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An Application of Latent Class Analysis for TIMSS 2015 Data: 

Detecting Heterogeneous Subgroups 

Fatıma Münevver SAATÇİOĞLU * 

 

Abstract  

This study aimed to investigate the heterogeneity of the TIMSS 2015 data from Turkey and the USA 8th grade 

math. Latent Class Analysis (LCA) was used to determine the latent classes that cause heterogeneity in the data 

by using categorical observed variables. As a result of the LCA, supporting absolute and relative model fit indices 

through AvePP and entropy values, it was concluded that the data obtained from both countries fit the three-class 

model. The latent class probabilities and conditional response probabilities were examined for homogeneity and 

degree of segregation of the classes from each other. Based on the findings, it is recommended that the assumption 

of homogeneity in international evaluations be evaluated empirically with LCA. With this article, an example of 

the application of LCA is provided, and it is believed to be useful for researchers in the context of education and 

psychological evaluation. 

 

Key Words: Latent class analysis, TIMSS 2015, heterogeneity. 

 

INTRODUCTION  

The correct understanding of study data is a significant factor for quality research in education and 

related fields. This is especially true for those investigating the role of scores in latent structures 

belonging to international large-scale assessment data. In large-scale international assessments such as 

Trends in International Mathematics and Science Study (TIMSS) and Programme for International 

Student Assessment (PISA), item and ability parameters are estimated using Item Response Theory 

(IRT) calibration. Despite many advantages, IRT models have strict assumptions such as 

unidimensionality, parameter invariance, local independence, and population homogeneity (Embretson 

& Reise, 2000; Hambleton, Swaminathan, & Rogers,1991). In order to collect accurate evidence for the 

validity of the model, the assumptions of the model used in the analysis should be provided and there 

should be no biased items (Kreiner & Christensen, 2007). In some cases, the population may be 

heterogeneous due to the techniques or strategies used by individuals to correctly answer the items, 

familiarity with item content, etc (Embretson, 2007; Mislevy & Huang, 2007). In this case, it is not wise 

to use statistical models that require a single population in data analysis (Sen, 2016). 

Different methods are used for the analysis of data obtained from heterogeneous populations. Analysis 

methods differ according to whether the population heterogeneity consists of observed or unobserved 

variables. If the variables causing heterogeneity are observed variables, some of the analysis methods 

used can be listed as discriminant analysis (DA), logistic regression (LR), multivariate analysis of 

variance (MANOVA), and multi-group factor analysis (MG-CFA). Of these methods, groups in LR, 

MANOVA, and MG-CFA are defined using a single observed variable or a combination of observed 

variables. DA and LR analyses are exploited if the goal is to identify variables to predict group 

membership, and MANOVA is preferred if it is aimed to compare group means by a set of observed 

variables. The MG-CFA, on the other hand, is designed for group comparisons by the means and 

covariances of a set of observed variables. Thus, the MG-CFA includes MANOVA as a submodel. In 

addition, these methods differ according to the type of observed outcome variables within a 
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subpopulation. If the observed variables are continuous, discriminant analysis (DA) and MANOVA are 

used, and LR analysis is employed if they are categorical. In MG-CFA, both categorical and continuous 

observed variables can be included in the same analysis (Lubke & Muthen, 2005). 

Analyses using latent variables are person-centered techniques which are K-means clustering analysis, 

latent class analysis (LCA), and latent profile analysis (LPA) (Lazarsfeld & Henry, 1968; McLachlan 

& Peel, 2004; Magidson & Vermunt, 2002). Advantage of these person-centered techniques is that they 

provide a direct analytical translation of theories that hypothesize substantive and qualitative individual 

differences within the population. These methods are designed to detect clusters of participants with 

similar response patterns over a set of observed variables in a given dataset. The K-means method is 

based on an arbitrarily chosen criterion aiming to maximize inter-cluster variability while minimizing 

intra-cluster variability. LCA and LPA have additional advantages over cluster analysis: (a) individuals 

are assigned to latent classes based on conditional probabilities, and (b) models are statistically evaluated 

to decide the most appropriate model based on the observed data (Hagenaars & McCutcheon, 2002). 

Therefore, LCA and LPA appear in the literature as model-based methods in which alternative models 

are compared (Vermunt & Magidson, 2002). In LPA and LCA, a single categorical latent variable serves 

to model class membership (Lazarsfeld & Henry, 1968). For latent variables, analysis methods vary 

according to the type of observed variable. LPA is used if the latent variable is categorical and the 

observed variables are continuous, and LCA is favorable if the observed variables are categorical (Lubke 

& Muthen, 2005). LCA and LPA use multiple observed indicators (i.e., variables) to identify key 

population subgroups (i.e., latent classes) characterized by different behavioural patterns and are useful 

when it is not foreknown which participants belong to which subgroups (Butera, Lanza & Coffman, 

2014). A latent categorical variable (i.e., underlying class membership) is used to model heterogeneity 

in the sample (Lubke & Muthén, 2005). In LCA and LPA, all covariation between observed variables 

is modelled to result from differences between classes. The observed variables within the class are 

independent of each other, which is called the local independence assumption (Goodman, 2002; 

McCutcheon, 2002). As it is the only assumption that needs to be met, LCA and LPA are flexible 

approaches that do not need many assumptions (Lubke & Muthen, 2005; Vermunt & Magidson, 2002). 

With the LCA, the profiles of the classes are determined by the classes obtained from students with 

similar reaction patterns (De Ayala & Santiago, 2017). Conditional item probabilities (probability of 

answering an item for students in a certain class) are used to label latent classes (Nylund, Asparouhov, 

& Muthén, 2007). 

In recent years, latent class modelling techniques have attracted increasing attention among researchers 

due to the usability and developments in computer software for applications in the social and 

psychological sciences. Specifically, the use of LCA has increased in many areas such as health (Leech, 

McNaughton & Timperio, 2014; Olson, Hummer & Harris, 2017) and psychology (Chung, Park, & 

Lanza, 2005; Collins & Lanza, 2010; Lanza, Flaherty, & Collins, 2003). LCA helps to understand profile 

differences on multidimensional constructs (like personality, depression, etc.) and provides much more 

flexibility in parameterizing individual differences. Although LCA is used in various fields such as 

measurement invariance (Eid, Langeheine & Diener, 2003; Güngör, Korkmaz & Sazak, 2015; Güngör 

Çulha & Korkmaz, 2011; Kankaras, Moors & Vermunt, 2011; Morin, Meyer, Creusier, & Biétry, 2016; 

Yandı, Köse & Uysal, 2017), longitudinal latent growth models (Jung & Wickrama, 2008; Rindskopf, 

2003) and Differential Item Functioning-DIF (Oliveri, Ercikan, Zumbo, & Lawless, 2014; Samuelsen, 

2005; Uyar, 2015). 

There are studies investigating latent classes using LCA in large-scale assessments (DeMars & Lau, 

2011; Oliveri et al., 2014; Oliveri & von Davier, 2011; Rutkowski, 2018; Toker, 2016), but no 

exhaustive study has been found on how to apply it step-by-step in TIMSS data. In these studies, latent 

classes were determined with LCA, and it was indicated that the comments made would cause some 

adverse conditions due to the fact that IRT assumptions could not be met in the presence of latent classes. 

First, the presence of more than one latent class in the data obtained from the tests means that the 

measured structure changes for different classes, and this poses a threat to the validity of the test (Kreiner 

& Christensen, 2007; Messick 1994; Toker, 2016). It is because providing the assumptions of the model 

used in data analysis is regarded to be a requirement of ensuring the construct validity (Kreiner & 
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Christensen, 2007). Second, it is not fair to compare students with the same ability level as the 

assumptions of the IRT model are violated as a result of detecting latent classes in the data of large-scale 

assessments (Baghaei & Carstensen, 2013; Embretson, 2007; Oliveri & von Davier, 2011; Rutkowski 

& Rutkowski, 2018). Another problem is that the parameters estimated using the IRT model may be 

biased in the presence of different subgroups (DeMars & Lau, 2011; Park, Lee & King, 2016). 

Therefore, revealing the latent classes that cause heterogeneity in international large-scale test data is 

highly important in order to be able to analyze the test data correctly and to obtain accurate estimations. 

In addition, it is hoped that this study will contribute to the literature in terms of providing information 

on how to apply the LCA analysis to TIMSS 2015 data, how to test its assumptions and how to interpret 

the analysis outputs.  

 

Purpose of the Study 

This study aims to present an example of how to apply the LCA to TIMSS 2015 8th grade math data 

and to reveal the latent classes. 

 

METHOD 

In this study, latent class analysis was used based on students’ responses to the items for TIMSS 2015 

data. The data were analysed using the maximum likelihood estimation (MLE) method in the Mplus 

software program (Muthén & Muthén, 2017).  

 

Sample 

This study included 432 students from Turkey and 727 students from the USA. In this research, from 

these countries, the USA was chosen as the country with large sample size while Turkey was chosen as 

the country with medium sample size. Also, by 8th-grade math achievement average in TIMSS 2015, 

Turkey ranked 24th, and the USA ranked 10th among 39 OECD countries that took the exam (Mullis, 

Martin, Foy & Hooper, 2016). Accordingly, it can be alleged that Turkey has a medium level of 

achievement and the USA has a high level of achievement. So these two countries, which differ in 

sample size and success ranking, were selected.  

 

Data Collection Tools 

TIMSS 2015 is a standardized test that allows 4th and 8th-grade students of countries to determine their 

knowledge about concepts and processes in math and science, and their attitudes towards these subjects 

(Thomson, Wernert, O’Grady & Rodrigues, 2017). The instrument of the study is the math achievement 

test applied to 8th-grade students participating in TIMSS 2015. In the TIMSS assessment, items were 

developed in accordance with the cognitive processes of knowing, applying, and reasoning. About half 

of the items in the math test were multiple-choice while the other half consisted of long/short answered 

items. In TIMSS 2015 with science and math tests, the items in the achievement test included 28 blocks, 

14 of which were science and 14 were math. The number of items in the booklets ranged from 11 to 17 

(Martin, Mullis & Hooper, 2016). Since the 7th booklet contains more multiple-choice items (17 items), 

this booklet was chosen and analyzes were carried out. Eight of these items were for measuring knowing, 

six for applying, and three for cognitive reasoning domains. 

 

Data Analysis 

Latent class analysis is one of the finite mixture models used in social, behavioral, and health sciences 

to determine whether students are divided into latent classes based on a latent structure (Collins & Lanza, 

2010). The purpose of LCA is to determine the class membership by using the categorical observed 

variables. LCA allows the analysis of dichotomously scored (1-0), ordinal and categorical variables, and 
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the combination of these variables (Nylund, Asparouhov & Muthén, 2007). Figure 1 illustrates below 

the relationship between latent and observed variables, with the c categorical latent variable (u1, u2, u3) 

for LCA representing the observed variables: 

 

  

Figure 1. LCA Model for Latent and Observed Variables 

 

The latent variable can be explained as unobservable variables determined by directly measured 

observed variables. The latent class, on the other hand, represents a statistically determined group of 

students with homogeneous response patterns, and different latent classes contain different 

homogeneous response patterns to items (Bolt, Cohen, & Wollack, 2001). In other words, it can be 

claimed that students in the same latent class have similar abilities, problem-solving skills, and 

answering strategies (Embretson, 2007; Glück & Spiel, 2007).  

If 𝑌𝑖𝑗 ∈ {0,1} is the variable showing the responses of individual i ∈ {1,2,..,N} to the items; j ∈{1,2,…,T} 

and 𝑔 ∈{1,2,…,G} is the variable for the latent class membership of the individual, the probability of 

answering the items correctly by the individuals in a class 𝑃(𝑌𝑖𝑗 = 1) can be equated as follows: 

𝑃(𝑌𝑖𝑗 = 1) = ∑ 𝜋𝑔𝑃(𝐺
𝑔=1 𝑌𝑖𝑗 = 1|𝐺 = 𝑔)                                                                                             (1)         

In this equation, 𝜋𝑔 represents the probability of the latent class and the conditional probability of 

𝑃(𝑌𝑖𝑗 = 1|𝐺 = 𝑔) demonstrates the probability of answering item j correctly for the individual i in the 

𝑔 class. 

As shown in Equation 1, the probability of obtaining an answer of 𝑌𝑖𝑗  is the weighted average of the 

class-specific probabilities. The parameters to be estimated in the latent class model are the latent class 

probabilities and the conditional response probabilities (Nylund, Asparouhov & Muthén, 2007). These 

parameters help to examine the degree of homogeneity and latent class separation when evaluating 

model-data fit. The latent class probability parameters show the population ratio of the students in each 

latent class. The homogeneity of a latent class means that the students in the class have the same 

observed response pattern. The fact that the probability of responding to the variables observed in the 

latent class condition is 0 or 1 gives evidence that the latent classes are homogeneous. The conditional 

response probability parameters are interpreted while examining the separation of the latent classes. 

Latent classes are highly differentiated when the conditional response probabilities that are high in one 

latent class are low in another latent class. 

MLE method is used to estimate the latent class analysis parameters. MLE is used to obtain parameter 

estimates by fitting a given latent class population model to the observed sample data. For mixture 

models, the likelihood function can generally be obtained by estimating full-information maximum 

likelihood (FIML) under the assumption of missing-at-random-MAR (McLachlan & Peel 2004). The 

MLE method continues the estimation of the parameter starting from the initial values until it finds the 

maximum probability of the parameter. When estimation is not started with appropriate initial values or 

there is a problem in defining the model, it can give the local maxima value instead of the global 

maximum of the estimated probability distribution. Estimating the model by taking different random 



Saatcioglu, F.M. / An Application of Latent Class Analysis for TIMSS 2015 Data: Detecting Heterogenous Subgroups 

___________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

325 

initial values with the STARTS and STITERATIONS commands added to the syntax in the Mplus 

software can provide a practical solution to this problem (Jung & Wickrama, 2008; Wang & Wang, 

2012). If the problem cannot be dealt with despite taking these precautions, the source of the problem 

should be determined by examining the defined model, the number of latent classes, observed variables, 

and sample size. 

  

The assumptions of latent class analysis 

Although the latent class analysis does not have assumptions such as normal distribution and 

unidimensionality, it is necessary to provide the assumption of local independence, indicating that the 

observed variables are independent. This assumption means that the observed variables are 

interconnected only with the latent variables and there is no relationship between the errors of the 

observed variables (Vermunt & Magidson, 2004). To check this assumption, bivariate residuals for 

observed pairs of variables are examined. High scores of these values suggest local dependency 

(Vermunt & Magidson, 2004). 

  

Model selection 

When the number of classes in a population is unknown in advance, an exploratory approach is followed 

to determine the number of latent classes. This explanatory approach involves fitting models containing 

an increasing number of classes to the data and then finding the best fit among these candidate models. 

As a result of the analysis, the fit indices are compared and the model that best fits the data is selected 

(Sen, 2016). In determining the number of classes, many factors should be considered, including the 

research question, parsimony, theoretical justification, and interpretability as well as fit indices (Lubke 

& Neale, 2006). The principle of parsimony is choosing a model with fewer parameters instead of more 

complex ones. If latent classes are defined, each latent class must be significant and interpretable. 

Moreover, even if the model meets all the requirements of mathematical analysis, the predictive model 

will not be useful if it cannot provide a theoretically interpretable latent class (Wang & Wang, 2012). 

Therefore, fit indices and model fit tests should not be the decisive factors when deciding on the number 

of classes. In their simulation study, Nylund et al. (2007) determined that BLRT, followed by BIC, and 

then sample-size adjusted BIC (SSA-BIC) monitored the best performance among all fit indices and 

tests found in the Mplus output. However, Nylund et al. (2007) pointed out the disadvantages of the 

BLRT index due to the increased computation time of BLRT and its dependence on distributional and 

model assumptions. For example, if the data within a class is skewed but modelled as if the data were 

normally distributed, the BLRT p-value may be misinterpreted. Hence, Nylund et al. (2007) suggested 

interpreting the significance of the BIC and SSA-BIC value and the p-value obtained from the VLMR 

test as a guide to arrive at possible solutions in the first steps of the model research. Therefore, the model 

with a low BIC and SSA-BIC value and a p-value of less than 0.05 in the VLMR test should be selected 

(Jung & Wickrama, 2008). The likelihood ratio test (G2), one of the absolute fit indices, gives 

information about whether a model fits the data well or not (Agresti, 1990). All of these indices are 

included in the Mplus output. An additional consideration in model selection is the size of the smallest 

class. While a four-class model may best fit the data, the researcher should be able to justify the addition 

of this class if this additional class consists of relatively fewer individuals (e.g. proportionally <1% 

and/or numerically n<25) (Lubke & Neale, 2006). In addition to all these indices, it is useful to examine 

the AvePP and entropy values. 

 

The examination of average posterior probabilities and entropy values 

When the possible number of classes is optimal, students are assigned to the latent classes in the latent 

class analysis. Based on a student’s response patterns, the probability of latent class membership is 

measured by the probability of posterior class membership (Wang & Wang, 2012). For this reason, it is 

very important to examine the mean of posterior probabilities (Average Posterior Probabilities-AvePP) 

and entropy value related to classification. The posterior mean of probabilities (AvePP) provides 
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information about how well a particular model classifies students into their classes. Students’ AvePP 

values greater than .70 indicates that the separation of students into classes is successful (Nagin, 2005). 

The entropy value shows the uncertainty in the classification. A single entropy value is generated for 

the entire analysis. The entropy value greater than .80 means that the classification uncertainty is low 

(Clark & Muthen, 2009). 

 

RESULTS 

First, it was examined whether the model fit indices and the local independence assumption were 

provided as a result of the LCA applied to Turkey and the USA data. Then, parameter estimations were 

examined, and latent class profiles were interpreted based on latent class probabilities and conditional 

response probabilities.  

 

The Analysis of Model Fit Indices 

In the analyses, 1, 2, 3 and 4-class models were tested, respectively, and the obtained model fit indices 

were presented in Table 1. 

 

Table 1. Fit Indices of Models Tested for Data from Turkey  

Fit indices 
1-class model 2-class model 3-class model 4-class model 

AIC 9004.712 8372.403 8267.709 8253.825 

BIC 9073.835 8514.716 8483.212 8542.519 

SSA-BIC 9019.887 8403.647 8315.021 8661.097 

LR Chi-Square Test 1378.362 58.857 1613.448 193.184 

LR Chi-Square p-value 1.0000 1.0000 1.0000 1.0000 

VLMR Test  - 668.309 140.694 49.883 

VLMR p-value - 0.0000 0.0000   0.4093 

BLRT Test - 668.309 140.694 49.883 

BLRT p-value - 0.0000 0.0000 0.0200 

*p<.05 

 

According to Table 1, the LR Chi-Square test, which is an absolute fit index, has an insignificant p-

value for data from Turkey, indicating that the model data fit is achieved. When the BIC and SSA-BIC 

values of the relative fit indices are examined, it is clear that the 3-class model is the one with the lowest 

values. The results of VLMR and BLRT can be found in the Mplus output under the Technical 11 and 

Technical 14 sections, respectively. Here, both VLMR and BLRT show a statistically significant 

difference between the 2-class and 3-class models. This result implies that the 3-class model provides a 

significant improvement in model fit compared to the 2-class model. In the next step, the 3-class model 

is compared with the 4-class model. However, it was observed that the p value was not significant when 

the p-value of the VLMR test was examined through testing the 4-class model by adding a class on top 

of the 3-class model with the suggestion of Nylund et al. (2007). This finding reveals that adding one 

more class to the 3-class model does not improve the model-data fit. According to these results, it was 

concluded that the 3-class model fits the data better. The model fit indices of the USA data were 

submitted in Table 2. 
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Table 2. Fit Indices of Models Tested for Data from the USA 
Fit indices 1-class model 2-class model 3-class model 4-class model 

AIC 14653.187 13964.440 13814.329 13788.241 

BIC 14731.199 14125.053 14057.542 14114.055 

SSA-BIC 14677.219 14013.917 13887.251 13889.608 

LR Chi-Square Test 2517.045 2313.400 2204.668 2264.156 

LR Chi-Square p-value 1.0000 1.0000 1.0000 1.0000 

VLMR Test  - 724.747 186.111 62.088 

VLMR p-value - 0.0000 0.0001   0.3291 

BLRT Test - 724.747 186.111 62.088 

BLRT p-value - 0.0000 0.0000 0.0000 

*p<.05 

 

According to Table 2, the LR Chi-Square test, which is the absolute fit index, has an insignificant p-

value for the USA data demonstrating that the model data fit is achieved. When the relative fit indices 

BIC and SSA-BIC are examined, it is observed that the model with the lowest value is the 3-class model. 

In addition, it was observed that all p values were significant at the level of α = .05, except for the 4-

class model when the p values of VLMR tests were examined with the suggestion of Nylund et al. 

(2007). Therefore, it can be alleged that the model-data fit did not improve as a result of testing the 4-

class model by adding a class to the 3-class model. According to the results obtained from the USA data, 

it was concluded that the 3-class model fits the data better. As a result, latent classes were identified in 

the TIMSS 2015 8th grade math data from Turkey and the USA, and the heterogeneity in the data was 

revealed. 

 

The Examination of the Local Independence Assumption 

Bivariate residuals (BVR) were examined for observed pairs of variables in testing the local 

independence assumption, which means that the observed variables are independent in the latent class 

condition (Vermunt & Magidson, 2004). Higher BVR values (standardized z-score) indicate the 

presence of local dependency. This information, available in technical output 10 in Mplus software 

(Muthén & Muthén, 2017), was given in Table 3. 
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Table 3. Bivariate Residuals (BVR) Examined in 3-Class Model for Turkey and USA Data  

 TURKEY USA 

Item pairs Category1 

Category1 

Category1 

Category2 

Category2 

Category1 

Category2 

Category2 

Category1 

Category1 

Category1 

Category2 

Category2 

Category1 

Category2 

Category2 

M1-M2 -0.355 0.430 0.330 -0.296 0.881 -0.876 -0.669 0.543 

M1-M3 0.189 -0.407 -0.370 0.396 -0.451 0.769 0.233 -0.302 

M1-M4 -0.187 0.286 0.014 0.008 -0.003 0.139 0.045 -0.104 

M1-M5 -0.302 0.477 0.177 -0.210 -0.946 0.743 0.470 -0.596 

M1-M6 0.663 -0.907 -0.682 0.546 0.378 -0.380 -0.300 0.242 

M1-M7 0.850 -0.759 -0.706 0.687 0.774 -0.512 -0.364 0.255 

M1-M8 -0.593 0.929 0.376 -0.476 -0.310 0.562 0.165 -0.223 

M1-M9 -0.183 0.204 0.062 -0.041 -0.442 0.413 0.250 -0.267 

M1-M10 0.141 -0.275 -0.100 0.123 0.251 -0.103 -0.054 -0.016 

M1-M11 0.178 -0.390 -0.204 0.261 0.881 -0.876 -0.669 0.543 

M1-M12 -0.027 0.011 -0.003 0.028 -0.451 0.769 0.233 -0.302 

M1-M13 -0.377 0.573 0.312 -0.288 -0.003 0.139 0.045 -0.104 

M1-M14 0.853 -0.839 -0.775 0.711 -0.946 0.743 0.470 -0.596 

M1-M15 0.505 -0.529 -0.516 0.578 0.378 -0.380 -0.300 0.242 

M1-M16 -0.451 0.886 0.369 -0.385 0.774 -0.512 -0.364 0.255 

M1-M17 -0.472 0.638 0.327 -0.315 -0.310 0.562 0.165 -0.223 

 

When Table 3 is examined, it is observed that the standardized residual values for all variable pairs are 

near 0. This finding shows that the observed variables in each latent class condition are independent of 

each other in 3-class model estimation. Accordingly, it is concluded that there will be no local 

dependency bias in the estimated parameters as there is no local dependency between the observed 

variables. 

 

The Examination of the Estimated Parameters 

The estimated latent class probability parameters and conditional response probability parameters for 

Turkey data are presented in Table 4. The probability parameters given in parentheses in the table for 

each latent class represent the population ratio in each latent class. Conditional response probabilities to 

observed variables under the latent class membership condition were given in Table 4. 
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Table 4. Parameter Estimations Obtained from 3-Class Model for Data from Turkey  
 

Levels 
Class1 

(0.13) 

Class2 

(0.35) 

Class3 

(0.52) 

M1 0 0.000 0.026    0.588   

 1 1.000 0.974    0.412   

M2 0 0.130 0.455    0.660   

 1 0.870 0.545    0.340   

M3 0 0.000 0.514    0.835   

 1 1.000 0.486    0.165   

M4 0 0.660 0.884    0.787   

 1 0.340 0.116    0.213   

M5 0 0.471 0.846    0.781   

 1 0.529 0.154    0.219   

M6 0 0.000 0.111    0.679   

 1 1.000 0.889    0.321   

M7 0 0.142 0.444    0.620   

 1 0.858 0.556    0.380   

M8 0 0.419 0.879    0.760   

 1 0.581 0.121    0.240   

M9 0 0.190 0.506    0.653   

 1 0.810 0.494    0.347   

M10 0 0.083 0.532    0.784   

 1 0.917 0.468    0.216   

M11 0 0.356 0.657    0.835   

 1 0.644 0.343    0.165   

M12 0 0.146 0.812    0.856   

 1 0.854 0.188    0.144   

M13 0 0.196 0.425    0.771   

 1 0.804 0.575    0.229   

M14 0 0.006 0.026    0.310   

 1 0.994 0.974    0.690   

M15 0 0.044 0.097    0.509   

 1 0.956 0.903    0.491   

M16 0 0.184 0.604    0.854   

 1 0.816 0.396    0.146   

M17 0 0.246 0.526    0.706   

 1 0.754 0.474    0.294   

 

When Table 4 is examined, 13% of the students are in Class 1, 35% are in Class 2, and 52% are in Class 

3. According to the conditional response probabilities, the students in Class 1 have a higher performance 

in answering the items correctly, the students in Class 2 have a moderate performance in answering the 

items correctly while the students in Class 3 have a lower level in answering the items correctly. The 

estimated latent class probability parameters and conditional response probability parameters for data 

from the USA were submitted in Table 5. 
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Table 5.  Parameter Estimations Obtained from 3-Class Model for Data from the USA 
 

Levels 
Class1 

(0.18) 

Class2 

(0.56) 

Class3 

(0.26) 

M1 0 0.021  0.079 0.344 

 1 0.979  0.921 0.656 

M2 0 0.020  0.319 0.616 

 1 0.980  0.681 0.384 

M3 0 0.278  0.594 0.719 

 1 0.722  0.406 0.281 

M4 0 0.091  0.401 0.727 

 1 0.909  0.599 0.273 

M5 0 0.283  0.842 0.726 

 1 0.717  0.158 0.274 

M6 0 0.280  0.554 0.744 

 1 0.720  0.446 0.256 

M7 0 0.069  0.286 0.442 

 1 0.931  0.714 0.558 

M8 0 0.141  0.450 0.775 

 1 0.859  0.550 0.225 

M9 0 0.077  0.151 0.403 

 1 0.923  0.849 0.597 

M10 0 0.140  0.222 0.523 

 1 0.860  0.778 0.477 

M11 0 0.063  0.134 0.665 

 1 0.937  0.866 0.335 

M12 0 0.345 0.812 0.876 

 1 0.655 0.188 0.124 

M13 0 0.010 0.180 0.514 

 1 0.990 0.820 0.486 

M14 0 0.020 0.203 0.713 

 1 0.980 0.797 0.287 

M15 0 0.315 0.690 0.698 

 1 0.685 0.310 0.302 

M16 0 0.652 0.859 0.843 

 1 0.348 0.141 0.157 

M17 0 0.148 0.561 0.693 

 1 0.852 0.439 0.307 

 

When Table 5 is examined, the latent class probability parameters given in parentheses represent the 

population ratio in each latent class. In other words, 18% of the students are in Class 1, 56% are in Class 

2, and 26% are in Class 3. According to the conditional response probabilities, for example, students in 

latent Class 1 have a higher performance in answering the items correctly, students in Class 2 have a 

moderate performance in answering the items correctly, while students in Class 3 have a lower 

performance in answering the items correctly.  

 

The Interpretation of Latent Class Profiles  

When the three homogeneous classes obtained from Turkey and the USA data were examined, Class 1, 

which had a high probability of correctly responding to the items, was interpreted as a high-performing 

class. Class 2, in which the probability of answering the items correctly is moderate, has the 

characteristics of a medium-performing class. Class 3, where the probability of giving correct answers 

to the relevant items is low, was called the low-performing class. 

 

The Examination of Classification Ratios  

AvePP and entropy values were calculated to determine the practical usefulness of the model. These 

values obtained for data from Turkey and the USA were summarized in Table 6. 
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Table 6. Classification Rates for the 3-Class Model Obtained from Turkey and the USA Data 
             Turkey  Class 1 Class 2 Class 3 

  Entropy           0.888 

       Class 1 0.912 0.088 0.000 

          Class 2 0.034 0.867 0.099 

          Class 3 0.000 0.079 0.921 

 

                The USA  Class 1 Class 2 Class 3 

  Entropy            0.810 

                  Class 1 0.889 0.110 0.001 

                  Class 2 0.050 0.866 0.084 

                  Class 3 0.000 0.139 0.861 

 

When Table 6 is examined, it is observed that the entropy value, which gives an overall value of 

classification accuracy, is approximately 0.89 for Turkey data and 0.81 for the USA data. It can be 

asserted that the three-class model is useful in assigning students to the correct classes as the entropy 

values obtained for both countries are greater than .80 (Clark, 2010). Upon examining the AvePP values, 

which demonstrate the average of the class probabilities of the students with the maximum posterior 

probability, it is obvious that these values are above 0.86 for each latent class. These indicate that 

students have high maximum posterior probability values in being assigned to classes. 

 

DISCUSSION and CONCLUSION  

This study presented an example of how to apply the LCA in TIMSS 2015 data, and it was investigated 

whether the datasets were homogeneous through the LCA. As a result of the LCA, supporting absolute 

and relative model fit indices through AvePP and entropy values, it was concluded that the data obtained 

from both countries fit the three-class model. When bivariate residuals (BVR) were examined, it was 

seen that the observed variables in each latent class condition are independent of each other in 3-class 

model estimation. The latent class probabilities and conditional response probabilities were reported for 

homogeneity and degree of segregation of the classes from each other. As a result, the students in Class 

1 have a higher performance in answering the items correctly, the students in Class 2 have a moderate 

performance in answering the items correctly, while the students in Class 3 have a lower level in 

answering the items correctly. For Turkey, 13% of the students are in Class 1, 35% are in Class 2, and 

52% are in Class 3. Also, for the USA 18% of the students are in Class 1, 56% are in Class 2, and 26% 

are in Class 3. It can be seen that the percentage of the better performing class for American students is 

more than for Turkish students, while the percentage of the underperforming class for American students 

is less than for Turkish students. Toker (2016), in his research, examined four countries (Turkey, USA, 

Finland, Singapore) with different educational systems for TIMSS 2011 8th grade math data. Three 

latent classes were identified using the latent class analysis. Oliveri et al. (2014) addressed 4th students 

from Taiwan, Hong Kong, Qatar, and Kuwait who participated in PIRLS 2006. In order to reveal the 

heterogeneity in the response patterns of the students, three latent classes were determined through the 

latent class analysis approach. Based on the findings, it is recommended that the assumption of 

homogeneity in international evaluations be evaluated empirically with LCA.  

Also, the indices used during the model determination process in this study, as a result of applying LCA 

to TIMSS 2015 data, support the simulation results performed by Nylund et al. (2007). It was determined 

that the BIC and SSABIC values obtained for the number of classes that best fit the model were low. In 

addition to the model fit indices, the number of classes was decided by examining the p significance 

value with the VLMR test. 

In mixture models such as latent class analysis, the inclusion of auxiliary variables such as covariant 

variables in the analysis provides valuable information in understanding the population heterogeneity 

embodied by a latent class variable. In particular, with this approach, it can be determined whether there 
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are direct effects from covariates to latent variable indicators in an attempt to identify possible sources 

of DIF (Masyn, 2017). 

Future work should focus on extending the classification to include other demographic variables such 

as gender, age, and socioeconomic status. In addition, it can be used to examine whether latent classes 

obtained from various distal outcomes (e.g., academic performance, self-efficacy, etc.) show statistically 

significant mean-level differences or whether these procedures can be included in the latent class 

determination procedure. Such studies can be used to increase the predictive and discriminant validity 

of the test. Therefore, they can contribute to test validity. 

Latent profile analysis can be used to investigate students’ attitude profiles and how these profiles are 

associated with academic achievement in a standard math and science test for the variables measured 

by graded Likert-type questionnaires in TIMSS and PISA test data (e.g., attitude). Defined profiles can 

be a useful way for math and science teachers to understand better the different types of students in their 

classrooms. Arrangements can be made in the education programs for the deficiencies of the students in 

the classes. 
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Appendix. Mplus Code for LCA 

 
TITLE:Booklet 7 2 Class Solution Latent Class Analysis 

DATA:FILE IS data7.txt; 

VARIABLE: NAMES ARE M1-M17; 

USEVARIABLES = M1-M17; 

CATEGORICAL = M1-M17; 

CLASSES = c (2);   

MISSING ARE ALL (99);  

ANALYSIS:TYPE = MIXTURE;  

OUTPUT:TECH1 TECH10 TECH11 TECH14; 

SAVEDATA: 

FILE IS lca2turkey.dat; 

SAVE IS CPROB; 

FORMAT IS FREE;  

 



  

 

 

 

* Graduate Student, Ege University, Faculty of Education, Izmir-Turkey, zuzun2204@gmail.com, ORCID ID: 0000-0003-

4681-0044 

** Ph.D, Ege University, Faculty of Education, Izmir-Turkey, tuncay.ogretmen@ege.edu.tr, ORCID ID: 0000-0001-7783-
1409 

___________________________________________________________________________________________________________________ 

To cite this article: 
Uzun, Z., & Öğretmen, T. (2021). Test equating with the Rasch model to compare pre-test and post-test measurements. 
Journal of Measurement and Evaluation in Education and Psychology, 12(4), 336-347. doi: 10.21031/epod.957614 
 

Received: 25.06.2021 
Accepted: 29.11.2021 

ISSN: 1309 – 6575 

Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 

Journal of Measurement and Evaluation in Education and Psychology  

2021; 12(4); 336-347 

 

 
 

Test Equating with the Rasch Model to Compare Pre-test and 

Post-test Measurements 
 

Zeynep UZUN *  Tuncay ÖĞRETMEN ** 

 

Abstract 

The purpose of this study is to prove the equitability of pre and post-tests with the Rasch Model and to provide 

the observability of individual and interindividual ability changes by evaluating the equated tests with stack 

analysis within the scope of the Rasch Measurement Theory. The pre-test and post-test data that are applied in 

this study were derived from the project named A Model Proposal to Increase Turkey’s Success in the field of 

Mathematics in International Large-Scale Exams: Effectiveness of the Cognitive Diagnosis based Monitoring 

Model No. 115K531, which started on 15/11/2015 and was supported by the TUBİTAK SOBAG 3501 program. 

The tests were analyzed with the Rasch model, and the fit of the data to the Rasch model was evaluated, and then 

the Rasch Model and the Separate estimation-Common person method were applied for equating process. Lastly, 

individual and interindividual ability changes were observed by applying the stack analysis method with the 

Rasch model. As a result of the analysis of pre and post-tests with the Rasch model, it was concluded that they 

meet the requirements of the model. As a consequence of the equating process, the equitability of pre-test and 

post-test was proved, and it was observed that the individual and interindividual ability change could be 

evaluated by analyzing the pre-test and post-test data with the stack analysis method. 

 

Key Words: Rasch model, test equating, stack analysis. 

 

INTRODUCTION 

When there is a need to compare tests, the first thing to be examined is whether the tests in question 

are comparable or not. For this purpose, the tests are equated with the equating methods, and, in the 

result of success, the comparability of the tests is proven. 

Equating is defined as adjusting one test form’s unit system to another test form’s unit system (Angoff, 

1971) and is a statistical process (Kolen & Brennan, 2004). It is applied with two methods: horizontal 

and vertical equating. 

The horizontal equating is used at comparable difficulty levels and in need of equating the test forms 

in which the ability distributions of the candidates who take the exam are similar, while the vertical 

equalization is used at different difficulty levels and in need of equating the test forms in which the 

ability distributions of the candidates who take the exam are different (Hambleton & Swaminathan, 

1985). 

For instance, while the horizontal equating is used when the application of different forms of the test 

is required, the vertical equating can be used for the purposes such as; evaluating a student who 

performs well above her/his class with a test a few levels ahead, tracking learning development of a 

student with exams, evaluating multiple groups at different levels with a single scale (Hambelton & 

Swaminathan, 1985), working with standardized tests (Crocker & Algina, 1986), analyzing the effect 

of intervention as an individual by proving the comparability of scores, considering the possibility that 

in pre-test/post-test applications, which is also examined in this study, items may not function in the 

same way for all those who took the test (Anselmi, Vidotto, Bettinardi, & Bertolotti, 2015). 
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Equating can be applied based on two approaches: Item Response Theory or Classical Methods 

(Hambelton & Swaminathan, 1985). Classical Methods are divided into two as Equipercentile 

equating and Linear equating (Angof, 1971). 

In the Equipercentile equating method, the scores in the two tests to be compared are accepted as 

equivalent if the frequency distributions are the same for a particular sample. The method ensures that 

the converted score distributions are the same. However, using raw scores causes problems in meeting 

the requirements, which were defined by Hambleton and Swaminathan (1985), such as subject 

independence, unidimensionality, and symmetry. Therefore, the Equipercentile equating method is 

considered group-dependent (Hambleton & Swaminathan, 1985). 

In Linear equating, scores corresponding to the same standard score are considered to be equal 

(Angoff, 1971). Just like Equipercentile equating, it is group-dependent and does not meet the equating 

requirements (Hambleton & Swaminathan, 1985). In addition to that, in equating with classical 

methods in the comparison of pre-test and post-test scores, the statistical significance and magnitude 

of the difference between the average scores obtained from both tests can be mentioned. Examining 

the individual development of the students or the individual development differences among the 

students is out of the question. 

Item Response Theory (IRT), on the other hand, is advantageous compared to classical methods since 

item and ability estimations can be made independently from the sample. If the item response model 

fits the data, the requirements in the classical method will be met due to its equality, symmetry, and 

invariance features (Kolen, 1981). 

When the pre/post-test applications are compared by equating the test forms with the IRT, it is possible 

to examine not only the change in the average scores of the sample but also the individual development 

of the students. Two things can be achieved by measuring change at the individual level; first, 

characteristics that can separate students based on whether or not they have shown any development, 

which can be used in future applications, and secondly, the degree of change in ability seen in cases 

where the effect desired to be evaluated differs due to individual differences of students (Anselmi et 

al., 2015). 

In the Item Response Theory, true score and observed score equating methods are recommended for 

equating (Kolen & Brennan, 2004). In the true score equating method, the tests are equated at the θ 

ability levels. Therefore, for equating Concurrent Estimation (Lord, 1980) and Separate Estimation 

methods are used. 

In the observed score equating method, the score distributions of the tests are estimated with the 

selected IRT model, and the scores are equated with the Equipercentile equating method (Kolen & 

Brennan, 2004). When the Item Response Theory approach is preferred to equate the tests, it is 

necessary to decide which IRT model will be used for data analysis before choosing the equating 

method. 

 

Purpose of the Study 

The purpose of this study is to equate the pre and post-tests that are prepared and applied within the 

scope of the project named A Model Proposal to Increase Turkey’s Success in the field of  Mathematics 

in International Large-Scale Exams: Effectiveness of the Cognitive Diagnosis based Monitoring 

Model No. 115K531 (Başokçu et al., 2018), which started on 15/11/2015 and was supported by the 

TUBİTAK SOBAG 3501 program using the Rasch model based on the Item Response Theory and the 

Separate Estimation-Common Person Equating. Tests evaluate with stack analysis to ensure the 

observability of individual and interindividual ability changes. 

 

Subproblems 

For pre-test analysis: Do the pre-test data fit the Rasch model? Is the pre-test unidimensional? Does 

the pre-test have sufficient distinctiveness? 
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For post-test analysis: Do the post-test data fit the Rasch model? Is the post-test unidimensional? Does 

the post-test have sufficient distinctiveness? 

For equating procedure: Can pre-test and post-test scores be compared? Can pre-test and post-test 

scores be converted into each other? Can the individual and interindividual change of the effect be 

analysed by evaluating the pre-test and post-test data on the same scale? 

 

METHOD 

In this study, all data analyses were conducted with the Dichotomous Rasch model. The Separate 

estimation-Common person method was applied to evaluate whether the pre-test and post-test 

measures were comparable. Pre-test and post-test were compared with stack analysis. 

 

Instrument and Sample 

The first identical 29 items of pre-test/post-test exam, which consists of 30 multiple choice items, 

prepared within the scope of project A Model Proposal to Increase Turkey’s Success in the field of 

Mathematics in International Large-Scale Exams: Effectiveness of the Cognitive Diagnosis based 

Monitoring Model, constitute the measuring instrument of the research while a total of 1225 six-

graders in 42 classes of 5 different schools in Izmir province constitute the sample of the exam. 

 

Procedure 

In this study, analyses are carried out in three steps. In the first step, the data obtained from the 

students’ pre-test and post-test applications are analyzed separately with the Dichotomous Rasch 

model, and the fit of the data with the model and the statistical characteristics of the tests are evaluated. 

In the second step, the equating process is applied between the pre-test and post-test with the common 

person Separate estimation-Common person method, the pre-test as the reference. And in the third 

step, the observability of individual and inter-individual ability changes are evaluated with the 

Dichotomous Rasch model and with the pre-test and post-test data, which are proven to be equitable 

with each other by stack analysis method. 

 

Rasch Analysis 

Rasch analysis is a single parameter IRT model that estimates test items’ parameters and the 

characteristics that are intended to be measured according to the possible answers for the items. The 

ability and parameter estimations are independent of the sample to which the test is applied. In Rasch 

analysis, knowledge is a function of the difference between person ability and item difficulty. As with 

the Guttman scale, it is assumed that the person will answer all items up to her/his ability level 

correctly. In the Rasch model, individuals and items can be positioned on the same scale, and using 

the Equation 1, which was used in a one-parameter logistic model, the probability of a person with θ 

ability level to correctly answer item i in a bi difficulty is calculated in the model. 

𝑃𝑖(𝜃) =
𝑒(𝜃−𝑏𝑖)

1+𝑒(𝜃−𝑏𝑖)
, 𝑖 = 1,2,… , 𝑛     (1) 

The Rasch model is applied by choosing the appropriate one among the three based on the number of 

item categories and weighting: Dichotomous, Andrich Rating Scale Model (RSM) or Master Partial 

Credit Models. In this study, analyses are carried out with the Winsteps 3.92.1 program using the 

Dichotomous Rasch model. The Rasch model requires unidimensionality, local independence, 

monotonic rising, and non-intersecting item response functions. In order to obtain test and item 

statistics and to evaluate the validity and reliability of the test, Rasch-based item-response threshold 

ordering, fit of the data to the model, item difficulty and person ability, unidimensionality and local 

independence, differential item functioning, scatter, and reliability analyses should be performed. 
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Item-category average measures 

In the Rasch model, the values of the ability means corresponding to the categories are examined in 

order to evaluate the valid discriminability of the categories and to reveal if the item is understood 

correctly by the test takers. For a Dichotomous model, if the ability means of category 0 of an item is 

lower than the ability of category 1, it is established that the item was correctly understood by the test 

takers. The difference between the means indicates the power of discrimination. 

 

Model fit tests 

By evaluating the concordance statistics, it is determined to what extent the items, the individuals, and 

the test fit the Rasch model. In the analyses performed with the WINSTEPS program, item fit and 

person fit are evaluated with INFIT and OUTFIT MNSQ (mean square) sizes and unit standard 

deviation values. If the INFIT and OUTFIT MNSQ (mean square) sizes are between 0.5 and 1.5, it 

indicates that the scale is unidimensional and the sample size is sufficient. (Linacre, 2016) 

In the present study, Among the 1225 students who took the pre-test and post-test, responses of 10 

were excluded from the analysis due to missing data, as with the responses of a total of 4 more students, 

2 in the pre-test and 2 in the post-test, were excluded from the analysis as well because their MNSQ 

values were higher than 4.0. 

 

Item difficulty and person ability 

In the Rasch model, item difficulty and person ability are expressed in logit. The difficulty of items 

refers to the corresponding level of ability. An item has a 50% probability of being answered correctly 

at the corresponding level of ability. A higher logit represents a more difficult item and a person with 

greater abilities. 

 

Unidimensionality and local independence 

The Rasch model requires meeting the unidimensionality assumption (Chang, Wang, Tang, Cheng, & 

Lin, 2014). Meeting the unidimensionality assumption is also an indication of local independence. 

Item parameters may be estimated biased in the state of unachieved unidimensionality under the 

unidimensionality assumption. 

 

Differential item functioning 

In order to evaluate whether the items show bias or not in the Rasch analysis, the size of the DIF 

contrast and the statistical significance of the Mantel Hanzel Chi-square value are examined. DIF 

contrast should be between -0.50 and 0.50 logit values, and Mantel Hanzel Chi-square value should 

be statistically insignificant (p ≥ .05). A negative DIF contrast value indicates that the item is easy for 

the subject, while a positive DIF contrast value indicates that it is difficult for the subject (Linacre, 

2016). Item bias can be seen as uniform item bias, where bias is seen at the same rate at all levels of 

ability, or as non-uniform item bias, where it occurs at specific or varying ability ranges. In this study, 

uniform item bias is evaluated based on the gender variable. 

 

Separation and reliability 

In the Rasch analysis, reliability is evaluated through personal reliability, person separation index, item 

reliability and item separation index. In the case of the measurement error getting smaller, the 

reliability values become insensitive and cannot exceed the upper limit of 1. At this point, the 

separation indices provide this congestion to be stated (Wright, 1996a). 
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Person separation is used in the classification of individuals, and its low value (< 2 and person 

reliability < .8) shows that the measuring tool is not sensitive enough to distinguish individuals at 

lower and upper-performance levels (Linacre, 2016). 

Item separation, on the other hand, enables the evaluation of the concordance of item hierarchy to the 

expectations. Low item separation (< 3 = high, medium, low item difficulty, and item reliability < .9) 

indicates that the sample is not large enough to evaluate the rate of concordance between item 

hierarchy and expectations (Linacre, 2016). 

 

Equating Treatment 

When evaluating a certain effect with pre/post-test, to observe the change in individuals or the 

functioning of the items, pre and post-test should be equated. For this purpose, in the study, it was 

evaluated whether the data were suitable for stack analysis with separate estimation common person 

equating. Ability measurements obtained by analyzing the pre-test and post-test separately using the 

Dichotomous Rasch Model in Winsteps 3.92.1 program were used in the equating process. The process 

consists of three steps: 

1. Using the ability measures obtained by the Dichotomous Rasch model, a trend line is 

obtained by placing the pre-test ability measures of a small portion of the sample on the x-

axis and the post-test ability measures on the y-axis. If the line angle is 45 degrees to the x-

axis, it is considered that the pre-test and post-test measures are convertible to each other, 

and the data are considered to be suitable for both stack analysis that allows the examination 

of change on an individual basis and rack analysis that allows examination of change on an 

item basis. If the trend line cannot provide the 45-degree angle, 

2. Empirical intercept and slope values of the trend line are used to capture the slope. These 

values convert y-axis measures to x-axis measures or the reverse. If the intervention method 

whose effect is to be examined is to be evaluated, the post-test data is shifted by using the 

coordinate where the trend line cuts the x-axis and the slope value (pre-test parameters), 

and the trend line is obtained again. If the aim is to make a decision about the result of the 

desired intervention method, the pre-test should be shifted with the post-test parameters and 

the trend line is obtained again. If the new trend line cannot provide the 45-degree angle, it 

is assumed that equating is not possible between the two tests. If it provides the 45-degree 

angle, it is considered that the equating procedure is successful for the part taken from the 

sample, and to examine whether the equating will be valid for the whole sample, 

3. Equating analysis is applied to entire sample data with the same coordinate and slope value. 

With the trend line obtained by using the whole sample, making an angle of 45 degrees with 

the x-axis, it is determined that the equating process is successful and the two test data are 

suitable for stack analysis. 

In the present study, the ability measures of the first 68 students in the data set were used to evaluate 

the first step of the equating process. In the second step, the post-test data were shifted using the pre-

test parameters. 

 

Stack Analysis 

To evaluate a specific effect applied and to evaluate the effect on an individual and group basis in the 

selected sample, where pre-test and post-test are applied, stack analysis is suggested (Wright, 1996b, 

2003). Stack analysis is the analysis of the sample by combining the pre-test and post-test data. In this 

combination, the post-test data are added under the pre-test data as if different people took this exam. 

More specifically, stack analysis is Rasch analysis by arranging data. By adding the post-test data 

below the pre-test data, the data is stacked. Stack analysis is performed by applying Rasch analysis 

using stacked data. While the number of items does not change in the stacked analysis, the person 

sample doubles, and the difficulty of the items is kept constant between two-time points. To perform 
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stack analysis, equating pre and post-tests must be successful. In this study, stack analysis was applied 

with Winsteps 3.92.1 program using the Dichotomous Rasch model. 

 

RESULTS 

 

Rasch Analysis (First Step Results) 

 

Item-category mean order 

To examine if the pre-test and post-test item response categories were understood correctly by the 

students, the averages of the students who chose the 0 and 1 categories of each item were compared, 

and it was seen that the average ability values of the students who chose category 1 for each item were 

higher than the students who chose the category 0 of the item. The fact that the average ability values 

of the students who chose category 1 of items for the pre-test and post-test were higher than the 

students who chose category 0 of the item shows that the categories were correctly distinguishable, 

and the items were correctly understood. In other words, it was proven that the students can choose 

the categories that fit the purpose of the test. 

 

Model fit tests 

It was observed that the data of 1211 students included in the analysis fit the Rasch model (with an 

MNSQ value lower than 4.0). Students’ mean infit and outfit values and standard deviations were 

revealed as follows: for the pre-test; mean infit 1.00 and SD 0.16, mean outfit 0.97 and SD 0.36, and 

for the post-test; mean infit 1.00 and SD 0.14, mean outfit 1.01 and SD 0.33. Since the infit and outfit 

values found were close to 1, it was stated that the sample fit the Rasch model. 

When the infit and outfit values of the items were evaluated to evaluate the model fit, it was seen that 

the values in the pre-test and post-test were between 1.50 and 0.50, and the items were found to be fit 

with the model. The mean infit, outfit, and standard deviation values of the tests are revealed as 

follows: for the pre-test; mean infit 1.00 and SD 0.08, mean outfit 0.97 and SD 0.19, and for the post-

test; mean infit 0.99 and SD 0.12, mean outfit 1.01 and SD 0.22. Since the infit and outfit values found 

were close to 1, it is stated that the test is compatible with the Rasch model. 

 

Item difficulty and person ability 

For the pre-test, the ability measurements ranged from 1.90 to -3.80 logit, and the average ability 

measurements were -1.38 (SD: 0.81) logit. The ability measurements for the post-test ranged from 

5.01 to -3.67 logit, and the average ability measurement was -0.95 (SD: 1.11) logit. The item difficulty 

average measure for the pre-test was found to be 0.0, and the item difficulty average measure for the 

post-test was also found to be 0.0. The difficulty levels of the items as a result of the pre-test and post-

test separate analyses and the difficulty values of the items found as a result of the equating process 

are given in Table 1 in The Stack Analysis section. In Figures 1 and 2, item difficulty and person 

ability distributions for pre-test and post-test are presented. 
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Figure 1. Pre-test İtem Difficulty and Person        Figure 2. Post-test İtem Difficulty and Person 

Ability Distribution           Ability Distiribution 

 

In Figure 1, the item range is between 3.03 and -1.87, while the skill range is between 1.90 and -3.80. 

In the pre-test, there is no item suitable for the ability level of the students evaluated on the logit 2 and 

3 ability measure. As a result, it was determined that the pre-test could not differentiate the sample 

sufficiently. 

 

Unidimensionality and local independence 

For pre-test in the evaluation of multidimensionality, it was revealed that the percentage of observed 

explained variance (21.9%) and the percentage of unexplained observed variance (78.1%) were equal 

to the expected percentages; whereas the unexplained variance in the 1st contrast values was calculated 

as 1.78, revealing that the corresponding unexplained observed variance percentage was lower than 

the expected unexplained variance percentage. It can be said that there is no such doubt for the pre-

test since it was considered as a multidimensionality possibility when the unexplained variance in the 

1st contrast value is higher than 2. 

As the results of the main component analysis, the Winsteps program divides the items into 3 clusters 

based on their 1st contrast loads and checks whether they measure the same thing by comparing them. 

The disattenuated correlation value difference between the item clusters being lower than 0.7 and the 

Pearson correlation value being lower than 0.3 indicates a second dimension. In the case of a second 

dimension, person measurements become biased. 

It was determined that, in this study, for pre-test, the disattenuated correlation between item clusters 1 

and 3 was lower than 0.7, and the Pearson correlation values between 1-3rd and 2-3rd clusters were 

lower than 0.3. The eigenvalue of significant contrasts between the items is greater than 2 (Linacre, 

2016). It was determined that the multidimensionality effect did not create a significant difference 

since the unexplained variance contrast value for the pre-test was lower than 2. 

For the post-test, the following was noted: observed variance percentage (26.3%) was higher than the 

expected value, the unexplained observed variance percentage (73.7%) was very close to the expected 

value (74%), and the unexplained variance in the 1st contrast value was calculated as 1.81, whose 

corresponding unexplained observed variance percentage was lower than expected unexplained 

variance percentage. It can be said that there is no such doubt for the post-test since it was considered 

as a multidimensionality possibility when the unexplained variance in the 1st contrast value is higher 

than 2. And since it was determined that the disattenuated correlations between item clusters were 
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greater than 0.7 and the Pearson correlation values were greater than 0.3, no doubt would suggest 

multidimensionality. 

 

Differential item functioning 

As a result of the DIF analysis performed to understand whether the items show gender bias, only the 

DIF contrast of the 24th item for the pre-test was found to be higher than 0.50, and the Mantel Hanzel 

Chi-square values (p ≥ .05) were not statistically significant revealing that there was no gender bias. 

Since there was no DIF contrast higher than 0.50 for the post-test, likewise, it also means that the post-

test did not show gender bias as well. 

 

Separation and reliability 

Based on the results, the Cronbach Alpha reliability coefficient of the pre-test analysis was .64, the 

reliability (Model) value of the individuals was .62, and the separation coefficient was 1.27. If the 

reliability value is below 0.80, it indicates that people are clustered in groups 1 or 2 (Linacre, 2016). 

When the individual reliability value is evaluated with the separation coefficient, the individual 

reliability and discriminability of the pre-test were found insufficient. Cronbach Alpha value was also 

found to be at an insufficient level. The item reliability coefficient and discrimination index of the pre-

test were determined as .99 and 12.34, respectively, and the reliability and discrimination of the items 

were stated as quite good. 

Based on the results, the Cronbach Alpha reliability coefficient of the post-test analysis was 0.83, the 

reliability (Model) value of the individuals was 0.80, and the separation coefficient was 2.02. The 

person reliability value between 0.80 and 0.90 indicates that the sample can be divided into 2 or 3 

groups (Linacre, 2016). When the person reliability value was evaluated with the separation 

coefficient, the person reliability of the post-test was found sufficient. Moreover, Cronbach Alpha 

value was found to be at an insufficient level. The item reliability coefficient and discrimination index 

of the post-test were determined as .99 and 12.06, respectively, and the item reliability was stated as 

quite good. It was determined that the pre and post-tests meet the requirements and can be equated 

with the Rasch model approach. 

 

Separate Estimation Common Person Analysis (Second Step Results) 

The equating procedure with separate estimation common person analysis was applied to compare the 

pre-test and post-test data on the same metric. Considering that the intervention method that is being 

examined within the scope of the research will be developed, the equating method was applied by 

using pre-test parameters. Based on the Dichotomous Rasch model, the measurements of the first 68 

people, starting from the highest ability level, were drawn with the pre-test measurement values on the 

x-axis and the post-test person measurement values on the y-axis. Furthermore, it was observed that 

the measurements were not parallel. In this case, the rack analysis was found inappropriate to apply. 

A correction was performed in the post-test using the coordinate -1.53, which is the point where the 

line obtained intersects the x-axis, and 0.73, which is the slope value of the line, to ensure the equating 

of the measurements. It was seen that the new line slope obtained was .997, and the equating process 

was found to be successful for 68 people. To examine whether the equating obtained as a result of the 

correction process will be valid for the whole sample, analysis was once more applied, this time 

considering the whole sample. The line slope was calculated as .996 and the equating between the two 

tests was still valid. The correlation value between tests was 0.52, and the common variance was 27%. 

The correlation value, free of measurement error, was calculated as 0.74. With this determination, it 

was proved that pre-test and post-test can be evaluated on the same metric with stack analysis and test 

scores can be converted to each other. 

Equation 2 and Equation 3 can be used for conversion: 

Pre-test Score (x-coordinate) * slope + y-coordinate = Estimated Post-test Score  (2) 
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Post-test Score (y-coordinate) / slope + x-coordinate = Estimated Pre-test Score  (3) 

In the scope of this study pre and post-test scores can be converted into one another using the Equation 

4 and Equation 5: 

Pre-test Score (x-coordinate) * 1.37 + 2.1 = Estimated Post-test Score  (4) 

Post-test Score (y coordinate) / 1.37 - 1.53 = Estimated Pre-test Score  (5) 

 

Stack Analysis (Third Step Results) 

Stack analysis is the analysis of the sample by combining the data of the pre-test and post-test. In this 

combination, the post-test data are added under the pre-test data as if different people took this exam. 

While the number of items does not change, the person sample doubles and the difficulty of the items 

is kept constant between two-time points. For the stack analysis applied, it is evaluated whether the 

item categories are understood according to the purpose of the test. When the average of the response 

categories of the items was examined, it was determined that the average ability value of the students 

who preferred the category 1 of the item, for all items, was higher than the students who chose the 

category 0. This situation means students can choose the categories according to the purpose of the 

test. In Table 1, stack Analysis, pre-test, post-test item difficulty measurements, and mathematical 

general and domain-specific ability areas are given. 

 

Table 1. Pre-test, Post-test, and Stack Analysis Item Measurements 
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1 Number X    -1.87 -1.69 -1.55 Harder 

2 Number  X   -1.03 -1 -1.02 Same 

3 Number X  X  -1.06 -0.96 -0.9 Harder 
4 Number  X  X -0.66 -0.45 -0.29 Harder 

5 Number X X   0.09 0.15 0.16 Harder 

6 Number X X   0.4 0.53 0.62 Harder 

7 Number X  X  -1.23 -1.03 -0.86 Harder 
8 Number  X   -1.79 -1.69 -1.64 Harder 

9 Number X X   -0.45 -0.4 -0.39 Harder 

10 Number X X  X 0.99 1.08 1.12 Harder 

11 Number X    1.78 0.35 -0.39 Easier 
12 Number   X X 0.14 0.08 -0.01 Easier 

13 Number X    0.39 0.24 0.09 Easier 

14 Number X X   0.07 -0.25 -0.57 Easier 

15 Geometry X  X X 0.1 0.39 0.63 Harder 
16 Geometry X  X X 0.9 0.75 0.6 Easier 

17 Number X   X -0.49 -0.11 0.24 Harder 

18 Number X    -0.52 -0.37 -0.27 Harder 

19 Number X  X  0.46 0.56 0.61 Harder 
20 Number X  X X 0.98 0.99 0.97 Same 

21 Number   X X -0.18 0.05 0.23 Harder 

22 Number   X X 0.15 -0.13 -0.41 Easier 

23 Number   X  -1.61 -1.39 -1.2 Harder 
24 Number X X X X 3.03 2.65 2.45 Easier 

25 Number  X  X 0.46 0.6 0.69 Harder 

26 Number X X   -1.04 -0.96 -0.94 Harder 

27 Number X  X  1.87 1.67 1.52 Easier 
28 Number X  X  -0.32 -0.21 -0.14 Harder 

29 Number X  X  0.41 0.56 0.65 Harder 

In Table 1, item difficulties are expressed as logit, and changes in item difficulty in the post-test 

compared to the pre-test are indicated in the difficulty level change column in order to make it easier 
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to notice. When the items were examined, it was found that the item difficulty values of the items 1, 

3, 4, 5, 6, 7, 8, 9, 10, 15, 17, 18, 19, 21, 23, 25, 26, 28, and 29 increased in the post-test compared to 

the pretest. The pretest difficulty for the item 2 was -1.03 logit, and the post-test difficulty was -1.02 

logit, and for the item 20 the pre-test difficulty was 0.98 logit, and in the post-test 0.97 logit and it was 

determined that the item difficulty values were very close. On the other hand, it is seen that the 

difficulty values of the other items decreased in the post-test compared to the pretest; in other words, 

they were easier for the students. In order to inform about the content of the items, the general and 

domain-specific mathematical abilities of the items, which are prerequisites in mathematical literacy 

(Başokçu et al., 2018), are also included in Table 1. 

Item difficulty values can’t change between pre-test and post-test in stack analysis. Items get a fixed 

value for two tests. The cross graph of the pre-test and post-test ability measurements of the stack 

analysis, which shows the individual ability change when the item difficulties are kept constant at two-

time points, is given in Figure 3. 

 

 

Figure 3. Cross Chart of Pre-test and Post-test Ability Measurements of Stack Analysis 

 

In Figure 3, the pre-test measures of the students are shown in the x-axis and the post-test measures in 

the y-axis are shown as logit. There is a statistically significant difference (t(1210) = 12.79, p < .05) in 

favor of the post-test between the pre-test and post-test measures results of the students. The correlation 

between the pre- and post-test measures of the stack analysis was 0.52. The correlation was found to 

be moderate. This shows that the effect applied between the pre-test and the post-test leads to different 

levels of change among students. Students above the identity line performed better in the post-test than 

the pretest. For a student who falls below the identity line, the situation is the opposite. In the graph, 

it is seen that the success of students numbered 922, 199, 459, and 460 increased more than other 

students. The ability measurement of student number 922 was calculated as -0.95 logit in the pre-test 

and 5.06 logit in the post-test, and an ability increase of 6.01 logit was observed. This value is 5.12 for 

the student numbered 199, 4.83 for the student numbered 459 and 460. Students numbered 1068, 1162, 

and 1069, which are below the identity line and at the farthest point, were negatively affected by the 
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effect between the pre-test and the post-test, and a decrease in the ability of 3.23, 2.35 and 2.22 logits 

was observed in the students, respectively. 

 

DISCUSSION and CONCLUSION  

When the results of item bias, multidimensionality, and discrimination analysis of the post-test are 

compared with the pre-test results, it is seen that the pre-test results were much weaker than the post-

test results. The reason for this situation may be that students encounter types of questions that they 

did not encounter before in the pre-test application, while this effect disappeared in the post-test since 

they grasped the structure of the item better through the follow-up tests. One of the project findings 

from which the data was collected supports this view. This finding is that the problem situations that 

students encounter in the skill area they want to gain affect their success. Exposing students to problem 

situations similar to those in the tests aimed at increasing the level of success will increase success 

(Başokçu et al., 2018). 

In the equating procedure, it has been proven that the pre-test and post-test ability measures are 

convertible to each other, as the slope of the trend line obtained with all sample ability measures in the 

pre-test and post-test to the x-axis is .996. Within the scope of this study, there was no need to 

transform ability measures with conversion formulas. The convertibility has only been demonstrated, 

as the ability for stack analysis needs to be convertible between pre- and post-testing of the ability 

measures. It has been observed that the ability measures obtained from the pre-test and post-test are 

comparable and can be evaluated on the same scale as the stack analysis. 

In accordance with the previous study (Başokçu et al., 2018), it was observed that there was a 

significant difference in favor of the post-test between the pre-test and post-test ability measurements 

obtained within the scope of the stack analysis. As a result of the comparison of the pre-test and post-

test ability measures obtained with the stack analysis with the help of graphics, students who were 

differently affected by the effect applied between the pre-test and the post-test could be determined. 

The change in students’ ability levels can be compared. Thus, it has been seen that the level of 

individual and inter-personal ability change can be evaluated. 

In the pre- and post-test evaluation, there are studies in which common item equating is used (e.g. 

Fujita & Mayekawa, 2011) or only the stack analysis method is used without using the equating 

procedure (e.g. Cunningham & Bradley, 2010; Herrmann-Abell, Flanagan, & Roseman 2012; Ling, 

Pang & Ompok, 2018). Common person equating was preferred to prove the equivalence of equivalent 

forms structure (e.g. Cavanagh, 2012; Popp & Jackson, 2009; Taylor & McPherson, 2007). It was 

stated by Masters (1985) that the same results can be achieved with both equatings in the Rasch Model, 

and the common person equating tests unidimensionality more clearly. For this reason, common 

person equating and stack analysis are used in this study to show that the intervention effect can be 

evaluated on an individual basis. Compared to previous studies, a stricter 1st contrast value was taken 

as the criterion in this study compared to Ling et al. (2018) study. Compared to the studies of 

Cunningham and Bradley (2010) and Anselmi et al. (2015), it is presented with a better percentage of 

person who fit the model. The results are generally in accordance with previous studies, and no feature 

has been identified that can make the procedure specific or hinder the implementation of equating or 

stack analysis. 

In this study, the factors that affected the students who benefited more from the effect applied between 

the pre-test and the post-test or could not benefit from it were not researched. The factors that increase 

or decrease the success of the student can be determined by interviewing the students who are affected 

differently individually or by applying tests on possible factors to these students. Thus, the method of 

intervention can be developed, individualized, or differentiated for the groups to be determined. In the 

field of education, each student's unique and individual talent is an investment for the future of society. 

From this point of view, it is considered that the equating steps with the Rasch model are a suitable 

choice for studies that evaluate the intervention methods (the effect of the use of materials, the effect 

of the teaching model, etc.) whose effects are desired to be investigated with the pre-post test 

application. 
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Abstract 

The present study aims to compare the Kernel equating and Kernel local equating methods in observed score 

equating. Functions and error estimates regarding the difference between raw and equated scores and the scores 

equated by Stocking-Lord and Haebara true-score equating methods in Kernel local equating and Kernel 

equating were examined in Item Response Theory Observed Score Equating. Therefore, 5, 10, and 15 external 

anchor items were used, and scores were obtained from two forms based on the 2PL model. R (version 3.5.3.) 

programming software was used for IRT assumptions, item parameters, calibration, and equating analyses. The 

results revealed that Stocking-Lord and Haebara true-score equating methods yielded similar results. Moreover, 

if the equating method is the same, estimation errors decreased when the number of anchor items increased. The 

mean scores obtained by Kernel equation 5 and 15 anchor items were lower than Kernel local equating, while 

means of Kernel equating of 10 anchor items were higher. As the number of items increased, estimation errors 

decreased, and Kernel local equating revealed the lowest errors in the medium score scale.  Kernel equating can 

be used based on the related ability level if the individual’s ability distribution is known. 

 

Key Words: Test equating, Kernel equating, Kernel local equating, item response theory, local equating. 

 

INTRODUCTION 

Measurement tools are used for many purposes, such as measuring cognitive, affective, or 

psychomotor characteristics of individuals, getting to know individuals, placing them in any institution 

or school. The validity and reliability of the measurements of these measurement tools are a need for 

better measurement. To increase test reliability and therefore test validity, different test forms 

measuring the same feature are used especially in exams with wide participation and high risk, such 

as selection and placement exams, whose results greatly affect the future of individuals. These different 

test forms must have the same degree of difficulty for individuals to be evaluated fairly (Haladyna & 

Downing, 2004). However, this is not always possible in practice. In this case, the scores obtained 

from the test forms that do not have the same difficulty level should be brought to the same scale and 

the scores should be equated so that the forms can be used interchangeably. These statistical processes 

are possible with the help of test equating (Kolen & Brennan, 2004). Equating brings the scores on the 

test forms to the same scale, allowing them to be used interchangeably and the scores to be compared 

(Hambleton & Swaminathan, 1985). Thus, bias towards the measurement tools used in different test 

forms can be eliminated. 

Equating has certain steps to be followed. The first step is to determine the data collection design. 

There are five data collection designs, which include equivalent groups design, single group design, 

counterbalanced design, non-equivalent groups with anchor test design, and non-equivalent groups 

with covariates design (González & Wiberg, 2017). The second step is to determine the equating 

method. These methods differ based on classical test theory (CTT) and item response theory (IRT). 
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Diao (2018) categorizes CTT test equating methods into four: identity equating, mean equating, linear 

equating and equipercentile equating. CTT-based equating methods differ among themselves based on 

true-score equating and observed score equating. Before starting the equating process in IRT, separate 

and concurrent calibrations are conducted to scale parameters. Item parameters of the two forms are 

estimated at the same time in concurrent calibration. In separate calibration, on the other hand, forms 

are scaled separately and calibrated using common items. Calibration methods include the moment 

method (mean-mean, mean-sigma) and characteristic curve transformation (Haebara and Stocking- 

Lord) (Kolen & Brennan, 2004). At the last stage of equating, standard errors are calculated, and 

properties of equating are checked. These properties are symmetry, same specifications, equity, 

observed score, and group invariance (González & Wiberg, 2017; Kolen & Brennan, 2004). 

There are equating studies based on non-equivalent groups with covariates in IRT. Also, the effect of 

skewness of ability distributions, multidimensionality, violation of group invariance in different levels 

on equating errors have been examined in some studies (Gök & Kelecioğlu, 2014; Öztürk-Gübeş, 

2019; Öztürk-Gübeş & Kelecioğlu, 2015; Tanberkan-Suna, 2018; Uysal, 2014). The general results of 

the studies showed that IRT true score equating method performed best in providing test fairness, 

while IRT observed score equating method performed best in decreasing measurement errors. 

Equapercentile and linear equating methods are used in observed-score equating (von Davier, 2008). 

These methods include equapercentile equating methods, linear equating methods, IRT observed score 

equating, local equating, non-linear equating, and Kernel equating (von Davier, 2013). 

Kernel equating is defined as an equapercentile equating method that transforms discrete score 

distribution into a continuous distribution (von Davier, Holland & Thayer, 2004). Kernel equating was 

first defined by Holland and Thayer (1981). The Kernel equating methods can be applied as post-

stratification equapercentile, post-stratification linear, chained equapercentile and chained linear. The 

equating methods based on CTT uses linear estimates for the continuation of the score distributions, 

while Gauss Kernel method is used in Kernel equating (von Davier et al., 2004). There are five steps 

in observed score Kernel equating: pre-smoothing, estimating score distributions for the target 

population, computing the equating function, continuizing the discrete score distributions, and 

computing the standard error of equating (von Davier, 2013). Pre-smoothing helps the data become 

consistent. Kernel equating smoothes data transformation and provides a small standard error. Also, it 

is less affected by the change in the sample compared to other methods. Kernel equating is used with 

equivalent groups design, single group design, counterbalanced design, and non-equivalent groups 

with anchor test design (von Davier et al., 2004). There are various studies that used Kernel equating 

(Akın Arıkan, 2017; Andersson & Wiberg, 2014; Choi, 2009; Liou, Cheng, & Johnson, 1997; Norman 

Dvorak, 2009; Wiberg, van der Linden, & von Davier, 2014). Akın Arıkan (2017) found that the 

extreme scores yielded greater standard errors as the group ability distributions varied in Kernel 

equating. In IRT true score equating; on the other hand, middle and high scores had the greatest error. 

Kernel equating methods had lower standard errors in the medium score scale and had higher standard 

errors in extreme scores where score frequency was lower compared to the IRT true score equating in 

all conditions. Moreover, lower errors were obtained through the IRT true score equating method than 

the Kernel equating methods regarding the extreme scores. 

Local equating also became popular along with Kernel equating in observed score equating (von 

Davier et al., 2004). It was first introduced by Lord (1980) in his definition of equating (as cited in van 

der Linden, 2000). All traditional equating methods use the same equating transformations for all 

populations of test participants. van der Linden (2000) revealed that equating should be done 

separately for each ability level. Local equating offers a common ground for different transformations 

for each ability level. In local equating, if both test forms are appropriate for the item response theory 

(IRT) and can be used with any equating design, the IRT observed score could be defined as the local 

Kernel equating (Wiberg et al., 2014). 

Wiberg et al. (2014) proposed three different observed score Kernel local equating methods by 

combining local equating and Kernel equating. The methods for local Kernel equating on-equivalent 

groups with anchor test design are: IRT observed score equating, anchor test score Kernel equating 
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and local Kernel equating with ability estimated by anchor test. These new methods are compared to 

previous methods in terms of measures such as bias and relative error percentage. The item response 

theory observed score local Kernel equating method, which is used for all common equating methods, 

yielded bias, relative error, and Kernel standard equalization error, even when the measurement 

precision of the test was reduced. Kernel local equating methods generally showed low bias in the 

non-equivalent groups with anchor test design. In addition, the anchor was highly stable against 

variations in the accuracy and length of the test. 

Many studies used Kernel equating (Akın Arıkan, 2017; Andersson & Wiberg, 2014; Choi, 2009; Liou 

et al., 1997; Norman Dvorak, 2009; Wang, Zhang ve You, 2020; Wiberg et al., 2014). These studies 

revealed that Kernel equating and similar traditional equating methods can be compared with 

equivalent groups design in equivalent and non-equivalent groups with anchor test design when 

estimating standard errors in equapercentile equating (Choi, 2009); and that R program was used for 

IRT observed score Kernel local equating (Andersson & Wiberg, 2014). Wiberg et al. (2014) used 

three different observed score Kernel local equating methods by combining local equating and Kernel 

equating in their study. Studies have shown that with Kernel local equating, equating functions can be 

obtained at each ability level, and thus estimation errors can be minimized (González & Wiberg, 2017; 

Wiberg et al., 2014). The present study compares the Kernel local equating with Kernel equating to 

examine the bias in the equating processes and the contribution of the methods to the test validity. 

In kernel equating methods, in cases where the ability distributions between groups are different, 

extreme scores yield high standard errors (Akın Arıkan, 2017). Wiberg et al. (2014) concluded that in 

the common item nonequivalent groups, It is predicted that Kernel local equating methods will yield 

a lower standard error in cases where the ability distributions of individuals are known and the test 

fairness is ensured to make more accurate equating. In this study, the results of Kernel local equating 

are compared with Kernel equating under various conditions. Since there are few studies on this subject 

(Akın Arıkan, 2017; Wiberg et al., 2014) and there are no studies that examine Kernel equating and 

Kernel local equating together, the study aims to compare the results of Kernel equating and Kernel 

local equating. 

 

Purpose of the Study 

In the present study, θ values with values decreasing one by one between -6 and 0 (low), θ = 0 (middle) 

and θ values with values increasing one by one between 0 and +6 (high) ability levels of the scores 

obtained from two different forms based on 2PL model and different anchor item numbers in IRT 

observed score Kernel equating and IRT observed score Kernel local equating were included. 

Stocking-Lord and Haebara were used for data transformation and the equating results were compared. 

To this end, different anchor item numbers (10, 20, and 30) were used and after data were transformed 

with Stocking-Lord and Haebara methods, equating functions and errors were examined with observed 

score Kernel equating and observed score Kernel local equating. 

 

METHOD 

 

Research Design 

In this study, data were artificially produced in order to examine the change of errors in cases where 

different anchor items were used in the equating methods and these items were not included in the 

total score. Therefore, this study is a simulation study. 

 

Data Production 

The items in the X and Y forms and the anchor materials were produced under the conditions in Table 

1 according to the 2PL Model. The items in both data sets were produced using the “kequate” package 
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(Andersson, Bränberg & Wiberg, 2020) in the R Studio interface of the R (version 3.5.3) programming 

software with 20 items different and the number of anchor items 10, 20 and 30. 

The forms consisting of X form and anchor items are named as P and Y forms and forms consisting 

of anchor items as Q forms. A parameters are uniformly distributed with values ranging from 0.50 - 

2.0, the b parameters are N(0; 1) and the ability parameters are N(0.50; 1) for the P form, and N(0; 1) 

for the Q form. 

According to Baker (trans. 2016), a parameters range between -2.80 and +2.80 in practice, while b 

parameters range between -3.00 and +3.00. In addition, he specified the cutoff point as 0.35 for the 

low level of the parameter a, 0.64 for the medium level, and 1.35 for the high level. In order to have 

medium and high level a parameters, they were taken between 0.50 and 2.00. 

Wang, Lee, Brennan, and Kolen (2008) stated that the similarity distributions are important in terms 

of equating results and they considered the difference over 0.25 as very wide. Therefore, it was 

expected that the difference was taken as 0.50 to reveal the difference between Kernel equating and 

Kernel local equating errors more clearly. 

Kolen and Brennan (2004) stated that the ratio of the number of anchor items to the total number of 

items in the test should be at least 20%. Therefore, while 30 items were different in all data sets (X 

and Y forms), the number of anchor items was determined as 5, 10 and 15. The number of iterations 

was determined as 100. A total of 600 (2 x 3 x 100) data sets were obtained. The average and ranges 

of the difficulty and discrimination parameters of the sample distributions obtained from the P and Q 

forms according to the number of anchor items are given in Table 1. 

 

Table 1. The Mean and Ranges of the Difficulty and Discrimination Estimates Obtained From the P 

and Q Forms According to the Anchor Item Numbers 
  P forms Q forms 

Total Number of 

Items 

Number of 

Anchor Items 
Mean b Range b Mean a Range a Mean b Range b Mean a Range a 

35 5 -0.505 4.179 1.261 1.622 -0.013 4.454 1.253 1.614 

40 10 -0.534 4.502 1.248 1.653 0.002 4.448 1.253 1.677 

45 15 -0.537 4.625 1.255 1.656 -0.031 4.547 1.244 1.624 

 

Table 1 shows that for each anchor item number, the means of b parameters related to the P forms are 

approximately 0.50 lower than the Q forms. The means of a parameter are approximately the same. 

 

Data Analysis 

In IRT Kernel equating (post-stratification equating) parameters were calibrated based on Stocking-

Lord and Haebara methods. Then, an external anchor design was used in which the anchor items were 

not included in the total score. The distribution of equated scores, means of equating errors, and 

functions related to the difference between the raw score and the equated scores were compared 

regarding both calibration methods. Similar studies in kernel local equalization for cases where ability 

levels are low (decreasing one by one between -6 and 0) (L: Low), zero (M: Medium), and high 

(increasing one by one between 0 and +6) (H: High) was also repeated. “psych” (Revelle, 2021), “mirt” 

(Chalmers et al., 2021), “kequate” (Andersson et al., 2020), “ltm” (Rizopoulos, 2018) packages were 

used in the R Studio interface of the R (version 3.5.3) programming software for all analyzes. 

 

RESULTS 

This chapter presents the results of IRT Kernel observed score equating and Kernel observed score 

local equating. In this regard, score distributions, equating functions and distribution of equating errors 

were examined. 
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Equated Score Distributions and Functions of Score of Difference 

In cases when the numbers of anchor items were 5, 10 and 15, Stocking-Lord and Haebara methods 

were examined. Ability levels for Kernel local equating are low (decreasing one by one from 0), 

medium (0), and high (increasing one by one from 0). Table 2 shows the equated score distributions 

obtained with the IRT observed score Kernel equating and Kernel local equating. These values were 

the result of calculating the means of the values obtained with 100 iterations. 

 

Table 2. Equated Score Distributions Obtained With IRT Observed Score Kernel Equating and Kernel 

Local Equating 
 Kernel Equating Kernel Local Equating 

Calibration 
Number 

of Anchor 
Min. Max. Mean S.D. 

θ 

level 
Min. Max. Mean S.D. 

Stocking-

Lord 

5 0.140 29.905 15.054 8.989 

L 0.141 29.907 15.071 9.000 

M 0.167 29.906 15.039 9.022 

H 0.173 29.905 15.023 9.008 

10 -0.026 29.917 14.827 9.067 

L -0.022 29.782 14.817 9.039 

M -0.048 29.787 14.792 9.060 

H -0.045 29.916 14.802 9.086 

15 0.112 29.876 15.008 9.005 

L 0.112 29.944 15.044 9.039 

M 0.069 29.948 15.009 9.070 

H 0.073 29.877 14.973 9.033 

Haebara 

5 0.141 29.912 15.067 8.993 

L 0.142 29.919 15.084 9.005 

M 0.181 29.919 15.058 9.021 

H 0.186 29.912 15.042 9.007 

10 -0.032 29.921 14.824 9.073 

L -0.026 29.782 14.812 9.043 

M -0.051 29.787 14.790 9.062 

H -0.049 29.921 14.802 9.090 

15 0.117 29.871 15.002 8.997 

L 0.118 29.938 15.040 9.033 

M 0.064 29.942 15.001 9.069 

H 0.068 29.871 14.963 9.030 

Note. L: Low. M: Medium. H: High 

 

Kernel equating results in Table 2 shows that when 10 anchor items were used in both calibrations, 

the equated scores were estimated with a low mean score. Again, in both estimation methods, the 

condition in which scores are estimated with a higher mean is the case where the number of anchor 

items is 5. The number of anchor items shows that the mean and standard deviations of the scores 

equated according to the methods do not differ much. Figure 1 shows the function graph regarding the 

differences between the equated scores and the raw scores taken from the test. 

 

 

Figure 1. Function Graphs Regarding the Differences of Equated Scores and Raw Scores Obtained 

With IRT Kernel Equating 
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Figure 1 shows that the distribution of the difference scores is almost the same when the number of 

anchors is the same and the calibration method is different. When using 5 anchors, the differences 

decreased up to approximately 5 raw points, while the differences gradually increased after 5 raw 

points. When 10 anchor items were used, the difference scores increased as the raw scores increased 

and started to decrease after about 17 raw scores. When 15 anchor items were used, the difference 

scores increased as the raw scores increased, but the rate of change was relatively low. On the other 

hand, when 10 anchor items are used up to 26 raw points, the differentiation from the raw scores in 

both methods is higher compared to the other anchor items. When the raw score is greater than 26, it 

is seen that the differentiation from the raw score is more when 15 anchor items are used. 

Table 2 demonstrates the Kernel local equating results and reveals that the mean scores of the equated 

scores at low, medium, and high ability levels are the highest in 5 anchor items and the lowest in 10 

anchor items when Stocking-Lord (S-L) and Haebara (H) methods are used. In the case where 5 anchor 

items were used, the highest mean score was obtained in the low ability level with Haebara method, 

while the lowest mean score at the high ability level was obtained with the S-L method. When 10 

anchor items were used, the highest mean score was obtained at the low ability level with S-L, and the 

lowest mean score at the medium ability level was obtained with the Haebara method. In the case 

where 15 anchor items were used, the highest mean score was obtained at the low ability level with S-

L, and the lowest mean score at the high ability level was obtained with the Haebara method. In all 

conditions, the lowest mean score was obtained with the middle ability level when 10 anchors and the 

Haebara method was used, and the highest mean score was obtained with the low ability level when 5 

anchors and the Haebara method were used. 

When both methods are compared, in the case that 5 anchor items were used, the mean score obtained 

with Kernel equating was lower than the mean score obtained with Kernel local equating based on low 

ability level. The closest mean score was obtained when the Haebara method is used with the middle 

ability level. In the case where 10 anchor items are used, the mean scores obtained with Kernel 

equating are higher under all equating conditions. The closest mean score was obtained when the S-L 

method is used with the low ability level. In the case where 15 anchor items are used, the mean score 

obtained with Kernel equating is lower than the mean score obtained with Kernel local equalization 

with the low ability level. The closest mean score is the case in which the S-L method is used in the 

equating made according to the middle ability level. Figure 2 shows the function graph regarding the 

differences between the equated scores and the raw scores obtained from the test. 

Figure 2 reveals that the distribution of the difference scores is almost the same when the number of 

anchors is the same and the calibration method is different. In the case of using 5 anchor items, the 

difference scores are higher in the equalizations made according to medium and high ability levels up 

to 14 raw points, while the difference scores are higher in the equations made according to the high 

ability level and Kernel equating over 17 raw points. In cases where 10 and 15 anchor items are used, 

up to 12 raw points, the difference scores are higher in the equalizations made according to medium 

and high ability levels, while the difference scores are higher in the equalizations made at medium and 

low ability levels over 23 raw points. In the equating made according to the middle ability level, the 

range of difference scores in each anchor item condition is the smallest. 

 

Error Distributions 

Equating errors were calculated for all conditions. These values were the result of calculating the 

means of the values obtained with 100 iterations. Table 3 shows the distribution of equating errors 

obtained with the observed score Kernel equating and Kernel local equating. 

Table 3 shows that the error means of equated scores under all conditions are estimated higher in the 

Stocking-Lord method than in the Haebara method. The difference between these error means was 

found to be approximately .004 when 5 anchor items were used, .002 when 10 anchor items were used, 

and .003 when 15 anchor items were used. The distribution of the errors shows that as the number of 

anchor items increases, the errors are closer to each other and become more homogeneous. The 
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smallest of these errors occurred in the calibration made according to both methods when 15 anchor 

items are used; the greatest was obtained in the calibration performed according to the Stocking-Lord 

method when 5 anchors were used. 

 

Number 

of 
Stocking- Lord Method Haebara Method 

5 

  

10 

  

15 

  

Figure 2. Equated Scores Obtained With Kernel Equating and Kernel Local Equating Based on IRT 

in Conditions Where the Number of Anchor Items are 5, 10 and 15, Respectively, and Function Graphs 

Regarding The Differences Of Raw Scores 

 

The results of the Kernel local equating show that the errors of the equated scores were estimated .003 

times higher with the Stocking-Lord method compared to the Haebara method. As the number of 

anchor items increased, equating errors decreased in both methods and both ability levels. In cases 

when 5, 10, and 15 anchor items were used, the smallest error was obtained with equalizations of the 

middle ability level. Similarly, in the equatings made according to low ability level, estimates were 

made with relatively high errors. In addition, in the equalizations made according to the middle ability 

level, errors are relatively more homogenous. The smallest of these errors was when the 15 anchor 

items were used according to the middle ability level with the Haebara method. The greatest error, on 

the other hand, was when 5 anchor items were used with the low ability level based on the Stocking-

Lord method. 
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It was revealed that Kernel equating errors were greater than those of Kernel local equating when 

comparing Kernel equating and Kernel local equating in all conditions in all ability levels. 

 

Table 3. Error Distributions Obtained From IRT Observed Score Kernel Equating and Kernel Local 

Equating 
 Kernel Equating Kernel Local Equating 

Calibration Number 

of Anchor 
Min. Max. Mean S.D. θ level Min. Max. Mean S.D. 

Stocking-

Lord 5 0.188 0.496 0.375 0.080 

L 0.188 0.490 0.354 0.082 

M 0.189 0.367 0.312 0.047 

H 0.181 0.418 0.333 0.058 

10 0.147 0.365 0.278 0.056 

L 0.144 0.362 0.263 0.060 

M 0.141 0.263 0.228 0.032 

H 0.139 0.302 0.243 0.040 

15 0.134 0.312 0.243 0.045 

L 0.129 0.310 0.229 0.049 

M 0.127 0.232 0.201 0.027 

H 0.127 0.265 0.215 0.033 

Haebara 

5 0.186 0.491 0.371 0.079 

L 0.187 0.482 0.350 0.080 

M 0.188 0.363 0.308 0.047 

H 0.180 0.418 0.330 0.059 

10 0.146 0.362 0.276 0.056 

L 0.143 0.358 0.260 0.059 

M 0.140 0.261 0.225 0.032 

H 0.138 0.303 0.241 0.041 

15 0.134 0.309 0.240 0.045 

L 0.129 0.305 0.226 0.048 

M 0.126 0.228 0.198 0.027 

H 0.127 0.264 0.213 0.034 

Note. L: Low, M: Medium, H: High 

 

DISCUSSION and CONCLUSION 

In this study, the P and Q forms based on the 2PL model with different anchor item numbers (5, 10, 

15) were evaluated for different ability levels [θ < 0 (low), 0 (moderate) and θ >0 (high)]. Equating 

results of Stocking-Lord and Haebara methods were examined. 

The present study used simulated data in which the anchor items were not included in the individual 

scores, unlike the studies of Öztürk-Gübeş and Kelecioğlu (2015), Pektaş and Kılınç (2016), 

Tanberkan-Suna (2018), in which the real data were used. Akın Arıkan (2017), used simulated data as 

well; however, she only compared the Haebara method in IRT true score equating and Kernel equating 

methods. Öztürk-Gübeş (2019), on the other hand, investigated the effect of multidimensionality on 

test equating and not included the change in the item numbers. Moreover, Wang et al. (2020) compared 

equapercentile equating, Kernel equating, and IRT Kernel equating methods. 

Errors and function graphs were examined related to the difference between raw and equated scores 

in IRT observed score Kernel equating non-equivalent anchor test design when anchor items and 

calibration methods differ. The results revealed that there are differences and similarities between the 

equated scores, the distribution of the difference scores and errors in non-equivalent groups with 

anchor test design with Stocking-Lord and Haebara methods. Equated scores were estimated with a 

higher mean score when 5 anchor items were used in both calibration methods. In all the conditions, 

equated scores are lower than each score that can be obtained from the test. In cases when the anchor 

item numbers were the same, errors of the equated scores based on Haebara method were estimated 

lower. As the number of anchor items increased, the errors of the estimates in both methods were 

closer to one another. Wang et al. (2020) also obtained similar results where the number of items was 

30 and 45 in the simulation. This finding is not supported by the findings of Uysal (2014), in which he 

found that error estimates with the Stocking- Lord method were lower than the Haebara method. 

In addition, the present study investigated the functions and errors regarding the difference scores and 

equated scores when the item numbers and calibration methods differed. Both Stocking-Lord and 
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Haebara methods yielded similar results in cases that the same number of anchor items were used and 

the equatings of the scores and errors were conducted according to the low, middle, and high ability 

levels. The mean scores of low, middle, and high ability levels were the greatest with the 5 anchor 

items and the smallest with the 10 anchor items with both methods. In all conditions, the lowest mean 

score was obtained with the Haebara method and 10 anchor items according to middle ability level. 

The highest mean score, on the other hand, was obtained with the Haebara method and 5 anchor items 

according to low ability level. 

When both methods are compared, mean scores obtained with Kernel local equating with 5 and 15 

anchor items according to low ability level were estimated higher than Kernel equating. When 10 

anchor items were used, the results of Kernel equating were the highest in all the conditions. Also, the 

graphs about the relationship between raw and equated scores showed that the range of difference 

scores were the narrowest when Kernel local equating were used regardless of the calibration method. 

The reason for this could be the fact that errors were estimated lower with the help of different equating 

functions based on the ability level and raw scores. 

The lowest errors were estimated when both methods were used with 5, 10, and 15 anchor items. 

Moreover, errors were homogenous in the equatings based on middle ability level. The reason behind 

this result could be that the simulation data were simulated with normal distribution in the middle 

ability level (b = 0). This finding was supported by Wiberg et al. (2014), which suggests three different 

observed score Kernel local equating methods by combining local equating and Kernel equating and 

found that Kernel local equalization methods are quite stable against the changes in the accuracy and 

length of the anchor test in the non-equivalent groups anchor test design. The Kernel local equating 

errors were lower than Kernel equating errors when the two methods were compared. This finding is 

not supported by the results of the study of Wiberg et al. (2014) in which they found that the Kernel 

local equating method yielded higher standard errors than Kernel equating. 

As a result, it was found that IRT observed score Kernel equating and Kernel local equating Stocking-

Lord and Haebara methods can both be used and to keep the errors low, the number of anchor items 

should be kept higher. Also, Kernel local equating should be used with the ability level most 

appropriate to the ability distribution of the individuals. In future studies, different Kernel equating 

methods, different calibration types, and different data collection designs can be used to compare the 

observed score with the true score equating in cases where the anchor item is internal and external. 

Also, Kernel equating, and Kernel local equating methods can be examined using the equivalent 

groups design. In addition, equating errors can be examined by dividing ability levels in IRT Kernel 

local equating. The present study made use of the simulation data; a similar study can be conducted 

with real data set. 
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Abstract 

Computerized adaptive testing (CAT) and computerized multistage testing (CMT) are two popular versions of 

adaptive testing with their own strengths and weaknesses. This study proposes and investigates a combination 

of the two procedures designed to capture these strengths while minimizing the weaknesses by replacing the 

standard MST routing module with a CAT-based, item-level routing module. A total of 3000 examinees were 

simulated from a truncated normal distribution with bounds at -3 and 3, and a simulation study was conducted. 

Simulation results indicate that the new method provides some efficiency improvements over traditional MST 

when both routing modules are the same size, and when the item-level routing module is larger, the 

improvements are greater. The study showed that the proposed test administration model could be used to 

measure student ability, meaning that our new method resulted in lower mean bias, lower RMSE, and higher 

correlation than traditional MST. An R package built from the code used for this paper is also introduced in the 

supplementary file. The limitations of the study and recommendations for future research are also presented. 

 

Key Words: Computerized adaptive test, multistage adaptive test, simulation, R, mixed adaptive test. 

 

INTRODUCTION 

There are two popular adaptive testing approaches: computerized adaptive testing (CAT) (Weiss & 

Kingsbury, 1984) and multistage testing (MST) (Luecht & Nungester, 2000). CAT is more widely 

known and more often used; in this approach, an examinee receives an item typically at medium 

difficulty level (e.g., maximizing information at the theta level of 0) and, based on his/her response to 

previous item(s), the item selection algorithm selects the next item from a large item pool. This 

continues until the examinee completes the test. A well-known advantage of CAT is allowing all test 

takers to work own personalized test producing high measurement accuracy in ability estimation (Yan, 

von Davier, & Lewis, 2016). In MST, however, the test has a panel design describing how different 

sets of items (e.g., 10 items) called modules are grouped into different stages. In stage one, there is 

typically one module called the routing module. In subsequent stages, there are several modules at 

different difficulty levels (e.g., easy, medium, and hard difficulty modules). An MST can be comprised 

of several stages and a different number of modules in each stage. For example, a 1-3-4 design has 

one module in stage one, three modules in stage two, and four modules in stage three. The working 

principle of MST is as follows. An examinee initially receives a set (e.g., 5 or 10 items) typically at 

the medium difficulty level. Based on the examinee’s performance on this routing module, the module 

selection algorithm selects the next module from the next stage (Luecht, Brumfield, & Breithaupt, 

2006). This continues until the examinee completes all the stages. The main difference between these 

two types of test administrations is that there is item-level adaptation in CAT but module-level 

adaptation in MST. Each has its own advantages and disadvantages. 

MST has the disadvantage of being somewhat less efficient than CAT, meaning that CAT results in 

better theta estimates with lower standard errors than MST in many circumstances (Luecht & Sireci, 

2012). This is due to item level adaptation feature of CAT. However, many common item-level 

adaptation schemes use maximum item information as the criterion for item selection, meaning the 

first few items selected by maximum information have higher exposure rates than later items; this can 
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be alleviated by modifying the item-level adaptation to choose from more than just the most 

informative item (Barrada, Olea, Ponsoda, & Abad, 2008). Another advantage of CAT over MST is 

that CAT allows for both varying and fixed test lengths, but the traditional MST is a fixed test length 

exam. 

MST has the advantage of permitting test takers to answer or change answers to any question within 

the current module at any time while allowing for tests constructed to meet specific content and length 

requirements. This is an advantage because allowing response change provides having lower standard 

errors for the ability estimates, especially for students with higher abilities (Liu, Bridgeman, Gu, Xu, 

& Kong, 2015). Another advantage of MST is that it allows higher levels of control to test developers. 

This means that the developer of the test can place items into a module and easily keep track of content 

balancing, item usage, test length, or other statistical and non-statistical test requirements. However, 

these issues can sometimes be a problem in CAT, especially when there is a limited number of items 

from a content area in the item pool (Robin, Steffen, & Liang, 2016). Due to test assembly occurring 

prior to the test administration in MST, there is always greater expert control over item order and 

content area in this format (Sari & Huggins-Manley, 2017). 

The better efficiency from CAT comes at the cost of the complex algorithms needed for the item-level 

adaptation, which MST avoids by having fewer adaptation points. This is because there are n-1 

adaptation points in CAT, where n is the total test length as opposed to k-1 adaptation points in MST, 

where k is the number of stages. Having fewer adaptation points in MST has its own cost. For example, 

recovery of ability estimates becomes a difficulty when examinees are misrouted (e.g., incorrectly 

routed) through the modules. Previous research has shown that the initial routing stage has a major 

influence on the accuracy of final theta estimates, particularly in two-stage tests (Kim & Plake, 1993). 

Since the routing module provides the provisional theta estimate for the next modules, the routing 

module should include items from a wider range of difficulties. This means that it should maximize 

module level test information function at a wider theta range for test takers having different theta 

levels. Otherwise, it would be difficult to make better initial estimates for all test takers. A poorly 

designed routing module (e.g., with a very low maximum value for the test information function and/or 

very difficult or easy items) can place an examinee in the incorrect module in the subsequent stage. 

This would result in dramatic changes in the pathways one draws during the test. Consequently, it 

might be difficult or impossible to obtain less bias for the final theta estimate (Sari, Yahsi-Sari, & 

Huggins-Manley, 2016). As the number of stages increases, this influence is reduced, but practical 

considerations limit the number of stages that can be created and administered. Furthermore, previous 

studies showed that the reduction in estimation error provided by increasing the number of stages is 

modest (Patsula, 1999; Zenisky, Hambleton, & Leucht, 2010). A solution to establish better 

measurement accuracy after the routing module would be to increase the number of items in the routing 

module, but this would lead to an increase in the number of retired items after the test. This is because 

routing items are seen by all examinees and therefore reach maximum exposure rate. 

 

Prior Attempts to Combine CAT and MST 

A review of the literature showed that there was one other study that compared a proposed combination 

of CAT and MST. Wang, Lin, Chang, and Douglas (2016) performed three simulation studies 

investigating Hybrid Computerized Adaptive Testing, which used MST for the initial items and CAT 

for the subsequent items and compared it to traditional MST. Their hybrid test starts with MST (e.g., 

module-level adaptation) for the first two adaption points then uses CAT (e.g., item-level adaptation) 

for the remaining adaptation points. The first two simulations varied the proportion of items in the test 

that fell under the MST framework from 1/3rd of the test length to 5/6th of the test length and 

investigated six common MST designs, while the last simulation compared the two best designs from 

the first two simulations to two CAT and two MST designs. Their results indicated that, with two and 

three stages of various lengths, stage designs, and proportion of items in the MST stages, the hybrid 

designs (i.e., the combination of MST and CAT) perform as well or better than the traditional CAT 

design in terms of bias and RMSE and better than the studied MST designs in terms of RMSE. 
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In their study, the authors approached the problem primarily from the perspective of CAT (e.g., starting 

with MST and switching to CAT). In addition, their first simulation only used the two-stage 1-4 panel 

design for the MST comparison, and none of the three simulations fully compared the efficacy of the 

hybrid design to traditional MST designs. Thus, no single simulation included all of the factors 

manipulated in the study. This study, on the other hand, aims to follow the MST framework. Also, our 

study uses only three-stage designs but investigates the effect of MST design complexity and overall 

test length in the proposed hybrid design. The different emphases, as well as the different strengths of 

the approaches, lend credence to the investigation of ma-MST as an alternative to traditional MST and 

the other hybrid designs. 

 

Purpose of the Study 

In order to increase initial measurement accuracy while maintaining item exposure limits and allowing 

examinees to change answers within certain modules, we propose combining the CAT and MST 

methods into a single test administration. We called this new administration type as a mixed adaptive 

multistage test (ma-MST). The ma-MST will start with a CAT-based routing module (e.g., item-level 

adaptation) and obtain a provisional theta estimate. Then, this provisional theta estimate will be used 

to select the next MST-based stage. This means that the exam will start with CAT and switch to MST. 

We aim to bring MST closer to the efficiency of CAT while maintaining the aforementioned benefits 

of MST. By combining the methods in this way, the likelihood of misrouting can be reduced by the 

more accurate measure of ability after administrating items with item-level adaptation. As a result, this 

would result in a lower bias for the estimations of ability by the end of the test, while still allowing for 

easier control of item exposure rates, content balancing compared to the traditional MST, and allowing 

examinees the ability to change their answers in the later stages. 

 

A New Approach: Mixed Adaptive Multistage Test (ma-MST) 

Using R (R Core Team, 2016) and the R package “caMST” (Raborn, 2018), we investigated the 

efficacy of using item-level adaptation to route individuals to further modules. This new test format, 

mixed adaptive multistage test (ma-MST), is similar to a traditional MST in that it has a specific 

number of stages administered. However, the number of potentially administered tests is greater than 

in MST but less than in CAT because individuals would share panels of items depending on their 

ability estimates after seeing potentially different items in the CAT-based routing module. 

This new method has much of the same test assembly processes as typical multistage tests and utilizes 

automated test assembly (ATA) to create each panel at each stage. In theory, ma-MST has similar item 

pool requirements as both CAT and MST. Item exposure concerns also remain and should be handled 

as appropriate for the use of the test (e.g., Reckase, 2010; van der Linden, 2000). In order to simplify 

the initial investigation of this method, there will not be any exploration of overall item exposure 

differences between CAT, MST, and ma-MST. This means that item exposure concerns will be 

ignored in favor of focusing on determining the accuracy of the different methods in their ability 

estimates. 

In this study, the hybrid approach (e.g., ma-MST) will include a larger proportion of items selected 

with item-level adaptation points than in modules (e.g., resembling CAT). The ma-MST will also 

include a larger proportion of items in a module than selected with item-level adaptation points (e.g., 

resembling traditional MST). The primary goal of this study is to investigate the efficiency of the ma-

MST, and what happens to the estimated theta parameters when the hybrid model resembles CAT and 

traditional MST. The expectation is that ma-MST would have lower bias and RMSE, higher 

correlation in the final theta estimations, especially as the CAT proportion increases. 

For this study, we had two main research questions to answer: 

1. How is the test efficiency (Bias, RMSE, and Correlation) be impacted when; 

a. CAT proportion (1/6, 1/3, and 2/3), 



Raborn, A., Sarı, H. / Mixed Adaptive Multistage Testing: A New Approach 

___________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575 Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

361 

b. CAT item selection method (MFI, random selection), 

c. MST designs (1-2-2, 1-2-3, and 1-3-3), 

d. Test length (18 and 30 items) are varied in mixed approach simulations? 

2. How will the test efficiency (Bias, RMSE, and Correlation) be impacted on the mixed 

adaptive and traditional MST under the combination of the levels of test length and MST 

design? 

 

METHOD 

We performed a simulation study to test the efficacy of the ma-MST against a traditional MST using 

the “caMST” package in R. The annotated R codes that demonstrate how to use the package to replicate 

the methods described here are provided in the supplementary file. We held constant the following 

factors: a) the number of stages (held at 3), b) the number of panels (3 parallel panels), c) the module 

selection or routing procedure (select the module with the maximum Fisher information [MFI] at the 

provisional theta), d) the initial ability estimate (held at θinitial = 0) and e) the provisional and final 

ability estimation procedures (expected a posterior [EAP], as commonly used in previous studies 

(Briethaupt & Hare, 2007; Luecht et al., 2006). The factors that we varied were the MST panel design, 

total test length, the fraction of the CAT routing module to the total test length, and the item selection 

procedure for CAT for a total of thirty-six conditions (see Table 1 for the levels). In addition to the 

ma-MST factors above, we used a traditional MST procedure as a baseline for each module design 

and test length. 

 

Table 1. Simulation Study Conditions and Levels 
Factor Number of Levels Levels 

Panel Design 3 

1-2-2 

1-2-3 

1-3-3 

Test Length 2 
18 items 

30 items 

CAT Module Length (fraction of overall 

test length) 
3 

1/6 

1/3 

2/3 

Routing Module Item Selection 2 

-Maximum Fisher 

information (Random 1 MFI) 

-Random selection from 5 items 

with Maximum Fisher information (Random 5 MFI) 

 3x2x3x2=36  

 

The item parameters were based on a real Armed Services Vocational Aptitude Battery (ASVAB) 

military test used in Armstrong, Jones, Li, and Wu (1996). The simulated item bank had 450 multiple-

choice items from four different content areas. In this study, in the 30-item condition, there were 10, 

11, 4, and 5 items in content areas 1 through 4, respectively. For the 18-item condition, they are set to 

6, 6, 3, and 3 items, respectively. The item parameters and the number of items for each content area 

in the original study were given in Table 2. 

 

Table 2. Item Characteristics per Content Area 
Content Area a b c 

(Number of items) Mean SD Mean SD Mean SD 

Content 1 (n = 150) 1.079 .409 -.467 1.179 .210 .095 

Content 2 (n = 165) 1.128 .438 -.154 1.033 .200 .104 

Content 3 (n = 60) 1.092 .538 -.025 .815 .203 .084 

Content 4 (n = 75) 1.237 .383 -.014 .678 .162 .080 

Armstrong et al. (1996) 
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A total of 3000 examinees were simulated from a truncated normal distribution with bounds at -3 and 

3. Response patterns were generated according to Birnbaum’s (1968) three-parameter (3PL) model in 

R. We used the EAP estimator (Bock & Mislevy, 1982) from the “mstR” package (Magis, Yan, & von 

Davier, 2017) with the prior distribution N(0, 1) for all ability estimation. The IBM CPLEX program 

(ILOG, 2006) was used to construct the various modules in stages 2 and 3, and three essentially 

(although not strictly) parallel panels (i.e., the same number of items from the different content areas 

and similar in difficulty level). The items that were not used in these stages were treated as a mini item 

bank for the CAT and, depending on the test length and CAT proportion, the computer algorithm 

selected items from this bank consisting of the items remaining after the ATA. The bottom-up strategy 

was used when building the panels. The content distributions in the modules across the different test 

length and panel design conditions were given in Supplementary Tables 1, 2, and 3, under the 1/6, 1/3, 

and 2/3 CAT conditions, respectively. The panel-level test information across the CAT proportion and 

test length conditions were given in Supplementary Figure 1. For the modules in stages two and three, 

the module level information function was maximized at the fixed theta points of θ = -1, θ = 0, and θ 

= 1 for the easy, medium, and hard modules in the conditions, respectively. In the baseline condition 

(e.g., traditional MST), the routing module was maximized at the theta point of 0. 

Again, for the conditions with the CAT-based routing module, the items were selected from the pool 

of items that were not used for the modules. Then, for the random 1 MFI condition, the most 

informative item which fit the content area specification mentioned above was selected. For the 

random 5 MFI condition, a random item from the five most informative items which fit the content 

area specification was selected. This process was repeated after each item, updating the information 

function with every answer choice, until the simulated respondent answered the maximum number of 

items for the routing module. 

The working principle of ma-MST simulation was as follows. In each design (e.g., 1-2-2, 1-2-3, or 1-

3-3), if the CAT proportion was 1/6, and the total test length was 18, the computer tailored three items 

(1/6 of the 18 items) to the individual based on their responses in the first stage (e.g., item-level 

adaptation), and tailored 15 items in the two remaining stages (e.g., module-level adaptation). If the 

total test length was 30 and CAT proportion was 2/3, simulated individuals were administered 20 

CAT-based items in the first stage and 10 total MST-based items in the second and third stages. This 

indicates that under the same total test length, as the CAT proportion increases, more items are 

administered at the item level. 

To determine the efficiency of the tests within these conditions, we calculated mean bias, root mean 

squared error (RMSE), and Pearson correlations between true theta and estimated theta. It is important 

to note that each overall statistic was calculated for across the 3000 examinees for a replication (e.g., 

iteration) and averaged across 100 replications. 

For the results, we ran a four-way factorial ANOVA separately for each of the outcomes, keeping the 

highest-order interaction terms in each case. To determine the magnitude of any experimental effects, 

the η2  and partial η2  statistics were calculated for each factor. Rather than using cut-off values for 

large effect sizes, the relative sizes of the η2  statistics were compared within each outcome to 

determine which factor has the most influence on differences in the outcome measures. The findings 

of the simulation study are presented below. 

 

RESULTS 

 

Bias 

The grand mean bias for each condition can be seen in Table 3. The largest bias (0.092) occurs within 

the 1-2-3 1/6 CAT 30-item MFI design, which appears larger relative to the other conditions. The 

smallest bias (.045) occurs within the 1-2-2 2/3 CAT 18 item random 5 MFI design. The smallest bias 

in the MST designs (.046) occurs within the 1-2-2 18 item design, while the largest bias in the MST 
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designs (.069) occurs within the 1-2-2 30-item design. Table 3 showcases the variability in bias and 

shows that the 1-2-3 design tends to perform the worst in the ma-MST designs. 

 

Table 3. Grand Mean Bias Across Conditions 

CAT Proportion MST Design 
Random 1 Random 5 

18 Item 30 Item 18 Item 30 Item 

MST 1-2-2 0.046 0.069 --- --- 

MST 1-2-3 0.054 0.061 --- --- 

MST 1-3-3 0.057 0.063 --- --- 

1/6 CAT 1-2-2 0.051 0.076 0.056 0.076 

1/6 CAT 1-2-3 0.088 0.092 0.077 0.081 

1/6 CAT 1-3-3 0.046 0.062 0.056 0.065 

1/3 CAT 1-2-2 0.047 0.075 0.050 0.071 

1/3 CAT 1-2-3 0.068 0.076 0.065 0.079 

1/3 CAT 1-3-3 0.060 0.069 0.058 0.068 

2/3 CAT 1-2-2 0.045 0.055 0.045 0.056 

2/3 CAT 1-2-3 0.049 0.059 0.047 0.059 

2/3 CAT 1-3-3 0.049 0.058 0.047 0.059 

 

The ANOVA results for grand bias indicated that most interaction terms and main effects were 

significant (see Table 4), and the four-way interaction term remained in the model. However, the 

factors with the highest η2 and ηp
2 were the main effects of test length (η2 =.091, ηp

2  =.115) and CAT 

Proportion (η2 = .089, ηp
2 =.112); these each explained about 11% of the unexplained variance in the 

mean bias. Panel design and the interaction between panel design and CAT proportion, the factors 

with the next largest η2 and ηp
2, explained about 5% of the unexplained variance in the mean bias each. 

The other main effects, two-way and three-way interactions, were either non-significant or explained 

a very small proportion of mean bias variance. 

 

Table 4. ANOVA Results for Grand Mean Bias 
Factor df SS MS F value p η2 η2

p 

Panel Design 2 2064 1032 367.85 .000* .041 .055 

Length 1 4566 4566 1627.25 .000* .091 .115 

CAT Proportion 3 4625 1542 549.38 .000* .089 .112 

Random 1 1 1 0.22 .641 .000 .000 

Panel Design: Length 2 530 265 94.38 .000* .011 .015 

Panel Design: CAT Proportion 6 2149 358 127.64 .000* .034 .046 

Length: CAT Proportion 3 108 36 12.86 .000* .002 .003 

Panel Design: Random 2 72 36 12.84 .000* .001 .002 

Length: Random 1 11 11 4.09 .043 .000 .000 

CAT Proportion: Random 2 11 6 1.97 .140 .000 .000 

Panel Design: Length: CAT Proportion 6 310 52 18.43 .000* .005 .007 

Panel Design: Length: Random 2 10 5 1.73 .177 .000 .000 

Panel Design: CAT Proportion: Random 4 157 39 13.99 .000* .003 .004 

Length: CAT Proportion: Random 2 89 45 15.91 .000* .002 .003 

Panel Design: Length: CAT Proportion: Random 4 45 11 4.05 .003* .001 .001 

Residuals 12558 35239 3     

Total 12599 49987      

* Significant at the .05 level. 

 

RMSE 

The grand mean RMSE for each condition can be seen in Table 5. The largest RMSE (0.339) occurs 

within the 1-2-3 1/6 CAT 18 item random 5 MFI design, while the smallest RMSE (0.225) occurs 

within the 1-2-3 2/3 CAT 18 item random 5 MFI design. For the MST designs, the largest RMSE 

(0.327) occurs within the 1-2-2 18 item design, while the smallest RMSE (0.269) occurs within the 1-

3-3 30 İtem design. 
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Table 5. Grand Mean RMSE Across Conditions 

CAT Proportion MST Design 
Random 1 Random 5 

18 Item 30 Item 18 Item 30 Item 

MST 1-2-2 0.327 0.277 --- --- 

MST 1-2-3 0.318 0.310 --- --- 

MST 1-3-3 0.280 0.269 --- --- 

1-6 CAT 1-2-2 0.312 0.319 0.286 0.289 

1-6 CAT 1-2-3 0.339 0.337 0.299 0.296 

1-6 CAT 1-3-3 0.328 0.331 0.286 0.289 

1-3 CAT 1-2-2 0.299 0.307 0.264 0.269 

1-3 CAT 1-2-3 0.301 0.307 0.264 0.271 

1-3 CAT 1-3-3 0.308 0.309 0.266 0.271 

2-3 CAT 1-2-2 0.270 0.278 0.226 0.238 

2-3 CAT 1-2-3 0.268 0.278 0.225 0.239 

2-3 CAT 1-3-3 0.270 0.280 0.229 0.240 

 

The ANOVA results for grand mean RMSE indicated that the four-way interaction between the factors 

was not significant, so Table 6 shows the ANOVA without this interaction term. Two factors 

dominated the variance explained RMSE -test length and CAT proportion- despite the significance of 

most of the interaction terms and all the main effects. The test length explained 36.7% of the total 

variance in RMSE, while the CAT proportion explained 42.6% of the total variance in RMSE. No 

other factors or interactions explained more than 5% of the total or unexplained variance in RMSE. 

 

Table 6. ANOVA Results for Grand Mean RMSE 
Factor df SS MS F value p η2 η2

p 

Panel Design 2 181 91 58.59 .000* .001 .009 

Length 1 46689 46689 30199.84 .000* .367 .706 

CAT Proportion 3 57206 19069 12334.12 .000* .426 .736 

Random 1 924 924 597.834 .000* .007 .045 

Panel Design: Length 2 59 29 19.07 .000* .000 .003 

Panel Design: CAT Proportion 6 1792 299 193.22 .000* .008 .048 

Length: CAT Proportion 3 154 51 33.17 .000* .001 .005 

Panel Design: Random 2 6 3 1.82 .162 .000 .000 

Length: Random 1 1 1 0.57 .451 .000 .000 

CAT Proportion: Random 2 307 153 99.28 .000* .002 .016 

Panel Design: Length: CAT Proportion 6 296 49 31.94 .000* .002 .011 

Panel Design: Length: Random 2 1 0 0.32 .724 .000 .000 

Panel Design: CAT Proportion: Random 4 46 12 7.45 .000* .000 .002 

Length: CAT Proportion: Random 2 20 10 6.36 .002* .000 .001 

Residuals 12562 19421 2     

Total 12599 127103      

* Significant at the .05 level. 

 

Based on Table 6, test length was the most important factor on the RMSE and followed by CAT 

proportion. As the test length or CAT proportion increased, the amount of RMSE decreased. 

 

Correlation 

The grand mean correlation between the true and estimated theta values for each condition can be seen 

in Table 7. The smallest correlation (0.949) occurs within the 1-2-3 1/6 CAT 30 item random 1 MFI 

design, while the largest correlation (0.980) occurs within the 1-2-2 2/3 CAT 30 item random 5 MFI 

design. The MST design with the smallest correlation (0.950) was the 1-2-2 18 item design, while the 

largest correlation (0.971) occurred in the 1-3-3 30 item design. 
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Table 7. Grand Mean Correlation Across Conditions 

CAT Proportion MST Design 
Random 1 Random 5 

18 Item 30 Item 18 Item 30 Item 

MST 1-2-2 .950 .970 --- --- 

MST 1-2-3 .957 .957 --- --- 

MST 1-3-3 .970 .971 --- --- 

1-6 CAT 1-2-2 .955 .955 .968 .967 

1-6 CAT 1-2-3 .951 .949 .966 .966 

1-6 CAT 1-3-3 .954 .952 .970 .970 

1-3 CAT 1-2-2 .960 .958 .974 .972 

1-3 CAT 1-2-3 .959 .958 .973 .972 

1-3 CAT 1-3-3 .958 .958 .971 .972 

2-3 CAT 1-2-2 .967 .966 .979 .980 

2-3 CAT 1-2-3 .967 .964 .979 .978 

2-3 CAT 1-3-3 .967 .964 .978 .976 

Note. All correlations were significant at the alpha level of .05 

 

The ANOVA results for grand correlation can be seen in Table 8. Like the grand mean RMSE, the 

four-way interaction between all factors was not significant and was removed from the ANOVA. 

Additionally, the same pattern of η2 and ηp
2 was found: the highest values were found for the test 

length and CAT proportion, which explain 62.2% and 24.4% of the total variance, respectively. No 

other factor or interaction of factors explained greater than 5% of the variance in mean correlations. 

 

Table 8. ANOVA Results for Grand Mean Correlation 
Factor df SS MS F value p η2 η2

p 

Panel Design 2 1 1 6.92 .001 .000 .001 

Length 1 6211 6211 84496.47 .000 .622 .871 

CAT Proportion 3 2622 874 11891.51 .000 .244 .725 

Random 1 32 32 440.50 .000 .003 .034 

Panel Design: Length 2 0 0 2.07 .126 .000 .000 

Panel Design: CAT Proportion 6 85 14 193.83 .000 .003 .034 

Length: CAT Proportion 3 60 20 271.37 .000 .004 .042 

Panel Design: Random 2 1 0 4.36 .013 .000 .001 

Length: Random 1 1 1 20.33 .000 .000 .002 

CAT Proportion: Random 2 7 3 44.94 .000 .001 .007 

Panel Design: Length: CAT Proportion 6 44 7 99.49 .000 .002 .022 

Panel Design: Length: Random 2 0 0 0.04 .956 .000 .000 

Panel Design: CAT Proportion: Random 4 1 0 3.32 .010 .000 .001 

Length: CAT Proportion: Random 2 0 0 1.60 .202 .000 .000 

Residuals 12562 923 0     

Total 12599 9988      

 

Based on Table 8, test length was the most important factor on the correlation and followed by CAT 

proportion. As the test length or CAT proportion increased, the size of correlation decreased. 

 

DISCUSSION and CONCLUSION 

This study aimed to determine how useful ma-MST, which follows the MST framework but utilizes 

an item-level adaptation routing module as in CAT, is in estimating theta as compared to standard 

MST designs. We hypothesized that ma-MST performs better than MST under the current simulation 

conditions according to grand mean bias, grand mean RMSE, and grand mean correlation. The results 

indicated that replacing the routing module of a certain length in a traditional MST with an equal-

length item level adaptation routing module as in CAT results in similar levels of bias, lower levels of 

RMSE, and higher levels of correlation between true and estimated theta value. Including even more 

CAT items at the initial stage (the 2/3 CAT conditions) resulted in somewhat larger improvements in 

bias, RMSE, and correlation. The best-case scenarios for each outcome measure occurred within a 2/3 

CAT condition, while the worst-case scenarios occurred within a 1/6 CAT condition. The most likely 

explanation for these results is that in 1/6 CAT condition, there were fewer items administered with 
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item-level adaptation resulting in less accurate measures of ability in the routing stage, and the MFI 

item selection rule results in higher bias in the early stages of CAT (Chen, Ankenmann, & Chang, 

2000). 

The factors that were most important in determining the overall results were the test length and 

proportion of CAT items. Interestingly, tests with more items overall were associated with increased 

bias, although increasing the proportion of CAT items reduced the bias in every condition. This was 

counteracted with more items resulting in a smaller RMSE. This seeming contradiction is likely caused 

by a combination of the EAP estimator and by individuals at the boundaries of the module selection 

cutoffs (e.g., individuals with provisional ability estimates that caused the difference in the maximum 

module information to be small between the potential modules the individual could be routed to). The 

EAP estimator increases bias but decreases RMSE, particularly in more extreme values of ability (Kim, 

Moses, & Yoo, 2015). Improper routing of individuals is known to cause problems in MST, and the 

panel designs and module information functions in the simulation were not designed to prevent this 

from happening. 

Unsurprisingly, we saw that the conditions with the highest proportion of CAT-based routing had the 

lowest levels of bias and RMSE as well as the highest correlations between the predicted and simulated 

theta values. However, since the ma-MST method provided good or better outcomes when the CAT 

routing panel was at least as large as a typical MST, the overall conclusion is that there is evidence to 

support the use of this design in circumstances that allow its use. For researchers and practitioners who 

wish to maintain many of the benefits of MST while improving its estimation efficiency, ma-MST is 

one method they should consider using. 

While the study demonstrates the usefulness of ma-MST, it does so only for conditions that are similar 

to those in the simulation study. Another simulation with more varied conditions, such as different 

content balancing requirements, different unidimensional IRT models (e.g., 1PL or 2 PL), 

multidimensional IRT models, or estimation procedures, can further establish the usefulness of this 

approach, as well as a study comparing the designs with real data. Utilizing better panel designs which 

minimize the likelihood of misrouting or allow for misrouted individuals the chance to be re-routed 

into appropriate modules may provide more evidence of the efficacy of ma-MST over MST. Changes 

to the item and/or module selection method in ma-MST (e.g., by using a different information function) 

may also help improve the performance of the method as prior research has shown the choice of routing 

method can affect the efficacy of MST (Raborn, 2018). Another criticism in this study would be that 

the choice of some of the study conditions in the research design, especially for the ratio for the CAT 

proportion, is somewhat arbitrary. However, this study is an initial investigation of ma-MST approach. 

Finally, future research should investigate other ability estimation procedures such as maximum 

likelihood estimation as they may affect the relative efficiency of ma-MST when compared to MST. 

As there have been other proposed combinations of CAT and MST in the literature such as Hybrid 

Computerized Adaptive Testing proposed by Wang et al. (2016), future research should include a 

comparison with these combinations as well as with full CAT tests. Investigating other simulation 

conditions that would serve to limit the limitations in this study would provide additional evidence for 

or against ma-MST in more circumstances. 
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Appendix A: Annotated R Codes 

An early version of the caMST package was used to perform the analyses in this simulation study. The 

analysis could be performed in v0.1.0 of the package (available on CRAN and GitHub; a 

developmental version is also available on the first author’s GitHub repository); this is the version 

used for the brief demonstration here. This walkthrough assumes that you have a working R installation 

have installed the package with ‘install_packages(“caMST”)’ or 

‘devtools::install_github(“AnthonyRaborn/caMST”)’, and for simplicity’s sake only two conditions 

are shown: the CMT condition with the 1-3-3 panel design, equal-length routing, stage 2, and stage 3 

modules, and 18 items, and the Ma-MST condition with the 1-3-3 panel design, 1/3 CAT routing 

module, 18 items, and MFI item selection in the routing stage. 

This version of the package can only handle dichotomous IRT models and requires that four item 

parameters be specified for each of the items as in the four-parameter logistic model (4PL; Burton & 

Lord, 1981). That means that item parameters, as in most computer adaptive tests, are treated as fixed, 

known quantities and when using models other than the 4PL the equivalent item parameters still need 

to be specified. For example, if the item parameters being used come from the Rasch model, the 

discrimination and upper asymptote parameters for each item should be set equal to 1 and the guessing 

parameter for each item set equal to 0. As our simulation used 3PL items, the upper asymptote for all 

of our items was equal to 1, but the other three parameters varied as described in the text. 

The main functions for this analysis were the multistage_test function, used for traditional MST 

formats, and the mixed_adaptive_test function, used for the ma-MST format. The data used in this 

study were simulated as explained above; item parameters were saved in a data frame with items on 

the rows and item parameters on the columns. To use the item parameter data frame with either of 

these functions, it should have the item parameters in the following format: item discriminations in 

column 1 named a, item difficulties in column 2 named b, the pseudo-guessing parameter in column 

3 named c, and the upper asymptote in column 4 named u. Additionally, column 5 should be used for 

identifying the content area in which each item should be placed (if content balancing is needed) and 

is named content_ID. As of now, the item parameters must be formatted in this way for the functions 

to work. 

From here, the multistage_test function will be used to demonstrate how we used the package functions 

for this study, then we will return to the mixed_adaptive_test function to highlight the differences in 

how the Ma-MST method is used. 

The main function arguments for the multistage_test function are as follows: 

• mst_item_bank: a matrix or data frame with the items formatted as above that contains all 

of the items that are used within this test. The rows of this data frame may be named to 

allow for the responses to be matched to the correct items automatically. 

• modules: a matrix that relates the items in mst_item_bank to the modules in which they 

belong 

• transition_matrix: a matrix that describes the possible modules individuals may be routed 

through 

• response_matrix: a matrix or data frame of individuals’ responses to the items in 

mst_item_bank, with persons on the rows and items on the columns. The item responses 

may be in the same order as in mst_item_bank: the first column of response_matrix should 

be the item in the first row of mst_item_bank. If not, the columns should share the same 

naming format as the rows of the mst_item_bank data frame to allow for the responses to 

be matched to the correct items automatically. 

• n_stages: a numeric value indicating the number of stages in the test (e.g., the number of 

adaptation points plus one for the routing stage).  

• test_length: a numeric value indicating the total number of items individuals will see. 

Other options exist which allow for greater control over the way the item responses are analyzed; the 

function documentation goes into more detail. 
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For the 1-3-3 18-item CMT condition, the items we used are included with the package and can be 

called with the following commands: 

## library(caMST) 

## data(mst_only_items) 

This will create the mst_only_items object in your global environment, which is a data frame with 42 

rows (items) and 5 columns (item parameters). Using the head() function on this object shows the first 

six items and their paramaters (see Table A1). 

These items were already placed in order in terms of the module they came it; that is, since each 

module has six items and there are seven modules across the three stages, the first six items are in the 

routing module, the second set of six items are in the first module at the second stage (the easy module), 

the third set of six items are in the second moduel at the second stage (the medium module), and so 

on. The item-module matrix for this data can be called into the environment with 

## data(mst_only_matrix) 

and is a 42 row (items) by 7 column (modules) matrix that looks like in Equation A1. 

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 1

    (A1) 

The next argument specifies the relationship between the modules (e.g., the lines in Figure 2). The 1-

3-3 design we used in the simulation allows for individuals to move from one module in a stage to 

modules in the next stage that are the same difficulty or slightly more/less difficult, but does not allow 

for complete crossover. This means that a person routed to the stage 2 easy module may be placed into 

the stage 3 easy or medium difficulty modules but not the hard difficulty module. The transition matrix 

codifies this relationship using 0s to indicate that an individual in the row’s module cannot be placed 

in the column’s module and 1s to indicate that they could be placed from the row’s module to the 

column’s module. The matrix for this condition is called with 

## data(example_transition_matrix) 

and looks like in Equation A2. 

0 1 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

    (A2) 

The transition matrix should always be a square matrix with row and column sizes equal to the number 

of modules in the data, and the rows for the final stage modules should always be filled with 0 because 

there is no transition after the test is complete! 

The response_matrix is simply the matrix or data frame of person responses. The package functions 

will try to use the column names of the response_matrix and the row names of the mst_item_bank data 

frame to extract the responses relevant to the current condition. Since caMST can only handle binary 

items, the responses should be all 0s, 1s, and NAs. An example set of responses from this simulation 

can be called with data(example_responses), which populates the current R environment with a 5 row 

(individuals) by 600 column (items) data frame of responses. 
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With these objects, we can use the multistage_test function to analyze the item responses as a CMT 

with the following code: 

## multistage_test(mst_item_bank = mst_only_items, modules = mst_only_matrix, 

## transition_matrix = example_transition_matrix, 

## response_matrix = example_responses, n_stages = 3, test_length = 18) 

The function will output a list of the results, which includes two different estimates of the individuals’ 

abilities, the standard error of measurement for each individual, a matrix of the final items seen by all 

individuals, a matrix of the final modules seen by all individuals, and a matrix of the responses the 

individuals made to the items that they saw. 

By changing the mst_only_items, mst_only_matrix, example_transition_matrix, n_stages, and 

test_length, each of the conditions ran in the simulation can be tested. In addition, since we know the 

true theta values used in the simulation, the bias, RMSE, conditional bias, conditional RMSE, 

conditional SEM, and correlation between true and estimated values are easily calculated with 

functions that take the true and estimated theta values as arguments. If the above results were saved as 

an object called CMT_results, calling CMT_results$final.theta.estimate.mstR produces these estimates 

and could be used for one of the functions. For example, assuming the true theta values are saved as a 

numerical vector called example_thetas, you could run cor(example_thetas, CMT_results$final.theta) 

to estimate the correlation between the values the responses were simulated from and the estimates 

from the multistage_test function. 

The Ma-MST conditions were run with the mixed_adaptive_test function, which follows the same 

principles as the CMT function. The major difference is that the mixed_adaptive_test function requires 

two item banks: one for the first stage with item-level adaptation (i.e., for the CAT-style routing 

module), and another for the second and third stages (i.e., the CMT-style stages). Additionally, the 

function allows for some control over the way the CAT adaptation in the first stage occurs. 

The arguments specific to the CAT routing module are: 

• cat_item_bank: the item bank formatted as described in the “multistage_test” function 

• item_method: the method for choosing items in the first stage; defaults to “MFI” (Maximum 

Fisher Information), which we used in our simulation 

• cat_length: how many items are seen in the first stage 

• cbControl: a list used for content balancing (not used in this study) 

• cbGroup: a factor vector used for content balancing (not used in this study) 

• randomesque: an integer value. The item_method ranks items from best to worst; using MFI 

and randomesque=1, the most informative item based on the Fisher information and the 

current response pattern is chosen, while using MFI and randomesque=5 will randomly 

select one item from the five most informative items based on the Fisher information and 

the current response pattern. 

The arguments specific to the CMT modules are: 

• mst_item_bank: the item bank formatted as described in the “multistage_test” function 

• transition_matrix: a matrix that describes the possible modules individuals may be routed 

through 

When comparing the two functions, it is easy to see that the addition of the CAT items is the only real 

change in the function arguments. The following code calls the new objects (one for the routing module 

items, another for the second and third stage items) and runs the Ma-MST 1-3-3 design 18 items 1/3 

CAT MFI condition: 

## data(cat_items); data(mst_items) 

## mixed_adaptive_test(cat_item_bank = cat _items, cat_length = 6, item_method = “MFI”, 

## randomesque = 1, 

## mst_item_bank = mst_items, modules = mst_only_matrix, 

## transition_matrix = example_transition_matrix, 
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## response_matrix = example_responses, n_stages = 3) 

The results for this function contain the same information as the previous function, but are in a list 

format where each individual’s entire results are saved as one element of that list. This helps when 

keeping track of the items each individual saw: the function keeps a track of the item parameters of 

each item seen by each individual and provides the individualized test bank as a part of the output. 

Since the results of this function are in a list, it takes a little more effort to use them to test how well 

the method performs in terms of person parameter recovery. The easiest way to do this is by using the 

getElement function, which takes an object and the name of the element you wish to extract, within 

the sapply function, which applies one function to each element of another object. Putting these 

together will extract the information into a vector, similar to what the multistage_test function outputs 

automatically. If the output of the mixed_adaptive_test function was saved as results, then running 

## sapply(results, getElement, "final.theta.estimate.mstR", simplify = T) 

will output a vector of the final estimated theta values. This can then be used as explained above to 

investigate the efficiency of the Mca-MST method under the specific conditions used. 

By modifying the various function arguments and the objects used in the functions, this study could 

be replicated or even expanded relatively easily. The package documentation includes other examples, 

as well as a function for performing fully CAT-formatted tests. The readme file and GitHub website 

provide somewhat more in-depth examples with visuals on the input and output data. 

 

Table A1. The First Six Items for the CMT Condition 
Item a b c u content_ID 

Item7 1.534 0.216 0.163 1.000 1 

Item24 1.458 -0.136 0.070 1.000 1 

Item165 1.696 -0.189 0.190 1.000 2 

Item187 1.735 -0.024 0.097 1.000 2 

Item303 1.410 0.243 0.068 1.000 3 

Item458 1.446 -0.475 0.277 1.000 4 

Note: a is the item discrimination, b is the item difficulty, c is the item pseudo-guessing parameter, and u is the upper 

asymptote of the item function. 
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Appendix B: Supplementary Tables and Figures 
 

Table B1. Content Distributions in the Modules in the 1/6 CAT Conditions Across the Different 

Designs 
 18-item  30-item 

Design S2E S2M S2H S3E S3M S3H  S2E S2M S2H S3E S3M S3H 

1-2-2 

C1:2 

C2:2 

C3:2 

C4:2 

- 

C1:2 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

- 

C1:1 

C2:2 

C3:2 

C4:2 

 

C1:4 

C2:3 

C3:3 

C4:3 

- 

C1:4 

C2:3 

C3:3 

C4:3 

C1:3 

C2:3 

C3:3 

C4:3 

- 

C1:3 

C2:3 

C3:3 

C4:3 

Total 8 - 8 7 - 7  13  13 12 - 12 

1-2-3 

C1:2 

C2:2 

C3:2 

C4:2 

- 

C1:2 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

 

C1:4 

C2:3 

C3:3 

C4:3 

- 

C1:4 

C2:3 

C3:3 

C4:3 

C1:3 

C2:3 

C3:3 

C4:3 

C1:3 

C2:3 

C3:3 

C4:3 

C1:3 

C2:3 

C3:3 

C4:3 

Total 8  8 7 7 7  13  13 12 12 12 

1-3-3 

C1:2 

C2:2 

C3:2 

C4:2 

C1:2 

C2:2 

C3:2 

C4:2 

C1:2 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

C1:1 

C2:2 

C3:2 

C4:2 

 

C1:4 

C2:3 

C3:3 

C4:3 

C1:4 

C2:3 

C3:3 

C4:3 

C1:4 

C2:3 

C3:3 

C4:3 

C1:4 

C2:3 

C3:3 

C4:3 

C1:4 

C2:3 

C3:3 

C4:3 

C1:4 

C2:3 

C3:3 

C4:3 

Total 8 8 8 7 7 7  13 13 13 13 13 13 

S = Stage, E = Easy, M = Medium, H = Hard module 

 

Table B2. Content Distributions in the Modules in the 1/3 CAT Conditions Across the Different 

Designs 
 18-item  30-item 

Design S2E S2M S2H S3E S3M S3H  S2E S2M S2H S3E S3M S3H 

1-2-2 

C1:1 

C2:1 

C3:2 

C4:2 

- 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

- 

C1:1 

C2:1 

C3:2 

C4:2 

 

C1:2 

C2:2 

C3:3 

C4:3 

- 

C1:2 

C2:2 

C3:3 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

- 

C1:3 

C2:3 

C3:1 

C4:3 

Total 6  6 6  6  10  10 10  10 

1-2-3 

C1:1 

C2:1 

C3:2 

C4:2 

- 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

 

C1:2 

C2:2 

C3:3 

C4:3 

- 

C1:2 

C2:2 

C3:3 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

Total 6  6 6 6 6  10  10 10 10 10 

1-3-3 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

C1:1 

C2:1 

C3:2 

C4:2 

 

C1:2 

C2:2 

C3:3 

C4:3 

C1:2 

C2:2 

C3:3 

C4:3 

C1:2 

C2:2 

C3:3 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

C1:3 

C2:3 

C3:1 

C4:3 

Total 6 6 6 6 6 6  10 10 10 10 10 10 

S = Stage, E = Easy, M = Medium, H = Hard module 

 

Table B3. Content Distributions in the Modules in the 2/3 CAT Conditions Across the Different 

Designs 
 18-item  30-item 

Design S2E S2M S2H S3E S3M S3H  S2E S2M S2H S3E S3M S3H 

1-2-2 

C1:1 

C2:0 

C3:1 

C4:1 

- 

C1:1 

C2:0 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

- 

C1:0 

C2:1 

C3:1 

C4:1 

 

C1:1 

C2:1 

C3:1 

C4:2 

- 

C1:1 

C2:1 

C3:1 

C4:2 

C1:1 

C2:1 

C3:2 

C4:1 

- 

C1:1 

C2:1 

C3:2 

C4:1 

Total 3  3 3  3  5  5 5  5 

1-2-3 

C1:1 

C2:0 

C3:1 

C4:1 

- 

C1:1 

C2:0 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

 

C1:1 

C2:1 

C3:1 

C4:2 

- 

C1:1 

C2:1 

C3:1 

C4:2 

C1:1 

C2:1 

C3:2 

C4:1 

C1:1 

C2:1 

C3:2 

C4:1 

C1:1 

C2:1 

C3:2 

C4:1 

Total 3  3 3 3 3  5  5 5 5 5 

1-3-3 

C1:1 

C2:0 

C3:1 

C4:1 

C1:1 

C2:0 

C3:1 

C4:1 

C1:1 

C2:0 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

C1:0 

C2:1 

C3:1 

C4:1 

 

C1:1 

C2:1 

C3:1 

C4:2 

C1:1 

C2:1 

C3:1 

C4:2 

C1:1 

C2:1 

C3:1 

C4:2 

C1:1 

C2:1 

C3:2 

C4:1 

C1:1 

C2:1 

C3:2 

C4:1 

C1:1 

C2:1 

C3:2 

C4:1 

Total 3 3 3 3 3 3  5 5 5 5 5 5 

S = Stage, E = Easy, M = Medium, H = Hard module 
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Figure B1. Plots for the Three Panels Under 1-2-2 ma-MST Design Across the 30-Item (Upper Three) 

and 18-Item (Down Three) and 1/6 CAT (Left two), 1/3 CAT (Middle two) and 2/6 CAT (Right two) 

Conditions 
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Abstract  

Propensity score analysis, such as propensity score matching and propensity score weighting, is becoming 

increasingly popular in educational research. When a propensity score analysis is conducted, examining the 

covariate balance is considered to be crucial to justify the quality of the analysis results. However, it has been 

pointed out that solely considering how covariates balance after matching may not be enough for justifying the 

quality of the propensity score analysis results. Suitable covariate balance may still yield biased estimates of 

treatment effects. The current study aimed to systematically demonstrate this problem by a series of simulation 

studies. As a result, it was revealed that a good covariate balance on the mean and/or the variance does not 

guarantee reduced bias on an estimated treatment effect. It was also found that estimation of the treatment effect 

can be unbiased to some degree, even with a lack of balance under specific conditions.  

 

Key Words: Propensity score analysis, covariate balance, unbiased treatment effect. 

 

INTRODUCTION  

Propensity score (PS) analysis is becoming increasingly popular in educational research that adopts 

quasi-experimental design. PS analysis allows researchers to create a balance between treatment and 

control groups in order to estimate unbiased treatment effect when a randomized control design is not 

possible or is considered unethical/impractical (Guo & Fraser, 2015; Rosenbaum & Rubin, 1983). A 

challenge with the application of PS analysis is how to ensure that we have obtained an improved 

treatment effect estimate, ideally an unbiased estimate of the population treatment effect. 

Typically, a researcher will go through a series of steps, and back steps, when conducting PS analysis. 

First, researchers identify the covariates to be included in the PS model and select a method (e.g., logistic 

regression-LR) for obtaining the propensity scores (PSs). Second, researchers conduct the analysis to 

estimate PSs and use them to balance the treatment and control groups in terms of covariate distributions. 

Third, researchers examine the quality of covariate balance and either go back to the first step and/or 

account for any insufficiently balanced covariates in the outcome analysis. Fourth, researchers conduct 

the outcome analysis for treatment effect estimation. 

An important factor affecting PS analysis results is the type of covariates (i.e., associated only with the 

outcome, treatment assignment, or both) used to estimate PSs. Researchers have investigated the effects 

of including different covariate types in PS models in an effort to identify the most appropriate covariates 

mailto:ykara@smu.edu
mailto:akamata@smu.edu
mailto:elisa@smu.edu
mailto:cpatarapichy@smu.edu
mailto:c.potgieter@tcu.edu


Kara, Y., Kamata, A., Gallelogos, E., Patarapichayatham, C., Potgieter, C.J. / Covariate Balance as a Quality 

Indicator for Propensity Score Analysis 

________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

375 

to include. Covariates that yield balanced treatment and control groups and ultimately unbiased 

treatment effects would be the desired ones to use in PS analysis. There have been some studies that 

revealed the importance of including covariates strongly associated with the outcome and not with the 

treatment assignment (Brookhart et al., 2006; Myers et al., 2011). Some studies also highlighted the 

negative effect of intrinsic covariates (mostly associated with the treatment assignment and showed little 

association with the outcome) on PS models and recommended avoiding them due to inconsistencies in 

the PS analyses (Bhattacharya & Vogt, 2007) or increased bias in the estimation of treatment effects 

(Patrick et al., 2011). Similarly, What Works Clearinghouse-WWC (2017) also highlighted the negative 

effects of using intrinsic covariates on the estimation of the treatment effect. Researchers also explored 

that including covariates those strongly associated with both treatment assignment and outcome, yields 

the least bias (Brookhart et al., 2006; Hong, Aaby, Siddique, & Stuart, 2018; Myers et al., 2011; Steiner, 

Cook, Shadish, & Clark, 2010). 

Another important factor is the method utilized for obtaining PSs. The standard method is traditional 

LR in most applications. There have been more advanced methods that involve a combination of 

adjustments within the calculations/algorithms for obtaining PSs. For example, researchers have found 

that non-parametric and adaptive approaches (e.g., generalized boosted regression-GBR, classification 

and regression trees-CART, nearest neighbor matching-NNM, etc.) are more promising than LR in terms 

of covariate balance and treatment effect estimation (Cannas & Arpino, 2019; Lee, Lessler, & Stuart, 

2010; McCaffrey, Ridgeway, & Morral, 2004; Setoguchi, Brookhart, Glynn, & Cook, 2008; Westreich, 

Lessler, & Funk, 2010). Other researchers found that certain PSs, such as the covariate balancing 

propensity scores (CBPS), perform very well in terms of balancing treatment and control groups (Kainz 

et al., 2017). In the current study, we consider multiple methods for estimating the PSs, which are 

elaborated in the methods section. 

The most important overall goal for PS analysis is the reduction of confounding by balancing the 

treatment and control groups. In other words, PS analysis aims to reduce the confounding effect of 

external variables on the estimation of the true treatment effect. For this reason, examining covariate 

balance is crucial in justifying PS analysis results (Kainz et al., 2017). Researchers commonly evaluate 

the first moment of the covariate distributions between treatment and control groups by using the 

standardized absolute mean difference (SAMD).  As also implied by Stuart, Lee, and Leacy (2013), 

SAMD is the most common measure of balance that is calculated similarly to effect size. It simply 

checks the magnitude of the mean differences in absolute scale compared to standardized mean 

difference (SMD). According to Rubin (2001), SAMD values from 0.1 to 0.25 are considered to be 

acceptable as indicators of good mean balance.  Nevertheless, it was seen that applied researchers 

generally follow a stricter criterion as 0.05, which was suggested by WWC (2017) accessible through 

the Institute of Education Sciences as part of the US Department of Education.  

In addition to checking the balance in terms of means, researchers may aim to evaluate other 

characteristics of covariate distributions in treatment and control groups. Along with SAMD, the 

literature has suggested the use of a combination of several criteria, including goodness-of-fit measures 

for covariate distributions (e.g., Kolmogorov-Smirnov test: Austin, 2009; Kainz et al., 2017; Stuart, 

2010) and variance ratio (Kainz et al., 2017). Variance ratio (VR) is simply the ratio of a covariate’s 

variance in the treatment and control group with a value of one indicating identical variances. According 

to Rubin (2007) VR values lower than 0.5 or higher than two are considered to be indicators of variance 

imbalance. We consider SAMD and VR as two widely-used standard measures of covariate balance in 

the current study. Readers are referred to Austin (2009) for a detailed overview of common balance 

measures and to Stuart, Lee, and Leacy (2013) for alternative balance measures such as prognostic score-

based solutions.  

 

Purpose of the Study 

Obtaining good balance, such as a SAMD of 0.05 or less (What Works Clearinghouse, 2017), is standard 

practice when estimating treatment effects in PS analysis. Nevertheless, solely considering how 

covariates balance after matching may not be enough for justifying the quality of the PS analysis results. 
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Suitable covariate balance may still yield biased treatment effects (Lee, Lessler, & Stuart, 2010; Stuart, 

Lee, & Leacy, 2013). More specifically, Belitser et al. (2011) showed that following various balance 

diagnostic approaches might result in different levels of treatment effect bias. More interestingly, having 

measurement error in covariates might lead to a problematic estimate of the treatment effect even with 

a good level of covariate balance (Hong, Aaby, Siddique, & Stuart, 2018). Lastly, it was also shown that 

the balance of specific covariates could have more influence on the treatment effect bias (Stuart, Lee, & 

Leacy, 2013). All mentioned evidence from the literature points out the same conclusion: obtaining a 

good level of overall covariate balance might not be enough for estimating an unbiased treatment effect. 

There can be several other factors that can deteriorate the estimation of the true treatment effect even 

with a good amount of overall covariate balance.  

Although there have been some studies that have discussed a potential lack of the direct relation between 

covariate balance and treatment effect bias (Hong, Aaby, Siddique, & Stuart, 2018; Lee, Lessler, & 

Stuart, 2010; Stuart, 2013), no study to our knowledge has demonstrated this problem by systematically 

examining it in the context of the aforementioned factors that are important to PS analysis, as well as 

other key factors such as sample size, the proportion of treatment group, and the association between 

covariates. Therefore, the current study aims to investigate the inconsistent relation between covariate 

balance and bias in treatment effect estimation. In other words, this study aims to systematically explore 

the effects of covariate balance on treatment effect estimation by considering many conditions that 

applied researchers encounter in their PS analyses. To facilitate a better examination of the current study 

results, we utilized the PSs estimated from different methods as weights for determining the treatment 

and control groups across all conditions (Guo & Fraser, 2015; Rosenbaum & Rubin, 1983). 

 

METHOD 

A simulation study was conducted to evaluate the performance of three PS estimation methods for 

recovering the population treatment effect and establishing the covariate balance in terms of means and 

variances. The three PS methods considered were the traditional LR, GBR, and CBPS. LR is the widely-

used method among educational researchers and predicts the PSs through a logistic regression model. 

The GBR method uses a nonparametric, automated machine learning technique to estimate the PSs and 

associated weights (Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2017). The GBR method can 

predict the treatment assignment using a large number of covariates and is flexible in that it can handle 

nonlinear relationships between PSs and covariates (McCaffrey, Ridgeway, & Morral, 2004). The CBPS 

method simultaneously derives the PSs and weights for observations to optimize covariate balance 

between the treatment and control groups (Fong, Ratkovic, & Imai, 2019). Readers are referred to the 

cited literature for detailed explanations of the mentioned PS estimation methods.  

 

Simulation Design 

In addition to the three PS estimation methods, the current study also investigated the effect of using 

different types of covariates on the estimation quality of the treatment effect in relation to balance. 

Twenty-four covariates were classified into three different types (eight covariates per type) depending 

on their relationship with the treatment assignment and the outcome variable. Types of covariates were 

referred to as 1) type-W: correlated with both treatment assignment and the outcome variables, 2) type-

X: correlated only with the outcome variable, and 3) type-Z: correlated only with the treatment 

assignment variable. A total of 108 simulation conditions were considered by crossing three PS 

estimation methods (LR, GBR, and CBPS), three covariate types (type-W, type-X, and type-Z), three 

sample sizes (500, 1,000, and 5,000), two proportions of treatment group (0.25 and 0.45), and two 

scenarios for the correlations among the covariates (uncorrelated and correlated). 

Simulation conditions were mainly identified based on practical considerations that aim to guide applied 

researchers. LR was selected to represent the simplistic yet widely-used method among practitioners. 

CBPS and GBR were selected to represent more advanced methods compared to LR. It is known that 

CPBS is also a popular method in applied PS analysis studies and GBR is being recognized by many 
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practitioners who aim to use more advanced methods, namely machine learning-based approaches. 

Sample sizes were identified to reflect small to extremely large conditions. Group proportions were 

identified considering scenarios with low and medium/ levels of treatment group availability. It wouldn’t 

be wrong to say that PS analysis studies mostly have larger sample sizes for the control group rather 

than the treatment group. Thus, we limited the maximum proportion of the treatment group to be 45% 

to represent a more realistic condition.  

Some other magnitudes and/or parameters were fixed in the current simulation. The number of the 

covariates per type (fixed to eight) was identified randomly yet as a typical size of covariate availability 

in applied PS analysis studies. The magnitudes of the correlations between covariates were fixed to 0.05 

and 0.15 for the uncorrelated vs. correlated covariates conditions. These values were identified in 

reference to the magnitudes used in other PS analysis simulation studies as well as thinking realistic 

magnitudes relative to the correlation values between covariates and treatment/outcome variables. We 

avoided high correlations among the covariates themselves in order to better reveal the effect of 

covariate and treatment/outcome relation. Lastly, the effect size was fixed to 0.8 and not varied in the 

current simulation. We chose a relatively high effect size in order to eliminate the side effects of having 

a small effect during the estimation phase. In other words, we intended to examine the performance of 

the methods under various conditions when the effect size is already known to be large.  

 

Data Generation 

Consider observations of the form (𝐖𝑖, 𝐗𝑖, 𝐙𝑖 , 𝐵𝑖, 𝑌𝑖),  𝑖 = 1,… , 𝑛 where 𝐖𝑖, 𝐗𝑖, 𝐙𝑖 are type-W, type-X, 

and type-Z covariates with size 𝑚𝑊, 𝑚𝑋, and 𝑚𝑍 respectively. As explained above, the number of the 

covariates for each covariate type was fixed to eight, thus 𝑚𝑊 = 𝑚𝑋 = 𝑚𝑍 = 8. Additionally, 𝐵𝑖 is an 

indicator as to whether an observation belongs to the control (𝐵𝑖 = 0) or treatment (𝐵𝑖 = 1) group, and 

𝑌𝑖 is the outcome of interest. As described earlier, it is assumed that covariates 𝐖𝑖 and 𝐙𝑖 affect the 

probability of treatment group membership, while 𝐖𝑖 and 𝐗𝑖 affect the outcome after the group 

membership has been determined. For notational convenience, let 𝚺𝑊, 𝚺𝑋, and 𝚺𝑍 denote the covariance 

matrices of 𝐖, 𝐗, and 𝐙. Also, let 𝚺𝑊𝑋, 𝚺𝑊𝑍, and 𝚺𝑋𝑍 denote the cross-covariance matrices. Note that 

former matrices contain the covariances between the same-type covariates, whereas the latter ones 

contain the covariances between different covariate types. For example, 𝚺𝑊 is the 8x8 covariance matrix 

of eight type-W covariates. 𝚺𝑊𝑍 is the 8x8 covariance matrix of eight type-W covariates and eight type-

Z covariates. Then 𝚺𝑊 and 𝚺𝑊𝑍 matrices are combined for the generation of the treatment group 

membership. Other matrices can be interpreted in a similar way. 

To simulate treatment group membership, let  

𝜋(𝐖,𝐙) = logit(𝛼0 + 𝛂𝑊
⊤ 𝐖+𝛂𝑍

⊤𝐙). (1) 

Then, for the 𝑖th simulated case, 

𝐵𝑖 ∼ Ber[𝜋(𝐖𝑖, 𝐙𝑖)]. (2) 

 

Note that 𝜋 is the probability of being in the treatment group, and Ber stands for Bernoulli distribution. 

Also, terms with T superscripts refer to the transpose of a relevant matrix. The most important question 

here is how to choose the constant 𝛼0 in (1), as this controls the proportion of cases that belong to the 

treatment and control groups. If [𝐖𝑖, 𝐙𝑖] follows a zero-mean multivariate normal distribution (𝛷 is the 

inverse of the cumulative normal distribution function), then the choice 

𝛼0 = −𝜎𝑊𝑍𝛷
−1(1 − 𝑝) (3) 

with 



Journal of Measurement and Evaluation in Education and Psychology 

____________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 378 

𝜎𝑊𝑍 = √[𝛂𝑊
⊤ , 𝛂𝑍

⊤] [
𝚺𝑊 𝚺𝑊𝑍

𝚺𝑊𝑍 𝚺𝑍
] [
𝛂𝑊
𝛂𝑍

] (4) 

will result in a proportion 𝑝 of the cases being associated with a success probability 𝜋(𝐖, 𝐙) greater 

than 0.5 and a proportion 1 − 𝑝 with success probability less than 0.5. Once the treatment group 

memberships have been generated, the outcome 𝑌𝑖 is generated according to 

𝑌𝑖 = 𝛽0 + 𝛽𝑇𝐵𝑖 + 𝛃𝑊
⊤ 𝐖𝑖 + 𝛃𝑋

⊤𝐗𝑖 + 𝜀𝑖, (5) 

where 𝜀 ∼ 𝑁(0, 𝜎𝜀
2) and 𝛽

𝑇
= 𝐷. 𝜎𝜀 with 𝐷 being the effect size, which is fixed to 0.8, assuming the 

existence of a large treatment effect. The population values in (4) and (5) were set to 𝛂𝑊 = −1.0, 𝛂𝑍 =

1.0, 𝛃
𝑊
= 1.0, and 𝛃

𝑋
= 2.0. Note that varying the population values of these parameters regulates the 

level of association between the covariates and treatment assignment/outcome. We selected these values 

somewhat arbitrarily yet in the light of the other PS simulation studies, including Brookhart et al. (2006).  

The covariance matrices between the same- (𝚺𝑊, 𝚺𝑋, and 𝚺𝑍) and cross-type covariates (𝚺𝑊𝑋, 𝚺𝑊𝑍, and 

𝚺𝑋𝑍) were varied depending on the magnitude of the relationship among the covariates as a simulation 

condition. Since all covariates were assumed to have a zero mean and a unit variance, covariance 

matrices were also the correlation matrices. For the conditions that assumed no relationship among the 

covariates, all correlations were fixed to zero. Thus, the same- and cross-type matrices were 8x8 identity 

and 8x8 zero matrices, respectively. For the conditions that assumed a relationship among the covariates, 

0.15 and 0.05 were assigned to the correlations among the same- and cross-type covariates and were 

used to create the relevant covariance matrices. 

Two hundred data sets were generated per simulation condition with R (R Core Team, 2018) and 

analyzed with the relevant PS analysis method, as elaborated in the next section. Note that the data were 

generated by considering all three types of covariates as predictors of the treatment assignment and 

outcome variables. In other words, the treatment assignment was generated by using the W- and Z-type 

covariates (8+8=16 predictors in total), and the outcome measure was generated by using the W- and 

X-type covariates (8+8=16 predictors in total). During the PS model fitting procedure, however, only 

one type of covariate (8 in total) was used for each analysis in order to examine the effect of covariate 

type as a simulation condition. 

 

Analysis 

PS weights were computed to estimate the average treatment effect for the treated (ATT), utilizing 

weighting by the odds (Hirano, Imbens, & Ridder, 2003). Therefore, weights for observations in the 

treatment group were fixed to be 𝑤𝑡𝑖 = 1.0 and weights for observations in the control group were 

computed by 𝑤𝑐𝑖 = (𝑝𝑠𝑖)/(1 − 𝑝𝑠𝑖), where 𝑝𝑠𝑖 is the estimated PS for the 𝑖th observation. 𝑤𝑡𝑖 and 𝑤𝑐𝑖 

values were then used to compute weighted standardized treatment effect for the outcome variable. For 

covariates, the weights were applied to compute the SAMD and VR as the indicators of covariate 

balance per covariate. SAMD and the VR values (after adjusting for the treatment/control group as the 

denominator) for eight covariates were further averaged to obtain the overall balance indicators per 

simulated data set, which are referred to as average SAMD (ASAMD) and average VR (AVR) in the 

following sections.  

We intended to use the default PS estimation options as much as possible for the three methods in their 

relevant R functions, considering a typical user without deep knowledge. Nevertheless, we modified 

some options for GBR method in order to prevent masking its performance compared to simpler 

methods. The traditional LR method was conducted by the MatchIt R package (Ho, Imai, King, & Stuart, 

2008), adopting the default specifications for PS estimation with NNM. The GBR method was utilized 

by the twang R package (Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2017) with default 

specifications except for the stopping method, which was modified to assess the maximum balance 

matrix for Kolmogorov-Smirnov statistic. We also modified the estimand option to be ATT (as it was 
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the adopted method in the current study), which was ATE-Average Treatment Effect by default. The 

CBPS R package (Fong, Ratkovic, & Imai, 2019; Imai & Ratkovic, 2014) was used to estimate the PSs 

by the CBPS method with default options. Readers are referred to relevant resources for more details 

about the R functions of each method.  

 

Evaluation Criteria 

In an effort to derive a consistent measure of covariate balance and treatment effect, we utilized the 

cobalt R package (Greifer, 2019) to compute the ASAMD and AVR between treatment and control 

groups per generated data set. The cobalt package is commonly used as a supplement to the balance 

diagnostic tools and provides efficient summary tables of balance diagnostics for each covariate. 

For the evaluation of overall covariate balance performance, ASAMD and AVR values were further 

averaged across 200 data sets generated per simulation condition. Average ASAMD values closer to 0 

and average AVR values closer to 1 are considered to be good indicators of overall covariate balance in 

terms of mean and variance, respectively. Recovery of the population treatment effect (𝐷 = 0.8) was 

evaluated by the absolute bias (AB) and standard error (SE), which were calculated by equations (6) and 

(7), respectively. 

𝐴𝐵(�̂�) = |𝐷�̂� − 𝐷| (6) 

𝑆𝐸(�̂�) = √∑ (𝑀
𝑚 �̂� − 𝐷�̂�)

2

𝑀
(7) 

Note that 𝐷 and �̂� are the population and estimated values of the treatment effect. Also, 𝑀 represents 

the total number of replications (200 in our case), 𝑚 is a specific step of those 𝑀 replications, and 𝐷�̂� 

is the average of the estimated effect sizes across 𝑀 replications. 

 

RESULTS 

 

Recovery of the Treatment Effect 

It was confirmed that the use of type-W covariates provided the lowest ABs for the recovery of the 

treatment effect under all simulation conditions (Figure 1). This result is consistent with the existing 

literature that encourages researchers/practitioners to use covariates that correlate with both outcome 

and treatment indicators (Brookhart et al., 2006; Hong, Aaby, Siddique, & Stuart, 2018; Myers et al., 

2011; Steiner, Cook, Shadish, & Clark, 2010). However, contrary to our expectation, the performance 

of type-X covariates (correlated with the outcome) was not as good as type-W covariates. Rather, their 

performance was close to type-Z covariates (correlated with the treatment condition), especially when 

there was no correlation among covariates. Nevertheless, the ABs were lower for type-X covariates (all 

below 0.6) than type-Z covariates for all simulation conditions. Lastly, the bias was slightly lower when 

the type-W covariates were correlated vs. they were not.  
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Figure 1. Absolute Bias of the Estimated Treatment Effect 

 

In general, the three PS estimation methods performed similarly for recovering the population treatment 

effect under common conditions. This was especially true for conditions with type-X covariates. 

However, for conditions with type-W covariates, GBR did not perform as well as CBPS and LR, while 

CBPS and LR performed similarly. These tendencies were observed for all conditions, regardless of 

sample size, proportion of the treatment group, and correlation among covariates. Interestingly, GBR 

had the lowest AB values when type-Z covariates were used. However, the ABs were large, and the 

differences between GBR and the other two methods were not large enough to claim that GBR would 

be useful with type-Z covariates. 

Regarding the sample size, there was no clear effect on the AB values for any of the three PS estimation 

methods. Only a slight decreasing tendency of AB with increased sample size was observed with the 

use of GBR method in conditions with type-W covariates. On the other hand, a clear effect of sample 

size was observed for SE values (Figure 2), which were in decreasing trend with the increase of sample 

size as expected. The proportion of the treatment group also did not show a considerable effect for AB 

values. Lastly, the effect of the correlation among the selected covariates showed different trends 

depending on a specific condition. For example, the AB values were lower when type-W covariates 

were correlated regardless of the proportion of the treatment group. This was also the case for type-X 

covariates; however, the change was not as clear as for the type-W covariates. An opposite tendency 

was observed for type-Z covariates. Namely, the AB values were higher when the covariates were 

correlated for both proportions of the treatment group. Thus, the amount of correlation between type-W 
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covariates seems to provide extra information for a better recovery of the treatment effect. Conversely, 

intercorrelated type-Z covariates seem to deteriorate the estimation of the treatment effect. Although we 

don’t have an exact explanation for this phenomenon, we suspect that the intercorrelated treatment 

assignment predictors led to problematic balancing hence to slightly higher bias in the treatment effect 

estimation. Moreover, it is known that the use of only type-Z predictors is expected to result in a higher 

bias in the treatment effect estimation (Patrick et al., 2011). Thus, with the intercorrelated type-Z 

covariates, this negative effect seemed to be slightly larger.  

 

 

Figure 2. Standard Error of the Estimated Treatment Effect 

 

In summary, our results demonstrated that the use of covariates that are related to both treatment 

indicator and the outcome resulted in a better recovery of the treatment effect nearly under all studied 

simulation conditions. Also, it was demonstrated that LR and CBPS produced better performance than 

GBR when type-W covariates were used. It is important to note that such a result might be explained by 

the data generation model, where we used only the first-level terms in the logistic regression of the 

treatment assignment. In other words, no higher-level terms (such as square of the predictors) or 

interactions were used in the generation of the treatment assignment. Thus, this is in line with the 

estimation of a plain logistic regression model adopted in LR method. GBR is known to examine also 

the prediction power of higher-level and interaction terms automatically. Thus, better performance of 

the LR compared to a more advanced method like GBR might be a result of this. Additionally, if selected 
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covariates are correlated only with the outcome, selection of the PS estimation method would not matter 

so much, as the three performed similarly. 

 

Covariate Balance 

Means  

It was demonstrated that the mean balance was consistently better for the type-X covariates (correlated 

only with the outcome) under all conditions (Figure 3). Furthermore, the average ASAMD values for 

the type-X covariates were always below 0.05 regardless of the simulation condition, indicating that 

they met the threshold by WWC- What Works Clearinghouse, Institute of Education Sciences, U.S. 

Department of Education (2017). Therefore, a practitioner would interpret that the PS analysis went 

well. This result requires special attention, as it was demonstrated in the previous section that type-X 

covariates did not produce good AB for the recovery of the population treatment effect, compared to 

type-W covariates (correlated with the outcome and treatment condition). In other words, these results 

demonstrate that good covariate balance on means does not necessarily guarantee a good estimate of the 

treatment effect. 

 

 

Figure 3. Covariate Balance on Means 
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On the other hand, when type-W covariates were used, the average ASAMD values met the WWC 

criterion of 0.05 or lower only in conditions with CBPS as the method used for PS analysis. It was also 

observed that conditions with GBR approached the WWC criterion with the largest sample size (𝑛 = 

5,000) by the use of type-W covariates. Nevertheless, none of the two conditions resulted in low AB 

values, and GBR’s AB values were the highest with the use of type-W covariates. Thus, these findings 

also support the fact that good mean-based covariate balance does not necessarily result in a less biased 

treatment effect estimate. 

Looking at the results with the use of type-Z covariates (correlated only with the treatment condition) a 

similar trend was observed, where CPBS had the uniformly low average ASAMD values and GBR 

approached the WWC’s criterion with the highest sample size. Nevertheless, the lowest AB was 

observed consistently for GBR, and surprisingly, the AB values were increased by the increase of the 

sample size. It is also worth noting that the average ASAMD values for LR were severely affected by 

the proportion of the treatment group when type-W and type-Z covariates were used. Related to this, 

LR was not the best performing method in terms of mean balance, compared to its good performance in 

terms of recovery of the treatment effect. This difference is more important for the use of type-W 

covariates. A potential explanation for this might be the simplicity of the LR method for computation 

of the PSs compared to CBPS and GBR. In other words, simple LR does not account for complex 

relationships during the balancing procedures as CBPS and GBR do. 

 

Variances  

Overall, GBR outperformed the other two PS estimation methods, producing better covariate balance 

with respect to variance ratio. This is not surprising because we set up GBR to derive PSs by evaluating 

the maximum of the balance matrices based on Kolmogorov-Smirnov statistic, which evaluates the 

difference in distribution shapes, as opposed to the difference in the means only. Exceptions were 

observed when the treatment group was 45% and 𝑛 = 5,000 for type-W (correlated with the outcome 

and treatment condition) and type-Z covariates (correlated only with the treatment condition), where 

CBPS produced slightly better variance ratios than GBR. Unlike the mean balance of covariates, it was 

clear that the variance balance was affected by the sample size (Figure 4). All three PS estimation 

methods provided better variance ratios in conditions with larger sample sizes. It was demonstrated that 

sample size mattered more for CBPS than the other two methods. 
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Figure 4. Covariate Balance on Variances 

 

Similar to mean balance results, it was revealed that a PS estimation method that provided good variance 

balance did not necessarily do the same for the estimation of the treatment effect. Based on this 

determination, we can summarize our findings under two main statements. First, similar to mean balance 

results, the variance ratios were generally better for the type-X covariates (correlated only with the 

outcome) than the type-W and type-Z covariates across all conditions. However, as pointed out in the 

previous section, type-X covariates did not produce better AB values for the recovery of the treatment 

effect. Second, although GBR generally provided better variance ratios compared to the other two 

methods, it did not perform as well, in terms of AB, as CBPS and LR under conditions with type-W 

covariates. Also, LR provided the worst variance ratios for all conditions with type-X covariates; 

however, in terms of recovery of the treatment effect, LR performed as well as CBPS and GBR in 

conditions with type-X covariates. Therefore, based on our simulation results, we cannot conclude that 

variance ratios provided additional information to identify less biased treatment effect. Nevertheless, 

they provide more information about covariate balance in addition to mean balance. 

 

DISCUSSION and CONCLUSION  

Based on the simulation results, obtaining good covariate balance in terms of mean and variance ratio 

is likely when covariates are correlated only with the outcome variable (i.e., type-X covariates). The 

average mean balance across all conditions for this covariate type was below 0.05 on the standardized 



Kara, Y., Kamata, A., Gallelogos, E., Patarapichayatham, C., Potgieter, C.J. / Covariate Balance as a Quality 

Indicator for Propensity Score Analysis 

________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

385 

scale, which meets the WWC criterion. The variance ratio for type-X covariates was consistently lower 

than other types of covariates in comparable conditions. However, the recovery of the treatment effect 

was not the best when only this type of covariates was used. Therefore, researchers/practitioners need 

to be cautious while using covariates that are mainly correlated with the outcome and not with the 

treatment assignment. Moreover, it is clear that in applied research that utilizes PS analysis, the true 

treatment effect will never be known. Thus, practitioners are encouraged to pay as much attention to the 

characteristics of the covariates as the level of balance they obtain after their selection. If the availability 

of the covariates is somewhat limited, practitioners can rely on the strengths of other PS estimation 

methods. For example, it was demonstrated that GBR provided slightly lower AB values when the 

covariates were the ones that only related to the treatment assignment. Nevertheless, we do not 

recommend solely relying on such an improvement since the bias values still were high in absolute 

values.  

Also, obtaining a good mean covariate balance is more likely when the CBPS method is used regardless 

of the covariate type used, whether covariates are correlated or not, sample size, and the proportion of 

the treatment group. In all of the conditions this study investigated, the mean balance met the WWC 

criterion with the CBPS. However, it was revealed that the magnitude of AB was affected more by the 

types of covariates used, as already implied above. When the CBPS was used with covariates that are 

correlated with the outcome variable and treatment condition (i.e., type-W covariates), AB was quite 

small, especially when covariates were correlated with each other. However, it is not only for the CBPS; 

LR performed equally well, and the performance of the GBR was just slightly worse than the CBPS and 

LR.  

Can an examination of the second moment (i.e., the variance ratio) help researchers/practitioners 

evaluate/predict the quality of an estimated treatment effect? Not likely. When the sample size was large, 

the variance ratio became very close to 1.05 for CBPS and GBR. However, this happened for all 

covariate types, including the ones that are correlated only with the treatment assignment (i.e., type-Z 

covariates). On the other hand, when the sample size was small (𝑛 = 500), variance ratios for CBPS 

and LR were large, up to 1.20 in the condition with correlated covariates with a 25% treatment group 

ratio. In conclusion, we can’t recommend that using VR as a complement to ASAMD will be strong 

enough to predict the performance of the PS methods that would lead to less bias of treatment effect 

estimation. Rather, practitioners should pay more attention to the characteristics of the covariates they 

are planning to use for the estimation of PSs rather than solely relying on the level of balance.  

It would not be wrong to say that CBPS can be suggested as the optimal method considering the general 

simulation conditions since it showed the best performance for the mean balance and better or nearly 

equal performance with two other methods for the recovery of the treatment effect. On the other hand, 

practitioners who mainly use type-X covariates would feel better by the good mean balance and variance 

ratio diagnostics they get. Nevertheless, they should be cautious about the estimation of the treatment 

effect since the type-W covariates (correlated both with the outcome and the treatment condition) 

showed better recovery results. In conclusion, it can be suggested to use covariates that are equally 

relevant to the treatment assignment and the outcome.  

 

Limitations and Future Research 

As explained in the methods section, specifications of the population values for the coefficients of 

different covariate types were somewhat arbitrary. It is likely that the results may change based on 

different specifications of those population values during the data generation phase. This is true for 

changing either the LR coefficients for the generation of the treatment indicator or the linear model for 

the generation of the outcome variable. Nevertheless, we tried to assign reasonable values for those 

parameters depending on their relation with the treatment condition and the outcome variable. We also 

checked other studies (e.g., Brookhart et al., 2006) as references for identifying typical values that are 

expected to be encountered in applied research. Also, data generation models did not assume any higher-

level terms (e.g., quadratic effects) or interactions between covariates.  
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The number of covariates were limited to eight in derivations of PSs. Although this number is realistic 

in many applications of PS analysis, a larger number of covariates may change the results. Also, our 

simulations investigated three different covariate types (i.e., type-W, type-X, and type-Z) in turn only, 

meaning none of our PSs were estimated using a combination of different covariate types. Although this 

does not sound realistic, we intentionally performed that in order to reveal the isolated effect of each 

covariate type. This also mimics the scenario where applied researchers miss using a specific type of 

covariates that potentially might change the results of the PS analyses.  

Although our study indicates that practitioners utilizing PS analysis should not rely on mean-based 

covariate balance, it is still unclear which diagnostic measure is ideal when conducting PS analysis. It 

could be that the ideal diagnostic measure depends on the method used to estimate the PSs (e.g., LR, 

GBR, CBPS) or on the approach used to apply the PSs (e.g., weighting, subclassification, etc.) in 

balancing treatment and control groups. The cobalt R package is able to work with the PS methods we 

explored in this study to provide weights. It could be that the “power” behind each method relies on 

using the weighting values generated from within each method rather than pulling the PSs to generate 

weights outside of each method. Future studies could investigate how different PS methods in 

combination with the cobalt R package generate weights and how these might affect covariate balance 

diagnostics and treatment effect bias. 

Last, this study systematically demonstrated the effect of various conditions on covariate balance and 

estimation of the treatment effect through a series of simulated data. While results were quite promising, 

an empirical data set was not analyzed. We believe that a real data set would be helpful to confirm our 

simulation findings. Therefore, an empirical data analysis can be considered in a future study by using 

various PS estimation methods. 
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