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Merve İLKHAN KARA, Gizemnur ÖRNEK 199-207
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Blow-up for a Generalized Dullin-Gottwald-Holm

Equation

Nurhan Dündar

Abstract
In this paper, the blow up of solutions for a generalized version of the Dullin-Gottwald-Holm equation
which is a nonlinear shallow water wave equation is studied. The precise blow-up scenario and a result
of blow-up solutions are described. The blow-up occurs as wave breaking. This means the solution
(representing the wave) remains bounded but its slope becomes infinite in finite time. We use an approach
devised in [1].

Keywords: Generalized Dullin-Gottwald-Holm equation; shallow water wave; blow-up.

AMS Subject Classification (2020): Primary: 35B44 ; Secondary: 35Q35; 35G20.

1. Introduction

Dullin et al. in [3] presented the following the nonlinear dispersive evolution equation, then called the Dullin-
Gottwald-Holm (DGH) equation:

ut − β2uxxt + k0ux + 3uux + Γuxxx = β2 (2uxuxx + uuxxx) , t > 0, x ∈ ℜ. (1.1)

The DGH equation is an equation modeling the unidirectional propagation of shallow water waves on a flat bottom.
u = u (t, x) is fluid velocity, where t and x are variables related to time and space respectively. β, Γ and k0 are some
physical positive parameters.

In equation (1.1), if β = 0 and Γ 6= 0 , the Korteweg-de Vries (KdV) equation is obtained, and if β = 1 and Γ = 0,
the Camassa-Holm (CH) equation is obtained. As can be seen, equation (1.1) contains two different integrable
soliton equations for shallow water waves. The DGH equation (1.1) combines the linear dispersion of the KdV
equation with the nonlinear/nonlocal dispersion of the CH equation. Equation (1.1) has important properties.
Some of these important features are: It has the bi-Hamiltonian structure and soliton solutions and it is completely
integrable [3]. For this equation, blow up occurs in the form of wave breaking: This means: while the solution u

representing the wave remains bounded, ux, which is its first derivative with respect to x becomes infinite in finite
time [1, 12, 15].

Since the equation (1.1) was discovered, a great deal of space has been devoted to it in the literature and this
equation has been the subject of intense research. Its mathematical behaviors such as local well-posedness, global
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strong solutions, global weak solutions, blow up solutions in finite time and stability of peakons have been studied
in many works [8, 11, 12, 15–18].

In present paper, we study the following initial value problem for the generalized DGH equation:

{
ut − β2uxxt + (P (u))x + Γuxxx = β2

(
Q′(u)

2 u2
x +Q (u)uxx

)
x
, t > 0, x ∈ ℜ,

u (0, x) = u0 (x) , x ∈ ℜ,
(1.2)

where P (u), Q(u) : ℜ → ℜ are given C3-functions. For P (u) = 2ωu + 3
2u

2 (where 2ω = k0) and Q (u) = u, it is
seen that the (1.2) turns into equation equation (1.1). Some mathematical behaviors of equation (1.2) have been
studied by many authors before. In [13, 14], the authors established the well-posedness a finite time for (1.2) by
using Kato’s theory. Furthermore, the stability of peakons of (1.2) was discussed with P (u) = 2ωu+ a+2

2 ua+1 and
Q (u) = ua in [13]. In [4], Dündar and Polat investigated the blow up of the solutions of (1.2) with Q (u) = u. Also
in the same article, they proved stability of solitary waves by using the method in [7] for P (u) = 2ωu+ a+2

2 ua+1

and Q (u) = ua.
In (1.2), if the weak dispersive term Γuxxx is changed into the strong dispersive term Γ

(
u− β2uxx

)
xxx

, we
obtain

{
ut − β2uxxt + (P (u))x + Γ

(
u− β2uxx

)
xxx

= β2
(

Q′(u)
2 u2

x +Q (u)uxx

)
x
, t > 0, x ∈ ℜ,

u (0, x) = u0 (x) , x ∈ ℜ.
(1.3)

Dündar and Polat studied the well-posedness for (1.3) a finite time in [6]. Also, they showed the existence of solitary
waves and proved the stability of solitary wave solutions of (1.3) in [5].

The main aim of this paper is to investigate the blow up of the solutions of (1.2) in finite time. In [4], authors
obtained the blow up of the strong solutions of (1.2) with Q (u) = u. In this paper, we remove this restriction and
obtain more general results.

The content of this article is as follows: In Section 2, we will give the notations and some basic informations, and
recall some necessary conclusions. In Section 3, we will examine the blow up of solutions of (1.2).

2. Preliminaries

We introduce by summarizing some notations. The convolution is denoted by ∗. ‖.‖
B

denotes the norm of
Banach space B. Since all space of functions are over ℜ, for convenience, we will not use ℜ in our notations of
function spaces if there is no equivocalness. We denote the norm in the Sobolev space Hs by

‖v‖s = ‖v‖Hs =

(∫

ℜ

(
1 + |ξ|2

)s
|v̂ (ξ)|2 dξ

)1/2

for s ∈ ℜ. Here v̂ (ξ) is the Fourier transform of v. We use the ‖.‖Lp for the norm of the space Lp, 1 ≤ p ≤ ∞. We

define the operator Λs by the formula Λs =
(
1− ∂2

x

) s
2 , s ∈ ℜ.

From now on, throughout this article, we assume β = 1 for convenience. Note that if f (x) = 1
2e

−|x|, x ∈ ℜ, then(
1− ∂2

x

)−1
v = f ∗ v for all v ∈ L2. Then (1.2) can be rewritten as follows:

{
ut + (Q (u)− Γ)ux = f ∗ [Q (u)ux]− ∂xf ∗

[
Q′(u)

2 u2
x + P (u) + Γu

]
, t > 0, x ∈ ℜ,

u (0, x) = u0 (x) , x ∈ ℜ.
(2.1)

Or in the equivalent form:

{
ut + (Q (u)− Γ)ux =

(
1− ∂2

x

)−1
[Q (u)ux]− ∂x

(
1− ∂2

x

)−1
[
Q′(u)

2 u2
x + P (u) + Γu

]
, t > 0, x ∈ ℜ,

u (0, x) = u0 (x) , x ∈ ℜ.
(2.2)

It can be seen that (1.2) is equivalent to (2.1) (or (2.2)) for β = 1. So, we will investigate the blow up of solutions of
(2.1) (or (2.2)).
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2.1 Local well-posedness for the Cauchy problem of (2.1)

Theorem 2.1. [14]. Let n ≥ 2 be a natural number, s ∈
(
3
2 , n
)
, and P , Q ∈ Cn+3, with P (0) = 0. If u0 ∈ Hs, there exists

a maximal T = T (u0) > 0, and a unique solution u to (2.1) (or (2.2)) such that

u = u (., u0) ∈ C ([0, T ) ;Hs) ∩ C1
(
[0, T ) ;Hs−1

)
.

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u0 → u (., u0) : H
s → C ([0, T ) ;Hs) ∩ C1

(
[0, T ) ;Hs−1

)

is continuous.

In [13], Liu and Yin obtained the local well-posedness theorem of the Cauchy problem (2.1) with the constraint
Q(0) = 0 by applying Kato’s theory [10]. Later, in [14] (Theorem 1.2 and Corollary 1.1), the authors removed the
limiting condition Q(0) = 0, which makes an improvement in the results in [13].

Theorem 2.2. Let n ≥ 2 be a natural number, s ∈
(
3
2 , n
)
, and P , Q ∈ Cn+3, with P (0) = 0. Then T in Theorem 2.1 may

be chosen independent of s in the following sense. If

u = u (., u0) ∈ C ([0, T ) ;Hs) ∩ C1
(
[0, T ) ;Hs−1

)

to 2.1 (or 2.2), and if u0 ∈ Hs′ for some s′ 6= s, 3
2 < s′ < n, then

u ∈ C
(
[0, T ) ;Hs′

)
∩ C1

(
[0, T ) ;Hs′−1

)

and with the same T . In particular, if P, Q ∈ C∞ and let u0 ∈ H∞ = ∩s≥0H
s, u ∈ C ([0, T ) ;H∞).

Proof. For β = 1, since (1.2) can be rewritten as

dw

dt
+K (t)w + L (t)w = R (t) , w (0) = Λ2u (0) ,

where
K (t)w = ∂x ((Q (u)− Γ)w) , L (t)w = Q′ (u)uxw,

and

R (t) = ux

(
1

2
Q′′ (u)u2

x − P ′ (u) + 2Q′ (u)u+Q (u)− Γ

)
,

thus the proof of Theorem 2.2 is alike to the proof of Theorem 1.2 of [6]. The proof is completed with reference the
proof of Theorem 1.2 in [6].

2.2 Some lemmas
We will now give some lemmas that we will use in this paper. We list below without proof.

Lemma 2.1. [9]. Let s > 0. Then we have

‖[Λs, y] z‖L2 ≤ K
(
‖∂xy‖L∞

∥∥Λs−1z
∥∥
L2

+ ‖Λsy‖L2 ‖z‖L∞

)
.

Here K is constant depending only on s.

Lemma 2.2. [9]. Let s > 0. Then Hs ∩ L∞ is an algebra. Moreover

‖yz‖s ≤ K (‖y‖L∞ ‖z‖s + ‖y‖s ‖z‖L∞)

where K is constant depending only on s.

Lemma 2.3. [2]. Assume that G ∈ Cn+2 with G (0) = 0. Then for every 1
2 < s ≤ n, we have that

‖G (u)‖s ≤ G̃ (‖u‖L∞) ‖u‖s , u ∈ Hs,

where G̃ is a monotone increasing function depending only on G and s.
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Lemma 2.4. [1]. Let T > 0 and u ∈ C1
(
[0, T ) ;H2

)
. Then for every t ∈ [0, T ) , there exist at least one pair points θ (t) ,

Θ(t) ∈ ℜ, such that

j (t) = inf
x∈ℜ

ux (t, x) = ux (t, θ (t)) , J (t) = sup
x∈ℜ

ux (t, x) = ux (t,Θ(t)) ,

and j (t) , J (t) are absolutely continuous on (0, T ). Furthermore,

dj (t)

dt
= utx (t, θ (t)) ,

dJ (t)

dt
= utx (t,Θ(t)) , a.e.on (0, T ) .

Lemma 2.5. [13]. Let u (t, x) be a solution of (1.2). Then the functionals

E (u) =

∫

ℜ

(
u2 + β2u2

x

)
dx,

F (u) =

∫

ℜ

(
2P (u) + β2Q (u)u2

x − Γu2
x

)
dx

are constant with respect to t, where P′ (s) = P (s).

3. Blow-up analysis

In this section, we examine the blow-up phenomena of the (2.1) (or (2.2)).

Remark 3.1. Given in Lemma (2.5), E (u) =
∫
ℜ
(
u2 + u2

x

)
dx (β = 1) is an invariant for equation (2.1). So, we have

that

‖u‖2L∞ ≤
∫

ℜ

(
u2 + u2

x

)
= E (u) = E (u0) = ‖u0‖21 .

Remark 3.2. Since Q ∈ Cn+3 with n ≥ 2, by using ‖u‖L∞ ≤ ‖u‖1 = ‖u0‖1 which can be seen in Remark 3.1, a
positive constant a1 > 0 can be found such that

|Q′ (u)| ≤ sup
|z|≤‖u0‖1

|Q′ (z)| ≤ a1. (3.1)

We will first give the following theorem.

Theorem 3.1. Let P,Q ∈ Cn+3, n ≥ 2, P (0) = 0 and u0 ∈ Hs, 3
2 < s ≤ n. Then the solution u (t, x) of (2.2) blows up in

finite time T < ∞ if and only if
lim
t→ T

sup
0≤τ≤t

‖ux (τ, x)‖L∞ = +∞. (3.2)

Moreover, if T < ∞, then ∫ T

0

(‖ux (t, x)‖L∞ + 1)
2
dt = +∞.

Proof. Let Γ = Q (0). We can rewrite (2.2) as

ut + (Q (u)−Q (0))ux =
(
1− ∂2

x

)−1
[Q (u)ux]− ∂x

(
1− ∂2

x

)−1
[
Q′ (u)

2
u2
x + P (u) +Q (0)u

]
. (3.3)

If we apply the operator Λs, then multiply by 2Λsu on both sides of (3.3) and finally integrate with respect to the
variable x over ℜ, we obtain

d

dt

∫

ℜ
(Λsu)

2
dx = −2

∫

ℜ
ΛsuΛs [(Q (u)−Q (0))ux] dx+ 2

∫

ℜ
ΛsuΛs

(
1− ∂2

x

)−1
[Q (u)ux] dx

−2

∫

ℜ
ΛsuΛs∂x

(
1− ∂2

x

)−1
[
Q′ (u)

2
u2
x + P (u) +Q (0)u

]
= I1 + I2 + I3. (3.4)



174 N. Dündar

We now estimate I1, I2, I3. By using Lemma 2.1, Lemma 2.3 with G (u) = Q (u)−Q (0), Remark 3.1 and Cauchy-
Schwartz inequality as well as (3.1), we obtain

I1 = −2

∫

ℜ
ΛsuΛs [(Q (u)−Q (0))ux] dx

= −2

∫

ℜ
Λsu [Λs [(Q (u)−Q (0))ux]− (Q (u)−Q (0)) Λsux] dx

−2

∫

ℜ
(Q (u)−Q (0)) ΛsuΛsuxdx

= −2

∫

ℜ
Λsu [Λs, (Q (u)−Q (0))]uxdx−

∫

ℜ
Q′ (u)ux (Λ

su)
2
dx

≤ 2K ‖u‖s
[
‖∂x (Q (u)−Q (0))‖L∞

∥∥Λs−1ux

∥∥
L2

+ ‖Λs (Q (u)−Q (0))‖L2 ‖ux‖L∞

]

+ ‖u‖2s ‖Q′ (u)ux‖L∞

≤ K ‖u‖s [‖Q′ (u)ux‖L∞ ‖u‖s + ‖(Q (u)−Q (0))‖s ‖ux‖L∞ ] + ‖u‖2s ‖Q′ (u)ux‖L∞

≤ K ‖u‖2s
(
2a1 ‖ux‖L∞ + G̃ (‖u0‖1) ‖ux‖L∞

)

≤ K ‖u‖2s ‖ux‖L∞ . (3.5)

By using Lemma 2.3 with G (u) = G1 (u) − G1 (0) and Remark 3.1, Cauchy-Schwartz inequality and Sobolev
embedding (Hs →֒ Hs−1), we obtain

I2 = 2

∫

ℜ
ΛsuΛs

(
1− ∂2

x

)−1
[Q (u)ux] dx

= 2

∫

ℜ
ΛsuΛs∂x

(
1− ∂2

x

)−1
[G1 (u)−G1 (0)] dx (where G′

1 (u) = Q (u))

≤ K ‖u‖s ‖G1 (u)−G1 (0)‖s−1

≤ KG̃ (‖u0‖1) ‖u‖s ‖u‖s−1

≤ K ‖u‖2s . (3.6)

By using Lemma 2.2, Lemma 2.3 with G (u) = Q′ (u)−Q′ (0) and Remark 3.1, Cauchy-Schwartz inequality, Sobolev
embedding (Hs →֒ Hs−1) and (3.1), we obtain

I3 = −2

∫

ℜ
ΛsuΛs∂x

(
1− ∂2

x

)−1
[
Q′ (u)

2
u2
x + P (u) +Q (0)u

]

≤ 2 ‖u‖s
∥∥∥∥
Q′ (u)

2
u2
x + P (u) +Q (0)u

∥∥∥∥
s−1

≤ K ‖u‖s

[∥∥∥∥
(
Q′ (u)−Q′ (0) +Q′ (0)

2

)
u2
x

∥∥∥∥
s−1

+ ‖P (u)‖s−1 + |Q (0)| ‖u‖s−1

]

≤ K ‖u‖s
[∥∥(Q′ (u)−Q′ (0))u2

x

∥∥
s−1

+ |Q′ (0)|
∥∥u2

x

∥∥
s−1

+ ‖u‖s−1 + |Q (0)| ‖u‖s−1

]

≤ K ‖u‖s
[
K
(
‖Q′ (u)−Q′ (0)‖L∞

∥∥u2
x

∥∥
s−1

+
∥∥u2

x

∥∥
L∞

‖Q′ (u)−Q′ (0)‖s−1

)
+K (‖u‖s + ‖u‖s ‖ux‖L∞)

]

≤ K ‖u‖s

[(
sup

|z|≤‖u0‖1

|Q′ (z)|
)
‖ux‖L∞ ‖u‖s + G̃ (‖u0‖1)

∥∥u2
x

∥∥
L∞

‖u‖s + (1 + ‖ux‖L∞) ‖u‖s

]

≤ K ‖u‖2s
[
a1 ‖ux‖L∞ + ‖ux‖2L∞ + 1 + ‖ux‖L∞

]

≤ K ‖u‖2s (1 + ‖ux‖L∞)
2
. (3.7)

Combining (3.5)-(3.7) with (3.4), we get

d

dt
‖u‖2s ≤ K ‖u‖2s (1 + ‖ux‖L∞)

2
. (3.8)
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When we apply Gronwall’s inequality to (3.8), we obtain

‖u‖2s ≤ eK
∫

t

0
(‖ux‖L∞+1)

2
dτ ‖u0‖2s . (3.9)

If the solution to (2.2) blows up in finite time, in other words,

lim
t→ T

sup
0≤τ≤t

‖u‖s = +∞, (3.10)

then from (3.9), we have
lim
t→ T

sup
0≤τ≤t

‖ux (τ, x)‖L∞ = +∞. (3.11)

If (3.11) is valid, since ‖u‖L∞ ≤ ‖u‖s−1 with s > 3
2 , we have (3.10). When the maximal existence time T < ∞, if

∫ T

0

(‖ux (t, x)‖L∞ + 1)
2
dt < +∞,

from (3.9), we know that ‖u‖s < ∞ which contradicts with the fact that T is the maximal existence time. We get the
same result for Γ 6= Q(0). We complete the proof of Theorem 3.1.

Theorem 3.2. Let P,Q ∈ Cn+3, n ≥ 3, P (0) = 0. Given u0 ∈ Hs, 3 ≤ s ≤ n. If Q′ (u) ≥ a2 > 0, then the corresponding
u (t, x) of (2.1) blows up in finite time T < ∞ if and only if

lim
t→ T

inf
0≤τ≤t

inf
x∈ℜ

ux (τ, x) = −∞. (3.12)

Proof. If (3.12) is valid, then the corresponding solution u (t, x) of (2.1) blows up in finite time T < ∞ since
‖u‖L∞ ≤ ‖u‖s−1 with s > 3

2 . We prove (3.12) by contradiction. Assume that (3.12) is invalid, then there exists J > 0
such that infx∈ℜ ux (t, x) > −J , then we make inference that the solution will not blow up in finite time. Let’s take
the differentiate of (2.1) with respect to x, so we get

utx +Q′ (u)u2
x +Q (u)uxx − Γuxx = ∂xf ∗ [Q (u)ux]− ∂2

xf ∗
[
Q′ (u)

2
u2
x + P (u) + Γu

]
. (3.13)

Since ∂2
x (f ∗ v) = f ∗ v − v and ∂x (f ∗ v) = f ∗ vx, we have

utx +Q′ (u)u2
x +Q (u)uxx − Γuxx = f ∗

[
Q′ (u)u2

x +Q (u)uxx

]
− f ∗

[
Q′ (u)

2
u2
x + P (u) + Γu

]

+
Q′ (u)

2
u2
x + P (u) + Γu. (3.14)

From Lemma 2.4, we define
J (t) = ux (t,Θ(t)) = sup

x∈ℜ
[ux (t, x)]

and
j (t) = ux (t, θ (t)) = inf

x∈ℜ
[ux (t, x)] .

Since we deal with a maximum, uxx (t,Θ(t)) = 0 for all t ∈ [0, T ), it follows that a.e. on [0, T )

J ′ (t) = −Q′ (u (t,Θ(t)))

2
J2 (t) + f ∗

[
Q′ (u)u2

x

]
(t,Θ(t)) + P (u (t,Θ(t))) + Γu (t,Θ(t))

−f ∗
[
Q′ (u)

2
u2
x + P (u) + Γu

]
(t,Θ(t)) . (3.15)

By Young’s inequality and f (x) = 1
2e

−|x|, we have

‖f ∗ v‖L∞ ≤ ‖f‖L∞ ‖v‖L1 ≤ 1

2
‖v‖L1
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and
‖f ∗ v‖L∞ ≤ ‖f‖L1 ‖v‖L∞ ≤ ‖v‖L∞ .

By using these inequalities, (3.1) and Remark 3.1, we obtain
∥∥f ∗

(
Q′ (u)u2

x

)∥∥
L∞

≤ ‖f‖L∞

∥∥Q′ (u)u2
x

∥∥
L1

≤ 1

2
‖Q′ (u)‖L∞ ‖ux‖2L2

≤ a1

2
‖u‖21 =

a1

2
‖u0‖21 . (3.16)

Similarly, we have

‖f ∗ P (u)‖L∞ ≤ ‖P (u)‖L∞ ≤ sup
|z|≤‖u0‖1

|P (z)| (3.17)

and

‖f ∗ u‖L∞ ≤ ‖u‖L∞ ≤ ‖u0‖1 . (3.18)

Using (3.16)-(3.18) and the assumption in lemma, it then follows from (3.15) that a.e. on [0, T ),

J ′ (t) ≤ −a2

2
J2 (t) +A, (3.19)

where

A = 2

(
sup

|z|≤‖u0‖1

|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
(3.20)

If J (t) >
√

2A
a2

, then J ′ (t) < 0 and J (t) is decreasing. Otherwise, J (t) ≤
√

2A
a2

. Thus we obtain that

−J < j (t) ≤ ux ≤ J (t) ≤ max

{
J (0) ,

√
2A

a2

}
, t ∈ [0, T ) .

From this inequality, we obtain the fact that ux, that is, the slope of solution of (2.1) is bounded. When Theorem 3.1
is applied, the solution of (2.1) will not blow up in finite time. We finish the proof of Theorem 3.2.

Now, we present the following blow up result.

Theorem 3.3. Assume that P,Q ∈ Cn+3, n ≥ 2, P (0) = 0, u0 ∈ Hs, 3
2 < s ≤ n, Q′ (u) ≥ a2 > 0. If there exists a point

x0 ∈ ℜ such that u′
0 (x0) < −

√
2A
a2

, then the corresponding solution u (t, x) of (2.1) blows up in finite time T < ∞ and

T <
1√
2Aa2

ln

(√
a2

2 u′
0 (x0)−

√
A

√
a2

2 u′
0 (x0) +

√
A

)
,

where

A = 2

(
sup

|z|≤‖u0‖1

|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
.

Proof. By Theorem 2.1- Theorem 2.2 and a simple density argument, we only need to prove that theorem
provides for s = 3. Let T be maximal existence time of the solution u ∈ C ([0, T ) ;Hs) ∩ C1

(
[0, T ) ;Hs−1

)
of (2.1).

Differentiating (2.1) with respect to x, since ∂2
x (f ∗ v) = (f ∗ v − v) and ∂x (f ∗ v) = f ∗ vx, we have

utx +Q′ (u)u2
x +Q (u)uxx − Γuxx = f ∗

[
Q′ (u)u2

x +Q (u)uxx

]
− f ∗

[
Q′ (u)

2
u2
x + P (u) + Γu

]

+
Q′ (u)

2
u2
x + P (u) + Γu. (3.21)
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Now define j (t) = infx∈R [ux (t, x)] = ux (t, θ (t)) by Lemma 2.4 and let θ (t) ∈ ℜ be a point where this infimum is
attained. For x = θ (t), since uxx (t, θ (t)) = 0, we have

j′ (t) = −Q′ (u (t, θ (t)))

2
j2 (t) + f ∗

[
Q′ (u)u2

x

]
(t, θ (t)) + P (u (t, θ (t))) + Γu (t, θ (t))

−f ∗
[
Q′ (u)

2
u2
x + P (u) + Γu

]
(t, θ (t)) . (3.22)

Using (3.16)-(3.18) and the assumption in lemma, it then follows from (3.22) that a.e. on [0, T ),

j′ (t) ≤ −a2

2
j2 (t) +A, (3.23)

where

A = 2

(
sup

|z|≤‖u0‖1

|P (z)|+ 3

8
a1 ‖u0‖21 + ‖u0‖1

)
.

Note that if j (0) ≤ −
√

2
a2

A, then j (t) ≤ −
√

2
a2

A, fol all t ∈ [0, T ). By (3.23), we get

√
a2

2 j (0) +
√
A

√
a2

2 j (0)−
√
A
e
√
2a2At − 1 ≤ 2

√
A√

a2

2 j (t)−
√
A

≤ 0.

Due to 0 <

√
a2

2
j(0)+

√
A√

a2

2
j(0)−

√
A
< 1, there exists

0 < T <
1√
2Aa2

ln

(√
a2

2 j (0)−
√
A

√
a2

2 j (0) +
√
A

)

such that limt→ T j (t) = −∞. For this reason, the solution u does not exist globally in time. Thus, the proof of
Theorem 3.3 is completed.

4. Conclusion

In this study, we investigated the blow up of solutions of the Cauchy problem (2.1) (or (2.2)), which we obtained
by taking β = 1 in (1.2).

Our main results can be summarised as follows:

1. We give the precise blow up scenario for solutions of the Cauchy problem (2.1), see Theorem 3.2.

2. We also give a blow up result of solutions of (2.1), see Theorem 3.3.
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1. Introduction

The main topic in the classical approximation theory is approximating a continuous function f : [a, b] → R
with more elementary functions such as polynomials, trigonometric functions, etc.. The well-known Korovkin’s
theorem, which gives a simple proof of Weierstrass theorem, is based on the approximation of functions by linear
and positive operators. The underlying algebraic structure of these mentioned operators is linear over R and
they are also linear operators. In 2006, Bede et.al [4] asked whether they could change the underlying algebraic
structure to more general structures. In this sense they presented nonlinear Shepard-type operators by replacing the
operations sum and product by max and product. They proved Weierstrass-type uniform approximation theorem
and obtained error estimates in terms of the modulus of continuity. Following this paper Bede et. al. [5] defined
and studied pseudo linear approximation operators. Based upon these studies, there appeared an open problem in
the book of S.Gal [10] in which the max-product type Bernstein operators were introduced. Related to this open
problem, a nonlinear modification of the classical Bernstein operators were first studied by Bede and Gal [3] (see
also [2]). The idea behind these studies were also applied to other well-known approximating operators. Several
authors introduced the nonlinear versions of the stated operators and studied order of approximation [3,4,12]. Also
see [6] for the collected papers.

The nonlinear Favard-Szasz-Mirakjan operators of max-product kind is introduced in [2] as (here
∨

means
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maximum)

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k!
f( k

n
)

∞∨
k=0

(nx)k

k!

whose order of pointwise approximation is obtained as ω1(f ;
√
x/

√
n). In [7], the authors dealed with the same

operator in order to obtain the same order of approximation but by a simpler method. They also presented some
shape preserving properties of the operators.

In 1972, Jain [11] introduced the following operators to generalize classical Szász-Mirakyan operators : for λ > 0
and 0 ≤ β < 1,

P [β]
n (f ;x) =

∞∑

k=0

ωβ (k, nx) f

(
k

n

)
, f ∈ C [0, λ] , n ∈ N

where the basis function is

ωβ (k, x) = x (x+ kβ)
k−1 e−(x+kβ)

k!
; k = 0, 1, 2, ... ,

and ∞∑

k=0

ωβ (k, x) = 1.

It is easy to see that for β = 0, the operator reduces to the classical Szász-Mirakyan operators. Farcas [9] proved a
Voronovskaja type result for Jain’s operators. Doğru et. al. [8] investigated a modification of the Jain operators
preserving the linear functions. Recently, Özarslan [12] introduced the Stancu type generalization of Jain’s operators
and investigated the weighted approximation properties and Olgun et. al. [13] introduced a generalization of
Jain’s operators based on a function ρ. Also, Bernstein and generalizations of Jain operators were studied by many
authors (see [14]-[21].) The aim of this study is to introduce the nonlinear Jain operators of max-product type and
estimate the rate of pointwise convergence of the operators. The non-truncated Jain operators are defined by

T
(M)
n,β (f ;x) =

∞∨
k=0

Wn,k,β (x) f(
k
n
)

∞∨
k=0

Wn,k,β (x)
, n ∈ N (1.1)

where Wn,k,β (x) = (nx+ kβ)k−1 e
−(nx+kβ)

k!
and f : [0, λ] → R+ is considered as a bounded function on [0, λ], λ > 0.

2. Preliminaries

Here, it is emphasized some general notations about the nonlinear operators of max-product kind. Over the set
of positive reals, R+, we deal with the operations

∨
(maximum) and · (product). Then (R+,

∨
, ·) has a semiring

structure and it is called as Max-Product algebra.
Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.

A discrete max-product type approximation operator Ln : CB+(I) → CB+(I), has a general form

Ln (f) (x) =
n∨

i=0

Kn(x, xi) · f (xi) ,

or

Ln (f) (x) =

∞∨

i=0

Kn(x, xi) · f (xi)

where n ∈ N, f ∈ CB+(I),Kn(·, xi) ∈ CB+(I) and xi ∈ I, for all i = {0, 1, 2, · · · }. These operators are nonlinear,
positive operators and satisfy a a pseudo-linearity condition of the form
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Ln(α · f ∨ β · g)(x) = α · Ln(f)(x) ∨ β · Ln(g)(x), ∀α, β ∈ R+, f, g : I → R+.

In order to give some properties of the operators Ln, we present the following auxiliary Lemma.
Lemma 2.1. ([2]) Let I ⊂ R be a bounded or unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},

and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the following properties :
(i) (Monotonicity)

f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;
(ii) (Subadditivity)

Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).
Remark 2.1. Max-product for Jain operators defined by (4) verify the conditions in Lemma 2.1, (i), (ii). In fact, instead
of (i) it satisfies the stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows Ln(f)(x) ≤ Ln(g)(x).
Furthermore, the Jain operators of max-product type is positive homogenous, that is Ln(λf) = λLn(f) for all

λ ≥ 0.

Corollary 2.2. ([2]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the conditions
(i)-(ii) in Lemma 1 and in addition be a positive homogenous operator. Then for all f ∈ CB+(I),n ∈ N and x ∈ I we
have

|f(x)− Ln(f)(x)| ≤
[
1

δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω(f ; δ) + f(x) · |Ln(e0)(x)− 1| ,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t− x| for all t ∈ I, x ∈ I.

ω(f ; δ) = max
x,y∈I

|x−y|≤δ

|f(x)− f(y)|

is the first modulus of continuity. If I is unbounded then we suppose that there exists Ln(ϕx)(x) ∈ R+

⋃
{+∞}, for

any x ∈ I, n ∈ N.
Corollary 2.3. ([2]) Suppose that in addition to the conditions in Corollary 2.2, the sequence (Ln)n satisfies

Ln(e0) = e0, for all n ∈ N. Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1 +

1

δ
Ln(ϕx)(x)

]
ω(f ; δ).

3. Construction of the Operators and Auxiliary Results

Since T
(M)
n,β (f)(0)− f(0) = 0 for all n, throughout the paper we may suppose that x > 0. We need the following

notations and Lemmas for the proof the main results.

For each k, j ∈ {1, 2, ..., } and x ∈
[
aj+β

n
, a(j+1)+β

n

]
,j = 0, x ∈

[
0,

a+ β

n

]
=

[
0,

eβ

n

]
, a = eβ − β, 0 ≤ β < 1, let

us denote

Mk,n,j(x) :=
Wn,k,β (x)

∣∣ k
n
− x
∣∣

Wn,j,β (x)
,mk,n,j(x) :=

Wn,k,β (x)

Wn,j,β (x)
.

where Wn,k,β is defined as in the operators (1.1). It is clear that if k ≥ j + 1 then

Mk,n,j(x) =
Wn,k,β(x)

(
k
n
− x
)

Wn,j,β(x)
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and if k ≤ j then

Mk,n,j(x) =
Wn,k,β(x)

(
x− k

n

)

Wn,j,β(x)
.

Lemma 3.1. Denoting Wn,k,β(x) = (nx+ kβ)k−1 e
−(nx+kβ)

k!
, we have

∞∨

k=0

Wn,k,β(x) = Wn,j,β(x), for all x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
,

where a = eβ − β, j = 1, 2, ..., x ∈
[
0, a+β

n

]
=
[
0, eβ

n

]
.

Proof. Firstly, we show that for fixed n ∈ N and 0 ≤ k we have

0 ≤ Wn,k+1,β(x) ≤ Wn,k,β(x) if and only if x ∈
[
0,

a (k + 1) + β

n

]
.

Indeed, writing the the above inequality explicitly, we have

0 ≤ (nx+ (k + 1)β)
k e−(nx+(k+1)β)

(k + 1)!
≤ (nx+ kβ)

k−1 e−(nx+kβ)

k!
.

If x = 0, this inequality is true. For x > 0, after simplifications it becomes

(
nx+ (k + 1)β

nx+ kβ

)k

≤ eβ (k + 1)

nx+ kβ

(nx+ kβ)

(
nx+ (k + 1)β

nx+ kβ

)k

≤ eβ (k + 1)

(nx+ kβ)

(
1 +

β

nx+ kβ

)k

≤ eβ (k + 1)

nx ≤ 1
(
1 + β

nx+kβ

)k e
β (k + 1)− kβ

x ≤ eβ (k + 1)

n
− kβ

n

=
eβ (k + 1)− kβ

n
=

(
eβ − β

)
(k + 1) + β

n

=
a (k + 1) + β

n
,

where a =
(
eβ − β

)
, 0 ≤ β < 1. Then

0 ≤ x ≤ a (k + 1) + β

n
, a = eβ − β.

By taking k = 0, 1, 2, ... in the inequality just proved above, we get

Wn,1,β(x) ≤ Wn,0,β(x), if and only if x ∈
[
0,

a+ β

n

]
,

Wn,2,β(x) ≤ Wn,1,β(x), if and only if x ∈
[
0,

2a+ β

n

]
,

...

Wn,k+1,β(x) ≤ Wn,k,β(x), if and only if x ∈
[
0,

a (k + 1) + β

n

]
.
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From the above inequalities, we obtain,

if x ∈
[
0,

a+ β

n

]
then Wn,k,β(x) ≤ Wn,0,β(x), for all k = 0, 1, ...

if x ∈
[
a+ β

n
,
2a+ β

n

]
then Wn,k,β(x) ≤ Wn,1,β(x), for all k = 0, 1, ...

if x ∈
[
2a+ β

n
,
3a+ β

n

]
then Wn,k,β(x) ≤ Wn,2,β(x), for all k = 0, 1, ...

and proceeding in the same manner,

if x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
then Wn,k,β(x) ≤ Wn,j,β(x), for all k = 0, 1, 2, ...

then we have

0 ≤ Wn,k+1,β(x) ≤ Wn,k,β(x) if and only if x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
.

Lemma 3.2. For all k, j ∈ {1, 2, ..., }, and x ∈
[
aj+β

n
, a(j+1)+β

n

]
,j = 0, x ∈

[
0,

a+ β

n

]
=

[
0,

eβ

n

]
, we have

mk,n,j(x) ≤ 1.

Proof. We have two cases: 1) k ≥ j and 2) k < j.

Let k ≥ j . Since the function g(x) =
1

x
is nonincreasing on

[
aj+β

n
, a(j+1)+β

n

]
it follows

mk,n,j(x)

mk+1,n,j(x)
=

Wn,k,β (x)

Wn,k+1,β (x)
=

(nx+ kβ)k−1 e
−(nx+kβ)

k!

(nx+ (k + 1)β)k
e−(nx+(k+1)β)

(k + 1)!

=
(nx+ kβ)keβ (k + 1)

(nx+ (k + 1)β)k(nx+ kβ)
, x ∈

[
aj + β

n
,
a (j + 1) + β

n

]

≥ 1,

which implies
mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ ...

We now turn to the case k ≤ j

mk,n,j(x)

mk−1,n,j(x)
=

(nx+ kβ)k−1 e
−(nx+kβ)

k!

(nx+ (k − 1)β)k−2
e−(nx+(k−1)β)

(k − 1)!

=
(nx+ kβ)k−2

(nx+ (k − 1)β)k−2
, x ∈

[
aj + β

n
,
a (j + 1) + β

n

]

≥ 1,

where
(nx+ kβ)k−2

(nx+ (k − 1)β)k−2
=

(
1 +

β

nx+ (k − 1)β

)k−2

≥ 1 and
(nx+ kβ)

eβ (k − 1)
≥ 1.

which implies
mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ ...

Since mj,n,j(x) = 1, the proof of the lemma is complete.

Lemma 3.3. Let x ∈
[
aj+β

n
, a(j+1)+β

n

]
,

(i) If k ≥ (j + 1) is such that

k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj,



184 S. Kırcı Serenbay, Ö. Dalmanoğlu & E. Acar

then
Mk,n,j(x) ≥ Mk+1,n,j(x)

where a1 = −β2 + 2eβ + 2β − 1, a2 = −2aβ − 2a− aeβ , a3 = −β2 + 2eβ + β − βeβ .

(ii) If k ≤ j is such that

k +
√
βk2 + a4k + a5j − β2 − aβkj ≤ aj,

then
Mk,n,j(x) ≥ Mk−1,n,j(x).

where a4 = 2β − β2 + a+ 1, a5 = −2βa.

Proof. (i) We observe that

Mk,n,j(x)

Mk+1,n,j(x)
=

(nx+ kβ)k−1 e
−(nx+kβ)

k!

(nx+ (k + 1)β)k
e−(nx+(k+1)β)

(k + 1)!

(
k
n
− x
)

(
k+1
n

− x
)

=

(
1− β

nx+ (k + 1)β

)k−1
eβ(k + 1)

nx+ (k + 1)β

(k − nx)

(k + 1− nx)

≥ (k + 1)

nx+ (k + 1)β

(k − nx)

(k + 1− nx)

(
1− β

nx+ (k + 1)β

)k−1

eβ

≥ (k + 1)

(j + 1)a+ (k + 1)β

(k − (j + 1)a)

(k + 1− ja)
,

x ∈
[
aj+β

n
, a(j+1)+β

n

]
. Then, since the condition

k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj,

where a1 = −β2 + 2eβ + 2β − 1, a2 = −2aβ − 2a− aeβ , a3 = −β2 + 2eβ + β − βeβ , we obtain

Mk,n,j(x)

Mk+1,n,j(x)
≥ 1.

(ii) We observe that

Mk,n,j(x)

Mk−1,n,j(x)
=

(nx+ kβ)k−1 e
−(nx+kβ)

k!

(nx+ (k − 1)β)k
e−(nx+(k−1)β)

(k − 1)!

(
x− k

n

)
(
x− k−1

n

)

=

(
1 +

β

nx+ (k − 1)β

)k
nx+ kβ

eβk

(nx− k)

(nx− k + 1)

≥ ja+ β + kβ

k

ja+ β − k

ja+ β − k + 1

Then, since the condition
k +

√
βk2 + a4k + a5j − β2 − aβkj ≤ aj,

where a4 = 2β − β2 + a+ 1, a5 = −2βa, we obtain

Mk,n,j(x)

Mk−1,n,j(x)
≥ 1,

which proves the lemma.
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4. Approximation Result

For the function f ∈ CB+(I), we obtain the degree of approximation by using the Shisha-Mond Theorem given
in [1],[2].

Theorem 4.1. If f : [0, λ] → R+ is a bounded and continuous function on [0, λ], λ > a+ 1, a = eβ − β, 0 ≤ β < 1,
then we get the following estimate

∣∣∣T (M)
n,β (f)(x)− f(x)

∣∣∣ ≤ 6λω1

(
f,

1√
n

)
, for all n ∈ N, x ∈ [0, λ],

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, λ], |x− y| ≤ δ}.

Proof. Since T
(M)
n (e0)(x) = 1 and using the Shisha-Mond Theorem, we have

∣∣∣T (M)
n (f)(x)− f(x)

∣∣∣ ≤
(
1 +

1

δn
T (M)
n (ϕx) (x)

)
ω1(f, δn)

where (ϕx) (t) = |t− x|. Hence, it is sufficient to estimate the following term

En (x) := T (M)
n (ϕx) (x) =

∞∨
k=0

Wn,k,β (x)
∣∣ k
n
− x
∣∣

∞∨
k=0

Wn,k,β (x)

Let x ∈
[
aj+β

n
, a(j+1)+β

n

]
and j ∈ {1, 2, ..., } is arbitrarily fixed. By Lemma 3.1 we get

En (x) = max
k=0,1,2,...

{Mk,n,j(x)} , x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
.

For j = 0, we get

Mk,n,0(x) = nx(nx+ kβ)k−1 e
−kβ

k!

∣∣∣∣
k

n
− x

∣∣∣∣ , k ≥ 0

If k = 0, then we have

M0,n,0(x) = x =
√
x
√
x ≤

√
x

√
a+ β

n
=

√
eβx

n
≤
√

eβλ

n

If k = 1 then

Mk,n,0(x) = nx(nx+ kβ)k−1 e
−kβ

k!

∣∣∣∣
k

n
− x

∣∣∣∣ , x ∈
[
0,

eβ

n

]

= nx(nx+ β)0
e−β

1!

∣∣∣∣
1

n
− x

∣∣∣∣

≤ xe−β =
√
x
√
xe−β

≤
√

xeβ

n
≤
√

eβλ

n
.

If k ≥ 2 then

Mk,n,0(x) = nx(nx+ kβ)k−1 e
−kβ

k!

∣∣∣∣
k

n
− x

∣∣∣∣ , x ∈
[
0,

eβ

n

]

≤ x(nx+ kβ)k−1 e−kβ

(k − 1)!

≤ x

≤
√

eβλ

n
.
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So, we obtain an upper estimate for each Mk,n,j(x) where j ∈ {1, 2, ..., } is fixed, x ∈
[
aj+β

n
, a(j+1)+β

n

]
and

k = 1, ..., . Actually, we will prove that

Mk,n,j(x) ≤ max

{√
max {a4, a5}+ 2a√

n
,

√
eβλ

n
,

√
max {a1, a2}√

n

}
,

for all x ∈ [0, λ], n ∈ N.
The proof of the inequality (2) will be investigated by the following cases:
1) k ≥ (j + 1) and 2)k ≤ j.
Case 1) Subcase a) Initially, let take

k −
√

βk2 + a1k + a2j + a3 − aβkj < aj,

then we get

Mk,n,j(x) = mk,n,j(x)

(
k

n
− x

)

≤
(
k

n
− x

)
≤
(
k

n
− ja+ β

n

)

≤ k

n
− k

n
+

√
βk2 + a1k + a2j + a3 − aβkj

n

≤
√
βk2 + a1k + a2j + a3 − aβkj

n

≤
√
a1 + a2j

n
≤
√

max {a1, a2}
1√
n
.

Subcase b) Now let k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj.

Since the function g(x) = x −
√

βx2 + a1x+ a2j + a3 − aβxj is nondecreasing, it follows that there exists

k ∈ {2, 3, ..., },of maximum value, such that k −
√
βk

2
+ a1k + a2j + a3 − aβkj < aj. Then for k1 = k + a we get

k1 −
√

βk21 + a1k1 + a2j + a3 − aβk1j ≥ aj,

Mk+a,n,j(x) = mk+a,n,j(x)

∣∣∣∣
k + a

n
− x

∣∣∣∣

≤


k + a

n
−

k −
√
βk

2
+ a1k + a2j + a3 − aβkj

n




≤
√

max {a1, a2}
1√
n
.

The last above inequality follows from the fact that

k −
√

βk
2
+ a1k + a2j + a3 − aβkj < aj necessarily implies k < 3aj . Also, we have k1 ≥ (j + 1). Indeed, this

is a consequence of the fact that g is nondecreasing and because is easy to see that g (j) < j. By Lemma 3.3, (i) it
follows that Mk+1,n,j(x) ≥ Mk+2,n,j(x) ≥ ...

Hence, we get Mk,n,j(x) ≤
√
max {a1, a2} 1√

n
for any k ∈ {k + 1, k + 2, ..., }.

Case 2) Subcase a) Firstly, let k +
√

βk2 + a4k + a5j − β2 − aβkj > aj. Then we get,

Mk,n,j(x) = mk,n,j(x)

(
x− k

n

)

≤ a (j + 1) + β

n
− k

n

≤ k +
√

βk2 + a4k + a5j − β2 − aβkj + β

n
− k

n

≤
√
max {a4, a5}+ β√

n
.
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Subcase b) Suppose now that k +
√
βk2 + a4k + a5j − β2 − aβkj ≤ aj. Let k̃ ∈ {1, 2, ..., } be the minimum value

such that

k̃ +

√
βk̃2 + a4k̃ + a5j − β2 − aβk̃j > aj.

Then k2 = k̃ − a satisfies k2 +
√

βk22 + a4k2 + a5j − β2 − aβk2j ≤ aj and

M
k̃−a,n,j

(x) = m
k̃−a,n,j

(x)

(
x− k̃ − a

n

)

≤ a(j + 1) + β

n
− k̃ − a

n

≤
k̃ +

√
βk̃2 + a4k̃ + a5j − β2 − aβk̃j + a

n
− k̃ − a

n

≤
√
max {a4, a5}+ 2a√

n
.

For the last inequality we used the obvious relationship k2 = k̃ − a,

k2 +
√
βk22 + a4k2 + a5j − β2 − aβk2j ≤ aj

which implies k̃ ≤ (j + 1) and k2 ≤ j .
By Lemma 3.2, (ii) it follows that

M
k̃−a,n,j

(x) ≥ M
k̃−2a,n,j(x) ≥ M

k̃−3a,n,j(x) ≥ ... ≥ M0,n,j(x).

We thus obtain Mk,n,j(x) ≤
√
max {a4, a5}+ 2a√

n
for any k ≤ j and x ∈

[
aj+β

n
, a(j+1)+β

n

]
.

Collecting all the above estimates we have the proof of case (2). Thus, the proof is completed.

5. Conclusion

In this study, we introduced the nonlinear Jain operators of max-product type. We also estimate the rate of
pointwise convergence of these operators.
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Why Flc-Frame is Better than Frenet Frame on

Polynomial Space Curves?
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Abstract
It is well known that the binormal and normal vectors of Frenet frame rotate around the tangent vector.
That is why the Frenet frame is not suitable for some applications such as tube surfaces. However, there
is not enough information about why the vectors of the Frenet frame rotate around the tangent vector.
In this paper we will deal with this problem. Moreover we show the advantages of Flc-frame over the
Frenet frame.
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1. Introduction

Recently, the study of the frames along a space curve has arisen some engineering applications [18, 22, 24]. For
intance in [19], the authors investigated the Mannheim curves with a new frame called modified orthogonal frame.
Despite the fact that Bishop frame (rotation minimizing frame) is more suitable for engineering applications [9], this
frame can not be computed analytically. Therefore a number of approximation methods have been proposed for
RMF computation [4]. In this paper we will compare the frames which can be computed analytically on polynomial
space curves.

The Frenet frame is the most known frame along a space curve [4, 5, 23]. Let α(t) be a regular space curve. The
Frenet frame is defined as follows,

t =
α′

‖α′‖
,b =

α′ × α′′

‖α′ × α′′‖
,n = b× t. (1.1)

The well-known Frenet formulas are given by,





t
′

n
′

b
′



 = ‖α′(t)‖





0 κ 0
−κ 0 τ

0 −τ 0









t

n

b



 , (1.2)
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where the curvature κ and the torsion τ of the curve are given by

κ =
‖α′ × α′′‖

‖α′‖
3 , τ =

det(α′, α′′, α′′′)

‖α′ × α′′‖
2 . (1.3)

The Frenet frame has inflection points and two type of singular points [5, 11].

Definition 1.1. Let α(t) : I → R
3 be a space curve. A point t0 ∈ I is said to be singular point of order 0 of the curve

if α′(t0) vanishes.

We say that t1 ∈ I is a singular point of order 1 if α′′(t1) vanishes.

Definition 1.2. Let α(t) : I → R
3 be a space curve. A point t2 ∈ I is called inflection point if α′(t2)∧α′′(t2) vanishes,

namely curvature is zero [16].

Apart from Frenet frame we can define more frame along a space curve [1, 25]. Recently, Dede [15] introduced a
new frame along a polynomial space curve, called as Flc-frame. The computation of Flc-frame is easier than the
both Frenet and Bishop frames [1, 2]. Moreover they showed that to have a inflection point on Flc frame is less
possible than Frenet frame. Discussion of the Flc-frame and its application to the tube surfaces can be found in [15].

Let α(t) be a polynomial space curve of degree n. The Flc-frame is given by

t =
α′

‖α′‖
,D1 =

α′ ∧ α(n)

∥

∥α′ ∧ α(n)
∥

∥

,D2 = D1 ∧ t. (1.4)

Where the prime ′ indicates the differentiation with respect to t [15]. If the order of derivative exceeds three, we

replace prime by the superscript (n), such as α
′′′′

= α(4). The new vectors D1 and D2 are called as binormal-like
vector and normal-like vector, respectively.

The local rate of change of the Flc-frame called as the Frenet-like formulas can be expressed in the following
form





t
′

D
′

2

D
′

1



 = ‖α′‖





0 d1 d2
−d1 0 d3
−d2 −d3 0









t

D2

D1



 . (1.5)

The curvatures of the Flc-frame are given by

d1 =

〈

α′ ∧ α′′, α′ ∧ α(n)
〉

‖α′‖
3 ∥
∥α′ ∧ α(n)

∥

∥

, d2 =
det[α′′, α′, α(n)]

‖α′‖
2 ∥
∥α′ ∧ α(n)

∥

∥

, (1.6)

and

d3 =
det[α′, α′′, α(n)]

〈

α′, α(n)
〉

‖α′‖
2 ∥
∥α′ ∧ α(n)

∥

∥

2 . (1.7)

Corollary 1.1. If the degree of polynomial space curve is two, then the Flc-frame coincides with the Frenet frame with
curvatures d1 = κ, d2 = 0 and d3 = τ = 0.

2. Flc-frame vs Frenet frame

There are three main drawbacks associated with the Frenet frame. In this chapter we discuss the drawbacks
of the Frenet frame. Moreover we explain why the Flc-frame is better than Frenet frame from points of these
drawbacks. As an application we consider tube surfaces.

• Singular point of order 1.

One of the most important advantages of the Flc-frame over the Frenet frame is that when the second derivative
of the curve vanishes the Frenet frame behaves erratically. This is why the rotation minimizing frame (RMF) is
widely used in surface modeling such as tube (pipe) surfaces.

Theorem 2.1. Let α(t) be a polynomial space curve of degree n. The Flc-frame doesn’t have singular point of order 1.
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Proof. From point of Definition 1.1, since the n-th derivative of polynomial space curve of degree n never vanishes,
the Flc-frame doesn’t have singular point of order 1.

Here’s an example about this case.

Example 2.1. Assume that a curve α(t) is given by

α(t) = (t,
t4

12
−

t3

6
, (t− 1)3).

It follows that α′′(t) = (0, t2 − t, 6t − 6) therefore the point t = 1 is a singular point of order 1. When t = 1 the

Figure 1. The normal and binormal vectors of Frenet frame (Left) and the normal-like and binormal-like vectors of
Flc-frame (Right) along the curve t ∈ (−2, 2).

binormal vectors of the Frenet frame suddenly exhibits 180 degree rotation (highlighted by an arrow in Figure 1).
The Figure 1 compares the behaviour of the binormal (black) and the normal (red) vectors of the Frenet frame with
the binormal-like (black) and the normal-like (red) vectors of the Flc-frame.

Figure 2. The tube surfaces generated by Frenet frame (Left) and the Flc-frame (Right) t ∈ (−2, 2), v ∈ (−4, 4).
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As a result, the sudden rotation of normal and binormal vectors of the Frenet frame causes deformation in tube
surface. The tube (pipe) surfaces with radius r = 0.8 generated by the Frenet frame and Flc-frame are illustrated in
Figure 2.

• Inflection points; at the points where the curvature κ is zero, namely ‖α′ ∧ α′′‖ = 0.

In the case of Flc-frame it corresponds to ‖α′ ∧ αn‖ = 0. Dede [15] showed that to have a inflection point on
Flc-frame is less possible than the Frenet frame. However since Flc frame permit analytical computation, it has
inflection points when ‖α′(t2) ∧ αn(t2)‖ = 0 at the point t2.

Example 2.2. In this example, we would like to deal with the inflection points. Let us consider a curve given by

α(t) = (t3, t3, t2 − 2t). (2.1)

By using the derivatives of the curve, we have

α′(t) ∧ α′′(t) = (−6t2 + 12t, 6t2 − 12t, 0),

and
α′(t) ∧ αn(t) = (12− 12t, 12t− 12, 0).

Observe that the Frenet frame has two inflection points at t = 0 and t = 2 whereas the Flc frame has one at the
point t = 1.

Note that it is all about the degree of a curve. Since the degree of α′(t) ∧ αn(t) is less than α′(t) ∧ α′′(t), it has
fewer possible roots. The Figure 3 compares the behaviour of the vectors of Frenet frame with the Flc-frame. Similar

Figure 3. The normal and binormal vectors of Frenet frame (Left) and the normal-like and binormal-like vectors of
Flc-frame (Right) along the curve t ∈ (−2, 2).

to the case of singular point of order 1, the vectors of the Frenet frame suddenly exhibits 180 degree rotation at the
inflection points.

Figure 4. The tube surfaces generated by Frenet frame (left) and the Flc-frame (right) t ∈ (−2, 2), v ∈ (−4, 4).

The tube (pipe) surfaces with radius r = 1.9 generated by the Frenet frame and Flc-frame are illustrated in
Figure 4.

The solution of this problem is not hard. The following theorem and algorithm demonstrate a good way to solve
this problem.

Theorem 2.2. Let α(t) be a polynomial space curve of degree 3. The Flc-frame has just one inflection point which never
coincidences with the inflection points of the Frenet frame.

Proof. : Three-dimensional cubic polynomial curve is of the form

α(t) = (
3

∑

i=0

ait
i,

3
∑

i=0

bit
i,

3
∑

i=0

cit
i),
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which we represent by its polynomial coefficients, ai,bi and ci.
The inflection point of the Flc-frame is

α′ ∧ αn =







12(b2c3 − b3c2)t+ 6(b1c3 − b3c1) = 0
12(−a2c3 − a3c2)t+ 6(a3c1 − a1c3) = 0
12(a2b3 − a3b2)t+ 6(a1b3 − a3b1) = 0

The solution of the above system of equations is obtained as

t =
b3c1 − b1c3

2b2c3 − 2b3c2
, c3 =

a1b3c2 − a2b3c1 − a3b1c2 + a3b2c1

b2a1 − a2b1
.

The nice result is that this point is not the inflection point of the Frenet frame. For matlab program, we can write
an easy algorithm to construct tube surface as follows

begin

for i = 1 to j do
if ‖α′ ∧ αn‖ > 0 then Flc− frame

else

break
Frenet frame

(use Flc-frame for tube)
(use Frenet frame for tube)

(to stop to use of Frenet frame)
end

for k = i+ 1 to j do

continue use −D1 and −D2 (to avoid 180 degree rotation)
end

end

Figure 5. The tube surface generated by the above algorithm t ∈ (−2, 2), v ∈ (−4, 4).

With this algorithm, the tube surface generated by the curve given in Equation 2.1 is shown in Figure 5. The
following case is the most interesting. Because currently there is not exact description for this error. Let’s begin with
the most convenient one.

• At the points where the curvature of curve is small and the absolute value of the torsion is large.

Sometimes, despite the fact that where the Frenet frame doesn’t have singular point of order 1 and inflection
point, interestingly the normal and binormal vectors still exhibit rotation around the tangent vector, but not 180
degree. There are some instances in the literature to explain why the Frenet frame behaves badly. In this section we
focus on this problem, and review some recently published comments that are used to explain the unpredictable
behavior of the Frenet frame.

In [8] the authors have tried to explain what causes abnormal behavior of the normal and binormal vectors
of the Frenet frame. They realized that the small curvature and large absolute value of torsion produce so much
twisting in the tube. The Figure 6 shows that this is a highly convincing explanation. Let us consider a curve given
by

α(t) = (8 + cos(5t) cos(2t), (8 + cos(5t)) sin(2t), 5 sin(5t)). (2.2)
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(a) The curvature (Red) and the torsion (Blue) of the
curve α(t) t ∈ (−2, 2).

(b) The tube surface generated by
Frenet frame of the curve α(t) t ∈

(−2, 2), v ∈ (−4, 4).

Figure 6.

(a) the curvature (Red) and the torsion (Blue) of the
curve β(t) t ∈ (−2, 2).

(b) The tube surface generated by
Frenet frame of the curve β(t) t ∈

(−2, 2), v ∈ (−4, 4).

Figure 7.
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(a) The second derivative of the curve
α(t).

(b) The second derivative of the
curve β(t).

Figure 8. The top view from z-axis

In [8] the authors pointed out that at the plot of the tube shows that this increased twisting occurs in four
different places where simultaneously the curvature is small and the absolute value of the torsion is large. However
the small curvature and large torsion is a relative concept. For instance, let us consider a curve given by

β(t) = (8 + 3 cos(5t) cos(2t), (8 + 3 cos(5t)) sin(2t), 5 sin(5t)). (2.3)

The Figure 7 shows that despite the fact that the graph of the curvature and torsion is similar, the tube surface
generated by the curve β(t) doesn’t have any deformation on it.

In addition, a different approach has been given for this case in [14]. The author claimed that when the the
second derivative of the curve becomes very small, the Frenet frame behaves erratically which causes twisting in
the tube.

Now let us plot the graph of the second derivative of the curves given in (2.2) and (2.3). In Figure 8, observe
that the curve α′′(t) approaches to zero at the four points, β′′(t) is not. Note that this explanation also shows that
why the Flc-frame is better than the Frenet frame? Because we use highest order derivative instead of second order
derivatives of the curve to construct the Flc-frame. The following example shows these advantages.

Example 2.3. Let us consider a curve given by

α(t) = (t, t3 − t2 + 3t, t3). (2.4)

Figure 9. The tube surfaces generated by Frenet frame (left) and the Flc-frame (right) t ∈ (−2, 2), v ∈ (−4, 4).

It is easy to see that although this curve doesn’t have neither singular point of order 1 nor inflection point, the
Figure 9 shows that the tube surface generated by the Frenet frame is deformed.

3. Conclusion

In this paper we investigated three drawbacks of the Frenet frame and compared the Frenet frame with a new
frame called as Flc-frame. Moreover, we tried to explain what causes the last drawback of the Frenet frame. Where
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as the Frenet frame, the Flc-frame has just one drawback, for which we constructed an easy algorithm. As a result,
this new frame not only decreases the singular points, but it also decreases the undesirable rotation around the
tangent vector of the curve which is a advantage in computer graphics and related fields.

• Whereas the Frenet frame, the Flc-frame does not have singular point of order 1.
• To have a inflection point on Flc frame is less possible than the Frenet frame.
• Whereas the Frenet frame, the normal and binormal vectors of the Flc-frame does not exhibit rotation around

the tangent vector.
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1. Introduction and preliminaries

The classical summability theory concerns with the generalization of the concept of convergence for series or
sequences by assigning a limit for non-convergent series or sequences. For this purpose, infinite special matrices are
used.

One of the fundamental subject of summability is the study of the theory of sequence spaces. By a sequence
space, we mean any subspace of ω consisting all sequences with real or complex terms. We use the classical sequence
spaces

c0 =
{
x = (xj) ∈ ω : lim

j
xj = 0

}
,

c =
{
x = (xj) ∈ ω : lim

j
xj exists

}
,

ℓ∞ =
{
x = (xj) ∈ ω : sup

j
|xj | < ∞

}
,

cs =

{
x = (xj) ∈ ω :

(
j∑

i=1

xi

)
∈ c

}

and

bs =

{
x = (xj) ∈ ω :

(
j∑

i=1

xi

)
∈ ℓ∞

}
.
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In the theory of sequence spaces, the concept of Banach limit has rised as a fascinating application of the famous
Hahn–Banach extension theorem. The Banach limit is known as extension of limit functional on c to the space ℓ∞.
This notion has used by Lorentz [1] to introduce a new type of convergence called almost convergence. The spaces
f and f0 of almost convergent and almost convergent to zero are given by

f =

{
x = (xj) ∈ ℓ∞ : lim

i→∞

i∑

p=0

xj+p

i+ 1
= A uniformly in j

}

and

f0 =

{
x = (xj) ∈ ℓ∞ : lim

i→∞

i∑

p=0

xj+p

i+ 1
= 0 uniformly in j

}
.

A Banach limit L defined on ℓ∞ is a non-negative linear functional such that L(Px) = Lx and L(e) = 1, where
P : ω −→ ω, Pj(x) = xj+1 is the shift operator. A sequence x = (xj) is said to be almost convergent to the
generalized limit A if all Banach limits of x are coincide and are equal to A. It is denoted by f − limxj = A. If Pp is
the p-times composition of P with itself, we use the notation

aij(x) =
1

i+ 1

i∑

p=0

(Ppx)j for all i, j ∈ N.

It is proved by Lorentz [1] that f − limxj = A if and only if limi→∞ aij(x) = A uniformly in j. It is a known fact
that a convergent sequence is almost convergent such that its ordinary and generalized limits are equal. See the
papers [2–14] for more on almost convergence and Banach limit.

Given any sequence spaces X and Y , an infinite matrix S = (sij) is considered as a matrix mapping from X into
Y if the sequence Sx = {(Sx)i} =

(∑
j sijxj

)
∈ Y for every x = (xj) ∈ X . By (X : Y), we denote the class of all

such matrices. It is said that S regularly maps X into Y if S ∈ (X : Y) and limj(Sx)j = limj xj for all x ∈ X . This is
denoted by S ∈ (X : Y)reg .

By fS , we mean the domain of an infinite matrix S in the space f ; that is

fS =
{
x = (xj) ∈ ω : Sx ∈ f

}
.

For more on matrix domains and new sequence spaces, see [15–25]
Let x = (xj) ∈ ω and Cj be the least convex closed region in complex plane containing xj , xj+1, xj+2, . . . for

each j ∈ N = {1, 2, ...}. The Knopp Core or K − core of x = (xj) is defined as the intersection of all Cj ([26]). If
x ∈ ℓ∞, we have that

K − core(x) =
⋂

z∈C

{
z̃ ∈ C : |z̃ − z| ≤ lim sup

j
|xj − z|

}

([27]).
Knopp Core Theorem [26, p. 138] states that K − core(Sx) ⊆ K − core(x) for all real valued sequences x and a

positive matrix S ∈ (c : c)reg .
Statistical convergence is another generalization of usual convergence. It is defined by the aid of natural density

of a subset in N. The natural density of a set N is

δ(N) = lim
j

1

j
|{i ≤ j : i ∈ N}|

provided that the limit exists. Here || gives the cardinality of the set written inside it. It is said that a sequence
x = (xj) is statistically convergent to D if for every ε > 0 the natural density of the set

{j ∈ N : |xj −D| ≥ ε}

equals zero. It is denoted by st− limx = D ([28]). By st0 and st, the spaces of all statistically null and statistically
convergent sequences are denoted.

The notion of the statistical core or st− core of a statistically bounded sequence x is defined by Fridy and Orhan
[29] as

st− core(x) =
⋂

z∈C

{
z̃ ∈ C : |z̃ − z| ≤ st− lim sup

j
|xj − z|

}
.
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For some papers on core theorems, see [30–34].
The Jordan’s function Jr : N → N of order r is an arithmetic function, where r is a positive integer. The

value Jr(n) equals to the number of r-tuples of positive integers all less than or equal to n that form a coprime
(r + 1)-tuples together with n.

In a recent paper, İlkhan et al. [35] define a new matrix Υr = (υr
nk) as

υr
nk =

{
Jr(k)
nr , if k | n
0 , if k ∤ n

for each r ∈ N. It is also observed that this special transformation is regular; that is a limit preserving mapping c
into c.

The inverse (Υr)−1 = ((υr
nk)

−1) is computed as

(υr
nk)

−1 =

{
µ(n

k
)

Jr(n)
kr , if k | n

0 , if k ∤ n

Here and what follows µ is the Mobius function. By using usual matrix product, the Υr-transform of a sequence
x = (xj) ∈ ω is the sequence

y = Υrx = ((Υrx)j) =


 1

jr

∑

d|j

Jr(d)xd


 .

In this study, it is aimed to introduce and study on a new sequence space f̂(Υr) as the domain of Υr in the
space f . Further, Jordan Totient Core (Υr−core) of a sequence is defined and characterization of matrices satisfying
Υr − core(Sx) ⊆ K − core(x) and Υr − core(Sx) ⊆ st− core(x) with x ∈ ℓ∞ are given.

2. Domain of Υr in the space f and Jordan Totient Core

In this section, we introduce the space f̂(Υr) consisting of all sequences whose Υr-transforms are in f . That is,

f̂(Υr) =

{
x = (xj) ∈ ℓ∞ : lim

i→∞

i∑

p=0

(Υrx)j+p

i+ 1
= A uniformly in j

}
.

One can prove that the spaces f̂(Υr) and f are linearly isomorphic.
The β-dual of a space X consists of all sequences a = (aj) ∈ ω such that xa = (xjaj) ∈ cs for all x = (xj) ∈ X .

In order to determine the β−dual of the space f̂(Υr), we need the following result.

Lemma 2.1. [36] S = (sij) ∈ (f : c) if and only if

sup
i∈N

∑

j

|sij | < ∞, (2.1)

lim
i→∞

sij = sj ∈ C for each j ∈ N, (2.2)

lim
i→∞

∑

j

sij = s ∈ C, (2.3)

lim
i→∞

∑

j

∣∣∆(sij − sj)
∣∣ = 0. (2.4)
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Theorem 2.1. The β−dual of the sequence space f̂(Υr) is the intersection of the following sets

B1 =

{
t = (tj) ∈ ω : sup

i∈N

i∑

j=1

∣∣∣∣
i∑

d=j,j|d

µ(dj )

Jr(d)
jtd

∣∣∣∣ < ∞

}
,

B2 =

{
t = (tj) ∈ ω : lim

i→∞

i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd exists

}
,

B3 =

{
t = (tj) ∈ ω : lim

i→∞

i∑

j=1

[ i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd

]
exists

}
,

B4 =

{
t = (tj) ∈ ω : lim

i→∞

∑

j

∣∣∣∣∆
[ i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd − αj

]∣∣∣∣ = 0

}
.

Proof. Given any t = (tj) ∈ ω, the equality

i∑

j=1

tjxj =

i∑

j=1

tj

(∑

d|j

µ( jd )

Jr(j)
dryd

)

=
i∑

j=1

( i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd

)
yj

= Bi(y); (i ∈ N) (2.5)

holds, where the matrix B = (bji) is defined by

bji =





i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd 1 ≤ j ≤ i,

0 otherwise

(2.6)

for all j, i ∈ N. It follows from (2.5) that tx = (tjxj) ∈ cs whenever x = (xj) ∈ c if and only if By ∈ c whenever
y = (yj) ∈ f . That is, t = (tj) ∈ {f̂(Υr)}β if and only if B ∈ (f : c). Hence the result is obtained by using Lemma
2.1.

Now, we define Jordan totient core or Υr−core of a complex valued sequence.

Definition 2.1. Let Cj be the least closed convex hull containing (Υrx)j , (Υ
rx)j+1, .... Then, Υr − core of x is the

intersection of all Cj , i.e.,

Υr − core(x) =
∞⋂

j=1

Cj .

The following result is immediate since the Υr − core of x is the K − core of the sequence Υrx.

Theorem 2.2. For any x ∈ ℓ∞, we have

Υr − core(x) =
⋂

z∈C

{
z̃ ∈ C : |z̃ − z| ≤ lim sup

j
|(Υrx)j − z|

}
.

Recently, İlkhan et al. [37] introduced the following spaces by the aid of Jordan totient function.

c0(Υ
r) =



x = (xj) ∈ ω : lim

j


 1

jr

∑

d|j

Jr(d)xd


 = 0





and

c(Υr) =



x = (xj) ∈ ω : lim

j


 1

jr

∑

d|j

Jr(d)xd


 exists



 .
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In order to give the necessary and sufficient conditions for an infinite matrix S = (sij) be in the classes
(c : c(Υr))reg and (st(S) ∩ ℓ∞ : c(Υr))reg , we firstly have some auxiliary results.

Lemma 2.2. S = (sij) ∈ (ℓ∞ : c(Υr)) if and only if

sup
i

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
< ∞, (2.7)

lim
i

1

ir

∑

j|i

Jr(j)sij = γj for each j, (2.8)

lim
i

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij − γj

∣∣∣∣∣∣
= 0. (2.9)

Lemma 2.3. S = (sij) ∈ (c : c(Υr))reg if and only if (2.7) and (2.8) hold with γj = 0 for each j and

lim
i

∑

j

1

ir

∑

j|i

Jr(j)sij = 1. (2.10)

Lemma 2.4. S = (sij) ∈ (st ∩ ℓ∞ : c(Υr))reg if and only if S ∈ (c : c(Υr))reg and

lim
i

∑

j∈N,δ(N)=0

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
= 0. (2.11)

Proof. It is a known fact that c ⊂ st∩ ℓ∞ holds. So we have S ∈ (c : c(Υr))reg . Now let δ(N) = 0 and x ∈ ℓ∞. Define
a sequence x̃ = (x̃j) as x̃j = xj if j ∈ N and x̃j = 0 otherwise. Clearly x̃ ∈ st0. Hence we have Sx̃ ∈ c0(Υ

r). Further
the equality

∑

j

1

ir

∑

j|i

Jr(j)sij x̃j =
∑

j∈N

1

ir

∑

j|i

Jr(j)sijxj

yields that Ŝ = (ŝij) ∈ (ℓ∞ : c(Υr)), where

ŝij =

{
1
ir

∑
j|i Jr(j)sij , if j ∈ N

0 , if j /∈ N.

Thus we deduce (2.11) from Lemma 2.2.
Conversely, choose a sequence x ∈ st ∩ ℓ∞ with st − limx = D. Given any ε > 0, we have δ(N) = δ({j :

|xj −D| ≥ ε}) = 0. By letting i → ∞ in the following equality

∑

j

1

ir

∑

j|i

Jr(j)sijxj =
∑

j

1

ir

∑

j|i

Jr(j)sij(xj −D) +D
∑

j

1

ir

∑

j|i

Jr(j)sij , (2.12)

the inequality

∣∣∣∣∣∣

∑

j

1

ir

∑

j|i

Jr(j)sij(xj −D)

∣∣∣∣∣∣
≤ ‖x‖

∑

j∈N

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
+ ε

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
,

and (2.10) with (2.11) yield that

lim
i

∑

j

1

ir

∑

j|i

Jr(j)sijxj = D.

This means that S ∈ (st ∩ ℓ∞ : c(Υr))reg .
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Lemma 2.5. [30] Let S = (sij) be a matrix satisfying the conditions
∑

j |sij | < ∞ and limi sij = 0. Then we have

lim sup
i

∑

j

sijxj = lim sup
i

∑

j

|sij |

for some x ∈ ℓ∞ with ‖x‖ ≤ 1.

Now, we are ready to give our main theorems.

Theorem 2.3. Let S ∈ (c, c(Υr))reg and x ∈ ℓ∞. The inclusion Υr − core(Sx) ⊆ K − core(x) holds if and only if

lim
i

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
= 1. (2.13)

Proof. By combining Lemma 2.3 and Lemma 2.5 we obtain the equality


w̃ ∈ C : |w̃| ≤ lim sup

i

∑

j

1

ir

∑

j|i

Jr(j)sijxj



 =



w̃ ∈ C : |w̃| ≤ lim sup

i

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣





for some x = (xj) ∈ ℓ∞ with ‖x‖ ≤ 1. Since the inclusions

Υr − core(Sx) ⊆ K − core(x) ⊆ {w̃ ∈ C : |w̃| ≤ 1}

hold, (2.13) follows from the inclusion


w̃ ∈ C : |w̃| ≤ lim sup

i

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣



 ⊆ {w̃ ∈ C : |w̃| ≤ 1} .

Now, let w̃ ∈ Υr − core(Sx). We have

|w̃ − w| ≤ lim sup
i

|(Υr(Sx))i − w| (2.14)

= lim sup
i

∣∣∣∣∣∣
w −

∑

j

1

ir

∑

j|i

Jr(j)sijxj

∣∣∣∣∣∣

≤ lim sup
i

∣∣∣∣∣∣

∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
+ lim sup

i
|w|

∣∣∣∣∣∣
1−

∑

j

1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣

= lim sup
i

∣∣∣∣∣∣

∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣

for any w ∈ C. Put lim supj |xj − w| = l. Given any ε > 0 there exists j0 such that |xj − w| ≤ l + ε for j ≥ j0. Hence,
it follows that

∣∣∣∣
∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣ =

∣∣∣∣∣∣

∑

j<j0

1

ir

∑

j|i

Jr(j)sij(w − xj) +
∑

j≥j0

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
(2.15)

≤ sup
j

|w − xj |
∑

j<j0

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
+ (l + ε)

∑

j≥j0

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣

≤ sup
j

|w − xj |
∑

j<j0

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
+ (l + ε)

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
.
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Hence (2.14) and (2.15) yield that

|w̃ − w| ≤ lim sup
i

∣∣∣∣∣∣

∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
≤ l + ε.

This implies that w̃ ∈ K − core(x). Hence the desired inclusion holds.

Theorem 2.4. Let S ∈ (st ∩ ℓ∞ : c(Υr))reg and x ∈ ℓ∞. The inclusion Υr − core(Sx) ⊆ st− core(x) holds if and only if
(2.13) holds.

Proof. Since st− core(x) ⊆ K− core(x) holds, the inclusion Υr − core(Sx) ⊆ st− core(x) implies (2.13) by Theorem
2.3.

Now, let w̃ ∈ Υr − core(Sx). Similarly we have inequality (2.14). Put st− lim sup |xj − w| = l̂. Given any ε > 0,
we have δ(Ñ) = δ({j : |xj − w| > l̂ + ε}) = 0 (see [38]). Hence it follows that

∣∣∣∣
∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣ =

∣∣∣∣∣∣

∑

j∈Ñ

1

ir

∑

j|i

Jr(j)sij(w − xj) +
∑

j /∈Ñ

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣

≤ sup
j

|w − xj |
∑

j∈Ñ

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
+ (l̂ + ε)

∑

j /∈Ñ

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣

≤ sup
j

|w − xj |
∑

j∈Ñ

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
+ (l̂ + ε)

∑

j

∣∣∣∣∣∣
1

ir

∑

j|i

Jr(j)sij

∣∣∣∣∣∣
.

Consequently, by (2.11) and (2.13), we have

lim sup
i

∣∣∣∣∣∣

∑

j

1

ir

∑

j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
≤ l̂ + ε. (2.16)

If we combine (2.14) with (2.16), we deduce that

|w̃ − w| ≤ st− lim sup
j

|xj − w|.

This implies that w̃ ∈ st− core(x). Hence the desired inclusion holds.
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[4] Kirişçi, M.: The spaces of Euler almost null and Euler almost convergent sequences. Commun. Fac. Sci. Univ. Ank.
Series A1. 62(2), 85-100 (2013).

[5] Mursaleen, M.: Invariant means and some matrix transformations. Indian J. Pure Appl. Math. 25(3), 353-359 (1994).
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[13] İlkhan Kara, M., Bayrakdar, M.A.: A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely
summable sequences. Commun. Adv. Math. Sci. 4(1), 14-25 (2021).
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1. Introduction

The geometry of contact Riemannian manifolds and related issues have received great attention in recent years.
One of the most important of these is the almost cosymplectic manifolds presented by Goldberg and Yano [11] in
1969. A special variant of almost contact manifolds was presented by Kenmotsu [15] in 1972. Afterwards Kim and
Pak in [16] described a new class of manifolds known as almost α-cosymplectic manifolds by combining almost
cosymplectic and almost α-Kenmotsu manifolds, where α is a real number. Almost cosymplectic manifolds have
been studied by many mathematicians in literature ([1], [2], [3], [7], [10], [16], [17], [20], [21], [28]) and many others.
On the other hand, many different kinds of almost contact structures are defined in the literature. Pokhariyal
and Mishra [23] have presented new tensor fields. In 1982, W-curvature tensor have been studied by Pokhariyal
[22]. Pokhariyal, described the curvature tensor W8 in this work. Many authors have worked on W curvature
tensors ([4], [19], [25], [27], [29]). Ingalahalli et al. [13] have been studied the W8-curvature tensor on Kenmotsu
manifolds. Also, Ruganzu et al. [26] have been studied the W8 curvature tensor on para Kenmotsu manifolds. By
the motivations of all these studies, we, authors, in the present manuscript, are going to study the W8 curvature
tensor on α-cosymplectic manifolds.

This manuscript has been structured as follows: After a brief presentation of α-cosymplectic manifolds we
examine the cases ξ−W8 flat, ϕ−W8 semisymmetric, R(ξ,X1).W8 = 0, W8.R = 0, W8.W8 = 0, W8-Ricci pseudosym-
metric, W8.Q = 0. Also, we examine η-Ricci solitons on α-cosymplectic manifolds satisfying W8(ξ,X1).Ric = 0
and Ric(ξ,X1).W8 = 0.

Received : 02-06-2022, Accepted : 19-07-2022

https://doi.org/10.36753/msaen.1125031
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2. Preliminaries

Let (Mn, ϕ, ξ, η, g) be an n-dimensional (n = 2m+ 1) almost contact metric manifold, in which ξ is the structure
vector field, ϕ is a (1, 1)-tensor field, g is the Riemannian metric and η is a 1-form. The (ϕ, ξ, η, g) structure satisfies
the following conditions [6].

ϕξ = 0, η(ϕξ) = 0, η(ξ) = 1,

ϕ2X1 = −X1 + η(X1)ξ, g(X1, ξ) = η(X1),

g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2),

for any X1, X2 ∈ χ(M); in which χ(M) represents the collection of all smooth vector fields of M .
If moreover

∇X1
ξ = −αϕ2X1,

(∇X1
η)X2 = α[g(X1, X2)− η(X1)η(X2)],

in which ∇ indicates the Riemannian connection and α is a real number, in that case (Mn, ϕ, ξ, η, g) is known a
α-cosymplectic manifold [16].

Then, it is also well known that [21]

R(X1, X2)ξ = α2[η(X1)X2 − η(X2)X1], (2.1)

Ric(X1, ξ) = −α2(n− 1)η(X1), (2.2)

Ric(ξ, ξ) = −α2(n− 1), (2.3)

Qξ = −α2(n− 1)ξ (2.4)

for all X1, X2 ∈ χ(M), in which R, Ric, Q indicates the curvature tensor, Ricci tensor and Ricci operator
g(QX1, X2) = Ric(X1, X2) on M . Using (2.1), one can easily conclude that

R(ξ,X1)X2 = α2[η(X2)X1 − g(X1, X2)ξ] (2.5)

R(X1, ξ)ξ = α2[η(X1)ξ −X1]. (2.6)

An α-cosymplectic manifold is known to be an η-Einstein manifold if Ricci tensor Ric satisfies condition

Ric(X1, X2) = λ1g(X1, X2) + λ2η(X1)η(X2) (2.7)

in which λ1, λ2 are certain scalars. The manifold is known as Einstein when λ2 = 0 in eq. (2.7).
On the other hand, η-Ricci solitons on α-cosymplectic manifolds have the following properties [30]:

Ric(X1, X2) = −(α+ λ)g(X1, X2) + (α− µ)η(X1)η(X2), (2.8)

Ric(X1, ξ) = −(λ+ µ)η(X1) (2.9)

for all X1, X2 ∈ χ(M).

3. ξ −W8-flat α-Cosymplectic Manifolds

In this part, we consider ξ −W8-flat in α-cosymplectic manifolds.

Definition 3.1. An α-cosymplectic manifold is known to be ξ −W8-flat if

W8(X1, X2)ξ = 0 (3.1)
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for all X1, X2 ∈ χ(M). W8-curvature tensor [22] is defined as

W8(X1, X2)X3 = R(X1, X2)X3 +
1

n− 1
[Ric(X1, X2)X3 −Ric(X2, X3)X1] (3.2)

in which Ric and R are Ricci tensor and the curvature tensor of the manifold, respectively. By using of (3.1) in (3.2),
we get

R(X1, X2)ξ +
1

n− 1
[Ric(X1, X2)ξ −Ric(X2, ξ)X1] = 0. (3.3)

By virtue of (2.1), (2.2) in (3.3) and on simplification, we have

α2[η(X1)X2 − η(X2)X1] +
1

n− 1
[Ric(X1, X2)ξ + α2(n− 1)η(X2)X1] = 0. (3.4)

When the inner product is taken with ξ in eq. (3.4) and on simplification, one has

Ric(X1, X2) = −α2(n− 1)η(X1)η(X2).

In conclusion, one has the theorem given below:

Theorem 3.1. Let M be an α-cosymplectic manifold satisfying ξ −W8-flat condition, then the manifold is a special kind of
η-Einstein manifold.

4. ϕ−W8-semisymmetric condition in α-cosymplectic manifolds

At this part, we examine ϕ−W8-semisymmetric condition in α cosymplectic manifolds.

Definition 4.1. An α-cosymplectic manifold is known to be ϕ−W8-semisymmetric if

W8(X1, X2).ϕ = 0 (4.1)

for all X1, X2 ∈ χ(M).

At this time, eq. (4.1) becomes

(W8(X1, X2).ϕ)X3 = W8(X1, X2)ϕX3 − ϕW8(X1, X2)X3 = 0. (4.2)

Making use of (3.2) in (4.2), we obtain

R(X1, X2)ϕX3 − ϕR(X1, X2)X3 +
1

n− 1
[Ric(X2, X3)ϕX1 −Ric(X2, ϕX3)X1] = 0. (4.3)

By using X1 = ξ in (4.3) and with the help of (2.2), (2.5) equations and on simplification, we get

α2g(X2, ϕX3)ξ + αη(X3)ϕX2 +
1

n− 1
Ric(X2, ϕX3)ξ = 0. (4.4)

When X3 by ϕX3 is replaced in eq. (4.4), one has

α2g(X2, X3)ξ = −
1

n− 1
Ric(X2, X3)ξ. (4.5)

By taking inner product with ξ in (4.5), we obtain

Ric(X2, X3) = −α2(n− 1)g(X2, X3).

In conclusion, one has the theorem given below:

Theorem 4.1. Let M be an α-cosymplectic manifold satisfying ϕ−W8-semisymmetric condition, then the manifold is an
Einstein manifold.
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5. α-cosymplectic manifolds satisfying R(ξ,X1).W8 = 0 condition

At this part, we examine α-cosymplectic manifold satisfying R(ξ,X1).W8 = 0. Then, we get

R(ξ,X1)W8(X2, X3)X4 −W8(R(ξ,X1)X2, X3)X4

−W8(X2,R(ξ,X1)X3)X4 −W8(X2, X3)R(ξ,X1)X4 = 0.
(5.1)

By using (2.5) in (5.1), we have

α2η(W8(X2, X3)X4)X1 − α2g(X1,W8(X2, X3)X4)ξ
−α2η(X2)W8(X1, X3)X4 + α2g(X1, X2)W8(ξ,X3)X4

−α2η(X3)W8(X2, X1)X4 + α2g(X1, X3)W8(X2, ξ)X4

−α2η(X4)W8(X2, X3)X1 + α2g(X1, X4)W8(X2, X3)ξ = 0.

(5.2)

By using inner product with ξ in (5.2) and the aid of (3.2) and on simplification, we obtain

α2η(W8(X2, X3)X4)η(X1)− α2g(X1,W8(X2, X3)X4)
−α2η(X2)η(W8(X1, X3)X4) + α2g(X1, X2)η(W8(ξ,X3)X4)
−α2η(X3)η(W8(X2, X1)X4) + α2g(X1, X3)η(W8(X2, ξ)X4)
−α2η(X4)η(W8(X2, X3)X1) + α2g(X1, X4)η(W8(X2, X3)ξ) = 0.

(5.3)

By using (2.1), (2.2) and (2.6) in (5.3), we get

−α2g(X1,R(X2, X3)X4)− α4g(X1, X2)g(X3, X4) + α4g(X1, X3)g(X2, X4)
−α4g(X2, X1)η(X4)η(X3) + α4g(X1, X4)η(X2)η(X3)
− 1

n−1α
2[Ric(X2, X1)η(X3)η(X4)−Ric(X1, X4)η(X3)η(X2)] = 0.

(5.4)

It is assumed that {ei : i = 1, 2, ..., n} is an orthonormal frame field at any point of the manifold. Then contracting
X1 = X2 = ei in (5.4), we have

Ric(X3, X4) = α2(1− n)g(X3, X4)− [
scal

n− 1
+ nα2]η(X3)η(X4).

In conclusion, one has the theorem given below:

Theorem 5.1. Let M be an α-cosymplectic manifold satisfying R(ξ,X1).W8 = 0 condition, then the manifold is an η-Einstein
manifold.

6. α-cosymplectic manifolds satisfying W8.R = 0 condition

At this part, we examine α-cosymplectic manifold satisfying W8.R = 0 condition. Then, we have

W8(ξ,X4)R(X1, X2)X3 −R(W8(ξ,X4)X1, X2)X3

−R(X1,W8(ξ,X4)X2)X3 −R(X1, X2)W8(ξ,X4)X3 = 0.
(6.1)

If X3 = ξ is used in eq. (6.1), then one gets

W8(ξ,X4)R(X1, X2)ξ −R(W8(ξ,X4)X1, X2)ξ
−R(X1,W8(ξ,X4)X2)ξ −R(X1, X2)W8(ξ,X4)ξ = 0.

(6.2)

By taking (2.1) in (6.2) and making the necessary simplifications, we get

− α2η(W8(ξ,X4)X1)X2 + α2η(W8(ξ,X4)X2)X1 −R(X1, X2)W8(ξ,X4)ξ = 0. (6.3)

If eqs. (2.2), (2.5) and (3.2) is used in eq. (6.3), then one obtains

α4[g(X1, X4)X2 − g(X4, X2)X1 + η(X4)η(X1)X2 − η(X4)η(X2)X1]

−α2R(X1, X2)X4 +
α2

n−1 [Ric(X4, X1)X2 −Ric(X4, X2)X1] = 0.
(6.4)
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Putting X2 = ξ in (6.4) and the aid of (2.2), (2.5), we have

α4η(X4)η(X1)ξ +
α2

n− 1
Ric(X4, X1)ξ = 0. (6.5)

When the inner product is taken with ξ in eq. (6.5), one has

Ric(X1, X4) = −α2(n− 1)η(X1)η(X4).

In conclusion, one has the theorem given below:

Theorem 6.1. Let M be an α-cosymplectic manifold satisfying W8.R = 0 condition, then the manifold is a special kind of
η-Einstein manifold.

7. α-cosymplectic manifolds satisfying W8.W8 = 0 condition

At this part, we examine α-cosymplectic manifolds satisfying W8.W8 = 0 condition. Then, we have

W8(ξ,X4)W8(X1, X2)X3 −W8(W8(ξ,X4)X1, X2)X3

−W8(X1,W8(ξ,X4)X2)X3 −W8(X1, X2)W8(ξ,X4)X3 = 0.
(7.1)

By using (3.2) in (7.1), we obtain

R(ξ,X4)W8(X1, X2)X3 +
1

n−1 [Ric(ξ,X4)W8(X1, X2)X3 −Ric(X4,W8(X1, X2)X3)ξ]

−R(W8(ξ,X4)X1, X2)X3 −
1

n−1 [Ric(W8(ξ,X4)X1, X2)X3 −Ric(X2, X3)W8(ξ,X4)X1]

−R(X1,W8(ξ,X4)X2)X3 −
1

n−1 [Ric(X1,W8(ξ,X4)X2)X3 −Ric(W8(ξ,X4)X2, X3)X1]

−R(X1, X2)W8(ξ,X4)X3 −
1

n−1 [Ric(X1, X2)W8(ξ,X4)X3 −Ric(X2,W8(ξ,X4)X3)X1] = 0.

(7.2)

Putting X2 = X3 = ξ in (7.2) and with the help of (2.2), (2.3), (2.6), (3.2) equations and on simplification, we get

Ric(X1, X4)ξ = −α2(n− 1)g(X1, X4)ξ. (7.3)

When the inner product is taken with ξ in eq. (7.3), one has

Ric(X1, X4) = −α2(n− 1)g(X1, X4).

In conclusion, one has the theorem given below:

Theorem 7.1. Let M be an α-cosymplectic manifold satisfying W8.W8 = 0 condition, then the manifold is an Einstein
manifold.

8. α-cosymplectic manifolds satisfying W8-Ricci pseudosymmetric condition

At this part, we examine W8-Ricci pseudosymmetric α-cosymplectic manifolds.
The notion of Ricci pseudosymmetric manifold has been presented by Deszcz ([8], [9]). In the case of Riemannian,
the geometric comment of Ricci pseudosymmetric manifolds has been presented by [14]. A Riemannian manifold
(M, g) is known Ricci pseudosymmetric ([8], [9], [12], [24]) if the tensor R.Ric and the Tachibana tensor Q(g,Ric)
are linearly dependent, where

(R(X1, X2).Ric)(X3, X4) = −Ric(R(X1, X2)X3, X4)−Ric(X3,R(X1, X2)X4),

Q(g,Ric)(X3, X4;X1, X2) = −Ric((X1 ∧g X2)X3, X4)−Ric(X3, (X1 ∧g X2)X4)

and
(X1 ∧g X2)X3 = g(X2, X3)X1 − g(X1, X3)X2

for all X1, X2, X3, X4 ∈ χ(M). R indicates the curvature tensor of M .
An α-cosymplectic manifold is known to be W8-Ricci pseudosymmetric if its curvature tensor satisfies

(W8(X1, X2).Ric)(X3, X4) = LRicQ(g,Ric)(X3, X4;X1, X2), (8.1)
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holds on X4Ric = {x ∈ M : Ric 6= scal
n

g at x}, in which LRic is some function on X4Ric. By using eq. (8.1), one
obtains

Ric(W8(X1, X2)X3, X4) +Ric(X3,W8(X1, X2)X4)
= LRic[g(X2, X3)Ric(X1, X4)− g(X1, X3)Ric(X2, X4)
+g(X2, X4)Ric(X1, X3)− g(X1, X4)Ric(X2, X3)].

(8.2)

Taking into account of X3 = ξ in (8.2) and by using the eqs. (2.1), (2.2), (3.2) and making the necessary simplifications,
we get

2α2[Ric(X2, X4)η(X1)−Ric(X1, X2)η(X4)]
+α4(n− 1)[g(X4, X2)η(X1) + g(X1, X4)η(X2)]
= LRic[Ric(X2, X4)η(X1)−Ric(X1, X4)η(X2)
−α2(n− 1)(g(X1, X4)η(X2) + g(X2, X4)η(X1))].

(8.3)

Putting X2 = ξ in (8.3) and by using (2.2) and making the necessary simplifications, we obtain

Ric(X1, X4) =
(n− 1)(α4 − α2LRic)

LRic

g(X1, X4)−
α4(n− 1)

LRic

η(X1)η(X4).

In conclusion, one has the theorem given below:

Theorem 8.1. Let M be an α-cosymplectic manifold satisfying W8-Ricci pseudosymmetric condition, then the manifold is an
η-Einstein manifold.

9. α-cosymplectic manifolds satisfying W8.Q = 0 condition

At this part, we examine α-cosymplectic manifold satisfying W8.Q = 0 condition. Then, we obtain

W8(X1, X2)QX3 −Q(W8(X1, X2)X3) = 0. (9.1)

When X2 = ξ is put in eq. (9.1), one gets

W8(X1, ξ)QX3 −Q(W8(X1, ξ)X3) = 0. (9.2)

If eq. (3.2) is used in eq. (9.2), then one gets

R(X1, ξ)QX3 +
1

n−1 (Ric(X1, ξ)QX3 −Ric(ξ,QX3)X1)

−Q[R(X1, ξ)X3 +
1

n−1 (Ric(X1, ξ)X3 −Ric(ξ,X3)X1)] = 0.
(9.3)

Taking into account of (2.2), (2.4), (2.5) in eq. (9.3) and making the necessary simplifications, we get

α2Ric(X1, X3)ξ + α4(n− 1)g(X1, X3)ξ = 0. (9.4)

Taking inner product with ξ in (9.4) and making the necessary simplifications, we obtain

Ric(X1, X3) = −α2(n− 1)g(X1, X3).

In conclusion, one has the theorem given below:

Theorem 9.1. Let M be an α-cosymplectic manifold satisfying W8.Q = 0 condition, then the manifold is an Einstein
manifold.

10. η-Ricci solitons on α-cosymplectic manifolds satisfying W8(ξ,X1).Ric = 0

At this part, we examine η-Ricci solitons on α-cosymplectic manifold satisfying W8(ξ,X1).Ric = 0. The
condition that must be satisfied by Ric is [5]:

Ric(W8(ξ,X1)X2, X3) +Ric(X2,W8(ξ,X1)X3) = 0 (10.1)
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for all X1, X2 and X3 ∈ χ(M). By using (2.5), (2.8), (2.9) and (3.2) in (10.1), we have

[ (α+λ)(2α+λ−µ)
n−1 − α2(α− µ)][g(X1, X2)η(X3) + g(X1, X3)η(X2)]

+ 2(α+λ)(λ+µ)
n−1 g(X2, X3)η(X1) + 2α2(α− µ)η(X1)η(X2)η(X3) = 0

(10.2)

for all X1, X2 and X3 ∈ χ(M). Putting X1 = ξ in (10.2), we obtain

(2α+ λ− µ)η(X2)η(X3) + (λ+ µ)g(X2, X3) = 0

for all X2, X3 ∈ χ(M). But α+ λ = n− 1, so 2α+ λ− µ = 0 and λ = −µ and we can state:

Theorem 10.1. If (ϕ, ξ, η, g) is an almost contact metric structure on the n-dimensional α-cosymplectic manifold M, (g, ξ, λ, µ)
is an η-Ricci soliton on M and W8(ξ,X1).Ric = 0, then λ = −α+ n− 1 and µ = α− n+ 1.

11. η-Ricci solitons on α-cosymplectic manifolds satisfying Ric(ξ,X1).W8 = 0

At this part, we examine η-Ricci solitons on α-cosymplectic manifold satisfying Ric(ξ,X1).W8 = 0. The
condition to be satisfied by Ric is [5]:

Ric(X1,W8(X2, X3)X4)ξ −Ric(ξ,W8(X2, X3)X4)X1

+Ric(X1, X2)W8(ξ,X3)X4 −Ric(ξ,X2)W8(X1, X3)X4

+Ric(X1, X3)W8(X2, ξ)X4 −Ric(ξ,X3)W8(X2, X1)X4

+Ric(X1, X4)W8(X2, X3)ξ −Ric(ξ,X4)W8(X2, X3)X1 = 0

(11.1)

for all X1, X2, X3 and X4 ∈ χ(M). By taking an inner product with ξ in (11.1), we get

Ric(X1,W8(X2, X3)X4)−Ric(ξ,W8(X2, X3)X4)η(X1)
+Ric(X1, X2)η(W8(ξ,X3)X4)−Ric(ξ,X2)η(W8(X1, X3)X4)
+Ric(X1, X3)η(W8(X2, ξ)X4)−Ric(ξ,X3)η(W8(X2, X1)X4)
+Ric(X1, X4)η(W8(X2, X3)ξ)−Ric(ξ,X4)η(W8(X2, X3)X1) = 0

(11.2)

for all X1, X2, X3 and X4 ∈ χ(M).
By taking X2 = X3 = ξ in (11.2) and by virtue (2.5), (2.8), (2.9) and (3.2) and making the necessary simplifications,
we have

(α+ λ)[g(X1, X4)− η(X1)η(X4)] = 0 (11.3)

or
(α+ λ)g(ϕX1, ϕX4) = 0

for all X1, X4 ∈ χ(M). But α+ µ = n− 1, so (α+ λ) = 0 and we can state:

Theorem 11.1. If (ϕ, ξ, η, g) is an almost contact metric structure on the n-dimensional α-cosymplectic manifold M, (g, ξ, λ, µ)
is an η-Ricci soliton on M and Ric(ξ,X1).W8 = 0, then λ = −α and µ = −α+ n− 1.

By using (11.3) from (2.8), we have

Ric(X1, X2) = −(λ+ µ)η(X1)η(X2).

So, one has the corollary given below:

Corollary 11.1. If (ϕ, ξ, η, g) is an almost contact metric structure on the n-dimensional α-cosymplectic manifold M, (g, ξ, λ, µ)
is an η-Ricci soliton on M and Ric(ξ,X1).W8 = 0, then the manifold is a special type of η-Einstein manifold.
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ADDRESS: Inonu University Faculty of Education 44000, Malatya, TÜRKİYE.
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