x) is the weighted number of prime powers
below x introduced by Riemann. If more generally π(x) is a step function with integral jumps,
then N(x) is the counting function of an arithmetic semigroup in the sense of Knopfmacher
([5]).

Starting with the work of Beurling, there has been ongoing interest in continuous prime
systems. Hilberdink ([4]) showed that if there is some c, such that N(x) − cx is periodic and
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Continuous prime systems satisfyingN(x) = c(x− 1) + 1 379

continuously differentiable, then N(x) = c(x − 1) + 1. This led him to ask, for which c such a
number system exists. Define the holomorphic function f as

f(z) =

∞∑
n=1

µ(n)

n
(ez/n − 1) =

∞∑
k=1

zk

k!ζ(k + 1)
.

He then proved the following.

Theorem 1.1. There exists a continuous prime system satisfying N(x) = c(x − 1) + 1 if and only if
f(x) ≥ f((1−c)x) for all x ≥ 0. Moreover, there exists some c0 > 2 such that there exists such a prime
system if and only if c ≤ c0.

Here, we determine c0 numerically. Clearly, the existence of c0 is equivalent to the statement
that f(x) is positive for some x < 0. Hilberdink proved the existence of such an x using Lan-
dau’s ineffective criterion on the continuation of Dirichlet series with non-negative coefficients,
therefore his proof does not yield any bound on c0.
We prove the following.

Theorem 1.2. The constant c0 from Theorem 1.1 satisfies∣∣c0 − 1.25479 · 1019
∣∣ ≤ 2 · 1014.

2. ASYMPTOTIC ESTIMATES FOR f

In the sequel θ denotes a complex number of modulus ≤ 1, which may be different in all
equations and may depend on all occurring parameters. As in the case of Landau symbols,
equations containing θ may only be read from left to right, e.g. we have θ = 2θ, but not 2θ = θ.
The following is a version of Stirling’s formula with an explicit error term, derived by Boyd
([3]).

Lemma 2.1. For | arg z| ≤ π
2 we have

Γ(z) =
√

2πz
(z
e

)z (
1 + θ

1 +
√

2

2π2|z|

)
.

We can now come to the main result of this section. We denote the non-trivial roots of ζ by ρ,
and the imaginary part of ρ by γ.

Lemma 2.2. Let T ≥ 100 be a real number such that all roots of ζ in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T
are simple with real part 1

2 , and that ζ has no root with imaginary part T . Put

δ = min
−2≤σ≤2

|ζ(σ + iT )|.

Then we have for real x > e2 the estimate

f(−x) =
1

x2ζ ′(−1)
+

1√
x

∑
|γ|<T

Γ(1− ρ)

ζ ′(ρ)
xiγ(2.1)

+ θ
15.18

x5/2
+ θ(0.85 log x+ 0.88δ−1)T 2e−πT/2

Proof. From the Mellin transform

1

2πi

− 1
2 +i∞∫

− 1
2−i∞

Γ(s)x−sds = e−x − 1,
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we deduce

f(−x) =
1

2πi

3
2 +i∞∫

3
2−i∞

Γ(1− s)
ζ(s)

xs−1ds.

We shift the path of integration to the path going from 1 + 1
log x − i∞ to 1 + 1

log x − iT , then
to − 3

2 − iT , to − 3
2 + iT , further to 1 + 1

log x + iT , and finally to 1 + 1
log x + i∞. Doing so we

encounter one singularity at s = −1 with residuum 1
x2ζ′(−1) , and one singularity with residuum

Γ(1−ρ)
ζ′(ρ) x

1/2+iγ for each non-trivial root ρ in the rectangle 0 ≤ σ ≤ 1, |t| < T . Note that the pole
of ζ at 1 and the pole of Γ at 0 cancel each other. The integral over the new path will be bounded
from above. We have∣∣∣∣∣∣∣

− 3
2 +iT∫

− 3
2−iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤
1

x5/2

− 3
2 +i∞∫

− 3
2−i∞

∣∣∣∣Γ(1− s)
ζ(s)

∣∣∣∣ ds,
and since Γ decreases rapidly along every line parallel to the imaginary axis, the last integral
can easily be evaluated numerically to be ≤ 95.32. On the line < s = 1 + 1

log x , we have

1

|ζ(s)|
< ζ(1 +

1

log x
) < 1 +

∫ ∞
1

dt

t1+1/ log x
= 1 + log x,

thus ∣∣∣∣∣∣∣
1+ 1

log x +i∞∫
1+ 1

log x +iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤ e(1 + log x)

1+ 1
log x +i∞∫

1+ 1
log x +iT

|Γ(1− s)| ds,

and from Lemma 2.1, we obtain that for x ≥ e2 the right hand side is bounded above by

e(1 + log x)

∫ ∞
T

(t+ 1)e−πt/2 dt = e(1 + log x)(
2

π
T +

4 + 2π

π2
)e−πT/2.

Finally, we have∣∣∣∣∣∣∣
1+ 1

log x +iT∫
− 3

2 +iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤ δ−1(T + 1)e−πT/2

1+ 1
log x∫

− 3
2

xσ−1dσ ≤ e(T + 1)e−πT/2δ−1.

We conclude that the modulus of the integral over the new path is bounded above by
95.32

x5/2
+ (1 + log x)(3.462T + 5.665

)
e−πT/2 + 2e(T + 1)δ−1eπT/2

≤95.32

x5/2
+ (5.491δ−1 + 5.279 log x)Te−πT/2,

where we used the bounds 1 + log x ≤ 3
2 log x and T ≥ 100. Taking the factor 1

2π into account
our claim follows. �

Note that even if we assume RH and the simplicity of all roots, we cannot get an explicit for-
mula depending only on x and T , since it might be that ζ ′(ρ) could be very close to 0. However,
as in the explicit formula for

∑
n≤x µ(n), we do get an explicit formula valid for all suitable val-

ues of T . We refer the reader to [6, section 14.27] for details.

Lemma 2.3. We have f(−x) < 0 for 0 < x < 2.5 · 106, and f(−x) < 9.2 · 10−13 for all x > 0.
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Proof. We claim that in the range 7 < x < 2.5·106 the first negative summand in (2.1) dominates
the other terms. We put T = 100. A straightforward computation yields δ ≥ 1.19, together with
ζ ′(−1) = −0.165421 . . . we obtain

f(−x) ≤ −6.045

x2
+

15.18

x5/2
+

1√
x

∑
|γ|≤100

∣∣∣∣Γ(1− ρ)

ζ ′(ρ)

∣∣∣∣+ (0.85 log x+ 0.74) · 6.05 · 10−65

≤ −6.045

x2
+

15.18

x5/2
+

1.44 · 10−9

√
x

+ (5.15 log x+ 4.48) · 10−65.

From this, we conclude f(−x) < 0 for 7 < x < 2.5 · 106 as well as f(−x) < 9.2 · 10−13 for
2.5 · 106 < x < e1050

. If x is very big we use estimates for the summatory function of the
Möbius function. We have

∞∑
n=1

µ(n)

n
(e−x/n − 1) ≤

∞∑
n=1

m(n)
∣∣∣e−x/n − e−x/(n+1)

∣∣∣ ,
where m(x) =

∣∣∣∑n≤x
µ(n)
n

∣∣∣. Bordellés ([2]) has shown that m(x) ≤ 546
log2 x

for x > 1, hence for

x > e24 we get

|f(−x)| ≤ e−x +

∞∑
n=2

546

log2 n
e−x/n

∣∣∣e−x/(n(n+1)) − 1
∣∣∣

≤ e−x +

∞∑
n=2

546

log2 n
e−x/n min

(
2x

n(n+ 1)
, 1

)
≤ xe−x

1/3

+
1092

log2 x2/3

∑
n≥x2/3

1

n2

≤ e24−e8 +
4.27

x2/3
,

which is sufficiently small for x > 1019. In the range 1
2 ≤ x ≤ 7, we can compute f with high

precision using its Taylor series. We have

|f ′′(−x)| =

∣∣∣∣∣
∞∑
n=1

µ(n)e−x/n

n3

∣∣∣∣∣ ≤
∞∑
n=1

e−x/n

n3
≤ e−x +

∫ ∞
0

e−x/t

t3
dt = e−x +

1

x2
.

Thus for a given x0, we compute f(x0) and f ′(x0), estimate f ′′(x0), and obtain an interval for
which f is negative. Finally in the range 0 < x ≤ 1

2 , we have

f ′(−x) =

∞∑
k=1

(−x)k−1

(k − 1)!ζ(k + 1)
≥ 1

ζ(2)
− x

ζ(3)
> 0

together with f(0) = 0, we conclude that f(−x) < 0 in 0 < x ≤ 1
2 as well. Hence the lemma is

proven for all x > 0. �

3. COMPUTATION OF c0

The problem of computing c0 is equivalent to finding the infimum of all c, such that there
exists some y > 0 with f(−y) ≥ f( y

c−1 ). Since f(x) is increasing for x ≥ 0, the right hand side
is decreasing with c, hence our problem is equivalent to minimizing x

y subject to the relations
x, y > 0, f(x) = f(−y).
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By Lemma 2.3, we have f(−y) < 9.2 · 10−13. As f(x) ≥ x
ζ(2) for x ≥ 0, the equation f(−y) =

f(x) implies x < 2 · 10−12. Together with f(−y) < 0 for y < 2.5 · 106, we obtain x
y < 5 · 1018 for

all x, y > 0 satisfying f(x) = f(−y). This crude lower bound is surprisingly close to the actual
value for c.

For two positive real numbers y1, y2, we say that y1 is better than y2, if f(−y1) > 0, and
either f(−y2) ≤ 0 or for the real numbers x1, x2 > 0 defined by the equation f(−yi) = f(xi)
we have x1

y1
< x2

y2
. Clearly if y1 is better than y2, then y2 cannot solve our optimization problem.

We first show that in this way the range of y can be restricted to a bounded interval.

Lemma 3.4. Suppose that x1 > 0 satisfies f(−x1) > 0. Then x1 is better than all x2 satisfying
x2 >

9.2·10−13

f(−x1) x1.

Proof. Suppose that x2 > x1, and that x1 is not better than x2. Let y1, y2 be given by the
equations f(−xi) = f(yi). We then have y2 > y1, and since f is convex in x ≥ 0, we conclude
that f(y2)

y2
> f(y1)

y1
, thus f(−x2)

x2
> f(−x1)

x1
. Our claim now follows from Lemma 2.3. �

We now apply Lemma 2.2 with T = 100 and neglect all roots except 1
2 +iγ1, where γ1 = 14.13 . . .

to find

f(−x) =
1

x2ζ ′(−1)
+

2√
x
<
xiγ1Γ( 1

2 − iγ1)

ζ ′(ρ1)

+ θ

(
4 · 10−14

x1/2
+

15.18

x5/2
+ (5.15 log x+ 4.48) · 10−65

)
=

1

x2ζ ′(−1)
+

10−14

√
x
<
(
xiγ1(−14102 + 143259i+ 5θ)

)
+ θ

(
15.18

x5/2
+ (5.15 log x+ 4.48) · 10−65

)
=

1

x2ζ ′(−1)
+

10−14

√
x
<
(
xiγ1(−14102 + 143259i+ 21θ)

)
,

provided that 2.5 · 106 ≤ x ≤ 1050. Putting s = log(−x), we obtain

(3.2) f(−es) =
e−2s

ζ ′(−1)
+ (143951 + 22θ) · 10−14e−s/2 cos(γ1s+ 1.66892).

In particular we obtain f(−e15) > 2.3 · 10−13, thus, using Lemma 3.4, e15 is better than all
x satisfying x > 4 · e15. In particular we only have to consider values of x, for which the
approximation (3.2) is valid. Considering the power series for f we find that for x ∈ [0, 1020]
with f(−x) > 0 the unique value y with f(y) = f(−x) satisfies y < ζ(2)f(−x), as well as

f(y) <
y

ζ(2)
+ ey − 1− y < y

ζ(2)
+ y2,

thus

y > ζ(2)f(−x)− (ζ(2)f(−x))2 >

(
1− 3 · 10−9

√
x

)
ζ(2)f(−x),

and therefore y =

(
1 +

3 · 10−9θ√
x

)
ζ(2)f(−x). We conclude that in the relevant range the func-

tion to be minimized is (
1 +

4 · 10−9θ√
x

)
x

f(−x)
,
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subject to the condition f(−x) > 0. Since this condition in particular implies that the first,
negative, summand in (3.2) is of smaller absolute value than the second, we obtain that we
have to minimize the inverse of

e−3s

ζ ′(−1)
+ (143951 + 24θ) · 10−14e−3s/2 cos(γ1s+ 1.66892)

subject to the condition that this expression is positive, that is, we have to find the largest local
maximum of this function. The first positive local maximum of this function occurs at s = 14.99
with a value of 7.01 · 10−20, the second at 15.44 with a value of 7.97 · 10−20, the third at 15.88
with a value 5.26 · 10−20. All further local maxima are much smaller. The precision is sufficient
to guarantee that the maximum is attained in the interval [15.43, 15.45] and has a value in the
interval [7.9 · 10−20, 8 · 10−20].
We can now refine our computation by using the latter bound to improve the error in (2.1). We
put T = 100 in Lemma 2.2 and get

f(−x) =
1

x2ζ ′(−1)
+

2√
x

29∑
j=1

Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

<xiγj + 1.69 · 10−16θ

=
1

x2ζ ′(−1)
+

2√
x

∣∣∣∣ Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

∣∣∣∣ cos

(
γ1 log x+ arg

Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

)
+ 1.75 · 10−16θ

for e15.43 < x < e15.45. From this, we find that the maximum of f(−x)
x is attained in log x =

15.4382+θ0.0001 and has a value (796947+θ)·10−25, and the value of c0 is (1.25479+0.00002θ)·
1019. The proof of Theorem 1.2 is complete.
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Matrix valued positive definite kernels related to the
generalized Aitken’s integral for Gaussians

VALDIR A. MENEGATTO* AND CLAUDEMIR P. OLIVEIRA

ABSTRACT. We introduce a method to construct general multivariate positive definite kernels on a nonempty set
X that employs a prescribed bounded completely monotone function and special multivariate functions on X . The
method is consistent with a generalized version of Aitken’s integral formula for Gaussians. In the case in which X is a
cartesian product, the method produces nonseparable positive definite kernels that may be useful in multivariate inter-
polation. In addition, it can be interpreted as an abstract multivariate version of the well-established Gneiting’s model
for constructing space-time covariances commonly highly cited in the literature. Many parametric models discussed
in statistics can be interpreted as particular cases of the method.

Keywords:Positive definite kernels, conditionally negative definite functions, Aitken’s integral, Schur exponential,
Oppenheim’s inequality, Gneiting’s model.

2020 Mathematics Subject Classification: 42A82, 47A56.

1. INTRODUCTION

LetX be a nonempty set and writeMq(C) to denote the set of all q×q matrices with complex
entries. A kernel K = [Km,n]qm,n=1 : X × X → Mq(C) is positive definite if for every positive
integer N at most the cardinality of X and distinct points x1, . . . , xN in X , the block matrix
[[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 of order Nq is positive semi-definite, that is,

(1.1)
N∑

µ,ν=1

c∗µK(xµ, xν)cν =

q∑
m,n=1

N∑
µ,ν=1

cmµ c
n
νKm,n(xµ, xν) ≥ 0,

whenever c1, . . . , cN are column vectors in Cq and cµ = [c1µ . . . c
q
µ]ᵀ. The star notation refers to

conjugate transposition of column vectors in Cq . If the matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 are
all positive definite, that is, the inequalities in (1.1) are strict when at least one of the vectors cµ
is nonzero, then the positive definite kernel K is termed strictly positive definite on X . The two
classes of kernels introduced above will be denoted by PDq(X) and SPDq(X), respectively.
Kernels in these classes correspond to the standard positive definite kernels studied in [4] when
we set q = 1 and identify Mq(C) with C. The importance of matrix valued positive definite
kernels in their various formats may be ratified in the references [2, 18, 19, 25].

Examples of kernels in PDq(X) and SPDq(X) can be easily constructed. If A is a positive
semi-definite matrix in Mq(C), then the constant kernel

K(x, x′) = A, x, x′ ∈ X,

Received: 07.07.2021; Accepted: 29.10.2021; Published Online: 02.11.2021
*Corresponding author: V. A. Menegatto; menegatt@icmc.usp.br
DOI: 10.33205/cma.964096
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belongs to PDq(X). If f1, . . . , fq are kernels in PD1(X), then the kernelK given by the formula

K(x, x′) = Diag(f1(x, x′), . . . , fq(x, x
′)), x, x′ ∈ X,

belongs to PDq(X). Further, if all the fm belong to SPD1(X), then K belongs to SPDq(X).
Moving the other way around, if K is a kernel in PDq(X) and c ∈ Cq , then

f(x, x′) = c∗K(x, x′)c, x, x′ ∈ X,

defines a function in PD1(X). If c 6= 0 and K belongs to SPDq(X), then f actually belongs to
SPD1(X).

The purpose of this paper is to introduce methods to construct abstract matrix-valued map-
pings with the additional requirement of positive definiteness and strict positive definiteness.
In many cases, the methods yield easy to handle and flexible models, once it encompasses com-
mon models found in geophysical sciences, including probabilistic weather forecasting, data
assimilation, statistical analysis of climate model output, etc. when one makes the right choice
for X and set a metric structure in it.

The method itself will be based on bounded completely monotone functions and special
matrix valued functions attached to the notion of conditional negative definiteness. Recall that
the complete monotonicity of a function f : (0,∞) → R is characterized by two properties: f is
C∞(0,∞) and (−1)nf (n)(t) ≥ 0 for n = 0, 1, . . . and t ∈ (0,∞). Throughout the paper, we will
not distinguish between a bounded completely monotone function and its unique continuous
extension to [0,∞).

A kernel K = [Km,n]qm,n=1 : X ×X → Mq(C) is conditionally negative definite if it is Hermit-
ian and the block matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1 are of negative type, that is, the quadratic
forms (1.1) are ≤ 0 whenever the vectors cµ satisfy

∑N
µ=1 cµ = 0. The conditionally negative

definite kernelK is strictly conditionally negative definite if the matrices [[Km,n(xµ, xν)]Nµ,ν=1]qm,n=1

are of strict negative type for N ≥ 2, that is, the quadratic forms are negative whenever N ≥ 2
and at least one cµ is nonzero. These two classes of kernels will be denoted by CNDq(X) and
SCNDq(X), respectively. Examples of kernels in CND1(X) and SCND1(X) can be found in
[4] while connections between the classes PD1(X) and CND1(X) are described in [3, 4, 10].
As for examples in the classes CNDq(X) and SCNDq(X), one may employ these connections
and imitate the procedures adopted for producing kernels in PDq(X) and SPDq(X) previ-
ously mentioned.

All the major results we intend to prove here will be based on a generalization of Aitken’s
integral formula for computing Gaussians: ifA is a positive definite matrix inMq(R) (the subset
of Mq(C) formed by matrices with real entries only) and b is a vector in Rq , then∫

Rq
e−u

ᵀAu+ i bᵀudu =
πq/2√
det A

e−b
ᵀ(4A)−1b.

Aitken’s integral itself corresponds to the formula above in the case b = 0. A proof for the
generalized Aitken’s integral formula can be reached by mimicking the proof of Aitken’s inte-
gral in [24, p. 340] but an independent proof is available in [15]. This reference also contains
univariate results that may be considered as versions of some of the results to be described
here.

Before we proceed to the outline of the paper, it is worth mentioning that if X is actually a
cartesian product of sets, the method to be presented here lead to nonseparable kernels, i.e.,
kernels on two variables which are not mixed up, a desirable property in applications. Mean-
while, in some specific cases, the method will upgrade to a generalization of the well estab-
lished Gneiting’s contribution in [7] on the construction of kernels in PD1(Rq×Rd). Gneiting’s
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classical result is as follows: for a bounded completely monotone function φ : (0,∞)→ R and
a positive valued function f with a completely monotone derivative, it asserts that the formula

(1.2) Gr((x, y), (x′, y′)) =
1

f(‖y − y′‖2)r
φ

(
‖x− x′‖2

f(‖y − y′‖2)

)
, x, x′ ∈ Rq; y, y′ ∈ Rd,

defines a kernel Gr in PD1(Rq × Rd), whenever r ≥ d/2 and ‖ · ‖ denotes the usual norms in
both Rq and Rd. The boundedness of φ is required in order to make φ(0+) <∞. The references
[12, 13, 16, 20] include some extensions and generalizations of this important result along with
additional references on the topic.

The paper proceeds as follows. Section 2 begins with the description of two additional no-
tions to be employed in the paper, one for families of vector functions and another for families
of matrix functions, along with examples. The first major result of the paper is Theorem 2.4: it
describes a method to construct kernels in PDp(Y ) from bounded completely monotone func-
tions, special families of vector functions on Y and special families of matrix functions on Y .
Further, it provides a sufficient condition in order that the resulting kernel be in SPDp(Y ). At
the end of the section, we discuss some examples and detach a relevant consequence of The-
orem 2.4. The main result in Section 3 expands Theorem 2.4 via integration with respect to a
convenient measure, a usual procedure adopted in approximation theory and statistics in or-
der to produce new positive definite functions from a family of parameterized positive definite
functions. We separate a special simpler version of the theorem in Corollary 3.3. Section 4 de-
scribes extensions of Theorems 2.4 and 3.1 that lead to kernels in PDp(X × Y ). Applications
and a multivariate abstract extension of the classical Gneiting’s result are described.

2. POSITIVE DEFINITENESS ON A SINGLE SET

This section contains the first main contribution in the paper to be made explicit in Theorem
2.4. It provides a method to construct functions in PDq(Y ) using completely monotonic func-
tions via Aitken’s formula. A sufficient condition for strict positive definiteness is included.
The contribution itself demands two notions for families of functions with domain Y which
we now discuss.

For a matrix function G in CNDq(Y ) and a vector u from Cq , the kernel

(y, y′) ∈ Y × Y 7→ u∗G(y, y′)u

belongs to CND1(Y ). Further, the kernel belongs to the class SCND1(Y ) whenever G belongs
to SCNDq(Y ) and u is nonzero. Theorem 2.4 will demand a family {Gm,n : m,n = 1, . . . , p}
for which all the matrix kernels

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]
p

m,n=1 , u ∈ Rq,

belong to CNDp(Y ). Since this is not easily achievable, the following examples are apposite.

Example 2.1. Define

Gm,n(y, y′) = gm(y) + gn(y′), y, y′ ∈ X,
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where gm, gn : Y → Mq(C) are functions subject to our choice. If y1, . . . , yN are distinct points
in Y , c1, . . . , cN are vectors in Cp such that

∑N
µ=1 cµ = 0 and u ∈ Cq , then

N∑
µ,ν=1

c∗µ [uᵀGm,n(yµ, yν)u]
p
m,n=1 cν =

p∑
n=1

N∑
ν=1

cnν

N∑
µ=1

p∑
m=1

cmµ u
ᵀgm(yµ)u

+

p∑
m=1

N∑
µ=1

cmµ

N∑
ν=1

p∑
n=1

cnνu
ᵀgn(yν)u = 0,

that is, the matrix function

(y, y′) ∈ X ×X 7→ [uᵀGm,n(y, y′)u]
p

m,n=1

belongs to CNDp(Y ).

Example 2.2. Set Gm,n = 0 when m 6= n and pick each Gm,m in the class CNDq(Y ). Keeping
the cµ and the yµ as in Example 2.1, it is easily seen that

N∑
µ,ν=1

c∗µ [uᵀGm,n(yµ, yν)u]
p
m,n=1 cν =

p∑
m=1

N∑
µ,ν=1

cmµ c
m
ν u

ᵀGm,m(yµ, yν)u ≤ 0.

Thus, the matrix function

(y, y′) ∈ X ×X 7→ [uᵀGm,n(y, y′)u]
p

m,n=1

belongs to CNDp(Y ).

Theorem 2.4 will also need special families {Hm,n : m,n = 1, . . . , p} of vector functions
Hm,n : Y × Y → Cq . Precisely, it will require families for which all the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ). Again, this is not easy to achieve, reason why a simple example is handy.

Example 2.3. Let us set

Hm,n(y, y′) = hm(y)− hn(y′), y, y′ ∈ Y,
where hm : Y → Rq , m = 1, . . . , p. If y1, . . . , yN are distinct points in Y and c1, . . . , cN are
vectors in Cp, then

N∑
µ,ν=1

c∗µ

[
eiHm,n(yµ, yν)ᵀu

]p
m,n=1

cν =

∣∣∣∣∣
N∑
µ=1

p∑
m=1

cmµ e
i hm(yµ)ᵀu

∣∣∣∣∣
2

≥ 0, u ∈ Rq,

that is, the kernels

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ).

We observe that if the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)∗u

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ), then each Hm,n must be anti-symmetric in the sense that

ReHm,n(y, y′) = −ReHm,n(y′, y), y, y′ ∈ Y.
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In particular,
ReHm,n(y, y) = 0, m, n = 1, . . . , p; y ∈ Y.

Finally, some specific properties of Hadamard exponentials will be needed. We recall that if
A is a matrix in Mq(C), then its Hadamard exponential is the matrix

e◦A := [eAµν ]qµ,ν=1.

If A ∈ Mq(R) is symmetric and of negative type, then the Hadamard exponential of −A is
positive semi-definite. It is positive definite if and only if

Aµµ +Aνν < 2Aµν , µ 6= ν.

These facts are proved in Lemma 2.5 in [21] albeit [14] analyzed similar properties earlier. As an
obvious consequence, we have that if A ∈Mq(R) is of strict negative type, then the Hadamard
exponential of −A is positive definite. The recasting of this property for block matrices is as
follows: if a real symmetric block matrix A = [[Amn(µν)]Nµ,ν=1]qm,n=1 is of negative type, then
the Hadamard exponential of −A is positive definite if and only if

(2.3) Amm(µµ) +Ann(νν) < 2Amn(µν), |m− n|+ |µ− ν| > 0.

Below, we will use the symbol “•” to denote the Schur product of two matrices of same size.

Theorem 2.4. Let φ be a bounded and completely monotone function. For each m,n in {1, . . . , p}, let
Gm,n : Y × Y → Mq(R) be a matrix function with range containing positive definite matrices only
and Hm,n : Y × Y → Rq a vector function. Assume the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

belong to CNDp(Y ) and that

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ). The following assertions hold for the kernel K : Y × Y → Mp(R) given by the
formula

K(y, y′) =

[
φ
(
Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′)

)√
detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y.

(i) K belongs to PDp(Y ).
(ii) If φ is not identically 0 and there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

then K belongs to SPDp(Y ).

Proof. We begin by proving Assertion (i) in the case where φ is a constant function, that is, the
case in which

K(y, y′) =

[
φ(0)√

detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y.

Since each matrix Gm,n(y, y′) is positive definite, we may apply Aitken’s integral formula to
obtain

(2.4) K(y, y′) =
φ(0)

πq/2

[∫
Rq
e−u

ᵀGm,n(y, y′)udu

]p
m,n=1

, y, y′ ∈ Y.
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If y1, . . . , yN are distinct points in Y and c1, . . . , cN are vectors in Rp, then

N∑
µ,ν=1

cᵀµK(yµ, yν)cν =
φ(0)

πq/2

N∑
µ,ν=1

p∑
m,n=1

cmµ c
n
ν

∫
Rq
e−u

ᵀGm,n(yµ, yν)udu

=
φ(0)

πq/2

∫
Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν e
−uᵀGm,n(yµ, yν)udu.

One of the assumptions on the Gm,n now yields that

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν e
−uᵀGm,n(yµ, yν)u ≥ 0, u ∈ Rq,

and Assertion (i) follows in this case. In the general case, the Bernstein-Widder Theorem ([23,
p. 3]) implies that

K(y, y′) =

[
1√

detGm,n(y, y′)

∫
[0,∞)

e−Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′) sdσ(s)

]p
m,n=1

for some finite and positive measure σ on [0,∞). On the other hand, the generalized Aitken’s
integral formula provides the alternative representation

K(y, y′) =

[
1

πq/2

∫
[0,∞)

(∫
Rq
e−u

ᵀGm,n(y, y′)ue2i
√
sHm,n(y, y′)ᵀudu

)
dσ(s)

]p
m,n=1

.

If the yµ are as before and the cµ are now complex vectors, the quadratic form

Q :=

N∑
µ,ν=1

c∗µK(yµ, yν)cν

becomes

Q =
1

πq/2

N∑
µ,ν=1

p∑
m,n=1

cmµ c
n
ν

∫
[0,∞)

∫
Rq
e−u

ᵀGm,n(yµ, yν)uei 2
√
sHm,n(yµ, yν)ᵀududσ(s)

=
1

πq/2

∫
[0,∞)

∫
Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν c
∗
µe
−uᵀGm,n(yµ, yν)uei 2

√
sHm,n(yµ, yν)ᵀu dudσ(s).

The assumption on each (y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

settles the positive semi-

definiteness of

(2.5)

[[
ei 2
√
sHm,n(yµ, yν)ᵀu

]N
µ,ν=1

]p
m,n=1

while the Schur Product Theorem ratifies the positive semi-definiteness of each Schur product

(2.6)
[[
e−u

ᵀGm,n(yµ, yν)u
]N
µ,ν=1

]p
m,n=1

•

[[
ei 2
√
sHm,n(yµ, yν)ᵀu

]N
µ,ν=1

]p
m,n=1

.
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These arguments validate the inequality Q ≥ 0.
Let us keep the notation used above to prove Assertion (ii). Assume further that the cµ are not
all zero vectors. If there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

we can infer via (2.3) that the block matrix[[
e−u

ᵀGm,n(yµ, yν)u
]N
µ,ν=1

]p
m,n=1

is positive definite whenever u ∈ U . Thus, if φ is constant and not identically 0, then Q > 0
by Formula (2.4). If φ is nonconstant, first we invoke our assumption on the Hm,n in order
to see that the diagonal entries in each block matrix (2.5) are all equal to 1. An application of
Oppenheim’s inequality ([9, p. 509]) shows that the Schur product (2.6) is positive definite for
u ∈ U and s ≥ 0. In particular,∫

Rq

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
ν c
∗
µe
−uᵀGm,n(yµ, yν)uei 2

√
sHm,n(yµ, yν)ᵀu du > 0, s ≥ 0.

Since σ is not the zero measure we may go one step further and infer that Q > 0. �

Remark 2.5. Theorem 17 in [22] is a very special case of Theorem 2.4-(i).

Next, we present some examples that illustrate our findings.

Example 2.6. For m = 1, . . . , p, let gm : Y → Mq(R) be a function with range containing
positive definite matrices only and hm : Y → Rq an arbitrary function. Setting Gm,n(y, y′) =
gm(y) + gn(y′), y, y′ ∈ Y and Hm,n(y, y′) = hm(y) − hn(y′), y, y′ ∈ Y , the assumptions in
Theorem 2.4 are satisfied. Thus, the formula[

φ
(
(hm(y)− hn(y′))ᵀ(gm(y) + gn(y′))−1(hm(y)− hn(y′))

)√
det[(gm(y) + gn(y′)]

]p
m,n=1

, y, y′ ∈ Y,

defines a kernel in PDp(Y ) whenever φ is bounded completely monotone function. The in-
equalities in Theorem 2.4-(ii) cannot be matched in this abstract example.

Example 2.7. For m,n = 1, . . . , p, let us set

Gm,n(y, y′) = gm,n(y, y′)Iq, y, y′ ∈ Y,

where each gm,n is a positive valued kernel on Y and (y, y′) ∈ Y × Y 7→ [gm,n(y, y′)]pm,n=1

belongs to CNDp(Y ). Observe that for each m and n,

uᵀGm,n(y, y′)u = ‖u‖2gm,n(y, y′), u ∈ Rq; y, y′ ∈ Y.

On the other hand, if c1, . . . , cN are column vectors satisfying
∑N
µ=1 cµ = 0 and y1, . . . , yN

belong to Y , then

p∑
m,n=1

N∑
µ,ν=1

cmµ c
n
νu

ᵀGm,n(yµ, yν)u = ‖u‖2
p∑

m,n=1

N∑
µ,ν=1

cmµ c
n
ν gm,n(yµ, yν) ≤ 0,

that is, each kernel
(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1,
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belongs to CNDp(Y ). If the Hm,n satisfies the assumptions of Theorem 2.4, then it is promptly
seen that the formula

K(y, y′) =

[
1

gm,n(y, y′)q/2
φ

(
‖Hm,n(y, y′)‖2

gm,n(y, y′)

)]p
m,n=1

, y, y′ ∈ Y,

defines a matrix kernel in PDp(Y ) whenever φ is a bounded completely monotone function.

Example 2.8. If we take Hm,n as in Example 2.6, then the kernel K in Example 2.7 takes the
form

K(y, y′) =

[
1

gm,n(y, y′)q/2
φ

(
‖hm(y)− hn(y′)‖2

gm,n(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

This example has a structure that resembles that of Gneiting’s model in [7] for the construction
of space-time covariances. We can get even closer by setting gm,n := g for all m and n, where
g : Y → (0,∞) belongs to CND1(Y ), a choice that leads to

K(y, y′) =
1

g(y, y′)q/2

[
φ

(
‖hm(y)− hn(y′)‖2

g(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

The setting adopted in both Examples 2.7 and 2.8 is a particular case of that detached in The-
orem 2.9 below. Needless to say that the theorem can be interpreted as a multivariate version
of the Gneiting’s criterion in [7].

Theorem 2.9. Let φ be a bounded and completely monotone function. Let g be a positive valued kernel
in CND1(Y ) and for each m,n in {1, . . . , p}, define

Gm,n(y, y′) = g(y, y′)Iq, y, y′ ∈ Y.
If Hm,n : Y × Y → Rq is a vector function such that the matrix functions

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(Y ), then the following assertions hold for the kernel K : Y × Y →Mp(R) given by the
formula

K(y, y′) =
1

g(y, y′)q/2

[
φ

(
‖Hm,n(y, y′)‖2

g(y, y′)

)]p
m,n=1

, y, y′ ∈ Y.

(i) K belongs to PDp(Y ).
(ii) If φ is not identically 0 and g(y, y) + g(y′, y′) − 2g(y, y′) < 0 for y 6= y′, then K belongs to

SPDp(Y ).

3. AN EXTENSION OF THE MAIN RESULT VIA INTEGRATION

Here, we extend the results proved in Section 2 by introducing a scale mixture in the formula
that defines the positive definite kernels.

Our first contribution here is as follows.

Theorem 3.1. Let ρ be a nonzero positive measure on (0,∞) and φ a bounded and completely monotone
function. For each m,n in {1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range
containing positive definite matrices only, Hm,n : Y × Y → Rq a vector function and {P sm,n}s>0 a
family of kernels on Y such that each function s ∈ (0,∞) 7→ P sm,n(y, y′) is ρ-integrable. If the matrix
functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,
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and
(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(Y ), respectively, then the kernel K : Y × Y →Mp(R) given
by the formula

K(y, y′) =

[
1√

detGm,n(y, y′)

×
∫
(0,∞)

φ
(
Hm,n(y, y′)ᵀGm,n(y, y′)−1Hm,n(y, y′) s

)
P sm,n(y, y′)dρ(s)

]p
m,n=1

belongs to PDp(Y ).

Proof. Let y1, . . . , yN be distinct points in Y , c1, . . . , cN vectors in Cp and set

Q :=

N∑
µ,ν=1

c∗µK(yµ, yν)cν .

Direct calculation shows that

Q =

∫
(0,∞)

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν)dρ(s).

As in the proof of Theorem 2.4, the matrix functions

(y, y′) ∈ Y × Y 7→
[
ei
√
sHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq; s > 0,

belong to PDp(Y ). However, since the assumptions on the Gm,n are the same as those in The-
orem 2.4, we can apply Theorem 2.4-(i) in order to see that each matrix

(3.7)

[φ (√sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1
√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

]N
µ,ν=1

p
m,n=1

is positive semi-definite. As for the matrices

(3.8)
[[
P sm,n(yµ, yν)

]N
µ,ν=1

]p
m,n=1

,

they are positive semi-definite as well by our assumption on the family {P sm,n}s>0. Thus, the
Schur Product Theorem implies that

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν) ≥ 0, s > 0.

Therefore, Q ≥ 0. �

As for strict positive definiteness, the following consequence of Theorem 3.1 holds.

Theorem 3.2. Under the setting of Theorem 3.1, if φ is not identically zero, then the following additional
assertions hold for the kernel K:
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(i) If there exists an open subset U of Rq \ {0} so that

uᵀ[Gm,m(y, y) +Gn,n(y′, y′)− 2Gm,n(y, y′)]u < 0, (m, y) 6= (n, y′); u ∈ U,

and a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

P sm,m(y, y) > 0, m ∈ {1, . . . , p}; y ∈ Y ; s ∈ A,

then K belongs to SPDp(Y ).
(ii) If there exists a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1 ∈ SPDp(Y ), s ∈ A,

then K belongs to SPDp(Y ).

Proof. Let the xµ and the cµ be as in the proof of Theorem 3.1. Further, assume at least one cµ
is nonzero. If the assumptions in (i) hold, then Theorem 2.4-(ii) implies that each matrix (3.7)
is positive definite while the diagonal entries in the matrices in (3.8) are all positive for s ∈ A.
Therefore, by Oppenheim’s inequality, we can assert that

p∑
m,n=1

N∑
µ,ν=1

φ
(√
sHm,n(yµ, yν)ᵀGm,n(yµ, yν)−1

√
sHm,n(yµ, yν)

)√
detGm,n(yµ, yν)

Pm,n(yµ, yν) > 0, s ∈ A.

Since the measure ρ is nonzero, Q > 0. If the assumptions in (ii) hold, we may reach the very
same conclusion once the diagonal elements in the matrices in (3.7) are given by

φ(0)√
detGm,m(yµ, yµ)

> 0, m = 1, . . . , p;µ = 1, . . . , q.

Indeed, Oppenheim’s inequality once again would imply that Q > 0. �

A specially chosen family {Gm,n : m,n = 1, . . . , p} in Theorem 3.1 leads to the following
improved abstract multivariate version of Gneiting’s criterion in [7].

Corollary 3.3. Let φ : (0,∞) → R be a bounded and completely monotone function. For m,n =
1, 2, . . . , p, set Gm,n(y, y′) = gm,n(y, y′)Iq , y, y′ ∈ Y , where each gm,n is a positive valued kernel in
CND1(Y ), let Hm,n : Y × Y → Rq be a vector function and {P sm,n}s>0 a family of kernels on Y such
that each function s ∈ (0,∞) 7→ P sm,n(y, y′) is ρ-integrable. If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(y, y′) ∈ Y × Y 7→
[
eiHm,n(y, y′)ᵀu

]p
m,n=1

, u ∈ Rq,

and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(Y ), respectively, then the kernel K : Y × Y →Mp(R) given
by the formula

K(y, y′) =

[
1

gm,m(y, y′)q/2

∫ ∞
0

φ

(
‖Hm,n(y, y′)‖2s
gm,n(y, y′)

)
P sm,n(y, y′)dρ(s)

]p
m,n=1

belongs to PDp(Y ). Further, if φ is not identically 0, the following two additional assertions hold:
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(i) If gm,m(y, y) + gn,n(y′, y′) − 2gm,n(y, y′) < 0 when (m, y) 6= (n, y′) and there exists a ρ-
measurable subset A of (0,∞) so that ρ(A) > 0 and

P sm,m(y, y) > 0, m ∈ {1, . . . , p}; y ∈ Y ; s ∈ A,

then K belongs to SPDp(Y ).
(ii) If there exists a ρ-measurable subset A of (0,∞) so that ρ(A) > 0 and

(y, y′) ∈ Y × Y 7→ [P sm,n(y, y′)]pm,n=1

belongs to SPDp(Y ) for s ∈ A, then K belongs to SPDp(Y ).

4. THE MAIN RESULTS IN THE CASE OF A PRODUCT OF SETS

An easy way to construct kernels in PDp(X × Y ) is given by the product of a kernel in
PDp(X) with another one in PDp(Y ), a fact that can be ratified via the Schur Product Theo-
rem. The separable kernels produced by this method may be not suitable if one needs strong
interactions between X and Y . The main result in this section will provide a version of Theo-
rem 2.4 that leads to kernels in PDp(X × Y ) and except for very particular cases, the kernels
produced by this version will be nonseparable. In particular, the aforementioned interactions
are possible. The result explains, from a mathematical point of view, some important practi-
cal models adopted in the statistical literature. The proofs will be omitted once they are very
similar to those of the theorems proved in Sections 2 and 3.

Theorem 4.1. Let φ : (0,∞) → R be a bounded and completely monotone function. For each m,n in
{1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range containing positive definite
matrices only and Hm,n : X ×X → Rq a vector function. If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

belong to CNDp(Y ) and

(x, x′) ∈ X ×X 7→
[
eiHm,n(x, x′)ᵀu

]p
m,n=1

, u ∈ Rq,

belong to PDp(X), then the kernel K : (X × Y )2 →Mp(R) given by

K((x, y), (x′, y′)) =

[
φ
(
Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′)

)√
detGm,n(y, y′)

]p
m,n=1

belongs to PDp(X × Y ).

In Example 4.2 below, we illustrate Theorem 4.1 in the case X = R and Y = Sd, the unit
sphere in Rd+1.

Example 4.2. Define Hm,n(x, x′) = hm(x) − hn(x′), x, x′ ∈ R, where each hm : R → Rq is an
arbitrary function. If δ denotes the geodesic distance in Sd, set

Gm,n(y, y′) = [m+ n+ δ(y, y′)]Iq, y, y′ ∈ Sd.

It is well known that (y, y′) ∈ Sd × Sd 7→ δ(y, y′) belongs to CND1(Sd) (see Section 4 in [1]).
Hence, each Gm,n has range containing positive definite matrices only. On the other hand,
according to Examples 2.7 and 2.8, each kernel

(y, y′) ∈ Y × Sd 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,
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belongs to CNDp(S
d). It follows that

K((x, y), (x′, y′)) =

[
1

[m+ n+ δ(y, y′)]q/2
φ

(
‖hm(x)− hn(x′)‖2

m+ n+ δ(y, y′)

)]p
m,n=1

belongs to PDp(R× Sd). The choice

hm(x) = (x, 0, . . . , 0)ᵀ, x ∈ R; m = 1, . . . , p,

leads to the simpler example

K((x, y), (x′, y′)) =

[
1

[m+ n+ δ(y, y′)]q/2
φ

(
(x− x′)2

m+ n+ δ(y, y′)

)]p
m,n=1

belonging to PDp(R× Sd).

A version of Theorem 3.1 for kernels acting on the product X × Y is as follows.

Theorem 4.3. Let ρ be a nonzero positive measure on (0,∞) and φ a bounded and completely monotone
function. For each m,n in {1, . . . , p}, let Gm,n : Y × Y → Mq(R) be a matrix function with range
containing positive definite matrices only, Hm,n : X × X → Rq vector functions and {P sm,n}s>0 a
family of kernels on X × Y such that each function s ∈ (0,∞) 7→ P sm,n((x, y), (x′, y′)) is ρ-integrable.
If the matrix functions

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,

(x, x′) ∈ X ×X 7→
[
eiHm,n(x, x′)ᵀu

]p
m,n=1

, u ∈ Rq,

and

((x, y), (x′, y′)) ∈ Y × Y 7→ [P sm,n((x, y), (x′, y′))]pm,n=1, s > 0,

belong to CNDp(Y ), PDp(Y ) and PDp(X×Y ), respectively, then K = [Km,n]pm,n=1 : (X×Y )2 →
Mp(R) given by the formula

Km,n((x, y), (x′, y′))

=
1√

detGm,n(y, y′)

∫
(0,∞)

φ
(
Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′) s

)
P sm,n((x, y), (x′, y′))dρ(s)

belongs to PDp(X × Y ).

We now move to some specific applications of Theorem 4.3.

Example 4.4. Here, we will employ the formula deduced in Theorem 1.1 in [6]:

Mν(r
√
u) =

r2ν

22νΓ(ν)

∫ ∞
0

e−s ue−r
2/4ss−ν−1ds, r, u > 0,

that defines the so-called Matérn function. This function is studied in details in [6]. We may
apply Theorem 3.1 with φ(u) = exp(−u), u > 0 and dρ(s) = e−r

2/4ss−1ds. If for x, x′ ∈ X and
y, y′ ∈ Y we set

2vm,n((x, y), (x′, y′)) := vm(x, y) + vn(x′, y′),

where vm : X × Y → (0,∞), for all m, and

P sm,n((x, y), (x′, y′)) :=
r2vm,n((x, y), (x′, y′))s−vm,n((x, y), (x′, y′))

22vm,n((x, y), (x′, y′))
,
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for x, x′ ∈ X and y, y′ ∈ Y , it is easily seen that the kernels

((x, y), (x′, y′)) ∈ (X × Y )2 7→
[
P sm,n((x, x′), (y, y′))

]p
m,n=1

, s > 0,

belong to PDp(X × Y ). If each s ∈ (0,∞) 7→ s−vm,n((x,y),(x
′,y′))/2 is ρ-integrable, Theorem 4.3

implies that the formula

Km,n((x, y), (x′, y′)) =
Γ(vm,n((x, y), (x′, y′)))√

detGm,n(y, y′)

×Mvm,n((x,y),(x′,y′))(r(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′))1/2)

defines a kernelK((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 that belongs to PDp(X×Y ), as
long as the Gm,n and the Hm,n satisfy the assumptions of the theorem. We could also modify
the P sm,n by introducing a matrix [rm,n]pm,n=1 with positive entries, by setting

P sm,n((x, y), (x′, y′)) :=
r
2vm,n((x, y), (x′, y′))
m,n s−vm,n((x, y), (x′, y′))

22vm,n((x, y), (x′, y′))

for x, x′ ∈ X and y, y′ ∈ Y , as long as the kernels

((x, y), (x′, y′)) ∈ (X × Y )2 7→
[
P sm,n((x, y), (x′, y′))

]p
m,n=1

, s > 0,

stay in PDp(X × Y ). In this case, the outcome of Theorem 3.1 would be that the formula

Km,n((x, y), (x′, y′)) =
Γ(vm,n((x, y), (x′, y′)))√

detGm,n(y, y′)

×Mvm,n((x,y),(x′,y′))(rm,n(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′))1/2)

defines a kernel K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(X × Y ), if we keep
the assumptions on the Gm,n and the Hm,n required in the theorem. An specific and simple
example in the space-time setting can be produced in analogy with Theorem 1 in [5]: set Y =
Rd, X = R,

Gm,n(y, y′) = g(‖y − y′‖2)Iq, y, y′ ∈ Rd;m,n = 1, . . . , p,

where g : (0,∞)→ (0,∞) has a completely monotone derivative and

Hm,n(x, x′) = x− x′, x, x′ ∈ R;m,n = 1, . . . , p.

Since (y, y′) ∈ Rd × Rd 7→ g(‖y − y′‖2) belongs to CND1(Rd) by a result of Micchelli ([17]),
it follows that the matrix kernels (y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq , belong to
CNDp(Rd). If we put

vm,n((x, y), (x′, y′)) =
vm + vn

2
, x, x′ ∈ R; y, y′ ∈ Y ;m,n = 1, . . . , p,

in which each vm is a positive constant and properly specify [rm,n]pm,n=1, then for x, x′ ∈ R and
y, y′ ∈ Rd the formula

P sm,n((x, y), (x′, y′)) :=
rvm + vn
m,n s−(vm + vn)/2

2vm + vn
, m, n = 1, . . . , p,

defines kernels

((x, y), (x′, y′)) ∈ (R× Rd)2 7→ [P sm,n((x, y), (x′, y′))]pm,n=1, s > 0,
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in PDp(R× Rd). An application of Theorem 4.3 would lead to

Km,n((x, y), (x′, y′)) =
Γ((vm + vn)/2)

g(‖y − y′‖p/2)
M(vm+vn)/2

(
rmn

‖x− x′‖2

g(‖y − y′‖2)

)
with K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(R × Rd). We observe that the fac-
tor Γ((vm + vn)/2) can be eliminated as long as we can specify [rmn]pm,n=1 in such a way that
[rvm+vn
m,n /Γ((vm + vn)/2)]pm,n=1 is a positive definite matrix. Theorem 1 in [11] is another con-

struction that fits into Theorem 4.3. Details on that will be left to the readers.

Example 4.5. The so-called generalized Cauchy function ([8, p. 337]) is given by

1

(1 + cuγ)ν
=

c−ν

Γ(ν)

∫ ∞
0

e−s u
γ

sνdρ(s), u ≥ 0,

where c > 0, ν > 1, γ ∈ (0, 1] and dρ(s) = s−1 exp(− s/c). In order to apply Theorem 4.3, we
now set φ(u) = e−u

γ

, u > 0 and

P sm,n((x, y), (x′, y′)) =
(s
c

)vm(x,y)+vn(x
′,y′)

, s > 0; y, y′ ∈ Y,

where vm : X × Y → (0,∞) is chosen in such a way that each s ∈ (0,∞) 7→ svm(x,y)/2 is
ρ-integrable. The outcome is that

Km,n((x, y), (x′, y′)) =
Γ(vm(x, y) + vn(x′, y′))√

detGm,n(y, y′)

× 1

(1 + c(Hm,n(x, x′)ᵀGm,n(y, y′)−1Hm,n(x, x′)γ))
vm(x,y)+vn(x′,y′)

,

defines a kernel K((x, y), (x′, y′)) = [Km,n((x, y), (x′, y′))]pm,n=1 in PDp(X × Y ), if we keep the
assumptions on the Gm,n and the Hm,n required in the theorem. Arguments similar to those
developed in the second half of Example 4.4 leads to an example aligned with Theorem 2 in
[5].

5. A FURTHER EXTENSION

As a final remark let us point an improvement that one can make in all the theorems proved
in this paper. If for each m and n in {1, . . . , p}, Gm,n : Y ×Y →Mq(R) is a matrix function with
range containing positive definite matrices only, Theorem 2.4 justifies the following fact: if the
matrix kernels

(y, y′) ∈ Y × Y 7→ [uᵀGm,n(y, y′)u]pm,n=1, u ∈ Rq,
belong to CNDp(Y ), then the kernel K given by

K(y, y′) =

[
1√

detGm,n(y, y′)

]p
m,n=1

, y, y′ ∈ Y,

belongs to PDp(Y ). Under the same setting, it follows from the Schur Product Theorem that

Kl(y, y
′) =

[
1

[detGm,n(y, y′)]l/2

]p
m,n=1

, y, y′ ∈ Y,

belongs to PDp(Y ) whenever l ∈ {1, 2, . . .}. In particular, we can introduce the same power l/2
in the assertions of all the theorems proved in the paper.
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ABSTRACT. It is commonly known that integrals containing log-polylog integrands admit representations in terms
of special functions such as the Dirichlet eta and Dirichlet beta functions. We investigate two parameterized families
of such integrals and in a particular case demonstrate a connection with the Herglotz function. In the process of the
investigation, we recover some known Euler sum equalities and discover some new identities.

Keywords: Harmonic number, gamma function, alternating harmonic number, Riemann zeta function, polylogarithm
function, polygamma functions, linear Euler sums.

2020 Mathematics Subject Classification: 11M06, 11M35, 26B15, 33B15, 42A70, 65B10.

1. INTRODUCTION, PRELIMINARIES AND NOTATION

In the recent past many books ([5], [20], [35]) have been published whereby the authors de-
scribe the connection of the representation of some integrals in terms of Euler sums. Like-
wise the following papers investigate certain integrals that can be represented by Euler sums
[7], [17], [27]. In this paper, we consider two parameterized families of log-polylog integrals
that admit solutions dependent on Euler sums, thereby extending the integrals considered by
([3], [6], [14], [23], [36]). We investigate parameterized families of integrals of the type

Ib+,− (a, p, q, t) =

∫
x

xa lnp (x) Lit(x
bq)

1± xb
dx,(1.1)

Kb
+,− (a, p, q, t) =

∫
x

xa lnp (x) Lit(−xbq)
1± xb

dx,

where a ≥ −2, b ∈ R+, p ∈ N0, q ∈ N, t ∈ N0 and for the domain of x ∈ (0, 1) . Here and
elsewhere, let C,R,R+,Z and N denote the sets of complex numbers, real numbers, positive
real numbers, integers and positive integers respectively and let N0 := N∪{0} and Z− := Z\N0.
In the case (a, b) = (0, 2), we also study the integrals

J (p, q, t) =

∫
x

lnp (x) Lit(x
2q)

1− x2
dx,(1.2)

M (p, q, t) =

∫
x

lnp (x) Lit(−x2q)
1− x2

dx
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in the positive half line x ≥ 0. In a particular case of the integral Kb
+ (a, p, q, t), we make a

connection with the Herglotz function [15]. Some other related papers dealing with polylog
integrals and Euler sums are [4], [9], [24], [25], [26] and the excellent books [18] and [34]. We
describe some notation and special functions, to be used in the following, in the analysis of the
integrals (1.1) and (1.2). The generalized harmonic number H(t)

n (α) are defined as

H(t)
n (α) =

n∑
j=1

1

(j + α)
t , α ∈ C\ {−1,−2,−3, ...} , t ∈ C, n ∈ N

and when α = 0, H
(t)
n (0) = H

(t)
n are ordinary harmonic numbers of order t, an empty sum

is designated as H(t)
0 = 0. For complex values of z, z ∈ C\ {0,−1,−2,−3, ...} , ψ(z) is the

digamma (or psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
,

where Γ (z) is the familiar gamma function, (see, e.g. [33], sections 1.1 and 1.3). We know that
for n ≥ 1, ψ(n + 1) − ψ(1) = Hn with ψ(1) = −γ, where γ is the Euler Mascheroni constant
and ψ(n) is the digamma function. The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)

k+1
k!

∞∑
r=0

1

(r + z)
k+1

.

The difference of the polygamma functions and generalized harmonic numbers are connected
by the zeta function such that for z ∈ C\ {0,−1,−2,−3, ...}we have the identity

(1.3) H(m+1)
z − (−1)

m

m!
ψ(m)(z + 1) = ζ (m+ 1) .

The Dirichlet lambda function λ (z) ,

(1.4) ζ (z) + η (z) = 2λ (z)

connects the zeta function ζ (z) =
∑∞
n=1

1
nz ,with the alternating zeta function η (z) . It is widely

known that integrals of the type (1.1) may be represented by Euler sums and therefore in terms
of special functions such as the Dirichlet beta function. The following papers [27], [28] and [29]
also examined some integrals in terms of Euler sums. Some examples will be given highlight-
ing specific cases of the integrals, some of which cannot be evaluated by a computer mathe-
matical package such as "Mathematica".

2. POLYLOG INTEGRALS WITH POSITIVE ARGUMENT

Consider the following.

Theorem 2.1. Let (p, q, t) ∈ N0, q 6= 0, a ≥ −2, and denote,

(2.5) I+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx.

For an even integer q

(2.6) I+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 ,
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for an odd integer q

(2.7) I+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(−1)
n+1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 ,

and for q ∈ R+\ {0}

(2.8) I+ (a, p, q, t) =
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
,

whereH(t)
n are harmonic numbers of order t and [z] denotes the greatest integer that is less than or equal

to z.

Proof. The alternating harmonic numbers A (n, t) of order t are defined by

(2.9) A (n, t) =

n∑
k=1

(−1)
k+1

kt
, n ∈ N; t ∈ C

then, see [2],

A (n, t) =

n∑
k=1

(−1)
k+1

kt
= H(t)

n −
1

2t−1
H

(t)

[n
2 ]
.

The Dirichlet eta function

η (t) = lim
n→∞

A (n, t) =
∑
n≥1

(−1)
n+1

nt
,Re (t) > 0.

For x ∈ (0, 1) , a Taylor series expansion gives

Lit(x
q) =

∑
n≥1

xqn

nt
,

1

1 + x
=
∑
n≥0

(−1)
n
xn.

By the Cauchy product of two convergent series, then it follows that for q an even integer

xaLit(x
q)

1 + x
=
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

xqn+j+a−1

and therefore, for q an even integer

xa lnp (x) Lit(x
q)

1 + x
=
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

xqn+j+a−1 lnp (x) .

Integrating both sides for x ∈ (0, 1), we have, after reversing the order of summation and
integration, which is justified by the uniform convergence theorem

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx =

∑
n≥1

H(t)
n

q∑
j=0

(−1)
j+1

1∫
0

xqn+j+a−1 lnp (x) dx

= (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 .

For q an odd integer, we have

xa lnp (x) Lit(x
q)

1 + x
=
∑
n≥1

(−1)
n+1

A (n, t)

q∑
j=1

(−1)
j+1

xqn+j+a−1 lnp (x)
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and
1∫

0

xa lnp (x) Lit(x
q)

1 + x
dx = (−1)

p
p!
∑
n≥1

(−1)
n+1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 .

By simple expansion, we have

∑
n≥1

(−1)
n+1

H
(t)

[n
2 ]

(qn+ α)
p+1 =

∑
n≥1

H
(t)
n

(q (2n+ 1) + α)
p+1 −

∑
n≥1

H
(t)
n

(2qn+ α)
p+1

and therefore we can also express

(−1)
p

p!

1∫
0

xa lnp (x) Lit(x
q)

1 + x
dx =

∑
n≥1

(−1)
n+1

H(t)
n

q∑
j=1

(−1)
j+1

(qn+ j + a)
p+1 +

1

2t−1

∑
n≥1

H(t)
n

×

 q∑
j=1

(−1)
j+1

(2qn+ j + a)
p+1 −

q∑
j=1

(−1)
j+1

(q (2n+ 1) + j + a)
p+1

 .

For the representation (2.8), we can write
1∫

0

xa lnp (x) Lit(x
q)

1 + x
dx = (−1)

p
p!
∑
n≥1

1

nt

∑
j≥0

(−1)
j

(qn+ j + a+ 1)
p+1

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
ζ

(
p+ 1,

qn+ a+ 1

2

)
− ζ

(
p+ 1,

qn+ a+ 2

2

))

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
ψ(p)

(
qn+ a+ 2

2

)
− ψ(p)

(
qn+ a+ 1

2

))

=
(−1)

p
p!

2p+1

∑
n≥1

1

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
and the proof is finished. �

The next theorem deals with a related integral similar to (2.5).

Theorem 2.2. For (p, t) ∈ N, a ≥ −2, and for q a positive integer, then

I− (a, p, q, t) =

1∫
0

xa lnp (x)

1− x
Lit(x

q)dx

= (−1)
p
p!
∑
n≥1

H(t)
n

q∑
j=1

1

(qn+ j + a)
p+1 .(2.10)

For q ∈ R+\ {0}

(2.11) I− (a, p, q, t) = (−1)
p
p!
∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
,

where H(p+1)
nq+a are shifted harmonic numbers of order p+ 1.
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Proof. A Taylor series expansion of

Lit(x
q) =

∑
n≥1

xqn

nt
and

1

1− x
=
∑
j≥0

xj

allows us to write

I− (a, p, q, t) =
∑
n≥1

H(t)
n

q∑
j=1

1∫
0

xqn+j+a−1 lnp (x) dx

= (−1)
p
p!
∑
n≥1

1

nt

q∑
j=1

1

(qn+ j + a)
p+1 .

For the representation (2.11), we notice

I− (a, p, q, t) =
∑
n≥1

1

nt

∑
j≥0

(−1)
p
p!

(qn+ j + a+ 1)
p+1

= (−1)
p
p!
∑
n≥1

1

nt
ζ (p+ 1, qn+ a+ 1)

= (−1)
p
p!
∑
n≥1

(−1)
p+1

p!nt
ψ(p) (qn+ a+ 1) .

From the identity (1.3), we obtain the required representation

I− (a, p, q, t) = (−1)
p
p!
∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
.

We remark that Coffey [7] obtained solutions of various special cases of I− (0, p, 1, 1) in terms
of Euler sums. �

Remark 2.1. For (p, q) ∈ N0, we see from (2.10) and (2.11) the remarkable Euler sum identity

(2.12)
∑
n≥1

H(t)
n

q∑
j=1

1

(qn+ j + a)
p+1 =

∑
n≥1

1

nt

(
ζ (p+ 1)−H(p+1)

nq+a

)
.

Using the notation developed by [13] and generalized by the authors of the paper [1], we define

S++
p,q (α, β) =

∑
n≥1

H
(p)
n (α)

(n+ β)
q , S

+−
p,q (α, β) =

∑
n≥1

(−1)
n+1

H
(p)
n (α)

(n+ β)
q ,

where

ζ (p, α) = H(p)
n (α) =

n∑
j=1

1

(n+ α)
p , n ∈ N, p ∈ C, α ∈ C\Z−.

In the case α = 0, β = 0, we write S++
p,q (0, 0) = S++

p,q and S+−
p,q (0, 0) = S+−

p,q . For a = 0, upon
rearranging and simplifying we obtain a new Euler identity

∑
n≥1

H(t)
n

q−1∑
j=1

1

(qn+ j)
p+1 +

∑
n≥1

H
(p+1)
qn

nt
+

1

qp+1
S++
t,p+1 = ζ (t) ζ (p+ 1) +

1

qp+1
ζ (t+ p+ 1) .
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If we choose q = 1, a ∈ R, a > −1, then

S++
p+1,t (0, a) + S++

t,p+1 (a, 0) = ζ (t) ζ (p+ 1) +
∑
n≥1

1

nt (n+ a)
p+1 ,

which confirms Theorem 3.1 obtained by [1], using shuffle (or reciprocity) properties of Euler sums. If
we now let a = 0, we recover the well known identity

S++
p+1,t + S++

t,p+1 = ζ (t) ζ (p+ 1) + ζ (t+ p+ 1) .

In the special case p+ 1 = t,∑
n≥1

H(t)
n

q−1∑
j=1

1

(qn+ j)
t +

∑
n≥1

H
(t)
qn

nt
=

(
1− 1

qt+1

)
ζ2 (t) +

1

qt+1
ζ (2t) .

From (2.12) with q = 2, a = 0 (and renaming p+ 1 as p), we have

1

2p
S++
p,t

(
0,

1

2

)
= ζ (t) ζ (p)− 1

2p
ζ (t+ p) +

(
1

2p−1
− 2t−1

)
S++
p,t −

1

2p
S++
t,p + 2t−1S+−

p,t

and when p = t, we can simplify to obtain the new identity

1

2t
S++
t,t

(
0,

1

2

)
− 2t−1S+−

t,t = ζ (t) η (t)− 2t−2η (2t) +

(
3

2t+1
− 2t−2

)
ζ2 (t) .

In terms of the harmonic numbers at an argument of half integer values we have

1

2t
S++
t,t

(
0,

1

2

)
− 2t−1S+−

t,t = 2t−1S++
t,t − 2t−1λ (t) η (t)− 1

2

∑
n≥1

H
(t)
n
2

nt
− 1

2

∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
,

where it has been shown in [29] that

∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
and ∑

n≥1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
+

1

2t
(
ζ (2t) + ζ2 (t)

)
.

Some other log-sine-polylog integrals involving alternating Euler sums have recently been investigated
by [17].

Remark 2.2. For the two cases where b ∈ R+, a+ 1 > −b

Ib+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
bq)

1 + xb
dx =

1

bp+1
I+

(
a+ 1− b

b
, p, q, t

)
(2.13)

=
(−1)

p+1
p!

(2b)
p+1

∑
n≥1

1

nt

(
H

(p+1)
qn
2 + a+1−2b

2b

−H(p+1)
qn
2 + a+1−b

2b

)
and

(2.14) Ib− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(x
bq)

1− xb
dx =

1

bp+1
I−

(
a+ 1− b

b
, p, q, t

)
.
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The following theorem applies.

Theorem 2.3. For p, q, t ∈ N, a = 0 and b = 2 then

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
2q)

1− x2
dx =

∞∫
0

f (x; p, q, t) dx

=

1∫
0

lnp (tanh θ) Lit(tanh2q θ)dθ(2.15)

=
(

1 + (−1)
p+t
)
I2− (0, p, q, t) + (−1)

p+t (2πi)
t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx,(2.16)

where

f (x; p, q, t) =
lnp (x)

1− x2
Lit(x

2q),

I2− (0, p, q, t) is given by (2.14) and B
(
t,

ln(x2q)
2πi

)
is the Bernoulli polynomial.

Proof. We begin with

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
2q)

1− x2
dx =

∞∫
0

f (x; p, q, t) dx

and put

J (p, q, t) =

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+

∞∫
1

f (x; p, q, t) dx.

We notice that f (x; p, q, t) is continuous, bounded and differentiable on the interval x ∈ (0, 1] ,
with lim

x→0+
f (x; p, q, t) = lim

x→1
f (x; p, q, t) = 0. Now we make the transformation xy = 1 in the

third integral so that

(2.17)

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+ (−1)
p

1∫
0

lnp (y)

1− y2
Lit(y

−2q)dy.

From Erdělyi et. al. [11], Jonquiěre’s relation states

(2.18) Lis(z) + eiπsLis(
1

z
) =

(
2πeiπ

)s
Γ (s)

ζ

(
1− s, ln z

2πi

)
,

where Lis(z) is a polylogarithm, i =
√
−1, Γ (s) is the gamma function, s ∈ C and ζ

(
1− s, ln z2πi

)
is the Hurwitz zeta function and z is not a member of the real interval [0, 1]. A modified version
of (2.18) is given by Crandall [9] as follows. For integer t and z ∈ C,

(2.19) Lit(z) + (−1)
t
Lit(

1

z
) = − (2πi)

t

t!
B

(
t,

ln (z)

2πi

)
− 2πiΘ (z)

lnt−1 (z)

(t− 1)!
,
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where B
(
t, ln(z)2πi

)
is the Bernoulli polynomial (see, e.g. [33], sections 1.7), and Θ (z) is a time

dependent step function

Θ (z) =

 1, if Im (z) < 0 or z ∈ [1,∞)

0, otherwise
.

The function Θ (z) is intended to provide the conventional behavior in the branch when and
only when z is in the lower half plane union with the real cut [1,∞) . For convenience, we list

B

(
4,

ln (z)

2πi

)
=

1

16π4
ln4 z − i

4π3
ln3 z − i

4π2
ln2 z − 1

30
,

B

(
3,

ln (z)

2πi

)
= − i

4π
ln z +

3

8π2
ln2 z +

i

8π3
ln3 z.

Now, we can substitute (2.19) into (2.17), so that
∞∫
0

f (x; p, q, t) dx =
(

1 + (−1)
p+t
) 1∫

0

f (x; p, q, t) dx+ (−1)
p+t (2πi)

t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx.

The integral

I2− (0, p, q, t) =

1∫
0

lnp (x) Lit(x
2q)

1− x2
dx

has been evaluated in Theorem 2.1 and therefore

J (p, q, t) =
(

1 + (−1)
p+t
)
I2− (0, p, q, t) + (−1)

p+t (2πi)
t

t!

1∫
0

lnp (x)

1− x2
B

(
t,

ln
(
x2q
)

2πi

)
dx

and the proof is finished. Note that the integral I2− (0, p, q, t) does not contribute to J (p, q, t) in
the case when p+ t is an odd integer. The third integral in (2.15) is obtained by the substitution
x = tanh θ. �

Remark 2.3. Utilizing (2.19) we are able to evaluate the related integral, from Theorem 2.2, (or from
(2.14))

1∫
0

xa lnp (x) Lit(x
−bq)

1− xb
dx = (−1)

t+1
Ib− (a, p, q, t) + (−1)

t+1 (2πi)
t

t!

1∫
0

xa lnp (x)B

(
t,

ln(xbq)
2πi

)
1− xb

dx.

Some examples follow. First we record here the following result, given in [27], that will be
required for the evaluation of some Euler sums.

Theorem 2.4. Let α be a real number α 6= −1,−2,−1, ..., and assume that m ∈ N\ {1} . Then

∑
n≥1

Hn

(n+ α)
m =

(−1)
m

(m− 1)!


(ψ (α) + γ)ψ(m−1) (α)

− 1
2ψ

(m) (α) +
∑m−2
j=1

(
m− 2
j

)
ψ(j) (α)ψ(m−j−1) (α)

 ,
where γ is the Euler Mascheroni constant.
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Example 2.1.
1. For a = −1, q = 2, p = 2m,m ∈ N and t+ p of even weight

I+ (−1, 2m, 2, t) =

1∫
0

x−1 ln2m (x) Lit(x
2)

1 + x
dx

=
(2m)!

22m+1
S++
t,2m+1 −

(2m)!

22m+1
S++
t,2m+1

(
0,

1

2

)
and can be evaluated explicitly in terms of special functions since we have the known Euler sum relations,
S++
t,2m+1 and S++

t,2m+1

(
0, 12
)

defined in Remark 2.1.
2. For t = p = q = 1 and a = − 1

2

I+

(
−1

2
, 1, 1, 1

)
=

1

4

∑
n≥1

Hn(
n+ 1

4

)2 − 1

4

∑
n≥1

Hn(
n+ 3

4

)2 −∑
n≥1

(−1)
n+1

Hn(
n+ 1

2

)2 ,

here, the Euler sums
∑
n≥1

Hn

(n+x)m are evaluated using Theorem 2.4, so that

I+

(
−1

2
, 1, 1, 1

)
= 8G ln 2 + 8Im

(
Li3(

1± i
2

)

)
− 1

4
π ln2 2− 5

16
π3,

where G =
∑
n≥0

(−1)n

(2n+1)2.
is Catalan’s constant. Sofo and Nimbran [32] have shown that the imaginary

part of the trilogarithm:

W (3) :=Im

(
Li3

(
1± i

2

))
=
∑
n≥1

sin
(
nπ
4

)
2

n
2 n3

=
∑
n≥1

(−1)
n+1

22n

(
2

(4n− 3)
3 +

2

(4n− 2)
3 +

1

(4n− 1)
3

)
and Lewin ( [16], p.164, 296) has also given

Re

(
Li3

(
1 + i

2

))
=

1

48
ln3 2 +

35

64
ζ (3)

and therefore

I+

(
−1

2
, 1, 1, 1

)
= 8G ln 2 + 8W (3)− 1

4
π ln2 2− 5

16
π3.

3. For t = q = 1, p = 2 and a = − 1
2

I+

(
−1

2
, 1, 1, 2

)
= 2

∑
n≥1

(−1)
n+1

Hn(
n+ 1

2

)3 − 1

4

∑
n≥1

Hn(
n+ 1

4

)3 +
1

4

∑
n≥1

Hn(
n+ 3

4

)3
=

63

8
πζ (3) + 2π2G+

13

8
π3 ln 2− 102β (4) ,

where the Dirichlet beta function, β (z) or Dirichlet L function is given by, see Finch [12],

β (z) =

∞∑
n=0

(−1)
n

(2n+ 1)
z ; for Re (z) > 0,
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where β (2) = G is Catalan’s constant. From Remark 2.2

Ib−

(
b− 1, t− 1,

1

2
, t

)
=

1∫
0

xb−1 lnt−1 (x) Lit(x
b/2)

1− xb
dx

=
(−1)

t
(t− 1)!

bt
(
2−tζ (2t) +

(
1− 2−t

)
ζ2 (t) + 2t−1

(
η (2t)− η2 (t)

))
.

4. For a = − 1
2 , p = 1, q = 1, t = 2

1∫
0

x−1/2 ln (x) Li2(x)

1− x
dx = 16L (3)− 55

4
ζ (4) ,

where, see [13],

(2.20) L (3) = S+−
1,3 =

11

4
ζ (4)− 7

4
ζ (3) ln 2 +

1

2
ζ (2) ln2 2− 1

12
ln4 2− 2Li4

(
1

2

)
and

1∫
0

x−1/2 ln (x) Li2( 1
x )

1− x
dx =

175

4
ζ (4)− 16L (3) + i14πζ (3) .

5. For b = 1, p = 1, q = 1, t = 2

I2− (−2, 1, 1, 2) =

1∫
0

x−2 ln (x) Li2(x2)

1− x2
dx = 8 ln 2 + 4L (3)− 4ζ (2)− 55

16
ζ (4) .

6. From (2.13)

Ib+ (b− 1, t− 1, 1, t) =
(−1)

t
(t− 1)!

2bt
(
η2 (t)− ζ (2t)

)
.

7. From (2.16)

J (3, 2, 1) =

∞∫
0

ln3 (x) Li1(x4)

1− x2
dx =

21

8
π2ζ (3) +

3

4
π3G+

3

8
π4 ln 2 + 6πβ (4) + i

π5

16
.

In the next section we consider the integral (2.5) with negative polylog argument.

3. POLYLOG INTEGRALS WITH NEGATIVE ARGUMENT

Theorem 3.5. Let (p, q, t) ∈ N0, q 6= 0, a ≥ −2, and denote

(3.21) K+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xq)
1 + x

dx.

For q an odd integer

(3.22) K+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(−1)
n+1

H(t)
n

q∑
j=1

(−1)
j

(qn+ j + a)
p+1 ,

for q an even integer

(3.23) K+ (a, p, q, t) = (−1)
p
p!
∑
n≥1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

(−1)
j

(qn+ j + a)
p+1 ,
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and for q ∈ R+\ {0}

(3.24) K+ (a, p, q, t) =
(−1)

p
p!

2p+1

∑
n≥1

(−1)
n

nt

(
H

(p+1)
qn+a

2

−H(p+1)
qn+a−1

2

)
,

whereH(t)
n are harmonic numbers of order t and [z] denotes the greatest integer that is less than or equal

to z.

Proof. The results (3.22), (3.23) and (3.24) can be proven Mutatis Mutandis with respect to The-
orem 2.1. �

3.1. Connection to the Herglotz function. From Theorem 3.5, let

Λ (q) = −K+ (0, 0, q, 1) = −
1∫

0

Li1(−xq)
1 + x

dx =

1∫
0

ln(1 + xq)

1 + x
dx.

In the paper [22], Zagier stated that Henri Cohen ([8], Ex. 60, p. 902-903) showed him the
identity

Λ
(

1 +
√

2
)

=
1

2
ln 2

(
ln 2 + ln

(
1 +
√

2
))
− 1

4
ζ (2) .

Radchenko and Zagier [22], evaluated many other cases such as Λ
(
2
5

)
and Λ

(
4 +
√

17
)

and
gave the relation

Λ (q) = F (2q)− 2F (q) + F
(q

2

)
+

1

2q
ζ (2)

in terms of the function

F (q) =
∑
n≥1

1

n
(ψ(nq)− ln (nq)) , q ∈ C\ (−∞, 0] .

The function F (q) was introduced and studied by Zagier [37] and he obtained some functional
equations that F (q) satisfies, namely, for q ∈ C\ (−∞, 0]

F (q)− F (q + 1)− F
(

q

1 + q

)
+ F (1) = Li2

(
1

1 + q

)
and

F (q) + F

(
1

q

)
− 2F (1) =

1

2
ln2 q − (q − 1)

2

q
ζ (2) .

A similar function to F (q) was also studied by Herglotz in [15] and therefore Radchenko and
Zagier [22] named it the Herglotz function. Herglotz [15] also studied the integral−K+ (0, 0, q, 1)

and found explicit values for Λ
(
4 +
√

15
)
, Λ
(
6 +
√

35
)

and Λ
(
12 +

√
143
)
. Many other iden-

tities of this kind were found by Muzzafar and Williams [19], together with some sufficient
conditions on q under which one can evaluate Λ

(
q +

√
q2 − 1

)
. In Section 6, Radchenko and

Zaiger [22] give a systematic account, at special values of quadratic units of these identities and
list two tables with specific solutions. Radchenko and Zagier [22] study, among other things,
the relation of this function with the Dedekind eta-function, functional equations satisfied by
F (q) in connection with Hecke operators, the cohomological aspects of F (q) and its special
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values at positive rationals and quadratic units. Recently, Dixit et al. [10] extended the study
to higher Herglotz functionals. From (3.24) we can see that

Λ (q) =
1

2

∑
n≥1

(−1)
n+1

n

(
H qn

2
−H qn−1

2

)
and from the identity of the multiple argument of polygamma functions,

2Hqn − 2 ln 2 = H qn
2

+H qn
2 −

1
2

implies

Λ (q) = ln2 2−
∑
n≥1

(−1)
n+1

n

(
Hqn −H qn

2

)
= ln2 2−

∑
n≥1

(−1)
n+1

n

(
ψ (qn+ 1)− ψ

(qn
2

+ 1
))

.

In the case q = 1/2

Λ

(
1

2

)
=

1

4
ln2 2 +

1

8
ζ (2) .

Consider the case q = 2m,m ∈ N, then

Λ (2m) = ln2 2 +
∑
n≥1

(−1)
n+1

n
(ψ (mn+ 1)− ψ (2mn+ 1))

and using the known identities, see [31], for the digamma sums, we can write

Λ (2m) =

1∫
0

ln(1 + x2m)

1 + x
dx =

1

2

2m−1∑
j=0

ln2

(
2 sin

(
(2j + 1)π

4m

))

+
1− 2m2

8m
ζ (2) + ln2 2− 1

2

m−1∑
j=0

ln2

(
2 sin

(
(2j + 1)π

2m

))
,

where, in particular

Λ (6) = 2 ln2
(

1 +
√

3
)
− 2 ln 2 ln

(
1 +
√

3
)

+
5

4
ln2 2− 17

24
ζ (2) .

From the functional relationship

ln (1 + xq)− ln
(
1 + x−q

)
= q lnx

we can evaluate the related Λ (−q) integral

Λ (−q) =

1∫
0

ln(1 + x−q)

1 + x
dx = Λ (q)− q

2
ζ (2) ,

here
Λ (−6) = 2 ln2

(
1 +
√

3
)
− 2 ln 2 ln

(
1 +
√

3
)

+
5

4
ln2 2 +

55

24
ζ (2) .

For the case of q odd, we also have the representation (3.22) and for q = 3,

Λ (3) = ln 2 ln 3− 1

2
ln2 2−

∑
n≥1

cos (πn/3)

2n−1n2
.
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Theorem 3.6. Let (p, q, t) ∈ N, q 6= 0, a ≥ −2, and denote

K− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xq)
1− x

dx.

Then, for q ∈ N

K− (a, p, q, t) = (−1)
p
p!
∑
n≥1

(
H(t)
n −

1

2t−1
H

(t)

[n
2 ]

) q∑
j=1

1

(qn+ j + a)
p+1 ,

and for q ∈ R+\ {0}

K− (a, p, q, t) = (−1)
p
p!ζ (p+ 1) η (t)− (−1)

p
p!
∑
n≥1

(−1)
n+1

H
(p+1)
qn+a

nt
,

where η (t) is the Dirichlet eta function, or the alternating zeta function.

Proof. The proof follows Mutatis Mutandis with respect to Theorem 2.1. �

Remark 3.4. For the two cases where b ∈ R+, a+ 1 > −b

Kb
+ (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xbq)
1 + xb

dx =
1

bp+1
K+

(
a+ 1− b

b
, p, q, t

)
and

Kb
− (a, p, q, t) =

1∫
0

xa lnp (x) Lit(−xbq)
1− xb

dx =
1

bp+1
K−

(
a+ 1− b

b
, p, q, t

)
.

In particular

K2
− (0, p, q, t) =

1∫
0

lnp (x) Lit(−x2q)
1− x2

dx =
1

2p+1
K−

(
−1

2
, p, q, t

)
(3.25)

=


(−1)pp!
2p+1

∑
n≥1

(−1)n+1H
(p+1)

qn− 1
2

nt − (−1)pp!
2p+1 ζ (p+ 1) η (t) , for q ∈ R+

(−1)
p+1

p!
∑
n≥1A (n, t)

∑q
j=1

1
(2qn+2j−1)p+1 , for q ∈ N

.

Now, we provide a theorem for the representation of a special case of the integral (3.25) in
the half plane x ≥ 0.

Theorem 3.7. For b = 2, a = 0; p, t ∈ N, q > 0

M (p, q, t) =

∞∫
0

lnp (x) Lit(−x2q)
1− x2

dx =

∞∫
0

g (x; p, q, t) dx(3.26)

=

1∫
0

lnp (tanh θ) Lit(− tanh2q θ)dθ
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=
(

1 + (−1)
p+t
)
K2
− (0, p, q, t)(3.27)

+ 2

[ t
2 ]∑
j=0

(2q)
t−2j

p!

(
p+ t− 2j

p

)
η(2j)λ (p+ t+ 1− 2j) ,

where

(3.28) g (x; p, q, t) =
lnp (x) Lit(−x2q)

1− x2
,

K2
− (0, p, q, t) is given by (3.25), η(2j) is the Dirichlet eta function, λ (·) is the Dirichlet lambda function

(1.4) and
[
t
2

]
is the Floor function.

Proof. Using the same technique as in Theorem 2.3, we arrive at

(3.29)

∞∫
0

g (x; p, q, t) dx =

1∫
0

g (x; p, q, t) dx+ (−1)
p

1∫
0

lnp (y)

1− y2
Lit(−y−2q)dy.

From Lewin ([16], p.299), Jonquiěre’s relation states

(3.30) Lis(−z) + (−1)
t
Lis(−

1

z
) = −2

[ t
2 ]∑
j=0

(ln z)
t−2j

(t− 2j)!
η(2j) = 2

[ t
2 ]∑
j=0

(ln z)
t−2j

(t− 2j)!
Li2j(−1),

where Lis(z) is a polylogarithm. The relation (3.30) can also be written in terms of Bernoulli
numbers so that

Lit(−z) + (−1)
t
Lit(−

1

z
) =

1

t!

t∑
j=0

(
1− 21−j

)( t
j

)
Bj (2πi)

j
(ln z)

t−2j
,

where Bj are the Bernoulli numbers. Now we can substitute (3.30) into (3.29), so that

∞∫
0

g (x; p, q, t) dx =
(

1 + (−1)
p+t
) 1∫

0

g (x; p, q, t) dx

+ 2 (−1)
p+t

[ t
2 ]∑
j=0

(2q)
t−2j

(t− 2j)!
η(2j)

1∫
0

lnp+t−2j (x)

1− x2
dx.

The integral

K2
− (0, p, q, t) =

1∫
0

lnp (x) Lit(−x2q)
1− x2

dx

and
1∫

0

lnp+t−2j (x)

1− x2
dx = (−1)

p+t
(p+ t− 2j)!λ (p+ t− 1− 2j) .

Therefore we obtain (3.27) and the proof is finished. Note that the integral K2
− (0, p, q, t) does

not contribute to M (p, q, t) in the case when p+ t is an odd integer. The third integral in (3.26)
is obtained by the substitution x = tanh θ. �
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Remark 3.5. It can be noted, from Jonquiěre’s relation (3.30) and using the integrals in remark 3.4 that
we are able to determine the value of the integrals

1∫
0

xa lnp (x) Lit(−x−bq)
1− xb

dx = (−1)
t+1

Kb
− (a, p, q, t)(3.31)

+ 2 (−1)
t+1

[ t
2 ]∑
j=0

η(2j)

(t− 2j)!

1∫
0

xa lnp (x) lnt−2j(−xbq)
1− xb

dx.

Some examples follow.

Example 3.2.
1. From (3.22) and (3.24) for q = 1, a = 0,

∑
n≥1

(−1)
n

(n+ 1)
p+1H

(t)
n =

1

2p+1

∑
n≥1

(−1)
n

nt

(
H

(p+1)
n
2

−H(p+1)
n−1
2

)
,

from the polygamma multiplication formula [30]

2p+1H(p+1)
n = 2p+1η (p+ 1) +H

(p+1)
n
2

+H
(p+1)
n−1
2

we can write

S+−
t,p+1 − η (p+ t+ 1) =

∑
n≥1

(−1)
n+1

nt

(
H(p+1)
n − η (p+ 1)− 1

2p
H

(p+1)
n
2

)
and therefore

1

2p

∑
n≥1

(−1)
n+1

H
(p+1)
n
2

nt
= η (p+ t+ 1)− η (p+ 1) η (t) + S+−

p+1,t − S
+−
t,p+1.

If p+ 1 = t, ∑
n≥1

(−1)
n+1

H
(t)
n
2

nt
= 2t−1

(
η (2t)− η2 (t)

)
.

2. From Theorem 3.6 with q = 2, a = 0, we have

ζ (p+ 1) η (t)−
∑
n≥1

(−1)
n+1

H
(p+1)
2n

nt

=
1

2p+1

(
S++
t,p+1

(
0,

1

2

)
+ S++

t,p+1 (0, 1)

)
− 1

21+2p+t

(
S++
t,p+1

(
0,

1

4

)
+ S++

t,p+1

(
0,

1

2

)
+ S++

t,p+1

(
0,

3

4

)
+ S++

t,p+1 (0, 1)

)
.

Simplifying we obtain the new identity∑
n≥1

(−1)
n+1

H
(p+1)
2n

nt
= ζ (p+ 1) η (t) + 2−1−2p−t

(
S++
t,p+1

(
0,

1

4

)
+ S++

t,p+1

(
0,

3

4

))

+
(
2−1−2p−t − 2−1−p

)(
S++
t,p+1 − ζ (p+ t+ 1) + S++

t,p+1

(
0,

1

2

))
.
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In particular, when t = 1 we obtain an analogous identity, (to (5.6) in [1])

∑
n≥1

(−1)
n+1

H
(p+1)
2n

n
= ζ (p+ 1) ln 2 + 2−2−2p

(
S++
1,p+1

(
0,

1

4

)
+ S++

1,p+1

(
0,

3

4

))

+
(
2−2−2p − 2−1−p

)(
S++
1,p+1 − ζ (p+ 2) + S++

1,p+1

(
0,

1

2

))
,

the expression S++
1,p+1 (0, α) =

∑
n≥1

Hn

(n+α)p+1 can be evaluated by Theorem 2.4.
3. For a = 1, p = 4, q = 2, t = 1

K− (1, 4, 2, 1) =

1∫
0

x ln4 (x) Li1(−x2)

1− x
dx

= 24
∑
n≥1

(−1)
n+1

H
(5)
2n+1

n
− 24ζ (5) ln 2

= 48 (1−G)β (4) + 48G− 240 + 12π + 24 ln 2 +
3

2
π3

+
5

32
π5 +

15453

256
ζ (6)− 27

128
ζ2 (3)− 1581

64
ζ (5) ln 2.

4. For a = − 3
2 , p = 0, q = 1, t = 2

1∫
0

x−3/2Li2(−x)

1− x
dx = −2

∑
n≥1

(−1)
n+1

H
(2)
n

2n− 1
=

11

45
ζ (3) + ζ (2)

+
π

4
ln2 2 + 4 ln 2− 2π − 4G ln 2− 8W (3) .

5. For a = 0, p = 0, q = 1
2 , t = 3

1∫
0

Li3(−x1/2)

1 + x
dx = −2

∑
n≥1

(−1)
n+1

n3
(
Hn

2
− ln 2−Hn

4

)
=

65

128
ζ (4)− η (3) ln 2− 3

8
L (3) .

6. For p = t− 1, q > 0, t ∈ N

M (t− 1, q, t) =

∞∫
0

lnt−1 (x) Lit(−x2q)
1− x2

dx

= 2 (t− 1)!

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j − 1

t− 1

)
η(2j)λ (2t− 2j) ,
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where η(0) = 1
2 .

7. For p = 2m− 1, where m ∈ N, q = 1, t ∈ N

1

(2m− 1)!
M (2m− 1, 1, t) =

1

(2m− 1)!

∞∫
0

ln2m−1 (x) Lit(−x2)

1− x2
dx

=

(
ζ (2m)

22m
+ η(2m)

)
η(t)−

∑
n≥1

(−1)
n+1

nt

(
H

(2m)
2n − 1

22m
H(2m)
n

)

+ 2

[ t
2 ]∑
j=0

(2)
t−2j

(
2m− 1 + t− 2j

2m− 1

)
η(2j)λ (2m+ t− 2j) .

In particular

M (7, 1, 1) =
427

64
π7G+

17

16
π8 ln 2 +

525

8
π5β (4) + 630π3β (6) + 5040πβ (8) .

8. For p = t, q = 1
2 , t ∈ N

1

2
M

(
t,

1

2
, t

)
=

1

2

∞∫
0

lnt (x) Lit(−x)

1− x2
dx =

[ t
2 ]∑
j=0

t!

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j)

+ (−1)
t
t!

S+−
t+1,t −

1

2t+1

∑
n≥1

(−1)
n+1

nt
H

(t+1)
n
2


− (−1)

t
t!η(t)

(
η(t+ 1) +

1

2t+1
ζ(t+ 1)

)
and the Euler sum

∑
n≥1

(−1)n+1

nt H
(t+1)
n
2

can be explicitly evaluated by the techniques developed in
[26], [28] and [29]. Other authors have also evaluated particular case of these integrals, Coffey [7] has
evaluated, amongst other results, K+ (0, 1, 1, 2) .
9. For a = 1

2 , p = 2, q = 1, t = 2

K−

(
1

2
, 2, 1, 2

)
=

1∫
0

√
x ln2 (x) Li2(−x)

1− x
dx = 48πβ (4) + 384− 128G− 48π

+ 8ζ (2) + 2π3G− 2π3 − 96 ln 2− 7ζ (2) ζ (3)− 186ζ (5)

and
1∫

0

√
x ln2 (x) Li2(− 1

x )

1− x
dx = 128G− 48πβ (4) + 48π + 8ζ (2)

+ 96 ln 2− 2π3G− 7ζ (2) ζ (3)− 186ζ (5) .
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Remark 3.6. From Theorem 3.7 we can identify a new Euler identity in the case of even weight p + t.
Consider the case p = t, then we can write

2K2
− (0, t, q, t) = M (t, q, t)− 2t!

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j)

from which we extract the Euler identity∑
n≥1

(−1)
n+1

nt

(
H

(t+1)
2qn − 1

2t+1
H(t+1)
qn

)
=

(−1)
t

2t!
M (t, q, t)(3.32)

+ (−1)
t

[ t
2 ]∑
j=0

(2q)
t−2j

(
2t− 2j

t

)
η(2j)λ (2t+ 1− 2j) + η(t)

(
η(t+ 1) +

1

2t+1
ζ(t+ 1)

)
.

Since for q = 1 Flajolet and Salvy [13] give explicit values for S+−
t+1,t, then we can obtain an explicit

identity for
∑
n≥1

(−1)n+1H
(t+1)
2n

nt . Iterating for values q = 1, 2, 3... allows us to obtain new Euler sum

identities for
∑
n≥1

(−1)n+1H
(t+1)
2qn

nt , t ∈ N. Let

S+−
p,t (α, β; q) =

∑
n≥1

(−1)
n+1

H
(p)
qn (α)

(n+ β)
t ,

then from (3.32) we offer the following examples.

S+−
2,1 (0, 0; 2) = 2ζ (3)− 1

2
πG− 1

8
ζ (2) ln 2.

S+−
3,2 (0, 0; 2) = 3πβ (4) +

1

8
π3G− 2997

256
ζ (5) +

3

32
ζ (2) ζ (3) .

S+−
3,2 (0, 0; 4) =

π2

512
√

2

 3π
(
ψ′
(
1
8

)
+ ψ′

(
3
8

)
− ψ′

(
5
8

)
− ψ′

(
7
8

))
−ψ′′

(
1
8

)
+ ψ′′

(
3
8

)
+ ψ′′

(
5
8

)
− ψ′′

(
7
8

)


+
π

512
√

2

(
ψ′′′

(
1

8

)
+ ψ′′′

(
3

8

)
− ψ′′′

(
5

8

)
− ψ′′′

(
7

8

))
+

1

8

(
3πβ (4) +

1

8
π3G− 2997

256
ζ (2) +

3

32
ζ (2) ζ (3)

)
− 186ζ (5) .

In the case where p = 2, q = 2, t = 3, we can evaluate the result

S+−
2,3 (0, 0; 2) =

1973

128
ζ (5) +

61

32
ζ (2) ζ (3)− 6πβ (4) .

The case p = t+ 1, t ∈ N and β = 1 results in

S+−
t+1,t (0, 1; q) + S+−

t+1,t (0, 0; q) =
η (2t+ 1)

qt+1
+

q−1∑
j=1

t−1∑
r=0

qr
(
t+ r
r

)
η (t− r)
jt+r+1

+

q−1∑
j=1

t∑
r=0

(−1)
r

(
t+ r − 1

r

)
qt

jt+r

∑
n≥1

(−1)
n+1

(qn− j)t+1−r .(3.33)
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The result (3.33) follows from the consideration

S+−
t+1,t (0, 1; q) + S+−

t+1,t (0, 0; q) =
∑
n≥1

(−1)
n+1

qt+1nt
(
n− j

q

)t+1

and by the known decomposition formula, originally due to Euler ([21], p.48, Eq.(9))

1

nt (n− α)
t+1 =

t−1∑
r=0

(−1)
t+1

(
t+ r
r

)
1

nt+rαt+r+1

+

t∑
r=0

(−1)
r

(
t+ r − 1

r

)
1

αt+r (n− α)
t+1−r .

The classical identity follows, upon putting q = 1, in which case

S+−
t+1,t (0, 1; 1) + S+−

t+1,t (0, 0; 1) = η (2t+ 1) .

Concluding Remarks. We have extended the current available knowledge for the representation
of Euler sums. Moreover, we have demonstrated two parameterized families of log-polylog
families that admit solutions dependent on Euler sums and in a particular case have demon-
strated a connection with the Herglotz function. As a result of this line of research we expect
further studies in the areas of polylog integrals and generalized Herglotz functions.

Acknowledgement. We are indebted to the anonymous referees for their constructive and helpful
remarks.
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ABSTRACT. We extend the classical van der Corput inequality to the real line. As a consequence, we obtain a simple
proof of the Wiener-Wintner theorem for the R-action which assert that for any family of maps (Tt)t∈R acting on the
Lebesgue measure space (Ω,A, µ), where µ is a probability measure and for any t ∈ R, Tt is measure-preserving
transformation on measure space (Ω,A, µ) with Tt ◦ Ts = Tt+s, for any t, s ∈ R. Then, for any f ∈ L1(µ), there is a

single null set off which lim
T→+∞

1

T

∫ T

0
f(Ttω)e2iπθtdt exists for all θ ∈ R. We further present the joining proof of the

amenable group version of Wiener-Wintner theorem due to Ornstein and Weiss .

Keywords: van der Corput inequality, Wiener-Wintner theorem, joinings, amenable group.
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1. INTRODUCTION

In this paper, using our generalization of van der Corput inequality for the real line, we
present a simple proof of Wiener-Wintner theorem for the flows. We further present the joining
proof of the amenable groups version of it due to Ornstein and Weiss [13]. This accomplished
by applying the Furstenberg joinings machinery. The classical Wiener-Wintner theorem [15]
assert the following.

Theorem 1.1. Let (Ω,A, µ, T ) be a dynamical system, where µ is a probability measure. Then, for any
f in L1(µ), there is a set Ω′ of full measure such that for any ω ∈ Ω′ the sums

1

N

N−1∑
0

f(Tnω)zn

converge for all z in the unit circle C = {z ∈ C : |z| = 1}.

The original proof can be found in [15]. Subsequently, Furstenberg in [6] obtain a joining
proof of Wiener-Wintner theorem. Later, I. Assani [2], A. Below & V. Losert [3] proved the
stronger version of this theorem. This stronger version is due to Bourgain [4]. Theirs proofs is
based on the Hellinger integral (known also as affinity principle). In [10], E. Lesigne generalize
Wiener-Wintner theorem to the polynomial case. His proof is based on the Furstenberg’s join-
ings technique. Afterwards, in [11], using van der Corput inequality and the spectral theory
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of skew products, he extended the stronger version of polynomial Wiener-Wintner theorem to
the case of weak-wixing dynamical systems1.

In this paper, we extend van der Corput inequality to the continuous time and we give a
simple proof of the flow version of Wiener-Wintner theorem. We further present the Ornstein-
Weiss’s joining of the amenable group version of this fundamental theorem in ergodic theory.
The proof is based on Furstenberg’s joinings machinery combined with the recent result of E.
Lindenstrauss [12].

The plan of the paper is as follows. In Section 2, we state and prove the continuous van der
Corput inequality and the flow version of Wiener-Wintner theorem. In section 3, we state and
prove the amenable group version of Wiener-Wintner theorem.

2. VAN DER CORPUT FOR REAL LINE

In this section, we state our first main result.

Theorem 2.2 (van der Corput). Let (u(t))t∈[0,T ] be an integrable complex valued function and S ∈
(0, T ]. Then ∣∣∣∣∣

∫ T

0

u(t)dt

∣∣∣∣∣
2

≤ S + T

S2

∫ S

0

∫ S

0

∫ T

0

u(t+ s′ − s)u(t)dsds′dt.

Proof. We start by noticing that we have

S

∫ T

0

u(t)dt =

∫ T+S

0

∫ S

0

ũ(t− s)dsdt,

where ũ stand for

ũ(t) =

 0 if t ≤ 0,
u(t) if 0 ≤ t ≤ T,
0 if not.

Indeed, we have ∫ T+S

0

∫ S

0

ũ(t− s)dsdt =

∫ S

0

∫ T+S−s

−s
ũ(t)dtds

=

∫ S

0

∫ T

0

u(t)dtds

= S

∫ T

0

u(t)dt.

Whence,

S2

∣∣∣∣∣
∫ T

0

u(t)dt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ T+S

0

∫ S

0

ũ(t− s)dsdt

∣∣∣∣∣
2

.

Now, applying Cauchy-Schwarz inequality, we obtain

S2

∣∣∣∣∣
∫ T

0

u(t)dt

∣∣∣∣∣
2

≤ (T + S)

∫ T+S

0

∣∣∣∣∣
∫ S

0

ũ(t− s)ds

∣∣∣∣∣
2

dt

 .

1Seven year after the first version of this note was written, M. Lacey and E. Terwilleger [9] produce an oscillation
proof of the Hilbert version of Wiener-Wintner theorem.
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But ∫ T

0

∣∣∣∣∣
∫ S

0

ũ(t− s)ds

∣∣∣∣∣
2

dt =

∫ T

0

∫ S

0

∫ S

0

ũ(t− s)ũ(t− s′)dsds′

=

∫ T

0

∫ S

0

∫ S

0

ũ(t− s)ũ(t− s′)dsds′dt

=

∫ S

0

∫ S

0

∫ T

0

ũ(t+ s′ − s)ũ(t)dtdsds′.

Whence ∣∣∣∣∣
∫ T

0

u(t)dt

∣∣∣∣∣
2

≤ S + T

S2

∫ S

0

∫ S

0

∫ T

0

u(t+ s′ − s)u(t)dsds′dt.

This achieve the proof of the theorem. �

Theorem 2.3 (Limit version of continuous van der Corput theorem). Let (u(t))t∈R be a bounded
complex valued function. Then

lim sup
T→∞

∣∣∣∣∣ 1

T

∫ T

0

u(t)dt

∣∣∣∣∣
2

≤ lim sup
S→∞

1

S2

∫ S

0

∫ S

0

lim sup
T→∞

1

T

∫ T

0

u(t+ s′ − s)u(t)dsds′dt.

Proof. Straightforward from Theorem 2.2. �

Now, let us state the continuous version of Wiener-Wintner theorem.

Theorem 2.4 (Continuous version of Wiener-Wintner theorem). Let (Tt)t∈R be a maps acting on
the Lebesgue measure space (Ω,A, µ), where µ is a probability measure and for any t ∈ R, Tt is measure-
preserving transformation on measure space (Ω,A, µ) with Tt ◦ Ts = Tt+s, for any t, s ∈ R. Then, for
any f ∈ L1(µ), there is a single null set off which

lim
T→+∞

1

T

∫ T

0

f(Ttω)e2iπθtdt

exists for all θ ∈ R.

We will assume without loss of generality that µ ergodic. Indeed, on can use the ergodic
decomposition of µ. So, it is sufficient to prove the following :

Theorem 2.5. For any f in L2(µ), there is a set Ω′ of full measure such that the sums

lim
T→+∞

1

T

∫ T

0

f(Ttω)e2iπθtdt

converge to 0 for all θ in R, where e2πiθ 6∈ e(T ) and ω ∈ Ω′. e(T ) stand for the set of eigenvalue of the
Koopman operator UT : g 7→ g ◦ T.

Before proceeding to the proof of Theorem 2.5, let us notice that it suffices to prove it for a
dense class of functions (L2 functions for instance). Indeed, put

R(ω, f) = lim sup
T−→+∞

∣∣∣∣∣
∫ T

0

f(Tt(ω))e2πitθdt

∣∣∣∣∣ ,
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and assume that g in the dense class for which theorem holds. Then

R(ω, f) = R(ω, f − g),

and

µ{ω : R(ω, f − g) > ε} ≤ ||f − g||1
ε

.

We thus get by the density of L2(µ) in L1(µ), that there exist g in L2(µ) such that : ||f−g||1 < ε2.
Then

µ{ω : R(ω, f − g) > ε} ≤ ε.

Since ε is arbitrary, we see R(ω, f) = 0 a.e., where the null set excluded is independent of θ.
We start by recalling that by Bochner theorem, for any f ∈ L2(X), there exists a unique finite

Borel measure σf on R such that

σ̂f (t) =

∫
R
e−itξ dσf (ξ) = 〈Utf, f〉 =

∫
Ω

f ◦ Tt(ω) · f(ω) dµ(ω).

σf is called the spectral measure of f . If f is eigenfunction with eigenfrequency λ, then the
spectral measure is the Dirac measure at λ.

We need also the following fundamental results from [1].

Theorem 2.6. Let (Ω,A, µ, (Tt)t∈R) be an ergodic dynamical flow. Then, for any S > 0 and all
f, g ∈ L2(X), for almost all ω ∈ Ω, we have

lim
τ→+∞

1

τ

∫ τ

0

f(Tt+sω) · g(Ttω) dt =

∫
Ω

f ◦ Ts · g dµ

uniformly for s in the interval [−S, S].

This yields the exact result need it.

Corollary 2.1. Let f ∈ L2(µ). There exist a full measure subset Ωf of Ω such that, for any ω ∈ Ωf
and any s ∈ R, we have

lim
τ→∞

1

τ

∫ τ

0

f(Tt+sω) · f(Ttω) dt =

∫
X

f ◦ Ts · f dµ.

Proof of Theorem 2.5. Let f in L∞(µ) and ω ∈ Ωf as in Corollary 2.1, then we have

lim
τ→∞

1

τ

∫ τ

0

f(Tt+sω) · f(Ttω) dt =

∫
X

f ◦ Ts · f dµ

def
=< f ◦ Ts, f > .

Put
u(t) = f(Ttω)e2πitθ,

and apply further van der Corput’s inequality (Theorem 2.2) to get∣∣∣∣1τ
∫ τ

0

f(Ttω)e2πitθdt

∣∣∣∣2
≤S + τ

τS2

∫ S

0

∫ S

0

e2πi(s−s′)θ 1

τ

∫ τ

0

f(Tt+s−s′)f(Ttω)dtdsds′.
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We thus deduce that for almost all ω and all θ ∈ R, we have

lim sup
τ→∞

∣∣∣∣1τ
∫ τ

0

f(Ttω)e2πitθdt

∣∣∣∣2
≤ 1

S2

∫ S

0

∫ S

0

e2πi(s−s′)θ
(

lim
τ→∞

1

τ

∫ τ

0

f(Tt+s−s′)f(Ttω)dt

)
dsds′.

This combined with Corollary 2.1 gives

lim sup
τ→∞

∣∣∣∣1τ
∫ τ

0

f(Ttω)e2πitθdt

∣∣∣∣2
≤ 1

S2

∫ S

0

∫ S

0

(∫
R
e2πi(s−s′)(θ−γ)dσf (s− s′)

)
dsds′,

where σf stand for the spectral measure of f . But, since

1

S2

∫ S

0

∫ S

0

e2πi(s−s′)(θ−γ)dsds′ =

∣∣∣∣∣ 1S
∫ S

0

e2πis(θ−γ)ds

∣∣∣∣∣
2

if θ 6= γ, we have

lim
S→∞

1

S2

∫ S

0

∫ S

0

e2πi(s−s′)(θ−γ)dsds′ = 0.

Whence, if e2πiθ is not a eigenvalue of (Tt), we have

lim
S→∞

1

S2

∫ S

0

∫ S

0

(∫
R
e2πi(s−s′)(θ−γ)dσf (s− s′)

)
dsds′ = 0.

Since all the sums are bounded, we deduce from Lebesgue theorem that for almost all ω, and
for all θ in R, where e2πiθ 6∈ e(T ),

lim
τ→∞

1

τ

∫ τ

0

f(Ttω)e2πitθdt = 0,

and this finish the proof of the theorem. �

3. JOINING’S PROOF OF WIENER-WINTNER THEOREM FOR ACTION OF AMENABLE GROUP

In this section, we deal with actions on Lebesgue spaces, that is, given a locally compact
groupeG and the a Lebesgue space (X,A, µ), aG−action is a measurable mappingG×X → X ,
(g, x) 7→ g.x, such that for all g, h ∈ G, g.(h.x) = (gh).x and e.x = x for almost all x ∈ X ( where
e is the identity in G). Furthermore, Tg : x 7→ g.x is measure -preserving for every g ∈ G. We
will mainly concerned with G which is amenable group ( locally compact second countable) or
the subclass of locally compact abelian groups.

We recall thatG is an amenable group if for any compactK ⊂ G and δ > 0 there is a compact
set F ⊂ G such that

(3.1) hL(F∆KF ) < δhL(F ),

where hL stand for the left Haar measure on G. It is well known that the amenability is equiva-
lent to the existence of Følner sequence (Fn), that is, (Fn) is a sequence of compact subsets of G
for which for every compact K and δ > 0, for all large enough n we have that Fn satisfy (3.1).
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Assume further that (Fn) satisfy the so-called Shulman Condition ,that is, for some C > 0 and
all n

(3.2) hL

⋃
k≤n

F−1
k Fn

 ≤ C.hL (Fn) .

Under this assumptions, E. Lindenstrauss proved that the Birkhoff pointwise ergodic theorem
holds, that is, then for any f ∈ L1(µ), there is a G-invariant f∗ ∈ L1(µ) such that

lim
1

hL (Fn)

∫
Fn

f(gω)dhL(g) = f∗(ω) a.e..

To formulate the G-version of Wiener-Wintner theorem, we replace the group rotations by
homomorphisms Θ from G to a finite dimensional unitary group Ud. The canonical action in
this case is given by g.u = Θ(g).u, u ∈ Ud and g ∈ G. The invariant measure is the Haar
measure on Ud. In this setting, we formulate the Wiener-Wintner theorem as follows:

Theorem 3.7 (Group version of Wiener-Wintner theorem). Let G be an amenable group acting on
a Lebesgue space (Ω,A, µ) and assume that G satisfy Shulman condition. Let f ∈ L∞(µ). Then, there
is a set Ωf of full measure such for any ω ∈ Ωf

1

hL (Fn)

∫
Fn

f(gω)φ(Θ(a)u)dhL(g)

converge for all finite dimensional unitary representation Θ of G into Ud (all d), all continuous function
φ on Ud and all u ∈ Ud. We further have that the limit on the orthocomplement of the space spanned by
the finite dimensional invariant subspaces is zero.

Before proceeding to the proof let us recall some important tools.
A joining of two actions of the same group X = (X,A, µ,G) and Y = (Y,B, ν,G) is the

probability measure λ on (X × Y,A × B) which is invariant under the diagonal action of G
(g.(x, y) = (g.x, g.y)) and whose marginals on (A × Y ) and (X × B) are µ and ν respectively
(i.e. if A ∈ A, λ(A × Y ) = µ(A); and if B ∈ B, λ(X × B) = ν(B)). The set of joinings is never
empty (take µ × ν). As we deal with Lebesgue spaces, a joining λ of two ergodic G-actions X
and Y has the property that there exists a Lebesgue space Ω and the probability ¶ on Ω such
that λ =

∫
λωd¶(ω), where λω is ergodic (this is just the ergodic decomposition of λ, and as

the marginals of λ are ergodic a.e., λω is joining). Therefore the set of ergodic joinings is never
empty.2

Historically, joinings were introduced by H. Furstenberg in his paper [7] on disjointness. In
particular, he defined the important notion of disjointness for Z-action in the following way :
(X,A, µ, T ) and (Y,B, ν, S) is disjoint if the only joining between them is the product joining. In
the case of G-action, we have the following definition.

Definition 3.1. Let X and Y be two actions of the same group G. X and Y are disjoint if the only
joining between them is the product joining. We denote this disjointness by X ⊥ Y .

In the case of Z-actions, H. Hahn & W. Parry obtain in [8] that if two transformations have
mutually singular maximal types, then they are disjoint. But, as for the joinings theory, the
spectral theory of Z-actions can be extended to the case of locally abelienG−actions. Therefore,
we have the following group version of Hahn-Parry theorem.

Theorem 3.8 (Hahn & Parry). If two G-actions X and Y have mutually singular maximal spectral
types, then they are disjoint.

2 see [5], for instance.
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Proof. Let recall that the spectral measure of a function f ∈ L2(X) under the operators Ug
(defined on L2(X) by Ug(f) = f ◦ Tg) is the measure σf on

∧
G (dual group of G, i.e., the set of

all continuous characters of G), where its Fourier transform
∧
σf is given by

∧
σf (g) =< Ugf, f >.

Now, we follows the proof given in [14]. In X×Y endowed with a joining measure λ, consider
f1 ∈ L2(X) and f2 ∈ L2(Y ) and consider Hf1 the L2(λ) closure of the linear span of the
functions (Ug(f1)−

∫
f1dµ)× 1Y , g ∈ G. The projection of 1X × f2 on Hf1 will have a spectral

measure absolutely continuous with respect to the spectral type of Ug on L2(X) and thus has
to be 0. Therefore 1X × f2 ⊥ (f1 −

∫
f1)× 1Y , and

∫
f1(x)f2(y)dλ(x, y) =

∫
f1dµ

∫
f2dν. �

From this theorem, we have the following.

Corollary 3.2. Let χ0 be a non trivial character and define the action of G on torus T by (g, eix) 7→
χ0(g)eix. Assume that for any n ∈ Z, the character χn0 define on G by g 7→ χ0(gn) is not eigenvalue of
the G-action on X . The G-action on T and the G-action on X are disjoint.

Proof. Let recall that χ0 is a eigenvalue of G- action if there exists a eigenfunction f ∈ L2(X,µ)
such that f ◦ Tg = χ0(g) f. We deduce that the spectral measure of f is ||f ||22δχ0 (δχ0 is the
Dirac measure on χ0). Since for any n ∈ Z, χn0 is not eigenvalue of G-action on X , we conclude
that the maximal spectral types of this two G-actions are mutually singular. Now apply the
Hahn-Parry theorem to complete the proof. �

For the general case of amenable group which satisfy Shulman condition, we have the fol-
lowing lemma from [13].

Lemma 3.1. Let U be the closure of Θ(G) in Ud. Then, if the product (U,Θ, G) × (Ω,A, µ,G) is
ergodic then there is only on G-invariant measure on U × Ω that projects onto µ on Ω.

Proof of Theorem 3.7. We start by assuming without lost of generality that the action on (Ω,A, µ,G)
is ergodic and by presenting the proof for the case when G is locally Abelien group. Let
f ∈ L∞(µ) and φ continuous function. Then, by the pointwise theorem, there is a set of full
measure of ω. Assume that ω is in this subset and let χ0 ∈ Ĝ such χ0 is not eigenvalue. Then,
the product (U,Θ, G)× (Ω,A, µ,G) is ergodic. Moreover, by taking a subsequence (nk), we can
assume that

lim
k−→+∞

1

hL (Fnk
)

∫
Fnk

f(gω)φ(Θ(a)u)dhL(g) = λ(f ⊗ φ).

It follows that λ is a joining and by Corollary 3.2, λ = dh×µ. We end the proof by noticing that
there is a countable of eigenvalue. The general case follows in the same manner by taking

F (ω) =

∫
ψ(u)I(u1ω)du,

where I is a bounded invariant functions on U×Ω and ψ is any positive continuous function on
u. Therefore, transforming F by g is the same as transforming ψ by Θ(g). We thus have that a
nonconstant I will give rise to finite dimensional invariant subspaces for G on Ω. Moreover, by
taking (U,Θ, G) not in the list of countable representations (Uj ,Θj , G), the condition of Lemma
3.1 is satisfied and therefore as before the only joining is the product measure, and we are
done. �

Question 3.9. We ask on the possible extension of van der Corput inequality to the locally compact
group and its application to produce a direct proof of the group version of Wiener-Wintner theorem.
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