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2 Intersections of Multicurves on Small Genus Non–Orientable Surfaces
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Abstract

In this study, we derive Gershgorin discs of elliptic complex matrices in the elliptic plane.
Also, we investigate the location of the zeros of an elliptic complex-valued polynomial with
the help of Gershgorin discs of elliptic complex matrices. To prove the authenticity of our
results and to distinguish them from existing ones, some illustrative examples are also given.
Elliptic complex numbers are a generalized form of complex and so real numbers. Thus, the
obtained results extend, generalize and complement some known Gershgorin discs results
from the literature.

1. Introduction

The Gershgorin set that is composed of a union of discs, is a region that is inclusive of eigenvalues of matrices. This result is stated in the
following theorem, where the deleted row sum R′i of a complex matrix A with elements ai j is defined as;

R′i =
n

∑
j=1, j 6=i

∣∣ai j
∣∣.

Theorem 1.1. (Gershgorin’s Theorem) All the eigenvalues of the n×n complex matrix A are located in the union of the discs n

n⋃
i=1

Γ
R
i = Γ

R

where

Γ
R
i =

{
z ∈C : |z−aii| ≤ R′i

}
.

The Gershgorin set in matrix theory has important applications in modeling human faces, size reduction and data compression, signal and
image processing-restoration, computational mathematics, some fields of pure and applied mathematics and so on [1]−[10]. With the rapid
development of these fields, more and more researchers are interested in the Gershgorin set and have obtained many valuable results. For the
Gershgorin set, they mainly consider real, complex and real quaternion matrices.

On the other hand, elliptic complex numbers are defined as

z = x+uy

where x, y ∈ R and u2 = p < 0 ∈ R. Since many physical systems have elliptical behaviors, elliptic complex number systems have many
applications in science and technology, [11]−[18]. Thus, it is getting more and more necessary for us to further study the theoretical
properties and numerical computations of elliptic complex numbers and their matrices.

In this study, we introduce concepts of the Gershgorin sets of the elliptic complex matrices and investigate the location of the zeros of an
elliptic complex-valued polynomial with the help of this theory. To prove the authenticity of our results and to distinguish them from existing
ones, some illustrative examples are also given. Elliptic numbers are a generalized form of complex and so real numbers. Thus, the obtained
results extend, generalize and complement some known Gershgorin set results from the literature.

Email addresses and ORCID numbers: arzu.cihan3@ogr.sakarya.edu.tr , 0000-0003-2003-3507 (A. Sürekçi), hhkosal@sakarya.edu.tr, 0000-
0002-4083-462X (H.H. Kösal), agungor@sakarya.edu.tr, 0000-0003-1863-3183 (M.A. Güngör)
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2. Algebraic Properties of Elliptic Complex Numbers

The set of elliptic complex numbers is denoted by

Cp =
{

z = x+uy : x,y ∈ R, u2 = p < 0
}
.

For a elliptic complex number z = x+uy ∈Cp, the real number Re(z) = x is called the real part of z and Im(z) = y is called the imaginary
part of z.
The conjugate and norm of elliptic complex number z = x+uy are defined as

z = x−uy and ‖z‖p =
√

zz =
√

x2− py2,

respectively.
Addition, multiplication and scalar multiplication of the elliptic complex numbers z1 = x1 +uy1, z2 = x2 +uy2 ∈Cp are defined by

z1 + z2 = (x1 +uy1)+(x2 +uy2) = x1 + x2 +u(y1 + y2) ,

z1z2 = (x1 +uy1)(x2 +uy2) = (x1x2 + py1y2)+u(x1y2 + x2y1) ,

λ z1 = λ (x1 +uy1) = λx1 +uλy1, λ ∈ R,

respectively, [19].

Theorem 2.1. Cp is 2D vector space over a field R according to addition and scalar multiplication, [20].

Also, each elliptic complex number can be represented in a single form in an elliptic plane. In the elliptic plane, the distance between of the
elliptic complex numbers z1 = (x1,y1) and z2 = (x2,y2) is defined as

‖z1− z2‖p =

√
(x1− x2)

2− p(y1− y2)
2,

[19].
Unit circles are defined by requiring ‖z‖p =

√
x2− py2 = 1 as in Figure 2.1 In special case p =−1, the elliptic plane corresponds to the

Euclidean plane.
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Figure 2.1: Unit circles in C−0.5,C−1,C−5.

Definition 2.2. Let z = x+uy ∈Cp be given. Cp is algebraically isomorphic to complex numbers

C =
{

x+ iy | x, y ∈ R and i2 =−1
}

through the bijective map

αp : Cp→C
z = x+uy→ αp (z) = x+ i

√
|p|y,

[19].

The fundamental theorem of algebra for complex-valued polynomials: Let us consider the polynomial f with real coefficient and degree
N > 0. So, thanks to the polynomial f , two algebraic curves are defined by

Re( f (z)) = 0 and Im( f (z)) = 0.

Each of these two algebraic curves consists of different continuous branches and these curves intersect the circle ‖z‖= r at 2N points. In
addition, the crossing points of these two algebraic curves remain within this circle. This shows that the polynomial f has at least one real
root, [21].
Now let’s give the fundamental theorem of algebra for complex numbers that Gauss proved given above for elliptic complex-valued
polynomials.
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Theorem 2.3. A n− th degree polynomial function with elliptic complex coefficients and elliptic complex-valued

fp (z) =
n

∑
i=0

aizi = zn+an−1zn−1 + ...+a1z+a0

has exactly n zeros in the set of the elliptic complex numbers, counting repeated zeros.

Proof. Let z = x+uy ∈Cp be given. Considering the Definition 2.2 we can express each elliptic complex number in terms of the complex
number. Then we can take a complex number instead of an elliptic complex number using the equation u = i

√
|p| and the equivalence

z = x+uy≡ x+ i
√
|p|y exists. Let fp (z) be the n− th order monic polynomial with the elliptic complex-valued real coefficient

fp (z) = zN + cN−1zN−1 + ...+ c1z+ c0=zN +
N−1

∑
n=0

cnzn,

where z = x+uy ∈Cp and c0,c1, ...,cN−1 ∈ R.
Considering the equation z = x+uy≡ x+ i

√
|p|y, the polynomial fp (z) becomes a monic polynomial with n− th order complex-valued real

coefficients. Therefore, according to the fundamental theorem of algebra for complex valued and complex coefficients, the polynomial f has
at least one root. Let z0 = x0+ iy0 be one root of fp (z). In this case, taking into account the equality u = i

√
|p|, the equality z0 = x0+

u√
|p|

y0

can be written and z0 becomes a root of the polynomial fp. As a result, every n− th order monic polynomial with elliptic complex-valued
and real coefficient has at least one root.

This theorem is true for all polynomials with elliptic complex coefficients. To see why this is true, suppose the theorem holds for elliptic
complex-valued polynomials with real coefficients, and let fp (z) = zN +cN−1zN−1 + ...+c1z+c0, be an elliptic complex valued polynomial
with elliptic complex coefficients. Let fp (z) = zN + cN−1zN−1 + . . .+ c0 be the polynomial whose coefficients are the elliptic conjugates of
the coefficients of f , and let gp (z) = fp (z) fp (z) = fp (z) fp (z). Then g is a polynomial with real coefficients, so by assumption it has a root
z0. This means that gp (z0) = fp (z) fp (z), so either z0 or z0 is a root of f .

Also, according to our theorem, the two curves Re
(

fp (z)
)
= 0 and Im

(
fp (z)

)
= 0 must intersect at some point in the interior of the elliptic

disc. At this intersection point, the real and imaginary parts of fp (z) are both 0, so fp (z) = 0; in other words, the intersection point is a root
of f .
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Figure 2.2: The solid red lines are the points where Re( fp (z)) = 0 and the dashed blue lines are the points where Im( fp (z)) = 0 in elliptic plane for the
elliptic complex valued polynomial fp (z) = z4−9z3 +19z2 +31z−102. In here intersection points of algebraic curves Re( fp (z)) = 0 and Im( fp (z)) = 0 in
elliptic plane are root of fp (z) . Also, the large, solid ellipse is |z|= r∗, and the smaller, dotted ellipse is |z|= r0.

The set Cm×n
p denotes all m×n type matrices with elliptic complex number entries. For A = A1+uA2, B = B1+uB2 ∈Cm×n

p ,C =C1+uC2 ∈
Cn×l

p the ordinary matrix addition, scalar multiplication and multiplication are defined by

A+B = (A1 +uA2)+(B1 +uB2) = (A1 +B1)+u(A2 +B2) ∈Cm×n
p ,

λA = λ (A1 +uA2) = λA1 +u(λA2) ∈Cm×n
p

and

AC = (A1 +uA2)(C1 +uC2) = (A1C2 + pA2C2)+u(A1C2 +A1C1) ∈Cm×l
p ,

respectively.

Theorem 2.4. [22] Let A and B be elliptic complex matrices of appropriate sizes. Then the following are satisfied:

1.
(
A−1)−1

= A,
2. (AB)−1 = B−1A−1,

3.
(
Ak)−1

=
(
A−1)k

, k ∈ Z+,

4.
(
AT )T

= A,
5. (λA)T = λAT ,
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6. (AB)T = BT AT ,

7.
(
Ak)T

=
(
AT )k

, k ∈ Z+,

8.
(
A
)
= A, (A∗)∗ = A,

9. (A+B) = A+B, (A+B)∗ = A∗+B∗,
10. (AB) = AB, (AB)∗ = B∗A∗.

Definition 2.5. Let A ∈Cn×n
p , λ ∈Cp. If there exists 0 6= x ∈Cn×1

p such that

Ax = λx

then λ is called a eigenvalues of A and x is called a eigenvector of A associate with λ . The set of eigenvalues of elliptic complex matrix A is
defined as

σp (A) =
{

λ ∈Cp : Ax = λx, ∃x 6= 0
}
.

Theorem 2.6. Elliptic complex matrix A ∈Cn×n
p has exactly n elliptic eigenvalues.

Proof. Since the characteristic polynomial fA (s) = det(A− sI) of matrix A ∈Cn×n
p will be an n− th order polynomial, from the fundamental

theorem of algebra for elliptic complex numbers, matrix A has at most n eigenvalues.

Example 2.7. Let find the eigenvalues of the elliptic complex matrix

A =

 1+u 0 1
0 u 0
1 0 1−u

 ∈C3×3
p .

Characteristic polynomial of the elliptic complex matrix A is fA (s) = det(A− sI2×2) = (s−u)(s2−2s− p). Zeros of fA are

s1 = u, s2 = 1+
√

1− p, s3 = 1−
√

1− p.

These roots are also the eigenvalues of the matrix A. The eigenvalues of the matrix A according to the values p are given in the table below.

λ1 λ2 λ3
p =−0.5 1.7071 0.2929 u
p =−1 1 1 u
p =−5 1+0.8944u 1−0.8944u u

Table 1: The eigenvalues of the matrix A according to the values p.

Theorem 2.8. Each eigenvalue of the elliptic complex matrix A ∈Cn×n
p is inside at least one of the ellipses Di (A) in the elliptic plane,

Di (A) =
{

z : ‖z−aii‖p ≤ Ri, 1≤ i≤ n
}

in here Ri = ∑
j 6=i

∥∥ai j
∥∥

p. In other words, all the eigenvalues of matrix A are in the region D(A),

D(A) =
n⋃

i=1
Di (A).

Proof. Let’s admit that λ is an eigenvalue of matrix A. In this case, there is a non-zero vector x = (x1,x2, ...,xn)
T ∈Cn×1

p such that Ax = λx.
Let’s say xk is the largest component of x, so

‖xk‖p = max
{
‖xi‖p , 1≤ i≤ n

}
> 0

is. In this case

∑
j 6=k

ak jx j = (λ −akk)

can be written from the equation ak1x1 +ak2x2 + ...+aknxn = λxk. In the last equation, the norm of both sides of the equation is taken and if
the triangle inequality is used,

‖λ −akk‖p ‖xk‖p =

∥∥∥∥∥ ∑
j 6=k

ak jx j

∥∥∥∥∥
p

≤ ∑
j 6=k

∥∥ak j
∥∥

p

∥∥x j
∥∥

p

≤

(
∑
j 6=k

∥∥ak j
∥∥

p

)
‖xk‖p
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is obtained. Here,

‖λ −akk‖p ≤ ∑
j 6=k

∥∥ak j
∥∥

p

inequality is obtained.
If it is called

Ri = ∑
j 6=i

∥∥ai j
∥∥

p = ‖ai1‖p +‖ai2‖p + ...+
∥∥∥ai(i−1)

∥∥∥
p
+
∥∥∥ai(i+1)

∥∥∥
p
+ ...+‖ain‖p (i = 1,2,3, ...,n),

it is proved that each eigenvalue of the elliptic matrix A ∈Cn×n
p is inside at least one of ellipses in the elliptic plane

Di (A) =
{

z : ‖z−aii‖p ≤ Ri, 1≤ i≤ n
}
.

Example 2.9. Let

A =


4−3u u 2 −2

u −1+u 0 0
1+u −u 5+6u 2u

1 −2u 2u −5−5u

 ∈C4×4
p .

According to the Theorem 2.8 we have

R1 = 4+
√
−p, R2 =

√
−p, R3 =

√
1− p+3

√
−p and R4 = 1+4

√
−p.

For elliptic complex matrix A there are Gershgorin disc:

D1 : (x−4)2− p(y+3)2 ≤ (4+
√
−p)2

D2 : (x+1)2− p(y−1)2 ≤ (
√
−p)2

D3 : (x−5)2− p(y−6)2 ≤
(√

1− p+3
√
−p
)2

D4 : (x+5)2− p(y+5)2 ≤ (1+4
√
−p)2.

In the elliptic plane, regions of the eigenvalues of the matrix A according to the state of p are as shown in the lower graph.
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Figure 2.3: In elliptic plane Gershgorin discs for p =−0.5, p =−1 and p =−5,respectively.

Locate Zeros of Polynomials: Eigenvalue inclusion sets can be used to locate zeros of elliptic valued polynomials by using the polynomial’s
companion matrix, whose characteristic polynomial is the given polynomial, [23]−[28]. Thus, its eigenvalues are the zeros of the polynomial.

The companion matrix of elliptic valued monic polynomial fp (z) =
n
∑

i=0
aizi = zn+an−1zn−1 + ...+a1z+a0 is

Cp ( f ) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
...

0 0 · · · 1 −an−1

 .

Figure 2.4 shows regions of the zeros of the elliptic valued polynomial fp (z) = z4− z3 +0.2z2−0.1z+2 according to the state of p. The
zeros are indicated by the white dots.
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Figure 2.4: Regions of the zeros of the elliptic valued polynomial fp (z) for p =−0.5, p =−1 and p =−5, respectively.

3. Conclusions

In this study, we derive Gershgorin discs of elliptic complex matrices in the elliptic plane. Eigenvalues of matrices have important applica-
tions in modeling human faces, gene analysis, information retrieval and extraction, size reduction and data compression, signal and image
processing-enhancement processes. The use of elliptic matrices in these application areas will enable the previously known definitions and
theorems to be interpreted with a wider perspective, and by selecting the ideal space for the problems, great flexibility and efficiency will be
brought to existing techniques.
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[19] K. Özen and M. Tosun, p-Trigonometric approach to elliptic biquaternions, Adv. Appl. Clifford Algebr., 28(62) (2018).
[20] J.H. Silverman, The arithmetic of elliptic curve, Graduate Texts in Mathematics, New York, 1988.
[21] S. Basu and D.J. Velleman, On Gauss’s first proof of the fundamental theorem of algebra, Amer. Math. Monthly, 124(8) (2017), 688-694.
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Abstract

Let Kn (n > 1) be an n–punctured non–orientable surface of genus 2 with 1 boundary
component. We give formulae for calculating the geometric intersection number of an
arbitrary multicurve with a relaxed multicurve on Kn given their generalized Dynnikov
coordinates.

1. Introduction

Throughout the paper we work on a standard model of Kn (n > 1) as depicted in Figure 1.1. That is, all the punctures and the crosscaps of Kn
are aligned along the x-axis, and that each disk with an asterisk represents a crosscap, which is a graphical representation of a Möbius band
(i.e. interior of such disks are removed and antipodal points on the remaining boundary are identified). We say that a simple closed curve in
Kn is essential if it satisfies the following properties: it is not the core curve of a Möbius band and it doesn’t bound an unpunctured disk, a
once punctured disk or a Möbius band. A multicurve L is the homotopy class of a finite union of essential simple closed curves in Kn. We
say that a multicurve is relaxed if each of its connected components intersects the x-axis at most twice (see for instance Figure 3.1). We
denote by Ln the set of multicurves in Kn. Let L1,L2 ∈ Ln. Then the geometric intersection number ι(L1,L2) is defined as

min{|L1∩L2| : L1 ∈L1,L2 ∈L2}

where |L1∩L2| denotes the number of intersections between L1 and L2.
The fact that the geometric intersection number is preserved under homeomorphisms yields a two step algorithm which works as follows.
The first step of the algorithm is a relaxation algorithm finding a homeomorphism sending one of the multicurves to a relaxed one [1, 2] and
the second provides formulae to calculate the geometric intersection number between an arbitrary multicurve and a relaxed one. This idea is
realized in [1] for finitely many times punctured disks coordinatizing multicurves with Dynnikov coordinates and describing the action of the
mapping class group (group of isotopy classes of homeomorphisms) using the update rules [3, 1]. In this paper we establish the second step
of the aforementioned approach providing formula for each relaxed curve in Kn (n > 1).
There are various combinatorial descriptions for multicurves on non–orientable surfaces [4, 5]. In this paper, we shall make use of the
generalized Dynnikov coordinate system [5], which provides a one–to–one correspondence between Ln and a certain subset of Z2n+2 \{0},
to generalize the approach in [2] for multicurves in Kn.
In Section 2 we present necessary terminology and background related with generalized Dynnikov coordinates of multicurves, and introduce
some notions which will be important for developing the formulae stated in Section 3.

2. Generalized Dynnikov Coordinates of Multicurves

Consider the arcs αi (1≤ i≤ 2n−2), βi (1≤ i≤ n+1) and γ , and the core curves c1,c2 of crosscap 1 and crosscap 2 as shown in Figure
1.1. Given a multicurve L ∈ Ln we can always find a taut representative L of L that is a representative of L which intersects each of the
arcs and curves minimally. We write (α; β ; γ; c1,c2) for the set of intersection numbers of L with these arcs and curves.
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Figure 1.1: The arcs αi, βi, γ and curves c1,c2 on Kn

Let 1≤ i≤ n−1. Then Si denotes the region which is a subset of Kn bounded by βi and βi+1, and contains puncture i+1. Note the special
interpretation for S0 which is bounded by the boundary and β1. Let Sn denote the region bounded by βn and βn+1, and contains crosscap 1.

Similarly, Sn+1 contains crosscap 2 and bounded by the boundary and βn+1. We write Si, j =
j⋃

k=i

Sk for each i and j with 0≤ i < j ≤ n+1.

Then Si, j is the subset of Kn bounded by the arcs βi and β j+1. Note the special interpretation for S0, j , j 6= n+1 (resp. Si,n+1, i 6= 0) which is
bounded by the boundary and β j+1 (resp. βi).

Path components

Given a taut representative L ∈L ∈ Ln we have the following possibilities of a connected component of L∩Si and L∩Si, j:

Definition 2.1 (Above components). An above component of L∩Si has one endpoint on βi and the other on βi+1 passing under puncture
i+1. Therefore, while it intersects the arc α2i−1 it does not intersect the arc α2i. Similarly, an above component of L∩Sn has one endpoint
on βn and the other on βn+1 passing over crosscap 1. Therefore, it intersects the arc γ but not the core curve c1. An above component of
L∩Si, j (i≥ 1, j ≤ n) has one end point on βi and the other on β j+1 and passing entirely over the x–axis.

For example, in Figure 2.1 there are 2 above components of L∩Si and 1 above component of L∩Si, j for each 2≤ j ≤ n.

Si Sn

βi α2i−1

α2i

βi+1 βi+2 βn+1βn

Figure 2.1: Above and below components denoted red and green respectively

Definition 2.2 (Below components). A below component of L∩Si has one endpoint on βi and the other on βi+1 passing under puncture
i+1. Therefore, while it intersects the arc α2i it does not intersect the arc α2i−1. Similarly, a below component of L∩Sn has one endpoint
on βn and the other on βn+1 passing under crosscap 1. Therefore, it neither intersects the arc γ nor the core curve c1. A below component of
L∩Si, j (i≥ 1, j ≤ n) has one end point on βi and the other on β j+1 and passing entirely below the x–axis.

For example, in Figure 2.1 there are 2 below components of L∩Si and L∩Si, j for each 2≤ j ≤ n.

Definition 2.3 (Left loop components). A left loop component of L∩Si intersects each αk (k = 2i,2i−1) exactly once and has each of its
endpoints on βi+1. Similarly, a left loop component of L∩Sn intersects γ exactly twice having each of its end points on βn+1. If it intersects
the core curve c1, we call it a left core loop component, and if it doesn’t we call it a left non-core loop component. A left loop component of
L∩Si, j, j ≤ n−1 intersects the x–axis between βi and the puncture i+1 having each of its end points on β j+1. A left loop component of
L∩Si,n intersects the x–axis between βi and the puncture i+1 having each of its end points on βn+1. There are no left loop components of
L∩Si,n+1 since there are no above or below components of L∩Sn+1.
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Definition 2.4 (Right loop components). A right loop component of L∩Si intersects each αk (k = 2i,2i−1) exactly once and has each of its
endpoints on βi. Similarly, a right loop component of L∩Sn intersects γ exactly twice having each of its end points on βn. If it intersects the
core curve c1, we call it a right core loop component, and if it doesn’t we call it a right non-core loop component. A right loop component of
L∩Si, j , j ≤ n−1 intersects the x–axis between β j+1 and the puncture j+1 having each of its end points on βi. A right loop component of
L∩Si,n, i≥ 1 (respectively L∩Si,n+1) intersects the x–axis only between crosscap 1 (respectively crosscap 2) and βn+1 (respectively the
boundary) having each of its end points on βi. There are no right loop components of L∩S0, j since there are no above or below components
of L∩S0.

α2i−1

α2i

βi βi+1 βi+2 βn+1βn α2i−1

α2i

βi βi+1 βn βn+1

Si Sn Si Sn

Figure 2.2: Examples for left and right loop components

Definition 2.5 (Straight core components). A straight core component of L∩Sn intersects c1 exactly once having one of its endpoints on βn
and the other on βn+1. There are no straight core components of L∩Sn+1.

Consider for example the left hand side of Figure 2.2. We have 1 left loop component of L∩Si, 1 core loop component and 1 straight core
component (depicted red) of L∩Sn and 1 left loop component of L∩Si, j for each 2≤ j ≤ n. Similarly, consider the right hand side of Figure
2.2. We have 1 right core and 1 right non–core loop component L∩Sn and 1 right loop component of L∩Si,n+1.
See Lemma 2.3 and Lemma 2.4 in [5] for the proofs of the following lemmas.

Lemma 2.6. Let 1≤ i≤ n. There are
∣∣bi =

βi−βi+1
2

∣∣ loop components of L∩Si. If bi > 0 the loop components are right and if bi < 0 they

are left. The number of loop components of L∩S0 is given by β1
2 , and the number of right loop components of L∩Sn+1 is given by βn+1

2 . We
denote by λci and λi the number of core loop and non–core loop components of L∩Si (i = n,n+1), and by ψ the number of straight core
components of L∩Sn.

λ1 = max(|bn|− c1,0) and λc1 = min(|bn|,c1)

λ2 =
βn+1

2
− c2 and λc2 = c2

ψ = max(c1−|bn|,0).

Since above and below components of L∩Si intersect α2i−1 and α2i respectively; and above and below components of L∩Sn pass above
and below crosscap 1 respectively, and that below and above components of L∩Si, j form the lowest and highest components of each L∩Si
respectively we immediately get Lemma 2.7.

Lemma 2.7. Denote by Bk and Ak the number of below and above components of L∩Sk (1≤ k ≤ n). Let Bi, j and Ai, j denote the number of
below and above components of L∩Si, j respectively. Then, we have

Ai = α2i−1−|bi| and Bi = α2i−|bi|, for 1≤ i≤ n−1

An =
γ

2
−|bn|−ψ and Bn = max(βn+i,βn+i+1)−|bn|−

γ

2
Ai, j = min

i≤k≤ j
Ak and Bi, j = min

i≤k≤ j
Bk

Notation 1. Let λk (k = 1,2) be as given in Lemma 2.6. We write

λ
+
1 =

{
λ1 if bn > 0
0 if bn < 0

and λ
−
i =

{
λi if bn < 0
0 if bn > 0

We set λ
+
2 = λ2 since there are only right loop components of L∩Sn+1.
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2.1. The generalized Dynnikov coordinates

The function ρ : Ln→ Z2n+2 \{0} defined by

ρ(L ) = (a; b; t; c1,c2) := (a1, . . . ,an−1; b1, . . . ,bn; t;c1,c2)

where

ai =
α2i−α2i−1

2
;1≤ i≤ n−1, bi =

βi−βi+1

2
;1≤ i≤ n, t = An−Bn, (2.1)

where An and Bn are as given in Lemma 2.7 is called the generalized Dynnikov coordinate function.

Notation 2. Let S = Z2n+2 \{0} and S1 = {(a; b; t; c1,c2) :∈S : |t|+ψ is even} where ψ is as given in Lemma 2.6.

Next, we give Theorem 2.8 [5] which presents formulae to compute the intersection numbers (α; β ; γ; c1,c2) from the generalized Dynnikov
coordinates (a; b; t; c1,c2); and hence reconstructs the corresponding multicurve as depicted in Figure 2.3.

Theorem 2.8. Let (a; b; t; c1,c2) ∈S1, and

X = 2 max
1≤r≤n−1

{
|ar|+max(br,0)+

r−1

∑
j=1

b j

}

Y =

{
|t|+2max(bn,0)+ψ +2

n−1

∑
j=1

b j

}

β
∗
i = max(X ,Y )−2

i−1

∑
j=1

b j and R = max(0,2c2−β
∗
n+1)

Then (a; b; t; c1; c2) is the generalized Dynnikov coordinate of exactly one element L ∈ Ln with

βi = β
∗
i +2R

αi =

{
(−1)iadi/2e+

βdi/2e
2 if bdi/2e ≥ 0,

(−1)iadi/2e+
β1+di/2e

2 if bdi/2e ≤ 0,

γ = 2(An + |bn|+ψ).

Example 2.9. Let L ∈ L2 be a multicurve with generalized Dynnikov coordinates ρ(L ) = (2; 1,0;−2; 2,0). Theorem 2.8 gives that L
has intersection numbers α1 = 1, α2 = 5, β1 = 6, β2 = 4, β3 = 4, γ = 4. From Lemma 2.6 and Lemma 2.7 we get that b1 = 1 and b2 = 0
that is there is one right loop component of L∩S1 and no loop components of L∩S2; A1 = 0,B1 = 4 that is there are four below components
and no above components of L∩S1; and A2 = 0,B2 = 2 that is there are 2 below components and no above components of L∩S2. Also,
λ2 = 2,λc2 = 0 and hence there are no core loop components of L∩S2 and two core loop components of L∩S2. Pasting the pieces of these
connected components in each region together uniquely determine the curve as depicted in Figure 2.3.

Figure 2.3: Gluing components of L∩Si together determines L uniquely up to homotopy

3. Geometric intersection of multicurves with relaxed curves

Definition 3.1 (Relaxed curves). A relaxed curve in Kn is the homotopy class of an essential simple closed curve in Kn which intersects the
x–axis at most twice, and is represented by one of the following curves:

• Ci, j is contained in the region Si, j. It has ρ(Ci, j) = (0; b; 0; 0) ∈S1 such that if 0 < i < j < n+1, bi = −1 and b j = 1. If i = 0
each bk = 0 except for b j = 1, and if j = n+1, each bk = 0 except for bi =−1.

• D is contained in the region Sn,n+1. It has ρ(D) = (0; b; 0; c) ∈S1 such that b j = 0 (1 ≤ j ≤ n−1) and bn =−1, bn+1 = 1 and
c1 = c2 = 1.

Notation 3. For convenience we shall denote by C the homotopy class of the relaxed curve bounding both crosscap 1 and crosscap 2.
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D

Figure 3.1: Some relaxed curves Ci, j and D on Kn

Note that different values for indices i and j give different topological types of curves. Some examples for relaxed curves in Kn are illustrated
in Figure 3.1. A multicurve L ∈ Ln is relaxed if each of its components is relaxed.

Notation 4. Let λ
+
j ( j = n,n+1) and λ

−
j ( j = n) be as given in Notation 1. For the sake of brevity we shall write b j = λ j for 1≤ j ≤ n

(this is always possible since there are no core loops about puncture j).

Lemma 3.2. Let 1≤ i < j ≤ n. There are R right and L left loop components of L∩Si, j respectively given by

R = min(Ai, j−1−Ai, j, Bi, j−1−Bi, j, λ
+
j ), and

L = min(Ai+1, j−Ai, j, Bi+1, j−Bi, j, λ
−
i ).

βi β j β j+1
βi βn βn+1

Ai, j

Ai, j−1−Ai, j

Bi, j

Bi, j−1−Bi, j
λ
+
j

Ai,n

Ain−1−Ai,n

Bi,n

Bi,n−1−Bi,n λ+
n λn+1

Figure 3.2: Calculation of right loop components of L∩Si, j

Proof. Consider the above components of Si, j−1 which are not contained in above components of L∩Si, j. Number of such components is
given by Ai, j−1−Ai, j . Similarly, number of below components of Si, j−1 which are not contained in below components of L∩Si, j is given by
Bi, j−1−Bi, j. Since there are λ

+
j non–core loop components of S j ( j = n,n+1) it is immediate from Figure 3.2 that R is the minimum of

these three numbers. Number of left loop components of L∩Si, j is calculated similarly.

Theorem 3.3 (Intersections with Ci, j). Let L ∈Ln be a multicurve with ρ(L ) = (a; b; t; c1,c2) ∈S1. Let 0 ≤ i < j ≤ n with (i, j) 6=
(0,n+1). Then the geometric intersection number ι(L ,Ci, j) is given by

ι(L ,Ci, j) = βi +β j+1−2(R+L+Ai, j +Bi, j).

Proof. Let γi, j be a taut representative of the relaxed curve Ci, j , and let L be a taut representative of L with respect to each arc αi,βi,γ , each
curve ci, and to γi, j. With the set up in Section 2 the proof is identical to that of Lemma 7 in [1] which is based on computing explicitly
the number of connected components of L∩Si, j which are disjoint from γi, j. We first note that the number of connected components of

L∩Si, j that are not simple closed curves is given by βi+β j+1
2 . Each such component either has zero intersection with γi, j or intersects it twice.

Those which are disjoint from Ci, j are above, below, left and right loop components of L∩Si, j (Figure 3.3) number of which are given by
Ai, j, Bi, j, L and R respectively as given above. Therefore, we get

ι(L ,Ci, j) = βi +β j+1−2(R+L+Ai, j +Bi, j)

as required.

Theorem 3.4. Let L ∈Ln be a multicurve with ρ(L ) = (a; b; t; c1,c2)∈S1. Let ι(L ,C ) and ι(L ,D) denote the geometric intersection
numbers between L and the relaxed curves C and D respectively. Then,

ι(L ,D) =

{
ι(L ,C ) ; c1 = c2 = 0,
|c1− c2| ; otherwise

Proof. There are two cases: Either c1 = c2 = 0 or ci 6= 0 for some k ∈ {1,2}. The former case is immediate from Figure 3.4(a). For the
latter case assume without loss of generality that c1 ≥ c2. Then any curve intersecting c1 must intersect c2 or D as illustrated in Figure 3.4(b)
and Figure 3.4(c). That is, c1 = D + c2 as required.

Example 3.5. Let L ∈ L2 be a multicurve with ρ(L ) = (−1; 1,0; 1; 1,1) (Figure 3.5). By Theorem 2.8, L has intersection numbers
(α1,α2;β1,β2,β3;γ1;c1,c2) = (3,1;4,2,2;4;1,1). Since c1 = c2 = 0, we get from Theorem 3.4 that ι(L ,D) = |c1− c2|= 0.
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βi β j+1 βi β j+1 βi

Figure 3.3: Connected components of L∩Si, j that are disjoint from Ci, j

C

D

(a) (b) (c)

Figure 3.4: Proof for D

L

D

Figure 3.5: ι(L ,L2) = 0

4. Conclusion

The results stated in Theorem 3.3 and Theorem 3.4 are obtained only for genus 2 non–orientable surfaces in this paper. We note that the
formulae for relaxed curves which have zero intersection with the crosscaps can be generalized to a higher genus non–orientable surface N
immediately using the similar techniques given in Theorem 3.3. Similarly, the formula for D can be used for the two sided curves Fi,i+1
on N which intersects crosscap i and crosscap i+1 exactly once, and has zero intersection with the diameter of the surface. However, for
relaxed curves Fi, j on N which intersects crosscaps i through j ( j > i+1) the method given in Theorem 3.4 fails. The main reason the
method doesn’t work is that if the arcs intersecting Fi, j are complicated, then it is far from straightforward to describe components which are
disjoint from Fi, j or to determine a relation between the number of intersections on Fi, j , the core curves and the other relaxed curves Ci, j .

Question 1. Generalize the geometric intersection formulae between arbitrary curves and relaxed curves for higher genus non–orientable
surfaces. In particular, what is the formula for L ∈ Lg,n and the relaxed curves Fi, j ( j > i+1) in terms of their generalized Dynnikov
coordinates on higher genus surfaces?
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Abstract

Vortex solitons in parity-time (PT ) symmetric and partially PT (pPT ) symmetric
azimuthal lattices are demonstrated for a media with quadratic nonlinear response. Stability
properties of the vortices are investigated comprehensively by linear spectra and nonlinear
evolution of the governing equations, and it is shown that, although the existence domain
of the PT -symmetric and pPT -symmetric lattices are identical, the stability region of
PT -symmetric lattice is narrower than that of the pPT -symmetric lattice. It is also
observed that deeper real part in the azimuthal potentials supports stability of vortex solitons,
whereas deeper imaginary part and strong quadratic electro-optic effects impoverish stability
properties of the vortices. Moreover, it is shown that there are different stability properties
of vortices in pPT -symmetric azimuthal potentials for different vorticity values, while
there is no such difference for vortices in PT -symmetric potentials.

1. Introduction

Solitons are localized waves that arise from a balance between nonlinear and dispersive effects in the medium, and they maintain their shape
and velocity during propagation. In the same manner, vortex solitons preserve their angular momentum during propagation. In recent years,
there has been considerable attention to soliton dynamics in optically induced lattices (potentials). These external lattices can be perfectly
periodic [1, 2], quasi-periodic [3, 4] or irregular structures that possess point or line defects [5].
It is known that if the optical systems include energy gain and loss, the potential of the medium would be complex [6], and such potentials are
called parity-time (PT ) symmetric. A complex potential V (x,y) is PT -symmetric, if it satisfies the condition V ∗(x,y) =V (−x,−y) [6, 7].
In 1998, Bender and Boettcher showed that non-Hermitian Hamiltonians can produce entirely real spectra when they are (PT ) symmetric
[8], and this fact reveals stable propagation of the solitons in optical systems with PT -symmetric lattices under suitable conditions [9].
PT -symmetric lattices were observed experimentally in [10]-[12] and theoretically in [7], and pulse dynamics in PT -symmetric optical
systems are investigated in many studies [13]-[18].
Recently, it has been demonstrated that the spectrum of a complex potential may remain real even if the potential is invariant under complex
conjugation and reflection in a single spatial direction (i.e., V ∗(x,y) =V (−x,y) or V ∗(x,y) =V (x,−y)), which means the complex potential
is partially PT -symmetric (pPT -symmetric) [19, 20]. Soliton dynamics in such pPT -symmetric lattices have been investigated [20],
and symmetry breaking of solitons in pPT -symmetric potentials has been demonstrated by Yang [13, 19]. Symmetry breaking is observed
above a critical power, and this power threshold is a bifurcation point after which non-PT -symmetric (asymmetric) solitons can exist.
More recently, vortex solitons in pPT -symmetric azimuthal potentials have been introduced in [21], and it is shown that although the
considered azimuthal potentials are pPT -symmetric, symmetry breaking of the lattice is not observed. Accordingly, it is shown that stable
vortex solitons can be obtained in pPT -symmetric potentials, where the symmetry is already broken in the PT -symmetric counterpart
of the potential. The pPT -symmetric azimuthal potentials are constructed from PT -symmetric cells placed on a ring where azimuthal
directions (vorticity) become nonequivalent, and the nonequivalence of the azimuthal directions causes remarkable effects on the properties
of vortex solitons. Different from vortices in conservative systems, nonequivalent vorticity of the pPT -symmetric potentials causes the
disparity of the gain loss distribution along the azimuthal direction. In [21], different internal current distributions have been demonstrated
for vortices in such pPT -symmetric azimuthal potentials.
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(a) (b) (c)

Figure 2.1: Top view of the azimuthal lattices within (x,y) ∈ [−4,4]. (a) Real part Vre; (b) Imaginary part (Vim) of pPT -symmetric potential when σ = 1;
(c) Imaginary part (Vim) of PT -symmetric potential when σ =−1. The real parts of potentials are identical.

In the abovementioned studies, soliton dynamics of the PT -symmetric and pPT - symmetric lattices have been investigated in cubic
nonlinear (Kerr) media that is governed by nonlinear Schrödinger (NLS) type equations. However, it is known that many nonlinear optical
systems include materials, such as potassium niobate (KNbO3) [22] or lithium niobate (LiNbO3) [23], that have both cubic and quadratic
nonlinear responses [24, 25]. One of the models to describe the nonlinear evolution of the optical waves in quadratically polarized media
is the NLS equation with coupling to a mean term (denoted as NLSM systems). The NLSM equations were introduced to characterize
water waves by Benney and Roskes in 1969 [26] and extended to three-dimensional wave packets by Davey and Stewartson in 1974 [27],
then Ablowitz et al. [24, 28, 29] derived an equivalent form of the NLSM model to characterize the pulse dynamics in non-resonant
quadratic materials. Recently, the existence of ground-state solution for the NLSM system was demonstrated and collapse dynamics were
investigated [30] and it was shown that wave collapse in the NLSM system can be arrested by self-rectification [22]. Latterly, collapse of the
NLSM system has been arrested by real periodic [31], quasiperiodic [32] and pPT -symmetric [33] external lattices. The general NLSM
system is defined as [22, 28, 29]

iuz +∆u+ |u|2u−ρuφ = 0, φxx +νφyy =
(
|u|2
)

xx

where u(x,y) is the normalized amplitude of the envelope of the normalized static electric field propagating in the z direction. ∆u≡ uxx +uyy
corresponds to diffraction, and the cubic term in u originates from the nonlinear (Kerr) change of the refractive index. ρ denotes the combined
optical rectification and electro-optic effects modeled by the φ(x,y) field, and ν shows the anisotropy of the material.
These equations come from the interplay between the fundamental and dc fields while the second-harmonic-generation (SHG) is not phase
matched. In such circumstances, an additional self-phase modulation contribution is produced by the SHG due to cascaded nonlinearity.
Consequently, the NLSM system is a nonlocal nonlinear coupling between the first field and a static field that is emerged from the zeroth
harmonic (mean term) [24, 28, 29].
In this study, the numerical existence of vortex solitons in PT -symmetric and pPT -symmetric azimuthal lattices are demonstrated for
a medium with quadratic nonlinear response, and stability properties of the obtained vortex solitons are investigated comprehensively by
linear spectrum and nonlinear evolution of the governing equations. The model equations are given as the NLSM system with an additional
external potential. The paper is outlined as follows: In Sec. 2, the model equations and the azimuthal potentials are presented, and vortex
soliton solutions of the model are obtained by numerical methods. In Sec. 3, stability of the vortex solitons are examined by the nonlinear
evolution and linear stability spectra of the model, and impact of the vorticity on vortex stability is investigated. Results of the study is
summarized in Sec. 4.

2. The Model

Pulse dynamics in a medium with quadratic nonlinear response and an additional external potential is governed by the following (2+1)
dimensional model

iuz +∆u+ |u|2u−ρuφ +[preVre(x,y)− ipimVim(x,y)]u = 0, φxx +νφyy =
(
|u|2
)

xx
(2.1)

where pre and pim are the depths of real and imaginary parts of the complex potential V (x,y), respectively. The potential V (x,y) is defined as
N Gaussian waveguides that are placed on a ring of radius r0 [21]:

Vre =
N
∑

k=1
e−[(x−r0 cosθk)

2+(y−r0 sinθk)
2]/α2

Vim =
N
∑

k=1
σ k−1(ycosθk− xsinθk)e−[(x−r0 cosθk)

2+(y−r0 sinθk)
2]/α2

where σ = ±1, θk = 2π(k− 1)/N and α is waveguide width. For σ = −1 the potential is PT -symmetric, i.e., V (x,y) = V (−x,y) =
V ∗(x,−y) = V ∗(−x,−y), and for σ = 1, it is pPT -symmetric, i.e., V (x,y) = V ∗(−x,y) = V ∗(x,−y) 6= V ∗(−x,−y). We consider PT
and pPT -symmetric azimuthal potentials with N = 6, the radius r0 = N/2 and the waveguide width α = 0.5. Real and imaginary parts of
PT (σ =−1) and pPT -symmetric (σ = 1) azimuthal potentials are displayed in Figure 2.1. The phase transition point was determined as
pim = 7.2 for PT -symmetric case of the lattice when pre = 5 [21]. Above this threshold value, spectrum of the lattice include eigenvalues
with non-zero imaginary parts. Phase transition is not observed for the pPT -symmetric azimuthal potential (when σ = 1).
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2.1. Numerical solution for the vortex solitons

The steady state solution (vortex solitons) of the considered model (2.1) is obtained via squared operator method (SOM) that has been
developed by Yang [34]. It has been shown that steady state solutions of a wide range of nonlinear wave equations can be computed
efficiently by the SOM algorithm. The algorithm is outlined as follows:
Inserting the ansatz u =U (x,y)exp(iµz) into the system (2.1), the operator L0 is obtained,

L0u =−µU +∆U + |U |2U−ρφU +VU, φxx +νφyy =
(
|U |2

)
xx

where µ is the eigenvalue (propagation constant). Splitting the operator L0 into its real and imaginary parts and applying Fourier
transformation, we get the sub-operators T 1 and T 2 as follows:

T 1 = Re
(

F−1
(

F (L0u)
K2 + c

))
, T 2 = Im

(
F−1

(
F (L0u)
K2 + c

))
.

where F denotes Fourier transformation, k = (kx,ky) are Fourier variables, K2 = k2
x + k2

y and c is a real positive number that is chosen
heuristically for parametrizing the algorithm. Separating the amplitue U into its real and imaginary parts U =Ure(x,y)+ iUim(x,y) and
substituting into the operator L0u (2.2), we get sub-operators LRe and LIm as follows:

LRe =−µUre +∆Ure +(U3
re +UreU2

im)−ρφUre + preVreUre + pimVimUim

LIm =−µUim +∆Uim +(U3
im +U2

reUim)−ρφUim + preVreUim− pimVimUre.

Taking partial derivatives of LRe and LIm with respect to both Ure and Uim gives elements of the operator L1,

R11 =
∂LRe
∂Ure

(T 1) , R12 =
∂LRe
∂Uim

(T 2),

R21 =
∂LIm
∂Ure

(T 1) , R22 =
∂LIm
∂Uim

(T 2).

and the operator L1 is defined as

L1u = R11 +R12 + i(R21 +R22).

After L0 and L1 are obtained, the algorithm is iterated as follows,

Un+1 =Un−
(
F−1

(
F (L1u)

K2+c

))
∆t ,

µn+1 = µn +‖u ·T 1+ v ·T 2‖∆t,

φn+1 = F−1
(

k2
x F(|Un|2)
k2

x+νk2
y

)
.

This numerical scheme is implemented until the error

E =
√
‖Un+1−Un‖2 + |µn+1−µn|< 10−8,

and this algortihm is convergent while the time step ∆t is below a certain threshold [34].
To obtain vortex solitons of the model (2.1), the initial condition of the SOM algorithm is chosen as

u(x,y,z) =U(r)exp[imθ(r)+ iµz] (2.2)

where r = (x,y), U is field module, θ is the phase, m is vorticity and µ is the propagation constant. The considered azimuthal potentials
(N = 6) support six-hump vortex solitons for the following parameter set:

(ρ, ν , pre, pim, µ, m) = (0.5, 1.5, 6, 1, 0.5, 1). (2.3)

It is noted that ρ = 0.5 and ν = 1.5 are particularly selected parameter values to characterize quadratic electro-optic effects in potassium
niobate (KNbO3) [22].
In Figure 2.2, the vortex profile, the top view and the phase structure are shown for the azimuthal potentials when σ = 1 (pPT -symmetric)
in the first row (a) and when σ =−1 (PT -symmetric) in the second row (b). It can be seen that there are six-hump vortex structures that
are located at local maxima of the considered azimuthal potentials.

3. Power and Stability Analysis

The vortex solutions of the model (2.1) is computed by the SOM algorithm, and the stability dynamics of these vortex solitons are studied by
the linear stability spectra and nonlinear evolution of the model.
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Figure 2.2: 3D profile, top view and phase structure of the six-hump vortex solitons located at local maxima of the azimuthal potential for the parameters
given in (2.3) (a) when σ = 1 (the first row); (b) when σ =−1 (the second row). c = 2, ∆t = 0.2 and vorticity m = 1 in both cases.

3.1. Linear stability analysis

The model (2.1) is linearized to calculate linear spectrum of vortex solitons as follows. By denoting

U = eiµz[u0(x,y)+g(x,y)eλ z +h∗(x,y)eλ ∗z]

where u0(x,y) is the vortex soliton and g,h� 1 are perturbed infinitesimal modes. Inserting the perturbed solution U into the model (2.1),
the following eigenvalue problem is obtained

L V = λV

where

L = i
(

L11 L12
L21 L22

)
, V =

(
g
h

)
and the matrix coefficients of L are

L11 = ∆−µ−ρφ +V,
L12 = u2,
L21 =−(u2)∗,
L22 =−(∆−µ−ρφ +V )∗ .

The eigenvalues of L can be calculated numerically by the Fourier collocation method [35]. If any eigenvalue in the spectrum has a positive
real part, the solution is linearly unstable.
The power of solitons, that is calculated by P=

∫∫
∞

−∞
|u|2dxdy, plays an important role in the stability analysis. Therefore, the power-eigenvalue

diagram of gap solitons are investigated in Figure 3.1(a), and stability properties of considered vortex solitons are investigated in Figure 3.1(b)
for the same parameters. Blue line shows pPT -symmetric (σ = 1) and red line shows PT -symmetric (σ =−1) case of the azimuthal
potential. In Figure 3.1(a), the linear stability (solid line) and instability (dotted) regions are determined by computation of eigenvalue spectra
for each point on the power curves and the maximum real parts of these spectra are given in Figure 3.1(b). From the power-eigenvalue
(P−µ) diagram, it can be seen that the vortices are linearly stable below a critical power Pc = 4.14, that corresponds to µ = 0.58, in both
σ = 1 and σ =−1 cases when pre = 6 and pim = 1 (see Figure 3.1(a)).
Similarly, the power and stability properties of vortex solitons are shown in Figure 3.2 for the parameters ρ, ν , pre and pim. It is important
to note that this analysis shows the first band-gap boundaries for the considered parameter regimes in each panel. For instance, when
ν = 1.5, pre = 6, pim = 1, µ = 0.5 and σ = 1, the vortex solitons can be obtained for ρ ∈ [0,1.85] within the gap region (see blue line
in Figure 3.2(a)). It is observed that, although linear stability region for the anisotropy coefficient ν and potential depth of real part pre
are identical in both σ = 1 and σ =−1 cases, stability region of pPT -symmetric (σ = 1) lattice is larger than that of PT -symmetric
(σ =−1) lattice for the coupling parameter ρ and potential depth of imaginary part pim.
The vortex solitons that are shown in Figure 2.2(a) and 2.2(b) correspond to ’a’ and ’b’ points in Figure 3.2(d), respectively. This fact reveals
the linear stability of the vortices at point ’a’ and ’b’ when σ = 1 and σ =−1.
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Figure 3.1: The power of vortex solitons versus eigenvalue (a) and the maximum real part in the eigenvalue spectrum (b) for varied values of µ when
ρ = 0.5, ν = 1.5, pre = 6 and pim = 1.

0 1 1.85

1

5

P

(a)

0 5

1

2

3

P

(b)

2.5 5.4 6.8

P
re

0

40

P

(c)

0 2.4 5.8 7.2

P
im

1.6

3.2

P

(d)

a

c

b

d
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ρ = 0.5, ν = 1.5, pre = 6 and µ = 0.5. Blue line shows pPT -symmetric (σ = 1) and red line shows PT -symmetric (σ = −1) case of the azimuthal
potential where solid and dotted line show stable and unstable regions for the gap solitons, respectively.

3.2. Nonlinear evolution of vortex solitons

To test the full stability, the nonlinear stability of vortex solitons are investigated by direct simulation of the model (2.1) for long times.
A finite-difference discretization scheme is used in the spatial domain and the solution is advanced in z with a fourth-order Runge-Kutta
method. The initial condition of evolution is taken to be a vortex structure that is obtained by the SOM algorithm and perturbed with 1%
random noise in amplitude and phase.
Linear stability spectra and nonlinear evolution of the vortices, that are obtained at ’a’, ’b’, ’c’ and ’d’ points in Figure 3.2(d), are examined
in columns (a), (b), (c) and (d) of Figure 3.3, respectively. The nonlinear evolution of perturbed vortices (the first row), linear stability spectra
(the second row) and 3D view of the evolved vortex profiles (the third row) are shown in Figure 3.3. As can be seen from Figure 3.3(a),
3.3(b) and 3.3(c), the linear spectra of vortex solitons that are obtained at ’a’, ’b’, ’c’ points are purely-imaginary (none of their eigenvalues
have a real part), the peak amplitude of the evolved vortices oscillate relatively small amplitudes during the propagation, and vortex profiles
are preserved after evolution at z = 500, thus stable evolution of the vortex structures can be achieved for the considered parameter regimes.
On the other hand, the linear spectrum of the vortex solitons, that is obtained at point ’d’, involves eigenvalues with positive real parts, peak
amplitude of the evolved soliton increases significantly during the evolution and the vortex profile breaks up after evolution at z = 500 (see
Figure 3.3(d)). These facts indicate the instability of vortex structure due to blow-up of solitons when σ =−1, pre = 6 and pim = 5.
It should be noted that the result of nonlinear evolution analysis is consistent with linear (in)stability regions that are given in Figure 3.2 for
the PT -symmetric and pPT -symmetric azimuthal lattices. To see the impact of quadratic optical effects and depth of pPT -symmetric
azimuthal lattices on the pulse stability, the evolution of peak amplitudes are examined for varied ρ,ν , pre and pim values in Figure 3.4. Here,
the initial condition is chosen as the vortex at point ’d’ that is shown to be nonlinearly unstable in Figure 3.3(d), and the initial peak amplitude
of the vortex solitons are normalized to 1 for comparison. The results in Figure 3.4 show that, by increasing the value of optical rectification
parameter ρ and lattice depth of the imaginary part pim, peak amplitude of vortices are increasing more rapidly, and thus collapse of vortices
are accelerated (see panels (a) and (d)). Conversely, the increase in peak amplitude can be delayed by increasing anisotropy parameter ν and
lattice depth of the real part pre (see panels (b) and (c)). These results consistent with previous studies that have demonstrated stability of
two dimensional solitons that are generated by the NLSM system with periodic [31], quasi-periodic [32] and pPT -symmetric [33] lattices.
In [31], it was also shown that, collapse will eventually occur in a lattice-free NLSM system, and collapse of the solitons are expedited by
increasing values of ρ and ν in the lattice-free medium.
It should be noted that, although vortex solitons can be obtained in semi-infinite interval when ν > 0 and increased values of ν assists
maintaining the peak amplitude of the vortices in the pPT -symmetric azimuthal lattices, it can not be considered as a collapse arrest
mechanism, since ρ and ν parameters are prescribed coefficients that are depending on the type of optical materials.
In addition, it is observed that, as shown in [21], there is different stability properties of vortices for different vorticity values that is denoted
by m in equation (2.2) and fixed to 1 in the study. Linear stability spectra and peak amplitudes of the evolved vortices are displayed in
Figure 3.5 for m =+1 and m =−1 when ρ = 1,ν = 1.5, pre = 6, pim = 1 and µ = 1. As can be seen from Figure 3.5, although the linear
stability spectra and nonlinear evolution of the vortices are overlapping for the PT -symmetric lattice (σ =−1) (see the second row (b)),
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Figure 3.3: The peak amplitude of evolved vortices from z = 0 to z = 500 (the first row), linear stability spectra (the second row) and 3D view of vortex
profile after evolution at z = 500 (the third row). The vortex solitons are generated (a) when σ = 1, pre = 6 and pim = 1; (b) when σ = −1, pre = 6 and
pim = 1; (c) when σ = 1, pre = 6 and pim = 5; (d) when σ =−1, pre = 6 and pim = 5. ρ = 0.5, ν = 1.5 and µ = 0.5 in all cases.
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the stability spectra and nonlinear evolution of the vortices are different for the pPT -symmetric lattice (σ = 1) (see the first row (a)). The
maximum real part in the linear stability spectrum for m =+1 is larger than that for m =−1 when σ =−1 (see left panel in Figure 3.5(a)).
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PT -symmetric lattice (σ =−1)
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vorticity values (m = +1 and m = −1) in the pPT -symmetric lattice (see panel (a)). In contrast, no such difference is observed in the
PT -symmetric lattice for different vorticity values (see panel (b)).

4. Conclusions

The numerical existence of vortex solitons in PT -symmetric (σ =−1) and pPT -symmetric (σ = 1) azimuthal potentials are demonstrated
for the quadratic nonlinear media, and stability properties in the considered lattices are explored by examining the nonlinear evolution
and linear stability spectra of the vortex structures. It has been shown that, although the existence domain of the PT -symmetric and
pPT -symmetric lattices are identical, the stability region of PT -symmetric lattice is narrower than that of the pPT -symmetric lattice.
Linear stability spectra and nonlinear evolution of vortices show that, the stable evolution of vortex structures can be achieved in both
PT -symmetric and pPT -symmetric azimuthal potentials for a wide range of parameters, and although there is a threshold value of
the depth of imaginary part in the PT -symmetric potential for the stability of vortices, there is not any phase-transition point for the
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pPT -symmetric potential. Accordingly, it is demonstrated that stable vortex structures can exist in pPT -symmetric potentials, where the
symmetry is already broken in the PT -symmetric counterpart of the potential.
Moreover, it has been observed that there are different stability properties of vortices in pPT -symmetric azimuthal potentials for different
vorticity values, while there is no such difference for vortices in PT -symmetric potentials.
Linear stability spectra together with the nonlinear evolution reveal that deeper real part in the azimuthal potentials support stability of
vortices, whereas deeper imaginary part and strong quadratic electro-optic effects in the medium impoverish stability properties of the
vortices.
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[2] M. J. Ablowitz, N. Antar, İ. Bakırtaş, B. Ilan, Vortex and dipole solitons in complex two-dimensional nonlinear lattices, Phys. Rev. A., 86(3) (2012),
033804.

[3] M. J. Ablowitz, B. Ilan, E. Schonbrun, R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures,
Phys. Rev. E., 74(3) (2006), 035601.

[4] G. Burlak, B. A. Malomed, Matter-wave solitons with the minimum number of particles in two-dimensional quasiperiodic potentials, Phys. Rev. E.,
85(5) (2012), 057601.
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Abstract

In this study, the (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation that indicated
the propagation of nonlinear dispersive waves in inhomogeneous media is given for con-
sideration. The generalized exponential rational function method is used to seek some
new exact solutions for the considered equation. The three-dimensional surfaces and two-
dimensional graphs of the obtained solutions are plotted by choosing the appropriate values
of the involving free parameters.

1. Introduction

Nonlinear partial differential equations (NPDEs) are frequently employed to subedit real-world issues from a mathematical standpoint. There
are several situations in which simulations of these instances are necessary. These important areas include fiber optics, fluid mechanics,
electromagnetic theory, plasma physics, nuclear physics, mass transport, hydrodynamics, population and economics, and many more [1–10].
As a consequence, exact analytic solutions to such equations become the most important factor to consider, because they can supply important
data for accurate explanations of natural processes. Many academics and mathematicians have worked hard over the last few decades to
find explicit solutions to NPDEs. For this aim, many analytical methods have been created to obtain such exact solutions like sin-Gordon
expansion method [11–14], the (1/G′)−expansion method [15–17], the simplified Hirota’s method [18–20], the Backlund transformation
method [21, 22], and symbolic computational method [23].
The (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) reads [24–26]

Qxxxxy +4QxxyQx +2QxxxQy +6QxyQxx−αQyyy−2βQxxt = 0, (1.1)

where α and β are real constants, Q(x,y, t) indicated the wave’s maximum extension as evaluated from its equilibrium state. Eq. (1.1)
represents the propagation of nonlinear dispersive waves in inhomogeneous media. The DJKM equation was first developed by Date et
al. [24]. In [27], Wazwaz has developed the (2+1) dimensional DJKM equation to a new (3+1)-dimensional DJKM equation by adding the
term

(
kQx + rQy + sQz

)
xx which is given by

Qxxxxy +4QxxyQx +2QxxxQy +6QxyQxx−αQyyy−2βQxxt +
(
kQx + rQy + sQz

)
xx = 0. (1.2)

Wazwaz demonstrated that Eq. (1.2) is a completely integrable equation via using the Painlevé test, and used Hirota’s simple method to
construct multiple soliton solutions as well as solitonic, singular, and periodic solutions. In [28], the authors used three analytical methods
namely the exp(−φ (ξ ))− expansion method, the (G′/G)− expansion method, and the sine-Gordon expansion method to Eq. (1.2), as a
result, several exact solutions have been obtained. Furthermore, they used the finite difference method to attain some numerical solutions.
In this paper, we will use the generalized exponential rational function method (GERFM) to construct some new exact solutions to the
(3+1)-dimensional DJKM equation.
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2. Description of the method

In this section, the basic concepts of the GERFM [29–32] are given:
Step 1: Consider the general form of NPDE as

Ψ
(
Q(x,y,z, t) ,Qx,Qy,Qz,Qt ,Qxt ,Qxx,Qyt ,Qyy, ...

)
= 0. (2.1)

Let us take the wave transformation as follows:

Q(x,y,z, t) = ψ (ς) , ς = ax+by+dz− ct, (2.2)

where a,b,d, and c are constants to be calculated. Using Eq. (2.2) into Eq. (2.1), we get the following nonlinear ordinary differential
equation:

Θ
(
ψ,ψ ′,ψ ′′,ψ ′′′, ...

)
= 0. (2.3)

Step 2: Let the solution of Eq. (2.3) have the following form

ψ (ς) = a0 +
N

∑
j=1

a jφ(ς)
j +

N

∑
j=1

b jφ(ς)
− j, (2.4)

where

φ (ς) =
γ1eλ1ς + γ2eλ2ς

γ3eλ3ς + γ4eλ4ς
, (2.5)

where λm,γm (1≤ m≤ 4) are real/complex constants, a0,a j,b j are constants to be calculated, N will be found by balance principle.
Step3: Inserting Eq. (2.5) in Eq. (2.4) then using Eq. (2.4) in Eq. (2.3), then we get a polynomial which is dependent on Eq. (2.5). By
setting the like order terms equal to zero, we achieve a system of algebraic equations concerning a,b,c,d,a0,a1, and b1. Solving the obtained
system with the aid of any symbolic computation software, the values of the involved parameters will be determined and replacing the
determined values into Eq. (2.3), one may obtain the solutions of Eq. (2.1).

3. Applications of model

In this section, we apply the GERFM to Eq.(1.2). Firstly, by inserting Eq. (2.2) into Eq.(1.2), we get

6a3bψ
′′(ς)2 +

(
a3k−b3

α +a2 (br+ds+2cβ )+6a3bψ
′ (ς)

)
ψ
′′′ (ς)+a4bψ

′′′′′ (ς) = 0. (3.1)

Inserting Eq. (3.1) twice, and set the constants of integration to zero, so one may get

3a3bψ
′(ς)2 +

(
a3k−b3

α +a2 (br+ds+2cβ )ψ
′ (ς)

)
+a4bψ

′′′ (ς) = 0.

Using the balance principle between the term ψ ′′′ (ς) and ψ ′(ς)2, we have N = 1. Considering Eq. (2.4) with N = 1, then it takes the below
form

ψ (ς) = a0 +a1φ (ς)+
b1

φ (ς)
. (3.2)

In what follows, different solitary wave solutions are constructed under certain conditions
Family 1: Using γ = {−2,−1,1,1} , λ = {0,1,0,1} in Eq. (2.5), then one may have

φ (ς) =
−2− eς

1+ eς
.

Case 1: k = b3α

a3 ,c =− b(a2+r)+ds
2β

,a1 = 2a,b1 = 0.

ψ1 (ς) = a0 +
2a(−2− eς )

1+ eς
.

Then, one may have an exact solution of the exponential type

Q1 (x,y,z, t) = a0 +

2a

(
−2− eax+by+dz+

(b(a2+r)+ds)t

2β

)

1+ eax+by+dz+(b(a2+r)+ds)t
2β

. (3.3)

Family 2: γ = {−2− i,2− i,−1,1} ,λ = {i,−i, i,−i} into Eq. (2.5), then one may have

φ (ς) =
cos(ς)+2sin(ς)

sin(ς)
.
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Figure 3.1: 3D dimensional surface and 2D graphs of solution of Eq. (3.3) where y = 1,z = 1, t = 1,a = 2,a0 = 0.2,b =−0.1,d = 0.01,s = 0.01,β =−0.1,
and r = 1.

Case 1: k = b3α

a3 ,d = 4a2b−br−2cβ

s ,b1 =−10a,a1 = 0.

ψ2 (ς) = a0−
10asin(ς)

cos(ς)+2sin(ς)
.

So, we have a trigonometric type solution as below

Q2 (x,y,z, t) = a0 +

10asin
(

ct−ax−by− z(4a2b−br−2cβ)
s

)
cos
(

ct−ax−by− z(4a2b−br−2cβ )
s

)
−2sin

(
ct−ax−by− z(4a2b−br−2cβ )

s

) . (3.4)

Figure 3.2: 3D dimensional surface and 2D graphs of solution of Eq. (3.4) for values of α = 0.2,a = 2,c = 3,b = 1,r = 2,β = 0.3,s = 3/2,a0 = 0.5, t =
1,z = 1, and y = 1.

Family 3: Using γ = {2,0,1,1} ,λ = {−1,0,1,−1} in Eq. (2.5), so it takes the following form

φ (ς) =
cosh(ς)− sinh(ς)

cosh(ς)
. (3.5)

Case 1: Plugging these results in with Eq. (3.5) into Eq. (3.2), we get

ψ3 (ς) = a0−2asech(ς)(cosh(ς)− sinh(ς)) .

Then, one may have a solution of hyperbolic type as follows

Q3 (x,y,z, t) = a0−2asech(ct−ax−by−dz)(cosh(ct−ax−by−dz)+ sinh(ct−ax−by−dz)) . (3.6)
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Figure 3.3: 3D dimensional surface and 2D graphs of solution of Eq. (3.6) for α = 0.2,a = 2,c = 3,b = 1,a0 = 0.5, t = 1,z = 1,d = 1, and y = 1.

Family 4: Using γ = {−1,1,1,1} ,λ = {1,−1,1,−1} , then Eq. (2.5) turns to

φ (ς) =
−sinh(ς)
cosh(ς)

. (3.7)

Case 1: b1 =−2a,s =− 16a2b+br+2cβ

d ,a1 =−2a,α = a3k
b3 .

Using the above values with Eq. (3.7) in Eq. (3.2), we have

ψ4 (ς) = a0 +2acoth(ς)+2a tanh(ς) .

Therefore, we have

Q4 (x,y,z, t) = a0−2acoth(ct−ax−by−dz)−2a tanh(ct−ax−by−dz) . (3.8)

Figure 3.4: 3D dimensional surface and 2D graphs of solution of Eq. (3.8) for the values of α = 0.2,a = 2,c = 3,b = 1,a0 = 0.5, t = 1,z = 1,d = 1, and
y = 1.

Family 5: Using γ = {i,−i,1,1} ,λ = {i,−i, i,−i} in Eq. (2.5), then we have

φ (ς) =
sin(ς)
cos(ς)

. (3.9)

Case 1: b1 =− 2bα1/3

k1/3 ,a = bα1/3

k1/3 ,β =−
br+ds− 16b3α2/3

k2/3

2c ,a1 =
2bα1/3

k1/3 . Inserting these values with Eq. (3.9) in Eq. (3.2), we have

ψ (ς) = a0 +
2bα1/3 cot(ς)

k1/3
− 2bα1/3 tan(ς)

k1/3
.
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So, we have

Q5 (x,y,z, t) = a0−
2bα1/3 cot

(
ct−by−dz− bxα1/3

k1/3

)
k1/3

+
2bα1/3 tan

(
ct−by−dz− bxα1/3

k1/3

)
k1/3

. (3.10)

Figure 3.5: 3D dimensional surface and 2D graphs of solution of Eq. (3.10) where α = 8,a = 2,c = 3,b = 4,a0 = 0.5, t = 1,z = 1,d = 2,k = 8, and y = 1.

Family 6: Using γ = {−1,0,1,1} ,λ = {0,0,0,1} , then Eq. (2.5) turns to

φ (ς) =− 1
1+ eς

. (3.11)

Case 1: b1 = 0,α = a3k
b3 ,s =−

b(a2+r)+2cβ

d ,a1 = 2a. Inserting the above values with Eq. (3.11) to Eq. (3.2), we have

φ (ς) = a0−
2a

1+ eς
.

Therefore,

Q6 (x,y,z, t) = a0−
2a

1+ e−ct+ax+by+dz . (3.12)

Figure 3.6: 3D dimensional surface and 2D graphs of solution of Eq. (3.12) using a = 2,c = 3,b = 1,a0 = 0.5, t = 1,z = 1,d = 1, and y = 1.

Family 7: Using γ = {1+ i,1− i,1,1} ,λ = {i,−i, i,−i} Eq. (2.5) turns to

φ (ς) =
−sin(ς)+ cos(ς)

cos(ς)
. (3.13)
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Case 1: b1 =− 4bα1/3

k1/3 ,a = bα1/3

k1/3 ,a1 = 0,s =
br− 4b3α2/3

k2/3 +2cβ

d . Putting these values with Eq. (3.16) into Eq. (3.3), we have

ψ7 (ς) = a0−
4bα1/3 cos(ς)

k1/3 (cos(ς)− sin(ς))
.

So, we have

Q7 (x,y,z, t) = a0−
4bα1/3 cos

(
ct−by−dz− bxα1/3

k1/3

)
k1/3

(
cos
(

ct−by−dz− bxα1/3

k1/3

)
+ sin

(
ct−by−dz− bxα1/3

k1/3

)) . (3.14)

Figure 3.7: : 3D dimensional surface and 2D graphs of solution of Eq. (3.14) using α = 8,a = 2,c = 3,b = 0.4,a0 = 0.5, ,d = 0.2,k = 8, t = 1,z = 1, and
y = 1.

4. Conclusions

In this study, we have investigated the (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation via using the generalized exponential
rational function method, which is the most power method to study NPDEs. The feature of this method is that we can find abundant different
solutions that are dependent on the parameters involved in it. As a result, we constructed some new exact solutions in the type of exponential,
trigonometric and hyperbolic solutions. The 3D surfaces and 2D graphs of all obtained solutions are plotted. All constructed solutions satisfy
the original equation.
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Abstract

In this paper the global dynamics of susceptible-infected-recovered-susceptible (SIRS)
epidemic model with saturated incidence rate and saturated treatment function is studied.
Firstly, the basic reproduction number R0 is calculated and the existence of the disease-free
and positive equilibria is showed. In addition, local stability of the equilibria is investigated.
Then, sufficient conditions are achieved for global stability of disease-free and endemic
equilibria. Finally, the numerical examples are presented to validate the theoretical results.

1. Introduction

In epidemiology, mathematical modeling is an important tool for observing the dynamic evolution and effects of infectious disease [1]. Using
mathematical models, researchers can identify trends in disease, analyze epidemiological studies, and make general predictions about disease.
For this purpose, stability and bifurcation analysis of many SIRS epidemic models have been investigated in [2]-[6]. The total population
consists of three subpopulations based on disease status in classical infectious disease models: S(t)-susceptible population, I(t)-infective
population and R(t)-recovered population, at any given time t. The classic SIRS epidemic model, assuming that the recovering population
has transient immunity, can be given as

dS
dt

= A−ρS− f (I)S+δR,

dI
dt

= f (I)S− (ρ + γ)I−T (I),

dR
dt

= γI− (ρ +δ )R+T (I).

where the parameter A denotes the natality of susceptible population, ρ is the mortality rate and δ shows the rate of loss of immunity and
return to the susceptible class of recovered individuals. γ is the recovery rate of the infected population. f (I)S denotes the incidence rate,
and the f (I) function measures the infectious strength of the disease.
In this study, we take a saturated incidence rate

f (I) =
β I

1+αI
,

which firstly presented by Capasso and Serio in [2]. Here, β I calculates the infectious strength of the disease and 1
1+αI calculates the

inhibitory effect from behavioral change or crowding of infective individuals when the number of susceptible individuals increases.
In addition, we take saturated treatment function as

T (I) =
rI

1+ εI
,

which is continuous and differentiable [3]. Here, rI > 0 and ε ≥ 0. r means the cure rate and ε quantifies the extent of the effect of delaying
the infected to cure.
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In this paper, we present the SIRS epidemic model with saturated incidence rate and saturated treatment function as follows:

dS
dt

= A− βSI
1+αI

−ρS+δR, (1.1)

dI
dt

=
βSI

1+αI
− (ρ + γ)I− rI

1+ εI
, (1.2)

dR
dt

= γI− (ρ +δ )R+
rI

1+ εI
. (1.3)

The remainder of this article is organized as follows. In Section 2, the local stability of the equilibria is examined. In Section 3, adequate
conditions for global stability of equilibria are provided by using Lyapunov functions. In Section 4, to validate our theoretical results, some
numerical examples are given.

2. Equilibria and Local Dynamics

We start with investigating the positivity and boundedness properties of solutions for system (1.1)-(1.3), for the purpose of ensuring that the
model is biologically well-behaved.

Theorem 2.1. If the initial conditions are S(0)≥ 0, I(0)≥ 0,R(0)≥ 0, the solutions of system (1.1)-(1.3) are nonnegative and bounded for
all t ≥ 0.

Proof. From the model system (1.1)-(1.3), we have

dS
dt
|S=0 = A+δR,

dI
dt
|I=0 = 0,

dR
dt
|R=0 = γI +

rI(t)
1+ εI(t)

.

It is clear that these ratios are not negative in the bounding planes of the non-negative cone of R3. Therefore, if we start inside this cone, we
will always stay inside this cone in the inward direction of the vector field in all bounding planes. Consequently, all solutions of (1.1)-(1.3)
are not negative.
For the proof of boundedness, we denote the total population size as M = S+ I +R. Adding Eqns. (1.1)-(1.3), we obtain

dM
dt

= A−ρM. (2.1)

If we solve the Eq. (2.1), we find

M(t) =
A
ρ
−
(

A
ρ
−M(t0)

)
e−ρ(t−t0)

where M(t0)> 0 is an initial condition. Thus,

lim
t→∞

M(t) =
A
ρ

which shows the conclusion.

From the above theorem, we obtain the following region:

Γ = {(S, I,R) ∈ R3
+|S+ I +R≤ A

ρ
, S≥ 0, I ≥ 0, R≥ 0}

which is a positively invariant set for Eqns. (1.1)-(1.3).
Since the limit set of Eqns. (1.1)-(1.3) is on the plane S+ I +R = A

ρ
, we can concentrate on the following reduced system:

dI
dt

=
β I

1+αI

(
A
ρ
− I−R

)
− (ρ + γ)I− rI

1+ εI
, (2.2)

dR
dt

= γI− (ρ +δ )R+
rI

1+ εI
(2.3)

Clearly,

Λ =

{
(I,R)|I ≥ 0,R≥ 0, I +R≤ A

ρ

}
.

is the positively invariant set of system (2.2)-(2.3)
To put the model in dimensionless form, we build the following variable change:

I′ =
β

ρ + γ
I, R′ =

β

ρ + γ
R, t ′ = (ρ + γ)t.

To avoid making the mathematical notation look bad, we still indicate (I′,R′, t ′) by (I,R, t). Then we get
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dI
dt

=
I

1+mI
(B− I−R)− I− pI

1+qI
, (2.4)

dR
dt

= rI−nR+
pI

1+qI
(2.5)

where m =
α(ρ+γ)

β
, B = βA

ρ(ρ+γ)
, p = r

ρ+γ
, q =

ε(ρ+γ)
β

, r = ρ

ρ+γ
, n = ρ+δ

ρ+γ
. It can be seen that m,n, p,q,r,B > 0 and the positively invariant

set of system (2.4)-(2.5) is

Λ̃ = {(I,R)|I ≥ 0,R≥ 0, I +R≤ B}.

Clearly, system (2.4)-(2.5) always has a unique disease-free equilibrium E0 = (I0,R0) = (0,0). The positive equilibria of system (2.4)-(2.5)
can be obtained by solving the following equation

f (I) = A1I2 +B1I +C1 = 0 (2.6)

where

A1 =
(

1+m+
r
n

)
q,

B1 = q(1−B)+1+m+
r+ p

n
+ pm,

C1 = (p+1)
(

1− B
p+1

)
,

Denote R0 =
B

p+1 .

R∗ =
1
n

(
rI∗+

pI∗

1+qI∗

)
where I∗ is the positive root of the Eq. (2.6). Therefore, system (2.4)-(2.5) has a unique endemic equilibrium E∗ = (I∗,R∗).
The Jacobian matrix corresponding to the model Eqns. (2.4)-(2.5) is as follows:

J =

(
1

(1+mI)2 (B− I−R)− I
1+mI −

p
(1+qI)2 −1 − I

1+mI
r+ p

(1+qI)2 −n

)
.

Now using the variable matrix J obtained above, we get the local stability of the equilibria.

Theorem 2.2. (i) If R0 < 1 the disease free equilibrium E0 of the system (2.4)-(2.5) is locally asymptotically stable otherwise it is unstable.
(ii) If R0 > 1, A2 < 0 and B2 > 0, then the unique endemic equilibrium E∗ locally asymptotically stable.

Proof. (i) The Jacobian matrix corresponding to E0 = (0,0) of Eqns. (2.4)-(2.5) is as follows

J0 =

(
B− p−1 0

r+ p −n

)
.

The eigenvalues of J0 are

λ1 =−n, λ2 = B− p−1.

Obviously, λ1 < 0. Note that if R0 < 1, λ2 < 0 and so the disease-free equilibrium E0 is locally asymptotically stable. Conversely, if R0 > 1,
λ2 > 0 and so E0 is unstable.
(ii) The Jacobian matrix corresponding to E∗ = (I∗,R∗) of Eqns. (2.4)-(2.5) is as follows

J∗ =

(
1

(1+mI∗)2 (B− I∗−R∗)− I∗
1+mI∗ −

p
(1+qI∗)2 −1 − I∗

1+mI∗

r+ p
(1+qI∗)2 −n

)
.

The roots of the equation

λ
2 +A2λ +B2 = 0

are the eigenvalues of J∗. Here

A2 = n+1+
p

(1+qI∗)2 +
I∗

1+mI∗
+

1
(1+mI∗)2 (I

∗+R∗−B),

B2 = n
(

1+
p

(1+qI∗)2 +
I∗

1+mI∗
+

1
(1+mI∗)2 (I

∗+R∗−B)
)

+

(
r+

p
(1+qI∗)2

)(
I∗

1+mI∗

)
.

If A2 < 0 and B2 > 0, the eigenvalues of J∗ are negative. Thus, proof is completed.
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3. Global Stability

In this chapter, we have obtained the sufficient conditions for global stability for E0 and E∗.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 = (0,0) of Eqns. (2.4)-(2.5) is globally asymptotically stable provided that the
following condition holds:

Bq < (p+1)m.

Proof. Now we will construct a Lyapunov function and use the direct method of Lyapunov to prove the global stability of E0. Take into the
following Lyapunov function

V0(I,R) = I.

Clearly V0 is a positive definite function. If we differentiate V0 with respect to t, we get

dV0

dt
=

dI
dt

=
I

1+mI
(B− I−R)− I− pI

1+qI

≤ BI
1+mI

− (p+1)I
1+qI

− qI2

1+qI

≤ B− (p+1)
(1+qI)(1+mI)

I +
Bq− (p+1)m
(1+qI)(1+mI)

I2

Obviously, if R0 < 1 and Bq < (p+ 1)m, then dV0
dt ≤ 0. Furthermore, dV0

dt = 0 if and only if I = 0. According to LaSalle’s principle of
invariance [5], this means that all solutions in Λ̃ approach the plane I = 0 and R = 0 as t→ ∞. Therefore, we conclude that E0 is globally
asymptotically stable in Λ̃.

Theorem 3.2. If R0 > 1, then the infected equilibrium E∗ = (I∗,R∗) is globally asymptotically stable supplied that the following condition
holds:

z11 < 0.

Proof. To verify the global asymptotic stability of E∗, we apply the method of Lyapunov functions integrated with the Volterra-Lyapunov
stable matrices theory [5, 7]. For this, we determine the Lyapunov function as follows:

V ∗ = w1(I− I∗)2 +w2(R−R∗)2,

where w1,w2 are positive constants. If we differentiate V ∗ with respect to time, we get

dV ∗

dt
= 2w1(I− I∗)

dI
dt

+2w2(R−R∗)
dR
dt

= 2w1

(
I

1+mI
(B− I−R)− I∗

1+mI∗
(B− I∗−R∗)− (I− I∗)− pI

1+qI
+

pI
1+qI

)
(I− I∗)

+ 2w2

(
r(I− I∗)−n(R−R∗)+

pI
1+qI

− pI
1+qI

)
(R−R∗)

= 2w1

(
B− I−R− (1+mI)I∗

(1+mI)(1+mI∗)
− p

(1+qI)(1+qI∗)

)
(I− I∗)2

− 2w1
I∗

(1+mI∗)
(I− I∗)(R−R∗)+2w2

(
r+

p
(1+qI)(1+qI∗)

)
(I− I∗)(R−R∗)

− 2w2n(R−R∗)2

= Y (WZ +ZTW T )Y T .

Here, Y = (I− I∗,R−R∗), W = diag(w1,w2) and

Z =

(
z11 z12
z21 z22

)
,

where

z11 =
B− I−R− (1+mI)I∗

(1+mI)(1+mI∗)
− p

(1+qI)(1+qI∗)

z12 = − I∗

1+mI∗

z21 = r+
p

(1+qI)(1+qI∗)
z22 = −n

It is clear that z12 < 0, z21 > 0 and z22 < 0. If z11 < 0, then Z is Volterra-Lyapunov stable matrix. Therefore, dV ∗
dt < 0, and by LaSalle’s

invariance principle [5], E∗ is globally asymptotically stable in the interior of Λ̃.
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Figure 4.1: The infected equilibrium is E∗ = (I∗,R∗) = (0.7737,7.7221) and it is globally asymptotically stable

Figure 4.2: When R0 > 1, the phase portrait of Eqns. (2.4)-(2.5) with E∗ = (0.7737,7.7221).

4. Numerical Simulations

We now present some examples to confirm the global stability of the model investigated in Section 3.
Example 4.1: In this example, we set the hypothetical initial values as (I(0),R(0)) = (5,1). We also take the parameter values as m = 0.005,
n = 0.1, B = 1, p = 0.5, q = 0.005, r = 0.5. Thus, R0 > 1 and the infected equilibrium is E∗ = (I∗,R∗) = (0.7737,7.7221). Therefore
E∗ = (I∗,R∗) = (0.7737,7.7221) is globally asymptotically stable (See Fig. 4.1 and Fig. 4.2).
Example 4.2: In this example, we set the hypothetical initial values as (I(0),R(0)) = (5,1). We also take the parameter values as m = 0.005,
n = 0.1, B = 10, p = 0.5, q = 0.004, r = 0.5. Thus, R0 < 1 and the disease-free equilibrium E0 = (0,0) is globally asymptotically stable
(See Fig. 4.3).

5. Conclusion

In this paper, the local and global stability of a SIRS epidemic model with a saturated incidence ratio and a saturated treatment function
has been investigated. The basic reproduction number R0 has been obtained for this model. Next, when R0 < 1 it has been shown that the
disease-free equilibrium is globally asymptotically stable , and the infected equilibrium is globally asymptotically stable when R0 > 1. This
means that if R0 < 1, the disease has disappeared, otherwise the disease becomes endemic. In this context, we can say that our theoretical
results are confirmed by numerical results.
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Figure 4.3: When R0 < 1, the phase portrait of Eqns. (2.4)-(2.5) with E0 = (0,0).

References

[1] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Berlin, Springer, 2011.
[2] V. Capasso, G. Serio, A generalization of the Kermack–Mckendrick deterministic epidemic model, Math. Biosci. 42 (1978), 43-61.
[3] X. Zhang, X. N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl. 348(1) (2008), 433–443.
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