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Abstract

An edge e = uv of graph G = (V,E) is said to be edge-vertex dominate vertices u and v, as
well as all vertices adjacent to u and v. A set S⊆ E is a double edge-vertex dominating set
if every vertex of V is edge-vertex dominated by at least two edges of S. The minimum
cardinality of a double edge-vertex dominating set of G is the double edge-vertex domination
number and is denoted by γdev(G). In this paper, we present results for middle graphs of path
and cycle and some splitting graphs of path and cycle on double edge-vertex domination
numbers.

1. Introduction

The ”domination” was first used by Oystein Ore [1]. After that, studies on domination increased rapidly. The first textbook
on dominance is published in 1998 [2]. There are lots of studies on domination but small number of them on edge-vertex
domination.
Double edge-vertex domination is a quite new concept of domination. It was introduced in 2020. We studied on double
edge-vertex domination of some basic graph classes, double edge-vertex domination of corona pruduct and double edge-vertex
domination of cartesian product our previous studies [3, 4]. In this paper, we study on double edge-vertex domination of
middle and splitting graphs of paths and cycle.
Let G = (V,E) be a simple graph. The set N(v) = {v ∈V |uv ∈ E} is open neighborhood and N[v] = N(v)∪N(u) is closed
neigboorhood of v ∈V . For any edge e ∈ E, the open edge neighborhood N(e) of e is the set of edges adjacent to e [5].
For S⊆V of vertices in a graph G = (V,E) is called a dominating set if every vertex v ∈V is either an element of S or adjacent
to an element of S. The minimum cardinality of a dominating set of G is called the domination number and is denoted by γ(G)
[2].
A subset X of E is called an edge dominating set of G if every edge not in X is adjacent to some edge in X . The edge
domination number γ

′
(G) of G is the minimum cardinality taken over all edge dominating sets of G [6].

A vertex v of G = (V,E) is said to be vertex-edge dominate every edge incident to v, as well as every edge adjacent to these
incident edges. A set S⊆V is a vertex-edge dominating set, if every edge of E is vertex-edge dominated by at least one vertex
of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number and is denoted by
γve(G) [7].
An edge e = uv of graph G = (V,E) is said to be edge-vertex dominate vertices u and v, as well as all vertices adjacent to u and
v. A set S⊆ E is an edge-vertex dominating set, if every vertex of V is edge-vertex dominated by at least an edge of S. The
minimum cardinality of an edge-vertex dominating set of G is the edge-vertex domination number and is denoted by γev(G)
[8].
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Kılıç)

https://orcid.org//0000-0003-3117-2553
https://orcid.org/0000-0002-1074-5589
https://orcid.org/0000-0002-1074-5589


222 Fundamental Journal of Mathematics and Applications

A subset D⊆V is a double vertex-edge dominating set of G if every edge of E is vertex-edge dominated by at least two vertices
of D. The double vertex-edge domination number of G, is the minumum cardinality of a double vertex-edge dominating set of
G and is denoted by γdve(G) [9].
An edge e = uv of graph G = (V,E) is said to be edge-vertex dominate vertices u and v, as well as all vertices adjacent to u
and v. A set S⊆ E is a double edge-vertex dominating set, if every vertex of V is edge-vertex dominated by at least two edges
of S. The minimum cardinality of a double edge-vertex dominating set of G is the double edge-vertex domination number and
is denoted by γdev(G) [3].
For each vertex v of a graph G, take a new vertex v

′
and join v

′
to all vertices of G adjacent to v. The graph S(G) thus obtained

is called the splitting graph of G [10].
The middle graph of a graph G is a graph whose vertex set is V (G)∪E(G), and two vertices are adjacent if they are adjacent
edges of G or one is a vertex and other is an edge incident with it, and it is denoted by M(G) [11].

2. Double edge-vertex domination on middle graph of Pn and Cn

In this section, we study on double edge- domination on middle graphs of Pn and Cn. We found results on double edge-vertex
domination number of this graph class and we prove that.

v1 v5v2 v3 v4

e1 e2 e3 e4

e5

Figure 2.1: M(P3)

v1 v2 v3 v4 v5 v6 v7

e1 e2 e4 e5 e6e3

e7 e8

Figure 2.2: M(P4)

v1 v2 v3 v4 v5 v6 v7 v8 v9

e1 e2 e4 e5 e6 e8e3 e7

e9 e10 e11

Figure 2.3: M(P5)

v1 v2 v3 v4 v5 v6 v7

v8v9v10v11v12V13v14

e1 e2 e3 e4 e5 e6

e8e9e10e11e12e13

e14

e15 e16 e17

e19e20

e7

e18

Figure 2.4: M(C6)
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Figure 2.5: M(C7)
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e7

e9e10e11e12e13e14
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e16

e17 e18 e19

e22e23

e24

e21

v8

e8

e20

Figure 2.6: M(C8)

Theorem 2.1. For a middle graph of path with order n≥ 3

γdev(M(Pn)) =

{ 2n
3 +1, i f n≡ 0(mod3)⌈ 2n+2

3

⌉
, otherwise

Proof. Let’s prove this theorem by mathematical induction.

Case 1: For n = 3k, n≡ 0(mod3), result is true for n = 3.

γdev(M(P3)) =
2.3
3

+1 = 3.

We choose e2, e3, e5 edges in Figure 2.1. Our assumption asserts that,

γdev(M(P3k)) =
2.3k

3
+1.

Our goal is show that for n = 3(k+1) = 3k+3, double edge-vertex domination number of middle graph of path is,

γdev(M(P3k+3)) =
2.(3k+3)

3
+1.

We added 6 vertices to 3k, from Figure 2.1 we must choose at least two edges. Hence,

γdev(M(P3k+3))≥ γdev(M(P3k)+2
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=
2.3k

3
+1+2 =

2.3k
3

+2+1 =
2.3k

3
+

2
1
+1 =

2.3k
3

+
6
3
+1 =

2.3k+6
3

+1 =
2.3k+2.3

3
+1 =

2.(3k+3)
3

+1.

Case 2: For n = 3k+1, n≡ 1(mod3), result is true for n = 4.

γdev(M(P4)) =

⌈
2.4+2

3

⌉
= 4.

We choose e2, e5, e7, e8 edges in Figure 2.2. Our assumption asserts that,

γdev(M(P3k+1)) =

⌈
2.(3k+1)+2

3

⌉
.

We want to prove that for n = 3(k+1)+1 = 3k+4, double edge-vertex domination number of middle graph of path is,

γdev(M(P3k+4)) =

⌈
2.(3k+4)+2

3

⌉
.

We added 6 vertices to 3k+1, from Figure 2.2 we must choose at least two edges. Hence,

γdev(M(P3k+4))≥ γdev(M(P3k+1)+2

=

⌈
2.(3k+1)+2

3

⌉
+2 =

⌈
2.(3k+1)+2

3

⌉
+

6
3
≥
⌈

2.(3k+1)+2
3

+
6
3

⌉

=

⌈
2.(3k+1)+2+6

3

⌉
=

⌈
2.(3k+1)+6+2

3

⌉
=

⌈
2.(3k+1)+2.3+2

3

⌉
=

⌈
2.(3k+1+3)+2

3

⌉
=

⌈
2.(3k+4)+2

3

⌉
.

Case 3: For n = 3k+2, n≡ 1(mod3), result is true for n = 5.

γdev(M(P5)) =

⌈
2.5+2

3

⌉
= 4.

We choose e2, e7, e9, e11 edges in Figure 2.3. Our assumption asserts that,

γdev(M(P3k+2)) =

⌈
2.(3k+2)+2

3

⌉
.

We want to prove that for n = 3(k+2)+1 = 3k+5, double edge-vertex domination number of middle graph of path is,

γdev(M(P3k+5)) =

⌈
2.(3k+5)+2

3

⌉
.

We added 6 vertices to 3k+2, from Figure 2.3 we must choose at least two edges. Hence,

γdev(M(P3k+5))≥ γdev(M(P3k+2)+2

=

⌈
2.(3k+2)+2

3

⌉
+2 =

⌈
2.(3k+2)+2

3

⌉
+

6
3
≥
⌈

2.(3k+2)+2
3

+
6
3

⌉

=

⌈
2.(3k+2)+2+6

3

⌉
=

⌈
2.(3k+2)+6+2

3

⌉
=

⌈
2.(3k+2)+2.3+2

3

⌉
=

⌈
2.(3k+2+3)+2

3

⌉
=

⌈
2.(3k+5)+2

3

⌉
.
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Theorem 2.2. For a middle graph of cycle with order n≥ 6

γdev(M(Cn)) =

{ 2n
3 , i f n≡ 0(mod3)⌈ 2n+2
3

⌉
−1, otherwise

Proof. Let’s prove this theorem by mathematical induction.

Case 1: For n = 3k, n≡ 0(mod3), result is true for n = 6.

γdev(M(C6)) =
2.6
3

= 4.

We choose e15, e16, e18, e19 edges in Figure 2.4. Our assumption asserts that,

γdev(M(C3k)) =
2.3k

3
.

We want to prove that for n = 3(k+1) = 3k+3, double edge-vertex domination number of middle graph of cycle is,

γdev(M(C3k+3)) =
2.(3k+3)

3
.

We added 6 vertices to 3k, from Figure 2.4 we must choose at least two edges. Hence,

γdev(M(C3k+3))≥ γdev(M(C3k) =
2.(3k)

3
+2 =

2.(3k)
3

+
6
3

=
2.(3k)+6

3
=

2.(3k)+2.3
3

=
2.(3k+3)

3
.

Case 2: For n = 3k+1, n≡ 1(mod3), result is true for n = 7.

γdev(M(C7) =

⌈
2.7+2

3

⌉
−1 =

⌈
14+2

3

⌉
−1 =

⌈
16
3

⌉
−1 = 6−1 = 5.

We choose e15, e16, e18, e19, e21 edges in Figure 2.5. Our assumption asserts that,

γdev(M(C3k+1)) =

⌈
2.(3k+1)+2

3

⌉
−1.

We want to prove that for n = 3(k+1)+1 = 3k+4, double edge-vertex domination number of middle graph of cycle is,

γdev(M(C3k+4)) =

⌈
2.(3k+4)+2

3

⌉
−1.

We added 6 vertices to 3k+1, from Figure 2.5 we must choose at least two edges. Hence,

γdev(M(C3k+4))≥ γdev(M(C3k12)+2

=

⌈
2.(3k+1)+2

3

⌉
−1+2 =

⌈
2.(3k+1)+2

3

⌉
+2−1 =

⌈
2.(3k+1)+2

3

⌉
+

6
3
≥
⌈

2.(3k+1)+2
3

+
6
3

⌉
−1

=

⌈
2.(3k+1)+2+6

3

⌉
−1 =

⌈
2.(3k+1)+6+2

3

⌉
−1 =

⌈
2.(3k+1)+2.3+2

3

⌉
−1 =

⌈
2.(3k+1+3)+2

3

⌉
−1

=

⌈
2.(3k+4)+2

3

⌉
−1.

Case 3: For n = 3k+2, n≡ 2(mod3), result is true for n = 8.

γdev(M(C8) =

⌈
2.8+2

3

⌉
−1 =

⌈
16+2

3

⌉
−1 =

⌈
18
3

⌉
−1 = 6−1 = 5.
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We choose e17, e18, e20, e22, e23 edges in Figure 2.6. Our assumption asserts that,

γdev(M(C3k+2)) =

⌈
2.(3k+2)+2

3

⌉
−1.

We want to prove that for n = 3(k+2)+1 = 3k+5, double edge-vertex domination number of middle graph of cycle is,

γdev(M(C3k+5)) =

⌈
2.(3k+5)+2

3

⌉
−1.

We added 6 vertices to 3k+2, from Figure 2.6 we must choose at least two edges. Hence,

γdev(M(C3k+5))≥ γdev(M(C3k+2)+2 =

⌈
2.(3k+2)+2

3

⌉
−1+2

=

⌈
2.(3k+2)+2

3

⌉
+2−1 =

⌈
2.(3k+2)+2

3

⌉
+

6
3
≥
⌈

2.(3k+2)+2
3

+
6
3

⌉
−1

=

⌈
2.(3k+2)+2+6

3

⌉
−1 =

⌈
2.(3k+2)+6+2

3

⌉
−1 =

⌈
2.(3k+2)+2.3+2

3

⌉
−1 =

⌈
2.(3k+2+3)+2

3

⌉
−1

=

⌈
2.(3k+5)+2

3

⌉
−1.

3. Double edge-vertex domination on splitting graph of Pn and Cn

In this section, we study on splitting graph of Pn and Cn. We found results on double edge-vertex domination number of this
graph class and we prove that.

Theorem 3.1. For a splitting graph of path with order n≥ 4

γdev(S(Pn)) =

{ ⌈ 2n
4

⌉
, i f n≡ 3(mod4)⌈ 2n

4

⌉
+1, otherwise

v1 v2 v3 v4

v5v6v7v8

e1 e2 e3

e4 e5 e7e6 e8 e9

Figure 3.1: S(P4)
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v1 v2 v3 v4 v5

v8v9v10

e1 e2 e3

e5 e6 e8e7 e9

v6v7

e4

e10e11 e12

Figure 3.2: S(P5)

v1 v2 v3 v4 v5

v10v11v12

e1 e2 e3

e6 e7 e9e8 e10

v8v9

e11e12 e13e14 e15

e4 e5

v7

v6

Figure 3.3: S(P6)

v1 v2 v3 v4 v5

v12v13v14

e1 e2 e3

e8 e9 e11e10 e12

v10v11

e13e14 e15e16 e17

e5

v9

v6
e6 e7

v7

v8

e18 e19

Figure 3.4: S(P7)

v1

v2v3

v4 v2

v3

e1 e2

e3

e4

e5

e6e7

e8

e9

Figure 3.5: S(C3)

e1
v1 v2
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v3
v7 v4

v5
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e3

e4

e5

e6

e7

e8
e9

e10

e11

e12

Figure 3.6: S(C4)
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Proof. We begin the selection edges of Pn, because degree of the edge of Pn are the most.

Case 1: For n = 4k, n≡ 0(mod4), result is true for n = 4.

γdev(S(P4)) =

⌈
2.4
4

⌉
+1 = 3.

We choose e1, e2, e3 edges in Figure 3.1. Our assumption asserts that,

γdev(S(P4k)) =

⌈
2.4k

4

⌉
+1.

We want tho prove that for n = 4(k+1) = 4k+4, double edge-vertex domination number of splitting graph of path is,

γdev(S(P4k+4)) =

⌈
2.(4k+4)

4

⌉
+1.

We added 8 vertices to 4k, from Figure 3.1 we must choose at least two edges. Hence,

γdev(S(P4k+4))≥ γdev(S(P4k)+2

=

⌈
2.4k

4

⌉
+1+2 =

⌈
2.4k

4

⌉
+2+1 =

⌈
2.4k

4

⌉
+

8
4
+1≥

⌈
2.4k

4
+

8
4

⌉
+1

=

⌈
2.4k+2.4

4

⌉
+1 =

⌈
2.4k+4

4

⌉
+1.

Case 2: For n = 4k+1, n≡ 1(mod4), result is true for n = 5.

γdev(S(P5)) =

⌈
2.5
4

⌉
+1 = 3+1 = 4.

We choose e1, e2, e3, e4 edges in Figure 3.2. Our assumption asserts that,

γdev(S(P4k+1)) =

⌈
2.(4k+1)

4

⌉
+1.

We want the prove that for n = 4(k+1)+1 = 4k+5, double edge-vertex domination number of splitting graph of path is,

γdev(S(P4k+5)) =

⌈
2.(4k+5)

4

⌉
+1

We added 8 vertices to 4k+1, from Figure 3.2 we must choose at least two edges. Hence,

γdev(S(P4k+5))≥ γdev(S(P4k+1)+2

=

⌈
2.(4k+1)

4

⌉
+1+2 =

⌈
2.(4k+1)

4

⌉
+2+1 =

⌈
2.(4k+1)

4

⌉
+

8
4
+1≥

⌈
2.(4k+1)

4
+

8
4

⌉
+1

=

⌈
2.(4k+1)+8

4

⌉
+1 =

⌈
2.(4k+1)+2.4

4

⌉
+1 =

⌈
2.(4k+1+4)

4

⌉
+1 =

⌈
2.(4k+5)

4

⌉
+1.

Case 3: For n = 4k+2, n≡ 2(mod4), result is true for n = 6.

γdev(S(P6)) =

⌈
2.6
4

⌉
+1 = 3+1 = 4.

We choose e1, e2, e3, e4, e5 edges in Figure 3.3. Our assumption asserts that,

γdev(S(P4k+2)) =

⌈
2.(4k+2)

4

⌉
+1.
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We want the prove that for n = 4(k+2)+1 = 4k+6, double edge-vertex domination number of splitting graph of path is,

γdev(S(P4k+6)) =

⌈
2.(4k+6)

4

⌉
+1.

We added 8 vertices to 4k+2, from Figure 3.3 we must choose at least two edges. Hence,

γdev(S(P4k+6))≥ γdev(S(P4k+2)+2

=

⌈
2.(4k+2)

4

⌉
+1+2 =

⌈
2.(4k+2)

4

⌉
+2+1 =

⌈
2.(4k+2)

4

⌉
+

8
4
+1≥

⌈
2.(4k+2)

4
+

8
4

⌉
+1

=

⌈
2.(4k+2)+8

4

⌉
+1 =

⌈
2.(4k+2)+2.4

4

⌉
+1 =

⌈
2.(4k+2+4)

4

⌉
+1 =

⌈
2.(4k+6)

4

⌉
+1.

Case 4: For n = 4k+3, n≡ 3(mod4), result is true for n = 7.

γdev(S(P7)) =

⌈
2.7
4

⌉
= 4. (3.1)

We choose e1, e2, e3, e5, e6, e7 edges in Figure 3.4. Our assumption asserts that,

γdev(S(P4k+3)) =

⌈
2.(4k+3)

4

⌉
.

We want the prove that for n = 4(k+3)+1 = 4k+7, double edge-vertex domination number of splitting graph of path is,

γdev(S(P4k+7)) =

⌈
2.(4k+7)

4

⌉
.

We added 8 vertices to 4k+3, from (3.1) we must choose at least two edges. Hence,

γdev(S(P4k+7))≥ γdev(S(P4k+3)+2

=

⌈
2.(4k+3)

4

⌉
+2 =

⌈
2.(4k+3)

4

⌉
+2 =

⌈
2.(4k+3)

4

⌉
+

8
4
≥
⌈

2.(4k+3)
4

+
8
4

⌉

=

⌈
2.(4k+3)+8

4

⌉
=

⌈
2.(4k+3)+2.4

4

⌉
=

⌈
2.(4k+3+4)

4

⌉
=

⌈
2.(4k+7)

4

⌉
.

Theorem 3.2. For a splitting graph of cycle with order n≥ 3

γdev(S(Cn)) =
⌈n

2

⌉
.

Proof. We begin the selection edges of Cn, because degree of the edge of Cn are the most.

Case 1: For n = 2k+1, result is true for n = 3.

γdev(S(C3)) =

⌈
3
2

⌉
= 2.

We choose e1, e2 edges in Figure 3.5. Our assumption asserts that,

γdev(S(C2k+1)) =

⌈
2k+1

2

⌉
.

We want the prove that for n = 2(k+1)+1 = 2k+3, double edge-vertex domination number of splitting graph of cycle is,

γdev(M(C2k+3)) =

⌈
2k+3

2

⌉
.
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We added 2 vertices to 2k+1, therefore we must choose at least one edge. Hence,

γdev(M(C2k+3))≥ γdev(M(C2k+1)+1

=

⌈
2k+1

2

⌉
+1 =

⌈
2k+1

2

⌉
+

2
2
≥
⌈

2k+1
2

+
2
2

⌉
=

⌈
2k+1+2

2

⌉

=

⌈
2k+3

2

⌉
.

Case 2: For n = 2k, result is true for n = 4.

γdev(M(C4)) =

⌈
4
2

⌉
= 2.

We choose e1, e3 edges in Figure 3.6. Our assumption asserts that,

γdev(M(C2k)) =

⌈
2k
2

⌉
.

We want the prove that for n = 2(k+1) = 2k+2, double edge-vertex domination number of splitting graph of cycle is,

γdev(M(C2k+2)) =

⌈
2k+2

2

⌉
.

We added 2 vertices to 2k, therefore we must choose at least one edge. Hence,

γdev(M(C2k+2))≥ γdev(M(C2k)+1

=

⌈
2k
2

⌉
+1 =

⌈
2k
2

⌉
+

2
2
=

⌈
2k
2
+

2
2

⌉
=

⌈
2k+2

2

⌉
.

4. Conclusion

Graphs, can be used to model communication networks. We can represent any network with graphs. Each center in the
structure of the network is represented as a vertex, and each connection as an edge in graph. For axample, a telecommunication
system, GPS/Google maps, connections of social media and many more can be represented as a graph. It is important to
ensure persistence of communication in networks. In graph theory, various metrics are used to strengthen the stability of
communication networks. Domination is one of the most studied topics of them. Domination has wide range of applications.
For instance, to compute a wireless network with minimal power, to decide the locations where the radio stations in the region
will be located so that the radio messages can be broadcast to all places in the region, to define the route of shuttle buses.
There are lots of studies on domination concept. We have also worked on topic in our previous studies of double edge-vertex
domination. In this study we find double edge-vertex domination number of middle and splitting graph of Pn and Cn. In future
study we plan to generalize the results on middle and splitting graphs of any given graphs.
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Abstract

It has been very important to understand the change of multivariable systems to make
predictions accordingly. The goal of supervised machine learning is to build a model of
changing classes of observations depending on various variables and to make predictions
about the coming situations. Due to the fact that sports are followed by the whole world
modelling sports events and studies about predicting the results of future matches have
gained importance. In this study, match statistics of the teams in the Turkey Super League
were used, and it was examined how successfully the outcome of the match was predicted
using a decision tree, random forest, k-nearest neighbor, naive Bayes, support vector
machine. According to the tests done in Turkey Super League, the support vector machine
performs the best.

1. Introduction

Nowadays, machine learning has been one of the fastest growing fields of computer science with the data growth and large
scaled applications. In general, machine learning is unfoldment of the hidden structure in the data. Machine learning is the field
of research devoted to the formal study of learning systems. This is a highly interdisciplinary field which borrows and builds
upon ideas from statistics, computer science, engineering, cognitive science, optimization theory and many other disciplines of
science and mathematics [1].

There are several applications for Machine Learning (ML), the most significant of which is data mining [2]. Machine learning
is examined under three main headings: Supervised machine learning, unsupervised machine learning, reinforcement machine
learning. Machine learning algorithms differ from each other according to the way to get the required results. Supervised
machine learning has a algorithm that process by matching the outputs and inputs. While the system was being trained,
the outputs and inputs of each sample in data set are given. The problem with supervised machine learning is tackled as
classification problem[3].

The training set given for unsupervised leaning is the unlabeled dataset. Unsupervised learning aims at clustering, probability
density estimation, finding association among features, and dimensionality reduction. In general, an unsupervised algorithm
may simultaneously learn more than one properties listed above, and the results from unsupervised learning could be further
used for supervised learning [3].

Score prediction with machine learning has frequently been the subject of academic studies because of collecting data of
past sport events is easier than other fields with sport being followed by the whole world and the opportunities provided by
technology. Although the most of the studies is about football, basketball, baseball and American football, there are also
studies for different sports. Analyses such as athlete injury risks, ticket sales prediction, success evaluation, score prediction

Email addresses and ORCID numbers: barmaniem@gmail.com, 0000-0002-2857-014X (İ. Barman), idemir@gmail.com, 0000-0002-2734-4116
(İ. Demir)
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are performed. In addition to these, machine learning are utilized for specifying game strategies from sports data and making
selection athlete, trainer, equipment [4].

In modelling sport events, generally supervised machine learning algorithms such as regression models based Poisson, decision
tree, neural network and models completely explained by data are used.

2. Literature

There are many statistical and machine learning studies about modelling sports events. Linear models based on probability
distribution ise used in some of these. Another its part is tackled as a classification problem in form of predicting the match
outcome with machine learning algorithms. Harville [5] has developed one of the first linear models based on past matches data.
He used the model to predict match results. Knorr-Held [6] and Koning [7] developed models based on different statistical
eventuations with match results in the form of win-lose-draw and predicted future match results.

The number of goals scored by teams in a football match are Poisson distributed and Poisson variables of these teams depend
offensive power of one of these teams and defensive power of other team. Maher [8] developed the first Poisson-based
regression model depending the number of goals scored and conceded by the teams in the match and he used for score
prediction in football. Crowder, Dixon et.al. [9] added the time factor to the Poisson-based regression model and used to
predict football match results. After Karlis and Ntzoufras [10, 11] have done a study on score prediction in football, they made
evaluations for outcome estimation per applying the Poisson-based model to water polo.

In Poisson-based models and time series models, outcome estimations based on team strength determined by data based on
goals scored and conceded by the teams in the past matches, and in linear regression model, outcome estimations based directly
on the match results are made. Especially, Poisson-based models and time series models are used often for outcome prediction
in football matches. However factors such as foul, shot, corner, offside point, percentage of passes, possession of the ball,
goal attempt, players morale and the position of the team in the league affect the match results, accordingly these models are
inadequate in outcome estimation. Bayesian network models aim to predict match results by determining the offensive and
defensive strength of teams by considering different factors. Bayesian network models give successful results because of they
also pay regard to the relationships between variables. Rue and Salvesen [12], have used Bayesian linear model for English
Premier League. Baio and Blangiargo [13] brought a Bayesian approach to the Poisson based model and they have established
the score prediction model in football.

In modelling studies in field of sport, when the variable selection based on expert knowledge was made, the ideas that the
models give more successful results have became prominent. Josephs, Fenton et.al. [14]’s study is a good example for this.
Using 2006 FIFA World Cup data, the matches that ended together were extracted, and the winnings of the home team or the
visiting team were estimated using data based machine learning algorithms and Bayesian network based on expert knowledge.
While achieving 60% success with machine learning algorithms, 76.9% success was achieved with Bayesian networks based
on expert knowledge. Thats why Bayesian network has been stated that it is more successful in modelling. Huang [15] modeled
the Tottenhnam Hotspur’s which is Englang Premier League team game between 1995-1997 with Bayesian network. In her
study, while Bayesian networks created with the experts of the subject made prediction with 59% success, the other networks
remained in the range of 40−50%. Similarly, Constantinou et.al [16] developed Bayesian networks model based on expert
knowledge with English Premier League seasonal data. The model has been successful with high accuracy rate. Points that the
teams will collect during the season has been estimated via expert knowledge based Bayesian network model developed in
the study made by Contantinou ve Fenton [17]. It has been established that the model can be used to predict both the season
ranking and the outcome of individual matches. Karabiyik and Yet [18] developed Bayesian network model based on expert
knowledge which called FutBa for Turkey Super League. The model predicts the outcome of past and future matches with an
accuracy of 60−70%.

The use of artificial neural networks in modelling sports events is also quite common. In Purucker [19]’s study, one of the first
examples, the matches belonging to the first eight weeks of the NFL 1994 season were modeled with artificial neural networks
and it was intended to predict the winner of the NFL games. Back-propagation network model predicts with 60.7% accuracy.
Kahn [20] developed artificial neural networks model with data from 2003 NFL season in first 14 week and that model has
achieved 75% success in predicting seasonal averages at 14th week. McCabe and Trevathan [21] modeled rugby matches with
artificial neural networks. Tests were applied out for four different rugby leagues in their study. The model succeeded between
54% and 65%.

Various machine learning algorithms have been used in modelling sport events. Hamadoni [22] used logistic regression and
support vector machine algorithms in NFL for predict which team winning game from 2003 to 2005 seasons. In comparison
made by Hamadoni, support vector machine algorithm has shown a test success rate of 67.08% for 2003, 61.37% for 2004,
65.83% for 2005. Similarly Sierra, Forco et.al. [23] have developed support vector machine model and logistic regression
model to predict the NFL game results. Linear support vector machine algorithm was more successful than logistic regression
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model and other support vector machine models. Smith, Lipscomb et.al. [24] used naive Bayes algorithms to predict which
team wins in MLB (Major League Baseball) and they tested with passed matches data between 1967 and 2006. The model
predicted winners 80% correctly. Hucaljuk ve Rakipovic [25] modeled 96 matches in UEFA Champions League using 30
features with different machine learning algorithms. Models have shown success rate between 60% and 50%. Cao [26]
modeled with NBA data from 2006 to 2010 seasons. Logistic regression made predictions with 67.82% accuracy, support
vector machine made predictions with ½67.22%½ accuracy, multilayer perceptron neural network made predictions with
66.67% accuracy and naive Bayes made predictions with 65.82% accuracy. Yezus [27] modeled English Premier League
ames using 9 features with k-nearest neighbors and random forest algorithms. Models have shown success rate 55.8% and
63.4% respectively. Ulmer and Hernandez [28] also modeled English Premier Leauge. Linear classification model they
developed has achieved 48% success. Support vector machine model predicted with 50% accuracy and random forest model
made predictions with 50% accuracy. Karaoğlu [29] modeled 16 different league with data from 2013-2014 season and
2015-2016 season using machine learning algorithms. The best model performance was 52%. Vaidya, Sanghavi et.al. [30] also
modeled English Premier League using data from 2006 to 2010 seasons with logistic regression, random forest and naive Bayes
algorithms. The models have shown 49.37%, 47.11% and 47.11% success respectively. Soto Valero [31] aimed to assess the
predictive capabilities of four machine learning methods for predicting outcomes in MLB regular season games and he used
k-nearest neighbors, artificial neural network, support vector machine algorithms. As a result of him study, it was revealed that
the classification algorithms make more successful predictions than regression models. The support vector machine model
from four machine learning algorithms was the most successful model by making predictions with approximately 60% accuracy.

In this study decision tree, random forest, k-nearest neighbors, naive Bayes, support vector machine will be used from
supervised machine learning algorithms in the modelling of Turkish Super League. This paper has a unique structure due to
the variety of algorithms used in this study and the lack of modelling studies in Turkey Football League.

3. Method

Each observation used by machine learning algorithms is represented with the same variable set. Variables in the variable set
can have different structures such as categorical, continuous or bivalent. When one of the variables is considered as output and
the others are also considered as inputs, if the label of output variable of the observations is known it is supervised machine
learning method. Supervised machine learning methods are called as classification algorithms because of supervised machine
learning methods works with labeled dataset. The main purpose of supervised machine learning is that build model that can
predict the class values of the test set with training set.

In supervised machine learning, the training data with labeled output variable is processed with machine learning algorithms
and thus a prediction model is created. The model is tested using unlabeled test data and the class labels of observations in test
data is predicted. This process has been shown in Figure 3.1.

Figure 3.1: Supervised machine learning process

In this study, decision tree, random forest, k-nearest neighbor, naive Bayes, support vector machine widely used have been
concentrated.

3.1. Decision tree

Decision tree is one of the commonly used supervised machine learning methods in classification. In this case, its properties
such as simplicity of implementation, understandability, no using parameters, availability for mixed data types, being faster
than other methods plays a role. Despite these positive properties, decision tree algorithm contains some problems. Not
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possible to obtain outputs containing more than one feature, causing changeable results, being sensitive to small alterations,
giving complex output for numerical dataset are some of these problems.

In decision trees, it is aimed to create a tree according to the features of the data in the training set. Decision trees decide
which class new data belongs by determining separation rules based on historical data. It acts on questions and answers and it
creates rules by combining asked questions with answers. It can also be said that the resulting tree is set of rules consisting
of many if-then. When it is decided which variable in the data to start asking question, the related variable creates the root
node of the tree. Starting from the root node, new node are created according to the answers received by asking questions
whose answer in the dataset. Then, each node is split up two node or more. If new question can not be asked after the node are
created, branching is over [32].
As a result of this process, a classification tree as in Table 1 is obtained.

Figure 3.2: Decision tree structure

There are various decision tree algorithms that differ according to the criteria they use. First, Automatic Interaction Detector
(AID) was used in decision tree applications. Then many algorithms were developed. The main ones are CART (Classification
and Regression Trees), CHAID (Chi-Squared Automatic Interaction Detector), Exhaustive CHAID (Chi-Squared Automatic
Interaction Detection), ID3 (Iterative Dichotomiser 3), C4.5, MARS (Multivariate Adaptive Regression Splines), QUEST
(Quick, Unbiased, Efficient Statistical Tree), C5.0, SLIQ (Supervised Learning in Quest), SPRINT (Scalable Parallelizable
Induction of Decision Trees).

3.2. Random forest

In multivariate different data groups, the success of classifier varies. In this situation, it can be efficient to use single classifier
in terms of results. Ensemble algorithms uses sets of classifier together instead of a classifier to resolve the problem. The most
common of these are bagging, boosting and random forest.
Random forest comprises of the union of many decision trees. Trees are formed by drawing independently from each other
with boostrap method. After the trees are voted by one, the winning classifier is chosen. Random forest determines variables to
use in branching by selecting the randomly choosed m pieces from all the data in the data set. m is usually taken as the square
root of the variable number. The advantage of random forest over the bagging algorithm is that it puts randomness into training
stage [33].

Random forest algorithm can be used for purposes such as finding error rate of the algorithm, determining the importance
levels of variable, specifying the outliers and detecting the missing value.
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In random forest, if the original data set does not have a test set of its own, from the original dataset n samples are selected by
the bootstrap method. 2/3 of each sample is used to create tree and the remaining 1/3 is used to calculate the error rate. If
the original data set has its own test set, error rate of this test can also be calculated with the set. The variable that gives the
best information among the randomly selected variables from the training set is used as the branching variable. These are
performed simultaneously and iterated until the most successful tree is obtained. The flow chart of this process is given in
Figure 3.3 below.

Figure 3.3: The random forest flow chart, [34]

3.3. k – nearest neighbor

k-nearest neighbor is a non-parametric, sample based classification algorithm. k-nearest neighbor is predicated on the principle
that samples which are close to each other will be similar. When an sample without a class label is given, a sample space based
on the classifier k created with k-nearest neighbor algorithm is created and if which class is repeated mostly in this sample
space, this observation is assigned that class label. It would be appropriate to visualize it as in Figure 3.3.

Figure 3.4: k-nearest neighbor classification visualization

The chose of k is very important. However there is no optimal k value, its value varies according to the nature of the problem.
The chose of k effects the performance of k-nearest neighbor algorithm. If k is small value, it causes classification error. This
problem can be solved by choosing a greater k. If k is great value, the proportion of classes at a specified distance will decrease



Fundamental Journal of Mathematics and Applications 237

and the instances of other classes will gain the majority. This is also causes a classification error again. It can be solved by
choosing a smaller k [35].

3.4. Naive Bayes algorithms

Naive Bayes networks are the simplest Bayesian networks. Naive Bayes classifier is composed without a cyclical relationship
with only one parent and several children with a strong assumption of independence among child nodes in the context of their
parent.

Accordingly, for example, the naive bayes network for the data set consisting of one output variable and four input variables
should be handled as in the Table 2. This input variables affect the output variable independently of each other.

Figure 3.5: Naive Bayes algorithm network

The naive Bayes is based on Bayes Theorem. As part of the theorem, naive Bayes algorithm makes predictions by calculating
the probabilities of classes with the probabilities obtained from a labeled training set. Bayes Theorem is shown below.

P(Y |X) =
P(X |Y )P(Y )

P(X)

where, Y : Some hypothesis, such that data tuple X belongs to specified class C, X : Some evidence, describe by measure on set
of attributes, P(Y |X): The posterior probability that the hypothesis H holds given the evidence X , P(Y ): Prior probability of H,
independent on X , P(X |Y ): The posterior probability that of X conditioned on H. The algorithm calculates the following two
probabilities and compares them.

R =
P(m|X)

P(n|X)
=

P(m)P(X |m)

P(n)P(X |n)
=

P(m)∏P(X |m)

P(n)∏P(X |n)
.

As a result of comparing these probabilities, predicted class label is the class of higher probability. If R > 1, prediction is
m, otherwise prediction is n. The major advantage of the naive Bayes classifier is its short computational time for training.
In addition, since the model has the form of a product, it can be converted into a sum through the use of logarithms with
significant consequent computational advantages. It does not need any complicated iterative parameter estimation schemes, so
can be applied to large data set. Easy interpretation of knowledge representation. It is also easy to present and understand due
to the interpretation of knowledge representation is easy. It may not be best classifier in any particular application, but it does
well and robust. Otherwise, naive Bayes has some disadvantages. Theoretically, naive Bayes classifier have minimum error
rate comparing to other classifier, but practically it is not always true, because of assumption of class conditional independence
and the lack of available probability data. It has less accurate compare to other classifier [36]-[38].

3.5. Support vector machine

Support vector machines are one of the most powerful supervised machine learning algorithms. In addition, it has many
application fields such as classification, regression, variable selection, detection of outliers. Support vector machine is algorithm
that revolve around the notion of margin and create optimal separating hyperplane according to this. Margin is the distance
between the hyperplane and the closest observation point on any side of the plane. The classifier chooses hyperplane in
accordance the data used to detect optimum margin. It is examined as cases where data is separated completely linear and data
can not be separated linearly [39]. SVM searches for the optimal separating hyperplane that correctly classifies the data as
shown in Figure 3.6.
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Figure 3.6: The optimal seperating hyperplane for linearly seperable data [38]

In real world problem, linearly separated data are not encountered. In this case support vector machine can not use linear
learning and it is extended to learn non-linear decision onto a high dimensional sample space using Kernel functions. The
common Kernel functions are used in support vector machine are linear, polynomial, radial, sigmoid. In case of the data can
not be separated linearly, the support vector machine illustration designed using Kernel functions is shown in Figure 3.7.

Figure 3.7: Illustration of nonlinear support vector mavhine consept [41]

Support vector machine has a sturdy theoretical basis. It requires only examples and is insensitive to the size. Support vector
machine is the best algorithm to classify the members of two classes in the training set. It is less prone to overfilling than other
methods. However, it is computationally expensive and tedious. It learns extremely slow. Its results may be poorly interpreted.
[36, 40]

4. Data management

Modelling Turkey football matches with supervised machine learning algorithms using Turkey Super Lig data and comparison
of prediction success of the models are aimed. The study is carried out in R Studio.

4.1. Data collection

The data is taken from WhoScored.com. Turkey Super Lig 2018-2019 season statistics have been used. There are 612
observations belong to 306 matches played during Turkey Super Lig 2018-2019 season. Each observation consists of 14
variables. These variables are team name and the match results in form of win-lose-draw, home ownership, number of goal,
number of offside, percentage of pass, crossing, ball hawking, number of shot, goal conversion rate, possession of the ball,
number of red-card, number of yellow-card, number of foul.
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4.2. Data arrangement

Choosing the variables to be used in organizing data is very important. It can be explained with two subject. The first one is
the requirement for the model to be simple. Second, using significant variables in the model can show a more meaningful
model performance.

The first thing to look at is the correlation between variables. In consequence of determination of correlation between number of
goal and goal conversion rate with percentage of pass and possession of the ball, goal conversion rate and possession of the ball
variables have left out of analysis. After controlling correlation, choosing the variables should be made. There is various variable
selection method can be used. The methods can be organized into three categories, depending on how they combine the feature
selection search with the construction of the classification model: filter methods, wrapper methods and embedded methods [42].

Forward selection method has been used in the study. Forward selection algorithm works in the way deciding the final model,
starting from empty model, adding each variable. The model involved all variables has been decided. The variables in the
processed data set are given below.

Figure 4.1: Descriptive statistics of the variables
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Dependent variable:
result (0: Lose, 1: Win, 2: Draw)

Independent variables:
team (Teams in Turkey Super Lig 2018-2019 season)
home ownership (0: No, 1: Yes)
goal (The number of goals a team scored in the match )
offside (The number of offside a team has committed in the match)
pass (The pass rate of a team in the match)
crossing (The number of opponents passed by a team player without losing the ball)
hawking (The number of times a team takes the ball from opponent)
shot (The number of shot for a team in a match)
red (The number of red card a team committed in the match)
yellow (The number of yellow card a team committed in the match)
fault (The number of fouls a team has committed in the match)

5. Model building

It is aspired to classify the match results belonged to the teams in form of win/lose/draw through the instrument of other match
statistics. Hence classification algorithms from supervised machine learning algorithms that suitable for the purpose of study
are used. At this stage prediction model will be developed using decision tree, random forest, k-nearest neighbors, naive Bayes,
support vector machine algorithms. Data set consisting of 612 observations is divided into 75% training set and 25% test set to
use in modelling.

5.1. Decision trees algorithms

The variables given in the data management phase have been used in analysis. The CART algorithm from decision tree have
been applied to the data. Because of the dependent variable is categorical, the Gini criterion was chosen as the classification
scale. The tree structure that minimizes the error rates and maximizes the classification success was specified applying 10-fold
cross validation test. As a consequence of the analysis, it is determined that the most important variable affecting the class
variable which is dependent variable is goal. Team and pass variables supervene on goal. When classification success was
controlled, the accuracy rate was found to be 60.1%. Respectively, sensitivity values of the classes are 52.2%, 79.3%, 41.3%
and selectivity values of the classes are 80.7%, 86.6%, 73.8%. These are given in Table 1.

Lose Win Draw
Sensitivity 0.5227 0.7937 0.4130
Selectivity 0.8073 0.8667 0.7383

Table 1: Decision tree sensitivity and selectivity values

5.2. Random forest algorithms

Although the random forest algorithm is onerous, because of data management is done in previous stages, the algorithm has
been simply applied to the data. After the necessary libraries are loaded in R Studio, the codes are written using the parameters
in random forest package to train model. Then the fitting codes is written. When classification success was controlled, the
accuracy rate was found to be 60.1%. Respectively, sensitivity values of the classes are 61.3%, 79%, 34% and selectivity
values of the classes are 75.2%, 87.9%, 78.3%. These are given below in table. The results obtained are given in Table 2.

Lose Win Draw
Sensitivity 0.6136 0.7903 0.3404
Selectivity 0.7523 0.8791 0.7830

Table 2: Random forest sensitivity and selectivity values

5.3. k-nearest neighbors algorithms

The variables given in the data management phase have been used in analysis. As a result of cross validation control, the
optimum value for k is decided to be 7. Right after classification, it is fixed that the accuracy rate of the model is 42.4%.
Respectively, sensitivity values of the classes are 30.6%, 58%, 41.4% ve and selectivity values of the classes are 72.5%, 67.3%,
73.2% These are given below in table. The results obtained are given in Table 3.
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Lose Win Draw
Sensitivity 0.3065 0.5800 0.4146
Selectivity 0.7253 0.6736 0.7321

Table 3: k-nearest neighbors sensitivity and selectivity values

5.4. Naive Bayes algorithms

After data management phase, football data is separated as training set and test set. In the system the data has been classified
with R Studio packages required for naive Bayes algorithm based upon the labeled class data. Then the classes of the unlabeled
observation in test set has been predicted via the naive Bayes model. The classification success is determined as 55.6%.
Respectively, sensitivity values of the classes are 33.3%, 90.7%, 37.9% and selectivity values of the classes are 72.5%, 86.9%,
74.7%. These are given below in Table 4.

Lose Win Draw
Sensitivity 0.3333 0.9074 0.3788
Selectivity 0.7250 0.8687 0.7471

Table 4: Naive bayes sensitivity and selectivity values

5.5. Support vector machine algorithms

The system is modeled with the train data set using support vector machines algorithm. After the modelling of the system is
completed, the basis function of support vector machines is improved in accordance with the model, radial kernel function has
been used. Train and test errors vary related to gamma and cost values used in the function. With the calculations, the best
gamma and cost values were found. The ideal situation would be that there be no training errors and minimal test errors. The
aim is to make both minimums and thus the best classification model will be developed. Support vector machine training was
repeated using best gamma and cost values. The model was accepted and controls were made with the test set. Accuracy rate
was found to be 61.4% when the classification success was monitored(control). Sensitivity rates for lose, win, draw are 49.2%,
86%, 42.4%, and the selectivity rates are 85.6%, 86.5%, 72.5%, respectively. The classification results obtained are shown in
Table 5.

Lose Win Draw
Sensitivity 0.3333 0.9074 0.3788
Selectivity 0.7250 0.8687 0.7471

Table 5: Support vector machine sensitivity and selectivity values

5.6. Model comparison

In this study, we aimed to apply supervised machine learning algorithms to the field of sports and to evaluate the performance
of the models through it. While evaluating the success of the models, accuracy, sensitivity and selectivity measures were used.
The output which we get from these metrics is the complexity matrix. In the complexity matrix, there is a case of comparing
the predicted groups made by a classification algorithm with the real-case groups. A complexity matrix is shown in the table.
TP defines true-positive, TN indicates the true-negative which represents the correct number of classified samples. FP means
false-positive. It shows that the positively predicted samples are in the negative class. FN means false negative and gives the
number of samples that were predicted negatively when in fact in the positive class. Generally, the diagonal of the complexity
matrix gives the number of correctly estimated samples, while the others give the number of incorrectly estimated samples.

Table 6: Confusion matrix
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The accuracy rate used in measuring model success is the ratio of the number of correctly classified samples to the total number
of samples.

Accuracy =
T P+T N

T P+T N +FP+FN
.

Sensitivity is indicated the ratio of the number of correctly classified positive samples to the total number of positive samples.

Sensitivity =
T P

T P+FN
.

The selectivity criterion used to measure the success of the model is explained as the ratio of the number of correctly classified
negative samples to the total number of negative samples.

Selectivity =
T N

T N +FP
.

6. Performance measure

The confusion matrices of the models were given in detail during the model building phase. At this stage, the accuracy rates
are shown in the table below in order to compare the models. As a result of the tests, the best performing model was support
vector machine, while the worst performing was k-nearest neighbor.

Accuracy Rate
Decision tree model 0.6013072
Random forest model 0.6013072
k-Nearest neighbor model 0.4248366
Naive Bayes model 0.5555556
Support Vector Machine Model 0.6143791

Table 7: Performance of classification algorithms

In order to evaluate the models correctly, it is necessary to pay attention to the working area. Football is a sport that affected
by a wide variety of factors. At the same time, according to experts, Turkey Super League teams are not very stable as team
success. Teams that are the leaders of the league may suddenly show low performance and risk falling to lower ranks. In
addition, there are major differences between the top three and the last three of the league. All of these pose a big problem
in predicting the match results. Therefore, 61.4% success in terms of this study is a satisfactory result. Such as the English
Premier League teams which are more stable and more homogeneous structure in themselves can show better model success
within the same scope studies.

7. Results

Machine learning algorithms have diversified in progress of time and have been applied to different fields. Correspondingly,
studies on which of the algorithms are more successful have a great place in literature. Although there are so many studies
on the success of the algorithms, no consensus could be reached on this issue. There may be various reasons of that, but the
main reason is even if a study is not an unique, each study has its idiosyncratic structure. Factors such as the data source used
in the study, the preprocessing method, parameters used in the algorithms form the structure of the study and these affect
the performance of the process. Therefore, it is normal for studies to give different results, assessments should be made by
considering these.

In this study, modelling sport events via classification methods and comparison of the prediction success of the models are
aimed. In line with this purpose, the five of supervised machine learning algorithms are commonly used in literature were
applied. These are decision tree, random forest, k-nearest neighbor, naive Bayes and support vector machine algorithms. As a
result of the test, it has been determined that support vector machines have the best performance with 64% success rate.

Considering this study and experimental studies in the literature, it is not possible to talk about the superiority of any algorithm
over another. However, comparison of the models in solving a problem contributes both of the study and academic literature in
the terms of consequences.
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8. Discussion

The use of machine learning is getting common of sports area. Therefore, a lots of algorithm been developed and improved has
a wide place in literature. Linear models, Poisson-based models, time series models used frequently in the beginning. As a
result of the inadequacy of these models in predicting outcomes, Bayesian networks have gained importance and then Bayesian
networks based on expert knowledge have showed off themselves. Joseph, Fenton et.al. predicted which of the home team and
guest team will win with 2006 FIFA World Cup data’s by removing the draw status from the data’s. In their study while other
supervised machine learning algorithms have shown 60% success, Bayesian networks were 76.9% successful. In this regard
one of studies in Turkey is FutBa Model based on expert knowledge is developed by Karabiyik and Yet in 2019. The model
has estimated with success rates in the range 60−70%. If the studies concentrated on supervised machine learning is viewed,
Hucalijuk and Rakipovic’s study draw attention. They modeled UEFA Champions League games and they made estimation in
the range of 50−60%. Secondly, Yezus used k- nearest neighbor and random forest algorithms in 2014 to predict English
Premier League results. The models have shown 55.8% and 68.4% estimation success. The same year Ulmer and Fernandez
modeled English Premier League in their study. Linear classification model 48%, support vector machines 50%, random forest
50% were successful. Vaidya, Sanghavi et.al. modeled English Premier League for 2006-2010 seasons with logistic regression,
random forest and naive Bayes algorithms. The accuracy of these models was 49.37%, 47.11%, 47.11% respectively. These
are some examples about soccer from literature, nevertheless there is no consensus could be reached on the success of the
models. In this study, sport events were modeled with five supervised machine learning algorithms which are decision tree,
k-nearest neighbor, naive Bayes, support vector machine. After the test, it has been observed that support vector machine with
61.4% have the best performance. Consequently, it is not possible to talk about the superiority of any algorithm over another.
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Curve Couples of Bézier Curves in Euclidean 2−Space
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Abstract

The goal of this paper is to characterize the evolute, involute and parallel curves of a Bezier
curve which is applicable to computer graphics and related subjects. Especially, these curve
couples are investigated at the endpoints. Moreover, the curvatures of these curve couples
are given.

1. Introduction

Geometry of curves is very essential because it has many important applications in many different areas. Therefore, various
curves and surfaces have been studied by many authors for many years. Recently, due to its different structure, Bézier curves
have attracted the attention of many researchers. Bézier curves are introduced firstly by Pierre Bézier in 1968. Bézier curves
are the most important mathematical representations of curves which are applied to computer graphics and related areas.
C. Huygens, who is also known for his studies in optics, investigated the concepts of evolutes and involutes [1]. In classical
differential geometry, the evolute of a regular curve in the Euclidean plane is given by not only the locus of all its centres of the
curvature, but also the envelope of normal lines of the regular curve, namely, the locus of singular loci of parallel curves. On
the other side, the involute of a regular curve is to replace the taut string by a line segment that is tangent to the curve on one
end, while the other end traces out the involute. Two curves are said to be parallel of one another if any curve normal to one is
normal to the other. Kılıçoğlu and Şenyurt studied the involute of the cubic Bézier curve in Euclidean 3−space [2]. In [3], the
evolute-involute curve couples of Bézier curves in Euclidean 3−space are investigated. In this study, curve couples of Bézier
curves are examined in the Euclidean 2− space in which the Bézier curve couples need not to be unit speed and suitable for
giving examples.
The rest part of the paper is given as follows: Section 2 gives some basic notations and definitions for needed throughout the
study. Section 3 gives the Serret-Frenet frame of a planar Bézier curve. Section 4 characterizes evolute curve of a planar Bézier
curve and investigate at end points. Moreover, the Frenet apparatus of this curve couple is given. Section 5 characterizes
involute curve of a planar Bézier curve and investigate at end points. In addition, the Frenet apparatus of this curve couple is
handled. Section 6 constructs the parallel curve of a planar Bézier curve. Especially, the Frenet apparatus of this curve couple
is given. In the final section, we conclude our work and talk about our future works.

2. Preliminaries

A classical Bézier curve of degree m with control points p j is defined as

B(t) =
m

∑
j=0

p jBm
j (t), t ∈ [0,1] (2.1)
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where

Bi,n(t) =
{ n!

(n−i)!i! (1− t)n−it i, if 0≤ i≤ n
0, otherwise

are called the Bernstein basis functions of degree m. The polygon formed by joining the control points p0, p1, ..., pm in the
specified order is called the Bézier control polygon.
If a curve is differentiable at its each point in an open interval, in this case a set of orthogonal unit vectors can be obtained.
And these unit vectors are called Frenet frame. The rates of these frame vectors along the curve define curvatures of the curves.
The set of these vectors and curvatures of a curve, is called Frenet apparatus of the curve.

Definition 2.1. The first derivative B′(t) of a degree-n Bézier curve B(t) is clearly a degree m−1 curve. Such a curve can be
written in Bézier form as

B′(t) = m
m−1

∑
i=0
4piBm−1

i (t)

where4pi = pi+1− pi, i = 0,1, ...,m−1 are the control points of B
′
(t)[4].

Definition 2.2. J : E2→ E2 is a linear transformation which is defined by the following equation

J(P1,P2) = (−P2,P1)[5].

Definition 2.3. Let β : I→ E2 be a non-unit speed planar curve. The Serret-Frenet frame {T (t),N(t)} and curvature κ(t) of
β (t) for ∀t ∈ I are defined by the following equations [5]:

T (t) =
β ′(t)
‖β ′(t)‖

,N(t) =
Jβ ′(t)
‖β ′(t)‖

,κ(t) =
< β ′′(t),Jβ ′(t)>

‖β ′(t)‖3 . (2.2)

Definition 2.4. For a plane regular curve β (t) with κ 6= 0, the central curve

β
∗(t) = β (t)+

1
κ(t)

N(t) (2.3)

where N is the normal of the curve β is called the evolute of β [6].

Definition 2.5. For a plane regular curve β (t) with κ(t) 6= 0 , t ∈ [t1, t2] and a ∈ (t1, t2)

β
∗(t) = β (t)− β ′(t)

‖β ′(t)‖

∫ t

a
‖β ′(w)‖dw (2.4)

is called the involute of β [7].

Definition 2.6. The parallel at an oriented distance c to the left of a regular curve β (t) is defined by the following equation

β
∗(t) = β (t)+ cN(t) (2.5)

[7].

For further information on curve couples see [6]-[8].

From now on, we will say Bézier curve instead of a non-unit speed planar Bézier curve of degree m throughout the paper.

3. The Serret-Frenet frame of a planar Bézier curve

In this section, the Serret-Frenet frame and curvature of a Bézier curve is given.

Theorem 3.1. A Bézier curve with control points p0, p1, ..., pm has the following Serret-Frenet frame {T (t),N(t)} and
curvature κ(t) of Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R are

T (t) =

m−1
∑
j=0

Bm−1
j (t)4p j

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

1
2

, (3.1)

N(t) =

m−1
∑
j=0

Bm−1
j (t)J4p j

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

1
2

(3.2)
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and

κ(t) =
m−1

m

m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

3
2

(3.3)

where4p j = p j+1− p j and42 p j = p j+2−2p j+1 + p j [9].

4. Evolute of a planar Bézier curve

In this section, we characterize evolute curve of a planar Bézier curve and give its curvature. Moreover, we investigate this
curve at t = 0 and t = 1.

Theorem 4.1. The evolute B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R is

B∗(t) =
m

∑
j=0

p jBm
j (t)+

m
m−1

m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >

m−1
∑
j=0

Bm−1
j (t)J4p j

m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >

. (4.1)

Proof. Taking into consideration the equations (2.1), (3.2) and (3.3) in (2.3), it can be proved.

Remark 4.2. The evolute B∗(t) of a Bézier curve which is defined by (2.1) with control points p0, p1, ..., pm is

B∗(0) = p0 +
m

m−1
‖4p0‖2J4p0

<4p1,J4p0 >

at t = 0.

Remark 4.3. The evolute B∗(t) of a Bézier curve which is defined by (2.1) with control points p0, p1, ..., pm is

B∗(1) = pm +
m

m−1
‖4pm−1‖2J4pm−1

<4pm−1,J4pm−2 >

at t = 1.

Theorem 4.4. The curvature of evolute B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R is

κ∗(t) = εκ |
(m2.(m−1)

m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >)3

m3(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

3
2 .(m4(m−1)(m−2)

m−3
∑
j=0

Bm−3
j (t)

m−1
∑

i=0
Bm−1

i (t)<43 p j,J4pi >)

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)−3m7(m−1)2(

m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

3
2

.[(
m−1
∑
j=0

Bm−1
j (t)4x p j)(

m−2
∑

i=0
Bm−2

j (t)42
x pi)+(

m−1
∑
j=0

Bm−1
j (t)4y p j)(

m−2
∑

i=0
Bm−2

j (t)42
y pi)]

.(
m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >)

|

where εκ is the sign of the curvature of the Bézier curve,4x p j = (p j+1)x− (p j)x,4y p j = (p j+1)y− (p j)y,42
x p j = (p j+2)x−

2(p j+1)x +(p j)x and42
y p j = (p j+2)y−2(p j+1)y +(p j)y.

Proof. Taking into consideration the equations (2.2) and (4.1) together, it can be proved.

Example 4.5. For given control points p0 = (0,0), p1 = ( 1
2 ,0), p2 = ( 1

2 ,
1
2 ), we have the following quadratic planar Bézier

curve B(t)

B(t) =
2

∑
j=0

p jB2
j(t) (4.2)

and the evolute of B(t) is given by the following equation

B∗(t) = (
3
2

t2−2t3,1−3t +
9
2

t2−2t3).

The tanget of B(t) at t = 0 is T = (1,0) and the tanget of B∗(t) at t = 0 is T ∗ = (0,1). The tanget of B(t) at t = 1 is T = (0,1)
and the tanget of B∗(t) at t = 1 is T ∗ = (1,0). Therefore, the tangets at the end points are perpendicular.
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Figure 4.1: Bézier curve and the evolute couple are given by black and green color, respectively.

5. Involute of a planar Bézier curve

In this section, we characterize involute curve of a planar Bézier curve and give its curvature. In addition, we give an example.

Theorem 5.1. The involute B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R is

B∗(t) =
m

∑
i=0

piBm
i (t)−

m−1
∑

i=0
4piBm−1

i (t)

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

1
2

∫ t

a
‖m

m−1

∑
i=0
4piBm−1

i (w)‖dw. (5.1)

Proof. Taking into consideration the equations (2.1) and (3.1) in (2.4), it can be proved.

Theorem 5.2. The curvature of involute B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R is

κ∗(t) =
εκ

m
∫ t

a(
m−1
∑

j,i=0
Bm−1

j (w)Bm−1
i (w)<4p j,4pi >)

1
2 dw

where εκ is the sign of the curvature of the Bézier curve.

Proof. Taking into consideration the equations (2.2) and (5.1) together, it can be proved.

Example 5.3. The equation of involute couple of B(t) which is given by (4.2)

B∗(t) = (t− t2

2
− (1− t)[

√
2arcsinh(2t−1)+(4t−2)

√
2t2−2t +1]

4
√

1−2t +2t2
,
t2

2
− t[
√

2arcsinh(2t−1)+(4t−2)
√

2t2−2t +1]
4
√

1−2t +2t2
)

where a = 1
2 .

Figure 5.1: Bézier curve and the involute couple are given by black and green color, respectively.

6. Parallel of a planar Bézier curve

In this section, we characterize parallel curve of a planar Bézier curve and give its curvature. Moreover, we investigate this
curve at t = 0 and t = 1.

Theorem 6.1. The parallel B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for ∀t ∈ R is

B∗(t) =
m

∑
j=0

p jBm
j (t)+

c
m−1
∑
j=0

Bm−1
j (t)J4p j

(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

1
2

(6.1)

where c is a constant.
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Proof. Taking into consideration the equations (2.1) and (3.2) in (2.5), it can be proved.

Remark 6.2. The parallel B∗(t) of a Bézier curve which is defined by (2.1) with control points p0, p1, ..., pm is

B∗(0) = p0 +
cJ4p0

‖4p0‖

at t = 0.

Remark 6.3. The parallel B∗(t) of a Bézier curve which is defined by (2.1) with control points p0, p1, ..., pm is

B∗(1) = pm +
cJ4pm−1

‖4pm−1‖

at t = 1.

Theorem 6.4. The curvature κ∗of parallel curve B∗(t) of a Bézier curve with control points p0, p1, ..., pm defined by (2.1) for
∀t ∈ R is

κ∗(t) =
(m−1)

m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >

m(
m−1
∑

j,i=0
Bm−1

j (t)Bm−1
i (t)<4p j,4pi >)

3
2 − c(m−1)

m−2
∑
j=0

Bm−2
j (t)

m−1
∑

i=0
Bm−1

i (t)<42 p j,J4pi >

.

Proof. Taking into consideration the equations (2.2) and (6.1) together, it can be proved.

Example 6.5. The equation of parallel couple of B(t) which is given by (4.2)

B∗(t) = (t− t2

2
+

t√
1−2t +2t2

,
t2

2
− t√

1−2t +2t2
)

where c =−1.

Figure 6.1: Bézier curve and the parallel couple are given by black and green color, respectively.

7. Conclusion

In this paper evolute, involute and parallel curves of a Bézier curve are characterized and investigated at the beginning and
the ending points. In addition, these curve couples curvatures are obtained. In our future work, we will study the other curve
couples of Bézier curve.
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Abstract

Let G = (V,E) be a graph. The double vertex graph F2(G) of G is the graph whose
vertex set consists of all 2-subsets of V (G) such that two vertices are adjacent in F2(G) if
their symmetric difference is a pair of adjacent vertices in G. The super–connectivity of a
connected graph is the minimum number of vertices whose removal results in a disconnected
graph without an isolated vertex. In this paper, we determine the super–connectivity of the
double vertex graph of the complete bipartite graph Km,n for m≥ 4 where n≥ m+2.

1. Introduction

Throughout this paper, let G be a simple finite graph, where V (G) and E(G) denote the set of vertices and the set of edges,
respectively. A set S⊂V (G) is a vertex–cut of G, if G−S is disconnected or has only one vertex. The neighbourhood of a
vertex v is the set NG(v) = {u ∈V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by degG(v), is the cardinality of NG(v).
Let δ (G) denote the minimum vertex degree in G. Two paths are internally disjoint if they have no common vertex except the
end vertices. A set of paths is called internally disjoint if these paths are pairwise internally disjoint.

The double vertex graph F2(G) of G is the graph whose vertex set consists of all the 2-subsets of V (G) and two vertices are
adjacent in F2(G) if their symmetric difference is a pair of adjacent vertices in G. That is, the vertices {u,v} and {x,y} of
F2(G) are adjacent if and only if |{u,v}∩{x,y}|= 1 with u = x and vy ∈ E(G) (See Fig 1.1 for an example).

The notion of double vertex graph was introduced and studied by Alavi et al. [1]-[3]. The same concept was used by Rudolph
to study the graph isomorphism problem under the name of symmetric power of a graph [4]. Later, Rudolph et al. [5] defined
symmetric kth power of a graph G as a generalization of symmetric power. In 2012, Fabila-Monroy et al. [6] introduced the
notion of k–token graphs, which was a redefinition of symmetric kth powers of graphs. The k–token graph Fk(G) of G (or,
symmetric kth power of a graph G) is the graph whose vertices are all k–subsets of V (G), where two vertices are adjacent if
their symmetric difference is an edge in E(G). Obviously, double vertex graphs correspond to 2–token graphs.

Note that if G is a connected graph, then its double vertex graph is bipartite if and only if G is bipartite. Also note that the
degree of a vertex ω = {x,y} in F2(G) is given by

degF2(G)ω =

{
degG(x)+degG(y), if xy /∈ E(G),

degG(x)+degG(y)−2, if xy ∈ E(G).

Email address and ORCID number: gulnaz.boruzanli@ege.edu.tr, 0000-0002-6733-6321

https://orcid.org/0000-0002-6733-6321
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Figure 1.1: (a) Complete bipartite graph K2,4 (b) Double vertex graph of K2,4

Token graphs have been extensively studied especially in terms of the combinatorial parameters such as connectivity, diameter,
cliques, chromatic number, Hamiltonian paths and Cartesian product (see [7]-[14] and the references therein).

The connectivity, κ(G), of a graph G is the minimum number of vertices whose removal from G results in a disconnected
graph or an isolated vertex. It is an important factor to determine the fault–tolerance of a network. In 1983, Harary introduced
conditional connectivity as a generalization of the classical connectivity concept by imposing some conditions on the remaining
graph. Let G be a connected graph, and let P be a given graph-theoretical property. The conditional connectivity of a graph
G is the size of a minimum vertex–cut S of G (if it exists), where G−S is disconnected and every component of G−S has
the property P [15]. Motivated by this definition, various types of conditional connectivity have been extensively studied
in literature. The case when the condition is that the remaining graph does not have an isolated vertex corresponds to the
super-connectivity notion.

The super–connectivity, κ ′(G), of a graph G is the size of a minimum vertex–cut S such that the resulting graph G−S has
no isolated vertices. If such a vertex–cut exists, it is referred to as a super vertex–cut; otherwise we write κ ′(G) = +∞. The
super–connectivity has been studied for various families of graphs, including circulant graphs [16], hypercubes [17, 18],
product graphs [19]-[21].

Considering the connectivity aspect of token graphs, it is known that if G is a k–connected graph, then F2(G) is (2k− 2)–
connected, where k ≥ 3 [3]. In 2012, Fabila-Monroy et al. [6] presented several families of graphs of order n which are
t–connected and have k–token graphs with connectivity exactly k(t− k+1) whenever k ≤ t. They also conjectured that Fk(G)
is at least k(t− k+1)–connected for all k ≤ t. In 2018, Leaños and Trujillo-Negrete [22] proved that their conjecture is true.
In [23], Leaños and Ndjatchi proved an analogous result for edge connectivity; they showed that if G is t–edge connected
for t ≥ k, then Fk(G) is at least k(t− k+1)–edge connected. Later Fabila-Monroy et al. [24] proved that if G is a tree, then
the connectivity of Fk(G) is equal to the minimum degree of Fk(G). Although the connectivity of k–token graphs has been
studied in several papers, super–connectivity of this class has not yet been investigated. Recently, we fully determined the
super–connectivity of Johnson graphs, which corresponds to a special case of k–token graphs [25]. More precisely, if G is
the complete graph on n vertices, then k–token graph corresponds to the Johnson graph J(n,k). In this paper, we continue to
investigate token graphs by determining the super–connectivity of 2–token graph of complete bipartite graphs.

In the rest of the paper, a vertex ω of F2(G) corresponding to the 2-subset {x,y} ∈V (F2(G)) will be denoted by ω = xy. While
constructing the paths, it is assumed that the subscripts of the vertices are taken modulo n or m, depending on the size of the
set we consider.
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2. Main results

Let Km,n be the complete bipartite graph with partition V = A∪B such that A = {x1, . . . ,xm} and B = {y1, . . . ,yn}, where
m≤ n. Letting G = F2(Km,n), we have a bipartite graph G with partition V (G ) = A ∪B such that

A = {xiy j ∈V (G ) : xi ∈ A and y j ∈ B} and B = B1∪B2,

where

B1 = {xix j ∈V (G ) : i 6= j} and B2 = {yiy j ∈V (G ) : i 6= j}.

It is easy to see that δ (G ) = min{2m,2n,m+n−2}. Since κ(Km,n) = m when m≤ n, we know that the graph G is (2m−2)–
connected for n ≥ m ≥ 2. We know that the connectivity of a graph is at most the minimum degree of it. Thus, we have
2m−2≤ κ(G )≤ 2m when n≥m+2. Moreover, if m= n, then κ(G ) = 2m−2 and if m= n−1, then 2m−2≤ κ(G )≤ 2m−1.
It is quite natural to ask whether every minimum vertex–cut of a graph G corresponds to the neighbourhood of a vertex. If the
answer is yes, then every vertex–cut isolates a vertex in G and thus the super–connectivity of G is strictly greater than the
connectivity.

Both the Remark 2.1 and the explanation before it are given in [25]. Although it is easy to observe, it plays an important role in
the proof of our main result.

Let S be a minimum super vertex–cut S of a connected graph G. Note that S contains a vertex v having at least one neighbour in
the resulting graph G−S for otherwise G would be disconnected. Let C be a component of G−S and suppose that v does not
have a neighbour in C. Now consider the set T = S−{v}. Since C is a component of G−T , it is obvious that T is a vertex–cut
of G which does not isolate a vertex. Thus, T is a super vertex–cut of G and this contradicts the minimality of S. Hence, the
remark below follows.

Remark 2.1. [25] Let G be a connected graph. A minimum super vertex–cut S of G contains a vertex having at least a
neighbour in every component of G−S. Moreover, if a vertex v in a minimum super vertex–cut S of G has a neighbour in one
component of G−S, then it has at least one neighbour in every component of G−S.

We now prove our main result on the super–connectivity of the double vertex graph of complete bipartite graphs.

Theorem 2.2. Let G be the double vertex graph of the complete bipartite graph Km,n, where n ≥ m+ 2 and m ≥ 4. Then
κ ′(G ) = 3m+n−4.

Proof. Let S be a super vertex–cut of G = F2(Km,n) where n≥ m+2 and m≥ 4. By Remark 2.1, we know that there exists
a vertex, say ω , in S having at least a neighbour in every component of G −S. Let C1 and C2 be two components of G −S.
Consider a neighbour of ω from each of the components C1 and C2, say u1 ∈C1 and u2 ∈C2. Since S is a super vertex–cut,
each component of the resulting graph G −S has at least two vertices. Thus, each of u1 and u2 has at least a neighbour in C1
and C2, respectively. Let v1 ∈C1 and v2 ∈C2 such that v1 ∈ NG (u1) and v2 ∈ NG (u2). Note that the intersection v1∩u2 = /0,
otherwise there will be an edge between the components C1 and C2. Similarly, u1∩ v2 = /0. Since G is a bipartite graph, ω is
either in A or in B.

First, we suppose that ω is in A . Without loss of generality, let ω = x1y1. For the vertices u1 and u2, there are three cases to
consider:

(1) Both of u1 and u2 are in B1,

(2) One of them is in B1 and the other one is in B2,

(3) Both of u1 and u2 are in B2.

Next, we suppose that ω is in B. Then, either ω ∈B1 or ω ∈B2. In both of these two cases, we get the same subcases for the
vertices u1,v1 ∈C1 and u2,v2 ∈C2. Thus, it is enough to consider only one of them, say ω ∈B1. Without loss of generality,
we assume that ω = x1x2. Consider the neighbours of ω in the resulting graph G −S , in particular u1 ∈C1 and u2 ∈C2. Due
to the shared index of u1 and u2, there are three cases to consider:

(4) u1∩u2 ⊂ A,

(5) u1∩u2 ⊂ B,

(6) u1∩u2 = /0.

Let us assume that ω = x1y1 and consider the first three cases (1-3) given below.

Case 1. Without loss of generality, assume that u1 = x1x2 and u2 = x1x3. Since we have v1∩u2 = /0 and u1∩ v2 = /0, we let
v1 = x2yk and v2 = x3y`. Without loss of generality, we assume that k = 1. Thus, we have either `= k or ` 6= k. In the
latter case we let, without loss of generality, `= 2.
First we investigate the common paths that can be constructed when either `= k or ` 6= k.
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• u1 ∼ x1y j ∼ u2 for all j ∈ {1, . . . ,n}

• v1 ∼ x2x3 ∼ v2

• v1 ∼ x2x j ∼ y2x j ∼ x3x j ∼ v2 for all j ∈ {4, . . . ,m}

Note that if `= k, then the vertices v1 and v2 have common neighbours, and the additional paths that can be constructed
particularly in this case are given in (a). Similarly, the additional paths constructed only when `= 2 are given in (b).

(a) If `= k, then consider the extra paths given below:
• v1 ∼ y1y j ∼ v2 for all j ∈ {2, . . . ,n}

• u1 ∼ x2y j ∼ y jy j+1 ∼ x3y j ∼ u2 for all j ∈ {2, . . . ,n}
When j = n, use the vertex y jy j+2 instead of y jy j+1 since y1yn is used already.

(b) If ` 6= k (note that ` is assumed to be 2 above), then consider the extra paths given below:
• u1 ∼ x2y2 ∼ y2y3 ∼ v2 and u1 ∼ x2y3 ∼ y3y4 ∼ x3y3 ∼ u2

• v1 ∼ y1y2 ∼ v2 and v1 ∼ y1y3 ∼ x3y1 ∼ u2

• v1 ∼ y1y j ∼ x3y j ∼ u2 for all j ∈ {4, . . . ,n}

• u1 ∼ x2y j ∼ y2y j ∼ v2 for all j ∈ {4, . . . ,n}

Thus, in both cases, we have constructed 3n+m−4 internally disjoint paths.

Case 2. Without loss of generality, we let u1 = x1x2 and u2 = y1y2. Since we have v1∩u2 = /0 and u1∩ v2 = /0, we assume that
v1 = x1y3 and v2 = x3y1. Consider the following paths:

• u1 ∼ x1yi ∼ y2yi ∼ xiy2 ∼ u2 for all i ∈ {4, . . . ,m}

• u1 ∼ x2y j ∼ y1y j ∼ v2 for all j ∈ {4, . . . ,n}

• v1 ∼ x1xi ∼ xiy1 ∼ u2 for all i ∈ {4, . . . ,m}

• v1 ∼ y3yi ∼ xiy3 ∼ x3xi ∼ v2 for all i ∈ {4, . . . ,m}

• u1 ∼ x2y3 ∼ x2x3 ∼ v2 and v1 ∼ y2y3 ∼ x3y2 ∼ u2

• u1 ∼ a∼ u2 for each a ∈ {x1y1,x1y2,x2y1,x2y2}

• v1 ∼ x1x3 ∼ v2 and v1 ∼ y1y3 ∼ v2

Thus, we have constructed 3m+n−4 internally disjoint paths.

Case 3. Without loss of generality, we let u1 = y1y2 and u2 = y1y3. Since we have v1∩u2 = /0 and u1∩v2 = /0, we let v1 = xky2
and v2 = x`y3. Without loss of generality, we assume that k = 1. Thus, we have either have `= k or ` 6= k. In the latter
case we let, without loss of generality, `= 2.
First we investigate the common paths that can be constructed when either `= k or ` 6= k

• u1 ∼ xiy1 ∼ u2 for all i ∈ {1, . . . ,m}

• v1 ∼ y2y3 ∼ v2

• v1 ∼ y2yi ∼ x1yi ∼ y3yi ∼ v2 for all i ∈ {4, . . . ,n}

Note that if `= k, then the vertices v1 and v2 have common neighbours, and the additional paths that can be constructed
particularly in this case are given in (a). Similarly, the additional paths constructed only when `= 2 are given in (b).

(a) If `= k, then consider the extra paths given below:

• v1 ∼ x1xi ∼ v2 for all i ∈ {2, . . . ,m}

• u1 ∼ xiy2 ∼ xixi+1 ∼ xiy3 ∼ u2 for all i ∈ {2, . . . ,m}.
When i = m, use the vertex xixi+2 instead of xixi+1 since x1xm is used already.

(b) If ` 6= k (` is assumed to be 2 above), then consider the extra paths given below:

• u1 ∼ x2y2 ∼ x2x3 ∼ v2 and v1 ∼ x1x3 ∼ x1y3 ∼ u2

• u1 ∼ x3y2 ∼ x3x4 ∼ x3y3 ∼ u2

• u1 ∼ x4y2 ∼ x2x4 ∼ v2 and v1 ∼ x1x4 ∼ x4y3 ∼ u2

• v1 ∼ x1x2 ∼ v2

• u1 ∼ xiy2 ∼ xi−1xi ∼ xiy3 ∼ u2 for all i ∈ {5, . . . ,m}
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• v1 ∼ x1xi ∼ xiy4 ∼ x2xi ∼ v2 for all i ∈ {5, . . . ,m}

Thus, in both cases, we have constructed 3m+n−4 internally disjoint paths.

Now we assume that ω = x1x2 in order to consider the latter three cases (4-6) given below.

Case 4. Let u1∩u2 ⊂ A, say u1∩u2 = {x1}. Since both of u1,u2 ∈A , without of loss of generality, we assume that u1 = x1y1
and u2 = x1y2. Since we have v1∩u2 = /0 and v2∩u1 = /0, we have either |v1∩ v2|= 1 or |v1∩ v2|= 0. Let v1 = y1yk
and v2 = y2y`. Note that k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.

(a) If `= k, then the paths here can be constructed similarly as in Case 3(a), such that the vertices {x1,y1,y2,y3} of
this case correspond to the vertices {x1,y2,y3,y1} of Case 3(a), respectively.

(b) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let `= 4.
Consider the following paths:
• u1 ∼ x1xi ∼ u2 for all i ∈ {2, . . . ,m}

• u1 ∼ y1y2 ∼ u2

• u1 ∼ y1y4 ∼ x1y4 ∼ v2

• v1 ∼ x1y3 ∼ y2y3 ∼ u2

• u1 ∼ y1yi ∼ x1yi ∼ y2yi ∼ u2 for all i ∈ {5, . . . ,n}

• v1 ∼ xiy1 ∼ xixi+1 ∼ xiy2 ∼ v2 for all i ∈ {2, . . . ,m}
When i = m, use the vertex xixi+2 instead of xixi+1 since x1xm is used already.

• v1 ∼ x2y3 ∼ y3y4 ∼ x2y4 ∼ v2

• v1 ∼ xiy3 ∼ y3yi+2 ∼ x2yi+2 ∼ y4yi+2 ∼ xiy4 ∼ v2 for all i ∈ {3, . . . ,m}

Thus, in both of the cases, we have constructed 3m+n−4 internally disjoint paths.

Case 5. Let u1∩u2 ⊂ B, say u1∩u2 = {y1}. Since both of u1,u2 ∈A , without of loss of generality, we assume that u1 = x1y1
and u2 = x2y1. Since v1 ∩ u2 = /0 and v2 ∩ u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let v1 = x1xk and
v2 = x2x`. Note that k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.

(a) If `= k then the paths here can be constructed similarly as in Case 1(a), such that the vertices {y1,x1,x2,x3} of
this case correspond to the vertices {y1,x2,x3,x1} of Case 1(a), respectively.

(b) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let `= 4.
Consider the following paths:
• u1 ∼ x1x2 ∼ u2

• u1 ∼ y1yi ∼ u2 for all i ∈ {2, . . . ,n}

• u1 ∼ x1x4 ∼ x4ym ∼ v2 and v1 ∼ x3ym ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {5, . . . ,m}

• v1 ∼ x3y1 ∼ x3x4 ∼ x4y1 ∼ v2

• v1 ∼ x1yi ∼ yiyi+1 ∼ x2yi ∼ v2 for all i ∈ {2, . . . ,n}
When i = n, use the vertex yiyi+2 instead of yiyi+1 since y1yn is used already.

• v1 ∼ x3yi ∼ yiyi+2 ∼ x4yi ∼ v2 for all i ∈ {2, . . . ,n−1}
When i = n−1, use the vertex yiyi+3 instead of yiyi+2 since y1yn−1 is used already.

Thus, in both of the cases, we have constructed 3n+m−4 internally disjoint paths.

Case 6. Let u1∩u2 = /0. Since both of u1,u2 ∈A , the vertices v1 and v2 are in B. There are three subcases to consider: (a)
Both of v1,v2 are in B1, (b) One of v1,v2 is in B1 and the other one is in B2, (c) Both of v1,v2 are in B2.

First, without loss of generality, we let u1 = x1y1 and u2 = x2y2.

(a) Assume that v1,v2 ∈B1. Since v1 ∩u2 = /0 and v2 ∩u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let
v1 = x1xk and v2 = x2x`. Note that we have k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.
(i) If `= k, then the paths here can be constructed similarly as in Case 1(b), such that the vertices {x1,x2,x3,y1,y2}

of this case correspond to the vertices {x2,x3,x1,y1,y2} of Case 1(b), respectively.

(ii) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, let `= 4.
Consider the following paths:
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• u1 ∼ x1x2 ∼ u2 and u1 ∼ y1y2 ∼ u2

• u1 ∼ x1x4 ∼ x4y1 ∼ v2 and v1 ∼ x3y1 ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {5, . . . ,m}

• u1 ∼ y1y3 ∼ x2y1 ∼ v2 and v1 ∼ x1y2 ∼ y2y3 ∼ u2

• u1 ∼ y1yi ∼ x4yi ∼ v2 for all i ∈ {4, . . . ,n}

• v1 ∼ x3yi ∼ y2yi ∼ u2 for all i ∈ {4, . . . ,n}

• v1 ∼ x1yi ∼ yiyi+1 ∼ x2yi ∼ v2 for all i ∈ {3, . . . ,n}
When i = n, use the vertex yiyi+3 instead of yiyi+1 since y1yn is used already.

• v1 ∼ x3y2 ∼ x3x4 ∼ x4y2 ∼ v2

• v1 ∼ x3y3 ∼ y3y5 ∼ x4y3 ∼ v2

Thus, in both of the cases, we have constructed 3n+m−4 internally disjoint paths.

(b) Assume that v1 ∈B1 and v2 ∈B2. Since v1∩u2 = /0 and v2∩u1 = /0, we let v1 = x1x3 and v2 = y2y3. The paths
here can be constructed similarly as in Case 2, such that the vertices {x1,x2,x3,y1,y2,y3} of this case correspond
to the vertices {x1,x3,x2,y3,y1,y2} of Case 2, respectively. Thus, we can construct 3m+n−4 internally disjoint
paths.

(c) Assume that v1,v2 ∈B2. Since v1 ∩u2 = /0 and v2 ∩u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let
v1 = y1yk. Note that k /∈ {1,2}. Thus, without loss of generality, we let k = 3.

Since v2 ∈B2 by the assumption, we have v2 = y2y` such that ` /∈ {1,2}. Then we have either `= k or ` 6= k.

(i) If `= k, then the paths here can be constructed similarly as in Case 3(b), such that the vertices {x1,x2,y1,y2,y3}
of this case correspond to the vertices {x1,x2,y2,y3,y1} of Case 3(b), respectively.

(ii) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let v2 = y2y4.
Consider the following paths:

• u1 ∼ x1x2 ∼ u2 and u1 ∼ y1y2 ∼ u2

• u1 ∼ x1x3 ∼ x1y2 ∼ v2 and v1 ∼ x2y1 ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy2 ∼ v2 for all i ∈ {4, . . . ,m}

• u1 ∼ y1y4 ∼ x1y4 ∼ v2 and v1 ∼ x1y3 ∼ y2y3 ∼ u2

• v1 ∼ x2y3 ∼ y3y4 ∼ x2y4 ∼ v2 and v1 ∼ x3y1 ∼ x3x4 ∼ x3y2 ∼ v2

• u1 ∼ y1yi ∼ x1yi ∼ y2yi ∼ u2 for all i ∈ {5, . . . ,n}

• v1 ∼ xiy3 ∼ y3yi+2 ∼ x2yi+2 ∼ y4yi+2 ∼ xiy4 ∼ v2 for all i ∈ {3, . . . ,m}

• v1 ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {4, . . . ,m}

Thus, in both cases, we have constructed 3m+n−4 internally disjoint paths.

In each of the six cases above, we presented either 3m+n−4 or 3n+m−4 internally disjoint paths between C1 and C2. Since
m≤ n−2 by the assumption, this implies that there exist at least 3m+n−4 internally disjoint paths between C1 and C2. Thus,
κ ′(G )≥ 3m+n−4.

On the other hand, consider two adjacent vertices α and β of G such that α ∈A and β ∈B1. Let S = (NG (α)∪NG (β ))−
{α,β}. It is easy to see that the set S disconnects the graph without isolating a vertex, that is, S is a super–vertex cut of G .
Hence, we get κ ′(G )≤ |S|= 3m+n−4 and this finishes the proof.

3. Conclusion

In our main result, it is proved that the super–connectivity of the double vertex graph of complete bipartite graph Km,n is equal
to 3m+n−4 where m≥ 4 and n≥ m+2. This result also implies that the double vertex graph of complete bipartite graph
F2(Km,n) is super–connected, i.e., each minimum vertex–cut of F2(Km,n) isolates a vertex. It would be interesting to determine
the super–connectivity of k–token graphs for larger graph classes. Note that the well studied Johnson graph J(n,k) is a special
case of k–token graphs, where G is the complete graph Kn. In [25], we fully determined the super–connectivity of J(n,k).
Thus, the results given in [25] might be generalized by a possible study on k–token graphs of larger graph classes.
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Abstract

In this paper, we introduce the adapted frame of framed curves and we give the relations
between the adapted frame and Frenet type frame of the framed curve in four-dimensional
Euclidean space. Moreover, we define the framed normal curves in four-dimensional
Euclidean space. We obtain some characterizations of framed normal curves in terms
of their framed curvature functions. Furthermore, we give the necessary and sufficient
condition for a framed curve to be a framed normal curve.

1. Introduction

The most basic building blocks of classical differential geometry are curves. There are many studies on Frenet curves and they
are useful for investigating the geometric properties of regular curves. Especially, the subject of curves with singular points was
discussed in the 20th century. However, recently, the subject of curves with singular points, for which a Frenet frame cannot be
formed at a particular point, has been discussed from a different perspective. Honda and Takahashi introduced the concept
of framed curves to examine curves with singular points in terms of differential geometry [1]. These curves, called Framed
curves expressed by Honda and Takahashi, are a natural generalization of Frenet curves. Moreover, Wang et. al obtained a
moving adapted frame to investigate the properties of rectifying curve with singular points in R3, and this frame was used to
analyze some special curves with singular points [2]. For more details on the notion of framed curves, see [3]-[9].

In Euclidean space R3, curves whose position vector is always in the normal plane are normal curves, and also these curves are
spherical curves [10]. Analogously, timelike normal curves in three-dimensional Minkowski space is defined as the curves
whose normal planes always contain a fixed point. Therefore, the position vector of such curves with respect to some chosen
origin always lies in its normal plane [11]. In particular, timelike normal curves lie in the pseudosphere in R3

1. In addition, the
characterizations of timelike and spacelike normal curves in Minkowski space R3

1 have been examined recently, [12], [13].
Bahar et. al has been studied framed normal curve in R3 [4].

In this paper, inspired by [2] and using Euler angles [14], we obtained moving adapted frame for framed curves in R4. We
define generalized Frenet vectors and framed curvatures to investigate the geometric properties of framed curves in R4. After
that, we introduce framed normal curves in R4. We give some characterizations for framed normal curves. we obtained the
necessary and sufficient conditions for such framed curves to be framed normal curves.
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2760-1223 (Ö. G. Yıldız)

https://orcid.org/0000-0002-8398-365X
https://orcid.org/0000-0002-2760-1223
https://orcid.org/0000-0002-2760-1223


Fundamental Journal of Mathematics and Applications 259

2. Preliminaries

Let R4 be the 4−dimensional Euclidean space equipped with the inner product

< x,y >=
4

∑
i=1

xiyi,

where x = (x1,x2,x3,x4) ,y = (y1,y2,y3,y4) ∈ R4 and norm of x ∈ R4 is given by ∥x∥ =√
< x,x >. Vector product in R4 is

given by

x× y× z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
where x = (x1,x2,x3,x4) ,y = (y1,y2,y3,y4) ,z = (z1,z2,z3,z4) ∈ R4 and e1,e2,e3,e4 are the canonical basis vectors of R4.
Let ∆3 be a 6−dimensional smooth manifold as follows

∆3 =
{

µ = (µ1,µ2,µ3) ∈ R4 ×R4 ×R4∣∣< µi,µ j >= δi j, i, j = 1,2,3
}
.

We can define a unit vector ν = µ1 ×µ2 ×µ3 such that det(ν ,µ1,µ2,µ3) = 1.

Definition 2.1. (γ,µ) : I →R4 ×∆3 is said to be framed curve if < γ ′ (s) ,µi (s)>= 0 for all s ∈ I and i = 1,2,3. γ : I →R4 is
called as a framed base curve if there exists µ : I → ∆3 such that (γ,µ) is a framed curve, [1].

By following similar way as the curvatures of regular curve, we can define smooth function for a framed curve. Let
{ν (s) ,µ (s)} be a moving frame along the framed base curve γ (s). Then, we have the Frenet-Serret type formula, which is
given by 

µ ′
1 (s)

µ ′
2 (s)

µ ′
3 (s)

ν ′ (s)

=


0 f (s) g(s) h(s)

− f (s) 0 j (s) k (s)
−g(s) − j (s) 0 l (s)
−h(s) −k (s) −l (s) 0




µ1 (s)
µ2 (s)
µ3 (s)
ν (s)


where f (s) ,g(s) ,h(s) , j (s) ,k (s) and l (s) are smooth curvature functions. Moreover, there exists a smooth mapping α :
I → R such that γ ′ (s) = α (s)v(s) . ( f (s) ,g(s) ,h(s) , j (s) ,k (s) , l (s) ,α (s)) are called curvatures of γ at γ (s) . Clearly, s0 is
singular points of γ iff α (s0) = 0. ( f (s) ,g(s) ,h(s) , j (s) ,k (s) , l (s) ,α (s)) are useful to investigate the framed curve and its
singularities.

Theorem 2.2. Let ( f ,g,h, j,k, l,α) : I → R4 be a smooth mapping. There exists a framed curve (γ,µ) : I → R4 ×∆3 whose
associated curvature of the framed curve is ( f ,g,h, j,k, l,α) [1].

Theorem 2.3. Let (γ,µ) and (γ̃,η) : I → R4 ×∆3 be framed curves whose curvatures of the framed curves ( f ,g,h, j,k, l,α)

and
(

f̃ , g̃, h̃, j̃, k̃, l̃, α̃
)

coincide. Then, (γ,µ) and (γ̃,η) are congurent as framed curves [1].

Let (γ,µ) : I → R4 ×∆3 be a framed curve with ( f ,g,h, j,k, l,α) . By using Euler angels η = (η1,η2,η3) ∈ ∆3 is defined by η1
η2
η3

=

 cosθ cosψ −cosϕ sinψ + sinϕ cosψ sinθ sinϕ sinψ + cosϕ cosψ sinθ

cosθ sinψ cosϕ cosψ + sinϕ sinψ sinθ −sinϕ cosψ + cosϕ sinψ sinθ

−sinθ sinϕ cosθ cosϕ cosθ

 µ1
µ2
µ3


where θ ,ϕ and ψ are smooth functions. By straightforward calculations,

ν̃ = η1 ×η2 ×η3 = µ1 ×µ2 ×µ3 = ν .

So, (γ,η) : I → R4 ×∆3 is also a framed curve. Assume that

tanψ

cosθ
= l sinϕ − k cosϕ

and

h = cotθ (l cosϕ + k sinϕ)
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are satisfied for given smooth function θ ,ϕ and ψ (Euler angle), the adapted frame along γ (s) is given by
ν ′ (s)
η ′

1 (s)
η ′

2 (s)
η ′

3 (s)

=


0 p(s) 0 0

−p(s) 0 q(s) 0
0 −q(s) 0 r (s)
0 0 −r (s) 0




ν (s)
η1 (s)
η2 (s)
η3 (s)

 (2.1)

where (p(s) ,q(s) ,r (s) ,α (s)) are framed curvature of γ (s) and their expression are

p =−hsecθ secψ,
q =−( j−ϕ ′)sinθ −ψ ′,

r = cosθ

cosψ
( j−ϕ ′)

and the following equalities

f =−sinϕ (θ ′− r sinψ) ,
g =−cosϕ (θ ′− r sinψ) ,
j = r cosψ

cosθ
+θ ′

hold. We can call the vectors ν ,η1,η2,η3 the generalized tangent, the generalized principal normal, the generalized first
binormal, and the generalized second binormal vectors of the framed curve, respectively.
In order to give a definition of the framed spherical curve, let us recall that a 4−dimensional hypersphere S3 is

S3 =
{

x ∈ R4∣∣< x−m,x−m >= c2}
where c ∈ R+ is the radius and m is the center of hypersphere.

Definition 2.4. Let (γ,η) : I → R4 ×∆3 be a framed curve. We call γ a framed spherical curve if the framed base curve γ is a
curve on S3 [2].

3. Framed normal curves in Euclidean 4-space

In this section, we characterize the framed normal curve with non-zero framed curvatures in R4.
Let (γ,η) : I → R4 ×∆3 be a framed curve with non-zero framed curvatures. Then its position vector satisfies

γ(s) = λ (s)η1(s)+µ(s)η2(s)+ρ(s)η3(s). (3.1)

By differentiating of (3.1), we obtain

αν = (−pλ )ν +(λ ′−qµ)η1 +(qλ +µ
′− rρ)η2 +(rµ +ρ

′)η3

and therefore

−pλ = α , λ
′−qµ = 0 , qλ +µ

′− rρ = 0 , rµ +ρ
′ = 0. (3.2)

From the first three equations, we obtain

λ (s) =−α(s)
p(s) , µ (s) =− 1

q(s)

(
α(s)
p(s)

)′
,

ρ (s) =− 1
r(s)

(
α(s)q(s)

p(s) +

(
1

q(s)

(
α(s)
p(s)

)′)′)
.

By using the above relations, we obtain that

γ(s) =−α (s)
p(s)

η1(s)−
1

q(s)

(
α (s)
p(s)

)′
η2(s)−

1
r (s)

(
α (s)q(s)

p(s)
+

(
1

q(s)

(
α (s)
p(s)

)′)′)
η3(s). (3.3)

Then we can give the following theorem.

Theorem 3.1. Let (γ,η) : I → R4 ×∆3 be a framed curve with non-zero framed curvatures. Then, (γ,η) is congruent to a
framed normal curve iff

− r (s)
q(s)

(
α (s)
p(s)

)′
=

(
1

r (s)

(
α (s)q(s)

p(s)
+

(
1

q(s)

(
α (s)
p(s)

)′)′))′

. (3.4)
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Proof. First assume that (γ,η) is congruent to a framed normal curve. Then substituting (3.3) into the fourth equation of (3.2),
we obtain imply that (3.4) holds.
Conversely, assume that relation (3.4) holds. Let the vector m be given by

m(s) = γ (s)+
α (s)
p(s)

η1(s)+
1

q(s)

(
α (s)
p(s)

)′
η2(s)+

1
r (s)

(
α (s)q(s)

p(s)
+

(
1

q(s)

(
α (s)
p(s)

)′)′)
η3(s). (3.5)

By differentiating (3.5) with respect to s and by applying (2.1), we obtain

m′(s) =
r (s)
q(s)

(
α (s)
p(s)

)′
η3(s)+

(
1

r (s)

(
α (s)q(s)

p(s)
+

(
1

q(s)

(
α (s)
p(s)

)′)′))′

η3(s).

From relation (3.4) it is easily seen that m is a constant vector. So, (γ,η) is congruent to a framed normal curve.

Theorem 3.2. Let (γ,η) : I →R4 ×∆3 be a framed curve with non-zero framed curvatures. If (γ,η) is a framed normal curve,
then the following statements hold:
(i) the generalized principal normal and the generalized first binormal component of the position vector γ are respectively
given by

< γ,η1 >=−α(s)
p(s) ,

< γ,η2 >=− 1
q(s)

(
α

p(s)

)′ (3.6)

(ii) the generalized first binormal and the generalized second binormal component of the position vector γ are respectively
given by

< γ,η2 >=− 1
q(s)

(
α

p(s)

)′
,

< γ,η3 >=− 1
r(s)

(
α(s)q(s)

p(s) +

(
1

q(s)

(
α(s)
p(s)

)′)′)
.

Conversely, if one of the statements (i) or (ii) holds, then (γ,η) is a framed normal curve.

Proof. Let (γ,η) be a framed normal curve with non-zero framed curvatures. Statements (i) and (ii) are easily obtained from
(3.3).
Conversely, if statement (i) holds, differentiating the first equation of (3.6) and by using (2.1), we obtain < γ,υ >= 0 which
means that (γ,η) is a framed normal curve. If statement (ii) holds, in a similar way it is seen that (γ,η) is a framed normal
curve.

Theorem 3.3. Let (γ,η) : I →R4 ×∆3 be a framed curve with non-zero framed curvatures and γ has at least one non-singular
point. Then (γ,η) is a framed normal curve if and only if γ lies on S3.

Proof. Let (γ,η) : I → R4 ×∆3 be a framed curve with non-zero framed curvatures. By using (3.4), we obtain

2
α

p

(
α

p

)′
+2

1
q

(
α

p

)′(1
q

(
α

p

)′)′

+2
1
r

(
αq
p
+

(
1
q

(
α

p

)′)′)(
1
r

(
αq
p
+

(
1
q

(
α

p

)′)′))′

= 0.

The above equation is differential of the equation

(
α

p

)2

+

(
1
q

(
α

p

)′)2

+

(
1
r

(
αq
p

+

(
1
q

(
α

p

)′)′))2

= c2 , c ∈ R+.

By using (3.5), it is easily seen that < γ −m,γ −m >= c2. So, this implies that γ lies on S3 in R4.
Conversely, let γ lies on S3 in R4, then

< γ −m,γ −m >= c2 ,c ∈ R+, (3.7)

where m ∈ R4 is the constant vector. By taking the derivative of (3.7) and γ has at least one non-singular point, we get
< γ −m,ν >= 0, which implies that (γ,η) is a framed normal curve.
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Lemma 3.4. Let (γ,η) : I → R4 ×∆3 be a framed curve with non-zero framed curvatures. Then, (γ,η) is congruent to a
framed normal curve iff there exists a differentiable function ξ (s) such that

ξ (s)r(s) = α(s)q(s)
p(s) +

(
1

q(s)

(
α(s)
p(s)

)′)′
, (3.8)

ξ
′ (s) =− r(s)

q(s)

(
α(s)
p(s)

)′
.

In the following theorem, we obtain the necessary and sufficient conditions for such framed curves to be framed normal curves.

Theorem 3.5. Let (γ,η) : I → R4 ×∆3 be framed curve with non-zero framed curvatures. (γ,η) is congruent to framed
normal curve iff there exist constants a0, b0 ∈ R such that

− 1
q(s)

(
α (s)
p(s)

)′
=

(
a0 +

∫
α (s)q(s)

p(s)
cosω(s)ds

)
cosω(s)+

(
b0 +

∫
α (s)q(s)

p(s)
sinω(s)ds

)
sinω(s), (3.9)

where ω(s) =
s∫

0
r (s)ds.

Proof. If (γ,η) is congruent to a framed normal curve, according to Lemma 3.4 there exists a differentiable function ξ (s)
such that relation (3.8) holds. Let us define differentiable functions ω(s), a(s) and b(s) by

ω(s) =
s∫

0
r (s)ds,

a(s) =− 1
q(s)

(
α(s)
p(s)

)′
cosω(s)+ξ (s)sinω(s)−

∫ α(s)q(s)
p(s) cosω(s)ds,

b(s) =− 1
q(s)

(
α(s)
p(s)

)′
sinω (s)−ξ (s)cosω (s)−

∫ α(s)q(s)
p(s) sinω(s)ds.

(3.10)

By using (3.8), we easily find ω ′(s) = r (s), a′ (s) = 0, b′ (s) = 0 and thus

a(s) = a0 , b(s) = b0 , a0,b0 ∈ R. (3.11)

By multiplying the last two equations in (3.10), respectively with cosω (s) and sinω (s), adding the obtained equations and
using (3.11), we conclude that relation (3.9) holds.
Conversely, assume that there exist constants a0, b0 ∈R such that relation (3.9) holds. By taking the derivative of (3.9), we find

−α (s)q(s)
p(s)

−
(

1
q(s)

(
α (s)
p(s)

)′)′

= r (s)

 −
(

a0 +
∫ α(s)q(s)

p(s) cosω (s)ds
)

sinω (s)

+
(

b0 +
∫ α(s)q(s)

p(s) sinω (s)ds
)

cosω (s)

 . (3.12)

Let us define the differentiable function ξ (s) by

ξ (s) =
1

r (s)

(
α (s)q(s)

p(s)
+

(
1

q(s)

(
α (s)
p(s)

)′)′)
. (3.13)

Next, relations (3.12) and (3.13) imply

ξ (s) =
(

a0 +
∫

α (s)q(s)
p(s)

cosω (s)ds
)

sinω (s)−
(

b0 +
∫

α (s)q(s)
p(s)

sinω (s)ds
)

cosω (s) .

By using the above equation and (3.9), we obtain ξ ′(s) =− r(s)
q(s)

(
α(s)
p(s)

)′
. Finally, Lemma 3.4 implies that (γ,η) is congruent

to a framed normal curve.
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Abstract

In this paper, we investigate the effect of D-homothetic deformation on almost para-contact
metric manifolds. The main results of the paper are about some classes of almost paracontact
metric manifolds in which the characteristic vector field is parallel. It is shown that certain
classes are invariant under the D-homothetic deformation.

1. Introduction

Almost paracontact structures were first studied by [1] (Kaneyuki, 1985) and after the work of Zamkovoy in [2] (Zamkovoy,
2009), many authors have made contributions to the subject. In the literature, there are many studies on almost paracontact
manifolds from different perspectives in various dimensions. For recent studies, see [3]-[8]. In [9], Zamkovoy and Nakova
classified almost paracontact metric structures into the 212 classes by considering the covariant derivative of the fundamental
2-form Φ of the structure with respect to the Levi-Civita connection. The main goal of this work is to study D-homothetic
deformations on these structures. We examine the almost paracontact metric structure after the deformation and investigate
some certain classes after the deformation. Mostly, we focused on the classes having parallel characteristic vector fields.

2. Almost paracontact metric structures

Definition 2.1. A differentiable manifold M of dimension (2n+1) is said to be have an almost paracontact structure (φ ,ξ ,η),
if it has an endomorphism φ , a 1-form η and a vector field ξ such that

φ
2 = I−η⊗ξ , η(ξ ) = 1, φ(ξ ) = 0, η ◦φ = 0, (2.1)

and there exists a distribution D : p ∈M −→ Dp = Kerη such that an almost paracomplex structure is induced by the tensor
field φ . The vector field ξ is said to be the Reeb (or characteristic) vector field of (φ ,ξ ,η).

For each p ∈M, the tangent space TpM can be stated as the direct sum

TpM = Dp⊕SpanR{ξ (p)}

and a vector U ∈ TpM can be uniquely decomposed as

u = hU + vU,

Email address and ORCID number: mehmet.solgun@bilecik.edu.tr, 0000-0002-2275-7763
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where hU = φ 2U ∈ Dp and vU = η(U)ξ (p) ∈ SpanR{ξ (p)} [9]. Let g be a semi-Riemannian metric of signature (n,n+1)
on an almost paracontact manifold M with

g(φU,φV ) =−g(U,V )+η(U)η(V ). (2.2)

Then the metric g is said to be a compatible metric and the quadruple (φ ,ξ ,η ,g) is called an almost paracontact metric
structure on M. The 2-form Φ given with

Φ(U,V ) := g(φU,V )

is called the fundamental 2-form of the structure.
The basis (namely, φ -basis) {e1,φe1, · · · ,en,φen,ξ} with

g(ei,e j) =−g(φei,φe j) = δi j, g(ei,φe j) = 0, i, j = 1, · · · ,n,

is an orthonormal basis on (φ ,ξ ,η ,g) see [2]. For the almost contact case, see [10]. It can be seen that the (0,3)- tensor F (the
fundamental tensor) given with

F(U,V,W ) = (∇U Φ)(V,W ) = g((∇U φ)V,W ),

satisfies the followings

F(U,V,W ) =−F(U,W,V ), (2.3)
F(U,φV,φW ) = F(U,V,W )+η(V )F(U,W,ξ )−η(W )F(U,V,ξ ),

for any U,V,W ∈ T M. In [9], Zamkovoy and Nakova classified almost paracontact metric manifolds by considering the space
F of tensors F which satisfy (2.3). Initially, they decomposed this space into four subspaces Wi (i = 1,2,3,4), i.e.

F = W1⊕W2⊕W3⊕W4,

where Wi’s are defined by

W1 = {F ∈F |F(U,V,W ) = F(hU,hV,hW )},

W2 = {F ∈F |F(U,V,W ) =−η(V )F(hU,hW,ξ )+η(W )F(hU,hV,ξ )},

W3 = G11 = {F ∈F |F(U,V,W ) = η(U)F(ξ ,hV,hW )},

W4 = G12 = {F ∈F |F(U,V,W ) = η(U)[(η(V )F(ξ ,ξ ,hW )−η(W )F(ξ ,ξ ,hV )]}.

Then W1 and W2 are written as sums of U(n)×1 irreducible components G1,G2,G3,G4 and G5, · · · ,G10 respectively, where
U(n) is the paraunitary group, with the following relations [9]:

G1 F(U,V,W ) = 1
2n−1 [g(U,φV )θF(φW )−g(U,φW )θF(φV )−g(φU,φV )θF(hW )+g(φU,φW )θF(hU)]

G2 F(φU,φV,W ) =−F(U,V,W ), θF = 0

G3 F(ξ ,V,W ) = F(U,ξ ,W ) = 0, F(U,V,W ) =−F(V,U,W )

G4 F(ξ ,V,W ) = F(U,ξ ,W ) = 0, S(U,V,W )F(U,V,W ) = 0

G5 F(U,V,W ) = θF (ξ )
2n [η(V )g(φU,φW )−η(W )g(φU,φV )]

G6 F(U,V,W ) =− θ∗F (ξ )
2n [η(V )g(U,φW )−η(W )g(U,φV )]

G7 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) =−F(V,U,ξ ) =−F(φU,φV,ξ ), θ ∗F(ξ ) = 0

G8 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) = F(V,U,ξ ) =−F(φU,φV,ξ ), θF(ξ ) = 0

G9 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) =−F(V,U,ξ ) = F(φU,φV,ξ )

G10 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ );F(U,V,ξ ) = F(V,U,ξ ) = F(φU,φV,ξ )

G11 F(U,V,W ) = η(U)F(ξ ,φV,φW )

G12 F(U,V,W ) = η(U)[η(V )F(ξ ,ξ ,W )−η(W )F(ξ ,ξ ,V )]

where θF(U) = gi jF(ei,e j,U), θ ∗F(U) = gi jF(ei,φe j,U), (called Lee forms of the structure).
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3. The projection maps of the structure tensor F

In this section, we recall the projection maps of the tensor F . The vector space F is decomposed as the direct sums of the
subspaces Wi (i = 1,2,3,4) and G j ( j = 1, ...,12) mean that any F ∈F can be uniquely represented in the form

F(U,V,W ) =
4

∑
i=1

FWi(U,V,W ),

and

F(U,V,W ) =
12

∑
j=1

F i(U,V,W )

respectively, where FWi ∈ Wi and F j ∈ G j. Thereby, M ∈ Gi⊕G j⊕ ... if and only if the structure tensor F of M satisfies
F = F i +F j + .... The projections (F i(i = 1, ...,12)) are defined as follows [9]

F1(U,V,W ) =
1

2n−1
[g(U,φV )θF1(φW )−g(U,φW )θF1(φV )

−g(φU,φV )θF1(φ 2W )+g(φU,φW )θF(φ
2V )],

F2(U,V,W ) =
1
2
[F(φ 2U,φ 2V,φ 2W )−F(φU,φ 2V,φW )]

− 1
2n−1

[g(U,φV )θF1(φW )−g(U,φW )θF1(φV )

−g(φU,φV )θF1(φ 2W )+g(φU,φW )θF(φ
2V )],

F3(U,V,W ) =
1
6
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )

+F(φ 2V,φ 2W,φ 2U)+F(φV,φ 2W,φU)

F(φ 2W,φ 2U,φ 2V )+F(φW,φ 2U,φV )],

F4(U,V,W ) =
1
2
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )]

−1
6
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )

+F(φ 2V,φ 2W,φ 2U)+F(φV,φ 2W,φU)

F(φ 2W,φ 2U,φ 2V )+F(φW,φ 2U,φV )],

F5(U,V,W ) =
θF5(ξ )

2n
[η(V )g(φU,φW )−η(W )g(φU,φV )],

F6(U,V,W ) = −
θ ∗F6(ξ )

2n
[η(V )g(U,φW )−η(W )g(U,φV )],

F7(U,V,W ) = −1
4

η(Y )[F(φ 2U,φ 2W,ξ )−F(φU,φW,ξ )

−F(φ 2W,φ 2U,ξ )+F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

−F(φU,φV,ξ )−F(φ 2V,φ 2U,ξ )+F(φV,φU,ξ )]

+
θ ∗F6(ξ )

2n
[η(V )g(U,φW )−η(W )g(U,φV )],

F8(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )−F(φU,φW,ξ )

+F(φ 2W,φ 2U,ξ )−F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

−F(φU,φV,ξ )+F(φ 2V,φ 2U,ξ )−F(φV,φU,ξ )]

−θF5(ξ )

2n
[η(V )g(φU,φW )−η(W )g(φU,φV )],
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F9(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )+F(φU,φW,ξ )

−F(φ 2W,φ 2U,ξ )−F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

+F(φU,φV,ξ )−F(φ 2V,φ 2U,ξ )−F(φV,φU,ξ )],

F10(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )+F(φU,φW,ξ )

+F(φ 2W,φ 2U,ξ )+F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

+F(φU,φV,ξ )+F(φ 2V,φ 2U,ξ )+F(φV,φU,ξ )],

F11(U,V,W ) = η(U)F(ξ ,φ 2V,φ 2W ),

F12(U,V,W ) = η(U)[η(V )F(ξ ,ξ ,φ 2W )−η(W )F(ξ ,ξ ,φ 2V )].

4. Almost paracontact metric structures with parallel Reeb vector field

This section is dedicated to investigating the almost paracontact metric structures equipped with parallel Reeb vector field ξ .
In [9], it is stated that the vector field ξ is Killing only in the classes G1,G2,G3,G4,G5,G8,G9,G11 and in their direct sums. As
it is known, the vector field ξ is said to be parallel if ∇U ξ = 0, and Killing if g(∇U ξ ,V )+g(∇V ξ ,U) = 0, for any vector field
U,V . So, as a natural result of these definitions, we can say that if a vector field is not Killing, then it is not parallel. Thus, the
characteristic vector field ξ of the classes G6,G7,G10,G12 and of their direct sums can not be parallel. So, let us consider the
remaining classes.

For the classes Gi (i = 1,2,3,4,11), set V = ξ and substitute W with φW . Then, we get

F i(U,ξ ,φW ) = g((∇U φ)(ξ ),φW ) = 0.

Since η(∇U ξ ) = 0 for any U , and from the equation (2.2), we get g(∇U ξ ,W ) = 0, which means ∇ξ = 0, since g is non-
degenerate.
For the class G5, set V = ξ in the defining relation of G5. Then we get

g(φ(∇U ξ ),W ) =
θF(ξ )

2n
g(φ 2U,W ).

From the equation (2.1), we get

∇U ξ =
θF(ξ )

2n
φU,

which is non-zero since the class G5 is non-trivial. Thus, the vector field ξ is not parallel in G5.
For the classes Gi, (i = 8,9), assume that the vector field ξ is parallel. Under this assumption, one can easily see that F i = 0.
However, since these classes are non-trivial, we come up with the result that ξ is not parallel in these classes.
In addition, it is known from [9] that, if an almost paracontact metric structure is of the classes Gi⊕G j⊕ ..., then the structure
tensor F is of the form F = F i +F j + .... So, it is clear that a class, which is a direct sum of some classes having a parallel
characteristic vector field, is also equipped with a parallel characteristic vector field.
After all, we can give the following theorem:

Theorem 4.1. The characteristic vector field ξ is parallel only in the classes G1,G2,G3,G4,G11 and in their direct sums.

5. D-homothetic deformation on an almost paracontact metric structure

The idea of a D-homothetic deformation on a contact metric manifold (especially on Sasakian and K-contact structures) was
introduced by Tanno ([11], [12]).
Let (φ ,ξ ,η ,g) be an almost paracontact metric structure on a (2n+ 1)−dimensional manifold M and λ 6= 0 be a positive
constant. Set,

φ̄ = φ , ξ̄ =
1
λ

ξ , η̄ = λη , ḡ =−λg+λ (λ +1)η⊗η .

Then, it can be seen that

Kerη̄ = Kerη , φ̄
2 = I− η̄⊗ ξ̄ , η̄(ξ̄ ) = 1
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and for any U,V ∈ X(M),
ḡ(φ̄U, φ̄V ) =−ḡ(U,V )+ η̄(U)η̄(V ).

Hence, (φ̄ , ξ̄ , η̄ , ḡ) is also an almost paracontact metric structure on M [2].
This is called a D−homothetic deformation of (φ ,ξ ,η ,g). In this paper, we consider this deformation. Let ∇ and ∇̄ be the
Levi-Civita connections of the metrics g and ḡ, respectively. Then by the Koszul formula and the definition of ḡ,

2ḡ(∇̄UV,W ) = −2λg(∇̄UV,W )+2λ (λ +1)η(∇̄UV )η(W ) (5.1)
= −2λg(∇UV,W )+λ (λ +1)[2g(∇UV,ξ )η(W )

+η(U)(g(∇V ξ ,W )−g(∇W ξ ,V ))

+η(V )(g(∇U ξ ,W )−g(∇W ξ ,U))

+η(W )(g(∇U ξ ,V )+g(∇V ξ ,U))].

To obtain the relation between η(∇̄UV ) and η(∇UV ), take W = ξ in the equation (5.1). So we get,

η(∇̄UV ) = η(∇UV )+
λ +1

2λ
[−η(U)g(∇ξ ξ ,V ) (5.2)

−η(V )g(∇ξ ξ ,U)+g(∇U ξ ,V )+g(∇V ξ ,U)].

If we apply the equation (5.2) into the equation (5.1), we get the following

g(∇̄UV,W ) = g(∇UV,W )+
(λ +1)2

2λ
η(W )[−η(U)g(∇ξ ξ ,V ) (5.3)

−η(V )g(∇ξ ξ ,U)+g(∇U ξ ,V )+g(∇V ξ ,U)]

−λ +1
2

[η(U)(g(∇V ξ ,W )−g(∇W ξ ,V ))

+η(V )(g(∇U ξ ,W )−g(∇W ξ ,U)))

+η(W )(g(∇U ξ ,V )+g(∇V ξ ,U))].

By means of the equation (5.3), we may obtain the relations between ∇̄ and ∇ under some certain assumptions. The next
section is devoted to studying the D− homothetic deformations of the structure with a parallel characteristic vector field.

6. D-homothetic deformations of the structures with parallel Reeb vector field

In this section, we examine the D−homothetic deformations of the almost paracontact structures with a parallel characteristic
vector field.

Let (M,φ ,ξ ,η ,g) be an almost paracontact metric manifold with parallel characteristic vector field ξ (i.e. ∇U ξ = 0, for any
U ∈ X(M) and (φ̄ , ξ̄ , η̄ , ḡ) be the D-homothetic deformed structure as defined above. Then we state the followings:

Proposition 6.1. Let (M,φ ,ξ ,η ,g) be an almost paracontact metric manifold with parallel characteristic vector field ξ . Then
the followings hold

i ∇̄UV = ∇UV,
ii F̄(U,V,W ) =−λF(U,V,W ),

iii θ̄F̄(U) = θF(U),

for any U,V,W ∈ X(M), where F̄ and θ̄ are the fundamental tensor and the Lee form of the deformed structure, respectively.

Proof. By assuming ∇ξ = 0 in the equation (5.3), we directly get the equation (i).
For the equation (ii), we have the following

F̄(U,V,W ) = ḡ((∇̄U φ̄)(V ),W ) =−λg((∇U φ)(V ),W )+λ (λ +1)η((∇U φ)(V ))η(W )

= −λF(U,V,W )+λ (λ +1)η((∇U φ)(V ))η(W ).

On the other hand, since

0 =U [g(φV,ξ )] = g(∇U φV,ξ )+g(φV,∇U ξ )⇒ g(∇U φV,ξ ) = 0,

we have
η((∇U φ)(V )) = g((∇U φ)(V ),ξ ) = g(∇U φV,ξ )−g(φ(∇UV ),ξ ) = 0.

Thus, the equation (ii) is proved.
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For the proof of (iii), consider the φ− basis {ei,φei,ξ}(i = 1, ...,n) for the structure (φ ,ξ ,η ,g). Then {ēi, ¯φei, ξ̄} is the φ−
basis for the structure (φ̄ , ξ̄ , η̄ , ḡ), where

ēi =
1√
λ

ei, ¯φei =
1√
λ

φei, ξ̄ =
1
λ

ξ (λ > 0)

and
ḡ(ēi, ēi) =−ḡ( ¯φei, ¯φei) =−ḡ(ξ̄ , ξ̄ ) =−1.

Since ξ is parallel, by (i) ∇̄ = ∇. So, by direct calculation we get

F̄(ēi, ēi,U) =−F(ei,ei,U),

F̄( ¯φei, ¯φei,U) =−F(φei,φei,U),

F̄(ξ̄ , ξ̄ ,U) = F(ξ ,ξ ,U) = 0.

So, by the definition of the from θ , we have

θ̄F̄(U) = −
n

∑
i=1

F̄(ēi, ēi,U)+
n

∑
i=1

F̄( ¯φei, ¯φei,U)

= −
n

∑
i=1

(−F(ei,ei,U))+
n

∑
i=1

(−F(φei,φei,U))

= θF(U).

Theorem 6.2. Let (φ ,ξ ,η ,g) belongs to the class G1. Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G1.

Proof. Let (φ ,ξ ,η ,g) belongs to the class G1. Then the fundamental tensor F satisfied the defining relation of the class G1,
that is

F(U,V,W ) =
1

2n−1
[g(U,φV )θF(φW )−g(U,φW )θF(φV )−g(φU,φV )θF(hW )+g(φU,φW )θF(hV )]. (6.1)

On the other hand, by the proposition (4.1), the vector field ξ is parallel and so, the equations in the proposition (6.1) hold. By
routine calculation, it can be seen that F̄ also satisfies the equation (6.1). Thus, (φ̄ , ξ̄ , η̄ , ḡ) is also in G1.

Theorem 6.3. Let (φ ,ξ ,η ,g) belongs to the class G2. Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G2.

Proof. Let (φ ,ξ ,η ,g) belongs to the class G2. Then the fundamental tensor F satisfies the defining relation of the class G2,
that is

F(φU,φV,W ) =−F(U,V,W ), θF = 0. (6.2)

Since ξ is parallel, F̄(U,V,W ) =−λF(U,V,W ) and θ̄F̄(U) = θF(U). Thus, F̄ also satisfies the equation (6.2).

Theorem 6.4. Let (φ ,ξ ,η ,g) belongs to the class G3 . Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G3.

Proof. Let F satisfies the defining relation of G3, that is,

F(ξ ,V,W ) = F(U,ξ ,W ) = 0, F(U,V,W ) =−F(V,U,W ). (6.3)

Since ξ is parallel in the class G3, F̄(U,V,W ) =−λF(U,V,W ) and so F̄ also satisfies (6.3).

Theorem 6.5. Let (φ ,ξ ,η ,g) belongs to the class G4 . Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G4.

Proof. It can be seen by direct calculation since ξ is parallel in G4.

Theorem 6.6. Let (φ ,ξ ,η ,g) belongs to the class G11 . Then so is the structure (φ̄ , ξ̄ , η̄ , ḡ).

Proof. It can see seen from the definition class and the proposition (6.1).
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Abstract

The 4 dimensional (4d) binomial matrix and its domains on the classical double sequence
spaces Lp, Mu, CP, CbP, Cr, C f and C f0 have been described and examined by Demiriz
and Erdem in the papers [1]-[3]. In this article, we describe two double sequence spaces
with the aid of the aforementioned matrix and study some properties of these. After giving
inclusion relations, we compute α−, β (bp)− and γ−duals and give some new matrix
classes related them.

1. Introduction

The function F defined by F : N×N→ ζ , (i, j) 7→ F(i, j) = ui j is called as double sequence where ζ denotes any nonempty set
and N= {0,1,2, ...}. Ω represents the vector space of all complex valued double sequences. Mu, CP, Cr and Lp (0 < p < ∞)
are the spaces of all bounded, convergent in the Pringsheim’s sense (or shortly P-convergent), regularly convergent and
p-absolutely summable double sequences, respectively. If any u = (ui j) ∈ Ω is P-convergent to a limit point L, it is stated
by P− limi, j→∞ ui j = L. It is worth mentioning that P-convergence does not require boundedness in double sequences. The
bounded sequences which are also P-convergent are indicated by CbP. It is also significant to remember that the space Lu
which was described by Zeltser [4] is the special case of the space Lp for p = 1.
Throughout this article, it is used the summation ∑i, j instead of ∑

∞
i=0 ∑

∞
j=0 and ϑ ∈ {p,bP,r}. With the notation of Zeltser [4],

we describe the double sequences ekl = (ekl
i j) and e by ekl

i j = 1 if (k, l) = (i, j) and ekl
i j = 0 for other cases, and e = ∑k,l ekl for

every i, j,k, l ∈ N. If dkli j = 0 for i > k or j > l or both for every k, l, i, j ∈ N, it is said that D = (dkli j) is a triangular matrix
and also if dklkl 6= 0 for every k, l ∈ N, then the 4d matrix D is called triangle.
Now, we shall deal with the matrix mapping. Let us consider double sequence spaces Ψ and Λ and the 4d complex infinite
matrix D = (dkli j). If for every u = (ui j) ∈Ψ, (Du)kl = ϑ −∑i, j dkli jui j is exists and is in Λ, then it is said that D is a matrix
mapping from Ψ into Λ and is written as D : Ψ→ Λ.
Let (Ψ,Λ) = {D = (dkli j)|D : Ψ→ Λ}. Here, D ∈ (Ψ,Λ) if and only if Dkl ∈ Ψβ (ϑ) and Du ∈ Λ for all u ∈ Ψ, where
Dkl = (dkli j)i, j∈N for every k, l ∈ N.

The domain Ψ
(ϑ)
D of D in a double sequence space Ψ consists of whose D-transforms are in Ψ is defined by the following way:

Ψ
(ϑ)
D :=

u = (ui j) ∈Ω : Du :=

(
ϑ −∑

i j
dkli jui j

)
k,l∈N

exists and is in Ψ

 .
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In the past, many authors were interested in double sequence spaces. Now, let us give some information about these studies. In
her doctoral dissertation, Zeltser [5] has fundamentally examined the topological structure of double sequences. Recently,
Altay and Başar [6] have been described the spaces BS , BS (t), C S P, C S bP, C S r and BV of double series. After that,
Talebi [7] defined and examined the space E r,s

p for 1 ≤ p < ∞ and also Yes.ilkayagil and Bas.ar [8] examined for 0 < p < 1
where E r,s

p =
{

u = (ui j) : E(r,s)u ∈Lp
}
. Here, E(r,s) indicates the Euler mean. More recently, Tug̃ [9]-[11] have defined

and examined some domains of the 4d matrix B(r,s, t,u).
On the other hand, Bişgin [12, 13] have introduced the sequence spaces br,s

0 ,br,s
c ,br,s

p and br,s
∞ of single sequences whose 2d

binomial matrix Br,s-transforms are convergent to zero, convergent, absolutely p-summable and bounded, respectively. After
that in [14], Bişgin have been examined the domains of Br,s on f and f0. Here, f and f0 symbolize the spaces of every almost
convergent and almost null single sequences, respectively.
A generalization for convergence of a double sequence is almost convergence was firstly introduced by Mòricz and Rhoades
[15]. It is said that u ∈Ω is almost convergent if

P− lim
ρ,ρ ′

sup
k,l>0

∣∣∣∣∣ 1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

ui j−L

∣∣∣∣∣= 0

and stated by f2− limu = L. Every almost convergent u ∈Ω are included by C f which is defined by the following way:

C f =

{
u = (ui j) ∈Ω : ∃L ∈ C 3 P− lim

ρ,ρ ′
sup
k,l>0

∣∣∣∣∣ 1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

ui j−L

∣∣∣∣∣= 0, uniformly in k, l

}
.

Moreover, the space of almost null double sequences C f0 is obtained from C f by taking L = 0.
It is significant to say that the convergence of a double sequence does not require its almost convergence. However, the
inclusion CbP ⊂ C f ⊂Mu is valid.
With the notion Başarır [16], it is said that u = (ukl) ∈Ω is strongly almost convergent to a limit point L1 if

P− lim
ρ,ρ ′

sup
k,l>0

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣ui j−L1
∣∣= 0, uniformly in k, l ∈ N.

In that case, this stuation is shown by [ f2]− limu = L1.
Every strongly almost convergent u ∈Ω are included by

[
C f
]

which is defined by the following way:

[
C f
]

=

{
u = (ui j) ∈Ω : ∃L1 ∈ C 3 P− lim

ρ,ρ ′
sup
k,l>0

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣ui j−L1
∣∣= 0, uniformly in k, l

}
.

Furthermore, the space of strongly almost null double sequences
[
C f0

]
is obtained from

[
C f
]

by taking L1 = 0.
Between the mentioned spaces, the inclusion relations CbP ⊂

[
C f0

]
⊂
[
C f
]
⊂Mu and CbP ⊂ C f0 ⊂ C f ⊂Mu strictly hold.

Moreover, the spaces
[
C f
]

and
[
C f0

]
are Banach spaces with norm

‖u‖[C f ] = sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣ui j
∣∣ .

For further information about single and double sequence spaces and related topics, the reader may refer to some of the papers
[17]-[39] and references therein.
Our main purpose in this article is to investigate the domains of 4d binomial matrix on the spaces

[
C f
]

and
[
C f0

]
.

2. Strongly almost convergent binomial double sequence spaces

Let r, s and r+ s are nonzero real numbers. We have been defined the 4d binomial matrix B(r,s) = (br,s
kli j) of orders r, s in [1] as

follows:

br,s
kli j :=


1

(r+s)k+l

(
k
i

)(
l
j

)
sk+ j−irl+i− j , 0≤ i≤ k , 0≤ j ≤ l,

0 , otherwise,
(2.1)

for every k, l, i, j ∈ N. As can be understood from its definition, B(r,s) is a triangle. In that case, we write the B(r,s)-transform of
u ∈Ω as

νkl := (B(r,s)u)kl =
k,l

∑
i, j

1
(r+ s)k+l

(
k
i

)(
l
j

)
sk+ j−irl+i− jui j, (2.2)
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for every k, l ∈ N. We will assume unless stated otherwise that the double sequences u = (ui j) and ν = (νi j) are connected
with the relation (2.2) and r, s and r+ s are nonzero real numbers. We would like touch on a point, when it is chosen r+ s = 1,
B(r,s) is reduced to the 4d Euler matrix E(r,s). So, our matrix B(r,s) generalizes the E(r,s). Consider that the 4d unit matrix
I = (δkli j) defined by

δkli j =

 1 , (k, l) = (i, j),

0 , otherwise.

From the equality
δkli j = ∑

m,n
br,s

klmncr,s
mni j,

one can see that the inverse {B(r,s)}−1 =C(r,s) = (cr,s
kli j) as

cr,s
kli j :=


(−1)k+l−(i+ j)

(
k
i

)(
l
j

)
sk−l−irl−k− j(r+ s)i+ j , 0≤ i≤ k,0≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N.
A 4d matrix D is said to be RH-regular if it maps every bounded P-convergent sequence into a P-convergent sequence with the
same P-limit [22, 32]. In [1], it was proven that 4d binomial matrix described by (2.1) is RH-regular for r.s > 0. In the rest of
the study, it will be assumed that r.s > 0.
Now, we introduce the sets Br,s

[ f ] and Br,s
[ f0]

by

Br,s
[ f ] =

{
u = (ui j) ∈Ω : ∃L ∈ C 3 P− lim

ρ,ρ ′
sup
k,l>0

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j
−L
∣∣∣∣= 0, uniformly in k, l

}
,

Br,s
[ f0]

=

{
u = (ui j) ∈Ω : P− lim

ρ,ρ ′
sup
k,l>0

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j

∣∣∣∣= 0, uniformly in k, l

}
.

Theorem 2.1. The sets Br,s
[ f ] and Br,s

[ f0]
are linear spaces.

Proof. Since it is easy to see, we omit it.

Theorem 2.2. The sequence spaces Br,s
[ f ] and Br,s

[ f0]
are Banach spaces with the norm

‖u‖Br,s
[ f ]
= sup

ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j

∣∣∣∣ . (2.3)

Proof. Since it can be similarly proven for the space Br,s
[ f0]

, it will be proven for Br,s
[ f ].

Consider any cauchy sequence u(m) =
{

u(m)
i j

}
i, j∈N

∈Br,s
[ f ]. In that case, for ε > 0 there exists a N ∈ N+ such that

∥∥∥u(m)−u(n)
∥∥∥

Br,s
[ f ]

= sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u(m)
)

i j
−
(

B(r,s)u(n)
)

i j

∣∣∣∣< ε (2.4)

for all m,n > N. Thus, it is concluded from (2.4),
{(

B(r,s)u(m)
)

i j

}
is also Cauchy in

[
C f
]
. Since,

[
C f
]

is a Banach space, we

can write {(
B(r,s)u(m)

)
i j

}
−→

{(
B(r,s)u

)
i j

}
as m→ ∞ and using these infinitely many limit points, we can define double sequence

{(
B(r,s)u

)
i j

}
.

Now, by taking the limit as n→ ∞ on (2.4), we have

sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u(m)
)

i j
−
(

B(r,s)u
)

i j

∣∣∣∣< ε

for all ε > 0, m > N and i, j ∈ N.
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Furthermore, since u(m) ∈Br,s
[ f ], it is clear that B(r,s)u(m) ∈

[
C f
]

and

sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u(m)
)

i j

∣∣∣∣≤M

for a positive real number M. Now, we can say by taking supremum over ρ,ρ ′,k, l ∈ N on the inequality

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j

∣∣∣∣ ≤ 1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u(m)
)

i j
−
(

B(r,s)u
)

i j

∣∣∣∣
+

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u(m)
)

i j

∣∣∣∣< ε +M

that B(r,s)u ∈
[
C f
]
, that is u ∈Br,s

[ f ]. Thus, it is concluded that Br,s
[ f ] is a Banach space with the norm ‖u‖Br,s

[ f ]
defined by (2.3).

Theorem 2.3. The double sequence spaces Br,s
[ f ] and Br,s

[ f0]
are linearly norm isomorphic to the spaces

[
C f
]

and
[
C f0

]
,

respectively.

Proof. Because it can be similarly shown for the space Br,s
[ f ], we give the proof only for Br,s

[ f0]
. For the claim of theorem, we

must see that there is a linear bijection which preserves the norm from one to the other for the spaces Br,s
[ f0]

and
[
C f0

]
.

For this purpose, let us take the map T : Br,s
[ f0]
→
[
C f0

]
, u 7→ ν = Tu = B(r,s)u. The linearity of T is clear. Consider the equality

Tu = θ which yields us that ui j = 0 for every i, j ∈ N. So, u = θ and therefore, T is injective. Let us consider ν ∈
[
C f0

]
. It is

clear by defining

ukl =
k,l

∑
i, j=0

(−1)k+l−(i+ j)
(

k
i

)(
l
j

)
sk−l−irl−k− j(r+ s)i+ j

νi j (2.5)

that Tu = ν and u ∈Br,s
[ f0]

for every k, l ∈ N. So, the map T is surjective. Furthermore, by bearing in mind the following
equality

‖u‖Br,s
[ f0]

= sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j

∣∣∣∣
= sup

ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣νi j
∣∣= ‖ν‖[C f0 ]

that, T preserves the norm. As a result, the assertion of the theorem has been proved.

Theorem 2.4. The inclusion Br,s
[ f0]
⊂Br,s

[ f ] holds.

Proof. Consider any sequence u = (ui j) ∈Br,s
[ f0]

. In that case, from the relation (2.2), there exists a double sequence ν ∈
[
C f0

]
such that ν = (νkl) =

(
B(r,s)u

)
kl

. Since,
[
C f0

]
⊂
[
C f
]
, then ν ∈

[
C f
]

and this says us that u ∈Br,s
[ f ] which is the desired

result.

Theorem 2.5. The inclusion Mu ⊂Br,s
[ f0]

strictly holds.

Proof. From the inequality

‖u‖Br,s
[ f0]

= sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣(B(r,s)u
)

i j

∣∣∣∣
≤ sup

ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣∣ i

∑
m=0

j

∑
n=0

br,s
i jmn

∣∣∣∣∣ |umn|

≤ sup
m,n∈N

|umn| sup
ρ,ρ ′,k,l∈N

1
(ρ +1)(ρ ′+1)

k+ρ

∑
i=k

l+ρ ′

∑
j=l

∣∣∣∣∣ i

∑
m=0

j

∑
n=0

br,s
i jmn

∣∣∣∣∣
= ‖u‖

∞
,



Fundamental Journal of Mathematics and Applications 275

it is seen that any double sequence u taken in Mu is in Br,s
[ f0]

.

Now, let us select the sequence u = (ukl) =
(−s−r)k+l

rksl to show the strictness. In that case, we see that u /∈Mu but its B(r,s)-

transform B(r,s)u = (−1)k+lrksl

(r+s)k+l is in Mu∩CP = CbP ⊂
[
C f0

]
which means that u ∈Br,s

[ f0]
. In the light of all this said, it is seen

that u ∈Br,s
[ f0]
−Mu and the inclusion is strict, as claimed.

Combining Theorem 2.4 and Theorem 2.5, we may give the following corollary:

Corollary 2.6. The inclusion Mu ⊂Br,s
[ f ] strictly holds.

3. Dual spaces

In the current section, we deal with the computation of the α , β (bP) and γ-duals of the space Br,s
[ f ]. Before these, let us give

some information related duals.
The α−, β (bP)− and γ−duals of a Ψ⊂Ω are described as

Ψ
α :=

{
t = (ti j) ∈Ω : ∑

i, j
|ti jui j|< ∞ for all (ui j) ∈Ψ

}
,

Ψ
β (bP) :=

{
t = (ti j) ∈Ω : bP−∑

i, j
ti jui j exists for all (ui j) ∈Ψ

}
,

Ψ
γ :=

{
t = (ti j) ∈Ω : sup

k,l∈N

∣∣∣∣ k,l

∑
i, j=0

ti jui j

∣∣∣∣< ∞ for all (ui j) ∈Ψ

}
,

respectively. It is well known that Ψα ⊂Ψγ and if Ψ⊂ Λ, then Λα ⊂Ψα for the double sequence spaces Ψ and Λ.

Theorem 3.1.
{

Br,s
[ f ]

}α

= Lu.

Proof. To show the inclusion
{
Br,s

[ f ]

}α

⊂ Lu, assume the sequence t = (tkl) ∈
{

Br,s
[ f ]

}α

−Lu. So, ∑k,l |tklukl | < ∞ for

all u = (ukl) ∈ Br,s
[ f ]. If we consider e = ∑k,l ekl , we see that e ∈ Br,s

[ f ]. Since te = t /∈ Lu, we obtain from the equality

∑k,l |tkle|= ∑k,l |tkl |= ∞ that t /∈
{
Br,s

[ f ]

}α

which is a contradiction. Thus, it must be t ∈Lu and the inclusion
{

Br,s
[ f ]

}α

⊂Lu

is valid.
For the sufficiency part, let us take the sequences t = (tkl) ∈Lu and u = (ukl) ∈Br,s

[ f ]. Then, there exist a double sequence

ν = (νkl) ∈ C f with the relation νkl = (B(r,s)u)kl . Since C f ⊂Mu, then supk,l |νkl |< M1, where M1 ∈ R+. Therefore,

∑
k,l
|tklukl | = ∑

k,l
|tkl |

∣∣∣∣∣ k,l

∑
i, j=0

(−1)k+l−(i+ j)
(

k
i

)(
l
j

)
sk−l−irl−k− j(r+ s)i+ j

νi j

∣∣∣∣∣
≤ ∑

k,l
|tkl |

∣∣∣∣∣ 1
rksl

k,l

∑
i, j=0

(
k
i

)(
l
j

)
(−s)k−i(r+ s)i(−r)l− j(r+ s) j

∣∣∣∣∣ ∣∣νi j
∣∣

≤ M1 ∑
k,l
|tkl |

∣∣∣∣∣ 1
rksl

k

∑
i=0

(
k
i

)
(−s)k−i(r+ s)i

l

∑
j=0

(
l
j

)
(−r)l− j(r+ s) j

∣∣∣∣∣
= M1 ∑

k,l
|tkl |

and this says us that t ∈
{
Br,s

[ f ]

}α

. Thus, it is seen that Lu ⊂
{

Br,s
[ f ]

}α

.

Definition 3.2. [16] A subset E ⊂ N+×N+ is said to be uniformly of zero density if and only if the number of elements of
E which lie in the rectangle R is o(λ µ) as λ ,µ → ∞, uniformly in k, l ≥ 0, where R = {(i, j) : k ≤ i≤ k+λ −1, l ≤ j ≤
l +µ−1} and N+ = {1,2,3, ...}.
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Now, let us describe the sets w1−w7 that will be used in calculating β (bP)− and γ−duals.

w1 =

{
t = (ti j) ∈Ω : P− lim

k,l→∞
χ(k, l, i, j,m,n) = 0

}
,

w2 =

{
t = (ti j) ∈Ω : P− lim

k,l→∞
∑
i, j

χ(k, l, i, j,m,n) = 1

}
,

w3 =

{
t = (ti j) ∈Ω : P− lim

k,l→∞
∑

i
|χ(k, l, i, j,m,n)|= 0, ∀ j ∈ N

}
,

w4 =

{
t = (ti j) ∈Ω : P− lim

k,l→∞
∑

j
|χ(k, l, i, j,m,n)|= 0, ∀i ∈ N

}
,

w5 =

{
t = (ti j) ∈Ω : ∃M2,M3 ∈ N 3 ∑

i, j>M2

|χ(k, l, i, j,m,n)|< M3

}
,

w6 =

{
t = (ti j) ∈Ω : bP− lim

k,l→∞
∑
i∈E

∑
j∈E
|410χ(k, l, i, j,m,n)|= 0

}
,

w7 =

{
t = (ti j) ∈Ω : bP− lim

k,l→∞
∑
i∈E

∑
j∈E
|401χ(k, l, i, j,m,n)|= 0

}
,

where

χ(k, l, i, j,m,n) =
k

∑
m=i

l

∑
n= j

(−1)m+n−(i+ j)
(m

i

)(n
j

)
sm−n−irn−m− j(r+ s)i+ jtmn,

410χ(k, l, i, j,m,n) = χ(k, l, i, j,m,n)−χ(k, l, i+1, j,m,n),

401χ(k, l, i, j,m,n) = χ(k, l, i, j,m,n)−χ(k, l, i, j+1,m,n)

and E is uniformly of zero density.

Theorem 3.3.
{

Br,s
[ f ]

}β (bP)
=
⋂7

k=1 wk

Proof. Suppose that t = (tkl) ∈Ω and u = (ukl) ∈Br,s
[ f ]. Thus, ν = (νkl) ∈

[
C f
]

with B(r,s)u = ν . We obtain by the relation
(2.5) that

zkl =
k,l

∑
i, j=0

ti jui j

=
k,l

∑
i, j=0

ti j

{
i, j

∑
m,n=0

(−1)i+ j−(m+n)
(

i
m

)(
j
n

)
si− j−mr j−i−n(r+ s)m+n

νmn

}

=
k,l

∑
i, j=0

{
k

∑
m=i

l

∑
n= j

(−1)m+n−(i+ j)
(m

i

)(n
j

)
sm−n−irn−m− j(r+ s)i+ jtmn

}
νi j

= (Or,s
ν)kl (3.1)

for all k, l ∈ N, where Or,s =
(

or,s
kli j

)
defined by

or,s
kli j =

 χ(k, l, i, j,m,n) , 0≤ i≤ k, 0≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N. In that case, by bearing in mind (3.1), it is infered that tu = (tklukl) ∈ C S bP whenever u = (ukl) ∈Br,s
[ f ]

if and only if z = (zkl) ∈ CbP whenever ν = (νkl) ∈
[
C f
]
. This implies that t = (tkl) ∈

{
Br,s

[ f ]

}β (bP)
if and only if Or,s ∈([

C f
]
,CbP

)
and the proof is completed in view of Theorem 1 in [16].

Lemma 3.4. [11] A 4d matrix D = (dkli j) ∈
([

C f
]
,Mu

)
if and only if Dkl ∈

{[
C f
]}β (ϑ) for all k, l ∈ N and

sup
k,l∈N

∑
i, j

∣∣dkli j
∣∣< ∞. (3.2)
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Theorem 3.5.
{

Br,s
[ f ]

}γ

= w8∩C S ϑ , where

w8 =

{
t = (ti j) ∈Ω : sup

k,l∈N
∑
i, j
|χ(k, l, i, j,m,n)|< ∞

}
.

Proof. We easily reach the proof by the aid of (ii) of Theorem 4.4 in [3]. So, we omit it.

4. Matrix transformations

In this part, it will be given the classes
(
Br,s

[ f ],C f

)
reg

and
(
Br,s

[ f ],Mu

)
. Before these, it is needed to give the following lemma

which will be used in Theorem 4.2.

Lemma 4.1. [11] A 4d matrix D = (dkli j) ∈
([

C f
]
,C f
)

reg if and only if D ∈
(
CbP,C f

)
reg and ∑i, j∈E

∣∣411dkli j
∣∣→ 0 as

k, l→ ∞ for each set E which is uniformly zero density where

411dkli j = dkli j−dkl,i+1, j−dkli, j+1 +dkl,i+1, j+1.

Theorem 4.2. Consider the 4d infinite matrices D = (dkli j) and H = (hkli j) whose elements are connected with the equality

hkli j =
∞

∑
a=i

∞

∑
b= j

(a
i

)(b
j

)
sa−b−irb−a− j(r+ s)i+ jdklab.

In that case, a 4d matrix D = (dkli j) ∈
(
Br,s

[ f ],C f

)
reg

if and only if

Dkl ∈ {Br,s
[ f ]}

β (ϑ), (4.1)

sup
k,l∈N

∑
i, j

∣∣hkli j
∣∣< ∞, (4.2)

bP− lim
ρ,ρ ′→∞

σ(i, j,ρ,ρ ′,m,n) = 0, uniformly in m,n ∈ N, (4.3)

bP− lim
ρ,ρ ′→∞

∑
i, j

σ(i, j,ρ,ρ ′,m,n) = 1, uniformly in m,n ∈ N, (4.4)

bP− lim
ρ,ρ ′→∞

∑
i

∣∣σ(i, j,ρ,ρ ′,m,n)
∣∣= 0, uniformly in m,n ∈ N, (4.5)

bP− lim
ρ,ρ ′→∞

∑
j

∣∣σ(i, j,ρ,ρ ′,m,n)
∣∣= 0, uniformly in m,n ∈ N, (4.6)

∑
i, j∈E

∣∣411hkli j
∣∣→ 0, k, l→ ∞ (4.7)

for each set E which is uniformly of zero density where σ(i, j,ρ,ρ ′,m,n) = ∑
m+ρ

k=m ∑
n+ρ ′

l=n
hkli j

(ρ+1)(ρ ′+1) .

Proof. Suppose that the matrix D = (dkli j) ∈
(
Br,s

[ f ],C f

)
reg

. Then, Du exists and is in C f for all u = (ukl) ∈Br,s
[ f ], which

implies that ν = B(r,s)u ∈
[
C f
]

and Dkl ∈
{
Br,s

[ f ]

}β (ϑ)
. Thus, condition (4.1) holds. We have the following equality derived

from the (ς ,ξ )th−partial sums of the series ∑i, j dkli jui j by taking into account the relation between the terms of the sequences
u and ν ,

ς ,ξ

∑
i, j

dkli jui j =
ς ,ξ

∑
i, j

dkli j

[
i, j

∑
a,b=0

(−1)i+ j−(a+b)
(

i
a

)(
j
b

)
si− j−ar j−i−b(r+ s)a+b

νab

]

=
ς ,ξ

∑
i, j

[
ς

∑
a=i

ξ

∑
b= j

(−1)a+b−(i+ j)
(a

i

)(b
j

)
sa−b−irb−a− j(r+ s)i+ jdklab

]
νi j

(4.8)

for all k, l,m,n ∈ N. Let us define the 4d matrix

hkli j :=


∞

∑
a=i

∞

∑
b= j

(−1)a+b−(i+ j)
(a

i

)(b
j

)
sa−b−irb−a− j(r+ s)i+ jdklab , 0≤ i≤ k,0≤ j ≤ l,

0 , otherwise

(4.9)
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for all k, l, i, j ∈ N. In that case, by taking f2-limit on (4.8) as ς ,ξ → ∞, it is seen that Du = Hν . Thus, if we take into account
the fact that D ∈

(
Br,s

[ f ],C f

)
reg

if and only if H ∈
([

C f
]
,C f
)

reg with Lemma 4.1 and Theorem 3.1 in [39], we can reach the

conditions (4.2)-(4.7).
Conversely, from the condition (4.1), Du exists for all u = (ukl)∈Br,s

[ f ] such that ν = B(r,s)u∈
[
C f
]

and from (4.8) and (4.9), we
see that Du = Hν . Furthermore, we reach that H ∈

(
CbP,C f

)
reg by the aid of the conditions (4.2)-(4.6) and H ∈

([
C f
]
,C f
)

reg

from (4.7). Thus, D ∈
(
Br,s

[ f ],C f

)
reg

.

Theorem 4.3. A 4d matrix D = (dkli j) ∈
(
Br,s

[ f ],Mu

)
if and only if Dkl ∈

{
Br,s

[ f ]

}β (ϑ)
for all k, l ∈ N and the condition (3.2)

holds.

Proof. If we take into account the Lemma 3.4 with the 4d matrix H defined in Theorem 4.2 in place of the 4d matrix D, we
can easily reach the proof.

5. Conclusion

The concept of matrix domain was examined by several researchers on some single sequence spaces by using some special
matrices. As we have mentioned some of them in the current paper, double sequence spaces which are obtained by using the
domains of triangular 4d matrices have been studied by some authors recently. In the light of these and similar studies, as
a natural continuation of the papers [1]-[3], we described two double sequence spaces by using the domain of 4d binomial
matrix on the spaces of strongly almost convergent and strongly almost null double sequences. Moreover, we investigated their
some properties and inclusion relations related them, computed duals and characterized some matrix classes. We conclude that
the results obtained from the 4d binomial matrix B(r,s) is more general and extensive than the existent results obtained from the
4d Euler matrix E(r,s). We expect that our results might be a reference for further studies in this field.
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[14] M.C. Bişgin, The binomial almost convergent and null sequence spaces, Commun. Fac. Sci. Uni. Ank. Series A1, 67(1) (2018), 211-224.
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[25] M. Kirisci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers and Mathematics with Applications,

60(5) (2010), 1299–1309.
[26] M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2) (2004), 523-531.
[27] A.K. Noman, E.S. Al Yari, New general results on matrix domains of triangles in sequence spaces, Albaydha Uni. J., 3(2) (2021), 57-72.
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[37] M.Yeşilkayagil, F. Başar, On the characterization of a class of four dimensional matrices and Steinhaus type theorems, Kragujevac J. Math., 40(1)(2016),

35-45.
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Abstract

This paper concentrates on a simple population model incorporating fear. Firstly, positivity
and steady state analysis are performed, where the theoretical investigations show that
change in the level of fear in prey population does not effect the local stability of the
system around each equilibria (either stable or unstable). For the deterministic model, the
numerical simulations are plotted for the density of prey species as a function of various
system parameters. The stability analysis of the coexisting state shows that only transcritical
bifurcation, where the steady states intersect, is observed. Secondly, the model is analysed
with Gaussian noise term incorporated in the prey’s death rate. The model comprising
noise term turns the system into stochastic differential equations and irregular noise related
oscillations are observed in the densities of both species.

1. Introduction

Due to the complexity of the ecosystem, it is often challenging to predict the effects of the various parameters in the dynamics
of species using only statistical information. Therefore it is very crucial to incorporate mathematical formulations into
research to better comprehend the reasons and outcomes of the dynamics of species in the ecosystem. In particular, theoretical
formulations may help to foresee the required conditions for controlling ecological balance. In this context, the latest theories
regarding the evolution of predator-prey type interactions shed lights on the prediction of population dynamics for multiple
species, including their response to environmental conditions.

In mathematical terms, the impact of prey species response to predator species has been analysed using a wide variety
functional responses. Here, a functional response refers to the consumption rate of a predator on prey [1]. The most common
functional responses that have been used to model predator and prey interactions are Holling type I (i), Holling type II (ii) and
Holling type III (iii) functional responses, classified by Crawford Stanley Holling [2]-[4]. In this paper, Holling type I, leading
to a linear functional response will be taken into consideration.

The presence of prey species directly or indirectly depends on the presence of predators. Most of the available models
analyse the direct influence of predator species on the prey species such as predation via direct killing. However, the change
in the prey density may have also been affected due to indirect factors including psychological conditions such as fear. In
fact, scared prey species may change their habitat and live in various conditions, where the quality of the new habitat may
lead an increase or decrease in the density of prey population. There are many experimental studies to explore the role of fear
in a population [5]-[7]. From the mathematical point of view, the fear effect has been thoroughly explored in recent years.
For example, the role of fear in a prey-predator system with BeddingtonDeAngelis functional response has been studied by
Pal et al. [8]. The instability of a population dynamics due to large fear parameters has been analysed by Wang and Zou
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[9]. The impact of group defence along with fear has been discussed by Sasmal and Takeuchi [10]. See [11]-[13] for other
comprehensive works taking the fear effect into account.

Although previously studied deterministic models do not take stochastic effects into account, the random fluctuations may
occur in nature due to climate change or some short term diseases which may affect the evolution of species. In fact these
fluctuations may appear in any biological process. Therefore, it is worth to incorporate environmental noise in the model
to better capture the dynamics of species in ecology. Many scientist have studied models with Gaussian noise from various
point of view, including stochastic models with stage structure [14], foraging [15], anti-predator defence [13], intra-specific
competition [16], leading to stochastic differential equations.

This paper is organised as follows: The deterministic model given in [17] is revisited in Section 2, where positivity of
the model, its steady states and local stability analysis are derived respectively in Sections 2.1, 2.2 and 2.3. In Section 3,
incorporation of the white Gaussian noise in the prey’s death rate is discussed. Numerical simulations resulting from local
stability analysis, as well as the comparison between deterministic model and stochastic model are demonstrated in Section 5.
Furthermore the conditions under which prey and predator species go to extinction are provided in Section 4.

2. Deterministic dynamics of the model

A deterministic model based on the paper [17] is written as in the following:

dx
dt

= r0x f1(k,y)−dx−ax2− f2(x)y := A1(x,y, t),
dy
dt = y(−m+ c f2(x)) := B1(x,y, t), (2.1)

where parameters r0,k,d,a and m respectively stand for the birth rate for prey, the level of fear due to predator, the natural
death rate of prey, the death rate of prey as a result of intra-species competition and the natural death rate of predator. Here c
denotes the conversion rate from prey to predator biomass. All parameters stated in the model are positive for their biological
meaning. The function f1 denotes the fear factor and function f2 represents linear functional response.

The function f1(k,y) satisfies the following conditions:

f1(0,y) = 1, f1(k,0) = 1,
lim
k→∞

f1(k,y) = 0, lim
y→∞

f1(k,y) = 0,

∂ f1(k,y)
∂k

< 0,
∂ f1(k,y)

∂y
< 0.

(2.2)

and f2(x) = px is taken as a linear function. To make the system mathematically attainable, fear factor is adopted in a form of
f1(k,y) = 1/1+ ky, that satisfies the conditions given in equation (2.2) [17].

2.1. Positivity

It is straightforward to show that all solutions (x(t),y(t)) of the model given by (2.1) are non-negative with positive initial
conditions, i.e. (x0,y0) ∈ R2

+ for ∀t ∈ R+. Using the first equation in model (2.1), one can write that

dx
x

= A2(x,y, t)dt, (2.3)

where A2(x,y, t) = r0/(1+ ky)−d−ax− py. Integrating both sides of equation (2.3) it follows that

lnx− lnx0 =

t∫
0

A2(x,y,s′)ds′. (2.4)

Subtracting x from equation (2.4) leads to

x(t) = x0exp


t∫

0

A2(x,y,s′)ds′

 , ∀t > 0.

Similarly, positivity of the predator variable y can be shown as

dy
y

= B2(x, t)dt, ⇒ y = y0exp


t∫

0

B2(x,s′)ds′

 , ∀t > 0.

where B2(x,s) =−m+ cpx. Since (x0,y0) ∈ R2
+ for ∀t > 0, it is obtained that x(t)> 0 and y(t)> 0. Thus the interior of R2

+

is an invariant set of model (2.1). This is also biologically meaningful as the densities of prey and predator species are expected
to be non-negative.
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2.2. Steady state analysis

The model given by (2.1) has three steady states which can be found using A1(x,y, t) = 0 and B1(x,y, t) = 0. The first steady
state is the trivial equilibrium E0 = (0,0) where both prey and predator populations go to extinction. The second steady state
is semi trivial state S1 = ((r0−d)/a,0) bywhich prey population still exists in the system in the absence of predator. The
last steady state is coexisting state, say S2 = (x∗,y∗), where both prey and predator populations exist in the system. Here
x∗= m/cp can be easily found using B1(x,y, t) = 0 for y 6= 0. The critical value for predator y∗ are obtained solving

r0

1+ ky
−d−ax− py = 0, (2.5)

which can be rewritten for coexisting state as

(py∗+h)(ky+1) = r0, h = d +am/cp.

Here equation (2.5) has two roots one of which may be positive (thus biologically meaningful) under the condition r0 > h, for
which coexisting state S2 = (x∗,y∗) exists.

In addition the nullclines of the model can be similarly found:

x = m/cp, (straight line for predator nullcline),
pky2 +(hk+ p)y+h− r0 = 0, (parabolic curve for prey nullcline).

2.3. Local stability analysis around coexisting state

Stability of the system (2.1) can be determined using linearisation argument, where the prey and predator densities are perturbed
from their steady state. Considering

x = x∗+x̃, and y = y∗+ỹ,

where accents ·̃ represent the perturbed variables. Substituding these in the original model the following linearised system of
equations are obtained:

dx̃
dt

=

(
r0

1+ ky∗
−d−2ax∗−py∗

)
x̃+
(
− kr0x∗
(1+ ky∗)2 − px∗

)
ỹ,

dỹ
dt

= cpy∗ x̃+(cpx∗−m) ỹ.

The coefficient matrix for the above linear system of equations can be written as

MJ =

(
r0

1+ky∗ −d−2ax∗−py∗ − kr0x∗
(1+ky∗)2 − px∗

cpy∗ cpx∗−m

)
for which corresponding characteristic polynomial are obtained using Det(MJ−µI ) = 0 where I is a 2×2 unit matrix and
µ is the eigenvalues of the system for local stability. The characteristic equation can be explicitly written as

µ
2−E1(MJ)µ +E2(MJ) = 0, (2.6)

where

E1 =
r0

1+ ky∗
−d−2ax∗−py∗+cpx∗−m,

E2 =

(
r0

1+ ky∗
−d−2ax∗−py∗

)
(cpx∗−m)+

(
kr0x∗

(1+ ky∗)2 + px∗
)

cpy∗

and the roots for the equation (2.6) is given as

µ1,2 =
1
2

[
E1(MJ)±

√
E1(MJ)−4E2(MJ)

]
.

It is worth noting that E1 and E2 respectively stand for trace and determinant of the matrix MJ .

In Figure 2.1, stability of the prey density is shown with regard to parameters p,k,a,r0 that respectively stand for the
strength of linear functional response, rate of fear due to predator, the death rate of prey due to intraspecies competition and
the birth rate of prey. As seen there is a switch in the stability when eigenvalues crosses the transcritical bifurcation, that is a
typical case in population models referring to invasion. In fact transcritical bifurcation demonstrates the onset of coexisting
state in the system [18, 19]. Here the dashed line indicates unstable state where the number of eigenvalues with positive real
part is 1, whereas the straight line indicates the stable state with both eigenvalues are found with negative real part.
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Figure 2.1: Transcritical bifurcation occurs in the model (2.1) with respect to various parameters, i.e. p, k, a and r0. See text around the
system (2.1) for biological interpretations of these parameters.

3. Analysis of the model with white Gaussian noise

Deterministic model provided in Section 2 does not comprise the role of environmental fluctuations which may be any unpre-
dictable factor including the quality of food, climate change, diseases as well as temperature [14, 20]. Hence incorporating
random noise in model parameters may significantly alter dynamics of both prey and predator species. Although any parameter
of the model may be affected by environmental noise, the uncertain growth and death rates may be particularly influenced, see
for example [16, 21, 22].

dx =
[
r0x f1(k,y)−dx−ax2− pxy

]
dt− εxdβ , dy = [cpxy−my]dt. (3.1)

which can be also written as

dx = A1(x,y, t)dt− εxdβ , dy = B1(x,y, t)dt. (3.2)

where β = {β (t); t > 0} denotes standart Wiener process. Here ε represents noise parameters. Here we assume that the death
rate of prey could be noisy, thus d = d + εβ̇ (t). The presence of noise terms turns the model (2.1) into a system of stochastic
differential equations. The numerical solutions of the system (3.1) can be found using Euler Maruyama method [23].

4. Extinction probability

The notion of extinction is one of the key subjects in population dynamics. In biological terms the extinction occurs in a
population if there is no individual that can reproduce or create a new generation in a long term [12]. In mathematical terms
a population goes to extinction with probability one if lim

t→∞
X (t) = 0, where X is the density of a population. Thus the

conditions for which the prey and predator species go to extinction can be found in a fluctuating environment as given in
system (3.1).
In this context from the first bit of stochastic equation (3.1) it can be written that

dx =
[
r0x f1(k,y)−dx−ax2− pxy

]
dt− εxdβ . (4.1)
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Considering U(t) = lnx(t) and V (t) = lny(t) and applying Itô formula, the equation (4.1) can be written as

d lnx(t) =

[
∂U
∂ t

+A1(x,y, t)
∂U
∂x

+
1
2
(−εx)2 ∂ 2u

∂x2

]
dt +(−εx)

∂U
∂x

dβ , (4.2)

=

(
A2(x,y, t)−

ε2

2

)
dt− εdβ , (4.3)

with initial values U(0) = lnU0 and V (0) = lnV0. Equation (4.3) can be rewritten as

dU(t) =

(
A2(eU ,eV , t)− ε2

2

)
− εdβ ,

=

(
r0

1+ keV −d−aeU − peV − ε2

2

)
dt− εdβ ,

≤
(

r0−d−aeU − ε2

2

)
dt− εdβ ,

dlnx ≤
(

r0−d−ax− ε2

2

)
dt− εdβ . (4.4)

Taking f̃ (x) = r0−d−ax− ε2/2 and finding the supremum of f̃ one can derive that f̃ ′(x) =−a < 0. This implies that f̃ is
an decreasing function and has maximum at x = 0. Thus it can be written that f̃ (0) = r0−d− ε2/2. From equation (4.4) it
follows that

lnx≤ lnx0 +

(
r0−d− ε2

2

)
t− εβ := H (t),

from this

limsup
t→∞

lnx(t)
t
≤ limsup

t→∞

H (t) = r0−d− ε2

2
.

thus this concludes that one can have limsup
t→∞

lnx
t ≤ 0 with the condition r0 ≤ d + ε2

2 and this leads to lim
t→∞

x(t) = 0.

5. Numerical simulations

In Figure 5.1, the evolution of prey density with respect to time is shown for different noise strengths where ε = 0 (a), ε = 0.002
(b), ε = 0.01 (c) and ε = 0.02 (d). The red and magenta lines represent the density of prey species deterministic and stochastic
models respectively. The system is stable with damping oscillations, leading to a stable spiral with complex eigenvalues having
negative real part, in the absence of noise as demonstrated in Fig. 5.1(a), corresponding to deterministic model. For a small
perturbation, e.g. ε = 0.002, the stochastic model demonstrates similar behaviour to deterministic model. Increasing noise
term a bit further, irregular and large amplitude oscillatory dynamics for a stochastic model is observed, see 5.1(c,d).
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(a) (b)

(c) (d)

Figure 5.1: Comparison for time evolution of prey (x) species between the deterministic model (2.1) and stochastic model (3.1) based on
different values of noise parameter ε = 0(a), ε = 0.002(b), ε = 0.01(c) and ε = 0.02(d) with initial conditions (x0,y0) = (0.2,0.1). Red and
magenta colors respectively correspond to deterministic and stochastic dynamics of prey population.

(a) (b)

(c) (d)

Figure 5.2: The comparison between phase portraits of two-component deterministic and stochastic prey-predator model, respectively
presented in (2.1) and (3.1) for different values of noise terms ε = 0(a), ε = 0.002(b), ε = 0.01(c) and ε = 0.02(d) with initial conditions
(x0,y0) = (0.2,0.1). (black star). Steady state of the system is given by black point at (xs,ys) = (0.25,0.0443).
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In Section 4 the analytical conditions for extinction of prey and predator species for the stochastic model are developed. Here
it has been discussed that the extinction of species depends on the strength of noise term. It is found that high values of
perturbation may lead extinction of both species. In Figure 5.3, it is demonstrated that prey and predator are wiped out from
the system with the condition r0 ≤ d + ε2/2 where ε = 0.2, r0 = 0.03 and d = 0.01.

(a) (b)

Figure 5.3: Extinction of prey and predator species with the condition r0 ≤ d + ε2/2, where ε = 0.2, r0 = 0.03 and d = 0.01.

In Figure 5.4, the corresponding phase portrait of the extinction case given in Fig. 5.3 is plotted for ε = 0.2. The blue and
cyan color respectively stand for deterministic and stochastic phase diagram. Here the initial condition is (x0,y0) = (0.2,0.1).
(black star) and the steady state of the system is given by black point at (xs,ys) = (0.25,0.0443). Increasing the noise term,
irregular nonperiodic random peaks are observed more frequently which can be also observed from the phase planes.

All simulations are performed using parameters: r0 = 0.03, k = 0.1, d = 0.01, a = 0.01, p = 0.5, m = 0.05, c = 0.4 with
increasing values of noise strengths (ε).

Figure 5.4: Phase diagram of the extinction state for prey and predator populations corresponding to Figure (5.3).



Fundamental Journal of Mathematics and Applications 287

6. Conclusion

Since natural fluctuations appear in many biological system, analyses performed on prey-predator type interactions with
stochastic effects are much realistic compared to deterministic models. In this paper, the fear effect in a population model with
a linear functional response is considered with random perturbation in prey’s death rate. The model in the absence of white
Gaussian noise is based on the paper written by Wang et al. [17], though without taking stochastic effects into account. Here a
further analysis of the deterministic model including its positivity is presented. Compared to its deterministic version, it is
also demonstrated that the high and low values of noise strength, denoted with ε , in the stochastic system give rise to rich
spectrum of interesting results. Furthermore, excessive noise strength may induces both species to undergo extinction with
r0 ≤ d + ε2/2. This result is also biologically understandable as high environmental fluctuations may have a drastic impact on
the populations and may lead extinction.

Numerical bifurcation is performed for different parameters and a transcritical point where stability changes is observed. In
fact, linear functional response is the simplest choice and one could expect more interesting dynamics with other functional
responses such as Holling type II and Holling type III. Although it is more challenging to perform analytical results for
stochastic system, the theoretical conditions where prey and predator species undergo extinction are determined. Here it is
found that high level of noise increase the probability of both species to be wiped out from the system.

One straightforward extension of this work would be to incorporate local and non-local delay terms in the model. In
fact the interactions between prey and predator are not straightforward and require some time lag, e.g. gestation period. Then
the stochastic model would be extended to comprise delay terms. It is well known that delay term in the model supports
periodic oscillations,where Hopf bifurcation may occur through a limit cycle around the coexisting state. Therefore, more
complex behaviour in the dynamics of both species are expected [24].
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