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Abstract: This paper addresses the problem of estimating the population mean of the study variable in two
occasions successive sampling. Based on the available information from the first and second occasions, class
of estimators produced under two situations, i) when the information on a positively correlated auxiliary
variable with the study variable is available on both the occasions and ii) when the information on the
auxiliary variable which is negatively correlated with the study variable is available on both the occasions.
Properties of the suggested class of estimators have been studied and compared with the sample mean
estimator with no matching from the previous occasion and traditional successive sampling linear estimator.
The study is supported by an optimal replacement policy. Empirical study also has been illustrated to show
the performance of the recommended estimators theoretically.

Key words : Study variable, Auxiliary variable, Bias, Mean squared error, Successive sampling.

1. Introduction
In most surveys, the interest is on the current average despite looking at it from one occasion

to the next occasion and all occasions. In successive (rotation) sampling, it is common to use the
entire information gathered on the previous occasions to improve the precision of the estimator on
the current occasion. The main objective of the sampling on two successive occasions is to estimate
the population parameters viz. population total, mean, ratio, product, etc. for the most recent
occasion as well as changes in the parameters from one occasion to the next occasion, see Okafor
and Arnab [6]. Jessen [4] was the first who pioneered the procedure of utilizing the information
obtained on the first occasion in improving the estimates of the current occasion. Patterson [7]
extended the work of Jessen from two occasions to more. Further, Eckler [2], Rao and Graham [8],
Singh et al. [10], Feng and Zou [3], Biradar and Singh [1], Singh and Vishwakarma [12], Singh and
Vishwakarma [13], Singh and Pal [15] among others have suggested several estimators by using
the auxiliary information for estimating the population mean on the current occasion successive
(rotation) sampling.
In this paper, we extend a procedure of utilizing the information of the auxiliary variable readily
available on both the equations under two different situations, by suggesting the estimator of the
population mean Ȳ of the study variable y:
Situation I: When the auxiliary variable z1 is positively correlated with the study variable y.
Situation II: Readily available auxiliary variable z2 is negatively correlated with the study vari-
able y.

*Corresponding author. E-mail address:vishwantrasharma07@gmail.com
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Keeping in view the situation I and II, we have suggested two estimators and studied the properties
of the suggested estimators. The behaviour of the suggested estimator is explained through empir-
ical study. We found that the proposed study is more efficient than the other considered estimators
when there is close association between auxiliary and study variables.

2. Notations used and the proposed estimator
Consider a finite population U = (U1,U2, ...,UN) of N distinct identifiable units. Let the variable

under study on the first (second) occasion be denoted by x(y) respectively. It is assumed that the
information on the auxiliary variable z1 and z2 are known and have positive and negative correlation
with x and y respectively readily available on both the occasions. A simple random sample (without
replacement) of n units is taken on the first occasion from population U . A random sub-sample of
m(= nλ) units is retained (matched) for use on the second occasion. Now, at the current occasion,
we again withdraw a simple random sample (without replacement) of size u= n−m= nμ units
from the remaining (N −n) units of the population so that the sample size on second occasion is
also n. λ and μ are the fractions of matched and fresh samples respectively at the second (current)
occasion such that (λ+μ= 1). We shall use the following notations:

� X̄, Ȳ , Z̄1, Z̄2 : The population means of variables x, y, z1 and z2 respectively.
� Sxy, Syz1 , Syz2 , Sxz1 , Sxz2 : The population covariance between variables in suffixes.
� ρxy, ρyz1 , ρyz2 , ρxz1 , ρxz2 : The population correlation coefficients between variables in suffixes.
� S2

x, S
2
y , S

2
z1
, S2

z2
: The population variances of x, y, z1 and z2 respectively.

For obtaining the expression of bias and mean squared error of the proposed estimator, we assume
that

yu = Ȳ (1+ e0u), ym = Ȳ (1+ e0m), xm = X̄(1+ e1m), xn = X̄(1+ e1n), z1u = Z̄1(1+ e1u),

z2u = Z̄2(1+ e2u), z1n = Z̄1(1+ e2n), z2n = Z̄2(1+ e2n′ ), byz1u =
syz1(u)

s2
z1(u)

, byx(m) =
syx(m)

s2
x(m)

,

syz1(u) = Syz1(u)(1+ e3u), s
2
z1(u)

= S2
z1(u)

(1+ e4u), syx(m) = Syx(m)(1+ e3m), s
2
x(m) = S2

x(m)(1+ e4m)
such that

E(e0u) =E(e0m) =E(e1m) =E(e1n) =E(e1u) =E(e2u) =E(e2n) =E(e2n′ ) =E(e3u)

=E(e4u) =E(e3m) =E(e4m) = 0 and

E(e20u) = ( 1
u
− 1

N
)C2

y ,E(e20m) = ( 1
m
− 1

N
)C2

y , E(e21m) = ( 1
m
− 1

N
)C2

x,E(e21n) = ( 1
n
− 1

N
)C2

x,

E(e21u) = ( 1
u
− 1

N
)C2

z1
,E(e22u) = ( 1

u
− 1

N
)C2

z2
,E(e22n) = ( 1

n
− 1

N
)C2

z1
,E(e

′2
2n) = ( 1

n
− 1

N
)C2

z2
,

E(e0ue0m) =−( 1
N
)C2

y ,E(e0ue1m) =−( 1
N
)ρxyCyCx, E(e0ue1n) =−( 1

N
)ρxyCyCx,

E(e0ue1u) = ( 1
u
− 1

N
)ρyz1CyCz1 , E(e0ue2u) = ( 1

u
− 1

N
)ρyz2CyCz2 ,E(e0ue2n) =−( 1

N
)ρxz1CyCz1 ,

E(e0ue2n′ ) =−( 1
N
)ρxz1CyCz1 ,E(e0me1m) = ( 1

m
− 1

N
)ρyxCyCx,E(e0me1n) = ( 1

n
− 1

N
)ρyxCyCx,

E(e0me1u) =−( 1
N
)ρyz1CyCz1 ,E(e0me2u) =−( 1

N
)ρyz2CyCz2 ,E(e0me2n) = ( 1

n
− 1

N
)ρyz1CyCz1 ,

E(e0me2n′ ) = ( 1
n
− 1

N
)ρyz2CyCz2 ,E(e0me2n) = ( 1

n
− 1

N
)C2

x,E(e1me1u) =−( 1
N
)ρxz1CxCz1 ,
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E(e1me2u) =−( 1
N
)ρxz2CxCz2 ,E(e1ne1u) =−( 1

N
)ρxz1CxCz1 ,E(e1ne2u) =−( 1

N
)ρxz2CxCz2 ,

E(e1ne2n) = ( 1
n
− 1

N
)ρxz1CxCz1 ,E(e1ne2n′ ) = ( 1

n
− 1

N
)ρxz2CxCz2 ,E(e1ue2u) = ( 1

u
− 1

N
)ρz1z2Cz1Cz2 ,

E(e1ue2n) =−( 1
N
)C2

z1
,E(e1ue2n′ ) =−( 1

N
)C2

z2
,E(e2ne2n′ ) = ( 1

n
− 1

N
)ρz1z2Cz1Cz2 ,

E(e1ue3u) =
(N−u)

u(N−2)
μ012
Z̄μ011

,E(e1ue4u) =
(N−u)

u(N−2)
μ003
Z̄μ002

,E(e2ue3u) =
(N−u)

u(N−2)
μ012
Z̄μ011

,

E(e2ue4u) =
(N−u)

u(N−2)
μ003
Z̄μ002

,E(e1me3m) =
(N−m)

m(N−2)
μ210

X̄μ110
,E(e1ne3m) =

(N−n)

n(N−2)
μ210

X̄μ110
,

E(e1me4m) =
(N−m)

m(N−2)
μ300

X̄μ200
,E(e1ne4m) =

(N−n)

n(N−2)
μ300

X̄μ200
,

μpqr =E((xi − X̄)
p
(yi − Ȳ )

q
(zi − Z̄)

r
), (p, q, r) = 0,1,2.,C2

x = S2
x/X̄

2,C2
y = S2

y/Ȳ
2,

C2
z1
= S2

z1
/Z̄2

1 ,C
2
z2
= S2

z2
/Z̄2

2 .

We assume that information on the auxiliary character is readily available on both occasions
under two different situations, one can define the estimator when

Situation I: Estimation of the population mean Ȳ of the study variable y when the
auxiliary variable ‘z1’ is positively correlated with the study variable.
In a situation, when the regression of Y on X is a straight line that does not pass through the origin
then regression estimators are used. Replacing regression estimator in place of a sample mean and
using in exponential-type estimators of Singh and Pal [15]. We have suggested two independent
estimators for estimating the population mean Ȳ of the study variable y on the second occasion.
One is based on the sample of size u(= nμ) drawn afresh on the second occasion defined by

Tu = tlreguexp

(
Z̄1 − z̄1u
Z̄1 + z̄1u

)
(2.1)

where tlregu = [ȳu + byz1(u)(Z̄1 − z̄1u)] and byz1(u) is the sample regression coefficient of y and z1
based on the sample size u.
Second estimator is based on the sample of size m(= nλ) common for both the occasions is defined
by

Tm = tlregmexp

(
x̄n − x̄m

x̄n + x̄m

)
exp

(
Z̄1 − z̄1n
Z̄1 + z̄1n

)
(2.2)

where tlregm = [ȳm+byx(m)(x̄n− x̄m)] and byx(m) is the sample regression coefficient of y and x based
on the matched sample of size m.

The estimator Tu may be used to estimate the population mean on each occasion, while the
estimator Tm is suitable to estimate the change over occasions. To device suitable estimation
procedures for both the problems simultaneously, a convex linear combination of Tu and Tm is
considered as a final estimator of the population mean Ȳ and is given by

T = φTu +(1−φ)Tm (2.3)

where φ(0≤ φ≤ 1) is an unknown scalar to be defined such that the mean squared error (MSE) of
T is minimum.

Remark 1 : For estimating the mean on each occasion the estimator Tu is suitable, which implies
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that for φ close to 1 while for estimating the change from one occasion to next occasion, the estima-
tor Tm is more suitable so that the value of φ might be close to 0. For asserting both the problems
simultaneously, the optimum (minimized) choice of φ is required.

3. Bias and Mean Square Error of T
Since Tu and Tm are biased estimators of Ȳ , therefore the estimator T is also a biased estimator

of Ȳ . For bias, express the estimator Tu and Tm in terms of ε
′
s, we have

Tu = {Ȳ (1+ e0u)− byz1(u)Z̄1e1u}exp
[−e1u

2

(
1+

e1u
2

)−1]
(3.1)

Tm = Ȳ {(1+ e0m)+ kyx(e1n − e1m + e1ne3m − e1ne4m − e1me3m + e1me4m)}
exp

[
e1n − e1m

2

(
1+

e1n + e1m
2

)−1]
exp

[−e2n
2

(
1+

e2n
2

)−1]
(3.2)

Expanding the right-hand side of equation (4) and (5) in terms of e’s and neglecting the terms
having power greater than two, we get

Tu
∼= Ȳ

[
1+ e0u −

(
1

2

)
e1u −

(
1

2

)
e0ue1u +

(
3

8

)
e21u − kyz1(e1u −

(
1

2

)
e21u − e1ue4u + e1ue3u

]

(Tu − Ȳ )∼= Ȳ

[
e0u −

(
1

2

)
e1u −

(
1

2

)
e0ue1u +

(
3

8

)
e21u − kyz1(e1u −

(
1

2

)
e21u − e1ue4u + e1ue3u

]

(3.3)

Tm
∼= Ȳ

[
1+ e0m −

(
1

2

)
(e1n − e1m − e2n)+

(
3

8

)
e22n +

(
1

2

)
(e0me1n − e0me1m−

e0me2n)−
(
1

4

)
(e21n − e21m + e1ne2n − e1me2n)+

(
1

8

)
(e21n + e21m − 2e1ne1m)

+kyx{e1n − e1m +

(
1

2

)
(e21n + e21m)−

(
1

2

)
(e1ne2n + e1ne1m − e1me2n+

e1ne1m)+ e1ne3m − e1ne4m − e1me3m + e1me4m}
]

(Tm − Ȳ )∼= Ȳ

[
e0m −

(
1

2

)
(e1n − e1m − e2n)+

(
3

8

)
e22n +

(
1

2

)
(e0me1n − e0me1m − e0me2n)−(

1

4

)
(e21n − e21m + e1ne2n − e1me2n)+

(
1

8

)
(e21n + e21m−

2e1ne1m)+ kyx(e1n − e1m +

(
1

2

)
(e21n + e21m)−

(
1

2

)
(e1ne2n + e1ne1m

−e1me2n + e1ne1m)+ e1ne3m − e1ne4m − e1me3m + e1me4m)

]
(3.4)

where, kyz1 = ρyz1
Cy

Cz1
and kyx = ρyx

Cy

Cx
.

Taking expectation on both sides of equation (6) and (7), one can obtain the bias of Tu and Tm to
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the first degree of approximation as

B(Tu) = Ȳ

[(
1

u
− 1

N

)[(
3

8

)
+ kyz1

]
C2

Z1
−
(
1

2

)(
1

u
− 1

N

)
ρyz1CyCz1 − kyz1(

N −u

u(N − 2)Z̄

)[
μ012

μ011

− μ003

μ002

]]
(3.5)

B(Tm) = Ȳ

[(
3

8

)(
1

n
− 1

N

)
C2

z1
+

(
1

2

)[(
1

n
− 1

m

)
ρyxCyCx −

(
1

n
− 1

N

)
ρyz1

CyCz1

]
−
(
7

8

)(
1

n
− 1

m

)
C2

x +
(N −n)

n(N − 2)X̄

[(
1

n

)(
μ210

μ110
− μ012

μ011

)
−(

1

m

)(
μ210

μ110

− μ012

μ011

)]]
(3.6)

For MSE, squaring both side of equation (6) and (7), and neglecting terms of e’s having power
greater than two, we have

(Tu − Ȳ )2 ∼= Ȳ 2

[
e0u −

(
1

2

)
e1u − kyz1e1u

]2

(3.7)

(Tm − Ȳ )2 ∼= Ȳ 2

[
e0m +

(
1

2

)
(e1n − e1m − e2n)− kyx(e1n − e1m)

]2

(3.8)

Taking expectations to both sides of equation (10) and (11) we get the MSE of Tu and Tm respec-
tively, as

MSE(Tu) = Ȳ 2

(
1

u
− 1

N

)[
Cy2 +C2

z1

{(
1

4

)
+ k2

yz1
+ kyz1

}
− (1+ 2kyz1)ρyz1CyCz1

]
(3.9)

MSE(Tm) = Ȳ 2

[(
1

m
− 1

N

){
C2

y +

(
1

4

)
C2

x + k2
yxC

2
x − ρyxCyCx + kyxC

2
x − 2kyxρyxCyCx

}

+

(
1

n
− 1

N

){(
1

4

)
C2

z1
−
(
1

4

)
C2

x + k2
yxC

2
x + ρyxCyCx − kyxC

2
x − ρyz1CyCz1 − 2kyxρyxCyCx

}]

(3.10)

The covariance between the two estimators Tu and Tm to the first degree of approximation is
obtained as follows:

Cov(Tu, Tm) =E[(Tu − Ȳ )(Tm − Ȳ )]

= Ȳ 2E
[(
e0u − (1/2)e1u − kyz1e1u

)(
e0m − (1/2)(e1n − e1m − e2n)+ kyx(e1n − e1m)

)]

= Ȳ 2E
[
e0ue0m − (1/2)e0me1u − kyz1e0me1u +(1/2)

(
e0ue1n − (1/2)e1ue1n − kyz1e1ue1n − e0ue1m+

(1/2)e1ue1m + kyz1e1ue1m − e0ue2n +(1/2)e1ue2n + kyz1e1ue2n
)
+ kyx

(
e0ue1n − (1/2)e1ue1n−

kyz1e1ne1u − e0ue1m +(1/2)e1ue1m + kyz1e1ue1m
)]

=−(Ȳ 2/N)
[
C2

y − ρyz1CyCz1 +(1/4)C2
z1
− kyz1ρyz1CyCz1 +(1/2)kyz1C

2
z1

]
(3.11)

Assumption 1. Considering the stability nature of the variables, the coefficient of variation of
x, y, z1, z2 are assumed to be approximately equal (Cy

∼=Cx
∼=Cz1

∼=Cz2), see Murthy [5], Reddy [9],
Singh and Ruiz-Espejo [11]. Under Assumption 1, we state the following theorems without proof.
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Theorem 1. The bias of the proposed estimator ‘T’ to the first degree of approximation is
given by

Proof.
B(T ) = φB(Tu)+ (1−φ)B(Tm) (3.12)

where

B(Tu) = Ȳ

[(
1

u
− 1

N

)(
3

8
+

ρyz1
2

)
C2

y − ρyz1

(
N −u

u(N − 2)Z̄1

)(
μ012

μ011

− μ003

μ002

)]
(3.13)

and

B(Tm) = Ȳ

[{(
3

8

)(
1

n
− 1

N

)
+

(
1

2

){(
1

n
− 1

m

)
ρyx −

(
1

n
− 1

N

)
ρyz1

}
C2

y

−
(
7

8

)(
1

n
− 1

m

)}
+

N −n

n(N − 2)X̄

{(
1

n

)(
μ210

μ110

− μ012

μ011

)
−
(

1

m

)
(
μ210

μ110

− μ300

μ200

)}]
(3.14)

Theorem 2. The MSE of ‘T’ to the first degree of approximation is obtained by

Proof.

MSE(T ) = φ2MSE(Tu)+ (1−φ)2MSE(Tm)+ 2φ(1−φ)Cov(Tu, Tm), (3.15)

where

MSE(Tu) =

(
1

u
− 1

N

)[
5

4
− ρ2yz1

]
S2
y , (3.16)

MSE(Tm) =

[
1

m

(
5

4
+ ρ2yx

)
+

1

n

(
ρyz1 + ρ2yx

)
− 1

N

(
5

4
− ρyz1

)]
S2
y (3.17)

and

Cov(Tu, Tm) =−S2
y

N

[
5

4
− ρyz1

2
− ρ2yz1

]
(3.18)

4. Minimum mean squared error of the estimator ‘T’
Since MSE(T) in equation (18) is a function of unknown constant φ, therefore, it can be mini-

mized with respect to φ and equating it to zero, we get the optimum value of φ as

φopt =
[MSE(Tm)−Cov(Tu, Tm)]

[MSE(Tu)+MSE(Tm)− 2Cov(Tu, Tm)]
(4.1)

By substituting the value of optimum ‘φ’ from equation (22) in equation (18) we will have the
minimum MSE of ‘T’ as

min.MSE(T ) =
[MSE(Tu)MSE(Tm)− (Cov(Tu, Tm))

2]

[MSE(Tu)+MSE(Tm)− 2Cov(Tu, Tm)]
(4.2)

Substituting the values of MSE(Tu), MSE(Tm) and Cov(Tu, Tm) in equations (22) and (23), we
will have the value of φopt and min.MSE(T), respectively.
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For simplification, further we use the following notations,

δ1 =Nα2 −nα5, δ2 =Nα1 −Nα2 −nα5 −Nα4, δ3 = n2α2
8 −nNα2α4 −n2α4α7,

δ4 =N 2α2α4 +n2(α4α7 −α82),δ5 =N 2α1α4 −N 2α2α4 −nNα4α7,

α1 = (5/4)− ρ2yx,α2 = ρyz1 − ρ2yx,α3 = ρ2yz1 − (ρyz1/2), α4 = (5/4)− ρ2yz1 ,

α5 = ρ2yz1 , α7 = (5/4)− ρyz1 ,α8 = (5/4)− (ρyz1/2)− ρ2yz1 .

Now, we have the reduced form of φopt and min.MSE(T) from equation (22) and (23) as

φopt =
[μNα1 −μ(1−μ)(Nα2 +nα3)]

[μNα1 − (1−μ)(μNα2 +nμα5 −Nα4)]
(4.3)

and

min.MSE(T ) =

(
S2
y

nN

)
μ2δ3 +μδ4 + δ5

μ2δ1 +μδ2 +Nα4

(4.4)

5. Optimum replacement policy

For obtaining the optimum value of μ (fraction of a sample to be taken afresh at the second

occasion) so that the population mean Ȳ may be estimated with maximum precision, we minimize

MSE of T in equation (25) by differentiating it with respect to ‘μ’ and hence we get the optimum

value of ‘μ’ as

μ2λ1 +μλ2 +λ3 = 0 (5.1)

where λ1 = (δ2δ3 − δ1δ4); λ2 = (2Nα4δ3 − 2δ1δ5); λ3 = (Nα4δ4 − δ2δ5).

Solving equation (26) for ‘μ’, we get

μ̂=
−λ2 ±

√
λ2
2 − 4λ1λ3

2λ1

(5.2)

The value of μ̂ exists, if λ2
2 ≥ 4λ1λ3. For any combinations of correlations (ρyx, ρyz1) that satisfy the

condition of solution, two values of μ̂ are possible. If both the two values μ̂ are admissible, then the

lowest one is best. Substituting the admissible values of μ̂, say μ0, from equation (27) into (25),

we get the optimum value of the mean squared error of ‘T’, which is given by

min.MSE(T )opt =

(
S2
y

nN

)[
μ2
0δ3 +μ0δ4 + δ5

μ2
0δ1 +μ0δ2 +Nα4

]
(5.3)
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6. Efficiency comparison
The percent relative efficiencies of the estimators T with respect to (i) ȳn, when there is no

matching, (ii) usual successive sampling estimator, ˆ̄Y = ψȳu +(1−ψ)ȳd′ , when no auxiliary infor-
mation is used at any occasion, where [ȳd′ = ȳm + bmyx(x̄n − x̄m)] have been obtained for different

choices of ρyx, ρyz1 and ρyz2 . Since ȳn and ˆ̄Y are unbiased estimators of the population mean Ȳ ,

the variance of ȳn and the minimum variance of ˆ̄Y [as given in Sukhatme et al.[13]] are given by

V (ȳn) =
1− f

n
S2
y (6.1)

V ( ˆ̄Y ) =

[(
1

2

){
1+

√
(1− ρ2yx)

}
− f

]
S2
y

n
(6.2)

From (27), (28), (29), and (30) the percent relative efficiencies of the estimators ‘T’ with respect
to Ȳn are given by

E1 = PRE(T, ȳn) =
V (ȳn)

min.MSE(T )opt
× 100

=
N(1− f)(μ2

0δ1 +μ0δ2 +Nα4)

μ2
0δ3 +μ0δ4 + δ5

× 100 (6.3)

E2 = PRE(T, ˆ̄Y ) =
V ( ˆ̄Y )

min.MSE(T )opt
× 100

=
N
[{

1+
√

(1− ρ2yx)
}− 2f

]
(μ2

0δ1 +μ0δ2 +Nα4)

2(μ2
0δ3 +μ0δ4 + δ5)

× 100 (6.4)

For N = 2000, n= 200 and various choices of correlations (ρyx, ρyz1) and using the formulae from
equations (27), (31) and (32) we have computed the optimum values of μ0 and percent relative
efficiencies E1 and E2. The findings are displayed in Table 1.

Table 1. Optimum values μ0 and percent relative efficiency of T with respect to ȳn and ˆ̄Y .

ρyx 0.2 0.3 0.4 0.5
ρyz1 μ0 E1 E2 μ0 E1 E2 μ0 E1 E2 μ0 E1 E2

0.6 0.72 101.46 100.32 0.75 102.23 99.61 0.80 103.91 - 0.90 103.91 -
0.7 0.65 112.20 110.94 0.67 113.18 110.28 0.71 114.49 109.18 0.78 115.92 107.30
0.8 0.58 128.32 126.88 0.59 129.57 126.25 0.62 131.31 125.22 0.67 133.45 123.52
0.9 0.48 155.05 153.31 0.50 156.70 152.69 0.52 159.05 151.67 0.55 162.10 150.03

ρyx 0.6 0.7 0.8 0.9
ρyz1 μ0 E1 E2 μ0 E1 E2 μ0 E1 E2 μ0 E1 E2

0.6 1.13 102.77 91.35 2.16 - - -1.33 178.14 138.56 0.07 154.09 105.80
0.7 0.91 116.70 103.74 1.25 112.55 - * - - -0.27 184.80 126.89
0.8 0.75 135.61 120.54 0.9 135.96 114.37 1.59 119.04 - -1.54 281.87 193.53
0.9 0.60 165.71 147.30 0.70 169.04 142.19 0.94 166.72 129.67 * - -

Note : * denotes μ0 does not exist and − implies very low efficiency.

It is envisaged from Table 1 that the proposed estimator ‘T’ is more efficient than the estimators

ȳn and ˆ̄Y for different levels of correlation between the variables (y and x) and (y and z1). The
following point have been noted from the Table 1 as



Sharma and Kumar: Improved Estimators
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1. For moderate to high correlation between y and z1, efficiency increases with respect to ȳn and
ˆ̄Y .
2. When the correlation between y and x is very high i.e, ρyx = 0.9 corresponding to the different

levels of correlation between y and z1 i.e, (ρyz1 = 0.6 to 0.9), the proposed estimator ‘T’ performs

efficiently among ȳn and ˆ̄Y respectively.
3. With different levels of correlation between y and z1 i.e, (ρyz1 = 0.6 to 0.9) and for different

correlation between y and x i.e, (ρyx = 0.2 to 0.9), the PRE of the proposed estimator T increases
except the case when ρyx = 0.7 and 0.8 and ρyz1 = 0.6 to 0.9 where the PRE of the proposed estima-
tor first decreases then increases because the value of μ0 first increases then decreases respectively.

Situation II : Estimation of the population mean Ȳ of the study variable ‘y’ when
the auxiliary variable z2 is negatively correlated with the study variable ‘y’.

This section deals with case II of our problem, where the correlation between study variable ‘y’
and the auxiliary variable z2 is negative. In this case, for estimating the population mean Ȳ at
the current (second) occasion with negatively correlated auxiliary variable z2 at the first (second)
occasion, we suggest the following estimators as

T ∗
u = {ȳu + byz2(u)(Z̄2 − z̄2u)}exp

(
z̄2u − Z̄2

z̄2u + Z̄2

)
(6.5)

where byz2(u) is the sample regression coefficient of y and z2 based on the sample size u.

T ∗
m = {ȳm + byx(m)(x̄n − x̄m)}exp

(
x̄n − x̄m

x̄n + x̄m

)
exp

(
z̄2n − Z̄2

z̄2n + Z̄2

)
(6.6)

where byx(m) is the sample regression coefficient of y and x based on the matched sample of size m.
Consider the linear combination of T ∗

u and T ∗
m, we define the following estimator as

T ∗ = φ∗T ∗
u +(1−φ∗)T ∗

m (6.7)

where φ∗ is any suitably chosen scalar.
Using the result from section ‘2’, one can obtain the bias and mean square error of T ∗

u and T ∗
m

respectively, results of which are mentioned in the form of theorems.

Theorem 3. The bias of the proposed estimator T ∗ to the first degree of approximation is

Proof.
B(T ∗) = φ∗B(T ∗

u )+ (1−φ∗)B(T ∗
m) (6.8)

where

B(T ∗
u ) = Ȳ

[(
1

u
− 1

N

)[
ρyz2CyCz2

2
− C2

z2

8

]
− kyz2

(
1

u
− 1

N

)
C2

z2

2
+

kyz2

(
N −u

u(N − 2)Z̄2

)(
μ003

μ002

− μ012

μ011

)]
(6.9)

and

B(T ∗
m) = Ȳ

[(
1

2

)(
1

n
− 1

N

)
ρyz2CyCz2 −

(
C2

z2

8

)(
1

n
− 1

N

)
−
((

7

8

)
1

n
− 1

m

)
C2

x (6.10)

+

(
1

2

)(
1

n
− 1

m

)
ρyxCyCx +

(
1

4

)(
1

n
− 1

N

)
ρxz2CxCz2+

kyx

{
1

(N − 2)X̄

(
μ210

μ110

− μ300

μ200

)(
N −n

n
− N −m

m

)}]
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where kyx = ρyx
Cy

Cx
, kyz2 = ρyz2

Cy

Cz2
.

Theorem 4. To the first degree of approximation, the MSE of ‘T ∗’ is given by

Proof.

MSE(T ∗) = φ∗2MSE(T ∗
u )+ (1−φ∗)2MSE(T ∗

m)+ 2φ(1−φ)Cov(T ∗
u , T

∗
m) (6.11)

where,

MSE(T ∗
u ) = Ȳ 2

(
1

u
− 1

N

)[
C2

y +C2
z2
((1/4)+ k2

yz2
− ρyz2)+ (1− 2kyz2)ρyz2CyCz2

]
(6.12)

MSE(T ∗
m) = Ȳ 2

[(
1

m
− 1

N

){
C2

y +

(
1

4

)
C2

x + k2
yxC

2
x − ρyxCyCx + kyxC

2
x − 2kyxρyxCyCx

}
+(

1

n
− 1

N

){(
1

4

)
C2

z2
−
(
1

4

)
C2

x − k2
yxC

2
x + ρyxCyCx + ρyz2CyCz2 − kyxC

2
x +2kyxρyxCyCx

}]

(6.13)

and

Cov(T ∗
u , T

∗
m) =−(Ȳ 2/N)(C2

y + ρyz2CyCz2 − kyz2ρyz2CyCz2 +(1/4)C2
z2
− (1/2)ρyz2C

2
z2
) (6.14)

Theorem 5. Considering Assumption 1, the bias of the proposed estimator ‘T ∗’ reduces to

Proof.

B(T ∗) = φ∗B(T ∗
u )+ (1−φ∗)B(T ∗

m) (6.15)

where

B(T ∗
u ) = Ȳ

[
ρyz2

{(
N −u

u(N − 2)Z̄2

)(
μ003

μ002

− μ012

μ011

)}
−
(
1

u
− 1

N

)(
1

8

)]
(6.16)

and

B(T ∗
m) = Ȳ

[{(
1

n
− 1

N

)(
ρyz2
2

− 1

8

)
−
(
1

n
− 1

m

)(
(
7

8
)− ρyx

2
− ρxz2

4

)}
C2

y+ (6.17)

ρyx

{
1

(N − 2)X̄

(
μ210

μ110

− μ300

μ200

)(
N −n

n
− N −m

m

)}]

Theorem 6. Under Assumption 1, the MSE of T ∗ to the first degree of approximation reduces
to

Proof.

MSE(T ∗) = φ∗2MSE(T ∗
u )+ (1−φ∗)2MSE(T ∗

m)+ 2φ(1−φ)Cov(T ∗
u , T

∗
m)

(6.18)

where,

MSE(T ∗
u ) = (1/u− 1/N)[(5/4)− ρ2yz2 ]S

2
y , (6.19)

MSE(T ∗
m) = [(1/m)(5/4− ρ2yx)+ (1/n)(ρ2yx + ρyz2)− (1/N)(5/4+ ρyz2)]S

2
y (6.20)

and

Cov(T ∗
u , T

∗
m) =−(S2

y/N)((5/4)+ (1/2)ρyz2 − ρ2yz2) (6.21)
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7. Minimum mean squared error of the estimator T ∗

For minimum MSE of T ∗, we partially differentiate equation (46) with respect to the unknown
constant φ∗ and equating it to zero, we get the optimum value of φ∗ as

φ∗
opt =

[MSE(T ∗
m)−Cov(T ∗

u , T
∗
m)]

[MSE(T ∗
u )+MSE(T ∗

m)− 2Cov(T ∗
u , T

∗
m)]

=
[μnNα1 −μ(1−μ)(Nα

′
2 +nα

′
3)]

[μNα1 − (1−μ)(μNα
′
2 +nμα

′
5 −Nα

′
4)]

(7.1)

Putting the value of φ∗
opt from equation (50) in equation (46) we get the minimized MSE of T ∗ as

min.MSE(T ∗) =
[MSE(T ∗

u )MSE(T ∗
m)−Cov(T ∗

u , T
∗
m)

2
]

[MSE(T ∗
u )+MSE(T ∗

m)− 2Cov(T ∗
u , T

∗
m)]

=

(
S2
y

nN

)[
μ2δ

′
3 +μδ

′
4 + δ

′
5

μ2δ
′
1 +μδ

′
2 +Nα

′
4

]
(7.2)

where
δ
′
1 = nα

′
2 −Nα

′
5, δ

′
2 =Nα1 +Nα

′
2 −nα

′
5 −Nα

′
4, δ

′
3 = n2α

′2
8 −nNα

′
2α

′
4 −n2α

′
4α

′
7,

δ
′
4 =N 2α

′
2α

′
4 +n2(α

′
4α

′
7 −α

′2
8 )+nNα

′
4(α

′
7 +α

′
2 −α1),

δ
′
5 =N 2α1α

′
4 −N 2α

′
2α

′
4 −nNα

′
4α

′
7,

α1 = (5/4)− ρ2yx, α
′
2 = ρyz2 + ρ2yx, α

′
3 = ρ2yz2 + ρyz2/2, α

′
4 = (5/4)− ρ2yz2 ,

α
′
5 = ρ2yz2 , α

′
7 = (5/4)+ ρyz2α

′
8 = (5/4)+ (ρyz2/2)− ρ2yz2

8. Optimum replacement policy in case of negative correlation between study and
auxiliary variables.

In this section, we will obtain the optimum value of μ (fraction of sample to be drawn afresh at
the second occasion) so that the population mean Ȳ may be estimated with maximum precision.
Differentiating the min.MSE(T ∗) given by equation (52) with respect to μ and equating to zero we
get

μ2(δ
′
2δ

′
3 − δ

′
1δ

′
4)+μ(2Nα

′
4δ

′
3 − 2δ

′
1δ

′
5)+ (Nα

′
4δ

′
4 − δ

′
2δ

′
5) = 0

μ2λ
′
1 +μλ

′
2 +λ

′
3 = 0 (8.1)

where λ
′
1 = δ

′
2δ

′
3 − δ

′
1δ

′
4, λ

′
2 = 2Nα

′
4δ

′
3 − 2δ

′
1δ

′
5, λ

′
3 =Nα

′
4δ

′
4 − δ

′
2δ

′
5

Solving equation (52) for μ, we get

μ̂=
−λ

′
2 ±

√
(λ

′2
2 − 4λ

′
1λ

′
3)

2λ
′
1

(8.2)

The value of μ̂ exists, if (λ
′2
2 − 4λ

′
1λ

′
3) ≥ 0. For any combinations of correlations (ρyx, ρyz2)) that

satisfy the solution, two values of μ̂ are possible. Substituting the admissible values of μ̂, say μ0,
from equation (53) into (51), we get the optimum value of mean squared error of T ∗, which is given
by

min.MSE(T ∗)opt =

(
S2
y

nN

)
(μ2

0δ
′
3 +μ0δ

′
4 + δ

′
5)

(μ2
0δ

′
1 +μ0δ

′
2 +Nα

′
4)

(8.3)
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Table 2. Optimum values μ0 and percent relative efficiency of T ∗ with respect to ȳn and ˆ̄Y .

ρyx 0.8 0.9
ρyz2 μ0 E∗

1 E∗
2 μ0 E∗

1 E∗
2

-0.70 0.086 131.14 102.00 * - -
-0.72 0.606 132.27 102.88 * - -
-0.74 0.431 131.20 102.04 2.161 97.40 60.77
-0.76 0.909 128.97 100.31 1.626 130.71 81.55
-0.78 0.221 126.15 98.12 3.690 68.37 46.94
-0.80 0.156 123.06 95.72 2.041 140.28 96.32
-0.82 0.109 119.89 93.25 1.281 170.62 117.15
-0.84 0.073 116.73 90.79 0.834 180.53 125.32
-0.86 0.047 113.63 88.38 0.551 184.95 126.98
-0.88 0.027 110.64 86.05 0.365 182.54 125.33
-0.90 0.012 107.77 83.82 0.241 177.82 122.09
-0.92 0.002 105.01 81.67 0.155 172.10 118.16
-0.94 -0.005 102.38 79.63 0.097 166.06 114.01
-0.96 -0.010 99.87 77.68 0.056 160.05 109.89
-0.98 -0.014 97.48 75.81 0.029 154.25 105.91

Note: ∗ denotes μ0 does not exist and − implies very low efficiency.

9. Efficiency comparison
The percent relative efficiencies of the estimators T with respect to (i) ȳn, when there is no

matching, (ii) usual successive sampling estimator, ˆ̄Y = ψȳu +(1−ψ)ȳd′ , when no auxiliary infor-
mation is used at any occasion, where [ȳd′ = ȳm + bmyx(x̄n − x̄m)] have been obtained for different

choices of ρyx, ρyz1 and ρyz2 . Since ȳn and ˆ̄Y are unbiased estimators of the population mean Ȳ ,

the variance of ȳn and the minimum variance of ˆ̄Y [as given in Sukhatme et al.[16]] are given by
equation (29) and (30) in section 6.
From (29), (30) and (54), the percent relative efficiencies of the estimators T ∗ with respect to ȳn
and ˆ̄Y are given by

E∗
1 = PRE(T ∗, ȳn) =

V (ȳn)

min.MSE(T ∗)opt
× 100

=
N(1− f)[μ2

0δ
′
1 +μ0δ

′
2 +Nα

′
4]

μ2
0δ

′
3 +μ0δ

′
4 + δ

′
5

× 100 (9.1)

E∗
2 = PRE(T ∗, ˆ̄Y ) =

V ( ˆ̄Y )

min.MSE(T ∗)opt
× 100

=
N
[{1+√

(1− ρ2yx)}− 2f
]
(μ2

0δ
′
1 +μ0δ

′
2 +Nα

′
4)

2(μ2
0δ

′
3 +μ0δ

′
4 + δ

′
5)

× 100 (9.2)

For N = 2000, n= 200, and various choices of correlations(ρyx, ρyz2)and using the formulae from
equations (53), (55) and (56) we have computed the optimum values of μ0 and percent relative
efficiencies E∗

1 and E∗
2 . The findings are displayed in Table 2.

It is noticed from Table 2 that for ρyx = 0.8 and ρyz2 =−0.70 to − 0.94, the performance of the

proposed estimator T ∗ is efficient than ȳn while T ∗ is efficient than ˆ̄Y for different values of ρyz2
from −0.70 to − 0.76. For ρyx = 0.8 and ρyz2 =−0.72, the efficiency of the proposed estimator T ∗

over ȳn is maximum, after that the efficiency decreases with increase in the value of ρyz2 .

Further, it is noticed that for ρyx = 0.9, the efficiency of T ∗ over ȳn and ˆ̄Y behaves in the following
manner
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� Efficiency increases with the increase in the value of ρyz2 i.e ρyz2 =−0.80 to −0.84,
� Efficiency is maximum when ρyz2 =−0.86, and
� Efficiency decreases with the increase in the value of ρyz2 i.e. ρyz2 =−0.86 to −0.98.

10. Conclusions
This article deals with the problem of estimating the population mean of the study variable on

current (second) occasion in two-occasion successive sampling under two situations i) when the
auxiliary variable is positively correlated with the study variable and ii) when the auxiliary variable
is negatively correlated with the study variable. Properties of the suggested estimators have been
discussed and the conditions where the suggested estimators are optimum are also obtained. It is
found that the suggested estimator in both cases has shown efficient results when there is high
correlation between study and auxiliary variables. From the empirical results, it can be concluded
that the proposed estimator is more rewarding in the estimation of the population mean of the
study variable at the current occasion in two occasion successive sampling. Finally, our recommen-
dation is to use the proposed estimator by the survey practitioners in practice.
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Abstract: In this study, we considered five goodness-of-fit (GOF) tests based on empirical distribution
function (EDF) which are Kolmogorov-Smirnov (D), Kuiper (V ), Cramér-von Mises (W 2), Watson (U2),
Anderson-Darling (A2) tests to assess normality. Thus, we first suggested the EDFs based partially rank
ordered set (PROS) sampling designs which are known as PROS Level-0, Level-1 and Level-2 sampling
designs. Then, we discussed the relative efficiencies of the suggested EDFs w.r.t their counterparts of simple
random sampling (SRS) and ranked set sampling (RSS). The main idea of this study is to compare the
performances of the five different GOF tests based on PROS sampling designs with the GOF tests based
on SRS and RSS. For this purpose, we investigated the power of the suggested GOF tests based on PROS
sampling designs by performing simulations. In addition to the simulations, a real data set is considered to
illustrate the GOF tests based on PROS sampling designs. According to the results, it can be seen that the
EDFs based on PROS sampling designs are more efficient than the EDFs based on SRS and RSS. Also, it
is clearly appeared that the GOF tests, Kolmogorov-Smirnov (D), Cramér-von Mises (W 2) and Anderson-
Darling (A2), based on PROS sampling designs has the best power performance.

Key words : Ranked set sampling; Partially rank ordered set; Sampling designs; Empirical distribution
function; Goodness-of-fit tests; Type I error; Power of test

1. Introduction
In scientific researches, basic statistical principles play vital roles and one of these principles

is to ensure experimental data for making valid judgements on the question(s) of interest under
investigation. To obtain the experimental data, sampling methods are used in researches across
all of the sciences-agricultural, biological, ecological, engineering, medical, physical, and social.
The most fundamental of these sampling methods is simple random sampling (SRS). Via SRS,
a single random sample of size n, X1, · · · ,Xn, is selected from a population of interest. To make
valid statistical inference, the sample should be representative of the population characteristic, say
mean, median, etc., of interest. However, in practice there is no guarantee that the single random
sample is truly representative of the entire population. In this case, sample size is usually increased
by researcher. However, if sample size is increased, it may not be appropriate in terms of cost or
time.

To deal with the problem, McIntyre [1] introduced ranked set sampling (RSS) as an advantageous
alternative to SRS. McIntyre [1] benefited from RSS for seeking to estimate mean of the yield of
pasture in Australia, effectively. McIntyre [1] described RSS procedure as follows: First, a set of
size k is drawn by using SRS from population and the sample observations are ranked by visual
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inspection. Then, the first smallest observation is identified and taken for full measurement. The
other observations are discarded. Next, another set of size k is drawn by using SRS. The second
smallest observation is measured and the other observations are discarded. This process is repeated
until the kth smallest observation is measured in the kth set, so a cycle is completed. Then, the
cycle repeats l times and ranked set sample of size n= lk is obtained. When the ranking is perfect,
population is divided into k homogeneous groups by RSS. Thus, sample units can be obtained in
each groups and the ranked set sample is to be more representative of the population characteristic
than a simple random sample. McIntyre [1] showed that mean of the measured sample observations
is an unbiased estimator of the population mean regardless of any error in ranking process. Takahasi
and Wakimoto [2] established the first theoretical result about RSS. It is showed that mean of
ranked set sample is unbiased estimator. Also, they showed that the variance of the estimator is
always smaller than the variance of the mean of a simple random sample under perfect ranking.
Dell and Clutter [3] evaluated the effect of ranking errors on RSS. For the other basic studies on
RSS, see [4], [5] and [6].

Deshpande et al. [7] developed three sampling designs for RSS. By using the sampling designs,
ranked set sampling can be obtained in different ways depending on the replacement policy. The
sampling designs have similar behaviours for infinite population, but they perform differently for
finite population. To obtain Level-0 sampling design, units in the set are selected without replace-
ment, but all units in the set are replaced back into the population before the following set is
selected. In the sampling design, a population unit may be selected more than once both in the
ranking process and in the final sample. Also, we need k≤N , where k is the set size and N is the
population size, for Level-0. If the measured unit in the set is not replaced back into the population,
Level-1 sampling design is obtained. In the Level-1 sampling design, a population unit may be
appeared in the ranking process, but may not be appeared in the final sample. To obtain Level-1
sampling design, we need N − lk≤N , where l is the number of cycles. On the other hand, Level-2
sampling design is obtained if none of the units in the set are replaced back into the population
before the following set is selected. In the Level-2 sampling design, a unit in the population is not
appeared more than once neither in the ranking process nor in the final sample. Also, we need
N − lk2 ≤N in the Level-2 sampling design. In the literature, research in RSS draw considerable
attention in finite population setting as well, e.g. [8]-[14].

Having knowledge about the population distribution is required to apply accurate tests in statis-
tics. Goodness-of-fit (GOF) tests have been used in scientific researches to check distributional
assumptions. In literature, the estimation of cumulative distribution function (CDF) with various
settings of the RSS has been studied by many authors. Stokes and Sager [15] suggested an unbiased
estimator for the population distribution function based on the EDF of RSS. Under the assumption
of perfect ranking, they considered the performance of Kolmogorov-Smirnov statistic by using the
EDF. It is seen that the RSS can result in a substantial decrease in the width of the simultaneous
confidence band for the CDF in this study. Frey and Wang [16] suggested alternative GOF tests
that are sensitive both to imperfect rankings and to departures from parametric family by using
the RSS. Nazari et al. [17] studied empirical density and distribution function estimators based on
PROS. Sevil and Yildiz [18] examined the power of Kolmogorov-Smirnov test for standard normal
and inverse Gaussian distribution. In the RSS process, they benefited from auxiliary informations,
Level-2 sampling design and PROS. Yildiz and Sevil [19] proposed GOF tests based on EDFs for
Level-0, Level-1 and Level-2 in RSS. Also, Yildiz and Sevil [20] and Sevil and Yildiz [21] inves-
tigated relative efficiencies of EDFs based on sampling designs in RSS w.r.t the EDF based on
SRS.

GOF tests based on the EDFs indicate whether the sample data is appropriate or not to any
specific distribution function. This is vital for parametric assumption. Even if Yildiz and Sevil [19]
have proposed GOF tests based on Level-0, Level-1 and Level-2, there is still a gap in estimating the
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distribution function in finite population. Therefore, we suggested EDFs based on Level-0, Level-1
and Level-2 PROS sampling designs as better alternatives against the EDF estimators of Yildiz
and Sevil [19, 20]. Then, we considered GOF tests based on EDFs by using the PROS sampling
designs. As the main purpose of this study, we compared the GOF tests based on the suggested
EDFs with counterparts of SRS and RSS. This study is organized as follows. In Section two, we
introduce Level-0, Level-1 and Level-2 PROS sampling designs. Then, the EDFs estimators based
on PROS sampling designs are suggested in Section three. Also, the relative efficiencies of the sug-
gested EDFs w.r.t EDFs based on SRS and RSS are investigated by setting a simulation. On the
other hand, GOF tests, Kolmogorov-Smirnov (D), Kuiper (V ), Cramér-von Mises (W 2), Watson
(U 2), Anderson-Darling (A2), based on PROS sampling designs are given in Section four.We inves-
tigate the proposed GOF tests based on EDFs in terms of their type I and powers. The powers of
the proposed GOF tests are compared with the powers of the GOF tests based on SRS and RSS in
this section. In Section five, the proposed GOF tests are applied to a percentage of body fat data.
We test the sample data which is obtained by using PROS Level-2 sampling design is appropriate
or not to normal distribution with mean μ and variance σ2. Some concluding remarks are given in
Section six.

2. PROS Sampling Designs
In RSS, rankers aim to rank the all units in the sets accurately even with low confidence. However,

in practice, the units in the set are ranked inaccurately if the rankers have low confidence. Also, if
there are two or more tied units in selected set, this case makes it difficult to rank the units in the
set. These situations reduce the efficiency of RSS. PROS is suggested by Ozturk [22] as a solution to
these situations. Nonparametric inference is developed for one and two sample problems in PROS
by Ozturk [23, 24]. Ozturk [25] used PROS in a data including multiple auxiliary variables. For
finite population, PROS sampling designs are proposed by Ozturk and Jozani [26]. In this section,
we introduce the PROS sampling designs which are known as PROS Level-0, PROS Level-1 and
PROS Level-2. Note that, we give balanced PROS sampling designs procedures in the section.

First, X1, · · · ,Xk are selected without replacement from a finite population. Then, these units
are assigned into H mutually exclusive subsets and these subsets are denoted by dv, v= 1, · · · ,H.
So each subsets includes s units where s= k/H. If ranking procedure is performed perfectly, then it
is assumed that all units in the subset dv have smaller ranks than all units in the subset dv′ , v < v′.
After that, a unit is selected at random from d1 for full measurement, X[d1]1. If the all k units in
the set are replaced back into the population before the following set is selected, the PROS Level-0
sampling design is obtained. For PROS Level-1 sampling design, the measured unit is not replaced
back into the population, but k−1 units are replaced back into the population before the following
set is selected. If none of the units in the sets are replaced back into the population, PROS Level-2
sampling design is obtained. For each PROS sampling designs, the procedure is repeated H times
and one cycle is completed. Then, this procedure is repeated l cycles to obtain PROS sampling
designs as following matrix. ⎛

⎜⎜⎜⎝
X[d1]1 X[d1]2 · · · X[d1]l

X[d2]1 X[d2]2 · · · X[d2]l

...
...

...
X[dH ]1 X[dH ]2 · · · X[dH ]l

⎞
⎟⎟⎟⎠

In this matrix, X[dv ]i is obtained from the vth subset of vth set in ith cycle, v = 1, · · · ,H and
i = 1, · · · , l. Let us illustrate the procedures of PROS sampling designs when k = 9, H = 3 and
l= 2 in the following table. In this table, sets are denoted by Sv, v = 1,2,3. In each row, a unit is
selected from the bold faced subset, dv. Also, it can be said that we need 9<N , N −2∗3<N and
N − 2 ∗ 3 ∗ 9<N for PROS Level-0, Level-1 and Level-2 sampling designs, respectively.
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Table 1. PROS sampling designs when k= 9, H = 3 and l= 2, Hatefi et al. [27]

l Set Subsets Observations
1 S1 {d1d1d1, d2, d3}= {{111,222,333} ,{4,5,6} ,{7,8,9}} X[d1]1

S2 {d1,d2d2d2, d3}= {{1,2,3} ,{444,555,666} ,{7,8,9}} X[d2]1

S3 {d1, d2,d3d3d3}= {{1,2,3} ,{4,5,6} ,{777,888,999}} X[d3]1

2 S1 {d1d1d1, d2, d3}= {{111,222,333} ,{4,5,6} ,{7,8,9}} X[d2]2

S2 {d1,d2d2d2, d3}= {{1,2,3} ,{444,555,666} ,{7,8,9}} X[d2]2

S3 {d1, d2,d3d3d3}= {{1,2,3} ,{4,5,6} ,{777,888,999}} X[d3]2

To show the connection between f[dv ](x) and f(r:k)(x) where f[dv ](x) and f(r:k)(x) are the density
function of X[dv ] and the rth order statistics, following lemma is given by Nazari et al. [17] for
PROS. This lemma is valid for PROS sampling designs as well. When the αdv ,dv′ = 1 for v= v′ and
otherwise 0, it means that the units in the set are assigned into the subsets, perfectly.

Lemma 1. When the units in the set are assigned into the subsets, imperfectly, it is assumed
that all units in subset dv may not be smaller than all units in subset dv′, v < v′. Let αdv ,dv′ is the

misplacement probability of a unit from subset dv into subset dv′ with
H∑

v′=1

αdv ,dv′ =
H∑

v=1

αdv ,dv′ = 1.

Then, we have

f
(t)

[dv ]
(x) =Hf(x)

H∑
v′=1

∑
u∈dv′

αdv ,dv′

(
k− 1

u− 1

)
F (x)u−1 (1−F (x))

k−u

=
1

s

H∑
v′=1

∑
u∈dv′

αdv ,dv′f
(t)

(u:k)(x)

and consequently

f(x) = 1
H

H∑
v=1

f
(t)

[dv ]
(x) and F (x) = 1

H

H∑
v=1

F
(t)

[dv ]
(x) where F

(t)

[dv ]
(x) is the CDF of X

(t)

[dv ]i
, i= 1 · · · , l and t=

0,1,2 for Level-0, Level-1 and Level-2 PROS sampling designs, F
(t)

[dv ]
(x) = 1

s

H∑
v′=1

∑
u∈dv′

αdv ,dv′F
(t)

(u:k).

Then, the lemma reduces the following remark that is given by Nazari et al. [17].
Remark 1. When the units in the set are assigned into the subsets, perfectly, it is assumed

that all units in subset dv have smaller ranks than all units in subset dv′ , v < v′. Then, we have

f
(t)

[dv ]
(x) =Hf(x)

∑
u∈dv

(
k− 1

u− 1

)
F (x)u−1 (1−F (x))

k−u

=
1

s

∑
u∈dv

f
(t)

(u:k)(x) =
1

s

vs∑
r=(v−1)s+1

f
(t)

(r:k)(x)

and

F
(t)

[dv ]
(x) =

1

s

vs∑
r=(v−1)s+1

F
(t)

(r:k).

3. Emprical Distribution Functions
EDF is basically a cumulative distribution function (CDF). However, EDF models empirical

data while CDF is a hypothetical model of a distribution. That means, EDF is used for making
inference about entire distribution function. Let us give theoretical definition of EDF.
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Definition 1. Let x1, x2, · · · , xn be random sample and ∂n(B) be a number of observations
x1, x2, · · · , xn falling into B and B = (−∞, x], where B ∈B, B is Borel σ-algebra. Then,

Fn(x) =
∂n(B)

n
, x∈R

is called EDF of the sample x1, x2, · · · , xn.
In this section, we give EDFs based on PROS sampling designs. Before that, let us assume that

a simple random sample of size n, X1, · · · ,Xn is selected from a specific population having CDF
F (x), then the EDF estimator (F̂ (x)) is defined as follows:

F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x) (3.1)

where I(.) is indicator function. The EDF based on SRS is unbiased estimator of F (x) for given x,
with variance V (F̂ (x)) = 1

n
F (x) (1−F (x)). Similarly, let us describe EDF estimators using sam-

pling designs which are suggested by Yildiz and Sevil [19, 20]. If the RSS sample, X
(t)

[1:k]i, · · · ,X(t)

[k:k]i

and i = 1, · · · , l, is selected by using Level-t from F (x), then the EDF estimator (F̂RSSL−t
(x)) is

given in below

F̂RSSL−t
(x) =

1

lk

l∑
i=1

k∑
r=1

I(X
(t)

[r:k]i ≤ x). (3.2)

where t = 0,1,2 for Level-0, Level-1 and Level-2, respectively. Yildiz and Sevil [20] showed that

F̂RSSL−t
(x) is unbiased estimator for F (x) with variance V

(
F̂RSSL−t

(x)
)
= 1

lk2

k∑
r=1

F[r:k]

(
1−F[r:k]

)
.

Also, Yildiz and Sevil [20] and Sevil and Yildiz [21] proved that V
(
F̂RSSL−t

(x)
)
≤ V (F̂ (x)) even

ranking is imperfect.
Now, we describe the new EDF estimators based on PROS sampling designs. It is assumed that{
X

(t)

[d1]1
, · · · ,X(t)

[dH ]l

}
is Level-t PROS sampling design, t= 0,1,2. Then, the EDF based on Level-t

is given as follows:

F̂PROSL−t
(x) =

l∑
i=1

H∑
v=1

I
(
X

(t)

[dv ]i
≤ x
)
. (3.3)

The following theorem includes the basic and large sample properties of F̂PROSL−t
(x).

Theorem 1. Let F̂PROSL−t
(x) be the EDF estimator for each sampling designs, where t= 0,1,2

and for a fixed x∈R,
i. E[F̂PROSL−t

(x)] = F (x).

ii. V
(
F̂PROSL−t

(x)
)
≤ V

(
F̂ (x)

)
.

iii. F̂PROSL−t
(x) is a strong consistent estimator of F (x) as l→∞.

Proof. i. It is a result of Lemma 1. ii. According to Corollary 2 in Ozturk [22], we have

V (F̂PROSL−t
(x)) = V

(
F̂ (x)

)
− 1

l2H

H∑
v=1

(
F

(t)

[dv ]
−F (x)

)2

Thus, Part ii. is proved. Note that F
(t)

[dv ]
= F (x) if the k units in the sets are assigned into the

subsets, randomly. iii. It is can be proved by Strong Law of Large Numbers.

Note that it is proved that V (F̂PROSL−t
(x))≤ V

(
F̂RSSL−t

(x)
)
by setting simulation in this section.

Another large sample property of F̂PROSL−t
(x) is given by the following theorem. This theorem

says that F̂PROSL−t
(x) converges almost sure (a.s.) for F (x).
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Theorem 2. It is assumed that X
(t)

[dv ]i
; v = 1 · · · ,H i= 1 · · · , l and t= 0,1,2 are selected from

a population with its CDF F (x). Then, it is described as a distance measure as follows:

Dl = sup
x∈R

|F̂PROSL−t
(x)−F (x)|.

It can be said that Dl
a.s.→ 0 as l→∞.

Proof. We can write the following inequality by using the Lemma 1. Also, we know that X
(t)

[dv ]i

is independent and identically distributed.

Dl ≤ 1

H

H∑
v=1

sup
x∈R

|F̂ (t)

[dv ]
(x)−F

(t)

[dv ]
(x)|

where the right-hand side of the inequality goes to zero by the Gilvenko-Cantelli for F̂
(t)

[dv ]
(x) =

1
l

l∑
i=1

I
(
X

(t)

[dv ]i
≤ x
)
as l→∞.

After the theoretical properties of the proposed EDF estimators, we investigate the relative
efficiencies of F̂PROSL−t

(x) w.r.t F̂ (x) and F̂RSSL−t
(x) by the simulation study. In this simulation,

populations are generated by using g-and-h distribution. Because, using g-and-h distribution is a
simple method to generate population data from a wide variety of distributions included extreme
departures from normality in terms of skewness and kurtosis. g-and-h distribution function is given
by following equation:

X =
(exp (gZ)− 1) exp

(
hZ2

2

)
g

. (3.4)

where g is the skewness and h is the kurtosis. When g= 0, g-and-h distribution reduces to

X =Z exp

(
hZ2

2

)
. (3.5)

We have taken the population size N = 250, since the real data includes 252 observations (in
Chapter five). For RSS, set sizes are k = {3,5}. For PROS, set sizes are k = {6,10}. Also, the
number of subsets are taken H = 3 and H = 5 for k= 6 and k= 10, respectively. Thus, the number
of measured units for RSS is equal to the number of measured units for PROS in a cycle. In
addition to set sizes, the number of cycles are taken as l= {1,2,3,4,5}. Also, ranking procedures
in RSS and PROS is done by using the following ranking error model. This model was proposed
by Dell and Clutter [3],

Y = ρ

(
X −μx

σx

)
+
√

1− ρ2ξ. (3.6)

where Y is the auxiliary variable, ξ follows the standart normal distribution and independent from
X and ρ is the magnitude of the correlation coefficient between X and Y . Here, the ranking quality
is controlled by ρ ∈ [−1,1]. In the simulation study, it is assumed that ρ = 1 and ρ = 0.25 for
perfect and imperfect ranking, respectively. Relative efficiencies (RE) of EDFs based on RSS and
PROS w.r.t EDF based on SRS are obtained by using their integrated mean squared errors. As
performance comparison criteria, Wang et al. [28] described IMSE of EDF using SRS as follow:

IMSEF̂ (x) =

∞∫
−∞

{
F̂ (x)−F (x)

}2

dx=

1∫
0

{
F̂ (F−1(p))− p

}2

dF−1(p)
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=

1∫
0

{
F̂ (F−1(p))− p

}2 1

f(F−1(p))
dp (3.7)

x= F−1(p) where p ∈ [0,1]. This IMSEF̂ (x) can be calculated approximately by using composite
trapezoidal rule,

IMSEF̂ (x) =
b− a

2L

{
L∑

i=1

∣∣∣F (qi)− F̂ (qi)
∣∣∣+

L−1∑
i=2

∣∣∣F (qi)− F̂ (qi)
∣∣∣
}

(3.8)

where b and a are upper and lower limits of integral, respectively. L is the number of cut points
qi, L= b−a

w
where w is the width of intervals. In the interval [a, b], cut points qi are obtained by

qi = a+ i(b− a)/L, i= 1, · · · ,L. IMSEs based on sampling designs in RSS and PROS are given by

IMSEF̂ΨL−t
(x) =

b− a

2L

{
L∑

i=1

∣∣∣F (qi)− F̂ΨL−t
(qi)
∣∣∣+

L−1∑
i=2

∣∣∣F (qi)− F̂ΨL−t
(qi)
∣∣∣
}

(3.9)

where Ψ = RSS, PROS and t = 0,1,2. F̂ΨL−t
(x) are calculated by using (3.2) and (3.3), where

x= {q1, q2, · · · , qL}. In the simulation, the IMSEs of the EDFs based on SRS, RSS and PROS are
calculated as taking w= 0.01. REs are computed as follow:

RE
(
F̂ (x), F̂ΨL−t

(x)
)
=

IMSEF̂ (x)

IMSEF̂ΨL−t
(x)

(3.10)

If RE is larger than 1, it can be said that F̂L−t(x) is more efficient than F̂ (x). To obtain REs,
10,000 samples are generated from SRS, RSS and PROS. The REs are illustrated by the Figures
1 and 2 for ρ = 1. According to all figures, we can say that the EDFs based on RSS and PROS
are more efficient than the EDF based on SRS. Also, the REs of PROS are higher than the REs
of RSS. Thus, it is clearly appeared that the proposed EDF estimators based on PROS sampling
designs are more efficient than the EDFs based on sampling designs in RSS which are suggested
by Yildiz and Sevil [19, 20]. Moreover, REs for symmetric distribution are higher than REs for
skewed distributions. In addition to these, REs are almost the same for left-skewed and right-
skewed distributions. While g gets closer to 1 (or −1), REs decrease. Among the sampling designs
(Level-0, Level-1 and Level-2) in RSS and PROS, it is not obtained substantial difference when
k= 3. The Figure 2 includes the REs for k= 5. First, we can say that the REs for k= 5 are larger
than the REs for k = 3. Also, it can be appeared that EDFs based on Level-2 sampling design
in RSS and PROS have higher efficient than EDFs based on the Level-0 and Level-1 in RSS and
PROS. Obviously, it can also be seen that Level-2 in PROS is better than Level-2 in RSS, since
PROS has higher performance than RSS according to all figures. On the other hand, the REs for
ρ= 0.25 are not reported in this study, since REs varying around 1 are obtained for EDFs based
on RSS and PROS under all distributions.
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Figure 1. REs when k=H = 3 (blue: RSS, green: PROS, dotted: Level-0, dashed: Level-1 and solid: Level-2)
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(e) REs for PROS (g=−1, h= 0)

Figure 2. REs when k=H = 5 (blue: RSS, green: PROS, dotted: Level-0, dashed: Level-1 and solid: Level-2)
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4. Goodness-of Fit Tests
GOF test is a statistical hypothesis test to see how well sample data fit a distribution from a

population with a specific distribution. In other words, these tests are used for making inference
about the population distribution. Mostly, it is tested whether sampling observations are obtained
from a population having normal distribution or not. In this situation, null hypothesis H0 is
simple hypothesis if we know parameters. On the other hand, H0 is composite hypothesis when
the parameters are not known. In this case, the parameters are estimated by using sampling
observations. Also, alternative hypothesis H1 is mostly composite hypothesis since we have little
or no information about distribution of the data.

In this study, we investigate the powers of Kolmogorov-Smirnov (D), Kuiper (V ), Cramér-von
Mises (W 2), Watson (U 2), Anderson-Darling (A2) tests under SRS, RSS and PROS. These are GOF
tests based on EDF. These tests are divided into two different classes. Kolmogorov-Smirnov and
Kuiper test statistics are in the supremum class. Cramér-von Mises, Watson and Anderson-Darling
tests belong to the quadratic class.

These GOF tests based on SRS are intorduced in the Chapter 4 of the book “Goodness-of Fit
Techiques”, D’Agostino [29]. It is assumed that a random sample of size n, X1, · · · ,Xn is selected
from a population and CDF of this population is F (x). We test the null hypothesis H0 : F (x) =
F0(x) against H1 : F (x) �= F0(x). Then, the GOF tests are as follows:

� Kolmogorov-Smirnov test statistic:

D=sup
x

∣∣∣F̂ (x)−F (x)
∣∣∣=max

(
D+,D−)

=max
j

(
max

{
j

n
−F0(x(j))

}
,max

{
F0(x(j))− j− 1

n

}) (4.1)

� Kuiper test statistic:

V =D+ +D−

=max

{
j

n
−F0(x(j))

}
+max

{
F0(x(j))− j− 1

n

}
(4.2)

� Cramér-von Mises test statistic:

W 2 =n

∞∫
−∞

{
F̂ (x)−F0(x)

}2

dF0(x)

=

n∑
j=1

{
F0(x(j))− 2j− 1

2n

}2

+
1

12n

(4.3)

� Watson test statistic:

U 2 =n

∞∫
−∞

⎧⎨
⎩F̂ (x)−F0(x)−

∞∫
−∞

[
F̂ (x)−F0(x)

]
dF0(x)

⎫⎬
⎭

2

dF0(x)

=W 2 −n

(
1

n

n∑
j=1

F0(xj)− 0.5

)2
(4.4)

� Anderson-Darling test statistic:

A2 =n

∞∫
−∞

{
F̂ (x)−F0(x)

}2

[F0(x) (1−F0(x))]
−1

dF0(x)

=−n− 1

n

n∑
j=1

(2j− 1)
[
logF0(x(j))+ log

{
1−F0(x(n+1−j))

}] (4.5)
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where x(j) is the jth order statistic of the random sample. Also, the GOF tests reject the null
hypothesis of normality when the test statistics are larger than the their critical values which
are the corresponding 100(1 − α) percentile of the null distribution of the test statistics. GOF
tests based on Level-t in RSS were proposed by Yildiz and Sevil [19]. Now, we give the GOF

tests based on Level-t in RSS and PROS. It is assumed that
{
X

(t)

[r:k]i, r= 1, · · · , k; i= 1, · · · , l
}

and
{
X

(t)

[dv ]i
, v= 1, · · · ,H; i= 1, · · · , l

}
are Level-t in RSS and PROS, respectively. Moreover,

ζRSS,t
(1) , · · · , ζRSS,t

(n) and ζPROS,t
(1) , · · · , ζPROS,t

(n) are ordered Level-t sampling design in RSS and PROS,
respectively. Then, the GOF tests based on Level-t in RSS and PROS are as follows:

� Kolmogorov-Smirnov test statistic:

D=sup
x

∣∣∣F̂ΨL−t
(x)−F (x)

∣∣∣=max
(
D+,D−)

=max
j

(
max

{
j

n
−F0(ζ

Ψ,t
(j) )

}
,max

{
F0(ζ

Ψ,t
(j) )−

j− 1

n

}) (4.6)

� Kuiper test statistic:

V =D+ +D−

=max

{
j

n
−F0(ζ

Ψ,t
(j) )

}
+max

{
F0(ζ

Ψ,t
(j) )−

j− 1

n

}
(4.7)

� Cramér-von Mises test statistic:

W 2 =n

∞∫
−∞

{
F̂ΨL−t

(x)−F0(x)
}2

dF0(x)

=

n∑
j=1

{
F0(ζ

Ψ,t
(j) )−

2j− 1

2n

}2

+
1

12n

(4.8)

� Watson test statistic:

U 2 =n

∞∫
−∞

⎧⎨
⎩F̂ΨL−t

(x)−F0(x)−
∞∫

−∞

[
F̂ΨL−t

(x)−F0(x)
]
dF0(x)

⎫⎬
⎭

2

dF0(x)

=W 2 −n

(
1

n

n∑
j=1

F0(ζ
Ψ,t
(j) )− 0.5

)2
(4.9)

� Anderson-Darling test statistic:

A2 =n

∞∫
−∞

{
F̂ΨL−t

(x)−F0(x)
}2

[F0(x) (1−F0(x))]
−1

dF0(x)

=−n− 1

n

n∑
j=1

(2j− 1)
[
logF0(ζ

Ψ,t
(j) )+ log

{
1−F0(ζ

Ψ,t
(n+1−j))

}] (4.10)

where Ψ =RSS and PROS. The null hypothesis of normality is rejected when the test statistics
based on Level-t in RSS and PROS are larger than 100(1−α) percentile of the null distribution of
the test statistics. Also, it is substantial to note that the distribution of the test statistics based on
RSS and PROS still depend on the quality of ranking while they do not depend on the unknown
parameters μ and σ2. Therefore, it is not possible that the critical values for the GOF tests based
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on RSS and PROS are not obtained since the quality of ranking is not known in practice. Against
the problem, we suggest that the critical values are always obtain under the assumption of perfect
ranking. As a result of this suggestion, we will see that the type I errors under imperfect ranking
are relatively larger than the type I errors under perfect ranking. For this reason, it is seen that
powers of the GOF tests based on RSS and PROS under imperfect ranking are larger than powers
of the GOF tests based on RSS and PROS under perfect ranking. Therefore, ranking error should
still be minimized as much as possible for both RSS and PROS.

In simulation study, the null hypothesis H0 : F0(x) =N(μ,σ2) is tested. For the GOF tests based
on RSS and PROS, we first obtain critical values under H0 by using the following algorithm.

(1) Select a sample using RSS and PROS from standard normal distribution.
(2) Calculate TRSS and T PROS by using the Equations (4.6)-(4.10).
(3) Repeat steps (1)-(2) to get TRSS

1 , · · · , TRSS
10,000 and T PROS

1 , · · · , T PROS
10,000 .

(4) Approximate critical values, CRSS
α and CPROS

α , the 100(1−α) percentage point of TRSS and
T PROS, respectively.
In this algorithm, the all test statistics (4.6)-(4.9) are denoted by the notation T . Estimated critical
values are given in Table 4. Then, the type I errors of GOF tests based on RSS and PROS sampling
designs are examined for α= 0.05. These type I errors are given by Table 2. In this table, it can
be seen that the type I errors are almost equal to the nominal value (α= 0.05) for perfect ranking
(ρ= 1) while the type I errors are larger than the nominal value for imperfect ranking. This means
that the GOF tests based on RSS and PROS hold the nominal alpha, α = 0.05, for ρ = 1 while
they do not hold the nominal alpha for ρ= 0.25.

The other algorithm is performed to calculate the power of GOF tests based on RSS and PROS.
The steps of the algorithm are as following. Alternative distributions are obtained by g-and-h
distribution, g= 0.5, h= 0 (right skewed), g= 1, h= 0 (right skewed), g=−0.5, h= 0 (left skewed)
and g=−1, h= 0 (left skewed).

(1) Select a sample using RSS and PROS from an alternative distribution H1.
(2) Calculate TRSS and T PROS by using the Equations (4.6)-(4.10).
(3) Repeat steps (1)-(2) to get TRSS

1 , · · · , TRSS
5,000 and T PROS

1 , · · · , T PROS
5,000 .

(4) Power of TRSS
≈

1
5,000

5,000∑
t=1

I(TRSS
t >CRSS

0.05 ) and

Power of T PROS
≈

1
5,000

5,000∑
t=1

I(T PROS
t >CPROS

0.05 ).

Figure 3-6 include estimated powers of GOF tests based on SRS, RSS and PROS. According to the
Figures 3 and 4 (include the powers for ρ= 1), it is obviously seen that the best power performance
among the GOF tests belong to Anderson-Darling GOF test (A2) for SRS, RSS and PROS. Also,
the highest powers are obtained for k =H = 5 and (g = 1, h = 0). On the other hand, the GOF
tests based on PROS have higher power than the GOF tests based on SRS and RSS except for
Kuiper (V ) and Watson (U 2). For Kuiper (V ) and Watson (U 2) tests, a difference is observed
between among the GOF tests based on SRS, RSS and PROS only for k=H = 5 and (g= 1, h= 0).
According to the Figures 5 and 6 (include the powers for ρ= 0.25), the powers of the GOF tests
for RSS and PROS when ρ= 0.25 have higher than the powers when ρ= 1. This is not surprising
result since this occurs as a result of increase in type I error. Among the right and left skewed
distributions, the highest powers are obtained for g= 1, h= 0. The powers are almost equal among
g = 0.5, h = 0, g = −0.5, h = 0 and g = −1, h = 0. The powers of GOF tests for k = 5 are higher
than the powers of GOF tests for k= 3. Among the Level-0, Level-1 and Level-2 sampling designs
in RSS and PROS, the GOF tests based on Level-2 have outperformance in most cases. Thus, it
is shown that the GOF tests based on PROS Level-2 sampling design has the best power perfor-
mance, especially, Kolmogorov-Smirnov (D), Cramér-von Mises (W 2) and Anderson-Darling(A2).
Kuiper (V ) and Watson (U 2) test statistic have the lowest powers among all the GOF tests.



Sevil & Yıldız: Tests of normality based on EDF statistics using PROS sampling designs
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Table 2. Type I errors of GOF tests based on RSS and PROS sampling designs for α= 0.05

D V W 2 U2 A2

Methods Designs k l ρ= 0.25 ρ= 1 ρ= 0.25 ρ= 1 ρ= 0.25 ρ= 1 ρ= 0.25 ρ= 1 ρ= 0.25 ρ= 1
RSS Level-0 3 1 0.164 0.052 0.095 0.048 0.174 0.051 0.096 0.048 0.151 0.053

2 0.132 0.045 0.088 0.051 0.145 0.045 0.090 0.053 0.137 0.047
3 0.146 0.051 0.090 0.052 0.163 0.051 0.091 0.049 0.153 0.050
4 0.136 0.048 0.082 0.043 0.161 0.048 0.087 0.046 0.151 0.046
5 0.133 0.051 0.084 0.047 0.154 0.050 0.090 0.050 0.155 0.051

5 1 0.243 0.052 0.142 0.046 0.278 0.054 0.148 0.049 0.259 0.057
2 0.225 0.050 0.127 0.048 0.256 0.049 0.144 0.050 0.250 0.049
3 0.216 0.048 0.131 0.051 0.256 0.053 0.143 0.048 0.249 0.051
4 0.200 0.046 0.125 0.051 0.243 0.047 0.136 0.051 0.234 0.045
5 0.206 0.044 0.116 0.044 0.252 0.046 0.138 0.047 0.244 0.046

Level-1 3 1 0.157 0.050 0.098 0.055 0.170 0.049 0.098 0.055 0.148 0.053
2 0.145 0.050 0.087 0.055 0.158 0.047 0.096 0.057 0.155 0.049
3 0.141 0.050 0.089 0.053 0.160 0.050 0.092 0.051 0.160 0.057
4 0.138 0.047 0.088 0.051 0.160 0.050 0.092 0.052 0.151 0.050
5 0.136 0.056 0.083 0.052 0.155 0.052 0.092 0.049 0.157 0.053

5 1 0.228 0.047 0.140 0.049 0.256 0.047 0.149 0.047 0.239 0.041
2 0.224 0.051 0.131 0.054 0.256 0.053 0.140 0.052 0.246 0.052
3 0.211 0.049 0.125 0.051 0.248 0.050 0.140 0.052 0.244 0.051
4 0.213 0.053 0.124 0.050 0.249 0.050 0.136 0.051 0.247 0.051
5 0.199 0.048 0.129 0.051 0.245 0.050 0.141 0.051 0.244 0.049

Level-2 3 1 0.167 0.047 0.095 0.046 0.183 0.049 0.095 0.046 0.154 0.047
2 0.141 0.047 0.088 0.046 0.164 0.049 0.090 0.048 0.157 0.052
3 0.133 0.046 0.081 0.050 0.155 0.046 0.079 0.050 0.144 0.046
4 0.145 0.049 0.090 0.051 0.164 0.051 0.095 0.053 0.156 0.051
5 0.139 0.048 0.089 0.052 0.166 0.050 0.099 0.054 0.159 0.047

5 1 0.249 0.051 0.155 0.053 0.277 0.050 0.157 0.052 0.260 0.054
2 0.235 0.051 0.131 0.047 0.268 0.049 0.144 0.049 0.256 0.045
3 0.226 0.052 0.129 0.051 0.268 0.050 0.139 0.048 0.258 0.049
4 0.236 0.052 0.134 0.054 0.285 0.052 0.145 0.050 0.277 0.048
5 0.245 0.048 0.132 0.051 0.300 0.047 0.156 0.055 0.291 0.047

PROS Level-0 3 1 0.256 0.054 0.160 0.052 0.267 0.051 0.161 0.052 0.204 0.049
2 0.225 0.045 0.129 0.048 0.254 0.048 0.143 0.050 0.225 0.047
3 0.203 0.047 0.114 0.048 0.241 0.047 0.125 0.047 0.219 0.050
4 0.219 0.052 0.121 0.049 0.245 0.049 0.132 0.050 0.218 0.048
5 0.229 0.057 0.119 0.052 0.252 0.054 0.134 0.054 0.230 0.052

5 1 0.362 0.049 0.237 0.050 0.397 0.045 0.248 0.049 0.348 0.045
2 0.343 0.050 0.215 0.052 0.402 0.048 0.247 0.053 0.367 0.049
3 0.326 0.051 0.195 0.050 0.383 0.053 0.228 0.052 0.362 0.052
4 0.343 0.054 0.209 0.055 0.401 0.052 0.246 0.056 0.383 0.055
5 0.322 0.052 0.195 0.053 0.388 0.053 0.229 0.052 0.374 0.050

Level-1 3 1 0.251 0.051 0.159 0.053 0.268 0.052 0.159 0.054 0.207 0.051
2 0.220 0.053 0.130 0.050 0.243 0.050 0.137 0.052 0.225 0.052
3 0.220 0.053 0.120 0.048 0.248 0.053 0.129 0.046 0.225 0.053
4 0.211 0.051 0.122 0.052 0.247 0.053 0.125 0.047 0.232 0.051
5 0.219 0.052 0.116 0.048 0.257 0.052 0.131 0.050 0.234 0.050

5 1 0.386 0.054 0.250 0.054 0.432 0.058 0.261 0.054 0.375 0.053
2 0.340 0.051 0.210 0.047 0.398 0.052 0.239 0.050 0.371 0.055
3 0.336 0.057 0.201 0.052 0.390 0.056 0.230 0.052 0.368 0.055
4 0.315 0.049 0.188 0.046 0.385 0.048 0.228 0.049 0.375 0.049
5 0.317 0.054 0.185 0.047 0.374 0.053 0.223 0.050 0.363 0.051

Level-2 3 1 0.257 0.052 0.147 0.052 0.267 0.047 0.146 0.052 0.211 0.049
2 0.228 0.050 0.124 0.050 0.249 0.047 0.128 0.048 0.221 0.049
3 0.232 0.050 0.129 0.047 0.256 0.046 0.139 0.047 0.226 0.043
4 0.234 0.051 0.113 0.041 0.261 0.051 0.123 0.044 0.240 0.053
5 0.239 0.047 0.127 0.051 0.262 0.046 0.137 0.048 0.242 0.047

5 1 0.381 0.055 0.237 0.052 0.421 0.055 0.256 0.052 0.367 0.052
2 0.360 0.046 0.213 0.049 0.424 0.045 0.239 0.050 0.397 0.048
3 0.368 0.046 0.220 0.051 0.445 0.048 0.250 0.046 0.420 0.051
4 0.388 0.048 0.220 0.047 0.461 0.045 0.260 0.049 0.431 0.046
5 0.386 0.043 0.217 0.046 0.473 0.045 0.248 0.045 0.448 0.050
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(b) For k=H = 5 and (g= 0.5, h= 0)
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(c) For k=H = 3 and (g= 1, h= 0)
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(d) For k=H = 5 and (g= 1, h= 0)

Figure 3. The power of GOF tests at α= 0.05 for ρ= 1, solid: SRS, dotted: RSS and longdash: PROS (For RSS
and PROS, red: Level-0, green: Level-1 and blue: Level-2)
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(a) For k=H = 3 and (g=−0.5, h= 0)
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(b) For k=H = 5 and (g=−0.5, h= 0)
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(c) For k=H = 3 and (g=−1, h= 0)
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(d) For k=H = 5 and (g=−1, h= 0)

Figure 4. The power of GOF tests at α= 0.05 for ρ= 1, solid: SRS, dotted: RSS and longdash: PROS (For RSS
and PROS, red: Level-0, green: Level-1 and blue: Level-2)
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(a) For k=H = 3 and (g= 0.5, h= 0)
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(b) For k=H = 5 and (g= 0.5, h= 0)
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(c) For k=H = 3 and (g= 1, h= 0)
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(d) For k=H = 5 and (g= 1, h= 0)

Figure 5. The power of GOF tests at α= 0.05 for ρ= 0.25, solid: SRS, dotted: RSS and longdash: PROS (For RSS
and PROS, red: Level-0, green: Level-1 and blue: Level-2)
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(a) For k=H = 3 and (g=−0.5, h= 0)
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(b) For k=H = 5 and (g=−0.5, h= 0)
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(c) For k=H = 3 and (g=−1, h= 0)
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(d) For k=H = 5 and (g=−1, h= 0)

Figure 6. The power of GOF tests at α= 0.05 for ρ= 0.25, solid: SRS, dotted: RSS and longdash: PROS (For RSS
and PROS, red: Level-0, green: Level-1 and blue: Level-2)
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5. Real Data Example
In this section, an illustrative example was considered using body fat data. This data set “http:

//lib.stat.cmu.edu/datasets/bodyfat” for 252 men collected by Penrose et al. [30] Suppose
the set of 252 men constitutes a hypothetical population. It is made up of 15 measured variables
on 252 men. Variables in the data are density, percentage of body fat (PBF), age, weight, height
and 10 circumferences: neck, chest, abdominal, hip, thigh, knee, ankle, biceps, forearm and wrist.
The body fat percentage of a human or other living being is the total mass of fat divided by total
body mass. It is determined by underwater weighing and can be estimated using Equation 5.1.

D= 1/[(A/a)+ (B/b)]
B = (1/D)[ab/(a− b)]− [b/(a− b)]
PBF = 100×B,

(5.1)

where D = body density, W = body weight, A= proportion of lean tissue, B = proportion of fat
tissue (A+B = 1), a= density of lean tissue and b= density of fat tissue.
Our target parameter is the distribution function of percentage of body fat. The interested

variable, X, has normal distribution with parameters μ= 19.15 and σ2 = 70.03. We used ages (Y )

Figure 7. The PDF (left) and CDF (right) of the percentage of body fat

of the 252 men as auxiliary variable in ranking process since cor(X,Y ) = 0.813. To obtain PROS
Level-2 sampling design of size n= 25, we take set size k = 10, the number of subsets H = 5 and
the number of cycles l = 5. The PROS Level-2 sampling procedure is illustrated in the Table 3.
In this table, the set of size k = 10 is selected and divided into the H = 5 mutually exclusive
subsets of size s= 2 in each row. Then, an observation is selected at random from the bold subsets.
Then, this observation is measured. Although 250 of 252 men are used in ranking processs, only 25
men’s percentage of body fat are measured. Based on the PROS Level-2 sampling design, the null
hypothesis H0 : F0(x) =N(μ= 19.15, σ2 = 70.03) is tested by using the all test statistics. Obtained
test statistics are D = 0.167, V = 0.245, W 2 = 0.099, U 2 = 0.078 and A2 = 0.57. According to the
test statistics, the null hypothesis is not rejected at α= 0.05. Thus, we can say that the percentage
of body fats of 25 men come from normal distribution with parameters μ= 19.15 and σ2 = 70.03.
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Table 3. PROS Level-2 sampling design procedure

l Set Subsets Measured Observations
1 S1 {d1d1d1, d2, d3, d4, d5}= {{111,222} ,{3,4} ,{5,6} ,{7,8} ,{9,10}} X[d1]1 = 8.5

S2 {d1,d2d2d2, d3, d4, d5}= {{1,2} ,{333,444} ,{5,6} ,{7,8} ,{9,10}} X[d2]1 = 13.8
S3 {d1, d2,d3d3d3, d4, d5}= {{1,2} ,{3,4} ,{555,666} ,{7,8} ,{9,10}} X[d3]1 = 24.7
S4 {d1, d2, d3,d4d4d4, d5}= {{1,2} ,{3,4} ,{5,6} ,{777,888} ,{9,10}} X[d4]1 = 20.5
S5 {d1, d2, d3, d4,d5d5d5}= {{1,2} ,{3,4} ,{5,6} ,{7,8} ,{999,101010}} X[d5]1 = 21.0

2 S1 {d1d1d1, d2, d3, d4, d5}= {{111,222} ,{3,4} ,{5,6} ,{7,8} ,{9,10}} X[d2]2 = 12.1
S2 {d1,d2d2d2, d3, d4, d5}= {{1,2} ,{333,444} ,{5,6} ,{7,8} ,{9,10}} X[d2]2 = 17.4
S3 {d1, d2,d3d3d3, d4, d5}= {{1,2} ,{3,4} ,{555,666} ,{7,8} ,{9,10}} X[d3]2 = 29.9
S4 {d1, d2, d3,d4d4d4, d5}= {{1,2} ,{3,4} ,{5,6} ,{777,888} ,{9,10}} X[d4]2 = 22.0
S5 {d1, d2, d3, d4,d5d5d5}= {{1,2} ,{3,4} ,{5,6} ,{7,8} ,{999,101010}} X[d5]2 = 29.8

3 S1 {d1d1d1, d2, d3, d4, d5}= {{111,222} ,{3,4} ,{5,6} ,{7,8} ,{9,10}} X[d1]3 = 9.4
S2 {d1,d2d2d2, d3, d4, d5}= {{1,2} ,{333,444} ,{5,6} ,{7,8} ,{9,10}} X[d2]3 = 7.1
S3 {d1, d2,d3d3d3, d4, d5}= {{1,2} ,{3,4} ,{555,666} ,{7,8} ,{9,10}} X[d3]3 = 21.5
S4 {d1, d2, d3,d4d4d4, d5}= {{1,2} ,{3,4} ,{5,6} ,{777,888} ,{9,10}} X[d4]3 = 19.2
S5 {d1, d2, d3, d4,d5d5d5}= {{1,2} ,{3,4} ,{5,6} ,{7,8} ,{999,101010}} X[d5]3 = 24.4

4 S1 {d1d1d1, d2, d3, d4, d5}= {{111,222} ,{3,4} ,{5,6} ,{7,8} ,{9,10}} X[d1]4 = 19.3
S2 {d1,d2d2d2, d3, d4, d5}= {{1,2} ,{333,444} ,{5,6} ,{7,8} ,{9,10}} X[d2]4 = 9.9
S3 {d1, d2,d3d3d3, d4, d5}= {{1,2} ,{3,4} ,{555,666} ,{7,8} ,{9,10}} X[d3]4 = 17.0
S4 {d1, d2, d3,d4d4d4, d5}= {{1,2} ,{3,4} ,{5,6} ,{777,888} ,{9,10}} X[d4]4 = 18.1
S5 {d1, d2, d3, d4,d5d5d5}= {{1,2} ,{3,4} ,{5,6} ,{7,8} ,{999,101010}} X[d5]4 = 21.2

5 S1 {d1d1d1, d2, d3, d4, d5}= {{111,222} ,{3,4} ,{5,6} ,{7,8} ,{9,10}} X[d1]5 = 9.4
S2 {d1,d2d2d2, d3, d4, d5}= {{1,2} ,{333,444} ,{5,6} ,{7,8} ,{9,10}} X[d2]5 = 20.5
S3 {d1, d2,d3d3d3, d4, d5}= {{1,2} ,{3,4} ,{555,666} ,{7,8} ,{9,10}} X[d3]5 = 21.8
S4 {d1, d2, d3,d4d4d4, d5}= {{1,2} ,{3,4} ,{5,6} ,{777,888} ,{9,10}} X[d4]5 = 5.2
S5 {d1, d2, d3, d4,d5d5d5}= {{1,2} ,{3,4} ,{5,6} ,{7,8} ,{999,101010}} X[d5]5 = 38.1

6. Conclusions
In scientific researches, time and cost of the study determine how many observations can be used.

Therefore, researchers prefer to study with fewer observations. For example, we showed that only
25 observations can be used instead of 252 observations by using PROS Level-2 sampling design.
On the other hand, normality assumption is vital for parametric tests. For this purpose, we studied
GOF tests for normality in this study.

According to the simulation results, it is proved that the EDF based on PROS Level-2 sampling
design is the most efficient estimator among the other EDF estimators for symmetric, skewed
distributions with light tail or heavy tail. Also, in general, the quadratic class GOF tests (W 2 and
A2) have better performance than supremum class GOF tests (D and V ) for SRS, RSS and PROS.
Espicially, the Anderson-Darling GOF test (A2) has the highest powers among the GOF tests.
On the other hand, it is seen that the powers of the GOF tests based on PROS Level-2 sampling
design, especially, Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling GOF tests, are
the highest when k = 5. It is very important that the quality of ranking should be almost perfect
since the proposed test statistics have larger type I errors than nominal value when ranking is poor
(ρ = 0.25). According to the Figures 3-6, it is observed that the powers of GOF tests based on
SRS, RSS and PROS get close to 1 when the set size is 5 and the distribution is (g = 1, h = 0).
In the other distributions, the sample size must be larger than 25 (when the set size and the
number of cycles are 5) for the powers close to 1. The largest sample size is taken as 25 in the
simulation study. For the sample size to be greater than 25, the population size that is larger than
250 must be considered. In real data application, the PROS Level-2 sampling design is applied to
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252 men’s percentage of body fats (X). Ranking procedure is done using ages (Y ) of the 252 men,
cor(X,Y ) = 0.813.
Another important note is that the critical values of GOF tests based on the PROS sampling

design can be obtained for any set size k, the number subsets H and the number of cycles l using
the algorithm which is given in Section four. Therefore, the proposed GOF tests can be used for
any case studies such as in Section 5.
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Table 4. Critical values of GOF tests based on RSS and PROS sampling designs when α= 0.05

Methods Designs k l D V W 2 U2 A2

RSS Level-0 3 1 0.581 0.820 0.248 0.148 1.557
2 0.439 0.608 0.277 0.151 1.610
3 0.366 0.509 0.265 0.155 1.548
4 0.320 0.451 0.272 0.159 1.576
5 0.290 0.406 0.277 0.158 1.566

5 1 0.429 0.626 0.197 0.130 1.192
2 0.310 0.463 0.204 0.133 1.217
3 0.263 0.383 0.204 0.134 1.216
4 0.232 0.337 0.209 0.136 1.243
5 0.210 0.309 0.209 0.138 1.251

Level-1 3 1 0.583 0.813 0.251 0.145 1.573
2 0.430 0.604 0.261 0.146 1.508
3 0.366 0.503 0.262 0.150 1.485
4 0.314 0.438 0.258 0.149 1.492
5 0.279 0.397 0.260 0.150 1.470

5 1 0.429 0.619 0.202 0.127 1.221
2 0.307 0.454 0.194 0.129 1.162
3 0.258 0.376 0.197 0.127 1.158
4 0.221 0.328 0.190 0.127 1.123
5 0.202 0.294 0.191 0.126 1.128

Level-2 3 1 0.581 0.818 0.249 0.147 1.561
2 0.431 0.607 0.261 0.150 1.513
3 0.366 0.506 0.263 0.153 1.528
4 0.311 0.439 0.249 0.147 1.447
5 0.277 0.396 0.250 0.147 1.454

5 1 0.419 0.612 0.192 0.125 1.157
2 0.304 0.455 0.191 0.128 1.150
3 0.254 0.375 0.185 0.127 1.107
4 0.214 0.324 0.174 0.123 1.060
5 0.192 0.291 0.168 0.120 1.023

PROS Level-0 3 1 0.531 0.773 0.201 0.128 1.339
2 0.399 0.586 0.207 0.134 1.290
3 0.335 0.492 0.211 0.140 1.299
4 0.290 0.430 0.208 0.138 1.286
5 0.261 0.390 0.212 0.139 1.299

5 1 0.384 0.577 0.148 0.107 0.967
2 0.283 0.430 0.146 0.107 0.948
3 0.235 0.361 0.150 0.111 0.958
4 0.206 0.316 0.149 0.109 0.942
5 0.187 0.289 0.152 0.114 0.967

Level-1 3 1 0.528 0.768 0.197 0.125 1.318
2 0.397 0.577 0.204 0.131 1.244
3 0.326 0.484 0.201 0.134 1.240
4 0.289 0.422 0.199 0.134 1.223
5 0.257 0.381 0.194 0.131 1.203

5 1 0.373 0.569 0.138 0.102 0.932
2 0.279 0.425 0.142 0.104 0.913
3 0.229 0.352 0.142 0.104 0.896
4 0.201 0.310 0.141 0.104 0.889
5 0.178 0.277 0.139 0.103 0.876

Level-2 3 1 0.528 0.770 0.198 0.127 1.319
2 0.395 0.583 0.201 0.134 1.252
3 0.323 0.484 0.197 0.132 1.230
4 0.282 0.423 0.190 0.133 1.169
5 0.254 0.377 0.191 0.128 1.174

5 1 0.372 0.572 0.137 0.102 0.924
2 0.273 0.423 0.134 0.103 0.865
3 0.222 0.348 0.128 0.102 0.833
4 0.188 0.303 0.120 0.098 0.790
5 0.169 0.272 0.115 0.099 0.762



İSTATİSTİK: JOURNAL OF THE TURKISH STATISTICAL ASSOCIATION
Vol. 13, No. 2, July 2021, pp. 74–87

issn 1300-4077 |21 |2 |74 |87
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Abstract: In this paper, we consider the estimation problem of stress-strength reliability of a parallel system
with cold standby redundancy. The reliability of the system is estimated when both strength and stress
variables follow the exponential distribution and associated approximate confidence interval is constructed.
Two different maximum likelihood and Bayes estimates are obtained. Lindley’s approximation method has
been utilized for Bayesian calculations. A real-life data set is analysed for illustrative purposes of the findings.
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1. Introduction
In reliability analysis, stress-strength probability is a major concern for some experiments in the

fields including industrial engineering, hydrology, economics and survival analysis. Stress-strength
models are introduced originally by Birnbaum [2] then developed by Birnbaum and McCarty [3]
and Church and Harris [6]. When X is the random strength of a system under the random stress Y ,
the probability R= P (X >Y ) indicates the measure of the performance of the system. If the stress
exceeds the strength, the system stops operating, otherwise it continues to work. In 2003, Kotz et
al. [13] interpreted the concept of stress-strength combined with the theory and applications.
A k-out-of-n:G system consists of n independent and identically distributed strength components

and a common stress, and functions at least k out of the n components operate. When k = 1 and
k = n, the k-out-of-n: G system becomes a parallel and series systems, respectively. A parallel
system fails if and only if its each component fails so that this system works whenever at least
one component works. Multicomponent stress-strength reliability has been of great interest among
researchers in recent years. In this context, we can refer to Eryilmaz [8], Pakdaman and Ahmadi
[18], Kızılaslan [12], Akgül [1] and Dey et al. [7].
Standby redundancy allocation to a system or components makes a great impact on system life-

time. Hence, it is widely used to improve system reliability. Different types of standby redundancy
have been introduced and studied in the reliability literature. The component is said to be in the
case of cold standby if it does not fail while in standby. When the components of a system fail, cold
standby redundancy puts into operation and system operates until the standby component fails.
The cold standby redundancy can be implemented to a system at system and component levels.

At component level, the standby components are connected to the original components one by
one. At system level, the standby components construct an alternative system for the system of
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original components. When standby components are added to a n-component parallel system at
the component or system level, new systems are obtained as in Figure 1.
We can consider the following example for the parallel system with standby components at

component level. Computer systems are used in many areas. Saving customer transactions data
automatically in banking system is one of them. For example, six computers in parallel design be
used for data saving. The random variables X1, . . . ,X6 represent the lifetime of these computers.
We add additional six computers to the parallel system as standby components at component
level. The random variables Y1, . . . , Y6 represent the lifetime of these new standby computers. Some
factors such as lifetime of the subcomponents, cyber attacks, density of the data, etc. can be
considered as stress variables of this system. The random variable T represents the stress variable.
In this scenario, a probability for the total lifetime of the parallel system under the stress, that is
P (max (X1 +Y1,X2 +Y2, . . . ,X6 +Y6)>T ), is the probability of saving data successfully.

(a) Component level (b) System level

Figure 1. Standby redundancy of parallel systems

In the literature, the stochastic comparisons of coherent systems when the cold standby redun-
dancy applied at component level and system level have been investigated by many researchers.
Chen and Xie [23] studied the effect of adding standby redundancy at system and component levels
in series and parallel systems, and compared the superiority of the levels. Boland and El-Neweihi
[4] extended the stochastic comparison results of the cold standby levels for the series and parallel
systems from the usual stochastic ordering to the hazard rate ordering. They also obtained some
results about the hazard rate ordering of the k-out-of-n: G system with cold standby redundancy.
Zhao et al. [27] presented the likelihood ratio ordering result for the series system with n expo-
nential components when the active components and standby components are identical. Similar
results for the parallel system was proved for n= 2 case. Eryilmaz and Tank [9] considered a series
system with two dependent components and a single cold standby component. Eryilmaz [10] inves-
tigated the effect of adding cold standby redundancy to a general coherent structure at system
and component levels. Tuncel [25] studied the residual lifetime of a single component system with
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a cold standby component when the lifetimes of these components were dependent. Chen et al. [5]
discussed the problem of optimal allocation methods for two standby spares in a two-component
series/parallel structure. Yan et al. [26] studied series and parallel systems of two components with
one standby redundancy component when all components having exponential distribution. Roy
and Gupta [21, 22] considered the reliability of a k-out-of-n and coherent systems equipped with
two cold standby components, respectively.
The stress-strength reliability estimation of the k-out-of-n: G system has been paying great

attention by researchers in decades. Many studies are available in the literature about this topic.
Since adding standby component(s) to the system increases the system reliability, to investigate
the reliability of this type of a system is useful for practitioners. Some recent studies are mentioned
in the next references. Siju and Kumar [24] considered the estimation of reliability of a parallel
system under the hybrid of active, warm and cold standby components by applying maximum
likelihood method. The reliability estimation for the standby redundancy system consists of a
certain number of same subsystems with series structure was considered by Liu et al. [15] for the
generalized half-logistic distribution based on progressive Type-II censoring sample.
In this study, we consider a parallel system of n components with n standby components whenever

the standby components connected to working components at component level. The estimation
problem for the stress-strength reliability of this parallel system has been studied.
The rest of this article is organized as follows: Section 2 presents the formulation of the model

that includes standby components. Section 3 contains the maximum likelihood estimate (MLE)
and Bayes estimate of the reliability of the parallel system under the common stress. Section 4
contains the simulation study in order to compare the performance of the obtained estimators. A
real life data analysis is considered for illustrative purposes of the proposed estimates.

2. Model definition
In this section, we have considered the problem of stress-strength reliability estimation of a par-

allel system with standby redundancy at component level. Suppose an n component parallel system
with standby components that are independent but not identically distributed with original com-
ponents. We assume that X1, . . . ,Xn represent the lifetimes of strength components and Y1, . . . , Yn

are the lifetimes of independent standby strength components having exponential distributions
with parameters α and β, respectively. T represents the common stress variable and follows the
exponential distribution with parameter θ. This parallel system structure is shown in Figure 1a.
In the case of component level, standby redundancy is applied to the components one by one.

The total lifetime of each strength component is Zi =Xi + Yi, i= 1, . . . , n. Then, the cumulative
distribution function (cdf) and probability density function (pdf) of Zi, i= 1, . . . , n are given by

FZi
(z) =

∫ z

0

Fx(z− y)fy(y)dy

=

{
1+ αe−βz−βe−αz

β−α
, α �= β

1− e−αz(1+αz) , α= β
(2.1)

and

fZi
(z) =

{
αβ
β−α

(e−αz − e−βz) , α �= β

α2ze−αz , α= β
, i= 1, . . . , n. (2.2)

When the active strength and standby redundancy components are identical, i.e. α = β, the
total lifetime distributions Zi, i= 1, . . . , n follow the gamma distribution with shape parameter 2
and rate parameter α. In this case, the stress-strength reliability problem is reduced to the simple
stress-strength reliability of the gamma components in Nojosa and Rathie [17]. Hence, we consider
the case where parameters α and β are not the same in this study. Since Z1, . . . ,Zn denote n
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independent total strength random variables given in (2.1), the cdf for the lifetime of the parallel
system is

FZ(n)
(z) =

n∑
k=0

(
n

k

)
(αe−βz −βe−αz)k

(β−α)k

=
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)j

αk−jβj

(β−α)k
e−z[j(α−β)+βk]

where Z(n) =max(Z1, . . . ,Zn).
When the maximum strength component Z(n) is subjected to the common stress component T ,

the stress-strength reliability of the parallel system is obtained as

R=

∫ ∞

0

P (Z(n) >T |T = t)fT (t)dt

= 1−
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)j

(β−α)k
αk−jβjθ

αj+β(k− j)+ θ
. (2.3)

Moreover, if we use n standby strength components as original components in the parallel system,
we construct a new parallel system with 2n strength components. The stress-strength reliability of
the new parallel system is derived under the common stress for comparison. Let Vi be the lifetime
of ith strength components i= 1, . . . ,2n, and follow the exponential distribution with parameter α
for 1≤ i≤ n and β for n+1≤ i≤ 2n. In this case, the cdf for the lifetime of the 2n components
parallel system is

FV(2n)
(t) = P (max (V1, . . . , V2n)≤ t) = (1− e−αt)n(1− e−βt)n.

Then, the stress-strength reliability of this parallel system is obtained as

RV =

∫ ∞

0

P (V(2n) >T |T = t)fT (t)dt

= 1−
n∑

k=0

n∑
j=0

(
n

k

)(
n

j

)
(−1)k+j θ

αk+βj+ θ
(2.4)

under the common stress T .
To show the effect of the standby components at component level in the stress-strength reliability

of the parallel system, we present the following graphics. In Figure 2, the comparison of two stress-
strength reliabilities R in (2.3) and RV in (2.4) are plotted with respect to the different parameters.
It is seen that adding standby components increases system reliability, as expected.

3. Estimation of R
In this section, the ML and Bayes estimates of the stress-strength reliability of the aforementioned

parallel system are investigated.

3.1. MLE of R
Let m systems be put on a test each with n original components and n cold standby components

in the parallel system. The strength data is represented as Zi1, . . . ,Zin, i= 1, . . . ,m and stress is
Ti, i= 1, . . . ,m. Then, the likelihood function of the observed sample is
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Figure 2. Plots for the reliabilities of R and RV

L(α,β, θ|z, t) =
m∏
i=1

(
n∏

j=1

fZ(zij)

)
fT (ti)

=

(
αβ

β−α

)nm

exp

(
m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

))
θme−θ

∑m
i=1 ti ,

and the log-likelihood function is given by

�(α,β, θ;z, t) = nm (ln(αβ)− ln(β−α))+m lnθ+
m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

)− θ
m∑
i=1

ti.

The partial derivatives with respect to three parameters are obtained in the following forms:

∂�

∂α
= nm

(
1

α
+

1

β−α

)
−

m∑
i=1

n∑
j=1

zije
−αzij

e−αzij − e−βzij
, (3.1)

∂�

∂β
= nm

(
1

β
− 1

β−α

)
+

m∑
i=1

n∑
j=1

zije
−βzij

e−αzij − e−βzij
(3.2)
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and
∂�

∂θ
=

m

θ
−

m∑
i=1

ti.

Hence, the ML estimate of θ is θ̂ = 1/T , and the ML estimates of α and β, that is α̂ and β̂, are
the solutions of non-linear equation system given in (3.1) and (3.2). α̂ and β̂ can be derived with
the help of numerical methods, like Newton-Raphson or Broyden’s method. Therefore, R̂ can be
obtained as

R̂= 1−
n∑

k=0

k∑
j=0

(
n

k

)(
k

j

)
(−1)j

(β̂− α̂)k

α̂k−jβ̂j θ̂

α̂j+ β̂(k− j)+ θ̂
,

from (2.3) by using the invariance property of MLE.

3.2. Asymptotic distribution and confidence interval of R
The observed information matrix of τ = (α,β, θ) is given as

J(τ) =−

⎛
⎜⎜⎜⎜⎝

∂2�
∂α2

∂2�
∂α∂β

∂2�
∂α∂θ

∂2�
∂β∂α

∂2�
∂β2

∂2�
∂β∂θ

∂2�
∂θ∂α

∂2�
∂θ∂β

∂2�
∂θ2

⎞
⎟⎟⎟⎟⎠=

⎛
⎝J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞
⎠ .

Since J13 = J31 = J23 = J32 = 0, other entries of the matrix are

J11 = nm

(
1

α2
− 1

(β−α)2

)
+

m∑
i=1

n∑
j=1

z2ije
−zij(β−α)

(1− e−zij(β−α))2
,

J12 = J21 =
nm

(β−α)2
−

m∑
i=1

n∑
j=1

z2ije
−zij(β−α)

(1− e−zij(β−α))2

and

J22 = nm

(
1

β2
− 1

(β−α)2

)
+

m∑
i=1

n∑
j=1

z2ije
−zij(β−α)

(1− e−zij(β−α))2
, J33 =

m

θ2
.

The expectations of the entries of the observed information matrix cannot be obtained analytically.
Therefore, the Fisher Information matrix I(τ) = E(J(τ)) can be obtained by using numerical
methods. The MLE of R is asymptotically normal with mean R and asymptotic variance

σ2
R =

3∑
j=1

3∑
i=1

∂R

∂τi

∂R

∂τj
I−1
ij ,

where I−1
ij is the (i, j)th element of the inverse of I(τ), see Rao [20]. Afterwards,

σ2
R =

(
∂R

∂α

)2

I−1
11 +2

∂R

∂α

∂R

∂β
I−1
12 +

(
∂R

∂β

)2

I−1
22 +

(
∂R

∂θ

)2

I−1
33 . (3.3)

Note that I(τ) can be replaced by J(τ) when I(τ) is not obtained. Therefore, an asymptotic

100(1− γ)% confidence interval of R is given by
(
R̂MLE ± zγ/2σ̂R

)
where zγ/2 is the upper γ/2th

quantile of the standard normal distribution and σ̂R is the value of σR at the MLE of the parameters.
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3.3. Bayes estimation of R
In this section, we assume that α, β and θ are random variables that follow independent gamma

prior distributions with parameters (ai, bi), i = 1,2,3, respectively. The pdf of a gamma random
variable X with parameters (ai, bi) is given as

f(x) =
bi

ai

Γ(ai)
xai−1e−xbi , x > 0, ai, bi > 0 and i= 1,2,3.

The joint posterior density function of α, β and θ is

π(α,β, θ|z, t) = I(z, t)αnm+a1−1βnm+a2−1(β−α)−nmθa3+m−1e−αb1−βb2−θ(b3+
∑m

i=1 ti)zα,β (3.4)

where I(z, t) is the normalizing constant and written by

I(z, t)−1

Γ(a3 +m)

(
b3 +

m∑
i=1

ti

)a3+m

=

∫ ∞

0

∫ ∞

0

(
αβ

β−α

)nm

αa1−1βa2−1e−αb1−βb2zα,βdαdβ

where

zα,β = exp

(
m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

))
.

The Bayes estimator of R under the SE loss function is

R̂Bayes =

∫ ∞

0

∫ ∞

0

∫ ∞

0

R π(α,β, θ|z, t)dαdβdθ.

This integral cannot be easily computed analytically; thus, some approximation methods are
needed. In order to obtain the Bayes estimate of R, we use Lindley’s approximation method.

3.3.1. Lindley’s approximation
Lindley [14] proposed an approximate method in order to obtain a numerical result for the

computation of the ratio of two integrals. This procedure, applied to the posterior expectation of
the function u(θ) for a given x, is

E(u(θ) |x) =
∫
u(θ)eQ(θ)dλ∫
eQ(θ)dλ

,

where Q(θ) = l(θ)+ ρ(θ), l(θ) is the logarithm of the likelihood function and ρ(θ) is the logarithm
of the prior density of θ. Using Lindley’s approximation, E(u(θ) |x) is approximately estimated by

E(u(θ) |x) =
[
u+

1

2

∑
i

∑
j

(uij +2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul

]

λ̂

+terms of order n−2 or smaller,

where θ = (θ1, θ2, . . . , θm), i, j, k, l = 1, . . . ,m, θ̂ is the MLE of θ, u = u(θ), ui = ∂u/∂θi, uij =
∂2u/∂θi∂θj, Lijk = ∂3l/∂θi∂θj∂θk, ρj = ∂ρ/∂θj, and σij = (i, j)th element in the inverse of the
matrix {−Lij} all evaluated at the MLE of the parameters.
For three parameter case θ = (θ1, θ2, θ3), Lindley’s approximation gives the approximate Bayes

estimate as

ûB =E(u(θ) |x) = u+(u1a1 +u2a2 +u3a3 + a4 + a5)+
1

2
[A (u1σ11 +u2σ12

+u3σ13)+B(u1σ21 +u2σ22 +u3σ23)+C(u1σ31 +u2σ32 +u3σ33)] ,
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evaluated at θ̂= (θ̂1, θ̂2, θ̂3), where

ai = ρ1σi1 + ρ2σi2 + ρ3σi3, i= 1,2,3,

a4 = u12σ12 +u13σ13 +u23σ23, a5 =
1

2
(u11σ11 +u22σ22 +u33σ33),

A= σ11L111 +2σ12L121 +2σ13L131 +2σ23L231 +σ22L221 +σ33L331,

B = σ11L112 +2σ12L122 +2σ13L132 +2σ23L232 +σ22L222 +σ33L332,

C = σ11L113 +2σ12L123 +2σ13L133 +2σ23L233 +σ22L223 +σ33L333.

In our system, for (θ1, θ2, θ3)≡ (α,β, θ) and u≡ u(α,β, θ) =R in (2.3). We compute σij, i, j = 1,2,3
by using the following partial derivatives L11 =−J11,L12 = L21 =−J12 and L22 =−J22. Using
logarithm of the prior density, we have

ρ1 =
(a1 − 1)

α
− b1, ρ2 =

(a2 − 1)

β
− b2, ρ3 =

(a3 − 1)

θ
− b3.

Additionally, we obtain L333 =
2m
θ3

and

L111 = 2nm

(
1

α3
+

1

(β−α)3

)
−

m∑
i=1

n∑
j=1

z3ije
−zij(β−α)

(
1+ e−zij(β−α)

)
(
1− e−zij(β−α)

)3 ,

L121 =L112 =−2nm
1

(β−α)3
+

m∑
i=1

n∑
j=1

z3ije
−zij(β−α)

(
1+ e−zij(β−α)

)
(
1− e−zij(β−α)

)3 ,

L122 =L221 = 2nm
1

(β−α)3
−

m∑
i=1

n∑
j=1

z3ije
−zij(β−α)

(
1+ e−zij(β−α)

)
(
1− e−zij(β−α)

)3 ,

L222 = 2nm

(
1

β3
− 1

(β−α)3

)
+

m∑
i=1

n∑
j=1

z3ije
−zij(β−α)

(
1+ e−zij(β−α)

)
(
1− e−zij(β−α)

)3 .

Let

S =

(
n

k

)
(−1)k

αkβn−kθ

(β−α)
n
[α (n− k)+βk+ θ]

(3.5)

denote the common term in the first and second order partial derivatives of the parallel system
reliability. We have the derivatives of reliability as given below

u1 =
n∑

k=0

S
{[nα+ k(β−α)][α(n− k)+βk+ θ]−α(β−α)(n− k)}

α(β−α) [α (n− k)+βk+ θ]
,

u2 =
n∑

k=0

S
(−k)[α(n− k)+β(k+1)+ θ]

β [α (n− k)+βk+ θ]
,

u3 =
n∑

k=0

S
[α(n− k)+βk]

θ [α (n− k)+βk+ θ]
,

u11 =

n∑
k=0

S

[
n(n+1)

(β−α)2
+

2(n− k)

α(n− k)+βk+ θ

(
− n

β−α
− k

α
+

n− k

α(n− k)+βk+ θ

)

+
2kn

α(β−α)
+

k(k− 1)

α2
(k− 1)

]
,
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u12 =

n∑
k=0

S

[
n(n+1)

(β−α)2
− 2(n− k)

α(n− k)+βk+ θ

(
n

β−α
+
k

α
− n− k

α(n− k)+βk+θ

)
+

2kn

α(β−α)
+
k(k− 1)

α2

]
,

u22 =

n∑
k=0

S

[
n(n+1)

(β−α)2
+

2k

α(n− k)+βk+ θ

(
n

β−α
− n− k

β
+

k

α(n− k)+βk+ θ

)

− 2n(n− k)

β(β−α)
+

(k−n)(k−n+1)

β2

]
,

u13 =

n∑
k=0

S

θ

[
1

α(n− k)+βk+ θ

(
−θ

(
n

β−α
+
k

α

)
+(k−n)

(
1− 2θ

α(n− k)+βk+θ

))
+

n

(β−α)
+
k

α

]
,

u23 =

n∑
k=0

S

θ

[
1

α(n− k)+βk+θ

(
θ

(
n

β−α
− n− k

β

)
+k

(
2θ

α(n− k)+βk+ θ
− 1

))
+
n− k

β

]
,

u33 =

n∑
k=0

S

θ

(
θ

α(n− k)+βk+ θ
− 1

)
.

Hence, we obtain A = σ11L111 + 2σ12L121 + σ22L221, B = σ11L112 + 2σ12L122 + σ22L222 and C =
σ33L333. Then, Bayes estimator of R, i.e. R̂Lindley, is given as

R̂Lindley =R+ [u1a1 +u2a2 +u3a3 + a4 + a5] +
1

2
[A(u1σ11 +u2σ12 +u3σ13)

+B(u1σ21 +u2σ22 +u3σ23)+C(u1σ31 +u2σ32 +u3σ33)] (3.6)

where all the parameters are evaluated at MLEs (α̂, β̂, θ̂).

4. Numerical results
In this section, a simulation study and a real-life example are presented to illustrate the obtained

estimates.

4.1. Simulation study
In this subsection, we perform a simulation study to compare the performance of two different

ML estimates and Bayesian estimates under informative and non-informative priors with respect
to mean squared error (MSE) and estimated risk (ER). The ER of θ for the estimate θ̂, is computed
as

ER(θ) =
1

N

N∑
i=1

(θ̂i − θi)
2,

under the SE loss function. We have used statistical software R [19] for all computations. The
nleqslv package [11] in software R is used to solve the non-linear equations. The point and interval
estimates are compared with respect to average lengths (AL) and coverage probabilities (CP) of
95% confidence intervals. All results are obtained based on 2500 replications.
In simulation, we have considered different sample sizes n= 5(5)15, m= 25(25)100 for (α,β, θ) =

(8,2,1.5) and n = 12(4)20, m = 10,20,40,60 for (α,β, θ) = (12,7,3). The biases and MSEs for
two different ML estimates, biases and ERs of Bayes estimates under the informative and non-
informative priors are presented in Table 1. The first MLE of R is computed by using (2.3) based on
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the solution of the non-linear equation system given in (3.1) and (3.2). ML estimates of unknown
parameters α, β and θ are also obtained from the random sample of exponential distributions as
α̃= 1/X, β̃ = 1/Y and θ̃ = 1/T . The second MLE of R, called MLE2, is computed by using α̃, β̃
and θ̃ in (2.3). In Bayesian case, the hyperparameters are selected as a1 = 2α, b1 = 2, a2 = 2β,
b2 = 2, a3 = 2θ, b3 = 2 for the informative prior and zero for the non-informative case. The AL for
the %95 asymptotic confidence interval of R and corresponding CP value are reported in Table 2.
From Table 1, MSE and ERs of the estimates decrease as the sample size increases as expected.

We observe that Bayes estimates of R based on the informative prior perform better than that
of other estimates except for n= 12, m= 10 case. The two ML estimates give nearly same error
values but the MLE2 mostly gives better results with a small difference. For this reason, MLE2
can be preferable as an alternative method. It is observed that the AL for each interval decreases
as the sample size increases and all the CPs are satisfactory.

4.2. Real data analysis
In this subsection, a real-life data set analysis is presented to illustrate the proposed methods.

Nelson [16] considered the graphical methods for analyzing accelerated life test data about times to
breakdown of an insulating fluid subjected to various constant elevated test voltages. The number
of times to breakdown were observed and saved for each test voltage, and all the data was given
in Nelson [16] (Table 1).
An engineer has a parallel system with three components and each component is isolated by

using this insulating fluid. This engineer wants to decide what voltage values should be used for
these components to minimize the breakdown times. For this purpose, he/she wants to compare the
low and mid voltage levels (32 Kv and 34 Kv) against the high voltage level (36 Kv). Then, three
components parallel system with standby components is constructed by using 32 Kv and 34 Kv
data sets. It is assumed that 32 Kv, 34 Kv and 36 Kv data sets represent the strength component
(X), standby strength component (Y) and stress component (T) observations, respectively. For
the strength data sets, X and Y are used for three components of the parallel system. Based on
the previous information, if the reliability value of this system exceeds 0.90, he/she prefers the
parallel system with standby components.
We use 15 observations for strength components and 5 observations for stress component. Hence,

a random sample of the size 15 is taken from 34 Kv data for Y and a random sample of the size 5
is taken from 36 Kv data for T. Every column of X and Y data sets represents the observations of
the three components for the parallel system. Then, the observed data X, Y and (Z,T) for n= 3,
m= 5 are given as

X=

⎡
⎢⎢⎢⎢⎣

0.27 3.91 53.24
0.40 9.88 82.85
0.69 13.95 89.29
0.79 15.93 100.58
2.75 27.80 215.10

⎤
⎥⎥⎥⎥⎦ , Y=

⎡
⎢⎢⎢⎢⎣

4.15 33.91 8.27
4.67 7.35 36.71
72.89 0.78 2.78
31.75 4.85 0.19
0.96 3.16 8.01

⎤
⎥⎥⎥⎥⎦ , Z=

⎡
⎢⎢⎢⎢⎣

4.42 37.82 61.51
5.07 17.23 119.56
73.58 14.73 92.07
32.54 20.78 100.77
3.71 30.96 223.11

⎤
⎥⎥⎥⎥⎦ , T=

⎡
⎢⎢⎢⎢⎣

1.97
3.99
0.99
2.58
25.50

⎤
⎥⎥⎥⎥⎦ .

We check whether data sets X, Y and T come from the exponential distribution or not.
Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D) and Cramer-von Mises (C-VM) tests are
carried out for the goodness-of-fit test. Test results are listed in Table 3. It is observed that the
exponential distribution provides a good fit to these data sets.
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T
a
b
l
e
1
.
E
st
im

a
te
s
o
f
R

fo
r
(α

,β
,θ
)
=
(8
,2
,1
.5
)
a
n
d
(1
2
,7
,3
)

M
L
E

M
L
E
2

B
a
y
es

(I
n
f.
p
ri
o
r)

B
a
y
es

(N
o
n
-i
n
f.
p
ri
o
r)

n
m

R
R̂

B
ia
s

M
S
E

R̂
B
ia
s

M
S
E

R̂
B
ia
s

E
R

R̂
B
ia
s

E
R

(α
,β

,θ
)
=
(8
,2
,1
.5
)

5
25

0
.8
0
3
1
3

0
.8
0
3
9
8

0
.0
0
0
8
4

0
.0
0
3
4
4

0
.8
0
3
9
1

0
.0
0
0
7
8

0
.0
0
3
4
2

0
.7
9
1
6
3

-0
.0
1
1
5
0
7

0
.0
0
3
1
8

0
.7
9
5
2
7

-0
.0
0
7
8
7

0
.0
0
3
6
4

50
0
.8
0
2
7
0

-0
.0
0
0
4
3

0
.0
0
1
7
0

0
.8
0
2
8
7

-0
.0
0
0
2
6

0
.0
0
1
6
9

0
.7
9
8
0
4

-0
.0
0
5
1
0

0
.0
0
1
5
5

0
.7
9
8
6
6

-0
.0
0
4
4
8

0
.0
0
1
7
3

75
0
.8
0
2
6
4

-0
.0
0
0
4
9

0
.0
0
1
1
4

0
.8
0
2
7
4

-0
.0
0
0
4
0

0
.0
0
1
1
4

0
.7
9
9
7
2

-0
.0
0
3
4
2

0
.0
0
1
0
7

0
.8
0
0
0
0

-0
.0
0
3
1
3

0
.0
0
1
1
5

10
0

0
.8
0
4
1
0

0
.0
0
0
9
7

0
.0
0
0
8
8

0
.8
0
4
2
3

0
.0
0
1
0
9

0
.0
0
0
8
8

0
.8
0
1
9
7

-0
.0
0
1
1
7

0
.0
0
0
8
3

0
.8
0
2
1
3

-0
.0
0
1
0
0

0
.0
0
0
8
8

1
0

2
5

0
.8
7
6
2
4

0
.8
7
3
5
0

-0
.0
0
2
7
3

0
.0
0
2
2
7

0
.8
7
3
8
2

-0
.0
0
2
4
2

0
.0
0
2
2
1

0
.8
6
4
0
2

-0
.0
1
2
2
2

0
.0
0
2
0
1

0
.8
6
4
3
7

-0
.0
1
1
8
7

0
.0
0
2
5
2

50
0
.8
7
4
8
3

-0
.0
0
1
4
1

0
.0
0
1
1
4

0
.8
7
5
2
3

-0
.0
0
1
0
1

0
.0
0
1
1
1

0
.8
7
0
3
6

-0
.0
0
5
8
8

0
.0
0
1
0
5

0
.8
7
0
3
2

-0
.0
0
5
9
1

0
.0
0
1
1
8

75
0
.8
7
5
6
4

-0
.0
0
0
6
0

0
.0
0
0
7
4

0
.8
7
5
8
2

-0
.0
0
0
4
1

0
.0
0
0
7
3

0
.8
7
2
6
1

-0
.0
0
3
6
3

0
.0
0
0
7
0

0
.8
7
2
6
3

-0
.0
0
3
6
1

0
.0
0
0
7
6

10
0

0
.8
7
6
0
5

-0
.0
0
0
1
9

0
.0
0
0
5
6

0
.8
7
6
1
7

-0
.0
0
0
0
7

0
.0
0
0
5
6

0
.8
7
3
7
6

-0
.0
0
2
4
8

0
.0
0
0
5
4

0
.8
7
3
7
9

-0
.0
0
2
4
5

0
.0
0
0
5
7

1
5

2
5

0
.9
0
6
8
5

0
.9
0
5
5
0

-0
.0
0
1
3
4

0
.0
0
1
5
9

0
.9
0
6
0
6

-0
.0
0
0
7
9

0
.0
0
1
5
4

0
.8
9
6
9
8

-0
.0
0
9
8
7

0
.0
0
1
4
1

0
.8
9
6
7
0

-0
.0
1
0
1
5

0
.0
0
1
7
7

50
0
.9
0
5
3
1

-0
.0
0
1
5
3

0
.0
0
0
8
0

0
.9
0
5
5
5

-0
.0
0
1
3
0

0
.0
0
0
7
9

0
.9
0
0
9
3

-0
.0
0
5
9
1

0
.0
0
0
7
6

0
.9
0
0
8
4

-0
.0
0
6
0
0

0
.0
0
0
8
5

75
0
.9
0
5
3
1

-0
.0
0
1
5
4

0
.0
0
0
5
5

0
.9
0
5
4
9

-0
.0
0
1
3
5

0
.0
0
0
5
5

0
.9
0
2
3
7

-0
.0
0
4
4
8

0
.0
0
0
5
3

0
.9
0
2
3
1

-0
.0
0
4
5
4

0
.0
0
0
5
8

10
0

0
.9
0
6
7
7

-0
.0
0
0
0
8

0
.0
0
0
4
1

0
.9
0
6
7
7

-0
.0
0
0
0
7

0
.0
0
0
4
0

0
.9
0
4
5
0

-0
.0
0
2
3
5

0
.0
0
0
3
9

0
.9
0
4
5
2

-0
.0
0
2
3
3

0
.0
0
0
4
2

(α
,β

,θ
)
=
(1
2,
7,
3)

1
2

1
0

0
.7
8
9
3
2

0
.8
0
3
2
5

0
.0
1
3
9
2

0
.0
0
8
4
1

0
.7
9
7
2
5

0
.0
0
7
9
2

0
.0
0
8
5
6

0
.7
3
4
0
2

-0
.0
5
5
3
0

0
.0
0
8
9
7

0
.7
6
7
7
2

-0
.0
2
1
6
1

0
.0
1
1
7
8

20
0
.7
9
8
1
2

0
.0
0
8
8
0

0
.0
0
4
2
7

0
.7
9
4
3
9

0
.0
0
5
0
6

0
.0
0
4
2
9

0
.7
6
8
2
9

-0
.0
2
1
0
4

0
.0
0
4
0
9

0
.7
7
7
0
2

-0
.0
1
2
3
1

0
.0
0
5
8
6

40
0
.7
9
2
4
3

0
.0
0
3
1
0

0
.0
0
2
3
9

0
.7
9
0
5
0

0
.0
0
1
1
7

0
.0
0
2
3
8

0
.7
7
9
4
9

-0
.0
0
9
8
4

0
.0
0
2
3
8

0
.7
8
0
3
9

-0
.0
0
8
9
4

0
.0
0
3
1
5

60
0
.7
9
1
7
0

0
.0
0
2
3
7

0
.0
0
1
5
8

0
.7
9
0
6
1

0
.0
0
1
2
8

0
.0
0
1
5
7

0
.7
8
3
4
4

-0
.0
0
5
8
9

0
.0
0
1
5
0

0
.7
8
2
8
8

-0
.0
0
6
4
5

0
.0
0
2
0
1

1
6

1
0

0
.8
1
3
6
3

0
.8
2
1
8
0

0
.0
0
8
1
7

0
.0
0
8
0
1

0
.8
1
6
3
3

0
.0
0
2
7
0

0
.0
0
8
2
1

0
.7
6
6
0
9

-0
.0
4
7
5
3

0
.0
0
7
3
5

0
.7
8
5
9
9

-0
.0
2
7
6
3

0
.0
1
1
3
0

20
0
.8
1
8
6
2

0
.0
0
4
9
9

0
.0
0
4
2
0

0
.8
1
5
5
2

0
.0
0
1
8
9

0
.0
0
4
2
5

0
.7
9
4
1
0

-0
.0
1
9
5
4

0
.0
0
3
4
9

0
.7
9
7
5
3

-0
.0
1
6
1
0

0
.0
0
5
7
7

40
0
.8
1
3
7
4

0
.0
0
0
1
1

0
.0
0
2
2
3

0
.8
1
2
1
1

-0
.0
0
1
5
2

0
.0
0
2
2
5

0
.8
0
2
1
9

-0
.0
1
1
4
4

0
.0
0
2
1
5

0
.8
0
1
3
9

-0
.0
1
2
2
4

0
.0
0
3
1
4

60
0
.8
1
5
1
4

0
.0
0
1
5
0

0
.0
0
1
5
0

0
.8
1
4
1
6

0
.0
0
0
5
3

0
.0
0
1
4
7

0
.8
0
7
7
3

-0
.0
0
5
9
0

0
.0
0
1
3
9

0
.8
0
7
2
0

-0
.0
0
6
4
3

0
.0
0
1
8
2

2
0

1
0

0
.8
3
0
5
9

0
.8
3
8
4
3

0
.0
0
7
8
4

0
.0
0
6
6
6

0
.8
3
3
7
7

0
.0
0
3
1
8

0
.0
0
6
7
7

0
.7
9
0
5
8

-0
.0
4
0
0
1

0
.0
0
5
5
1

0
.8
0
1
2
9

-0
.0
2
9
3
0

0
.0
1
0
6
3

20
0
.8
3
4
8
5

0
.0
0
4
2
6

0
.0
0
3
7
5

0
.8
3
2
0
1

0
.0
0
1
4
2

0
.0
0
3
7
7

0
.8
1
1
3
1

-0
.0
1
9
2
7

0
.0
0
3
4
0

0
.8
1
2
4
0

-0
.0
1
8
1
8

0
.0
0
6
1
6

40
0
.8
3
1
6
7

0
.0
0
1
0
9

0
.0
0
1
9
7

0
.8
3
0
4
4

-0
.0
0
0
1
4

0
.0
0
1
9
6

0
.8
2
1
2
0

-0
.0
0
9
3
9

0
.0
0
1
7
3

0
.8
2
0
4
0

-0
.0
1
0
1
9

0
.0
0
2
4
8

6
0

0
.8
3
0
5
9

0
.8
3
1
2
1

0
.0
0
6
1
8

0
.0
0
1
3
8

0
.8
3
0
5
5

-0
.0
0
0
0
3

0
.0
0
1
3
7

0
.8
2
4
0
7

-0
.0
0
6
5
1

0
.0
0
1
3
5

0
.8
2
3
2
0

-0
.0
0
7
3
9

0
.0
0
1
7
7
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Table 2. Average lengths and coverage probabilities of R for (α,β, θ) = (8,2,1.5) and (12,7,3)

n m R AL CP n m R AL CP
5 25 0.80314 0.22488 0.92200 12 10 0.78933 0.35302 0.87320

50 0.16184 0.93560 20 0.26235 0.91960
75 0.13273 0.94360 40 0.19079 0.93040
100 0.11477 0.93840 60 0.15704 0.93680

10 25 0.87624 0.18283 0.91240 16 10 0.81363 0.33748 0.86760
50 0.13070 0.93320 20 0.25054 0.90360
75 0.10691 0.93600 40 0.18285 0.92520
100 0.09266 0.93520 60 0.14982 0.93240

15 25 0.90685 0.15545 0.90200 20 10 0.83059 0.32468 0.87360
50 0.11211 0.93240 20 0.24059 0.90520
75 0.09208 0.94520 40 0.17522 0.93720
100 0.07921 0.94120 60 0.14416 0.93400

In this case, the MLE of the parameters are obtained as (α̂, β̂, θ̂) = (0.0183,0.8230,0.1427) for our
model. The estimates of R are listed in Table 4 based on these ML estimates. Bayes estimates of R
are obtained under three different priors like as Prior 1: ai = bi = 2, i= 1,2,3, Prior 2: a1 = 0.5084,
b1 = 0.0123, a2 = 0.5539, b2 = 0.0377, a3 = 0.5677, b3 = 0.0810 and Prior 3: ai = bi = 0, i= 1,2,3.
The hyperparameters in Prior 2 are obtained by using moment estimation of Gamma distribution
based on the data X, Y and T. This method can be preferable when the prior information is not
available.

Table 3. Goodness-of-fit test for the real data set

Data MLE K −S p− value A−D p− value C −VM p− value
X α̂=0.0243 0.3094 0.0900 3.7203 0.0123 0.4030 0.0697

Y β̂ =0.0680 0.3030 0.1020 1.5471 0.1659 0.2900 0.1439

T θ̂=0.1427 0.3658 0.4134 0.7282 0.5276 0.1336 0.4562

Table 4. Estimates of R for the real data set

(n,m) MLE MLE2 Lindley (Prior 1) Lindley (Prior 2) Lindley (Prior 3)
(3,5) 0.99459 0.99801 0.93044 0.91603 0.94869

(0.98770,1.00) (0.98721,1.00)

5. Conclusion
In this paper, the estimation problem has been considered for the stress-strength reliability of

the parallel system when the cold standby redundancy available. It is assumed that stress, strength
and standby components come from the exponential distribution. Bayes estimate is approximated
by using Lindley’s approximation under two different priors, and compared with the maximum
likelihood estimates. It is observed that when the prior information is available, the estimated risk
of Bayes estimate is smaller than risks of the other estimates. When the prior information is not
available, the estimated risks of two maximum likelihood and Bayes estimates are closing to each
other as sample size increases.
It is known that the convolution of the independent and non-identical random variables generally

has mixed forms. Hence, the total lifetime of the strength component and its corresponding standby
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86 İSTATİSTİK: Journal of the Turkish Statistical Association 13(2), pp. 74–87, � 2021 İstatistik

component for the other lifetime distributions will be more complicated for this reliability problem.
We hope to report our results in this regard in the near future.
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