

ISSN: 2687-5713

Journal of Teacher Education and Lifelong Learning (TELL)

Volume: 3 Issue: 2 December 2021

International Refereed Journal

Owner & Editor in Chief

Dr. Ertuğrul USTA

Necmettin Erbakan University

ertugrulusta@gmail.com

 Journal Secreteria

Veysel Bilal ARSLANKARA

vbilalarslankara@gmail.com

Language Editor

Handan ATUN

handanatun@gmail.com

Correspondence Address

 Necmettin Erbakan Üniversitesi
Ahmet KeleĢoğlu Eğitim Fakültesi A-Blok-127

Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü
42090 Meram, KONYA TURKEY

Phone: 0 332 323 82 20-5626

Publication Type: Periodical

Journal Web: https://dergipark.org.tr/tr/pub/tell

 Journal E-mail: jotell2023@gmail.com

mailto:ertugrulusta@gmail.com
mailto:vbilalarslankara@gmail.com
mailto:vbilalarslankara@gmail.com
https://dergipark.org.tr/tr/pub/tell

Editorial and Advisory Board

Dr. Ağah Tuğrul KORUCU, Necmettin Erbakan University
Dr. Ahmet MAHĠROĞLU, Gazi University

Dr. Ahmet ġĠMġEK, Ġstanbul University CerrahpaĢa
Dr. Angeliki LAZARĠDOU, University of Thessaly

Dr. Arif ALTUN, Hacettepe University
Dr. Aykut Emre BOZDOĞAN, Tokat GaziosmanpaĢa University

Dr. Deniz ESERYEL, North Carolina State University
Dr. Ebba OSSĠANNĠLSSON, ICDE Ambassador for the global advocacy of OER

Dr. Fatih KALECĠ, Necmettin Erbakan Universtiy
Dr. H. Ferhan ODABAġI, Anadolu University

Dr. Hafize KESER, Ankara University
Dr. Hakan TÜRKMEN, Ege University

Dr. Halil Ġbrahim YALIN, International Kıbrıs University
Dr. Halil TOKCAN, Niğde Ömer Halis Demir University

Dr. Hayati AKYOL, Gazi University
Dr. Jesus Garcia LABORDA, Universidad de Alcala

Dr. Mukaddes ERDEM, Hacettepe University
Dr. Oktay AKBAġ, Kırıkkale University

Dr. Özgen KORKMAZ, Amasya University
Dr. Recep ÇAKIR, Amasya University

Dr. Sami ġAHĠN, Gazi Universtiy
Dr. Selcan KĠLĠS, Giresun University

Dr. Selda ÖZDEMĠR, Hacettepe University
Dr. Soner Mehmet ÖZDEMĠR, Mersin University

Dr. Süleyman Sadi SEFEROĞLU, Hacettepe University
Dr. Süleyman YAMAN, Ondokuz Mayıs University

Dr. Tolga GÜYER, Gazi University
Dr. Yakut GAZĠ, Georgia State University

Dr. Yüksel DEDE, Gazi University

Dr. Yüksel GÖKTAġ, Ataturk University

Reviewers of The Issue

Dr. Fatih Saltan, Amasya Üniversitesi
Dr. Seyfullah Gökoğlu, Kastamonu Üniversitesi

TELL is indexed by EBSCO ABSTRACT, Turkish Education Index, ASOS Index,
Google Scholar and idealonline.

CONTENTS

Ali Oluk & Recep Çakır

The Effect of Code. Org Activities on Computational
Thinking and Algorithm Development Skills

31-40

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

The Effect of Code.Org Activities on Computational Thinking and

Algorithm Development Skills

Ali Oluk 1 Recep ÇAKIR 2

1 Amasya University, Faculty of Education, CEIT, Amasya, Turkey

alioluk85@gmail.com
2 Amasya University, Faculty of Education, CEIT, Amasya, Turkey

recepcakir@gmail.com

Article Info ABSTRACT

Article History

Received: 30/06/2021

Accepted: 26/11/2021

Published: 31/12/2021

With the sub-skills covered, there are many studies aimed at providing students with computational thinking

skills that are known to be an important skill for today's students. In this study, it is aimed to investigate the
effect of code.org applications on the development of computational thinking and algorithm development

skills of the students. In this study, quasi experimental research design with pre-test and post-test control

group was used. A total of 67 middle school of 6th grade students, 32 of who were in the control group and 35
in the experimental group, participated in the study. The study was planned to cover 6 weeks of information

technology and software courses with students. The course was enriched with the applications in Code.Org

site for the experimental group students. The control group was treated appropriately course curriculum to
their students. In the study, the scale of computational thinking skill levels and algorithm development

achievement test were applied to the students as pre-test and post-test. When the data obtained in the study is

examined, it is seen that there is no significant difference between the pre-test results of algorithm
development achievement test and computational thinking skill levels scale. However, when the differences

between pre-test and post-test scores of both tests were examined, it was seen that there was a significant

difference in favor of the experimental group. As a result, it can be said that code.org applications used by
experimental group students have positive effect on developing algorithms and computational thinking skills

of students.

Keywords:

Computational

Thinking,

Code.Org,

Algorithm

Development.

Citation: Oluk, A. & Çakır, R. (2021). The effect of code.org activities on computational thinking and algorithm

development skills. Journal of Teacher Education and Lifelong Learning, 3(2), 32-40.

 “This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)”

Cilt: 3 Sayı:2 Yıl: 2021 Research Article ISSN: 2687-5713

https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007
https://orcid.org/0000-0002-2246-7563
https://orcid.org/0000-0002-2641-5007

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

INTRODUCTION

The world around us is changing rapidly, and countries are updating their education systems to

keep up with that change. Today, students are expected to develop skills that were not even heard of in

the past. Computational thinking is one of those skills, which has been introduced to curricula over the

past years. Researchers predict that computational thinking will be one of the fundamental skills (e.g.,

reading, writing, and basic math) by mid 21st century (Wing, 2006; Wing, 2014).

Therefore, every student needs to acquire computational thinking skills (Barr & Stephenson,

2011; Grover & Pea, 2013). However, getting students to develop computational thinking skills

presents challenges to education systems (Wing, 2008). To overcome those challenges, many countries

update their education systems and broaden their curricula to include activities tailored to computational

thinking skills (Angeli & Valanides, 2019; Grover & Pea, 2013; León & Robles, 2015). Some examples

are the computer science curriculum in the USA (Collage Board, 2013; Collage Board, 2016); four-tier

curriculum for 5-16-year-olds in the UK (Department for Education, 2013; Royal Society, 2012); and

the information technology and software (ITS) course (MEB, 2017a) and the computer science course

(MEB, 2017b) in Turkey.

Computational thinking is a critical skill because it helps students recognize and solve problems

(Czerkawski & Lyman, 2015). However, computational thinking is a multidimensional concept that

involves algorithmic thinking, critical thinking, communication, cooperative learning, and creative

thinking (ISTE, 2015; Korkmaz et al., 2017; İbili et al., 2020; Yağcı, 2019). Students today are

expected to develop those subskills as well (Günüç, Odabaşı & Kuzu, 2013). Therefore, we should

provide students with programming education to help them acquire creative thinking, critical thinking,

and problem-solving skills (Akpınar & Altun, 2014; Karabak & Güneş, 2013; Monroy-Hern´andez &

Resnick, 2008; Shin et al., 2013;). In other words, programming education is a powerful tool by which

students can develop computational thinking skills (Lye & Koh, 2014; Oluk & Korkmaz, 2016; Oluk et

al., 2018; Sayın, 2020).

Programming education is challenging for beginners, and therefore, it is more suited to students

with a certain level of proficiency in algorithms and coding (Genç & Karakuş, 2011). However, some

visual software programs (e.g., Code.org, Microsoft Small Basic, Scratch, and Alice) allow less code-

savvy students to learn to program easily (Çatlak et al., 2015; Yılmaz, 2019). Code.org is designed to

help anyone learn basic programming in an easy and fun way (Demirer & Sak, 2016). Teachers can use

Code.org to teach beginners how to code (Yecan et al., 2017). It is already a popular tool commonly

used in block-based and computerless coding activities (Sayın, 2020).

Funded by big companies (Microsoft, Facebook, and Google), Code.org was launched in 2013 to

promote computer science education (Code.Org, 2019). Code.org is a website where anyone interested

in programming can learn how to code by completing activities and drag-and-drop tasks for all levels.

The website also allows teachers to monitor their students’ progress and provides a certificate to those

who complete all stages of training.

There is a large body of research investigating the relationship between computational thinking

skills and programming education (Atmatzidou & Demetriadis, 2016; Bers et al., 2014; Brennan &

Resnick, 2012; Lye & Koh, 2014; León & Robles, 2015; Oluk & Korkmaz, 2016; Oluk et al., 2018).

Oluk and Korkmaz (2016) gave fifth graders block-based programming education within the scope of

the ITS course. They concluded that students who developed programming skills were more likely to

acquire computational thinking skills. Oluk et al. (2018) determined that Scratch, a block-based visual

programming language, helped fifth graders develop computational thinking skills. Atmatzidou and

Demetriadis (2016) also found that robotic coding education helped students pick up computational

thinking skills. Therefore, research shows that educators often provide programming education to help

students learn computational thinking skills.

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

Computational thinking skills are a prerequisite not only for people interested in computer science

but for all those interested in other branches of science (Guzdial, 2008; Korkmaz el al., 2015; Yadav et

al., 2014). Research shows that programming education plays a crucial role in developing

computational thinking skills (Lye & Koh, 2014). People with high-level thinking and problem-solving

skills are more likely to pick up programming skills (Yükseltürk & Altıok, 2015). However, such

people need to know the logic of algorithms to be able to acquire those skills. Therefore, programming

teaching involves algorithms and flowcharts (Köse & Tüfekçi, 2015).

Code.org is a promising tool for programming education. This paper investigated whether

Code.org helped beginner students develop computational thinking and algorithm development skills.

Studies address different aspects of computational thinking. For example, they define the concept

(Bundy, 2007; Voogt et al., 2015; Wing, 2006; Wing, 2011), focus on the evolution of computational

thinking research (Kalelioğlu et al., 2016; Şahiner & Kert, 2016), incorporate it into curricula (Barr &

Stephenson, 2011; Lye & Koh, 2014), examine its relationship with computer science and other

sciences (Barcelos & Silveira, 2012; Czerkawski & Lyman, 2015; Liu & Wang, 2010; Mishra & Yadav,

2013; Orton et al., 2016; Weintrop et al., 2016), and programming (Atmatzidou & Demetriadis, 2016;

Brennan & Resnick, 2012; Bers et al., 2014; Oluk & Korkmaz, 2016). This is the first experimental

study to look into the effect of Code.org activities on computational thinking and algorithm

development skills in secondary school students. The research questions are as follows:

1. Do Code.org activities help secondary school students develop computational thinking skills?

2. Do Code.org activities help secondary school students develop algorithm development skills?

METHOD

This quantitative study adopted a quasi experimental pretest-posttest control group design, which

is employed to determine the effect of an intervention on dependent variables. The intervention in this

study was a set of Code.org activities within the scope of the ITS course. The activities had three

learning outcomes: (1) learning the logic of algorithm development, (2) choosing the right algorithm,

and (3) editing faulty algorithms. The experimental group took part in the Code.org activities, while the

control group received education according to the current curriculum.

Study Group

The sample consisted of 67 sixth graders divided into two groups: experimental (n=35; 18 girls

and 17 boys) and control (n=32; 16 girls and 16 boys). Table 1 shows the gender distribution of the

groups.

Table 1. Gender distribution by groups

Group

Gender

Girl

N %

Boy

N %

Total

N

Control 16 50 16 50 32

Experimental 18 51.4 17 48.6 35

Total 34 50.7 33 49.3 67

Procedure

The information technology and software course was a 2-hour course for sixth graders. The

experimental group participated in Code.org activities within the scope of the ITS course for six weeks.

The control group did class based on the current curriculum involving lecturing and practicing examples

on the board.

The Code.org activities focused on the basics of algorithms, such as conditions, variables, loops,

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

and nested loops. The experimental group participants were handed out pieces of paper for

computerless activities. They completed the computer-based activities in a computer lab.

The teacher provided the control group participants with examples of algorithms and flow

diagrams and delivered the lectures based on the current curriculum. The participants solved the

examples in front of the class so that all students could follow the process.

The experimental group participants performed the computerless and computer-based activities in

the “Introduction to Computer Science- Express Course” on code.org. Each activity has an example

situation, blocks, and a workspace to move the blocks to. When clicking the run button, the user can

drag and drop the blocks to make the program run. When clicking the “show code” button, the user can

see the assembled blocks in JavaScript. These activities aim to help users acquire fundamental

algorithm skills in a progressive fashion.

Research Instruments and Processes

The information technology and software course was a 2-hour course for sixth graders. The

experimental group participated in Code.org activities within the scope of the ITS course for six weeks.

The control group did class based on the current curriculum involving lecturing and practicing examples

on the board.

The Code.org activities focused on the basics of algorithms, such as conditions, variables, loops,

and nested loops. The experimental group participants were handed out pieces of paper for

computerless activities. They completed the computer-based activities in a computer lab.

The teacher provided the control group participants with examples of algorithms and flow

diagrams and delivered the lectures based on the current curriculum. The participants solved the

examples in front of the class so that all students could follow the process.

The experimental group participants performed the computerless and computer-based activities in

the “Introduction to Computer Science- Express Course” on code.org. Each activity has an example

situation, blocks, and a workspace to move the blocks to. When clicking the run button, the user can

drag and drop the blocks to make the program run. When clicking the “show code” button, the user can

see the assembled blocks in JavaScript. These activities aim to help users acquire fundamental

algorithm skills in a progressive fashion.

Computational Thinking Skill Levels Scale

The Computational Thinking Skill Levels Scale (CTSLS) was used as a pretest-posttest. The

instrument was developed by Korkmaz et al. (2015) to determine secondary school students’

computational thinking skill levels. The instrument consists of four subscales (problem-solving, critical

thinking, creativity, collaboration and algorithmic thinking) and 22 items scored on a five-point Likert-

type scale. The CTSLS has item test correlation coefficients of 0.655 to 0.862 and regression values of

0.507 to 0.872. These values indicate that the CTSLS is a valid and reliable instrument to assess

computational thinking skills.

Algorithm Development Achievement Test

The Algorithm Development Achievement Test (ADAT) was developed by Oluk, Korkmaz, and

Oluk (2018) to measure three algorithm-related skills: (1) comprehending the logic of algorithms, (2)

choosing the best algorithm, and (3) editing faulty algorithms. ADAT consists of 20 items. It has an

item discrimination index of 0.33 to 0.48, an item difficulty index of 0.66, and a KR-20 internal

consistency coefficient of 0.85 (Oluk et al., 2018).

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

Data Analysis

The data were analyzed using the Statistical Package for Social Sciences (SPSS). First, a

normality test was conducted. The results showed that the data were normally distributed. Second, an

independent groups t-test was used to determine the differences in CTSLS and ADAT scores between

the groups.

RESULTS

CTSLS and ADAT Pretest Scores

An independent t-test was used to determine whether there was a significant difference in CTSLS

pretest scores between the groups. Table 2 shows the results.

Table 2. CTSLS pretest scores

Group N X S Sd t P

Experimental 35 85.66 16.95 65 1.15 .254

Control 32 89.94 13.03

There was no statistically significant difference in CTSLS pretest scores between the

experimental (X =85.66) and control (X =89.94) groups [t(65)=1.15, p>.05] (Table 2).

An independent sample t-test was performed to determine whether there was a significant

difference in ADAT pretest scores between the groups. Table 3 shows the results.

Table 3. ADAT pretest scores

Group N X S Sd t P

Experimental 35 26.71 13.00 65 1.46 .149

Control 32 22.19 12.31

There was no statistically significant difference in ADAT pretest scores between the experimental

(X =26.71) and control (X =22.19) groups [t(65)=1.46, p>.05] (Table 3).

Algorithm Development Skills

There was no statistically significant difference in ADAT pretest scores between the groups.

Therefore, improvement scores (posttest score minus pretest score) were calculated, and then, between-

group differences were determined using an independent t-test. Table 4 shows the results.

Table 4. Analysis of ADAT improvement scores

Group N X S Sd t P

Experimental 35 38.91 8.67 65 5.21 .000

Control 32 51.14 10.53

The experimental group had a significantly higher ADAT improvement score (X =51.14) than

the control group (X =38.91) [t(65)=5.21, p<.01] (Table 4). This result showed that the Code.org

activities were better at helping students develop algorithm development skills than the current

curriculum.

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

Computational Thinking Skills

An independent t-test was used to determine whether there was a statistically significant

difference in CTSLS improvement scores between the groups. Table 5 shows the results.

Table 5. Analysis of CTSLS improvement scores subscale

 Group N X S Sd t P

Creativity
Experimental 35 35 1.80 3.79 65 0.51

Control 32 32 1.38 2.88

Algorithmic thinking
Experimental 35 2.46 3.68 65 2.22 .000

Control 32 0.72 2.58

Collaboration
Experimental 35 3.03 3.90 65 2.01 .04

Control 32 1.31 3.06

Problem-solving
Experimental 35 1.94 3.78 65 0.76 .45

Control 32 1.28 3.35

Critical thinking

Experimental 35 3.45 5.90 65 2.92 .005

Control 32 -1.94 9.04

Total
Experimental 35 12.69 12.68 65 3.42 .001

Control 32 2.75 10.97

The experimental group had a significantly higher CTSLS improvement score (X =12.69) than

the control group (X =2.75) [t(65)=3.42 p<.05]. There was no statistically significant difference in

CTSLS “creativity” improvement scores between the experimental (X =1.80) and control groups (X

=1.38) [t(65)=0.51 p>.05]. The experimental group had a significantly higher CTSLS “algorithmic

thinking” improvement score (X =2.46) than the control group (X =0.72) [t(65)=0.03 p<.05]. The

experimental group had a significantly higher CTSLS “collaboration” improvement score (X =3.03)

than the control group (X =1.31) [t(65)=0.04 p<.05]. There was no statistically significant difference in

CTSLS “problem-solving” improvement scores between the experimental (X =1.94) and control

groups (X =1.28) [t(65)=0.45 p>.05]. The experimental group had a significantly higher CTSLS

“critical thinking” improvement score (X =3.45) than the control group (X =-1.94) [t(65)=0.005

p>.05] (Table 5).

CONCLUSION AND DISCUSSION

There was no statistically significant difference in ADAT pretest scores between the experimental

and control groups. However, the experimental group had a significantly higher ADAT improvement

score (posttest score minus pretest score) than the control group. This result showed that the Code.org

activities were better at helping students develop algorithm development skills than the current

curriculum. Visual programming tools are easy tools for teaching concepts, such as logical structures,

loops, and variables (Yükseltürk & Altıok, 2016). Code.org is a useful tool for beginners (Yecan et al.,

2017). It helps users learn the logic of algorithms and algorithm-related concepts (e.g., condition, loop,

and variable) (Code.org, 2019). Code.org is popular among teachers interested in teaching their students

the logic of algorithms (Dönmez Usta & Turan Güntepe, 2019). Code.org also helps students learn how

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

to figure out coding problems (Arfe et al., 2020). Therefore, we can state that Code.org provides

students with the opportunity to develop algorithm development skills.

There was no significant difference in CTSLS pretest scores between the experimental and

control groups. However, the experimental group had significantly higher CTSLS posttest scores than

the control group. This result showed that the Code.org activities helped students develop

computational thinking skills. Research, in general, shows that students who learn to program are more

likely to develop computational thinking skills (Lye & Koh, 2014; Oluk et al., 2018; Rijke et al., 2018).

For example, Brennan and Resnick (2012) used a drag-and-drop programming tool to help students

acquire computational thinking skills. The researchers concluded that the students who participated in

the programming activities had higher computational thinking skills than those who did not. Oluk et al.

(2018) also found that block-based programming tools helped students develop computational thinking

skills. Oluk and Korkmaz (2016) provided students with a training program in which they used a visual

programming tool to develop a project. The researchers determined that the training program improved

the participants’ computational thinking skills. As part of the “Coding Week” in Turkey, teachers from

different branches offer programming training to their students, who find a chance to take part in

activities tailored to computational thinking skills (Sayın, 2020). All these results indicate that

programming education and block-based programming tools help students develop computational

thinking skills.

Code.org is a drag-and-drop programming tool used to teach students of all ages the fundamentals

of programming and computation. Our results show that code.org activities help students develop

computational thinking and algorithm development skills. Therefore, we think that activities on

algorithm development skills within the scope of the ITS course should be integrated with block-based

drag-and-drop programming tools (e.g., Code.org) to provide students with the opportunity to acquire

computational thinking skills as well. We also think that young students should be encouraged to use

block-based programming tools to develop algorithm development skills so that they can put those

skills into practice in text-based programming languages. All courses should incorporate appropriate

programming tools to allow students to improve their computational thinking skills.

REFERENCES

Akpınar, Y., & Altun, A. (2014). Bilgi Toplumu Okullarında Programlama Eğitimi Gereksinimi. İlköğretim Online,

13(1), 1-4.

Angeli, C., & Valanides, N. (2019). Developing young children’s computational thinking with educational robotics: An

interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105(2020), 1-13.

Arfe, B., Vardanega, T. & Ronconi, L. (2020). The effects of coding on children’s planning and inhibition skills.

Computers Education, 148(2020), 1-16.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing Student' Computational Thinking Skills Through Educational

Robotics: A Study On Age And Gender Relevant Differences. Robotics and Autonomous System, 75(2016), 661-

670.

Barcelos, T., & Silveira, I. (2012). Teaching computational thinking in initial series an analysis of the confluence

among mathematics and computer sciences in elementary education and its implications for higher education.

Conferencia Latinoamericana En Informatica, Medellin, Colombia.

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What is the Role

of the Computer Science Education Community? ACM In Roads, 2(1), 48-54.

Bers, M., Flannery, L., Kazakoff, E., & Sullivan, A. (2014). Computational Thinking and Tinkering: Exploration of an

Early Childhood Robotics Curriculum. Computer & Education, 72(2014), 145-157.

Brennan, K., & Resnick, M. (2012). New Frameworks For Studying And Assessing The Development of

Computational Thinking. American Educational Research Association, Vancouver, Canada.

Bundy, A. (2007). Computational Thinking Is Pervasive. Journal of Scientific and Practical Computing, 1(2), 67-69.

Code.Org Hakkında. Code Org. Retrived November 15, 2019, from https://code.org/international/about

Czerkawski, B., & Lyman, E. (2015). Exploring Issues About Computational Thinking in Higher Education.

TechTrends, 59(2), 57-65.

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

Çatlak, Ş., Tekdal, M., & Baz, F. (2015). Scratch Yazılımı İle Programlama Öğretiminin Durumu: Bir Döküman

İnceleme Çalışması. Journal of Instructional Technologies & Teacher Education, 4(3), 13 - 25.

Demirer, V., ve Sak, N. (2016). Programming education and new approaches around the world and in Turkey/Dünyada

ve Türkiye'de programlama eğitimi ve yeni yaklaşımlar. Eğitimde Kuram ve Uygulama, 12(3), 521-546.

Department For Education. (2013). Computing programmes of study: key stages 1 and 2 National curriculum in

England. Retrieved February 12, 2017, https://www.gov.uk/government/publications/national-curriculum-in-

england-computing-programmes-of-study

Dönmez Usta, N. ve Turan Güntepe, E. (2019). Bilişim Teknolojileri Rehber Öğretmenlerinin Programlama Araçlarına

İlişkin Deneyimlerinin İncelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 373-396.

Genç, Z. ve Karakuş, S. (2011). Tasarımla öğrenme: Eğitsel bilgisayar oyunları tasarımında Scratch kullanımı. 5.

Internatiol Computer & Instructional Technologies Symposium, Fırat Üniversitesi, Elazığ.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Guzdial, M. (2008). Education Paving the Way for Computational Thinking. Communications Of The ACM, 51(8), 25-

27.

Günüç, S., Odabaşı, H., & Kuzu, A. (2013). 21. Yüzyıl Öğrenci Özelliklerinin Öğretmen Adayları Tarafından

Tanımlanması: Bir Twitter Uygulaması. Eğitimde Kuram ve Uygulama, 9(4), 436-455.

ISTE. (2015). Retrieved February 12, 2015, http://www.iste.org/docs/ct-documents/ctleadershipt-toolkit.pdf?sfvrsn=4.

İbili, E., Günbatar, M. S., & Sırakaya, M. (2020). Bilgi-işlemsel düşünme becerilerinin incelenmesi: Meslek liseleri

örneklemi. Kastamonu Education Journal, 28(2), 1055-1067.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic

research review. Baltic Journal of Modern Computing, 4(3), 583-596.

Karabak, D., & Güneş, A. (2013). Ortaokul Birinci Sınıf Öğrencileri için Yazılım Geliştirme Alanında Müfredat

Önerisi. Eğitim ve Öğretim Araştırma Dergisi, 2(3), 175-181.

Korkmaz, Ö., Çakır, R., & Özden, M. (2015). Bilgisayarca Düşünme Beceri Düzeyleri Ölçeğinin (BDBD) Ortaokul

Düzeyine Uyarlanması. Gazi Eğitim Bilimleri Dergisi, 1(2), 143-162.

Köse, U.,& Tüfekçi, A. (2015). Algoritma ve Akış Şeması Kavramlarının Öğretiminde Akıllı Bir Yazılım Sistemi

Kullanımı. Pegem Eğitim ve Öğretim Dergisi, 5(5), 569-586.

León, J., & Robles, G. (2015). Analyze Your Scratch Projects With Dr. Scratch And Assess Your Computational

Thinking Skills. 7th International Scratch Conferance, Amsterdam, Netherlands.

Liu, J., & Wang, L. (2010). Computational Thinking in Discrete Mathematics. Second International Workshop on

Education Technology and Computer Science, 2010(1). 413-416.

Lye, S., & Koh, J. (2014). Review On Teaching And Learning Of Computational Thinking Through Programing: What

Is NextFor K - 12?,Computers In Human Behavior, 51-61.

MEB. (2017 a). Bilişim Teknolojileri ve Yazılım Dersi Öğretim Programı. Retrieved February 12, 2017,

http://mufredat.meb.gov.tr/Default.aspx

MEB. (2017 b). Bilgisayar Bilimi Dersi Öğretim Programı Kur1 - Kur2. Retrieved February 12, 2017,

http://ttkb.meb.gov.tr/www/ogretim-programlari/icerik/72

Mishra, P., & Yadav, A. (2013). Of Art and Algorithms: Rethinking Technology & Creativity in the 21st Centruy.

TechTrends, 57(3), 10-14.

Monroy-Hernández, A., & Resnick, M. (2008). Feature empowering kids to create and share programmable

media. Interactions, 15(2), 50-53.

Oluk, A., & Korkmaz, Ö. (2016). Comparing Students’ Scratch Skills with Their Computational Thinking Skills in

Terms of Different Variables. I.J. Modern Education and Computer Science, 8(11), 1-7.

Oluk, A., Korkmaz, Ö., & Oluk, H. A. (2018). Scratch’ın 5. sınıf öğrencilerinin algoritma geliştirme ve bilgi-işlemsel

düşünme becerilerine etkisi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 9(1), 54-71.

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., & Wilensky, U. (2016). Bringing Computational Thinking

Into High School Mathmatics and Science Clasrooms. ICLS 2016 Proceedings, (s. 705-712).

Rijke, W. J., Bollen, L., Eysink, T. H. S., & Tolboom, J. L. J. (2018). Computational thinking in primary school: An

examination of abstraction and decomposition in different age groups. Informatics in Education, 17(1), 77–92.

Royal Society. (2012). Shut Down Or Restart? The Way Forward For Computing In UK Scholls. London: The Royal

Academy Of Engineering.

Sayın, Z. (2020). Öğretmenlerin Kodlama Eğitiminde Eğilimlerinin Belirlenmesi. Öğretim Teknolojileri ve Öğretmen

Eğitimi Dergisi, 9(1), 52-64.

 Shin, S., Park, P., & Bae, Y. (2013). The Effects of an Information-Technology Gifted Program on Friendship Using

Scratch Programming Language and Clutter. International Journal of Computerand Communication Engineering,

Journal of Teacher Education and Lifelong Learning Volume: 3 Issue: 2 2021

2(3), 246-249.

Şahiner, A., & Kert, S. (2016). Komputasyonel Düşünme Kavranı ile İlgili 2006 - 2015 Yılları Arasındaki Çalışmaların

İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 5(9), 38-43.

The Collage Board. (2013). Retrieved February 12, 2016, http://www.csprinciples.org/home/about-the-

project/docs/csp-cf-2013.pdf?attredirects=0&d=1

The Collage Board. (2016). AP Computer Science Principles Including the Cirriculum Framework. Retrieved February

12, 2016, https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-

exam-description.pdf

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:

Towards an agenda for research and practice. Educ Inf Techno, 20(2015), 715-728.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining Computational Thinking

for Mathmatics and Science Classrooms. J Sci Educ Technol, 25(1), 127-147.

Wing, J. M. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in Computing,

2014.

Wing, J. (2011). Computational Thinking: What and Why? The Link Magazine, 6, 20-23Wing, J.

(2006). Computational Thinking. Commun. ACM, 33-35.

Wing, J. (2008). Computational Thinking and Thinking About Computing. Phil. Trans. R. Soc. A, 3717-3725,

doi:10.1098/rsta.2008.0118.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. (2014). Computational Thinking in Elementary and

Secondary Teacher Education. ACM Transactions on Computing Education, 14(1), 1-5.

Yağcı, M. (2019). A valid and reliable tool for examining computational thinking skills. Education and

InformationTechnologies, 24(1), 929-951.

Yecan, E., Özçınar, H., & Tanyeri, T. (2017). Bilişim Teknolojileri Öğretmenlerinin Görsel Programlama Öğretimi

Deneyimleri. İlköğretim Online, 16(1), 377-393.

Yılmaz, Ş. (2019). Scratch programı öğretiminde birlikte öğrenme tekniği kullanımının öğrencilerin akademik

başarısına ve öz yeterlik algısına etkisi. Unpublished Master Dissertation, Afyon Kocatepe Üniversitesi, Fen

Bilimleri Enstitüsü, Afyon.

Yükseltürk, E., & Altıok, S. (2015). Bilişim Teknolojileri Öğretmen Adaylarının Bilgisayar Programlama Öğretimine

Yönelik Görüşleri. Amasya Üniversitesi Eğitim Fakültesi Dergisi, 4(1), 50-65.

Yükseltürk, E., ve Altıok, S. (2016). Bilişim teknolojileri öğretmen adaylarının programlama öğretiminde Scratch

aracının kullanımına ilişkin algıları. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 12(1), 39-52.

