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Solvability of a Three-Dimensional System of

Nonlinear Difference Equations

Merve Kara

Abstract
In this paper, we solve the following three-dimensional system of difference equations

xn =
yn−4zn−5

yn−1 (an + bnzn−2xn−3yn−4zn−5)
,

yn =
zn−4xn−5

zn−1 (αn + βnxn−2yn−3zn−4xn−5)
,

zn =
xn−4yn−5

xn−1 (An +Bnyn−2zn−3xn−4yn−5)
, n ∈ N0,

where the sequences (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

, (An)n∈N0
, (Bn)n∈N0

and the initial values
x−j , y−j , j = 1, 5, are real numbers. In addition, the constant coefficients of the mentioned system is
solved in closed form. Finally, we also describe the forbidden set of solutions of the system of difference
equations.

Keywords: System of difference equations; Closed-form; Forbidden set.

AMS Subject Classification (2020): Primary: 39A10 ; Secondary: 39A20; 39A23.

1. Introduction

Difference equations emerge from generation functions, numerical solutions of differential equations or mathe-
matical models of physical events. Therefore, difference equations or systems of difference equations are important
for many researchers. Because they use them in economics, physics, biology, engineering. Especially, mathemati-
cians are interested in system of difference equations or difference equations [1–8, 10–18, 20–22, 25–39]. For example,
the difference equation

xn+1 =
xn−3xn−4

xn (±1± xn−1xn−2xn−3xn−4)
, n ∈ N0, (1.1)

was studied in [9]. Elsayed have shown that this difference equation can be solved in closed form by using the
method of induction.
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In addition, Stević found the general solution of following extension of difference equations (1.1)

xn+1 =
xn−3xn−4

xn (a+ bxn−1xn−2xn−3xn−4)
, n ∈ N0, (1.2)

where the parameters a, b and the initial values x−j , j = 0, 4, are complex numbers in [24].
The authors of [19] found formulas for exact solutions of the following equations

xn+1 =
xn−3xn−4

xn (an + bnxn−1xn−2xn−3xn−4)
, n ∈ N0, (1.3)

where an and bn are real sequences.
Moreover, in [40], the following system of difference equations

xn =
xn−4yn−5

yn−1 (an + bnxn−2yn−3xn−4yn−5)
, yn =

yn−4xn−5

xn−1 (αn + βnyn−2xn−3yn−4xn−5)
, n ∈ N0, (1.4)

was solved by Yazlik and Kara where the sequences (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

and the initial values
x−i, y−i, i = 1, 5, are real numbers. Further, we investigated asymptotic behavior and periodicity of solutions of
system (1.4) when all sequences are constant.
In this paper, we study the following system of difference equations

xn =
yn−4zn−5

yn−1 (an + bnzn−2xn−3yn−4zn−5)
,

yn =
zn−4xn−5

zn−1 (αn + βnxn−2yn−3zn−4xn−5)
,

zn =
xn−4yn−5

xn−1 (An +Bnyn−2zn−3xn−4yn−5)
, n ∈ N0, (1.5)

where the sequences (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

, (An)n∈N0
, (Bn)n∈N0

and the initial values x−j , y−j ,
j = 1, 5, are real numbers. System (1.5) is a generalization of equation (1.1), equation (1.2), equation (1.3) and
system (1.4). Our aim in this paper is to show that system (1.5) is solvable in closed form by using the method of
transformation. In addition, the forbidden set of initial values for solutions of system (1.5) is described. Then, for
the case when all the coefficients are constant, solutions of system (1.5) are obtained.

Lemma 1.1. [23] Let (an)n∈N0
and (bn)n∈N0

be two sequences of real numbers and the sequences ykm+i, i = 0, k − 1, be
solutions of the equations

ykm+i = akm+iyk(m−1)+i + bkm+i, m ∈ N0. (1.6)

Then, for each fixed i = 0, k − 1 and m ≥ −1, equation (1.6) has the general solution

ykm+i = yi−k

m∏

j=0

akj+i +
m∑

s=0

bks+i

m∏

j=s+1

akj+i.

Further, if (an)n∈N0
and (bn)n∈N0

are constant and i = 0, k − 1, m ≥ −1, then

ykm+i =

{
am+1yi−k + b 1−am+1

1−a
, if a 6= 1,

yi−k + b (m+ 1) , if a = 1.

2. Closed-Form Solutions of System (1.5)

In this section, we show that the system (1.5) is solvable in closed form. We will deal only with well-defined
solutions to system (1.5). Hence, we assume that

xn 6= 0, yn 6= 0, zn 6= 0, n ≥ −5,

and

an + bnzn−2xn−3yn−4zn−5 6= 0, αn + βnxn−2yn−3zn−4xn−5 6= 0, An +Bnyn−2zn−3xn−4yn−5 6= 0, n ∈ N0.
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Let {(xn, yn, zn)}n≥−5 be solutions of system (1.5). If at least one of the initial values x−k, y−k, z−k, k = 1, 5 is equal
to zero, then the solutions of system (1.5) is not defined. For instance, if x−5 = 0, then y0 = 0 and so x1 is not
defined. Similarly, if y−5 = 0 (or z−5 = 0) then z0 = 0 (or x0 = 0) and so y1 (or z1) is not defined. For k = 1, 4, the
other cases are similar.
On the other hand, if xn1

= 0 (n1 ∈ N0), xn 6= 0, for every n < n1. Then according to the first equation in (1.5) we
get that yn1−4 = 0 or zn1−5 = 0. If yn1−4 = 0, then according to the second equation in (1.5) we get that zn1−8 = 0.
If zn1−5 = 0, then according to the third equation in (1.5) we get that yn1−10 = 0. Repeating this procedure, we
have a i1 ∈ {1, 2, 3, 4, 5} such that y−i1 = 0 or z−i1 = 0. Similarly, if yn2

= 0 (n2 ∈ N0), yn 6= 0, for every n < n2.
Then according to the second equation in (1.5) we get that zn2−4 = 0 or xn2−5 = 0. If zn2−4 = 0, then according to
the third equation in (1.5) we get that xn2−8 = 0. If xn2−5 = 0, then according to the first equation in (1.5) we get
that zn2−10 = 0. Repeating this procedure, we have a i2 ∈ {1, 2, 3, 4, 5} such that z−i2 = 0 or x−i2 = 0. If zn3

= 0
(n3 ∈ N0), zn 6= 0, for every n < n3. Then according to the third equation in (1.5) we get that xn3−4 = 0 or yn3−5 = 0.
If xn3−4 = 0, then according to the first equation in (1.5) we get that yn3−8 = 0. If yn3−5 = 0, then according to the
second equation in (1.5) we get that xn3−10 = 0. Repeating this procedure, we have a i3 ∈ {1, 2, 3, 4, 5} such that
x−i3 = 0 or y−i3 = 0. Repeating this procedure we find a i ∈ {1, 2, 3, 4, 5} such that x−i = 0 or y−i = 0 or z−i = 0.
As we have proved above, such solutions are not defined. Hence, of some interest is the case when

xn 6= 0, yn 6= 0, zn 6= 0, n ≥ −5.

Note that the system (1.5) can be written in the form

xnyn−1zn−2xn−3 =
zn−2xn−3yn−4zn−5

(an + bnzn−2xn−3yn−4zn−5)
,

ynzn−1xn−2yn−3 =
xn−2yn−3zn−4xn−5

(αn + βnxn−2yn−3zn−4xn−5)
,

znxn−1yn−2zn−3 =
yn−2zn−3xn−4yn−5

(An +Bnyn−2zn−3xn−4yn−5)
, n ∈ N0. (2.1)

Employing the change of variables

un =
1

xnyn−1zn−2xn−3
, vn =

1

ynzn−1xn−2yn−3
, wn =

1

znxn−1yn−2zn−3
, n ≥ −2, (2.2)

system (1.5) is transformed into the following system of linear difference equations

un = anwn−2 + bn, vn = αnun−2 + βn, wn = Anvn−2 +Bn, n ∈ N0, (2.3)

from system (2.3), we get

un+6 = an+6An+4αn+2un + an+6An+4βn+2 + an+6Bn+4 + bn+6, n ≥ −2, (2.4)

vn+6 = αn+6an+4An+2vn + αn+6an+4Bn+2 + αn+6bn+4 + βn+6, n ≥ −2, (2.5)

wn+6 = An+6αn+4an+2wn +An+6αn+4bn+2 +An+6βn+4 +Bn+6, n ≥ −2, (2.6)

which are nonhomogeneous linear sixth-order difference equations with variable coefficient. If we apply the
decomposition of indexes n → 6n+ j, for some n ∈ N0 and j = −2, 3 to (2.4) and (2.6), then they become

u6(n+1)+j = a6n+j+6A6n+j+4α6n+j+2u6n+j + a6n+j+6A6n+j+4β6n+j+2 + a6n+j+6B6n+j+4 + b6n+j+6, (2.7)

v6(n+1)+j = α6n+j+6a6n+j+4A6n+j+2v6n+j + α6n+j+6a6n+j+4B6n+j+2 + α6n+j+6b6n+j+4 + β6n+j+6, (2.8)

w6(n+1)+j = A6n+j+6α6n+j+4a6n+j+2w6n+j +A6n+j+6α6n+j+4b6n+j+2 +A6n+j+6β6n+j+4 +B6n+j+6, (2.9)

for n ∈ N0, which are first-order 6-equations. Let u(j)
n = u6n+j , v(j)n = v6n+j , w(j)

n = w6n+j for n ∈ N0 and j = −2, 3
and

γ(j)
n = a6n+j+6A6n+j+4α6n+j+2,

δ(j)n = a6n+j+6A6n+j+4β6n+j+2 + a6n+j+6B6n+j+4 + b6n+j+6, (2.10)
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γ̂(j)
n = α6n+j+6a6n+j+4A6n+j+2,

δ̂(j)n = α6n+j+6a6n+j+4B6n+j+2 + α6n+j+6b6n+j+4 + β6n+j+6, (2.11)

γ̃(j)
n = A6n+j+6α6n+j+4a6n+j+2,

δ̃(j)n = A6n+j+6α6n+j+4b6n+j+2 +A6n+j+6β6n+j+4 +B6n+j+6. (2.12)

Then equations in (2.7)-(2.9) can be written in the form

u
(j)
n+1 = γ(j)

n u(j)
n + δ(j)n , n ∈ N0, (2.13)

v
(j)
n+1 = γ̂(j)

n v(j)n + δ̂(j)n , n ∈ N0, (2.14)

w
(j)
n+1 = γ̃(j)

n w(j)
n + δ̃(j)n , n ∈ N0, (2.15)

for j = −2, 3.
From (2.13)-(2.15) and Lemma 1.1, we have

u(j)
n =

(
n−1∏

k=0

γ
(j)
k

)
u
(j)
0 +

n−1∑

i=0

(
n−1∏

k=i+1

γ
(j)
k

)
δ
(j)
i , (2.16)

v(j)n =

(
n−1∏

k=0

γ̂
(j)
k

)
v
(j)
0 +

n−1∑

i=0

(
n−1∏

k=i+1

γ̂
(j)
k

)
δ̂
(j)
i , (2.17)

w(j)
n =

(
n−1∏

k=0

γ̃
(j)
k

)
w

(j)
0 +

n−1∑

i=0

(
n−1∏

k=i+1

γ̃
(j)
k

)
δ̃
(j)
i , (2.18)

for n ∈ N0, j = −2, 3. Using (2.10)-(2.12) in equations (2.16)-(2.18), we obtain

u6n+j =

(
n−1∏

k=0

(a6k+j+6A6k+j+4α6k+j+2)

)
uj

+

n−1∑

i=0

(
n−1∏

k=i+1

(a6k+j+6A6k+j+4α6k+j+2)

)
(a6i+j+6A6i+j+4β6i+j+2 + a6i+j+6B6i+j+4 + b6i+j+6) , (2.19)

v6n+j =

(
n−1∏

k=0

(α6k+j+6a6k+j+4A6k+j+2)

)
vj

+

n−1∑

i=0

(
n−1∏

k=i+1

(α6k+j+6a6k+j+4A6k+j+2)

)
(α6i+j+6a6i+j+4B6i+j+2 + α6i+j+6b6i+j+4 + β6i+j+6) , (2.20)

w6n+j =

(
n−1∏

k=0

(A6k+j+6α6k+j+4a6k+j+2)

)
wj

+

n−1∑

i=0

(
n−1∏

k=i+1

(A6k+j+6α6k+j+4a6k+j+2)

)
(A6i+j+6α6i+j+4b6i+j+2 +A6i+j+6β6i+j+4 +B6i+j+6) , (2.21)

for n ∈ N0, j = −2, 3.
When the coefficients are constants i.e., an = a, bn = b, αn = α, βn = β, An = A and Bn = B, formulas (2.19)-(2.21)
becomes

u6n+j =

{
(aαA)

n
uj +

1−(aαA)n

1−aαA
(aAβ + aB + b) , aαA 6= 1,

uj + (aAβ + aB + b)n, aαA = 1,
n ∈ N0, (2.22)
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v6n+j =

{
(aαA)

n
vj +

1−(aαA)n

1−aαA
(αaB + αb+ β) , aαA 6= 1,

vj + (αaB + αb+ β)n, aαA = 1,
n ∈ N0, (2.23)

w6n+j =

{
(aαA)

n
wj +

1−(aαA)n

1−aαA
(Aαb+Aβ +B) , aαA 6= 1,

wj + (Aαb+Aβ +B)n, aαA = 1,
n ∈ N0, (2.24)

for j = −2, 3. From equalities in (2.2), we get

xn =
1

unyn−1zn−2xn−3
=

vn−1

un

yn−4 =
vn−1wn−5

unvn−4
zn−8 =

vn−1wn−5un−9

unvn−4wn−8
xn−12, (2.25)

yn =
1

vnzn−1xn−2yn−3
=

wn−1

vn
zn−4 =

wn−1un−5

vnwn−4
xn−8 =

wn−1un−5vn−9

vnwn−4un−8
yn−12, (2.26)

zn =
1

wnxn−1yn−2zn−3
=

un−1

wn

xn−4 =
un−1vn−5

wnun−4
yn−8 =

un−1vn−5wn−9

wnun−4vn−8
zn−12, (2.27)

for n ≥ 7, from which it follows that

x12m+6l+r = x6l+r−12

m∏

s=0

v6(2s+l+1+⌊ r−5

6
⌋)+r−7−6⌊ r−5

6
⌋

u6(2s+l+1+⌊ r−4

6
⌋)+r−6−6⌊ r−4

6
⌋

w6(2s+l+⌊ r−3

6
⌋)+r−5−6⌊ r−3

6
⌋

v6(2s+l+⌊ r−2

6
⌋)+r−4−6⌊ r−2

6
⌋

×
u6(2s+l+⌊ r−7

6
⌋)+r−9−6⌊ r−7

6
⌋

w6(2s+l+⌊ r−6

6
⌋)+r−8−6⌊ r−6

6
⌋

, (2.28)

y12m+6l+r = y6l+r−12

m∏

s=0

w6(2s+l+1+⌊ r−5

6
⌋)+r−7−6⌊ r−5

6
⌋

v6(2s+l+1+⌊ r−4

6
⌋)+r−6−6⌊ r−4

6
⌋

u6(2s+l+⌊ r−3

6
⌋)+r−5−6⌊ r−3

6
⌋

w6(2s+l+⌊ r−2

6
⌋)+r−4−6⌊ r−2

6
⌋

×
v6(2s+l+⌊ r−7

6
⌋)+r−9−6⌊ r−7

6
⌋

u6(2s+l+⌊ r−6

6
⌋)+r−8−6⌊ r−6

6
⌋

, (2.29)

and

z12m+6l+r = z6l+r−12

m∏

s=0

u6(2s+l+1+⌊ r−5

6
⌋)+r−7−6⌊ r−5

6
⌋

w6(2s+l+1+⌊ r−4

6
⌋)+r−6−6⌊ r−4

6
⌋

v6(2s+l+⌊ r−3

6
⌋)+r−5−6⌊ r−3

6
⌋

u6(2s+l+⌊ r−2

6
⌋)+r−4−6⌊ r−2

6
⌋

×
w6(2s+l+⌊ r−7

6
⌋)+r−9−6⌊ r−7

6
⌋

v6(2s+l+⌊ r−6

6
⌋)+r−8−6⌊ r−6

6
⌋

, (2.30)

for every m ∈ N0, l ∈ {1, 2} and r = 1, 6. Employing (2.22)-(2.24) in (2.28)-(2.30), we have

x12m+6l+r = x6l+r−12

m∏

s=0

Ds,l,r

Cs,l,r

Es,l,r

Gs,l,r

Fs,l,r

Hs,l,r

, (2.31)

y12m+6l+r = y6l+r−12

m∏

s=0

D̂s,l,r

Ĉs,l,r

Ês,l,r

Ĝs,l,r

F̂s,l,r

Ĥs,l,r

, (2.32)

z12m+6l+r = z6l+r−12

m∏

s=0

D̃s,l,r

C̃s,l,r

Ẽs,l,r

G̃s,l,r

F̃s,l,r

H̃s,l,r

, (2.33)



6 M. Kara

for every m ∈ N0, l ∈ {1, 2} and r = 1, 6, where

Cs,l,r =




2s+l+⌊ r−4

6
⌋∏

k=0

(
a6k+r−6⌊ r−4

6
⌋A6k+r−2−6⌊ r−4

6
⌋α6k+r−4−6⌊ r−4

6
⌋

)

ur−6−6⌊ r−4

6
⌋

+

2s+l+⌊ r−4

6
⌋∑

i=0




2s+l+⌊ r−4

6
⌋∏

k=i+1

(
a6k+r−6⌊ r−4

6
⌋A6k+r−2−6⌊ r−4

6
⌋α6k+r−4−6⌊ r−4

6
⌋

)



×
(
a6i+r−6⌊ r−4

6
⌋A6i+r−2−6⌊ r−4

6
⌋β6i+r−4−6⌊ r−4

6
⌋ + a6i+r−6⌊ r−4

6
⌋B6i+r−2−6⌊ r−4

6
⌋ + b6i+r−6⌊ r−4

6
⌋

)
,

Ds,l,r =




2s+l+⌊ r−5

6
⌋∏

k=0

(
α6k+r−1−6⌊ r−5

6
⌋a6k+r−3−6⌊ r−5

6
⌋A6k+r−5−6⌊ r−5

6
⌋

)

 vr−7−6⌊ r−5

6
⌋

+

2s+l+⌊ r−5

6
⌋∑

i=0




2s+l+⌊ r−5

6
⌋∏

k=i+1

(
α6k+r−1−6⌊ r−5

6
⌋a6k+r−3−6⌊ r−5

6
⌋A6k+r−5−6⌊ r−5

6
⌋

)



×
(
α6i+r−1−6⌊ r−5

6
⌋a6i+r−3−6⌊ r−5

6
⌋B6i+r−5−6⌊ r−5

6
⌋ + α6i+r−1−6⌊ r−5

6
⌋b6i+r−3−6⌊ r−5

6
⌋ + β6i+r−1−6⌊ r−5

6
⌋

)
,

Es,l,r =




2s+l−1+⌊ r−3

6
⌋∏

k=0

(
A6k+r+1−6⌊ r−3

6
⌋α6k+r−1−6⌊ r−3

6
⌋a6k+r−3−6⌊ r−3

6
⌋

)

wr−5−6⌊ r−3

6
⌋

+

2s+l−1+⌊ r−3

6
⌋∑

i=0




2s+l−1+⌊ r−3

6
⌋∏

k=i+1

(
A6k+r+1−6⌊ r−3

6
⌋α6k+r−1−6⌊ r−3

6
⌋a6k+r−3−6⌊ r−3

6
⌋

)



×
(
A6i+r+1−6⌊ r−3

6
⌋α6i+r−1−6⌊ r−3

6
⌋b6i+r−3−6⌊ r−3

6
⌋ +A6i+r+1−6⌊ r−3

6
⌋β6i+r−1−6⌊ r−3

6
⌋ +B6i+r+1−6⌊ r−3

6
⌋

)
,

Fs,l,r =




2s+l−1+⌊ r−7

6
⌋∏

k=0

(
a6k+r−3−6⌊ r−7

6
⌋A6k+r−5−6⌊ r−7

6
⌋α6k+r−7−6⌊ r−7

6
⌋

)

ur−9−6⌊ r−7

6
⌋

+

2s+l−1+⌊ r−7

6
⌋∑

i=0




2s+l−1+⌊ r−7

6
⌋∏

k=i+1

(
a6k+r−3−6⌊ r−7

6
⌋A6k+r−5−6⌊ r−7

6
⌋α6k+r−7−6⌊ r−7

6
⌋

)



×
(
a6i+r−3−6⌊ r−7

6
⌋A6i+r−5−6⌊ r−7

6
⌋β6i+r−7−6⌊ r−7

6
⌋ + a6i+r−3−6⌊ r−7

6
⌋B6i+r−5−6⌊ r−7

6
⌋ + b6i+r−3−6⌊ r−7

6
⌋

)
,

Gs,l,r =




2s+l−1+⌊ r−2

6
⌋∏

k=0

(
α6k+r+2−6⌊ r−2

6
⌋a6k+r−6⌊ r−2

6
⌋A6k+r−2−6⌊ r−2

6
⌋

)

 vr−4−6⌊ r−2

6
⌋

+

2s+l−1+⌊ r−2

6
⌋∑

i=0




2s+l−1+⌊ r−2

6
⌋∏

k=i+1

(
α6k+r+2−6⌊ r−2

6
⌋a6k+r−6⌊ r−2

6
⌋A6k+r−2−6⌊ r−2

6
⌋

)



×
(
α6i+r+2−6⌊ r−2

6
⌋a6i+r−6⌊ r−2

6
⌋B6i+r−2−6⌊ r−2

6
⌋ + α6i+r+2−6⌊ r−2

6
⌋b6i+r−6⌊ r−2

6
⌋ + β6i+r+2−6⌊ r−2

6
⌋

)
,
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Hs,l,r =




2s+l−1+⌊ r−6

6
⌋∏

k=0

(
A6k+r−2−6⌊ r−6

6
⌋α6k+r−4−6⌊ r−6

6
⌋a6k+r−6−6⌊ r−6

6
⌋

)

wr−8−6⌊ r−6

6
⌋

+

2s+l−1+⌊ r−6

6
⌋∑

i=0




2s+l−1+⌊ r−6

6
⌋∏

k=i+1

(
A6k+r−2−6⌊ r−6

6
⌋α6k+r−4−6⌊ r−6

6
⌋a6k+r−6−6⌊ r−6

6
⌋

)



×
(
A6i+r−2−6⌊ r−6

6
⌋α6i+r−4−6⌊ r−6

6
⌋b6i+r−6−6⌊ r−6

6
⌋ +A6i+r−2−6⌊ r−6

6
⌋β6i+r−4−6⌊ r−6

6
⌋ +B6i+r−2−6⌊ r−6

6
⌋

)
,

Ĉs,l,r =




2s+l+⌊ r−4

6
⌋∏

k=0

(
α6k+r−6⌊ r−4

6
⌋a6k+r−2−6⌊ r−4

6
⌋A6k+r−4−6⌊ r−4

6
⌋

)

 vr−6−6⌊ r−4

6
⌋

+

2s+l+⌊ r−4

6
⌋∑

i=0




2s+l+⌊ r−4

6
⌋∏

k=i+1

(
α6k+r−6⌊ r−4

6
⌋a6k+r−2−6⌊ r−4

6
⌋A6k+r−4−6⌊ r−4

6
⌋

)



×
(
α6i+r−6⌊ r−4

6
⌋a6i+r−2−6⌊ r−4

6
⌋B6i+r−4−6⌊ r−4

6
⌋ + α6i+r−6⌊ r−4

6
⌋b6i+r−2−6⌊ r−4

6
⌋ + β6i+r−6⌊ r−4

6
⌋

)
,

D̂s,l,r =




2s+l+⌊ r−5

6
⌋∏

k=0

(
A6k+r−1−6⌊ r−5

6
⌋α6k+r−3−6⌊ r−5

6
⌋a6k+r−5−6⌊ r−5

6
⌋

)

wr−7−6⌊ r−5

6
⌋

+

2s+l+⌊ r−5

6
⌋∑

i=0




2s+l+⌊ r−5

6
⌋∏

k=i+1

(
A6k+r−1−6⌊ r−5

6
⌋α6k+r−3−6⌊ r−5

6
⌋a6k+r−5−6⌊ r−5

6
⌋

)



×
(
A6i+r−1−6⌊ r−5

6
⌋α6i+r−3−6⌊ r−5

6
⌋b6i+r−5−6⌊ r−5

6
⌋ +A6i+r−1−6⌊ r−5

6
⌋β6i+r−3−6⌊ r−5

6
⌋ +B6i+r−1−6⌊ r−5

6
⌋

)
,

Ês,l,r =




2s+l−1+⌊ r−3

6
⌋∏

k=0

(
a6k+r+1−6⌊ r−3

6
⌋A6k+r−1−6⌊ r−3

6
⌋α6k+r−3−6⌊ r−3

6
⌋

)

ur−5−6⌊ r−3

6
⌋

+

2s+l−1+⌊ r−3

6
⌋∑

i=0




2s+l−1+⌊ r−3

6
⌋∏

k=i+1

(
a6k+r+1−6⌊ r−3

6
⌋A6k+r−1−6⌊ r−3

6
⌋α6k+r−3−6⌊ r−3

6
⌋

)



×
(
a6i+r+1−6⌊ r−3

6
⌋A6i+r−1−6⌊ r−3

6
⌋β6i+r−3−6⌊ r−3

6
⌋ + a6i+r+1−6⌊ r−3

6
⌋B6i+r−1−6⌊ r−3

6
⌋ + b6i+r+1−6⌊ r−3

6
⌋

)
,

F̂s,l,r =




2s+l−1+⌊ r−7

6
⌋∏

k=0

(
α6k+r−3−6⌊ r−7

6
⌋a6k+r−5−6⌊ r−7

6
⌋A6k+r−7−6⌊ r−7

6
⌋

)

 vr−9−6⌊ r−7

6
⌋

+

2s+l−1+⌊ r−7

6
⌋∑

i=0




2s+l−1+⌊ r−7

6
⌋∏

k=i+1

(
α6k+r−3−6⌊ r−7

6
⌋a6k+r−5−6⌊ r−7

6
⌋A6k+r−7−6⌊ r−7

6
⌋

)



×
(
α6i+r−3−6⌊ r−7

6
⌋a6i+r−5−6⌊ r−7

6
⌋B6i+r−7−6⌊ r−7

6
⌋ + α6i+r−3−6⌊ r−7

6
⌋b6i+r−5−6⌊ r−7

6
⌋ + β6i+r−3−6⌊ r−7

6
⌋

)
,
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Ĝs,l,r =




2s+l−1+⌊ r−2

6
⌋∏

k=0

(
A6k+r+2−6⌊ r−2

6
⌋α6k+r−6⌊ r−2

6
⌋a6k+r−2−6⌊ r−2

6
⌋

)

wr−4−6⌊ r−2

6
⌋

+

2s+l−1+⌊ r−2

6
⌋∑

i=0




2s+l−1+⌊ r−2

6
⌋∏

k=i+1

(
A6k+r+2−6⌊ r−2

6
⌋α6k+r−6⌊ r−2

6
⌋a6k+r−2−6⌊ r−2

6
⌋

)



×
(
A6i+r+2−6⌊ r−2

6
⌋α6i+r−6⌊ r−2

6
⌋b6i+r−2−6⌊ r−2

6
⌋ +A6i+r+2−6⌊ r−2

6
⌋β6i+r−6⌊ r−2

6
⌋ +B6i+r+2−6⌊ r−2

6
⌋

)
,

Ĥs,l,r =




2s+l−1+⌊ r−6

6
⌋∏

k=0

(
a6k+r−2−6⌊ r−6

6
⌋A6k+r−4−6⌊ r−6

6
⌋α6k+r−6−6⌊ r−6

6
⌋

)

ur−8−6⌊ r−6

6
⌋

+

2s+l−1+⌊ r−6

6
⌋∑

i=0




2s+l−1+⌊ r−6

6
⌋∏

k=i+1

(
a6k+r−2−6⌊ r−6

6
⌋A6k+r−4−6⌊ r−6

6
⌋α6k+r−6−6⌊ r−6

6
⌋

)



×
(
a6i+r−2−6⌊ r−6

6
⌋A6i+r−4−6⌊ r−6

6
⌋β6i+r−6−6⌊ r−6

6
⌋ + a6i+r−2−6⌊ r−6

6
⌋B6i+r−4−6⌊ r−6

6
⌋ + b6i+r−2−6⌊ r−6

6
⌋

)
,

C̃s,l,r =




2s+l+⌊ r−4

6
⌋∏

k=0

(
A6k+r−6⌊ r−4

6
⌋α6k+r−2−6⌊ r−4

6
⌋a6k+r−4−6⌊ r−4

6
⌋

)

wr−6−6⌊ r−4

6
⌋

+

2s+l+⌊ r−4

6
⌋∑

i=0




2s+l+⌊ r−4

6
⌋∏

k=i+1

(
A6k+r−6⌊ r−4

6
⌋α6k+r−2−6⌊ r−4

6
⌋a6k+r−4−6⌊ r−4

6
⌋

)



×
(
A6i+r−6⌊ r−4

6
⌋α6i+r−2−6⌊ r−4

6
⌋b6i+r−4−6⌊ r−4

6
⌋ +A6i+r−6⌊ r−4

6
⌋β6i+r−2−6⌊ r−4

6
⌋ +B6i+r−6⌊ r−4

6
⌋

)
,

D̃s,l,r =




2s+l+⌊ r−5

6
⌋∏

k=0

(
a6k+r−1−6⌊ r−5

6
⌋A6k+r−3−6⌊ r−5

6
⌋α6k+r−5−6⌊ r−5

6
⌋

)

ur−7−6⌊ r−5

6
⌋

+

2s+l+⌊ r−5

6
⌋∑

i=0




2s+l+⌊ r−5

6
⌋∏

k=i+1

(
a6k+r−1−6⌊ r−5

6
⌋A6k+r−3−6⌊ r−5

6
⌋α6k+r−5−6⌊ r−5

6
⌋

)



×
(
a6i+r−1−6⌊ r−5

6
⌋A6i+r−3−6⌊ r−5

6
⌋β6i+r−5−6⌊ r−5

6
⌋ + a6i+r−1−6⌊ r−5

6
⌋B6i+r−3−6⌊ r−5

6
⌋ + b6i+r−1−6⌊ r−5

6
⌋

)
,

Ẽs,l,r =




2s+l−1+⌊ r−3

6
⌋∏

k=0

(
α6k+r+1−6⌊ r−3

6
⌋a6k+r−1−6⌊ r−3

6
⌋A6k+r−3−6⌊ r−3

6
⌋

)

 vr−5−6⌊ r−3

6
⌋

+

2s+l−1+⌊ r−3

6
⌋∑

i=0




2s+l−1+⌊ r−3

6
⌋∏

k=i+1

(
α6k+r+1−6⌊ r−3

6
⌋a6k+r−1−6⌊ r−3

6
⌋A6k+r−3−6⌊ r−3

6
⌋

)



×
(
α6i+r+1−6⌊ r−3

6
⌋a6i+r−1−6⌊ r−3

6
⌋B6i+r−3−6⌊ r−3

6
⌋ + α6i+r+1−6⌊ r−3

6
⌋b6i+r−1−6⌊ r−3

6
⌋ + β6i+r+1−6⌊ r−3

6
⌋

)
,
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F̃s,l,r =




2s+l−1+⌊ r−7

6
⌋∏

k=0

(
A6k+r−3−6⌊ r−7

6
⌋α6k+r−5−6⌊ r−7

6
⌋a6k+r−7−6⌊ r−7

6
⌋

)

wr−9−6⌊ r−7

6
⌋

+

2s+l−1+⌊ r−7

6
⌋∑

i=0




2s+l−1+⌊ r−7

6
⌋∏

k=i+1

(
A6k+r−3−6⌊ r−7

6
⌋α6k+r−5−6⌊ r−7

6
⌋a6k+r−7−6⌊ r−7

6
⌋

)



×
(
A6i+r−3−6⌊ r−7

6
⌋α6i+r−5−6⌊ r−7

6
⌋b6i+r−7−6⌊ r−7

6
⌋ +A6i+r−3−6⌊ r−7

6
⌋β6i+r−5−6⌊ r−7

6
⌋ +B6i+r−3−6⌊ r−7

6
⌋

)
,

G̃s,l,r =




2s+l−1+⌊ r−2

6
⌋∏

k=0

(
a6k+r+2−6⌊ r−2

6
⌋A6k+r−6⌊ r−2

6
⌋α6k+r−2−6⌊ r−2

6
⌋

)

ur−4−6⌊ r−2

6
⌋

+

2s+l−1+⌊ r−2

6
⌋∑

i=0




2s+l−1+⌊ r−2

6
⌋∏

k=i+1

(
a6k+r+2−6⌊ r−2

6
⌋A6k+r−6⌊ r−2

6
⌋α6k+r−2−6⌊ r−2

6
⌋

)



×
(
a6i+r+2−6⌊ r−2

6
⌋A6i+r−6⌊ r−2

6
⌋β6i+r−2−6⌊ r−2

6
⌋ + a6i+r+2−6⌊ r−2

6
⌋B6i+r−6⌊ r−2

6
⌋ + b6i+r+2−6⌊ r−2

6
⌋

)
,

H̃s,l,r =




2s+l−1+⌊ r−6

6
⌋∏

k=0

(
α6k+r−2−6⌊ r−6

6
⌋a6k+r−4−6⌊ r−6

6
⌋A6k+r−6−6⌊ r−6

6
⌋

)

 vr−8−6⌊ r−6

6
⌋

+

2s+l−1+⌊ r−6

6
⌋∑

i=0




2s+l−1+⌊ r−6

6
⌋∏

k=i+1

(
α6k+r−2−6⌊ r−6

6
⌋a6k+r−4−6⌊ r−6

6
⌋A6k+r−6−6⌊ r−6

6
⌋

)



×
(
α6i+r−2−6⌊ r−6

6
⌋a6i+r−4−6⌊ r−6

6
⌋B6i+r−6−6⌊ r−6

6
⌋ + α6i+r−2−6⌊ r−6

6
⌋b6i+r−4−6⌊ r−6

6
⌋ + β6i+r−2−6⌊ r−6

6
⌋

)
.

The previous computations prove the next theorem.

Theorem 2.1. Suppose that {(xn, yn, zn)}n≥−5 is a well-defined solution of system (1.5). Then, the general solutions of
system (1.5) are given by equations in (2.31)-(2.33).

By the following theorem, we characterize the forbidden set of the initial values for system (1.5).

Theorem 2.2. Assume that an 6= 0, bn 6= 0, αn 6= 0, βn 6= 0, An 6= 0, Bn 6= 0, for every n ∈ N0. Then the forbidden set of
the initial values for system (1.5) is given by the set

F =
⋃

m∈N0

1⋃

i=0

{
(x−5, x−4, . . . , x−1, y−5, y−4, . . . , y−1, z−5, z−4, . . . , z−1) ∈ R

15 :

zi−2xi−3yi−4zi−5 =
1

cm
, xi−2yi−3zi−4xi−5 =

1

dm
, yi−2zi−3xi−4yi−5 =

1

em
where

cm := −
m∑

j=0

(
B6j+i+2 +A6j+i+2b6j+i +A6j+i+2α6j+ib6j+i−2

A6j+i+2α6j+ia6j+i−2

) j−1∏

l=0

1

A6l+i+2α6l+ia6l+i−2
6= 0,

dm := −

m∑

j=0

(
b6j+i+2 + a6j+i+2β6j+i + a6j+i+2A6j+iβ6j+i−2

a6j+i+2A6j+iα6j+i−2

) j−1∏

l=0

1

a6l+i+2A6l+iα6l+i−2
6= 0, ,

em := −
m∑

j=0

(
β6j+i+2 + α6j+i+2B6j+i + α6j+i+2a6j+iB6j+i−2

α6j+i+2a6j+iA6j+i−2

) j−1∏

l=0

1

α6l+i+2a6l+iA6l+i−2
6= 0

⋃ 5⋃

j=1

{
(x−5, x−4, . . . , x−1, y−5, y−4, . . . , y−1, z−5, z−4, . . . , z−1) ∈ R

15 : x−j = 0, y−j = 0, z−j = 0
}
. (2.34)
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Proof. At the beginning of Section 2, we have obtained that the set

5⋃

j=1

{
(x−5, x−4, . . . , x−1, y−5, y−4, . . . , y−1, z−5, z−4, . . . , z−1) ∈ R

15 : x−j = 0, y−j = 0, z−j = 0
}

belongs to the forbidden set of the initial values for system (1.5). Now, we suppose that xn 6= 0, yn 6= 0 and
zn 6= 0. Note that the system (1.5) is not defined, when the conditions an + bnzn−2xn−3yn−4zn−5 = 0, αn +
βnxn−2yn−3zn−4xn−5 = 0 or An+Bnyn−2zn−3xn−4yn−5 = 0, that is, zn−2xn−3yn−4zn−5 = −an

bn
, xn−2yn−3zn−4xn−5 =

−αn

βn

or yn−2zn−3xn−4yn−5 = −An

Bn

, for some n ∈ N0, are satisfied(Here we consider that bn 6= 0, βn 6= 0 and Bn 6= 0

for every n ∈ N0). From this and equations in (2.2), we get

u6m+i = −
β6m+i+2

α6m+i+2
, v6m+i = −

B6m+i+2

A3m+i+2
, w6m+i = −

b6m+i+2

a6m+i+2
, (2.35)

for some m ∈ N0 and i = −2, 3. Hence, we can determine the forbidden set of the initial values for system (1.5)
by using the substitution un = 1

xnyn−1zn−2xn−3
, vn = 1

ynzn−1xn−2yn−3
, wn = 1

znxn−1yn−2zn−3
. Now, we consider the

functions

f6m+i+2 (t) := a6m+i+2t+ b6m+i+2,

g6m+i+2 (t) := α6m+i+2t+ β6m+i+2,

h6m+i+2 (t) := A6m+i+2t+B6m+i+2, (2.36)

for m ∈ N0, i = −2, 3, which correspond to the system (2.3). From (2.35) and (2.36), we can write

u6m+i = f6m+i ◦ h6m+i−2 ◦ g6m+i−4 · · · ◦ fi ◦ hi−2 ◦ gi−4 (ui−6) , (2.37)

v6m+i = g6m+i ◦ f6m+i−2 ◦ h6m+i−4 · · · ◦ gi ◦ fi−2 ◦ hi−4 (vi−6) , (2.38)

w6m+i = h6m+i ◦ g6m+i−2 ◦ f6m+i−4 · · · ◦ hi ◦ gi−2 ◦ fi−4 (wi−6) , (2.39)

where m ∈ N0, and i = 4, 9. By using (2.35) and implicit forms (2.37)-(2.39) and considering
f−1
6m+i+2 (0) = − b6m+i+2

a6m+i+2
, g−1

6m+i+2 (0) = − β6m+i+2

α6m+i+2
, h−1

6m+i+2 (0) = −B6m+i+2

A6m+i+2
, for m ≥ −1 and i = 4, 9, we get

ui−6 = g−1
i−4 ◦ h

−1
i−2 ◦ f

−1
i ◦ · · · ◦ g−1

6m+i−4 ◦ h
−1
6m+i−2 ◦ f

−1
6m+i (0) , (2.40)

vi−6 = h−1
i−4 ◦ f

−1
i−2 ◦ g

−1
i ◦ · · · ◦ h−1

6m+i−4 ◦ f
−1
6m+i−2 ◦ g

−1
6m+i (0) , (2.41)

wi−6 = f−1
i−4 ◦ g

−1
i−2 ◦ h

−1
i ◦ · · · ◦ f−1

6m+i−4 ◦ g
−1
6m+i−2 ◦ h

−1
6m+i (0) , (2.42)

where f−1
6m+i+2 (t) = t−b6m+i+2

a6m+i+2
, g−1

6m+i+2 (t) = t−β6m+i+2

α6m+i+2
, h−1

6m+i+2 (t) = t−B6m+i+2

A6m+i+2
, m ≥ −1, i = 4, 9. From

(2.40)-(2.42), we get

ui−6 = −

m∑

j=0

(
b6j+i + a6j+iB6j+i−2 + a6j+iA6j+i−2β6j+i−4

a6j+iA6j+i−2α6j+i−4

) j−1∏

l=0

1

a6l+iA6l+i−2α6l+i−4
,

vi−6 = −

m∑

j=0

(
β6j+i + α6j+ib6j+i−2 + α6j+ia6j+i−2B6j+i−4

α6j+ia6j+i−2A6j+i−4

) j−1∏

l=0

1

α6l+ia6l+i−2A6l+i−4
,

wi−6 = −

m∑

j=0

(
B6j+i +A6j+iβ6j+i−2 +A6j+iα6j+i−2b6j+i−4

A6j+iα6j+i−2a6j+i−4

) j−1∏

l=0

1

A6l+iα6l+i−2a6l+i−4
,

for some m ∈ N0 and i = 4, 9. This means that if one of the conditions in (2.40)-(2.42) holds, then m-th iteration or
(m+ 1)-th iteration in system (1.5) can not be calculated.
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3. Solutions of System (1.5) with Constant Coefficients

In this section, we give the forms of solutions of system (1.5) when all the coefficients are constant. We assume
that an = a, bn = b, αn = α, βn = β, An = A and Bn = B for every n ∈ N0. In this case, system (1.5) is written as in
the form

xn =
yn−4zn−5

yn−1 (a+ bzn−2xn−3yn−4zn−5)
,

yn =
zn−4xn−5

zn−1 (α+ βxn−2yn−3zn−4xn−5)
,

zn =
xn−4yn−5

xn−1 (A+Byn−2zn−3xn−4yn−5)
, n ∈ N0. (3.1)

In (2.28)-(2.30), if we replace the formulas given in (2.22)-(2.24), then the solution of system (3.1) is given by

x12m+6l+r = x6l+r−12

m∏

s=0

(aαA)
2s+l+1+⌊ r−5

6
⌋
vr−7−6⌊ r−5

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−5

6
⌋
)
(αaB + αb+ β)

(aαA)
2s+l+1+⌊ r−4

6
⌋
ur−6−6⌊ r−4

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−4

6
⌋
)
(aAβ + aB + b)

×
(aαA)

2s+l+⌊ r−3

6
⌋
wr−5−6⌊ r−3

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−3

6
⌋
)
(Aαb+Aβ +B)

(aαA)
2s+l+⌊ r−2

6
⌋
vr−4−6⌊ r−2

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−2

6
⌋
)
(αaB + αb+ β)

×
(aαA)

2s+l+⌊ r−7

6
⌋
ur−9−6⌊ r−7

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−7

6
⌋
)
(aAβ + aB + b)

(aαA)
2s+l+⌊ r−6

6
⌋
wr−8−6⌊ r−6

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−6

6
⌋
)
(Aαb+Aβ +B)

,

(3.2)

y12m+6l+r = y6l+r−12

m∏

s=0

(aαA)
2s+l+1+⌊ r−5

6
⌋
wr−7−6⌊ r−5

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−5

6
⌋
)
(Aαb+Aβ +B)

(aαA)
2s+l+1+⌊ r−4

6
⌋
vr−6−6⌊ r−4

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−4

6
⌋
)
(αaB + αb+ β)

×
(aαA)

2s+l+⌊ r−3

6
⌋
ur−5−6⌊ r−3

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−3

6
⌋
)
(aAβ + aB + b)

(aαA)
2s+l+⌊ r−2

6
⌋
wr−4−6⌊ r−2

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−2

6
⌋
)
(Aαb+Aβ +B)

×
(aαA)

2s+l+⌊ r−7

6
⌋
vr−9−6⌊ r−7

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−7

6
⌋
)
(αaB + αb+ β)

(aαA)
2s+l+⌊ r−6

6
⌋
ur−8−6⌊ r−6

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−6

6
⌋
)
(aAβ + aB + b)

,

(3.3)

z12m+6l+r = z6l+r−12

m∏

s=0

(aαA)
2s+l+1+⌊ r−5

6
⌋
ur−7−6⌊ r−5

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−5

6
⌋
)
(aAβ + aB + b)

(aαA)
2s+l+1+⌊ r−4

6
⌋
wr−6−6⌊ r−4

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+1+⌊ r−4

6
⌋
)
(Aαb+Aβ +B)

×
(aαA)

2s+l+⌊ r−3

6
⌋
vr−5−6⌊ r−3

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−3

6
⌋
)
(αaB + αb+ β)

(aαA)
2s+l+⌊ r−2

6
⌋
ur−4−6⌊ r−2

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−2

6
⌋
)
(aAβ + aB + b)

×
(aαA)

2s+l+⌊ r−7

6
⌋
wr−9−6⌊ r−7

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−7

6
⌋
)
(Aαb+Aβ +B)

(aαA)
2s+l+⌊ r−6

6
⌋
vr−8−6⌊ r−6

6
⌋ (1− aαA) +

(
1− (aαA)

2s+l+⌊ r−6

6
⌋
)
(αaB + αb+ β)

,

(3.4)

if aαA 6= 1,
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x12m+6l+r = x6l+r−12

m∏

s=0

vr−7−6⌊ r−5

6
⌋ + (αaB + αb+ β)

(
2s+ l + 1 + ⌊ r−5

6 ⌋
)

ur−6−6⌊ r−4

6
⌋ + (aAβ + aB + b)

(
2s+ l + 1 + ⌊ r−4

6 ⌋
)

×
wr−5−6⌊ r−3

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + ⌊ r−3

6 ⌋
)

vr−4−6⌊ r−2

6
⌋ + (αaB + αb+ β)

(
2s+ l + ⌊ r−2

6 ⌋
)

×
ur−9−6⌊ r−7

6
⌋ + (aAβ + aB + b)

(
2s+ l + ⌊ r−7

6 ⌋
)

wr−8−6⌊ r−6

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + ⌊ r−6

6 ⌋
) , (3.5)

y12m+6l+r = y6l+r−12

m∏

s=0

wr−7−6⌊ r−5

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + 1 + ⌊ r−5

6 ⌋
)

vr−6−6⌊ r−4

6
⌋ + (αaB + αb+ β)

(
2s+ l + 1 + ⌊ r−4

6 ⌋
)

×
ur−5−6⌊ r−3

6
⌋ + (aAβ + aB + b)

(
2s+ l + ⌊ r−3

6 ⌋
)

wr−4−6⌊ r−2

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + ⌊ r−2

6 ⌋
)

×
vr−9−6⌊ r−7

6
⌋ + (αaB + αb+ β)

(
2s+ l + ⌊ r−7

6 ⌋
)

ur−8−6⌊ r−6

6
⌋ + (aAβ + aB + b)

(
2s+ l + ⌊ r−6

6 ⌋
) , (3.6)

z12m+6l+r = z6l+r−12

m∏

s=0

ur−7−6⌊ r−5

6
⌋ + (aAβ + aB + b)

(
2s+ l + 1 + ⌊ r−5

6 ⌋
)

wr−6−6⌊ r−4

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + 1 + ⌊ r−4

6 ⌋
)

×
vr−5−6⌊ r−3

6
⌋ + (αaB + αb+ β)

(
2s+ l + ⌊ r−3

6 ⌋
)

ur−4−6⌊ r−2

6
⌋ + (aAβ + aB + b)

(
2s+ l + ⌊ r−2

6 ⌋
)

×
wr−9−6⌊ r−7

6
⌋ + (Aαb+Aβ +B)

(
2s+ l + ⌊ r−7

6 ⌋
)

vr−8−6⌊ r−6

6
⌋ + (αaB + αb+ β)

(
2s+ l + ⌊ r−6

6 ⌋
) , (3.7)

if aαA = 1, for every m ∈ N0, l ∈ {1, 2} and r = 1, 6.

4. Conclusion

In this paper, we have studied the following system of difference equations

xn =
yn−4zn−5

yn−1 (an + bnzn−2xn−3yn−4zn−5)
,

yn =
zn−4xn−5

zn−1 (αn + βnxn−2yn−3zn−4xn−5)
,

zn =
xn−4yn−5

xn−1 (An +Bnyn−2zn−3xn−4yn−5)
, n ∈ N0,

where the sequences (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

, (An)n∈N0
, (Bn)n∈N0

and the initial values x−j , y−j ,
j = 1, 5, are real numbers.

Firstly, we have solved above system in closed form by using suitable transformation. In addition, we also
characterize the forbidden set of solutions of the system of difference equations. Finally, we have obtained solutions
of aforementioned system with constant coefficients.
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Abstract
In this article, we prove the theorem concerning the existence of the solutions for some nonlinear integral
equations. As an application, we investigate the problem of existence of solutions of Fredholm integral
equations using the technique of relative compactness in conjunction with fixed point theorem. Our
solutions are placed in the space of functions satisfying the Hölder condition. Our work is more general
than the previous works in [1–3]. In the last section, we show the efficiency of this approach on one
numerical example.
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1. Introduction and Preliminaries

Integral equations appear in most applied areas and are as important as differential equations. Nonlinear
integral equations are frequently studied in research articles [1–32].

The symbol R will stand for the set of real numbers and put R+ = [0,∞). Let’s give some inequalities that we
use in some sections of the article.

Lemma 1.1. Let u, v be arbitrary real numbers such that 1 ≤ v < u. Moreover, let a be an arbitrarily fixed nonnegative
number. Then, the following inequality is satisfied

∣

∣

∣(xv + a)
1

u − (yv + a)
1

u

∣

∣

∣ ≤ |x− y| vu (1.1)

for all x, y ∈ R,[4].

Lemma 1.2. [4] Observe that using the notation of the generalized root of an arbitrary degree u(u > 0), i.e. putting u

√
x = x

1

u

for x ∈ R
+, we can represent inequality (1.1) in a more transparent form

∣

∣

∣

u

√

(xv + a)− u

√

(yv + a)
∣

∣

∣
≤ u

√

|x− y|v.

Received : 23-06-2020, Accepted : 27-11-2020

https://doi.org/10.36753/mathenot.756916


On the Existence of the Solutions of A Nonlinear Fredholm Integral Equation 17

Observe that in the case when v is a natural even number inequality (1.1) can be extended to the whole real axis
R i.e., if v = 2n, where n ∈ N, then for an arbitrary number u > 2n the following inequality is satisfied

∣

∣

∣
(x2n + a)

1

u − (y2n + a)
1

u

∣

∣

∣
≤ |x− y| 2nu

that is
∣

∣

∣

u

√

(x2n + a)− u

√

(y2n + a)
∣

∣

∣
≤ u

√

(x− y)2n

for all x, y ∈ R and a ≥ 0.
In the case when a = 0 we have that f(x) = x

v

u . Applying the standard methods of mathematical analysis
(second derivative, the concavity and the subadditivity of the function f) we can easily show that

∣

∣x
v

u − y
v

u

∣

∣ ≤ |x− y| vu

for all x, y ∈ R
+. The following known definitions are available in [1, 2, 31, 32].

Let [λ, µ] be a closed interval in R, by C[λ, µ] we indicate the space of continuous functions defined on [λ, µ]
equipped with the supremum norm, i.e.,

‖x‖
∞

= sup {|x(u)| : u ∈ [λ, µ]}

for x ∈ C[λ, µ]. For a fixed α with 0 < α ≤ 1, by Hα[λ, µ] we will state the spaces of the real functions x defined on
[λ, µ] and satisfying the Hölder condition, that is, those functions x for which there exists a constant Hα

x such that

|x(u)− x(v)| ≤ Hα
x |u− v|α (1.2)

for all u, v ∈ [λ, µ]. It is well proved that Hα[λ, µ] is a linear subspaces of C[λ, µ]. Also, for x ∈ Hα[λ, µ], by Hα
x we

will state the least possible stable for which inequality (1.2) is satisfied. Rather, we put

Hα
x = sup

{ |x(u)− x(v)|
|u− v|α : u, v ∈ [λ, µ] and u 6= v

}

. (1.3)

The space Hα[λ, µ] with 0 < α ≤ 1 may be equipped with the norm

‖x‖α = |x(λ)|+Hα
x

for x ∈ Hα[λ, µ]. Here, Hα
x is defined by (1.3). In [1], the authors show that (Hα[λ, µ], ‖ · ‖α) with 0 < α ≤ 1 is a

Banach space.

Theorem 1.1 (Schauder’s Fixed Point Theorem). Let E be a nonempty, compact subset of a Banach space (X, ‖ · ‖), convex
and let T : E → E be a continuity mapping. Then T has at least one fixed point in E,[9].

Lemma 1.3. For 0 < α < β ≤ 1, we have

Hβ [λ, µ] ⊂ Hα[λ, µ] ⊂ C[λ, µ].

Furthermore, for x ∈ Hβ [λ, µ], we have:

‖x‖α ≤ max
(

1, (µ− λ)β−α
)

‖x‖β .

Particularly, the inequality ‖x‖
∞

≤ ‖x‖α ≤ ‖x‖β is satisfied for λ = 0 and µ = 1, [1].

Lemma 1.4. Let’s assume that 0 < α < β ≤ 1 and E is a bounded subset in Hβ [λ, µ], then E is a relatively compact subset
in Hα[λ, µ], [2].

Lemma 1.5. Assume that 0 < α < β ≤ 1 and by Bβ
r we state the ball centered at θ and radius r in the space Hβ [λ, µ], i.e.,

Bβ
r = {x ∈ Hβ [λ, µ] : ‖x‖β ≤ r}. Bβ

r is a closed subset of Hα[λ, µ], [2].

Corollary 1.1. Assume that 0 < α < β ≤ 1 and Bβ
r is a relatively compact subset in Hα[λ, µ] and is a closed subset of

Hα[λ, µ], then Bβ
r is a compact subset in the space Hα[λ, µ], [2].
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2. Main Result

J. Banaś and R. Nalepa et al. [1] study the following equation;

x(u) = p(u) + x(u)

∫ µ

λ

k(u, τ)x(τ)dτ. (2.1)

Also, J. Caballero, M. Darwish and K. Sadarangani et al. [2] study the following equation;

x(u) = p(u) + x(u)

∫ 1

0

k(u, τ)x(r(τ))dτ. (2.2)

Further, S. Peng, J. Wang and J. Chen et al. [3] study the following equation;

x(u) = f(u, x(u)) + x(u)

∫ µ

λ

k(u, τ)x(τ)dτ. (2.3)

The purpose of this paper is to examine the existence of solutions of the following integral equation of Fredholm
type with a changed argument,

x(u) = (Gx)(u) + x(u)

∫ 1

0

k(u, τ)x(q(τ))dτ, u ∈ I = [0, 1]. (2.4)

The equation (2.4) is more general than many equations considered up to now and includes (2.1), (2.2) and (2.3)
as special cases. Notice that the equation (2.1) in [1] for λ = 0 and µ = 1 is a particular case of (2.4) with q(τ) = τ

and (Gx)(u) = p(u). Also, it should be noted that the equation (2.4) is the more general than the equation (2.2)
considered in [2]. If we take (Gx)(u) = p(u), then the equation

x(u) = p(u) + x(u)

∫ 1

0

k(u, τ)x(r(τ))dτ

is obtained from the equation (2.4). Further, notice that equation (2.3) in study [3] for λ = 0 and µ = 1 is a particular
case of (2.4), for (Gx)(u) = f(u, x(u)), q(τ) = τ .

Theorem 2.1. Assume that the following conditions (i)− (iv) are satisfied:

(i) The operator G : Hβ [0, 1] → Hβ [0, 1] is continuous on the space Hβ [0, 1] with respect to the norm ‖ · ‖α, where
0 < α < β ≤ 1 and there exists function w : R+ → R+ which is non-decreasing such that it holds the inequality

‖Gx‖β ≤ w
(

‖x‖β
)

,

for any x ∈ Hβ [0, 1].

(ii) k : [0, 1]× [0, 1] → R is a continuous function such that there exists a constant kβ such that

|k(u, τ)− k(v, τ)| ≤ kβ |u− v|β ,

for any u, v, τ ∈ [0, 1].

(iii) q : [0, 1] → [0, 1] is a measurable function.

(iv) There exists a positive solution r0 of the inequality

w(r) + (2K + kβ)r
2 ≤ r,

where the constant K is defined by

sup

{∫ 1

0

|k(u, τ)|dτ : u ∈ [0, 1]

}

≤ K.

Then the equation (2.4) has at least one solution x = x(u) belonging to space Hα[0, 1].
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Proof. Note that we suppose unless stated otherwise that α and β are arbitrarily fixed numbers such that 0 < α <

β ≤ 1. Now, let us consider x ∈ Hβ [0, 1] and the operator N defined on the space Hβ [0, 1] by the formula:

(Nx)(u) = (Gx)(u) + x(u)

∫ 1

0

k(u, τ)x(q(τ))dτ,

for u ∈ [0, 1]. Then for arbitrarily fixed u, v ∈ [0, 1], (u 6= v), in view of our assumptions we get

(Nx)(u)− (Nx)(v) = (Gx)(u) + x(u)

∫ 1

0

k(u, τ)x(q(τ))dτ − (Gx)(v)− x(v)

∫ 1

0

k(v, τ)x(q(τ))dτ

= (Gx)(u)− (Gx)(v) + x(u)

∫ 1

0

k(u, τ)x(q(τ))dτ − x(v)

∫ 1

0

k(v, τ)x(q(τ))dτ

+x(v)

∫ 1

0

k(u, τ)x(q(τ))dτ − x(v)

∫ 1

0

k(u, τ)x(q(τ))dτ

= (Gx)(u)− (Gx)(v) + (x(u)− x(v))

∫ 1

0

k(u, τ)x(q(τ))dτ

+x(v)

∫ 1

0

(k(u, τ)− k(v, τ))x(q(τ))dτ

and

|(Nx)(u)− (Nx)(v)|
|u− v|β ≤ |(Gx)(u)− (Gx)(v)|

|u− v|β +
|x(u)− x(v)|

|u− v|β
∫ 1

0

|k(u, τ)||x(q(τ))|dτ

+
|x(v)|
|u− v|β

∫ 1

0

|k(u, τ)− k(v, τ)||x(q(τ))|dτ

≤ |(Gx)(u)− (Gx)(v)|
|u− v|β + ‖x‖

∞
‖x‖β

∫ 1

0

|k(u, τ)|dτ

+‖x‖
∞
‖x‖

∞

∫ 1

0

|k(u, τ)− k(v, τ)|
|u− v|β dτ

≤ |(Gx)(u)− (Gx)(v)|
|u− v|β + ‖x‖2βK + ‖x‖2β

∫ 1

0

kβ
|u− v|β
|u− v|β dτ

≤ |(Gx)(u)− (Gx)(v)|
|u− v|β + (K + kβ)‖x‖2β . (2.5)

Considering the (i) hypothesis, this demonstrates that the operator N maps Hβ [0, 1] into itself. Besides, for any
x ∈ Hβ [0, 1], we get

|(Nx)(0)| ≤ |(Gx)(0)|+ |x(0)|
∫ 1

0

|k(0, τ)||x(q(τ))|dτ

≤ |(Gx)(0)|+ ‖x‖
∞
‖x‖

∞

∫ 1

0

|k(0, τ)|dτ

≤ |(Gx)(0)|+ ‖x‖2βK. (2.6)

By the inequalities by (2.5) and (2.6), we derive that

‖Nx‖β ≤ ‖Gx‖β + (2K + kβ)‖x‖2β . (2.7)

Since positive number r0 is the solution of the inequality given in hypothesis (iv), from (2.7) and function w : R+ →
R+ which is non-decreasing, we conclude that the inequality

‖Nx‖β ≤ w(r0) + (2K + kβ)r
2
0 ≤ r0. (2.8)

As a results, it follows that N transform the ball

Bβ
r0

= {x ∈ Hβ [0, 1] : ‖x‖β ≤ r0}
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into itself. That is, N : Bβ
r0

→ Bβ
r0

. Thus, we have that the set Bβ
r0

is relatively compact in Hα[0, 1] for any
0 < α < β ≤ 1. Furthermore, Bβ

r0
is a compact subset in Hα[0, 1].

In the sequel, we will demonstrate that the operator N is continuous on Bβ
r0

with respect to the norm ‖ · ‖α,
where 0 < α < β ≤ 1.

Let y ∈ Bβ
r0

be an arbitrary point in Bβ
r0

. Then, we get

(Nx)(u)− (Ny)(u)− ((Nx)(v)− (Ny)(v)) = (Gx)(u) + x(u)

∫ 1

0

k(u, τ)x(q(τ))dτ

−(Gy)(u)− y(u)

∫ 1

0

k(u, τ)y(q(τ))dτ

−(Gx)(v)− x(v)

∫ 1

0

k(v, τ)x(q(τ))dτ

+(Gy)(v) + y(v)

∫ 1

0

k(v, τ)y(q(τ))dτ (2.9)

for any x ∈ Bβ
r0

and u, v ∈ [0, 1]. The equality (2.9) can be rewritten as

(Nx)(u)− (Ny)(u)− ((Nx)(v)− (Ny)(v))

= (Gx)(u)− (Gy)(u)− ((Gx)(v)− (Gy)(v)) + (x(u)− y(u))

∫ 1

0

k(u, τ)x(q(τ))dτ

+y(u)

[∫ 1

0

k(u, τ)x(q(τ))dτ −
∫ 1

0

k(u, τ)y(q(τ))dτ

]

−(x(v)− y(v))

∫ 1

0

k(v, τ)x(q(τ))dτ

−y(v)

[∫ 1

0

k(v, τ)x(q(τ))dτ −
∫ 1

0

k(v, τ)y(q(τ))dτ

]

. (2.10)

By (2.10), we have

(Nx)(u)− (Ny)(u)− ((Nx)(v)− (Ny)(v)) = (Gx)(u)− (Gy)(u)− ((Gx)(v)− (Gy)(v))

+[x(u)− y(u)− (x(v)− y(v))]

∫ 1

0

k(u, τ)x(q(τ))dτ

+(x(v)− y(v))

[∫ 1

0

k(u, τ)x(q(τ))dτ −
∫ 1

0

k(v, τ)x(q(τ))dτ

]

+y(u)

∫ 1

0

k(u, τ)(x(q(τ))− y(q(τ))dτ

−y(v)

∫ 1

0

k(v, τ)(x(q(τ))− y(q(τ))dτ. (2.11)

(2.11) yields the following inequality:

|(Nx)(u)− (Ny)(u))− ((Nx)(v)− (Ny)(v)| ≤ |(Gx)(u)− (Gy)(u)− ((Gx)(v)− (Gy)(v))|

+|x(u)− y(u)− (x(v)− y(v))|
∫ 1

0

|k(u, τ)||x(q(τ))|dτ

+|x(v)− y(v)|
∫ 1

0

|k(u, τ)− k(v, τ)||x(q(τ))|dτ

+|y(u)− y(v)|
∫ 1

0

|k(u, τ)||(x(q(τ))− y(q(τ))|dτ

+|y(v)|
∫ 1

0

|k(u, τ)− k(v, τ)||(x(q(τ))− y(q(τ))|dτ. (2.12)
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Hence, taking into account (2.12), we can write:

|(Nx)(u)− (Ny)(u)− ((Nx)(v)− (Ny)(v))|
|u− v|α ≤ |(Gx)(u)− (Gy)(u)− ((Gx)(v)− (Gy)(v))|

|u− v|α

+
|(x(u)− y(u))− (x(v)− y(v))|

|u− v|α ‖x‖∞K

+‖u− v‖∞‖x‖∞
∫ 1

0

|k(u, τ)− k(v, τ)|
|u− v|α dτ +

|y(u)− y(v)|
|u− v|α ‖x− y‖∞K

+‖y‖∞‖x− y‖∞
∫ 1

0

|k(u, τ)− k(v, τ)|
|u− v|α dτ (2.13)

for all u, v ∈ [0, 1] with u 6= v. Therefore the equality

(Nx)(0)− (Ny)(0) = (Gx)(0)− (Gy)(0) + x(0)

∫ 1

0

k(0, τ)x(q(τ))dτ − y(0)

∫ 1

0

k(0, τ)y(q(τ))dτ

= (Gx)(0)− (Gy)(0) + (x(0)− y(0))

∫ 1

0

k(0, τ)x(q(τ))dτ

+y(0)

∫ 1

0

k(0, τ)[x(q(τ))− y(q(τ))]dτ

holds. So, we get the inequality

|(Nx)(0)− (Ny)(0)| ≤ |(Gx)(0)− (Gy)(0)|+ |x(0)− y(0)|K‖x‖∞ + |y(0)|‖x− y‖∞K. (2.14)

Moreover, since ‖x‖
∞

≤ ‖x‖α ≤ r0, ‖y‖
∞

≤ ‖y‖α ≤ r0 and ‖x− y‖
∞

≤ ‖x− y‖α, from (2.13) and (2.14), we have
that

‖Nx−Ny‖α = |(Nx−Ny)(0)|+Hα
Nx−Ny

= |(Nx)(0)− (Ny)(0)|

+sup

{ |(Nx)(u)− (Ny)(u)− ((Nx)(v)− (Ny)(v))|
|u− v|α : u, v ∈ [0, 1] and u 6= v

}

≤ ‖Gx−Gy‖α + ‖x− y‖αK‖x‖∞ + ‖y‖α‖x− y‖∞K

+‖x− y‖∞(‖x‖∞ + ‖y‖∞)

≤ ‖Gx−Gy‖α + ‖x− y‖α(‖x‖α + ‖y‖α)(K + 1)

≤ ‖Gx−Gy‖α + ‖x− y‖α2r0(K + 1). (2.15)

Since the operator G : Hβ [0, 1] → Hβ [0, 1] is continuous on Hβ [0, 1] with respect to the norm ‖ · ‖α, it is also
continuous at the point y ∈ Bβ

r0
. Let us take an arbitrary ε > 0. There exists δ > 0 such that the inequality:

‖Gx−Gy‖α <
ε

2

where ‖x− y‖α < δ and

0 < δ <
ε

4r0(K + 1)
.

Then, taking into account (2.15), we derive the following inequality:

‖Nx−Ny‖α <
ε

2
+

ε

2
= ε.

As a results, we infer that the operator N is continuous at the point y ∈ Bβ
r0

. Because y was chosen arbitrarily, we
deduce that N is continuous on Bβ

r0
with respect to the norm ‖ · ‖α. As Bβ

r0
is compact in Hα[0, 1], from the classical

Schauder fixed point theorem, we get the desired result.
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3. An Example

Example 3.1. Let us consider the following nonlinear quadratic integral equation:

x(u) =
1

3

(

x2(u) + x(u) +
3

210

)

+ x(u)

∫ 1

0

7

√

mu4 + τx

(

√

1

τ + 1

)

dτ, (3.1)

where u ∈ I = [0, 1] and m is the real number.

Set (Gx)(u) = 1

3

(

x2(u) + x(u) + 3

210

)

, k(u, τ) = 7
√
mu4 + τ and q(τ) =

√

1

τ+1
. We will show that the operator

G continuous according to be norm with ‖.‖α. To do this, fix arbitrarily ε > 0 and y ∈ Hβ [0, 1]. Assume that
x ∈ Hβ [0, 1] is an arbitrary function and ‖x− y‖α < δ, where δ is a positive number such that

0 < δ ≤ 1

12

(

−(6‖y‖α + 2) +
√

(6‖y‖α + 2)2 + 36ε
)

.

Then, for arbitrary u, v ∈ [0, 1] we obtain

3(Gx−Gy)(u)− 3(Gx−Gy)(v) = x2(u) + x(u) +
3

210
− y2(u)− y(u)− 3

210

−
(

x2(v) + x(v) +
3

210
− y2(v)− y(v)− 3

210

)

= x2(u)− y2(u)− (x2(v)− y2(v)) + x(u)− y(u)− (x(v)− y(v))

= (x(u)− y(u))(x(u) + y(u))− (x(u)− y(v))(x(v) + y(v))

+(x(u)− y(u)− (x(v)− y(v)))

= [x(u)− y(v)− (x(v)− y(v))](x(u) + y(u))

+(x(v)− y(v))(x(u) + y(u)− x(v)− y(v))

+x(u)− y(u)− (x(v)− y(v))

= [x(u)− y(u)− (x(v)− y(v))](x(u) + y(u) + 1)

+(x(v)− y(v))(x(u) + y(u)− x(v)− y(v)). (3.2)

By (3.2), we get

3|(Gx−Gy)(u)− (Gx−Gy)(v)| ≤ (‖x+ y‖∞ + 1)|x(u)− y(u)− (x(v)− y(v))|
+‖x− y‖∞|x(u) + y(u)− x(v)− y(v)|

≤ (‖x+ y‖α + 1)|x(u)− y(u)− (x(v)− y(v))|
+‖x− y‖α|x(u) + y(u)− x(v)− y(v)|. (3.3)

By (3.3), we have:

3 sup

{ |(Gx−Gy)(u)− (Gx−Gy)(v)|
|u− v|α : u, v ∈ [0, 1] and u 6= v

}

≤ (‖x+ y‖α + 1) sup

{ |x(u)− y(u)− (x(v)− y(v))|
|u− v|α : u, v ∈ [0, 1] and u 6= v

}

+‖x− y‖α sup

{ |x(u) + y(u)− (x(v) + y(v))|
|u− v|α : u, v ∈ [0, 1] and u 6= v

}

≤ (‖x+ y‖α + 1)‖x− y‖α + ‖x− y‖α‖x+ y‖α
≤ ‖x− y‖α(2‖x+ y‖α + 1). (3.4)
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From (3.4), we obtain the following inequality:

3‖Gx−Gy‖α = 3|(Gx−Gy)(0)|+ 3 sup

{ |(Gx−Gy)(u)− (Gx−Gy)(v)|
|u− v|α : u, v ∈ [0, 1] and u 6= v

}

≤ |x2(0)− y2(0)|+ |x(0)− y(0)|+ ‖x− y‖α(2‖x+ y‖α + 1)

≤ |x(0)− y(0)||x(0) + y(0)|+ |x(0)− y(0)|+ ‖x− y‖α(2‖x+ y‖α + 1)

≤ ‖x− y‖∞(‖x+ y‖∞ + 1) + ‖x− y‖α(2‖x+ y‖α + 1)

≤ ‖x− y‖α(‖x+ y‖α + 1) + ‖x− y‖α(2‖x+ y‖α + 1)

≤ ‖x− y‖α(3‖x+ y‖α + 2)

≤ ‖x− y‖α(3‖x− y‖α + 6‖y‖α + 2)

< 3ε

which yields that the operator G is continuous on Hβ [0, 1] with respect to the norm ‖.‖α. Also,

3|(Gx)(0)| = |x2(0) + x(0)|+ 3

210

≤ |x2(0)|+ |x(0)|+ 3

210

≤ ‖x‖2
∞

+ ‖x‖∞ +
3

210

≤ ‖x‖2β + ‖x‖β +
3

210
(3.5)

and

3 sup

{ |(Gx)(u)− (Gx)(v)|
|u− v|β

}

=

∣

∣x2(u) + x(u) + 3

210
− x2(v)− x(v)− 3

210

∣

∣

|u− v|β

=
|x2(u)− x2(v) + x(u)− x(v)|

|u− v|β

=
|(x(u)− x(v))(x(u) + x(v)) + x(u)− x(v)|

|u− v|β

=
|(x(u)− x(v))||(x(u) + x(v) + 1)|

|u− v|β

≤ sup

{ |(x(u)− x(v))|
|u− v|β

}

(2‖x‖∞ + 1)

≤ ‖x‖β(2‖x‖β + 1)

≤ 2‖x‖2β + ‖x‖β . (3.6)

From (3.5) and (3.6), we get

3‖Gx‖β ≤ ‖x‖2β + ‖x‖β +
3

210
+ 2‖x‖2β + ‖x‖β

= 3‖x‖2β + 2‖x‖β +
3

210

which implies

‖Gx‖β ≤ ‖x‖2β +
2

3
‖x‖β +

1

210
.

Therefore, there exists the function w : R+ → R+, w(x) = x2 + 2

3
x+ 1

210
which is non-decreasing such that it holds

the inequality

‖Gx‖β ≤ w
(

‖x‖β
)
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for any x ∈ Hβ [0, 1]. So, the assumption (i) of Theorem 2.1 holds.
Further, we have

|k(u, τ)− k(v, τ)| =
∣

∣

∣

7

√

mu4 + τ − 7

√

mv4 + τ
∣

∣

∣

≤
∣

∣

∣

7

√

m(u4 − v4)
∣

∣

∣

≤ 7
√
m 7

√

|(u4 − v4)|
≤ 7

√
4m|u− v| 17

for all u, v, τ ∈ [0, 1]. The assumption (ii) of Theorem 2.1 holds with the constant kβ = k 1

7

= 7
√
4m.

The function q : [0, 1] → [0, 1], q(τ) =
√

1

τ+1
decreasing function is measurable and this satisfies assumption

(iii).
Further, we can calculate that

sup

{∫ 1

0

|k(u, τ)|dτ : u ∈ [0, 1]

}

= sup

{∫ 1

0

∣

∣

∣

7

√

mu4 + τ
∣

∣

∣ dτ : u ∈ [0, 1]

}

= sup

{

7

8

(

7

√

(mu4 + 1)8 − 7

√

(mu4)8
)

: u ∈ [0, 1]

}

≤ sup

{

7

8
7

√

(mu4 + 1)8 : u ∈ [0, 1]

}

=
7

8
7

√

(m+ 1)8

≤ 7

√

(m+ 1)8

= K.

In this case, the inequality appearing in assumption (vi) of Theorem 2.1 takes the following form:

w(r) + (2K + kβ)r
2 ≤ r

which is equivalent to

r2 +
2

3
r +

1

210
+
(

2 7

√

(m+ 1)8 +
7
√
4m
)

r2 ≤ r. (3.7)

There exists a positive number r0 satisfying (3.7) provided that the constant m is chosen as suitable. For example, if
one chose m = 1

1049
, then the inequality

r2 +
2

3
r +

1

210
+



2
7

√

(

1

1049
+ 1

)8

+
7

√

4

1049



 r2 ≤ r

holds for r = r0 = 0.10 ∈ [0.0030113, 0.1081]. Therefore, using Theorem 2.1, we infer that there is at least one
solution x of the equation (3.1) in the space Hα[0, 1] with 0 < α < 1

7
.
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Abstract
The main purpose of this study is to introduce the absolute Lucas series spaces and to investigate their
some algebraic and topological structure such as some inclusion relations, BK− to this space, duals and
Schauder basis. Also, the characterizations of matrix operators related to these space with their norms are
given. Finally, by using Hausdorff measure of noncompactness, the necessary and sufficient conditions
for a matrix operator on them to be compact are obtained.
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1. Introduction

Let ω be the set of all sequences of complex numbers. A vector subspace of ω is called a sequence space. The
spaces l∞, c, c0, Ψ, bs, cs, l and lp (p > 1) stand for the classes of all bounded, convergent, null and finite sequences
and the classes of all bounded, convergent, absolutely convergent and p-absolutely convergent series, respectively.

Let X and Y be two sequence spaces and A = (anv) be an arbitrary infinite matrix with complex components
for all n, v ∈ N = {0, 1, 2, ...}. If the series

An(x) =
∞
∑

v=0

anvxv,

converges for all n ∈ N, then, by A(x) = (An(x)), we indicate the A-transform of the sequence x = (xv). Also, if
Ax = (An(x)) ∈ Y for every x ∈ X , then, A is called a matrix transformation from the sequence space X into the
sequence space Y , and the class of all infinite matrices from X into Y is denoted by (X,Y ).

A summability method is denoted by the matrix A if the transform sequence A(x) converges to a real number.
The multiplier space of X and Y is identified by

S(X,Y ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ Y for all x ∈ X} .
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According to this notation, duals of the space X are described as

Xα = S(X, l), Xβ = S(X, cs), Xγ = S(X, bs).

If ann 6= 0 for all n and anv = 0 for n < v, then it is said that A is a triangle.
The concept of the domain of an infinite matrix A in the sequence space X is described as

XA = {x = (xn) ∈ ω : A(x) ∈ X}

which is a new sequence space. In this connection, by means of the concept of the matrix domain, different new
sequence spaces have been presented and their topological, algebraic structure and matrix transformations have
been studied in literature. For example, one can see some of these spaces in references ([1, 2], [10–12], [23]).

A sequence space X is called an FK-space if it is a complete linear metric space with continuous coordinates
pn : X → C defined by pn(x) = xn for all n ∈ N. Further, an FK-space X whose metric is given by a norm is said
to be a BK-space. The theory of FK- and BK-spaces has an important role in summability theory. For example,
the operators between BK-spaces are continuous and the matrix domain of a triangle A in the BK-space X is also
a BK-space and its norm is given by

‖x‖XA
= ‖A(x)‖X ,

[4]. Let X be a normed sequence space and (bk) be a sequence in X . If there exists a unique sequence of coefficients
(xk) such that, for each x ∈ X ,

∥

∥

∥

∥

∥

x−

n
∑

k=0

xkbk

∥

∥

∥

∥

∥

→ 0, n → ∞

then, the sequence (bk) is called the Schauder basis (or briefly basis) for X , and in this case it is written that

x =
∞
∑

k=0

xkbk. It is said that an FK-space X , consisting all finite sequences, has AK property if every sequence

x = (xk) ∈ X has a unique representation x =
∞
∑

j=0

xje
(j), where e(j) is the sequence whose only non-zero term is 1

in the jth place for each j ∈ N. This means that the sequence (e(j)) is a Schauder basis for any FK− space with AK.
For example, (e(j)) is the Schauder basis of the space lp, but the space l∞ doesn’t have the Schauder basis [20].

For arbitrary two Banach spaces X and Y , B(X,Y ) denotes the set of all continuous linear operators from the
space X into the space Y , and the operator norm of A ∈ B(X,Y ) is stated by

‖A‖ = sup
x 6=0

‖A(x)‖Y
‖x‖X

.

In the special case Y = C, it is written that X∗ = B(X,C), the set of all continuous linear functional on X .
If a ∈ ω and X ⊃ Ψ is a BK-space, then

‖a‖
∗
X = sup

x∈SX

∣

∣

∣

∣

∣

∞
∑

k=0

akxk

∣

∣

∣

∣

∣

provided the right hand side of the equation exists, where SX is the unit sphere in X, and it is finite for a ∈ Xβ .

Throughout the whole paper, we suppose that φ = (φn) is a sequence of positive numbers and p∗ is conjugate of
p, that is, 1/p+ 1/p∗ = 1, p > 1, and 1/p∗ = 0 for p = 1.

Let take
∑

xv as an infinite series with nth partial sum sn. Then, the series
∑

xv is said to be summable |A, φn|p,
if (see[29])

∞
∑

n=0

φp−1
n |An(s)−An−1(s))|

p < ∞, A−1(s) = 0.

This method includes some well known methods. For instance, if A is the matrix of weighted mean
(

N̄ , pn
)

(resp.
φn = Pn/pn), then it is reduced to the summability

∣

∣N̄ , pn, φn

∣

∣

p
[31] (the summability

∣

∣N̄ , pn
∣

∣

p
[3]). Also if we take

A as the matrix of Cesàro mean of order α > −1 and φn = n, then we get the summability |C,α|p in Flett’s notation
[5]. The choice of the Fibonacci matrix instead of A leads to the absolute Fibonacci summability method [7]. In
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addition to the aforementioned spaces, several absolute series spaces have also taken place in the literature (see
[6, 8, 19, 25, 27–29]).

The Lucas sequence (Ln) is one of the most interesting number sequences in mathematics and is named after
the mathematician François Edouard Anatole Lucas (1842-1891). It is given by the Fibonacci recurrence relation
with different initial condition such that

L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2,

also, the terms of the Lucas sequence have the following important properties

n
∑

k=1

Lk = Ln+2 − 3,

n
∑

k=1

L2k−1 = L2n − 2,

n
∑

k=1

L2k = L2n+1 − 1,

n
∑

k=1

L2
k = LnLn+1 − 2,

L2
n−1 + LnLn−1 − L2

n = 5(−1)n+1, n ≥ 1,

Ln−1Ln+1 − L2
n = 5(−1)n+1, n ≥ 1.

We refer reader to [13] for other properties. Additionally, just like the Fibonacci numbers, the rates of successive
Lucas numbers converges to the golden ratio which is one of the most interesting irrationals playing an important
role in number theory, algorithms, network theory, etc. Using Lucas numbers, the Lucas matrix Ê(r, s) = (ênk(r, s))
has recently been defined [12] as

ênk(r, s) =











s Ln

Ln−1
, k = n− 1

rLn−1

Ln
, k = n

0, otherwise

where Ln be the nth Lucas number for every n ∈ N and r, s ∈ R− {0}.
The aim of this paper is to define the absolute sumability space

∣

∣Lφ(r, s)
∣

∣

p
and investigate its some inclusion

relations, α−, β−, γ− duals and basis. Also, some matrix and compact operators on this space are characterized
and their operator norms and Hausdorff measures of noncompactness are determined.

It is required the following lemmas in proving theorems.

Lemma 1.1. [18] Let T be a triangle, X and Y be two arbitrary subsets of ω. Then, we have

(a) A ∈ (X,YT ) if and only if B = TA ∈ (X,Y ).

(b) Further, if X and Y are BK-spaces and A ∈ (X,YT ), then ‖LA‖ = ‖LB‖.

Lemma 1.2. [30] Let 1 < p < ∞. Then,

1. A ∈ (l, c) ⇔ (i) lim
n

anv exists for v ≥ 0, (ii) sup
n,v

|anv| < ∞,

2. A ∈ (l, l∞) ⇔ (ii) holds,

3. A ∈ (l, c0) ⇔ (iii) lim
n

anv = 0 for all v ≥ 0 and (ii) hold,

4. A ∈ (lp, c) ⇔ (i) holds, (iv) sup
n

∞
∑

v=0
|anv|

p∗

< ∞,

5. A ∈ (lp, l∞) ⇔ (iv) holds,
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6. A ∈ (lp, c0) ⇔ (iii) and (iv) hold.

Lemma 1.3. [14] Let 1 ≤ p < ∞. Then, A ∈ (l, lp) if and only if

‖A‖(l,lp) = sup
v

{

∞
∑

n=0

|anv|
p

}
1
p

.

Lemma 1.4. [30] Let 1 < p < ∞. Then, A ∈ (lp, l) if and only if

‖A‖(lp,l) = sup
N∈F







∞
∑

v=0

∣

∣

∣

∣

∣

∞
∑

n=0

anv

∣

∣

∣

∣

∣

p∗






1/p∗

where F denotes the collection of all finite subsets of N.

Lemma 1.5. [27] Let 1 < p < ∞. Then, A ∈ (lp, l) if and only if

‖A‖
′
(lp,l)

=







∞
∑

v=0

(

∞
∑

n=0

|anv|

)p∗






1/p∗

< ∞.

Moreover since ‖A‖(lp,l) ≤ ‖A‖
′
(lp,l)

≤ 4 ‖A‖(lp,l) , there exists 1 ≤ ξ ≤ 4 such that ‖A‖
′
(lp,l)

= ξ ‖A‖(lp,l) .

Lemma 1.6. [18] Let 1 < p < ∞ and p∗ denote the conjugate of p. Then, lβp = lp∗ and lβ∞ = cβ = cβ0 = l, lβ = l∞. Also, let
X denote any of the spaces l∞, c, c0, l and lp. Then, we have

‖a‖
∗
X = ‖a‖Xβ

for all a ∈ Xβ , where ‖.‖Xβ is the natural norm on the Xβ .

Lemma 1.7. [15] Let X and Y be BK-spaces. Then, we have

(a) (X,Y ) ⊂ B (X,Y ) , that is, every matrix A ∈ (X,Y ) defines an operator LA ∈ B (X,Y ) by LA (x) = A(x) for all
x ∈ X.

(b) If X has AK, then B (X,Y ) ⊂ (X,Y ) , that is, for every operator L ∈ B (X,Y ) there exists a matrix A ∈ (X,Y )
such that by L (x) = A(x) for all x ∈ X.

Lemma 1.8. [4] Let X ⊃ Ψ be a BK-space and Y be any of the spaces ℓ∞, c, c0. If A ∈ (X,Y ) , then

‖LA‖ = ‖A‖(X,l∞) = sup
n

‖An‖
∗
X < ∞.

2. Hausdorff Measure of Noncompactness

If S and R are subsets of a metric space (X, d) and, for every r ∈ R, there exists an s ∈ S such that d(r, s) < ε
then, S is called an ε-net of R; if S is finite, then the ε-net S of R is called a finite ε-net of R. Let X , Y be two Banach
spaces. It is said that a linear operator L : X → Y is compact if its domain is all of X and the sequence (L(xn)) has
a convergent subsequence in Y , for every bounded sequence (xn) in X . The class of such operators is denoted by
C(X,Y ). If Q is any bounded subset of the metric space X , then the Hausdorff measure of noncompactness of Q is
given by

χ (Q) = inf {ε > 0 : Q has a finite ε− net in X} ,

and χ is named the Hausdorff measure of noncompactness. Using the Hausdorff measure of noncompactness, some
compact operators on various sequence spaces are characterized by many authors. For example, Mursaleen and
Noman in [21, 22], Malkowsky and Rakocevic in [17] have used the Hausdorff measure of noncompactness method
to characterize the class of compact operators on some known spaces, (see also [7, 8, 15, 26]).

The following lemma is very important to calculate the Hausdorff measure of noncompactness of any bounded
subset of the space lp.
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Lemma 2.1. ([24]) Let Q be a bounded subset of the normed space X where X = lp for 1 ≤ p < ∞ or X = c0. If Pr : X → X
is the operator defined by Pr(x) = (x0, x1, ...xr, 0, 0, ...) for all x ∈ X , then

χ (Q) = lim
r→∞

(

sup
x∈Q

‖(I − Pr) (x)‖

)

.

Let X and Y be two Banach spaces, χ1 and χ2 be Hausdorff measures on X and Y , the linear operator
L : X → Y is said to be (χ1, χ2)- bounded if L(Q) is a bounded subset of Y and there exists a constant M > 0 such
that χ2 (L(Q)) ≤ Mχ1 (Q) for every bounded subset Q of X . If an operator L is (χ1, χ2)- bounded, then the number

‖L‖(χ1,χ2)
= inf {M > 0 : χ2 (L(Q)) ≤ Mχ1 (Q) for all bounded set Q ⊂ X}

is called the (χ1, χ2)-measure noncompactness of L. In particular, if χ1 = χ2 = χ then it is written that ‖L‖(χ,χ) =
‖L‖χ .

There is a significant relation between compact operators and Hausdorff measure of noncompactness. The
following lemma gives this relation.

Lemma 2.2. [18] Let X and Y be two Banach spaces and L ∈ B(X,Y ). Also, let the set Sx = {x ∈ X : ‖x‖ ≤ 1} be the
unit sphere in X . Then,

‖L‖χ = χ (L (Sx))

and

L ∈ C(X,Y ) ⇔ ‖L‖χ = 0.

Lemma 2.3. [16] Let X be a normed sequence space, T = (tnv) be an infinite triangle matrix, χT and χ define the
Hausdorff measures of noncompactness on MXT

and MX , the collections of all bounded sets in XT and X , respectively. Then,
χT (Q) = χ(T (Q)) for all Q ∈ MXT

.

Lemma 2.4. [22] Let X ⊃ Ψ be a BK-space with AK or X = l∞. If A ∈ (X, c), then, we have

lim
n→∞

ank = αk exists for all k,

α = (αk) ∈ Xβ ,

sup
n

‖An − α‖
∗
X < ∞,

lim
n→∞

An(x) =

∞
∑

k=0

αkxk for every x = (xk) ∈ X.

Lemma 2.5. [22] Let X ⊃ Ψ be a BK-space. Then,

(a) If A ∈ (X, c0), then

‖LA‖χ = lim
r→∞

(

sup
n>r

‖An‖
∗

)

.

(b) If X has AK or X = l∞ and A ∈ (X, c), then

1

2
lim
r→∞

(

sup
n≥r

‖An − a‖
∗

)

≤ ‖LA‖χ ≤ lim
r→∞

(

sup
n≥r

‖An − a‖
∗

)

where a = (ak) defined by ak = lim
n→∞

ank, for all n ∈ N.

(c) If A ∈ (X, l∞), then

0 ≤ ‖LA‖χ ≤ lim
r→∞

(

sup
n>r

‖An‖
∗

)

.
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3. Absolute Lucas summability spaces

In this section, firstly, the summability space
∣

∣Lφ(r, s)
∣

∣

p
as the set of all series summable by absolute Lucas

method is introduced, and it is proved that this space is a BK-space which is linearly isomorphic to lp for 1 ≤ p < ∞.
Also, giving some inclusion relations, α−, β− and γ− duals and Schauder basis of this space are investigated.

If the Lucas matrix is taken instead of A, then |A, φn|p summability is reduced to the absolute Lucas summability.
Then, since (sn) is a sequence of partial sum of the series

∑

xk, it follows that

Ên(r, s)(s) =
n
∑

k=1

ênk(r, s)sk =
n
∑

k=1

xk

n
∑

v=k

ênv(r, s)

= xnênn(r, s) +
n−1
∑

k=1

(ênn(r, s) + ên,n−1(r, s))xk

= xnr
Ln−1

Ln
+

n−1
∑

k=1

(

s Ln

Ln−1
+ rLn−1

Ln

)

xk

=
n
∑

k=1

lnkxk

where the matrix L(r, s) = (lnk) is given by

lnk =











rLn−1

Ln
, k = n

s Ln

Ln−1
+ rLn−1

Ln
, 1 ≤ k ≤ n− 1

0, k > n.

(3.1)

So, we get

Ên(s)− Ên−1(s) = xnr
Ln−1

Ln
+ xn−1

(

s Ln

Ln−1
+ r 5(−1)n+1

LnLn−1

)

+
n−2
∑

k=1

5(−1)n

Ln−1

(

s
Ln−2

− r
Ln

)

xk

=
n
∑

k=1

ξnkxk

where

ξnk =























rLn−1

Ln
, k = n

s Ln

Ln−1
+ r 5(−1)n+1

LnLn−1
, k = n− 1

5(−1)n

Ln−1

(

s
Ln−2

− r
Ln

)

, 1 ≤ k ≤ n− 2

0, k > n.

(3.2)

Hence, the space |L(r, s)|p can be stated by

|L(r, s)|p =

{

x ∈ ω :

(

φ1/p∗

n

n
∑

k=1

ξnkxk

)

∈ lp

}

.

On the other hand, according to the matrix domain, this space is redefined by

∣

∣Lφ(r, s)
∣

∣

p
= (lp)E(p)◦L(r,s)

where

e
(p)
nk =











φ
1/p∗

n , k = n

−φ
1/p∗

n , k = n− 1
0, k 6= n, n− 1.

(3.3)

Also, we note
(E(p) ◦ L(r, s))n(x) = φ1/p∗

n (L(r, s)n(x)− Ln−1(r, s)(x)).
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Moreover, since every triangle matrix has a unique triangle inverse [32], the matrices L(r, s) and E(p) have
unique inverses L̃(r, s) = (l̃nk) and Ẽ(p) = (ẽnk) whose terms are given by

l̃nk =











1
r

Ln

Ln−1
, k = n

(−1)n−k

r

(

s
r

)n−1−k 1
LkLk−1

(

s
rL

2
n + L2

n−1

)

, 1 ≤ k ≤ n− 1

0, k > n

(3.4)

ẽ(p)nv =

{

φ
−1/p∗

v , 1 ≤ v ≤ n
0, v > n

(3.5)

respectively.

First, to understand the space better, we exibit some relations between the spaces
∣

∣Lφ(r, s)
∣

∣

p
and lp.

Theorem 3.1. Let φ ∈ l∞ and 1 ≤ p < ∞. Then, lp ⊂
∣

∣Lφ(r, s)
∣

∣

p
.

Proof. For p = 1, it is clear, it is omitted. Let p > 1. By the properties of Lucas numbers, the series
∑

n

1
Ln

is

convergent and also ( 1
Ln

) is a decreasing sequence. So, it follows from Abel’s Theorem that n
Ln

→ 0 as n → ∞.

This gives
n
∑

k=0

|ξnk| = O(1) and
∞
∑

n=k

|ξnk| = O(1). Hence, by Hölder’s inequality, it is obtained that

‖x‖|Lφ(r,s)|p
=

{

∞
∑

n=1

∣

∣

∣

∣

φ
1/p∗

n

n
∑

k=1

ξnkxk

∣

∣

∣

∣

p}1/p

≤

{

∞
∑

n=1
φp−1
n

n
∑

k=1

|ξnk| |xk|
p

(

n
∑

k=1

|ξnk|

)p/p∗
}1/p

= O(1)

{

∞
∑

k=1

|xk|
p

∞
∑

n=k

|ξnk|

}1/p

= O(1)

{

∞
∑

k=1

|xk|
p

}1/p

= O(1) ‖x‖lp ,

which completes the proof.

Theorem 3.2. Let 1 ≤ p ≤ q < ∞. If there is a constant M > 0 such that φn ≤ M for all n ∈ N, then
∣

∣Lφ(r, s)
∣

∣

p
⊂

∣

∣Lφ(r, s)
∣

∣

q
.

Proof. To prove the inclusion, take x ∈
∣

∣Lφ(r, s)
∣

∣

p
. Since lp ⊂ lq for 1 ≤ p ≤ q < ∞, it is clear that

(

φ
1/p∗

n

n
∑

j=0

ξnjxj

)

∈

lq . Also, by considering φn ≤ M for all n ∈ N, it can be written that

M
q

p∗
− q

q∗

∣

∣

∣

∣

∣

∣

φ
1
q∗

n

n
∑

j=1

ξnjxj

∣

∣

∣

∣

∣

∣

q

≤

∣

∣

∣

∣

∣

∣

φ1/p∗

n

n
∑

j=1

ξnjxj

∣

∣

∣

∣

∣

∣

q

which implies that x ∈ |L(r, s)|q .

The following result is useful to determine a Schauder basis for the matrix domain of a special triangular matrix
in a linear metric space.

Lemma 3.1. ([9]). Let T be a triangular matrix and S be its inverse. If (bk) is a Schauder basis of the metric space (X, d),
then (S(bk)) is a basis of XT with respect to the metric dT given by dT (z1, z2) = d(Tz1, T z2) for all z1, z2 ∈ XT .

Theorem 3.3. Let 1 ≤ p < ∞. Then, the set
∣

∣Lφ(r, s)
∣

∣

p
is a linear space with coordinate-wise addition and scalar

multiplication. Also, it is a BK-space with respect to the norm

‖x‖|Lφ(r,s)|p
=
∥

∥

∥E(p) ◦ L(r, s)(x)
∥

∥

∥

lp
.
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Moreover, the sequence b(j) = (b
(j)
n ) defined by

b(j)n =



















φ
−1/p∗

j

(

1
r

Ln

Ln−1 +
n−1
∑

k=j

(−1)n−k

r

(

s
r

)n−1−k 1
LkLk−1

(

s
rL

2
n + L2

n−1

)

)

, 1 ≤ j ≤ n− 1

φ
−1/p∗

n
1
r

Ln

Ln−1 , j = n

0, j > n,

is a Schauder basis for the space
∣

∣Lφ(r, s)
∣

∣

p
.

Proof. Since the space lp is a BK-space for 1 ≤ p < ∞ and E(p) ◦ Lφ(r, s) is a triangle matrix, it follows from
Theorem 4.3.2 of [32],

∣

∣Lφ(r, s)
∣

∣

p
= (lp)E(p)◦L(r,s) is a BK-space. On the other hand, it is known that the sequence

(e(j)) is the Schauder basis of the space lp. So, it can be obtained by Lemma 3.1 that b(j) = ((L̃(r, s) ◦ Ẽ(p))n(e
(j))) is

a Schauder basis of the space
∣

∣Lφ(r, s)
∣

∣

p
.

Theorem 3.4. Let 1 ≤ p < ∞. Then, there exists a linear isomorphism between the spaces
∣

∣Lφ(r, s)
∣

∣

p
and lp i.e.,

∣

∣Lφ(r, s)
∣

∣

p
∼=

lp.

Proof. To prove this, it should be shown that the existence of a linear bijection between the spaces
∣

∣Lφ(r, s)
∣

∣

p
and lp

where 1 ≤ p < ∞. Let consider the maps L(r, s) :
∣

∣Lφ(r, s)
∣

∣

p
→ (lp)E(p) , E(p) : (lp)E(p) → lp given by (3.1) and (3.3) .

Since the matrices corresponding to these maps are triangles, these are linear bijections. So, the composite function
E(p) ◦ L(r, s) has the same property. Further, one can see that the norm is preserved. This completes the proof.

We use the following notations in the rest of the paper.

ηnj =
1

r

Ln

Ln−1
+

n−1
∑

k=j

(−1)
n−k

r

(s

r

)n−1−k 1

LkLk−1

(s

r
L2
n + L2

n−1

)

,

D1 =







ǫ ∈ ω :
∞
∑

n=j+1

ηnjǫn exists for all j







,

D2 =











ǫ ∈ ω : sup
m











φ−1
m

∣

∣

∣

∣

1

r

Lm

Lm−1
ǫm

∣

∣

∣

∣

p∗

+

m−1
∑

j=1

φ−1
j

∣

∣

∣

∣

∣

∣

1

r

Lj

Lj−1
ǫj +

m
∑

n=j+1

ηnjǫn

∣

∣

∣

∣

∣

∣

p∗










< ∞











,

D3 =







ǫ ∈ ω : sup
m,j







∣

∣

∣

∣

1

r

Lm

Lm−1
ǫm

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

r

Lj

Lj−1
ǫj +

m
∑

n=j+1

ηnjǫn

∣

∣

∣

∣

∣

∣







< ∞







,

D4 =











ǫ ∈ ω :

∞
∑

j=1

1

φj







∞
∑

n=j+1

|ηnjǫn|+

∣

∣

∣

∣

1

r

Lj

Lj−1
ǫj

∣

∣

∣

∣







p∗

< ∞











,

D5 =







ǫ ∈ ω : sup
j







∞
∑

n=j+1

|ηnjǫn|+

∣

∣

∣

∣

1

r

Lj

Lj−1
ǫj

∣

∣

∣

∣







< ∞







.

Theorem 3.5. Let 1 < p < ∞ and φ = (φn) be a sequence of positive numbers. Then,

(i)
{∣

∣Lφ(r, s)
∣

∣

}α
= D5,

{

∣

∣Lφ(r, s)
∣

∣

p

}α

= D4,

(ii)
{∣

∣Lφ(r, s)
∣

∣

}β
= D1 ∩D3,

{

|L(r, s)|p

}β

= D1 ∩D2,

(iii)
{∣

∣Lφ(r, s)
∣

∣

}γ
= D3,

{

∣

∣Lφ(r, s)
∣

∣

p

}γ

= D2.
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Proof. Since the proofs of the other parts are similar, we just calculate the β-dual of the space
∣

∣Lφ(r, s)
∣

∣

p
. Recall that

ǫ ∈
{

∣

∣Lφ(r, s)
∣

∣

p

}β

iff ǫx = (ǫnxn) ∈ cs for all x ∈
∣

∣Lφ(r, s)
∣

∣

p
. Take x ∈

∣

∣Lφ(r, s)
∣

∣

p
, L(r, s)(x) = y and z = E(p)(y).

Then, z ∈ lp. It follows from (3.4) and (3.5) that

m
∑

n=1
ǫnxn = ǫ1x1 +

m
∑

n=2
ǫn

(

1
r

Ln

Ln−1
yn +

n−1
∑

k=1

(−1)n−k

r

(

s
r

)n−1−k 1
LkLk−1

(

s
rL

2
n + L2

n−1

)

yk

)

=
m
∑

j=1

φ
−1/p∗

j

m
∑

n=j

ǫn
1
r

Ln

Ln−1
zn

+
m−1
∑

j=1

φ
−1/p∗

j

(

m
∑

n=j+1

n−1
∑

k=j

ǫn
(−1)n−k

r

(

s
r

)n−1−k 1
LkLk−1

(

s
rL

2
n + L2

n−1

)

)

zj

= φ
−1/p∗

m ǫm
1
r

Lm

Lm−1
zm +

m−1
∑

j=1

φ
−1/p∗

j

(

ǫj
1
r

Lj

Lj−1
+

m
∑

n=j+1

ǫnηnj

)

zj

=
m
∑

j=1

hmjzj

where the matrix H = (hmj) is defined by

hmj =



















φ
−1/p∗

j

(

ǫj
1
r

Lj

Lj−1
+

m
∑

n=j+1

ǫnηnj

)

, 1 ≤ j ≤ m− 1

φ
−1/p∗

m ǫm
1
r

Lm

Lm−1
, j = m

0, j > m.

This means that ǫ ∈
{

∣

∣Lφ(r, s)
∣

∣

p

}β

iff H ∈ (lp, c). Thus, by applying Lemma 1.2 to the matrix H , we obtain
{

∣

∣Lφ(r, s)
∣

∣

p

}β

= D1 ∩D2. This completes the proof.

4. Matrix transformations on space
∣

∣Lφ(r, s)
∣

∣

p

In this section, we characterize some classes of matrix operators on that space and compute their norms.

Lemma 4.1. Let 1 < p < ∞. If a = (ak) ∈
{

∣

∣Lφ(r, s)
∣

∣

p

}β

, then, for all x ∈
∣

∣Lφ(r, s)
∣

∣

p
, ã(p) = (ã

(p)
k ) ∈ lp∗ , ã(1) ∈ l∞

and
∑

k

akxk =
∑

k

ã
(p)
k zk

holds, where z = E(p)(L(r, s)(x)) ∈ lp and

ã
(p)
k = φ

−1/p∗

k

(

ak
1

r

Lk

Lk−1
+

∞
∑

n=k+1

anηnk

)

.

Lemma 4.2. Assume that 1 < p < ∞. Then, we have ‖a‖
∗
|Lφ(r,s)|p

=
∥

∥ã(p)
∥

∥

lp∗
for all a ∈

{

∣

∣Lφ(r, s)
∣

∣

p

}β

and

‖a‖
∗
|Lφ(r,s)| =

∥

∥ã(1)
∥

∥

l∞
for all a ∈

{∣

∣Lφ(r, s)
∣

∣

}β
where ã(p) as in Lemma 4.1.

Proof. Let a ∈
{

∣

∣Lφ(r, s)
∣

∣

p

}β

. It can be immediately seen from Lemma 4.1, ã(p) ∈ lp∗ and ã(1) ∈ l∞. So, using

Lemma 1.6 and Lemma 4.1 , we get

‖a‖
∗
|Lφ(r,s)|p

= sup
x∈S|Lφ(r,s)|p

∣

∣

∣

∣

∣

∞
∑

v=0

avxv

∣

∣

∣

∣

∣

= sup
z∈Slp

∣

∣

∣

∣

∣

∞
∑

v=0

ã(p)v zv

∣

∣

∣

∣

∣

=
∥

∥

∥
ã(p)

∥

∥

∥

∗

lp
=
∥

∥

∥
ã(p)

∥

∥

∥

lp∗
.

The proof for the case k = 1 is quite easy, so it is omitted.
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Theorem 4.1. Let 1 < p < ∞, A = (ank) be an infinite matrix of complex numbers for each n, k ∈ N and define the matrix

B(n) =
(

b
(n)
mk

)

, B̄ = (b̄nk) and B̂ = (b̂nk) as follows:

b
(n)
mk =



















φ
−1/p∗

k

(

ank
1
r

Lk

Lk−1
+

m
∑

j=k+1

anjηjk

)

, 0 ≤ k ≤ m− 1

φ
−1/p∗

m anm
1
r

Lm

Lm−1
, k = m

0, j > m,

b̄nk = lim
m→∞

b
(n)
mk,

B̂ = E(1) ◦ L(r, s) ◦ B̄.

Then, A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
,
∣

∣Lφ(r, s)
∣

∣

)

if and only if

∞
∑

j=k+1

ηjkanj exists for all k, (4.1)

sup
m











1

φm

∣

∣

∣

∣

1

r

Lm

Lm−1
anm

∣

∣

∣

∣

p∗

+

m−1
∑

k=1

1

φk

∣

∣

∣

∣

∣

∣

1

r

Lk

Lk−1
ank +

m
∑

j=k+1

ηjkanj

∣

∣

∣

∣

∣

∣

p∗










, (4.2)

∞
∑

k=1

(

∞
∑

n=1

∣

∣

∣
b̂nk

∣

∣

∣

)p∗

< ∞. (4.3)

If A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
,
∣

∣Lφ(r, s)
∣

∣

)

, then A defines a bounded linear operator LA such that LA(x) = A(x) and

‖A‖(|Lφ(r,s)|p,|L
φ(r,s)|) =

∥

∥

∥
B̂
∥

∥

∥

(lp,l)
.

Proof. A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
,
∣

∣Lφ(r, s)
∣

∣

)

if and only if A(x) is well defined and belongs to the space
∣

∣Lφ(r, s)
∣

∣ for all

x ∈
∣

∣Lφ(r, s)
∣

∣

p
. By Theorem 3.5, A(x) is well defined, or, (ank)∞k=0 ∈

{

∣

∣Lφ(r, s)
∣

∣

p

}β

if and only if (4.1) and (4.2)

hold.
Beside, for any matrix R = (rnv) ∈ (lp, c), the remaining term of the series tends to zero uniformly in n, that is

∣

∣

∣

∣

∣

∞
∑

v=m

rnvxv

∣

∣

∣

∣

∣

≤

(

∞
∑

v=m

|rnv|
p∗

)
1
p∗
(

∞
∑

v=m

|xv|
k

)
1
p

→ 0, (m → ∞)

which gives the series Rn(x) =
∞
∑

v=0
rnvxv converges uniformly in n. So we have

lim
n

Rn (x) =
∞
∑

v=0

lim
n

rnvxv. (4.4)

It follows from (3.4), (3.5) and (4.4)

An(x) = lim
m

m
∑

k=0

ankxk = lim
m

m
∑

r=0
b
(n)
mrzr =

∞
∑

r=0
b̄nrzr.

Taking into
∣

∣Lφ(r, s)
∣

∣

p
∼= lp for 1 ≤ p < ∞, it follows that A(x) ∈

∣

∣Lφ(r, s)
∣

∣ for all x ∈
∣

∣Lφ(r, s)
∣

∣

p
iff B̄ ∈

(

lp,
∣

∣Lφ(r, s)
∣

∣

)

. In other words, since
∣

∣Lφ(r, s)
∣

∣

p
= (lp)E(p)◦L(r,s), A(x) ∈

∣

∣Lφ(r, s)
∣

∣ for all x ∈
∣

∣Lφ(r, s)
∣

∣

p
iff B̂ ∈ (lp, l).

Also, a few calculations show that the matrix B̂ is expressed as

b∗nk =
n
∑

v=0

lnv(r, s)b̄vk = r
Ln−1

Ln
b̄nk +

n−1
∑

v=0

(

s
Ln

Ln−1
+ r

Ln−1

Ln

)

b̄vk,
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b̂nr = φ
1/p∗

k

(

b∗nk − b∗n−1,k

)

, n ≥ 1 and b̂0k = b∗0k.

Now, if we apply Lemma 1.3 to the matrix B̂, we get the condition (4.3). So, the first part of the proof is completed.

On the other hand, since the spaces
∣

∣Lφ(r, s)
∣

∣

p
and

∣

∣Lφ(r, s)
∣

∣ are BK-spaces, if A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
,
∣

∣Lφ(r, s)
∣

∣

)

,

then, by Theorem 4.2.8 of [32], LA defines a bounded operator such that LA(x) = A(x). To calculate the operator
norm of A, we consider the isomorphisms L(r, s) :

∣

∣Lφ(r, s)
∣

∣

p
→ (lp)E(p) , E(p) : (lp)E(p) → lp. Now, it is clear to see

that A = L̃(r, s) ◦ Ẽ(1) ◦ B̂ ◦ E(p) ◦ L(r, s) and so

‖A‖(|Lφ(r,s)|p,|L
φ(r,s)|) = sup

x 6=0

‖A(x)‖|Lφ(r,s)|
‖x‖|Lφ(r,s)|p

= sup
x 6=0

‖L̃(r,s)◦Ẽ(1)◦B̂◦E(p)◦L(r,s)(x)‖|Lφ(r,s)|
‖x‖|Lφ(r,s)|p

= sup
z 6=0

‖B̂(z)‖
l

‖z‖lp

=
∥

∥

∥B̂
∥

∥

∥

(lp,l)
(z = E(p) ◦ L(r, s)(x))

which completes the proof.

Theorem 4.2. Let 1 ≤ p < ∞, A = (ank) be an infinite matrix with complex components for all n, k ∈ N, B(n) =
(

b
(n)
mk

)

and B̄ = (bnk) be as in Theorem 4.1 with 1/p∗ = 0. Besides, define B̃ = E(p) ◦ L ◦ B̄. Then, A ∈
(

∣

∣Lφ(r, s)
∣

∣ ,
∣

∣Lφ(r, s)
∣

∣

p

)

if and only if
∞
∑

v=j+1

ηvjanv exists for all j (4.5)

sup
m,j







∣

∣

∣

∣

1

r

Lm

Lm−1
anm

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

r

Lj

Lj−1
anj +

m
∑

k=j+1

ηkjank

∣

∣

∣

∣

∣

∣







< ∞, (4.6)

sup
j

∞
∑

n=1

∣

∣

∣
b̃nj

∣

∣

∣

p

< ∞. (4.7)

Moreover, if A ∈
(

∣

∣Lφ(r, s)
∣

∣ ,
∣

∣Lφ(r, s)
∣

∣

p

)

, then A denotes a bounded linear operator LA such that LA(x) = A(x) and

‖LA‖(|Lφ(r,s)|,|Lφ(r,s)|p)
=
∥

∥

∥
B̃
∥

∥

∥

(l,lp)
.

Proof. A ∈
(

∣

∣Lφ(r, s)
∣

∣ ,
∣

∣Lφ(r, s)
∣

∣

p

)

if and only if An = (anv)
∞
v=0 ∈

{∣

∣Lφ(r, s)
∣

∣

}β
and A(x) ∈

∣

∣Lφ(r, s)
∣

∣

p
where

x ∈
∣

∣Lφ(r, s)
∣

∣. By Theorem 3.5, it is clear that An ∈
{∣

∣Lφ(r, s)
∣

∣

}β
iff (4.5) and (4.6) hold. Also, if any matrix

R = (rnv) ∈ (l, c), then the series Rn(x) =
∞
∑

v=0
rnvxv converges uniformly in n. Because, the remaining term of the

series tends to zero uniformly in n, since
∣

∣

∣

∣

∣

∞
∑

v=m

rnvxv

∣

∣

∣

∣

∣

≤ sup
v

|rnv|
∞
∑

v=m

|xv | → 0 (m → ∞)

and so

lim
n

Rn (x) =

∞
∑

v=0

lim
n

rnvxv. (4.8)

Considering the equation (4.8), it can be written

An(x) = lim
m

m
∑

k=0

ankxk = lim
m

m
∑

r=0
b
(n)
mrzr =

∞
∑

r=0
b̄nrzr.
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Since
∣

∣Lφ(r, s)
∣

∣ ∼= l, then, it is obtained A(x) ∈
∣

∣Lφ(r, s)
∣

∣

p
whenever x ∈

∣

∣Lφ(r, s)
∣

∣ iff B̄(z) ∈
∣

∣Lφ(r, s)
∣

∣

p
i.e.,

B̃(z) = E(p) ◦ L(r, s) ◦ B̄(z) ∈ lp for all z ∈ l, where z = E(p) ◦ L(r, s)(x), or, equivalently, B̃ ∈ (l, lp). So, if we apply
Lemma 1.5 to the matrix B̃, the last condition is immediately obtained, which completes the first part of the proof.

Since the spaces
∣

∣Lφ(r, s)
∣

∣

p
, 1 ≤ p < ∞, are BK-space, by Theorem 4.2.8 of [32], LA defines a bounded operator

such that LA(x) = A(x).
Moreover, from Theorem 3.4, it can be seen that A = L̃(r, s) ◦ Ẽ(p) ◦ B̃ ◦ E(1) ◦ L(r, s) and so,

‖LA‖(|Lφ(r,s)|,|Lφ(r,s)|p)
= sup

x 6=0

‖A(x)‖|Lφ(r,s)|p
‖x‖|Lφ(r,s)|

= sup
x 6=0

‖B̃◦E(1)◦L(r,s)(x)‖
lp

‖E(p)◦L(r,s)(x)‖
l

= sup
z 6=0

‖B̃(z)‖
lp

‖z‖l
=
∥

∥

∥
B̃
∥

∥

∥

(l,lp)
, (z = E(1) ◦ L(r, s)(x)).

Theorem 4.3. Let 1 ≤ p < ∞, A = (anv) be an infinite matrix of complex numbers for all n, v ∈ N and B = (bnv) be a
matrix satisfying the following relation

bnk = φ1/p∗

n

n
∑

v=0

ξnvavk. (4.9)

Then, for any sequence spaces λ, A ∈
(

λ,
∣

∣Lφ(r, s)
∣

∣

p

)

if and only if B ∈ (λ, lp).

Proof. Take x ∈ λ. It follows from (4.9) that

∞
∑

k=0

bnkxk = φ1/p∗

n

n
∑

v=0

ξnv

∞
∑

k=0

avkxk.

By (3.2), it is seen immediately that Bn(x) =
(

E(p) ◦ L(r, s)
)

n
(A(x)) for all x ∈ λ. So, it is obtained that An(x) ∈

∣

∣Lφ(r, s)
∣

∣

p
whenever x ∈ λ if and only if B(x) ∈ lp whenever x ∈ λ, which completes the proof of the theorem.

Theorem 4.4. Let 1 ≤ p < ∞, A = (anv) be an infinite matrix of complex numbers for all n, v ∈ N . Then, A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, X
)

if and only if

V (n) ∈ (lp, c) for all n ∈ N,

Ã(p) ∈ (lp, X) ,

where the matrices V (n) and Ã are defined as

ã
(p)
nk = φ

−1/p∗

k





1

r

Lk

Lk−1
ank +

∞
∑

j=k+1

anjηjk





and

v
(n)
mk =



















φ
−1/p∗

k

(

ank
1
r

Lk

Lk−1
+

m
∑

j=k+1

anjηjk

)

, 0 ≤ k ≤ m− 1

φ
−1/p∗

m anm
1
r

Lm

Lm−1
, k = m

0, k > m.

Proof. Let A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, X
)

and x ∈
∣

∣Lφ(r, s)
∣

∣

p
. Note that

∣

∣Lφ(r, s)
∣

∣

p
= (lp)E(p)◦L(r,s). Considering (3.4) and

(3.5), we get
m
∑

k=0

ankxk =

m
∑

k=0

v
(n)
mkzk (4.10)

for all n,m ∈ N. It can be seen immediately that Ax is well defined for all x ∈
∣

∣Lφ(r, s)
∣

∣

p
iff V (n) ∈ (lp, c). Further,

letting m → ∞, it is seen from (4.10) that Ax = Ã(p)z. Since Ax ∈ X , then Ã(p)z ∈ X , that is Ã ∈ (lp, X).
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Conversely, let V (n) ∈ (lp, c) and Ã(p) ∈ (lp, X). Since V (n) ∈ (lp, c) with (4.10), we get An ∈
{

∣

∣Lφ(r, s)
∣

∣

p

}β

,

for all n, which gives that Ax exists. Besides, we deduced from Ã(p) ∈ (lp, X) and (4.10) as m → ∞, A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, X
)

.

Now, we list the following notations:

1. lim
n→∞

ã
(p)
nv exists for all v ∈ N

2. lim
n→∞

ã
(p)
nv = 0 for all v ∈ N

3. sup
n

∞
∑

v=0

∣

∣

∣
ã
(p)
nv

∣

∣

∣

p∗

< ∞

4. sup
n,v

∣

∣

∣
ã
(p)
nv

∣

∣

∣
< ∞

5. sup
N

∑

v

∣

∣

∣

∣

∑

n∈N

ã
(p)
nv

∣

∣

∣

∣

p∗

< ∞

6. sup
v

∑

n

∣

∣

∣
ã
(p)
nv

∣

∣

∣
< ∞

7. sup
m

∞
∑

v=0

∣

∣

∣v
(n)
mv

∣

∣

∣

p∗

< ∞

8. sup
m,v

∣

∣

∣
v
(n)
mv

∣

∣

∣
< ∞

9. lim
m→∞

v
(n)
mv exists for all v, n ∈ N

By Theorem 4.4, we obtain following results giving the necessary and sufficient conditions for A ∈
(∣

∣Lφ(r, s)
∣

∣ (µ), X
)

with X ∈ {l∞, c0, c, l, cs, bs}.

Theorem 4.5. Let 1 < p < ∞. The following statements hold:

(i) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, c
)

⇔ (1), (3), (7) and (9) hold.

(ii) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, c0

)

⇔ (2), (3), (7) and (9) hold.

(iii) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, l∞

)

⇔ (3), (7) and (9) hold.

(iv) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, l
)

⇔ (5), (7) and (9) hold.

(v) A ∈
(∣

∣Lφ(r, s)
∣

∣ , c
)

⇔ (1), (4), (8) and (9) hold.

(vi) A ∈
(∣

∣Lφ(r, s)
∣

∣ , c0
)

⇔ (2), (4), (8) and (9) hold.

(vii) A ∈
(∣

∣Lφ(r, s)
∣

∣ , l∞
)

⇔ (4), (8) and (9) hold.

(viii) A ∈
(∣

∣Lφ(r, s)
∣

∣ , l
)

⇔ (6), (8) and (9) hold.

Corollary 4.1. Put a(n, k) =
n
∑

j=0

ajk instead of ank for all n, k in V (n) = (v
(n)
mv) and Ã(p) = (ã

(p)
nv ). Then,

(i) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, cs
)

⇔ (1), (3), (7) and (9) hold.

(ii) A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, bs
)

⇔ (3), (7) and (9) hold.

(iii) A ∈
(∣

∣Lφ(r, s)
∣

∣ , cs
)

⇔ (1), (4), (8) and (9) hold.

(iv) A ∈
(∣

∣Lφ(r, s)
∣

∣ , bs
)

⇔ (4), (8) and (9) hold.



40 F. GÖKÇE

Theorem 4.6. (i) Let 1 < p < ∞ and X be one of the sequence spaces c0, c, l∞.

A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, X
)

⇒ ‖LA‖ = ‖A‖(|Lφ(r,s)|p,l∞) = sup
n

∥

∥

∥Ã(p)
n

∥

∥

∥

lp∗
,

A ∈
(∣

∣Lφ(r, s)
∣

∣ , X
)

⇒ ‖LA‖ = ‖A‖(|Lφ(r,s)|,l∞) = sup
n

∥

∥

∥Ã(1)
n

∥

∥

∥

l∞
.

(ii) Let 1 < p < ∞. There exists 1 ≤ ξ ≤ 4 such that

A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, l
)

⇒ ‖LA‖ = ‖A‖(|Lφ(r,s)|p,l)
=
∥

∥

∥
Ã(p)

∥

∥

∥

(lp,l)
=

1

ξ

∥

∥

∥
Ã(p)

∥

∥

∥

′

(lp,l)
,

A ∈
(∣

∣Lφ(r, s)
∣

∣ , lp
)

⇒ ‖LA‖ = ‖A‖(|Lφ(r,s)|,lp)
=
∥

∥

∥Ã(1)
n

∥

∥

∥

(l,lp)
.

Proof. The proof of the theorem is obtained together with Lemma 1.8, Lemma 1.3 and Lemma 1.5.

5. Compact Operators on absolute Lucas series spaces

The aim of this section is to establish some identities or estimates for the Hausdorff measures of noncompactness
of the matrix operators on the

∣

∣Lφ(r, s)
∣

∣

p
and also to characterize certain classes of compact operators by using the

Hausdorff measure of noncompactness.

Theorem 5.1. Under the hypothesis of Theorem 4.1, if A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
,
∣

∣Lφ(r, s)
∣

∣

)

, then

‖LA‖χ =
1

ξ
lim
v→∞







∞
∑

r=0

(

∞
∑

n=v+1

∣

∣

∣
b̂nr

∣

∣

∣

)p∗






1
p∗

and

LA is compact iff lim
v→∞

{

∞
∑

r=0

(

∞
∑

n=v+1

∣

∣

∣
b̂nr

∣

∣

∣

)p∗
}

1
p∗

= 0.

Proof. To determine the Hausdorff measure of noncompactness of LA, take S|Lφ(r,s)|p
as a unique ball in the space

∣

∣Lφ(r, s)
∣

∣

p
. By using Lemma 2.1, Lemma 2.3 and Lemma 1.3, it is obtained that

‖A‖χ = χ
(

A
(

S|Lφ(r,s)|p

))

= χ
(

E(1) ◦ L(r, s) ◦A
(

S|Lφ(r,s)|p

))

= χ
(

B̂ ◦ E(p) ◦ L(r, s)
(

S|Lφ(r,s)|p

))

= lim
v→∞



 sup
z∈E(p)(L(r,s)(S|Lφ(r,s)|p

))

∥

∥

∥
(I − Pv)

(

B̂(z)
)∥

∥

∥





= 1
ξ lim
v→∞

{

∞
∑

r=0

(

∞
∑

n=v+1

∣

∣

∣b̂nr

∣

∣

∣

)p∗
}

1
p∗

.

Finally, by using Lemma 2.2, the compact operators in this class can be immediately characterized.

Theorem 5.2. Under the hypothesis of Theorem 4.2, if A ∈
(

∣

∣Lφ(r, s)
∣

∣ ,
∣

∣Lφ(r, s)
∣

∣

p

)

, then

‖A‖χ = lim
v→∞

{

sup
j

∞
∑

n=v+1

∣

∣

∣b̃nj

∣

∣

∣

p
}

1
p

and
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LA is compact iff lim
v→∞

{

sup
j

∞
∑

n=v+1

∣

∣

∣
b̃nj

∣

∣

∣

p
}

1
p

= 0.

Proof. Let S|Lφ(r,s)| be a unit sphere in
∣

∣Lφ(r, s)
∣

∣. Since E(p) ◦ L(r, s) ◦ AS|Lφ(r,s)| = B̃ ◦ E(1) ◦ L(r, s)S|Lφ(r,s)|, it
follows by Lemma 2.1, Lemma 2.3 and Lemma 1.5 that

‖A‖χ = χ
(

AS|Lφ(r,s)|

)

= χ
(

E(p) ◦ L(r, s) ◦AS|Lφ(r,s)|

)

= χ
(

B̃ ◦ E(1) ◦ L(r, s)S|Lφ(r,s)|

)

= lim
v→∞






sup

z∈E(1)◦L(r,s)
(

S|Lφ(r,s)|

)

∥

∥

∥
(I − Pv)(B̃(z))

∥

∥

∥

lp







= lim
v→∞

{

sup
j

∞
∑

n=v+1

∣

∣

∣
b̃nj

∣

∣

∣

p
}

1
p

.

Using Lemma 2.2, the last part of the proof is completed.

Theorem 5.3. Let 1 < p < ∞. Then,

(a) If A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, c0

)

, then

‖LA‖χ = lim
j→∞

sup
n>j

∥

∥

∥
Ã(p)

n

∥

∥

∥

lp∗
= lim

j→∞
sup
n>j

∞
∑

k=1

∣

∣

∣ã
(p)
nk

∣

∣

∣

p∗

,

and

LA is compact iff lim sup
n→∞

∞
∑

k=1

∣

∣

∣
ã
(p)
nk

∣

∣

∣

p∗

= 0.

(b) If A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, c
)

, then

1

2
lim
j→∞

sup
n>j

∞
∑

k=1

∣

∣

∣
ã
(p)
nk − ãk

∣

∣

∣

p∗

≤ ‖LA‖χ ≤ lim
j→∞

sup
n>j

∞
∑

k=1

∣

∣

∣
ã
(p)
nk − ãk

∣

∣

∣

p∗

and

LA is compact iff lim sup
n→∞

∞
∑

k=1

∣

∣

∣ã
(p)
nk − ãk

∣

∣

∣

p∗

= 0

where ã = (ãk) is defined by ãk = lim
n→∞

ãnk, for all n ∈ N.

(c) If A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, l∞

)

, then

0 ≤ ‖LA‖χ ≤ lim
j→∞

sup
n>j

∞
∑

k=1

∣

∣

∣
ã
(p)
nk

∣

∣

∣

p∗

,

and

LA is compact if lim sup
n→∞

∞
∑

k=1

∣

∣

∣
ã
(p)
nk

∣

∣

∣

p∗

= 0.
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(d) If A ∈
(∣

∣Lφ(r, s)
∣

∣ , lp
)

, 1 ≤ p < ∞, then

‖LA‖χ = lim
j→∞






sup
v





∞
∑

n=j+1

∣

∣

∣ã(1)nv

∣

∣

∣

p





1/p





,

and

LA is compact iff lim
j→∞

sup
v

∞
∑

n=j+1

∣

∣

∣ã
(1)
nv

∣

∣

∣

p

= 0.

(e) If A ∈
(

∣

∣Lφ(r, s)
∣

∣

p
, l
)

, 1 < p < ∞, then there exists 1 ≤ ξ ≤ 4 such that

‖LA‖χ =
1

ξ
lim
j→∞







∞
∑

v=1





∞
∑

n=j+1

∣

∣

∣
ã(p)nv

∣

∣

∣





p∗






1/p

,

and

LA is compact iff lim
j→∞

∞
∑

v=1

(

∞
∑

n=j+1

∣

∣

∣ã
(p)
nv

∣

∣

∣

)p∗

= 0.

Proof. The proof of the theorem can be obtained by combining Lemma 4.2 and Lemma 2.5, so it has been left to
reader.
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[12] Karakaş, M. and Karakaş, A.M.: A study on Lucas difference sequence spaces lp(Ê(r, s)) and l∞(Ê(r, s)). Maejo
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An Analytical Approach to an Elastic Circular Rod

Equation

Zehra Pınar

Abstract
The size-dependent longitudinal and torsional dynamic problems for small-scaled rods have importance
in two-phase media. The special case of the elastic rod equation such as magneto-electro circular equation
are seen in the literature commonly, but in this work, the generalized form of the nonlinear elastic circular
equation, which was not studied in the literature, is considered. The exact solutions are obtained via
Mathieu approximation method with a novel proposed ansatz. Obtained solutions are discussed and
illustrated in details. We believe that the proposed results will be key part of further analytical and
numerical studies for waves in the dispersive medium with reaction.

Keywords: Mathieu approximation method; the elastic rod equation; travelling wave solutions.
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1. Introduction

Modeling a wide range of problems related to different research areas such as fluid mechanics, plasma physics,
optical fibers, biology, solid state physics, chemical kinematics, chemical physics and chemistry, is done by using
partial differential equations (PDEs). Therefore, PDEs are of paramount importance among researchers. In particular,
nonlinear wave propagation, diffusion, reaction and convection are very important. Thus, the longitudinal wave
equation (LWE) arising in a magneto-electro-elastic circular rod is a major problem that rods have been used for
transmission and owing to their superior electrical, mechanical, optical and other physical and chemical properties,
areas of use vary [18]. Firstly, the models of LWE can be examined. The most known model for long finite-amplitude
waves is the Korteweg-de Vries (KdV) equation but the dispersive term is ignored, so the non-linearity is dominant.
Then, there were many attempts to improve the model via using extra nonlinear terms involving second-order and
a third-order derivative. Hence, the aim is focused on finite-length and finite-amplitude waves. Respect to material
of the rod, the equation is reduced to Benjamin-Bona-Mahony (BBM) equation which is known as an alternative to
the KdV equation for modelling long finite-amplitude waves. Although, no matter how thin the rod is, it is always
assumed three-dimensional, when the rod diameter is much smaller than the axial length scale, it is reasonable to
expect that approximate one-dimensional equations (rod equations) can give a good description of the motion of
the rod. Many modifications of rod equations are seen in the literature and these equations ignore many properties
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of rod and constraining terms [8, 12, 13, 17, 18, 19]. In this work, the considered rod equation was not studied before
in the literature and it contains physical and chemical properties of the rod. The generalized form of the elastic rod
equation [2, 3, 7] is determined

utt − c20(1 + nan(ux)
2)xx −

ν2Jρ

s
uttxx = F (t), (1.1)

where F (t) is the forcing term, s is the cross-section area of the rod, Jρ is the polar moment of inertia, c20(=
E
ρ
) is the

square of the linear elastic longitudinal wave velocity, E is the modulus of elasticity (Young’s modulus), ρ is the
density of the rod, is the Poisson ratio, n is an integer, an is material constants of the rod.

In case of the soft-nonlinear materials an is less than zero, whereas for hard-nonlinear materials such as rubbers
polymers and some metals an is greater than zero. As it is seen that, Eq.(1.1) is also material depended equation
(model). As can be seen, when F (t) = 0, Eq.(1.1) is reduced to the well-known rod equation and also when an = 0
under adequate assumptions can be converted to classical wave equation for an elastic thin rod [7]. In the literature,
solitary wave solutions of the Eq.(1.1) are obtained for n = 2 and n = 3 by simplicity [17, 19, 20]. Generally, the
ansatz is determined after reducing and integrating the Eq.(1.1) [1, 6, 7]. But the degree of the ansatz is fractional that
is not valid. In this work, the Eq.(1.1) is considered in the original form and the degree of the ansatz is determined
in a novel way. Till now, the degree of ansatz is determined by balancing principle which is generally given for
the power-law non-linearity. The reason of the transformations and integration is to reduce the Eq.(1.1) to the
equation with power non-linearity to use the known balancing principle. The balancing principle, determined in
our previous work, works not only positive integer power but also negative and/or fractional powers. Moreover,
the power is least numeral satisfying the finite expansion in most cases [16]. Hence in the similar manner, the novel
balancing principle for non-power-law non-linearity is proposed

N + n = qN + psN, (modn), (1.2)

where the highest order term is ∂nu
∂xn and the highest order nonlinear term is ∂qu

∂xq (
∂su
∂xs )

p .By the novel proposed
balancing principle (Eq. (1.2)), the power is obtained as the least numeral and positive integer, so the computational
cost decreases. Additionally, the novel balancing principle works for all types of non-linearity and general cases.
We exemplified some examples either does not work with already existing balancing principles in the literature. In
this work, we consider the auxiliary equation method based on the Mathieu equation. In order to explain the idea
of the auxiliary equation method, using the wave transformation,

u(x, t) = u(ξ), ξ = x− µt. (1.3)

A nonlinear partial differential equation (PDE), M(u, ux, ut, uxx, uxt, utt, ...) = 0 , is reduced to a nonlinear ODE,
N(u, uξ, uξξ, ...) = 0. Assuming that the exact solution of equation nonlinear ODE has the simple finite expansion as

u(ξ) =

N∑

i=0

giz(ξ)
i, (1.4)

where gi are unknown constants to be determined later. Also, z(ξ) defines the exact solution of the new proposed
auxiliary equation. The unknown coefficients are determined in main three steps: (1) substituting the proposed
auxiliary equation into the reduced nonlinear ODE. (2) Equating each coefficient of power of z(ξ) to zero. (3)
Solving the corresponding algebraic system, the coefficients are obtained. Also, the main step is determination of
the integer N , which indicates the number of terms will be used in Eq.(1.4), basically by balancing the term with
the highest order derivative and the term with the highest power non-linearity in reduced nonlinear ODE. But,
in this work, the novel proposed balancing principle (Eq. (2)) is used to determine the integer so the considered
generalized rod equation has non-power-law non-linearity. Generally, the function z(ξ) is used as the exact solution
of proposed auxiliary equation in the literature. Since nonlinear PDEs cannot be recovered by only one auxiliary
ordinary differential equation, there have been many studies utilizing different exactly solvable auxiliary equations
[14, 15].

As it is known that Eq. (1.1) has solitary and periodic type travelling wave equation, Mathieu equation [14],

d2z(ξ)

dξ2
+ (a− 2qcos(ξ))z(ξ) = 0, (1.5)
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which has a solution as z(ξ) = C1MathieuC(a, q, ξ) + C2MathieuS(a, q, ξ) , where MathieuC and MathieuS are
periodic functions for countably many values of (a function of q ). In this work, the rod equation is solved using the
novel ansatz and the proposed method which has the same idea with different auxiliary equation.

2. Solutions

In this section, using proposed method and the novel balancing principle, the analytical solutions of the following
generalized elastic rod equation is obtained

utt − c20(1 + nan(ux)
2)xx −

ν2Jρ

s
uttxx = F (t). (2.1)

Till now, the solutions of the elastic rod equation (Eq. (1.1)) is obtained after reducing to ODE, transformation u′ = v

and integrations are used. Hence instead of the Eq. (1), the reduced equation is solved i.e. the original equation
is not solved [8, 12, 13, 17, 18, 19]. Using the novel balancing principle for non-power-law non-linearity, Eq. (1.1)
is solved directly. To our knowledge, this study is the first attempt to investigate the analytical solutions of the
generalized nonlinear elastic rod equation (Eq. (1.1)). With the wave transformation, u(x, t) = u(ξ), ξ = x− µt , Eq.
(2.1) is reduced as below,

µ2u′′
− c20u

′′
− nc20(u

′)n−1u′′
−

ν2Jρ

s
µ2u(4) = 0, (2.2)

respect to the novel balancing principle (Eq. (1.2)) N = 4
n
(mod4) .

Case 1.In the case n = 2 as generally considered in the literature, using the novel balancing principle N = 4
2 =

2(mod4) is obtained, so the ansatz is u(ξ) = g0 + g1z(ξ) + g2z(ξ)
2 . Applying the given procedure, the parameters

are obtained as the solution of the nonlinear algebraic system.

g1 = 0, C1 =
−C2MathieuSPrime(a, q, ξ)

MathieuCPrime(a, q, ξ)
, µ = −c0. (2.3)

The plot of the obtained solution is given by Figure 1. Figure 1. The 3D ((a)-(b)) and contour (c) plots of the solution
of Eq. (2.2) via Mathiue approximation method for Case 1 g0 = 2, g2 = 1, s = 2, c0 =

√

3, ν = 2, a = 1, q = 1.2, an =
1, Jρ = 1.

Case 2.. As a novel case n = 4 is considered, using the novel balancing principle N = 4
4 = 1(mod4) is obtained,

so the ansatz is u(ξ) = g0 + g1z(ξ) . Applying the given procedure, the plot of the solution is given by Figure 2.
Figure 2. The 3D ((a)-(b)) and contour (c) plots of the solution of Eq. (2.2) via Mathiue approximation method

for Case 2 g0 = 2, g1 = 1, s = 2, c0 = 3, ν = 1, a = 1.8, an = 1, Jρ = 1, µ = 0.1.

3. Conclusion

The main idea of this study is based on obtaining the exact solutions of generalized elastic rod equation
containing non-power non-linearity by using the exact solutions of different type equations as an ansatz. By means
of Mathieu equation with the wave transformation, the exact solutions of the generalized elastic rod equation are
obtained. The generalized elastic rod equation is not an usual equation that contains parameters refer to physical
and chemical properties of rod material. In this work, the novel balancing principle for non-power non-linearity to
determine degree of ansatz is proposed for the first time in the literature. We believe that the obtained solutions of
the generalized elastic rod equation will play key role in further analytical and numerical studies. Future studies
will be based on investigating the analytical solutions of the nonlinear partial differential equations containing the
non-power non-linearity via the proposed novel balancing principle in this study.
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Local Asymptotic Stability and Sensitivity Analysis of

a New Mathematical Epidemic Model Without

Immunity

Sümeyye Çakan

Abstract
With this study it is aimed to introduce and analyze a new SIS epidemic model including vaccination
effect. Vaccination considered in the model provides a temporary protection effect and is administered
to both susceptible and new members of the population. The study provides a different aspect to the
SIS models used to express, mathematically, some infectious diseases which are not eradicated by the
immune system. The model given this study is designed by considering varying processes from person
to person in the disease transmission, the recovery from disease (recovery without immunity) and in the
loss of protective effect provided by the vaccine. The processes that change according to individuals are
explained by distributed delays used in the relevant differential equations that provide the transition
between compartments. The differences in the model are especially evident in these parts. In analyzing
the model, firstly, the disease-free and endemic equilibrium points related to the model are determined.
Then, the basic reproduction number R0 is calculated with the next generation matrix method. Next, the
dynamics about locally asymptotically stable of the model at the disease-free and endemic equilibriums
are examined according to the basic reproduction number R0. Attempts intended to reduce the spread
of the disease are, of course, in the direction supporting the lowering the value R0. In this context, the
reducing and enhancing effects of the parameters used in the model on the value R0 have been interpreted
mathematically and suggestions were made to implement control measures in this direction. Also, in
order to evaluate the support provided by the vaccine during the spread of the disease, the model has
been examined as vaccinated and unvaccinated, and by some mathematical process, it has been seen that
the vaccination has a crucial effect on disease control by decreasing the basic reproduction number. In
other respects, by explored that the effect of parameters related to vaccination on the change of R0, a
result about the minimum vaccination ratio of new members required for the elimination of the disease
in the population within the scope of the target of R0 < 1 has been obtained.

Keywords: Local Asymptotic Stability; Sensitivity Analysis; SIS model; Vaccine Effect; Disease-free equilibrium point; Endemic

equilibrium point; Basic Reproduction Number.
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1. Introduction

Mathematical modeling has been used to describe and analyze behaviors of many phenomena in the practical
application areas such as theoretical ecology, mathematical epidemiology, economics, medicine, physics, chemical,
biology, engineering and so on, [1–7]. Specially, the technique of compartmental modeling has become substantial
tools in mathematical epidemiology for analyzing of the spread and control of infectious diseases. The modeling
idea related to epidemic disease transmitted in a closed population consisting of susceptibles (S), infectives (I),
and recovereds (R) were firstly considered by Kermack and McKendrick in 1927, [8]. Then, a lot of authors have
dealt with various details to carry further forward this modeling technique. Along with, the historical adventure
of compartmental modeling in mathematical epidemiology has proceeded from basic models to more detailed
models. It is usually difficult or almost impossible the analytical examination of detailed models and so their
usefulness for theoretical objectives is restricted, even though they may include substantial strategic values. On the
other hand simple models may be inadequate for public health authorities who are faced with the need to make
recommendations on strategies to deal with a particular situation. Therefore, the researches on the dynamics of
basic but slightly more detailed models have folded day by day. Especially, it has been concentrated on seeing
whether the variations in the models which are studied can lead to significant differences in behaviors related
to qualitative and stability, with respect to models in classical type. Hereby, by using the general principles of
modeling of epidemics, various models to describe the course of some epidemic diseases have been formulated,
[9–18].

With the details studied in the epidemic models, specific principles including factors such as vaccination,
quarantine, treatment; differences in systems reflecting transmission dynamics (such as being difference, differential,
integral or integro-differential equations) or using of the delay element in the projected system ... etc. are meant.
Vaccination appears as one of the significant factors between control measures for the dynamics in diseases
transmission. Li and Ma studied on SIS epidemic model with vaccination in [19]. Cai and Li [20] examined the
global stability of their SEIV epidemic model with a nonlinear incidence rate.

In this paper, we formulate a new SIS model with distributed delays by adding the vaccination effect, too.
To do this we use three distribute functions. Vaccination strategy in the model presented in this study base on
administering to both susceptible and new members of the population. Also, in the model, we assume that the
vaccinated individuals have temporary immunity and the losing of efficacy of vaccination varies from individual to
individual depending on the fact that efficiency of any vaccine does not usually continue lifetime of the individual.
On the other hand, it is thought that the infectiousness period in the transition from S to I and the recovery
without immunity in transition from I to S vary from individual to individual. The fact that the system consists of
integro-differential equations is originated from these effects varying according to individuals.

In the literature, there are studies that take into account the relative infectivity, [21–23], as well as the studies
that assume that the immunity formed after vaccination is not permanent, [24].

On the other hand, by using nonlinear classical differential equations, models in which the delay period is the
same and constant for all individuals can be made. However, nonlinear integro-differential equations are needed
to express the delay process with distributed manner, provided that the delay process remains within a certain
interval and varies according to individuals.

In the model introduced in this study, it is assumed that both the infectivity differs according to the individuals
over time and the protection provided by the vaccination that does not create permanent immunity changes over
time. In addition, the assumption that vaccinated individuals become relatively susceptible again with the loss of
immunity is also reflected in the model. The study aims to contribute to the mathematical epidemiology literature
with these novel aspects.

We continue this study to which we begin with introducing the model, with the qualitative and stability analysis
of the model. In what follows, we evaluate the impact of vaccination on the model dynamics and discuss sensitivity
analysis utilizing the normalized forward sensitivity index.

2. The Main Results Related to Research

The model which have been constructed by using the distribution function in three directions of transmission
and adding vaccination effect is governed by a system of nonlinear integro-differential equations below.

dS

dt
= (1− p) b− βS (t)

h1∫

0

f (τ) I (t− τ) dτ − σS (t)− µS (t) + ξ

h2∫

0

g (θ)V (t− θ) dθ + η

h3∫

0

k (γ) I (t− γ) dγ,
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dI

dt
= βS (t)

h1∫

0

f (τ) I (t− τ) dτ − η

h3∫

0

k (γ) I (t− γ) dγ − δI (t)− µI (t) , (2.1)

dV

dt
= pb+ σS (t)− ξ

h2∫

0

g (θ)V (t− θ) dθ − µV (t) .

According to the model, the population was divided into three categories: Susceptible (S), Vaccinated (V ), and
Infectious (I) individuals.

The susceptible class consists the individuals who are susceptible to the disease and have not any immunity. By
infectious individuals, it is meant the individuals who are infected by the disease and are able to spread the disease
to susceptible individuals.

Here S(t), I(t) and V (t) represent the numbers of susceptible, infectious and vaccinated individuals at time t,
respectively. The total population size at time t is N(t) and for all t ≥ 0, N(t) = S(t)+I(t)+V (t). Also it is assumed
that all functions and parameters used in the model are nonnegative. The inclusion of all newborn individuals into
the population is provided by giving input to the susceptible and vaccinated classes with the constant rate b in total.
The rates of natural death and the disease induced death are represented by µ and δ, respectively. β denotes the
effective contact rate between infectious and susceptible individuals.

h1 is maximum infectiousness period and τ indicates the period of time for each individual becomes infectious
such that 0 ≤ τ ≤ h1. By using f which is first distribution function used in the model, the density of individuals
whose infectious period τ is indicated with f(τ). Classically, it is supposed that f is non-negative and continuous

on [0, h1]. Also f satisfies
h1∫

0

f (τ) dτ = 1. The term f (τ) I (t− τ) corresponds to number of surviving individuals

at time t who infected at time t − τ and have infectiousness period τ. The integral βS (t)
h1∫

0

f (τ) I (t− τ) dτ is

expression that reflects transition of individuals to the compartment I as a result of effective contact between the
susceptible and infectious individuals within their infectiousness period.

The model envisions a vaccination strategy in which the vaccine is effective on all individuals and vaccinated
individuals are not become infected during their protection period. But the effectiveness of the vaccination loses
over time. p shows the vaccination rate of newborns while (1− p) b represents the inclusion rate of newborns
without vaccination to the susceptibles. Also σ is the vaccination rate of individuals in susceptible group and ξ is
the losing rate of effectiveness of the vaccine.

Besides these, g is the second distribution function such that g (θ) shows the ratio of individuals whose protection
period provided by the vaccine is θ. h2 is the maximum protection period provided by vaccination. So θ = 0 means
that the vaccine is completely ineffective. Also, 0 < θ ≤ h2 means that the vaccinated individuals gain only a finite
protection period (partial protection). Classically it is supposed that g is non-negative and continuous on [0, h2] in

addition that g satisfies
h2∫

0

g (θ) dθ = 1. The term g (θ)V (t− θ) corresponds to number of surviving individuals at

time t who have been vaccinated at time t− θ and whose protection period is θ.
According to this model, the vaccination does not provide a protective effect that will last forever. So, when

the protection period is finished, the vaccinated individuals who no longer has any protection turns again to the

susceptible compartment. To reflect this transition, we have used the expression ξ
h2∫

0

g (θ)V (t− θ) dθ in the model.

On the other hand, with entering the individuals to the recovery process, the amount of pathogens in the
host individual’s body become sufficiently low in the rate that the individual is no longer capable of transmitting
the disease. Individuals who complete the recovery process return to class S because they have not acquire any
immunity to the disease. η indicates the recovery rate of infectious individuals (recovery without immunity) and
h3 is maximum recovery period. γ indicates the time of recovery period of each individual with 0 ≤ γ ≤ h3.
k is third distribution function used in the model such that k(γ) denotes the density of individuals whose their
recovery period is γ. Again, classically, it is supposed that k denotes non-negative and k is continuous on [0, h3],

such that k satisfies
h3∫

0

k(γ)dγ = 1. The term k(γ)I (t− γ) represents the number of surviving individuals at time

t who have been infectious at time t − γ and whose recovery period is γ. According to our model the recovery
period is also a process that varies according to the individuals, just like the infectiousness period. Thus we use the
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mathematical expression η
h3∫

0

k (γ) I (t− γ) dγ in the transition from I to S to reflect the changing of the recovery

process according to individuals.

2.1 The Qualitative Analysis Results
Before moving on to the analysis of the model, we have to be sure that solutions of the system (2.1) remain in a

biologically feasible region for all parameters t belong to time. After preparation to this particular, we determine
the equilibrium points and basic reproduction number of the model.

2.1.1 Feasible Positive Invariant Region for the Model

Theorem 2.1. The bounded set

Θ =

{

(S, I, V ) : S ∈ C (R+,R+) , I ∈ C ([−max {τ, γ} ,∞) ,R+) , V ∈ C ([−θ,∞) ,R+) : N(t) ≤
b

µ

}

(2.2)

is positively invariant for the model, where R+ = [0,∞) .

Proof. By the sum of the differential equations that make up the system (2.1), the differential inequality

N ′ (t) =
dS

dt
+

dI

dt
+

dV

dt
= b− µ (S (t) + I (t) + V (t))− δI (t)

≤ b− µ (N (t)) (2.3)

is obtained. The solution of this differential inequality is achieved from solving the differential equation

N ′ (t) + µN (t) = b.

Then, we get the solution

N (t) = N(0)e−µt +
b

µ

(
1− e−µt

)
(2.4)

for the initial condition t = 0. Standard Comparison Theorem [25] says that the right side of the equality (2.4) is the
maximal solution of inequality (2.3). Thus we write

N (t) ≤ N(0)e−µt +
b

µ

(
1− e−µt

)

for all t ≥ 0.
It is obvious that N(t) ≤ b/µ for all t > 0 when N(0) ≤ b/µ. Hence, Θ is positively invariant for the system (2.1).
On the other hand, it can be derived that N (t) is bounded above with b/µ.
Consequently Θ is an asymptotic global attractor for all solutions of (2.1). Thus examining of the dynamics of

(2.1) in the region Θ would be appropriate epidemiologically.

2.1.2 Disease-Free Equilibrium Point

Since an equilibrium point of the system (2.1) is a constant solution of the system, it holds the equations
constituting the system and so it is written as:

0 = (1− p) b− βS0I0 − σS0 − µS0 + ξV0 + ηI0,

0 = pb+ σS0 − ξV0 − µV0.

From first and second equations, it is obtained respectively that

S0 =
(1− p) b+ ξV0

σ + µ
(2.5)

and

V0 =
pb+ σS0

ξ + µ
, (2.6)
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for I0 6= 0. Substituting the equality (2.6) into (2.5), we get

S0

[
σξ + σµ+ µξ + µ2 − σξ

]
= bξ + bµ (1− p)

and so

S0 =
b (ξ + µ (1− p))

µ (ξ + µ+ σ)
.

If this value is rewritten in (2.6), it is obtained that

V0 =
b (pµ+ σ)

µ (ξ + µ+ σ)
.

Hence, the disease-free equilibrium point of the model is

DFE = (S0, I0, V0) =

(
b (ξ + µ (1− p))

µ (ξ + µ+ σ)
, 0,

b (pµ+ σ)

µ (ξ + µ+ σ)

)

. (2.7)

2.1.3 Basic Reproduction Number

The basic reproduction number denoted by R0 is described as the average number of new cases (secondary
infections) created from one infectious individual in the wholly susceptible population through the entire length of
him/her infectiousness period.

In this part, we determine the basic reproduction number of the model by using the next generation matrix
approach, [26].

The dynamic system given by (2.1) can be written in matrix form as

dW

dt
=







·

I
·

S
·

V






,

where W = (I, S, V )T .
For the system written in the form

dW

dt
= Y(W )−Z(W ),

Y(W ) and Z(W ) are the following matrices, respectively:

Y(W ) =







βS (t)
h1∫

0

f (τ) I (t− τ) dτ

0
0







and

Z(W ) =





Z(W )11
Z(W )21
Z(W )31



 ,

where

Z(W )11 = η

h3∫

0

k (γ) I (t− γ) dγ + (δ + µ) I (t) ,

Z(W )21 = βS (t)

h1∫

0

f (τ) I (t− τ) dτ + σS (t)− ξ

h2∫

0

g (θ)V (t− θ) dθ − η

h3∫

0

k (γ) I (t− γ) dγ + µS (t)− (1− p) b,

Z(W )31 = ξ

h2∫

0

g (θ)V (t− θ) dθ + µV (t)− σS (t)− pb.
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In this splitting, Y(W ) is the matrix formed by writing of the partitionings in which new infections appear in
compartments I, S and V , respectively; and Z(W ) is the matrix formed by writing of the partitionings in which
other transitions between compartments I, S, V, and other compartments, respectively.

Now we find the correspondences at the DFE of the derivative matrices of Y(W ) and Z(W ) with respect to I, S
and V, respectively.

dY(DFE) =





βS0 βI0 0
0 0 0
0 0 0





and

dZ(DFE) =





η + δ + µ 0 0
βS0 − η βI0 + σ + µ −ξ

0 −σ ξ + µ



 .

Now, considering that the infection can only exist in compartment I, let us constitute the block matrices Y and Z as

Y = Y11 = [βS0]

and
Z = Z11 = [η + δ + µ] .

Hence

Y Z−1 =

[
βS0

η + µ+ δ

]

.

From the biological meanings of Y and Z, it follows that Y is entrywise non-negative and Z is a non-singular
M -matrix, so Z−1 is entrywise non-negative. Let φ (0) shows the number of initially infected individuals. Then
Y Z−1φ (0) is an entrywise non-negative vector giving the expected number of new infections. The matrix Y Z−1

has (1; 1) entry equal to the expected number of secondary infections in compartments I produced by an infected
individual introduced in compartments I . Thus Y Z−1 is the next generation matrix and R0 = ρ

(
Y Z−1

)
; where ρ

denotes the spectral radius.
Considering the component

S0 =
b (ξ + µ (1− p))

µ (ξ + µ+ σ)

of the DFE, the basic reproduction number of the system (2.1) is obtained as

R0 = ρ
(
Y Z−1

)

=
βS0

η + µ+ δ

=
bβ (ξ + µ (1− p))

µ (ξ + µ+ σ) (η + µ+ δ)
.

2.1.4 Existence and Uniqueness of Endemic Equilibrium Point

Now, we handle the problem of existence and uniqueness of endemic equilibrium point of the presented model.
The endemic equilibrium EE (S∗, I∗, V ∗) which is a constant solution of differential equations constituting the
system (2.1) satisfies the algebraic equations

0 = (1− p) b− βS∗I∗ − σS∗ − µS∗ + ξV ∗ + ηI∗,

0 = βS∗I∗ − ηI∗ − (µ+ δ) I∗,

0 = pb+ σS∗ − ξV ∗ − µV ∗, (2.8)

such that I∗ 6= 0. From second equation of this algebraic system, we write

I∗ (βS∗ − η − (µ+ δ)) = 0.

So, it must be
βS∗ − η − (µ+ δ) = 0.
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Then

S∗ =
η + µ+ δ

β
. (2.9)

If S∗ obtained in (2.9) is written in third equation of (2.8), V ∗ is found as

V ∗ =
pbβ + σ (η + µ+ δ)

β (ξ + µ)
.

On the other hand, by considering R0, S
∗ and V ∗ are written as

S∗ =
b (ξ + µ (1− p))

µ (ξ + µ+ σ)R0

and

V ∗ =
pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0
.

Now, by using these equalities we have obtained, we will focus on the first equation of the system (2.8).

[

β
b (ξ + µ (1− p))

µ (ξ + µ+ σ)R0
− η

]

I∗ = (1− p) b− (σ + µ)
b (ξ + µ (1− p))

µ (ξ + µ+ σ)R0
+ ξ

pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0
.

After regulations, we write

I∗ =

(1− p) bµ (ξ + µ+ σ) (ξ + µ)R0 − b (σ + µ) (ξ + µ (1− p)) (ξ + µ)
+ξ [pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))]

(ξ + µ) [bβ (ξ + µ (1− p))− ηµ (ξ + µ+ σ)R0]
.

Precisely in this part, it has great importance to regulate the numerator of this fraction with careful operations. The
numerator part of I∗ can be written as

(1− p) bµ (ξ + µ+ σ) (ξ + µ)R0−b (σ + µ) ξ (ξ + µ)−bµ (1− p) (σ + µ) (ξ + µ)+ξpbµ (ξ + µ+ σ)R0+ξσb (ξ + µ (1− p)) .

If the first and fourth terms of the numerator consisting of five sums are taken into the common factor ( (ξ + µ+ σ)R0

) parenthesis, it is obtained the term (ξ + µ+ σ)R0bµ (ξ + µ (1− p)) . From second and third terms, it comes
−b (ξ + µ) (σ + µ) (ξ + µ (1− p)). If this last term and the fifth term of the sum are considered together, it is
obtained that −bµ (ξ + σ + µ) (ξ + µ (1− p)) .

So with the last rearrangement of the numerator part, we obtain

I∗ =
bµ (ξ + µ (1− p)) (ξ + µ+ σ) [R0 − 1]

(ξ + µ)




 bβ (ξ + µ (1− p))
︸ ︷︷ ︸

µ(ξ+µ+σ)(η+µ+δ)R0

− ηµ (ξ + µ+ σ)R0






=
b (ξ + µ (1− p)) (R0 − 1)

(µ+ δ) (ξ + µ)R0
.

Hence I∗ is meaningful for only R0 > 1. Thus, we say that the system (2.1) has a unique endemic equilibrium
point formulated by equality

EE = (S∗, I∗, V ∗)

=

(
b (ξ + µ (1− p))

µ (ξ + µ+ σ)R0
,
b (ξ + µ (1− p)) (R0 − 1)

(µ+ δ) (ξ + µ)R0
,
pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0

)

,

when R0 > 1.
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2.2 The Stability Analysis Results
In this section, we explore the asymptotic behaviors of the equilibrium points for the model (2.1).

Theorem 2.2. The disease-free equilibrium point DFE is locally asymptotically stable in Θ for R0 < 1.

Proof. For the system (2.1), the Jacobian matrix at DFE = (S0, I0, V0) is

J (DFE) =





−βI0 − σ − µ −βS0 + η ξ
βI0 βS0 − η − µ− δ 0
σ 0 −ξ − µ



 .

Since I0 = 0, the characteristic equation which is correspond to this Jacobian matrix is

det (J (DFE)− λI3) =

∣
∣
∣
∣
∣
∣

− (σ + µ)− λ −βS0 + η ξ
0 βS0 − η − µ− δ − λ 0
σ 0 −ξ − µ− λ

∣
∣
∣
∣
∣
∣

= (βS0 − η − µ− δ − λ) [(σ + µ+ λ) (ξ + µ+ λ)− σξ] (2.10)

= 0.

From hence, for the roots of characteristic equation given by (2.10), we write

λ1 = βS0 − (η + µ+ δ)

= (η + µ+ δ) (R0 − 1) .

The remaining roots are obtained from the equation

λ2 + (ξ + σ + 2µ)λ+ µξ + σµ+ µ2 = 0.

For this quadratic equation,
λ2 + λ3 = − (ξ + σ + 2µ) < 0

and
λ2λ3 = µ (ξ + σ + µ) > 0.

While R0 < 1, all roots of the characteristic equation always have the negative sign. Therefore DFE is locally
asymptotically stable for R0 < 1.

To prove that the EE is locally asymptotically stable when R0 > 1, we will use the criteria which is well known
in the literature and given by Routh and Hurwitz.

Theorem 2.3. The endemic equilibrium point EE is locally asymptotically stable in Θ for R0 > 1.

Proof. The Jacobian matrix of system (2.1) at EE = (S∗, I∗, V ∗) is

J (EE) =





−βI∗ − σ − µ −βS∗ + η ξ
βI∗ βS∗ − η − µ− δ 0
σ 0 −ξ − µ



 .

Thus, the characteristic equation which is correspond to J (EE) is

λ3 + C1λ
2 + C2λ+ C3 = 0, (2.11)

where
C1 = βI∗ + ξ + σ + 2µ,

C2 = µβI∗ + δβI∗ + µξ + σξ + βξI∗ + µ2 + µσ + µβI∗

and
C3 = µβξI∗ + δβξI∗ + µ2βI∗ + µδβI∗.
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Since C1, C2, C3 are positive, we can determine stability of the system (2.1) by using Routh-Hurwitz Criteria.
According to this criteria,

H1 = C1 > 0

and

H2 =
C1C2 − C3

C1
.

After required simplifications, the numerator part of the value H2 is obtained as

C1C2 − C3 = µ (βI∗)
2
+ δ (βI∗)

2
+ µξβI∗ + σξβI∗ + ξ (βI∗)

2
+ µ2βI∗ + µσβI∗ + µ (βI∗)

2
+ σµβI∗ + σδβI∗

+σµξ + σ2ξ + σξβI∗ + σµ2 + µσ2 + σµβI∗ + µ2βI∗ + µδβI∗ + 2µ2ξ + 2µσξ + 2µβξI∗

+2µ3 + 2µ2σ + 2µ2βI∗ + µβξI∗ + µξ2 + σξ2 + ξ2βI∗ + µ2ξ + σµξ

> 0.

and so
H2 > 0.

Finally,
H3 = C3 > 0.

Thus, according to Routh-Hurwitz stability criteria, all eigenvalues of the Jacobian matrix of system (2.1) at the
endemic equilibrium point EE, that is, each of the roots of equation (2.11) have negative real parts. Consequently, if
R0 > 1 then the endemic equilibrium EE = (S∗, I∗, V ∗), which is unique equilibria for the system (2.1), is locally
asymptotically stable.

2.3 The Effect of Vaccination on the Spread of Disease
When the model is considered without vaccine (in this case, σ = p = 0 and so ξ = 0)) it transforms to SIS

epidemic model in the following form:

dS

dt
= b− βS (t)

h1∫

0

f (τ) I (t− τ) dτ + η

h3∫

0

k (γ) I (t− γ) dγ − µS (t) ,

dI

dt
= βS (t)

h1∫

0

f (τ) I (t− τ) dτ − η

h3∫

0

k (γ) I (t− γ) dγ − δI (t)− µI (t)

and for this model, the basic reproduction number is

`

R0 =
bβ

µ (η + µ+ δ)
.

It can be easily seen that there exists the relationship

R0 =

(

1−
µp+ σ

ξ + µ+ σ

)
`

R0

between R0 and
`

R0. Here R0 <
`

R0 and this mathematical result indicates that, obviously, vaccination has a crucial
effect on disease control by decreasing the basic reproduction number. Thus, with the appropriate vaccination
strategy, the disease can be eradicated in the population by keeping the value R0 below 1.

Several mathematical operations give us:

R0 < 1

⇔




`

R0 −
(µp+ σ)

`

R0

ξ + µ+ σ



 < 1

⇔ (ξ + µ)

(
`

R0 − 1

)

< σ + µp
`

R0.
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Thus, within the scope of the target of R0 < 1, the value pmin that comes with the inequality

pmin >

(ξ + µ)

(
`

R0 − 1

)

− σ

µ
`

R0

(2.12)

is the minimum vaccination ratio of new members required for the elimination of the disease in the population. We
note obviously that the parameters which define pmin in (2.12) should be chosen such that 0 < pmin < 1. Also, since
the other parameter determined the number of vaccinated individuals is σ, the choosing of parameters pmin and σ
should be considered together in (2.12). The result obtained about pmin means that, with increasing of σ and with
decreasing of ξ, R0 decreases and so the spread of the disease gradually decreases in the population. Therefore it is
meaningful that the efforts to increasing σ or decreasing ξ. This result will be seen again from the mathematical
explanations in a different perspective in the following part.

2.4 Sensitivity Analysis
One of the main objectives of the epidemic investigations is to suggest strategies such that it will ensure that the

necessary control measures are taken to stop the epidemic and to prevent possible outbreaks in the future. Attempts
intended to reduce the spread of the disease are, of course, in the direction supporting the lowering the value R0.
Considering that there are many negative conditions brought about by the disease, together with the difficulty of
completely eliminating the epidemic in a population in a short time, attempts to reduce the spread of the disease
are very important. In this sense, with various control measures which will be implemented; lowering the value
R0 is one of the most fundamental issues. Thus, it has a major significance to explore the effect of parameters on
the change of R0 and to apply control measures in this direction. To this, in the followings, we will evaluate the
influence aspects of the parameters that affect R0 by determining the normalized forward sensitivity index of it.
The normalized forward sensitivity index of the variable R0 with respect to the parameter ϑ is defined as

QR0

ϑ =
∂R0

∂ϑ
×

ϑ

R0
,

by using partial derivative. Where ϑ represents the basic parameters constituting R0. In that case,

QR0

β =
∂R0

∂β
×

β

R0
= 1 > 0

and

QR0

ξ =
∂R0

∂ξ
×

ξ

R0

=
(σ + µp) ξ

(ξ + µ+ σ) (ξ + µ (1− p))
> 0.

By increasing of these parameters that have additive effect on the spread of disease, R0 increases and so the disease
gets out of control in the population. Therefore, the control measures which will be established should be aimed at
reducing of the parameters β and ξ.

Now let us concentrate to the effect of parameters related to vaccine on R0. If we calculate, the normalized
forward sensitivity index taking account of the derivatives of R0 with respect to p and σ, we get

QR0

p =
∂R0

∂p
×

p

R0

= −
µp

ξ + µ (1− p)
< 0

and

QR0

σ =
∂R0

∂σ
×

σ

R0

= −
σ

ξ + µ+ σ
< 0.
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Thus the disease can be eliminated with some favorable and adequate vaccination strategies. For example, one
of the necessary conditions for disease elimination is given in the result of mathematical calculation in (2.12).
Improvements in these two parameters that depend on the efficacy of vaccines may lead to disease eradication.

On the other hand

QR0

η =
∂R0

∂η
×

η

R0

= −
η

η + µ+ δ
< 0

and

QR0

δ =
∂R0

∂δ
×

δ

R0

= −
δ

η + µ+ δ
< 0.

The parameters η and δ that its sensitivity indices are negative will bring about the decrease in R0. Therefore,
strategies and actions developed on these two parameters will be useful in order that the spread of disease enters a
downward course.

3. Concluding Remarks

While expressing dynamic systems mathematically, nonlinear and moreover delayed differential equations
are needed to construct closer models to reality in the expression of complex phenomena. Because of the fact
that nonlinearity and the existence of delay in a system may lead to being much more complex of analysis and
control of the system, in particular, studying with nonlinear differential equations with delays is quite coercive
mathematically.

All these difficulties aside, the dynamic analysis of nonlinear systems is often examined by looking at the
local stability of the system. To reach conclusions related to local stabilities, it is needed to look at the linearized
equivalent of any equilibrium point of the nonlinear system. Thus it can be reached a conclusion about the local
dynamics of the system.

In this paper, a new mathematical epidemic model under the vaccine effect is constructed. Also asymptotic
behaviors of solutions by evaluating the local stabilities of equilibrium points for mentioned model are examined.

Subsequently, in order to evaluate the support provided by the vaccine during the spread of the disease, the
model has been considered as vaccinated and unvaccinated, and it has been seen that the vaccination has a crucial
effect on disease control by decreasing the basic reproduction number with several mathematical operations. Thus,
with the appropriate vaccination strategy, the disease can be eradicated in the population by keeping the value
R0 below 1. Also, within the scope of the target of R0 < 1, a result about the minimum vaccination ratio of new
members required for the elimination of the disease in the population has been obtained.

Also in this part, the effects on R0 of the parameters σ and p which represents the vaccination rate of susceptible
individuals and of the parameter ξ which the losing rate of protective effect provided by the vaccine have been
determined; and the control measures which will can be applied on these parameters have been interpreted.

One of the main objectives of the epidemic investigations is to suggest strategies such that it will ensure that the
necessary control measures are taken to decrease and if it is possible to stop the epidemic and to prevent possible
outbreaks in the future. Attempts intended to reduce the spread of the disease are, of course, in the direction
supporting the lowering the value R0. In this context, the reducing and enhancing effects of the parameters used in
the model on the value R0 have been interpreted mathematically and suggestions were made to implement control
measures in this direction.

Nowadays, with the advancement of science, the desires and efforts of individuals have been increased in
solving and analyzing more complex problems. In this sense, the various nonlinear dynamic systems have been
formed to explain the more complex mechanisms in the struggle against epidemics and it have been examined the
stability behaviors of these new models. As a matter of course, the several details such as adding some different
compartments (exposed, asymptomatic infectious, etc.) or adding some parameters reflecting various control
measures (isolation etc.) may be considered to carry forward this model.
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[1] Şekerci Fırat, Y.: Climate change forces plankton species to move to get rid of extinction: mathematical modeling approach.
Eur. Phys. J. Plus. 135:794, 1-20 (2020).
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[4] Daşbaşı, B., Boztosun, D.: Stability analysis of the palomba model in economy by fractional-order differential equations
with multi-orders. The Journal of International Social Research. 11 (59), 1-7 (2018).

[5] Yavuz, M., Sene, N.: Stability analysis and numerical computation of the fractional predator-prey model with the
harvesting rate. Fractal Fract. 4(3), 35 1-22 (2020).

[6] Yavuz, M., Özdemir N.: Analysis of an epidemic spreading model with exponential decay law. Mathematical Sciences
and Applications E-Notes. 8(1), 142-154 (2020).

[7] Yavuz, M., Bonyah E.: New approaches to the fractional dynamics of schistosomiasis disease model. Physica A:
Statistical Mechanics and its Applications. 525, 373-393 (2019).

[8] Kermack, W. O., McKendrick, A. G.: A contributions to the mathematical theory of epidemics. Proc. Roy. Soc. A. 115,
700-721 (1927).

[9] Çakan, S.: Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic. Chaos,
Solitons and Fractals. 139, 110033, (2020).

[10] Aghdaoui, H., Alaoui A. L., Nisar K. S., Tilioua, M.: On analysis and optimal control of a SEIRI epidemic model with
general incidence rate, Results in Physics, 20, 103681 1-9 (2021).

[11] Gölgeli, M., Atay F. M.: Analysis of an epidemic model for transmitted diseases in a group of adults and an extension to
two age classes. Hacet. J. Math. Stat. 49 (3), 921-934 (2020).

[12] Naik, P. A.: Global dynamics of a fractional-order SIR epidemic model with memory. Int J Biomath. 13(8), 2050071
(2020).

[13] Naik, P. A., Zu, J., Owolabi M.K.: Modeling the mechanics of viral kinetics under immune control during primary
infection of HIV-1 with treatment in fractional order. Physica A. 545, 123816 (2020).

[14] Naik, P. A., Zu, J., Ghoreishi, M.: Stability analysis and approximate solution of SIR epidemic model with Crowley-
Martin type functional response and holling type-II treatment rate by using homotopy analysis method. J Appl Anal
Comput. 10(4), 1482-1515 (2020).



62 S. Çakan

[15] Naik, P. A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment
in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus. 135(10), 795 (2020).

[16] Naik, P. A., Yavuz, M., Zu, J.: The role of prostitution on HIV transmission with memory: A modeling approach.
Alexandria Eng J. 59(4), 2513-2531 (2020).

[17] Naik, P. A., Owolabi M. K., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving
AIDS-related cancer cells. Chaos Solitons & Fractals. 140, 110272 (2020).
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