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Abstract

In this paper, we present two new generalizations of the pasting lemma using soft mixed

structure. To do this, we introduce the notions of a (τ1,τ2)-g-closed soft set and a (τ1,τ2)-
gpr-closed soft set. We establish the notions of mixed g-soft continuity and mixed gpr-soft

continuity between two soft topological spaces (X ,τ1,∆1), (X ,τ2,∆1) and a soft topological

space (X ,τ,∆2). Finally we prove two new versions of the pasting lemma using the mixed

g-soft continuous mapping and the mixed gpr-soft continuous mapping.

1. Introduction and motivation

“Soft set theory” was introduced as a general mathematical tool for dealing with encountered difficulties and problems in

medical science, social science, engineering, economics etc. [1]. Many researchers have been studying some topological

concepts with basic properties and some generalizations of a soft topological space via different approaches (for example, see

[2]-[15]). Also some applications of the soft set theory were obtained to other sciences such as medical science, food science,

insurance, investment etc. (see [16]-[26] for some examples). Recently, different decision making applications have been

studied (for example, see [27]-[30]).

“Mixed structure has”been studied on various topological spaces such as a soft topological space, a generalized topological

space etc. Using the mixed structure, some topological notions have been generalized with a new approach. For example,

some mixed sets and mixed continuities were defined on a generalized topological space (resp. on a soft topological space)

(see [31]-[37]).

“Pasting lemma” is one of the most important notions on a topological space for continuous functions. Especially, it has a

significant place in algebraic topology. Recent years, some new forms of the pasting lemma have been introduced by many

mathematicians (for example, see [15], [38]-[42] and the references therein).

Motivated by the above studies, we present two new version of the pasting lemma using mixed structure on a soft topological

space. For this purpose, we introduce the notions of (τ1,τ2)-g-closed soft set, a (τ1,τ2)-gpr-closed soft set, mixed soft

pre closure and mixed soft pre interior. We prove some topological properties of these new notions. Also we give some

counter examples for necessary relationships. We define the notions of mixed g-soft continuity and mixed gpr-soft continuity

between two soft topological spaces (X ,τ1,∆1), (X ,τ2,∆1) and a soft topological space (X ,τ,∆2). Finally, we establish two

new versions of the pasting lemma for mixed g-soft continuous functions and mixed gpr-soft continuous functions on a soft

topological space.
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2. Preliminaries

In this section, we recall some basic concepts related to soft set theory. Throughout this paper, we assume that X is an initial

universal set, ∆ is a nonempty set of parameters and ∆1,∆2 ⊆ ∆.

Definition 2.1. [1] Let φ : ∆1 → P(X) be a mapping. Then a pair (φ ,∆1) is called a soft set over X. SS(X)∆ denotes the

family of all soft sets on X.

Definition 2.2. [7] Let (φ ,∆1) be a soft set over X.

(1) (φ ,∆1) is called a null soft set if φ(e) = /0 for all e ∈ ∆1. It is denoted by /̃0.

(2) (φ ,∆1) is called an absolute soft set if φ(e) = X for all e ∈ ∆1. It is denoted by X̃.

Definition 2.3. [7] Let (φ ,∆1) ∈ SS(X)∆1
and (ϕ,∆2) ∈ SS(X)∆2

.

(1) (φ ,∆1) is called a soft subset of (ϕ,∆2) if ∆1 ⊆ ∆2 and φ(e)⊆ ϕ(e) for all e ∈ ∆1. It is denoted by

(φ ,∆1)⊆̃(ϕ,∆2).

(2) (φ ,∆1) is called soft equal to (ϕ,∆2) if (φ ,∆1)⊆̃(ϕ,∆2) and (ϕ,∆2)⊆̃(φ ,∆1). It is denoted by

(φ ,∆1) = (ϕ,∆2).

Definition 2.4. [10] Let (φ ,∆1), (ϕ,∆1) ∈ SS(X)∆1
.

(1) The complement of (φ ,∆1) is defined as

(φ ,∆1)
c = (φ c

,∆1),

where φ c(e) = (φ(e))c = X −φ(e) for all e ∈ ∆1.

(2) The difference of (φ ,∆1) and (ϕ,∆1) is defined as

(φ ,∆1)− (ϕ,∆1) = (φ −ϕ,∆1),

where (φ −ϕ)(e) = φ(e)−ϕ(e) for all e ∈ ∆1.

Definition 2.5. [14] Let J be an arbitrary index set and {(φi,∆)}i∈J be a subfamily of SS(X)∆.

(1) The union of these soft sets is the soft set (ϕ,∆), where

ϕ(e) =
⋃
i∈J

φi(e),

for each e ∈ ∆. It is denoted by
⋃̃
i∈J

(φi,∆) = (ϕ,∆).

(2) The intersection of these soft sets is the soft set (θ ,∆), where

θ(e) =
⋂
i∈J

φi(e),

for each e ∈ ∆. It is denoted by
⋂̃
i∈J

(φi,∆) = (θ ,∆).

Definition 2.6. [10] Let (φ ,∆1) ∈ SS(X)∆1
and x ∈ X. The point x is called in the soft set (φ ,∆1) if x ∈ φ(e) for all e ∈ ∆1. It

is denoted by x ∈ (φ ,∆1).

Definition 2.7. [10] Let (φ ,∆) ∈ SS(X)∆ and Y a nonempty subset of X. The sub soft set of (φ ,∆) over Y , denoted by (Y φ ,∆),
is defined by

Y φ(e) = Y ∩φ(e),

for all e ∈ ∆. In other words, (Y φ ,∆) = Ỹ ∩ (φ ,∆).

Definition 2.8. [10] Let τ be the collection of soft sets over X. Then τ is called a soft topology on X if the following conditions

hold:

(t1) /̃0, X̃ ∈ τ .

(t2) The intersection of any two soft sets in τ belongs to τ .

(t3) The union of any number of soft sets in τ belongs to τ .

The triple (X ,τ,∆) is called a soft topological space over X.

Definition 2.9. [10] The members of τ are said to be τ-soft open sets or soft open sets in X and also a soft set over X is called

soft closed in X if its complement belongs to τ .

OS(X ,τ,∆) or OS(X) denotes the set of all soft open sets over X and CS(X ,τ,∆) or CS(X) denotes the set of all soft closed

sets.
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Definition 2.10. [10] Let (X ,τ,∆) be a soft topological space over X and Y a nonempty subset of X. Then

τY =
{
(Y φ ,∆) : (φ ,∆) ∈ τ

}

is called the soft relative topology on Y and (Y,τY ,∆) is called a soft subspace of (X ,τ,∆).

Theorem 2.11. [10] Let (Y,τY ,∆) be a soft subspace of a soft topological space (X ,τ,∆) and (φ ,∆) be a soft set over X. Then

(1) (φ ,∆) is soft open in Y if and only if (φ ,∆) = Ỹ ∩ (ϕ,∆) for some (ϕ,∆) ∈ τ .

(2) (φ ,∆) is soft closed in Y if and only if (φ ,∆) = Ỹ ∩ (ϕ,∆) for some soft closed set (ϕ,∆) in X.

Theorem 2.12. [10] Let (Y,τY ,∆) be a soft subspace of a soft topological space (X ,τ,∆) and (φ ,∆) be a soft set over X. If

Ỹ ∈ τ then (φ ,∆) ∈ τ .

Definition 2.13. [10] Let (X ,τ,∆) be a soft topological space and (φ ,∆)∈ SS(X)∆. The soft closure of (φ ,∆) is the intersection

of all soft closed super sets of (φ ,∆). It is denoted by cl(φ ,∆) or τ − cl(φ ,∆).

Definition 2.14. [14] Let (X ,τ,∆) be a soft topological space and (φ ,∆) ∈ SS(X)∆.The soft interior of (φ ,∆) is the union of

all open soft subsets of (φ ,∆). It is denoted by int(φ ,∆) or τ − int(φ ,∆).

Theorem 2.15. [43] Let (X ,τ,∆) be a soft topological space and (φ ,∆),(ϕ,∆) ∈ SS(X)∆. Then

(1) cl /̃0 = /̃0, clX̃ = X̃ , int /̃0 = /̃0 and intX̃ = X̃ .

(2) (φ ,∆)⊆̃cl(φ ,∆) and int(φ ,∆)⊆̃(φ ,∆).
(3) cl(cl(φ ,∆)) = cl(φ ,∆) and int(int(φ ,∆)) = int(φ ,∆).
(4) (φ ,∆) is a closed soft set if and only if (φ ,∆) = cl(φ ,∆).
(5) (φ ,∆) is a soft open set if and only if (φ ,∆) = int(φ ,∆).
(6) (φ ,∆)⊆̃(ϕ,∆) implies both cl(φ ,∆)⊆̃cl(ϕ,∆) and int(φ ,∆)⊆̃int(ϕ,∆).
(7) cl((φ ,∆)∪̃(ϕ,∆)) = cl(φ ,∆)∪̃cl(ϕ,∆) and int((φ ,∆)∩̃(ϕ,∆)) = int(φ ,∆)∩̃int(ϕ,∆).
(8) cl((φ ,∆)∩̃(ϕ,∆))⊆̃cl(φ ,∆)∩̃cl(ϕ,∆) and int((φ ,∆)∪̃(ϕ,∆))⊇̃int(φ ,∆)∪̃int(ϕ,∆).

Definition 2.16. [14, 44] Let SS(X)∆1
, SS(Y )∆2

be two families of soft sets, u : X → Y and p : ∆1 → ∆2 mappings. Then the

mapping fpu : SS(X)∆1
→ SS(Y )∆2

is defined as:

(1) Let (φ ,∆1) ∈ SS(X)∆1
. The image of (φ ,∆1) under fpu, written as fpu(φ ,∆1) = ( fpu(φ), p(∆1)), is a soft set in SS(Y )∆2

such that

fpu(φ)(y) =

{ ⋃
x∈p−1(y)∩∆1

u(φ(x)) if p−1(y)∩∆1 6= /0

/0 otherwise
,

for all y ∈ ∆2.

(2) Let (ϕ,∆2) ∈ SS(Y )∆2
. The inverse image of (ϕ,∆2) under fpu, written as f−1

pu (ϕ,∆2) = ( f−1
pu (ϕ), p−1(∆2)), is a soft set in

SS(X)∆1
such that

f−1
pu (ϕ)(x) =

{
u−1(ϕ(p(x))) if p(x) ∈ ∆2

/0 otherwise
,

for all x ∈ ∆1.

Definition 2.17. [15] Let fpu : SS(X)∆1
→ SS(Y )∆2

be a soft mapping and Z ⊆ X. Then the restriction of fpu to SS(Z)∆1
is the

soft mapping fpu

∣∣∣SS(Z)∆1
from SS(Z)∆1

to SS(Y )∆2
which defined by the functions p : ∆1 → ∆2 and u |Z : Z → Y where u |Z is

the restriction of u to Z.

Definition 2.18. [36] Let τ1, τ2 be two soft topologies over X and (φ ,∆) ∈ SS(X)∆. Then (φ ,∆) is said to be

(1) (τ1,τ2)-semi open soft if (φ ,∆)⊆̃τ2 − cl(τ1 − int(φ ,∆)),
(2) (τ1,τ2)-pre open soft if (φ ,∆)⊆̃τ1 − int(τ2 − cl(φ ,∆)),
(3) (τ1,τ2)-α-open soft if (φ ,∆)⊆̃τ1 − int(τ2 − cl(τ1 − int(φ ,∆))),
(4) (τ1,τ2)-β -open soft if (φ ,∆)⊆̃τ2 − cl(τ1 − int(τ2 − cl(φ ,∆))),
(5) (τ1,τ2)-regular open soft if (φ ,∆) = τ1 − int(τ2 − cl(φ ,∆)).
The complement of a (τ1,τ2)-semi open soft set ((τ1,τ2)-pre open soft set, (τ1,τ2)-α-open soft set, (τ1,τ2)-β -open soft set,

(τ1,τ2)-regular open soft set) is called a (τ1,τ2)-semi closed soft set ((τ1,τ2)-pre closed soft set, (τ1,τ2)-α-closed soft set,

(τ1,τ2)-β -closed soft set, (τ1,τ2)-regular closed soft set).

3. Main results

In this section, we present two new versions of the pasting lemma on a soft topological space.
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3.1. (τ1,τ2)-g-closed soft sets and a pasting lemma

In this subsection we introduce the notion of a (τ1,τ2)-g-closed soft set and investigate some properties of this new notion to

obtain a new pasting lemma on a soft topological space.

Definition 3.1. Let τ1, τ2 be two soft topologies over X and (φ ,∆) ∈ SS(X)∆. Then (φ ,∆) is called a (τ1,τ2)-generalized

closed soft if τ2 − cl(φ ,∆)⊆̃(ϕ,∆) whenever (φ ,∆)⊆̃(ϕ,∆) and (ϕ,∆) is τ1-soft open. It is denoted by (τ1,τ2)-g-closed soft.

The complement of a (τ1,τ2)-g-closed soft set is (τ1,τ2)-g-open soft.

Example 3.2. Let X = {a,b,c}, ∆ = {e1,e2}, τ1 =
{

/̃0, X̃ ,(φ ,ζ )
}

and τ2 =
{

/̃0, X̃
}

where (φ ,ζ ) is a soft set over X defined

as

(ζ ,∆) = {(e1,{a}),(e2,{b})} .

Then the soft set (φ ,∆) = {(e1,{a,b}),(e2,{a,c})} is a (τ1,τ2)-g-closed soft set. Indeed, if we take (ϕ,∆) = X̃ ∈ τ1 then we

have

τ2 − cl(φ ,∆)⊆̃(ϕ,∆)

and

(φ ,∆)⊆̃(ϕ,∆).

Theorem 3.3. Let τ1, τ2 be two soft topologies over X such that τ2 ⊂ τ1. If (ϕ,∆)⊆̃(φ ,∆)⊆̃X̃ , (ϕ,∆) is a (τ1,τ2)-g-closed

soft set relative to (φ ,∆) and (φ ,∆) is a (τ1,τ2)-g-closed soft set in X, then (ϕ,∆) is (τ1,τ2)-g-closed soft relative to X̃ .

Proof. Let (ϕ,∆)⊆̃(θ ,∆) and (θ ,∆) is τ1-soft open. Then, using the hypothesis (ϕ,∆)⊆̃(φ ,∆)⊆̃X̃ , we have

(ϕ,∆)⊆̃(φ ,∆)∩̃(θ ,∆)

and

τ2(φ ,∆)
− cl(ϕ,∆)⊆̃(φ ,∆)∩̃(θ ,∆).

It follows that

(φ ,∆)∩̃(τ2 − cl(ϕ,∆))⊆̃(φ ,∆)∩̃(θ ,∆)

and

(φ ,∆)⊆̃(θ ,∆)∪̃(τ2 − cl(ϕ,∆))c
.

Since (φ ,∆) is a (τ1,τ2)-g-closed soft set and τ2 ⊂ τ1, then we have

τ2 − cl(φ ,∆)⊆̃(θ ,∆)∪̃(τ2 − cl(ϕ,∆))c
.

Therefore, we obtain

τ2 − cl(ϕ,∆)⊆̃τ2 − cl(φ ,∆)⊆̃(θ ,∆)∪̃(τ2 − cl(ϕ,∆))c

and so

τ2 − cl(ϕ,∆)⊆̃(θ ,∆).

Consequently, (ϕ,∆) is (τ1,τ2)-g-closed soft relative to X̃ .

In the following theorem, we see that the union of two (τ1,τ2)-g-closed soft sets is a (τ1,τ2)-g-closed soft set.

Theorem 3.4. Let τ1, τ2 be two soft topologies over X and (φ ,∆),(ϕ,∆) ∈ SS(X)∆. If (φ ,∆) and (ϕ,∆) are two (τ1,τ2)-g-

closed soft sets then (φ ,∆)∪̃(ϕ,∆) is (τ1,τ2)-g-closed soft.

Proof. If (φ ,∆)∪̃(ϕ,∆)⊆̃(θ ,∆) and (θ ,∆) is a τ1-soft open set, then using the hypothesis, we get

τ2 − cl
[
(φ ,∆)∪̃(ϕ,∆)

]
= τ2 − cl(φ ,∆)∪̃τ2 − cl(ϕ,∆)⊆̃(θ ,∆).

Hence (φ ,∆)∪̃(ϕ,∆) is (τ1,τ2)-g-closed soft.

The intersection of two (τ1,τ2)-g-closed soft sets is generally not a (τ1,τ2)-g-closed soft set as seen in the following example.

Example 3.5. Let X = {a,b,c}, ∆ = {e1,e2}, τ1 =
{

/̃0, X̃ ,(φ ,∆)
}

and τ2 =
{

/̃0, X̃
}

where (φ ,∆) is a soft set over X defined

as

(φ ,∆) = {(e1,{a}),(e2,{a})} .
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Then the soft sets (ϕ,∆) = {(e1,{a,b}),(e2,{a,c})} and (θ ,∆) = {(e1,{a,c}),(e2,{a,b})} are two (τ1,τ2)-g-closed soft sets.

We get

(ϕ,∆)∩̃(θ ,∆) = {(e1,{a}),(e2,{a})}

and so (ϕ,∆)∩̃(θ ,∆) is not a (τ1,τ2)-g-closed soft set.

Proposition 3.6. Let τ1, τ2 be two soft topologies over X such that τ2 ⊂ τ1. Let (φ ,∆) be a (τ1,τ2)-g-closed soft set and (ϕ,∆)
a τ2-soft closed set. Then (φ ,∆)∩̃(ϕ,∆) is a (τ1,τ2)-g-closed soft set.

Proof. Since (ϕ,∆) is τ2-soft closed, then (φ ,∆)∩̃(ϕ,∆) is a τ2-soft closed set in (φ ,∆) and so it is (τ1,τ2)-g-closed soft.

From Theorem 3.3, (φ ,∆)∩̃(ϕ,∆) is a (τ1,τ2)-g-closed soft set.

Theorem 3.7. Let (φ ,∆)⊆̃Ỹ ⊆̃X̃ and (φ ,∆) be a (τ1,τ2)-g-closed soft set in X. Then (φ ,∆) is (τ1,τ2)-g-closed soft relative to

(Y,E).

Proof. Let (φ ,∆)⊆̃Ỹ ∩̃(ϕ,∆) and (ϕ,∆) be a τ1-soft open set in X . Then (φ ,∆)⊆̃(ϕ,∆) and so by the hypothesis, we get

τ2 − cl(φ ,∆)⊆̃(ϕ,∆).

It follows that Ỹ ∩̃ [τ2 − cl(φ ,∆)]⊆̃Ỹ ∩̃(ϕ,∆). Consequently, (φ ,∆) is (τ1,τ2)-g-closed soft relative to (Y,E).

Theorem 3.8. Let τ1, τ2 be two soft topologies over X such that τ2 ⊂ τ1. If a soft set (φ ,∆) is (τ1,τ2)-g-closed soft then

[τ2 − cl(φ ,∆)]− (φ ,∆) contains no nonempty τ2-soft closed set.

Proof. Let (ϕ,∆) be a τ2-soft closed set of [τ2 − cl(φ ,∆)]− (φ ,∆). So we get (φ ,∆)⊆̃(ϕ,∆)c. Since (φ ,∆) is (τ1,τ2)-g-closed

soft, we have

τ2 − cl(φ ,∆)⊆̃(ϕ,∆)c

or

(ϕ,∆)⊆̃ [τ2 − cl(φ ,∆)]c .

Thus we obtain

(ϕ,∆)⊆̃ [τ2 − cl(φ ,∆)] ∩̃ [τ2 − cl(φ ,∆)]c = /̃0,

that is, (ϕ,∆) is a null soft set.

As a consequence of Theorem 3.8, we give the following corollary.

Corollary 3.9. Let τ1, τ2 be two soft topologies over X such that τ2 ⊂ τ1. A (τ1,τ2)-g-closed soft set (φ ,∆) is τ2-soft closed if

and only if [τ2 − cl(φ ,∆)]− (φ ,∆) is τ2-soft closed.

Proof. If (φ ,∆) is τ2-soft closed, then we have [τ2 − cl(φ ,∆)]− (φ ,∆) = /̃0. Conversely, assume that [τ2 − cl(φ ,∆)]− (φ ,∆) is

τ2-soft closed. But (φ ,∆) is (τ1,τ2)-g-closed soft and [τ2 − cl(φ ,∆)]− (φ ,∆) is a τ2-soft closed subset of itself. From Theorem

3.8, we have [τ2 − cl(φ ,∆)]− (φ ,∆) = /̃0 and so τ2 − cl(φ ,∆) = (φ ,∆).

We introduce the notion of mixed g-soft continuity as follows:

Definition 3.10. Let X ,Y be two initial universe sets, ∆1,∆2 ⊆ ∆ two sets of parameters, τ1, τ2 two soft topologies over X and

τ a soft topology over Y . Assume that u : X → Y , p : ∆1 → ∆2 are two mappings and fpu : SS(X)∆1
→ SS(Y )∆2

is a function.

Then fpu is called mixed g-soft continuous (briefly, (τ1τ2,τ)-g-soft cts) if f−1
pu (ϕ,∆2) is a (τ1,τ2)-g-closed soft set for every

τ-soft closed set (ϕ,∆2) in Y .

Now we present a new version of the pasting lemma in the following theorem.

Theorem 3.11. (Pasting lemma for (τ1,τ2)-g-closed soft sets) Let X̃ = Ã∪̃B̃ be a soft topological space with two soft topologies

τ1, τ2 and Y a soft topological space with a soft topology τ . Let fp1u1
: SS(A)∆1

→ SS(Y )∆2
and fp2u2

: SS(B)∆1
→ SS(Y )∆2

be

two mixed g-soft continuous mappings where p1 = p2 : ∆1 → ∆2, u1 : A → Y and u2 : B → Y are functions. Assume that Ã, B̃

are two (τ1,τ2)-g-closed soft sets and τ2 ⊂ τ1. If u1(x) = u2(x) for every x ∈ A∩B, then fp1u1
and fp2u2

combine to give a

mixed g-soft continuous mapping fpu : SS(X)∆1
→ SS(Y )∆2

defined by the functions p = p1 = p2 and u(x) = u1(x) if x ∈ A

and u(x) = u2(x) if x ∈ B.

Proof. Let (ϕ,∆2) be a τ-soft closed set in Y . Then we can easily seen that

f−1
pu (ϕ,∆2) = f−1

p1u1
(ϕ,∆2)∪̃ f−1

p2u2
(ϕ,∆2).

From the mixed g-soft continuity of fp1u1
, then f−1

p1u1
(ϕ,∆2) is a (τ1,τ2)-g-closed soft set in A. Since Ã is (τ1,τ2)-g-closed

soft, by Theorem 3.3, f−1
p1u1

(ϕ,∆2) is a (τ1,τ2)-g-closed soft set relative to X̃ . Similarly, f−1
p2u2

(ϕ,∆2) is a (τ1,τ2)-g-closed soft

set relative to X̃ . Also using Theorem 3.4, we get that f−1
pu (ϕ,∆2) is (τ1,τ2)-g-closed soft in X . Therefore, fpu is a mixed

g-soft continuous mapping.
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3.2. (τ1,τ2)-gpr-closed soft sets and a pasting lemma

In this subsection, we define the notion of a (τ1,τ2)-gpr-closed soft set. To do this, we introduce the notion of a mixed soft pre

closure and a mixed soft pre interior. We investigate some basic properties of these new notions.

Definition 3.12. Let X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆) ∈ SS(X)∆.

(1) The mixed soft pre closure of (φ ,∆) is defined by

τ1τ2 − pcl(φ ,∆) = ∩̃
{
(ϕ,∆) : (φ ,∆)⊆̃(ϕ,∆) and (ϕ,∆) is (τ1,τ2)-pre closed soft

}
.

(2) The mixed soft pre interior of (φ ,∆) is defined by

τ1τ2 − pint(φ ,∆) = ∪̃
{
(ϕ,∆) : (ϕ,∆)⊆̃(φ ,∆) and (ϕ,∆) is (τ1,τ2)-pre open soft

}
.

We give some properties of (τ1,τ2)-pre open soft sets to obtain some basic theorems related to mixed soft pre closure and

mixed soft pre interior.

Theorem 3.13. Arbitrary union of (τ1,τ2)-pre open soft sets is a (τ1,τ2)-pre open soft set.

Proof. Let A = {(φ ,∆)i : i ∈ I} be a collection of (τ1,τ2)-pre open soft sets. Then we have

(φ ,∆)i⊆̃τ1 − int(τ2 − cl(φ ,∆)i),

for each (φ ,∆)i ∈ A . Therefore, we get

∪̃(φ ,∆)i⊆̃∪̃ [τ1 − int(τ2 − cl(φ ,∆)i)]⊆̃τ1 − int(∪̃ [τ2 − cl(φ ,∆)i])⊆̃τ1 − int
(
τ2 − cl

(
∪̃(φ ,∆)i

))
.

Consequently, ∪̃(φ ,∆)i is a (τ1,τ2)-pre open soft set.

As a result of Theorem 3.13, we give the following corollary.

Corollary 3.14. Arbitrary intersection of (τ1,τ2)-pre closed soft sets is a (τ1,τ2)-pre closed soft set.

Finite intersection of (τ1,τ2)-pre open soft sets is not always a (τ1,τ2)-pre open soft set as seen in the following example.

Example 3.15. Let X = {a,b,c}, ∆ = {e1,e2}, τ1 =
{

/̃0, X̃ ,(φ1,∆),(φ2,∆)
}

and τ2 =
{

/̃0, X̃ ,(ϕ,∆)
}

where (φ1,∆), (φ2,∆)

and (ϕ,∆) are soft sets over X defined as

(φ1,∆) = {(e1,{a}),(e2,{b,c})} ,

(φ2,∆) = {(e1,{b,c}),(e2,{a})}

and

(ϕ,∆) = {(e1,X),(e2,{a,b})} .

Then the soft sets (θ ,∆) = {(e1,{a}),(e2,{a,c})} and (ψ,∆) = {(e1,{b}),(e2,{b,c})} are two (τ1,τ2)-pre open soft sets. We

get

(θ ,∆)∩̃(ψ,∆) = {(e1, /0),(e2,{c})}

and so (θ ,∆)∩̃(ψ,∆) is not a (τ1,τ2)-pre open soft set.

Now we prove the following theorems.

Theorem 3.16. Let X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆) ∈ SS(X)∆. Then the followings

hold:

(1) (φ ,∆) is (τ1,τ2)-pre closed soft if and only if (φ ,∆) = τ1τ2 − pcl(φ ,∆).
(2) (φ ,∆) is (τ1,τ2)-pre open soft if and only if (φ ,∆) = τ1τ2 − pint(φ ,∆).

(3) τ1τ2 − pcl /̃0 = /̃0 and τ1τ2 − pclX̃ = X̃ .

(4) τ1τ2 − pint /̃0 = /̃0 and τ1τ2 − pintX̃ = X̃ .

(5) τ1τ2 − pcl [τ1τ2 − pcl(φ ,∆)] = τ1τ2 − pcl(φ ,∆).
(6) τ1τ2 − pint [τ1τ2 − pint(φ ,∆)] = τ1τ2 − pint(φ ,∆).
(7) [τ1τ2 − pcl(φ ,∆)]c = τ1τ2 − pint(φ c

,∆).
(8) [τ1τ2 − pint(φ ,∆)]c = τ1τ2 − pcl(φ c

,∆).
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Proof. (1) Let (φ ,∆) be a (τ1,τ2)-pre closed soft set. Since (φ ,∆) is the smallest (τ1,τ2)-pre closed soft set containing itself,

using Definition 3.12 (1), we have (φ ,∆) = τ1τ2 − pcl(φ ,∆). The converse statement of the proof is clear from Corollary 3.14.

(2) Let (φ ,∆) be a (τ1,τ2)-pre open soft set. Since (φ ,∆) is the largest (τ1,τ2)-pre open soft set contained (φ ,∆), using

Definition 3.12 (2), we have (φ ,∆) = τ1τ2 − pint(φ ,∆). The converse part of the proof can be easily from Theorem 3.13.

(3) Since /̃0 and X̃ are (τ1,τ2)-pre closed soft sets, then using (1), we get τ1τ2 − pcl /̃0 = /̃0 and τ1τ2 − pclX̃ = X̃ .

(4) Since /̃0 and X̃ are (τ1,τ2)-pre open soft sets, then using (2), we get τ1τ2 − pint /̃0 = /̃0 and τ1τ2 − pintX̃ = X̃ .

(5) Using (1), we obtain

τ1τ2 − pcl [τ1τ2 − pcl(φ ,∆)] = τ1τ2 − pcl(φ ,∆),

since τ1τ2 − pcl(φ ,∆) is (τ1,τ2)-pre closed soft.

(6) Using (2), we get

τ1τ2 − pint [τ1τ2 − pint(φ ,∆)] = τ1τ2 − pint(φ ,∆),

since τ1τ2 − pint(φ ,∆) is (τ1,τ2)-pre open soft.

(7) Using Definition 2.4 (1) and Definition 3.12, we get

[τ1τ2 − pcl(φ ,∆)]c

=
[
∩̃
{
(ϕ,∆) : (φ ,∆)⊆̃(ϕ,∆) and (ϕ,∆) is (τ1,τ2)-pre closed soft

}]c

= ∪̃
{
(ϕc

,∆) : (ϕc
,∆)⊆̃(φ c

,∆) and (ϕc
,∆) is (τ1,τ2)-pre open soft

}

= τ1τ2 − pint(φ c
,∆).

(8) By the similar arguments used in the proof of (7), it can be easily proved.

Theorem 3.17. Let X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆),(ϕ,∆) ∈ SS(X)∆. Then the

followings hold:

(1) If (φ ,∆)⊆̃(ϕ,∆) then τ1τ2 − pint(φ ,∆)⊆̃τ1τ2 − pint(ϕ,∆).
(2) If (φ ,∆)⊆̃(ϕ,∆) then τ1τ2 − pcl(φ ,∆)⊆̃τ1τ2 − pcl(ϕ,∆).
(3) τ1τ2 − pcl

[
(φ ,∆)∪̃(ϕ,∆)

]
= τ1τ2 − pcl(φ ,∆)∪̃τ1τ2 − pcl(ϕ,∆).

(4) τ1τ2 − pint
[
(φ ,∆)∩̃(ϕ,∆)

]
= τ1τ2 − pint(φ ,∆)∩̃τ1τ2 − pint(ϕ,∆).

(5) τ1τ2 − pcl
[
(φ ,∆)∩̃(ϕ,∆)

]
⊆̃τ1τ2 − pcl(φ ,∆)∩̃τ1τ2 − pcl(ϕ,∆).

(6) τ1τ2 − pint
[
(φ ,∆)∪̃(ϕ,∆)

]
⊇̃τ1τ2 − pint(φ ,∆)∪̃τ1τ2 − pint(ϕ,∆).

Proof. (1) Using the hypothesis, we have

τ1τ2 − pint(φ ,∆)⊆̃(φ ,∆)⊆̃(ϕ,∆) =⇒ τ1τ2 − pint(φ ,∆)⊆̃(ϕ,∆).

Since τ1τ2 − pint(φ ,∆) is the largest (τ1,τ2)-pre open soft set contained in (ϕ,∆). Therefore, we get

τ1τ2 − pint(φ ,∆)⊆̃τ1τ2 − pint(ϕ,∆).

(2) Since (φ ,∆)⊆̃τ1τ2 − pcl(φ ,∆) and (ϕ,∆)⊆̃τ1τ2 − pcl(ϕ,∆), we have

(φ ,∆)⊆̃(ϕ,∆)⊆̃τ1τ2 − pcl(ϕ,∆) =⇒ (φ ,∆)⊆̃τ1τ2 − pcl(ϕ,∆).

Because τ1τ2 − pcl(φ ,∆) is the smallest (τ1,τ2)-pre closed soft set containing (φ ,∆), then we obtain

τ1τ2 − pcl(φ ,∆)⊆̃τ1τ2 − pcl(ϕ,∆).

(3) We have

(φ ,∆)⊆̃(φ ,∆)∪̃(ϕ,∆) and (ϕ,∆)⊆̃(φ ,∆)∪̃(ϕ,∆).

By the condition (2), we get

τ1τ2 − pcl(φ ,∆)⊆̃τ1τ2 − pcl
[
(φ ,∆)∪̃(ϕ,∆)

]
,

τ1τ2 − pcl(ϕ,∆)⊆̃τ1τ2 − pcl
[
(φ ,∆)∪̃(ϕ,∆)

]

and so

τ1τ2 − pcl(φ ,∆)∪̃τ1τ2 − pcl(ϕ,∆)⊆̃τ1τ2 − pcl
[
(φ ,∆)∪̃(ϕ,∆)

]
. (3.1)
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Conversely, we have

(φ ,∆)⊆̃τ1τ2 − pcl(φ ,∆), (ϕ,∆)⊆̃τ1τ2 − pcl(ϕ,∆)

and so

(φ ,∆)∪̃(ϕ,∆)⊆̃τ1τ2 − pcl(φ ,∆)∪̃τ1τ2 − pcl(ϕ,∆),

that is, τ1τ2− pcl(φ ,∆)∪̃τ1τ2− pcl(ϕ,∆) is a (τ1,τ2)-pre closed soft set containing (φ ,∆)∪̃(ϕ,∆). Since τ1τ2− pcl
[
(φ ,∆)∪̃(ϕ,∆)

]

is the smallest (τ1,τ2)-pre closed soft set containing (φ ,∆)∪̃(ϕ,∆), we obtain

τ1τ2 − pcl
[
(φ ,∆)∪̃(ϕ,∆)

]
⊆̃τ1τ2 − pcl(φ ,∆)∪̃τ1τ2 − pcl(ϕ,∆). (3.2)

From the inequalities (3.1) and (3.2), we get

τ1τ2 − pcl
[
(φ ,∆)∪̃(ϕ,∆)

]
= τ1τ2 − pcl(φ ,∆)∪̃τ1τ2 − pcl(ϕ,∆).

(4) By the similar arguments used in the proof of (3), we prove

τ1τ2 − pint
[
(φ ,∆)∩̃(ϕ,∆)

]
= τ1τ2 − pint(φ ,∆)∩̃τ1τ2 − pint(ϕ,∆).

(5) Since (φ ,∆)∩̃(ϕ,∆)⊆̃(φ ,∆) and (φ ,∆)∩̃(ϕ,∆)⊆̃(ϕ,∆), we get

τ1τ2 − pcl
[
(φ ,∆)∩̃(ϕ,∆)

]
⊆̃τ1τ2 − pcl(φ ,∆),

τ1τ2 − pcl
[
(φ ,∆)∩̃(ϕ,∆)

]
⊆̃τ1τ2 − pcl(ϕ,∆)

and so

τ1τ2 − pcl
[
(φ ,∆)∩̃(ϕ,∆)

]
⊆̃τ1τ2 − pcl(φ ,∆)∩̃τ1τ2 − pcl(ϕ,∆).

(6) By the similar arguments used in the proof of (5), we obtain

τ1τ2 − pint
[
(φ ,∆)∪̃(ϕ,∆)

]
⊇̃τ1τ2 − pint(φ ,∆)∪̃τ1τ2 − pint(ϕ,∆).

Theorem 3.18. Let X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆) ∈ SS(X)∆. Then the followings

hold:

(1) τ1τ2 − pcl(φ ,∆) = (φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆)).
(2) τ1τ2 − pint(φ ,∆) = (φ ,∆)∩̃τ1 − int(τ2 − cl(φ ,∆)).

Proof. (1) We have

τ1 − cl
[
τ2 − int

[
(φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆))

]]

⊆̃τ1 − cl
[
τ2 − int(φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆))

]

= τ1 − cl(τ2 − int(φ ,∆))⊆̃(φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆)).

Therefore, (φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆)) is a (τ1,τ2)-pre closed soft set whence

τ1τ2 − pcl(φ ,∆)⊆̃(φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆)). (3.3)

Conversely, since τ1τ2 − pcl(φ ,∆) is (τ1,τ2)-pre closed soft, we get

τ1 − cl(τ2 − int(φ ,∆))⊆̃τ1 − cl(τ2 − int(τ1τ2 − pcl(φ ,∆)))

⊆̃τ1τ2 − pcl(φ ,∆)

and so

(φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆))⊆̃τ1τ2 − pcl(φ ,∆). (3.4)

By the inequalities (3.3) and (3.4), we obtain

τ1τ2 − pcl(φ ,∆) = (φ ,∆)∪̃τ1 − cl(τ2 − int(φ ,∆)).

(2) It is a consequence of (1).
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Proposition 3.19. Let τ1, τ2 be two soft topologies over X and (φ ,∆) ∈ SS(X)∆. If (φ ,∆)⊆̃Ỹ ⊆̃X̃ and Ỹ ∈ τ2 then we have

τ1τ2 − pclY (φ ,∆) = τ1τ2 − pclX (φ ,∆)∩̃Ỹ .

Proof. From Theorem 3.18, we get

τ1τ2 − pclY (φ ,∆) = (φ ,∆)∪̃ [τ1 − clY (τ2 − intY (φ ,∆))]

= (φ ,∆)∪̃ [τ1 − clY (τ2 − int(φ ,∆))]

= (φ ,∆)∪̃
[
τ1 − cl

(
τ2 − int(φ ,∆)∩̃Ỹ

)]

=
[
(φ ,∆)∪̃τ1 − cl (τ2 − int(φ ,∆))

]
∩̃
[
(φ ,∆)∪̃Ỹ

]

= τ1τ2 − pclX (φ ,∆)∩̃Ỹ .

Proposition 3.20. Let τ1, τ2 be two soft topologies over X and (φ ,∆) ∈ SS(X)∆. If Ỹ ∈ τ2 and Ỹ is a (τ1,τ2)-pre closed soft

set then we have

τ1τ2 − pclY (φ ,∆) = τ1τ2 − pclX (φ ,∆).

Proof. From Proposition 3.19, we have

τ1τ2 − pclY (φ ,∆) = τ1τ2 − pclX (φ ,∆)∩̃Ỹ .

Since Ỹ is a (τ1,τ2)-pre closed soft set, we get

τ1τ2 − pclX (φ ,∆)⊆̃Ỹ .

Consequently, we obtain

τ1τ2 − pclY (φ ,∆) = τ1τ2 − pclX (φ ,∆).

We introduce the notion of a (τ1,τ2)-gpr-closed soft set.

Definition 3.21. Let τ1, τ2 be two soft topologies over X and (φ ,∆) ∈ SS(X)∆. Then (φ ,∆) is called a (τ1,τ2)-generalized pre

regular closed soft if τ1τ2 − pcl(φ ,∆)⊆̃(ϕ,∆) whenever (φ ,∆)⊆̃(ϕ,∆) and (ϕ,∆) is (τ1,τ2)-regular open soft. It is denoted

by (τ1,τ2)-gpr-closed soft. The complement of a (τ1,τ2)-gpr-closed soft set is (τ1,τ2)-gpr-open soft.

Example 3.22. Let X = {a,b,c,d}, ∆ = {e1,e2}, τ1 =
{

/̃0, X̃ ,(φ1,∆),(φ2,∆)
}

and τ2 =
{

/̃0, X̃ ,(φ2,∆)
}

where (φ1,∆) and

(φ2,∆) are two soft sets over X defined as

(φ1,∆) = {(e1,{a,b}),(e2,{c,d})}

and

(φ2,∆) = {(e1,{c,d}),(e2,{a,b})} .

Then the soft set (ϕ,∆) = {(e1,{a}),(e2,{c})} is a (τ1,τ2)-gpr-closed soft set.

Now we give the following implications:

(τ1,τ2)-regular closed soft

⇓
(τ1,τ2)-pre closed soft

⇓
(τ1,τ2)-gpr-closed soft

The inverse implications of these are not always true as seen in the following example.
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Example 3.23. Let X = {a,b,c}, ∆= {e}, τ1 =
{

/̃0, X̃ ,(φ1,∆),(φ2,∆),(φ3,∆)
}

and τ2 =
{

/̃0, X̃ ,(φ3,∆)
}

where (φ1,∆), (φ2,∆)

and (φ3,∆) are soft sets over X defined as

(φ1,∆) = {(e,{b})} , (φ2,∆) = {(e,{c})}

and

(φ3,∆) = {(e,{b,c})} .

Then the soft set (ϕ1,∆) = {(e,{b,c})} is a (τ1,τ2)-gpr-closed soft set, but it is not (τ1,τ2)-pre closed soft. Also the soft set

(ϕ2,∆) = {(e,{a})} is a (τ1,τ2)-pre closed soft set, but it is not (τ1,τ2)-regular closed soft.

Now we prove some necessary properties and theorems related to the notion of a (τ1,τ2)-gpr-open soft set.

Theorem 3.24. Let X be a soft topological space with two soft topologies τ1, τ2. (φ ,∆) ∈ SS(X)E is (τ1,τ2)-gpr-open soft if

and only if (ϕ,∆)⊆̃τ1τ2 − pint(φ ,∆) whenever (ϕ,∆) is (τ1,τ2)-regular closed soft and (ϕ,∆)⊆̃(φ ,∆).

Proof. Let (φ ,∆) be a (τ1,τ2)-gpr-open soft set, (ϕ,∆) be a (τ1,τ2)-regular closed soft set and (ϕ,∆)⊆̃(φ ,∆). Then we have

X̃ − (φ ,∆)⊆̃X̃ − (ϕ,∆) where X̃ − (ϕ,∆) is (τ1,τ2)-regular open soft. Since X̃ − (φ ,∆) is (τ1,τ2)-gpr-closed soft, then we get

τ1τ2 − pcl(X̃ − (φ ,∆))⊆̃X̃ − (ϕ,∆). Hence we obtain

X̃ − τ1τ2 − pint(φ ,∆)⊆̃X̃ − (ϕ,∆)

and so (ϕ,∆)⊆̃τ1τ2 − pint(φ ,∆). Conversely, we suppose that (ϕ,∆) is (τ1,τ2)-regular closed soft and (ϕ,∆)⊆̃(φ ,∆) implies

(ϕ,∆)⊆̃τ1τ2 − pint(φ ,∆). Let X̃ − (φ ,∆)⊆̃(θ ,∆) where (θ ,∆) is (τ1,τ2)-regular open soft. Then we have X̃ − (θ ,∆)⊆̃(φ ,∆)
where X̃ − (θ ,∆) is (τ1,τ2)-regular closed soft. By the hypothesis, we get X̃ − (θ ,∆)⊆̃τ1τ2 − pint(φ ,∆), that is, X̃ −⊆̃τ1τ2 −
pint(φ ,∆)⊆̃(θ ,∆). Hence we obtain

τ1τ2 − pcl(X̃ − (φ ,∆))⊆̃(θ ,∆)

and so X̃ − (φ ,∆) is (τ1,τ2)-gpr-closed soft, that is, (φ ,∆) is (τ1,τ2)-gpr-open soft.

Theorem 3.25. Let X be a soft topological space with two soft topologies τ1, τ2. If (φ ,∆) is (τ1,τ2)-gpr-closed soft and

(φ ,∆)⊆̃(ϕ,∆)⊆̃τ1τ2 − pcl(φ ,∆), then (ϕ,∆) is (τ1,τ2)-gpr-closed soft.

Proof. Let (ϕ,∆)⊆̃(θ ,∆) where (θ ,∆) is (τ1,τ2)-regular open soft. Then (φ ,∆)⊆̃(ϕ,∆) implies (φ ,∆)⊆̃(θ ,∆). Since (φ ,∆)
is (τ1,τ2)-gpr-closed soft, we get τ1τ2 − pcl(φ ,∆)⊆̃(θ ,∆). Also (ϕ,∆)⊆̃τ1τ2 − pcl(φ ,∆) implies

τ1τ2 − pcl(ϕ,∆)⊆̃τ1τ2 − pcl(φ ,∆).

Thus we obtain

τ1τ2 − pcl(ϕ,∆)⊆̃(θ ,∆)

and so (ϕ,∆) is (τ1,τ2)-gpr-closed soft.

Theorem 3.26. Let X be a soft topological space with two soft topologies τ1, τ2. If (φ ,∆) is (τ1,τ2)-gpr-open soft and

τ1τ2 − pint(φ ,∆)⊆̃(ϕ,∆)⊆̃(φ ,∆), then (ϕ,∆) is (τ1,τ2)-gpr-open soft.

Proof. τ1τ2 − pint(φ ,∆)⊆̃(ϕ,∆)⊆̃(φ ,∆) implies

X̃ − (φ ,∆)⊆̃X̃ − (ϕ,∆)⊆̃X̃ − [τ1τ2 − pint(φ ,∆)] ,

that is,

X̃ − (φ ,∆)⊆̃X̃ − (ϕ,∆)⊆̃τ1τ2 − pcl(X̃ − (φ ,∆)).

Since X̃ − (φ ,∆) is a (τ1,τ2)-gpr-closed soft set, from Theorem 3.25, X̃ − (ϕ,∆) is (τ1,τ2)-gpr-closed soft and so (ϕ,∆) is

(τ1,τ2)-gpr-open soft.

The union and the intersection of two (τ1,τ2)-gpr-closed soft sets can not be always (τ1,τ2)-gpr-closed soft as seen in the

following examples, respectively.
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Example 3.27. Let X = {a,b,c,d,e}, ∆ = {e′}, τ1 = τ2 =
{

/̃0, X̃ ,(φ1,∆),(φ2,∆),(φ3,∆)
}

where (φ1,∆), (φ2,∆) and (φ3,∆)

are soft sets over X defined as

(φ1,∆) =
{
(e′,{a,c})

}
, (φ2,∆) =

{
(e′,{b,d})

}

and

(φ3,∆) =
{
(e′,{a,b,c,d})

}
.

Then the soft set (ϕ,∆) = {(e′,{a})} and (θ ,∆) = {(e′,{c})} are two (τ1,τ2)-gpr-closed soft set, but (ϕ,∆)∪̃(θ ,∆) =
{(e′,{a,c})} is not (τ1,τ2)-gpr-closed soft.

Example 3.28. Let X = {a,b,c}, ∆ = {e′}, τ1 = τ2 =
{

/̃0, X̃ ,(φ1,∆),(φ2,∆),(φ3,∆)
}

where (φ1,∆), (φ2,∆) and (φ3,∆) are

soft sets over X defined as

(φ1,∆) =
{
(e′,{b})

}
, (φ2,∆) =

{
(e′,{c})

}

and

(φ3,∆) =
{
(e′,{b,c})

}
.

Then the soft set (ϕ,∆) = {(e′,{b,c})} and (θ ,∆) = {(e′,{a,b})} are two (τ1,τ2)-gpr-closed soft set, but (ϕ,∆)∩̃(θ ,∆) =
{(e′,{b})} is not (τ1,τ2)-gpr-closed soft.

Proposition 3.29. Let X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆),(ϕ,∆) ∈ SS(X)∆. If (ϕ,∆) is

(τ1,τ2)-gpr-open soft and τ1τ2 − pint(ϕ,∆)⊆̃(φ ,∆) then (φ ,∆)∩̃(ϕ ,∆) is (τ1,τ2)-gpr-open soft.

Proof. Since (ϕ,∆) is (τ1,τ2)-gpr-open soft and τ1τ2 − pint(ϕ,∆)⊆̃(φ ,∆) then we have

τ1τ2 − pint(ϕ,∆)⊆̃(φ ,∆)∩̃(ϕ,∆)⊆̃(ϕ,∆).

From Theorem 3.26, (φ ,∆)∩̃(ϕ,∆) is (τ1,τ2)-gpr-open soft.

The class of all (τ1,τ2)-pre-open soft sets is denoted by PO(X ,τ1,τ2).

Proposition 3.30. Let X be a soft topological space with two soft topologies τ1, τ2, (φ ,∆),(ϕ,∆) ∈ SS(X)∆ and PO(X ,τ1,τ2)
closed under finite intersections. If (φ ,∆) and (ϕ,∆) are two (τ1,τ2)-gpr-open soft sets, then (φ ,∆)∩̃(ϕ,∆) is (τ1,τ2)-gpr-open

soft.

Proof. Let us consider

X̃ −
[
(φ ,∆)∩̃(ϕ,∆)

]
=
[
X̃ − (φ ,∆)

]
∪̃
[
X̃ − (ϕ,∆)

]
⊆̃(θ ,∆),

where (θ ,∆) is (τ1,τ2)-regular open soft. Then we have X̃ − (φ ,∆)⊆̃(θ ,∆) and X̃ − (ϕ,∆)⊆̃(θ ,∆). Since (φ ,∆) and (ϕ,∆)
are two (τ1,τ2)-gpr-open soft sets, we have

τ1τ2 − pcl
(

X̃ − (φ ,∆)
)
⊆̃(θ ,∆)

and

τ1τ2 − pcl
(

X̃ − (ϕ,∆)
)
⊆̃(θ ,∆).

By the hypothesis, we find

τ1τ2 − pcl
[(

X̃ − (φ ,∆)
)
∪̃
(

X̃ − (ϕ,∆)
)]

⊆̃τ1τ2 − pcl
(

X̃ − (φ ,∆)
)
∪̃τ1τ2 − pcl

(
X̃ − (ϕ,∆)

)
⊆̃(θ ,∆),

that is,

τ1τ2 − pcl
[
X̃ −

(
(φ ,∆)∩̃(ϕ,∆)

)]
⊆̃(θ ,∆).

Consequently, (φ ,∆)∩̃(ϕ,∆) is (τ1,τ2)-gpr-open soft.

The following lemma will be used in the proof of a proposition related to a (τ1,τ2)-gpr-closed soft set in a soft subspace.
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Lemma 3.31. Let Ỹ ⊆̃X̃ , X be a soft topological space with two soft topologies τ1, τ2 and (φ ,∆) ∈ SS(X)∆. If Ỹ is a τ2-soft

open set and τ2 ⊂ τ1, then (φ ,∆)∩̃Ỹ is a (τ1,τ2)-regular open soft set relative to Ỹ for some (φ ,∆) which is a (τ1,τ2)-regular

open soft set relative to X̃ .

Proof. Let (φ ,∆) be a (τ1,τ2)-regular open soft set and (ϕ,∆) = (φ ,∆)∩̃Ỹ . Then we have

τ1 − int
(

τ2 − cl
(
(ϕ,∆)∩̃Ỹ

))
= τ1 − int

(
τ2 − cl (φ ,∆) ∩̃Ỹ

)

= τ1 − int (τ2 − cl (φ ,∆)) ∩̃Ỹ

= (φ ,∆) ∩̃Ỹ = (ϕ,∆).

Hence (ϕ,∆) is a (τ1,τ2)-regular open soft set relative to Ỹ .

Proposition 3.32. Let X be a soft topological space with two soft topologies τ1, τ2 such that τ2 ⊂ τ1 and (φ ,∆)⊆̃Ỹ ⊆̃X̃ . Then

the followings hold:

(1) If Ỹ is a τ2-soft open set and (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in X then (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in Y .

(2) If Ỹ is a τ2-soft open set and a (τ1,τ2)-pre closed soft set in X and (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in Y then (φ ,∆)
is a (τ1,τ2)-gpr-closed soft set in X.

Proof. (1) Let (φ ,∆) be a (τ1,τ2)-gpr-closed soft set in X and (φ ,∆)⊆̃(ϕ,∆) where (ϕ,∆) is a (τ1,τ2)-regular open soft set

in Y . By Lemma 3.31, we have (ϕ,∆) = (θ ,∆)∩̃Ỹ where (θ ,∆) is a (τ1,τ2)-regular open soft set in X , that is, (φ ,∆)⊆̃(θ ,∆).
Since (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in X then we get

τ1τ2 − pcl(φ ,∆)⊆̃(θ ,∆),

which implies

τ1τ2 − pclX (φ ,∆)∩̃Ỹ ⊆̃(θ ,∆)∩̃Ỹ .

By Lemma 3.20, we have

τ1τ2 − pclY (φ ,∆)⊆̃(ϕ,∆).

Therefore, (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in Y .

(2) Let (φ ,∆) be a (τ1,τ2)-gpr-closed soft set in Y . Then (φ ,∆)⊆̃(ϕ,∆) where (ϕ,∆) is a (τ1,τ2)-regular open soft set in X .

Hence we get

(φ ,∆) = (φ ,∆)∩̃Ỹ ⊆̃(ϕ,∆)∩̃Ỹ ,

where (ϕ,∆)∩̃Ỹ is (τ1,τ2)-regular open soft in Y by Lemma 3.31. Using the hypothesis, we get

τ1τ2 − pclY (φ ,∆)⊆̃(ϕ,∆)∩̃Ỹ .

By Lemma 3.20, we obtain

τ1τ2 − pclX (φ ,∆)⊆̃(ϕ,∆)∩̃Ỹ ⊆̃(ϕ,∆),

that is, (φ ,∆) is a (τ1,τ2)-gpr-closed soft set in X .

We introduce the notion of mixed gpr-soft continuity as follows:

Definition 3.33. Let X ,Y be two initial universe sets, ∆1,∆2 ⊆ ∆ two sets of parameters, τ1, τ2 two soft topologies over X and

τ a soft topology over Y . Assume that u : X → Y , p : ∆1 → ∆2 are two mappings and fpu : SS(X)∆1
→ SS(Y )∆2

is a function.

Then fpu is called mixed gpr-soft continuous (briefly, (τ1τ2,τ)-gpr-soft cts) if f−1
pu (ϕ,∆2) is a (τ1,τ2)-gpr-closed soft set for

every τ-soft closed set (ϕ,∆2) in Y .

Using the concept of mixed gpr-soft continuity, we present a new version of the pasting lemma in the following theorem.

Theorem 3.34. (Pasting lemma for (τ1,τ2)-gpr-closed soft sets) Let X̃ = Ã∪̃B̃ be a soft topological space with two soft

topologies τ1, τ2, Y a soft topological space with a soft topology τ and the family of all (τ1,τ2)-gpr-open soft sets closed under

finite intersections. Let fp1u1
: SS(A)∆1

→ SS(Y )∆2
and fp2u2

: SS(B)∆1
→ SS(Y )∆2

be two mixed gpr-soft continuous mappings

where p1 = p2 : ∆1 → ∆2, u1 : A → Y and u2 : B → Y are functions. Suppose that Ã, B̃ are τ2-soft open and (τ1,τ2)-pre closed

soft and τ2 ⊂ τ1. If u1(x) = u2(x) for every x ∈ A∩B, then fp1u1
and fp2u2

combine to give a mixed gpr-soft continuous

mapping fpu : SS(X)∆1
→ SS(Y )∆2

defined by the functions p = p1 = p2 and u(x) = u1(x) if x ∈ A and u(x) = u2(x) if x ∈ B.

Proof. Let (ϕ,∆2) be a τ-soft closed set in Y . Then we can easily seen that

f−1
pu (ϕ,∆2) = f−1

p1u1
(ϕ,∆2)∪̃ f−1

p2u2
(ϕ,∆2).

Since fp1u1
is mixed gpr-soft continuous then f−1

p1u1
(ϕ,∆2) is a (τ1,τ2)-gpr-closed soft set in A. Since Ã is τ2-soft open and

(τ1,τ2)-pre closed soft, then f−1
p1u1

(ϕ,∆2) is a (τ1,τ2)-gpr-closed soft set in X̃ by Proposition 3.32 (2). Similarly, f−1
p2u2

(ϕ,∆2) is

a (τ1,τ2)-gpr-closed soft set in X̃ . Also we get that f−1
pu (ϕ,∆2) is (τ1,τ2)-gpr-closed soft in X from the hypothesis. Therefore,

fpu is a mixed gpr-soft continuous mapping.
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4. Conclusion and future work

In this paper, two new versions of the pasting lemma for mixed g-soft continuous functions and mixed gpr-soft continuous

functions are presented on a soft topological space. As a future work, some applications of these pasting lemmas can be

investigated to analytic continuation on a complex plane.
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[26] T. H. Şimşekler, Fuzzy soft topological spaces and the related category FST, Turk. J. Math., 43 (2019), 871-878.
[27] M. Riaz, K. Naeem, M. Aslam, D. Afzal, F. A. Ahmed Almahdi, S. Shaukat Jamal, Multi-criteria group decision making with Pythagorean fuzzy soft

topology, J. Intell. Fuzzy Syst. (Preprint), (2020), 1-18.
[28] M. Riaz, S. T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Comput., 24(24) (2020), 18259-18272.
[29] M. Riaz, K. Naeem, Measurable soft mappings, J. Math., Punjab Univ., 48(2) (2020).
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Abstract

We will give the simplicial analogues of Hurewicz and Poincaré theorems as an application

of simplicial homology and homotopy.

1. Introduction

Let X be a topological space. Then we have a singular simplicial set. C∗(X)which is chain complex is obtained with its singular

homology H∗(X ;Z). Any singular homology of X can be get from S∗(X). So the concept of simplicial sets was defined as

combinatorial models of spaces. In the following diagram, one can see relations among simplicial sets and spaces:

Simplical sets
|.|
−→ CW- complexes

S∗ ◦ |.| ↓ ↓ |.| ◦S∗

Simplical sets
S∗←− Topological spaces

In [1], J.C. Moore defined simplicial groups. Author also gave the isomorphism

π∗(|G |)∼= H∗(NG ),

where NG is Moore chain complex of and|G | is geometrical realization of G . J.W. Milnor [2] shown that a loop space is

homotopy equivalent to the geometric realization of any simplicial group. Hence, the homotopy groups of any space is defined

as the homology of a Moore chain complex.

The simplicial modules and simplicial algebras are developed by M. André [3] and D. Quillen [4]. They constructed ways of

building simplicial resolutions of algebras and defined a homology and cohomology of commutative algebras. Also Z. Arvasi

[5, 6], analyses the Higher order Peiffer elements of simplicial algebras.

In this work, firstly we will give some preliminaries for simplicial modules and their homology and homotopy. Then we will

proof the main theorem called as Hurewicz Theorem and also its corollary called as Poincaré Theorem. These theorems are

applications for homology and homotopy of simplicial modules.
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2. ∆-sets

For details of this section you can see [7].

A ∆-set, X = {Xn}n≥0, is a sequence with the maps, di : Xn→ Xn−1, satisfying the ∆-identity:

did j = d jdi+1

for i≥ j and 0≤ i≤ n.

Remark: We can write ∆-idenitity:

di : (r0,r1, · · · ,rn) 7→ (r0, · · · ,ri−1,ri+1, · · ·rn).

A ∆-set M = {Mn}n≥0 is defined a ∆-module satisfying Mn is a module, and di is a module homomorphism. Given any category

C , a ∆-object is a sequence of objects in C , with faces as morphisms in C .

We have a category O+ with the objects which are finite order sets, morphisms which are monoton functions. We can write the

objects as n≥ 0,[n] = {0,1, · · · ,n}, and the morphisms generated by di : [n−1]→ [n] such that

di( j) =







j j < i

j+1 j ≥ i ,

0≤ i≤ n.

Corollary 2.1. ∆-sets has one to one correspondence to contravarient fuctors from O+ to S.

A ∆-map is a sequence of f := fn(Xn→ Yn) satisfying the following commutative diagram, that is n≥ 0, f0di = di f .

Xn
f
−→ Yn

↓ ↓
Xn−1 −→

f
Yn−1

A ∆-subset of X is any sequece of Yn ⊆ Xn satisfying

di(Yn)⊆ Yn−1

where X is a ∆-set, 0≤ i≤ n < ∞. Suppose X and Y are ∆-set. If there exists a bijective ∆-map between X and Y , then X is

isomorphic to Y .

2.1. Geometric realization of ∆-sets

Suppose A is a ∆-set. A geometrical realization of A, |A|, is determined as

|A|=
⊔

x ∈ An

n≥ 0

(∆n,x)/∼=
∞⊔

n=0

∆n×An/∼

where ∼ is obtained by (z,dix)∼ (diz,x) for x ∈ An, z ∈ ∆n−1 is labeled by dix.

2.2. Homology of ∆-sets

It is well known that a chain complex is a collection of C = {Cn} with diferantial ∂n : Cn→Cn−1 which is satisfy Im(∂n+1)⊆
Ker(∂n), namely ∂n ∂n+1 is trivial. Then the homology can be defined as

Hn(C) = Ker(∂n)/Im(∂n+1).

Proposition 2.2 ([7]). For a ∆-abelian group G, G is a chain complex with ∂∗ where

∂n :
n

∑
i=0

(−1)idi : Gn −→ Gn−1.
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Proof. We must show that ∂n ◦∂n+1 is trivial.

∂n−1 ◦∂n =
n−1

∑
i=0

(−1)idi

n

∑
j=0

(−1) jd j,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤ j<i≤n−1

(−1)i+ jdid j,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤ j<i+1≤n

(−1)i+ jd jdi+1,

=
n

∑
0≤i< j≤n

(−1)i+ jdid j +
n

∑
0≤i< j<n

(−1)i+ j−1d jdi,

= 0.

For a given ∆-set X , the homology H∗(X ;G) of X with coefficients in an abelian group G can be defined as

H∗(X ;G) = H∗(Z(X)⊗G,∂∗).

Here Z(Xn) is a free abelian group with generator Xn, Z(X) = {Z(Xn)}n≥0.

3. Simplicial modules

Let R be a fixed commutative ring. Fore more details about simplicial modules and algebras, we refer to [5, 6], [8]-[10].

A simplicial R-module (shotrly simplicial module) is a ∆-module M with degeneracies and faces satisfying the following

identities:

d jdi = di−1d j, for j < i,

s jsi = si+1s j, for j ≤ i,

also

d jsi =







si−1d j j < i

id j = i, i+1

sid j−1 j > i+1.

These are defined as simplicial identities.

A simplicial module homomorphism f : M→M′is a sequence of module homomorphisms fn : Mn→M′n (n≥ 0) satisfying the

following commutative diagram, i.e fn−1 di = di fn and fnsi = si fn+1 :

Mn+1
si←− Mn

di−→ Mn−1

fn+1 ↓ fn ↓ ↓ fn−1

M′n+1 ←−
si

M′n −→
di

M′n−1

M is defined as simplicial submodule of M′ if each Mn is a submodule of M′n. A simplicial module M is said to be isomorphic

to a simplicial module M′, if a bijective simplicial module homomorphism f : M→M′exists.

3.1. Geometric realization of simplicial modules

The standart n-simplex ∆n is

∆n = {(r0,r1, · · ·rn) | ri ≥ 0 and
n

∑
i=0

ri = 1}

where di : ∆n−1 −→ ∆n and si : ∆n+1 −→ ∆n are given as

di(r0,r1, · · · ,rn−1) = (r0, · · · ,ri−1,0,ri, · · · ,rn−1),

si(r0,r1, · · · , tn+1) = (r0, · · · ,ri−1,ri + ri+1, · · · ,rn+1),
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where 0≤ i≤ n.

Suppose M is a simplicial module. Its geometric realization |M| is a CW-complex such that

|M| =
⊔

x ∈Mn

n≥ 0

(∆n,x)/∼=
∞⊔

(∆n×Mn)/∼
n=0

.

Here (∆n,x) is ∆n associated with x ∈Mn, ∼ is generated by

(z,dix)∼ (diz,x)

x ∈Mn, z ∈ ∆n−1 associated with dix,

(z,six)∼ (siz,x)

x ∈Mn, z ∈ ∆n+1 associated with six.

3.2. Homotopy and fibrant simplicial modules

Suppose f ,g : M→ N are simplicial module homomorphisms. If we have a simplicial module homomorphism F : M× I→ N

satisfying F |M×0 = f , F |M×1 = g, then we can say that f homotopic to g and can be written as f ≃ g. Suppose that X is any

simplicial submodule of M, f ;g : M→ N are simplicial module homomorphisms satisfying f |X = g|X . If we have a homotopy

F : M× I→ N satisfying F |M×0 = f and F |M×1 = g and F |X×I = f , then we say that f homotopic to g relative to X , and can

be shown as f ≃ g rel X .

The image of fx0
: ∆[0]→M is a simplicial submodule of M which has only element fx0

(0,0, · · · ,0) = SI(x0) for each dimen-

sion where M is any simplicial module and x0 ∈M0. So a basepoint ∗ of M is a sequence of { fx0
(

n+1
︷ ︸︸ ︷

0,0 · · · ,0)}n≥0 correspond to

x0 ∈M0.

A pointed simplicial module is a simplicial module with basepoint. Suppose M and N are pointed simplicial modules. A

pointed simplicial module homomorphism f : M→ N is a simplicial module homomorphism which preserve the basepoints.

We usually use ∗ for defining the basepoint.

For given pointed simplicial module homomorphisms f ,g : M→ N, pointed homotopy means that f and g are homotopic rel ∗.

We should assume that there is a homotopy relation ≃ on the module of simplicial module homomorphisms from M to Nwhere

N is a fibrant simplicial module. So, we will define fibrant simplicial module.

Given a simplicial module M, if d jxk = dkx j+1, where j ≥ k; k, j+1 6= i, then the elements a0, · · · ,ai−1,ai+1, · · · ,an ∈Mn−1

are called matching faces w.r.t i.

If the simplicial module M provides the homotopy extension condition, then it is called fibrant. Suppose the elements

a0, · · · ,ai−1,ai+1, · · · ,an ∈Mn−1 are matching faces w.r.t i, we have an element w ∈Mn such that d jw = a j for j 6= i. This

condition is called homotopy extension condition.

3.3. Homotopy modules

The homotopy module πn(M) is defined by

πn(M) = [Sn,M]

and so πn(M) = πn(|M|) where M is a pointed fibrant simplicial module.

An element x ∈Mn satisfying the condition dix = ∗ for all 0 ≤ i ≤ n, is named spherical. For a spherical element x ∈Mn,
the map fx : ∆[n]→M sends to quotient simplicial module Sn = ∆[n]/∂∆[n]. In contrast, a simplicial map f : Sn→M gets a

spherical element f (σn) ∈Mn, where σn is a nondegenerate element in Sn. So we have one to one correspondence such as

Spherical element in Mn ←→ Simplicial module homomorphism Sn −→M.
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Theorem 3.1. (Homotopy Addition Theorem) For pointed fibrant simplicial module M and spherical elements xi ∈Mn, the

equation in πn(M)

[x0]− [x1]+ [x2] · · ·+(−1)n+1[xn+1] = 0

satisfies if and only if there is x ∈ Kn+1 such that dix = xi where 0≤ i≤ n+1.

Proof. See [7], for details.

Suppose M is a fibrant simplicial module. If fx, fy are homotopic relative to ∂∆[n], then x,y ∈ Mn is x ≃ y. So a fibrant

simplicial module M is named minimal if it satisfies x≃ y⇒ x = y,

3.4. Homology of simplicial modules

For a simplicial module M, we define

NnM =
⋂

j=1

Ker(d j : Mn −→Mn−1),

such that x ∈ NnM, i.e x ∈Mn such that d jx = 1 for j > 0. That is,

dk(d0x) = d0dk+1x = 1

for any 0≤ k ≤ n−1.

A chain complex (C,∂ ) consists of modules and module homomorphisms

· · · −→Cn+1
∂n+1
−→Cn

∂n−→Cn−1 −→ ·· ·

satisfying Im(∂n+1)⊆ Ker(∂n), i.e ∂n ◦∂n+1 is trivial. The homology Hn(C,∂ ) is written as Ker(∂n)/ Im(∂n+1).

Proposition 3.2. Given a simplicial module M, if

∂n =:
n

∑
i=0

(−1)idi : Mn −→Mn−1,

then ∂n−1 ◦∂n = 0, i.e M is a chain complex.

Proof. Similar to proposition 2.2.

Remark The homology H∗(M;A) of M with coefficients in a Z-module A is defined by

H∗(M;A) = H∗(Z(M)⊗Z A,∂∗),

where M is a simplicial module, Z(M) = {Z(Mn)}n≥0 and Z(Mn) is the free Z-module generated by Mn.

The Moore chain complex of simplicial R-module M, denoted NM, is the sequence of R-modules

· · · −→ Nn+1M
d0−→ NnM

d0−→ Nn−1M −→ ·· ·

The elements in ZnM, are called Moore cycles and the elements BnM are called Moore boundaries.

By definition,

Hn(NM,d0) = Ker(d0)/d0(Nn+1M),

=
n⋂

j=0

Ker(d j)/BnM,

= ZnM/BnM

= πn(M).

So, for the simplicial module M, we can write

Hn(NM,d0)∼= πn(M)∼= πn(|M|).

The significiance of this corollary is that the homology modules can be defined as the homology of chain complex.
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4. Hurewicz and Poincaré theorems for simplicial modules

Suppose M is a simplicial module and Z(M) = {Z(Mn)}n≥0 is a sequence of the free Z-module generated by Mn. By using

di : Mn −→Mn−1, si : Mn −→Mn+1, we can write

d
Z(M)
i : Z(Mn)−→ Z(Mn−1)

and the degeneracies

s
Z(M)
i : Z(Mn)−→ Z(Mn+1).

Hence Z(M) is a simplicial Z-module. The homology of M is defined by

H∗(M) = H∗(Z(M))∼= H∗(Z(M),∂ ).

Clearly, a simplicial module homomorphism f : M −→M′ induces a simplicial Z-module morphism Z( f ) : Z(M)−→ Z(M′).
So we have a functor such that M 7−→ Z(M), f 7−→ Z( f ). If f ≃ g : M −→ M′ (suppose that M′ is fibrant), we have

Z( f )≃ Z(g) : Z(M)−→ Z(M′). Hence if M ≃M′ with M and M′ fibrant, we get Z(M)≃ Z(M′) and so H∗(M)∼= H∗(M
′).

As the geometric realization of any simplicial module is ∆-complex, the homology H∗(M) = H∗(|M|) is the simplicial homol-

ogy of the ∆-complex |M| . So, if |M| ≃ |M′| , then H∗(M)∼= H∗(|M
′|).

Thus the homology H∗(M;A) with coefficients in A is defined by

H∗(M;A) = π∗(Z(M)⊗Z A)∼= H∗(Z(M)⊗Z A,∂ ),

where A is a free Z-module, Z(M)⊗Z A = {Z(M)⊗Z A}n≥0.

As using redued homology, one can obtain a single relation on Z(M). Suppose Z[M] is the quotient Z-module of Z(M) the

simplicial submodule with the basepoint ∗. So the reduced integral homology H∗(M)can be defined as

H∗(M) = π∗(Z[M])∼= H∗(Z[M],∂ ).

The reuced homology with coefficients in A is defined by

H∗(M;A) = π∗(Z[M]⊗Z A)∼= H∗(Z[M]⊗Z A,∂ ).

The inclusion j : M →֒ Z(M) is a simplicial module homomorphism and the composite

j : M →֒ Z(M)։ Z[M]

is pointed simplicial module homomorphism. (Note that the basepoint in M is ∗ and the basepoint in Z(M) is 0.) The map j

induces a Z-module homomorphism

hn = j∗ : πn(M)−→ πn(Z[M]) = Hn(M)

where M is a fibrant simplicial module and n≥ 1, then this homomorphism is called Hurewicz homomorphism.

Theorem 4.1. (Hurewicz Theorem) Suppose M is any fibrant simplicial module with π i(M) = 0 for i < n with n≥ 2. Then

Hi(M) = 0 for i < n and hn : πn(M)−→ Hn(M) is an isomorphism.

Proof. Suppose M is a minimal simplicial module. Think that

j : M −→ Z[M].

We can write Mq = ∗ for q < n and Mn = πn(M), since M is minimal. Hence Z[M]q = {0} for q < n and Z[M]n = Z[Mn].

(1). hn is onto: As the following diagram is commutative

Mn →֒ Z[Mn]
‖ ↓

πn(M) −→ Hn(M)

Hn(M) is generated by Mn as a Z-module. As hn is a Z-module homomorphism and every generator of Hn(M) is in its image,

it should be onto.
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(2). Ker(hn) = {0} : Assume that x ∈ Ker(hn). As x is 0 in

Hn(M) = Hn(Z[M],∂ ),

we have an element c ∈ Z[M]n+1 such that ∂ (y) = x in Z[M]n. Let y =
t

∑
j=1

n jy j with n j ∈ Z and y j ∈Mn+1. Then φ : Z[Mn]−→

πn(M) is the Z-module homomorphism such that φ |Mn : Mn −→ πn(M) = Mn is the identity map seen as the commutative

diagram

Z[Mn+1] −→ Z[Mn]
↑ ↑ ց

Mn+1 Mn = πn(M).

For y j ∈Mn+1, we get

φ ◦∂ (y j) = φ(
n+1

∑
i=0

(−1)idiy j

=
n+1

∑
i=0

(−1)iφ(diy j)

=
n+1

∑
i=0

(−1)idiy j ( ∵ diy j ∈Mn)

in πn(M). By using Homotopy Addition Theorem, we can get φ(∂ (y j)) = 0 for each j. So

x = φ jn(x) = φ(∂ (y)) = 0

in πn(M) and i.e Ker(hn) = {0}.

Theorem 4.2. (Poincaré Theorem) Suppose M is a connected (that is π0(|M|) = 0) fibrant simplicial module. Then there is an

isomorphism

h′ : π1(M)/[π1(M),π1(M)]−→ H1(M)

induced by h1 : π1(M)−→ H1(M).

Proof. Assume that M is a minimal simplicial module. By similar way, one can show that h′ is onto. To proof that that h′

is one to one, let φ : Z[M1]−→ π1(M)/[π1(M),π1(M)] be the Z-module homomorphism such that φ |M1
: M1 = π1(M)−→

π1(M)/[π1(M),π1(M)] is the quotient homomorphism consider the commutative diagram

Z[M2] −→ Z[M1]
↑ ↑ ց

M2 M1 ։ π1(M)/[π1(M),π1(M)].

From after, one can continue the proof by same way of Hurewicz Theorem.

5. Conclusion

By using simplicial theory, we give applications for simplicial homology and simplicial homotopy. Also, we proof the

Hurewicz and Poincaré Theorems for simplicial modules.
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Abstract

In this study, the classes of several almost paracontact metric structures on 5 dimensional

nilpotent Lie algebras are determined. It is also shown that there are no η− Einstein

structures on 5 dimensional nilpotent Lie algebras.

1. Introduction

Differentiable manifolds having almost paracontact structures were introduced by [1] and after the work of [2] many authors

have made contribution, see [2]-[6] and references therein. Almost paracontact metric manifolds were classified according to

the covariant derivative of the structure tensor. The space of tensors having the same symmetry properties as the structure

tensor is decomposed into the direct sum of twelve subspaces. Thus there are 12 basic classes and 212 classes of almost

paracontact metric structures. The defining relations and projections onto each subspace are given in [4] and [3].

There are six classes of non-isomorphic non-abelian nilpotent Lie algebras in five dimensions [7]. In this work, we give the

explicit classes of some almost paracontact metric structures defined on 5-dimensional nilpotent Lie algebras by calculating

projections onto each subspace. In addition, we show that a 5-dimensional nilpotent Lie algebra does not have the structure of

an η− Einstein manifold. For the existence of some classes of almost paracontact metric structures on 5-dimensional nilpotent

Lie algebras, see [8].

2. Preliminaries

Let M2n+1 be an odd dimensional differentiable manifold. An ordered triple (ϕ,ξ ,η) of an endomorphism, a vector field and

a 1-form, respectively, with the following properties is called an almost paracontact structure on M

ϕ2 = I −η ⊗ξ , η(ξ ) = 1,ϕ(ξ ) = 0,

there is a distribution D : p ∈ M −→ Dp = Kerη .

In this case M is called an almost paracontact manifold. If M also admits a semi-Riemannian metric g with the property that

g(ϕ(u),ϕ(v)) =−g(u,v)+η(u)η(v)
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for all u,v ∈X(M), where X(M) is the set of smooth vector fields on M, then M is called an almost paracontact metric manifold.

The 2-form defined by

Φ(u,v) = g(ϕu,v)

for all u,v ∈ X(M), is called the fundamental 2-form. We denote the vector fields and tangent vectors by letters u,v,w.

212 classes of almost paracontact manifolds are obtained by using the covariant derivative of Φ. Consider the tensor F defined

by

F(u,v,w) = g((∇uϕ)(v),w),

for all u,v,w ∈ TpM, where TpM is the tangent space at p and ∇ denotes the covariant derivative of g. Then F satisfies

F(u,v,w) =−F(u,w,v), (2.1)

F(u,ϕv,ϕw) = F(u,v,w)+η(v)F(u,w,ξ )−η(w)F(u,v,ξ ). (2.2)

The Lee forms associated with F are

θ(u) = gi jF(ei,e j,u), θ ∗(u) = gi jF(ei,ϕe j,u), ω(u) = F(ξ ,ξ ,u),

where u ∈ TpM, {ei,ξ} is a basis for TpM and gi j is the inverse of the matrix gi j.

Let F be the set of (0,3) tensors over TpM having properties (2.1), (2.2). F is the direct sum of four subspaces Wi, i = 1, . . . ,4
where projections FWi onto Wi are

FW1(u,v,w) = F(ϕ2u,ϕ2v,ϕ2w),

FW2(u,v,w) =−η(v)F(ϕ2u,ϕ2w,ξ )+η(w)F(ϕ2u,ϕ2v,ξ ),

FW3(u,v,w) = η(u)F(ξ ,ϕv,ϕw),

FW4(u,v,w) = η(u){η(v)F(ξ ,ξ ,w)−η(w)F(ξ ,ξ ,v)}.

In addition W1 can be written as a direct sum of subspaces Gi, i = 1, . . . ,4, W2 is a direct sum of subspaces Gi, i = 5, . . . ,10,

and denote W3 and W4 as G11 and G12, respectively. Then F is a direct sum of twelve subspaces Gi, i = 1, . . . ,12. An almost

paracontact manifold is said to be in the class Gi ⊕G j, etc if the tensor F is in the class Gi ⊕G j over TpM for all p ∈ M. The

defining relations of basic classes Gi of almost paracontact metric structures and projections F i onto each Gi are listed below

[3, 4].

G1 : F(u,v,w) =
1

2(n−1)
{g(u,ϕv)θF(ϕw)−g(u,ϕw)θF(ϕv)−g(ϕu,ϕv)θF(ϕ

2w)

+g(ϕu,ϕw)θF(ϕ
2v)

G2 : F(ϕu,ϕv,w) =−F(u,v,w),θF = 0

G3 : F(ξ ,v,w) = F(u,ξ ,w) = 0,F(u,v,w) =−F(v,u,w)

G4 : F(ξ ,v,w) = F(u,ξ ,w) = 0,

∑
cyc

F(u,v,w) = 0 where ∑
cyc

denotes the cyclic sum over u,v,w

G5 : F(u,v,w) =
θF(ξ )

2n
{g(ϕu,ϕw)η(v)−g(ϕu,ϕv)η(w)}



Fundamental Journal of Mathematics and Applications 91

G6 : F(u,v,w) =−
θ ∗

F(ξ )

2n
{g(u,ϕw)η(v)−g(u,ϕv)η(w)}

G7 : F(u,v,w) = −η(v)F(u,w,ξ )+η(w)F(u,v,ξ ), (2.3)

F(u,v,ξ ) = −F(v,u,ξ ) =−F(ϕu,ϕv,ξ ), θ ∗
F(ξ ) = 0

G8 : F(u,v,w) = −η(v)F(u,w,ξ )+η(w)F(u,v,ξ ),

F(u,v,ξ ) = F(v,u,ξ ) =−F(ϕu,ϕv,ξ ), θF(ξ ) = 0

G9 : F(u,v,w) = −η(v)F(u,w,ξ )+η(w)F(u,v,ξ ),

F(u,v,ξ ) = −F(v,u,ξ ) = F(ϕu,ϕv,ξ )

G10 : F(u,v,w) = −η(v)F(u,w,ξ )+η(w)F(u,v,ξ ),

F(u,v,ξ ) = F(v,u,ξ ) = F(ϕu,ϕv,ξ )

G11 : F(u,v,w) = η(u)F(ξ ,ϕv),ϕw))

G12 : F(u,v,w) = η(u){η(v)F(ξ ,ξ ,w)−η(w)F(ξ ,ξ ,v)}

Projections F i onto each subspace Gi are

F1(u,v,w) =
1

2(n−1)
{g(u,ϕv)θF1(ϕw)−g(u,ϕw)θF1(ϕv)

−g(ϕu,ϕv)θF1(ϕ2w)+g(ϕu,ϕw)θF1(ϕ2v)
}

,

F2(u,v,w) =
1

2
{F(ϕ2u,ϕ2v,ϕ2w)−F(ϕu,ϕ2v,ϕw)}−F1(u,v,w)

F3(u,v,w) =
1

6

{

F(ϕ2u,ϕ2v,ϕ2w)+F(ϕu,ϕ2v,ϕw)

+F(ϕ2v,ϕ2w,ϕ2u)+F(ϕv,ϕ2w,ϕu)

+F(ϕ2w,ϕ2u,ϕ2v)+F(ϕw,ϕ2u,ϕv)
}

F4(u,v,w) =
1

2
{F(ϕ2u,ϕ2v,ϕ2w)+F(ϕu,ϕ2v,ϕw)}−F3(u,v,w) (2.4)

F5(u,v,w) =
θF5(ξ )

2n
{η(v)g(ϕu,ϕw)−η(w)g(ϕu,ϕv)} (2.5)

F6(u,v,w) =−
θ ∗

F6(ξ )

2n
{η(v)g(u,ϕw)−η(w)g(u,ϕv)}

F7(u,v,w) = −
1

4
η(v)

{

F(ϕ2u,ϕ2w,ξ )−F(ϕu,ϕw,ξ )

−F(ϕ2w,ϕ2u,ξ )+F(ϕw,ϕu,ξ )
}

+
1

4
η(w)

{

F(ϕ2u,ϕ2v,ξ )

−F(ϕu,ϕv,ξ )−F(ϕ2v,ϕ2u,ξ )+F(ϕv,ϕu,ξ )
}

−F6(u,v,w)
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F8(u,v,w) = −
1

4
η(v)

{

F(ϕ2u,ϕ2w,ξ )−F(ϕu,ϕw,ξ ) (2.6)

+F(ϕ2w,ϕ2u,ξ )−F(ϕw,ϕu,ξ )
}

+
1

4
η(w)

{

F(ϕ2u,ϕ2v,ξ )

−F(ϕu,ϕv,ξ )+F(ϕ2v,ϕ2u,ξ )−F(ϕv,ϕu,ξ )
}

−F5(u,v,w)

F9(u,v,w) = −
1

4
η(v)

{

F(ϕ2u,ϕ2w,ξ )+F(ϕu,ϕw,ξ ) (2.7)

−F(ϕ2w,ϕ2u,ξ )−F(ϕw,ϕu,ξ )
}

+
1

4
η(w)

{

F(ϕ2u,ϕ2v,ξ )

+F(ϕu,ϕv,ξ )−F(ϕ2v,ϕ2u,ξ )−F(ϕv,ϕu,ξ )
}

F10(u,v,w) = −
1

4
η(v)

{

F(ϕ2u,ϕ2w,ξ )+F(ϕu,ϕw,ξ ) (2.8)

+F(ϕ2w,ϕ2u,ξ )+F(ϕw,ϕu,ξ )
}

+
1

4
η(w)

{

F(ϕ2u,ϕ2v,ξ )

+F(ϕu,ϕv,ξ )+F(ϕ2v,ϕ2u,ξ )+F(ϕv,ϕu,ξ )
}

F11(u,v,w) = η(u)F(ξ ,ϕ2v,ϕ2w) (2.9)

F12(u,v,w) = η(u){η(v)F(ξ ,ξ ,ϕ2w)−η(w)F(ξ ,ξ ,ϕ2v)}. (2.10)

It is known that ξ is Killing in G1 ⊕G2 ⊕G3 ⊕G4 ⊕G5 ⊕G8 ⊕G9 ⊕G11, that is F6 = F7 = F10 = F12 = 0 in this case and

ξ is parallel in the basic classes G1, G3, G4, G11. Also for five dimensional manifolds, the dimension of G3 is zero, so F3 = 0

[3].

A K-paracontact manifold (M,ϕ,η ,ξ ,g) is called an η-Einstein manifold if its Ricci tensor is of the form

Ric(u,v) = ag(u,v)+bη(u)η(v),

where a, b are constants. Also, the Ricci curvature in the direction of ξ satisfies

Ric(ξ ,ξ ) =−2n (2.11)

on a K-paracontact metric manifold of dimension 2n+1 [2].

Let G be a connected Lie group and (ϕ,ξ ,η ,g) a left invariant almost paracontact metric structure on G, that is,

ϕ ◦La = La ◦ϕ, La(ξ ) = ξ ,

where La is the left multiplication by a ∈ G in G and g is left invariant. The almost paracontact metric structure on G induces

an almost paracontact metric structure on the Lie algebra g of G denoted by (ϕ,ξ ,η ,g).
In this study, we determine the classes of some almost paracontact metric structures on 5-dimensional nilpotent Lie algebras.

We use the classification of 5 dimensional nilpotent Lie algebras in [7]. There are six non-isomorphic non-abelian algebras gi

with basis {e1, . . . ,e5} and non-zero brackets:

g1 : [e1,e2] = e5, [e3,e4] = e5

g2 : [e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5

g3 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5

g4 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5

g5 : [e1,e2] = e4, [e1,e3] = e5

g6 : [e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5.

In addition, we show that a five-dimensional almost paracontact metric manifold (G,ϕ,ξ ,η ,g) can not be an η-Einstein

manifold, where G is a connected Lie group with 5 dimensional nilpotent Lie algebra.
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3. Classes of almost paracontact metric structures on gi

Assume that (ϕ,ξ ,η ,g) is a left invariant almost paracontact metric structure on a connected Lie group Gi with corresponding

Lie algebra gi. Denote the corresponding almost paracontact metric structure on gi by the same quadruple.

The algebra g1: Consider the basis {e1, . . . ,e5} with non-zero brackets

[e1,e2] = e5, [e3,e4] = e5.

Let g be the semi-Riemannian metric such that {e1, . . . ,e5} is orthonormal and εi = g(ei,ei) = ±1. The nonzero covariant

derivatives are evaluated in [8] by Kozsul’s formula:

∇e1
e2 =

1

2
e5, ∇e1

e5 =−
1

2
ε2ε5e2,

∇e2
e1 =−

1

2
e5, ∇e2

e5 =
1

2
ε1ε5e1,

∇e3
e4 =

1

2
e5, ∇e3

e5 =−
1

2
ε4ε5e4,

∇e4
e3 =−

1

2
e5, ∇e4

e5 =
1

2
ε3ε5e3,

∇e5
e1 =−

1

2
ε2ε5e2, ∇e5

e2 =
1

2
ε1ε5e1, ∇e5

e3 =−
1

2
ε4ε5e4, ∇e5

e4 =
1

2
ε3ε5e3.

For each Lie algebra we consider two different almost paracontact metric structures and determine the class of the structure.

• Let (ϕ,ξ ,η ,g) be the quadruple such that

g(e1,e1) = g(e2,e2) = g(e3,e3) =−g(e4,e4) =−g(e5,e5) = 1,

ξ = e1, η = e1,

ϕ(e1) = 0, ϕ(e2) = e4, ϕ(e3) = e5, ϕ(e4) = e2, ϕ(e5) = e3.

(ϕ,ξ ,η ,g) (3.1)

is an almost paracontact metric structure on g1. Note that ξ = e1 is not Killing and η = e1 is the metric dual of ξ = e1

such that η(x) = g(x,e1) for all vectors x. We evaluate the projections F i and determine the class of the structure.

The nonzero structure constants F(ei,e j,ek) = g((∇ei
ϕ)(e j),ek) are given below.

F(e2,e1,e3) = F(e1,e3,e2) =−F(e1,e2,e3) =−F(e2,e3,e1) = 1/2,

F(e1,e5,e4) = F(e5,e1,e4) =−F(e1,e4,e5) =−F(e5,e4,e1) = 1/2,

F(e3,e5,e2) = F(e5,e3,e2) =−F(e5,e2,e3) =−F(e3,e2,e5) = 1/2,

F(e3,e3,e4) =−F(e3,e4,e3) = F(e5,e5,e4) =−F(e5,e4,e5) = 1/2.

By Theorem 3.4 in [3] the dimension of G3 is zero in 5-dimensions. Thus for each almost paracontact metric structure

in 5 dimensions F3 = 0. Since (∇e1
ϕ)(e1) = 0, we have

F(ξ ,ξ ,ϕ2z) = F(e1,e1,ϕ
2z) = g((∇e1

ϕ)(e1),ϕ
2z) = 0 and F12 = 0 from (2.10).

For any vector u = ∑uiei, ϕ2(u) = u2e2 +u3e3 +u4e4 +u5e5 and from (2.9),

F11(u,v,w) = u1F(e1,v2e2 + v3e3 + v4e4 + v5e5,w2e2 +w3e3 +w4e4 +w5e5)

=
1

2
u1{−v2w3 + v3w2 − v4w5 + v5w4}

6= 0.

Now since

F(ϕ2u,ϕ2w,ξ ) =−
1

2
{u2w3 +u5w4}

and

F(ϕu,ϕw,ξ ) =−
1

2
{u4w5 +u3w2},

we have

F(ϕ2u,ϕ2w,ξ )+F(ϕu,ϕw,ξ ) = F(ϕ2w,ϕ2u,ξ )+F(ϕw,ϕu,ξ ).
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Thus from (2.8), (2.7), (2.5), (2.6) respectively, we get

F10(u,v,w) =
1

4
y1 {u2w3 +u3w2 +u4w5 +u5w4}

−
1

4
w1 {u2v3 +u5v4 +u4v5 +u3v2}

6= 0,

F9 = 0, F5 +F8 = 0 and thus F5 = F8 = 0. Also since FW2 = F5 +F6 +F7 +F8 +F9 +F10

and F5 = F8 = F9 = 0, we get

(F6 +F7)(u,v,w) = FW2(u,v,w)−F10(u,v,w)

=
1

4
u2v1w3 +

1

4
u5v1w4 −

1

4
u4v1w5

−
1

4
u3v1w2 −

1

4
u2v3w1 −

1

4
u5v4w1

+
1

4
u4v5w1 +

1

4
u3v2w1.

Let T = F6 +F7. The nonzero structure constants of the tensor T are

T (e2,e1,e3) =−T (e2,e3,e1) =−T (e3,e1,e2) = T (e3,e2,e1) = 1/4,

T (e5,e1,e4) =−T (e4,e1,e5) =−T (e5,e4,e1) = T (e4,e5,e1) = 1/4.

We show that T satisfies the defining relation (2.3) of G7.

−η(v)T (u,w,ξ )+η(w)T (u,v,ξ )

= −v1{−
1

4
u2w3 −

1

4
u5w4 +

1

4
u4w5 +

1

4
u3w2}

+w1{−
1

4
u2v3 −

1

4
u5v4 +

1

4
u4v5 +

1

4
u3v2}

= T (u,v,w),

−T (v,u,ξ ) =−T (v,u,e1) =
1

4
v2u3 +

1

4
v5u4 −

1

4
v4u5 −

1

4
v3u2 = T (u,v,ξ ),

T (ϕu,ϕv,ξ ) = T (u4e2 +u5e3 +u2e4 +u3e5,v4e2 + v5e3 + v2e4 + v3e5,e1)

= −
1

4
u4v5 −

1

4
u3v2 +

1

4
u2v3 +

1

4
u5v4 =−T (u,v,ξ ).

According to the basis { f1, f2, f3, f4, f5}= {e2,e3,e4,e5,ξ = e1}, since gi j = diag(1,1,−1,−1,1) and

gi j = diag(1,1,−1,−1,1), we have

θ ∗
T (ξ ) = θ ∗

T (e1) = gi jT ( fi,ϕ f j,ξ )

= T ( f1,ϕ f1,e1)+T ( f2,ϕ f2,e1)−T ( f3,ϕ f3,e1)−T ( f4,ϕ f4,e1)

= T (e2,ϕe2,e1)+T (e3,ϕe3,e1)−T (e4,ϕe4,e1)−T (e5,ϕe5,e1)

= T (e2,e4,e1)+T (e3,e5,e1)−T (e4,e2,e1)−T (e5,e3,e1)

= 0.

As a result T = F6 +F7 ∈G7, in particular F6 = 0 and F7 6= 0. In addition,

F(ϕ2u,ϕ2v,ϕ2w) = −
1

2
u3v2w5 +

1

2
u3v3w4 −

1

2
u3v4w3 +

1

2
u3v5w2

−
1

2
u5v2w3 +

1

2
u5v3w2 −

1

2
u5v4w5 +

1

2
u5v5w4

= F(ϕu,ϕ2v,ϕw)
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together with (2.4) implies

F4(u,v,w) =
1

2
{F(ϕ2u,ϕ2u,ϕ2w)+F(ϕu,ϕ2v,ϕw)}−F3(u,v,w)

= F(ϕ2u,ϕ2v,ϕ2w)

= FW1(u,v,w)

= −
1

2
u3v2w5 +

1

2
u3v3w4 −

1

2
u3v4w3 +

1

2
u3v5w2

−
1

2
u5v2w3 +

1

2
u5v3w2 −

1

2
u5v4w5 +

1

2
u5v5w4

6= 0.

Since FW1 = F1 +F2 +F3 +F4 = F4, we obtain F1 = F2 = 0.

To sum up, since the only nonzero projections are F4, F7, F10 and F11, the almost paracontact structure (3.1) belongs to

the class G4 ⊕G7 ⊕G10 ⊕G11.

• Consider now the almost paracontact metric structure

(ϕ,ξ ,η ,g) (3.2)

defined by g(e1,e1) = g(e2,e2) =−g(e3,e3) =−g(e4,e4) = g(e5,e5),
ξ = e5, η = e5,

ϕ(e1) = e3, ϕ(e2) = e4, ϕ(e3) = e1, ϕ(e4) = e2, ϕ(e5) = 0.

Note that ξ = e5 is Killing [8], and thus, F6 = F7 = F10 = F12 = 0 by Proposition 4.7 in [3]. The 1-form η = e5 is the

metric dual of ξ = e5. Nonzero structure constants of F are

F(e1,e4,e5) =−F(e1,e5,e4) =−F(e2,e3,e5) = F(e2,e5,e3) = 1/2,

−F(e3,e5,e2) = F(e3,e2,e5) =−F(e4,e1,e5) = F(e4,e5,e1) = 1/2,

−F(e5,e1,e4) = F(e5,e4,e1) = F(e5,e2,e3) =−F(e5,e3,e2) = 1.

Then by (2.9),

F11(u,v,w) = u5{−v1w4 + v2w3 − v3w2 + v4w1} 6= 0.

Since

F(ϕ2u,ϕ2w,ξ ) =
1

2
{u1w4 −u2w3 +u3w2 −u4w1}

= F(ϕu,ϕw,ξ ),

from (2.7),

F9(u,v,w) = −
1

2
v5 {u1w4 −u2w3 +u3w2 −u4w1}

+
1

2
w5 {u1v4 −u2v3 +u3v2 −u4v1}

6= 0.

Also since F(ϕ2u,ϕ2w,ξ ) = F(ϕu,ϕw,ξ ), by (2.5) and (2.6) we have F5 +F8 = 0 implying F5 = F8 = 0. In addition,

FW1 = F1 +F2 +F3 +F4 = 0 and thus F1 = F2 = F3 = F4 = 0.

As a result the structure (3.2) is in G9 ⊕G11.

Note that the almost paracontact structures (3.1) and (3.2) can also be considered as almost paracontact structures on other Lie

algebras gi, i = 1,2, . . . ,6. By calculating projections F i for each structure, we determine the class of two different structures

(3.1) and (3.2) on each Lie algebra. We omit calculations for other Lie algebras since they are similar to those for g1. We only

write the class of the structures.

The algebra g2:

• Let (ϕ,ξ ,η ,g) be the almost paracontact structure (3.1) on g2. The class of this structure is G1 ⊕G7 ⊕G10 ⊕G11.

• (3.2) considered as an almost paracontact structure on g2 is in G4 ⊕G5.

The algebra g3:

• The structure (3.1) on g3 belongs to G4 ⊕G5 ⊕G6 ⊕G7 ⊕G8 ⊕G10 ⊕G11.

• The structure (3.2) on g3 is of type G1 ⊕G2 ⊕G4 ⊕G8.
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The algebra g4:

• (3.1) on g4 is in G5 ⊕G6 ⊕G7 ⊕G8 ⊕G10 ⊕G11.

• (3.2) on g4 is in G2 ⊕G4 ⊕G8 ⊕G9 ⊕G11.

The algebra g5:

• (3.1) on g5 lies in G10.

• (3.2) on g5 is in the class G4 ⊕G5 ⊕G8.

The algebra g6:

• (3.1) on g6 belongs to G4 ⊕G7 ⊕G10 ⊕G11.

• (3.2) on g6 is in G1 ⊕G4 ⊕G8 ⊕G9 ⊕G11.

Note that almost paracontact structures obtained here belong to the given direct sum properly, that is, they contain summand

from each subclass, since corresponding projections are nonzero. Thus we give examples of almost paracontact metric

structures which contain summands from several classes.

4. η-Einstein manifolds of 5-dimensions

It is known that paracontact structures exist only on g1, g2, g3 for five dimensional nilpotent Lie algebras. In addition a vector

field is Killing iff ξ ∈< e5 >, see [8].

We state

Proposition 4.1. Let G be a connected Lie group whose Lie algebra is isomorphic to gi, i = 1, . . . ,6. Then a K-paracontact

metric structure (G,ϕ,ξ ,η ,g) is not η-Einstein.

Proof. A five-dimensional almost paracontact metric manifold (G,ϕ,ξ ,η ,g) is not an η-Einstein manifold, if the Lie algebra

of the connected Lie group G is isomorphic to g4, g5, g6 since there are no paracontact structures on g4, g5, g6, paracontact

structures exist only on g1, g2, g3, see [8]. Thus it is enough to check the existence of η-Einstein manifolds only on g1, g2, g3.

Assume that (G,ϕ,ξ ,η ,g) is η-Einstein, where G is a connected Lie group whose Lie algebra is isomorphic to g1. Since ξ is

Killing, ξ = ξ5e5.

η(ξ ) = 1 = g(ξ ,ξ ) = g(ξ5e5,ξ5e5) = ξ 2
5 ε5 implies ξ 2

5 = 1 and ε5 =+1.

From the equation (2.11), we have

Ric(ξ ,ξ ) = ξ 2
5 Ric(e5,e5) = Ric(e5,e5) =−4.

On the other hand, by direct calculation

Re5em e5 = ∇[e5,em]e5 −∇e5
(∇eme5)+∇em(∇e5

e5) =−∇e5
(∇eme5)

and

Re5e1
e5 =−∇e5

(∇e1
e5) =−∇e5

(−
1

2
ε2ε5e2) =

1

2
ε2ε5(

1

2
ε1ε5e1) =

1

4
ε1ε2e1,

Re5e2
e5 =

1

4
ε1ε2e2, Re5e3

e5 =
1

4
ε3ε4e3, Re5e4

e5 =
1

4
ε3ε4e4

yields

Ric(e5,e5) =
5

∑
m=1

εmg(Re5eme5,em)

= ε1g(
1

4
ε1ε2e1,e1)+ ε2g(

1

4
ε1ε2e2,e2)+ ε3g(

1

4
ε3ε4e3,e3)+ ε4g(

1

4
ε3ε4e4,e4)

=
1

2
ε1ε2 +

1

2
ε3ε4.

Since εi =±1, Ric(e5,e5) =
1
2
ε1ε2 +

1
2
ε3ε4 6= 4. Thus (G,ϕ,ξ ,η ,g) can not be η-Einstein. The proof is similar for g2 and g3.

In g2, ξ = ξ5e5 and by (2.11), Ric(ξ ,ξ ) = ξ 2
5 Ric(e5,e5) = Ric(e5,e5) =−4. By direct calculation,

Ric(e5,e5) =
5

∑
m=1

εmg(Re5em e5,em)

=
1

2
ε1ε3 +

1

2
ε2ε4

6= 4.
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In g3, ξ = ξ5e5 and

Ric(e5,e5) =
5

∑
m=1

εmg(Re5eme5,em)

=
1

2
ε1ε4 +

1

2
ε2ε3,

which contradicts with (2.11).

5. Conclusion

In this manuscript new examples of almost paracontact metric structures on some five dimensional nilpotent Lie algebras are

given. These examples contain summands from several classes of almost paracontact metric structures. In addition, we show

that a K-paracontact metric structure (G,ϕ,ξ ,η ,g) on a connected Lie group G is not η-Einstein.
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Abstract

The existence of a solution of continuous and discrete-time Lyapunov matrix equations was

studied. Both Lyapunov matrix equations are transformed into a matrix-vector equation

and the solution of the obtained new system was examined. The iterative decreasing

dimension method (IDDM) was implemented for solving the generated matrix-vector

equation. Computations have been done with Maple procedures that run the constituted

algorithms.

1. Introduction

The systems are

y′(t) = Ay(t) (1.1)

and

y(n+1) = Ay(n) , n ∈ Z, (1.2)

respectively differential equation system and difference equation system considered.

In the system (1.1) y(t) =
(
y1(t), y2(t), . . . , yN(t)

)T
, yi(t)(i = 1,2, · · · ,N) are differentiable functions. The coefficient matrix

of systems is A ∈ MN(C). MP
N(C) and MN(C) respectively will denote the set of all N ×P matrices and set of square matrices

of size N ×N that matrices elements are complex numbers.

Hurwitz stability is well known in the literature. Regarding the equation system (1.1), in order for system to be Hurwitz stable,

the real part of all the eigenvalues of A must be less than zero. Another qualification of Hurwitz stability of equation system

(1.1) is concerning with continuous-time Lyapunov matrix equation

A∗H +HA =−I (1.3)

that has a unique solution under H = H∗ > 0 condition where I is unit matrix and A∗ is adjoint of the matrix A.

Schur stability is well known in the literature too. In accordance with the spectral criterion, all eigenvalues of the matrix A

must fall into the unit disc so that the equation system (1.2) get Schur stable [1, 2]. Another occurrence for equation system

(1.2) is that there exists and unique positive definite H = H∗ matrix satisfying the discrete-time Lyapunov matrix equation

A∗HA−H =−I. (1.4)
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2. From Lyapunov matrix equations to linear algebraic equation

The Kronecker product of B and C denoted as B⊗C and the Kronecker sum of A and D, denoted by A⊕D, is defined in [3] as

the expression A⊕D = A⊗ IS + IN ⊗D. The VEC operator is a vector valued function of the U matrix, denoted by V EC (U)
which represent a N ·M dimensional vector defined in [3] as follows

V EC (U) = [u11,u21, · · · ,uN 1,u12, · · · ,uN S]
T
.

A property of Kronecker product that, in [4] is

U =CXB∗ ⇔V EC (U) = (B⊗C)V EC (X)

where B ∈ M
Q
S (C), C ∈ MP

N(C), D ∈ MS(C), U ∈ MS
N(C) and X ∈ M

Q
P (C).

2.1. Transormation for continuous-time Lyapunov matrix equation

When matrix equation (1.3) is considered,

−I = A∗HI + IHA

V EC (−I) = V EC (A∗HI + IHA)

= V EC (A∗HI)+V EC (IHA)

= (I ⊗A∗+A∗⊗ I)V EC (H)

V EC (−I) = (A∗⊕A∗)V EC (H)

is obtained. G ∈ MN2(C) and G = (A∗⊕A∗), h =V EC (H) and z =V EC (−I) is formed the

Gh = z (2.1)

matrix-vector equation. This linear algebraic equation has a unique solution if G is non-singular. As well this linear algebraic

equation is affair with continuous-time Lyapunov matrix equation. Let G = (gi j) , gi j ∈ C and A = (ai j) , ai j ∈ C. The G

matrix’s computation algorithm entitled as LyapunovC is follows.

LyapunovC algorithm

g(i−1)N+k, ( j−1)N+l =





ak l +ai j i = j ; k = l,

al k i = j ; k 6= l,

a j i i 6= j ; k = l,

0 i 6= j ; k 6= l,

for i, j,k, l = 1,2, · · · ,N.

2.2. Transormation for discrete-time Lyapunov matrix equation

If the matrix equation (1.4) is taken into account,

V EC (−I) = V EC (A∗HA−H)

= V EC (A∗HA)−V EC (H)

= (A∗⊗A∗V EC(H))−V EC (H)

V EC (−I) = (A∗⊗A∗− I)V EC (H)

is obtained. On this situation, the matrix vector-equation (2.1) is composed by G = (A∗⊗A∗− I), h = V EC (H) and

z = V EC (−I). This equation is affair with discrete-time Lyapunov matrix equation and has a unique solution if G is

invertible. The matrix G computation algorithm entitled as LyapunovD is follows.

LyapunovD algorithm

g(i−1)N+k, ( j−1)N+l =

{
ak l ai j −1 i = j ; k = l,

al k a j i i 6= j ; k 6= l,

for i, j,k, l = 1,2, · · · ,N.
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3. Solving the Gh = z linear algebraic equation

The equation (2.1) may be solved by varied methods. Iterative decreasing dimension method(IDDM) is one of them which is

decreases by one dimension at every step for get to the solution without any pre-processing. This method and the algorithm

that processes this method is given in detail in [5, 6]. As synopsis, framework computation of this method has given with

equation (3.1) by [5, 6].

h =
N2

∑
k=1

(
k−1

∏
l=1

R̂(l)

)
h
(k)
0 (3.1)

h
(k)
0 is a special solution that h

(k)
0 =

(
0 · · ·0

z
(k)
1

g
(k)
1s

0 · · ·0
)T

, where g
(k)
1s which is the first non-zero elements of first row of

matrix G(k). G(k) and z(k) are reduced matrix and vectors, of equation (2.1).

G(k) =

{
G if k = 1,

G
(k−1)
2 R̂(k−1) if k 6= 1

; G
(k−1)
2 = g

(k−1)
i j

j = 1, · · · ,N2 − k,

i = 2, · · · ,N2 − k;

z(k) =

{
z if k = 1,

v(k−1)−G
(k−1)
2 h

(k−1)
0 if k 6= 1

; v(k−1) = z
(k−1)
j , j = 2, · · · ,N2 − k.

R̂(k) ∈ M
(N2−k+1)

(N2−k)
(C) are matrices which are composed of the base vectors of solution space as

R̂(k) =




I 0

0 r(k)

0 I




; r̂
(k)
s,s+ j−1 = r

(k)
j =−

g
(k)
1 j

g
(k)
1s

; j = 1,2, · · · ,N2 − k− s+1.

In the condition of s = N2 − k + 1, particular cases of R̂(k) =




I

0


 are evident. This method has been arranged

for equation (2.1) and has been prepared for computer aided computation. The algorithm named IDDMforLyapunov that

calculates matrix H with IDDM has been given follows.

IDDMforLyapunov algorithm

Step 1. Settlementing of input matrix; G(1) = G.

Step 2. Checking input matrix at initial situation;

s = min( j) as provided by g
(1)
1 j 6= 0, for j = 1,2, · · · ,N2

, if s is not available,there is no exist or unique solution for the G,

the algorithm is terminated.

Step 3. Establishing initial values;

z
(1)
(i−1)N+ j

=

{
−1 if i = j,

0 if i 6= j,
for i, j = 1,2, · · · ,N,

h
(1)
i j =





η(1) =
1

g
(1)
1s

if N( j−1)+ i = s,

0 if j 6= s,

for i, j = 1,2, · · · ,N,

r
(1)
j =−

g
(1)
1,s+ j

g
(1)
1s

, for j = 1,2, · · · ,N2 − s,

R̂(1) =





r̂
(1)
j j = 1 if j < s,

r̂
(1)
j+1, j = 1 if j ≥ s,

r̂
(1)
s j = r

(1)
j−s+1 if j ≥ s,

for j = 1,2, · · · ,N2 −1.
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Step 4. Iterative computation of solution of matrix H;

Overall iteration of substeps on hereinafter is continuing for k = 2,3, · · · ,N2 −1;

Step 4.1. Dimension decreasing for vector z and matrix G;

z
(k)
i = z

(k−1)
i+1 −g

(k−1)
i+1,s ·η

(k−1),

g
(k)
i j =

{
g
(k−1)
i+1, j if j < s,

g
(k−1)
i+1,s · r

(k−1)
j−s+1 +g

(k−1)
i+1, j+1 if j ≥ s,

for i, j = 1,2, · · · ,N2 − k+1.

Step 4.2. Checking reduced matrix;

s = min( j) as provided by g
(k)
1, j 6= 0, for j = 1,2, · · · ,N2 − k+1, if s is not available, the algorithm is terminated.

Step 4.3. Accumulating the solution;

η(k) =
z
(k)
1

g
(k)
1s

,h
(k)
i j = h

(k−1)
i j + r̂

(k−1)
N( j−1)+i,s

·η(k), for j = 1,2, · · · ,N.

Step 4.4. Successive multiplication of R̂;

r
(k)
j =−

g
(k)
1,s+ j

g
(k)
1s

, for j = 1,2, · · · ,N2 − k− s+1,

r̂
(k)
i j =

{
r̂
(k−1)
i j if j < s,

r̂
(k−1)
i s · r

(k)
j−s+1 + r̂

(k−1)
i, j+1 if j ≥ s,

for i = 1,2, · · · ,N2,

for j = 1,2, · · · ,N2 − k.

Step 5. Computation of IDDMforLyapunov algorithm is completed with the output solution

matrix H.

Thus, if the IDDMforLyapunov algorithm gives a solution, this solution require be a symmetric positive defined matrix.

4. Maple procedures

The ComputeSystem main procedure calls the some procedures according to the sequence. These procedures are executed the

algorithms defined previous sections. This procedure takes four parameter. The first parameter named ErrTolerance is a small

number that describes the tolerance of comparison with respect to zero in Step 2 and Step 4.2 in the Gh = z computation. The

second parameter, TestTolerance, is a small number used to corroborate that a unique H solution matrix was symmetrically and

positively defined. Distinctly, this tolerance value was defined an acceptability limit by any one for special purpose. The third

parameter, is allows the choice either continuous time system or discrete-time system computation. At last, fourth parameter is

being the coefficient matrix that belong the system (1.1) or (1.2).

> restart

> with (Linear Algebra, Dimension, Eigenvalues)
>Continuous :: integer1 := 0; Discrete :: integer1 := 1;

> LyapunovC := proc(A :: Matrix) :: Matrix

local i, j, k, l, N, G; N := Dimension(A);
G := Matrix(N1 ·N2, N1 ·N2, datatype= complex8);
for i from 1 to N1 do for j from 1 to N2 do

for k from 1 to N1 do for l from 1 to N2 do

if i 6= j and k 6= l then next fi: if i = j and k = l then

G(i−1)·N1+k,( j−1)·N2+l := conjugate(Ak, l +Ai, j); next; fi :

if i = j then G(i−1)·N1+k,( j−1)·N2+l := conjugate(Al,k);next;fi :

G(i−1)·N1+k,( j−1)·N2+l := conjugate(A j, i);
od : od : od : od : return G; end proc :

> LyapunovD := proc(A :: Matrix) :: Matrix

local i, j, k, l, N, G; N := Dimension(A);
G := Matrix(N1 ·N2, N1 ·N2, datatype= complex8);
for i from 1 to N1 do for j from 1 to N2 do
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for k from 1 to N1 do for l from 1 to N2 do

if i = j and k = l then

G(i−1)·N1+k,( j−1)·N2+l := conjugate(Ai, j ·Ak, l)−1 else

G(i−1)·N1+k,( j−1)·N2+l := conjugate(A j, i ·Al,k) fi :

od : od : od : od : return G; end proc :

> IDDMforLyapunov := proc(W :: Matrix) :: Matrix

global ConclusionSituation; local i, j, k, η , r, z, H, G, R, Temp

DimBase, DimVec, DimMat, RowNumber,CoulumnNumber,

IndexNONZERO; ConclusionSituation :=
"Exist and unique solution been computed that provide the

Lyapunov equation."; DimMat := Dimension(W );
RowNumber := DimMat1; CoulumnNumber := DimMat2;

DimVec := DimMat1; DimBase := sqrt(DimVec);
z := Vector(DimVec, datatype= complex8);
for i from 1 to DimBase do zDimBase·(i−1)+i :=−1 od :

G := Matrix(DimMat, datatype= complex8);
for i from 1 to DimMat1 do for j from 1 to DimMat2 do

Gi, j :=Wi, j; od : od :

H := Matrix(DimBase, DimBasedatatype= complex8);
R := Matrix(DimMat1, DimMat2 −1, datatype= complex8);
for IndexNONZERO from 1 to DimMat2 do

if |G1, IndexNONZERO|> ErrTolerance then break fi : od :

if IndexNONZERO > DimMat2 then ConclusionSituation :=
"Has no unique solution so system can’t provide the

Lyapunov equation!"; return Matrix([0]); fi :

η := z1 ·G
−1
1, IndexNONZERO;

for i from 1 to DimBase do for j from 1 to DimBase do

if DimBase · (i−1)+ j = IndexNONZERO then Hi, j := η ;fi : od : od :

r := Vector(DimMat2 − IndexNONZERO, datatype= complex8);
for j from 1 to DimMat2 − IndexNONZERO do

r j :=−G1, IndexNONZERO+ j ·G
−1
1, IndexNONZERO od :

for j from 1 to DimMat2 −1 do if j < IndexNONZERO then

R j, j := 1 else RIndexNONZERO, j := r j−IndexNONZERO+1;R j+1, j := 1;fi:od:

Temp := Vector(DimMat1, datatype= complex8);
for k from 1 to DimMat1 −1 do

for i from 1 to RowNumber−1 do zi := zi+1 −Gi+1, IndexNONZERO ·η od :

for i from 1 to RowNumber−1 do for j from 1 to CoulumnNumber−1 do

if j < IndexNONZERO then Gi, j := Gi+1, j else

Gi, j := Gi+1, indexNONZERO · r j−IndexNONZERO+1 +Gi+1, j+1fi:od:od:

RowNumber := RowNumber−1;CoulumnNumber :=CoulumnNumber−1;

for IndexNONZERO from 1 to CoulumnNumber do

if |G1, IndexNONZERO|> ErrTolerance then break fi : od :

if IndexNONZERO >CoulumnNumber then ConclusionSituation :=
"Has no unique solution so that system can’t provide the

Lyapunov equation!"; return Matrix([0]); fi :

η := z1 ·G
−1
1, IndexNONZERO;

for i from 1 to DimBase do for j from 1 to DimBase do

Hi, j := Hi, j +RDimBase·(i−1)+ j, IndexNONZERO ·η od : od :

r := Vector(CoulumnNumber− IndexNONZERO, datatype= complex8);
for j from 1 to CoulumnNumber− IndexNONZERO do

r j :=−G1, IndexNONZERO+ j ·G
−1
1, IndexNONZERO od :

for i from 1 to DimMat1 do Tempi := Ri, IndexNONZERO od:

for j from IndexNONZERO to CoulumnNumber−1 do

for i from 1 to DimMat1 do Ri, j := Tempi · r j−IndexNONZERO+1 +Ri, j+1

od: od: od: return H; end proc :

> IsCorroborate := proc(H :: Matrix) :: boolean

global ValidationTest; local i, j, N, EigVal; N := Dimension(H);
for i from 1 to N1 −1 do for j from i+1 to N2 do

if |H j, i −Hi, j|< TestTolerance then next fi :
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ValidationTest := "Symmetry situation is out of accepted tolerance

value!";return f alse; od : od : EigVal := Eigenvalues(H);
for i from 1 to N1 do if R(EigVali)≥ TestTolerance then next fi :

ValidationTest := "Positivity of solution matrix is out of

accepted tolerance value!";return f alse; od:ValidationTest :=
"Both situations that symmetry and positivity of solution matrix

been in accepted tolerance range."; return true; end proc :

> ComputeSystem := proc

(argErrTolerance :: float,argTestTolerance :: float,

EqType :: integer1,A :: Matrix) :: boolean

global ErrTolerance,TestTolerance,boolResult, txtResult; local G, H;

if argErrTolerance < 10.−13 then ErrTolerance := 10.−13

elif argErrTolerance > 10.−4 then ErrTolerance := 10.−4

else ErrTolerance := argErrTolerance fi :

if argTestTolerance < 10.−13 then TestTolerance := 10.−13

elif argTestTolerance > 10.−4 then TestTolerance := 10.−4

else TestTolerance := argTestTolerance fi :

if EqType = 1 then G := LyapunovD(A) elif EqType = 0 then

G := LyapunovC(A) fi : print(′G′ = G);
H := IDDMforLyapunov(G); print(ConclusionSituation);
if H = [0] then return f alse fi : print(′H ′ = H);
boolResult := IsCorroborate(H);
print(ValidationTest,tolerance value is = TestTolerance);
print("The related system is asymptotic stable.");
return boolResult; end proc :

Example 4.1.

> A := Matrix(2, 2, [ [1,−3], [2,−4] ], datatype= complex8)

A :=

[
1.0+0.I −3.0+0.I

2.0+0.I −4.0+0.I

]

> ComputeSystem(10−13,10−10,continuous,A)

G =




2.0+0.I 2.0+0.I 2.0+0.I 0.+0.I

−3.0+0.I −3.0+0.I 0.+0.I 2.0+0.I

−3.0+0.I 0+0.I −3.0+0.I 2.0+0.I

0.+0.I −3.0+0.I −3.0+0.I −8.0+0.I




“Exist and unique solution been computed that provide the continuous-time Lyapunov matrix equation.”

H =

[
1.83333333299999990+0.I −1.16666666700000010+0.I

−1.16666666700000010+0.I 1.0+0.I

]

“Both situations that symmetry and positivity of solution matrixbeen in accepted tolerance range.”,

tolerace value is 1.000000000 ·10−10
,“The related system is asymptotic stable.”

> ComputeSystem(10−13,10−10,discrete,A)

G =




0.0+0.I 2.0+0.I 2.0+0.I 4.0+0.I

−3.0+0.I −5.0+0.I −6.0+0.I −8.0+0.I

−3.0+0.I −6.0+0.I −5.0+0.I −8.0+0.I

9.0+0.I 12.0+0.I 12.0+0.I 15.0+0.I




“Has no unique solution so that can’t provide the discrete-time Lyapunov matrix equation!”

Example 4.2.

> A := Matrix(2, 2, [ [0, 0], [0, 0] ], datatype= complex8)

A :=

[
0.0+0.I 0.0+0.I

0.0+0.I 0.0+0.I

]
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> ComputeSystem(10−13,10−10,discrete,A)

G =




−1.0+0.I 0.0+0.I 0.0+0.I 0.0+0.I

0.0+0.I −1.0+0.I 0.0+0.I 0.0+0.I

0.0+0.I 0.0+0.I −1.0+0.I 0.0+0.I

0.0+0.I 0.0+0.I 0.0+0.I −1.0+0.I




“Exist and unique solution been computed that provide the discrete-time Lyapunov matrix equation.”

H =

[
1.0+0.I 0.0+0.I

0.0+0.I 1.0+0.I

]

“Both situations that symmetry and positivity of solution matrix been in accepted tolerance range.”,

tolerace value is 1.000000000 ·10−10
,“The related system is asymptotic stable.”

5. Conclusion

On discrete set of double precision computer numbers, γ the base of number system, ε0 the minimal positive number, ε∞ the

maximal number, and ε1 is the step of computer numbers on the interval from 1 to γ . Thus, let be v ∈ [−ε∞,−ε0]∪ [ε0, ε∞], any

memorizable double precision computer number is vd p = v(1+α)+β , |v− vd p| ≤ ε1|v|+ ε0, |α| ≤ ε1, |β | ≤ ε0, α ·β = 0

(see for example[1] and [2]). The selected tolerance values from a particular interval [10−13, 10−4] were used in the evaluation

of the inequalities. The lower bound of the interval was chosen to be a larger number than ε1, depending on the ε1 which

determines the size of computation error. TestTolerance should always be larger than ErrTolerance so that the assessment be

efficient.

DDM which is inspiration for IDDM is described as type of Schur complement domain decomposition method in [7].

Decreasing dimension method (DDM) divides a large system into two smaller systems to be solved separately. To give a

general understanding of the computational quantum of DDM was used DDM and Gaussian elimination method to solve a

system of n dimension linear algebraic equations in [7]. The explanation in [7] tell us that the computational quantum of the

two methods are approximately the same to solve the system whose coefficient matrix is full, but the quantum of DDM is

much less than that of Gaussian elimination to solve band matrix equations. IDDM have made an improvement by modifying

the method in [7]. Notwithstanding DDM needed some pre-processing situations, without any pre-processing IDDM decreases

the dimension of the linear systems, by one order in every step (see for example ([6]). By its very nature, IDDM performs

division by a number away from 0 bound up with the ErrTolerance value. Thus inherently prevents the error of division by 0.
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Abstract

Constructing a surface with geodesic or line of curvature parameterization is an important

problem in many practical applications. The present paper aims to design a generalized

cylinder that is parametrized along the geodesics and lines of curvature curves in Euclidean

3- space. The main results show that the generalized cylinder with geodesic or line of

curvature parameterization is a rectifying cylinder or a right cylinder respectively.

1. Introduction

A generalized cylinder is constructed by the constant motion of a straight line called the ruling through a given curve called the

base curve. The generalized cylinders are a class of developable ruled surfaces that have no singularities points and can be

produced from paper or sheet metal with no distortion. For this construction, the generalized cylinder has been investigated as

a basic modeling surface in various fields of science including geometric modeling, computer graphic, architectural designing

and manufacturing [1]-[4].

Geodesic and line of curvature are characteristic curves that lie on the surface. The geodesic curve gives the shortest path

between two given points on curved spaces. A curve is a line of curvature if its direction always points in the principal

directions, i.e., the direction in which the surface bends extremaly. Geodesics and lines of curvature have been used in shape

analysis, therefore, the problems of computing and visualizing them on the surface have been investigated [5]-[7]. The rulings

of the generalized cylinder are geodesics and lines of curvature.

Surface parameterization is the process of mapping a surface to a planar region [8]. Extracting and transferring the geometric

information from shapes or between them depends on the parameterizations that are used as coordinate systems on the

shapes. Several types of parameterizations are constructed on a surface and differ by their characterizing properties. During

the parameterization some geometric quantities can be lost or distorted, therefore, designing and choosing the suitable

parameterizations that minimize, maximize or preserve the desired geometrical properties is an interesting problem and hot

topic in many areas of applications such as computer graphic [9]-[11], geometric modeling [12], and robot motion planning

[13].

A parameterization on a surface is said to be geodesic or line of curvature if the two families of parametric curves are geodesics

or lines of curvature. Parametrizations of smooth surfaces by curvature line exist on non-umbilical points as orthogonal curves

on the surface. Geodesic and line of curvature parameterizations mean that the shape is charted or covered by two families

of lines that are characterized by special directions. Parameterizing the surface along their geodesics or lines of curvature

are widely investigated in many areas of sciences such as CAGD [14]-[16], surfaces motions [17, 18], architectural design
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[19, 20], and discrete differential geometry [21]-[23].

The main goal of this paper is to design a generalized cylinder whose parametric curves are geodesics or lines of curvature in

Euclidean 3-space. A generalized cylinder has two families of parametric curves, rulings, and base curves. It is well known that

the rulings are geodesics and lines of curvature on a generalized cylinder. Consequently, throughout this paper, our focus lies

on the family of base curves. The generalized cylinders are a class of ruled surfaces, therefore, we start from a ruled surface

parametrization, then with additional three conditions called the cylindrical conditions, the generalized cylinder is defined.

After that, under some geometric constraints, we obtain the resulting cylinder that is parameterized by geodesic or line of

curvature base curves. The main results show that the generalized cylinder with geodesic or line of curvature parameterization

is a rectifying cylinder or a right cylinder respectively. In this article, we used the same approach that was used in [24] and

with the developable surface.

The rest of this paper is organized as follows: In section 2, some basic notations, facts, and definitions of the space curve,

regular surface, and special curves in Euclidean 3-space are reviewed. The main results are studied in section 3, where

the generalized cylinder is defined in the first subsection, then the generalized cylinder with geodesic and line of curvature

parameterizations are constructed subsequently in the other two subsections respectively. Examples to illustrate the main

results are presented in section 4. Finally, the conclusion is given in section 5.

2. Preliminaries

This section introduces some basic concepts on the classical differential geometry of space curves and surfaces in three-

dimensional Euclidean space. More details can be found in such standard references as [25]-[27].

2.1. Curves in Euclidean 3-space

A smooth space curve in 3-dimensional Euclidean space is parameterized by a map γ : I ⊆ R→ E3, γ is called a regular curve

if γ ′ 6= 0 for every point of an interval I ⊆ R, and if |γ ′(s)| = 1 where |γ ′(s)| =
√

〈γ ′(s),γ ′(s)〉, then γ is said to be of unit

speed (or parameterized by arc-length s). For a unit speed regular curve γ(s) in E3, the unit tangent vector t(s) of γ at γ(s) is

given by t(s) = γ ′(s). If γ ′′(s) 6= 0, the unit principal normal vector n(s) of the curve at γ(s) is given by n(s) = γ ′′(s)
‖γ ′′‖ . The unit

vector b(s) = t(s)×n(s) is called the unit binormal vector of γ at γ(s). For each point of γ(s) where γ ′′(s) 6= 0, we associate

the Serret-Frenet frame {t,n,b} along the curve γ . As the parameter s traces out the curve, the Serret-Frenet frame moves

along γ and satisfies the following Frenet-Serret formula :

t ′(s) = κ(s)n(s),

n′(s) =−κ(s)t(s)+ τb(s),

b′(s) =−τ(s)n(s),

(2.1)

where κ = κ(s) and τ = τ(s) are the curvature and torsion functions. When the point moves along the unit speed curve with

non-vanishing curvature and torsion, the Serret-Frenet frame {t,n,b} is drawn to the curve at each position of the moving

point, this motion consists of translation with rotation and described by the following Darboux vector

ω = τt +κb

where the unit Darboux vector is given by

ω̂ =
τ√

τ2 +κ2
t +

κ√
τ2 +κ2

b (2.2)

Direction of Darboux vector is the direction of rotational axis and its magnitude gives the angular velocity of rotation. A

necessary and sufficient condition that a curve be of constant slope (or general helix ) is that the ratio of torsion to curvature is

constant ( τ
κ
= c ). The general helix lies on a general cylinder and also known as a cylindrical helix. The circular helix ( a

helix on a circular cylinder) is a special helix with both of κ(s) 6= 0 and τ(s) are constants. The Darboux vector is constant for

circular helix. For the cylindrical helix, the unit Darboux vector is constant as following

ω̂ =
τ√

τ2 +κ2
t +

κ√
τ2 +κ2

b =
c√

c2 +1
t +

1√
c2 +1

b. (2.3)

2.2. Surfaces in Euclidean 3-space

A smooth surface in 3-dimensional Euclidean space is parameterized by a map X(u,v) : U ⊆ R
2 → R

3. The variables (u,v)
are called the (curvilinear) coordinates on the surface, the two families of u-curves (v = const), and v-curves (u = const), are

called the parametric curves (or coordinate curves). Their directions are defined by the tangents vectors Xu and Xv respectively.

The surface X(u,v) is called a regular if the condition Xu ×Xv 6= 0 is satisfied for all points, that means the vectors Xu and Xv
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do not vanish and have different directions. Consequently, the surface normal is defined at every point on the regular surface as

a unit vector on the tangent plane and given by

N(u,v) =
Xu ×Xv

|Xu ×Xv|
. (2.4)

The first and second fundamental form of the parameterized regular surface are given by

I = Edu2 +2Fdudv+Gdv2, II = edu2 +2 f dudv+gdv2

where their coefficients can be calculated respectively as

E = 〈Xu,Xu〉,F = 〈Xu,Xv〉,G = 〈Xv,Xv〉,e = 〈N,Xuu〉, f = 〈N,Xuv〉,andg = 〈N,Xvv〉.

The fundamental quantities I and II are important tools to describe the intrinsic and extrinsic geometry of surface. In particular,

type of the parametric curves and their characteristics properties are described by the coefficients of the fundamental quantities

I and II. For example, the coordinate curves are orthogonal if F = 0, conjugate if f = 0, and lines of curvature if satisfy both

conditions.

Theorem 2.1. [28] A necessary and sufficient condition for the coordinate curves of a parametrization to be lines of curvature

in a neighborhood of a nonumbilical point is that F = f = 0.

For a regular curve on a surface, there exists another frame {t(s),g(s),N(s)} which is called Darboux frame. In this frame t(s)
is the unit tangent of the curve, N(s) is the unit normal of the surface and g is a unit vector given by g = N × t. The relations

between Frenet frame and Darboux frame can be given by the following matrix representation





t

g

N



=





1 0 0

0 cosφ sinφ

0 −sinφ cosφ









t

n

b



 . (2.5)

A unit-speed curve on a surface is a geodesic if and only if the principal normal n to the curve and the surface normal N are

parallel to each other at any point on the curve. Equivalently, a curve γ(s) on the surface is a geodesic provided its acceleration

vector γ ′′(s) is always normal to the surface, i.e.

γ ′′(s)×N = 0. (2.6)

3. Generalized cylinder with geodesic and line of curvature parameterizations

This section is the main part of this paper, it consists of three subsections that are devoted to defining and covering the

generalized cylinder with geodesics and lines of curvature parametrizations. A generalized cylinder has two families of

parametric curves, rulings and base curves. It is well known that the rulings are geodesics and lines of curvature on a

generalized cylinder. Consequently, this section is devoted to providing the necessary and sufficient conditions for the base

curves to be geodesics or lines of curvature. We show that the generalized cylinder with geodesic parametrization is a rectifying

cylinder, and the generalized cylinder with a line of curvature parametrization is a right cylinder. The following first subsection

aims to parametrize the generalized cylinder, we start from the ruled parametrization, and with the cylindrical condition that is

described by the constrains three equations that are must be satisfied, we obtain the cylindrical parametrization.

3.1. Generalized cylinder

A generalized cylinder is generated by a constant moving of a straight line on a given curve and defined by the following ruled

parametrization

X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ ℓ, v ∈ R, where D′(s) = 0. (3.1)

A unit regular curve γ(s) is called a base curve, and the line passing through γ(s) that is parallel to D(s) is called the ruling.

D(s) is a unit director vector field that gives the direction of the ruling, D′(s) = 0 is the cylindrical condition which means that

the ruling moves in a constant direction. The unit normal vector field (shortly surface normal) of the generalized cylinder is

defined by using (2.4) as

N(s,v) =
Xs ×Xv

|Xs ×Xv|
=

(γ ′×D)+ v(D′×D)

|(γ ′×D)+ v(D′×D)| =
γ ′×D

|γ ′×D| .
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D(s) is a unit vector field that lies in the space formed by the frame {t,n,b} and can be written using (2.5) as following

D(s) = cosθ(s)t(s)+ sinθ(s)g(s), where g(s) = cosφ(s)n(s)+ sinφ(s)b(s).

Therefore D(s) can be decomposed as the following [29]

D(s) = cosθ(s)t(s)+ sinθ(s)(cosφ(s)n(s)+ sinφ(s)b(s)), (3.2)

where θ(s) and φ(s) are two scalar functions called the first and second angular functions [30]. The derivative of D(s) is given

by

D′(s) =−sinθ [κ cosφ +
dθ

ds
]t +[cosθ(κ + cosφ

dθ

ds
)− sinθ sinφ(s)(

dφ

ds
+ τ)]n+[sinφ cosθ

dθ

ds
+ sinθ cosφ(

dφ

ds
+ τ)]b.

Definition 3.1. The ruled parametrization with base curve γ(s) and a unit director vector D(s) (3.2) is defined by

X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L, v ∈ R, (3.3)

where

D(s) = cosθ(s)t(s)+ sinθ(s)(cosφ(s)n(s)+ sinφ(s)b(s)).

In the following theorem, we give the necessary and sufficient conditions to construct a generalized cylinder parametrization

from a ruled parametrization (3.3), we call them the cylindrical conditions.

Theorem 3.2. The ruled parametrization (3.1) is a generalized cylinder if and only if the following conditions are satisfied

κ cosφ +
dθ

ds
= 0,

cosθ(κ + cosφ
dθ

ds
)− sinθ sinφ(

dφ

ds
+ τ) = 0, (3.4)

sinφ cosθ
dθ

ds
+ sinθ cosφ(

dφ

ds
+ τ) = 0.

Definition 3.3. The generalized cylinder with base curve γ(s) and a unit director vector D(s) (3.2) is parameterized by

X(s,v) = γ(s)+ v[cosθ(s)t(s)+ sinθ(s)(cosφ(s)n(s)+ sinφ(s)b(s))], 0 ≤ s ≤ L, v ∈ R, (3.5)

where

κ cosφ +
dθ

ds
= 0, cosθ(κ + cosφ

dθ

ds
)− sinθ sinφ(

dφ

ds
+ τ) = 0, and sinφ cosθ

dθ

ds
+ sinθ cosφ(

dφ

ds
+ τ) = 0.

The first and second derivatives of the generalized cylinder parameterized by (3.5) are given in the following equations

Xs = t(s), Xss = κ(s)n(s), Xsv = 0, Xv = D(s), Xvv = 0. (3.6)

The inner and cross products of the tangents vectors Xs and Xv are given by

〈Xs,Xv〉= cosθ(s),

Xs ×Xv =−sinφ(s)n(s)+ cosφ(s)b(s).

By using (2.4), the unit normal of the generalized cylinder (3.5) is defined everywhere and given by the following

N(s,v) =−sinφ(s)n(s)+ cosφ(s)b(s). (3.7)

The main result of this paper is the following theorem which is proved in the next subsections.

Theorem 3.4. Let X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L,v ∈ R be a generalized cylinder, where γ(s) is a unit speed regular curve

with non vanishing curvature , D(s) is a unit director vector defined by (3.2) satisfying D′(s) = 0. Then the generalized cylinder

with geodesic or line of curvature parameterization is a rectifying cylinder or a right cylinder respectively.
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3.2. Generalized cylinder with geodesic parameterization

Theorem 3.5. All base curves of the generalized cylinder parameterized by (3.5) are geodesics if and only if the following

conditions are satisfied.

cosφ(s) = 0,
dθ

ds
= 0, cosθ(s)κ(s)− sinθ(s)τ = 0. (3.8)

Proof. According to (2.6), the base curves on a generalized cylinder (3.5) are geodesics if and only if their acceleration vector

Xss is normal to the surface, or equivalently N(s,v)×Xss = 0. From (3.6) and (3.7), it follows that N(s,v)×Xss =−cosφ t(s),
the geodesic condition N(s,v)×Xss = 0 is satisfied if and only if cosφ(s) = 0 which is the first condition of (3.8). By

substitution it in the cylindrical conditions (3.4), we get the other conditions of (3.8).

Definition 3.6. A generalized cylinder with geodesic base curves is defined by

X(s,v) = γ(s)+ v[cosθ(s)t(s)+ sinθ(s)b(s)], 0 ≤ s ≤ L, v ∈ R, (3.9)

τ(s)sinθ(s)−κ(s)cosθ(s) = 0, and θ ′(s) = 0.

Proposition 3.7. [24] Suppose that D(s) = cosθ(s)t(s)+ sinθ(s)b(s) is a unit rectifying vector defined along a unit speed

curve γ(s) with non vanishing curvature and torsion, then D(s) is a unit Darboux vector field if and only if κ cosθ −τ sinθ = 0.

Proof. Let D(s) = cosθ(s)t(s)+ sinθ(s)b(s) be a unit Darboux vector. From (2.2),

cosθ =
τ√

κ2 + τ2
, sinθ(s) =

κ√
κ2 + τ2

, and cotθ =
τ

κ
.

This implies that κ cosθ − τ sinθ = 0, and vice versa.

Definition 3.8. A generalized cylinder with geodesic base curves is defined by

X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L,v ∈ R

where

D(s) =
τ(s)√

κ2 + τ2
t(s)+

κ(s)√
κ2 + τ2

b(s), D′(s) = 0.

As discussed in (2.3), the condition for unit Darboux vector to be constant is equivalent to the base curve is a helix. As well

known, the base curve and director vector are responsible to build the generalized cylinder, so the following theorem gives the

conditions that can be applied on the base curve and director vector at the same time to generate a generalized cylinder with

geodesic base curves.

Theorem 3.9. Let X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L,v ∈ R be a generalized cylinder, where γ(s) is a unit speed regular curve

with non vanishing curvature and torsion, D(s) is a unit director vector defined by (3.2) satisfying D’(s) =0. Then every ruling

is a geodesic and the base curves are geodesics if and only if γ(s) is a helix and D(s) is a unit Darboux vector.

Definition 3.10. A generalized cylinder with geodesic parameterization is defined by

X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L,v ∈ R, (3.10)

where

D(s) =
τ(s)√

κ2 + τ2
t(s)+

κ(s)√
κ2 + τ2

b(s), and γ(s) is a helix.

The developable ruled surface whose director vector is a unit Darboux vector has been studied by many researchers and it has

been called the rectifying developable surface, (see, e.g., [31]). The generalized cylinder defined by (3.10) is a special case

where the unit Darboux vector is a constant and we call it the rectifying cylinder. The base curve is a geodesic on its rectifying

developable is a classical result has been stated in the classical differential geometry books [26], but according to theorem (3.9)

all base curves are geodesics on their rectifying cylinder.

Corollary 3.11. A generalized cylinder with geodesic parameterization (3.10) is a rectifying cylinder.

Theorem 3.12. Among all generalized cylinders parameterized by (3.5), only the rectifying cylinder (3.10) can be equipped

with geodesic parameterization.

In the above definition (3.10) we remark that for the rectifying cylinder (3.10) whose parametric curves are geodesics, the base

geodesic curves have the same curvature and torsion, and differ only by the rigid motion modeled by a constant unit Darboux

vector with fixed direction and fixed angular velocity. Therefore, it is interesting to end this subsection with the following result

Corollary 3.13. The geodesic parametric curves of the the rectifying cylinder (3.10) are lines and helices.
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3.3. Generalized cylinder with line of curvature parameterization

Theorem 3.14. All base curves of the generalized cylinder parameterized by (3.5) are lines of curvature if and only if the

following conditions are satisfied

cosθ(s) = 0, cosφ(s) = 0, τ(s) = 0. (3.11)

Proof. By Theorem (2.1), the base curves on a generalized cylinder (3.5) are lines of curvature if and only if F = f = 0. From

(3.6) and (3.7), f = 〈N,Xvs〉 = 0 is satisfied without further condition, and F = 〈Xs,Xv〉 = cosθ , therefore, F = 0 if and

only if cosθ = 0 which is the first condition of (3.11). By substitution it in the cylindrical conditions (3.4), we get the other

conditions of (3.11).

Definition 3.15. A generalized cylinder with line of curvature base curves is defined by

X(s,v) = γ(s)+ vb(s), 0 ≤ s ≤ L, v ∈ R, where τ(s) = 0.

The plane curve (τ(s) = 0) has no binormal unit vector b(s), therefore, the binormal of plane curve coincides with the normal

vector to the plane of the curve. Without loss in generality we may assume that the unit vector 〈0,0,1〉 is the normal to the

plane of planar curve γ(s).

Theorem 3.16. Let X(s,v) = γ(s)+vD(s),0 ≤ s ≤ L,v ∈R be a generalized cylinder, where γ(s) is a unit speed regular curve

with non vanishing curvature, D(s) is a unit director vector defined by (3.2) satisfying D’(s) =0. Then every ruling is a line of

curvature and the base curves are lines of curvature if and only if γ(s) is a plane curve and D(s) is a unit normal vector to the

plane of γ(s) .

Definition 3.17. A generalized cylinder with line of curvature parameterization is defined by

X(s,v) = γ(s)+ vD(s),0 ≤ s ≤ L, v ∈ R, (3.12)

where

D(s) = 〈0,0,1〉 and γ(s) is a plane curve.

The generalized cylinder whose base curve is a plane curve and the director vector is a unit normal vector to the plane of the

base curve is called a right generalized cylinder [32] or shortly right cylinder.

Corollary 3.18. A generalized cylinder with line of curvature parameterization (3.12) is a right cylinder.

Theorem 3.19. Among all generalized cylinders parameterized by (3.5), only the right cylinder (3.12) can be equipped with

line of curvature parameterization.

Corollary 3.20. The line of curvature parametric curves of the the right cylinder (3.12) are lines and plane curves.

4. Examples

In this section, we give two examples of a generalized cylinder with geodesic and line of curvature parametrization and draw

their pictures by using Mathematica. It is worth noting that the results are satisfied even the base curve is not a unit speed as

shown in the second example.

Example 4.1. Let γ(s) = (
√

3
2

sin(s), s
2
,
√

3
2

cos(s)) be a unit speed helix curve, therefore the unit tangent and binormal vectors

are given respectively by t =
(√

3
2

cos(s), 1
2
,−

√
3

2
sin(s)

)

and b = (− 1
2

cos(s),
√

3
2
, 1

2
sin(s)). Their curvature and torsion are

κ =
√

3
2

and τ = 1
2
. According to definition (3.10), the generalized cylinder with geodesic parametrization is defined by

X(s,v) = γ(s)+ v[
τ(s)√

κ2 + τ2
t(s)+

κ(s)√
κ2 + τ2

b(s)], 0 ≤ s ≤ L,v ∈ R.

By substitution τ√
κ2+τ2

= 1
2

and κ√
κ2+τ2

=
√

3
2

, and for 0 ≤ s ≤ 2π , 0 ≤ v ≤ π , the constructed cylinder is a rectifying cylinder

with geodesic parametrization as shown in Figure 1(a).

Example 4.2. Let γ(s) = (s,sin(s),0) be a plane curve. According to definition (3.12), the generalized cylinder with line of

curvature parametrization can be defined by X(s,v) = γ(s)+ v(0,0,1) , 0 ≤ s ≤ 2π,0 ≤ v ≤ π/2. The constructed cylinder is

a right cylinder with line of curvature parametrization as shown in Figure 1(b).



112 Fundamental Journal of Mathematics and Applications

(a) Rectifying cylinder with

geodesic parametrization

(b) Right cylinder with line of

curvature parametrization

Figure 4.1: Generalized cylinder with geodesic or line of curvature parametrizations

5. Conclusion

In this paper, using a ruled parametrization (3.1), and with three conditions called the cylindrical conditions (3.4) we constructed

a generalized cylinder parametrization (3.5). After that, through many geometric constraints we obtained the resulting cylinder

that is parameterized by geodesics or line of curvatures. The main results asserted that the generalized cylinder with geodesic

or line of curvature parametrization is a rectifying cylinder (3.10) or a right cylinder (3.12) respectively.
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Abstract

The aim of this work is to analyze the existence of positive solutions for a coupled system

of Hadamard type fractional boundary value problems. By using the five functional fixed

point theorem, the conditions for the existence of positive solutions are derived. Finally, to

show the applicability of the main result, an illustrative example is also involved.

1. Introduction

Fractional calculus and fractional differential equations have recently gained significance due to the expansion of the application

fields against real world problems in the areas of applied mathematics, engineering, physics, system control, etc. One reason for

such interest is that fractional differential equations can explain more precise results with respect to integer order models, see

[1]-[5]. Moreover, a lot of scientists have been studying on the existence results of positive solutions for fractional boundary

value problems and the systems of fractional differential equations by means of methods of nonlinear analysis. The importance

of the area of coupled systems of fractional order differential equations comes from that they can be observed in a large number

of problems of applied nature. For details and examples on the topic, see [6]-[15] and the references therein.

Other than the commonly mentioned Riemann-Liouville and Caputo fractional differential equations, there is a gap in in-

vestigation of Hadamard fractional differential equations and coupled systems under different boundary conditions on an

bounded/unbounded domain. One of the main speciality of Hadamard fractional derivative is that the definition contains

logarithmic function of arbitrary exponent. For some recent results on boundary value problems of Hadamard fractional

differential equations and coupled systems, we refer to [16]-[33].

In [23], Zhai and Wang investigated the following coupled Hadamard type fractional boundary value problems:































































HDpu(t) + f (t,v(t)) = a, 1 < p ≤ 2, t ∈ (1,e),
HDqv(t) + g(t,u(t)) = b, 1 < q ≤ 2, t ∈ (1,e),

u(1) = 0, HDp−1u(e) =

m
∑

i=1

µH
i Iαiv(η),

v(1) = 0, HDq−1v(e) =

n
∑

j=1

σH
j Iβ ju(ξ),
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where HD denotes the Hadamard-type fractional derivative; H I is the Hadamard-type fractional integral. By the use of

increasing ϕ − (h,r) concave operators, the authors obtained the existence and uniqueness of solutions for Hadamard fractional

differential systems.

Motivated particularly by the above mentioned papers, we are interested in investigating a coupled system of Hadamard

fractional differential equations, which include both integral boundary conditions and m-point fractional integral boundary

conditions:



































































HD
ϑ1

1+
u(t) + f1(t,u(t),v(t)) = 0, n − 1 < ϑ1 ≤ n, t ∈ (1,e),

HD
ϑ2

1+
v(t) + f2(t,u(t),v(t)) = 0, m − 1 < ϑ2 ≤ m, t ∈ (1,e),

u(1) = u′(1) = ... = u(n−2)(1) = 0, HD
ϑ1−1

1+
u(e) =

∫ e

1

g1(t)u(t)
dt

t
+

p
∑

i=1

λH
i I

βi

1+
u(σ∗1),

v(1) = v′(1) = ... = v(m−2)(1) = 0, HD
ϑ2−1

1+
v(e) =

∫ e

1

g2(t)v(t)
dt

t
+

q
∑

j=1

σH
j I

α j

1+
v(σ∗2),

(1.1)

where n,m ∈ N, n,m ≥ 3, HD
ϑ1

1+
and HD

ϑ2

1+
are the Hadamard-type fractional derivatives of order ϑ1, ϑ2, respectively.

H I
βi

1+
and H I

α j

1+
are the Hadamard-type fractional integrals of order βi > 0 (i = 1,2, ..., p), α j > 0 ( j = 1,2, ...,q), f1, f2 ∈

C([1,e] × [0,∞) × [0,∞), [0,∞)), g1,g2 ∈ C([1,e], (0,∞)) and λi ≥ 0 (i = 1,2, ..., p), σ j ≥ 0 ( j = 1,2, ...,q), σ∗
1
,σ∗

2
∈ (1,e) are

given constants.

We deal with the analysis of existence result of positive solutions for Hadamard differential systems. We accentuate that there

are a lot of studies on Riemann-Liouville or Caputo type fractional differential systems. To the best authors’ knowledge, there

are a little number of papers which are studied on the systems of nonlinear Hadamard fractional differential equations. Here,

unlike other papers, we attempt to study new Hadamard differential systems which consist of both integral boundary conditions

and m-point fractional integral boundary conditions on an bounded domain.

We prepare the following sections of this paper as follows: Section 2 includes some preliminaries. We also summarize all

properties of the corresponding Green’s function. We indicate the existence of positive solutions of the problem and an example

illustrating our result is ensured in Section 3.

2. Preliminaries

In this section, basic concepts, notations and some lemmas about the Hadamard-type fractional calculus are demonstrated for

the convenience of the readers.

Definition 2.1 ([4]). The Hadamard fractional derivative of fractional order ν > 0 for a function k : [1,∞)→ R is defined as

HDν
1+

k(t) =
1

Γ(n − ν)

(

t
d

dt

)n
∫ t

1

(

log
t

s

)n−ν−1
k(s)

ds

s
, n − 1 < ν < n, n = [ν] + 1,

where [ν] denotes the integer part of the real number ν and log(·) = loge(·).

Definition 2.2 ([4]). The Hadamard fractional integral of order ν > 0 for a function k : [1,∞)→ R is defined as

H Iν
1+

k(t) =
1

Γ(ν)

∫ t

1

(

log
t

s

)ν−1
k(s)

ds

s
, ν > 0,

provided the integral exists.

Lemma 2.3 ([4]). If a, ν,µ > 0, then

(H Iνa(log
t

a
)µ−1)(x) =

Γ(µ)

Γ(µ + ν)
(log

x

a
)µ+ν−1, (HDν

a(log
t

a
)µ−1)(x) =

Γ(µ)

Γ(µ − ν)
(log

x

a
)µ−ν−1.

in particular, (HDν
a(log t

a
)ν− j)(x) = 0, j = 1,2, ..., [ν] + 1.

Lemma 2.4 ([4]). Let ν > 0. Assume that c ∈ C[1,∞)∩ L1[1,∞), then the solution of Hadamard-type fractional differential

equation HDν
1+

c(t) = 0 can be denoted as

c(t) =

m
∑

i=1

ci(log t)ν−i,

and the following formula holds:
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H Iν
1+

HDν
1+

c(t) = c(t) +

m
∑

i=1

ci(log t)ν−i,

where ci ∈ R, i = 1,2, ...,n,n − 1 < ν < n,n = [ν] + 1.

Lemma 2.5. If x,y ∈ C[1,e], then, for the functions u,v ∈ C[1,e], the following system



































































HD
ϑ1

1+
u(t) + x(t) = 0, n − 1 < ϑ1 ≤ n, t ∈ (1,e),

HD
ϑ2

1+
v(t) + y(t) = 0, m − 1 < ϑ2 ≤ m, t ∈ (1,e),

u(1) = u′(1) = ... = u(n−2)(1) = 0, HD
ϑ1−1

1+
u(e) =

∫ e

1

g1(t)u(t)
dt

t
+

p
∑

i=1

λH
i I

βi

1+
u(σ∗1),

v(1) = v′(1) = ... = v(m−2)(1) = 0, HD
ϑ2−1

1+
v(e) =

∫ e

1

g2(t)v(t)
dt

t
+

q
∑

j=1

σH
j I

α j

1+
v(σ∗2),

(2.1)

can be given in the integral representations of the form

u(t) =

∫ e

1

H1(t, s)x(s)
ds

s
,

v(t) =

∫ e

1

H2(t, s)y(s)
ds

s
,

where

H1(t, s) =G1(t, s) +G2(t, s), (2.2)

H2(t, s) =G3(t, s) +G4(t, s), (2.3)

and

G1(t, s) = g1(t, s) +

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s),

G2(t, s) =
(log t)ϑ1−1

Υ1

∫ e

1

G1(t, s)g1(t)
dt

t
,

G3(t, s) = g2(t, s) +

q
∑

j=1

σ j(log t)ϑ2−1

Υ∗Γ(ϑ2 + α j)
g
α j

2
(σ∗2, s),

G4(t, s) =
(log t)ϑ2−1

Υ∗
1

∫ e

1

G3(t, s)g2(t)
dt

t
,

with

g1(t, s) =
1

Γ(ϑ1)















(log t)ϑ1−1 − (log t
s
)ϑ1−1, 1 ≤ s ≤ t ≤ e,

(log t)ϑ1−1, 1 ≤ t ≤ s ≤ e,
(2.4)

g2(t, s) =
1

Γ(ϑ2)















(log t)ϑ2−1 − (log t
s
)ϑ2−1, 1 ≤ s ≤ t ≤ e,

(log t)ϑ2−1, 1 ≤ t ≤ s ≤ e,
(2.5)

g
βi

1
(σ∗1, s) =















(logσ∗
1
)ϑ1+βi−1 − (log

σ∗
1

s
)ϑ1+βi−1, 1 ≤ s ≤ σ∗

1
≤ e,

(logσ∗
1
)ϑ1+βi−1, 1 ≤ σ∗

1
≤ s ≤ e,

g
α j

2
(σ∗2, s) =















(logσ∗
2
)ϑ2+α j−1 − (log

σ∗
2

s
)ϑ2+α j−1, 1 ≤ s ≤ σ∗

2
≤ e,

(logσ∗
2
)ϑ2+α j−1, 1 ≤ σ∗

2
≤ s ≤ e,
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where Υ = Γ(ϑ1) −
∑p

i=1
λiΓ(ϑ1)
Γ(ϑ1+βi)

(logσ∗
1
)ϑ1+βi−1 and Υ∗ = Γ(ϑ2) −

∑q

j=1

σ jΓ(ϑ2)

Γ(ϑ2+α j)
(logσ∗

2
)ϑ2+α j−1

Υ1 = Υ −

∫ e

1

g1(t)(log t)ϑ1−1 dt

t
> 0,

and

Υ∗1 = Υ
∗ −

∫ e

1

g2(t)(log t)ϑ2−1 dt

t
> 0.

Proof. Using Lemma (2.4), the above system (2.1) can be given by

u(t) = −
1

Γ(ϑ1)

∫ t

1

(log
t

s
)ϑ1−1x(s)

ds

s
+ c1(log t)ϑ1−1 + c2(log t)ϑ1−2 + ... + cn(log t)ϑ1−n,

v(t) = −
1

Γ(ϑ2)

∫ t

1

(log
t

s
)ϑ2−1y(s)

ds

s
+ d1(log t)ϑ2−1 + d2(log t)ϑ2−2 + ... + dm(log t)ϑ2−m,

where ci,d j ∈ R, i = 1, ..,n and j = 1, ..,m. Using the boundary conditions, we derive c2 = c3 = ... = cn = 0 and d2 = d3 = ... =

dm = 0. Then,

u(t) = −
1

Γ(ϑ1)

∫ t

1

(log
t

s
)ϑ1−1x(s)

ds

s
+ c1(log t)ϑ1−1. (2.6)

v(t) = −
1

Γ(ϑ2)

∫ t

1

(log
t

s
)ϑ2−1y(s)

ds

s
+ d1(log t)ϑ2−1. (2.7)

By using Lemma (2.3)

HD
ϑ1−1

1+
u(t) = c1Γ(ϑ1) −

∫ t

1

x(s)
ds

s
,

HD
ϑ2−1

1+
v(t) = d1Γ(ϑ2) −

∫ t

1

y(s)
ds

s
.

Using HD
ϑ1−1

1+
u(e) =

∫ e

1

g1(t)u(t)
dt

t
+

p
∑

i=1

λH
i I

βi

1+
u(σ∗1), and HD

ϑ2−1

1+
v(e) =

∫ e

1

g2(t)v(t)
dt

t
+

q
∑

j=1

σH
j I

α j

1+
v(σ∗2), we have

c1 =
1

Υ
(

∫ e

1

g1(t)u(t)
dt

t
+

∫ e

1

x(s)
ds

s
−

p
∑

i=1

λi

Γ(ϑ1 + βi)

∫ σ∗
1

1

(log
σ∗

1

s
)ϑ1+βi−1x(s)

ds

s
). (2.8)

d1 =
1

Υ∗
(

∫ e

1

g2(t)v(t)
dt

t
+

∫ e

1

y(s)
ds

s
−

q
∑

j=1

σ j

Γ(ϑ2 + α j)

∫ σ∗
2

1

(log
σ∗

2

s
)ϑ2+α j−1y(s)

ds

s
). (2.9)
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Substituting (2.8) into (2.6), we get

u(t) =
(log t)ϑ1−1

Υ

∫ e

1

x(s)
ds

s
+

(log t)ϑ1−1

Υ

∫ e

1

g1(t)u(t)
dt

t
−

1

Γ(ϑ1)

∫ t

1

(log
t

s
)ϑ1−1x(s)

ds

s

−

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ σ∗
1

1

(log
σ∗

1

s
)ϑ1+βi−1x(s)

ds

s

=
(log t)ϑ1−1

Γ(ϑ1)

∫ e

1

x(s)
ds

s
+

(Γ(ϑ1) −Υ)(log t)ϑ1−1

ΥΓ(ϑ1)

∫ e

1

x(s)
ds

s
+

(log t)ϑ1−1

Υ

∫ e

1

g1(t)u(t)
dt

t

−
1

Γ(ϑ1)

∫ t

1

(log
t

s
)ϑ1−1x(s)

ds

s
−

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ σ∗
1

1

(log
σ∗

1

s
)ϑ1+βi−1x(s)

ds

s

=
(log t)ϑ1−1

Γ(ϑ1)

∫ e

1

x(s)
ds

s
+

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ e

1

(logσ∗1)ϑ1+βi−1x(s)
ds

s

+
(log t)ϑ1−1

Υ

∫ e

1

g1(t)u(t)
dt

t
−

1

Γ(ϑ1)

∫ t

1

(log
t

s
)ϑ1−1x(s)

ds

s

−

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ σ∗
1

1

(log
σ∗

1

s
)ϑ1+βi−1x(s)

ds

s

=

∫ e

1

g1(t, s)x(s)
ds

s
+

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ e

1

g
βi

1
(σ∗1, s)x(s)

ds

s
+

(log t)ϑ1−1

Υ

∫ e

1

g1(t)u(t)
dt

t

=

∫ e

1

G1(t, s)x(s)
ds

s
+

(log t)ϑ1−1

Υ

∫ e

1

g1(t)u(t)
dt

t
.

Similarly, substituting (2.9) into (2.7), we get

v(t) =

∫ e

1

G2(t, s)y(s)
ds

s
+

(log t)ϑ2−1

Υ∗

∫ e

1

g2(t)v(t)
dt

t
.

Furthermore,
∫ e

1

g1(t)u(t)
dt

t
=

∫ e

1

g1(t)

∫ e

1

G1(t, s)x(s)
ds

s

dt

t

+
1

Υ

∫ e

1

g1(t)(log t)ϑ1−1 dt

t

∫ e

1

g1(t)u(t)
dt

t
,

and
∫ e

1

g2(t)v(t)
dt

t
=

∫ e

1

g2(t)

∫ e

1

G3(t, s)y(s)
ds

s

dt

t

+
1

Υ∗

∫ e

1

g2(t)(log t)ϑ2−1 dt

t

∫ e

1

g2(t)v(t)
dt

t
,

which provide
∫ e

1

g1(t)u(t)
dt

t
=
Υ

Υ1

∫ e

1

g1(t)

∫ e

1

G1(t, s)x(s)
ds

s

dt

t
,

∫ e

1

g2(t)v(t)
dt

t
=
Υ∗

Υ∗
1

∫ e

1

g2(t)

∫ e

1

G3(t, s)y(s)
ds

s

dt

t
.

Then,

u(t) =

∫ e

1

G1(t, s)x(s)
ds

s
+

∫ e

1

G2(t, s)x(s)
ds

s

=

∫ e

1

H1(t, s)x(s)
ds

s
,

v(t) =

∫ e

1

G3(t, s)y(s)
ds

s
+

∫ e

1

G4(t, s)y(s)
ds

s

=

∫ e

1

H2(t, s)y(s)
ds

s
.

The proof is completed. �
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Lemma 2.6. The functions gi(t, s), (i=1,2) given by (2.4) and (2.5) satisfy

(i) gi(t, s) are continuous functions and gi(t, s) ≥ 0 for any t, s ∈ [1,e], i = 1,2.

(ii)gi(t, s) ≤ gi(e, s) for any t, s ∈ [1,e], i = 1,2.

(iii)g1(t, s) ≥ ( 1
4
)ϑ1−1g1(e, s) and g2(t, s) ≥ ( 1

4
)ϑ2−1g2(e, s) for any t ∈ [e

1
4 ,e

3
4 ] and s ∈ [1,e].

Proof. To show (i), it is easy to check that the functions gi(t, s), (i=1,2) are continuous functions. Next, for 1 ≤ s ≤ t ≤ e, we

have

g1(t, s) =
1

Γ(ϑ1)

(

(log t)ϑ1−1 − (log
t

s
)ϑ1−1)

=
1

Γ(ϑ1)

(

(log t)ϑ1−1 − (log t)ϑ1−1(1 −
log s

log t
)ϑ1−1)

≥
1

Γ(ϑ1)

(

(log t)ϑ1−1(1 − (1 − log s)ϑ1−1)
)

≥ 0.

For 1 ≤ t ≤ s ≤ e, g1(t, s) =
1

Γ(ϑ1)
(log t)ϑ1−1 ≥ 0. Using a similar proof, we obtain g2(t, s) ≥ 0 for any t, s ∈ [1,e]. To prove (ii),

for 1 ≤ s ≤ t ≤ e, we get

g1t(t, s) =
(ϑ1 − 1)(log t)ϑ1−2 1

t
− (ϑ1 − 1)(log t

s
)ϑ1−2 1

t

Γ(ϑ1)

≥
(ϑ1 − 1)(log t)ϑ1−2

[

1 − (1 − log s)ϑ1−2)
]

Γ(ϑ1)t
≥ 0.

Then, g1t(t, s) is increasing on [s,e] according to t. That is, g1(t, s) ≤ g1(e, s) is obtained. It is easy to see that g1(t, s) ≤ g1(e, s)

when 1 ≤ t ≤ s ≤ e. Thus, g1(t, s) ≤ g1(e, s) for any t, s ∈ [1,e]. Similarly, we have g2(t, s) ≤ g2(e, s) for any t, s ∈ [1,e]. To

demonstrate (iii), for 1 ≤ s ≤ t ≤ e and t ∈ [e
1
4 ,e

3
4 ],

g1(t, s) =
1

Γ(ϑ1)

(

(log t)ϑ1−1 − (log
t

s
)ϑ1−1)

=
1

Γ(ϑ1)

(

(log t)ϑ1−1 − (log t)ϑ1−1(1 −
log s

log t
)ϑ1−1)

≥
1

Γ(ϑ1)

(

(log t)ϑ1−1(1 − (1 − log s)ϑ1−1)
)

≥
(1

4

)ϑ1−1
g1(e, s).

It is clear that for 1 ≤ t ≤ s ≤ e and t ∈ [e
1
4 ,e

3
4 ], g1(t, s) ≥ ( 1

4
)ϑ1−1g1(e, s). In a similar manner, we get g2(t, s) ≥ ( 1

4
)ϑ2−1g2(e, s)

for any t ∈ [e
1
4 ,e

3
4 ] and s ∈ [1,e]. The proof is completed. �

Lemma 2.7. Let K1(s) = g1(e, s) +
∑p

i=1
λi

ΥΓ(ϑ1+βi)
g
βi

1
(σ∗

1
, s), K2(s) = g2(e, s) +

∑q

j=1

σ j

Υ∗Γ(ϑ2+α j)
g
α j

2
(σ∗

2
, s), for s ∈ [1,e] and

̟1 = 1 + 1
Υ1

∫ e

1
g1(t) dt

t
, ̟2 = 1 + 1

Υ∗
1

∫ e

1
g2(t) dt

t
. Then, the functions Hi(t, s), i = 1,2 defined by (2.2) and (2.3) ensure the

following properties:

(i) Hi(t, s) are continuous and Hi(t, s) ≥ 0, for (t, s) ∈ [1,e] × [1,e], i = 1,2;

(ii)H1(t, s) ≤ K1(s)̟1, for (t, s) ∈ [1,e] × [1,e];

(iii)min
t∈[e

1
4 ,e

3
4 ]

H1(t, s) ≥ ( 1
4

)2ϑ1−2K1(s)̟1, for s ∈ [1,e];

(iv) H2(t, s) ≤ K2(s)̟2, for (t, s) ∈ [1,e] × [1,e];

(v) min
t∈[e

1
4 ,e

3
4 ]

H2(t, s) ≥ ( 1
4

)2ϑ2−2K2(s)̟2, for s ∈ [1,e].
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Proof. We can evidently see that (i) holds. To show (ii), for (t, s) ∈ [1,e] × [1,e], we have,

H1(t, s) =G1(t, s) +G2(t, s)

= g1(t, s) +

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

+
(log t)ϑ1−1

Υ1

∫ e

1

G1(t, s)g1(t)
dt

t

≤ g1(e, s) +

p
∑

i=1

λi

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

+
1

Υ1

∫ e

1

(g1(e, s) +

p
∑

i=1

λi

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s))g1(t)

dt

t

= K1(s)̟1.

To prove (iii), for (t, s) ∈ [1,e] × [1,e], we get,

min

t∈[e
1
4 ,e

3
4 ]

H1(t, s) = min

t∈[e
1
4 ,e

3
4 ]

[

g1(t, s) +

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

+
(log t)ϑ1−1

Υ1

∫ e

1

G1(t, s)g1(t)
dt

t

]

≥(
1

4
)ϑ1−1g1(e, s) +

p
∑

i=1

λi(
1
4

)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

+
( 1

4
)ϑ1−1

Υ1

∫ e

1

(

g1(t, s) +

p
∑

i=1

λi(log t)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

)

g1(t)
dt

t

≥(
1

4
)ϑ1−1K1(s) +

( 1
4
)ϑ1−1

Υ1

∫ e

1

(

(
1

4
)ϑ1−1g1(e, s) +

p
∑

i=1

λi(
1
4
)ϑ1−1

ΥΓ(ϑ1 + βi)
g
βi

1
(σ∗1, s)

)

g1(t)
dt

t

≥(
1

4
)ϑ1−1K1(s) +

( 1
4
)2ϑ1−2

Υ1
K1(s)

∫ e

1

g1(t)
dt

t

≥(
1

4
)2ϑ1−2K1(s)̟1.

The proofs of the parts (iv) and (v) can be shown similar to the proofs above (ii) and (iii).

The proof is completed. �

We deal with the Banach space E = C[1,e] × C[1,e] with the norm ‖(u,v)‖E = ‖u‖ + ‖v‖ for (u,v) ∈ E and ‖u‖ =maxt∈[1,e] |u(t)|.

We introduce the cone P ⊂ E,

P =



















(u,v) ∈ E : u(t) ≥ 0,v(t) ≥ 0,∀t ∈ [1,e], min

t∈[e
1
4 ,e

3
4 ]

(u(t) + v(t)) ≥ Ψ‖(u,v)‖



















, (2.10)

where Ψ = min
{

( 1
4
)2ϑ1−2, ( 1

4
)2ϑ2−2

}

. Define the operator F : P→ E by

F(u,v)(t) = (F1(u,v)(t),F2(u,v)(t)), for all t ∈ [1,e], (2.11)

with F1,F2 : P→C[1,e] are given by

F1(u,v)(t) =

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
, (2.12)

F2(u,v)(t) =

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s
.

Lemma 2.8. Consider that (u,v) is a positive solution of the system (1.1) if and only if (u,v) is a fixed point of the operator F.
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Proof. It is obvious that a positive solution of the system (1.1) is a fixed point of the operator F.

In fact, if u(t) = F1(u,v)(t), by applying the operator HD
ϑ1

1+
on both sides of (2.12), after some arrangement, for x(s) =

f1(s,u(s),v(s), s ∈ [1,e] in Lemma (2.5), we get

HD
ϑ1

1+
F1(u,v)(t) =

HD
ϑ1

1+
(log t)ϑ1−1

Γ(ϑ1)

∫ e

1

x(s)
ds

s
+

p
∑

i=1

λH
i

D
ϑ1

1+
(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ e

1

(logσ∗1)ϑ1+βi−1x(s)
ds

s

− (HD
ϑ1

1+
H I

ϑ1

1+
x)(t) −

p
∑

i=1

λH
i

D
ϑ1

1+
(log t)ϑ1−1

ΥΓ(ϑ1 + βi)

∫ σ∗
1

1

(log
σ∗

1

s
)ϑ1+βi−1k(s)

ds

s

+

HD
ϑ1

1+
(log t)ϑ1−1

Υ1

(

∫ e

1

g1(t)

∫ e

1

G1(t, s)x(s)
ds

s

dt

t

)

.

Applying Lemma (2.3), we have
HD

ϑ1

1+
F1(u,v)(t) = −x(t),

which implies that the system (1.1) is satisfied. Then by a direct computation, it follows that u satisfies the boundary conditions

of (1.1). Similarly, we obtain that v(t) = F2(u,v)(t) is a solution of the system (1.1). The proof is completed. �

Lemma 2.9. F : P→ P is a completely continuous operator.

Proof. Let us indicate that F(P) ⊂ P. The continuity of H1,H2, f1, f2, it follows that F is continuous. Lemma (2.7) and the

nonnegativity of f1 and f1 ensure that F1(u,v)(t) ≥ 0, F2(u,v)(t) ≥ 0 for t ∈ [1,e]. Also, for (u,v) ∈ P

‖F1(u,v)‖ ≤̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
,

‖F2(u,v)‖ ≤̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s
,

and

min

t∈[e
1
4 ,e

3
4 ]

F1(u,v)(t) ≥ (
1

4
)2ϑ1−2̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s

≥ (
1

4
)2ϑ1−2‖F1(u,v)‖.

Similary, we get min

t∈[e
1
4 ,e

3
4 ]

F2(u,v)(t) ≥ (
1

4
)2ϑ2−2‖F2(u,v)‖. Hence,

min

t∈[e
1
4 ,e

3
4 ]

{F1(u,v)(t) + F2(u,v)(t)} ≥ (
1

4
)2ϑ1−2‖F1(u,v)‖ + (

1

4
)2ϑ2−2‖F2(u,v)‖

≥ Ψ[‖F1(u,v)‖ + ‖F2(u,v)‖]

= Ψ‖F(u,v)‖,

so F : P→ P. Moreover, we can use the Arzela–Ascoli theorem, we obtain that F is a completely continuous operator. The

proof is completed. �

Let Φ, Λ, θ be nonnegative continuous convex functionals on P and κ, ψ be nonnegative continuous concave functionals on P.

Then for nonnegative real numbers k, s,d, l and h, we define the following convex sets:

P(Φ,h) = {ϑ ∈ P : Φ(ϑ) < h} ,

P(Φ, κ, s,h) = {ϑ ∈ P : s ≤ κ(ϑ),Φ(ϑ) ≤ h} ,

Q(Φ,Λ, l,h) = {ϑ ∈ P : Λ(ϑ) ≤ l,Φ(ϑ) ≤ h} ,

P(Φ, θ, κ, s,d,h) = {ϑ ∈ P : s ≤ κ(ϑ), θ(ϑ) ≤ d,Φ(ϑ) ≤ h} ,

Q(Φ,Λ,ψ,k, l,h) = {ϑ ∈ P : k ≤ ψ(ϑ),Λ(ϑ) ≤ l,Φ(ϑ) ≤ h} .

In ensuring positive solutions of (1.1), the following theorem will be essential.
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Lemma 2.10. [see [34]] Let P be a cone in a real Banach space E. Assume there exist h > 0 and M > 0, nonnegative,

continuous, concave functionals κ and ψ on P, and nonnegative, continuous, convex functionals Φ, Λ, and θ on P, satisfying

κ(ϑ) ≤ Λ(ϑ) and ‖ϑ‖ ≤MΦ(ϑ)

for all ϑ ∈ P(Φ,h). If

S : P(Φ,h)→ P(Φ,h)

is completely continuous and there exist nonnegative numbers k, l,d, s with 0 < l < s such that:

(i) {ϑ ∈ P(Φ, θ, κ, s,d,h) : κ(ϑ) > s} , ∅ and κ(Sϑ) > s for ϑ ∈ P(Φ, θ, κ, s,d,h),

(ii) {ϑ ∈ Q(Φ,Λ,ψ,k, l,h) : Λ(ϑ) < l} , ∅ and Λ(Sϑ) < l for ϑ ∈ Q(Φ,Λ,ψ,k, l,h),

(iii) κ(Sϑ) > s for ϑ ∈ P(Φ, κ, s,h) with θ(Sϑ) > d,

(vi) Λ(Sϑ) < l for ϑ ∈ Q(Φ,Λ, l,h) with ψ(Sϑ) < k.

Then, S has at least three fixed points ϑ1,ϑ2,ϑ3 ∈ P(Φ,h) satisfying;

Λ(ϑ1) < l, s < κ(ϑ2),

and

l < Λ(ϑ3) with κ(ϑ3) < s.

For the readers convenience, let us denote

W =min
{[

̟1

∫ e

1

K1(s)
ds

s

]−1
,
[

̟2

∫ e

1

K2(s)
ds

s

]−1}

,

V =max
{[

(
1

4
)2ϑ1−2̟1

∫ e
3
4

e
1
4

K1(s)
ds

s

]−1
,
[

(
1

4
)2ϑ2−2̟2

∫ e
3
4

e
1
4

K2(s)
ds

s

]−1}

.

Now, we introduce the nonnegative continuous concave functionals ξ, ψ and the nonnegative continuous convex functionals β,

θ, σ on P by

ξ(u,v) = ψ(u,v) = min

t∈[e
1
4 ,e

3
4 ]

(u(t) + v(t)), θ(u,v) = max

t∈[e
1
4 ,e

3
4 ]

(u(t) + v(t)),

β(u,v) = σ(u,v) = max
t∈[1,e]

(u(t) + v(t)).

3. Main result

Theorem 3.1. Assume that there exist constants 0 < ℓ < κ < κ
Ψ
< h such that κV < hW. If fi, i = 1,2 satisfy the following

conditions:

(M1) fi(t,u,v) <
ℓW

2
for t ∈ [1,e], (u + v) ∈ [0, ℓ],

(M2) fi(t,u,v) >
κV

2
for t ∈ [e

1
4 ,e

3
4 ], (u + v) ∈ [κ, κ

Ψ
],

(M3) fi(t,u,v) ≤
hW

2
for t ∈ [1,e], (u + v) ∈ [0,h].

Then the problem (1.1) has at least three positive solutions (ui,vi) (i = 1,2,3) such that β(u1,v1) < ℓ, κ < ξ(u2,v2), ℓ < β(u3,v3)

with ξ(u1,v1) < κ.

Proof. We introduce P and F as above equations (2.10) and (2.11). For any (u,v) ∈ P,

ξ(u,v) ≤ β(u,v),

||(u,v)|| ≤
1

Ψ
min

t∈[e
1
4 ,e

3
4 ]

(u(t) + v(t)) ≤
1

Ψ
max
t∈[1,e]

(u(t) + v(t)) =
1

Ψ
σ(u,v).

Next, we denote that the operator F ensures all conditions in Lemma (2.10). According to Lemma (2.9), F is completely

continuous. As a beginning, we prove that F : P(σ,h)→ P(σ,h). If (u,v) ∈ P(σ,h), then σ(u,v) ≤ h, 0 ≤ ||u|| + ||v|| ≤ h. With

respect to (M3), we obtain that,
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σ(F(u,v)) = max
t∈[1,e]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≤̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
+̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s

≤
hW

2
̟1

∫ e

1

K1(s)
ds

s
+

hW

2
̟2

∫ e

1

K2(s)
ds

s

≤
h

2
+

h

2
= h.

Hence, we ensure F : P(σ,h)→ P(σ,h).

To verify condition (i) of Lemma (2.10), by choosing, ( κΨ+κ
4Ψ

, κΨ+κ
4Ψ

), we get that ( κΨ+κ
4Ψ

, κΨ+κ
4Ψ

) ∈ P(σ,θ,ξ,κ, κ
Ψ
,h) and ξ(u,v) > κ.

Thus,
{

(u,v) ∈ P(σ,θ,ξ,κ, κ
Ψ
,h) : ξ(u,v) > κ

}

, ∅. Let (u,v) ∈ P(σ,θ,ξ,κ, κ
Ψ
,h), then (u(t) + v(t)) ∈ [κ, κ

Ψ
] for any t ∈ [e

1
4 ,e

3
4 ]. By

(M2), we obtain

ξ(F(u,v)) = min

t∈[e
1
4 ,e

3
4 ]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≥ (
1

4
)2ϑ1−2̟1

∫ e
3
4

e
1
4

K1(s) f1(s,u(s),v(s))
ds

s
+ (

1

4
)2ϑ2−2̟2

∫ e
3
4

e
1
4

K2(s) f2(s,u(s),v(s))
ds

s

>
κV

2
(
1

4
)2ϑ1−2̟1

∫ e
3
4

e
1
4

K1(s)
ds

s
+
κV

2
(
1

4
)2ϑ2−2̟2

∫ e
3
4

e
1
4

K2(s)
ds

s

>
κ

2
+
κ

2
= κ.

Then, the condition (i) of Lemma (2.10) is satisfied. Now, we demonstrate that the condition (ii) of Lemma (2.10) is fulfilled.

Let (Ψℓ+ℓ
4
, Ψℓ+ℓ

4
), then (Ψℓ+ℓ

4
, Ψℓ+ℓ

4
) ∈ Q(σ,β,ψ,Ψℓ,ℓ,h) and β(u,v) < ℓ. Hence, {(u,v) ∈ Q(σ,β,ψ,Ψℓ,ℓ,h) : β(u,v) < ℓ} , ∅. Let

(u,v) ∈ Q(σ,β,ψ,Ψℓ,ℓ,h), then (u(t) + v(t)) ∈ [0, ℓ] for any t ∈ [1,e]. By (M1), we obtain

β(F(u,v)) = max
t∈[1,e]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≤̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
+̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s

<
ℓW

2
̟1

∫ e

1

K1(s)
ds

s
+
ℓW

2
̟2

∫ e

1

K2(s)
ds

s

<
ℓ

2
+
ℓ

2
= ℓ.

Now, we can show that the condition (iii) of Lemma (2.10) is satisfied. Let (u,v) ∈ P(σ,ξ,κ,h) with θ(F(u,v)) > κ
Ψ

. Then, we

have,

ξ(F(u,v)) = min

t∈[e
1
4 ,e

3
4 ]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≥ (
1

4
)2ϑ1−2̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
+ (

1

4
)2ϑ2−2̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s

≥ Ψ
[

̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
+̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s

]

≥ Ψ max
t∈[1,e]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≥ Ψ max

t∈[e
1
4 ,e

3
4 ]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

= Ψθ(F(u,v)) = κ.

Finally, we can verify that the condition (iv) of Lemma (2.10) ensures. Let (u,v) ∈ Q(σ,β,ℓ,h) with ψ(F(u,v)) < Ψℓ,
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β(F(u,v)) = max
t∈[1,e]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

≤
1

Ψ

[

Ψ̟1

∫ e

1

K1(s) f1(s,u(s),v(s))
ds

s
+Ψ̟2

∫ e

1

K2(s) f2(s,u(s),v(s))
ds

s

]

≤
1

Ψ
min

t∈[e
1
4 ,e

3
4 ]

[

∫ e

1

H1(t, s) f1(s,u(s),v(s))
ds

s
+

∫ e

1

H2(t, s) f2(s,u(s),v(s))
ds

s

]

=
1

Ψ
ψ(F(u,v)) < ℓ.

Because the conditions of Lemma (2.10) are satisfied, the system (1.1) has at least three positive solutions (ui,vi) (i = 1,2,3)

such that β(u1,v1) < ℓ, κ < ξ(u2,v2), ℓ < β(u3,v3) with ξ(u1,v1) < κ. The proof is completed. �

Example 3.2. Consider the system of Hadamard fractional differential equations


























































HD
5
2

1+
u(t) + f1(t,u(t),v(t)) = 0, t ∈ (1,e),

HD
5
2

1+
v(t) + f2(t,u(t),v(t)) = 0, t ∈ (1,e),

u(1) = u′(1) = 0, HD
3
2

1+
u(e) =

∫ e

1

u(t)
dt

t
+

1

2
H I

1
2

1+
u(e

1
2 ) +H I

3
2

1+
u(e

1
2 ),

v(1) = v′(1) = 0, HD
3
2

1+
v(e) =

∫ e

1

v(t)
dt

t
+

3

2
H I

3
2

1+
u(e

1
3 ) + 2H I

7
2

1+
u(e

1
3 ),

(3.1)

in which ϑ1 = ϑ2 =
5
2
, n = m = 3, p = q = 2, λ1 =

1
2
,λ2 = 1, σ1 =

3
2
,σ2 = 2, σ∗

1
= e

1
2 ,σ∗

2
= e

1
3 , β1 =

1
2
,β2 =

3
2
, α1 =

3
2
,α2 =

7
2
,

g1(t) = g2(t) = 1 for t ∈ [1,e],

f1(t,u,v) =



























t
10
+

(u+v)
4
, t ∈ [1,e], (u + v) ∈ [0,4],

t
10
+ 170(u + v) − 679, t ∈ [1,e], (u + v) ∈ [4,6],

t
10
+

10(u+v)+270694
794

, t ∈ [1,e], (u + v) ∈ [6,∞),

f2(t,u,v) =



























t
20
+

(u+v)
4
, t ∈ [1,e], (u + v) ∈ [0,4],

t
20
+ 170(u + v) − 679, t ∈ [1,e], (u + v) ∈ [4,6],

t
20
+

(u+v)+135371
397

, t ∈ [1,e], (u + v) ∈ [6,∞).

By direct calculation, we get Ψ = 0,015625,

W =min
{[

̟1

∫ e

1

K1(s)
ds

s

]−1
,
[

̟2

∫ e

1

K2(s)
ds

s

]−1}

≈min
{

0.8842,1.0435
}

= 0.8842,

V =max
{[

(
1

4
)2ϑ1−2̟1

∫ e
3
4

e
1
4

K1(s)
ds

s

]−1
,
[

(
1

4
)2ϑ2−2̟2

∫ e
3
4

e
1
4

K2(s)
ds

s

]−1}

≈max
{

106.383,111.1111
}

= 111.1111.

Choosing the constants as ℓ = 4, κ = 6,h = 800, then 0 < ℓ < κ < κ
Ψ
< h such that κV < hW. Then, fi, i = 1,2 satisfy the following

conditions:

(M1) fi(t,u,v) <
ℓW

2
≈ 1.7684 for t ∈ [1,e], (u + v) ∈ [0,4],

(M2) fi(t,u,v) >
κV

2
≈ 333.3333 for t ∈ [e

1
4 ,e

3
4 ], (u + v) ∈ [6,384],

(M3) fi(t,u,v) ≤
hW

2
≈ 353.63 for t ∈ [1,e], (u + v) ∈ [0,800].

Then, all the hypotheses of Theorem (3.1) are satisfied. Thus, the system of fractional differential equations (3.1) has at least

three positive solutions.

4. Conclusion

In our main result, it is obtained positive solutions for Hadamard differential systems. By using the five functionals fixed point

theorem, the conditions for the existence of positive solutions are derived. There are a little number of papers which are studied

on the systems of nonlinear Hadamard fractional differential equations. Here, unlike other papers, we attempt to study new

Hadamard differential systems which consist of both integral boundary conditions and m-point fractional integral boundary

conditions on an bounded domain.
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Abstract

We study the decomposition of Hardy-Morrey spaces via atoms and molecules, which have

similar properties of H
p
∆ν
(Rn

+) Hardy spaces. Then we introduce the HM
p
q,∆ν

boundedness

of B-Riesz transforms generated by a generalized translate operator that is associated to the

Laplace Bessel operator for 0 < p ≤ 1 < q ≤ ∞ with p 6= q through atomic decomposition

and molecular characterization.

1. Introduction

The notion of classical Hardy-Morrey space HM
p
q originates from Jia and Wang [1, 2]. Since then, this theory received

continuous development and now is increasingly mature; see, for example [3]-[5].

It is well known that the classical Hardy-Morrey space generalizes both Morrey (M
p
q ,q > 1) and Hardy (H p , p ≤ 1) spaces

[6]. It plays important roles in several fields of harmonic analysis and PDEs. Also, these spaces are important because they

have close relations with Lp spaces, Hardy spaces and BMO−1 spaces, and etc.

In recent years, studies in the classical theory of Hardy-Morrey spaces related to some operators have gained great interest and

importance. Therefore, our study focused on these spaces. Similar results in other function spaces can be developed in this

spaces. These results can be seen in decomposition of Hardy-Morrey spaces, decomposition of Hardy-Morrey spaces with

weighted, and decomposition of weighted Hardy-Morrey spaces with variable exponent in [1],[3]-[5].

In this paper, our main purpose is to prove that some properties of Hardy-Morrey spaces, and Hardy-Morrey characterization of

the operators depend on conditions via atoms can be obtained. For example, the boundedness of an singular integral operators

can be often proved by estimating Ta when a is an atom. While it is generally not true that atoms are mapped into atoms,

for many convolution type operators Ta is a function enjoying many of the properties of atoms. Such functions were called

molecules. Moreover, classical Hardy spaces and Hardy-Morrey spaces have molecular characterizations that are completely

analogous to their atomic characterizations.

We define Hardy-Morrey spaces called HM
p
q,∆ν

Hardy-Morrey spaces which was similar with Hardy spaces associated to the

following Laplace-Bessel differential operator [7]

∆ν :=
n

∑
i=1

∂ 2

∂x2
i

+
ν

xn

∂

∂xn

, ν > 0.

The main conclusion of this article is to prove that the B-Riesz transformation defined in (4.1) is a bounded operator from

Hardy-Morrey spaces HM
p
q,∆ν

to Hardy-Morrey spaces HM
p
q,∆ν

. Here R
(k)
ν ,B-Riesz transform related to Laplace-Bessel

Email address and ORCID number: cansu.keskin@dpu.edu.tr, 0000-0002-0998-4419

https://orcid.org/0000-0002-0998-4419


128 Fundamental Journal of Mathematics and Applications

differential operator ∆ν . This operator has been studied by many mathematicians on weighted Lebesgue spaces (see [8]-[11]).

Even though the boundedness of B-Riesz transform is well known for 1 < p < ∞ on Lebesgue spaces, we cannot say for

0 < p < 1 on Lebesgue spaces. But these transformations are bounded in Hardy spaces for 0 < p < 1 (see [7]). Therefore, in

this study, a new characterization of the B-Riesz transform obtained by generalized translation has been obtained for 0 < p ≤ 1

in Hardy-Morrey spaces HM
p
q,∆ν

.

We investigate the Hardy-Morrey spaces characterizing boundedness properties of related Riesz transforms called B-Riesz

transforms. These operators give us the most popular examples of Calderon-Zygmund singular integral operators. Also these

transforms are related to generalized translate operator. Furthermore, they present some applications especially in the area of

partial differential equations. To characterize the boundedness of these transforms, we apply the atomic decomposition. By

using this decomposition we give the molecular characterizations for HM
p
q,∆ν

Hardy-Morrey spaces. We follow the ideas in [7]

to obtain the boundedness of high order B-Riesz transforms on HM
p
q,∆ν

Hardy-Morrey spaces at the end of Section 4 as an

application of our main result. For this reason, we pass by other characterizations of HM
p
q,∆ν

Hardy-Morrey spaces.

The remainder of this paper is structured as follows. The HM
p
q,∆ν

Hardy-Morrey spaces are introduced, also their atomic

decompositions are given in Section 2. In Section 3, we will give appropriate definition of molecule is given. We will show

that each such molecule has an atomic decomposition. As an application, we present the B-Riesz transforms and give its

boundedness properties on HM
p
q,∆ν

Hardy-Morrey spaces extending the results in [7].

Throughout this paper, we denote dyadic cubes with Q or J. Moreover, C indicates constant depending on n,ν , p,q.

2. Preliminaries

Let Rn be the n dimensional Euclidean space and R
n
+ = {x = (x′,xn)∈R

n : xn > 0}. We write x = (x′,xn), x′ = (x1, . . . ,xn−1)∈
R

n−1, E(x, t) = {y ∈ R
n
+ ; |x− y|< t} and E(x, t)c = R

n
+\E(x, t). Let us take a measurable set E on R

n
+, we can define

|E|ν =
∫

E
xν

n dx,

where ν > 0. Denoting |E(0,r)|ν = ω(n,ν)rn+ν , where

ω(n,ν) =
∫

E(0,1)
xν

n dx =
π

n−1
2 Γ

(

ν+1
2

)

2Γ
(

n+ν−2
2

) .

The generalized translate operator T y is defined by

T y f (x) = cν

∫ π

0
. . .

∫ π

0
f
(

x′− y′,(xn,yn)θ

)

dν(θ), (2.1)

where cν =
π− 1

2 Γ
(

ν+1
2

)

Γ
(

ν
2

) , (xn,yn)θ =
√

x2
n −2xnyn cosθ + y2

n, dν (θ) = sinν−1 θ dθ [9, 10, 12, 13]. Note that the generalized

translate operator is closely connected with ∆ν -Laplace-Bessel differential operator denoted by

∆ν =
n−1

∑
i=1

∂ 2

∂x2
i

+Bxn , Bxn =
∂ 2

∂x2
n

+
ν

xn

∂

∂xn

, ν > 0.

The Bxn -convolution operator related to T y is defined by

( f ⊗g)(x) =
∫

R
n
+

f (y)T yg(x)yγ
ndy.

Let L
p
ν = L

p
ν(R

n
+) be the space of measurable functions with a finite norm

‖ f‖L
p
ν
=

(

∫

R
n
+

| f (x)|pxν
n dx

)1/p

is denoted by L
p
ν ≡ L

p
ν(R

n
+), 1 ≤ p < ∞. We denote by S ′

+ = S ′
+

(

R
n
+

)

the topological dual of S+ is the collection of all

tempered distributions on R
n
+.

First, let’s start by giving the definition of Morrey space [14, 15].

Definition 2.1. For p and q satisfying 0 < q ≤ p < ∞, the homogeneous Morrey spaces M
p
q are defined as

Mp
q =

{

f ∈ L
q
loc : || f ||Mp

q
= sup

x∈Rn,R>0

|B(x,R)|
1
p−

1
q || f ||Lq(B(x,R)) < ∞

}

,

where B(x,R) is the closed ball of Rn with center x and radius R.
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Let j ∈ Z, k ∈ Z
n. The set

Q jk =
{

x ∈ R
n : 2− jki ≤ xi ≤ 2− jki+1, i = 1,2, . . .n

}

,

is called a dyadic cube. We remark that

|| f ||Mp
q
≈ sup

J:dyadic

|J|
1
p−

1
q || f ||Lq(J).

We now introduce the Hardy-Morrey spaces that we work mainly on and give their decomposition results.

The HM
p
q,∆ν

Hardy-Morrey spaces is given by the set of all distributions f ∈ S+ \P with the quasi-norm

|| f ||HM
p
q,∆ν

=
∣

∣

∣

∣sup
t>0

|φt ⊗ f |
∣

∣

∣

∣

M
p
q,ν

is finite. Here φ ∈ S+(R
n
+) satisfies

∫

φ(x)xν
n dx = 1. Also, P indicates the set of polynomials.

For the Hardy-Morrey space, if 1 < p ≤ q ≤ ∞, it is obvious that HM
p
q,∆ν

= M
p
q,∆ν

since the Hardy-Littlewood maximal

operator associated with the Laplace-Bessel differential operator ∆ν is bounded on M
p
q,ν . Moreover, the HM

p
q,∆ν

Hardy-Morrey

spaces cover Hardy spaces for 0 < p ≤ 1. In general, H
p
∆ν

= HM
p
p,∆ν

⊂ HM
p
q,∆ν

for p ≤ q ≤ ∞ and HM
p
1,∆ν

6= M
p
1,∆ν

. Here ,

the Hardy spaces H
p
∆ν

are defined by

H
p
∆ν

=

{

|| f ||H p
∆ν

=
∥

∥sup
t>0

φt ⊗ f
∥

∥

Lp
< ∞

}

[2].

Now, let us start with to give the definition of (p,q,s)-atoms.

Definition 2.2. Let 0< p≤ 1< q≤∞ with p 6= q and s∈N∪{0}. For a dyadic cube Q, a function aQ is called a (p,q,s)-atom

of HM
p
q,∆ν

if the following properties are satisfied:

(i) aQ be supported on a cube Q, namely, supp aQ ⊂ Q,

(ii) ‖aQ‖Lq,ν ≤ |Q|
1
q−

1
p

ν ,

(iii)
∫

R
n
+

aQ(x)x
α xν

n dx = 0 for all s ≥ [(n+ k+ν)
(

1
p
−1

)

],1 ≤ k ≤ n, with |α| ≤ s.

Also, we introduce atomic decomposition theorem in HM
p
q,∆ν

space is as follows:

Theorem 2.3. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q, {aQ : Q dyadic} be a collection of (p,q,s)-atoms and {λQ : Q dyadic} be a

sequence of scalars with

||λ ||p,q =

{

sup
J

(

1

|J|ν

)1−p/q

∑
Q⊂J

|Q|
1−p/q
ν |λQ|

p

}1/p

< ∞.

Then the sum

f = ∑
Q

λQaQ (2.2)

converges in S
′

+ \P and f ∈ HM
p
q,∆ν

with || f ||HM
p
q,∆ν

≤ C||λ ||p,q, where C = C(n, p,q,ν). Conversely, ∀ f ∈ HM
p
q,∆ν

has

atomic decomposition (2.2) in S
′

+ \P . Here aQ are (p,q,s)-atoms and λ = {λQ} satisfies ||λ ||p,q ≤ C|| f ||HM
p
q,∆ν

, where

C > 0 independent of f .

Proof. The proof of Theorem 2.3 can be found in [1, 16], so we omit it here.

3. Molecular characterizations of HM
p
q,∆ν

Next, we continue to give the notion of molecule related to HM
p
q,∆ν

. The following definition for molecule is modified from

the corresponding definition of molecule from [2].

Definition 3.1. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q, s = [(n+ k + ν)
(

1
p
− 1

)

] and ε > (n+ k + ν)
(

1
p
− 1

2

)

,1 ≤ k ≤ n. A

measurable function mQ(x) is called a (p,q,s,ε)-molecule for a dyadic cube Q if and only if

(i)
(
∫

R
n
+
|mQ(x)|

2(1+ |x− xQ|ν/ℓQ)
2sxν

n dx
)1/2

≤ |Q|
1/2−1/p
ν , (this means that ℓQ is large )

(ii)
∫

R
n
+

mQ(x)x
α xν

n dx = 0, |α| ≤ s.
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Similar to the atomic decomposition of HM
p
q,∆ν

Hardy-Morrey space, the decomposition in terms of molecule is given as

follows:

Theorem 3.2. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q and ε > (n+ k + ν)
(

1
p
− 1

2

)

. There is exists a sequence of scalars

{λQ : Q dyadic}, a collection of (p,q,s,ε)-molecules {mQ : Q dyadic} for HM
p
q,∆ν

, the series

f = ∑
Q

λQmQ (3.1)

converges in S
′

+ \P and f ∈ HM
p
q,∆ν

with

|| f ||HM
p
q,∆ν

≤C||λ ||p,q,

where C > 0 independent of f .

Proof. The proof of this theorem has a similar technique to those of [2, 17, 18]. Let us start with consider the sets

E0 = {x ∈ R
n
+ : |x| ≤ σ}

E j = {x ∈ R
n
+ : 2 j−1σ ≤ |x|< 2 jσ}, j = 1,2, . . . ,

where σ (n+k+ν)
(

1
p−

1
2

)

= ||λ ||−1
p,2. Set m j = mχE j

, where χE j
is the characteristic function of E j. For all j = 1,2, . . ., α a

multi-index such that |α| ≤ s, let ϕα
j be the function on E j (the restriction to E j of a polynomial of degree at most s). If

Pj = ϕ jχ j then

∫

R
n
+

(m j −Pj)x
α xν

n dx = 0, |α| ≤ s.

Since m = ∑
∞
j=0 m j = ∑(m j −Pj)+∑Pj, to show both ∑(m j −Pj) and ∑Pj in HM

p
q,∆ν

, it suffices to verify that

(i) each (m j −Pj) is a multiple of a (p,q,s)-atom with coefficients sum appropriately,

(ii) the sum ∑Pj can be written as an infinite liner combination of (p,∞,s)-atom with coefficients sum appropriately.

For a dyadic cube Q, we define E0 = Q and for all j ≥ 1, Q j = 2 jQ and E j = Q j −Q j−1. For j ≥ 0, let {ϕα
E j

: |α| ≤ s} (or

{Φα
E j

: |α| ≤ s}, respectively) be the Gram-Schmidt orthonormalization of monomials {xα : |α| ≤ s}(or the dual basis of

monomials {Φα
E j

: |α| ≤ s}, respectively) on E j according to the weight 1/|E j|ν . We consider the function ϕα
E j

to be defined

on R
n, having the value zero outside E j. (namely, if x /∈ E j, then we set Φα

E j
(x) = 0.) By homogeneity and the uniqueness of

Gram-Schmidt orthogonalization process (see [18]), we obtain the following estimate

|ϕα
E j
(x)| ≤C, for x ∈ E j, (3.2)

and

|Φα
E j
(x)| ≤C(2 jσ)−|α|, (3.3)

where C depends on s. Let mQ be a molecule function. We set mE j
(x) = mQ(x)χE j

(x) and

PE j
(x) = PE j

(mQ)(x) = ∑
|α|≤s

aα
E j

ϕα
E j
(x) = ∑

|α|≤s

mα
E j

Φα
E j
(x), (3.4)

where

aα
E j

=
∫

mE j
(x)ϕα

E j
(x)xν

n

dx

|E j|ν
,mα

E j
=

∫

mE j
(x)xα xν

n

dx

|E j|ν
.

From [19], we obtain
∫

(mE j
−PE j

)xα xν
n dx = 0, for all |α| ≤ s,

||mE j
−PE j

||L2
ν (E j)

≤ C||mE j
||L2

ν (E j)
(3.5)

We may write a decomposition of the molecule mQ(x) as folllows

mQ(x) =
∞

∑
j=0

(mE j
−PE j

)(x)+
∞

∑
j=0

PE j
(x). (3.6)
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By the equality (3.4), and the cancellation properties of the molecule, we get

∞

∑
j=0

PE j
(x) =

∞

∑
j=0

∑
|α|≤s

(

Φα
E j+1

|E j+1|ν
−

Φα
E j

|E j|ν

)

EQ j,α , (3.7)

here

EQ0,α
= ∑

j≥0

∫

mE j
(x)xα xν

n dx =
∫

m(x)xα xν
n dx = 0,

EQ j,α =
∞

∑
i= j

∫

mE j
(x)xα xν

n dx =
∫

|x|≥2 jσ
mQ(x)x

α xν
n dx, for all j ≥ 1.

By using (3.6) and (3.7), we may write

mQ(x) =
∞

∑
j=0

tQ j
aQ j

(x)+ ∑
j≥0

∑
|α|≤s

δQ j,α bQ j,α (x), (3.8)

where for each j ≥ 0

tQ j
= ||mE j

−PE j
||L2

ν (E j)
|Q j|

1
p−

1
2

ν , aQ j
(x) =

(mE j
−PE j

)(x)

||mE j
−PE j

||L2
ν (E j)

|Q j|
1
p−

1
2

ν ,

and

λQ j,α = EQ j,α |Q j|
1
p−1

ν (2 jσ)−|α|, bQ j,α (x) =

(

Φα
E j+1

|E j+1|ν
−

Φα
E j

|E j|ν

)

|Q j|
1− 1

p
ν (2 jσ)|α|.

From the inequalities (3.2), (3.3) and (3.5), it can be easily seen that aQ j
and bQ j,α are supported in a cube Q j and they are

(p,q,2)-atoms and (p,q,∞)-atoms respectively. For simplicity, we now just consider the sum (3.1) is finite. Then by (3.8), we

obtain

f = ∑
Q, j

λQtQ j
aQ j

(x)+∑
Q, j

λQ ∑
|α|≤s

δQ j,α bQ j,α (x) (3.9)

in S ′(Rn
+). Let J be a fixed dyadic cube. We consider the following equality

∑
Q j⊂J

|λQtQ j
|p|Q j|

1−p/q
ν = ∑

Q⊂J

|λQ|
p ∑

j:Q j⊂J

|tQ j
|p|Q j|

1−p/q
ν .

By the Hölder’s inequality, (3.5) and ε > (n+ k+ν)
(

1
p
− 1

2

)

, we find that

∑
j:Q j⊂J

|tQ j
|p|Q j|

1−p/q
ν ≤C|Q|

1−p/q
ν . (3.10)

Combining (3.9) and (3.10), we get

∣

∣

∣

∣

∣

∣

∣

∣

∑
Q, j

λQtQ j

∣

∣

∣

∣

∣

∣

∣

∣

HM
p
q,∆ν

≤C||λ ||p,q. (3.11)

From an argument similar to that used in above (3.9)-(3.11), it also follows that

∣

∣

∣

∣

∣

∣

∣

∣

∑
Q

∑
j≥0

∑
Q, j

λQtQ j

∣

∣

∣

∣

∣

∣

∣

∣

HM
p
q,∆ν

≤C||λ ||p,q. (3.12)

Combining the inequalities (3.11) and (3.12), we end of the proof if the sum (3.1) is finite. Also, this sum converges in the

sense of distributions.

With the above theorem, we are ready to give the following section which offers an important estimates for Hardy-Morrey

spaces related to Laplace-Bessel operator used in the proof of our main result.
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4. The B-Riesz transform on Hardy-Morrey spaces HM
p
q,∆ν

In this section, we restrict ourselves to the high order B-Riesz transforms and give its boundedness properties on Hardy-Morrey

spaces. We recall the high order B-Riesz transform.

Definition 4.1. ([8, 9]) Let 1 ≤ p < ∞ and f ∈ L
p
ν . B-Riesz transform of f with high order is defined

R
(k)
ν ( f )(x) = Ck,ν

[

p.v
( Pk(y)

|y|n+k+ν
⊗ f

)]

(x), 1 ≤ k ≤ n,

= Ck,ν

[

p.v
(

K ⊗ f
)]

(x)

= Ck,ν lim
ε→0

∫

ε<|y|

Pk(y)

|y|n+k+ν
T y f (x)yν

n dy, (4.1)

where Ck,ν = 2
n+ν

2 Γ( n+k+ν
2

)
[

Γ( k
2
)
]−1

and Pk(y) = Pk(y1,y2, . . . ,yn−1,y
2
n) is a homogeneous polynomial of degree k which

holds △ν Pk(y) = 0 on R
n
+. Also, the following two conditions are satisfied for this polynomial:

∫

S+

Pk(θ)(θ
′
)ν dθ = 0 (4.2)

and

sup
θ∈S+

|Pk(θ)|= M < ∞, (4.3)

here S+ = {y ∈ R
n
+ : |y|= 1} and θ = y

|y| . Also, here T y denotes the generalized translate operator given in (2.1).

Before establishing the B-Riesz transform characterization of HM
p
q,∆ν

(Rn
+), we first introduce some background on this kernel

of this transform.

Let R
(k)
ν f := K ⊗ f be defined as in (4.1). There exists a bounded distribution function K(x) with |Fν [K(x)]| ≤C. We give the

following equality

Fν [R
(k)
ν f ](x) = ikPk(x)|x|

−kFν( f )(x)

for all f ∈ L2
ν . Here, for any f ∈ S (Rn

+), we use Fν f to denote its Fourier-Bessel transform, which is defined by setting

Fν f (x) =
∫

R
n
+

f (y)e−i(x′y′) j ν−1
2
(xnyn) yν

n dy, for all x ∈ R
n
+,

where (x′y′) = x1y1 + . . .+ xn−1yn−1, jν , (ν >−1/2) is Bessel function and Cn,ν = (2π)n−12ν−1Γ2((ν +1)/2) = 2
π ω(2,ν).

This transform is also associated with Laplace-Bessel differential operator.

Moreover, K(x) satisfies the following Hörmander’s condition,

∫

|x|≥A1|y|

|T yK(x)−K(x)|xν
n dx ≤ A2, (4.4)

for some A1,A2 < ∞ (See more detail [20]). So, we conclude that property (4.4) and the L2
ν -boundedness of R

(k)
ν f maps

HM
p
q,∆ν

to itself for 0 < p ≤ 1 < q ≤ ∞ with p 6= q.

However, we make stronger assumption on kernel, that is K ∈C∞(Rn
+ \{0}) satisfies for all |α| ≤ s and x 6= 0,

|Dα
ν T yK(x)| ≤ AM|x|−n−k−ν−|α|.

We also have the following L
p
ν and H

p
∆ν

boundedness of high order B-Riesz transform.

Theorem 4.2. ([8, 21]) Let Pk be the characteristic of the singular integral (4.1) satisfiying the conditions (4.2) and (4.3).

Then there exists a constant C > 0 such that for all 1 < p < ∞ and ν > 0

‖R
(k)
ν ( f )‖L

p
ν
≤CM‖ f‖L

p
ν
,

where C is a constant independent of f and Pk is a homogeneous polynomial of degree k.

Theorem 4.3. ([7]) Let R
(k)
ν f := K ⊗ f and 0 < p ≤ 1. Then there exists a constant C∗

n,p,ν such that for all f ∈ H
p
∆ν

‖K ⊗ f‖H
p
∆ν ,at

≤C∗
n,p,ν‖ f‖H

p
∆ν ,at

ν > 0.
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The following main theorem demonstrate B-Riesz characterization of HM
p
q,∆ν

Hardy-Morrey spaces.

Theorem 4.4. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q. Then B-Riesz transform can be extended to the bounded transform on

Hardy-Morrey spaces HM
p
q,∆ν

.

Proof. In order to prove this theorem, it is sufficient to show R
(k)
ν ( f ) is a (p,q,s,ε)-molecule whenever f is a (p,q,s)-atom.

We prove this theorem by following the similar strategy used in [7]. Let us take the function supported in the upper half ball

B(0,1) with
∫

ϕ(x)xn
ν dx on R

n
+. We define K(t) = ϕt ⊗K. Then the function K(t) satisfies the following inequalities

sup
t>0

Fν(K
(t))(x)≤C||Fν ϕt ||L∞

ν

and

sup
t>0

(K(t))(x)≤Cϕ M|x|−n−k−ν−|α|, |α| ≤ s .

For a dyadic cube Q, mQ(x) be a (p,q,s)-molecule and aQ be a (p,q,s)-atom of HM
p
q,∆ν

. Finally, the proof rests on the

checking that mQ(x) = R
(k)
ν (aQ)(x) satisfies the moment and size condition. Namely,

(i)
(
∫

R
n
+
|R

(k)
ν aQ(x)|

2(1+ |x− xQ|ν/σ)2sxν
n dx

)1/2
≤ |Q|

1/2−1/p
ν ,

(ii)
∫

R
n
+

R
(k)
ν aQ(x)x

α xν
n dx = 0, |α| ≤ s.

So, we omit the details and leave it to the reader.

5. Conclusion

In this study, the decomposition of Hardy-Morrey spaces related to the Laplace-Bessel differential operator are introduced in

terms of atoms and molecules. Also, we give the HM
p
q,∆ν

boundedness of higher order B-Riesz transforms for 0 < q ≤ p < ∞

by using this atomic decomposition and molecular characterization. We follow the similar approach for developing the atomic

decomposition and molecular characterization as classical Hardy-Morrey spaces. The interesting of our result depends on the

existence of the different differential operator.
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Abstract

In this paper, the approximation properties and the rate of convergence of modified bivariate

Bernstein-Durrmeyer Operators on a triangular region are examined. Furthermore, defi-

nitions and some properties of modulus of continuity for functions of two variables are

given. Voronovskaya and Grüss Voronovskaja type theorems are used to determine the order

of approximation. The GBS (Generalized Boolean Sum) operator of Bivariate Bernstein-

Durrmeyer type on a triangular region is studied. Lastly, some numerical examples are

given and related graphs are plotted for comparison.

1. Introduction

Classical approximation theory, including polynomial approximation is a fundamental research area in applied mathematics.

Development in approximation theory plays an important role in numerical solution of partial differential equations, image

processing as well as in data sciences and many other disciplines. For example, radial basis functions and shift-invariant

spaces are widely used for geometric modeling in aerospace and automobile industries [1]. In this paper we intend to study

the approximation properties of functions of two variables by means of Bernstein-Durrmeyer operator in a triangular domain.

Several studies have been conducted on the classical Bernstein operators, as well as using two variables.

From literature , Kingsley [2] proposed the Bernstein operator of two-variables. Pop [3] added some features to the Bernstein

operators, defined by Kingsley. Stancu [4] defined two variables of Bernstein operators on the triangular region. Pop and

Farcas [5] researched the approximation features of the Bernstein-Kantorovich operators on the triangular region. In [6],

authors examined the weighted approximation features of two-variables by Bernstein -Stancu-Chlodowsky polynomials in a

triangular region. In 1992, Zhou [7] defined the two variables of Bernstein-Durrmeyer polynomials and obtained the rate of

convergence of the functions in Lp spaces.

Some generalization of these polynomials in the one-dimensional case may be found in [8]-[18].

In the light of these studies, we defined the new generalized operator that we think will get better results.

Let V :=
{

(u,v) ∈ R
2 : −1 ≤ v ≤ 1,−1 ≤ u and u+ v ≤ 0

}

and h∈C (V ), we will examine the Bernstein-Durrmeyer operator

of two variables on a triangular region as

Email addresses and ORCID numbers: haruncicek@harran.edu.tr, 0000-0003-3018-3015 (H. Çiçek), aizgi@harran.edu.tr, 0000-0003-3715-8621
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Hn(h;u.v) =
n

∑
k=0

n−k

∑
l=0

ϕn,k,l(u,v)
(n+1)(n+2)

16

1
∫

−1

−t
∫

−1

ϕn,k,l(s, t)h(s, t)dsdt

in which

ϕn,k,l(u,v) =

(

n

k

)(

n− k

l

)(

1+u

2

)k(
1+ v

2

)l(

1− 1+u

2
− 1+ v

2

)n−k−l

In this paper, the approximation features and the speed of approximation of Modified Bivariate Bernstein-Durrmeyer Operators

on a Triangular Region will be examined. Furthermore, definitions and some features of moduli of continuity of two variables

function are given.We examine the order of approximation by Voronovskaya type theorem and Grüss Voronovskaja type

theorem. The GBS (Generalized Boolean Sum) operators of Bivariate Bernstein-Durrmeyer type on a triangular region will be

studied. Lastly some numerical examples and the graphics will be drawn.

2. Preliminary results

Theorem 2.1. For ei, j = sit j,(i, j) ∈ N
0 ×N

0,N0 = N∪{0} , we have

i) Hn(e0,0;u,v) = 1.

ii) Hn(e1,0;u,v) = u− 3u+1

n+3
.

iii) Hn(e0,1;u,v) = v− 3v+1

n+3
.

iv) Hn(e2,0;u,v) = u2 − 8nu2 +2nu−2n+12u2 −4

(n+3)(n+4)
.

v) Hn(e0,2;u,v) = v2 − 8nv2 +2nv−2n+12v2 −4

(n+3)(n+4)
.

vi) Hn(e1,1;u,v) = uv− (8n+3)uv−3n(u+ v)−2n

(n+3)(n+4)
.

vii) Hn(e4,0;u,v) = u4 − (24n3 +108n2 +348n+360)

(n+3)(n+4)(n+5)(n+6)
u4 +

(−4n3 +12n2 −8n)

(n+3)(n+4)(n+5)(n+6)
u3

+
(12n3 +12n2 −24n)

(n+3)(n+4)(n+5)(n+6)
u2 +

(−24n2 −48n)

(n+3)(n+4)(n+5)(n+6)
u+

(12n2 +60n+72)

(n+3)(n+4)(n+5)(n+6)
.

viii) Hn(e0,4;u,v) = v4 − (24n3 +108n2 +348n+360)

(n+3)(n+4)(n+5)(n+6)
v4 +

(−4n3 +12n2 −8n)

(n+3)(n+4)(n+5)(n+6)
v3

+
(12n3 +12n2 −24n)

(n+3)(n+4)(n+5)(n+6)
v2 +

(−24n2 −48n)

(n+3)(n+4)(n+5)(n+6)
v+

(12n2 +60n+72)

(n+3)(n+4)(n+5)(n+6)
.

Theorem 2.2. For ki, j = (s−u)i(t − v) j,(i, j) ∈ N
0 ×N

0, we have

i) Hn(k0,0;u,v) = 1.

ii) Hn(k1,0;u,v) =−3u+1

n+3
.

iii) Hn(k0,1;u,v) =−3v+1

n+3
.

iv) Hn(k2,0;u,v) =−8nu2 +2nu−2n+12u2 −4

(n+3)(n+4)
.

v) Hn(k0,2;u,v) =−8nv2 +2nv−2n+12v2 −4

(n+3)(n+4)
.

vi)Hn(k4,0;u,v) =
12n2 −588n−936

(n+3)(n+4)(n+5)(n+6)
u4 +

144n+480

(n+3)(n+4)(n+5)(n+6)
u3

+
−24n2 +312n+720

(n+3)(n+4)(n+5)(n+6)
u2 +

144n+288

(n+3)(n+4)(n+5)(n+6)
u.

vii) Hn(h0,4;u,v) =
12n2 −588n−936

(n+3)(n+4)(n+5)(n+6)
v4 +

144n+480

(n+3)(n+4)(n+5)(n+6)
v3

+
−24n2 +312n+720

(n+3)(n+4)(n+5)(n+6)
v2 +

144n+288

(n+3)(n+4)(n+5)(n+6)
v.

Theorem 2.3. For the bivariate operators Hn( f ;u,v), we have
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i) lim
n−→∞

nHn((s−u);u,v) =−(3u+1).

ii) lim
n−→∞

nHn((t − v);u,v) =−(3v+1).

iii) lim
n−→∞

nHn((s−u)2;u,v) =−(8u2 +2u−2).

iv) lim
n−→∞

nHn((t − v)2;u,v) =−(8v2 +2v−2).

v) lim
n−→∞

nHn((s−u)(t − v);u,v) =−2uv+4(u+ v)+2.

Theorem 2.4. From Theorem 2.1, we get

Hn((s−u)2;u,v)≤ 3

n
.

Hn((t − v)2;u,v)≤ 3

n
.

Proof. For all u ∈ [−1,1], we write

Hn((s−u)2;u,v) =−8nu2 +2nu−2n+12u2 −4

(n+3)(n+4)
.

Hn((t − v)2;u,v) =−8nv2 +2nv−2n+12v2 −4

(n+3)(n+4)
.

If we take the max values of the equations we have obtained, we get u = −n
8n+12

and v = −n
8n+12

. From here

Hn((s−u)2;u,v) = −8nu2 +2nu−2n+12u2 −4

(n+3)(n+4)

=
136n3 +652n2 +1056n+576

64n4 +640n3 +2112n2 +3456n+1728
≤ 3

n

and

Hn((t − v)2;u,v) = −8nv2 +2nv−2n+12v2 −4

(n+3)(n+4)

=
136n3 +652n2 +1056n+576

64n4 +640n3 +2112n2 +3456n+1728
≤ 3

n

are obtained and proof is completed.

3. Main results

Basic convergence theorem.

Theorem 3.1. Let V := {(u,v) : v ≤ 1,−1 ≤ u and u+ v ≤ 0} and h ∈ C (V ) := {h : V → R, f is continuous} ; Hn(h;u,v) :

C (V )→C (R) be linear positive operators.If

i) lim
n−→∞

Hn(1;u,v) = 1

ii) lim
n−→∞

Hn(s;u,v) = u

iii) lim
n−→∞

Hn(t;u,v) = v

iv) lim
n−→∞

Hn((s
2 + t2;u,v) = u2 + v2

Hn converges to h, for h ∈C (V ) .
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3.1. Degree of approximation by Hn(h;u,v)

For h ∈C (V ), the complete moduli of continuity for the two-variable functions is defined as:

ω (h,δ ) = max
√

(u1 −u2)
2 +(v1 − v2)

2 ≤ δ

|h(u1,v1)−h(u2,v2)|

here (u1,v1) ,(u2,v2) ∈V.

In addition, partial continuity moduli according to u and v are defined as ;

ω(1) (h,δ ) = max
|u1 −u2| ≤ δ

|h(u1,v)−h(u2,v)|

here (u1,v) ,(u2,v) ∈V.

ω(2) (h,δ ) = max
|v1 − v2| ≤ δ

|h(u,v1)−h(u,v2)|

here (u,v1) ,(u,v2) ∈V.

It is seen that they provide the characteristics of the continuity modulus. In what follows, ω (h,δ ) ≤ (1+λ ) ω (h,δ ) and

lim
δ→0

ω (h,δ ) = 0.

Theorem 3.2. Let h ∈C (V ), we have

‖Hn(h;u,v)−h(u,v)‖C(V ) ≤ 3ω

(

h,
1√
n

)

Proof. From the well-known features of modulus of continuity, we have

|h(s, t)−h(u,v)| ≤ ω (h,δ )

(

1+
1

δ

(

(s−u)2 +(t − v)2
)

1
2

)

Using Cauchy-Schwartz inequality and Theorem 2.2, we obtain

|Hn(h;u,v)−h(u,v)| = |Hn(h(s, t)−h(u,v) ;u,v)|
≤ Hn(|h(s, t)−h(u,v)| ;u,v)

≤ Hn(ω (h,δ )

(

1+
1

δ

(

(s−u)2 +(t − v)2
)

1
2

)

;u,v)

≤ ω (h,δ )

(

1+
1

δ

(

Hn(
(

s−u)2 +(t − v)2
)

;u,v
)

1
2

)

= ω (h,δ )

(

1+
1

δ

(

Hn

(

(s−u)2;u,v
)

+Hn

(

(t − v)2;u,v
))

1
2

)

= ω (h,δ )

(

1+
1

δ

(

(−8n−12)u2 −2nu+2n−4

(n+3)(n+4)

+
(−8n−12)v2 −2nv+2n−4

(n+3)(n+4)

)

1
2





Moreover, if we calculate maximum value of the square root and δ= 1√
n
, then we obtain

= ω (h,δ )

(

1+
1

δ

(

4

n

) 1
2

)

= ω

(

f ,
1√
n

)

(

1+
1

δ

(

4

n

) 1
2

)

= 3ω

(

f ,
1√
n

)

Theorem 3.3. Let h ∈C (V ), then the following inequality holds.

‖Hn(h;u,v)−h(u,v)‖C(V ) ≤
(

1+
√

3
)

(

ω(1)

(

h,
1√
n

)

+ω(2)

(

h,
1√
n

))
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Proof. From the well-known features of modulus of continuity, we have

|h(s, t)−h(u,v)| ≤ ω(1) (h,δ )

(

1+
1

δ

(

(s−u)2
)

1
2

)

+ω(2) (h,δ )

(

1+
1

δ

(

(t − v)2
)

1
2

)

Using Cauchy-Schwartz inequality and Theorem 2.2, we obtain

|Hn(h;u,v)−h(u,v)| = |Hn(h(s, t)−h(u,v) ;u,v)|
≤ Hn(|h(s, t)−h(u,v)| ;u,v)

≤ Hn

(

ω(1) (h,δ )

(

1+
1

δ

(

(s−u)2
)

1
2

)

+ω(2) (h,δ )

(

1+
1

δ

(

(t − v)2
)

1
2

)

;u,v

)

≤ ω(1) (h,δ )

(

1+
1

δ

(

Hn

(

(s−u)2;u,v
))

1
2

)

+ω(2) (h,δ )

(

1+
1

δ

(

Hn

(

(t − v)2;u,v
))

1
2

)

≤ ω(1) (h,δ )



1+
1

δ

(

(−8n−12)u2 −2nu+2n−4

(n+3)(n+4)

)

1
2





+ω(2) (h,δ )



1+
1

δ

(

(−8n−12)v2 −2nv+2n−4

(n+3)(n+4)

)

1
2





Moreover, if we calculate maximum value of the square root and δ= 1√
n
, then we obtain

≤ ω(1) (h,δ )

(

1+
1

δ

(

3

n

) 1
2

)

+ω(2) (h,δ )

(

1+
1

δ

(

3

n

) 1
2

)

= ω(1)

(

h,
1√
n

)

(

1+
√

n

(

3

n

) 1
2

)

+ω(2)

(

h,
1√
n

)

(

1+
√

n

(

3

n

) 1
2

)

=
(

1+
√

3
)

(

ω(1)

(

h,
1√
n

)

+ω(2)

(

h,
1√
n

))

3.2. The Voronovskaja-type result

Theorem 3.4. For ∀ h ∈C2 (V ), we have

lim
n→∞

n.(Hn(h;u,v)−h(u,v)) = (−3u−1)hu(u,v)+(−3v−1)hv(u,v)

+
(

−4u2 −u+1
)

hu u(u,v)+(−4uv+8(u+ v)+4)huv(u,v)

+
(

−4v2 − v+1
)

hvv(u,v)

uniformly in (u,v) ∈V.

Proof. If we apply Taylor’s formula to h ∈C2 (V ) ,

h(s, t) = h(u,v)+hu(u,v)(s−u)+hv(u,v)(t − v)

+
1

2

{

huu(u,v)(s−u)2 +2huv(u,v)(s−u)(t − v)+hvv(u,v)(t − v)2
}

+℧(s, t)
(

(s−u)2 +(t − v)2
)

here ℧(., .;u,v) = ℧(., .) ∈C (V ) represents the remainder of the Taylor formula. ℧(., .) ∈C (V ) is defined in this way

℧(s, t;u,v) =







h(s,t)−h(u,v)−hu(s−u)−hv(t−v)− 1
2{hu u(s−u)2+2huv(s−u)(t−v)+hvv(t−v)2}√

(s−u)4+(t−v)4
,(s, t) 6= (u,v)

0 ,(s, t) = (u,v)
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Then, Hn is a linear-positive operator, we write

Hn (h(s, t);u,v) = h(u,v)+hu(u,v)Hn ((s−u);u,v)+hv(u,v)Hn ((t − v);u,v)

+
1

2

{

hu u(u,v)Hn

(

(s−u)2;u,v
)

+2huv(u,v)Hn ((s−u)(t − v);u,v)

+ hvv(u,v)Hn

(

(t − v)2;u,v
)}

+Hn

(

℧(s, t)
(

(s−u)2 +(t − v)2
)

;u,v
)

Now, let us use the Cauchy-Schwarz inequality in the last term of the last equation,
∣

∣Hn

(

℧(s, t)
(

(s−u)2 +(t − v)2
)

;u,v
)∣

∣

≤
∣

∣

∣

∣

Hn

(

℧(s, t)
√

(s−u)4 +(t − v)4;u,v

)∣

∣

∣

∣

≤
{

Hn

(

℧
2(s, t);u,v

)}
1
2
{

Hn

(

(s−u)4 +(t − v)4;u,v
)}

1
2

=
{

Hn

(

℧
2(s, t);u,v

)}
1
2
{

Hn

(

(s−u)4;u,v
)

+Hn

(

(t − v)4;u,v
)}

1
2

Since ℧(., .;u,v) ∈C (V ) and ℧(s, t;u,v)→ 0 as (s, t)→ (u,v) applying Theorem 3.1

lim
n→∞

Hn

(

℧
2(s, t);u,v

)

= ℧
2(s, t) = 0

as a result

lim
n→∞

n.

(

Hn

(

℧(s, t)
√

(s−u)4 +(t − v)4;u,v

))

= 0

Then applying Theorem 2.3 and last equality, we have

lim
n→∞

n.(Hn (h(s, t);u,v)−h(u,v)) = (−3u−1)hu(u,v)+(−3v−1)hv(u,v)+
(

−4u2 −u+1
)

hu u(u,v)

+(−4uv+8(u+ v)+4)huv(u,v)+
(

−4v2 − v+1
)

hvv(u,v)

Thus, the proof is completed.

3.3. The Grüss Voronovskaja-type result

Theorem 3.5. Let h′′ ∈C2 (V ) ,w′′ ∈C2 (V ) then we write

lim
n→∞

n{Hn (hw;u,v)−h(u,v)w(u,v)} = (2−2u−8u2)hu(u,v)wu(u,v)

+(4(u+ v)−2uv+2) [hu(u,v)wv(u,v)+hv(u,v)wu(u,v)]

+(2−2v−8v2)hv(u,v)wv(u,v)

Proof. In this study, we examine n{Hn (hw;u,v)−h(u,v)w(u,v)}
= n{Hn (hw;u,v)−h(u,v)w(u,v)− [h(u,v)wu(u,v)+hu(u,v)w(u,v)]Hn ((s−u);u,v)
− [h(u,v)wv(u,v)+hv(u,v)w(u,v)]Hn ((t − v);u,v)

− 1
2

[

h(u,v)wu u(u,v)+2h
′
u(u,v)wu(u,v)+hu u(u,v)w(u,v)

]

Hn

(

(s−u)2;u,v
)

− [h(u,v)wuv(u,v)+hu(u,v)wv(u,v)+hv(u,v)wu(u,v)+huv(u,v)w(u,v)]Hn ((t − v)(s−u);u,v)

− 1
2

[

h(u,v)wvv(u,v)+2h
′
v(u,v)wv(u,v)+hvv(u,v)w(u,v)

]

Hn

(

(t − v)2;u,v
)

−w(u,v) [Hn (h;u,v)−h(u,v)−hu(u,v)Hn ((s−u);u,v)−hv(u,v)Hn ((t − v);u,v)
− 1

2
hu u(u,v)Hn

(

(s−u)2;u,v
)

−huv(u,v)Hn ((t − v)(s−u);u,v)− 1
2
hvv(u,v)Hn

(

(t − v)2;u,v
)]

−Hn (h;u,v) [Hn (w;u,v)−w(u,v)−wu(u,v)Hn ((s−u);u,v)−wv(u,v)Hn ((t − v);u,v)
− 1

2
wu u(u,v)Hn

(

(s−u)2;u,v
)

−wuv(u,v)Hn ((s−u)(t − v);u,v)− 1
2
wvv(u,v)Hn

(

(s−u)2;u,v
)]

−wu(u,v)Hn ((s−u);u,v) [Hn (h;u,v)−h(u,v)]−wv(u,v)Hn ((t − v);u,v) [Hn (h;u,v)−h(u,v)]

−wu u(u,v)
Hn((s−u)2;u,v)

2
[Hn (h;u,v)−h(u,v)]−wvv(u,v)

Hn((t−v)2;u,v)
2

[Hn (h;u,v)−h(u,v)]

−wuv(u,v)Hn ((t − v)(s−u);u,v) [Hn (h;u,v)−h(u,v)]+hu(u,v)wu(u,v)Hn

(

(s−u)2;u,v
)

+hu(u,v)wv(u,v)Hn ((t − v)(s−u);u,v)+hv(u,v)wu(u,v)Hn ((t − v)(s−u);u,v)
+hv(u,v)wv(u,v)Hn

(

(t − v)2;u,v
)}

Then, applying Theorem 2.2, Theorem 2.3, Theorem 2.4 and Theorem 3.4, we have

lim
n→∞

n{Hn (hw;u,v)−h(u,v)w(u,v)} = (2−2u−8u2)hu(u,v)wu(u,v)

+(4(u+ v)−2uv+2) [hu(u,v)wv(u,v)+hv(u,v)wu(u,v)]

+(2−2v−8v2)hv(u,v)wv(u,v)

the proof is completed.
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4. GBS of Bivariate Bernstein-Durrmeyer Operators on a Triangular Region

In [19, 20], the author has defined B-continuous and B-differentiable functions. The expression of Generalized Boolean Sum

(GBS) operators was first defined by Badea in [21, 22]. Dobrescu and Matei [23], introduced the approximation features

of the two-variable Bernstein GBS operators. Recently, some researchers have made different researches on GBS in the

approximation theory [24]-[27]. In this study, we examined the uniform approximation of B-continuous functions using

bivariate Bernstein-Durrmeyer GBS operators on a triangular region.

Let ∇(u,v)h [u0,v0;u,v] be mixed difference and Φ and Λ be compact real spacing of h defined by

∇(u,v)h [u0,v0;u,v] = h(u,v)−h(u,v0)−h(u0,v)+h(u0,v0)

The function h : Φ×Λ → R is called B-continuous function for (u0,v0) ∈ Φ×Λ.

lim
(u,v)→(u0,v0)

∇(u,v)h [u0,v0;u,v] = 0

for each (u,v) ∈ Φ×Λ. Let Cb(V ) indicate the space of whole B-continuous functions on V . Here, C(V )⊂Cb(V ) [19, 20].

The GBS (Generalized Boolean Sum) associated with Hn (h;u,v) defined as

En(h;u,v) =
n

∑
k=0

n−k

∑
l=0

ϕn,k,l(u,v)
(n+1)(n+2)

16

1
∫

−1

−t
∫

−1

ϕn,k,l(s, t)(h(u, t)+h(s,v)−h(s, t))dsdt (4.1)

for every h ∈Cb(V ) at each point (u,v) ∈V . It is clear that En(h;u,v) is a linear and positive operator.

4.1. Approximation by GBS operator En(h;u,v)

The mixed modulus of smoothness of h ∈Cb(V ) is defined by

ωmixed (h;δ1,δ2) := sup{|∇h [(s, t);(u,v)]| : |u− s|< δ1, |v− t|< δ2}

for all (u,v),(s, t) ∈V and for any δ1,δ2 ∈ R
+.

The features of mixed moduli of continuity ;

ωmixed (h;λ1δ1,λ1δ2)≤ (1+λ1)(1+λ2)ωmixed (h;δ1,δ2)

we can write,

|∇h[(s, t);(u,v)]| ≤ ωmixed (h; |s−u| , |t − v|)

≤
(

1+
|s−u|

δ1

)(

1+
|t −u|

δ2

)

ωmixed (h;δ1,δ2)

Theorem 4.1. For ∀ h ∈Cb (V ) at all point (u,v) ∈V , the En(h;u,v) operator provides the following disparity

|En(h;u,v)−h(u,v)| ≤ 8 ωmixed (h;δ1(n),δ2(n))

Proof. From the well-known features of mixed moduli of continuity and by the definition of mixed difference, we have

∇(u,v)h [(t,s);u,v] = h(u, t)+h(s,v)−h(s, t)

and

En(h;u,v)−h(u,v) =−Hn(∇(u,v)h [(s, t);(u,v)] ;u,v)

Then using Cauchy-Schwarz inequality, we have,

|En(h;u,v)−h(u,v)| ≤ Hn

∣

∣(∇(u,v)h [(s, t);u,v] ;u,v)
∣

∣

≤
(

Hn(e00)+δ−1
1

√

Hn ((s−u)2;u,v)+δ−1
2

√

Hn ((t − v)2;u,v)

+δ−1
1 δ−1

2

√

Hn ((s−u)2;u,v)Hn ((t − v)2;u,v)

)

ωmixed (h;δ1(n),δ2(n))
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Then, applying Theorem 2.1 and Theorem 2.4

|En(h;u,v)−h(u,v)| ≤ Hn

∣

∣(∇(u,v)h [(s, t);u,v] ;u,v)
∣

∣

≤
(

1+δ−1
1

√

3

n
+δ−1

2

√

3

n
+δ−1

1 δ−1
2

√

3

n

3

n

)

ωmixed (h;δ1(n),δ2(n))

Therefore, taking δ1 = n−
1
2 and δ2 = n−

1
2 , We achieve the desired result

|En(h;u,v)−h(u,v)| ≤ 8 ωmixed (h;δ1(n),δ2(n))

4.2. Approximation for the En(h;u,v) operators with functions in Lipschitz class

The Lipschitz class Lipβ (µ,η) with µ,η ∈ (0,1] for h ∈Cb(V ) B-continuous functions is defined as

Lipβ (µ,η) =
{

h ∈Cb(V ) :
∣

∣∇(u,v)h [(s, t);(u,v)]
∣

∣≤ β |s−u|µ |t − v|η
}

(4.2)

here (s, t),(u,v) ∈V.

Theorem 4.2. For h ∈ Lipβ (µ,η), we have

|En(h;u,v)−h(u,v)| ≤ β Ψn(u)
µ
2 Ψn(v)

η
2

where Ψn(u) = Hn

(

(s−u)2;u,v
)

and Ψn(v) = Hn

(

(t − v)2;u,v
)

Proof. From (4.1) and (4.2), we may write

|En(h;u,v)−h(u,v)| ≤ Hn

(∣

∣∇(u,v)h [(s, t);(u,v)]
∣

∣ ;u,v
)

≤ βHn

(

|s−u|µ |t − v|η ;u,v
)

= βHn

(

|s−u|µ ;u,v
)

Hn

(

|t − v|η ;u,v
)

Applying the Hölder’s inequality with (p1,q1) =
(

2
µ ,

2
2−µ

)

and (p2,q2) =
(

2
η ,

2
2−η

)

, we get

|En(h;u,v)−h(u,v)| ≤ β

(

Hn

(

(s−u)2;u,v
)

µ
2 Hn (e0,0;u,v)

2−µ
2

×Hn

(

(t − v)2;u,v
)

η
2 Hn (e0,0;u,v)

2−η
2

)

≤ βΨn(u)
µ
2 Ψn(v)

η
2

the proof is completed.

For (u,v) = (0.05,−0.05) in Table 1, we calculated the error in the approximation of Hn(h;u,v) operator and En(h;u,v) GBS

operator at certain n values. Here h : V → R; h(u,v) =
∣

∣u2v2
∣

∣

n |Hn(h;u,v)−h(u,v)| |En(h;u,v)−h(u,v)|
10 0.008858399150 0.008704518631

25 0.003920956488 0.003831667796

50 0.002201491056 0.002140252626

100 0.001415762625 0.001310766823

Table 1: Error bounds at different n values for Hn(h;u,v) and En(h;u,v) GBS operator .

Example 4.3. The convergence of Hn(h;u,v) operator for n=1 (brown),n=5 (yellow),n=10 (green), n=20 (red) to the function

h(u,v) =
∣

∣u2v2
∣

∣ (blue) is pictorial as shown in Figure 4.1.
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Figure 4.1: The convergence of the Hn (h;u,v) operator to the function h(u,v).

Example 4.4. The convergence of En(h;u,v) GBS operator for n=1 (brown),n=5 (yellow), n=10 (green), n=20 (red) to the

function h(u,v) =
∣

∣u2v2
∣

∣ (blue) is pictorial as shown in Figure 4.2.

Figure 4.2: The convergence of the En (h;u,v) operator to the function h(u,v).

Example 4.5. For n = 50 ,The convergence of Hn(h;u,v) operator (green) and En(h;u,v) GBS operator (red) to the function

h(u,v) =
∣

∣u2v2
∣

∣ (blue) is pictorial as shown in Figure 4.3.
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Figure 4.3: The convergence of Hn(h;u,v) operator and En(h;u,v) GBS operator to the function h(u,v) =
∣

∣u2v2
∣

∣

(u,v) |Hn(h;u,v)−h(u,v)| |En(h;u,v)−h(u,v)|
(1,−1) 0.8495540691 0.7663879599

(0.9,−1) 0.6861251394 0.6206321071

(0.9,−0.9) 0.5459929013 0.5080926891

(0.8,−0.9) 0.4291121293 0.4016625079

(0.8,−1) 0.5397625418 0.4901649946

Table 2: Error bounds at different (u,v) points for Hn(h;u,v) and En(h;u,v) GBS operator .

In table 4.2, we have computed the error in the approximation of Hn(h;u,v) operator and En(h;u,v) GBS operator at certain

(u,v) points for n = 200. It was observed that the convergence rate of En(h;u,v) GBS operator to the function h(u,v) is much

better than Hn(h;u,v) operator.

5. Conclusion

We proved that bivariate Bernstein-Durrmeyer type operators and GBS form of these operators in a triangular region are better

than the classical Bernstein-Durrmeyer type operators.
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[20] K. Bögel, Mehrdimensionale differentiation von funktionen mehrerer reeller Veränderlichen., J. für die reine und angewandte Math., 2(170) (1934),

197-217.
[21] C. Badea, C. Cottin, Korovkin-type theorems for generalized boolean sum operators, C. Math. Soc. Janos Bolyai, 2(58) (1990), 51-67.
[22] C. Badea,I. Badea, H. H. Gonska, A test function theorem and apporoximation by pseudopolynomials, C. Math. Soc. Janos Bolyai, 1(34) (1986), 53-64.
[23] E. Dobrescu,I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, Univ. Timisoara Ser. Sti. Mat.-Fiz.,

1(4) (1961), 85-90.
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