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ekremsavas@yahoo.com

Mehmet DİK
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Abstract. In this paper, it is given some properties for an (s,m)-convex

function defined on [0, d], d > 0 in the first sense and the second sense with

m ∈ (0, 1). Also, some integral inequalities are examined for any non positive
(s,m)-convex function in the second sense with any measure space.

1. Introduction

Convex functions, like differentiable functions, have a important role in many
fields of pure and applied mathematics. It connects concepts from topology, alge-
bra, geometry and analysis, and is an important tool in optimization, mathematical
programming and game theory [3].

In recent years, after Miheşan [14] defined (s,m)-convex functions in the first
sense, several investigations have emerged resulting in applications in mathematics,
as it can be seen in [1, 2, 12, 4, 5, 10, 7, 6, 8, 9, 13].

Definition 1.1. A function f : [0, d] → R is called an (s,m)-convex function in
the first sense, where (s,m) ∈ [0, 1] and d > 0, if for all x, y ∈ [0, d] and t ∈ [0, 1]

f (tx+m (1− t) y) ≤ tsf(x) +m(1− ts)f(y).

Moreover, Eftekhari [15] introduced (s,m)-convex functions in the second sense
in 2014 as follows:

Definition 1.2. f : [0, d]→ R, d > 0 is called to be an (s,m)- convex in the second
sense function for some (s,m) ∈ (0, 1]2 if

f (tx+m (1− t) y) ≤ tsf (x) +m(1− t)sf (y)

for any x, y ∈ [0, d].
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Example 1.1. Let s,m ∈ (0, 1], p ∈ [1,+∞) and f : [0,+∞) → R defined by
f(x) = xp + c, c ≤ 0 , then f is an (s,m)-convex function in the second sense.
Indeed, for all x, y ∈ [0,+∞), t ∈ [0, 1] and (s,m) ∈ [0, 1] we have

f(tx+m(1− t)y) = (tx+m(1− t)y))p + c ≤ typ +mp(1− t)yp + c

≤ tsxp +m(1− t)syp + (ts +m(1− t)s)c
≤ tsf (x) +m(1− t)sf (y) .

We note that if a nonnegative function is convex and starshaped, then it is an
(s,m)-convex function in the second sense function for all (s,m) ∈ (0, 1]2. This
function class is an extension of s-convex functions in the second sense that are
(s, 1)- convex functions in the second sense [12]. Dragomir and Fitzpatrick proved
that a s-convex functions in the second sense f is Riemann integrable if f(c) = 0 for
any point c in domain of the function f in [17]. Also, when f is Lebesgue integrable
on [a, b] they give the Hermite-Hadamard type inequality for a s-convex functions
in the second sense f on [a, b] as the following inequality

2s−1f(
a+ b

2
) ≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

s+ 1
.

However, there is not any result for integrability of (s,m)- convex functions in the
second sense with m ∈ (0, 1), and so researchers like [18, 19, 20] have to stipulate
integrability.

In this paper, we deal with some properties and some inequalities for (s,m)-
convex functions in the second sense with m ∈ (0, 1).

2. Some Properties

Let’s first recall the well known H. Lebesgue Theorem ([21] p.257).

Theorem 2.1 ( H. Lebesgue). Let f be a real-valued increasing function on [a, b].
Then the derivative f ′ exists and is nonnegative in (a, b)\E where E is a null set
in (R,ML, µL) contained in (a, b). Further more f ′ is ML measurable and µL-
integrable on (a, b)\E with ∫

[a,b]

f ′dµL ≤ f (b)− f (a) .

Theorem 2.2. If f : [0, d] → R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m ∈ (0, 1), then the derivative f ′ exists and

sf(x) ≤ xf ′(x)

is hold for all x ∈ (a, b)\E, [a, b] ⊂ (0, d] where E is a null set in (R,ML, µL)
contained in (a, b).

Proof. Let f : [0, d]→ R, d > 0 be an (s,m)- convex in the first or the second sense
function for m ∈ (0, 1). In this case,

f(0) ≤ mf(0),
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and so it is obtained f(0) ≤ 0. Also for all 0 < x ≤ y we have

f (x) = f

(
x

y
y +m

(
1− x

y

)
0

)
≤
(
x

y

)s
f (y)+m

(
1−

(
x

y

)s)
f(0) ≤

(
x

y

)s
f (y)

or

f (x) = f

(
x

y
y +m

(
1− x

y

)
0

)
≤
(
x

y

)s
f (y) +m

(
1− x

y

)s
f(0) ≤

(
x

y

)s
f (y)

i.e., f(x)
xs ≤ f(y)

ys , 0 < x ≤ y ≤ d. This means that the function g(x) = f(x)
xs is

monotone increasing function on [a, d], a > 0. Since the functions h(x) = xs and

g(x) = f(x)
xs are differentiable, according to H. Lebesgue Theorem we gain that the

derivative f ′ exists and

sf(x) ≤ xf ′(x)

is satisfied for all x ∈ (a, b)\E, (a, b] ⊂ (0, d] where E is a null set in (R,ML, µL)
contained in (a, b). �

Corollary 2.3. If f : [0, d] → R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m ∈ (0, 1), f is Riemann integrable on [a, d], a > 0.

Corollary 2.4. If f : [0, d]→ R, d > 0 is a nonnegative (s,m)- convex in the first
sense or second sense function for m ∈ (0, 1), then f is continuous at the zero,
f(0) = 0 and monotone increasing, and so Riemann integrable on [0, d].

Corollary 2.5. If f : [0, d]→ R, d > 0 is a nonnegative (s,m)- convex in the first
sense or second sense function for m ∈ (0, 1) and is the derivative of a function on
(0, d), then f is continuous on [0, d).

Proof. This result is taken from the fact that the derivative function has points of
discontinuity only if it has points of the second type discontinuity. �

Theorem 2.6. Let f : [0, d]→ R, d > 0 be a nonnegative (s,m)- convex in the first
sense or second sense function for m ∈ (0, 1) and continuous on any subinterval

[0, c], c ≤ d. Then, the limit limx→0
f(x)
xs exists.

Proof. Suppose that f : [0, d] → R, d > 0 be a nonnegative (s,m)- convex in the
first sense or second sense function for m ∈ (0, 1) and continuous on any subinterval
[0, c], 0 < c ≤ d. Therefore g : [0, c]→ R defined as g(x) = x1−sf(x) is continuous
on [0, c] and for all n ∈ N and all x ∈ [0, c]

g(
1

n
x) =

(
1

n
x

)1−s

f

(
1

n
x

)
≤ x1−s

(
1

n

)1−s(
1

n
x

)s
f(x) =

1

n
g(x)

is satisfied. According to Theorem 6 in [24], g(x) is differentiable at x = 0. This

means that the limit limx→0
f(x)
xs exists. �

Theorem 2.7. If f : [0, d] → R, d > 0 is a negative valued (s,m)- convex in the
first sense or the second sense function for m ∈ (0, 1), f is a starshaped function
on [0, d].

Proof. Under the assumption of theorem, for all x ∈ [0, d], f(x) < 0. Now, we
suppose that the function is not starshaped. From here, there exist two point
x0 ∈ [0, d] and t0 ∈ (0, 1)

t0f(x0) < f(t0x0).
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Because f is an (s,m)- convex in the first sense and second sense function for
m ∈ (0, 1),

t0f(x0) < f(t0x0) ≤ ts0f(x0)

is hold. However, since f is a negative valued function, for t0 ∈ (0, 1)

ts0 < t0

is obtained. This is a contradiction. Therefore, it is gained that the function f is
starshaped on [0, d]. �

Corollary 2.8. If f : [0, d] → R, d > 0 is a negative valued (s,m)- convex in the
first sense and second sense function for m ∈ (0, 1), there exists a point c ∈ [0, d]
such that fχ[0,c] is a non positive starshaped function on [0, c] and fχ[c,d] is a
nonnegative monotone increasing function on [c, d], where χA is the characteristic
function of the subset A of R.

3. Some Inequalities

Theorem 3.1. Let f : [0, d]→ R, d > 0 be an (s,m)-convex function in the second
sense and Riemann integrable on [a, b], 0 ≤ a ≤ mb ≤ b ≤ d. Then

2s−1f

(
m
a+ b

2

)
≤ m

b− a

b∫
a

f (x) dx ≤ m (b−ma) f(b) + (mb− a) f(a)

(s+ 1)(b− a)
.

Proof. Because f is an (s,m)-convex function in the second sense, for all x, y ∈ [a, b]
we have

f

(
m
x+ y

2

)
≤ mf(x) + f(y)

2s
.

If x = ta+ (1− t)b and y = tb+ (1− t)a are chosen, then we get

f

(
m
a+ b

2

)
≤ m

2s
(f(ta+ (1− t)b) + f(tb+ (1− t)a)) .

We obtain by integrating the last inequality

f

(
m
a+ b

2

)
≤ m

2(s−1)

1

b− a

b∫
a

f (x) dx.

Since a ≤ mb, and f : [0, d] → R, d > 0 is an (s,m)-convex function in the second
sense

b∫
a

f (y) dy =
mb∫
a

f (x) dx+
b∫

mb

f (x) dx

= (mb− a)
1∫
0

f (ta+m (1− t) b) dt+ (b−mb)
1∫
0

f (tb+m (1− t) b) dt

≤ (mb− a)
1∫
0

(tsf (a) +m(1− t)sf (b)) dt+ (b−mb)
1∫
0

(ts +m(1− t)s) f (b) dt

= (b−ma)f(b)+(mb−a)f(a)
s+1

we have

f

(
m
a+ b

2

)
≤ m 21−s

b− a

b∫
a

f (x) dx ≤ m21−s (b−ma) f(b) + (mb− a) f(a)

(s+ 1)(b− a)
.
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�

Remark. If we take m = 1 and s = 1 in Theorem 3.1, then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f(b) + f(a)

2

is famous Hermite-Hadamard inequality.

Corollary 3.2. If f : [0, d]→ R, d > 0 is an (s,m)-convex function in the second
sense and the derivative function f ′ is Riemann integrable on [a, b], 0 ≤ a ≤ mb ≤
b ≤ d, then

b∫
a

f (x) dx ≤ min {bf(b)− af(a)

s+ 1
,

(b−ma) f(b) + (mb− a) f(a)

s+ 1
}.

Theorem 3.3. Let f : [0, d]→ R be a differentiable on [0, d] and |f ′| is an (s,m)-
convex function in the second sense in [0, d] for m ∈ (0, 1), then for all x ∈ [a, b],
[a, b] ⊂ [0, d]∣∣∣∣∣∣f (mx)− 1

b− a

b∫
a

f (y) dy

∣∣∣∣∣∣ ≤ |f
′(b)|
b− a

 (m(s+ 1) + 1)
(

(mx− a)
2

+ (b−mx)
2
)

(s+ 1)(s+ 2)

 .
Proof. In this case, we use the equality given by Cerone and Dragomir in [22], and
so ∣∣∣∣∣∣f (mx)− 1

b− a

b∫
a

f(y)dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣ (mx− a)
2

b− a

1∫
0

tf ′ (tmx+ (1− t) a)dt− (b−mx)
2

b− a

1∫
0

tf ′ (tmx+ (1− t) b)dt

∣∣∣∣∣∣
≤ (mx− a)

2

b− a

1∫
0

t|f ′ (tmx+ (1− t) a) |dt+
(b−mx)

2

b− a

1∫
0

t|f ′ (tmx+ (1− t) b) |dt

≤ (mx− a)
2

b− a

1∫
0

t (mts + (1− t)s)|f ′(b)|dt+
(b−mx)

2

b− a

1∫
0

t (mts + (1− t)s)|f ′(b)|dt

=
|f ′(b)|
b− a

 (m(s+ 1) + 1)
(

(mx− a)
2

+ (b−mx)
2
)

(s+ 1)(s+ 2)


is obtained. �

Remark. If it is chosen as m = 1 in Theorem 3.3, it is obtained the inequality
given Alomari et. al. in [23].

Theorem 3.4. If f : [0, d] → R, d > 0 is an (s,m)-convex function in the second
sense for any m ∈ (0, 1) then the following inequality is hold
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f

(
m

n∑
k=1

tkxk

)
6 m

n∑
k=1

tskf (xk) (3.1)

where
n∑
k=1

tk 6 1, tk ∈ [0, 1] and xk ∈ [a, b].

Proof. It can be proved by using the mathematical induction method as in [25].
First of all, since f : [0, d] → R, d > 0 is an (s,m)-convex function in the second
sense with m ∈ (0, 1) for n = 1, t ∈ [0, 1] and x ∈ [a, b]

f(mtx) = f(mtx+ (1− t)0) ≤ (1− t)sf(0) +mtsf(x) ≤ mtsf(x).

Now, for the next step of induction we consider that the equation 3.1 is true for

n− 1. In this case, if
n∑
k=1

tk 6 1, then tk
1−tn ≤ 1, 1 ≤ k ≤ n− 1 is hold and

f

(
m

n∑
k=1

tkxk

)
= f

(
m(1− tn)

n−1∑
k=1

tk
1− tn

xk +mtnxn

)

≤ (1− tn)sf

(
m

n−1∑
k=1

tk
1− tn

xk

)
+mtsnf(xn)

≤ m

n−1∑
k=1

tskf(xk) +mtsnf(xn) = m

n∑
k=1

tskf (xk).

This conclusion completes the proof of the theorem. �

Theorem 3.5. Suppose that (X,Σ, µ) is a finite measure space and h : X →
[0,+∞) is a µ-integrable function such that h (x) 6 1

µ(X) a.e. . If f : [0, d] → R,

d > 0 is a non positive continuous (s,m)-convex function in the second senses for
any m ∈ (0, 1) and g : X → [0, d] is a µ-integrable function, then we have

f

m ∫
E

h (x)g (x) dµ (x)

 6 m∫
E

h (x)f (g (x)) dµ (x)

for any E ∈ Σ.

Proof. Let I =
n⋃
k=1

Ink
be any partition of disjoint intervals Ink

for n ∈ N. Because

g is an µ-integrable function, the set Enk
:= g−1 (Ink

)∩E is in Σ for any set E ∈ Σ

and E =
n⋃
k=1

Enk
. Choosing any point xnk

in each set Enk
. Since h is a positive

valued function and
∫
X

h (x)dµ (x) 6 1, the linear combination

n∑
k=1

µ (Enk
)h (xnk

)g (xnk
)

is in [0, d] for large enough n ∈ N. Because f is a non positive (s,m)-convex function
for any m ∈ (0, 1) on [0, d], the following inequality is satisfied by using the previous
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theorem

f

(
m

n∑
k=1

µ (Enk
)h (xnk

)g (xnk
)

)
≤ m

n∑
k=1

µs (Enk
)hs (xnk

)f (g (xnk
))

≤ m
n∑
k=1

µ (Enk
)h (xnk

)f (g (xnk
))

The proof of the theorem is completed under the continuity assumption of the
function f . �
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[7] M. E. Özdemir, H. Kavurmacıand E. Set, Ostrowski’s Type Inequalities for (α,m)-Convex
Functions, Kyungpook Math. J., 50 (2010), 371–378.
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Abstract. In this study, by using definition of ρ-statistical convergence which

was defined by Cakalli [5], we give some inclusion relations between the con-
cepts of ρ-statistical convergence and statistical convergence in topological

groups.

1. Introduction

In 1951, Steinhaus [29] and Fast [14] introduced the notion of statistical conver-
gence and later in 1959, Schoenberg [28] reintroduced independently. Caserta et al.
[4], Cakalli ([6],[7]), Cinar et al. [8], Colak [9], Connor [10], Et et al. ([11],[12],[13]),
Fridy [15], Gadjiev and Orhan [16], Isik and Akbas ([17],[18]), Kolk [19], Mursaleen
[20], Salat [21], Sengul et al. ([22]-[27]), Aral et al. ([1],[2],[3]) and many others
investigated some arguments related to this notion.

The opinion of statistical convergence depends on the density of subsets of the
natural set N. We say that the δ(E) is the density of a subset E of N if the following

limit exists such that

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of N
has zero natural density and δ (Ec) = 1− δ (E).

We say that the sequence x = (xk) is statistically convergent to ` if for every
ε > 0,

δ ({k ∈ N : |xk − `| ≥ ε }) = 0.

In this case we write S − limxk = ` or xk → ` (S). Equivalently,
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lim
n→∞

1

n
|{k ≤ n : |xk − `| ≥ ε}| = 0.

S will denote the set of all statistically convergent sequences.

If x is a sequence such that xk satisfies property P for all k except a set of natural
density zero, then we say that xk satisfies P for ”almost all k ”, and we abbreviate
this by ”a.a.k.”

2. Main Results

In this section we give the main results of this article. Now we begin a new
definition.

Definition 2.1. Let X be an abelian topological Hausdorf group. A sequence (x(k))
of points in R, the set of real numbers, is called ρ−statistically convergent in topo-
logical groups to ` (Sρ(X)−convergent to `) if there is a real number ` for each
neighbourhood U of 0 such that

lim
n→∞

1

ρn
|{k ≤ n : x(k)− ` /∈ U}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real numbers
tending to∞ such that lim supn

ρn
n <∞, ∆ρn = O(1), and ∆x(n) = x(n+1)−x(n)

for each positive integer n. In this case we write Sρ(X) − limx(k) = ` or x(k) →
` (Sρ(X)). We denote the set of all ρ−statistically convergent in topological groups
sequences by Sρ(X). If ρ = (ρn) = n, ρ−statistically convergent in topological
groups is coincide statistical convergence in topological groups.

Definition 2.2. Let X be an abelian topological Hausdorf group. A sequence x =
(x(k)) of points in R, the set of real numbers, is called Sρ(X)-Cauchy sequence in
topological groups if there is a subsequence (x (k′(n))) of x such that k′(n) 6 n for
each n, limn→∞ x(k′(n)) = ` and for each neighbourhood U of 0

lim
n→∞

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| = 0,

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to ∞
such that lim supn

ρn
n < ∞, ∆ρn = O(1) and ∆x(n) = x(n + 1) − x(n) for each

positive integer n.

Theorem 2.1. If x is ρ−statistically convergent in topological groups, then Sρ(X)−
limx(k) = ` is unique.

Proof. Suppose that (x (k)) has two different ρ−statistical in topological groups
limits `1, `2 say. Since X is a Hausdorff space there exists a neighbourhood U of
0 such that `1 − `2 /∈ U. Then we may choose a neighbourhood W of 0 such that
W +W ⊂ U. Write z (k) = `1 − `2 for all k ∈ N. Therefore for all n ∈ N,

{k ≤ n : z (k) /∈ U} ⊂ {k ≤ n : `1 − x (k) /∈W} ∪ {k ≤ n : x (k)− `2 /∈W} .

Now it follows from this inclusion that, for all n ∈ N,

|{k ≤ n : z (k) /∈ U}| ≤ |{k ∈ Ir : `1 − x (k) /∈W}|+ |{k ≤ n : x (k)− `2 /∈W}| .
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Since Sρ(X)− limx(k) = `1 and Sρ(X)− limx(k) = `2 we get

lim
n→∞

1

ρn
|{k ≤ n : z (k) /∈ U}| ≤ lim

n→∞

1

ρn
|{k ≤ n : `1 − x (k) /∈W}|

+ lim
n→∞

1

ρn
|{k ≤ n : x (k)− `2 /∈W}| .

This contradiction shows that `1 = `2. �

Theorem 2.2. If limk→∞ x(k) = ` and Sρ(X)− lim y(k) = 0, then

Sρ(X)− lim (x(k) + y(k)) = lim
k→∞

x(k).

Proof. Let U be any neighborhood of 0. Then we may choose a symetric neighbour-
hood W of 0 such that W +W ⊂ U. Since limk→∞ x(k) = ` there exists an integer
k0 such that k ≥ k0 implies that x(k)− ` ∈W . Hence

lim
n→∞

1

ρn
|{k ≤ n : x(k)− ` /∈W}| ≤ lim

n→∞

k0

ρn
= 0

and by the assumption that Sρ(X)− lim y(k) = 0 we have

lim
n→∞

1

ρn
|{k ≤ n : y(k) /∈W}| = 0.

Now we have

{k ≤ n : (x(k)− `) + y(k) /∈ U} ⊂ {k ≤ n : x(k)− ` /∈W} ∪ {k ≤ n : y(k) /∈W} .
Hence
1

ρn
|{k ≤ n : (x(k)− `) + y(k) /∈ U}| ≤ 1

ρn
|{k ≤ n : x(k)− ` /∈W}|+ 1

ρn
|{k ≤ n : y(k) /∈W}|

It follows from the above inequality that

lim
n→∞

1

ρn
|{k ≤ n : (x(k)− `) + y(k) /∈ U}| = 0.

Thus Sρ(X)− lim (x(k) + y(k)) = limk→∞ x(k). �

Theorem 2.3. If a sequence x(k) is ρ-statistically convergent to `, then there are
sequences y(k) and z(k) such that limk→∞ y(k) = `, x = y+z and limn→∞

1
ρn
|{k ≤ n : x(k) 6= y(k)}| =

0 and z is a ρ-statistically null sequence.

Proof. Let (Vj) be a nested base of neighborhoods of 0. Take n0 = 0 and choose
an increasing sequence (nj) of positive integers such that

1

ρn
|{k ≤ n : x(k)− ` /∈ Vj}| <

1

j
for n > nj .

Let us define sequences y = y(k) and z = z(k) in the following way. Write z(k) = 0
and y(k) = x(k) if n0 < k ≤ n1 and suppose that nj < nj+1 for j ≥ 1. z(k) = 0
and y(k) = x(k) if x(k) − ` ∈ Vj , y(k) = ` and z(k) = x(k) − ` if x(k) − ` /∈ Vj .
Firstly, we prove that limk→∞ y(k) = `. Let V be any neighborhood of 0. We may
choose a positive integer j such that Vj ⊂ V. Then y(k) − ` = x(k) − ` ∈ Vj and
so y(k)− ` ∈ V for k > nj . If x(k)− ` /∈ Vj , then y(k)− ` = `− ` = 0 ∈ V. Hence
limk→∞ y(k) = `. Finally we show that z = z(k) is a statistically null sequence. It
is enough to show that

lim
n→∞

1

ρn
|{k ≤ n : z(k) 6= 0}| = 0.
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For any n ∈ N any neighborhood V of 0, we have

|{k ≤ n : z(k) /∈ V }| ≤ |{k ≤ n : z(k) 6= 0}| .
If j ∈ N such that Vj ⊂ V and ε > 0, we are going to show that

1

ρn
|{k ≤ n : z(k) 6= 0}| < ε.

If np < n ≤ np+1, then

{k ≤ n : z(k) 6= 0} ⊂ {k ≤ n : x(k)− ` /∈ Vp} .
If p > j and np < n ≤ np+1, then

1

ρn
|{k ≤ n : z(k) 6= 0}| ≤ 1

ρn
|{k ≤ n : x(k)− ` /∈ Vp}| <

1

p
<

1

j
< ε.

Thus, the proof is completed. �

Theorem 2.4. The sequence x is Sρ(X)−convergent if and only if x is Sρ(X)−Cauchy
sequence.

Proof. Assume that x is Sρ(X)−convergent. Since X is a Hausdorff space there
exists a neighbourhood U of 0. Then we may choose a neighbourhood Y of 0 such
that Y + Y ⊂ U. We can write

|{k ≤ n : x(k)−x (k′ (n)) /∈ U} ⊂ {k ≤ n : x (k)− ` /∈ Y }∪{k ≤ n : `− x (k′ (n)) /∈ Y } .
Now it follows from this inclusion that, for all n ∈ N,

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| ≤ 1

ρn
|{k ∈ Ir : x (k)− ` /∈ Y }|+ 1

ρn
|{k ≤ n : `− x (k′ (n)) /∈ Y }| .

Since Sρ(X)− limx(k) = `, we get

lim
n→∞

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| ≤ lim

n→∞

1

ρn
|{k ≤ n : x (k)− ` /∈ Y }|

+ lim
n→∞

1

ρn
|{k ≤ n : `− x (k′ (n)) /∈ Y }| .

The proof to the contrary is obvious. �

Theorem 2.5. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers

tending to ∞ such that lim supn
ρn
n

< ∞,∆ρn = O(1). If
ρn
n
≥ 1 for all n ∈ N,

then S(X) ⊂ Sρ(X).

Proof. If S(X)− limx(k) = `, then for every ε > 0 we have

1

n
|{k ≤ n : x(k)− ` /∈ U}| = ρn

n

1

ρn
|{k ≤ n : x(k)− ` /∈ U}|

>
1

ρn
|{k ≤ n : x(k)− ` /∈ U}|.

This proves the proof. �

Theorem 2.6. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for
all n ∈ N. If lim infn→∞

ρn
τn
> 0, then Sρ(X) ⊂ Sτ (X).
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Proof. If Sρ(X)− limx(k) = `, then for every ε > 0 we can write

1

τn
|{k ≤ n : x(k)− ` /∈ U}| ≤ ρn

τn

1

ρn
|{k ≤ n : x(k)− ` /∈ U}|.

This is enough for proof. �

The following result is obtained from Theorem 2.5 and Theorem 2.6.

Corollary 2.7. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn and
n < τn for all n ∈ N. If lim infn→∞

ρn
τn
> 0, then S(X) ⊂ Sρ(X) ⊂ Sτ (X).
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Abstract. The concept of strong w [ρ, f, q]−summability of order (α, β) for
sequences of complex (or real) numbers is introduced in this work. We also give

some inclusion relations between the sets of ρ-statistical convergence of order

(α, β), strong wβα [ρ, f, q]−summability and strong wβα (ρ, q)−summability.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [28] and
Fast [13] and later in 1959, Schoenberg [27] reintroduced independently. After-
wards there has appeared much research with some arguments related of this
concept (see Caserta et al. [3], Connor [4], Çakallı ([5],[6]), Çolak [7], Et et al.
([8],[9],[10]), Fridy [14], Gadjiev and Orhan [15], Kolk [17], Salat [26], Şengül et
al.([2],[29],[30],[31],[32],[33],[34]) and many others).

The statistical convergence order α was introduced by Çolak [7] as follows:
The sequence x = (xk) is said to be statistically convergent of order α to L if

there is a complex number L such that

lim
n→∞

1

nα
|{k ≤ n : |xk − L| ≥ ε}| = 0.

Let 0 < α ≤ β ≤ 1. Then the (α, β)−density of the subset E of N is defined by

δβα (E) = lim
n

1

nα
|{k ≤ n : k ∈ E}|β

if the limit exists (finite or infinite), where |{k ≤ n : k ∈ E}|β denotes the βth power
of number of elements of E not exceeding n.

If x = (xk) is a sequence such that satisfies property P (k) for all k except a set of
(α, β)−density zero, then we say that xk satisfies P (k) for “almost all k according
to β” and we denote this by “a.a.k (α, β)”.

Throughout this study, we shall denote the space of sequences of real number
by w.
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Let 0 < β ≤ 1, 0 < α ≤ 1, α ≤ β and x = (xk) ∈ w. Then we say the sequence
x = (xk) is statistically convergent of order (α, β) if there is a complex number L
such that

lim
n→∞

1

nα
|{k ≤ n : |xk − L| ≥ ε}|β = 0

i.e. for a.a.k (α, β) |xk − L| < ε for every ε > 0, in that case a sequence x is
said to be statistically convergent of order (α, β) to L. This limit is denoted by
Sβα − limxk = L ([29]).

Let 0 < α 6 1. A sequence (xk) of points in R, the set of real numbers, is called
ρ−statistically convergent of order α to an element L of R if

lim
n→∞

1

ραn
|{k ≤ n : |xk − L| ≥ ε}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real numbers
tending to ∞ such that lim supn

ρn
n < ∞, ∆ρn = O(1) and ∆ρn = ρn+1 − xn for

each positive integer n. In this case we write stαρ − limxk = L. If ρ = (ρn) = n and
α = 1, then ρ−statistically convergent of order α is coincide statistical convergence
([5]).

Here and in what follows we suppose that the sequence ρ = (ρn) is a non-
decreasing sequence of positive real numbers tending to∞ such that lim supn

ρn
n <

∞, ∆ρn = O(1) where 0 < α 6 1 and ∆ρn = ρn+1− ρn for each positive integer n.
The notion of a modulus function was given by Nakano [21]. Following Maddox

[19] and Ruckle [25], we recall that a modulus f is a function from [0,∞) to [0,∞)
such that

i) f(x) = 0 if and only if x = 0,
ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0,
iii) f is increasing,
iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞).
Altın [1], Et ([11], [12]), Gaur and Mursaleen [20], Işık [16], Nuray and Savaş [22],

Pehlivan and Fisher [23] and some others have been studied with some sequence
spaces defined by modulus function.

The following inequality will be used frequently throught the paper:

|ak + bk|pk ≤ A (|ak|pk + |bk|pk) (1.1)

where ak, bk ∈ C, 0 < pk ≤ sup pk = B, A = max
(
1, 2B−1

)
([18]).

2. Main Results

In this section we first give the sets of strongly wβα (ρ, q)−summable sequences
and strongly wβα [ρ, f, q]−summable sequences with respect to the modulus function
f. Secondly we state and prove the theorems on some inclusion relations between
the Sβα (ρ)− statistical convergence, strong wβα [ρ, f, q]−summability and strong
wβα (ρ, q)−summability.

Definition 2.1. Let 0 < α ≤ β ≤ 1 be given. A sequence x = (xk) is said to
be Sβα (ρ)−statistically convergent (or ρ- statistically convergent sequences of order
(α, β)) if there is a real number L such that

lim
n→∞

1

ραn
|{k 6 n : |xk − L| ≥ ε}|β = 0,
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where ραn denotes the αth power (ρn)
α

of ρn, that is ρα = (ραn) = (ρα1 , ρ
α
2 , ..., ρ

α
n, ...)

and |{k ≤ n : k ∈ E}|β denotes the βth power of number of elements of E not ex-
ceeding n. In the present case this convergence is indicated by Sβα (ρ)− limxk = L.
Sβα (ρ) will indicate the set of all Sβα (ρ)−statistically convergent sequences.

Definition 2.2. Let 0 < α ≤ β ≤ 1 and q be a positive real number. A sequence
x = (xk) is said to be strongly Nβ

α (ρ, q)−summable (or strongly N (ρ, q)−summable
of order (α, β)) if there is a real number L such that

lim
n→∞

1

ραn

(
n∑
k=1

|xk − L|q
)β

= 0.

We denote it by Nβ
α (ρ, q)− limxk = L. Nβ

α (ρ, q) will denote the set of all strongly
N (ρ, q)−summable sequences of order (α, β). If α = β = 1, then we will write

N (ρ, q) in the place of Nβ
α (ρ, q). If L = 0, then we will write wβα,0 (ρ, q) in the

place of wβα (ρ, q). Nβ
α,0 (ρ, q) will denote the set of all strongly Nρ (q)−summable

sequences of order (α, β) to 0.

Definition 2.3. Let f be a modulus function, q = (qk) be a sequence of strictly
positive real numbers and 0 < α ≤ β ≤ 1 be real numbers. A sequence x = (xk) is
said to be strongly wβα [ρ, f, q]−summable of order (α, β) if there is a real number
L such that

lim
n→∞

1

ραn

(
n∑
k=1

[f (|xk − L|)]qk
)β

= 0.

In this case, we write wβα [ρ, f, q]− limxk = L. We denote the set of all strongly
wβα [ρ, f, q]−summable sequences of order (α, β) by wβα [ρ, f, q]. In the special case
qk = q, for all k ∈ N and f (x) = x we will denote Nβ

α (ρ, q) in the place of

wβα [ρ, f, q] . wβα,0 [ρ, f, q] will denote the set of all strongly w [ρ, f, q]−summable se-

quences of order (α, β) to 0.

In the following theorems, we shall assume that the sequence q = (qk) is bounded
and 0 < d = infk qk ≤ qk ≤ supk qk = D <∞.

Theorem 2.1. The class of sequences wβα,0 [ρ, f, q] is linear space.

Proof. Omitted. �

Theorem 2.2. The space wβα,0 [ρ, f, q] is paranormed by

g (x) = sup
n

 1

ραn

(
n∑
k=1

[f (|xk|)]qk
)β

1
H

where 0 < α ≤ β ≤ 1 and H=max (1, D) .

Proof. Clearly g (0) = 0 and g (x) = g (−x) . Let x, y ∈ wβα,0 [ρ, f, q] be two se-

quences. Since qk
H
β

≤ 1 and H
β ≥ 1, using the Minkowski’s inequality and definition

of f, we have
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 1

ραn

(
n∑
k=1

[f (|xk + yk|)]qk
)β

1
H

≤

 1

ραn

(
n∑
k=1

[f (|xk|) + f (|yk|)]qk
)β

1
H

=
1

ρ
α
H
n

(
n∑
k=1

[f (|xk|) + f (|yk|)]qk
) 1

H
β

≤ 1

ρ
α
H
n


(

n∑
k=1

[f (|xk|)]qk
)β

1
H

+
1

ρ
α
H
n


(

n∑
k=1

[f (|yk|)]qk
)β

1
H

.

Hence, we have g (x+ y) ≤ g (x)+g (y) for x, y ∈ wβα,0 [ρ, f, q] . Let µ be complex
number. By defnition of f we have

g (µx) = sup
n

 1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

1
H

≤ K
D
H
β g (x)

where [µ] denotes the integer part of µ, and K = 1 + [|µ|] . Now, let µ→ 0 for any
fixed x with g (x) 6= 0. By definition of f , for |µ| < 1 and 0 < α ≤ β ≤ 1, we have

1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

< ε for n > N (ε) . (2.1)

Also, for 1 ≤ n ≤ N, taking µ small enough, since f is continuous we have

1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

< ε. (2.2)

Therefore, (2.1) and (2.2) imply that g (µx)→ 0 as µ→ 0. �

Proposition 2.3. ([24]) Let f be a modulus and 0 < δ < 1. Then for each ‖u‖ ≥ δ,
we have f (‖u‖) ≤ 2f (1) δ−1 ‖u‖ .

Theorem 2.4. If 0 < α = β ≤ 1, q > 1 and lim infu→∞
f(u)
u > 0, then

wβα [ρ, f, q] = wβα (ρ, q) .

Proof. If lim infu→∞
f(u)
u > 0 then there exists a number c > 0 such that f (u) > cu

for u > 0. Let x ∈ wβα [ρ, f, q], then

1

ραn

(
n∑
k=1

[f (|xk − L|)]q
)β
≥ 1

ραn

(
n∑
k=1

[c |xk − L|]q
)β

=
cqαβ

ραn

(
n∑
k=1

|xk − L|q
)β

.

This means that wβα [ρ, f, q] ⊆ wβα (ρ, q) .
Let x ∈ wβα (ρ, q) . Thus we have
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1

ραn

(
n∑
k=1

|xk − L|q
)β
→ 0 as n→∞.

Let ε > 0, β = α and choose δ with 0 < δ < 1 such that cu < f (u) < ε for every
u with 0 ≤ u ≤ δ. Therefore, by Proposition 1, we have

1

ραn

(
n∑
k=1

[f (|xk − L|)]q
)β

=
1

ραn

 n∑
k=1

|xk−L|≤δ

[f (|xk − L|)]q


β

+
1

ραn

 n∑
k=1

|xk−L|>δ

[f (|xk − L|)]q


β

≤ 1

ραn
εqβnβ +

1

ραn

 n∑
k=1

|xk−L|>δ

[
2f (1) δ−1 |xk − L|

]q

β

≤ 1

ραn
εqαnβ +

2qβf (1)
qβ

ραnδ
qβ

(
n∑
k=1

|xk − L|q
)β

.

This gives x ∈ wβα [ρ, f, q] . �

Example 2.1. We now give an example to show that wβα [ρ, f, q] 6= wβα (ρ, q) in this

case lim infu→∞
f(u)
u = 0. Consider the sequence f (x) = x

1+x of modulus function.

Define x = (xk) by

xk =

{
k, if k = m3

0, if k 6= m3.

Then we have, for L = 0, q = 1, (ρn) = (n) and α = β

1

ραn

(
n∑
k=1

[f (|xk|)]q
)β
6

1

nα
n

1
3β → 0 as n→∞

and so x ∈ wβα [θ, f, q] . But

1

ραn

(
n∑
k=1

|xk|q
)β

=
1

nα
(
1 + 23 + 33 + · · ·+

[
3
√
n
])β

>
1

nα

[
( 3
√
n− 1)( 3

√
n)

2

]2β
=

1

nα

(
n4/3 − 2n+ n2/3

)β
4β

→∞ as n→∞

and so x /∈ wβα (p) .

Theorem 2.5. Let 0 < α ≤ β ≤ 1 and lim inf qk > 0. If a sequence is convergent
to L, then it is strongly wβα [ρ, f, q]−summable of order (α, β) to L.

Proof. We assume that xk → L. Since f be a modulus function, we have f (|xk − L|)→
0. Since lim inf qk > 0, we have [f (|xk − L|)]qk → 0. Hence wβα [ρ, f, q] − limxk =
L. �
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Theorem 2.6. Let α1, α2, β1, β2 ∈ (0, 1] be real numbers such that 0 < α1 ≤ α2 ≤
β1 ≤ β2 ≤ 1, f be a modulus function , then wβ2

α1
[ρ, f, q] ⊂ Sβ1

α2
(ρ) .

Proof. Let x ∈ wβ2
α1

[ρ, f, q] and let ε > 0 be given. Let
∑

1 and
∑

2 denote the
sums over k 6 n with |xk − L| ≥ ε and k 6 n with |xk − L| < ε respectively. Since
ρα1
n ≤ ρα2

n for each n we have

1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

=
1

ρα1
n

[∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

]β2

≥ 1

ρα2
n

[∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

]β2

≥ 1

ρα2
n

[∑
1

[f (ε)]
qk
]β2

≥ 1

ρα2
n

[∑
1

min([f (ε)]
d
, [f (ε)]

D
)
]β2

≥ 1

ρα2
n
|{k 6 n : |xk − L| ≥ ε}|β1

[
min([f (ε)]

d
, [f (ε)]

D
)
]β1

.

We get x ∈ Sβ1
α2

(ρ) . �

Theorem 2.7. If f is a bounded modulus function and limn→∞
ρβ2n
ρ
α1
n

= 1 then

Sβ2
α1

(ρ) ⊂ wβ1
α2

[ρ, f, q] .

Proof. Let x ∈ Sβ2
α1

(ρ). Suppose that f be bounded. Therefore f (x) ≤ R, for a
positive integer R and all x ≥ 0. Then for each ε > 0 we can write

1

ρα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

≤ 1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

=
1

ρα1
n

(∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

)β1

≤ 1

ρα1
n

(∑
1

max
(
Rd, RD

)
+
∑

2
[f (ε)]

qk
)β1

≤
(
max

(
Rd, RD

))β2 1

ρα1
n
|{k 6 n : f (|xk − L|) ≥ ε}|β2

+
ρβ2
n

ρα1
n

(
max

(
f (ε)

d
, f (ε)

D
))β2

.

Hence x ∈ wβ1
α2

[ρ, f, q] . �

Theorem 2.8. Let f be a modulus function. If lim qk > 0, then wβα [ρ, f, q] −
limxk = L uniquely.

Proof. Let lim qk = t > 0. Suppose that wβα [ρ, f, q]− limxk = L1 and wβα [ρ, f, q]−
limxk = L2. Then

lim
n

1

ραn

(
n∑
k=1

[f (|xk − L1|)]qk
)β

= 0,

and
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lim
n

1

ραn

(
n∑
k=1

[f (|xk − L2|)]qk
)β

= 0.

By definition of f and using (1.1), we may write

1

ραn

(
n∑
k=1

[f (|L1 − L2|)]qk
)β

≤ A

ραn

(
n∑
k=1

[f (|xk − L1|)]qk +

n∑
k=1

[f (|xk − L2|)]qk
)β

≤ A

ραn

(
n∑
k=1

[f (|xk − L1|)]qk
)β

+
A

ραn

(
n∑
k=1

[f (|xk − L2|)]qk
)β

where supk qk = D, 0 < β ≤ α ≤ 1 and A = max
(
1, 2D−1

)
. Hence

lim
n

1

ραn

(
n∑
k=1

[f (|L1 − L2|)]qk
)β

= 0.

Since limk→∞ qk = t we have L1 − L2 = 0. Hence the limit is unique. �

Theorem 2.9. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for
all n ∈ N and let α1, α2, β1 and β2 be such that 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1,

(i) If

lim inf
n→∞

ρα1
n

τα2
n

> 0 (2.3)

then wβ2
α2

[τ, f, q] ⊂ wβ1
α1

[ρ, f, q] ,

(ii) If

lim sup
n→∞

ρα1
n

τα2
n

<∞ (2.4)

then wβ2
α1

[ρ, f, q] ⊂ wβ1
α2

[τ, f, q] .

Proof. (i) Let x ∈ wβ2
α2

[τ, f, q] . We have

1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

≥ ρα1
n

τ
α2
n

1
ρ
α1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

.

Thus if x ∈ wβ2
α2

[τ, f, q] , then x ∈ wβ1
α1

[ρ, f, q] .

(ii) Let x = (xk) ∈ wβ2
α1

[ρ, f, q] and (2.4) holds. Now, since ρn ≤ τn for all n ∈ N,
we have

1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

≤ 1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

=
ρα1
n

τα2
n

1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

for every n ∈ N. Therefore wβ2
α1

[ρ, f, q] ⊂ wβ1
α2

[τ, f, q] . �
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[2] N. D. Aral and H. Şengül Kandemir, I-Lacunary statistical Convergence of order β of

difference sequences of fractional order, Facta Universitatis (NIS) Ser. Math. Inform. 36(1)
(2021), 43–55.
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[31] H. Şengül and M. Et, f−lacunary statistical convergence and strong f−lacunary summa-
bility of order α, Filomat 32(13) (2018), 4513–4521.
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Abstract. In this paper we dicuss the pair difference cordility of Mirror

graph, Splitting graph, Shadow graph of some graphs.

1. Introduction

We consider only finite, undirected and simple graphs. The origin of graph labeling
is graceful labeling and introduced this concept by Rosa.A [15].Afterwards many
labeling was defined and few of them are harmonious labeling[7], cordial labeling
[1], magic labeling [16], mean labeling [19]. Cordial analogous labeling was studied
in [2,3,4,5,10,11,12,13,14,17,18]. The notion of pair diference cordial labeling of a
graph has been introduced and studied some properties of pair difference cordial la-
beling in [9].The pair difference cordial labeling behavior of several graphs like path,
cycle, star etc have been investigated in [9].In this paper we dicuss the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some graphs.Term
not defined here follow from Harary[8].
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2. Preliminaries

Definition 2.1. [6]. For a bipartite graph G with partite sets X and Y ,let G, be

a copy of G and X
′

and Y
′

be copies of X and Y . The mirror graph M
′
(G) , of a

graph G as the disjoint union of G and G
′

with additional edges joining each vertex
Y to its corresponding vertex in Y

′
.

Definition 2.2. [6].

The splitting graph of G,S
′
(G), is obtained from G by adding for each vertex v

of G a new vertex v
′

so that v
′

is adjacent to every vertex that is adjacent to v.

Definition 2.3. [6].
The shadow graph D2(G) of a connected graph G is constructed by taking two

copies of G,G
′

and G
′′

and joining each vertex u
′

in G
′

to the neighbours of the
corresponding vertex u

′′
in G

′′
.

Definition 2.4. [6].
The ladder Ln is the product graph Pn ×K2.

Theorem 2.1. [9].
If G is a (p, q) pair difference cordial graph then

q ≤

{
2p− 3 if p is even

2p− 1 if p is odd

Theorem 2.2. [9].
The path Pn is pair difference cordial for all values of n except n 6= 3 .

Corollary 2.3. [9].
The cycle Cn is pair difference cordial if and only if n > 3 .

Theorem 2.4. [9].
The ladder Ln is pair difference cordial for all values of n.

3. Mirror Graphs

Theorem 3.1. The mirror graph of the path Pn is pair difference cordial.

Proof. Since M ′(Pn) ∼= Ln,the proof follows from theorem 2.8.
�

Theorem 3.2. M
′
(K1,n) is pair difference cordial if and only if n ≤ 2.

Proof. Let V (M
′
(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and

E(M
′
(K1,n)) = {xxi, yyi, yixi, xy : 1 ≤ i ≤ n}.Since S

′
(K1,1) ∼= C4. By corol-

lary 2.7, M
′
(K1,1) is pair difference cordial. A pair difference cordial labeling of

M
′
(K1,2) is shown in Table 1.

Suppose f is a pair difference cordial labeling of M
′
(K1,n), n ≥ 3 . Obviously

∆f1 ≤ 4. Then ∆c
f1
≥ q − 4. This implies that ∆c

f1
≥ 3n + 1− 4 = 3n− 3. Hence

∆c
f1
−∆f1 ≥ 3n− 7 > 1 , a contradiction.

�
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n x x1 x2 y y1 y2
2 −2 −1 -3 2 1 3

Table 1.

Theorem 3.3. M
′
(S(K1,n)) is pair difference cordial if and only if n ≤ 2.

Proof. Let (X1, Y1) be bipartition of the first copy of S(K1,n) where X1 = {x, yi :
1 ≤ i ≤ n}, Y1 = {xi : 1 ≤ i ≤ n} and (X2, Y2) be bipartition of the second copy

of S(K1,n) where X2 = {x′ , y′i : 1 ≤ i ≤ n}, Y2 = {x′i : 1 ≤ i ≤ n}. Therefore

E(M
′
(S(K1,n))) = {xxi, x

′
x
′

i, yixi, y
′

ix
′

i : 1 ≤ i ≤ n} ∪ {xx′ , xix
′

i, yiy
′

i : 1 ≤ i ≤
n} ∪ {xy, x′y′}. Clearly there are 4n + 2 vertices and 6n + 1 edges in the mirror

graph of S(K1,n). Since M
′
(S(K1,1)) ∼= L3, by theorem 2.8, M

′
(S(K1,1)) is pair

difference cordial. A pair difference cordial labeling of M
′
(S(K1,2)) is given in

Table 2.

n x x1 x2 y1 y2 x
′

x
′

1 x
′

2 y
′

1 y
′

2

2 5 2 4 1 3 −5 −2 -4 −1 −3
Table 2.

Suppose f is a pair difference cordial labeling of M
′
(S(K1,n)), n ≥ 3 . Obviously

∆f1 ≤ 2n+2. Then ∆c
f1
≥ q−2n−2. This implies that ∆c

f1
≥ 6n+1−2n−2 = 4n−1.

Hence ∆c
f1
−∆f1 ≥ 2n− 3 > 1 , a contradiction.

�

Theorem 3.4. M
′
(Bn,n) is pair difference cordial if and only if n ≤ 2.

Proof. Let (X1, Y1) be bipartition of the first copy of Bn,n where X1 = {x, yi : 1 ≤
i ≤ n}, Y1 = {y, xi : 1 ≤ i ≤ n} and (X2, Y2) be bipartition of the second copy

of Bn,n where X2 = {x′ , y′i : 1 ≤ i ≤ n}, Y2 = {y′ , x′i : 1 ≤ i ≤ n}. Therefore

E(M
′
(Bn,n)) = {xxi, x

′
x
′

i, yyi, y
′
y
′

i : 1 ≤ i ≤ n} ∪ {xx′ , yy′ , xix
′

i, yiy
′

i : 1 ≤ i ≤ n}.
Obviously M

′
(Bn,n) has 4n+ 2 vertices and 6n+ 1 edges. Since M

′
(B1,1) ∼= L4,by

theorem 2.8, M
′
(B1,1) is pair difference cordial. A pair difference cordial labeling

of M
′
(B1,2) is shown in Table 3.

n x x1 x2 y y1 y2 x
′

x
′

1 x
′

2 y
′

y
′

1 y
′

2

2 2 1 3 −2 −1 −3 5 4 6 −5 −4 −6
Table 3.

Suppose f is a pair difference cordial labeling of M
′
(Bn,n), n ≥ 3 . Obviously

∆f1 ≤ 8. Then ∆c
f1
≥ q − 8. This implies that ∆c

f1
≥ 6n + 4− 8 = 6n− 4. Hence

∆c
f1
−∆f1 ≥ 6n− 12 > 1 , a contradiction.

�

4. Shadow Graphs

Theorem 4.1. Let G be a (p, q) graph with q ≥ p.Then D2(G) is not pair difference
cordial.
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Proof. Suppose G is a pair difference cordial graph with q ≥ p. Obviously |V (D2(G))| =
2p and |E(D2(G))| = 4q. By theorem 2.5, 4q ≤ 2(2p) − 3. This implies that
4q ≤ 4q − 3, a contradiction.

�

Theorem 4.2. D2(Pn) is pair difference cordial for all values of n.

Proof. Let V (D2(Pn)) = {xi, yi : 1 ≤ i ≤ n} , E(D2(Pn)) = {xixi+1, yiyi+1 : 1 ≤
i ≤ n − 1} ∪ {xiyi+1, yixi+1 : 1 ≤ i ≤ n − 1}. Clearly D2(Pn) has 2n vertices and
4n− 4 edges.
Define f : V (D2(Pn))→ {±1,±2,±3, · · · ± n} by

f(xi) = i, 1 ≤ i ≤ n,

f(yi) = −i, 1 ≤ i ≤ n.

This vertex labeling yields that D2(Pn) is pair difference cordial for all values of n,
since ∆f1 = 2n− 2 = ∆fc

1
.

�

Theorem 4.3. D2(Cn) is not pair difference cordial for all values of n.

Proof. Let Cn be the first copy of the cycle x1x2 · · ·xnx1 and y1y2 · · · yny1 be
the second copy of the cycle Cn. The maximum number of the edges with the
labels 1 among the vertex labels 1, 2, · · · , n is n − 1. Also the maximum number
of the edges with the labels 1 among the vertex labels −1,−2, · · · ,−n is n − 1.
Therefore ∆f1 ≤ 2n − 2. This implies that ∆c

f1
≥ 4n − (2n − 2) = 2n + 2. Hence

∆f1 −∆c
f1
≥ 2n + 2− (2n− 2) = 4 > 1, a contradiction.

�

Theorem 4.4. D2(Kn) is pair difference cordial if and only if n ≤ 2.

Proof. Clearly |V (D2(Kn))| = 2n and |E(D2(Kn))| = n(n − 1) + 2
(
n
2

)
. Suppose

D2(Kn) is a pair difference cordial. By theorem 2.5 ,n(n− 1) + 2
(
n
2

)
≤ 2(2n)− 3,

which implies that 2n2 − 6n + 3 ≤ 0. It gives that n ≤ 2. Hence D2(Kn), n > 3
is not pair difference cordial. Obviously D2(K1) is pair difference cordial. Since
K2
∼= P2, by theorem 2.6, D2(K2) is pair difference cordial.

�

Theorem 4.5. D2(K1,n) is pair difference cordial if and only if n ≤ 2.

Proof. Clearly |V (D2(K1,n))| = 2n+2 and |E(D2(K1,n))| = 4n. Suppose D2(K1,n)
is a pair difference cordial . Obviously ∆f1 ≤ 2n + 1. Let u be the central vertex

of K1,n and u
′

be the corresponding shadow vertex . Hence d(u) = d(u
′
) = 2n in

D2(K1,n) . Now ∆f1 ≥ 2n− 2 + 2n− 2 ≥ 4n− 4. Hence ∆f1 −∆fc
1
≥ 2n− 3. This

implies n ≤ 2. Since D2(K1,1) ∼= C4 , by corollary 2.7, D2(K1,1) is pair difference

cordial. The labeling f defined by f(u) = 2, f(u
′
) = −2, f(u1) = −1, f(u2) =

−3, f(u
′

1) = 1, f(u
′

2) = 3 is a pair difference cordial labeling of D2(K1,2).
�

Theorem 4.6. D2(Pn �K1) is not pair difference cordial for all values of n.

Proof. Let V (D2(Pn � K1)) = {xi, x
′

i, yi, y
′

i : 1 ≤ i ≤ n} . There are 4n vertices
and 8n− 4 edges.
Suppose D2(Pn �K1) is pair difference cordial for all values of n. The maximum
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number of the edges with the labels 1 among the vertex labels 1, 2, · · · , n is n − 1
and the maximum number of the edges with the labels 1 among the vertex labels
−1,−2, · · · ,−n is n − 1. Therefore ∆f1 ≤ 2n − 2 + 2 = 2n. This implies that
∆c

f1
≥ 8n − 4 − 2n = 6n − 4. Hence ∆f1 − ∆c

f1
≥ 6n − 4 − 2n = 4n − 4 > 1, a

contradiction.
�

5. Spilitting Graphs

Theorem 5.1. S
′
(Pn) is pair difference cordial for all n.

Proof. Let V (S
′
(Pn)) = {xi, yi : 1 ≤ i ≤ n} and E(S

′
(Pn)) = {xixi+1 : 1 ≤ i ≤

n− 1} ∪ {xiyi+1, yixi+1 : 1 ≤ i ≤ n− 1} . There are two cases arises.

Case 1. n ≤ 5.
A pair difference cordial labeling for this case given in Table 4.

n x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
2 1 2 −1 −2
3 1 −1 3 −2 2 −3
4 1 2 −1 −2 3 4 −3 −4
5 1 2 5 −2 −4 3 4 −1 −5 −3

Table 4.

Case 2. n > 5.
There are four cases arises.
Subcase 1. n ≡ 0 (mod 4).

Assign the labels 1, 5, 9, · · · , n−3 to the vertices x1, x3, x5, · · · , xn−2
2

respectively

and assign the labels 2, 6, 10, · · · , n−2 respectively to the vertices x2, x4, x6, · · · , xn
2

.
Now we assign the labels 3, 7, 11, · · · , n−1 respectively to the vertices y1, y3, y5, · · · ,
yn−2

2
and assign the labels 4, 8, 12, · · · , n to the vertices y2, y4, y6, · · · , yn

2
respec-

tively.

Next we assign the labels −1,−5,−9, · · · ,−(n − 3) respectively to the vertices
xn+2

2
, xn+6

2
, xn+10

2
, · · · , xn−1 and we assign the labels −2,−6,−10, · · · ,−(n − 2)

respectively to the vertices xn+4
2
, xn+8

2
, xn+12

2
, · · · , xn . Lastly assign the labels

−3,−7,−11, · · · ,−(n − 1) respectively to the vertices yn+2
2
, yn+6

2
, yn+10

2
, · · · , yn−1

and assign the labels −4,−8,−12, · · · ,−n to the vertices yn+4
2
, yn+8

2
, yn+12

2
, · · · , yn

respectively.

Subcase 2. n ≡ 1 (mod 4).

Assign the labels 1, 5, 9, · · · , n−4 respectively to the vertices x1, x3, x5, · · · , xn−3
2

and assign the labels 2, 6, 10, · · · , n − 3 to the vertices x2, x4, x6, · · · , xn−1
2

respec-

tively. Now we assign the labels 3, 7, 11, · · · , n−2 to the vertices y1, y3, y5, · · · , yn−3
2

respectively and assign the labels 4, 8, 12, · · · , n − 1 respectively to the vertices
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y2, y4, y6, · · · , yn−1
2

and assign the label n to the vertex yn+1
2

.

Now we assign the labels −1,−3,−5, · · · ,−(n+1
2 ) respectively to the vertices

xn+1
2
, xn+5

2
, xn+9

2
, · · · , xn and we assign the labels −(n+3

2 ),−(n+7
2 ),−(n+11

2 ), · · · ,
−(n−1) respectively to the vertices yn, yn−2, yn−4, · · · , yn+5

2
. Next assign the labels

−2,−4,−6, · · · ,−(n−1
2 ) respectively to the vertices yn+3

2
, yn+7

2
, yn+11

2
, · · · , yn−1 and

assign the labels−(n+5
2 ),−(n+9

2 ),−(n+13
2 ), · · · ,−(n) to the vertices xn−1, xn−3, xn−5,

· · · , xn+3
2

respectively.

Subcase 3. n ≡ 2 (mod 4).
as in case 1 assign the labels to the vertices xi, yi(1 ≤ i ≤ n− 2). Finally we assign
the labels (n− 1), n,−n,−(n− 1) to the vertices xn−1, xn, yn−1, yn.

Subcase 4. n ≡ 3 (mod 4).

Assign the labels 1, 5, 9, · · · , n−2 respectively to the vertices x1, x3, x5, · · · , xn−1
2

and we assign the labels 2, 6, 10, · · · , n−5 to the vertices x2, x4, x6, · · · , xn−3
2

respec-

tively. Now we assign the labels 3, 7, 11, · · · , n−4 to the vertices y1, y3, y5, · · · , yn−5
2

respectively and assign the labels 4, 8, 12, · · · , n − 3 respectively to the vertices
y2, y4, y6, · · · , yn−3

2
.

Next we assign the labels −1,−3,−5, · · · ,−(n−1
2 ) respectively to the vertices

xn+1
2
, xn+5

2
, xn+9

2
, · · · , xn−1 and we assign the labels−(n+3

2 ),−(n+7
2 ),−(n+11

2 ), · · · ,
− (n) respectively to the vertices xn, xn−2, xn−4, · · · , xn+3

2
. Next assign the labels

−2,−4,−6, · · · ,−(n+1
2 ) respectively to the vertices yn+3

2
, yn+7

2
, yn+11

2
, · · · , yn and

assign the labels −(n+5
2 ),−(n+9

2 ),−(n+13
2 ), · · · ,−(n−1) to the vertices yn−1, yn−3,

yn−5, · · · , yn+5
2

respectively.

Finally assign the labels n− 1, n to the vertices yn−12
,

yn+1
2

respectively.

�

Theorem 5.2. S
′
(Pn �K1) is pair difference cordial.

Proof. Let V (S
′
(Pn � K1)) = {xi, x

′

i, yi, y
′

i : 1 ≤ i ≤ n} and E(S
′
(Pn � K1)) =

{xix
′

i+1, xi+1x
′

i : 1 ≤ i ≤ n−1}∪{xixi+1 : 1 ≤ i ≤ n−1}∪{yix
′

i, xiy
′

i : 1 ≤ i ≤ n}.
There are 4n vertices and 6n− 3 edges.There are two cases arises.

Case 1.n is even.

Assign the labels 1, 5, 9, · · · , (2n−3) to the vertices x1, x2, x3, · · · , xn
2

respectively
and we assign the labels−1,−5,−9, · · · ,−(2n−3) respectively xn+2

2
, xn+4

2
, xn+6

2
, · · · ,

xn. Next assign the labels 4, 8, 12, · · · , 2n to the vertices x
′

1, x
′

2, x
′

3, · · · , x
′
n
2

respec-

tively and we assign the labels−4,−8,−12, · · · ,−(2n) respectively x
′
n+2
2

, x
′
n+4
2

, x
′
n+6
2

,

· · · , x′n.
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Now we assign the labels 3, 7, 11, · · · , (2n−1) to the vertices y1, y2, y3, · · · , yn
2

re-
spectively and we assign the labels−3,−7,−11, · · · ,−(2n−1) respectively yn+2

2
, yn+4

2
,

yn+6
2
, · · · , yn. Next assign the labels 2, 6, 10, · · · , (2n−2) to the vertices y

′

1, y
′

2, y
′

3, · · · ,
y
′
n
2

respectively and assign the labels −2,−6,−10, · · · ,−(2n−2) respectively y
′
n+2
2

,

y
′
n+4
2

, y
′
n+6
2

, · · · , y′n.

Clearly ∆f1 = 3n−2,∆fc
1

= 3n−1. This vertex labeling gives that S
′
(Pn�K1)

is pair difference cordial for all even values of n.

Case 2.n is odd.

As in case 1 , assign the labels to the vertices xi, yi, x
′

i, yi
′(1 ≤ i ≤ n−1). Finally

we assign the labels 2n− 1,−(2n− 1), 2n,−2n to the vertices x
′

n, xn, yn, y
′

n.

Clearly ∆f1 = 3n−2,∆fc
1

= 3n−1. This vertex labeling gives that S
′
(Pn�K1)

is pair difference cordial for all odd values of n.

�

Theorem 5.3. S
′
(Kn) is pair difference cordial if and only if n ≤ 3.

Proof. Clearly
∣∣∣V (S

′
(Kn))

∣∣∣ = 2n and
∣∣∣E(S

′
(Kn))

∣∣∣ = 3n(n−1)
2 .

Case 1. n ≤ 3.
Obviously S

′
(K1) is pair difference cordial.Since S

′
(Kn) ∼= C4, then S

′
(K2) is pair

difference cordial. By theorem 5.2, S
′
(K3) is pair difference cordial.

Case 2. n > 3.
Suppose S

′
(Kn) is pair difference cordial. By theorem 2.5 ,

3n(n− 1)

2
≤ 2(2n)− 3,

⇒ 3n2 − 3n ≤ 4(2n)− 6,

⇒ 3n2 − 11n ≤ −6,

⇒ −3n2 + 11n ≥ 6, a contradiction

�

Theorem 5.4. S
′
(K1,n) is pair difference cordial if and only if n ≤ 3.

Proof. Let V (S
′
(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and E(S

′
(K1,n)) = {xxi, yyi, yix :

1 ≤ i ≤ n}.Since S
′
(K1,1) ∼= P4. By theorem 2.6, S

′
(K1,1) is pair difference cordial.

A pair difference cordial labeling of S
′
(K1,2) and S

′
(K1,3) is shown in Table 5.

n x x1 x2 x3 y y1 y2 y3
2 −1 −2 -3 2 1 3
3 −1 −2 -3 -4 2 1 3 4

Table 5.
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Suppose f is a pair difference cordial labeling of S
′
(K1,n), n > 3 . Obviously

∆f1 ≤ 4. Then ∆c
f1
≥ q − 4. This implies that ∆c

f1
≥ 3n− 4. Hence ∆c

f1
−∆f1 ≥

3n− 8 > 1 , a contradiction.
�

6. Conclusions

In this paper, we have studied about the pair difference cordility of Mirror
graph,Splitting graph,Shadow graph of some graphs.Investigation of the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some special graphs
are the open problems.
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