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ABSTRACT. In this paper, it is given some properties for an (s, m)-convex
function defined on [0,d], d > 0 in the first sense and the second sense with
m € (0,1). Also, some integral inequalities are examined for any non positive
(s, m)-convex function in the second sense with any measure space.

1. INTRODUCTION

Convex functions, like differentiable functions, have a important role in many
fields of pure and applied mathematics. It connects concepts from topology, alge-
bra, geometry and analysis, and is an important tool in optimization, mathematical
programming and game theory [3].

In recent years, after Mihesan [I4] defined (s, m)-convex functions in the first
sense, several investigations have emerged resulting in applications in mathematics,
as it can be seen in [T}, 2, 12, 4 [ 00, [7, [6, 8] @ T3]

Definition 1.1. A function f : [0,d] — R is called an (s, m)-convezr function in
the first sense, where (s,m) € [0,1] and d > 0, if for all z,y € [0,d] and t € [0,1]

flz+m(1—t)y) <t°f(x)+m(l—t°)f(y).

Moreover, Eftekhari [I5] introduced (s, m)-convex functions in the second sense
in 2014 as follows:

Definition 1.2. f:[0,d] = R, d > 0 is called to be an (s,m)- convez in the second
sense function for some (s,m) € (0,1]? if

flz+m1—t)y) <t°f (z) +m(1—1)°f (y)
for any z,y € [0,d].
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2 MELTEM SERTBAS AND ILKNUR MIiHYAZ

Example 1.1. Let s,m € (0,1], p € [1,+00) and f : [0,+00) — R defined by
fl@) =aP +c¢, ¢ <0, then f is an (s, m)-convez function in the second sense.
Indeed, for all x,y € [0,+00), t € [0,1] and (s,m) € [0,1] we have

flz+m(1—1t)y) =z +ml -y’ +ec<ty’ +mP(1—t)y’ +¢
<P +m(l —t)%yP + (t° +m(1l —¢)°)c
<t (@) +m1 =) ().

We note that if a nonnegative function is convex and starshaped, then it is an
(s,m)-convex function in the second sense function for all (s,m) € (0,1]%2. This
function class is an extension of s-convex functions in the second sense that are
(s,1)- convex functions in the second sense [I2]. Dragomir and Fitzpatrick proved
that a s-convex functions in the second sense f is Riemann integrable if f(c) = 0 for
any point ¢ in domain of the function f in [I7]. Also, when f is Lebesgue integrable
on [a,b] they give the Hermite-Hadamard type inequality for a s-convex functions
in the second sense f on [a,b] as the following inequality

“+h) o)+ 1 (b)

28 1
== - s+1

However, there is not any result for integrability of (s, m)- convex functions in the
second sense with m € (0, 1), and so researchers like [I8] 19} [20] have to stipulate
integrability.

In this paper, we deal with some properties and some inequalities for (s, m)-
convex functions in the second sense with m € (0,1).

2. Some Properties

Let’s first recall the well known H. Lebesgue Theorem ([2I] p.257).

Theorem 2.1 ( H. Lebesgue). Let f be a real-valued increasing function on [a,b].
Then the derivative f' exists and is nonnegative in (a,b)\E where E is a null set
in (R,9My, ur) contained in (a,b). Further more f’ is My measurable and pp, -
integrable on (a,b)\E with

l/fWMéf@*fww

[a,b]

Theorem 2.2. If f : [0,d] = R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m € (0,1), then the derivative f' exists and

sf(z) < zf'(x)

is hold for all x € (a,b)\E, [a,b] C (0,d] where E is a null set in (R, My, ur,)
contained in (a,b).

Proof. Let f:[0,d] = R, d > 0 be an (s, m)- convex in the first or the second sense
function for m € (0,1). In this case,

f(0) <mf(0),
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and so it is obtained f(0) < 0. Also for all 0 < z < y we have

r@ =7 (Lyrm(1-2)0) < (;C)f (e (1- (j)) 7(0) < (y)f )

or

=1 (Zem(1-2)0) < (2) swem(1-2) 50 < (%) s

ie., % < %, 0 < ¢ <y < d. This means that the function g(z) = [@) i

— a:S
monotone increasing function on [a,d], a > 0. Since the functions h(z) = z°® and

g(xz) = % are differentiable, according to H. Lebesgue Theorem we gain that the

derivative f’ exists and

sf(z) <af'(x)
is satisfied for all z € (a,b)\E, (a,b] C (0,d] where E is a null set in (R, 9y, ur)
contained in (a, b). O

Corollary 2.3. If f : [0,d] = R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m € (0,1), f is Riemann integrable on [a,d], a > 0.

Corollary 2.4. If f:[0,d] — R, d > 0 is a nonnegative (s,m)- convez in the first
sense or second sense function for m € (0,1), then f is continuous at the zero,
f(0) = 0 and monotone increasing, and so Riemann integrable on [0, d].

Corollary 2.5. If f:[0,d] — R, d > 0 is a nonnegative (s,m)- convez in the first
sense or second sense function for m € (0,1) and is the derivative of a function on
(0,d), then f is continuous on [0,d).

Proof. This result is taken from the fact that the derivative function has points of
discontinuity only if it has points of the second type discontinuity. O

Theorem 2.6. Let f : [0,d] = R, d > 0 be a nonnegative (s, m)- convex in the first
sense or second sense function for m € (0,1) and continuous on any subinterval
[0,c], ¢ <d. Then, the limit lim,_,o L@ orists.

s

Proof. Suppose that f : [0,d] = R, d > 0 be a nonnegative (s,m)- convex in the
first sense or second sense function for m € (0,1) and continuous on any subinterval
[0,¢], 0 < ¢ < d. Therefore g : [0,c¢] — R defined as g(z) = 2'7° f(z) is continuous
on [0, c] and for all n € N and all z € [0, ¢]

ober = (5) Tr (B 2o (1) (B) s = Lo

is satisfied. According to Theorem 6 in [24], g(z) is differentiable at © = 0. This
f(@)

s

means that the limit lim,_,q exists. O

Theorem 2.7. If f : [0,d] = R, d > 0 is a negative valued (s,m)- convex in the

first sense or the second sense function for m € (0,1), f is a starshaped function
on [0,d).

Proof. Under the assumption of theorem, for all z € [0,d], f(z) < 0. Now, we
suppose that the function is not starshaped. From here, there exist two point
xo € [0,d] and tog € (0,1)

tof(zo) < f(tozo).
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Because f is an (s,m)- convex in the first sense and second sense function for
€(0,1),
tof(zo) < f(towo) < 15 f (o)
is hold. However, since f is a negative valued function, for ¢y € (0,1)
tf) < o
is obtained. This is a contradiction. Therefore, it is gained that the function f is
starshaped on [0, d]. O

Corollary 2.8. If f : [0,d] = R, d > 0 is a negative valued (s, m)- convez in the
first sense and second sense function for m € (0,1), there exists a point ¢ € [0,d]
such that fx, is a non positive starshaped function on [0,c] and fx.a is a
nonnegative monotone increasing function on [c,d], where x 4 is the characteristic
function of the subset A of R.

3. SOME INEQUALITIES

Theorem 3.1. Let f:[0,d] = R, d > 0 be an (s, m)-convex function in the second
sense and Riemann integrable on [a,b], 0 < a <mb <b<d. Then

. a+b b ma) f(b) + (mb—a) f(a)
2 1f( >_b—a/f (s+1)(b—a) '

Proof. Because f is an (s, m)-convex function in the second sense, for all z,y € [a, V]

we have
() <m0
If e =ta+ (1 —t)band y = tb+ (1 — t)a are chosen, then we get
f (ma;b> < o5 (fltat (1= )b) + f(th+ (1= )a).

We obtain by integrating the last inequality

b
b 1
f(ma;‘ ) - Q(S”jl)b_a/f(x)dx

Since a < mb, and f :[0,d] - R, d > 0 is an (s, m)-convex function in the second
sense

frway="T s de+ fbf(xmx

=(mb—a) [ fta+m(L—1t)b)dt+ (b—mb) [ f(tb+m(1—t)b)dt

Ct— =

1 1
<(mb—a) [t f(a)+m(l—1t)°f(b))dt+ (b—mb) [ (t*+m(1—1t)°) f(b)dt
_ (b—ma)f(b?ﬂmb—a)f(a) ’
s+1
we have

a+b 21 s 1—s (b—=ma) f(b) + (mb—a) f(a)
f(”‘ 2 ) /f ) de < m2 (s+ (b —a) ‘
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Remark. If we take m =1 and s =1 in Theorem[3.1}, then

f<“;b)§

is famous Hermite-Hadamard inequality.

f(0) + f(a)
2

z)dx <

Corollary 3.2. If f : [0,d] = R, d > 0 is an (s,m)-convex function in the second
sense and the derivative function f' is Riemann integrable on [a,b], 0 < a < mb <
b <d, then

bf(b) —af(a) (b—ma)f(b)+ (mb—a)f(a)
s+ 1 ’ s+ 1

/bf(w)d:v < min { .

Theorem 3.3. Let f:[0,d] — R be a differentiable on [0,d] and |f'| is an (s,m)-
convex function in the second sense in [0,d] for m € (0,1), then for all x € [a,b],
[a,b] C [0,d]

f (ma) -

b 2 2
/ (m(s+ 1)+ 1) ((mz—a)”+ (b—mz)
/f(y)dy < 0] ( )

—a b—a (s+1)(s+2)

Proof. In this case, we use the equality given by Cerone and Dragomir in [22], and
S0

b—a

2 1 2 |
_ mz —a) /tf' (tmz + 1_t)a)dt_M/tﬁ(tmm—{—(l—t)b)dt
0

b—ma)?

0
2 1
(mz — a) /t|f’ tma+ (1 —t)a)|dt + ; tf (tma + (1 — ) b) |dt
—Qa
0

o _

(ma — a)®

ﬂ/t(mts + (1= 0)°)|f (b)ldt + %/t(mt‘s + (L= 6)")If ()]t

1(b)] (m(s+1)+1) ((mx —a)® + (b— mx)2>
b—a (s+1)(s+2)

is obtained. 0

Remark. If it is chosen as m = 1 in Theorem it is obtained the inequality
given Alomari et. al. in [23].

Theorem 3.4. If f:[0,d] = R, d > 0 is an (s,m)-convex function in the second
sense for any m € (0,1) then the following inequality is hold
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f (mZthk> < mZtif (zk) (3.1)
k=1 k=1

where Z tr <1, ty €[0,1] and xy, € [a,b)].
k=1

Proof. It can be proved by using the mathematical induction method as in [25].
First of all, since f : [0,d] — R, d > 0 is an (s, m)-convex function in the second
sense with m € (0,1) for n =1, t € [0,1] and z € [a, b]

f(mtx) = f(mtz + (1 —1)0) < (1 —1)°f(0) + mt®f(z) < mt*f(x).
Now, for the next Step of induction we consider that the equation is true for

n — 1. In this case, if Z tr <
k=1

n n—1
/ (mz tk$k> = f (m(l - tn) Z 1 ikt Tk + mtnxn>
k=1 "

k=1

n—1
(1—t,)°f (mz 1 ikt xk> + mt} f(ay,)

k=1 n

IN

< mztkf xy) + mty, f(xy) mztkf Tp).

This conclusion completes the proof of the theorem. O

Theorem 3.5. Suppose that (X, X, u) is a finite measure space and h : X —
[0,4+00) is a p-integrable function such that h(x) < W a.e. . If f:1]0,d = R,

d > 0 is a non positive continuous (s, m)-convex function in the second senses for
any m € (0,1) and g : X — [0,d] is a p-integrable function, then we have

m [ (@) (@) du (2) m/h )) dis ()
E

for any E € X.

n
Proof. Let I = |J I,,, be any partition of disjoint intervals I,,, for n € N. Because
k=1
g isan pu- integrable function, the set E,, := g~1 (I,,)NE isin ¥ for any set £ €

and E = U E,,. Choosing any point z,, in each set E,,. Since h is a positive

valued functlon and f h(z)dup (z) < 1, the linear combination

> i (En) h(@n,)g (2n,)

k=1

is in [0, d] for large enough n € N. Because f is a non positive (s, m)-convex function
for any m € (0,1) on [0, d], the following inequality is satisfied by using the previous
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theorem

FAmY (B h(@n,)g (2n,) <m Yy p (Ep) b° (2,) f (9 (n,)
k=1 k=1

<m Z 1 (Eny) b (2n,) f (9 (Tny))
k=1

The proof of the theorem is completed under the continuity assumption of the
function f. (I
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ABSTRACT. In this study, by using definition of p-statistical convergence which
was defined by Cakalli [5], we give some inclusion relations between the con-
cepts of p-statistical convergence and statistical convergence in topological
groups.

1. INTRODUCTION

In 1951, Steinhaus [29] and Fast [I4] introduced the notion of statistical conver-
gence and later in 1959, Schoenberg [28] reintroduced independently. Caserta et al.
[], Cakalli ([6],[7]), Cinar et al. [8], Colak [9], Connor [10], Et et al. ([11],[12],[13]),
Fridy [15], Gadjiev and Orhan [16], Isik and Akbas ([I7],[18]), Kolk [T9], Mursaleen
[20], Salat [21], Sengul et al. ([22]-[27]), Aral et al. ([1],[2],[3]) and many others
investigated some arguments related to this notion.

The opinion of statistical convergence depends on the density of subsets of the
natural set N. We say that the §(E) is the density of a subset F of N if the following

limit exists such that

1 n

) = lim —

(B)= lim © > xs(k)
k=1

where x g is the characteristic function of E. It is clear that any finite subset of N

has zero natural density and 6 (E€) =1 — 0 (E).

We say that the sequence x = (xy) is statistically convergent to ¢ if for every
e >0,

S({keN: |z, — ] >e})=0.

In this case we write S — lim 2y, = £ or a2, — £(.5). Equivalently,

2020 Mathematics Subject Classification. Primary: 40A05 ; Secondaries: 40C05, 46A45.
Key words and phrases. Topological groups; statistical convergence; p-statistical convergence.
(©2019 Maltepe Journal of Mathematics.
Submitted on March 24th, 2022. Published on April 17th, 2022
Communicated by Huseyin CAKALLI, Ibrahim CANAK and Sefa Anil SEZER.
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lim — {k <n:|z—L >e}| =0.

1
n—o00 N,

S will denote the set of all statistically convergent sequences.

If x is a sequence such that zj, satisfies property P for all k except a set of natural
density zero, then we say that xj satisfies P for ”almost all k£ 7, and we abbreviate
this by "a.a.k.”

2. MAIN RESULTS

In this section we give the main results of this article. Now we begin a new
definition.

Definition 2.1. Let X be an abelian topological Hausdorf group. A sequence (x(k))
of points in R, the set of real numbers, is called p—statistically convergent in topo-
logical groups to £ (S,(X)—convergent to ) if there is a real number ¢ for each
neighbourhood U of 0 such that

. 1
nh_}n;o p—n|{k <n:x(k)—L¢U}=0
for each e > 0, where p = (py,) is a non-decreasing sequence of positive real numbers
tending to oo such that limsup,, 2* < oo, Ap,, = O(1), and Ax(n) = x(n+1)—2x(n)
for each positive integer n. In this case we write S,(X) —limz(k) = £ or z(k) —
2(S,(X)). We denote the set of all p—statistically convergent in topological groups
sequences by S,(X). If p = (pn) = n, p—statistically convergent in topological
groups is coincide statistical convergence in topological groups.

Definition 2.2. Let X be an abelian topological Hausdorf group. A sequence x =
(x(k)) of points in R, the set of real numbers, is called S,(X)-Cauchy sequence in
topological groups if there is a subsequence (x (k'(n))) of x such that k'(n) < n for
each n, lim, o (k' (n)) = ¢ and for each neighbourhood U of 0

lim i|{k <n:z(k)—x(k (n)) ¢ U} =0,

n—oo pTL

where p = (py,) is a non-decreasing sequence of positive real numbers tending to oo
such that limsup,, 22 < oo, Ap, = O(1) and Az(n) = x(n + 1) — x(n) for each
positive integer n.

Theorem 2.1. Ifx is p—statistically convergent in topological groups, then S,(X)—
limz(k) = ¢ is unique.

Proof. Suppose that (z (k)) has two different p—statistical in topological groups
limits ¢;, £5 say. Since X is a Hausdorfl space there exists a neighbourhood U of
0 such that ¢; — ¢5 ¢ U. Then we may choose a neighbourhood W of 0 such that
W 4+ W C U. Write z (k) = €1 — {5 for all k € N. Therefore for all n € N,

{k<n:z(k)¢Ulc{k<n:l1—z(k)gW}U{k<n:z(k)—Lls ¢ W}.
Now it follows from this inclusion that, for all n € N,

Hk<n:z(k)gU} <Hkel :t1—xk)gWH+|k<n:z(k)—{ly¢ W}|.
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Since S,(X) — limz(k) = ¢, and S,(X) —limz(k) = {2 we get

lim i\{l{:gnz(k)géUH < nlLrI;Opin\{kgnzfl—z(k)¢W}\

n—00 Py -
1
+ ILm p—|{k§n:x(k)762¢W}|.

This contradiction shows that ¢1 = /5. O
Theorem 2.2. Iflimy_,o z(k) = £ and S,(X) —limy(k) = 0, then
Sp(X) —lim (z(k) + y(k)) = klim x(k).
— 00

Proof. Let U be any neighborhood of 0. Then we may choose a symetric neighbour-
hood W of 0 such that W + W C U. Since limg_,~ x(k) = ¢ there exists an integer
ko such that k > ko implies that z(k) — £ € W. Hence

.1 . ko
nlingop—nHkSnx(k)—Z%W}\ th—{gopin =0
and by the assumption that S,(X) — limy(k) = 0 we have
3 1 . —

nlggopfn {k<n:y(k) g W} =0.
Now we have
{k<n: (a(k)— O +y(k) U} C {k<n:alk)— ¢ WUk <n:y(k) ¢ W),
Hence
1 1 1
o {k<n:(z(k) -0 +y(k) ¢ U} < ;I{k <n:z(k)-{¢ W}|+;|{kén cy(k) ¢ W

It follows from the above inequality that

lim (k< n: (2(k) — 0) + y(k) ¢ U}| = 0.

Thus S,(X) — lim (x(k) + y(k)) = limp 00 (k). O

Theorem 2.3. If a sequence x(k) is p-statistically convergent to £, then there are
sequences y(k) and z(k) such that limy_, o y(k) = ¢, = y+2z and lim,,_, p% H{k <n:a(k) #yk)} =
0 and z is a p-statistically null sequence.

Proof. Let (V;) be a nested base of neighborhoods of 0. Take ng = 0 and choose
an increasing sequence (n;) of positive integers such that

1 1
p—|{kj§n:x(k‘)—€¢Vj}|<?f0rn>nj.

Let us define sequences y = y(k) and z = z(k) in the following way. Write z(k) =0
and y(k) = z(k) if nop < k < ny and suppose that n; < nj4q for j > 1. z(k) =0
and y(k) = x(k) if (k) —€ €V}, y(k) = ¢ and z(k) = x(k) — Cif (k) — £ ¢ V.
Firstly, we prove that limy_, . y(k) = £. Let V be any neighborhood of 0. We may
choose a positive integer j such that V; C V. Then y(k) — ¢ = (k) — ¢ € V; and
soy(k)—LeVfork>n; If x(k)—{¢¢V;, then y(k) —¢=(—{¢=0¢€ V. Hence
limg 00 y(k) = £. Finally we show that z = z(k) is a statistically null sequence. It
is enough to show that
lim L {k <n:z(k)#0} =0.

n—oo p’I’L
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For any n € N any neighborhood V of 0, we have
{k<n:z(k) ¢ Vi <[{k <n:z(k) #0}.
If j € N such that V; C V and € > 0, we are going to show that

pin|{kgn;z(k)¢o}|<g.

If n, <n < npyq, then
{k<n:z(k)#0}Cc{k<n:z(k)—L ¢ V,}.
If p>j and n, <n < nyppq, then

1 1 1 1
—Hk<n:z(k)#0} < —NHk<n:zk)—L¢V}<-<=<e.
Thus, the proof is completed. (]

Theorem 2.4. The sequence x is S,(X)—convergent if and only if x is S,(X)— Cauchy
sequence.

Proof. Assume that x is S,(X)—convergent. Since X is a Hausdorff space there
exists a neighbourhood U of 0. Then we may choose a neighbourhood Y of 0 such
that Y +Y C U. We can write

Hk<n:z(k)—x (K (n)¢UC{k<n:z(k)—L¢YIU{k<n:lL—x(k(n)¢&Y}.
Now it follows from this inclusion that, for all n € N,

pin\{kgnx(k)—x(k’(n)) g U} < inGIr:x(k)—€§éY}|+pin|{k§n:€—x(k’(n)) ZY}.
Since S,(X) — limz(k) = ¢, we get

lim i|{k§nzzc(k)—gc(k’(rL))%UH < nli_)rr;opinHkgn:x(k)—EgéYH

n—oo pn

+nli_)rr;opin\{k§n:£—x(k’(n)) ¢Y}.

The proof to the contrary is obvious. [l

Theorem 2.5. Let p = (p) be a non-decreasing sequence of positive real numbers

tending to oo such that limsup,, Pr 00, Ap, = O(1). If Pn > 1 for alln € N,
n n

then S(X) C S,(X).

Proof. If S(X) —limx(k) = ¢, then for every € > 0 we have

ik < nzx(k)—fwﬂ=%pin|{kSn:x<k>—e¢U}|

1
> —H{k<n:ax(k)—L¢U}.
Pn
This proves the proof. O

Theorem 2.6. Let p = (p,,) and 7 = (1,,) be two sequences such that p, < 7, for
alln € N. If liminf, o 2% > 0, then S,(X) C S-(X).
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Proof. If S,(X) —limx(k) = ¢, then for every ¢ > 0 we can write

Ti|{kgn:x(k)—z¢U}| < iipi|{kgn;x(k)—e¢ Uy,

n n Fn

This is enough for proof. (]

The following result is obtained from Theorem 2.5 and Theorem 2.6.

Corollary 2.7. Let p = (pn) and 7 = (1,) be two sequences such that p, < 7, and
n <, for alln € N. If liminf,, o 22 > 0, then S(X) C S,(X) C S-(X).

(1]
2]

(3]
(4]

(5]
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ABSTRACT. The concept of strong w [p, f, g] —summability of order («, ) for
sequences of complex (or real) numbers is introduced in this work. We also give
some inclusion relations between the sets of p-statistical convergence of order
(a, B), strong wg [p, [, q] —summability and strong wg (p, @) —summability.

1. INTRODUCTION

The concept of statistical convergence was introduced by Steinhaus [28] and
Fast [13] and later in 1959, Schoenberg [27] reintroduced independently. After-
wards there has appeared much research with some arguments related of this
concept (see Caserta et al. [3], Connor [4], Cakalli ([5],[6]), Colak [7], Et et al.
([8],19],[101), Fridy [14], Gadjiev and Orhan [I5], Kolk [I7], Salat [26], Sengiil et
al.([2],129],[301, [31],[32],133],[34]) and many others).

The statistical convergence order o was introduced by Colak [7] as follows:
The sequence x = (zy) is said to be statistically convergent of order « to L if
there is a complex number L such that
1
lim — |[{k<n:jzx—L| > e} =0.

n—oo N

Let 0 < a < 8 < 1. Then the («, 8)—density of the subset E of N is defined by

1
8 (E)=lim— |{k<n:keE}’
n N«

if the limit exists (finite or infinite), where [{k <n:k € E}|6 denotes the Sth power
of number of elements of E not exceeding n.

If 2 = (z1) is a sequence such that satisfies property P (k) for all k except a set of
(a, B)—density zero, then we say that xj satisfies P (k) for “almost all & according
to 7 and we denote this by “a.a.k («a,5)”.

Throughout this study, we shall denote the space of sequences of real number
by w.
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Let 0 < 8 <1,0<a<1, a<fand x = (r) € w. Then we say the sequence
x = (xy) is statistically convergent of order (a, ) if there is a complex number L
such that

1
lim — [{k<n:lop—L| >}’ =0

n—o0o N
ie. for a.a.k (o, B) |xx — L| < € for every € > 0, in that case a sequence z is
said to be statistically convergent of order (a, ) to L. This limit is denoted by
S8 —limzy, = L (29]).

Let 0 < a < 1. A sequence (z1) of points in R, the set of real numbers, is called

p—statistically convergent of order a to an element L of R if

lim i\{kgnz |y — L| > €} =0
for each £ > 0, where p = (p,,) is a non-decreasing sequence of positive real numbers
tending to oo such that limsup,, 22 < oo, Ap, = O(1) and Ap, = ppy1 — @y for
each positive integer n. In this case we write st —limzy = L. If p = (p,) = n and
a = 1, then p—statistically convergent of order « is coincide statistical convergence
(B)).

Here and in what follows we suppose that the sequence p = (p,) is a non-
decreasing sequence of positive real numbers tending to oo such that limsup,, 2* <
00, Ap, = O(1) where 0 < a < 1 and Ap,, = pp+1 — pn for each positive integer n.

The notion of a modulus function was given by Nakano [21]. Following Maddox
[19] and Ruckle [25], we recall that a modulus f is a function from [0, 00) to [0, c0)
such that

i) f(z) =0 if and only if z = 0,

i) f(z +y) < f(@) + [(y) for 2,y > 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0, c0).

Altmn [T, Et ([T1], [12]), Gaur and Mursaleen [20], Isik [16], Nuray and Savas [22],
Pehlivan and Fisher [23] and some others have been studied with some sequence
spaces defined by modulus function.

The following inequality will be used frequently throught the paper:

|ag, + bg|”* < A(lag[" + [bg|™) (1.1)
where ay,, by € C, 0 < pj, < supp, = B, A =max (1,2871) ([1g]).

2. MAIN RESULTS

In this section we first give the sets of strongly w? (p,q) —summable sequences
and strongly w? [p, f, ] —summable sequences with respect to the modulus function
f- Secondly we state and prove the theorems on some inclusion relations between
the S? (p) — statistical convergence, strong w? [p, f, q] —summability and strong
w? (p, q) —summability.

Definition 2.1. Let 0 < o < 8 < 1 be given. A sequence x = (xy) is said to
be SP (p) —statistically convergent (or p- statistically convergent sequences of order
(a0, B)) if there is a real number L such that

. 1

lim —a|{k<n:|xk—L|2€}|B=O,

n—oo pn
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where p& denotes the ath power (pn)® of pn, that is p* = (p) = (p%, pS, ey P&, ...)
and {k<n:ke€ E}|ﬂ denotes the Pth power of number of elements of E not ex-
ceeding n. In the present case this convergence is indicated by S8 (p) —limxy, = L.
S8 (p) will indicate the set of all S? (p) —statistically convergent sequences.

Definition 2.2. Let 0 < a < 8 < 1 and q be a positive real number. A sequence
x = (x1,) is said to be strongly N5 (p, q) —summable (or strongly N (p, q) —summable
of order (a, B)) if there is a real number L such that

n B
.1 q
nlgrréo% <Z |z — L ) =0.
k=1
We denote it by NP (p,q) —limxy, = L. NP (p,q) will denote the set of all strongly
N (p, q) —summable sequences of order (a, ). If « = p = 1, then we will write
N (p,q) in the place of NP (p,q). If L = 0, then we will write wfio (p,q) in the
place of w? (p, q). N5,0 (p,q) will denote the set of all strongly N, (q) —summable
sequences of order (a, ) to 0.

Definition 2.3. Let f be a modulus function, ¢ = (qx) be a sequence of strictly
positive real numbers and 0 < a < B < 1 be real numbers. A sequence x = (xy) is
said to be strongly w? [p, f,q] —summable of order (c, B) if there is a real number
L such that

k=1

n B
lim. pi (Z [f —LW) ~o.

In this case, we write w? [p, f,q] — limz = L. We denote the set of all strongly
w? [p, £, q] —summable sequences of order (a, B) by w? [p, f,q]. In the special case
@ = q, for all k € N and f(z) = = we will denote NP (p,q) in the place of

w? [p, f,q]. wg)o [p, f, q] will denote the set of all strongly w [p, f, q] —summable se-
quences of order («a, B) to 0.

In the following theorems, we shall assume that the sequence ¢ = (gx) is bounded
and 0 < d=1infy gx < qr <suppqr =D < c0.

Theorem 2.1. The class of sequences w{io lp, f,q] is linear space.

Proof. Omitted. O

Theorem 2.2. The space wio [p, f,q] is paranormed by

n BY
(Z Lf (Imkl)]q’“>

1
g(z) =supq —
Pn \}=1

where 0 < a < 8 <1 and H=max (1, D).

Proof. Clearly g(0) = 0 and g(z) = g(—z). Let z,y € wfio [p, f,q] be two se-
quences. Since % <1 and % > 1, using the Minkowski’s inequality and definition
B

of f, we have
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. 8y # . BY 7
(Z (lzk + ykl) ]q’“> < L ( [f (Jz]) +f(|yk|)]%>

k=1

-

INA
\ —
—N——
N
o
Il 3
-
=
B}
=
=2
Eal
N—————
IS
T

QE

Hence, we have g (z +y) < g (x)+g(y) for z,y € w
number. By defnition of f we have

olp, fral- Let pu be complex

n BY H D
g (u) = sup ia <Z [f(lum)]‘”“) <K% g(x)

n k=1

where [p] denotes the integer part of p, and K =1+ [|n|]. Now, let 1 — 0 for any
fixed z with g (x) # 0. By definition of f, for |u| <1 and 0 < o < 8 < 1, we have

n B
L (Z[f(mzk)]%) <e for n>N(e). (2.1)

(63
A\

Also, for 1 < n < N, taking p small enough, since f is continuous we have

n

B
L (Z [f<|ua:k|>]%> <e. (2.2)

Prn \;i21
Therefore, (2.1)) and (2.2) imply that g (ux) — 0 as p — 0. O

Proposition 2.3. ([24]) Let f be a modulus and 0 < 6 < 1. Then for each |lu|| > 4,
we have f ([[ul) < 27 (1) 67 Jlu] .

Theorem 2.4. If 0 < a = § < 1, ¢ > 1 and liminf, e 1% > 0, then
wg [P,f,(]] ng(p, )

Proof. Tf liminf, .. fu > 0 then there exists a number ¢ > 0 such that f (u) > cu
for u > 0. Let 2 € w? [p, f, q|, then

n B n B
ia <Z[ (I = L))] ) (Z |z — L] ) = (Z |k, — L|q>
e\ = o\ = i\ =

This means that w? [p, f,q) Cwl(p,q).
Let z € w? (p, ) Thus we have
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B
1 n
— Z|xk—L|q — 0 as n — oo.
pn k=1

Let e > 0, 8 = @ and choose § with 0 < § < 1 such that cu < f (u) < ¢ for every
u with 0 < u < . Therefore, by Proposition 1, we have

B
(Z (lzk = LI)] ) = —| X Ulz—LD"| +— | D [ (an— LD
Ph k=1 Pn k=1 Pn k=1
\xk—L|§6 |32)C—L‘>5
B
1 5 4 1 n . .
< —enfr— 1 Y [2f (1) fa — L]
o5 m| =
‘:Ek—L|>(s
B
1 2fo
9o, B
< p?{g n” + a5qﬁ <Z|x ) .
This gives z € w? [p, f,q] . O

Example 2.1. We now give an example to show that w? [p, f,q] # w? (p,q) in this

case liminf, _, @ = 0. Consider the sequence f (x) = £ of modulus function.

14+x
Define x = (xx,) by

ki k=m3
=V 0, if k#md
Then we have, for L=10,q=1, (p,) =(n) anda =4

k=1

n B
1 lB
Z (JzeD]?)] < —n3” - 0asn — oo
n na

and so x € wl [0, f,q]. But

1( q ’ 1 3, 93 3/~1\5
— Zml) = S (1422437 4+ [Vn])

z — 5 = — — 00 as n — 00
n

ne 48
and so x ¢ wh (p).

L[ hem]" L 2y

Theorem 2.5. Let 0 < a < 3 <1 and liminf g, > 0. If a sequence is convergent
to L, then it is strongly w? [p, f, q] —summable of order (o, 3) to L.

Proof. We assume that z;, — L. Since f be a modulus function, we have f (|x — L|) —
0. Since liminf gz > 0, we have [f (|zx — L|)]" — 0. Hence w? [p, f,q] — limz;, =
L. ]
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Theorem 2.6. Let oy, aq, 51,82 € (0,1] be real numbers such that 0 < a1 < ag <
B1 < B2 <1, f beamodulus function , then w? 2[p, frq] C Sg; (p).

Proof. Let x € w32 [p, f,q] and let £ > 0 be given. Let >, and Y, denote the
sums over k < n w1th |z — L] > € and k < n with |z — L] < € respectively. Since
por < p&2 for each n we have

B1

n B2
1 B2
<Z (Jzy, = L)) ) = om Z [f (lzw — LI) q'”rz (lzk — L) qk}
1 (Ik qk Pa
> e [0, U (o= D™ + 3, [F (e — D™
17 ax B2
> o [0, "]
> 1 [ . d D /32
> e [0, min(lf @11 1))
1 .
> el <ns o= Lzl [min(lf @, 1f @))
We get z € S5 (p). O
Theorem 2.7. If f is a bounded modulus function and limnﬁm% = 1 then

S8 (p) cwb [p, f.q).

Proof. Let z € SP (p). Suppose that f be bounded. Therefore f(z) < R, for a
positive integer R and all x > 0. Then for each ¢ > 0 we can write

n B1 n B1
- (Z (fox — LI ) < = (memn%)

k=1 k=1
= (X, 17w L™+ 3, 1 e = 2)™)
< p%l (Zlmax (R, RP) + > If (s)]%)ﬁl
< (max (B, RP)™ o [{k < f (jax — L) > &}
pn B2
e (max (f (e)d . f (5)D)> .
Hence x € wﬁl lp, f,q]. O

Theorem 2.8. Let f be a modulus function. If limq, > 0, then w?|p, f,q] —
lim zy, = L uniquely.

Proof. Let lim g, =t > 0. Suppose that w? [p, f,q] — lima, = Ly and w? [p, f,q] —
limz, = Lo. Then

and
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n B
h}lnpia (Z [f (Jox — L2|)]%> =0.

n \k=1

By definition of f and using (1.1]), we may write

n B n n B
(Z (ILs - ]%) < ﬂ(zwm—m]qw [f<|xk—L2>1%>

k=1 n \k=1 k=1
A n B n B
< = (Z[ (lze — La]))* ) <Z (lzk = La|)] )
Pn k=1 P k=1

where sup, g = D, 0 < f < a <1 and A =max (1,2D*1) . Hence

n B
li;npia (Z (L mm‘“) ~o.

n \k=1
Since limy_, o qx =t we have L1 — Lo = 0. Hence the limit is unique. [l

Theorem 2.9. Let p = (p,,) and 7 = (1,,) be two sequences such that p, < 7, for
alln € N and let a1, s, 51 and B2 be such that 0 < a1 < as < f1 < e <1,

() If

(63}

. . Pn
lim nlggo oz >0 (2.3)
then wgi [Ta f7 Q] C wgi [[’7 f7 Q] )
(i) If
lim su Pn’ (2.4)
n—o0o Tn

then wgﬁ [p, f,q] C wﬁ; [T, f,q].

Proof. (i) Let x € w52 [r, f,q] . We have

" B2 . . 5
- (Zmem%) > gt (5 0 Qo n )

k=1 k=1
Thus if € w52 [1, f,q], then x € w5 [p, f,q] .
(ii) Let z = (z1) € w22 [p, f,q] and . holds. Now, since p,, < 7, for alln € N|

we have
n B1 1 n B2
(Z (jz — L))" ) — ( 1 (o —L)W)
o k=1 n’ =1

n B2
Tn pn

k::l

IN

for every n € N. Therefore wﬁ2 [, fyq] C wﬁl [7, f,q]. a
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ABSTRACT. In this paper we dicuss the pair difference cordility of Mirror
graph, Splitting graph, Shadow graph of some graphs.

1. INTRODUCTION

We consider only finite, undirected and simple graphs. The origin of graph labeling
is graceful labeling and introduced this concept by Rosa.A [15].Afterwards many
labeling was defined and few of them are harmonious labeling[7], cordial labeling
[1], magic labeling [16], mean labeling [19]. Cordial analogous labeling was studied
in [2,3,4,5,10,11,12,13,14,17,18]. The notion of pair diference cordial labeling of a
graph has been introduced and studied some properties of pair difference cordial la-
beling in [9].The pair difference cordial labeling behavior of several graphs like path,
cycle, star etc have been investigated in [9].In this paper we dicuss the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some graphs.Term
not defined here follow from Harary|8].
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Key words and phrases. Path, Cycle, Ladder, Mirror graph, Splitting graph, Shadow graph.
(©2022 Maltepe Journal of Mathematics.
Submitted on March 18th, 2022. Published on May 15th, 2022
Communicated by Hacer SENGUL KANDEMIR.

24



PAIR DIFFERENCE CORDIALITY OF MIRROR GRAPH,SHADOW GRAPH... 25

2. PRELIMINARIES

Definition 2.1. [6]. For a bipartite graph G with partite sets X and Y ,let G* be
a copy of G and X' and Y’ be copies of X and Y. The mirror graph M (G), of a
graph G as the disjoint union of G and G’ with additional edges joining each vertex
Y to its corresponding vertexr in'Y .

Definition 2.2. [6].

The splitting graph of G, S/(G), is obtained from G by adding for each vertex v
of G a new vertex v’ so that v’ is adjacent to every vertex that is adjacent to v.
Definition 2.3. [6].

The shadow graph Ds(G) of a connected graph G is constructed by taking two

copies of G,G/ and G and joining each vertex u in G to the neighbours of the
corresponding vertex u in G .

Definition 2.4. [6].
The ladder L, is the product graph P, x Ks.

Theorem 2.1. [9].
If G is a (p, q) pair difference cordial graph then

< 2p—3 if p is even
T |2p—1 ifpis odd

Theorem 2.2. [9].
The path P, is pair difference cordial for all values of n except n # 3 .

Corollary 2.3. [9].
The cycle Cy, is pair difference cordial if and only if n > 3 .

Theorem 2.4. [9].
The ladder L, is pair difference cordial for all values of n.

3. MIRROR GRAPHS
Theorem 3.1. The mirror graph of the path P, is pair difference cordial.
Proof. Since M'(P,) = L,,the proof follows from theorem 2.8.

Theorem 3.2. M/(Kl,n) is pair difference cordial if and only if n < 2.

Proof. Let V(M (K1) = {z,y, 2,y : 1 <i<n} and

E(M/(Klm)) = {zz;, yyi, vixi, vy 1 < i < n}.Since S/(Kl)l) >~ (4. By corol-
lary 2.7, M / (K1,1) is pair difference cordial. A pair difference cordial labeling of
M’ (K, 5) is shown in Table 1.

Suppose f is a pair difference cordial labeling of M'(Klm), n > 3 . Obviously
Ay, < 4. Then A?l > q — 4. This implies that A?l >3n+1—4=3n—3. Hence
A —Ayp >3n—7>1, a contradiction.

O
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n X X1 To Yyl Uy Y2
21 -2|-11-3|2]1/|3
TABLE 1.

Theorem 3.3. M'(S(Kl,n)) is pair difference cordial if and only if n < 2.

Proof. Let (X1,Y1) be bipartition of the first copy of S(K7 ,) where X7 = {z,y; :
1<i<n}hY; ={z;:1<i<n}and (Xs,Ys) be bipartition of the second copy
of S(Ki.,) where Xy = {a',y; : 1 <i < n},Ys = {x; : 1 < i < n}. Therefore
E(Ml(S(Kl,n))) = {xxi,x/x;,yixi,y;:c; 1 <i<n}U {x:c',xiz;,yiy; 1 <i <
n} U {zy,z'y'}. Clearly there are 4n + 2 vertices and 6n + 1 edges in the mirror
graph of S(K; ). Since M (S(K, 1)) = Ls, by theorem 2.8, M'(S(K)1)) is pair
difference cordial. A pair difference cordial labeling of M (S(K12)) is given in
Table 2.

7 7

n|T|T1 | T2 |Y1 |Y2| T Ty | T2 | Y1 | Yo
2151241 |3|-5|-2|-4|-1|-3
TABLE 2.

Suppose f is a pair difference cordial labeling of M’ (S(K1,n)),n > 3. Obviously
Ay, < 2n+2. Then A;il > q—2n—2. This implies that A% > 6n+1-2n—2 = 4n—1.
Hence Ajcl — Ay, >2n—3> 1, a contradiction.

O

Theorem 3.4. M/(Bn’n) is pair difference cordial if and only if n < 2.

Proof. Let (X1,Y7) be bipartition of the first copy of B, , where X7 = {z,y; : 1 <
i <n}hY: ={y,z; : 1 <1< n} and (X3,Y3) be bipartition of the second copy
of B, , where Xy = {x/,y; 1 <i<nhYs = {y/7x; : 1 < i < n}. Therefore
E(M/(Bnn)) = {xxi,x/x;,yyi,y/y; :1<i<n}uU {xml,yy/,xix;,yiy; :1<i<n}
Obviously M (Bn,n) has 4n+ 2 vertices and 6n + 1 edges. Since M/(Bl,l) = L4,by
theorem 2.8, M ,(Bl,l) is pair difference cordial. A pair difference cordial labeling

of M'(Bj ) is shown in Table 3.

7 7 7 7

n|lr|x|x2| ¥y Y | Y2 | T | X1 | T | Y Y1 | Yo
2121113 |—-2|-1|-3|5|4|6|-5|—-4|—-6
TABLE 3.

Suppose f is a pair difference cordial labeling of M,(Bnm), n > 3 . Obviously
Ay, < 8. Then A} > ¢ — 8. This implies that A} > 6n+4—8 = 6n — 4. Hence
A —Ayp >6n—12> 1, a contradiction.

O

4. SHADOW GRAPHS

Theorem 4.1. Let G be a (p,q) graph with ¢ > p.Then Do(G) is not pair difference
cordial.
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Proof. Suppose G is a pair difference cordial graph with ¢ > p. Obviously |V (D2(G))]
2p and |E(D2(G))| = 4q. By theorem 2.5, 4¢ < 2(2p) — 3. This implies that
4q < 4q — 3, a contradiction.

O

Theorem 4.2. Ds(P,,) is pair difference cordial for all values of n.

Proof. Let V(Dy(Py)) = {zi,yi : 1 < i <n}, E(Dy(P)) = {ziwiz1,YiYit1 : 1 <
i <n—1}U{yit1,¥i%i11 : 1 <i <n—1}. Clearly Dy(P,) has 2n vertices and
4n — 4 edges.
Define f : V(Dy(P,)) — {£1,£2,£3,--- £ n} by
fly) = —i, 1<i<n.

This vertex labeling yields that Dy(P,) is pair difference cordial for all values of n,
since A =2n—2 = Age.

([l

Theorem 4.3. Dy(C,,) is not pair difference cordial for all values of n.

Proof. Let C,, be the first copy of the cycle zi1xs-- - xpx1 and y1ys - - ypy1 be
the second copy of the cycle C),. The maximum number of the edges with the
labels 1 among the vertex labels 1,2, -+ ,n is n — 1. Also the maximum number
of the edges with the labels 1 among the vertex labels —1,—2,---,—n is n — 1.
Therefore Ay, < 2n — 2. This implies that A} > 4n — (2n — 2) = 2n + 2. Hence
Ap —Af >2n+2—(2n—2) =4 > 1, a contradiction.

O

Theorem 4.4. Dy(K,,) is pair difference cordial if and only if n < 2.

Proof. Clearly |V(D3(K,))| = 2n and |E(D2(Ky,))| = n(n — 1) + 2(3). Suppose
Dy(Ky) is a pair difference cordial. By theorem 2.5 ;n(n — 1) +2(3) < 2(2n) — 3,
which implies that 2n? — 6n + 3 < 0. It gives that n < 2. Hence Do(K,,),n > 3
is not pair difference cordial. Obviously Ds(K7) is pair difference cordial. Since
Ky & Py, by theorem 2.6, Dy(K>) is pair difference cordial.

([l

Theorem 4.5. Dy(K1 ;) is pair difference cordial if and only if n < 2.

Proof. Clearly |V(D2(K1,,))| = 2n+2 and |E(D2(K1,,))| = 4n. Suppose D (K7 )
is a pair difference cordial . Obviously Ay, < 2n + 1. Let u be the central vertex
of K1, and u" be the corresponding shadow vertex . Hence d(u) = d(u') = 2n in
Do(Ky,,) . Now Af) >2n—2+2n—2 > 4n—4. Hence Ay, —Age > 2n — 3. This
implies n < 2. Since D3(K1,1) = C4 , by corollary 2.7, Do(K7,1) is pair difference
cordial. The labeling f defined by f(u) = 2,f(u/) = =2, f(u1) = —1, f(u2) =
=3, f(u}) =1, f(uy) = 3 is a pair difference cordial labeling of Dy(K7 ).

([l

Theorem 4.6. Dy(P, ® K;) is not pair difference cordial for all values of n.

Proof. Let V(Dy(P, ® K1)) = {xi,x;—,yi,y; :1 < i <n}. There are 4n vertices
and 8n — 4 edges.
Suppose Do(P,, ® K1) is pair difference cordial for all values of n. The maximum
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number of the edges with the labels 1 among the vertex labels 1,2,--- ;nisn —1
and the maximum number of the edges with the labels 1 among the vertex labels
—1,-2,---,—nis n — 1. Therefore Ay, < 2n — 24 2 = 2n. This implies that

Af >8n—4—2n =06n—4. Hence Ay, —A} >6n—-4-2n=4n-4>1, a
contradiction.
O

5. SPILITTING GRAPHS
Theorem 5.1. S/(Pn) is pair difference cordial for all n.
Proof. Let V(S'(P,)) = {xi,y;i : 1 <i <n} and E(S (P,)) = {zri1 : 1 <i <

n—1}U{xyit1,yi%it1 : 1 <i <n—1} . There are two cases arises.

Case 1. n <5.
A pair difference cordial labeling for this case given in Table 4.

N|Ty | T2 | T3 | T4 | Ts | Y1 | Y2 | Y3 | Y4 | Y5
2111 2 —1]-2
3|1 |-1] 3 -2 2 | -3
411 2 |-1|-=-2 314 ]-3|-4
5/ 1] 2|5 |—-2|-4] 3|4 |-1]-5|-3
TABLE 4.
Case 2. n > 5.
There are four cases arises.
Subcase 1. n =0 (mod 4).

Assign the labels 1,5,9, - -+ ,n—3 to the vertices z1,x3, x5, -, Tz respectively
and assign the labels 2,6, 10, - - - , n—2 respectively to the vertices x2, x4, z6, - , T 2.
Now we assign the labels 3,7,11, - -- ,n—1 respectively to the vertices y1,y3, y5, - ,
Yn_2 and assign the labels 4,8,12,--- ,n to the vertices ya,ys,¥s, -+ ,yz respec-
tively.

Next we assign the labels —1, -5, —9,--- | —(n — 3) respectively to the vertices
Togz, Lnge, Trslo, -, Tn_1 and we assign the labels —2,—6,—10,--- ,—(n — 2)
respectively to the vertices Tongd, Tngs, Tngiz, o Tp - Lastly assign the labels
—3,—7,—11,--- ,—(n — 1) respectively to the vertices Yng2,Ynto,Ynt10, 5 Yno1
and assign the labels —4, —8,—12,--- | —n to the vertices Ynga, Yngs, Ynsiz, oo Yn
respectively.

Subcase 2. n =1 (mod 4).

Assign the labels 1,5,9, - - - ,n—4 respectively to the vertices x1, x3, x5, - - yTn_s
and assign the labels 2,6,10,--- ,n — 3 to the vertices x3, x4, zg, " - ;Tn_1 TESpEC-
tively. Now we assign the labels 3,7,11,--- ,n—2 to the vertices y1,ys, ys, - - - 1Yns
respectively and assign the labels 4,8,12,--- ;n — 1 respectively to the vertices
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Y2, Y1, Ys, -+ ,Yn—1 and assign the label n to the vertex yn+i.
2 2

Now we assign the labels —1,—3,-5,--- ,—(”7“) respectively to the vertices
L1, Tngs, Tngo, -, Tn and we assign the labels —(%£3), —(”7”), — (2, -

—(n—1) respectively to the vertices yn, Yn—2, Yn—da, - - ) Ynis . Next assign the labels

—2,—4,—6,---, —(”T_l) respectively to the vertices Yonis, Ynst, Yugit, o0 5 Yno1 and

assign the labels —(2£2), —(2£2), —(2£13) ... | —(n) to the vertices z,_1, Tn_3, Tn_s,
" Tngs respectively.

Subcase 3. n =2 (mod 4).
as in case 1 assign the labels to the vertices z;, y;(1 < i < n —2). Finally we assign
the labels (n — 1), n, —n, —(n — 1) to the vertices Tn_1,Tn, Yn—1, Yn-

Subcase 4. n =3 (mod 4).

Assign the labels 1,5,9, - - ,n—2 respectively to the vertices x1, 3, zs, - - s Lot
and we assign the labels 2, 6, 10, - - - , n—>5 to the vertices x2, x4, xg, - - - ; Tn_3 TESPEC-
tively. Now we assign the labels 3,7,11,--- ,n—4 to the vertices y1, y3, ys, - »Ynos
respectively and assign the labels 4,8,12,--- ,n — 3 respectively to the vertices
Y2, Y4, Y6, s Yn_s.

Next we assign the labels —1,—-3,-5,--- ,7("771) respectively to the vertices
Lops, Lngs, Trgo, w5 Tpo1 and we assign the labels —("T”), —("74'7)7 —("ngl)7 .-

— (n) respectively to the vertices @y, Tn_2, Tn_q, - (Tnts Next assign the labels

]

—2,—4,—6,--- ,—(”'2*'1) respectively to the vertices Yrgs, Ynit, Yngit, o5 Un and

assign the labels —(242), —(242), —(2413) ... | —(n—1) to the vertices y,—1, yn—3,

Yn—5,""",Ynts respectively.

Finally assign the labels n — 1,n to the vertices yn-12y i1 respectively.

Theorem 5.2. S (P, ® K1) is pair difference cordial.
Proof. Let V(S (P, ® K1)) = {@s,2;,y5,9; : 1 < i < n} and E(S (P, ® K1) =
(w1 iz 0 1< i <n—1}U{@mip 0 1 <i<n—1}U{ya, 2y, - 1 <i<n}.

There are 4n vertices and 6n — 3 edges.There are two cases arises.

Case 1.n is even.

Assign the labels 1,5,9, - - - | (2n—3) to the vertices z1, x2, x5, - - , rz respectively
and we assign the labels —1, —5, =9, - - - | —(2n—3) respectively Tngz, Toga, Tngo, -,
T,. Next assign the labels 4,8,12,--- | 2n to the vertices mll, a?/2, xéﬂ e ,x/% respec-
tively and we assign the labels —4, —8, —12, - - - , —(2n) respectively x/ﬁ , x,j , w/”j,

2 2 2
T

C STy,
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Now we assign the labels 3,7,11,-- -, (2n—1) to the vertices y1, y2,y3, - ,yz re-

spectively and we assign the labels —3, —7,—11,--- , —(2n—1) respectively Ynt2, Ynia,
Ynio,  Yn Next assign the labels 2,6, 10, - - - , (2n—2) to the vertices y/l, ylg, yé, cee
y/% respectively and assign the labels —2, —6, —10, - - - , —(2n —2) respectively y/nj,
2
YntasYntes " s Yp-
2 2

Clearly Ay, = 3n—2,Are = 3n— 1. This vertex labeling gives that S (P, ® K1)
is pair difference cordial for all even values of n.

Case 2.n is odd.

As in case 1, assign the labels to the vertices x;, y;, x;-, yi'(1 <i<n-—1). Finally
we assign the labels 2n — 1, —(2n — 1), 2n, —2n to the vertices x;” Ty Yns y;l

Clearly Ay, = 3n—2,Ase = 3n— 1. This vertex labeling gives that S'(Pn O Ky)
is pair difference cordial for all odd values of n.

]

Theorem 5.3. S (K,,) is pair difference cordial if and only if n < 3.

Proof. Clearly ‘V(S' (Kn))’ = 21 and ‘E(S' (Kn))’ = 3n(n1)

Case 1. n < 3.

Obviously ' (K1) is pair difference cordial.Since S’ (K,,) 2 Cy, then S’ (K>) is pair
difference cordial. By theorem 5.2, S’ (K3) is pair difference cordial.

Case 2. n > 3.
Suppose S (K,) is pair difference cordial. By theorem 2.5 ,
3n(n—1)
2
= 3n? — 3n < 4(2n) — 6,
= 3n% — 11n < —6,

< 2(2n) — 3,

= —3n%+11n > 6, a contradiction

Theorem 5.4. S/(Kl’n) is pair difference cordial if and only if n < 3.

Proof. Let V(S,(Kl,n)) ={z,y,zi,y; : 1 <i<n}and E(S/ (K1,n)) = {z@i, yyi, yiw -
1 <4 < n}.Since SI(KLl) 2~ P,. By theorem 2.6, S,(KM) is pair difference cordial.
A pair difference cordial labeling of S (K, 2) and S (K} 3) is shown in Table 5.

n| T | X1 [T2 T3 Y [Y1]|Y2]|Y3
-1 -21]-3 21113
3|-1|-2]-3|-42|1]3 |4
TABLE 5.

[\
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Suppose f is a pair difference cordial labeling of S’ (K1,n),n > 3 . Obviously
Ay, < 4. Then A?I > q — 4. This implies that A;I > 3n — 4. Hence A;l — Ay >
3n — 8 > 1, a contradiction.

O

6. CONCLUSIONS

In this paper, we have studied about the pair difference cordility of Mirror
graph,Splitting graph,Shadow graph of some graphs.Investigation of the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some special graphs
are the open problems.
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