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Düzce University,
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Bilecik Şeyh Edebali University,

Bilecik-TÜRKİYE
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Parts, Imaginary Parts, and Moduli of Simple

Eigenvalues of Compact Operators
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Abstract
In an earlier paper, the author derived generalized Rayleigh-quotient formulas for the real parts, imaginary parts,

and moduli of the eigenvalues of diagonalizable matrices. More precisely, max-, min-max-, min-, and max-

min-formulas were obtained. In this paper, we extend these results to the eigenvalues of linear nonsymmetric

compact operators with simple eigenvalues in a Hilbert space. As an application, a new formula for the spectral

radius is derived. An example arising from a boundary value problem in Mathematical Physics illustrates the

general results, and numerical computations underpin the theoretical findings. In addition, the Euler column is

treated from the area of Elastomechanics, which is complemented by references to other examples from this

area.
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1. Introduction

In [16], the author derived generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the

eigenvalues of diagonalizable nonsymmetric matrices, that is, in the case of a finite-dimensional space. In this paper, we extend

these results to the eigenvalues of nonsymmetric compact operators with simple eigenvalues in an infinite-dimensional Hilbert

space. Some arguments in the proofs are similar to those in the finite-dimensional case, but others are very different from them.

The paper is structured as follows. In Section 2, as a basis for what follows, functions of an operator in a Banach space

are discussed which is taken from [18]. Section 3 contains the expansion of a linear nonsymmetric compact operator and of a

pertinent projection operator in a Hilbert space. In Sections 4 - 6, generalized Rayleigh-quotient formulas for the real parts,

imaginary parts, and moduli are given respectively followed in Section 7 by generalized Rayleigh-quotient formulas for real

eigenvalues. In Section 8, the general results are employed to obtain a new formula for the spectral radius. Section 9 presents

new generalized numerical ranges, and in Section 10 an example from the area of a boundary value problem is given along with

the results of numerical computations. In Section 11, it is discussed what consequences changes in the arrangement of the

eigenvalues will have. Section 12 contains the conclusion and an outlook to future work. Finally, the references follow. Besides

the cited references, the following non-cited ones are given: [ 1] - [ 3], [ 6], [ 8], [ 9], [12] - [15], [17], [19], [21], [22], [29],

and [30] since the author thinks that they could be of interest to the reader in the context of the treated subject. We mention that
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the Remarks are not enumerated.

2. Functions of an Operator in a Banach Space

This section is of fundamental importance for what follows; it is taken from the corresponding section in [18]. The results are

obtained in a Banach space of which a Hilbert space is a particular case.

Let {0} 6= E be a Banach space over the field F= C. Whereas in [10, Chapter I] it is supposed that dimE < ∞, here we

assume that dimE = ∞. As was shown in [26] based on findings of [24], the following results taken from [10, Chapter I] are

valid not only for dimE < ∞, but also for dimE = ∞ if the space is complete.

Let p(ζ ) be the polynomial

p(ζ ) = α0 +α1ζ + · · ·αnζ n, ζ ∈ C (2.1)

with α j ∈ C, j = 0,1, · · · ,n. Then the polynomial p(T ) ∈ B(E) is defined by

p(T ) = α0 +α1T + · · ·αnT n, ζ ∈ C, (2.2)

see [10, Chapter I, §3.3]. Making use of the resolvent

R(ζ ) := (T −ζ )−1, ζ ∈ C, (2.3)

one can now define the function φ(T ) of T for a more general class of functions φ(ζ ).
Before we do this, we mention that linear compact operators need not have eigenvalues. For example, Volterra integral

operators have no eigenvalues. On the other hand, consider a symmetric linear compact operator. Then, such an operator has

at least one eigenvalue, and all eigenvalues are real and simple. For these operators, there may exit only a finite number of

eigenvalues. Further, there is at most a countable set of eigenvalues with the only possible accumulation point zero, and there

exists a set of pertinent pairwise orthonormal eigenvectors. Further, it is known that the non-zero elements of the spectrum

consist solely of eigenvalues and that, if there is a countable set of eigenvalues, the associated sequence tends to zero. For all

this, see [27, Chapter 6].

Further, according to [ 7, Theorem 44.1, p.191], one has σ(T )\{0}= σP(T )\{0} where σ(T ) is the spectrum of T and

σP(T ) the point spectrum consisting of the eigenvalues of T .

Taking this into account, for our general linear compact operator T ∈ B(E), we suppose that the spectrum σ(T ) of T has a

countable set of non-zero eigenvalues λ j and that the sequence of eigenvalues tends to zero.

Additionally, we suppose that 0 6∈ σ(T ) so that N(T ) = {0} since without this condition, we cannot obtain relation (2.11)

resp. (2.14) below.

Now, suppose that φ(ζ ) is holomorphic in a domain D of the complex plane containing all the eigenvalues λ j 6= 0 of T , and

let C ⊂ D be a simple closed smooth curve with positive direction enclosing all the eigenvalues λ j in its interior. Then, φ(T ) is

defined by the Dunford-Taylor integral

φ(T ) =− 1

2πi

∫

C
φ(ζ )R(ζ )dζ =− 1

2πi

∫

C
φ(ζ )(T −ζ )−1 dζ . (2.4)

This is an analogue of the Cauchy integral formula in the Theory of Functions, see [11, Part I, §15, p. 61]. More generally, the

curve C may consist of several simple closed rectifiable Jordan curves Ck having a positive direction with interiors D′
k such

that the union of the D′
k contains all the eigenvalues of T . We note that (2.4) does not depend on C as long as C satisfies these

conditions. For the Ck, we can use the circles Ck = {z ∈ C | |z−λk|= rk} with sufficiently small radii rk.

It can be verified that, for the polynomial

φ(ζ ) = p(ζ ) = α0 +α1ζ + · · ·αnζ n, ζ ∈ C (2.5)

with α j ∈ C, j = 0,1, · · · ,n, the Dunford-Taylor integral (2.4) is equal to (2.2).

For the special case

φ(ζ ) = p(ζ ) = ζ , (2.6)

we obtain

T =− 1

2πi

∫

C
T R(ζ )dζ = T

(

− 1

2πi

∫

C
R(ζ )dζ

)

=

(

− 1

2πi

∫

C
R(ζ )dζ

)

T. (2.7)
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Now, we set

P :=− 1

2πi

∫

C
R(ζ )dζ . (2.8)

According to [10, Chapter I, §5, Section 3], P is a continuous projection operator onto the algebraic eigenspace X = P(E) =
R(P), where R(P) means the range of P. Thus, from (2.7) and (2.8), one obtains

T = T P = PT = PT P. (2.9)

Now, let the radii rk be chosen such that

C j ∩Ck = /0, j 6= k, j,k = 1,2,3, · · · . (2.10)

Then,

P =− 1

2πi

∫

C
R(ζ )dζ =

∞

∑
j=1

(

− 1

2πi

∫

C j

R(ζ )dζ

)

=
∞

∑
j=1

Pj (2.11)

with

Pj =− 1

2πi

∫

C j

R(ζ )dζ , j = 1,2,3, · · · . (2.12)

At this point, we needed the assumption 0 6∈ σ(T ) since otherwise any circle C0 about λ0 = 0 would eventually intersect with

the circles Ck for sufficiently large k so that we would not have (2.10) for j,k ∈ (0,1,2,3, · · ·). Let J be the sequence

J := (1,2,3, · · ·). (2.13)

Then, (2.11) can be written as

P =
∞

∑
j=1

Pj = ∑
j∈J

Pj. (2.14)

Because of (2.10), one has

PjPk = PkPj = Pjδ jk, j,k ∈ J. (2.15)

Herewith,

Pj(E) =: X j (2.16)

is the algebraic eigenspace of T associated with the eigenvalue λ j.

From (2.9), (2.11), and (2.15), we obtain

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj, (2.17)

and so

R(T ) = T (E) = (PT )(E) = (T P)(E) = (PT P)(E)

= ∑
j∈J

(PjT )(E) = ∑
j∈J

(T Pj)(E) = ∑
j∈J

(PjT Pj)(E).
(2.18)
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3. Expansion of a Linear Compact Operator and of a Pertinent Projection Operator in
Hilbert Space

Together with Section 2, this section forms a basis for what follows. The statements are taken over from [18], but most of the

proofs are omitted.

(i) The Conditions (C1) - (C4)

We assume the following conditions:

(C1) {0} 6= H is a Hilbert space over the field F= C with scalar product (·, ·)

(C2) 0 6= T ∈ B(H) is compact having countably many simple non-zero eigenvalues λ1,λ2,λ3, · · · with limk→∞ λk = 0 pertinent

to the eigenvectors χ1,χ2,χ3, · · · . Further, 0 6∈ σ(T ).

(C3) The eigenvectors of the adjoint T ∗ of T with the eigenvalues λ 1,λ 2,λ 3, · · · are ψ1,ψ2,ψ3, · · ·

(C4) λi 6= λ j, i 6= j, i, j = 1,2,3 · · ·

One has the following theorem.

Theorem 3.1. (Biorthonormality relations for λ j 6= λk, j 6= k)

Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors χ1,χ2,χ3, · · · and

ψ1,ψ2,ψ3, · · · are biorthonormal, that is,

(χ j,ψk) = δ jk, j,k ∈ J. (3.1)

Proof. See [18, Theorem 3.1].

Furthermore, we obtain the following theorem.

Theorem 3.2. (Expansion of Tu as well as of Pu in a series of eigenvectors) Let the conditions (C1) - (C4) be fulfilled. Then,

Tu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H (3.2)

as well as

Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (3.3)

Proof. See [18, Theorem 3.2].

Remark. From (3.2) we conclude that

[χ1,χ2,χ3, · · · ] = T (H) = R(T ).

Further, from (3.3),

P : H 7→ [χ1,χ2,χ3, · · · ].

�

Moreover, in [18, Theorem 3.3], we have proven the following theorem.

Theorem 3.3. Let the conditions (C1) - (C4) be fulfilled. Then, we obtain

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H (3.4)

and the projection operator

P0 = I −P : H 7→ N(T ) = {0} ⇐⇒ P0 = 0. (3.5)
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For the next theorem, we define new subspaces of H. For every j = 1,2, . . ., let

Nχ, j := {u ∈ H |u =
j

∑
k=1

αkχk with αk ∈ C, k = 1,2, . . . , j}=: [χ1, . . . ,χ j], (3.6)

j = 1,2, . . . and

Nχ, j,R := {u ∈ H |u =
j

∑
k=1

βkχk with βk ∈ R, k = 1,2, . . . , j}= [χ1, . . . ,χ j]R, j = 1,2, . . . (3.7)

j = 1,2, . . . as well as

Nχ := Nχ,∞ := {u ∈ H |u = ∑
∞
k=1 αkχk exists in H with αk ∈ C,k = 1,2, . . .}

= [χ1,χ2, . . .]
(3.8)

and

Nχ,R := Nχ,∞,R := {u ∈ H |u = ∑
∞
k=1 βkχk exists in H with βk ∈ R,k = 1,2, . . .}

= [χ1,χ2, . . .]R.
(3.9)

Likewise, we define

Nψ, j := {u ∈ H |u =
j

∑
k=1

αkψk with αk ∈ C, k = 1,2, . . . , j}=: [ψ1, . . . ,ψ j], (3.10)

j = 1,2, . . . and

Nψ, j,R := {u ∈ H |u =
j

∑
k=1

βkψk with βk ∈ R, k = 1,2, . . . , j}= [ψ1, . . . ,ψ j]R, (3.11)

j = 1,2, . . . as well as

Nψ := Nψ,∞ := {u ∈ H |u = ∑
∞
k=1 αkψk exists in H with αk ∈ C,k = 1,2, . . .}

= [ψ1,ψ2, . . .]
(3.12)

and

Nψ,R := Nψ ,∞,R := {u ∈ H |u = ∑
∞
k=1 βkψk exists in H with βk ∈ R,k = 1,2, . . .}

= [ψ1,ψ2, . . .]R.
(3.13)

After these preparations, we are able to prove the following theorem.

Theorem 3.4. Let the conditions (C1) - (C4) be fulfilled. Then,

(Tu,v) = ∑
j∈J

λ j(u,ψ j)(χ j,v), u, v ∈ H (3.14)

and

(u,v) = (Pu,v) = ∑
j∈J

(u,ψ j)(χ j,v), u, v ∈ H (3.15)

where

(u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ ,R, j ∈ J (3.16)

leading to

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R, j ∈ J. (3.17)



Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of Simple Eigenvalues of

Compact Operators — 53/77

Proof. Let u ∈ Nχ ,R and v ∈ Nψ,R. Then,

u = ∑
j∈J

(u,ψ j)χ j (3.18)

and

v = ∑
k∈J

(v,χk)ψk (3.19)

implying

(Tu,v) = ∑
j,k∈J

λ j(u,ψ j)(v,χk)(χ j,ψk) (3.20)

so that with (3.1) relation (3.14) follows.

Further, let u ∈ Nχ,R. Then,

u = ∑
j∈J

α jχ j

with elements α j ∈ R, j ∈ J so that

(u,ψ j) = ∑
k∈J

αk(χk,ψ j) = α j ∈ R.

Correspondingly, for v ∈ Nψ,R, one has (χ j,v) ∈ R so that (3.16) is proven. Relation (3.17) is a direct consequence of (3.14)

and (3.16). The expression in (3.15) follows in a similar way as that in (3.14) by using (3.4).

Next, we want to define vector spaces similar to those in [16, (16), (17)], namely

Mχ,1,R := Nχ,R = [χ1,χ2, . . .]R, (3.21)

Mχ, j,R := {u ∈ Nχ,R |(u,ψk) = 0, k = 1,2, . . . , j−1}

= [ψ1, . . . ,ψ j−1]
⊥
Nχ,R

, j = 2,3, . . .
(3.22)

where Mχ, j,R is called an orthogonal complement in Nχ,R and

Mψ,1,R := Nψ,R = [ψ1,ψ2, . . .]R, (3.23)

Mψ, j,R := {u ∈ Nψ,R |(u,χk) = 0, k = 1,2, . . . , j−1}

= [χ1, . . . ,χ j−1]
⊥
Nψ,R

, j = 2,3, . . .
(3.24)

where Mψ, j,R is called an orthogonal complement in Nψ ,R. The next lemma characterizes these spaces.

Lemma 3.5. Let the conditions (C1) - (C4) be fulfilled as well as {χ1,χ2, . . .} and {ψ1,ψ2, . . .} be sets of biorthogonal

eigenvectors of T and T ∗ respectively, i.e., such that

(χi,ψ j) = δi j, i, j = 1,2, . . . . (3.25)

Then,

Mχ, j,R = [χ j,χ j+1, . . .]R, j = 1,2, . . . (3.26)

and

Mψ, j,R = [ψ j,ψ j+1, . . .]R, j = 1,2, . . . (3.27)
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Proof. The proof is done for (3.26) and j = 3. The general case can be made by induction. The proof of (3.27) is similar. So,

we have to prove

Mχ,3,R := {u ∈ Nχ ,R |(u,ψk) = 0, k = 1,2}= [ψ1,ψ2]
⊥
Nχ,R

= [χ3,χ4, . . .]R

(3.28)

(i) [χ3,χ4, . . .]R ⊂ Mχ,3,R :

Let u ∈ [χ3,χ4, . . .]R. Then, u = ∑
∞
k=3 β jχ j with elements β j ∈ R, j = 3,4, . . .. Let s ∈ {1,2}. This entails, due to Theorem

3.1, (u,ψs) = ∑
∞
j=3 β j(χ j,ψs) = 0 so that u ∈ Mχ,3,R . Therefore, (i) is proven.

(ii) Mχ,3,R ⊂ [χ3,χ4, . . .]R :

Let u ∈ Mχ,3,R. This implies u ∈ Nχ,R and (u,ψ j) = 0, j = 1,2. Now, u = ∑
∞
k=1 βkχk with βk = (u,ψk) ∈ R, k = 1,2, . . .

leading to u = ∑
∞
k=3 βkχk since (u,ψk) = 0, k = 1,2 so that u ∈ [χ3,χ4, . . .]R. Therefore, (ii) is proven.

Now, let u ∈ Nχ,R with u = ∑
∞
k=1 αkχk and αk ∈ R as well as v ∈ Nψ,R with v = ∑

∞
k=1 βkψk and βk ∈ R. Then, due to

Theorem 3.1,

(u,v) =
∞

∑
k=1

αkβk. (3.29)

In order to facilitate the manner of speaking, we say that the scalar product (u,v) of u ∈ Nχ,R and v ∈ Nψ,R is strongly positive

iff αkβk ≥ 0, k = 1,2, . . . and ∑
∞
k=1 αkβk > 0. For short, we write

(u,v)>> 0.

Remark. One has αk = (u,ψk), u ∈ Nχ,R and βk = (χk,v), v ∈ Nψ ,R for k = 1,2, . . .. Therefore, (u,v) >> 0 means

(u,ψk)(χk,v)≥ 0, k = 1,2, . . . and (u,v) = ∑
∞
k=1(u,ψk)(χk,v)> 0. �

Remark. For (u,v) >> 0, one can admit linear combinations u = ∑
∞
k=1 αkχk and v = ∑

∞
k=1 βkψk with αk,βk ∈ C, k =

1,2, . . . such that αkβ k = |αkβk|, k = 1,2, . . . and ∑
∞
k=1 |αkβk| > 0. For example, all elements αk,βk ∈ C with αk = |αk|eiϕk

and βk = |βk|eiϕk where ϕk is in 0 ≤ ϕk < 2π, k = 1,2, . . . are acceptable. �

Remark. At this point, we mention that, due to (2.14) and (2.17), it follows that we have the convergence

P(n) =
n

∑
j=1

Pj → P (n → ∞)

and

T (n) =
n

∑
j=1

PjT Pj → T (n → ∞)

in B(H) so that, e.g., the operators T and P defined in (3.2) and (3.3) are approximated by their partial sums not only pointwise,

but even in the norm of B(H). �

4. Generalized Rayleigh-Quotient Formulas for the Real Parts of the Eigenvalues

In the sequel, we suppose that the non-zero eigenvalues are arranged according to

Reλ1 ≥ Reλ2 ≥ Reλ3 ≥ . . . . (4.1)

Such an arrangement is possible, for instance, if the real parts of all eigenvalues are positive. An arrangement that is always

possible will be dealt with in Section 11.

One has the following generalized max-representation.

Theorem 4.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).

Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.

(3.27). Then,

Reλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)

(u,v)
, j ∈ J. (4.2)

The maximum is attained for u = χ j, v = ψ j.
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Proof. One uses (3.17) as starting point, i.e.,

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

Reλ j, (u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.

Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈ Mχ, j,R ⊂ Nχ,R and v ∈ Mψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but

fixed with (u,v)>> 0. Then,

Re(Tu,v) =
∞

∑
k= j

Reλk(u,ψk)(χk,v)

≤ max
k= j, j+1,...

Reλk

∞

∑
k= j

(u,ψk)(χk,v)

= Reλ j

∞

∑
k=1

(u,ψk)(χk,v)

= Reλ j(u,v), u ∈ Mχ, j,R,v ∈ Mψ, j,R, (u,v)>> 0,

that is,

Re(Tu,v)

(u,v)
≤ Reλ j, u ∈ Mχ, j,R,v ∈ Mψ, j,R, (u,v)>> 0

and thus

max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)

(u,v)
≤ Reλ j.

Now, Reλ j is attained for u = χ j ∈ Mχ, j,R and v = ψ j ∈ Mψ, j,R. Thus, because of (χ j,ψ j)>> 0,

Reλ j =
Re(T χ j,ψ j)

(χ j,ψ j)
≤ max

(u,v)>>0
u∈Mχ, j,R ,v∈Mψ , j,R

Re(Tu,v)

(u,v)
≤ Reλ j

so that (4.2) is proven.

For the next theorem, we need the following denotation of codimension. A subspace M ⊂ H has codimension j for j ∈ J

denoted by codimM = j if there exist linearly independent vectors v1, . . . ,v j ∈ H such that

M = [v1, . . . ,v j]
⊥ := [v1, . . . ,v j]

⊥
H = {u ∈ H |(u,vk) = 0, k = 1, . . . , j}.

Further, we set

codim M = 0

if M = H. Next, we prove a generalized min-max-representation.

Theorem 4.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).

Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

Reλ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
≤ Reλ1, (4.3)

and the following min-max-representation formulas hold:

Reλ j = min
codim Mχ= j−1

codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
, j ∈ J. (4.4)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (4.5)
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Proof. (4.3): For all subspaces Mχ ⊂ Nχ,R, one has

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
≤ max

(u,v)>>0
u∈Nχ,R ,v∈Nψ ,R

Re(Tu,v)

(u,v)
= Reλ1. (4.6)

In case j = 1, it follows by definition of codim Mχ = codim Mψ = 0 that Mχ = Nχ,R and Mψ = Nψ,R and thus the equal sign

in (4.3); further, (4.4) reduces to (4.3) with the equal signs instead of the signs ≤. Now, let j ≥ 2. Then, there exist linearly

independent vectors u1, . . . ,u j−1 and v1, . . . ,v j−1 with

Mχ = [u1, . . . ,u j−1]
⊥
Nχ,R

, Mψ = [v1, . . . ,v j−1]
⊥
Nψ,R

. (4.7)

Define

zχ =
j

∑
i=1

αiχi

and determine the coefficients α1, . . . ,α j by the j−1 linear equations

(zχ ,uk) =
j

∑
i=1

αi(χi,uk) = 0, k = 1, . . . , j−1. (4.8)

This system of j−1 linear equations and j unknowns has a nontrivial solution

zχ 6= 0, zχ ∈ Mχ = [u1, . . . ,u j−1]
⊥
Nχ,R

. (4.9)

Now, define

zψ =
j

∑
i=1

αiψi (4.10)

with the same coefficients αi as in zχ . Then,

zψ 6= 0. (4.11)

Further,

(zχ ,zψ) =
j

∑
i=1

α2
i > 0 (4.12)

so that (zχ ,zψ)>> 0. Moreover,

zψ ∈ [zψ ]R ⊂ Mψ,zψ (4.13)

where Mψ,zψ is any subspace of Nψ,R with codimension j−1 containing the element zψ . From the above, it follows

Re(T zχ ,zψ) =
j

∑
i,k=1

αi Reλi αk (χi,ψk) =
j

∑
i=1

Reλi α2
i . (4.14)

Now, αi ∈ R, i = 1, . . . , j. Therefore,

Re(T zχ ,zψ)≥ ( min
i=1,..., j

Reλi)
j

∑
i=1

α2
i = Reλ j (zχ ,zψ) (4.15)

leading to

Re(T zχ ,zψ)

(zχ ,zψ)
≥ Reλ j. (4.16)
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Moreover, due to (4.1),

Re(Tu,v)≤ ( max
j=1,2,...

Reλ j)
∞

∑
j=1

(u,ψ j)(χ j,v) = Reλ1 (u,v),

(u,v)>> 0, u ∈ Nχ,R, v ∈ Nψ,R so that

Reλ1 ≥
(Tu,v)

(u,v)
, (u,v)>> 0, u ∈ Nχ,R, v ∈ Nψ,R. (4.17)

This implies

Reλ j ≤
Re(T zχ ,zψ)

(zχ ,zψ)
≤ max

(u,v)>>0
u∈Mχ,zχ ,v∈Mψ,zψ

Re(Tu,v)

(u,v)
≤ max

(u,v)>>0
u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
≤ Reλ1. (4.18)

Therefore, (4.3) is proven.

Proof of (4.4): From (4.3), we conclude

min
codim Mχ= j−1

codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
≥ Reλ j. (4.19)

On the other hand, from Theorem 4.1,

Reλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Re(Tu,v)

(u,v)
≥ min

codim Mχ= j−1

codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Re(Tu,v)

(u,v)
(4.20)

since

Mχ, j,R = [χ j,χ j+1, . . .]R = [ψ1, . . . ,ψ j−1]
⊥
Nχ,R

(4.21)

and

Mψ, j,R = [ψ j,ψ j+1, . . .]R = [χ1, . . . ,χ j−1]
⊥
Nψ,R

(4.22)

so that codim Mχ, j,R = j−1 and codim Mψ, j,R = j−1.

Relations (4.19) and (4.20) imply (4.4).

The last assertion follows from (4.21) and (4.22).

The next theorem contains a generalized min-representation.

Theorem 4.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

Reλ j = min
(u,v)>>0

u∈Nχ , j,R ,v∈Nψ, j,R

Re(Tu,v)

(u,v)
, j ∈ J. (4.23)

The minimum is attained for u = χ j, v = ψ j.

Proof. Due to (3.17),

Re(Tu,v) = ∑
j∈J

Reλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

Reλ j, (u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.



Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of Simple Eigenvalues of

Compact Operators — 58/77

Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈ Nχ, j,R ⊂ Nχ,R and v ∈ Nψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but

fixed with (u,v)>> 0. Then, with (4.1),

Re(Tu,v) =
j

∑
k=1

Reλk(u,ψk)(χk,v)

≥ min
k=1,..., j

Reλk

j

∑
k=1

(u,ψk)(χk,v)

= Reλ j

j

∑
k=1

(u,ψk)(χk,v)

= Reλ j(u,v),

that is,

Re(Tu,v)

(u,v)
≥ Reλ j, u ∈ Nχ , j,R,v ∈ Nψ, j,R, (u,v)>> 0

and therefore,

min
(u,v)>>0

u∈Nχ, j,R ,v∈Nψ, j,R

Re(Tu,v)

(u,v)
≥ Reλ j.

Now, Reλ j is attained for u = χ j ∈ Nχ, j,R and v = ψ j ∈ Nψ, j,R, that is,

Reλ j =
Re(T χ j,ψ j)

(χ j,ψ j)
≥ min

(u,v)>>0
u∈Nχ, j,R ,v∈Nψ, j,R

Re(Tu,v)

(u,v)
≥ Reλ j

so that (4.23) is proven.

Next, we derive the following generalized max-min-representation of Reλ j.

Theorem 4.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (4.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).

Then, for every j ∈ J and every subspace Nχ ⊂ Nχ ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities

are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)

(u,v)
≤ Reλ j, (4.24)

and the following max-min-representation formulas hold:

Reλ j = max
dimNχ= j

dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)

(u,v)
, j ∈ J. (4.25)

The maximum is attained for

Nχ = Nχ, j,R, Nψ = Nψ, j,R. (4.26)

Proof. Let j ∈ J, and let Nχ ⊂ Nχ,R as well as Nψ ⊂ Nψ,R be subspaces with dimNχ = dimNψ = j. Then,

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)

(u,v)
≤ min

(u,v)>>0
u∈Nχ, j,R ,v∈Nψ , j,R

Re(Tu,v)

(u,v)
≤ Re(T χ j,ψ j)

(χ j,ψ j)
= Reλ j (4.27)

so that (4.24) follows. From (4.27), we conclude

max
dimNχ= j

dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)

(u,v)
≤ Reλ j. (4.28)
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Further, (4.23) implies

Reλ j = min
(u,v)>>0

u∈Nχ , j,R ,v∈Nψ, j,R

Re(Tu,v)

(u,v)
≤ max

dimNχ= j

dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Re(Tu,v)

(u,v)
≤ Reλ j. (4.29)

From (4.28) and (4.29), we deduce (4.25) and that the maximum is attained for Nχ = Nχ, j,R, Nψ = Nψ, j,R.

Changes in the Finite-Dimensional Case

In this case, the Hilbert space H over the field F=C can be identified with C
n and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . .), and (4.1) is replaced by

Reλ1 ≥ . . .≥ Reλn.

Moreover, the condition lim j→∞ λ j = 0 is omitted.

As a consequence, Theorems 4.1 - 4.4 deliver [16, Theorems 4 - 7] where the proofs of the theorems in this paper are

essentially different from those in [16]. Beyond this, the proof of Theorem 4.2 is more detailed than the proof of [16, Theorem

5.]

5. Generalized Rayleigh-Quotient Formulas for the Imaginary Parts of the Eigenvalues

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of the compact

operator 0 6= T ∈ B(H) by Rayleigh quotients that generalize existing ones. We remind the reader that, in this paper beginning

with Section 3, all eigenvalues are assumed to be simple. We obtain max-, min-max-, min-, and max-min-representations

corresponding to those in Section 4.

Similarly to (4.1) we suppose that the eigenvalues of the compact operator T are arranged such that

Imλ1 ≥ Imλ2 ≥ Imλ3 ≥ . . . . (5.1)

First, we want to state a relation corresponding to that of (3.17).

Lemma 5.1. Let the conditions (C1) - (C4) be fulfilled. Then, with the denotations of Theorem 3.1,

Im(Tu,v) = ∑
j∈J

Imλ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R. (5.2)

Proof. Equation (5.2) follows directly from Theorem 3.4, Formulas (3.14) and (3.16).

One has a series of theorems for the imaginary parts of the eigenvalues corresponding to those of Theorems 4.1 - 4.4 in

Section 4. These Theorems 5.2 - 5.5 are stated without proofs since the only difference is that (5.1) and (5.2) are used instead

of (4.1) and (3.17).

Theorem 5.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).

Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.

(3.27). Then,

Imλ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

Im(Tu,v)

(u,v)
, j ∈ J. (5.3)

The maximum is attained for u = χ j, v = ψ j.
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Theorem 5.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).

Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

Imλ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

Im(Tu,v)

(u,v)
≤ Imλ1, (5.4)

and the following min-max-representation formulas hold:

Imλ j = min
codim Mχ= j−1

codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

Im(Tu,v)

(u,v)
, j ∈ J. (5.5)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (5.6)

The next theorem contains a generalized min-representation of Imλ j.

Theorem 5.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

Imλ j = min
(u,v)>>0

u∈Nχ, j,R ,v∈Nψ, j,R

Im(Tu,v)

(u,v)
, j ∈ J. (5.7)

The minimum is attained for u = χ j, v = ψ j.

Next, we derive the following generalized max-min-representation of Imλ j.

Theorem 5.5. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (5.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).

Then, for every j ∈ J and every subspace Nχ ⊂ Nχ ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities

are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Im(Tu,v)

(u,v)
≤ Imλ j, (5.8)

and the following max-min-representation formulas hold:

Imλ j = max
dimNχ= j

dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

Im(Tu,v)

(u,v)
, j ∈ J. (5.9)

The maximum is attained for

Nχ = Nχ, j,R, Nψ = Nψ, j,R. (5.10)

Changes in the Finite-Dimensional Case

In this case, the Hilbert space H over the field F=C can be identified with C
n and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . .), and (5.1) is replaced by

Imλ1 ≥ . . .≥ Imλn.

Further, the condition lim j→∞ λ j = 0 is omitted.

As a consequence, Theorems 5.2 - 5.5 deliver [16, Theorems 9 - 12].
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6. Generalized Rayleigh-Quotient Formulas for the Moduli of the Eigenvalues

Whereas in Sections 4 and 5 max-, min-max-, min-, and max-min-representations with generalized Rayleigh quotients could be

obtained, it seems that, for the moduli of the eigenvalues, only a max-representation is possible.

We now deduce this max-representation. For this, we suppose that the eigenvalues λ1,λ2, . . . are arranged such that

|λ1| ≥ |λ2| ≥ . . . . (6.1)

Herewith, one has the following theorem.

Theorem 6.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (6.1).

Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.

(3.27). Then,

|λ j|= max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

|(Tu,v)|
(u,v)

, j ∈ J. (6.2)

The maximum is attained for u = χ j, v = ψ j.

Proof. One uses (3.14) and (3.16) as starting point, i.e.,

(Tu,v) = ∑
j∈J

λ j(u,ψ j)(χ j,v), u ∈ Nχ,R, v ∈ Nψ,R

with

(u,ψ j), (χ j,v) ∈ R, u ∈ Nχ,R, v ∈ Nψ,R.

Let j ∈ J be arbitrarily chosen, but fixed as well as u ∈ Mχ, j,R ⊂ Nχ,R and v ∈ Mψ, j,R ⊂ Nψ,R also be arbitrarily chosen, but

fixed with (u,v)>> 0. Then,

|(Tu,v)| = |
∞

∑
k= j

λk(u,ψk)(χk,v)|

≤ max
k= j, j+1,...

|λk|
∞

∑
k= j

(u,ψk)(χk,v)

= |λ j|
∞

∑
k=1

(u,ψk)(χk,v)

= |λ j|(u,v), u ∈ Mχ, j,R,v ∈ Mψ, j,R, (u,v)>> 0,

that is,

|(Tu,v)|
(u,v)

≤ |λ j|, u ∈ Mχ , j,R,v ∈ Mψ, j,R, (u,v)>> 0

and thus

max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

|(Tu,v)|
(u,v)

≤ |λ j|.

Now, |λ j| is attained for u = χ j ∈ Mχ, j,R and v = ψ j ∈ Mψ, j,R. Thus, because of (χ j,ψ j)>> 0,

|λ j|=
|(T χ j,ψ j)|
(χ j,ψ j)

≤ max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ, j,R

|(Tu,v)|
(u,v)

≤ |λ j|

so that (6.2) is proven.
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7. Generalized Rayleigh-Quotient Formulas for Real Eigenvalues

When all eigenvalues of a compact operator T are real and simple, then

σ(T )⊂ R

and

Reλ j = λ j, j = 1,2, . . . .

We mention that, in particular, λ j(T
∗T ) ∈ R

+
0 := {x ∈ R |x ≥ 0} ⊂ R. For σ(T )⊂ R, from Section 4 one gets the following

corollaries where correspondingly to (4.1), we suppose that the eigenvalues are arranged such that

λ1 ≥ λ2 ≥ . . . . (7.1)

The corollaries are obtained as follows.

Corollary 7.1. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).

Moreover, let the vector spaces Mχ, j,R resp. Mψ, j,R for j ∈ J be defined by (3.21), (3.22) resp. (3.23), (3.24) or (3.26) resp.

(3.27). Then,

λ j = max
(u,v)>>0

u∈Mχ, j,R ,v∈Mψ , j,R

(Tu,v)

(u,v)
, j ∈ J. (7.2)

The maximum is attained for u = χ j, v = ψ j.

Corollary 7.2. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).

Then, for every j ∈ J and every subspace Mχ ⊂ Nχ,R and Mψ ⊂ Nψ,R with codim Mχ = codim Mψ = j−1, the following

inequalities are valid:

λ j ≤ max
(u,v)>>0

u∈Mχ ,v∈Mψ

(Tu,v)

(u,v)
≤ λ1, (7.3)

and the following min-max-representation formulas hold:

λ j = min
codim Mχ= j−1

codim Mψ= j−1

max
(u,v)>>0

u∈Mχ ,v∈Mψ

(Tu,v)

(u,v)
, j ∈ J. (7.4)

The minimum is attained for

Mχ = Mχ, j,R, Mψ = Mψ, j,R. (7.5)

The next corollary contains a generalized min-representation of λ j.

Corollary 7.3. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11). Then,

λ j = min
(u,v)>>0

u∈Nχ, j,R ,v∈Nψ, j,R

(Tu,v)

(u,v)
, j ∈ J. (7.6)

The minimum is attained for u = χ j, v = ψ j.

Corollary 7.4. Let the conditions (C1) - (C4) be fulfilled. Further, let the eigenvalues of T be arranged according to (7.1).

Moreover, let the vector spaces Nχ, j,R resp. Nψ, j,R for j ∈ J be defined by (3.7) resp. (3.11).
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Then, for every j ∈ J and every subspace Nχ ⊂ Nχ ,R and Nψ ⊂ Nψ,R with dim Nχ = dim Nψ = j, the following inequalities

are valid:

min
(u,v)>>0

u∈Nχ ,v∈Nψ

(Tu,v)

(u,v)
≤ λ j, (7.7)

and the following max-min-representation formulas hold:

λ j = max
dimNχ= j

dimNψ= j

min
(u,v)>>0

u∈Nχ ,v∈Nψ

(Tu,v)

(u,v)
, j ∈ J. (7.8)

The maximum is attained for Nχ = Nχ , j,R, Nψ = Nψ, j,R.

Changes in the Finite-Dimensional Case

In this case, the Hilbert space H over the field F=C can be identified with C
n and the compact operator with an n×n-matrix.

Further, one has J = (1, . . . ,n) instead of J = (1,2, . . ., and (7.1) is replaced by

λ1 ≥ . . .≥ λn.

Further, the condition lim j→∞ λ j = 0 is omitted.

As a consequence, Corollaries 7.1 - 7.4 deliver [16, Corollaries 14 - 17].

8. Application to New Formula for Spectral Radius

In this section, an application of the obtained results is presented. More precisely, a new formula for the spectral radius ρ(T ) is

derived. First, known formulas for this quantity are recapitulated.

Known formulas for the spectral radius ρ(T )
Let the conditions (C1) - (C4) be fulfilled. One formula is given by

ρ(T ) = lim
n→∞

‖T n‖ 1
n , (8.1)

see [10, Chapter I, p. 27], where the expression on the right-hand member of (8.1) is independent of the norm ‖ · ‖.

If F= C, another representation is

ρ(T ) = max
j=1,2,...

|λ j|, (8.2)

cf. [10, Chapter I, (5.10), p. 38].

New formula for the spectral radius ρ(T )
Let the conditions (C1) - (C4) be fulfilled, and let the eigenvalues of T be arranged according to (6.1).

Then, from Theorem 6.1, as Application, we deduce the new formula

ρ(T ) = max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

|(Tu,v)|
(u,v)

. (8.3)

Proof. This follows from (6.2) as well as Mχ,1,R = Nχ,R, Mψ,1,R = Nψ,R according to (3.21) and (3.23) as well as (3.9) and

(3.13) since

ρ(T ) = max
j=1,2,...

|λ j|= |λ1|= max
(u,v)>>0

u∈Mχ,1,R ,v∈Mψ,1,R

|(Tu,v)|
(u,v)

= max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

|(Tu,v)|
(u,v)

. (8.4)
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9. New Generalized Numerical Ranges

In this section, a series of known numerical ranges is recapitulated, and new numerical ranges of a compact operator are defined.

The new generalized numerical ranges are defined for compact operators with simple eigenvalues similarly as for diagonalizable

matrices in [16].

Known numerical range of T ∈ B(H) with respect to the Hilbert space H

Following [25, Section 5.4,(5)], the numerical range of T ∈ B(H) is defined by

WH(T ) = {z ∈ C |z = (Tu,u)

(u,u)
, 0 6= u ∈ H} (9.1)

which is a convex subset of C. Applying this definition to T ∗T instead to T , we obtain

WH(T
∗T ) = {x ∈ R

+
0 |x = (T ∗Tu,u)

(u,u)
=

(Tu,Tu)

(u,u)
≥ 0, 0 6= u ∈ H} (9.2)

which is a convex subset of R+
0 . One has

WH(T
∗T ) = [ inf

j=1,2,...
λ j(T

∗T ), sup
j=1,2,...

λ j(T
∗T )] = [

1

‖T−1‖2
2

,‖T‖2
2 ] (9.3)

where 1/‖T−1‖2
2 has to be interpreted as zero if T−1 does not exist.

Generalized numerical range of T ∈ B(H) with respect to the subspaces Nχ and Nψ

Let the conditions (C1) - (C4) be fulfilled. Then, we define the generalized range of T with respect to the subspaces Nχ and

Nψ by

WNχ ,Nψ ,gen.(T ) = {z ∈ C |z = (Tu,v)

(u,v)
, (u,v)>> 0, u ∈ Nχ ,v ∈ Nψ} (9.4)

Real part of the numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ,R

Let the conditions (C1) - (C4) be fulfilled. Then, we define the real part of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

Re [WNχ,R,Nψ,R,gen.](T ) = {x ∈ R |x = Re(Tu,v)

(u,v)
, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.5)

Imaginary part of the numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ,R

Let the conditions (C1) - (C4) be fulfilled. Then, we define the imaginary part of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

Im [WNχ,R,Nψ,R,gen.](T ) = {y ∈ R |y = Im(Tu,v)

(u,v)
, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.6)

Modulus of the generalized numerical range of T ∈ B(H) with respect to the subspaces Nχ,R and Nψ ,R

Let the conditions (C1) - (C4) be fulfilled. Then, we define the modulus of the generalized numerical range of T with

respect to the subspaces Nχ,R and Nψ,R by

|WNχ,R,Nψ ,R,gen.(T ) |= {x ∈ R
+
0 |x = |(Tu,v)|

(u,v)
, (u,v)>> 0, u ∈ Nχ,R,v ∈ Nψ,R}. (9.7)

10. Examples from the Area of Boundary Eigenvalue Problems

In this section, we check some of the formulas of Section 7 on an example of a nonsymmetric compact operator with nonnegative

simple eigenvalues from the area of Mathematical Physics. More precisely, we check the validity of the following relation

(Tu,v)

(u,v)
∈ [ inf

j=1,2,...
λ j(T ), sup

j=1,2,...
λ j(T )]

for a series of vectors u ∈ Nχ,R, v ∈ Nψ,R with (u,v)>> 0, which is a consequence of Theorems 7.2 and 7.4.
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10.1 A Non-Selfadjoint BEVP with Ordinary Differential Operator of 2nd Order
(i) The Differential Operators L and L+ and Pertinent BEVPs

As an example, we choose the non-selfadjoint Boundary Eigenvalue Problem (for short: BEVP) with ordinary differential

operator of 2nd order in [18]. The differential operator L is given by

(Lu)(x) =−u′′(x)+ p0 u′(x)+q0 u(x), 0 ≤ x ≤ l (10.1)

with the real constants p0,q0 where we restrict q0 to q0 > 0 and with the boundary conditions

u(0) = u(l) = 0. (10.2)

The formally adjoint differential operator L+ is given by

(L+v)(x) =−v′′(x)− p0 v′(x)+q0 v(x), 0 ≤ x ≤ l (10.3)

with the boundary conditions

v(0) = v(l) = 0. (10.4)

The pertinent BEVPs read

π2,µ : Lu = µu, u ∈ HD = D(L) (10.5)

where

HD = {u ∈C2[0, l] |u(0) = u(l) = 0} (10.6)

and

π2,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (10.7)

where

HD,+ = HD. (10.8)

(ii) The Eigenvalues and Eigenfunctions

The eigenvalues of L and L+ are given by

µ = µ = µ j = µ j =
j2π2

l2
+D, j ∈ J (10.9)

with the quantity

D = D(p0,q0) = (
p0

2
)2 +q0 (10.10)

so that

λ j =
1

µ j

=
1

j2π2

l2
+D

, j ∈ J. (10.11)

The biorthonormal eigenfunctions are found to be

χ j(x) =

√

2

l
exp(

p0

2
x) sin j π

x

l
, 0 ≤ x ≤ l, j ∈ J (10.12)

and

ψ j(x) =

√

2

l
exp(− p0

2
x) sin j π

x

l
, 0 ≤ x ≤ l, j ∈ J (10.13)
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so that we have

(χ j,ψk) =
∫ l

0
χ j(x)ψk(x)dx =

2

l

∫ l

0
sin j π

x

l
sink π

x

l
dx = δ jk, 0 ≤ x ≤ l, j,k ∈ J. (10.14)

(iii) The Green’s Function of Lp0,q0
u = 0, u(0) = u(l) = 0

A set of fundamental solutions of Lp0.q0
= 0, i.e., when µ = 0, is given by

u1(x) = e
p0
2 x sinh

√
Dx (10.15)

u2(x) = e
p0
2 x cosh

√
Dx (10.16)

with

D = D(p0,q0) = (
p0

2
)2 +q0

in (10.10). Based on these fundamental solutions, the Green’s functions pertinent to the BVPs Lp0.q0
u = 0, u(0) = u(l) = 0

resp. L+,p0.q0
v = 0, v(0) = v(l) = 0 are given by

G(x,s) =























G1(x,s) =
sinh

√
Dx sinh

√
D(l − s)√

Dsinh
√

Dl
exp

( p0

2
(x− s)

)

, 0 ≤ x ≤ s ≤ l,

G2(x,s) =
sinh

√
D(l − x) sinh

√
Ds√

Dsinh
√

Dl
exp

( p0

2
(x− s)

)

0 ≤ s ≤ x ≤ l,

(10.17)

resp.

G+(x,s) =























G+,1(x,s) =
sinh

√
D(l − x) sinh

√
Ds√

Dsinh
√

Dl
exp

( p0

2
(s− x)

)

, 0 ≤ x ≤ s ≤ l,

G+,2(x,s) =
sinh

√
Dx sinh

√
D(l − s)√

Dsinh
√

Dl
exp

( p0

2
(s− x)

)

0 ≤ s ≤ x ≤ l,

(10.18)

so that, because of D = D(p0,q0),

G(x,s) = G(x,s; p0,q0) (10.19)

and

G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0) (10.20)

in accordance with the fact that, for the pertinent operators, one has G+ = GT , see [18].

(iv) The Compact Operators T and T+ = T ∗ = T T

The inverse operators T := G := L−1
+ and T+ := G+ := L−1

+ are given by

(Tu)(x) = (Gu)(x) = (L−1u)(x) =
∫ l

0
G(x,s; p0,q0)u(s)ds, u ∈C([0, l],R)⊂C[0, l] (10.21)

where C([0, l],R) is the set of real-valued continuous functions on [0, l] endowed with the norm ‖ · ‖2, and

(T+u)(x) = (G+u)(x) = (L−1
+ u)(x) =

∫ l

0
GT (x,s;−p0,q0)u(s)ds, u ∈C([0, l],R) (10.22)

with the eigenvalues

λ j(T ) = λ j(G) = λ j(T
T ) = λ j(G

T ) =
1

µ j(L)
=

1

j2π2

l2
+D

, j ∈ J, (10.23)
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and the same eigenfunctions χ j in (10.12) resp. ψ j in (10.13). From (10.23), we have

lim
j→∞

λ j(T ) = 0. (10.24)

Further,

inf
j=1,2,...

λ j(T ) = 0, sup
j=1,2,...

λ j(T ) = λ1(T ) =
1

π2

l2
+D

=
1

π2

l2
+(

p0

2
)2 +q0

. (10.25)

Now, due to [18, Theorem 3.3, (3.14)] and since χ j(x) ∈ R, 0 ≤ x ≤ l, one has

C([0, l],R)⊂ Nχ,R ⊂ L2(0, l).

Therefore, from (7.1) and (7.3), we obtain

0 ≤ (Tu,v)

(u,v)
≤ 1

π2

l2
+(

p0

2
)2 +q0

, (u,v)>> 0, u,v ∈C([0, l],R). (10.26)

(v) Special case p0 = q0 = 0

We mention that, in the particular case p0 = q0 = 0, we obtain

µ j =
j2π2

l2
, j ∈ J,

λ j =
l2

j2π2
, j ∈ J,

χ j(x) = ψ j(x) = ϕ j(x) =

√

2

l
sin j π

x

l
, 0 ≤ x ≤ l, j ∈ J,

G(x,s) =



















G1(x,s) =
x(l − s)

l
, 0 ≤ x ≤ s ≤ l,

G2(x,s) =
s(l − x)

l
, 0 ≤ s ≤ x ≤ l.

In this special case, we have

(Tu,v)

(u,v)
∈ [0; l2/π2], (u,v)>> 0, u,v ∈C([0, l];R)). (10.27)

10.2 Computations with Computer Algebra

In the particular case p0 = q0 = 0, using the symbolic-function feature of Matlab, one obtains the following Table 10.1.
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iu iv u v (Tu,v)) (u,v) (Tu,v))/(u,v)

1 1 1 1 l3

12
l 1

12
l2

2 1 x 1 l4

24
l2

2
1

12
l2

1 2 1 x l4

24
l2

2
1

12
l2

3 1 x2 1 l5

40
l3

3
3

40
l2

2 2 x x l5

45
l3

3
1

15
l2

1 3 1 x2 l5

40
l3

3
3

40
l2

4 1 x3 1 l6

60
l4

4
1

15
l2

3 2 x2 x l6

72
l4

4
1

18
l2

2 3 x x2 l6

72
l4

4
1

18
l2

1 4 1 x3 l6

60
l4

4
1

15
l2

5 1 x4 1 l7

84
l5

5
5

84
l2

4 2 x3 x l7

105
l5

5
1

21
l2

3 3 x2 x2 l7

112
l5

5
5

112
l2

2 4 x x3 l7

105
l5

5
1

21
l2

1 5 1 x4 l7

84
l5

5
5

84
l2

6 1 1+ x 1
(l+2) l3

24

l (l+2)
2

1
12

l2

1 6 1 1+ x
(l+2) l3

24

l (l+2)
2

1
12

l2

6 6 1+ x 1+ x
(4 l2+15 l+15) l3

180
l + l2 ( l

3
+1) f (l) = g(l) l2

Table 10.1: Computer-Algebra Results

with

f (l) =
(4 l2 +15 l +15) l3

180(l + l2 ( l
3
+1))

=
4 l5 +15 l4 +15 l3

60 l3 +180 l2 +180 l
= l2 4 l2 +15 l +15

60 l2 +180 l +180
= g(l) l2

where

g(l) =
4 l2 +15 l +15

60 l2 +180 l +180
.

The function y = g(x) for 0 ≤ x ≤ 10 is illustrated in Fig. 10.1.

0 2 4 6 8 10
0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

x

y=g(x) = (4 x2 + 15 x + 15)/(60 x2 + 180 x + 180)

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.1: Curve y=g(x) for 0 ≤ x ≤ 10

One has

lim
l→0

g(l) =
15

180
=

1

12
∈ [0;

1

π2
]
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and

lim
l→∞

g(l) = lim
l→∞

4+ 15
l
+ 15

l2

60+ 180
l
+ 180

l2

=
4

60
=

1

15
∈ [0;

1

π2
]

as well as

g′(x) =− x(x+2)

20(x2 +3x+3)
< 0, x > 0

so that y = g(x), x > 0 is strictly monotonically decreasing. In Fig. 10.2, the curve y = g(x) for 1 ≤ x ≤ 3 is shown.

1 1.5 2 2.5 3
0.076

0.077

0.078

0.079

0.08

0.081

0.082

x

y=g(x)

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.2: Curve y=g(x) for 1 ≤ x ≤ 3

At this point, we introduce the denotation of reduced length. Apparently,

(Tu,v)

(u,v)
∈ [0;

1

π2
l2]

for all values in Table 10.1 which confirms (10.27) for p0 = q0 = 0, and for the largest eigenvalue of T , one has

λ1(T ) = max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

(Tu,v)

(u,v)
= max

(u,v)>>0

u,v∈C([0,l;R])

(Tu,v)

(u,v)
=

(T χ1,ψ1)

(χ1,ψ1)
=

l2

π2
.

Correspondingly to this formula, for u,v ∈C([0, l],R) with (u,v)>> 0, we define the reduced length lred,D=0 by

QRay :=
(Tu,v)

(u,v)
=

l2
red,D=0

π2

implying

l2
red,D=0 = QRay π2.

For u = χ1, v = ψ1, we get back

l2
red,D=0 =

l2

π2
π2 = l2

or

lred,D=0 = l,

as it must be. For iu = 5, iv = 1, i.e., for u(x) = x4, v(x) = 1, Table 10.1 delivers QRay = 5/84 l2 and therefore

lred,D=0 = π

√

5

84
l
.
= 0.766470 l < l
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and for iu = 6, iv = 6, i.e., for u(x) = 1+ x, v(x) = 1+ x, Table 10.1 gives QRay ∈ [1/15 l2,1/12 l2] so that

lred,D=0 ∈ π[
1√
15

l;
1√
12

l]
.
= [0.2581988 l;0.288675 l]⊂ [0, l]

The interpretation of lred,D=0 is as follows. If the length l is replaced by lred,D=0 for the index pair (iu, iv) resp. the pair of

functions u,v ∈C([0, l],R) with (u,v)>> 0, then λ1(T ) = max
(u,v)>>0

u,v∈C([0,l];R)

(Tu,v)

(u,v)
is attained for the pair of functions pertinent to

the pair of indices (iu, iv) in Table 10.1.

10.3 Numerical Computations

If p0 6= 0 or q0 6= 0, then the results obtained by the Computer Algebra using the symbolic-function feature of Matlab get

complicated. So, in this subsection, we use numerical integration methods to compute the Rayleigh quotients (Tu,v)/(u,v).
For the computation of

(Tu)(x) =
∫ l

0
G(x,s)u(s)ds =

∫ x

0
G2(x,s)u(s)ds+

∫ l

x
G1(x,s)u(s)ds,

we employ the Matlab routine dblquad, and for (Tu,v) =
∫ l

0(Tu)(x)v(x)dx as well as (u,v) =
∫ l

0 u(x)v(x)dx the Matlab routine

quadl that is based on the Simpson rule.

As to the reduced length lred,D for the general case when D = ( p0
2
)2 +q0 is not necessary equal to zero, we depart from the

formula

λ1(T ) = max
(u,v)>>0

u∈Nχ,R ,v∈Nψ,R

(Tu,v)

(u,v)
=

1

π2

l2 +D
=

l2

π2 +Dl2

since the maximum is attained for u = χ1 ∈C([0, l];R)⊂ Nχ ,R and v = ψ1 ∈C([0, l];R)⊂ Nχ,R. In analogy to this formula,

we define

QRay =
(Tu,v)

(u,v)
:=

l2
red,D

π2 +Dl2
red,D

leading to

l2
red,D = QRay (π

2 +Dl2
red,D).

This implies

l2
red,D (1−DQRay) = π2 QRay

or

l2
red,D = π2 QRay

1−DQRay

leading to

lred,D = π

√

QRay
√

1−DQRay

= π

√

(Tu,v)
(u,v)

√

1−D
(Tu,v)
(u,v)

.

Special Case: u = χ1, v = ψ1

In this case, we obtain

QRay =
(T χ1,ψ1)

(χ1,ψ1)
= λ1 =

l2

π2 +Dl2
=

l2
red,D

π2 +Dl2
red,D
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implying

lred,D = l,

as it must be. In order to test the numerical computations, we begin with the special case p0 = q0 = 0 . The pertinent

computations for y = (Tu,v)/(u,v) 1
l2 with u(x) = 1+ x, v(x) = 1+ x, 1 ≤ x ≤ 3 deliver the same numerical values as for

y = g(l), 1 ≤ l ≤ 3 in Table 10.2. This is illustrated in Fig. 10.3.

1 1.5 2 2.5 3
0.076

0.077

0.078

0.079

0.08

0.081

0.082

y=(Tu,v)/(u,v)⋅ 1/l2

l

p
0
=0, q

0
=0, u(x)=1+x, v(x)=1+x

Fig. 10.3: Curve y = ((Tu,v)/(u,v))/l2 for 0 ≤ l ≤ 3

From this, one can expect that the numerical computations for the other pairs u,v of functions are reliable.

For p0 = 0, q0 = 1 and u(x) = 1, v(x) = 1 , we have computed a series of variants for l = 1.0(0.1)3.0 given in Table

10.2.

k l
(Tu,v)
(u,v))

(Tu,v)
(u,v))

1

l2
1

π2+Dl2
lred,D

lred,D
l

1 1.000000 0.083334 0.08333422 0.052995 0.947231 0.947231

2 1.100000 0.100834 0.08333422 0.052995 1.052045 0.956405

3 1.200000 0.120001 0.08333422 0.052995 1.160117 0.966764

4 1.300000 0.140834 0.08333387 0.052995 1.271937 0.978413

5 1.400000 0.163334 0.08333358 0.052995 1.388071 0.991480

6 1.500000 0.187501 0.08333358 0.052995 1.509175 1.006117

7 1.600000 0.213334 0.08333350 0.052995 1.636004 1.022503

8 1.700000 0.240834 0.08333350 0.052995 1.769458 1.040857

9 1.800000 0.270000 0.08333346 0.052995 1.910604 1.061447

10 1.900000 0.300834 0.08333346 0.052995 2.060739 1.084599

11 2.000000 0.333334 0.08333346 0.052995 2.221444 1.110722

12 2.100000 0.367501 0.08333346 0.052995 2.394687 1.140327

13 2.200000 0.403334 0.08333346 0.052995 2.582953 1.174070

14 2.300000 0.440834 0.08333346 0.052995 2.789440 1.212800

15 2.400000 0.480001 0.08333346 0.052995 3.018349 1.257645

16 2.500000 0.520834 0.08333341 0.052995 3.275340 1.310136

17 2.600000 0.563334 0.08333341 0.052995 3.568273 1.372413

18 2.700000 0.607501 0.08333341 0.052995 3.908442 1.447571

19 2.800000 0.653334 0.08333341 0.052995 4.312825 1.540295

20 2.900000 0.700834 0.08333341 0.052995 4.808408 1.658072

21 3.000000 0.750001 0.08333341 0.052995 5.441409 1.813803

Table 10.2: Computational Results for p0 = 0, q0 = 1, u(x) = 1, v(x) = 1

For p0 = 0, q0 = 1 and u(x) = 1+ x, v(x) = 1+ x , we have computed a series of variants for l = 1.0(0.1)3.0 given in
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Table 10.3. This is illustrated in Fig. 10.4.

k l
(Tu,v)
(u,v))

(Tu,v)
(u,v))

1

l2
1

π2+Dl2
lred,D

lred,D
l

1 1.000000 0.080953 0.08095276 0.052995 0.932388 0.932388

2 1.100000 0.097584 0.08064818 0.052995 1.033086 0.939169

3 1.200000 0.115702 0.08034841 0.052995 1.136372 0.946976

4 1.300000 0.135292 0.08005448 0.052995 1.242657 0.955890

5 1.400000 0.156344 0.07976723 0.052995 1.352407 0.966005

6 1.500000 0.178846 0.07948727 0.052995 1.466148 0.977432

7 1.600000 0.202790 0.07921501 0.052995 1.584482 0.990301

8 1.700000 0.228167 0.07895064 0.052995 1.708107 1.004769

9 1.800000 0.254969 0.07869424 0.052995 1.837836 1.021020

10 1.900000 0.283189 0.07844575 0.052995 1.974631 1.039279

11 2.000000 0.312821 0.07820516 0.052995 2.119642 1.059821

12 2.100000 0.343858 0.07797231 0.052995 2.274262 1.082982

13 2.200000 0.376296 0.07774703 0.052995 2.440198 1.109181

14 2.300000 0.410129 0.07752910 0.052995 2.619579 1.138948

15 2.400000 0.445354 0.07731832 0.052995 2.815102 1.172959

16 2.500000 0.481965 0.07711445 0.052995 3.030249 1.212100

17 2.600000 0.519961 0.07691725 0.052995 3.269615 1.257544

18 2.700000 0.559336 0.07672649 0.052995 3.539424 1.310898

19 2.800000 0.600089 0.07654194 0.052995 3.848361 1.374415

20 2.900000 0.642216 0.07636335 0.052995 4.209008 1.451382

21 3.000000 0.685714 0.07619049 0.052995 4.640441 1.546814

Table 10.3: Computational Results for p0 = 0, q0 = 1, u(x) = 1+ x, v(x) = 1+ x

1 1.5 2 2.5 3
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

y=(Tu,v))/(u,v) ⋅ 1/l2

l

p
0
=0, q

0
=1, u(x)=1+x, v(x)=1+x

m

Fig. 10.4: Curve y = ((Tu,v)/(u,v))/l2 for 0 ≤ l ≤ 3

10.4 Computational Aspects

In this subsection, we say something about the used computer equipment, the computational times, and the Matlab numerical

integration programs quadl and dblquad.

(i) As to the computer equipment, the following hardware was available: an Intel Core 2 Duo Processor at 3166 GHz, a 500

GB mass storage facility, and two 2048 MB high-speed memories. As software, for the computations, we used Matlab Version

7.11.

(ii) The computation time t of an operation was determined by the command sequence t1 = clock;operation; t = etime(clock, t1).
It is put out in seconds rounded to four decimal places. For the computation of the values in Table 10.2, the computation time

was t = 2.3400s.

(iii) The double integrals I1 := (Tu,v)1 :=
∫ l

0

∫ l
x G1(x,s)u(s)v(x)dsdx and I2 := (Tu,v)2 :=

∫ l
0

∫ x
0 G2(x,s)u(s)v(x)dsdx

are computed by the Matlab commands

I1 = dblquad(@(x,s)G1uv(x,s).∗ (x <= s),0, l,0, l, [],@quadl);

and

I2 = dblquad(@(x,s)G2uv(x,s).∗ (s <= x),0, l,0, l, [],@quadl);

where

y = G1uv(x,s) = G1(x,s)∗u(s)∗ v(x)
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and

y = G2uv(x,s) = G2(x,s)∗u(s)∗ v(x)

are defined in corresponding m-files. The quantity (Tu,v) is obtained as the sum of I1 and I2. The default absolut tolerance for

quadl is tol = 1.0e−6.

The scalar product (u,v) is computed by the Matlab command

uv = quadl(@(t), f uv(t),0, l);

where

y = f uv(t) = u(t).∗ v(t);

is defined in an associated m-file. Here, it is of interest to note that this command worked correctly for all function pairs

u,v in Table 10.2 except for the function pair u(x) = 1, v(x) = 1. It does neither work if one replaces u(x) = 1, v(x) = 1 by

u(x) = x0, v(x) = x0, but it works correctly if one choose as replacements u(x) = x+1− x, v(x) = x+1− x. This is, of course,

a shortcoming of the program and should be remedied by the company Mathworks.

10.5 Examples of Buckling Problems in Elastomechanics

In this subsection, we use some verbatim passages from [28].

(i) The Euler Column

As a simple example of a problem from Eleastomechanics, we choose the buckling of a slender elastic bar of length l with

hinged ends, also called Euler column, see [28, Section 2.1, pp. 46-49] and [23, Section 7.2, pp. 218-226]. We assume that the

bar with constant cross-section is compressed by a centrically applied force F . We further assume that the unloaded bar is

exactly straight. When the critical force Fcrit is applied, besides the undeformed shape, there exists a neighbouring shape with

lateral deflection w 6= 0, see Fig. 10.5.

Fig. 10.5: Euler Buckling Column

In order to determine Fcrit , it is necessary to set up the equilibrium conditions for the deflected shape, i.e., for the deformed

bar. (Hereby, the change of the length can be neglected.) If one cuts the bar at the place x (Fig.10.5 (c)), then from the

equilibrium of the bending moment about the left end taken counterclockwise for the deformed bar, one obtains

x

0 : M−F w = 0. (10.28)

Here, we have taken into account that, under horizontal force, there is no vertical bearing reaction. Substituting this in the law

of elasticity −EI w′′ = M for the shearless bending bar leads to

−EI w′′ = F w. (10.29)

With the abbreviation

µ =
F

EI
, (10.30)
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the buckling equation reads

−w′′ = µ w. (10.31)

The boundary conditions for the hinges at the ends have the form

w(0) = w(l) = 0. (10.32)

The BEVP consisting of (10.31) and (10.32) has the eigenvalues

µ = µ j = j2 π2

l2
, j = 1,2, . . . (10.33)

and the eigenfunctions read

χ j(x) = ψ j(x) = ϕ j(x) =

√

2

l
sin j π

x

l
, j = 1,2, . . . . (10.34)

As already found in Subsection 10.1, the Green’s function G(x,s) = G(x,s, p0 → 0,q0 → 0) turn into

G(x,s) =



















G1(x,s) =
x(l − s)

l
, 0 ≤ x ≤ s ≤ l,

G2(x,s) =
s(l − x)

l
, 0 ≤ s ≤ x ≤ l,

so that the largest eigenvalue is

λ1 =
l2

π2
.

In [23, p.223, Fig. 7/5], the critical forces for other boundary conditions such as clamped end - hinged end can be found.

(ii) Some References to Other Problems of Mathematical Physics and Engineering

Many examples for Eigenvalue Problems that can be treated by the methods of the paper may be found in the classical

books [ 4],[ 5], [20], and [28].

In [ 4, Chapter I, pp. 5-39], one finds examples from the area of Engineering Mechanics. Further, there is a list of examples

at the end of this book, cf. pages 406-456.

In [ 5, Chapter V, pp. 234-343], one finds vibratory and eigenvalue problems of Mathematical Physics.

The book [20, Chapter V, pp. 168-221] contains eigenvalue problems with many examples from Elastomechanics.

Books on the Theory of Elastic Stability such as [28] written primarily for engineers are full of examples from this field.

11. Changes for Other Arrangements of the Eigenvalues

(i) Changes for the Real Parts of the Eigenvalues

An arrangement of the eigenvalues as in (4.1) is possible, for instance, when all real parts are positive. However, such an

arrangement is not possible if there are infinitely many eigenvalues with negative real parts and infinitely many eigenvalues

with positive real parts.

In the general case that contains the last-mentioned one we proceed similarly as in [26, Section 15] for symmetric compact

operators in Hilbert space: So, the sequence of eigenvalues and eigenvectors will be numbered such that eigenvalues with

positive real parts have positive indices and eigenvalues with negative real parts have negative indices. Accordingly, there are

sequences of numbers J+, J− whereby the finite resp. infinite sequence of eigenvalues can be arranged in the form

Reλ−1 ≤ Reλ−2 ≤ . . .Reλ−k ≤ . . . < 0 ≤ . . .≤ Reλ j . . .≤ Reλ2 ≤ Reλ1 (11.1)

for j ∈ J+, k ∈ J−. For the index sequences J+, J−, it may happen that J+ = /0, J+ = (1,2, . . . ,m+), or J+ = (1,2, . . .) and

J− = /0, J− = (1,2, . . . ,m−), or J− = (1,2, . . .), depending on whether no, finitely many, or infinitely many eigenvalues of T

with positive real resp. negative real parts exist. Herewith, the formula (3.2) turns into

Tu = ∑
j∈J+

λ j (u,ψ j)χ j + ∑
k∈J−

λ−k (u,ψ−k)χ−k (11.2)
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and the formula (3.3) into

Pu = ∑
j∈J+

(u,ψ j)χ j + ∑
k∈J−

(u,ψ−k)χ−k (11.3)

Further, the formulas (3.14), (3.15), (3.17) respectively become

(Tu,v) = ∑
j∈J+

λ j(u,ψ j)(χ j,v)+ ∑
k∈J−

λ−k(u,ψ−k)(χ−k,v), (11.4)

u, v ∈ H,

(u,v) = (Pu,v) = ∑
j∈J+

(u,ψ j)(χ j,v)+ ∑
k∈J−

(u,ψ−k)(χ−k,v), (11.5)

u, v ∈ H,

Re(Tu,v) = ∑
j∈J+

Reλ j(u,ψ j)(χ j,v)+ ∑
k∈J−

Reλ−k(u,ψ−k)(χ−k,v), (11.6)

u ∈ Nχ,R, v ∈ Nψ,R.

At this point, we make the important remark that the eigenvalues of −T are obtained by multiplying the eigenvalues of

T by −1. Therefore, it is sufficient to characterize the positive real parts of the eigenvalues by extremal principles since the

corresponding statements on the negative real parts of the eigenvalues are obtained by applying the formulas for the operator

−T resp. the pertinent expression
Re(−Tu,v)

(u,v) .

It is left to the reader to show that the formulas in Theorems 4.1 - 4.4 remain valid for J+ instead of J for the arrangement

(11.1).

(ii) Changes for the Imaginary Parts of the Eigenvalues

As to the imaginary parts of the eigenvalues, considerations similar to those in (i) have to be taken into account.

(iii) Moduli of the Eigenvalues

It is not necessary to make any changes in the arrangement (6.1) for the moduli of the eigenvalues.

12. Conclusion and Outlook to Future Work

In this paper, it could be shown that generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of

simple eigenvalues of nonsymmetric compact operators can be derived that resemble corresponding results for diagonalizable

matrices. Since the underlying Hilbert space is assumed to be infinite-dimensional, the proofs differ, in part, significantly from

those in the finite-dimensional case of matrices. For instance, in the proof of Theorem 4.2, the denotation of codimension of a

subspace of a Hilbert space was necessary that can be avoided in the finite-dimensional case, cf. [26, Section 15, pp.84-85].

In a subsequent paper, the results of this paper will be extended to defective, more precisely, to not necessarily simple

eigenvalues of nonsymmetric compact operators.
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1. Introduction

In this paper we studies the second order rational difference equation

xn+1 =
α +βxn−1

A+Bxn +Cxn−1
, n = 0,1,2, . . . ., (1.1)

with positive parameters α,β ,A,B and C and non-negative initial conditions {x−k,x−k+1, . . . ,x0}. We focus on the dynamic

behavior of the positive fixed points and the type of bifurcation exists where the change of stability occurs.

Equation (1.1) was studied by Lin-Xia Hu, Wan-Tong Li, Hong-Wu Xu in [4]. Boundedness, invariant intervals, semicycles

and global stability of the positive fixed point was investigated. Also it was studied by Ladas in [5] and [1].

Recently, bifurcation and dynamics of higher order nonlinear difference equations have been studied in [8, 7, 6, 3].

Changing of variables convert the second-order rational difference equation with five positive parameters

xn+1 =
α +βxn−1

A+Bxn +Cxn−1
, n = 0,1,2, . . .

into

yn+1 =
p+qyn−1

1+ yn + ryn−1
, n = 0,1,2, . . . ,
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with three positive parameters p , q and r.

In this paper, regarding p as a parameter, we investigate the existence of Period-Doubling bifurcation and use the normal form

theory for discrete dynamical system to determine the direction of bifurcation of period-two cycle. Then, we give numerical

discussion with figures to support our results.

2. Dynamics of yn+1 =
p+qyn−1

1+yn+ryn−1

In this section we study the stability of the positive fixed points of

yn+1 =
p+qyn−1

1+ yn + ryn−1
. (2.1)

Note that the discrete difference equation (2.1) has the unique positive fixed point

ȳ =
q−1+

√

(1−q)2 +4p(1+ r)

2(1+ r)
.

In order to convert equation (2.1) to a second dimensional system with three positive parameters p,q, and r, let un = xn−1 and

wn = xn. We have the following system

un+1 = wn,

wn+1 =
p+qun

1+wn + run

,n = 0,1,2, . . . . (2.2)

System (2.2) has the unique positive fixed point (u∗,w∗)T = (ȳ, ȳ)T .

The Jacobian matrix associated with system (2.2) at the positive fixed point is

JF(u,w) |(ȳ,ȳ)=
(

0 1
q+qȳ−rp

(1+ȳ+rȳ)2 − p+qȳ

(1+ȳ+rȳ)2

)

.

Note that

det(JF(ȳ, ȳ)) =− q+qȳ− rp

(1+ ȳ+ rȳ)2
=− q− rȳ

1+ ȳ+ rȳ

and

tr(JF(ȳ, ȳ)) =− p+qȳ

(1+ ȳ+ rȳ)2
=− ȳ

1+ ȳ+ rȳ

where det and tr denote the determinant and trace of the Jacobian matrix J, respectively.

We will use the following lemmas.

Lemma 2.1. [2] Consider the map f : G ⊂ R
2 → R

2 ba a C1 map, where G is an open subset of R2, x̄ is a fixed point of

f, A = J f (x̄) and ρ(A) is the spectral norm of A where ρ(A) = maxi{| λi |,λi are the eigenvalues of A}. Then the following

statement hold true:

1. If ρ(A)< 1, then x̄ is asymptotically stable.

2. If ρ(A)> 1, then x̄ is unstable.

3. If ρ(A) = 1, then x̄ may or may not be stable.

Lemma 2.2. [2] Consider the map

x → f (x), x ∈ R
2
,

with x̄ as a fixed point of f and A = J f (x̄). Then ρ(A)< 1 if and only if

| trA | −1 < detA < 1

where trA and detA denote trace and determinant of the matrix A respectively.
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Theorem 2.3. [9] The equilibrium point ȳ of (2.1) is locally asymptotically stable if one of the following holds

1. q ≤ 1

2. q > 1 and (r−1)(q−1)2 +4pr2 > 0.

Proof: We want to show that

| q− rȳ

1+ ȳ+ rȳ
|< 1− ȳ

1+ ȳ+ rȳ
< 2.

That is equivalent to

ȳ

1+ ȳ+ rȳ
+ | q− rȳ

1+ ȳ+ rȳ
|< 1 and

ȳ

1+ ȳ+ rȳ
>−1.

The first inequality is equivalent to

| q− rȳ |< 1+ rȳ. (2.3)

If q− rȳ < 0, then(2.3) becomes rȳ−q < 1+ rȳ and this is obvious .

If q− rȳ ≥ 0, then(2.3) becomes q− rȳ < 1+ rȳ,

or

q−1 < 2rȳ. (2.4)

If q ≤ 1 , then (2.4) holds. If q > 1, then

rȳ > r

√

(q−1)2 +4p(1+ r)

r+1
> r

√

(q−1)2 +4p(1+ r)

and if (r−1)(q−1)2 +4pr2 > 0, multiply both sides by r+1 we can get

(r2 −1)(q−1)2 +4pr2(1+ r)> 0.

Rearrange the terms of the previous inequality, we get

r2((q−1)2 +4p(1+ r))> (q−1)2
.

Take the square of both sides, we obtain

r

√

(q−1)2 +4p(1+ r)> (q−1).

Now, add r(q−1) for both sides, we have

r(q−1+
√

(q−1)2 +4p(1+ r)> (r+1)(q−1).

That is equivalent to

2r(r+1)ȳ > (r+1)(q−1),

or

2rȳ > q−1.

This shows in this case inequality (2.4) holds and hence

ȳ

1+ ȳ+ rȳ
+ | q− rȳ

1+ ȳ+ rȳ
|< 1.

Note that the second inequality 1− ȳ
1+ȳ+rȳ

< 2 is always true.

So in both cases the equilibrium point ȳ is locally asymptotically stable.
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3. Existence of Period-Doubling Bifurcation

In this section we will study the bifurcation of (2.1). we will use the following theorem.

Lemma 3.1. [2] Consider the map

x → f (x,α),x ∈ R
2
,α ∈ R. (3.1)

Let A = J f (x∗,α∗) where (x∗,α∗) is a fixed point of f (x,α). Then the following hold

1. If detA =−trA−1, then the eigenvalues of A are λ1 =−detA and λ2 =−1.

2. If detA = trA−1, then λ1 = 1 and λ2 = detA.

3. If | trA | −1 < detA and detA = 1, then A has complex eigenvalues λ1,2 = e±iθ where θ = cos−1( trA
2
).

Corollary 3.2. For the one-parameter of two-dimensional map

x → f (x,α),x ∈ R
2
,α ∈ R, (3.2)

with the fixed point (x∗,α∗) and A = J f (x∗,α∗), then the following hold

1. If detA =−trA−1, then the system (3.2) undergoes a period-doubling bifurcation.

2. If detA = trA−1, then then the system (3.2) undergoes a saddle-node bifurcation.

3. If | trA | −1 < detA and detA = 1, then the system (3.2) undergoes a Neimark-Sacker bifurcation.

Using the previous corollary, system (2.2) can not undergoes a saddle-node or Neimark-Sacker bifurcation.

Theorem 3.3. The fixed point (ȳ, ȳ)T of the system (2.2) undergoes a period-doubling (flip) bifurcation when p = (1−r)(q−1)2

4r2 if

q > 1 and r < 1.

Proof: Assume that q > 1 and r < 1. Corollary (3.2) implies that period-doubling bifurcation occurs if det(JF(ȳ, ȳ)T ) =
−tr(JF(ȳ, ȳ))−1.

That is equivalent to

− q− rȳ

1+ ȳ+ rȳ
=

ȳ

1+ ȳ+ rȳ
−1,

− q− rȳ

1+ ȳ+ rȳ
=

ȳ− (1+ ȳ+ rȳ)

1+ ȳ+ rȳ
−1,

or

−(q− rȳ) = ȳ− (1+ ȳ+ rȳ).

That is equivalent to

2rȳ = q−1,

or

2ȳ =
q−1

r
.

Substitute the value of ȳ, we obtain

q−1+
√

(1−q)2 +4p(1+ r)

1+ r
=

q−1

r
,

or

q−1+
√

(1−q)2 +4p(1+ r) = q−1+
q−1

r
.
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Take the square of both sides, we get

(1−q)2 +4p(1+ r) = (
q−1

r
)2
,

multiply both sides by r2

r2[(1−q)2 +4p(1+ r)] = (q−1)2
,

or

(r2 −1)(q−1)2 +4pr2(1+ r) = 0.

Since r > 0, r+1 6= 0, so we can divide into 1+ r. We obtain

(r−1)(q−1)2 +4pr2 = 0,

p =
(1− r)(q−1)2

4r2
.

4. Direction of The Period-Doubling (Flip) Bifurcation

In this section we will use the normal form theory for discrete dynamical system to find the direction of the period-doubling

bifurcation of system (2.2) which exists at p = (1−r)(q−1)2

4r2 . Firstly, we shift the fixed point (ȳ, ȳ)T to the origin. Let

xn = un − ȳ, zn = wn − ȳ.

System (2.2) corresponds to

xn+1 = zn,

zn+1 =
p+q(xn + ȳ)

1+(zn + ȳ)+ r(xn + ȳ)
− ȳ, (4.1)

or

Yn+1 = AYn +G(Yn), (4.2)

where

A =

(

0 1
q−rȳ

1+ȳ+rȳ
− ȳ

1+ȳ+rȳ

)

,Yn =

(

xn

zn

)

,

and

G(Y ) =
1

2
B(Y,Y )+

1

6
C(Y,Y,Y )+O(‖ Y ‖3),

B(Y,Y ) =

(

0

B2(Y,Y )

)

and C(Y,Y,Y ) =

(

0

C2(Y,Y,Y )

)

,

where

B2(φ ,ψ) =− 2r(q− rȳ)

(1+ ȳ+ rȳ)2
φ1ψ1 +

2rȳ−q

(1+ ȳ+ rȳ)2
[φ1ψ2 +φ2ψ1]+2

ȳ

(1+ ȳ+ rȳ)2
φ2ψ2,

and

C2(φ ,ψ,η) =6
r2(q− rȳ)

(1+ ȳ+ rȳ)3
φ1ψ1η1 +

4qr−6r2ȳ

(1+ ȳ+ rȳ)3
[φ1ψ1η2 +φ2ψ0η1 +φ1ψ2η1]

+
2q−6rȳ

(1+ ȳ+ rȳ)3
[φ1ψ2η2 +φ2ψ1η2 +φ1ψ2η2]−6

ȳ

(1+ ȳ+ rȳ)3
φ2ψ2η2.
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Let q and p∗ be the eigenvectors of A and AT corresponding to the eigenvalue λ =−1, respectively. We have Aq =−q and

AT p∗ =−p∗, where

q ∼
(

1

−1

)

, and p∗ ∼
(

− q−rȳ
1+ȳ+rȳ

1

)

.

Normalize p∗ and q,

< p∗,q >=
2

∑
i=1

p∗i qi =− q− rȳ

1+ ȳ+ rȳ
−1.

Take

p = ξ ∗
(

− q−rȳ
1+ȳ+rȳ

1

)

, where ξ =
1

−1− q−rȳ
1+ȳ+rȳ

=−1+ ȳ+ rȳ

q+1+ ȳ
.

The critical eigenspace T c corresponding to the eigenvalue λ is a one-dimensional map, and is spanned by the eigenvector q.

Let T su denote a one-dimensional linear eigenspace of A corresponding to the other eigenvalue than λ . Note that the matrix

A−λ I which is equivalent to the matrix A+T has common invariant spaces with the matrix A, we conclude that y ∈ T su if and

only if < p,y >= 0. Any vector x ∈ R
2 can be decomposed as

x = uq+ y,

where uq ∈ T c,y ∈ T su, and

u =< p,x >,

y = x−< p,x > q. (4.3)

In the coordinates (u,y), the map (4.2) can be written as

ũ = λu+< p,F(uq+ y)>,

ỹ = Ay+F(uq+ y)−< p,F(uq+ y)> q. (4.4)

Using Taylor expansions, (4.4) can be written as

ũ = λu+
1

2
σu2 +u < b,y >+

1

6
δu3 + . . . ,

ỹ = Ay+
1

2
au2 + . . . , (4.5)

where u ∈ R
1,y ∈ R

2,σ ,δ ∈ R
1,a,b ∈ R

2 and < b,y >= ∑
2
i=1 biyi is the standard scaler product < b,y > can be expressed as

< b,y >=< p,B(q,y)> .

The center manifold of (4.5) has the representation

y =V (u) =
1

2
w2u2 +O(u3),

where w2 ∈ T su ⊂ R
2, so that < p,w >= 0. The vector w2 satisfies

(A− I)w2 +a = 0.
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Note that the matrix A− I is invertible in R
2 because λ = 1 is not an eigenvalue of A. Thus, we have

w2 =−(A− I)−1a,

and the restriction of (4.5) to the center manifold takes the form

ũ =−u+
1

2
σu2 +

1

6
(δ −3 < p,B(q,(A− I)−1a)>)u3 +O(u4),

where

σ =< p,B(q,q)>,δ =< p,C(q,q,q)>, and a = B(q,q)−< p,B(q,q)> q.

Using the identity (A− I)−1q =− 1
2
q, the restricted map can be written as

ũ =−u+a(0)u2 +b(0)u3 +O(u4), (4.6)

where

a(0) =
1

2
< p,B(q,q)>,

and

b(0) =
1

6
< p,C(q,q,q)>−1

4
(< p,B(q,q)>)2 − 1

2
< p,B(q,(A− I)−1B(q,q))> .

B(q,q) =





0

−2
r(q−rȳ)

(1+ȳ+rȳ)2+2
ȳ

(1+ȳ+rȳ)2

−2
2rȳ−q

(1+ȳ+rȳ)2



 ,

< p,B(q,q)>=−1+ ȳ+ rȳ

q+1+ ȳ
[−2

r(q− rȳ)

(1+ ȳ+ rȳ)2 +2
ȳ

(1+ȳ+rȳ)2

−2
2rȳ−q

(1+ ȳ+ rȳ)2
],

C(q,q,q) =

(

0

6
r2(q−rȳ)
(1+ȳ+rȳ)3 −3

4qr−6r2 ȳ

(1+ȳ+rȳ)3 +3
2q−6rȳ

(1+ȳ+rȳ)3 +6
ȳ

(1+ȳ+rȳ)3

)

,

< p,C(q,q,q)>=−1+ ȳ+ rȳ

q+1+ ȳ
[6

r2(q− rȳ)

(1+ ȳ+ rȳ)3
−3

4qr−6r2ȳ

(1+ ȳ+ rȳ)3
+3

2q−6rȳ

(1+ ȳ+ rȳ)3
+6

ȳ

(1+ ȳ+ rȳ)3
],

(A− I)−1 =

( −1 1
q−rȳ

1+ȳ+rȳ
−1− ȳ

1+ȳ+rȳ

)−1

=
1+ ȳ+ rȳ

2ȳ

(

−1− ȳ
1+ȳ+rȳ

−1

− q−rȳ
1+ȳ+rȳ

−1

)

,

(A− I)−1B(q,q) =
1+ ȳ+ rȳ

2ȳ







−2
r(q−rȳ)

(1+ȳ+rȳ)2+2
ȳ

(1+ȳ+rȳ)2

−2
2rȳ−q

(1+ȳ+rȳ)2

−2
r(q−rȳ)

(1+ȳ+rȳ)2+2
ȳ

(1+ȳ+rȳ)2

−2
2rȳ−q

(1+ȳ+rȳ)2






,

B(q,(A− I)−1B(q,q)) =
1+ ȳ+ rȳ

2ȳ

(

0

S

)

where

S = [
2r(q− rȳ)

(1+ ȳ+ rȳ)2
+

2ȳ

(1+ ȳ+ rȳ)2
][−2

r(q− rȳ)

(1+ ȳ+ rȳ)2
+2

ȳ

(1+ ȳ+ rȳ)2
−2

2rȳ−q

(1+ ȳ+ rȳ)2
],

< p,B(q,(A− I)−1B(q,q))>=2
r2(q− rȳ)2

ȳ(q+1+ ȳ)(1+ ȳ+ rȳ)2
−2

ȳ

(q+1+ ȳ)(1+ ȳ+ rȳ)2

+2
r(q− rȳ)(2rȳ−q)

ȳ(q+1+ ȳ)(1+ ȳ+ rȳ)2
+2

2rȳ−q

(q+1+ ȳ)(1+ ȳ+ rȳ)2
.
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The map (4.6) can be transformed to the normal form

ξ̃ =−ξ + c(0)ξ 3 +O(ξ 4),

where

c(0) = a2(0)+b(0).

Thus, the critical normal form coefficient c(0) allows us to predict the direction of bifurcation of period-two cycle. c(0) is given

by the following invariant formula:

c(0) =
1

6
< p,C(q,q,q)>−1

2
< p,B(q,(A− I)−1B(q,q))> .

If c(0)> 0, then a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point p = (1−r)(1−q)2

4r2 .

5. Numerical Discussion

In this section we give numerical examples which support our results in the previous sections. Figure that we get using Matlab

will be attached with example to illustrate the bifurcation.

Example 5.1. Consider equation (2.1). In this example we fix the parameters q, r and consider p as bifurcation parameter.

Take q = 1.1, r = 0.09 and 0 < p ≤ 2. Equation (2.1) becomes

yn+1 =
p+1.1yn−1

1+ yn +0.09yn−1
,n = 0,1,2, . . . (5.1)

The planer form corresponding to equation (5.1) is

(

y1(n+1)
y2(n+1)

)

=

(

y2(n)
p+1.1y1(n)

1+y2(n)+0.09y1(n)
.

)

(5.2)

Positive equilibrium point of system (5.2) is (ȳ, ȳ), where ȳ = 0.1+
√

0.01+4.36p
2.18

. Theorem (3.3) determined the bifurcation point at

(r−1)(1−q)2 +4pr2 = 0. So, the fixed point undergoes a period-doubling bifurcation at p = 0.2808642.

q =

(

1

−1

)

and p =

(

0.39539749

−0.60460251

)

,

B(q,q) =

(

0

0.71303782

)

,

< p,B(q,q)>=−0.43110446,

C(q,q,q) =

(

0

−0.4797597

)

,

< p,C(q,q,q)>= 0.2900639,

(A− I)−1 =

(

−1 1

0.65397924 −1.34602076

)

,

B(q,(A− I)−1B(q,q)) =

(

0

0.8212105

)

,

< p,B(q,(A− I)−1B(q,q))>=−0.49947486,

c(0) = 0.20139345 > 0.

So, this verify that a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation point p = 0.2808642.

See figure (5.1).
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Figure 5.1. Period-doubling bifurcation of yn+1 =
p+1.1yn−1

1+yi+0.09yi−1
, p is a parameter.
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1. Introduction

We provide a brief outline of definitions and known outcomes in this section. For more details, one may refer to [2, 7]. All

vector spaces are considered over the complex field, and we assume that all algebras are unital.

Definition 1.1. A normed algebra Λ is an algebra with a norm ||.||, which also satisfies ||p.q|| ≤ ||p||.||q||, ∀ p,q ∈ Λ. A

complete normed algebra is called a Banach algebra.

Definition 1.2. An algebra with a Hausdorff topology is called a topological algebra if all algebraic operations are jointly

continuous.

Definition 1.3. [2] The Jacobson radical rad(Λ) of an algebra Λ is the intersection of all maximal right(or left) ideals. An

algebra is said to be semisimple if rad(Λ) = {0}.

Definition 1.4. [2] The spectrum σΛ(p) of an element p of an algebra Λ is the set of all complex numbers λ such that λ .1− p

is not invertible in Λ. The spectral radius rΛ(p) of an element p ∈ Λ is defined by rΛ(p) = sup{|λ | : λ ∈ σΛ(p)}.

If (Λ, ||.||) is a Banach algebra, then rΛ(p)= limn→∞ ||pn||
1
n . Also, for any algebra Λ, we have rad(Λ)= {p∈Λ : rΛ(pq)= 0,

for every q ∈ Λ}. See [2].

Definition 1.5. [2] If T : Λ → Γ is a linear map from a Banach algebra Λ to a Banach algebra Γ, then the separating space of

T is defined as the set

S(T ) = {q ∈ Γ : there exists (pn)
∞

n=1 in Λ such that pn → 0 and T pn → q}.
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Also, S(T ) is a closed linear subspace of Γ and moreover, by the closed graph theorem, T is continuous if and only if

S(T ) = {0}. For a proof, see [2].

A complete metrizable topological algebra is called an F-algebra. A topological algebra Λ is said to be a LMC algebra if

its topology is induced by a separating family of submultiplicative seminorms. A Frechet algebra is a LMC algebra which

is also an F-algebra. A Q-algebra is a topological algebra in which the set of all invertible elements is open. A metrizable

LMC algebra is written in the form (Λ,(pn)
∞

n=1), where (pn)
∞

n=1 is a separating sequence and each pn is a submultiplicative

seminorm (i.e. pn(x.y)≤ pn(x).pn(y), ∀x,y ∈ Λ) satisfying pn(x)≤ pn+1(x),∀n, ∀ x ∈ Λ, in which the topology on Λ is induced

by the seminorms pn,n = 1,2, .... Also, a sequence (xk) in the Frechet algebra (Λ,(pn)) converges to x ∈ Λ if and only if

pn(xk − x)→ 0 for each n ∈ N, as k → ∞. In a Frechet Q-algebra, spectral radius of every element is a finite number. Every

Banach algebra is a Frechet Q-algebra.

Definition 1.6. [6] Let Λ be an algebra. A linear map T : Λ → Λ is called derivation if T (p.q) = p.T (q)+T (p).q,∀p,q ∈ Λ.

Next, we introduce almost derivations on Frechet algebras.

Definition 1.7. Let (Λ,(pn)) be a Frechet algebra. A linear map T : Λ → Λ is called an almost derivation if there are εn ≥ 0

such that pn(T (p.q)− p.T (q)−T (p).q)≤ εn pn(p) pn(q); ∀n ∈ N,∀p,q ∈ Λ.

Remark 1.8. If εn = 0, for every n, then almost derivations on Λ turn out to be derivation on Λ, because (pn) is a separating

sequence of seminorms on Λ. Also, every derivation is an almost derivation, for every εn ≥ 0.

A conjecture of Kaplansky [6] can be stated in the following question form. Is every derivation on semisimple Banach

algebra continuous? Kaplansky conjecture was proved by Johnson and Sinclair [5] in 1968. In 1971, R. L. Carpenter [1] proved

that every derivation on a semisimple commutative Frechet algebra with identity is continuous. There are some recent articles

[8, 9, 10, 11, 12] for automatic continuity of derivations in the theory of topological algebras.

Now, we write an open question for almost derivations on Frechet algebras.

Problem 1.9. Let T : (Λ,(pn))→ (Λ,(pn)) be an almost derivation on a semisimple commutative Frechet algebra (Λ,(pn)).
Is T continuous?

Also, we derive a partial solution to this open Problem 1.9. More specifically, we prove that every almost derivation T on a

semisimple commutative Frechet Q-algebra (Λ,(pn)), with an additional condition on (Λ,(pn)), is continuous.

2. Main Result

Definition 2.1. [4] If T : Λ → Γ is a linear map from a Frechet algebra Λ to a Frechet algebra Γ, then the separating space of

T is defined by

S(T ) = {q ∈ Γ : there exists (qn)
∞

n=1 in Λ such that qn → 0 and T qn → q}.

Theorem 2.2. Let (Λ,(pn)) be a Frechet algebra. If T : Λ → Λ is an almost derivation, then the separating space S(T ) is a

closed two sided ideal in (Λ,(pn)).

Proof. Obviously S(T ) is a closed linear subspace of (Λ,(pn)).
Now, we prove that S(T ) is an ideal in Λ. Let b ∈ S(T ) and c ∈ Λ. Then there exists a sequence (an)

∞

n=1 in Λ such that

an → 0, and T (an)→ b. Let w = T (c). Also we have pk(c.an)≤ pk(c).pk(an)→ 0,∀k, as n → ∞. Since T is almost derivation,

we have

pk(T (c.an)− c.b) ≤ pk(T (c.an)− c.T (an)−T (c).an)+ pk(c.T (an)+w.an − c.b)

≤ pk(T (c.an)− c.T (an)−T (c).an)+ pk(c.T (an)− c.b)+ pn(w.an)

≤ εk pk(c) pk(an)+ pk(c) pk(T (an)−b)+ pk(w.an).

Since pk(T (an)−b)→ 0, pk(an)→ 0 and pk(w.an)≤ pk(w).pk(an)→ 0, ∀k, as n → ∞, we have pk(T (c.an)− c.b)→ 0, and

hence T (c.an)→ c.b, when c.an → 0. Therefore, we conclude that c.b ∈ S(T ). Similarly b.c ∈ S(T ). Hence S(T ) is a two

sided ideal in Λ.

Theorem 2.3. Let (Λ,(pn)) be a Frechet Q-algebra such that Λ is semisimple, and rΛ is continuous on Λ. If T : Λ → Λ is an

almost derivation with rΛ(Ta)≤ rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. Let b ∈ S(T ). Then there exists (an)
∞

n=1 in Λ such that an → 0 and Tan → b. Since rΛ(Ta)≤ rΛ(a) and rΛ(an)→ 0, we

have rΛ(Tan)→ 0. Also, we have rΛ(Tan)→ rΛ(b). So, we conclude that rΛ(b) = 0. By Theorem 2.2, S(T ) is an ideal in Λ.

For every c ∈ Λ,b.c ∈ S(T ). Therefore rΛ(b.c) = 0. Also, rad(Λ) = {a1 ∈ Λ : rΛ(a1.a2) = 0,∀a2 ∈ Λ}, and hence b ∈ rad(Λ).
So, S(T )⊆ rad(Λ). Since Λ is semisimple, S(T ) = {0}. Therefore T is continuous, by the closed graph theorem.
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Corollary 2.4. Let (Λ,(pn)) be a commutative Frechet Q-algebra such that Λ is semisimple. If T : Λ → Λ is an almost

derivation with rΛ(Ta)≤ rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. If Λ is a commutative Frechet Q-algebra, then the spectral radius function rΛ is uniformly continuous. See, for example

([3], Theorem 6.18).

This Corollary 2.4 is a partial solution to the Problem 1.9.

Corollary 2.5. Let Λ be a commutative semisimple Banach algebra. If T : Λ → Λ is an almost derivation with rΛ(Ta) ≤
rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. If Λ is a commutative Banach algebra, then spectral radius function rΛ is continuous on Λ.

Example 2.6. Let (Λ,(pn)) be a semisimple commutative Frechet Q-algebra. A linear map T : Λ → Λ is defined by T (a) = βa,

∀a ∈ Λ where (εn =)β ∈ (0,∞). Since

pn(T (p.q)− p.T (q)−T (p).q) = pn(β p.q− p.βq−β p.q) = pn(−β p.q)≤ |−β |pn(p).pn(q),

T is an almost derivation but not a derivation on (Λ,(pn)). Since Λ is a Q-algebra, there exists k ∈ N such that rΛ(a) =

limn→∞(pk(a
n))

1
n , ∀a ∈ Λ. See, for example ([3], Theorem 6.18). So

rΛ(Ta) = rΛ(βa) = lim
n→∞

(pk((βa)n))
1
n = |β | lim

n→∞
(pk(a

n))
1
n ≤ rΛ(a).

All hypotheses of Corollary 2.4 are satisfied, so T is continuous.
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In this paper we report numerical results with respect to a certain Hopfield-type three-neurons network, where

the activation function is of the type hyperbolic tangent function. Specifically, we investigate a place in a

two-dimensional parameter-space of this system where typical periodic structures, the so-called shrimps, are

embedded in a chaotic region. We show that these periodic structures are self-organized as a spiral that coil up
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1. Introduction

A Hopfield neural network [1] is an important mathematical model in artificial neurocomputing [2]. It is a continuous-time

nonlinear dynamical system which is modeled by a set of n autonomous first-order nonlinear ordinary differential equations

given by

Ciẋi =−
xi

Ri

+
n

∑
j=1

wi jv j + Ii, i = 1,2, . . . ,n, (1.1)

where v j = f j(x j), xi are real dynamical variables, Ci, Ri, and Ii are control parameters, and wi j are the elements of an n×n

matrix, namely the weight matrix or the connectivity matrix, which describes the strength of the connections between the

n neurons that make up the network. The neuron activation function f j(x j) is a bounded monotonic differentiable function

usually represented by any smooth function.

A low-dimensional form of the mathematical model (1.1) is investigated here, namely the one concerned with a system

composed of three neurons, and whose behavior depends on two control parameters, α and γ , and which is given by

ẋ1 =−x1 +1.5 f1(x1)+2.9 f2(x2)+α f3(x3),

ẋ2 =−x2 −1.5 f1(x1)+1.18 f2(x2), (1.2)

ẋ3 =−x3 + γ f1(x1)−22 f2(x2)+0.47 f3(x3).
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To obtain system (1.2), we consider in system (1.1) the weight matrix equal to




1.5 2.9 α
−1.5 1.18 0

γ −22 0.47



 ,

n = 3, Ci = Ri = 1 and Ii = 0, for i = 1,2,3. The neuron activation function considered in our study, which defines the

nonlinearity in system (1.2), is a single hyperbolic tangent function given by f j(x j) = tanh(x j), plotted in Fig. 1.1 in order to

illustrate.

Figure 1.1. The hyperbolic tangent activation function that stands for the nonlinearity in system (1.2).

Huang and Huang [3] present various results concerning system (1.2), with the parameter α kept fixed at 0.8, involving

mainly Lyapunov exponents, bifurcation diagrams, and attractors in the phase-space. Periodic and chaotic attractors were

reported in [3], as a function of an other parameter (β ), namely that which is the coefficient of the term f1(x1) in the ẋ2

equation in system (1.2). Therefore, the investigation carried out concerning system (1.2) and reported in [3] considered

only a small quantity of points in a two-dimensional (α ,β ) parameter-space, more specifically those points located along the

straight line α=0.8. A system similar to system (1.2), with a different weight matrix was presented by Chen and co-workers [4].

This time the dynamics of the system was investigated again varying only one parameter, by means of Lyapunov exponents

spectra, phase-space portraits, and bifurcation diagrams. The authors present a numerical verification of the existence of a

horseshoe in this system, for a certain parameter value. Lyapunov exponents spectrum, power spectrum, bifurcation diagrams,

and topological horseshoe theory were used by Zheng and co-workers [5] to numerically investigate another three-neuron

one-parameter chaotic Hopfield-type network with the hyperbolic tangent as the activation function. The existence of a

horseshoe in the system was proved for a certain value of the variable parameter.

A two-dimensional parameter-space of system (1.2) was investigated by Mathias and Rech [6, 7]. However, the parameters

and/or ranges of parameters considered there are different from those we consider here. Reference [6] also considers a

piecewise-linear function as the activation function, by replacing the hyperbolic tangent function. The parameter-spaces

obtained by using the two activation functions, obviously one at a time, are compared in Mathias and Rech [6], being the

existence of organized periodic structures embedded in chaotic regions verified in both cases.

The main objective in this work is to investigate a particular region of the two-dimensional (α ,γ) parameter-space of

system (1.2), where we have detected a spiral periodic structure that coil up toward a focal point, while undergo period-adding

bifurcations. More specifically, we are interested in making a numerical estimate of the location of the points along this spiral,

where the involved bifurcations occur. The paper is organized as follows. In Sect. 2 we present and discuss a parameter-space

diagram related with the model (1.2), which show different colored regions signifying different dynamical behaviors, namely

chaotic and periodic. Finally, concluding remarks are given in Sect. 3.

2. Numerical Results

Figure 2.1(a) shows a global view of the (α,γ) parameter-space of system (1.2), namely for 0.4 ≤ α ≤ 1.2 and −5 ≤ γ ≤ 15,
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Figure 2.1. (a) Global view of the (α ,γ) parameter-space of system (1.2), showing different dynamical behaviors. (b)

Amplification of the boxed region in (a). Numbers refer to periods (see the text).

while in Fig. 2.1(b) one can see a particular region, that within the boxed region in Fig. 2.1(a) for which 1.00 ≤ α ≤ 1.17 and

9.44 ≤ γ ≤ 12.28. Color in diagrams of Fig. 2.1 is related to the magnitude of the respective largest Lyapunov exponent (LLE).

A positive LLE is indicated by a continuously changing yellow to red color, a negative LLE is indicated by a continuously

changing white to black color, and the black color itself indicates a zero LLE, according to the scale shown in the column at

right side in the diagram. Therefore, each point in Fig. 2.1 was painted according to the dynamical behavior presented, which

was characterized by the related LLE. A chaotic region, for which the LLE is greater than zero, is painted in yellow-red, while a

periodic region, for which the LLE is equal to zero, is painted in black.

Diagrams in Fig. 2.1 were obtained by computing the LLE on a grid of 103 × 103 (α,γ) parameters, always using an

algorithm based in that present in Wolf and co-workers [8]. For each of the one million parameter sets (one million points in

each diagram of Fig. 2.1), system (1.2) was integrated by using a fourth order Runge-Kutta algorithm, with a fixed time step

size equal to 10−2, being dropped the first 1×106 integration steps, regarded as a transient. For the computation of the average

involved in the calculation of each one of the one million LLE, were considered the subsequent 1×106 integration steps.

Integrations were performed along lines of a constant parameter γ , starting always at the minor value of the parameter α .

For instance, the diagram in Fig. 2.1(b) was constructed from an arbitrary initial condition for a fixed pair of parameters, in fact

the two lowest α = 1.00 and γ = 9.44. The variables (x1,x2,x3) at the end of the integration for this pair of parameters were

used to initialize the integration for the next pair, and so forth up to the highest value of both parameters, namely α = 1.17 and

γ = 12.28, be achieved. In other words, the procedure following the attractor along lines of fixed γ was used.
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Both diagrams in Fig. 2.1 show dynamical behaviors of the Hopfield neural network (1.2), where we identify an intricate

mixture of chaotic and periodic regions, represented respectively by yellow-red and black colors. They indicate how variations

in the connection weight α , between third and first neurons, and γ , between first and third neurons, affect the dynamical

behavior of the system (1.2). Figures 2.1(a) and 2.1(b) may be interpreted, each one of them, as presenting a chaotic region, in

yellow-red, with several periodic regions in black, embedded in it. In other words, as the parameters α and γ are varied, we

may observe regions on the (α ,γ) parameter-space, where periodic structures appear embedded in a chaotic region.

Numbers identifying some periodic structures in black in Fig. 2.1(b) refer to the lower period (henceforth referred as period)

of the respective structure, once bifurcations may occur when we move from the center to the periphery of each periodic

structure. Period here is assumed as being the number of local maxima of the variable x3, represented by X3, in one complete

trajectory on the phase-space attractor.

Some features, concerned with the above-mentioned periodic structures embedded in the chaotic region of the (α,γ)
parameter-space in Figs. 2.1(a) and 2.1(b), deserve prominence and will be discussed in the continuation. For instance, it

is remarkable the arrangement of periodic structures in the form of a spiral, that appears embedded in the chaotic set inside

the boxed region in Fig. 2.1(a), and that appears amplified in Fig. 2.1(b). Note in Fig. 2.1(b) that this spiral structure coil up

clockwise around a focal point marked with the plus sign in green, where the spiral itself initiates or terminates. By walking

clockwise along this spiral in Fig. 2.1(b), moving along the leg joined to the period-7 structure at the lower portion of the

parameter-space, we arrive at the period-9 structure at the upper portion. Continuing the moving, now from this period-9

structure, along the leg joined to it, we arrive at the period-9 structure at the lower portion. As can be concluded from inspection

of Fig. 2.1(b), this behavior is recurrent, and the result is the . . .7 → 9 → 9 → 11 → 11 → 13 → 13 → . . . periodic sequence,

as we move along the legs of the periodic structures, closer and closer to focal point of the spiral. Therefore, this result may be

interpreted as a period-adding sequence, whose increment in the period is equal to two, as the spiral is covered towards its focal

point.

Numbers identifying the periods of some structures in Fig. 2.1(b) were determined with the assistance of the bifurcation

diagram in Fig. 2.2, which was constructed by considering points along the red straight line γ = 22.11α −12.50 in Fig. 2.1(b),

Figure 2.2. Bifurcation diagram for points along the red straight line γ = 22.11α −12.50 in Fig. 2.1(b), with 1.03293 ≤ α ≤ 1.13337. For each value of α
was plotted the number of local maxima of the variable x3, namely X3, in one complete trajectory on the phase-space attractor.

for 1.03293 ≤ α ≤ 1.13337. Diagram in Fig. 2.2 considers the number of local maxima of the variable x3 in one complete

trajectory on the phase-space attractor, as a function of the parameter α . For each of the 103 values of the parameter α , were

plotted 60 values of the local maximum X3. As can be easily checked, each periodic window in Fig. 2.2 is related to a periodic

structure of same number and position in Fig. 2.1(b).

Such spiral organization was observed before in different systems, modeled by different sets of nonlinear first-order ordinary

differential equations, involving different mathematical functions. Some examples include electronic circuits [9, 10, 11], the

Rössler model [12], a chemical oscillator [10], modified optical injection semiconductor lasers [13], a tumor growth model [14],

an ecological model [15], the Lorenz-Stenflo system [16], and a thermal convection system [17], just to mention a few. The

global mechanism behind the origin of the spiral organization of periodic structures in two dimensional parameter-spaces

was reported simultaneously by Barrio and co-workers [18] and Vitolo and co-workers [19], having already been carried out

experimental observation of such structures in electronic circuits [20].

Figure 2.3(a) shows the same particular region of the (α,γ) parameter-space of system (1.2) shown in Fig. 2.1(b), namely
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Figure 2.3. Both diagrams show periodic and chaotic behaviors in the (α,γ) parameter-space of system (1.2), with a hyperbolic

tangent as the neuron activation function. Orange, red, blue, and green are associated respectively to periods 5, 7, 9, and 11.

for 1.00 ≤ α ≤ 1.17 and 9.44 ≤ γ ≤ 12.28, while in Fig. 2.3(b) is shown an enlargement of the region inside the box in

Fig. 2.3(a), for 1.055 ≤ α ≤ 1.11 and 10.1 ≤ γ ≤ 11.3. Both plots are periodicity diagrams in the (α,γ) parameter-space, i.e.,

the dynamical characterization of each point was made by using the period of the related trajectory in the phase-space, instead

of the LLE. Therefore, each diagram in Fig. 2.3 provide us with more information than the one in Fig. 2.1(b), since the former

discriminate different periodic regions and chaos, while the second only discriminate chaotic and periodic regions. As we

said before, period is defined as the number of local maxima of the variable x3 in one complete trajectory on the phase-space

attractor. A period-k orbit is detected when |(X3)k − (X3)0|< |(X3)0/103|, k = 1,2, . . . .

Color in diagrams of Fig. 2.3 is related to the period of the respective structure. Period-5, period-7, period-9, and period-11

structures are painted respectively in orange, red, blue, and green. Structures with other period values are painted in white, as

well as the chaotic regions. As before in obtaining diagrams in Fig. 2.1, system (1.2) was integrated by using a fourth order

Runge-Kutta algorithm, with a fixed time step size equal to 10−2, being dropped the first 1×106 integration steps, regarded as

a transient. After this integration time, subsequent few integration steps were considered to determine the period for each pair

of parameters (α,γ) in diagrams of Fig. 2.3.

In addition to discriminating different periods and chaos, diagrams in Fig. 2.3 provide us with additional information

regarding the bifurcations that occur as the spiral is traversed in the direction of its focal point. As can be seen in Fig. 2.3(a),

the bifurcation 7 → 9 occurs along the leg joining the period-7 and period-9 structures, where the color changes from red

to blue. Figure 2.3(b) shows that the bifurcation 9 → 11 occurs along the leg joining the period-9 and period-11 structures,
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where the color changes from blue to green. Enlargement in an suitable region of Fig. 2.3(b) would show the location of the

bifurcation 11 → 13, along the leg joining the period-11 and period-13 structures. Continuing with this procedure, i.e., by

producing enlargement in a suitable region of the previously obtained figure, which is not shown here, it would be possible

to see the location of the bifurcation 13 → 15. Therefore, it is not difficult to conclude that the locations of the bifurcations

13 → 15, 15 → 17, 17 → 19, and so on, can be determined by considering different length scales in the (α,γ) parameter-space

of system (1.2), i.e., by considering diagrams resulting from enlargements of enlargements in Fig. 2.3(b).

3. Summary

In this work we have investigated a Hopfield-type three-neurons network, with a hyperbolic tangent function as the activation

function. We have found a place in a two-dimensional parameter-space of this system, where typical periodic structures,

the so-called shrimps, are embedded in a chaotic region, organized themselves in a spiral that coil up toward a focal point,

while period-adding bifurcations occur. We have indicated the location along this spiral in the parameter-space, where these

bifurcations happen.
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1. Introduction

The theory of Riemannian submersions between Riemannian manifolds was initially studied by O’Neill [17] and Gray [10].

Particularly, the concept of Riemannian submersions [7] and isometric immersions [6] were studied by Falcitelli and Chen.

Then, Riemannian submersions were studied in various types as an anti-invariant, a semi-invariant, a slant, a hemi-slant, etc

[13, 25]. Submersions between almost Hermitian manifolds expanded to almost Hermitian submersions [30]. Then, this

concept was generalized to the notion of Riemannian map by Fischer [8]. Riemannian maps between Riemannian manifolds

are generalization of isometric immersions and Riemannian submersions. Riemannian submersions have many application. Let

Φ : (M1,g1)−→ (M2,g2) be a smooth map between Riemannian manifolds such that 0 < rankΦ < min{dim(M1),dim(M2)}.

Then the tangent bundle T M1 of M1 has the following decomposition:

T M1 = kerΦ∗⊕ (kerΦ∗)
⊥
.

Since rankΦ < min{dim(M1),dim(M2)}, always we have (rangeΦ∗)⊥. In this way, tangent bundle T M2 of M2 has the

following decomposition:

T M2 = (rangeΦ∗)⊕ (rangeΦ∗)
⊥
.

A smooth map Φ : (Mm
1 ,g1)−→ (Mm

2 ,g2) is called Riemannian map at p1 ∈M1 if the horizontal restriction Φ
h
∗p1

: (kerΦ∗p1
)⊥−→

(rangeΦ∗) is a linear isometry. Hence, a Riemannian map satisfies the equation

g1(Z1,Z2) = g2(Φ∗(Z1),Φ∗(Z2)) (1.1)

for Z1,Z2 ∈ Γ((kerΦ∗)⊥). So that isometric immersions and Riemannian submersions are particular Riemannian maps,

respectively, with kerΦ∗ = {0} and (rangeΦ∗)⊥ = {0} [7]. An important application field of Riemannian maps is the eikonal

equation. It acts as a bridge between geometric optics and physical optics. Also, Riemannian maps and their applications
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studied by Garcia-Rio and Kupeli in semi-Riemannian geometry [9]. Recently, some optimal inequalities for Riemannian maps

from Riemannian manifolds onto space forms were established in [12].

Moreover, Şahin introduced any other types of Riemannian maps [20, 21, 22, 23], see also [18, 19]. In further studies,

in particular Akyol, Şahin and Yanan searched this type submersions [1, 2, 3, 4, 31] and Riemannian maps [26, 27, 32, 35]

under conformality case, see also [11]. All these studies have many applications as texture mapping, remeshing and simulation

[14], computer graphics and medical imaging fields [28], brain mapping research [29]. For a comprehensive study in which

these issues are introduced and their applications are given, see [25]. We say that Φ : (Mm,gM)−→ (Nn,gN) is a conformal

Riemannian map at p ∈ M if 0 < rankΦ∗p ≤ min{m,n} and Φ∗p maps the horizontal space (ker(Φ∗p)
⊥) conformally onto

range(Φ∗p), i.e., there exist a number λ 2(p) 6= 0 such that

gN(Φ∗p(Z1),Φ∗p(Z2)) = λ 2(p)gM(Z1,Z2) (1.2)

for Z1,Z2 ∈ Γ((ker(Φ∗p)
⊥). Also Φ is called conformal Riemannian if Φ is conformal Riemannian at each p ∈ M [24].

An even-dimensional Riemannian manifold (M,gM,J) is called an almost Hermitian manifold if there exists a tensor field J

of type (1,1) on M such that J2 =−I where I denotes the identity transformation of T M and

gM(E,F) = gM(JE,JF),∀E,F ∈ Γ(T M). (1.3)

Let (M,gM,J) is an almost Hermitian manifold and its Levi-Civita connection is ∇ with respect to gM . If J is parallel with

respect to ∇, i.e.

(∇EJ)F = 0, (1.4)

we say M is a Kaehler manifold [36].

Therefore, in section 2, we present necessary background concepts to be used in this paper. In section 3, we study

conformal quasi-hemi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds. We introduce some

properties as integrability conditions and totally geodesic foliation defining of distributions. In section 4, we use the concept of

pluriharmonicity to introduce relations between horizontally homothetic maps and conformal quasi-hemi-slant Riemannian

maps.

2. Preliminaries

In this section, we give several definitions and results to be used throughout the study for conformal quasi-hemi-slant Riemannian

maps. Let Φ : (M,g
M
)−→ (N,g

N
) be a smooth map between Riemannian manifolds. The second fundamental form of Φ is

defined by

(∇Φ∗)(E,F) =
N

∇
Φ

E Φ∗(F)−Φ∗(
M

∇EF) (2.1)

for E,F ∈ Γ(T M). The second fundamental form ∇Φ∗ is symmetric [15].

Then we define O’Neill’s tensor fields T and A for Riemannian submersions as

AEF = h
M

∇hEvF + v
M

∇hEhF, (2.2)

TEF = h
M

∇vEvF + v
M

∇vEhF (2.3)

for E,F ∈ Γ(T M) with the Levi-Civita connection
M

∇ of gM [17]. For any E ∈ Γ(T M), TE and AE are skew-symmetric

operators on (Γ(T M),g) reversing the horizontal and the vertical distributions. Also, T is vertical, TE = TvE , and A is

horizontal, AE = AhE . Note that the tensor field T is symmetric on the vertical distribution [17]. Additionally, from (2.2) and

(2.3) we have

M

∇ξ1
ξ2 = Tξ1

ξ2 + ∇̂ξ1
ξ2, (2.4)

M

∇ξ1
Z1 = h

M

∇ξ1
Z1 +Tξ1

Z1, (2.5)

M

∇Z1
ξ1 = AZ1

ξ1 + v
M

∇Z1
ξ1, (2.6)

M

∇Z1
Z2 = h

M

∇Z1
Z2 +AZ1

Z2 (2.7)
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for Z1,Z2 ∈ Γ((ker Φ∗)⊥) and ξ1,ξ2 ∈ Γ(kerΦ∗), where ∇̂ξ1
ξ2 = v

M

∇ξ1
ξ2 [7].

If a vector field Z on M is related to a vector field Z
′

on N, we say Z is a projectable vector field. If Z is both a horizontal

and a projectable vector field, we say Z is a basic vector field on M. From now on, when we mention a horizontal vector field,

we always consider a basic vector field [5].

On the other hand, let Φ : (Mm,g
M
)−→ (Nn,g

N
) be a conformal Riemannian map between Riemannian manifolds. Then,

we have

(∇Φ∗)(Z1,Z2) |rangeΦ∗= Z1(lnλ )Φ∗(Z2)+Z2(lnλ )Φ∗(Z1)−gM(Z1,Z2)Φ∗(grad(lnλ )), (2.8)

where Z1,Z2 ∈ Γ((kerΦ∗)⊥). Hence from (2.8), we obtain
N

∇
Φ

Z1
Φ∗(Z2) as

N

∇
Φ

Z1
Φ∗(Z2) = Φ∗(h

M

∇Z1
Z2)+Z1(lnλ )Φ∗(Z2)+Z2(lnλ )Φ∗(Z1)

− gM(Z1,Z2)Φ∗(grad(lnλ ))+(∇Φ∗)
⊥(Z1,Z2), (2.9)

where (∇Φ∗)⊥(Z1,Z2) is the component of (∇Φ∗)(Z1,Z2) on (rangeΦ∗)⊥ for Z1,Z2 ∈ Γ((kerΦ∗)⊥) [26, 27].

Lastly, a map Φ from a complex manifold (M,gM,J) to a Riemannian manifold (N,gN) is a pluriharmonic map if Φ satisfies

the following equation

(∇Φ∗)(E,F)+(∇Φ∗)(JE,JF) = 0 (2.10)

for E,F ∈ Γ(T M) [16].

3. Conformal quasi-hemi-slant Riemannian map

We give definition of conformal quasi-hemi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds.

In the rest of this paper, we take (M,g
M
,J) as a Kaehler manifold.

Definition 3.1. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal Riemannian map such that its vertical distribution kerΦ∗ admits

three orthogonal distributions D, Dθ and D⊥ which are invariant, slant and anti-invariant distributions, respectively, i.e.

kerΦ∗ = D⊕Dθ ⊕D⊥. (3.1)

Then, we say Φ is a conformal quasi-hemi-slant Riemannian map and the angle θ is called the quasi-hemi-slant angle of the

map.

Here, we say that;

i) Φ is a conformal hemi-slant Riemannian map [33] if D = {0}.

ii) Φ is a conformal semi-invariant Riemannian map [27] if Dθ = {0}.

iii) Φ is a conformal semi-slant Riemannian map [34] if D⊥ = {0}.

Therefore, conformal quasi-hemi-slant Riemannian maps are generalization of conformal hemi-slant Riemannian maps,

conformal semi-invariant Riemannian maps and conformal semi-slant Riemannian maps. Hence, all these maps provide

examples to conformal quasi-hemi-slant Riemannian maps.

We say that conformal quasi-hemi-slant Riemannian map Φ is a proper conformal quasi-hemi-slant Riemannian map if the

invariant distribution D 6= {0}, the anti-invariant distribution D⊥ 6= {0} and the slant angle θ 6= 0, π
2

. Now, we give an explicit

example to proper condition.

Example 3.2. Define a map by Φ : R8 −→ R
5 by

Φ(x1,x2,x3,x4,x5,x6,x7,x8)−→ (x1 + x2,x3 − x5,
√

2x4,b,c)

with b,c ∈ R. We get the horizontal distribution

(kerΦ∗)
⊥ = {Z1 =

∂

∂x1
+

∂

∂x2
,Z2 =

∂

∂x3
− ∂

∂x5

,Z3 =
√

2(
∂

∂x4
)}
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and the vertical distribution

kerΦ∗ = {ξ1 =
∂

∂x1
− ∂

∂x2
,ξ2 =

∂

∂x3
+

∂

∂x5

,ξ3 =
∂

∂x6

,ξ4 =
∂

∂x7
,ξ5 =

∂

∂x8
},

respectively. By the complex structure J of R8 such that J = (−a2,a1,−a4,a3,−a6,a5,−a8,a7), we have

Jξ1 = Z1, Jξ2 =
1√
2

Z3 +ξ3, Jξ3 =
1

2
Z2 −

1

2
ξ2, Jξ4 = ξ5, Jξ5 =−ξ4.

Hence, we obtain the distributions as D = sp{ξ4,ξ5}, Dθ = sp{ξ2,ξ3} and D⊥ = sp{ξ1}. Therefore, Φ is a proper conformal

quasi-hemi-slant Riemannian map with λ =
√

2 and the slant angle θ = π
4

.

Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then we have

T M = kerΦ∗⊕ (kerΦ∗)
⊥
. (3.2)

A vertical vector field ξ can be written as

ξ = P̃ξ + Q̃ξ + R̃ξ (3.3)

where P̃, Q̃ and R̃ are projections to D, Dθ and D⊥, respectively. We get

Jξ = φξ +ψξ (3.4)

where φξ ∈ Γ(kerΦ∗) and ψξ ∈ Γ((kerΦ∗)⊥). We obtain ψP̃ξ = 0, φ R̃ξ = 0 and

Jξ = φ P̃ξ +φ Q̃ξ +ψQ̃ξ +ψR̃ξ (3.5)

from (3.3) and (3.4). So, we can write

J(kerΦ∗) = D⊕φDθ ⊕ψDθ ⊕ J(D⊥). (3.6)

From (3.6), we have

(kerΦ∗)
⊥ = ψDθ ⊕ J(D⊥)⊕µ (3.7)

where µ is the orthogonal complement distributions of ψDθ ⊕ J(D⊥) in (kerΦ∗)⊥ and µ is the invariant with respect to J. At

last, for Z ∈ Γ((kerΦ∗)⊥), we have

JZ = BZ +CZ (3.8)

where BZ ∈ Γ(ψDθ ⊕ J(D⊥)) and CZ ∈ Γ(µ).
Here that easily we obtain from (3.1) - (3.7);

φDθ = Dθ , φD⊥ = {0}, BψDθ = Dθ , BψD⊥ = D⊥, ψD = {0}, (3.9)

φ 2 +Bψ =−I, ψφ +Cψ = 0, ψB+C2 = I, φB+BC = 0. (3.10)

Following theorem has same proof with hemi-slant submanifolds as hemi-slant Riemannian maps; see Theorem 3.6. of

[23].

Theorem 3.3. Let Φ be a conformal Riemannian map from an almost Hermitian manifold (M,gM,J) to a Riemannian manifold

(N,gN). Then Φ is a conformal quasi-hemi-slant Riemannian map if and only if there exists a constant λ ∈ [0,1] and a

distribution D on kerΦ∗ such that

i) D = {ξ ∈ Γ(kerΦ∗)|φ 2ξ = λξ},

ii) for any ξ ∈ Γ(kerΦ∗) orthogonal to D , we have φξ = 0.

Further, we have λ =−cos2 θ where θ is the slant angle of Φ.
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Hence, we have followings from Theorem 3.3.

gM(φV1,φV2) = cos2 θgM(V1,V2), (3.11)

gM(ψV1,ψV2) = sin2 θgM(V1,V2) (3.12)

for any V1,V2 ∈ Γ(Dθ ).
Recall that always the vertical distribution kerΦ∗ is integrable [25]. Now, we give integrability conditions for certain

distributions on total manifolds.

Theorem 3.4. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the invariant distribution

D is integrable if and only if

∇̂U1
JU2 − ∇̂U2

JU1 ∈ Γ(D⊕D⊥),

φTU1−U2
ψξ ∈ Γ(Dθ ⊕D⊥)

for U1,U2 ∈ Γ(D) and ξ ∈ Γ(Dθ ⊕D⊥).

Proof. Since T is skew-symmetric and from equations (1.4), (2.4), (3.4), we get

g
M
(

M

∇U1
U2,ξ ) = g

M
(∇̂U1

JU2,φξ )+g
M
(φTU1

ψξ ,U2) (3.13)

for U1,U2 ∈ Γ(D) and ξ ∈ Γ(Dθ ⊕D⊥). Now, changing the roles of U1 and U2, we obtain

g
M
([U1,U2],ξ ) = g

M
(∇̂U1

JU2 − ∇̂U2
JU1,φξ )+g

M
(φTU1

ψξ ,U2)−g
M
(φTU2

ψξ ,U1). (3.14)

The proof is complete from equation (3.14).

Theorem 3.5. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the slant distribution

Dθ is integrable if and only if

λ 2g
M
(h

M

∇V1
ψV2 −h

M

∇V2
ψV1,ψR̃ξ ) = g

N
((∇Φ∗)(V1 −V2, P̃ξ ),Φ∗(ψφV2))+g

N
((∇Φ∗)(V1,φV2),Φ∗(ψR̃ξ ))

− g
N
((∇Φ∗)(V2,φV1),Φ∗(ψR̃ξ ))+g

N
((∇Φ∗)(V2,JP̃ξ ),Φ∗(ψV1))

− g
N
((∇Φ∗)(V1,JP̃ξ ),Φ∗(ψV2))

for V1,V2 ∈ Γ(Dθ ) and ξ ∈ Γ(D⊕D⊥).

Proof. Now, from equations (2.4), (2.5), (3.3) and (3.5), we have

g
M
(

M

∇V1
V2,ξ ) = g

M
(

M

∇V1
φV2,JP̃ξ )+g

M
(

M

∇V1
φV2,ψR̃ξ )+g

M
(TV1

ψV2 +h
M

∇V1
ψV2,JP̃ξ +ψR̃ξ )

= −g
M
(

M

∇V1
JφV2, P̃ξ )+g

M
(TV1

φV2,ψR̃ξ )+g
M
(TV1

ψV2,JP̃ξ )+g
M
(h

M

∇V1
ψV2,ψR̃ξ )

for V1,V2 ∈ Γ(Dθ ) and ξ ∈ Γ(D⊕D⊥). Since T is skew-symmetric and from (1.2), (2.1), Theorem 1., we have

g
M
(

M

∇V1
V2,ξ ) = −g

M
(

M

∇V1
φ 2V2, P̃ξ )−g

M
(

M

∇V1
ψφV2, P̃ξ )

− 1

λ 2
g

N
((∇Φ∗)(V1,φV2),Φ∗(ψR̃ξ ))−g

M
(TV1

JP̃ξ ,ψV2)+g
M
(h

M

∇V1
ψV2,ψR̃ξ )

= cos2 θg
M
(

M

∇V1
V2, P̃ξ )−g

M
(TV1

ψφV2, P̃ξ )

− 1

λ 2
g

N
((∇Φ∗)(V1,φV2),Φ∗(ψR̃ξ ))+

1

λ 2
g

N
((∇Φ∗)(V1,JP̃ξ ),Φ∗(ψV2))+g

M
(h

M

∇V1
ψV2,ψR̃ξ ).

Hence, we obtain

g
M
(

M

∇V1
V2,ξ )− cos2 θg

M
(

M

∇V1
V2, P̃ξ ) = g

M
(TV1

P̃ξ ,ψφV2)−
1

λ 2
g

N
((∇Φ∗)(V1,φV2),Φ∗(ψR̃ξ ))

+
1

λ 2
g

N
((∇Φ∗)(V1,JP̃ξ ),Φ∗(ψV2))+g

M
(h

M

∇V1
ψV2,ψR̃ξ ). (3.15)
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In equation (3.15), if we change the roles of V1 and V2 we obtain

g
M
([V1,V2],ξ )− cos2 θg

M
([V1,V2], P̃ξ ) =

1

λ 2
g

N
((∇Φ∗)(V2, P̃ξ ),Φ∗(ψφV2))−

1

λ 2
g

N
((∇Φ∗)(V1, P̃ξ ),Φ∗(ψφV2))

+ g
M
(h

M

∇V1
ψV2 −h

M

∇V2
ψV1,ψR̃ξ )+

1

λ 2
g

N
((∇Φ∗)(V1,JP̃ξ ),Φ∗(ψV2))

− 1

λ 2
g

N
((∇Φ∗)(V2,JP̃ξ ),Φ∗(ψV1))+

1

λ 2
g

N
((∇Φ∗)(V2,φV1),Φ∗(ψR̃ξ ))

− 1

λ 2
g

N
((∇Φ∗)(V1,φV2),Φ∗(ψR̃ξ )). (3.16)

Therefore, the proof is clear from (3.16).

Here, we know that integrability case of the anti-invariant distribution D⊥ is same with Theorem 3.8. in [23]. We have next

theorem for horizontal distribution.

Theorem 3.6. Let Φ : (M,g
M
,J) −→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the horizontal

distribution (kerΦ∗)⊥ is integrable if and only if

λ 2g
M
(v

M

∇Z2
BZ1 − v

M

∇Z1
BZ2,φξ )

+λ 2{CZ2(lnλ )g
M
(Z1,ψξ )−CZ1(lnλ )g

M
(Z2,ψξ )+ψξ (lnλ )g

M
(Z2,CZ1)−ψξ (lnλ )g

M
(Z1,CZ2)}

= g
N
((∇Φ∗)(Z2,BZ1)− (∇Φ∗)(Z1,BZ2),Φ∗(ψξ ))+g

N
((∇Φ∗)(Z1,φξ ),Φ∗(CZ2))

−g
N
((∇Φ∗)(Z2,φξ ),Φ∗(CZ1))+g

N
(

N

∇
Φ

Z1
Φ∗(CZ2)−

N

∇
Φ

Z2
Φ∗(CZ1),Φ∗(ψξ ))

for Z1,Z2 ∈ Γ((kerΦ∗)⊥) and ξ ∈ Γ(kerΦ∗).

Proof. To show the horizontal distribution (kerΦ∗)⊥ is integrable, we only search 0 = g
M
([Z1,Z2],ξ ) for Z1,Z2 ∈ Γ((kerΦ∗)⊥)

and ξ ∈ Γ(kerΦ∗). Since A is skew-symmetric and from definitions (1.2), (1.4), equations (2.6), (3.4), (3.7) we get

g
M
(

M

∇Z1
Z2,ξ ) = g

M
(AZ1

BZ2,ψξ )+g
M
(h

M

∇Z1
CZ2,ψξ )+g

M
(v

M

∇Z1
BZ2,φξ )−g

M
(AZ1

φξ ,CZ2)

=
1

λ 2
g

N
(Φ∗(AZ1

BZ2),Φ∗(ψξ ))+
1

λ 2
g

N
(Φ∗(h

M

∇Z1
CZ2),Φ∗(ψξ ))

+ g
M
(v

M

∇Z1
BZ2,φξ )− 1

λ 2
g

N
(Φ∗(AZ1

φξ ),Φ∗(CZ2))

for Z1,Z2 ∈ Γ((kerΦ∗)⊥) and ξ ∈ Γ(kerΦ∗). Using (2.1), (2.8) and (2.9), we have

g
M
(

M

∇Z1
Z2,ξ ) = − 1

λ 2
g

N
((∇Φ∗)(Z1,BZ2),Φ∗(ψξ ))+

1

λ 2
g

N
(Φ∗(h

M

∇Z1
CZ2),Φ∗(ψξ ))

+ g
M
(v

M

∇Z1
BZ2,φξ )+

1

λ 2
g

N
((∇Φ∗)(Z1,φξ ),Φ∗(CZ2))

= − 1

λ 2
g

N
((∇Φ∗)(Z1,BZ2),Φ∗(ψξ ))

+
1

λ 2
g

N
(

N

∇
Φ

Z1
Φ∗(CZ2),Φ∗(ψξ ))−CZ2(lnλ )g

M
(Z1,ψξ )

+ ψξ (lnλ )g
M
(Z1,CZ2)+g

M
(v

M

∇Z1
BZ2,φξ )

+
1

λ 2
g

N
((∇Φ∗)(Z1,φξ ),Φ∗(CZ2)). (3.17)
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Similarly, if we change the roles of Z1 and Z2 in (3.17) we finally obtain,

g
M
([Z1,Z2],ξ ) =

1

λ 2
{g

N
((∇Φ∗)(Z2,BZ1)− (∇Φ∗)(Z1,BZ2),Φ∗(ψξ ))

+ g
N
((∇Φ∗)(Z1,φξ ),Φ∗(CZ2))−g

N
((∇Φ∗)(Z2,φξ ),Φ∗(CZ1))

+ g
N
(

N

∇
Φ

Z1
Φ∗(CZ2)−

N

∇
Φ

Z2
Φ∗(CZ1),Φ∗(ψξ ))}

− CZ2(lnλ )g
M
(Z1,ψξ )+ψξ (lnλ )g

M
(Z1,CZ2)

+ CZ1(lnλ )g
M
(Z2,ψξ )−ψξ (lnλ )g

M
(Z2,CZ1)

+ g
M
(v

M

∇Z1
BZ2 − v

M

∇Z2
BZ1,φξ ). (3.18)

Hence, we get the proof from (3.18).

Note that if (∇Φ∗)(E,F) = 0 for all E,F ∈ Γ(T M) the map Φ is said to be totally geodesic map [25]. Using this notion we

have followings.

Theorem 3.7. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the invariant distribution

D defines a totally geodesic foliation on M if and only if

CTU1
φU2 +ψ∇̂U1

φU2 = 0

for U1,U2 ∈ Γ(D).

Proof. Since D is an invariant distribution we have ψU2 = 0. From (2.1), (2.4), (3.4) and (3.8) we get

(∇Φ∗)(U1,U2) = −Φ∗(
M

∇U1
U2)

= Φ∗(CTU1
φU2 +ψ∇̂U1

φU2) (3.19)

for U1,U2 ∈ Γ(D). The proof can be seen from (3.19).

Theorem 3.8. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the slant distribution

Dθ defines totally geodesic foliation on M if and only if

TV1
BψV2 = 0

for V1,V2 ∈ Γ(Dθ ).

Proof. From definition of second fundamental form, (3.4) and (3.8), we have

(∇Φ∗)(V1,V2) = Φ∗(J
M

∇V1
JV2)

= Φ∗(
M

∇V1
JφV2)+Φ∗(

M

∇V1
JψV2)

= Φ∗(
M

∇V1
φ 2V2 +

M

∇V1
ψφV2)+Φ∗(

M

∇V1
BψV2 +

M

∇V1
CψV2)

for V1,V2 ∈ Γ(Dθ ). From (3.9), (3.10) and Theorem 3.3., we obtain

= Φ∗(−cos2 θ
M

∇V1
V2)+Φ∗(h

M

∇V1
ψφV2)+Φ∗(TV1

BψV2 +h
M

∇V1
CψV2)

cos2 θΦ∗(
M

∇V1
V2) = Φ∗(TV1

BψV2). (3.20)

The proof is clear from (3.20).

In a similar way, we have easily the next theorems.

Theorem 3.9. Let Φ : (M,g
M
,J) −→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the anti-invariant

distribution D⊥ defines a totally geodesic foliation on M if and only if

ψTW1
ψW2 +Ch

M

∇W1
ψW2 = 0

for W1,W2 ∈ Γ(D⊥).
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Proof. From (1.4), (2.5), (3.4) and (3.8), we obtain

(∇Φ∗)(W1,W2) = Φ∗(J
M

∇W1
JW2)

= Φ∗(JTW1
ψW2 + Jh

M

∇W1
ψW2)

= Φ∗(ψTW1
ψW2 +Ch

M

∇W1
ψW2) (3.21)

for W1,W2 ∈ Γ(D⊥). We have the proof from (3.21).

Theorem 3.10. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the vertical distribution

kerΦ∗ defines a totally geodesic foliation on M if and only if

ψ{Tξ1
ψξ2 + ∇̂ξ1

φξ2}+C{h
M

∇ξ1
ψξ2 +Tξ1

φξ2}= 0

for ξ1,ξ2 ∈ Γ(kerΦ∗).

Recall that if h(grad(lnλ )) = 0, the map Φ is said to be horizontally homothetic map [5].

Theorem 3.11. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, any two conditions

below imply the third condition;

i) The horizontal distribution (kerΦ∗)⊥ defines a totally geodesic foliation on M,

ii) The map Φ is a horizontally homothetic map,

iii)

N

∇
Φ

JZ1
Φ∗(CZ2) = Φ∗(J[JZ1,Z2])+(∇Φ∗)

⊥(CZ1,CZ2)+Φ∗(ACZ2
BZ1 +ACZ1

BZ2 +TBZ1
BZ2)

for Z1,Z2 ∈ Γ((kerΦ∗)⊥).

Proof. Firstly, from (2.1) and (2.9) we have

Φ∗(
M

∇JZ1
JZ2) =

N

∇
Φ

JZ1
Φ∗(CZ1)− (∇Φ∗)(BZ1,BZ2)− (∇Φ∗)(CZ2,BZ1)− (∇Φ∗)(CZ1,BZ2)

− (∇Φ∗)
⊥(CZ1,CZ2)−CZ1(lnλ )Φ∗(CZ2)−CZ2(lnλ )Φ∗(CZ1)+g

M
(CZ1,CZ2)Φ∗(grad(lnλ ))

=
N

∇
Φ

JZ1
Φ∗(CZ1)− (∇Φ∗)

⊥(CZ1,CZ2)−Φ∗(ACZ2
BZ1 +ACZ1

BZ2 +TBZ1
BZ2)

− CZ1(lnλ )Φ∗(CZ2)−CZ2(lnλ )Φ∗(CZ1)

+ g
M
(CZ1,CZ2)Φ∗(grad(lnλ )) (3.22)

for Z1,Z2 ∈ Γ((kerΦ∗)⊥). On the other hand, we have

M

∇JZ1
JZ2 = J[JZ1,Z2]+ J

M

∇Z2
JZ1. (3.23)

Putting equation (3.23) in (3.22), we obtain

Φ∗(
M

∇Z2
Z1) = Φ∗(J[JZ1,Z2])−

N

∇
Φ

JZ1
Φ∗(CZ1)

+ Φ∗(ACZ2
BZ1 +ACZ1

BZ2 +TBZ1
BZ2)

+ (∇Φ∗)
⊥(CZ1,CZ2)+CZ1(lnλ )Φ∗(CZ2)

+ CZ2(lnλ )Φ∗(CZ1)−g
M
(CZ1,CZ2)Φ∗(grad(lnλ )). (3.24)

Now, suppose that (i) and (ii) are satisfied in (3.24). We have Φ∗(
M

∇Z2
Z1) = 0 and

0 = CZ1(lnλ )Φ∗(CZ2)+CZ2(lnλ )Φ∗(CZ1)−g
M
(CZ1,CZ2)Φ∗(grad(lnλ )) (3.25)
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for Z1,Z2 ∈ Γ((kerΦ∗)⊥), respectively. So, we obtain (iii) clearly. If (ii) and (iii) are provided in (3.24), we have (3.25) and

N

∇
Φ

JZ1
Φ∗(CZ2) = Φ∗(J[JZ1,Z2])+(∇Φ∗)

⊥(CZ1,CZ2)+Φ∗(ACZ2
BZ1 +ACZ1

BZ2 +TBZ1
BZ2), (3.26)

respectively. Easily, we obtain Φ∗(
M

∇Z2
Z1) = 0. Hence, we say that the horizontal distribution (kerΦ∗)⊥ defines totally geodesic

foliation on M. At last, if (i) and (iii) are provided in (3.24), we obtain (3.25). For CZ1 ∈ Γ(µ) in (3.25), we get

0 = λ 2CZ2(lnλ )g
M
(CZ1,CZ1). (3.27)

Hence, we obtain 0 =CZ2(lnλ ). It means λ is a constant on µ . Then, for ξ ∈ Γ(kerΦ∗) and ψξ ∈ Γ(ψDθ ⊕ J(D⊥)) in (3.25)

with CZ1 =CZ2, we get

0 = λ 2ψξ (lnλ )g
M
(CZ1,CZ2). (3.28)

Hence, we obtain 0 = ψξ (lnλ ). It means λ is a constant on ψDθ ⊕ J(D⊥). Hence, λ is a constant on horizontal distribution.

We obtain (iii) from (3.27) and (3.28). The proof is complete.

Here, we have conditions for the map Φ which defines a totally geodesic foliations on M.

Theorem 3.12. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. Then, the map Φ defines a

totally geodesic foliations on M if and only if

i) The map Φ is a horizontally homothetic map,

ii)

N

∇
Φ

EΦ∗(F̄)−
N

∇
Φ

ĒΦ∗(F̄) = Φ∗(TÊ F̂ +h
M

∇Ê F̄ +AĒ F̂)

− (∇Φ∗)
⊥(Ē, F̄)

holds for E,F ∈ Γ(T M) where Ē, F̄ and Ê, F̂ show horizontal and vertical parts of E,F, respectively.

Proof. Using definition of second fundamental form of a map, (2.4), (2.5) and (2.6) we have

(∇Φ∗)(E,F) =
N

∇
Φ

EΦ∗(F̄)−Φ∗(
M

∇EF)

=
N

∇
Φ

EΦ∗(F̄)−Φ∗(
M

∇Ê F̂ +
M

∇Ê F̄ +
M

∇Ē F̂ +
M

∇Ē F̄)

=
N

∇
Φ

EΦ∗(F̄)−Φ∗(TÊ F̂ +h
M

∇Ê F̄ +AĒ F̂)−Φ∗(
M

∇Ē F̄) (3.29)

for E,F ∈ Γ(T M). Here, from equation (2.9) in (3.29), we obtain

(∇Φ∗)(E,F) =
N

∇
Φ

EΦ∗(F̄)−Φ∗(TÊ F̂ +h
M

∇Ê F̄ +AĒ F̂)

−
N

∇
Φ

ĒΦ∗(F̄)+(∇Φ∗)
⊥(Ē, F̄)+ Ē(lnλ )Φ∗(F̄)

+ F̄(lnλ )Φ∗(Ē)−g
M
(Ē, F̄)Φ∗(grad(lnλ )). (3.30)

Because of Φ defines a totally geodesic foliations on M, we have (3.30). Suppose that Φ is a horizontally homothetic map, we

have from (3.30)

0 = Ē(lnλ )Φ∗(F̄)F̄(lnλ )Φ∗(Ē)−g
M
(Ē, F̄)Φ∗(grad(lnλ )). (3.31)

We obtain from (3.31)

0 = λ 2F̄(lnλ )g
M
(Ē, Ē) (3.32)

for Ē ∈ Γ((kerΦ∗)⊥). We have 0 = F̄(lnλ ) from (3.32). It means λ is a constant on horizontal distribution. So, Φ is a

horizontally homothetic map and (i) is satisfied. If (i) satisfies in (3.30), we obtain

0 =
N

∇
Φ

EΦ∗(F̄)−Φ∗(TÊ F̂ +h
M

∇Ê F̄ +AĒ F̂)−
N

∇
Φ

ĒΦ∗(F̄)+(∇Φ∗)
⊥(Ē, F̄). (3.33)

From (3.33), we obtain (ii). The proof is complete.
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4. Pluriharmonic conformal quasi-hemi-slant Riemannian map

In this section, we examine some geometric properties of certain distributions with respect to notion of pluriharmonicity, see

equation (2.10) or [16]. We present D-pluriharmonicity in the following.

Theorem 4.1. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a D−pluriharmonic

map, then one of the below assertions imply the second assertion,

i) D defines a totally geodesic foliation on M,

ii) CTJU1
U2 +ψ∇̂JU1

U2 = 0

for U1,U2 ∈ Γ(D).

Proof. Initially, using definition of pluriharmonic map, we have

0 = (∇Φ∗)(U1,U2)+(∇Φ∗)(JU1,JU2) (4.1)

for U1,U2 ∈ Γ(D). By some calculations, we obtain from (4.1)

Φ∗(
M

∇U1
U2) = −Φ∗(J(TJU1

U2 + ∇̂JU1
U2))

Φ∗(
M

∇U1
U2) = −Φ∗(CTJU1

U2 +ψ∇̂JU1
U2). (4.2)

If (i) is satisfied in (4.2) we have Φ∗(
M

∇U1
U2) = 0. So, we obtain

CTJU1
U2 +ψ∇̂JU1

U2 = 0.

(ii) is provided. In a similar way, if (ii) is satisfied in (4.2), easily one can get (i).

Theorem 4.2. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a Dθ−pluriharmonic

map, then two of the below assertions imply the third assertion,

i) Dθ defines a totally geodesic foliation on M,

ii) λ is a constant on ψDθ and (∇Φ∗)⊥(ψV1,ψV2) = 0,

iii)

cos2 θ(CTφV1
V2 +ψ∇̂φV1

V2) = ψTφV1
ψφV2 +Ch

M

∇φV1
ψφV2 −AψV2

φV1 −AψV1
φV2.

for V1,V2 ∈ Γ(Dθ ).

Proof. If Φ is a Dθ−pluriharmonic map, we have

0 = (∇Φ∗)(V1,V2)+(∇Φ∗)(JV1,JV2) (4.3)

for V1,V2 ∈ Γ(Dθ ). Using symmetry property of second fundamental form and from equations (2.4), (2.5), (2.6) and (2.9), we



Conformal Quasi-Hemi-Slant Riemannian Maps — 109/113

get

0 = −Φ∗(
M

∇V1
V2)−Φ∗(

M

∇φV1
φV2)−Φ∗(

M

∇ψV2
φV1)

− Φ∗(
M

∇ψV1
φV2)+(∇Φ∗)

⊥(ψV1,ψV2)+ψV1(lnλ )Φ∗(ψV2)

+ ψV2(lnλ )Φ∗(ψV1)−g
M
(ψV1,ψV2)Φ∗(grad(lnλ ))

Φ∗(
M

∇V1
V2) = Φ∗(J

M

∇φV1
JφV2)−Φ∗(AψV2

φV1 +AψV1
φV2)

+ (∇Φ∗)
⊥(ψV1,ψV2)+ψV1(lnλ )Φ∗(ψV2)

+ ψV2(lnλ )Φ∗(ψV1)−g
M
(ψV1,ψV2)Φ∗(grad(lnλ ))

Φ∗(
M

∇V1
V2) = −cos2 θΦ∗(CTφV1

V2 +ψ∇̂φV1
V2)

+ Φ∗(ψTφV1
ψφV2 +Ch

M

∇φV1
ψφV2)

− Φ∗(AψV2
φV1 +AψV1

φV2)+(∇Φ∗)
⊥(ψV1,ψV2)

+ ψV1(lnλ )Φ∗(ψV2)+ψV2(lnλ )Φ∗(ψV1)

− g
M
(ψV1,ψV2)Φ∗(grad(lnλ )). (4.4)

Now, if (i) and (ii) are satisfied in (4.4), we have Φ∗(
M

∇V1
V2) = 0 and

0 = ψV1(lnλ )Φ∗(ψV2)+ψV2(lnλ )Φ∗(ψV1)−g
M
(ψV1,ψV2)Φ∗(grad(lnλ )), (4.5)

0 = (∇Φ∗)
⊥(ψV1,ψV2), (4.6)

respectively. Then, we get from (4.4)

0 = −cos2 θΦ∗(CTφV1
V2 +ψ∇̂φV1

V2)+Φ∗(ψTφV1
ψφV2 +Ch

M

∇φV1
ψφV2)

− Φ∗(AψV2
φV1 +AψV1

φV2). (4.7)

So, (iii) is satisfied at (4.7). If (ii) and (iii) are satisfied in (4.4), we clearly have equations (4.5), (4.6) and (4.7) in (4.4).

Therefore, we obtain (i). Lastly, suppose that (i) and (iii) are satisfied in (4.4). Then, we get (4.5) and (4.6). In (4.5), we obtain

from (1.2)

0 = λ 2ψV1(lnλ )g
M
(ψV2,ψV1)+λ 2ψV2(lnλ )g

M
(ψV1,ψV1)−λ 2g

M
(ψV1,ψV2)ψV1(lnλ )

0 = λ 2ψV2(lnλ )g
M
(ψV1,ψV1) (4.8)

for ψV1 ∈ Γ(Dθ ). At (4.8), we have 0 = ψV2(lnλ ). It means 0 = ψDθ (lnλ ) which implies that λ is a constant on ψDθ .

Hence, (ii) is satisfied. The proof is completed.

Similarly, we have the following theorem.

Theorem 4.3. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a D⊥−pluriharmonic

map, then one of the below assertions imply the second assertion,

i) D⊥ defines a totally geodesic foliation on M,

ii) λ is a constant on JD⊥ and (∇Φ∗)⊥(JW1,JW2) = 0

for W1,W2 ∈ Γ(D⊥).

Now, we search properties of horizontal and vertical pluriharmonic maps, respectively.

Theorem 4.4. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a (kerΦ∗)⊥−pluriharmonic

map, then any two of the below assertions imply the third assertion,

i) (kerΦ∗)⊥ defines a totally geodesic foliation on M,

ii) λ is a constant on µ ,

iii)
N

∇
Φ

Z1
Φ∗(Z2) = Φ∗(TBZ1

BZ2 +ACZ2
BZ1 +ACZ1

BZ2)− (∇Φ∗)⊥(CZ1,CZ2)
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for Z1,Z2 ∈ Γ((kerΦ∗)⊥).

Proof. From definition of pluriharmonic map, we have

0 = (∇Φ∗)(Z1,Z2)+(∇Φ∗)(JZ1,JZ2) (4.9)

for Z1,Z2 ∈ Γ((kerΦ∗)⊥). By some calculations from (2.8) and (2.9) in (4.9), we get

0 =
N

∇
Φ

Z1
Φ∗(Z2)−Φ∗(

M

∇Z1
Z2)+(∇Φ∗)

⊥(CZ1,CZ2)

− Φ∗(TBZ1
BZ2 +ACZ2

BZ1 +ACZ1
BZ2)+CZ1(lnλ )Φ∗(CZ2)

+ CZ2(lnλ )Φ∗(CZ1)−g
M
(CZ1,CZ2)Φ∗(grad(lnλ )). (4.10)

If (i) and (ii) are satisfied in (4.10), we have

0 = Φ∗(
M

∇Z1
Z2), (4.11)

0 = CZ1(lnλ )Φ∗(CZ2)+CZ2(lnλ )Φ∗(CZ1)−g
M
(CZ1,CZ2)Φ∗(grad(lnλ )). (4.12)

So, we get (iii) from (4.10) such that

N

∇
Φ

Z1
Φ∗(Z2) = Φ∗(TBZ1

BZ2 +ACZ2
BZ1 +ACZ1

BZ2)− (∇Φ∗)
⊥(CZ1,CZ2). (4.13)

If (ii) and (iii) are satisfied in (4.10), we have equations (4.12) and (4.13). Clearly, we obtain 0 = Φ∗(
M

∇Z1
Z2) which implies

that (kerΦ∗)⊥ defines a totally geodesic foliation on M. Lastly, if (i) and (iii) are satisfied in (4.10), we obtain (4.12). From

(1.2) in (4.12) we get

0 = λ 2CZ1(lnλ )g
M
(CZ2,CZ1)+λ 2CZ2(lnλ )g

M
(CZ1,CZ1)−λ 2g

M
(CZ1,CZ2)CZ1(lnλ )

0 = λ 2CZ2(lnλ )g
M
(CZ1,CZ1) (4.14)

for CZ1,CZ2 ∈ Γ(µ). Here, we have CZ2(lnλ ) = 0 which implies that λ is a constant on µ . (ii) is provided. The proof is

completed.

Theorem 4.5. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a kerΦ∗−pluriharmonic

map, then any two of the below assertions imply the third assertion,

i) kerΦ∗ defines a totally geodesic foliation on M,

ii) Φ is a horizontally homothetic map and (∇Φ∗)⊥(ψξ1,ψξ2) = 0,

iii) Tφξ1
φξ2 +Aψξ2

φξ1 +Aψξ1
φξ2 = 0

for ξ1,ξ2 ∈ Γ(kerΦ∗).

Proof. From equations (2.5), (2.6), (2.9), (2.10) and (3.4), we get

0 = (∇Φ∗)(ξ1,ξ2)+(∇Φ∗)(Jξ1,Jξ2)

0 = −Φ∗(
M

∇ξ1
ξ2)+(∇Φ∗)(φξ1,φξ2)+(∇Φ∗)(ψξ2,φξ1)

+ (∇Φ∗)(ψξ1,φξ2)+(∇Φ∗)(ψξ1,ψξ2)

Φ∗(
M

∇ξ1
ξ2) = −Φ∗(Tφξ1

φξ2 +Aψξ2
φξ1 +Aψξ1

φξ2)

+ (∇Φ∗)
⊥(ψξ1,ψξ2)+ψξ1(lnλ )Φ(ψξ2)

+ ψξ2(lnλ )Φ(ψξ1)−g
M
(ψξ1,ψξ2)Φ∗(grad(lnλ )) (4.15)

for ξ1,ξ2 ∈ Γ(kerΦ∗). The proof of (i) and (iii) are clear to see. So, we only give proof for (ii). Suppose that (i) and (iii) are

provided in (4.15). One can see easily that (∇Φ∗)⊥(ψξ1,ψξ2) = 0 and we get

0 = ψξ1(lnλ )Φ(ψξ2)+ψξ2(lnλ )Φ(ψξ1)−g
M
(ψξ1,ψξ2)Φ∗(grad(lnλ )). (4.16)

Since Φ is a conformal map, we obtain from (4.16)

0 = λ 2ψξ2(lnλ )g
M
(ψξ1,ψξ1) (4.17)
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for ψξ1 ∈ Γ(ψDθ ⊕ JD⊥). It means 0 = ψξ2(lnλ ) which implies that λ is a constant on ψDθ ⊕ JD⊥. On the other hand, we

obtain from (4.16)

0 =−λ 2CX(lnλ )g
M
(ψξ1,ψξ1) (4.18)

for CX ∈ Γ(µ) with ψξ1 = ψξ2. It means 0 =CX(lnλ ) which implies that λ is a constant on µ . Hence, equations (4.17) and

(4.18) give us that Φ is a horizontally homothetic map. (ii) is provided. The proof is completed.

Lastly, we examine mixed pluriharmonicity on conformal quasi-hemi-slant Riemannian maps such that

0 = (∇Φ∗)(Z,ξ )+(∇Φ∗)(JZ,Jξ )

for ξ ∈ Γ(kerΦ∗) and Z ∈ Γ((kerΦ∗)⊥).

Theorem 4.6. Let Φ : (M,g
M
,J)−→ (N,g

N
) be a conformal quasi-hemi-slant Riemannian map. If Φ is a mixed−pluriharmonic

map, then any of the below assertions imply the second assertion,

i- Φ is a horizontally homothetic map and (∇Φ∗)⊥(CZ,ψξ ) = 0,

ii- AZξ = TBZφξ +Aψξ BZ +ACZφξ

for ξ ∈ Γ(kerΦ∗) and Z ∈ Γ((kerΦ∗)⊥).

Proof. From definition of mixed pluriharmonic map, we get

0 = −Φ∗(AZξ )+Φ∗(TBZφξ +Aψξ BZ +ACZφξ )

+ (∇Φ∗)
⊥(CZ,ψξ )+CZ(lnλ )Φ∗(ψξ )+ψξ (lnλ )Φ∗(CZ) (4.19)

for ξ ∈ Γ(kerΦ∗) and Z ∈ Γ((kerΦ∗)⊥). If (i) is satisfied in (4.19) we have (∇Φ∗)⊥(CZ,ψξ ) = 0 and

0 =CZ(lnλ )Φ∗(ψξ )+ψξ (lnλ )Φ∗(CZ). (4.20)

So, one can obtain (ii) easily. Now, if (ii) is satisfied in (4.19) we obtain easily (∇Φ∗)⊥(CZ,ψξ ) = 0. Then, from (4.20) we

obtain

0 = λ 2ψξ (lnλ )g
M
(CZ,CZ) (4.21)

for CZ ∈ Γ(µ). It means 0 = ψξ (lnλ ) which implies that λ is a constant on ψDθ ⊕ JD⊥. On the other hand, from (4.20) we

obtain

0 = λ 2CZ(lnλ )g
M
(ψξ ,ψξ ) (4.22)

for ψξ ∈ Γ(ψDθ ⊕JD⊥). It means 0 =CZ(lnλ ) which implies that λ is a constant on µ . Hence, (4.21) and (4.22) give us that

Φ is a horizontally homothetic map. (i) is provided. The proof is completed.

5. Conclusion

In this paper, integrability conditions and conditions for defining a totally geodesic foliation by certain distributions were found.

Then, by applying the notion of pluriharmonicity onto conformal quasi-hemi-slant Riemannian maps we obtained relations

among pluriharmonicity, horizontally homotheticness and totally geodesicness.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments

and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.



Conformal Quasi-Hemi-Slant Riemannian Maps — 112/113

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References
[1] M. A. Akyol, Conformal semi-slant submersions, Int. J. Geom, 14(7) (2017), 1750114.
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