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 An Investigation on The Behaviour of Unbounded Operators in Г-Hilbert 

Space 

Sahin Injamamul Islam1 , Nirmal Sarkar2 , Ashoke Das3  

Keywords:  

Г-Hilbert space, Closed 
operator, Densely 
defined operator, Self-
adjoint of densely 
defined operator, 
Symmetric of densely 
defined operator. 

Abstract − In this paper, we investigate about the behavior of unbounded operators in -Hilbert 

Space. Here we discussed about the adjoint, self-adjoint, symmetric and other related properties 

of densely defined operator. We proof some related theorems and corollaries and will show the 

characterizations of these operators in -Hilbert space. 

Subject Classification (2020): 46CXX, 46C05, 46C07,46C15,46C99,47L06. 

1. Introduction 

Г-Hilbert space plays an important role in generalization of general linear quadratic control problems 
in an abstract space [1] which was motivated from the work of L.Debnath and Pitor Mikusinski  [8] but 
there not enough literature found to study about the unbounded operators in Г-Hilbert space. The  
definition of Г-Hilbert space was introduced by Bhattacharya  D.K.  and T.E. Aman in their paper “Г-
Hilbert space and linear quadratic control problem” in 2003 [9]. Further development was made in 2017 
by A.Ghosh, A.Das and T.E. Aman in their research paper [1]. In [6] S.Islam and A.Das discussed about 
the properties of bounded operators in  Г-Hilbert Space. Boundedness of an operator is a great tool to 
elaborate Г-Hilbert Space. We often deal with operators which are not bounded. In this paper,  we will 
briefly discuss the concept, methods and theory of unbounded operators in Г-Hilbert Space. In this 
paper, after consulting the main author, we have made some changes in the main definition of Γ-Hilbert 
space [9]. 
 
First, we recall the definitions of Г-Hilbert Space. 
 
Definition 1.1. Let E be the linear space over the field F and Γ be a semi group with respect to addition. 
A mapping 〈. , . , . 〉: 𝐸 × Г × 𝐸 →  F (ℝ or ℂ)  is called a Г-Inner product on (𝐸, Г) if  

(i) 〈. , . , . 〉 is linear in first variable and additive in second variable. 
(ii) 〈u, γ, v〉 = 〈v, γ, u〉 ∀ u, v ∈ E and γ ∈ Г. 
(iii) 〈u, γ, u〉 > 0 ∀ 𝑢 ≠ 0. 
(iv) 〈u, γ, u〉 = 0 if at least one of u, γ is zero. 
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           [(𝐸, Г), 〈. , . , . 〉] is called a Г-inner product space over 𝐹. 
 
A complete Г-inner product space is called Г-Hilbert space. 
 
Using the Г-inner product, we may define three types of norm in a Г-Hilbert space, namely (i) 𝛾-norm            
(ii) inf- norm and (iii) Г-norm. 
 

Definition 1.2.  Now if we write ‖𝑢‖𝛾
2

= 〈𝑢, 𝛾, 𝑢〉, for 𝑢 ∈ 𝐻 and  𝛾 ∈ Г then ‖𝑢‖𝛾
2

 satisfy all the 

conditions of norm. 
 
Definition 1.3. If we define ‖u‖Гinf

= inf {‖𝑢‖𝛾 ∶  𝛾 ∈  Г}. Clearly Гinf-norm satisfy all the conditions of 

the norm for 𝑢 ∈ 𝐻. 
 
Definition 1.4. If we write ‖𝑢‖Г ={‖𝑢‖𝛾  : 𝛾 ∈ Г} then this norm is called the  Г-norm of the  Г-Hilbert 

space. 
 
Definition 1.5. Let L be a non-empty subset of a  Г-Hilbert space HГ . Two elements 𝑥 and 𝑦 are said to 
be 𝛾-orthogonal if their inner product  〈𝑥, 𝛾, 𝑦〉 = 0 . In symbol, we write 𝑥 ⊥𝛾 𝑦. 

 

2. Basic Concepts 

In this section, we briefly discuss about the definition of densely defined operator and the adjoint, self-

adjoint , symmetric etc of that operator. Also, related examples and theorem are mentioned in this part. 

2.1.  Extension of operators  
Let S and T be two operators in a vector space E. DS  and DT are the domains of S and T respectively. If   

 

DS  DT    and   Sx = Tx          for every x ∈ 𝐷𝑆 

 

then T is called an extension of S and we write  S  T . 

2.2.  Densely defined operator 
An operator T defined a linear map T from a subspace of  H to H  is called an operator in H and the 

subspace denoted by DT , is called the domain of T. Now an operator T is defined in a normed space E is 

called densely defined if its domain DT is a dense subset of E , that is           cl DT = E. 

 

Example 2.2.1. The differential operator 
𝑑

𝑑𝑥
 is densely defined in 𝐿2(ℝ), because the subspace of 

differentiable functions is dense in 𝐿(ℝ)2 . 

 

Theorem 2.2.2. Let T be a densely defined operator in a -Hilbert space H and let E be the set of all 𝑦 ∈

H for which 〈𝑇𝑥, 𝛾, 𝑥〉 where 𝛾 ∈  is a continuous functional on DT . There exists a unique operator S 

defined on E such that  

 

〈𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑥, 𝛾, 𝑆𝑦〉 for all 𝑥 ∈ DT and y ∈ E . 

 

Proof: For any y ∈ E , consider the functional 𝑓𝑦(𝑥) = 〈𝑇𝑥, 𝛾, 𝑥〉 where  𝛾 ∈ . Being continuous on a 

dense subspace of H , has a unique extension to a continuous functional 𝑓𝑦 on H. 
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By Riesz representation theorem, there exists a unique 𝑍𝑦 ∈ H such that 𝑓𝑦(𝑥) = 〈𝑥, 𝛾, 𝑍𝑦〉 ∀ 𝑥 ∈ H. 

Now if we define   𝑆(𝑦) = 𝑍𝑦 , then we will have  

                                                         〈𝑇𝑥, 𝛾, 𝑥〉 = 𝑓𝑦(𝑥) = 𝑓𝑦(𝑥) 

                                                                                       = 〈𝑥, 𝛾, 𝑍𝑦〉 

                                                                                       = 〈𝑥, 𝛾, 𝑆𝑦〉 for all 𝑥 ∈ DT , y ∈ E and 𝛾 ∈  . 

 Also the linearity of S is obvious. 

2.3.  Adjoint of densely defined operator  

Let T be an operator which is densely defined in a -Hilbert space H. The adjoint T∗ of T is the operator 

defined on the set of all 𝑦 ∈ H for which 〈𝑇𝑥, 𝛾, 𝑥〉 where 𝛾 ∈  is a continuous function on DT and such 

that  

〈𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑥, 𝛾, 𝑇∗𝑦〉 for all 𝑥 ∈ DT and 𝑦 ∈ 𝐷𝑇∗ 

 

Example 2.3.1. Let 𝐶1
0(ℝ) denote the space of all continuously differentiable functions on ℝ . This is also 

a dense subspace of 𝐿2(ℝ). Now consider the differentiable operator D which defined on 𝐶1
0(ℝ). Since  

               〈𝐷𝑥, 𝛾, 𝑦〉 = ∫ (
𝑑

𝑑𝑡
𝑥(𝑡)) 𝛾 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
 𝑑𝑡 

                                = − ∫ 𝑥(𝑡)(
𝑑

𝑑𝑡
 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
) 𝛾 𝑑𝑡          for all    𝛾 ∈  .     

  ∴ 〈𝐷𝑥, 𝛾, 𝑦〉 is a continuous functional on 𝐶1
0(ℝ) . 

Moreover, 

               〈𝐷𝑥, 𝛾, 𝑦〉 = − ∫ 𝑥(𝑡)(
𝑑

𝑑𝑡
 𝑦(𝑡)̅̅ ̅̅ ̅̅∞

−∞
) 𝛾 𝑑𝑡 . 

                               =  ∫ 𝑥(𝑡)
∞

−∞
 (−

𝑑

𝑑𝑡
(𝑦(𝑡))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 𝛾 𝑑𝑡 . 

Here it is not correct to write  𝐷∗ = −𝐷 , since the domain of 𝐷∗ is not 𝐶1
0(ℝ) . 

2.4.   Self –adjoint of densely defined operator  

Let T be a densely defined operator in a -Hilbert space H. Then T is called self-adjoint if  𝑇 = 𝑇∗. 

 

Note. 𝑇 = 𝑇∗ implies that 𝐷𝑇∗ = 𝐷𝑇 and 𝑇(𝑥) = 𝑇∗(𝑥) for all 𝑥 ∈ 𝐷𝑇 . If T is a densely defined operator in 

H which is bounded then T has a unique extension to a bounded operator in H. Then the domain of T 

as well as its adjoint T∗, is the whole space H . If T is unbounded operators ,then T has an adjoint T∗ 

such that  𝑇(𝑥) = 𝑇∗(𝑥) whenever  𝑥 ∈ 𝐷𝑇 ∩ 𝐷𝑇∗ , but 𝐷𝑇∗ ≠ 𝐷𝑇 and thus T is not self-adjoint. 

2.5.   Symmetric Operator  

We now consider a special kind of operator in -Hilbert space . An operator T which is densely defined 

in -Hilbert space H is called symmetric if for all 𝑥, 𝑦 ∈ 𝐷𝑇 , we have 

 

〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇𝑦〉 for all 𝛾 ∈  . 

 

It is clear that if T is symmetric , then 〈𝑇(𝑥), 𝛾, 𝑥〉 ∈ ℝ  for every 𝑥 ∈ 𝐷𝑇  and 𝛾 ∈  .  Also, it follows that 

a densely defined operator T is symmetric if and only if  T∗ extends T. If T is symmetric and DT = H , 

then T is in fact a bounded operator on H. This leads as follows, 

 

Let 𝐸 = {T(x) ∶ x ∈ H , ‖x‖γ ≤ 1} . Then for a fixed 𝑦 ∈ H and 𝛾 ∈  , we have 

             |〈𝑇(𝑥), 𝛾, 𝑦〉| = |〈𝑥, 𝛾, 𝑇(𝑦)〉| 

                                   ≤  ‖𝑥‖ ‖𝛾‖‖𝑇(𝑦)‖ 

                                    ≤ ‖𝑇(𝑦)‖ for all 𝑥 ∈ H with ‖𝑥‖, ‖𝛾‖ ≤ 1 . 
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Also clearly every self-adjoint operator is symmetric. 

 

Example 2.5.1. Suppose we consider an operator 𝐴 =
𝑖𝑑

𝑑𝑡
  with the domain 𝐷𝐴 = { 𝑓 ∈ 𝐿2([𝑎, 𝑏]) ∶

 𝑓′ is continuous and 𝑓(𝑎) = 𝑓(𝑏) = 0 } . 

Now, since for all 𝛾 ∈  , we have 

           〈𝐴𝑓, 𝛾, 𝑔〉 =  ∫ 𝑖𝑓′(𝑡) 𝛾
𝑏

𝑎
𝑔(𝑡)̅̅ ̅̅ ̅̅  𝑑𝑡 

                            =  ∫ 𝑓(𝑡) 𝛾
𝑏

𝑎
 𝑖𝑔′(𝑡)̅̅ ̅̅ ̅̅ ̅ 𝑑𝑡  

                            =  〈𝑓, 𝛾, 𝐴𝑔〉 

      ∴    〈𝐴𝑓, 𝛾, 𝑔〉 = 〈𝑓, 𝛾, 𝐴𝑔〉 

for all 𝑓, 𝑔 ∈ 𝐷𝐴 ,  A is symmetric. 

 

〈𝐴𝑓, 𝛾, 𝑔〉   is a continuous functional on 𝐷𝐴 for any function 𝑔  continuously differentiable , no need to 

satisfying  𝑔(𝑎) = 𝑔(𝑏).  

 

Consequently , 𝐷𝐴∗ ≠ 𝐷𝐴   and A is not self-adjoint. 

2.6.   Closed Operator  
A linear operator 𝑇 ∶  𝐸1 → 𝐸2 is said to be closed when the graph 𝐺(𝑇) = {〈𝑥, 𝛾, 𝑇𝑥〉: 𝑥 ∈ 𝐷𝑇 and γ ∈ } 

is a closed subspace of 𝐸1 × 𝐸2 that is  

 

𝑥𝑛 ∈ 𝐷𝑇 , 𝑥𝑛 → 𝑥 and 𝑇𝑥𝑛 → 𝑦 

 

implies 𝑥 ∈ 𝐷𝑇 and 𝑇𝑥 = 𝑦. 

 

3. Main Results 

Theorem 3.1. Let A and B be densely defined operators in a  -Hilbert space H.  
(a) If 𝐴 𝐵 , then 𝐵∗  𝐴∗ . 
(b) If 𝐷𝐵∗ is dense in H , then 𝐵 𝐵∗∗ . 

 
Proof. (a) Let us consider 𝑦 ∈ 𝐷𝐵∗  and 𝛾 ∈ . Then as a function of 𝑥 , 〈𝐵𝑥, 𝛾, 𝑦〉 is a continuous functional 
on 𝐷𝐵 . Also 〈𝐵𝑥, 𝛾, 𝑦〉 is a continuous functional on  𝐷𝐴 since  𝐷𝐴 𝐷𝐵 . 
 
Now, 𝐵𝑥 = 𝐴𝑥 for 𝑥 ∈ 𝐷𝐴 , so 〈𝐴𝑥, 𝛾, 𝑦〉 is a continuous functional on 𝐷𝐴 . This proves that 𝑦 ∈ 𝐷𝐴∗ . Then 
the equality 𝐴∗𝑦 = 𝐵∗𝑦  for 𝑦 ∈ 𝐷𝐵∗  follows from the uniqueness of the adjoint operator. 
 
(b)   Let 𝑥 ∈  𝐷𝐵 . Then for every 𝑦 ∈ 𝐷𝐵∗  and 𝛾 ∈  ,we have 
 

〈𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝑦〉 
 

It can be rewrite as 
 

〈𝐵∗𝑦, 𝛾, 𝑥〉 = 〈𝑦, 𝛾, 𝐵𝑥〉 . 
 
Since 𝐷𝐵∗ is dense in H, 𝐵∗∗ exists and we have 
  
〈𝐵∗𝑦, 𝛾, 𝑥〉 = 〈𝑦, 𝛾, 𝐵∗∗𝑥〉 for all 𝑦 ∈ 𝐷𝐵∗ , 𝑥 ∈ 𝐷𝐵∗∗ and 𝛾 ∈  . 
 
Now, by the proof of (a), we can show that  𝐷𝐵 𝐷𝐵∗∗  and 𝐵(𝑥) =  𝐵∗∗(𝑥) for any 𝑥 ∈ 𝐷𝐵. Thus  𝐵 𝐵∗∗ . 
 



   5 

 

 

S.I. Islam et al. / IKJM/ 3(2) (2021) 1-8 

Theorem 3.2. If T is a one-to-one operator in a -Hilbert space and both T and its inverse 𝑇−1 are densely 
defined , then 𝑇∗ is also one- to-one  and  (𝑇∗)−1 = (𝑇−1)∗ .  
 
Proof. Let 𝑦 ∈ 𝐷𝑇∗ . Then for every 𝑥 ∈  𝐷T−1 and 𝛾 ∈  , we have 𝑇−1𝑥 ∈ 𝐷𝑇  and hence  
 
         〈𝑇−1𝑥, 𝛾, 𝑇∗𝑥〉 = 〈𝑇𝑇−1𝑥, 𝛾, 𝑦〉 
                                 = 〈𝑥, 𝛾, 𝑦〉 . 
 
This follows that   𝑇∗𝑦 ∈ 𝐷(𝑇−1)∗ . 

 
And also,  
 

(𝑇−1)∗ 𝑇∗𝑦 = (𝑇 𝑇−1)∗ 𝑦 =  𝑦                                                                (3.1) 
                                       
Now we take an arbitrary 𝑦 ∈ 𝐷(𝑇−1)∗ .Then for each 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈  , we have 

 
𝑇𝑥 ∈ 𝐷𝑇−1  . 

 
Hence  
 

〈𝑇𝑥, 𝛾, (𝑇−1)∗𝑦〉 = 〈𝑇−1𝑇𝑥, 𝛾, 𝑦〉 =  〈𝑥, 𝑦〉                                                        (3.2) 
 

This shows that    (𝑇−1)∗𝑦 ∈ 𝐷𝑇∗ . And     𝑇∗(𝑇−1)∗𝑦 = (𝑇−1𝑇)∗𝑦 = 𝑦 . Now, from (3.1) and (3.2) it follows 
that  (𝑇∗)−1 = (𝑇−1)∗ .  
 
Theorem 3.3. If A, B and AB are densely defined operators in H , then 𝐵∗  𝐴∗ = (𝐴𝐵)∗ . 
 
Proof. Let 𝑥 ∈ 𝐷𝐴𝐵 and 𝑦 ∈ 𝐷𝐵∗𝐴∗  . Since 𝑥 ∈ 𝐷𝐵 and 𝐴∗𝑦 ∈ 𝐷𝐵∗ , it follows that 
 

〈𝐵𝑥, 𝛾, 𝐴∗𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝐴∗𝑦〉  for all 𝛾 ∈  . 
 
On the other side, since 𝐵𝑥 ∈ 𝐷𝐴 and 𝑦 ∈ 𝐷𝐴∗  , we have 
 

〈𝐴𝐵𝑥, 𝛾, 𝑦〉 = 〈𝐵𝑥, 𝛾, 𝐴∗𝑦〉  for all 𝛾 ∈  . 
 
Hence 
 

〈𝐴𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵∗𝐴∗𝑦〉 . 
 
Since this holds for all 𝑥 ∈ 𝐷𝐴𝐵 ,we have 𝑦 ∈ 𝐷(𝐴𝐵)∗  and (𝐵∗  𝐴∗)𝑦 = (𝐴𝐵)∗𝑦. This implies,  𝐵∗  𝐴∗ = (𝐴𝐵)∗.  

 
Theorem 3.4. A densely defined operator T in a -Hilbert space H is symmetric if and only if 𝑇 = 𝑇∗. 
 
Proof: Let us suppose 𝑇 = 𝑇∗. Since for all 𝑥 ∈ DT and 𝑦 ∈ 𝐷𝑇∗ we have 
 

                                  〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇∗𝑦〉 where 𝛾 ∈                                                         (3.3) 
Again we have 
 

                                  〈𝑇𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝑇𝑦〉 for all 𝑥, 𝑦 ∈ 𝐷𝑇                                                      (3.4) 
 

Thus, T is symmetric. If T is symmetric then combining (3.3) and (3.4) we can conclude  𝑇 = 𝑇∗ . 
 
Corollary 3.5. If T is a densely defined symmetric operator, then T∗ is the maximal symmetric extension 
of T. 



   6 

 

 

S.I. Islam et al. / IKJM/ 3(2) (2021) 1-8 

Proof. Let S be a symmetric operator in a -Hilbert space H such that T  S . Then by the Theorem 3.3, 
we have  
 

S∗ T∗ . 
 

Hence,  T S  S∗ T∗.    
 
Theorem 3.6. If T is closed and invertible, then 𝑇−1  is closed. 
 
Proof. Let us suppose that graph of T that is 𝐺(𝑇) is closed and 𝐺(𝑇) = {(𝑥, 𝛾, 𝑇𝑥): 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈ } . 
Then obviously 
 

𝐺(𝑇−1) = {(𝑇𝑥, 𝛾, 𝑥): 𝑥 ∈ 𝐷𝑇 and 𝛾 ∈ } is closed. 
 
Theorem 3.7. If T is densely defined operator, then T∗ is closed. 
 
Proof: If 𝑦𝑛 ∈ 𝐷𝐴∗ , 𝑦𝑛 → 𝑦 and 𝐴∗𝑦𝑛 → 𝑧 , then for any 𝑥 ∈ 𝐷𝐴  &  𝛾 ∈  we have 
 

〈𝐴𝑥, 𝛾, 𝑦〉 =  lim
𝑛→∞

〈𝐴𝑥, 𝛾, 𝑦𝑛〉 

                   =  lim
𝑛→∞

〈𝑥, 𝛾, 𝐴∗𝑦𝑛〉 

   = 〈𝑥, 𝛾, 𝑧〉 
 

Hence, 𝑦 ∈ 𝐷𝐴∗ and 𝐴∗𝑦 = 𝑧 . 
 
Note. If the given operator A is not closed then is it possible to extend A to a closed operator? Answer to 
that problem is to use the closure of 𝐺(𝐴) in H × H to define an operator. If closure of 𝐺(𝐴)  defines 
an operator, then extension of A  is closed.        
  
Theorem 3.8. Every symmetric and densely defined operator in -Hilbert space has a closed symmetric 
extension. 
 
Proof.  Let A be a densely defined, symmetric operator in a -Hilbert space  H . At first, we will show 
that condition 𝑥𝑛 ∈ 𝐷𝐴  , 𝑥𝑛 → 0 , as 𝐴𝑥𝑛 → 𝑦 which implies that 𝑦 = 0 , is satisfied.  
 
Let 𝑥𝑛 → 0 and 𝐴𝑥𝑛 → 𝑦 . Since A is symmetric then for all 𝛾 ∈   we have 
 

〈𝑦, 𝛾, 𝑧〉 =  lim
𝑛→0

〈𝐴𝑥𝑛, 𝛾, 𝑧〉 

               =   lim
𝑛→0

〈𝑥𝑛, 𝛾, 𝐴𝑧〉 

                        = 0,    for any 𝑧 ∈ 𝐷𝐴 . 
 

This implies 𝑦 = 0 , as 𝐷𝐴 is dense in H. 
 
Now we have that there exists a closed operator B such that 𝐺(𝐵) = Cl𝐺(𝐴)  and hence A  B . We have 
to prove that B is symmetric. If 𝑥, 𝑦 ∈ 𝐷𝐵 , then there exists 𝑥𝑛, 𝑦𝑛 ∈ 𝐷𝐴  such that 
 

𝑥𝑛 → 𝑥    ,    𝐴𝑥𝑛 → 𝐴𝑥 
 

and  
     𝑦𝑛 → 𝑦    ,    𝐵𝑥𝑛 → 𝐵𝑥 . 

 
Since A is a symmetric operator , we have  
 

〈𝐴𝑥𝑛, 𝛾, 𝑦𝑛〉 =  〈𝑥𝑛 , 𝛾, 𝐴𝑦𝑛〉  for all  𝛾 ∈  . 
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Then by letting 𝑛 → ∞ , we have 
 

〈𝐵𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐵𝑦〉. 
 
Hence B is symmetric. 
 
Theorem 3.9. Let T be a closed densely defined operator in a -Hilbert space H. Then 
 
(a) For any 𝑣, 𝑤 ∈ H, there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 𝑇(𝑥) + 𝑦 = 𝑣 and  𝑥 − 𝑇∗(𝑦) =
𝑤. 
(b) For any 𝑤 ∈ H, there exist unique 𝑥 ∈ 𝐷𝑇∗𝑇 such that 𝑥 + 𝑇∗𝑇(𝑥) = 𝑤 . 
 

Proof. (a) Consider the -Hilbert space H1
= H ×  H. Since T is closed, 𝐺(𝑇) = {(𝑥, 𝛾, 𝑇(𝑥)): 𝑥 ∈

𝐷𝑇 and 𝛾 ∈ } is a closed subspace of H1
. Then by the projection theorem we have 

 
                H1

= G(T) + G(T)⊥γ , 

 
with      
 

     G(T) ∩ G(T)⊥γ = {0}. 
 

Now, (𝑢, 𝑦) ∈  G(T)⊥γ  if and only if 〈(𝑥, 𝑇𝑥), 𝛾, (𝑢, 𝑦)〉 = 0 for all 𝑥 ∈ 𝐷𝑇  and γ ∈ . This implies, 
〈𝑥, 𝛾, 𝑢〉 + 〈𝑇(𝑥), 𝛾, 𝑦〉 = 0 . That is (𝑢, 𝑦) ∈  G(T)⊥γ if and only if 〈𝑇(𝑥), 𝛾, 𝑦〉 = 〈𝑥, 𝛾, −𝑢〉 for all 𝑥 ∈ 𝐷𝑇  . 
In other way,  
               

(𝑢, 𝑦) ∈  G(T)⊥γ  if and only if 𝑦 ∈ 𝐷𝑇∗ and 𝑢 = −𝑇∗(𝑦). 
 
Since (𝑤, 𝑣) ∈  H ×  H , then there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 
 

(𝑤, 𝛾, 𝑣) = (𝑥, 𝛾, 𝑇(𝑥)) + (−𝑇∗(𝑦), 𝛾, 𝑦) for all γ ∈ . 

 
That is, 𝑤 =  𝑥 − 𝑇∗(𝑦) and 𝑣 =  𝑇(𝑥) + 𝑦 . 
 
(b) Letting 𝑣 = 0 in (a), then there exist unique 𝑥 ∈ 𝐷𝑇  and 𝑦 ∈ 𝐷𝑇∗ such that 𝑇(𝑥) + 𝑦 = 0 and   𝑥 −

𝑇∗(𝑦) = 𝑤. Thus 𝑥 − 𝑇∗(−𝑇(𝑥)) = 0 implies,  𝑥 + 𝑇∗𝑇(𝑥) = 𝑤  , as desired.  
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Abstract − In this work, we showed that the category of crossed modules over Lie algebras is fibred

over the category of Lie algebras by illustrating that the forgetful functor is a fibration.
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1. Introduction

The crossed module is defined by Whitehead on groups in [1]. In his work, algebraic structures that CW-

complex has homotopy 2-type were the crossed modules. In the following years, Lichtenbaum, Schlessinger

[2] and Gerstenhaber [3] have made different definitions on the crossed modules of Lie algebras. The defini-

tion and some of the categorical properties of crossed modules over algebras can be found in [4] Shammu’s

work. The crossed modules of commutative algebras could be seen in the work of Porter [5].

Lie algebras were first studied by Marius Sophus Lie in 1870s and independently by Wilhelm Killing in the

1880s to create infinitely small transformations. Lie algebras is defined by Hermann Weyl in 1930s. Also,

crossed modules of Lie algebras studied by Kassel and Loday [6]. They investigated this notion with com-

putational algebraic structures that are equivalent to simplicial Lie algebras with Moore complex of length

1. For more details [7–9]. Akça and Arvasi examined simplicial Lie algebras and crossed Lie algebras equiv-

alency and applied to Lie crossed squares [10].

To show the fibration feature, the characteristics of the functor defined between the categories should be

examined. The first known definition of fibration was described by Heinz Hopf [11] in his article as Hopf

Fibration. In this study, the category of crossed modules on Lie algebras is referred to XModLie that this

structure obtained before.
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2. Preliminary

Definition 2.1. Let A be a commutative ring with identity if the bilinear function

[, ] : M ×M −→ M

called multiplication satisfies

L1. [x, x] = 0

L2. [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0

for x, y, z ∈ M then M is called a Lie algebra over A with [, ]. Property L1 with bilinearity implies the following

two conditions.

L3. [x, y] =−[y, x],

L4. [x, [y, z]] = [[x, y], z]+ [y, [x, z]]

Recall that if α : N −→ M is a Lie algebra morphism then for all m1,m2 ∈ M

α([m1,m2]) = [α(m1),α(m2)]

we will denote the category of Lie algebras with Lie [12].

Definition 2.2. Let A and N be two Lie k-algebras. If the N -algebra morphism

µ : N → A

with Lie action of A on N given by

A×N → N

(a,n) 7→ a ·n

satisfies

X ModLi e 1. µ(a ·n) = [a,µ(n)]

X ModLi e 2. n′ ·µ(n) = [n′,n]

then the triple (N , A,µ) is called crossed modules of Lie algebras [6].

Definition 2.3. Let (A, N ,µ), (A′, N ′,µ′) be two crossed modules of Lie algebras. A morphism

( f ,φ) : (A, N ,µ) −→ (A′, N ′,µ′)

of crossed modules of Lie algebras consists of pair of Lie algebra morphism f : N −→ N and φ : A −→ A′

such that

f (n ·a) = f (n) ·φ(a)
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for all a ∈ A and n ∈ N and the following diagram

N

µ

��

f // N ′

µ′
��

A
φ
// A′

commutes. That is µ′ f =φµ. We will denote this category with XModLie.

Example 2.4. Let R be a Lie algebra and I be an ideal of R.

∂ : I → R

i 7→ i

and the action of R on I is given as Lie product

R × I → I

(r, i ) 7→ [r, i ]

CM1.

∂(r · i ) = ∂[r, i ]

= [r, i ]

= [r,∂i ]

CM2.

(∂r ) · r ′ = [∂r,r ′]
= [r,r ′]

So, (I ,R,∂) is a crossed module of Lie algebras.

3. XModLie Fibred Over Lie Algebras

In this section, we will show that the forgetful functor

θ : XModLie → Lie

which takes µ : M → N ∈ Ob(XModLie) in its base Lie Algebra N is a fibration. That is given a map of Lie

algebras, we can obtain the crossed modules of Lie algebras can be constructed via pullback. Furthermore,

the functor θ has a left adjoint.

Proposition 3.1. The functor

θ : XModLie → Lie

is fibred.

Proof.

To prove that θ is fibred we will give the construction with pullback crossed module Lie algebras.
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Let L → N be an object in XModLie and M → N is a homomorphism of Lie algebras

L

µ

��
M

σ
// N

Define P = {(l ,m) :µ(l ) =σ(m)} ⊂ L×M and mappings

i1 : P → L

(l ,m) 7→ l

i2 : P → M

(l ,m) 7→ m

That is we obtain the following diagram.

P

i2

��

i1 // L

µ

��
M

σ
// N

It is clear that i1 and i2 are Lie algebra morphims. For (l ,m) = p ∈ P we have

(σ◦ i2)(p) = (σ◦ i2)(l ,m)

= σ(i2(l ,m))

= σ(m)

= µ(l )

= µ(i1(l ,m))

= (µ◦ i1)(l ,m)

= (µ◦ i1)(p)

the diagram is commutative.

Claim η : P → N ∈Ob(XModLie).

For p = (l ,m), p ′ = (l ′,m′) ∈ P defining the Lie bracket as

[(l ,m), (l ′,m′)] = ([l , l ′], [m,m′])

the action is
N ×P → P

(n, p) 7→ n ·p = n · (l ,m) = (n · l ,n ·m)

and η is

P → N

p 7→ η(p) = η(l ,m) =µ(l ) =σ(m)

The conditions are:
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XMLie1. For n ∈ A and p ∈ P

η(n ·p) = η(n · (l ,m))

= η(n · l ,n ·m)

= σ(n ·m)

= [n,σ(m)]

= [n,η(l ,m)]

= [n,η(p)]

XMLie2. For p, p ′ ∈ P

η(p) ·p ′ = η((l ,m) · (l ′,m′))

= σ(m) · (l ′,m′)
= (σ(m) · l ′,σ(m) ·m′)
= (µ(l ) · l ′,σ(m) ·m′)
= ([l , l ′], [m,m′])
= [(l ,m), (l ′,m′)]

Claim 1: Let X ∈Ob(Lie) and α1 : X → L,α2 : X → M ∈ Mor (Lie). Then there exists

h : X → P

x 7→ (α1(x),α2(x))

Since α1,α2 ∈ Mor (Lie) we get h ∈ Mor (Lie). For x ∈ X we have

(i1 ◦h)(x) = i1(h(x)) = i1(α1(x),α2(x)) =α1(x)

(i2 ◦h)(x) = i2(h(x)) = i2(α1(x),α2(x)) =α2(x)

that is the diagram

X

α2

��

α1

""h   
P

i2

��

i1 // L

M

is commutative.

Claim 2: h is unique.

Let h′ : X → P ∈ Mor (Lie) defined as h(x) = (l ,m) = p for x ∈ X such that i1 ◦h′ =α1 and i2 ◦h′ =α2.

For x ∈ X we have

(i1 ◦h′)(x) = i1(h′(x)) = i1(l ,m) = l =α1(x)

(i2 ◦h′)(x) = i2(h′(x)) = i2(l ,m) = m =α2(x)

that is

h′(x) = (l ,m) = (α1(x),α2(x)) = h(x)
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As a result in the diagram

P

i2

��

i1 // L

µ

��
M

σ
// N

the morphism (i1,σ) becomes cartesian morphism over φ(i1,σ) = σ′ which shows φ is a fibration of cate-

gories.

Theorem 3.2. The functor F : XModLie −→ Lie which is given by F (L, N ,µ) = N (base Lie algebra) has a right

adjoint.

Proof.

Let G : Lie −→ XModLie be defined as G(M) = (M , M , i d). Then for any crossed module of Lie algebra say

(L, N ,µ) and a Lie Algebra. M define the morphism

φ : Lie(F (L, N ,µ), M) −→ XModLie((L, N ,µ),G(M))

as follows, if α : N −→ M is a Lie algebra morphism then

φ(α) = (α◦µ,α) : (L, N ,µ) −→ (M , M , i d)

is a morphism in XModLie.

L

µ

��

α◦µ // M

i d
��

N
α
// M

i)

α◦µ(n · l ) = α(n, l )

= [α(n),α(l )]

= α(n) ·α◦µ(l )

ii) The commutativity of this diagram is obvious.

Conversely, for any morphism in XModLie say

(α,β) : (L, N ,µ) −→ (M , M , i d)

Let us define ψ(α,β) = β : N −→ M which is a Lie algebra morphism. Then we get ψ◦φ = 1Lie and φ◦ψ =
1XModLie .

Therefore, φ is a bijection.

Now let us show that naturality in (L, N ,µ) and M .

Moreover, for any morphism (α,β) : (L, N ,µ) −→ (P,S,∂) and a Lie algebra morphism h : A −→ B the follow-
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ing diagrams are commutative.

Lie(F (L, N ,µ), A)

��

// XModLie((L, N ,µ),G(A))

��
Lie(F (L, N ,µ),B) // XModLie((L, N ,µ),G(B))

Lie(F (L, N ,µ), A)

��

// XModLie((L, N ,µ),G(A))

��
Lie(F (P,S,∂), A) // XModLie((P,S,∂),G(A))

Thus φ is an isomorphism.

4. Conclusion

In this paper we show that the category XModLie is fibred over Lie algebras. Further work can be done by

investigating induced structure on XModLie for a cofibration. Then, it is of interest to investigate the functor

ψ∗ : XModLie/N → XModLie/M

has a right adjoint

ψ∗ : XModLie/M → XModLie/N
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Abstract − Let G = (V ,E) be a (p, q) graph. Define

ρ =


p
2 , if p is even
p−1

2 , if p is odd

and L = {±1,±2,±3, · · · ,±ρ} called the set of labels. Consider a mapping f : V −→ L by assigning

different labels in L to the different elements of V when p is even and different labels in L to p-1

elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as

defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a

labeling
∣∣ f (u)− f (v)

∣∣ such that
∣∣∣∆ f1

−∆ f c
1

∣∣∣≤ 1, where ∆ f1
and ∆ f c

1
respectively denote the number

of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a

pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate

the pair difference cordial labeling behavior of Pn ¯K1,Pn ¯K2,Cn ¯K1,Pn ¯2K1,Ln ¯K1,Gn ¯K1,

where Gn is a gear graph and etc.

Subject Classification (2020): 05C78.

1. Introduction

In this paper we consider only finite, undirected and simple graphs. Cordial labeling was introduced in [1]

and more cordial related labeling was studied in [2, 3]. Corona product operations used in several areas of

graph theory [4–6]. In [7] the notion of pair difference cordial labeling of a graph was introduced and also in

the same article pair difference cordial labeling behaviour of path, cycle, star, ladder have been studied. The

pair difference cordial labeling behavior of snake related graph and butterfly graph have been investigated

in [8]. In this paper we have study about the pair difference cordiality of some graphs using corona product

operations like Pn ¯K1,Pn ¯K2,Cn ¯K1,Pn ¯2K1,Ln ¯K1,Gn ¯K1, where Gn is a gear graph.

2. Preliminaries

Definition 2.1. [9] Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. The join G1+G2 as G1∪G2 together with

all the edges joining vertices of V1 to the vertices of V2.
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Definition 2.2. [9] The corona graph G1 ¯G2 is the graph obtained by taking one copy of G1 and n copies of

G2 and joining the i th vertex of G1 with an edge to every vertex in the i th copy G2, where G1 is graph of order

n.

Definition 2.3. [10] The graph Wn =Cn +K1 is called the wheel graph.

Definition 2.4. [10] The ladder Ln is the product graph Pn X K2 with 2n vertices and 3n−2 edges.Let V (Ln) =
{ai ,bi : 1 ≤ i ≤ n} and E(Ln) = {ai bi : 1 ≤ i ≤ n}∪ {ai ai+1,bi bi+1 : 1 ≤ i ≤ n}.

Definition 2.5. [5] The gear graph Gn is obtained from the wheel Wn by adding a vertex between every pair

of adjacent vertices of the cycle Cn .Let V (Gn) = {x, xi , yi : 1 ≤ i ≤ n} and E(Gn) = {xxi : 1 ≤ i ≤ n}∪ {xi yi : 1 ≤
i ≤ n}∪ {yi xi+1 : 1 ≤ i ≤ n −1}∪ {yn x1}.

3. Main Results

Pn ¯K1 is pair difference cordial for all values of n [7]. Now we investigate the pair difference cordiality of

Pn ¯K2.

Theorem 3.1. Pn ¯K2 is pair difference cordial for all values of n.

Proof.

Let V (Pn ¯K2) = {xi , yi , zi : 1 ≤ i ≤ n} and E(Pn ¯K2) = {xi xi+1 : 1 ≤ i ≤ n − 1}∪ {yi zi , xi yi , xi zi : 1 ≤ i ≤
n}.Clearly Pn ¯K2 has 3n vertices and 4n −1 edges. There are two cases arises.

Case 1.n is even.

First assign the labels 3n
2 , 3n−2

2 , 3n−4
2 , · · · ,n + 1 to the vertices x1, x2, x3, · · · , x n

2
and assign the labels −3n

2 ,

−3n−2
2 , −3n−4

2 , · · · ,−(n +1) to the vertices x n+2
2

, x n+4
2

, x n+6
2

, · · · ,xn . Next assign the labels 1,3,5, · · · ,n −1 to the

vertices y1, y2, y3, · · · , y n
2

and assign the labels −1,−3,−5, · · · ,−(n − 1) to the vertices y n+2
2

, y n+4
2

, y n+6
2

, · · · , yn .

Now assign the labels 2,4,6, · · · ,n to the vertices z1, z2, z3, · · · , z n
2

and assign the labels −2,−4,−6, · · · ,−n to

the vertices z n+2
2

, z n+4
2

, z n+6
2

, · · · , zn .

Case 2.n is odd.

Assign the labels 3n−3
2 , 3n−5

2 , 3n−7
2 , · · · ,n to the vertices x1, x2, x3, · · · , x n−1

2
and assign the labels −3n−3

2 ,−3n−5
2 ,

−3n−7
2 ,· · · ,−n to the vertices x n+1

2
, x n+3

2
, x n+5

2
, · · · ,xn−1. Now assign the labels 1,3,5, · · · ,n −2 to the vertices

y1, y2, y3, · · · , y n−1
2

and assign the labels −1,−3,−5, · · · ,−(n −2) to the vertices y n+1
2

, y n+3
2

, y n+5
2

, · · · , yn−1. Next

assign the labels 2,4,6, · · · ,n−1 to the vertices z1, z2, z3, · · · , z n−1
2

and assign the labels −2,−4,−6, · · · ,−(n−1)

to the vertices z n+1
2

, z n+3
2

, z n+5
2

,· · · , zn−1. Finally assign the labels 3n−1
2 , −( 3n−1

2 ), 3n−3
2 to the vertices xn , yn , zn .

The Table 1 given below establish that this vertex labeling f is a pair difference cordial of Pn ¯K2.
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Nature of n ∆ f c
1

∆ f1

n is odd 2n −1 2n
n is even 2n 2n −1

Table 1

Cn ¯K1 is pair difference cordial for all values of n ≥ 3 [7]. We now investigate the pair difference cordiality

of Cn ¯K2,n ≥ 3.

Theorem 3.2. Cn ¯K2 is pair difference cordial for all values of n ≥ 3.

Proof.

Let V (Cn ¯K2) = {xi , yi , zi : 1 ≤ i ≤ n} and E(Cn ¯K2) = {xi xi+1 : 1 ≤ i ≤ n − 1}∪ {x1xn}∪ {yi zi , xi yi , xi zi :

1 ≤ i ≤ n}. Obviously Cn ¯K2 has 3n vertices and 4n edges. As in theorem 3.2, Assign the labels to the

vertices xi , yi , zi (1 ≤ i ≤ n) of Cn ¯K2. This vertex labeling f yields that ∆ f1 =∆ f c
1
= 2n.

Theorem 3.3. Pn ¯2K1 is pair difference cordial for all values of n.

Proof.

Let V (Pn ¯ 2K1) = {xi , yi , zi : 1 ≤ i ≤ n} and E(Pn ¯ 2K1) = {xi xi+1 : 1 ≤ i ≤ n − 1}∪ {xi yi , xi zi : 1 ≤ i ≤ n}.

Note that Pn ¯K2 has 3n vertices and 3n −1 edges.There are two cases arises.

Case 1.n is even.

Assign the labels 2,5,8, · · · , 3n−2
2 respectively to the vertices x1, x2, x3, · · · , x n

2
and assign the labels−1,−4,−7,· · · ,

-3n-4 2 to the vertices x n+2
2

, x n+4
2

, x n+6
2

, · · · , xn respectively. Next we assign the labels 1,4,7, · · · , 3n−4
2 to the

vertices y1, y2, y3, · · · , y n
2

respectively and assign the labels −2,−5,−8, · · · ,−3n−2
2 respectively to the vertices

y n+2
2

, y n+4
2

, y n+6
2

, · · · , yn . We now assign the labels 3,6,9, · · · , 3n
2 respectively to the vertices z1, z2, z3, · · · , z n

2
and

assign the labels −3,−6,−9, · · · ,−3n
2 to the vertices z n+2

2
, z n+4

2
, z n+6

2
, · · · , zn respectively.

Case 2.n is odd.

Assign the labels 2,5,8, · · · , 3n−5
2 respectively to the vertices x1, x2, x3, · · · , x n−1

2
and assign the labels −1,−4,

−7, · · · , -3n-7 2 to the vertices x n+1
2

, x n+3
2

, x n+5
2

, · · · , xn−1 respectively. Next assign the labels 1,4,7, · · · , 3n−7
2 to

the vertices y1, y2, y3, · · · , y n−1
2

respectively and assign the labels −2,−5,−8, · · · ,−3n−5
2 respectively to the

vertices y n+1
2

, y n+3
2

, y n+5
2

, · · · , yn−1. Now assign the labels 3,6,9, · · · , 3n−3
2 respectively to the vertices z1, z2,

z3 · · · , z n−1
2

and assign the labels −3,−6,−9, · · · ,−3n−3
2 to the vertices z n+1

2
, z n+3

2
, z n+5

2
, · · · , zn−1 respectively. Fi-

nally assign the labels 3n−1
2 ,−3n−1

2 , 3n−3
2 to the vertices xn , yn , zn .

The Table 2 given below establish that this vertex labeling f is a pair difference cordial of Pn ¯2K1 .

Nature of n ∆ f c
1

∆ f1

n is odd 3n−1
2

3n−1
2

n is even 3n−2
2

3n
2

Table 2



R. Ponraj et al. / IKJM / 3(2) (2021) 17-26 20

Theorem 3.4. Cn ¯2K1 is pair difference cordial for all values of n ≥ 3.

Proof.

Let V (Cn ¯ 2K1) = {xi , yi , zi : 1 ≤ i ≤ n} and E(Pn ¯2K1) = {xi xi+1 : 1 ≤ i ≤ n −1}∪ {x1xn}∪ {xi yi , xi zi : 1 ≤
i ≤ n}. Clearly Cn ¯2K1 has 3n vertices and 3n edges. As in theorem 3.4, Assign the labels to the vertices

xi , yi , zi (1 ≤ i ≤ n) of Cn ¯2K1.

The Table 3 given below establish that this vertex labeling f is a pair difference cordial of Cn ¯2K1 .

Nature of n ∆ f c
1

∆ f1

n is odd 3n−1
2

3n+1
2

n is even 3n
2

3n
2

Table 3

Theorem 3.5. Ln ¯K1 is pair difference cordial for all values of n.

Proof.

Let V (Ln ¯K1) =V (Ln)∪ {xi , yi : 1 ≤ i ≤ n} and E(Ln ¯K1) = E(Ln)∪ {ai xi ,bi yi : 1 ≤ i ≤ n}. Note that Ln ¯K1

has 4n vertices and 4n−2 edges. Assign the labels 1,2,3, · · · ,n to the vertices a1, a2, a3, · · · , an and assign the

labels−1,−2,−3, · · · ,−n to the vertices b1,b2,b3, · · · ,bn . Next assign the labels 2n,2n−1,2n−2, · · · ,n+1 to the

vertices x1, x2, x3, · · · , xn and assign the labels −2n,−2n+1,−2n+2, · · · ,−n−1 to the vertices y1, y2, y3, · · · , yn .

This vertex labeling gives that, ∆ f1 = 2n,∆ f c
1
= 2n −1.

Theorem 3.6. Ln ¯2K1 is pair difference cordial for all values of n.

Proof.

Let V (Ln ¯ 2K1) = V (Ln)∪ {xi , yi ,ui , vi : 1 ≤ i ≤ n},E(Ln ¯ 2K1) = E(Ln)∪ {ai xi , ai ui ,bi vi ,bi yi : 1 ≤ i ≤ n}.

Obviously Ln ¯2K1 has 6n vertices and 7n −2 edges.

Case 1.n is even.

Define the map f : V (Ln ¯2K1) → {±1,±2, · · · ,±3n} by

f (a1) = 2, f (b1) =−2,

f (x1) = 1, f (y1) =−1,

f (u1) = 3, f (v1) =−3,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ n

2
,

f (bi ) = f (bi−1)−3, 2 ≤ i ≤ n −1,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ n

2
,

f (ui ) = f (ui−1)+3, 2 ≤ i ≤ n,

f (yi ) = f (yi−1)−3, 2 ≤ i ≤ n −1,

f (vi ) = f (vi−1)−3, 2 ≤ i ≤ n −1,
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f (a n+2
2

) = f (a n
2

)+2,

f (x n+2
2

) = f (x n
2

)+4,

f (a n+2i
2

) = f (a n+2
2

)+3i −3, 2 ≤ i ≤ n

2
,

f (u n+2i
2

) = f (u n+2
2

)+3i −3, 2 ≤ i ≤ n

2
,

f (x n+2i
2

) = f (x n+2
2

)+3i −3, 2 ≤ i ≤ n

2
,

f (bn) =− f (an),

f (vn) =− f (un),

f (xn) =− f (yn).

Case 2.n is odd.

Define the map f : V (Ln ¯2K1) → {±1,±2, · · · ,±3n} by

f (a1) = 2, f (b1) =−2,

f (x1) = 1, f (y1) =−1,

f (u1) = 3, f (v1) =−3,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ n +1

2
,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ n +1

2
,

f (ui ) = f (ui−1)+3, 1 ≤ i ≤ n,

f (a n+3
2

) = f (a n+1
2

)+2,

f (x n+3
2

) = f (x n+1
2

)+4,

f (a n+2i+1
2

) = f (a n+1
2

)+3i −3, 2 ≤ i ≤ n −1

2
,

f (u n+2i+1
2

) = f (u n+1
2

)+3i −3, 2 ≤ i ≤ n −1

2
,

f (x n+2i+1
2

) = f (x n+1
2

)+3i −3, 2 ≤ i ≤ n −1

2
,

f (bi ) =− f (ai ), 1 ≤ i ≤ n,

f (vi ) =− f (ui ), 1 ≤ i ≤ n,

f (xi ) =− f (yi ), 1 ≤ i ≤ n.

The Table 3 given below establish that this vertex labeling f is a pair difference cordial of Ln ¯2K1.

Nature of n ∆ f c
1

∆ f1

n is odd 7n−3
2

7n−1
2

n is even 7n−2
2

7n−2
2

Table 4
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Theorem 3.7. Wn ¯2K1 is pair difference cordial for all values of n ≥ 3.

Proof.

Let V (Wn¯2K1) = {xi , yi , zi : 1 ≤ i ≤ n}∪{x, w1, w2} and E(Wn¯2K1) = {xi xi+1 : 1 ≤ i ≤ n−1}∪{xxi , xi yi , xi zi :

1 ≤ i ≤ n}∪ {x1xn , xw1, xw2}. Note that Wn ¯2K1 has 3n +3 vertices and 4n +2 edges.

Case 1.n is even.

Define the map f : V (Wn ¯2K1) → {±1,±2, · · · ,±3n+2
2 } by

f (x1) = 2, f (y1) = 1,

f (z1) = 3, f (w1) = 3n +2

2
,

f (w2) =−3n +2

2
, f (x) = 3n

2
,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ n

2
,

f (yi ) = f (yi−1)+3, 2 ≤ i ≤ n

2
,

f (zi ) = f (zi−1)+3, 2 ≤ i ≤ n

2
,

f (x n+2i
2

) =− f (xi ), 1 ≤ i ≤ n

2
,

f (y n+2i
2

) =− f (yi ), 1 ≤ i ≤ n

2
,

f (z n+2i
2

) =− f (zi ), 1 ≤ i ≤ n

2
,

Case 2.n is odd.

Define the map f : V (Wn ¯2K1) → {±1,±2, · · · ,±3n+3
2 } by

f (x1) = 2, f (y1) = 1,

f (z1) = 3, f (w1) =−3n +1

2
,

f (w2) =−3n +3

2
, f (xn) = 3n +1

2
,

f (yn) = 3n −1

2
, f (zn) = 3n +3

2
,

f (x) =−3n −1

2
,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ n −1

2
,

f (yi ) = f (yi−1)+3, 2 ≤ i ≤ n −1

2
,

f (zi ) = f (zi−1)+3, 2 ≤ i ≤ n −1

2
,

f (x n+2i−1
2

) =− f (xi ), 1 ≤ i ≤ n −1

2
,

f (y n+2i−1
2

) =− f (yi ), 1 ≤ i ≤ n −1

2
,

f (z n+2i−1
2

) =− f (zi ), 1 ≤ i ≤ n −1

2
,

In both cases ∆ f1 =∆ f c
1
= 2n +1. Therefore Wn ¯2K1 is pair difference cordial for all values of n ≥ 3.

Theorem 3.8. Gn ¯2K1 is pair difference cordial for all values of n ≥ 3.
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Proof.

Let V (Gn¯2K1) =V (Gn)∪{ai , ai
′,bi ,bi

′ : 1 ≤ i ≤ n}∪{a, a′} and V (Gn¯2K1) = E(Gn)∪{xi ai , xi ai
′, yi bi , yi bi

′, :

1 ≤ i ≤ n}∪ {xa, xa′}. Clearly Gn ¯2K1 has 6n +3 vertices and 7n +2 edges. Case 1.n ≡ 0 (mod 4).

Define the map f : V (Gn ¯2K1) → {±1,±2, · · · ,±6n+2
2 } by

f (x1) = 2, f (a1) = 1,

f (a′
1) = 3, f (a) = 3n +1,

f (a′) =−(3n +1), f (x) = 3n,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ 3n

4
,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ 3n

4
,

f (a′
i ) = f (a′

i−1)+3, 2 ≤ i ≤ 3n

4
,

f (x 3n+4
4

) = f (x 3n
4

)+2,

f (a 3n+4
4

) = f (a 3n
4

)+4,

f (a′
3n+4

4
) = f (a′

3n
4

)+3,

f (x 3n+4i
4

) = f (x 3n+4i−4
4

)+3, 2 ≤ i ≤ n −4

4
,

f (a 3n+4i
4

) = f (a 3n+4i−4
4

)+3, 2 ≤ i ≤ n −4

4
,

f (a′
3n+4i

4

) = f (a′
3n+4i−4

4

)+3, 2 ≤ i ≤ n −4

4
,

f (yi ) =− f (xi ), 1 ≤ i ≤ n,

f (bi ) =− f (ai ), 1 ≤ i ≤ n,

f (b′
i ) =− f (a′

i ), 1 ≤ i ≤ n.

Case 2.n ≡ 1 (mod 4).

Define the map f : V (Gn ¯2K1) → {±1,±2, · · · ,±6n+3
2 } by

f (x1) = 2, f (a1) = 1,

f (a′
1) = 3, f (a) = 3n +1,

f (a′) =−(3n +1), f (x) = 3n,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ 3n +1

4
,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ 3n +1

4
,

f (a′
i ) = f (a′

i−1)+3, 2 ≤ i ≤ 3n +1

4
,

f (x 3n+5
4

) = f (x 3n+1
4

)+2,

f (a 3n+5
4

) = f (a 3n+1
4

)+4,

f (a′
3n+5

4
) = f (a′

3n+1
4

)+3,
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f (x 3n+4i+1
4

) = f (x 3n+4i−3
4

)+3, 2 ≤ i ≤ n −3

4
,

f (a 3n+4i+1
4

) = f (a 3n+4i−3
4

)+3, 2 ≤ i ≤ n −3

4
,

f (a′
3n+4i+1

4

) = f (a′
3n+4i−3

4

)+3, 2 ≤ i ≤ n −3

4
,

f (yi ) =− f (xi ), 1 ≤ i ≤ n,

f (bi ) =− f (ai ), 1 ≤ i ≤ n,

f (b′
i ) =− f (a′

i ), 1 ≤ i ≤ n.

Case 3.n ≡ 2 (mod 4).

Define the map f : V (Gn ¯2K1) → {±1,±2, · · · ,±6n+2
2 } by

f (x1) = 2, f (a1) = 1,

f (a′
1) = 3, f (a) = 3n +1,

f (a′) =−(3n +1), f (x) = 3n,

f (xi ) = f (xi−1)+3, 2 ≤ i ≤ 3n +2

4
,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ 3n +2

4
,

f (a′
i ) = f (a′

i−1)+3, 2 ≤ i ≤ 3n +2

4
,

f (x 3n+6
4

) = f (x 3n+2
4

)+2,

f (a 3n+6
4

) = f (a 3n+2
4

)+4,

f (a′
3n+6

4
) = f (a′

3n+2
4

)+3,

f (x 3n+4i+2
4

) = f (x 3n+4i−2
4

)+3, 2 ≤ i ≤ n −2

4
,

f (a 3n+4i+2
4

) = f (a 3n+4i−2
4

)+3, 2 ≤ i ≤ n −2

4
,

f (a′
3n+4i+2

4

) = f (a′
3n+4i−2

4

)+3, 2 ≤ i ≤ n −2

4
,

f (yi ) =− f (xi ), 1 ≤ i ≤ n,

f (bi ) =− f (ai ), 1 ≤ i ≤ n,

f (b′
i ) =− f (a′

i ), 1 ≤ i ≤ n.

Case 4.n ≡ 3 (mod 4).

Define the map f : V (Gn ¯2K1) → {±1,±2, · · · ,±6n+3
2 } by

f (x1) = 2, f (a1) = 1,

f (a′
1) = 3, f (a) = 3n +1,

f (a′) =−(3n +1), f (x) = 3n,
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f (xi ) = f (xi−1)+3, 2 ≤ i ≤ 3n +3

4
,

f (ai ) = f (ai−1)+3, 2 ≤ i ≤ 3n +3

4
,

f (a′
i ) = f (a′

i−1)+3, 2 ≤ i ≤ 3n +3

4
,

f (x 3n+7
4

) = f (x 3n+3
4

)+2,

f (a 3n+7
4

) = f (a 3n+3
4

)+4,

f (a′
3n+7

4
) = f (a′

3n+3
4

)+3,

f (x 3n+4i+3
4

) = f (x 3n+4i−1
4

)+3, 2 ≤ i ≤ n −1

4
,

f (a 3n+4i+3
4

) = f (a 3n+4i−1
4

)+3, 2 ≤ i ≤ n −1

4
,

f (a′
3n+4i+3

4

) = f (a′
3n+4i−1

4

)+3, 2 ≤ i ≤ n −1

4
,

f (yi ) =− f (xi ), 1 ≤ i ≤ n,

f (bi ) =− f (ai ), 1 ≤ i ≤ n,

f (b′
i ) =− f (a′

i ), 1 ≤ i ≤ n.

The Table 4 given below establish that this vertex labeling f is a pair difference cordial of Gn ¯2K1,n ≥ 3.

Nature of n ∆ f c
1

∆ f1

n is odd 7n+1
2

7n+3
2

n is even 7n+2
2

7n+2
2

Table 5
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 AVD Proper Edge Coloring of Some Cycle Related Graphs 
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Abstract − The adjacent vertex-distinguishing proper edge-coloring is the minimum number of 

colors required for a proper edge-coloring of 𝐺, in which no two adjacent vertices are incident to 

edges colored with the same set of colors. The minimum number of colors required for an 

adjacent vertex-distinguishing proper edge-coloring of 𝐺 is called the adjacent vertex-

distinguishing proper edge-chromatic index. In this paper, we compute adjacent vertex-

distinguishing proper edge-chromatic index of Anti-prism, sunflower graph, double sunflower 

graph, triangular winged prism, rectangular winged prism and Polygonal snake graph. 

Subject Classification (2020): 05C15, 05C38. 

1. Introduction 

The terminology and notations we refer to Bondy and Murthy [4]. Let 𝐺 be a finite, simple, undirected 

and connected graph. Let 𝛥(𝐺) denote the maximum degree of 𝐺. A proper edge-coloring 𝜎 is a mapping 

from 𝐸(𝐺) to the set of colors such that any two adjacent edges receive distinct colors. For any vertex 

𝑣 of 𝐺, let 𝑆𝜎(𝑣) denote the set of the colors of all edges incident to 𝑣. A proper edge-coloring 𝜎 is said to 

an adjacent vertex-distinguishing (AVD) if 𝑆𝜎(𝑢) ≠ 𝑆𝜎(𝑣), for every adjacent vertices 𝑢 and 𝑣. The 

minimum number of colors required for an adjacent vertex-distinguishing proper edge-coloring of 𝐺, 

denoted by 𝜒𝑎𝑠
′ (𝐺), is called the adjacent vertex-distinguishing proper edge-chromatic index (AVD 

proper edge-chromatic index) of 𝐺. Thus, 𝜒𝑎𝑠
′ (𝐺) ≥ 𝜒′(𝐺).  

 

Conjecture 1.1. [11]  For any connected graph 𝐺 (|𝑉(𝐺)| ≥ 6), there is 𝜒𝑎𝑠
′ (𝐺) ≤ 𝛥(𝐺) + 2. If 𝐻 is a 

subgraph of 𝐺, it is interesting that 𝜒𝑎𝑠
′ (𝐻) ≤ 𝜒𝑎𝑠

′ (𝐺) is not always true.  

 

Let 𝐾𝑚,𝑛 be the complete bipartite graph, then 𝜒𝑎𝑠
′ (𝐾2,3) = 3 and 𝐾2,3 − 𝑒 for any edge, then 

𝜒𝑎𝑠
′ (𝐾2,3 − 𝑒) = 4. Deletion of an edge of a graph may also decrease the coloring number of the graph. 

Let 𝑛 ≥ 3, then 𝜒𝑎𝑠
′ (𝐾1,𝑛) = 𝑛 and 𝜒𝑎𝑠

′ (𝐾1,𝑛 − 𝑒) = 𝑛 − 1. 
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In [11] Zhang et al. proved: if 𝐺 has 𝑛 components 𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑛, with at least three vertices in each, then 

𝜒𝑎𝑠
′ (𝐺) = 𝑚𝑎𝑥1≤𝑖≤𝑛{𝜒𝑎𝑠

′ (𝐺𝑖)}. So we consider only connected graphs. For a tree 𝑇 with |𝑉(𝑇)| ≥ 3, if any 

two vertices of maximum degree are non-adjacent, then 𝜒𝑎𝑠
′ (𝑇) = 𝛥(𝑇). If 𝑇 has two vertices of 

maximum degree which are adjacent, then 𝜒𝑎𝑠
′ (𝑇) = 𝛥(𝑇) + 1.  For cycle 𝐶𝑛 we have 𝜒𝑎𝑠

′ (𝐶𝑛) = 3, for 

𝑛 ≡ 0 (𝑚𝑜𝑑3), otherwise 𝜒𝑎𝑠
′ (𝐶𝑛) = 4 for 𝑛 ≢ 0 (𝑚𝑜𝑑3) and 𝑛 ≠ 5, 𝜒𝑎𝑠

′ (𝐶𝑛) = 5, for 𝑛 = 5. For the 

complete bipartite graph 𝐾𝑚,𝑛 for 1 ≤ 𝑚 ≤ 𝑛, we have 𝜒𝑎𝑠
′ (𝐾𝑚.𝑛) = 𝑛 if 𝑚 < 𝑛, and 𝜒𝑎𝑠

′ (𝐾𝑚.𝑛) = 𝑛 + 2 

if 𝑚 = 𝑛 ≥ 2. For the complete graph 𝐾𝑛 (𝑛 ≥ 3), we have 𝜒𝑎𝑠
′ (𝐾𝑛) = 𝑛 for 𝑛 ≡ 1 (𝑚𝑜𝑑 2);  𝜒𝑎𝑠

′ (𝐾𝑛) =

𝑛 + 1 for 𝑛 ≡ 0 (𝑚𝑜𝑑 2). If 𝐺 is a graph which has two adjacent maximum degree vertices, then 𝜒𝑎𝑠
′ (𝐺) ≥

𝛥(𝐺) + 1. If 𝐺 is a graph such that the degree of any two adjacent vertices is different, then 𝜒𝑎𝑠
′ (𝐺) =

𝛥(𝐺). In [9] Shiu proved: for 𝑛 ≥ 3, we have 𝜒𝑎𝑠
′ (𝐹𝑛) = 𝑛,  if 𝑛 = 3,4 and 𝜒𝑎𝑠

′ (𝐹𝑛−1) = 𝑛 − 1, for 𝑛 ≥ 5. 

For 𝑛 ≥ 3, we have 𝜒𝑎𝑠
′ (𝑊𝑛) = 5, if 𝑛 = 3, and 𝜒𝑎𝑠

′ (𝑊𝑛) = 𝑛, for 𝑛 ≥ 4. In [7] Hatami prove that if 𝐺 is a 

graph with no isolated edges and maximum degree ∆(𝐺) > 1020, then 𝜒𝑎𝑠
′ ≤ ∆ + 300.  In [2] Balister et 

al. proved: if 𝐺 is a 𝑘-chromatic graph with no isolated edges, then 𝜒𝑎𝑠
′ (𝐺) ≤ ∆(𝐺) + 𝑂(log 𝑘). In [1] 

Axenovich et al. obtained upper bound for adjacent vertex-distinguishing edge-colorings of graphs. In 

[3] Baril et al. obtained exact values for adjacent vertex-distinguishing edge-coloring of meshes. In [5] 

Bu et al. finding adjacent vertex-distinguishing edge-colorings of planar graphs with girth at least six. In 

[6] Chen et al. obtained adjacent vertex-distinguishing proper edge-coloring of planar bipartite graphs 

with ∆= 9,10 𝑜𝑟 11.  

 

In this paper, we compute adjacent vertex-distinguishing edge-chromatic index of Anti- prism, 

sunflower graph, double sunflower graph, triangular winged prism, rectangular winged prism and 

Polygonal snake graph. 

 

Observation 1.1.  If a connected graph 𝐺 contains two adjacent vertices of degree ∆(𝐺),  then  𝜒𝑡
′(𝐺) ≥

∆(𝐺) + 1. 

 

Observation 1.2. If 𝐺 is a graph such that the degree of any two adjacent vertices is different, then 

𝜒𝑎𝑠
′ (𝐺) = 𝛥(𝐺). 

 

2. AVD Proper Edge-chromatic Index of Anti-prism Graph, Sunflower Graph, Double 

Sunflower Graph, Triangular Winged Prism and Rectangular Winged Prism 

In this section, The AVD proper edge-chromatic index of Anti-prism graph, Sunflower graph, Double 

Sunflower graph, Triangular winged prism and Rectangular winged prism graph will be discussed. We 

have the following results. 

 

2.1.  AVD Proper Edge-chromatic Index of Anti-prism Graph  

If  𝐶𝑛 ◻𝐾2, 𝑛 ≥ 3, is called prism graph, where ◻ is Cartesian product, and it is denoted by 𝐷𝑛 

By an Anti-prism graph of order 𝑛 denoted by 𝐴𝑛, we mean a graph obtained from a prism graph 𝐷𝑛 by 

adding some crossing edges 𝑥𝑖𝑦(𝑖+1)(𝑚𝑜𝑑 𝑛), 𝑖 = 1,2, … , 𝑛. [10] 

Theorem 2.1. 𝜒𝑎𝑠
′ (𝐴𝑛) = 5, 𝑓𝑜𝑟 𝑛 ≥ 3.   
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Proof.  Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1, For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝐴𝑛. In 𝐴𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖
′ = 𝑥𝑖

′𝑥𝑖+1
′ , 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 =

𝑥𝑖𝑥𝑖+1
′ , where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1

′ = 𝑥1
′ . 

Define 𝜎 ∶ 𝐸(𝐴3) → {1,2,3,4,5} as follows: 𝜎(𝑒1) = 1, 𝜎(𝑒2) = 4, 𝜎(𝑒3) = 5, 𝜎(𝑒1
′) = 4, 𝜎(𝑒2

′) =

5, 𝜎(𝑒3
′) = 1, 𝜎(𝑓1) = 𝜎(𝑓2) = 𝜎(𝑓3) = 3, 𝜎(𝑔1) =  𝜎(𝑔2) = 𝜎(𝑔3) = 2. Therefore 𝜎 is proper-edge 

coloring. The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,3,4}, 𝑆𝜎(𝑥3) =

{2,3,4,5},𝑆𝜎(𝑥1
′) = {1,2,3,4}, 𝑆𝜎(𝑥2

′ ) = {2,3,4,5}, 𝑆𝜎(𝑥3
′ ) = {1,2,3,5}. Hence 𝜎 is an AVD proper edge- 

coloring 𝐴3. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴3) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴3) = 5. Define 𝜎 ∶ 𝐸(𝐴4) → {1,2,3,4,5} as 

follows: 𝜎(𝑒1) = 𝜎(𝑒1
′) = 1, 𝜎(𝑒2) = 𝜎(𝑒2

′) = 4, 𝜎(𝑒3) = 𝜎(𝑒3
′) = 5, 𝜎(𝑒4) = 𝜎(𝑒4

′) = 3, 𝜎(𝑓1) = 𝜎(𝑓2) =

𝜎(𝑓3) = 𝜎(𝑓4) = 2, 𝜎(𝑔1) = 5, 𝜎(𝑔2) = 3, 𝜎(𝑔3) = 1, 𝜎(𝑔4) = 4. Therefore 𝜎 is proper-edge coloring. 

The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,3,4}, 𝑆𝜎(𝑥3) = {1,2,4,5}, 𝑆𝜎(𝑥4) =

{2,3,4,5}, 𝑆𝜎(𝑥1
′) = {1,2,3,4}, 𝑆𝜎(𝑥2

′ ) = {1,2,4,5}, 𝑆𝜎(𝑥3
′ ) = {2,3,4,5}, 𝑆𝜎(𝑥4

′ ) = {1,2,3,5}. Hence 𝜎 is an 

AVD proper edge-coloring 𝐴5. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴4) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴4) = 5. Define 𝜎: 𝐸(𝐴5) →

{1,2,3,4,5} as follows: (𝑒1) = 𝜎(𝑒1
′) = 2, 𝜎(𝑒2) = 5, 𝜎(𝑒2

′) = 3, 𝜎(𝑒3) = 2, 𝜎(𝑒3
′) = 5, 𝜎(𝑒4) = 3, 𝜎(𝑒4

′) =

2, 𝜎(𝑒5) = 𝜎(𝑒5
′) = 5, 𝜎(𝑓1) = 3, 𝜎(𝑓2) = 4 = 𝜎(𝑓3), 𝜎(𝑓4) = 1 = 𝜎(𝑓5), 𝜎(𝑔1) = 1 =  𝜎(𝑔2), 𝜎(𝑔3) =

3, 𝜎(𝑔4) = 4 =  𝜎(𝑔5). Therefore 𝜎 is proper-edge coloring. The induced vertex-color sets are: 𝑆𝜎(𝑥1) =

{1,2,3,5}, 𝑆𝜎(𝑥2) = {1,2,4,5}, 𝑆𝜎(𝑥3) = {2,3,4,5}, 𝑆𝜎(𝑥4) = {1,2,3,4}, 𝑆𝜎(𝑥5) = {1,3,4,5}, 𝑆𝜎(𝑥1
′) =

{2,3,4,5}, 𝑆𝜎(𝑥2
′ ) = {1,2,3,4}, 𝑆𝜎(𝑥3

′ ) = {1,3,4,5}, 𝑆𝜎(𝑥4
′ ) = {1,2,3,5}, 𝑆𝜎(𝑥5

′ ) = {1,2,4,5}. Hence 𝜎 is an 

AVD proper edge-coloring 𝐴5. By observation 1.1, 𝜒𝑎𝑠
′ (𝐴5) ≥ 5 and so 𝜒𝑎𝑠

′ (𝐴5) = 5. 

For 𝑛 ≥ 6, since ∆(𝐴𝑛) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝐴𝑛) ≥ 5. To show 𝜒𝑎𝑠

′ (𝐴𝑛) ≤ 5. we consider five 

cases and in each case, we first define 𝜎 ∶ 𝐸(𝐴𝑛) → {1,2,3,4,5} as follows: 

For  𝒏 ≡ 𝟎 (𝐦𝐨𝐝 𝟑) 

For 𝑖 ∈ {1,2,… , 𝑛},  

𝜎(𝑒𝑖) = {

5   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

𝜎(𝑒𝑖
′) = {

2   if 𝑖 ≡ 1 (mod 3)
3   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

 𝜎(𝑓𝑖) = 4,  𝜎(𝑔𝑖)  = 1 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

For 𝑖 ∈ { 1,2,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {

{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{1,2,3,4}   if 𝑖 ≡ 0 (mod 3)

  

      𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)

{1,3,4,5}   if 𝑖 ≡ 0 (mod 3)
  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟏 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  
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For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
2   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ )  

𝜎(𝑓1) = 4, 𝜎(𝑓2) = 2,  

For 𝑖 ∈ {3,4,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

5   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 5,  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 2},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
5   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−1) = 1, 𝜎(𝑔𝑛) = 2. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,3,4,5}  

For 𝑖 ∈ {2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)
  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

  

𝑆𝜎(𝑥𝑛
′ ) = {1,3,4,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟐 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 2}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
2   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 5 = 𝜎(𝑒𝑛−1

′ )  

 𝜎(𝑓1) = 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

5   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 1,  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 2},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
5   if 𝑖 ≡ 1 (mod 3)
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𝜎(𝑔𝑛−1) = 2, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {1,3,4,5}  

For 𝑖 ∈ { 1,2,… , 𝑛 − 2}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4}   if 𝑖 ≡ 1 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

  

𝑆𝜎(𝑥𝑛−1
′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}   

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟒 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
5   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 3 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 5 = 𝜎(𝑒𝑛−1

′ ), 

 𝜎(𝑒𝑛−2) = 1 = 𝜎(𝑒𝑛−2
′ ),  𝜎(𝑒𝑛−3) = 2 = 𝜎(𝑒𝑛−3

′ )  

 𝜎(𝑓1) = 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 3}, 𝜎(𝑓𝑖) = {

2   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
1   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 1, 𝜎(𝑓𝑛−1) = 4 = 𝜎(𝑓𝑛−2)  

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 4},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)
2   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−3) = 5, 𝜎(𝑔𝑛−2) = 3, 𝜎(𝑔𝑛−1) = 2, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5},  𝑆𝜎(𝑥2) = {1,2,3,4}  

For 𝑖 ∈ { 3,4,… , 𝑛 − 3}, 𝑆𝜎(𝑥𝑖) = {

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 2 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {1,3,4,5},  𝑆𝜎(𝑥𝑛−1) = {1,2,4,5},  𝑆𝜎(𝑥𝑛−2) = {1,2,3,4}   
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𝑆𝜎(𝑥1
′) = {1,2,3,4}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 0 (mod 3)

{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑥𝑛−3
′ ) = {1,2,3,4}, 𝑆𝜎(𝑥𝑛−2

′ ) = {1,2,4,5}, 𝑆𝜎(𝑥𝑛−1
′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 

For  𝒏 ≡ 𝟓 (𝐦𝐨𝐝 𝟔) 

𝜎(𝑒1) = 1 = 𝜎(𝑒1
′)  

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

4   if 𝑖 is even  
5   if 𝑖 is odd   

  

𝜎(𝑒𝑛) = 2 = 𝜎(𝑒𝑛
′ ),  𝜎(𝑒𝑛−1) = 3 = 𝜎(𝑒𝑛−1

′ ), 

 𝜎(𝑒𝑛−2) = 5 = 𝜎(𝑒𝑛−2
′ ),  𝜎(𝑒𝑛−3) = 3 = 𝜎(𝑒𝑛−3

′ )  

 𝜎(𝑓1) = 3, 𝜎(𝑓2) = 2  

For 𝑖 ∈ {3,4,… , 𝑛 − 3}, 𝜎(𝑓𝑖) = {

1   if 𝑖 ≡ 0 (mod 3)
3   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)

  

𝜎(𝑓𝑛) = 5, 𝜎(𝑓𝑛−1) = 4, 𝜎(𝑓𝑛−2) = 1 

𝜎(𝑔1) = 5,  

For 𝑖 ∈ {2,3,… , 𝑛 − 4},  𝜎(𝑔𝑖)  = {

3   if 𝑖 ≡ 2 (mod 3)
2   if 𝑖 ≡ 0 (mod 3)
1   if 𝑖 ≡ 1 (mod 3)

 

𝜎(𝑔𝑛−3) = 4, 𝜎(𝑔𝑛−2) = 2, 𝜎(𝑔𝑛−1) = 1, 𝜎(𝑔𝑛) = 4. 

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are: 

𝑆𝜎(𝑥1) = {1,2,3,5},  𝑆𝜎(𝑥2) = {1,2,3,4}  

For 𝑖 ∈ { 3,4,… , 𝑛 − 2}, 𝑆𝜎(𝑥𝑖) = {

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 1 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 2 (mod 3)

  

𝑆𝜎(𝑥𝑛) = {2,3,4,5},  𝑆𝜎(𝑥𝑛−1) = {1,3,4,5},  𝑆𝜎(𝑥𝑛−2) = {1,2,3,5}   

𝑆𝜎(𝑥1
′) = {1,2,3,4}  

For 𝑖 ∈ { 2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,4,5}   if 𝑖 ≡ 2 (mod 3)
{1,3,4,5}   if 𝑖 ≡ 0 (mod 3)
{2,3,4,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑛−3
′ ) = {1,2,3,5}, 𝑆𝜎(𝑥𝑛−2

′ ) = {1,3,4,5}, 𝑆𝜎(𝑥𝑛−1
′ ) = {2,3,4,5}, 𝑆𝜎(𝑥𝑛

′ ) = {1,2,3,5}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐴𝑛. Hence,  𝜒𝑎𝑠
′ (𝐴𝑛) = 5. 
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2.2.  AVD Proper Edge-chromatic Index of Sunflower Graph 

By an sun flower graph of order 𝑛 denoted by 𝑆𝐹𝑛,  we mean a graph that is isomorphic to a graph 

obtained from Anti-prism graph 𝐴𝑛 by deleting edges 𝑦𝑖𝑦(𝑖+1)(𝑚𝑜𝑑 𝑛), 𝑖 = 1,2,… , 𝑛. 

Theorem 2.2.  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝑆𝐹𝑛. In 𝑆𝐹𝑛, for 𝑖 ∈ { 1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑓𝑖 = 𝑥𝑖𝑥𝑖
′, and 𝑔𝑖 = 𝑥𝑖

′𝑥𝑖+1, 

where 𝑥𝑛+1 = 𝑥1. 

Define 𝜎 ∶ 𝐸(𝑆𝐹3) → {1,2,3,4,5} as follows: (𝑒1) = 1, 𝜎(𝑒2) = 2, 𝜎(𝑒3) = 5, 𝜎(𝑓1) = 𝜎(𝑓2) = 𝜎(𝑓3) = 3, 

𝜎(𝑔1) =  𝜎(𝑔2) = 𝜎(𝑔3) = 4. The induced vertex-color sets are: 𝑆𝜎(𝑥1) = {1,3,4,5}, 𝑆𝜎(𝑥2) =

{1,2,3,4}, 𝑆𝜎(𝑥3) = {2,3,4,5}, 𝑆𝜎(𝑥1
′) = 𝑆𝜎(𝑥2

′ ) = 𝑆𝜎(𝑥3
′ ) = {3,4}. Therefore 𝜎 is an AVD proper edge-

coloring 𝑆𝐹𝑛.  Hence, 𝜒𝑎𝑠
′ (𝑆𝐹3) = 5. 

For  𝑛 ≥ 4,  since ∆(𝑆𝐹𝑛) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝑆𝐹𝑛) ≥ 5. To show 𝜒𝑎𝑠

′ (𝑆𝐹𝑛) ≤ 5. we consider two 

cases first define 𝜎 ∶ 𝐸(𝑆𝐹𝑛) → {1,2,3,4,5} as follows: 

Case 1. If  𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
5   if 𝑖 is odd  
4   if 𝑖 is even

   

𝜎(𝑔𝑖) = 3,   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,3}  

For 𝑖 ∈ {1,2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {
{1,2,3,5}   if 𝑖 is odd  
{1,2,3,4}   if 𝑖 is even

  

𝑆𝜎(𝑥𝑖
′) = {

{3,5}   if 𝑖 is odd  
{3,4}   if 𝑖 is even

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

  

𝜎(𝑒𝑛) = 5  

𝜎(𝑓1) = 4,  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if 𝑖 is even  
5   if 𝑖 is odd   

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛}, 𝜎(𝑔𝑖) = 3   
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Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,3,4,5}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3,4}   if 𝑖 is even 
{1,2,3,5}   if 𝑖 is odd   

  

𝑆𝜎(𝑥𝑛) = {2,3,4,5}  

𝑆𝜎(𝑥1
′) = {3,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{3,4}   if 𝑖 is even  
{3,5}   if 𝑖 is odd    

     

𝑆𝜎(𝑥𝑛
′ ) = {3,4}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑆𝐹𝑛) = 5. 

2.3.  AVD Proper Edge-chromatic Index of Double Sunflower Graph  

By a double sunflower graph of order 𝑛 denoted by 𝐷𝑆𝐹𝑛, is a graph obtained from the graph 𝑆𝐹𝑛 by 

inserting a new vertex 𝑧𝑖  on each edges 𝑥𝑖𝑥𝑖+1 and adding edges 𝑦𝑖𝑧𝑖  for each 𝑖. 

Theorem 2.3.  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4, 𝑓𝑜𝑟 𝑛 ≥ 4,   

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑛 be newly added vertices corresponding to the sub division of each 

edge of the cycle 𝐶𝑛 to form 𝐷𝑆𝐹𝑛. In 𝐷𝑆𝐹𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑦𝑖 , 𝑒𝑖
′ = 𝑦𝑖𝑥𝑖+1 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 =

𝑥𝑖
′𝑥𝑖+1 and ℎ𝑖 = 𝑥𝑖

′𝑦𝑖 where 𝑥𝑛+1 = 𝑥1. 

For  𝑛 ≥ 4, since ∆(𝐷𝑆𝐹𝑛) = 4, by observation 1.2. 𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) ≥ 4. To show 𝜒𝑎𝑠

′ (𝐷𝑆𝐹𝑛) ≤ 4. 

We consider two cases first define 𝜎 ∶ 𝐸(𝐷𝑆𝐹𝑛) → {1,2,3,4} as follows: 

Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = {
1   if 𝑖 is odd  
3   if 𝑖 is even

  

𝜎(𝑒𝑖
′) = {

2   if 𝑖 is odd  
4   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
2   if 𝑖 is odd  
1   if 𝑖 is even

   

𝜎(𝑔𝑖) = {
4   if 𝑖 is odd  
3   if 𝑖 is even

   

𝜎(ℎ𝑖) = {
3   if 𝑖 is odd  
2   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {1,2,3,4}  
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         𝑆𝜎(𝑦𝑖) = {
{1,2,3}   if 𝑖 is odd  
{2,3,4}   if 𝑖 is even

  

         𝑆𝜎(𝑥𝑖
′) = {

{2,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝐷𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4. 

Case 2. If 𝒏 is odd 

𝜎(𝑒1) = 1, 𝜎(𝑒1
′) = 3 

For 𝑖 ∈ {2,3,… , 𝑛}, 𝜎(𝑒𝑖) = {
1   if 𝑖 is even  
2   if 𝑖 is odd    

  

𝜎(𝑒𝑖
′) = 4,   

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑓𝑖) = {
3   if  𝑖 ≠ 2
2   if  𝑖 = 2

   

𝜎(𝑔1) = 4,  

For 𝑖 ∈ {2,3,… , 𝑛},  𝜎(𝑔𝑖) = {
1   if 𝑖 is even 
2   if 𝑖 is odd   

   

𝜎(ℎ1) = 2, 𝜎(ℎ2) = 3,  

For 𝑖 ∈ {3,4,… , 𝑛},  𝜎(ℎ𝑖) = {
1   if 𝑖 is odd  
2   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,… , 𝑛},  𝑆𝜎(𝑥𝑖) = {1,2,3,4}  

𝑆𝜎(𝑦1) = {1,2,3}, 𝑆𝜎(𝑦2) = {1,3,4}  

For 𝑖 ∈ {3,4,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {1,2,4}   

𝑆𝜎(𝑥1
′) = {2,3,4}  

For 𝑖 ∈ {2,3,… , 𝑛},  𝑆𝜎(𝑥𝑖
′) = {1,2,3}.   

Therefore 𝜎 is an AVD proper edge-coloring of 𝐷𝑆𝐹𝑛.  Hence,  𝜒𝑎𝑠
′ (𝐷𝑆𝐹𝑛) = 4. 

2.4.  AVD Proper Edge-chromatic Index of Triangular Winged Prism  

By a triangular winged prism of order 𝑛 denoted by 𝑇𝑊𝑃𝑛,  is a graph obtained from the prism graph 𝐷𝑛, by 

adding some outsider middle vertices  𝑧𝑖 on edge 𝑦𝑖𝑦𝑖+1 and adding 𝑧𝑖 to both vertices 𝑦𝑖 and 𝑦𝑖+1. 

Theorem 2.4.  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1 For 𝑛 ≥ 4, 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  and 𝑦1, 𝑦2, … , 𝑦𝑛 be newly added vertices 

corresponding to the vertices 𝑥1, 𝑥2, … , 𝑥𝑛 to form 𝑇𝑊𝑃𝑛. In 𝑇𝑊𝑃𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖
′ =

𝑥𝑖
′𝑥𝑖+1
′ , 𝑓𝑖 = 𝑥𝑖𝑥𝑖

′, 𝑔𝑖 = 𝑥𝑖
′𝑦𝑖 and ℎ𝑖 = 𝑥𝑖+1

′ 𝑦𝑖, where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1
′ = 𝑥1

′ . 

For  𝑛 ≥ 4, since ∆(𝑇𝑊𝑃𝑛) = 5, by observation 1.1. 𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) ≥ 6. To show 𝜒𝑎𝑠

′ (𝑇𝑊𝑃𝑛) ≤ 6. we consider 

two cases first define 𝜎 ∶ 𝐸(𝑇𝑊𝑃𝑛) → {1,2,3,4,5,6} as follows: 
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Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

1   if 𝑖 is odd  
3   if 𝑖 is even

  

     𝜎(𝑓𝑖) = {
4   if 𝑖 is odd  
2   if 𝑖 is even

   

𝜎(𝑔𝑖) = 5   

𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We compare 

the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {
{1,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even

  

        𝑆𝜎(𝑥𝑖
′) = {

{1,3,4,5,6}   if 𝑖 is odd  
{1,2,3,4,5}   if 𝑖 is even

   

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {
{4,5}   if 𝑖 is odd  
{5,6}   if 𝑖 is even

   

Therefore 𝜎 is an AVD proper edge-coloring of  𝑇𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6. 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,3,… , 𝑛 − 1} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = {

1   if 𝑖 is odd  
3   if 𝑖 is even

  

𝜎(𝑒𝑛) = 𝜎(𝑒𝑛
′ ) = 2,  

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if  𝑖 is odd  
2   if  𝑖 is even

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑔𝑖) = 5,   

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

𝜎(ℎ𝑛) = 6.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We compare 

the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  
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𝑆𝜎(𝑥1) = {1,2,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3}   if 𝑖 is even  
{1,3,4}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛) = {2,3,4}  

𝑆𝜎(𝑥1
′) = {1,2,4,5,6}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4,5}   if 𝑖 is even  
{1,3,4,5,6}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛
′ ) = {2,3,4,5,6}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {
{4,5}   if 𝑖 is odd  
{5,6}   if 𝑖 is even

   

𝑆𝜎(𝑦𝑛) = {5,6}.  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑇𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑇𝑊𝑃𝑛) = 6. 

2.5.  AVD Proper Edge-chromatic Index of Rectangular Winged Prism Graph  

By a rectangular winged prism graph of order 𝑛 denoted by 𝑅𝑊𝑃𝑛, is a graph obtained from the prism 

graph 𝐷𝑛, by adding an edge 𝑎𝑖𝑏𝑖 corresponding to the edge 𝑦𝑖𝑦𝑖+1 and adding an edge 𝑎𝑖  to 𝑦𝑖  and 𝑏𝑖 to 

𝑦𝑖+1. 

Theorem 2.5.  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6, 𝑓𝑜𝑟 𝑛 ≥ 4. 

Proof. Let 𝐶𝑛 = 𝑥1𝑥2…𝑥𝑛𝑥1, For 𝑛 ≥ 4 and 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  be newly added vertices corresponding to the 

vertices 𝑥1, 𝑥2, … , 𝑥𝑛. Let 𝑦1, 𝑦2, … , 𝑦𝑛 and 𝑧1, 𝑧2, … , 𝑧𝑛 be newly added vertices corresponding to the 

vertices 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  to form 𝑅𝑊𝑃𝑛. In 𝑅𝑊𝑃𝑛, for 𝑖 ∈ {1,2,… , 𝑛}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1, 𝑒𝑖

′ = 𝑥𝑖
′𝑥𝑖+1
′ , 𝑒𝑖

′′ = 𝑦𝑖𝑧𝑖 , 

𝑓𝑖 = 𝑥𝑖𝑥𝑖
′, 𝑔𝑖 = 𝑥𝑖

′𝑦𝑖  and ℎ𝑖 = 𝑥𝑖+1
′ 𝑧𝑖, where 𝑥𝑛+1 = 𝑥1, 𝑥𝑛+1

′ = 𝑥1
′ . 

For  𝑛 ≥ 4, since ∆(𝑅𝑊𝑃𝑛) = 5, by observation 1.1. 𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) ≥ 6. To show 𝜒𝑎𝑠

′ (𝑅𝑊𝑃𝑛) ≤ 6. we 

consider two cases first define 𝜎 ∶ 𝐸(𝑅𝑊𝑃𝑛) → {1,2,3,4,5,6} as follows: 

Case 1. If 𝒏 is even 

For 𝑖 ∈ {1,2,… , 𝑛} 

 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = 𝜎(𝑒𝑖

′′) = {
1   if 𝑖 is odd  
3   if 𝑖 is even

  

  𝜎(𝑓𝑖) = {
4   if 𝑖 is odd  
2   if 𝑖 is even

   

𝜎(𝑔𝑖) = 5   

𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

For 𝑖 ∈ {1,2,3,… , 𝑛}, 𝑆𝜎(𝑥𝑖) = {
{1,3,4}   if 𝑖 is odd  
{1,2,3}   if 𝑖 is even
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        𝑆𝜎(𝑥𝑖
′) = {

{1,3,4,5,6}   if 𝑖 is odd  
{1,2,3,4,5}   if 𝑖 is even

  

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑦𝑖) = {
{1,5}   if 𝑖 is odd  
{3,5}   if 𝑖 is even

   

For 𝑖 ∈ {1,2,… , 𝑛}, 𝑆𝜎(𝑧𝑖) = {
{1,4}   if 𝑖 is odd  
{3,6}   if 𝑖 is even

 

Therefore 𝜎 is an AVD proper edge-coloring of 𝑅𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6. 

Case 2. If 𝒏 is odd 

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑒𝑖) = 𝜎(𝑒𝑖
′) = 𝜎(𝑒𝑖

′′) = {
1   if 𝑖 is odd  
3   if 𝑖 𝑖s even

  

𝜎(𝑒𝑛) = 𝜎(𝑒𝑛
′ ) = 𝜎(𝑒𝑛

′′) = 2,  

 For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(𝑓𝑖) = {
4   if  𝑖 is odd  
2   if  𝑖 is even

   

𝜎(𝑓𝑛) = 4,  

For 𝑖 ∈ {1,2,… , 𝑛},  𝜎(𝑔𝑖) = 5,   

For 𝑖 ∈ {1,2,… , 𝑛 − 1},  𝜎(ℎ𝑖) = {
4   if 𝑖 is odd  
6   if 𝑖 is even

   

𝜎(ℎ𝑛) = 6.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree. 

The induced vertex-color sets are:  

𝑆𝜎(𝑥1) = {1,2,4}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1},  𝑆𝜎(𝑥𝑖) = {
{1,2,3}   if 𝑖 is even  
{1,3,4}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛) = {2,3,4}  

𝑆𝜎(𝑥1
′) = {1,2,4,5,6}  

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑥𝑖
′) = {

{1,2,3,4,5}   if 𝑖 is even  
{1,3,4,5,6}   if 𝑖 is odd    

  

𝑆𝜎(𝑥𝑛
′ ) = {2,3,4,5,6}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {
{1,5}   if 𝑖 is odd  
{3,5}   if 𝑖 is even

   

𝑆𝜎(𝑦𝑛) = {2,5}  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝑆𝜎(𝑧𝑖) = {
{1,4}   if 𝑖 is odd  
{3,6}   if 𝑖 is even

 

𝑆𝜎(𝑧𝑛) = {2,6}  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑅𝑊𝑃𝑛.  Hence,  𝜒𝑎𝑠
′ (𝑅𝑊𝑃𝑛) = 6. 
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3. AVD Proper Edge-chromatic Index of Polygonal Snake Graph 

In this section, we investigate AVD proper edge-coloring of Polygonal snake graph only. A graph is 

obtained from a path 𝑃𝑚 with vertex set 𝑥1, 𝑥2, … , 𝑥𝑚 by joining all consecutive vertices by path 𝑃𝑛 with 

vertex set 𝑦1, 𝑦2, … , 𝑦𝑛 in such a way that merging 𝑦1 with 𝑥𝑖 and 𝑦𝑛 with 𝑥𝑖+1, 𝑖 ∈ {1,2,… , 𝑛 − 1} and so 

on. Then 𝑃𝑚(𝑆𝑛),  ∀ 𝑚, 𝑛 is called as polygonal snake graph. [8] 

Theorem 3.1. 𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5, 𝑓𝑜𝑟 𝑚 ≥ 3, 𝑛 ≥ 5.   

Proof.  Let 𝑃𝑚: 𝑥1𝑥2…𝑥𝑚, For 𝑛 ≥ 5, 𝑃𝑛: 𝑦1𝑦2…𝑦𝑛 be attached to an edge 𝑥𝑖𝑥𝑖+1, 𝑖 ∈ {1,3,… ,𝑚 − 1}, 𝑚 is 

even, where 𝑥𝑖 = 𝑦1,  𝑥𝑖+1 = 𝑦𝑛 and 𝑃𝑛
′: 𝑦1

′𝑦2
′ …𝑦𝑛

′  be attached to an edge 𝑥𝑖𝑥𝑖+1, 𝑖 ∈ {2,4,… ,𝑚 − 1}, 𝑚 is 

odd, where 𝑥𝑖 = 𝑦1
′ , 𝑥𝑖+1 = 𝑦𝑛

′  to form 𝑃𝑚(𝑆𝑛). In 𝑃𝑚(𝑆𝑛),  for 𝑖 ∈ {1,2,… ,𝑚 − 1}, let 𝑒𝑖 = 𝑥𝑖𝑥𝑖+1. For 𝑖 ∈

{1,2,… , 𝑛 − 1}, 𝑓𝑖 = 𝑦𝑖𝑦𝑖+1, 𝑓𝑖
′ = 𝑦𝑖

′𝑦𝑖+1
′ .  

For 𝑚 ≥ 3, 𝑛 ≥ 5, since ∆(𝑃𝑚(𝑆𝑛)) = 4, by observation 1.1. 𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) ≥ 5. To show 𝜒𝑎𝑠

′ (𝑃𝑚(𝑆𝑛)) ≤ 5. 

we consider five cases and in each case, we first define 𝜎 ∶ 𝐸(𝑃𝑚(𝑆𝑛)) → {1,2,3,4,5} as follows: 

Case 1: For  𝒏 ≡ 𝟓 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

                                                   𝜎(𝑓𝑖
′) = {

2   if 𝑖 ≡ 1 (mod 3)
3   if 𝑖 ≡ 2 (mod 3)
1   if 𝑖 ≡ 0 (mod 3)

   

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)
{2,3}   if 𝑖 ≡ 0 (mod 3)

{1,3}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑦𝑖
′) = {

{2,3}   if 𝑖 ≡ 2 (mod 3)
{1,3}   if 𝑖 ≡ 0 (mod 3)
{1,2}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥1) = {1,3},  

For 𝑖 ∈ {2,3,… ,𝑚 − 1}, 𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)

  

 𝑆𝜎(𝑥𝑚) =

{
  
 

  
 
{2,4}  if  𝑚 ≡ 3 (mod 6)

{1,5}  if  𝑚 ≡ 4 (mod 6)
{2,3}  if  𝑚 ≡ 5 (mod 6)
{1,4}  if  𝑚 ≡ 0 (mod 6)
{2,5}  if  𝑚 ≡ 1 (mod 6)
{1,3}  if  𝑚 ≡ 2 (mod 6)
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Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 2: For  𝒏 ≡ 𝟎 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 1}, 𝜎(𝑓𝑖) = 𝜎(𝑓𝑖
′) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 1}, 𝑆𝜎(𝑦𝑖) = 𝑆𝜎(𝑦𝑖
′) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)

{2,3}   if 𝑖 ≡ 0 (mod 3)
{1,3}   if 𝑖 ≡ 1 (mod 3)

   

𝑆𝜎(𝑥1) = {1,3},  

For 𝑖 ∈ {2,3,… ,𝑚 − 1},  𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)

{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)
{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑥𝑚) = {

{2,4}   if 𝑚 ≡ 0 (mod 3)
{2,5}   if 𝑚 ≡ 1 (mod 3)

{2,3}   if 𝑚 ≡ 2 (mod 3)
  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 3: For  𝒏 ≡ 𝟏 (𝐦𝐨𝐝 𝟔) 

For 𝑖 ∈ {1,2,… ,𝑚 − 1}, 𝜎(𝑒𝑖) = {

3   if 𝑖 ≡ 1 (mod 3)
4   if 𝑖 ≡ 2 (mod 3)
5   if 𝑖 ≡ 0 (mod 3)

  

For 𝑖 ∈ {1,2,… , 𝑛 − 4}, 𝜎(𝑓𝑖) = 𝜎(𝑓𝑖
′) = {

1   if 𝑖 ≡ 1 (mod 3)
2   if 𝑖 ≡ 2 (mod 3)
3   if 𝑖 ≡ 0 (mod 3)

  

𝜎(𝑓𝑛−3) = 𝜎(𝑓𝑛−3
′ ) = 4, 𝜎(𝑓𝑛−2) = 𝜎(𝑓𝑛−2

′ ) = 1, 𝜎(𝑓𝑛−1) = 𝜎(𝑓𝑛−1
′ ) = 2.  

Therefore 𝜎 is a proper edge-coloring. It remains to show that 𝜎 is an AVD proper edge-coloring. We 

compare the sets of colors of adjacent vertices of the same degree.  

The induced vertex-color sets are: 

For 𝑖 ∈ {2,3,… , 𝑛 − 4}, 𝑆𝜎(𝑦𝑖) = 𝑆𝜎(𝑦𝑖
′) = {

{1,2}   if 𝑖 ≡ 2 (mod 3)
{2,3}   if 𝑖 ≡ 0 (mod 3)
{1,3}   if 𝑖 ≡ 1 (mod 3)

  

𝑆𝜎(𝑦𝑛−3) = 𝑆𝜎(𝑦𝑛−3
′ ) = {3,4}, 𝑆𝜎(𝑦𝑛−2) = 𝑆𝜎(𝑦𝑛−2

′ ) = {1,4}, 𝑆𝜎(𝑦𝑛−1) = 𝑆𝜎(𝑦𝑛−1
′ ) = {1,2}  

𝑆𝜎(𝑥1) = {1,3},  



41 

 

J. Naveen  / IKJM/ 3(2)  (2021) 27-42 

For 𝑖 ∈ {2,3,… ,𝑚 − 1},  𝑆𝜎(𝑥𝑖) = {

{1,2,3,4}   if 𝑖 ≡ 2 (mod 3)
{1,2,4,5}   if 𝑖 ≡ 0 (mod 3)

{1,2,3,5}   if 𝑖 ≡ 1 (mod 3)
  

𝑆𝜎(𝑥𝑚) = {

{2,4}   if 𝑚 ≡ 0 (mod 3)
{2,5}   if 𝑚 ≡ 1 (mod 3)
{2,3}   if 𝑚 ≡ 2 (mod 3)

  

Therefore 𝜎 is an AVD proper edge-coloring of 𝑃𝑚(𝑆𝑛).  Hence,  𝜒𝑎𝑠
′ (𝑃𝑚(𝑆𝑛)) = 5. 

Case 4: For  𝒏 ≡ 𝟐 (𝐦𝐨𝐝 𝟔)  

Proof is similar to case 1. 𝑛 ≡ 5 (mod 6) 

Case 5: For  𝒏 ≡ 𝟑 (𝐦𝐨𝐝 𝟔) 

Proof is similar to case 2. 𝑛 ≡ 0 (mod 6) 

Case 6: For  𝒏 ≡ 𝟒 (𝐦𝐨𝐝 𝟔) 

Proof is similar to case 3. 𝑛 ≡ 1 (mod 6) 

4. Conclusion  

In this paper, I investigate the AVD proper edge-chromatic index of Anti-prism, sunflower graph, double 

sunflower graph, triangular winged prism and rectangular winged prism. And I also investigate AVD 

Proper edge-chromatic index of Polygonal snake graph. The investigation of analogous results for 

different graphs and different operation of above families of graphs are still open. 
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Abstract − In the historical development of Riesz spaces, we can trace the history of ordered 

vector spaces to the International Mathematical Congress in Bologna in 1928. Studies related 

with 𝑓 −Algebras for the Dedekind complete ordered vector space defined in Riesz spaces were 

initiated by Nakano and their current definition was made by Amemiya, Birkhoff and Pierce.The 

revival of 𝑓 −algebras, which had a tendency to slow down for a period of time, emerged as a 

result of Pagter's doctoral thesis [9] and the examination of Alkansas lecture notes by 

Luxemburg. The concepts of homomorphism, isomorphism, orthomorphism and 

biorthomorphism in Riesz spaces are defined by Zaanen, Huijsmans, Boulabiar, Buskes and Triki. 

Algebraic structure of biorthomorphisms defined on Riesz space examined by [8]. 𝑓-Algebra on 

𝑂𝑟𝑡ℎ(𝑋, 𝑋) were studied by [8] and [6]. [6] demonstrated that biorthomorphisms space have an 

𝑓 −algebraic structure with the help of the product defined as (𝑇1 ∗e 𝑇2)(𝑥, 𝑦) = 𝑇1(𝑥, 𝑇2(𝑒, 𝑦)) 

for 𝑒 ∈ 𝑋+, ∀𝑥, 𝑦 ∈ 𝑋 and 𝑇1, 𝑇2 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). [8] showed that if 𝑋 are semiprime Dedekind 

complete 𝑓 −algebras, 𝑂𝑟𝑡ℎ(𝑋) is an ordered ideal in biorthomorphisms. [6] developed an 

alternative proof for this situation. If 𝑋 Archimedean Riesz space, 𝑂𝑟𝑡ℎ(𝑋) is an 𝑓 −algebra 

according to compound operation with unit element. [11] showed that if 𝑋 is a semiprime 

𝑓 −algebra, it is a 𝑑 −algebra. In this study, we investigated embedding orthomorphism in 

biorthomorphisms when 𝑋 is uniformly complete 𝑑 −algebra. 

Subject Classification (2020): 06B05, 06B10. 

1. Introduction 

In this section, we gave some definitions about Riesz space and Riesz algebra.  

Definition 1. Let 𝑋 is a set different from empty. If relation ≤ defined on 𝑋 satisfy the following 

properties, relation  ≤  is called the (partial) order relation, the pair (𝑋, ≤) is called the (partial) ordered 

set. For ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 

i.  𝑥 ≤ 𝑥 for ∀𝑥 ∈ 𝑋.                                                    

ii. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, 𝑥 = 𝑦. 

iii. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 , 𝑥 ≤ 𝑧 [1]. 
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Definition 2. Let (𝑋, ≤) is an ordered vector space. If every finite subset different from empty has a 

supremum, 𝑋 is called a Riesz space (or a vector lattice). Supremum of {𝑥, 𝑦} is demonstrated with 𝑥 ∨ 𝑦 

in classic Riesz space as notation [1]. 

 

Definition 3. Let 𝑋 is an Riesz space. If 𝑛𝑥 ≤ 𝑦 ⟹ 𝑥 = 0 is satisfy for ∀𝑛 ∈ ℕ where 𝑥, 𝑦 ∈ 𝑋+, 𝑋 is called 

Archimedean Riesz space [1]. 

 

Definition 4. A Riesz space is called Dedekind complete if every non-empty upper bound (bottom 

bounded) subset has a supremum (infimum) [1]. 

 

Definition 5. Let 𝑋 is an Riesz space. If 𝑋 is an associative algebra and  𝑥𝑦 ∈ 𝑋+ for ∀𝑥, 𝑦 ∈ 𝑋+, 𝑋 is called 

Riesz algebra (or ordered lattice algebra) [1]. 

 

Definition 6. Let 𝑋 is an Riesz algebra. If 𝑥 ∙ 𝑥 = 𝑥2 ∈ 𝑋+for ∀𝑥 ∈ 𝑋, 𝑋 is called positive square or 𝑋 have 

the positive square property. 

 

Definition 7. Let 𝑋 is an Riesz algebra. If 𝑐𝑥 ∧ 𝑦 = 𝑥𝑐 ∧ 𝑦 = 0 is satisfy for ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ∧ 𝑦 = 0 and ∀𝑐 ∈

𝑋+, 𝑋 is called 𝑓 −algebra [4]. 

 

Definition 8. Let 𝑋 is an Riesz algebra. If 𝑥𝑦 = 0 is satisfy for ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ∧ 𝑦 = 0, 𝑋 is called almost 

𝑓 −algebra [5]. 

 

Definition 9. Let 𝑋 is an Riesz algebra. If 𝑐𝑥 ∧ 𝑐𝑦 = 𝑥𝑐 ∧ 𝑦𝑐 = 0 is satisfy for ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ∧ y = 0 and  

∀c ∈ 𝑋+, 𝑋 is called 𝑑 −algebra [12]. 

 

For more information about 𝑑 −algebra, [3] can be given as reference. 

 

Definition 10. Let 𝑋 is an Riesz algebra. If 𝑥 = 0 when 𝑥𝑘 = 0 for 𝑥 ∈ 𝑋 and ∃𝑘 ∈ ℕ, 𝑋 is called semi 

prime [1]. 

 

Theorem 1. If 𝑋 is a semiprime 𝑓 −algebra, the following statements are are equivalent to each other. 

i. 𝑋 is a 𝑓 −algebra. 

ii. 𝑋 is a 𝑑 −algebra. 

iii. 𝑋 is an almost 𝑓 −algebra [11]. 

 

Definition 11. If the operator 𝑇 transforms every ordered bounded subset of 𝑋 to an ordered bounded 

subset of 𝑌, where 𝑋 and 𝑌 are ordered bounded vector spaces, transformation 𝑇 is called an ordered 

bounded operator. The set of all ordered bounded operators is denoted by 𝐿𝑏(𝑋, 𝑌)  [1].  

 

[13] can be examined about biliner operators. 

 

Definition 12. Let 𝑋 is an Riesz space. If 𝑔 ∈ 𝑆 for |𝑔| ≤ |𝑓| where 𝑆 ⊆ 𝑋, 𝑔 ∈ 𝑋 and 𝑓 ∈ 𝑆, 𝑆 is called solid 

[1]. 
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Definition 13. Let 𝑋 is an Riesz space and 𝑌 ⊆ 𝑋. If 𝑌 is a solid linear subspace, 𝑌 is called ideal in  𝑋. 

 

If 𝐴 and 𝐵 are ideals in 𝑌, 𝐴 ∩ 𝐵 and 𝐴 + 𝐵 are ideals in 𝑌. 𝐴 ∩ 𝐵 is an ideal in 𝑌 because of 𝐴 ∩ 𝐵 ⊆ 𝑌 for 

𝐴 ⊆ 𝑌 and 𝐵 ⊆ 𝑌. 𝐴 + 𝐵 = {𝐴 ∪ 𝐵: 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ∈ 𝑌} is an ideal in  𝑌 because of 𝐴 + 𝐵 ⊆ 𝐴 ∪ 𝐵 ⊆

𝑌[1]. 

 

Definition 14. Let 𝑋 is an Riesz space and 𝑌 is an ideal of 𝑋.If any subset of 𝑌 has a supremum in 𝑋 and 

this supremum is an element of 𝑌, in other words, if 𝑓 ∈ 𝑌 is satisfied when 𝑍 ⊆ 𝑌 and 𝑓 = 𝑠𝑢𝑝𝑍, then 

the ideal 𝑌 is called band in 𝑋 [14]. 

 

Definition 15. Let 𝑋 is an Riesz space and 𝑇: 𝑋 → 𝑋 is an linear operator. If 𝑇(𝐵) ⊆ 𝐵 for ∀𝐵 ⊆ 𝑋, in other 

words if operator T leaves all bands of 𝑋 unchanged, 𝑇  is called band preserving operator [1]. 

 

Definition 16. Let 𝑋 an 𝑌 are two Riesz spaces and 𝑇: 𝑋 → 𝑌 is an linear operator. For ∀𝑥, 𝑦 ∈ 𝑋, if 

operator 𝑇 is satisfy 𝑇(𝑥 ∨ 𝑦) = 𝑇𝑥 ∨ 𝑇𝑦,  operator 𝑇 is called Riesz homomorphism [1]. 

 

Definition 17. A band preserving ordered bounded operator is called an orthomorphism. So, let 𝑋 is a 

Riesz space and 𝑇: 𝑋 → 𝑋 is an bounded operator. In 𝑋, 𝑇𝑥 ⊥ 𝑦 is provided when 𝑥 ⊥ 𝑦. Also, if the 

orthomorphism 𝑇 is positive at the same time, 𝑇 is called a positive orthomorphism. In other words, 𝑇 

is a positive orthomorphism if and only if 𝑥 ∧ 𝑦 = 0 then 𝑇𝑥 ∧ 𝑦 = 0 on 𝑋. The set of all orthomorphisms 

on 𝑋 is denoted by 𝑂𝑟𝑡ℎ(𝑋) [1]. 

 

Definition 18. Let 𝑋 is an Archimedean Riesz space. If bilinear transformation 𝑇: 𝑋 × 𝑋 → 𝑋 is an 

orthomorphism in each component of 𝑋, 𝑇 is called biorthomorphism. In other words, if 𝑇(𝑥, . ), 𝑇(. , 𝑥) ∈

𝑂𝑟𝑡ℎ(𝑋) for ∀𝑥 ∈ 𝑋, bilinear transformation 𝑇: 𝑋 × 𝑋 → 𝑋 is called biorthomorphism on 𝑋. The set of all 

biorthomorphism on 𝑋 is denoted by 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

 

Note. 𝜌: 𝑂𝑟𝑡ℎ(𝑋) →  𝑂𝑟𝑡ℎ(𝑋, 𝑋) defined with 𝜌(𝑇)(𝑥, 𝑦) = 𝑇(𝑥𝑦) = 𝑇(𝑥)𝑦 is one-to-one Riesz 

homomorphism for ∀𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋) and (𝑥, 𝑦) ∈ 𝑋 × 𝑋 [8].  

𝜌: (𝑂𝑟𝑡ℎ(𝑋), 𝑋 × 𝑋) → 𝑂𝑟𝑡ℎ(𝑋, 𝑋) 

(𝑇, (𝑥, 𝑦)) → 𝜌(𝑇)(𝑥, 𝑦) = 𝑇(𝑥𝑦) = 𝑇(𝑥)𝑦. 

 

Notation. 𝐾(𝑇) = {𝑥 ∈ 𝑋: 𝑇(𝑥, 𝑥) = 0} for ∀𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋) [6]. 

 

Lemma 1. Let 𝑋 is an Archimedean Riesz space and 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋).  

𝐾(𝑇) = {𝑥 ∈ 𝑋: 𝑇(𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝑋}. 

Specially, 𝐾(𝑇) is an ordered ideal in 𝑋 [6]. 

 

Lemma 2. Let 𝑋 is an Archimedean Riesz space and 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). If 𝑥 ∈ 𝑋, 𝑇(𝑥, 𝑥) = 0 ⟺  𝑇(𝑥, 𝑥) ∈

𝐾(𝑇) [6]. 

 

Proposition 1. 

i. If 𝑋 is a semiprime 𝑓 −algebra, 𝑂𝑟𝑡ℎ(𝑋) is Riesz space in 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

ii. If 𝑋 is a semiprime Dedekind complete 𝑓 −algebra, 𝑂𝑟𝑡ℎ(𝑋) is an ordered ideal in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) [8]. 
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Theorem 2. Let 𝑋 is a semiprime Dedekind complete 𝑓 −algebra. 𝜌(𝑂𝑟𝑡ℎ(𝑋)) is an ordered ideal in 

𝑂𝑟𝑡ℎ(𝑋, 𝑋) [2].  

2. Embedding Orthomorphisms in Biorthomorphisms  

Let 𝑋 is a semiprime 𝑓 −algebra. Specially, 𝑥𝑇(𝑦) = 𝑇(𝑥𝑦) = 𝑦𝑇(𝑥) is provided for ∀𝑥, 𝑦 ∈ 𝑋 and 𝑇 ∈

𝑂𝑟𝑡ℎ(𝑋) from 𝜌: 𝑂𝑟𝑡ℎ(𝑋) → 𝑂𝑟𝑡ℎ(𝑋), 𝜌(𝜋)(𝑥, 𝑦) = 𝜋(𝑥𝑦) = 𝜋(𝑥)𝑦 for ∀𝜋 ∈ 𝑂𝑟𝑡ℎ(𝑋) and (𝑥, 𝑦) ∈

𝑋 × 𝑋. If transformation �̂�: 𝑋 × 𝑋 → 𝑋 is satisfy �̂�(𝑥, 𝑦) = 𝑇(𝑥𝑦) = 𝑇(𝑥)𝑦, �̂� is called biorthomorphism. 

Therefore, if 𝜌(𝑇)(𝑥, 𝑦) = �̂�(𝑥, 𝑦),𝜌(𝑇) = �̂�. Transformation 𝜌: 𝑂𝑟𝑡ℎ(𝑋) →  𝑂𝑟𝑡ℎ(𝑋, 𝑋) is an one-to-one 

Riesz homomorphism [8]. So, 𝑂𝑟𝑡ℎ(𝑋) as Riesz subspace is embedded in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) under 

transformation 𝜌. Then, 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋) determined with �̂� ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

 

Theorem 3. If 𝑋 Riesz space is uniformly complete, 𝑂𝑟𝑡ℎ(𝑋, 𝑋) is uniformly complete [6]. 

 

2.1.  Embedding Orthomorphisms in Biorthomorphisms when 𝑿 is Uniformly Complete 

Semiprime 𝒇 −Algebra 
 

Let 𝑋 is an uniformly complete semiprime 𝑓 −algebra and 𝑋⊙ = {𝑥𝑦 ∶ 𝑥, 𝑦 ∈ 𝑋}. Then the set 𝑋⊙ is a 

Riesz subspace of 𝑋 with positive cone {𝑥𝑥 = 𝑥2: 𝑥 ∈ 𝑋} [7]. 

 

Theorem 4. Let 𝑋 is an uniformly complete semiprime 𝑓 −algebra and transformation 𝑇: 𝑋 × 𝑋 → 𝑋. 𝑇 

is a (positive) biorthomorphism on 𝑋 ⇔ There is only one positive biorthomorphism 𝑇⊙: 𝑋⊙ → 𝑋 

satisfying property 𝑇(𝑥, 𝑦) = 𝑇⊙(𝑥𝑦) for ∀𝑥, 𝑦 ∈ 𝑋 [6]. 

 

Proof. ⟹ Let 𝑇 is a biorthomorphism on 𝑋. Let positive biorthomorphism 𝑇⊙: 𝑋⊙ → 𝑋 is satisfy 

property 𝑇(𝑥, 𝑦) = 𝑇⊙(𝑥𝑦) for ∀𝑥, 𝑦 ∈ 𝑋. Let us now show that there is only one biorthomorphism. Let 

𝑇1
⊙ ve 𝑇2

⊙ are two biorthomorphisms satisfying 𝑇(𝑥, 𝑦) = 𝑇⊙(𝑥𝑦) on 𝑋 for ∀𝑥, 𝑦 ∈ 𝑋. 𝑇1
⊙(𝑥𝑦) =

𝑇1(𝑥, 𝑦) = 𝑇1(𝑥𝑦) is provided for transformation 𝑇1
⊙: 𝑋⊙ → 𝑋. Similarly, 𝑇2

⊙(𝑥𝑦) = 𝑇2(𝑥, 𝑦) = 𝑇2(𝑥𝑦) 

is provided for 𝑇2
⊙: 𝑋⊙ → 𝑋. If 𝑇1(𝑥𝑦) = 𝑇2(𝑥𝑦), 𝑇1 = 𝑇2. Then 𝑇1

⊙ = 𝑇2
⊙. 

⟸ If 𝑇 is a positive biorthomorphism on 𝑋, 𝑇 is called orthosymmetric Riesz bimorphism. 

Transformation ⊙: 𝑋 × 𝑋 → 𝑋 defined with ⊙ (𝑥, 𝑦) = 𝑥𝑦 is orthosymmetric Riesz bimorphism, (𝑋⊙,⊙

) is a Riesz space and square of 𝑋 [7]. Therefore, there is an only Riesz homomorphism 𝑇⊙: 𝑋⊙ → 𝑋 

defined with 𝑇(𝑥, 𝑦) = 𝑇⊙(𝑥𝑦) for ∀𝑥, 𝑦 ∈ 𝑋. Moreover 𝑇⊙ is an orthomorphism. Indeed, let |𝑥| ∧ |𝑣| =

0 for 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑋⊙. 𝑇(𝑥, 𝑣) =0 from 𝑇 orthosymmetric. On the other hand, there are 𝑦, 𝑧 ∈ 𝑋 

satisfying property 𝑣 = 𝑦𝑧 from definition  𝑋⊙ for 𝑣 ∈ 𝑋⊙.From 𝜌(𝜋)(𝑥, 𝑦) = 𝜋(𝑥𝑦) = 𝜋(𝑥)𝑦 for ∀𝜋 ∈

𝑂𝑟𝑡ℎ(𝑋) and (𝑥, 𝑦) ∈ 𝑋 × 𝑋, then 𝑥𝑇(𝑦, 𝑧) = 𝑇(𝑥𝑦, 𝑧) = 𝑦𝑇(𝑥, 𝑧) = 𝑇(𝑥, 𝑦𝑧) = 𝑇(𝑥, 𝑣) = 0 for 𝑇 ∈

𝑂𝑟𝑡ℎ(𝑋, 𝑋). Since 𝑋 is semiprime, 

|𝑥| ∧ |𝑇⊙(𝑣)| = |𝑥| ∧ |𝑇⊙(𝑦𝑧)| = |𝑥| ∧ |𝑇(𝑦, 𝑧)| = 0. 

This demonstrated that operator 𝑇⊙ is a positive orthomorphism. 

 

Conclusion 1. Let 𝑋 is Dedekind complete semiprime 𝑓 −algebra. 𝑂𝑟𝑡ℎ(𝑋) is an ordered ideal of 

𝑂𝑟𝑡ℎ(𝑋, 𝑋) [6]. 
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Proof.  Since 𝑂𝑟𝑡ℎ(𝑋) is a Riesz subspace of 𝑂𝑟𝑡ℎ(𝑋, 𝑋), it is sufficient to prove the theorem to show that 

𝑂𝑟𝑡ℎ(𝑋) is a solid in 𝑂𝑟𝑡ℎ(𝑋, 𝑋). For this let 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). By definition of solid, let 0 ≤ 𝑇 ≤ 𝑓 for 𝑓 ∈

𝑂𝑟𝑡ℎ(𝑋). Here we have to show that 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋). Since 𝑋 is uniformly complement, there is an only 

positive orthomorphism 𝑇⊙: 𝑋⊙ → 𝑋 satisfying 𝑇(𝑥, 𝑦) = 𝑇⊙(𝑥𝑦) for ∀𝑥, 𝑦 ∈ 𝑋. From here,  

0 ≤ 𝑇⊙(𝑥2) = 𝑇⊙(𝑥𝑥) = 𝑇(𝑥, 𝑥) ≤ 𝑓(𝑥2) 

is provided. In other words, 0 ≤ 𝑇⊙(𝑣) ≤ 𝑓(𝑣) is provided for ∀ 0 ≤ 𝑣 = 𝑥2 ∈ 𝑋⊙. The operator 𝑇⊙ has 

an extension to a positive operator that satisfies the property 0 ≤ 𝑇⊙ ≤ 𝑓, which we can denote again 

with 𝑇⊙. From here, 𝑇⊙ ∈ 𝑂𝑟𝑡ℎ(𝑋) and 𝑇⊙̂ = 𝑇 is obtained. Consequently, 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋) is found. This 

proves that 𝑂𝑟𝑡ℎ(𝑋) is a solid in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) and therefore an ordered ideal. 

 

2.2.  Embedding Orthomorphism in Biorthomorphisms when 𝑿 is Uniformly Complete 

Semiprime 𝒇 −Algebra with Weak Ordered Unit 
 

Theorem 5. If 𝑋 is uniformly complete semiprime 𝑓 −algebra with weak ordered unit, 𝑂𝑟𝑡ℎ(𝑋) is an 

ordered ideal in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) [6]. 

 

Proof. 𝑂𝑟𝑡ℎ(𝑋, 𝑋) is an uniformly complement semiprime 𝑓 −algebra. Let 𝑒 ∈ 𝑋 is an positive weak ordered 

unit. (𝑂𝑟𝑡ℎ(𝑋, 𝑋) ,∗𝑒) is an semiprime 𝑓 −algebra [6]. Let us show that 𝑂𝑟𝑡ℎ(𝑋) is a ring ideal in 

(𝑂𝑟𝑡ℎ(𝑋, 𝑋) ,∗𝑒). Let 𝑓 ∈ 𝑂𝑟𝑡ℎ(𝑋) and 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). From here, (𝑓 ∗𝑒 𝑇)(𝑥, 𝑦) = 𝑓(𝑥, 𝑇(𝑒, 𝑦)) =

𝑓(𝑥𝑇(𝑒, 𝑦)) = 𝑥𝑓(𝑇(𝑒, 𝑦)) = 𝑥(𝑓o𝑇(𝑒, . ))(𝑦) = 𝑓o𝑇(𝑒, . )̂ (𝑥, 𝑦) is provided from 𝑥𝑓(𝑦) = 𝑓(𝑥𝑦) = 𝑦𝑓(𝑥) 

for 𝑓o𝑇(𝑒, . ) ∈ 𝑂𝑟𝑡ℎ(𝑋) and ∀𝑥, 𝑦 ∈ 𝑋. Then, 𝑓 ∗𝑒 𝑇 = 𝑓𝑜𝑇(𝑒, . )̂ ∈ 𝑂𝑟𝑡ℎ(𝑋). This shows that 𝑂𝑟𝑡ℎ(𝑋) 

is a ring ideal in 𝑂𝑟𝑡ℎ(𝑋, 𝑋). On the other hand, since 𝑂𝑟𝑡ℎ(𝑋) is an uniformly complete 𝑓 −algebra 

with unit element, 𝑂𝑟𝑡ℎ(𝑋) is square root closed. At the same time, ring ideal 𝑂𝑟𝑡ℎ(𝑋) is an ordered 

ideal. From this, it is concluded that 𝑂𝑟𝑡ℎ(𝑋) is an ordered ideal in 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

 

2.3.  Embedding Orthomorphism in Biorthomorphisms when 𝑿 is Uniformly Complete 

𝒅 −Algebra 
 

In this section, we defined the subspace 𝑋𝑑 = {𝑐𝑥 ∧ 𝑐𝑦: 𝑥 ∧ 𝑦 = 0, 𝑐 ∈ 𝑋+, 𝑥, 𝑦 ∈ 𝑋} of 𝑋, which is an 

𝑑 −algebra. Following conclusion is obtained from Theorem 1. 

 

Conclusion 2. Let 𝑋 is an uniformly complete 𝑑 −algebra. For 𝑐 ∈ 𝑋+, 𝑥, 𝑦 ∈ 𝑋; 

𝐢.  If 𝑦 = 𝑥, 𝑋𝑑 = 𝑋⊙. 

𝐢𝐢. If 𝑦 = 𝑥 = 𝑐 then set 𝑋𝑑 is a Riesz subspace of space 𝑋 with positive cone {𝑐𝑐 = 𝑐2: 𝑐 ∈ 𝑋}. 

 

Proof.  

𝐢.   𝑋𝑑 = {𝑐𝑥 ∧ 𝑐𝑦 ∶ 𝑥 ∧ 𝑦 = 0, 𝑐 ∈ 𝑋+, 𝑥, 𝑦 ∈ 𝑋} 

           = {𝑐𝑥 ∧ 𝑐𝑥 ∶ 𝑥 ∧ 𝑥 = 0, 𝑐 ∈ 𝑋+, 𝑥 ∈ 𝑋} (𝑦 = 𝑥) 

           = {𝑐𝑥 ∶ 𝑐 ∈ 𝑋+, 𝑥 ∈ 𝑋} 

From here,  𝑋𝑑 = 𝑋⊙ is provided. 

𝐢𝐢.  𝑋𝑑 = {𝑐𝑥 ∧ 𝑐𝑦 ∶ 𝑥 ∧ 𝑦 = 0, 𝑐 ∈ 𝑋+, 𝑥, 𝑦 ∈ 𝑋} 

            = {𝑐𝑐 ∧ 𝑐𝑐 ∶ 𝑐 ∧ 𝑐 = 0, 𝑐 ∈ 𝑋+} (𝑦 = 𝑥 = 𝑐) 
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            = {𝑐2 ∶  𝑐 ∈ 𝑋+} 

From here, 𝑋𝑑 is a Riesz subspace of 𝑋 with positive cone {𝑐𝑐 = 𝑐2: 𝑐 ∈ 𝑋}. 

 

Conclusion 3. Let 𝑋 is uniformly complete 𝑑 −algebra, 𝑇: 𝑋 × 𝑋 → 𝑋 is an transformation and 𝑇 is an 

biorthomorphism on 𝑋. For ∀𝑥, 𝑦 ∈ 𝑋 and 𝑐 ∈ 𝑋+; 

𝐢. If 𝑦 = 𝑥, there is an only positive biorthomorphism 𝑇𝑑: 𝑋𝑑 → 𝑋 satisfying property 𝑇(𝑐, 𝑥) = 𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦). 

𝐢𝐢. If there is an only biorthomorphism 𝑇𝑑: 𝑋𝑑 → 𝑋 satisfying property 𝑇(𝑐, 𝑥) = 𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦) for 𝑦 = 𝑥 , 𝑇 

is a positive biorthomorphism on 𝑋. 

𝐢𝐢𝐢. If 𝑦 = 𝑥 for ∀𝑥, 𝑦 ∈ 𝑋 and 𝑐 ∈ 𝑋+, 𝑇⊙ = 𝑇𝑑. 

 

Proof. 

𝐢. Let 𝑦 = 𝑥, 𝑇1
𝑑 and 𝑇2

𝑑 are two biorthomorphisms satisfying transformation 𝑇𝑑: 𝑋𝑑 → 𝑋. 

𝑇1
𝑑(𝑐𝑥 ∧ 𝑐𝑦) = 𝑇1

𝑑(𝑐𝑥 ∧ 𝑐𝑥) = 𝑇1
𝑑(𝑐𝑥) = 𝑇1(𝑐, 𝑥) 

𝑇2
𝑑(𝑐𝑥 ∧ 𝑐𝑦) = 𝑇2

𝑑(𝑐𝑥 ∧ 𝑐𝑥) = 𝑇2
𝑑(𝑐𝑥) = 𝑇2(𝑐, 𝑥) 

𝑇1
𝑑 = 𝑇2

𝑑 for 𝑇1
𝑑(𝑐𝑥) = 𝑇2

𝑑(𝑐𝑥) 

𝐢𝐢. Since 𝑋 is semiprime 𝑓 −algebra, 𝑋 is 𝑑 −algebra. In that case, proof is similar from Theorem 4. If 𝑇 is a 

biorthomorphism on 𝑋, then 𝑇 is an orthosymmetric Riesz bimorphism. In other words, if 𝑥 ˄ 𝑦 =  0 on 𝑋 for 

∀𝑐 ∈ 𝑋+, 𝑇(𝑐, 𝑥) ˄ 𝑇(𝑐, 𝑦)  = 0. If 𝑦 = 𝑥, 𝑇: 𝑋 × 𝑋 → 𝑋 defined with 𝑇(𝑐, 𝑥) = 𝑐𝑥 is an orthosymmetric 

Riesz bimorphism. In addition, 𝑋𝑑 for 𝑦 = 𝑥 = 𝑐 is Riesz space and 𝑋𝑑 is square of 𝑋.  

Therefore, there is an only Riesz homomorphism 𝑇𝑑: 𝑋𝑑 → 𝑋 defined with 𝑇(𝑐, 𝑥) = 𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦) for ∀𝑥, 𝑦 ∈

𝑋 and 𝑐 ∈ 𝑋+. Moreover 𝑇𝑑 is an orthomorphism. Indeed, let |𝑛| ∧ |𝑣| = 0 for 𝑛 ∈ 𝑋 and 𝑣 ∈ 𝑋𝑑. Since 𝑇 is 

orthosymmetric, 𝑇(𝑛, 𝑣) =0. On the other hand, there are 𝑥, 𝑦 ∈ 𝑋 and 𝑐 ∈ 𝑋+ satisfying property 𝑣 = 𝑐𝑥 ∧

𝑐𝑦 from definition  𝑋𝑑 for 𝑣 ∈ 𝑋𝑑. From [7] and ∀𝑐 ∈ 𝑋+ for 𝑦 = 𝑥, 𝑛𝑇(𝑐, 𝑥) = 𝑇(𝑛𝑐, 𝑥) = 𝑐𝑇(𝑛, 𝑥) =

𝑇(𝑛, 𝑐𝑥) = 𝑇(𝑛, 𝑐𝑥 ∧ 𝑐𝑦) = 0 is provided for 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). Since 𝑋 is semiprime for 𝑦 = 𝑥, 

|𝑛| ∧ |𝑇𝑑(𝑣)| = |𝑛| ∧ |𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦)| = |𝑛| ∧ |𝑇𝑑(𝑐𝑥)| = |𝑛| ∧ |𝑇(𝑐, 𝑥)| = 0 

is obtained. This showed that operator 𝑇𝑑 is a positive orthomorphism. 

𝐢𝐢𝐢. For 𝑦 = 𝑥, 

𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦) = 𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑥) = 𝑇𝑑(𝑐𝑥) = 𝑇(𝑐, 𝑥) 

𝑇⊙(𝑐𝑥) = 𝑇(𝑐, 𝑥) 

𝑇𝑑 = 𝑇⊙ from 𝑇𝑑(𝑐𝑥) = 𝑇⊙(𝑐𝑥).   

 

Conclusion 4. Let 𝑋 is a Dedekind complete 𝑑 −algebra. 𝑂𝑟𝑡ℎ(𝑋) is an ordered ideal of 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

 

Proof. It suffices to show that 𝑂𝑟𝑡ℎ(𝑋) is a solid in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) since 𝑂𝑟𝑡ℎ(𝑋) is a Riesz subspace of 

𝑂𝑟𝑡ℎ(𝑋, 𝑋), as in the case of 𝑋 being a Dedekind complete semiprime 𝑓 −algebra [8]. Let 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋, 𝑋). 

By definition of solid, 0 ≤ 𝑇 ≤ 𝑓 for 𝑓 ∈ 𝑂𝑟𝑡ℎ(𝑋). We have to show that 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋). Since 𝑋 is uniformly 

complete 𝑑 −algebra, there is an only positive orthomorphism 𝑇𝑑: 𝑋𝑑 → 𝑋 satisfying property 𝑇(𝑐, 𝑥) =

𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦) for ∀𝑥, 𝑦 ∈ 𝑋 and ∀𝑐 ∈ 𝑋+. From here for  𝑦 = 𝑥 = 𝑐, 

0 ≤ 𝑇𝑑(𝑐𝑥 ∧ 𝑐𝑦) = 𝑇𝑑(𝑐𝑐 ∧ 𝑐𝑐) = 𝑇𝑑(𝑐2) = 𝑇(𝑐, 𝑐) ≤ 𝑇(𝑐2) ≤ 𝑓(𝑐2) 
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is provided. In other words, 0 ≤ 𝑇𝑑(𝑣) ≤ 𝑓(𝑣) for ∀ 0 ≤ 𝑣 = 𝑐2 ∈ 𝑋𝑑. The operator 𝑇𝑑 has the extension to 

a positive operator, again denoted by 𝑇𝑑, which satisfies the property 0 ≤ 𝑇𝑑 ≤ 𝑓. From here, 𝑇𝑑 ∈ 𝑂𝑟𝑡ℎ(𝑋) 

and 𝑇�̂� = 𝑇 is obtained. Consequently, 𝑇 ∈ 𝑂𝑟𝑡ℎ(𝑋). This proves that 𝑂𝑟𝑡ℎ(𝑋) is a solid in 𝑂𝑟𝑡ℎ(𝑋, 𝑋) and 

therefore an ordered ideal. 
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