(IJMA

Univensal Gounnal of Mathematics and Applications

VOLUME V ISSUE II

ISSN 2619-9653
http://dergipark.gov.tr/ujma

UNIVERSAL JOURNAL OF MATHEMATICS AND APPLICATIONS

Editors in Chief

Emrah Evren Kara
Department of Mathematics,
Faculty of Arts and Sciences, Düzce University, Düzce-TÜRKİYE
eevrenkara@duzce.edu.tr

Fuat Usta
Department of Mathematics,
Faculty of Arts and Sciences, Düzce University,
Düzce-TÜRKİYE
fuatusta@duzce.edu.tr

Managing Editor

Merve İlkhan Kara
Department of Mathematics,
Faculty of Arts and Sciences, Düzce University,
Düzce-TÜRKİYE
merveilkhan@duzce.edu.tr

Editorial Board of Universal Journal of Mathematics and Applications

Murat Tosun Sakarya University, TÜRKİYE	Murat Kirişçi İstanbul University-Cerrahpaşa, TÜRKIYE
Mahmut Akyiğit	Sidney Allen Morris
Sakarya University,	Federation University,
TÜRKİYE	AUSTRALIA
Soley Ersoy	Necip Şimşek
Sakarya University,	Istanbul Commerce University,
TÜRKİYE	TÜRKİE
Feng Qi	Yeol Je Cho
Henan Polytechnic University,	Gyeongsang National University,
CHINA	KOREA
Waqas Nazeer, Government College University, PAKISTAN	Changjin Xu Guizhou University of Finance and Economics, CHINA

Technical Editor

Pınar Zengin Alp
Department of Mathematics,
Faculty of Arts and Sciences, Düzce University, Düzce-TÜRKİYE

Editorial Secretariat

Bahar Doğan Yazıcı
Department of Mathematics,
Faculty of Arts and Sciences, Bilecik Şeyh Edebali University, Bilecik-TÜRKİYE

Editorial Secretariat
Zehra İşbilir
Department of Mathematics,
Faculty of Arts and Sciences, Düzce University,
Düzce-TÜRKİYE

Contents

1 Obtaining the Parametric Equation of the Curve of the Sun's Apparent Movement by Using Quaternions
Deniz GÜÇLER, F. Nejat EKMEKÇİ, Yusuf YAYLI, Mustafa HELVACI
2 Nonexistence of Global Solutions for the Strongly Damped Wave Equation with Variable Coefficients
Erhan PİŞKİN, Ayşe FíDAN 51-56
3 Connected Square Network Graphs Burhan SELÇUK

4 The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces Makbule KAPLAN ÖZEKES 64-68

5 Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations Yüksel SOYKAN,Vedat İRGE

69-81

Obtaining the Parametric Equation of the Curve of the Sun's Apparent Movement by Using Quaternions

Deniz Güçler ${ }^{1 *}$, F. Nejat Ekmekci ${ }^{1}$, Yusuf Yaylı ${ }^{1}$ and Mustafa Helvacı ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey
${ }^{2}$ Informatics Institute, Istanbul Technical University, Istanbul, Turkey
*Corresponding author

Article Info
Keywords: Apparent movement of the Sun, quaternions, rotational movement 2010 AMS: 15A33, 15A66, 70F05, 70F15
Received: 22 March 2022
Accepted: 13 May 2022
Available online: 30 June 2022

Abstract

This article aims to express the daily and yearly apparent movement of the Sun in the same curve by using quaternions as a rotation operator. To achieve this, the daily and yearly apparent movement of the Sun, the algebraical structure of quaternions, and how quaternions work as rotation operators have been examined. For each of the apparent movements of the Sun, a quaternion that will work as a rotation operator has been determined. Afterward, these two rotation operators have been applied to the vector that is found between point $(0,0,0)$ and the accepted starting point of the apparent movement of the Sun. As a result, a curve on a sphere is obtained. The importance of this study is to emphasize the use of quaternions in other areas of study and to provide the science of astronomy with a new outlook with regards to expressing the apparent movement of the Sun.

1. Introduction

Astronomy is considered the oldest science in the world. Humankind has always observed the stars in the sky and especially the Sun. At the end of these observations, it was noticed that the daily and yearly movement of the Sun followed a certain cycle. By observing the Sun's movement in the sky the formation of the night-day and the seasons was noted.
For thousands of years, mankind accepted that Earth was the center of the universe and believed that the Sun, like all other celestial bodies rotated around the Earth. However, Copernicus proved that this belief was not accurate because it was the Earth that rotated around the Sun [1]. After this discovery, the expression of "the Sun's movement" was replaced with the expression of "the Sun's apparent movement". Even though the daily and yearly apparent movement of the Sun occurs at the same time, in calculation these movements are considered separable. The two main reasons for why these movements are considered separable are: firstly, the dyad Earth-Sun is not alone in the solar system which means that the problem does not remain limited to the two-body problem. Secondly, the difference between the periods of the daily and yearly movement is too big.
Showing the daily and yearly apparent movement of the Sun in the same curve is important in helping understand these movements, especially for young astronomers. At the same time, there exist situations in which great precision is not required but where nonetheless finding these two movements in the same curve would be useful. In many areas, such as using solar panels, planning agricultural activities, and in determining prayer time, doing the calculation of this curve would bring many benefits.
In our time astronomy problems that have in their base periodical repetition of the movement find a solution by using spherical trigonometry and Kepler's Laws [2]. Solving this problem by using the rotation matrix is theoretically possible from the mathematical perspective, however, using this method is considerably difficult. Therefore, the question arises, is it possible to obtain a faster mathematical approach to calculate the apparent movement of the Sun that would take the place of the rotation matrices or the long calculations of Kepler's equations? There are some studies done in this direction in the relevant literature. In 1996, M. Kummer proved that one can obtain the orbit's parameters by solving Kepler's equations with the Hamilton systems [3]. This study, on the other hand, has researched whether there can be easier and faster solutions done by using quaternions and the conclusion has been that quaternions can indeed be used in analyzing the apparent movement of the Sun.

To understand and present the problem the author has benefited from the references [1]- [3] and [5] - [15]. The details about the quaternions can be viewed from the references [4] and [16] - [22]. The information needed for the other calculations is found in the references [23] - [24].

2. Notations and Preliminaries

2.1. Quaternion algebra

The quaternion, a hyper-complex number of rank 4, was invented by Hamilton. The most important rule of this invention is:

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

i, j and k are the components of the vector part of the quaternion.
Henceforth the quaternions will be denoted with the letters q, p or $r . i, j$ and k will be used to represent the standard ortogonal base of \mathbb{R}^{3}. Accordingly:

$$
i=(1,0,0), j=(0,1,0), k=(0,0,1)
$$

The quaternion, from the Latin kuattur meaning four, can be thought of as a quadruplet of the real numbers. This makes it an element of \mathbb{R}^{4}. Accordingly, quaternion q can be expressed as below where $q_{0}, q_{1}, q_{2}, q_{3}$ are each a real number

$$
q=\left(q_{0}, q_{1}, q_{2}, q_{3}\right)
$$

or the quaternion q is accordingly:

$$
\begin{aligned}
& \alpha=i q_{1}+j q_{2}+k q_{3} \\
& q=q_{0}+\alpha=q_{0}+i q_{1}+j q_{2}+k q_{3}
\end{aligned}
$$

where q_{0} is the scalar part and α is the vector part. Throughout the article, q will be displayed with $q=q_{0}+\alpha$.
Some algebraic properties of the quaternions are given as follows:

$$
\begin{aligned}
& q+p=\left(q_{0}+p_{0}\right)+i\left(q_{1}+p_{1}\right)+j\left(q_{2}+p_{2}\right)+k\left(q_{3}+p_{3}\right) \\
& a q=a q_{0}+i a q_{1}+j a q_{2}+k a q_{3} \quad, \quad a \in \mathbb{R}
\end{aligned}
$$

Multiplication of quaternions is done according to the following rule

$$
i^{2}=j^{2}=k^{2}=i j k=-1 \text { and } i j=k=-i j, j k=i=-k j, k i=j=-i j
$$

for $p=p_{0}+\alpha_{p}=p_{0}+i p_{1}+j p_{2}+k p_{3}$ and $q=q_{0}+\alpha_{q}=q_{0}+i q_{1}+j q_{2}+k q_{3}$

$$
\begin{aligned}
& p \times q=\left(p_{0}+i p_{1}+j p_{2}+k p_{3}\right) \times\left(q_{0}+i q_{1}+j q_{2}+k p_{3}\right) \\
& =p_{0} q_{0}-\left(p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right)+p_{0}\left(i q_{1}+j q_{2}+k q_{3}\right)+q_{0}\left(p_{0}+i p_{1}+j p_{2}+k p_{3}\right) \\
& +i\left(p_{2} q_{3}-p_{3} q_{2}\right)+j\left(p_{3} q_{1}-p_{1} q_{3}\right)+k\left(p_{1} q_{2}-p_{2} q_{1}\right) \\
& =p_{0} q_{0}-\left\langle\alpha_{p}, \alpha_{q}\right\rangle+p_{0} \alpha_{q}+q_{0} \alpha_{p}+\alpha_{p} \wedge \alpha_{q}
\end{aligned}
$$

" \langle,$\rangle " represents the scalar product of vectors and " \wedge$ " represents the cross-produc of vectors.
Let q be a quaternion $q=q_{0}+i q_{1}+j q_{2}+k q_{3}$ then q 's complex conjugent is:

$$
q^{*}=q_{0}-i q_{1}-j q_{2}-k q_{3}
$$

Finally, we can state that the set of quaternions together with the addition and multiplication operation satisfies the properties of a field except that multiplication is not commutative. Before quaternions are expressed as a rotation operator the definition of pure quaternions will be given.
Definition 2.1. The quaternion whose scalar part is zero is called a pure quaternion.
According to the definition above, the set of pure quaternions is one-to-one correspondent with the $v \in \mathbb{R}^{3}$ vector set. It can be shown that for any $v \in \mathbb{R}^{3}$ and for whichever $q \in \mathbb{R}^{4}$, there can be found $w_{1}=q \times v \times q^{*}$ vector $w_{1} \in \mathbb{R}^{3}$ and $w_{2}=q^{*} \times v \times q$ vector $w_{2} \in \mathbb{R}^{3}$.
The unit quaternion $q=q_{0}+\alpha$ satisfies the following equality $q_{0}^{2}+|\alpha|^{2}=1$. It is known that for whichever φ angle $\cos ^{2} \varphi+\sin ^{2} \varphi=1$. In this case, a φ angle which would make possible the equations below can be found:

$$
\cos ^{2} \varphi=q_{0}^{2} \text { and } \sin ^{2} \varphi=|\alpha|^{2}
$$

If we select the φ angle in $-\pi<\varphi \leq \pi$, this angle will simultaneously have a singular value. In light of this data, the quaternion that will be used as a rotation operator is:

$$
q=q_{0}+\alpha=\cos \varphi+u \sin \varphi \text { and } q^{*}=q_{0}-\alpha=\cos \varphi-u \sin \varphi
$$

where

$$
u=\frac{\alpha}{|\alpha|}=\frac{\alpha}{\sin \varphi}
$$

Theorem 2.2. For any $Q=Q_{0}+\mathbf{Q}=\cos \varphi+u \sin \varphi$ unit quaternion (where Q_{0} is the scalar part and \mathbf{Q} is the vector part of the quaternion) and for any vector $v \in \mathbb{R}^{3}$ the action of the operator

$$
L_{Q}(v)=Q \times v \times Q^{*}
$$

on v may be interpreted geometrically as a rotation of the vector v through an angle 2φ about \mathbf{Q} as the axis of the rotation, [4].
In addition: the action of the operator $L_{Q}(v)=Q^{*} \times v \times Q$ on v may be interpreted geometrically as a rotation of the vector v through an angle 2φ in a negative direction about \mathbf{Q} as the axis of the rotation.

Theorem 2.3. Suppose that k and r are unit quaternions that define the quaternion rotation operators:

$$
L_{k}(u)=k \times u \times k^{*} \text { and } L_{r}(v)=r \times v \times r^{*}
$$

Then the quaternion product $r \times k$ defines a quaternion operator $L_{r k}$ which represents a sequence of operators, L_{k} followed by L_{r}. The axis and the angels of rotation are those represented by the quaternion product, $q=r \times k$ [4].

In this study, two methods will be used to solve the problem. The first method will benefit from the characteristic of quaternions used as rotation operators. The second method will use the rotation matrix, which is a product of the unit quaternion. This matrix is as below:
for $Q=q_{0}+i q_{1}+j q_{2}+k q_{3}$ unit quaternion, the rotation matrix D_{Q} is shown below [4].

$$
D_{Q}=\left[\begin{array}{ccc}
2 q_{0}^{2}-1+2 q_{1}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \tag{2.1}\\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}-1+2 q_{2}^{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}-1+2 q_{3}^{2}
\end{array}\right]
$$

and let $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ be the vector that is obtained by the rotation of vector $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ then:

$$
\left[\begin{array}{l}
\beta_{1} \tag{2.2}\\
\beta_{2} \\
\beta_{3}
\end{array}\right]=\left[\begin{array}{ccc}
2 q_{0}^{2}-1+2 q_{1}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}-1+2 q_{2}^{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}-1+2 q_{3}^{2}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

2.2. The Sun's daily and yearly apparent movement

2.2.1. The Sun's daily apparent movement

The Earth rotates around its axis in a positive direction every day, so from the west to the east. Because the movement of the Earth cannot be felt, it is perceived instead that it's the other celestial bodies that rotate from the east to the west around the axis of the celestial sphere which in itself is the lengthening of the axis of the Earth. Among these celestial bodies, there is the Sun. So it can be said that the Sun in appearance moves every day in the negative direction in the celestial sphere. This movement occurs with a particular velocity in an orbit parallel to the celestial equator plane. The celestial equator plane is the lengthening of the Earth's equator plane [5].

2.2.2. The Sun's yearly apparent movement

The Earth orbits around the Sun in an elliptical orbit and a positive direction, in the elliptical plane throughout the year. However, in appearance, it is the Sun that orbits around the Earth in the same plane and a positive direction. The angle between the elliptical plane and the equatorial plane is $23^{0} 27^{\prime}$. This plane forms a $23^{0} 27^{\prime}$ angle with the plane of the celestial equator. If in the center of the celestial system instead of the Sun we placed the Earth and then drew the apparent elliptical orbit of the Sun,the orbit in Figure 2.1 would be obtained. To obtain this orbit the Earth will be imagined as fixed and the Sun as the body that rotates around it. Because the Earth's orbit is well-known the Earth will be fixed in what will be called point A henceforth which is found in its orbit. When the Earth is on day 21 March at the Y_{1} point the Sun appears in the direction of Aries. If we transfer point Y_{1} to point A and find point G_{1} for which $A G_{1}=Y_{1} G$ and $A G_{1}$ is parallel to $Y_{1} G$, it would mean that the Sun would appear at point G_{1} at this date. In the same manner, if $P_{1} G$ to $A P_{2}, Y_{2} G$ to $A G_{2}, Y_{3} G$ to $A G_{3}$, and $Y_{4} G$ to $A G_{4}$ are transferred a new ellipse is formed which has at its center point A. This is the Sun's yearly apparent elliptical orbit. Every year the Sun moves in this elliptical orbit. Below are five important points that concern this orbit [5].

1. Both orbits are found in the same plane and this plane is the elliptical plane.
2. The Earth is found in one of the focal points of the apparent elliptic orbit.
3. These two ellipses are equal in shape and size.
4. The rotation period is the same in both and it is a one-star year long.
5. Both rotations are in the positive direction.

G: Sun, A: Earth, 四: Aries, Ω : Libra, 团: Cancer, \square : Capricorn direction $P_{1}=$ Earth's perihelion, $P_{2}=$ Sun's perihelion

Figure 2.1: The Earth's orbit and the Sun's apparent orbit

3. Obtaining the Parametric Equation of the Curve of Both the Daily and Yearly Apparent Movement the Sun Makes in the Celestial Sphere by Using Quaternions

In this paper, it is assumed the apparent movement of the Sun occurs in ideal conditions. This means that the Earth will rotate around the Sun with a constant angular velocity (this velocity will be accepted as equal to the yearly average angular velocity of the Earth around the Sun) and it will be accepted that the orbit of rotation will be circular instead of elliptic. So, it will be accepted that the apparent movement of the Sun in the ecliptic plane will occur in a circular orbit with a constant angular velocity.
Firstly, it is necessary to define the problem in physical terms.
Let us accept that a celestial body completes a circular motion in plane E that intersects with plane $X Y$ in axis x and forms with it an ε angle. Let us also accept that this movement starts from point $P=(1,0,0)$ in a positive direction, and under force, F_{1} completes a circular movement with a constant angular velocity w_{1}. Lastly, let us also accept that a force $F_{2}=c F_{1}, c>2$ (there is a linear relationship between the scalar magnitude of the forces), forces the same celestial body to move parallel to plane $X Y$ in a positive direction with a constant angular velocity w_{2}. In this case, the celestial body whose vectors are linear independent is under the effect of two forces and is bound to both velocities. This body, however, will not move parallel to either plane $X Y$ or plane E instead it will move with the unified velocity in a different direction. How can we express the celestial body's interaction with the velocities w_{1} and w_{2} ?
Between the scalar magnitudes of w_{1} and w_{2} velocities, a linear relation is found. This linear relation will be the same as the linear relation between the scalar magnitudes of F_{1} and F_{2}. In the same manner, the θ and φ angles these angular velocities trace in the same unit of time will also have the same linear relationship between their magnitudes. So $\varphi=c \boldsymbol{\theta}$ because the forces are directly proportional to the angular velocities and the angular velocities are directly proportional to the angles they trace. To conclude, the curve that this celestial body traces on the sphere is a product of two rotations. One of the rotations will be in a positive direction around the axis of the plane E (let this axis be called N) and the other will be in a positive direction around axis Z.
Let plane E represent the elliptic plane while plane $X Y$ represents the plane of the celestial equator and angle ε represents the angle $\varepsilon=23^{0} 27^{\prime}$ which is the angle that is formed from the intersection of the celestial equatorial plane and the ecliptic plane (Figure 3.1). In this case, point $(0,0,0)$ represents the Earth. In addition, the positive direction of axis X will represent the Aries constellation. The direction of the vector $(0,-\cos \varepsilon,-\sin \varepsilon)$ will represent the Capricorn constellation. The direction of the vector $(0, \cos \varepsilon, \sin \varepsilon)$ will represent the Cancer constellation. The negative direction of axis X will represent the Libra constellation.
Now let us show the daily apparent movement of the Sun. This movement occurs in a negative direction parallel to the celestial equatorial plane. In this case, the second rotation movement in the negative direction of the celestial body that was presented in the problem above represents the movement of the daily apparent movement of the Sun.
Finally, above, it was stated that between the scalar magnitudes of w_{1} (if we adapt w_{1} to the velocity of the Sun this corresponds with the velocity of the Sun's movement in the elliptical plane) and w_{2} (if we adapt w_{2} to the velocity of the Sun this corresponds with the velocity of the movement the Sun makes parallel to the celestial equatorial plane) exists a linear relation. The same linear relation exists between the angles these velocities trace. In this case; because $w_{2}=365,25 w_{1}$ (when the Sun rotates once around the ecliptic axis it rotates 365,25 times parallel to the celestial equatorial plane) $\varphi=365,25 \theta$. So, $c=365,25$.

Figure 3.1: The system in which the apparent movement of the Sun occurs

Let Q_{1} be the quaternion that will realize the movement in the positive direction around axis N. Let Q_{2} be the quaternion that will realize the movement in the positive direction around axis Z. With the help of these two quaternions, the parametric equation of the curve of the daily and yearly apparent movement the Sun makes in the celestial sphere will be obtained. The starting point of the movement is $P=(1,0,0)$ which coincides with the Aries constellation. The vector $O P$ that is found in the direction of the Earth-Aries constellation is $v=(1,0,0)$. First, let this vector be transferred to the quaternion space so:
$v_{1}=(1,0,0)$ vector $\rightarrow w_{1}=0+i+0 j+0 k=i$ corresponds to a pure quaternion. The first rotation movement will be realized around axis $u=-j \sin \varepsilon+k \cos \varepsilon$ with θ angle. The second rotation movement will be realized around axis k with a φ angle in a negative direction. In this case, the Q_{1} and Q_{2} quaternions that will operate as rotation operators are: For $a=\sin \varepsilon$ and $b=\cos \varepsilon$,

$$
Q_{1}=\cos \left(\frac{\theta}{2}\right)-j a \sin \left(\frac{\theta}{2}\right)+k b \sin \left(\frac{\theta}{2}\right)
$$

and

$$
Q_{2}=\cos \left(\frac{\varphi}{2}\right)+k \sin \left(\frac{\varphi}{2}\right) .
$$

It is stated that the second rotation movement (daily movement) occurs around axis k in the negative direction. If the necessary adjustments are made, instead of $Q_{2}=\cos \left(\frac{\varphi}{2}\right)+k \sin \left(\frac{\varphi}{2}\right)$ for the second rotation, the complex conjugate of Q_{2} will be used.

$$
Q_{2}^{*}=\cos \left(\frac{\varphi}{2}\right)-k \sin \left(\frac{\varphi}{2}\right) .
$$

According to Theorem 2.3, for $L_{Q_{1}}\left(w_{1}\right)=Q_{1} \times w_{1} \times Q_{1}^{*}, L_{Q_{2}^{*}}\left(w_{2}\right)=Q_{2}^{*} \times w_{2} \times Q_{2}$, and $w_{2}=Q_{1} \times w_{1} \times Q_{1}^{*}$

$$
L_{Q_{2}^{*} Q_{1}}\left(w_{1}\right)=\left(Q_{2}^{*} \times Q_{1}\right) \times w_{1} \times\left(Q_{2}^{*} \times Q_{1}\right)^{*} .
$$

If $Q_{2}^{*} \times Q_{1}=Q$ and $w_{1}=i$ then

$$
L_{Q_{2}^{*} Q_{1}}\left(w_{1}\right)=Q \times i \times Q^{*} .
$$

So the calculations are as such:

$$
\begin{aligned}
Q & =Q_{2}{ }^{*} \times Q_{1}=\left(\cos \left(\frac{\varphi}{2}\right)-k \sin \left(\frac{\varphi}{2}\right)\right) \times\left(\cos \left(\frac{\theta}{2}\right)-j a \sin \left(\frac{\theta}{2}\right)+k b \sin \left(\frac{\theta}{2}\right)\right) \\
Q & =\left(\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)-i a \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-j a \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
& +k\left(b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-\sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)\right)
\end{aligned}
$$

$$
L=Q \times i \times Q^{*}=L_{0}+i L_{1}+j L_{2}+k L_{3}
$$

$$
L_{0}=0
$$

$$
\begin{aligned}
& L_{1}=\left(\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)^{2}+a^{2} \sin ^{2}\left(\frac{\varphi}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& -a^{2} \cos ^{2}\left(\frac{\varphi}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)-\left(b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-\sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)\right)^{2} \\
& =\cos ^{2}\left(\frac{\varphi}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)+2 b \cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)+b^{2} \sin ^{2}\left(\frac{\varphi}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& -a^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right)-b^{2} \cos ^{2}\left(\frac{\varphi}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& +2 b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right) \sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right) \\
& =\cos ^{2}\left(\frac{\theta}{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right)-b^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right) \\
& -a^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right)+\left(2 b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\varphi}{2}\right)\right)\left(2 b \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right) \\
& =\cos ^{2}\left(\frac{\theta}{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right)-\sin ^{2}\left(\frac{\theta}{2}\right)\left(a^{2}+b^{2}\right)\left(\cos ^{2}\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right) \\
& +\left(2 b \cos \left(\frac{\varphi}{2}\right) \sin ^{2}\left(\frac{\varphi}{2}\right)\right)\left(2 b \cos \left(\frac{\theta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right) \\
& =\left(\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)\right)\left(\cos 2\left(\frac{\varphi}{2}\right)-\sin ^{2}\left(\frac{\varphi}{2}\right)\right)+\left(2 b \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\left(2 b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\varphi}{2}\right)\right)
\end{aligned}
$$

$L_{1}=\cos \varphi \cos \theta+b \sin \varphi \sin \theta$.
Likewise:

$$
L_{2}=b \cos \varphi \sin \theta-\sin \varphi \cos \theta
$$

$$
L_{3}=a \sin \theta
$$

then

$$
\begin{aligned}
L_{Q_{2} Q_{1}}\left(w_{1}\right) & =Q \times i \times Q^{*}=i(\cos \varphi \cos \theta+b \sin \varphi \sin \theta)+j(b \cos \varphi \sin \theta-\sin \varphi \cos \theta) \\
& +k a \sin \theta=w .
\end{aligned}
$$

When vector w that was obtained in the quaternion space is transferred to vector v in the real space:

$$
v=(x, y, z)=(\cos \varphi \cos \theta+b \sin \varphi \sin \theta, b \cos \varphi \sin \theta-\sin \varphi \cos \theta, a \sin \theta) .
$$

If $c>2,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq n \pi, n$ and c are constants and $\varphi=c \theta$ are kept in mind then:

$$
\begin{aligned}
& X=\cos \theta \cos (c \theta)+b \sin \theta \sin (c \theta) \\
& Y=b \sin \theta \cos (c \theta)-\cos \theta \sin (c \theta) \\
& Z=a \sin \theta \\
& c=365,25 \text { and } 0 \leq \theta \leq 2 \pi, a=\sin 23^{0} 27^{\prime} \text { and } b=\cos 23^{\circ} 27^{\prime} .
\end{aligned}
$$

The quaternion that will be used for the first rotation movement, was defined before as:
$Q_{1}=\cos \left(\frac{\theta}{2}\right)-j a \sin \left(\frac{\theta}{2}\right)+k b \sin \left(\frac{\theta}{2}\right)$. From here, we have:

$$
\begin{aligned}
& q_{10}=\cos \left(\frac{\theta}{2}\right) \\
& q_{11}=0 \\
& q_{12}=-a \sin \left(\frac{\theta}{2}\right) \\
& q_{13}=b \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

According to (2.1) rotation matrix A which is produced by the unit quaternion above is:

$$
A=\left[\begin{array}{ccc}
2 \cos ^{2}\left(\frac{\theta}{2}\right)-1 & -2 b \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) & -2 a \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
2 b \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) & 2 \cos ^{2}\left(\frac{\theta}{2}\right)-1+2\left(-a \sin \left(\frac{\theta}{2}\right)\right)^{2} & -2 a b \sin \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
2 \cos \left(\frac{\theta}{2}\right) a \sin \left(\frac{\theta}{2}\right) & -2 a b \sin \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) & 2 \cos ^{2}\left(\frac{\theta}{2}\right)-1+2\left(b \sin \left(\frac{\theta}{2}\right)\right)^{2}
\end{array}\right] .
$$

The quaternion that will be used for the second rotation movement, was defined before as: $Q_{2}{ }^{*}=\cos \left(\frac{\varphi}{2}\right)-k \sin \left(\frac{\varphi}{2}\right)$ From here:

$$
\begin{aligned}
& q_{20}{ }^{*}=\cos \left(\frac{\varphi}{2}\right) \\
& q_{21}^{*}=0 \\
& q_{22}{ }^{*}=0 \\
& q_{23}{ }^{*}=-\sin \left(\frac{\varphi}{2}\right)
\end{aligned}
$$

According to (2.1) rotation matrix B which is produced by the unit quaternion above is:

$$
B=\left[\begin{array}{ccc}
2 \cos ^{2}\left(\frac{\varphi}{2}\right)-1 & 2 \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\varphi}{2}\right) & 0 \\
-2 \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\varphi}{2}\right) & 2 \cos ^{2}\left(\frac{\varphi}{2}\right)-1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let matrix be the resultant matrix of matrixes and then:

$$
C=B A
$$

When the necessary calculations are done:

$$
C=\left[\begin{array}{ccc}
2 q_{0}^{2}-1+2 q_{1}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}-1+2 q_{2}^{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}-1+2 q_{3}^{2}
\end{array}\right]
$$

where

$$
\begin{align*}
& q_{0}=\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
& q_{1}=-a \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right) \tag{3.1}\\
& q_{2}=-a \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
& q_{3}=b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-\sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)
\end{align*}
$$

As expected, the values in equation (3.1) are the same as the values of $Q=Q_{2}{ }^{*} \times Q_{1}$.
According to (2.2), the vector $w=\left(w_{1}, w_{2}, w_{3}\right)$ obtained when rotation matrix C is applied in vector $\vec{v}=(1,0,0)$ is:

$$
\begin{aligned}
& w=C \vec{v} \\
& w\left(w_{1}, w_{2}, w_{3}\right)=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{ccc}
2 q_{0}^{2}-1+2 q_{1}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}-1+2 q_{2}^{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}-1+2 q_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& w_{1}=2 q_{0}^{2}-1+2 q_{1}^{2}=2\left(\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)^{2}-1+2\left(-a \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)^{2}
\end{aligned}
$$

$w_{1}=\cos \varphi \cos \theta+b \sin \varphi \sin \theta$

$$
\begin{aligned}
w_{2} & =\left(2 q_{1} q_{2}+2 q_{0} q_{3}\right) \\
& =2\left(-a \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\left(-a \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right) \\
& +2\left(\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\left(b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-\sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)\right)
\end{aligned}
$$

$w_{2}=b \cos \varphi \sin \theta-\sin \varphi \cos \theta$

$$
\begin{aligned}
w_{3} & =2\left(-a \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\left(b \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)-\sin \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)\right) \\
& -2\left(\cos \left(\frac{\varphi}{2}\right) \cos \left(\frac{\theta}{2}\right)+b \sin \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\left(-a \cos \left(\frac{\varphi}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)=2 a \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

$w_{3}=a \sin \theta$
$w=\left(w_{1}, w_{2}, w_{3}\right)=(\cos \varphi \cos \theta+b \sin \varphi \sin \theta, b \cos \varphi \sin \theta-\sin \varphi \cos \theta, a \sin \theta)$.
If $c>2,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq n \pi, n$ and c constants and $\varphi=c \theta$, are kept in mind then:

$$
\begin{align*}
& w_{1}=X=\cos \theta \cos (c \theta)+b \sin \theta \sin (c \theta) \\
& w_{2}=Y=b \sin \theta \cos (c \theta)-\cos \theta \sin (c \theta) \tag{3.2}\\
& w_{3}=Z=a \sin \theta
\end{align*}
$$

$$
c=365,25 \text { and } 0 \leq \theta \leq 2 \pi, a=\sin 23^{0} 27^{\prime} \text { and } b=\cos 23^{0} 27^{\prime}
$$

If the graphic of the equation (3.2) we obtained above was drawn, the three-dimensional graphic shown in Figure 3.2 will be acquired. This curve covers the entirety of the sphere found between the planes $z=-\sin 23^{\circ} 27^{\prime}$ and $z=\sin 23^{\circ} 27^{\prime}$ because the constant c is $c=365,25$. For this reason, to be able to comprehend the shape of the curve, $c=12$ is chosen instead of $c=365,25$ and this way the graphic shown in Figure 3.3 is obtained. As shown in Figure 3.3, the curve is a spherical spiral limited between the planes $z=-\sin 23^{0} 27^{\prime}$ and $z=\sin 23^{\circ} 27^{\prime}$. If in equation (3.2) $\varepsilon=90^{\circ}$ then the parametric equation of the spherical spiral is procured.

Figure 3.2: The curve of the apparent movement of the Sun for $c=365,25$

Figure 3.3: The curve of the apparent movement of the Sun for $c=12$

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] A. Pannecoch, A History of Astronomy, London, 1961.
[2] W. M. Smart, Celestial Mechanics, Literary Licensing, 2013.
[3] M. Kummer, Reduction in rotating Kepler problem and related topics, Contemporary Mathematics, (1996) 198, 155-180.
[4] J. B. Kuipers, Quaternions and Rotation Sequences, Princeton, New Jersey, 1998.
[5] A. Kızılırmak, Küresel Gökbilimi, Bornova - İzmir, 1977.
[6] C. I. Palmer, C. W. Leigh, Plane and Spherical Trigonometry, London, 1934.
[7] C. Payne-Gaposckin, Introduction to Astronomy, Prentice - Hall, Inc. Englewood Cliffs, N.J, 1961.
[8] W. M. Smart, Foundations of Astronomy, London, 1962.
[9] W. M. Smart, Text - Book on Spherical Astronomy, Cambridge, 1962.
[10] M. A. Todhunter, J. G. Leathem, Spherical Trigonometry, London, 1960
[11] V. Voronston, P. M. Rabbitt, Astronomical Problems, London, 1969.
[12] E. W. Woolard, G. M. Clemence, Spherical Astronomy, New York, 1966.
[13] L.M. Kells, W.F. Kern, J.R. Bland, Plane and Spherical Trigonometry, London, 1940.
[14] L. Motz, A. Duveen, Essentials of Astronomy, London, 1966.
15] R. Cushman, Direction of Hamiltonian dynamics and celestial mechanics, Contemporary Mathematics, 198 (1996), 229-24.
[16] S. L. Altman, Quaternions and Double Groups, Oxford Science Publications, 1986.
[17] G. W. Housner, D. E. Hudson, Applied Mechanics Dynamics, D.Van Nostrand Company, Inc., 1959.
[18] J. B. Kuipers, Object tracking and orientation determination means, system and process, U.S. Patent No: 3,868,565, February 25, 1975.
[19] J. B. Kuipers, Tracking and determining orientation of an object using coordinate transformation means, system and process, U.S. Patent No: 3,983,474 September 26, 1976.
[20] J. B. Kuipers, Methods and Apparatus for determining remote object orientation and position, U.S. Patent No: 4,742,356, May 1988.
[21] Mathematics Research Developments, Quaternions: Theory and Applications, Ed. S. Griffin, Nova Science Publisher, Inc., 2017.
[22] Mathematics Research Developments, Understanding Quaterniyons, Ed. P. Du, fr., Nova Science Publisher, Inc., 2020.
23] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Wiley, 10th Edition, 2013.
[24] R. C. Fisher, A. D. Zıebur, Calculus and Analytic Geometry, Prentice-Hall. 1965.

Nonexistence of Global Solutions for the Strongly Damped Wave Equation with Variable Coefficients

Erhan Pişkin ${ }^{1 *}$ and Ayşe Fidan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Dicle University, Diyarbakır, Turkey
${ }^{2}$ Department of Mathematics, Institute of Natural and Applied Sciences, Dicle University, Diyarbakır, Turkey
*Corresponding author

Article Info
Keywords: Nonexistence of global solutions, Variable coefficients, Wave equation
2010 AMS: 35A01, 35B44, 35L05
Received: 25 January 2022
Accepted: 12 May 2022
Available online: 30 June 2022

1. Introduction

In this paper, we are concerned with the following problem:

$$
\begin{cases}u_{t t}-\Delta u-\Delta u_{t}+\mu_{1}(t)\left|u_{t}\right|^{p-2} u_{t}=\mu_{2}(t)|u|^{q-2} u, & x \in \Omega, t>0 \tag{1.1}\\ u(x, t)=0, & x \in \partial \Omega, t>0 \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \Omega\end{cases}
$$

where Ω is a bounded domain in $R^{n}(n \in N)$, with a smooth boundary $\partial \Omega, p \geq 2, q>2, \mu_{1}(t)$ is a non-negative function of t and $\mu_{2}(t)$ is a positive functions of t. The quantity $\left|u_{t}\right|^{p-2} u_{t}$ is a damping term which assures global existence, and $|u|^{q-2} u$ is the source term which contributes to nonxistence of global solutions. $\mu_{1}(t)$ and $\mu_{2}(t)$ can be regarded as two control buttons which can dominate the polarity between damping term and source term.
In the absence of the strong damping term Δu_{t}, and $\mu_{1}(t)=\mu_{2}(t) \equiv 1$, then the problem (1.1) can be reduced to the following wave equation

$$
u_{t t}-\Delta u+\left|u_{t}\right|^{p-2} u_{t}=|u|^{q-2} u
$$

Many authors established the existence, nonexistence and decay of solutions, see [1-6]. The interaction between nonlinear damping $\left(\left|u_{t}\right|^{p-2} u_{t}\right)$ and the source term $\left(|u|^{q-2} u\right)$ makes the problem more interesting. Levine $[2,3]$ first studied the interaction between the linear damping $(p=2)$ and source term by using Concavity method. But this method can't be applied in the case of a nonlinear damping term. Georgiev and Todorova [1] extended Levine's result to the nonlinear case ($p>2$). They showed that solutions with negative initial energy blow up in finite time. Later, Vitillaro in [6] extended these results to situations where the nonlinear damping and the solution has positive initial energy.
In [7], Yu investigated the equation with constant coefficients

$$
\begin{equation*}
u_{t t}-\Delta u-\Delta u_{t}+\left|u_{t}\right|^{p-2} u_{t}=|u|^{q-2} u \tag{1.2}
\end{equation*}
$$

He showed globality, boundedness, blow-up, convergence up to a subsequence towards the equilibria and exponential stability. Gerbi and Said-Houari [8] proved exponential decay of solutions (1.2) for $p=2$.

Zheng et al. [9] considered the Petrovsky equation

$$
u_{t t}+\Delta^{2} u+k_{1}(t)\left|u_{t}\right|^{m-2} u_{t}=k_{2}(t)|u|^{p-2} u
$$

in a bounded domain. They proved the blow up of solutions.
In this paper, we established the nonexistence of solutions. To our best knowledge, the nonexistence of solutions of the wave equation with variable coefficients not yet studied.
This paper is organized as follows: In the next section, we present some lemmas, notations and local existence theorem. In section 3 , the nonexistence of global solutions are given.

2. Preliminaries

In order to state the main results to problem (1.1) more clearly, we start to our work by introducing some notations and lemmas which will be used in this paper. Throughout this paper $\|u\|_{p}=\|u\|_{L^{p}(\Omega)}$ and $\|u\|_{2}=\|u\|$ denote the usual $L^{p}(\Omega)$ norm and $L^{2}(\Omega)$ norm, respectively. Also, $W_{0}^{m, 2}(\Omega)=H_{0}^{m}(\Omega)$ is a Hilbert spaces (see [10,11], for details).
Lemma 2.1. [4]. Assume that

$$
\begin{cases}2 \leq q<\infty, & n \leq 2 \\ 2<q<\frac{2(n-1)}{n-2}, & n \geq 3\end{cases}
$$

Then, there exist a positive constant $C>1$, depending on Ω only, such that

$$
\begin{equation*}
\|u\|_{q}^{s} \leq C\left(\|\nabla u\|^{2}+\|u\|_{q}^{q}\right) \tag{2.1}
\end{equation*}
$$

for any $u \in H_{0}^{1}(\Omega)$ and $2 \leq s \leq q$.
Lemma 2.2. Assume that $p \geq 2, q>2, \mu_{1}(t)$ is a nonnegative function of $t, \mu_{2}(t)$ is a positive functions of t and $\mu_{2}^{\prime}(t) \geq 0$. Let $u(t)$ be a solution of problem (1.1) then the energy functional $E(t)$ is non-increasing, namely $E^{\prime}(t) \leq 0$.

Proof. Multiplying the equation (1.1) with u_{t} and integrating with respect to x over the domain Ω, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{2}\|\nabla u\|^{2}-\frac{\mu_{2}(t)}{q}\|u\|_{q}^{q}\right)=-\mu_{1}(t)\left\|u_{t}\right\|_{p}^{p}-\left\|\nabla u_{t}\right\|^{2}-\frac{\mu_{2}^{\prime}(t)}{q}\|u\|_{q}^{q} \tag{2.2}
\end{equation*}
$$

By the equality (2.2), we get

$$
E^{\prime}(t)=-\mu_{1}(t)\left\|u_{t}\right\|_{p}^{p}-\left\|\nabla u_{t}\right\|^{2}-\frac{\mu_{2}^{\prime}(t)}{q}\|u\|_{q}^{q} \leq 0
$$

and $E(t) \leq E(0)$, where

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{2}\|\nabla u\|^{2}-\frac{\mu_{2}(t)}{q}\|u\|_{q}^{q}, \tag{2.3}
\end{equation*}
$$

and

$$
E(0)=\frac{1}{2}\left\|u_{1}\right\|^{2}+\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-\frac{\mu_{2}(0)}{q}\left\|u_{0}\right\|_{q}^{q}
$$

In order to obtain our main results, we set

$$
\begin{equation*}
H(t)=-E(t) \tag{2.4}
\end{equation*}
$$

In the following remark, C denotes a generic constant that varies from line to line. Combining (2.1), (2.3) and (2.4), we obtain

Remark 2.3. Assume that

$$
\begin{cases}2 \leq q<\infty, & n \leq 2 \\ 2<q<\frac{2(n-1)}{n-2}, & n \geq 3\end{cases}
$$

and energy functional $E(t)<0$. Then, there exist a positive constant C, depending only on Ω, such that

$$
\begin{equation*}
\|u\|_{q}^{s} \leq C\left(H(t)+\left\|u_{t}\right\|^{2}+\left(\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right) \tag{2.5}
\end{equation*}
$$

for any $u \in H_{0}^{1}(\Omega)$ and $2 \leq s \leq q$.
Next, we state the local existence theorem that can be established by combining arguments of [1, 12].
Theorem 2.4. (Local existence). Suppose that

$$
\begin{cases}2 \leq q<\infty, & n \leq 2 \\ 2<q<\frac{2(n-1)}{n-2}, & n \geq 3\end{cases}
$$

Then, for any given $\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right)$, the problem (1.1) has a local solution satisfying

$$
u \in C\left([0, T]: H_{0}^{1}(\Omega), u_{t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{p}(\Omega,[0, T])\right)
$$

for some $T>0$.

3. Nonexistence of Global Solutions

In this section, we will consider the nonexistence of global solutions for the problem (1.1). By using the same techniques as in [9].
Theorem 3.1. Let the assumptions of Lemma 2.2 hold. And assume that $\mu_{1}(t)$ is a nonnegative function of $t, \mu_{2}(t)$ is a positive functions of $t, \mu_{2}^{\prime}(t) \geq 0$ and

$$
\lim _{t \rightarrow \infty} \mu_{1}(t) \mu_{2}(t)^{\alpha(p-1)}
$$

exists, where

$$
0<\alpha \leq \min \left\{\frac{q-2}{2 q}, \frac{q-p}{q(p-1)}\right\}
$$

Then the solution of Eq. (1.1) blows up in finite time T^{*} and

$$
T^{*} \leq \frac{1-\alpha}{\alpha \gamma L^{\frac{\alpha}{1-\alpha}}(0)}
$$

if $q>p$ and the initial energy function

$$
E(0)<0
$$

where

$$
L(0)=[H(0)]^{1-\alpha}+\varepsilon \int_{\Omega} u_{0} u_{1} d x>0
$$

Proof. From (2.2)-(2.4), we have

$$
\begin{equation*}
\frac{d}{d t} H(t)=\mu_{1}(t)\left\|u_{t}\right\|_{p}^{p}+\left\|\nabla u_{t}\right\|^{2}+\frac{\mu_{2}^{\prime}(t)}{q}\|u\|_{q}^{q} \geq 0 \tag{3.1}
\end{equation*}
$$

for almost, every $t \in[0, T)$. Therefore

$$
\begin{equation*}
0<H(0) \leq H(t) \leq \frac{\mu_{2}(t)}{q}\|u\|_{q}^{q}, t \in[0, T) \tag{3.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
L(t)=H^{1-\alpha}(t)+\varepsilon \int_{\Omega} u u_{t} d x+\frac{\varepsilon}{2}\|\nabla u\|^{2} \tag{3.3}
\end{equation*}
$$

where $\varepsilon>0$ is small to be chosen later, and

$$
\begin{equation*}
0<\alpha \leq \min \left\{\frac{q-2}{2 q}, \frac{q-p}{q(p-1)}\right\} \tag{3.4}
\end{equation*}
$$

Differentiating (3.3) with respect to t and combining the first equation of (1.1), we have

$$
\begin{align*}
L^{\prime}(t)= & (1-\alpha) H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \int_{\Omega}\left(u u_{t t}+u_{t}^{2}\right) d x+\varepsilon \int \nabla u \nabla u_{t} d x \\
= & (1-\alpha) H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \int \nabla u \nabla u_{t} d x \\
& +\varepsilon \int_{\Omega}\left(u \Delta u+u \Delta u_{t}-\mu_{1}(t)\left|u_{t}\right|^{p-1} u+\mu_{2}(t) u^{q}+u_{t}^{2}\right) d x \\
= & (1-\alpha) H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left\|u_{t}\right\|^{2}-\varepsilon\|\nabla u\|^{2} \\
& +\varepsilon \mu_{2}(t)\|u\|_{q}^{q}-\varepsilon \mu_{1}(t) \int_{\Omega}\left|u_{t}\right|^{p-1} u d x \tag{3.5}
\end{align*}
$$

Due to the Hölder's and Young's inequalities, we have

$$
\begin{align*}
\left.\left|\mu_{1}(t) \int_{\Omega}\right| u_{t}\right|^{p-1} u d x \mid & \leq \mu_{1}(t) \int_{\Omega}\left|u_{t}\right|^{p-1} u d x \\
& \leq\left(\int_{\Omega} \mu_{1}(t)\left|u_{t}\right|^{p} d x\right)^{\frac{p-1}{p}}\left(\int_{\Omega} \mu_{1}(t)|u|^{p} d x\right)^{\frac{1}{p}} \\
& \leq \frac{p-1}{p} \mu_{1}(t) \delta^{-\frac{p}{p-1}}\left\|u_{t}\right\|_{p}^{p}+\frac{\delta^{p}}{p} \mu_{1}(t)\|u\|_{p}^{p} \tag{3.6}
\end{align*}
$$

where δ is positive constant to be determined later. According to the conditions $\mu_{1}(t) \geq 0, \mu_{2}^{\prime}(t) \geq 0$ and (3.1), we get

$$
\begin{equation*}
H^{\prime}(t) \geq \mu_{1}(t)\left\|u_{t}\right\|_{p}^{p} \tag{3.7}
\end{equation*}
$$

Combining (2.3), (2.4), (3.5), (3.6) and (3.7), we have

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha) H^{-\alpha}(t)-\frac{p-1}{p} \varepsilon \delta^{-\frac{p}{p-1}}\right] H^{\prime}(t) } \\
& +\varepsilon\left(q H(t)-\frac{\delta^{p}}{p} \mu_{1}(t)\left\|u_{t}\right\|_{p}^{p}\right) \\
& +\varepsilon\left(\frac{q}{2}+1\right)\left\|u_{t}\right\|^{2}+\varepsilon\left(\frac{q}{2}-1\right)\|\nabla u\|^{2} . \tag{3.8}
\end{align*}
$$

Since the integral is taken over the variable x, it is reasonable to take δ depending on variable t. From (3.2), we obtain

$$
0<H^{-\alpha}(t) \leq H^{-\alpha}(0),
$$

for every $t>0$. Hence $H^{-\alpha}(t)$ is a positive function and bounded. Thus, by taking $\delta^{-\frac{p}{p-1}}=m H^{-\alpha}(t)$, for large m to be specified later, and substituting in (3.8), we get

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{p-1}{p} \varepsilon m\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon\left(\frac{q}{2}+1\right)\left\|u_{t}\right\|^{2}+\varepsilon\left(\frac{q}{2}-1\right)\|\nabla u\|^{2} \\
& +\varepsilon\left[q H(t)-\frac{m^{1-p}}{p} \mu_{1}(t) H^{\alpha(p-1)}(t)\|u\|_{p}^{p}\right] . \tag{3.9}
\end{align*}
$$

By using the (2.3), (2.4), (3.2) and the embedding $L^{q}(\Omega) \hookrightarrow L^{p}(\Omega)(q>p)$, we arrive at $\|u\|_{p}^{p} \leq C\|u\|_{q}^{p}$ and

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{p-1}{p} \varepsilon m\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon\left(\frac{q}{2}+1\right)\left\|u_{t}\right\|^{2}+\varepsilon\left(\frac{q}{2}-1\right)\|\nabla u\|^{2} \\
& +\varepsilon\left[q H(t)-\frac{C m^{1-p}}{p} \mu_{1}(t)\left(\frac{\mu_{2}(t)}{q}\right)^{\alpha(p-1)}\|u\|_{q}^{p+q \alpha(p-1)}\right] . \tag{3.10}
\end{align*}
$$

From (3.4), we get $2 \leq s=p+q \alpha(p-1) \leq q$. Combining (2.3), (2.4), Remark 2.3 and (3.10), we obtain

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{p-1}{p} \varepsilon m\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left(\frac{q}{2}+1\right)\left\|u_{t}\right\|^{2}+\varepsilon\left(\frac{q}{2}-1\right)\|\nabla u\|^{2} } \\
& +\varepsilon\left[q H(t)-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t)\left(H(t)+\left\|u_{t}\right\|_{2}^{2}+\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right] \\
\geq & {\left[(1-\alpha)-\frac{p-1}{p} \varepsilon m\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left(\frac{q+2}{2}-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t)\right) H(t) } \\
& +\varepsilon\left[\frac{q+6}{4}-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t)\right]\left\|u_{t}\right\|^{2} \\
& +\varepsilon\left[\frac{q-2}{2 q} \mu_{2}(t)-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t)\left(\frac{\mu_{2}(t)}{q}+1\right)\right]\|u\|_{q}^{q}, \tag{3.11}
\end{align*}
$$

where $C_{1}=\frac{C}{p q^{\alpha(p-1)}}$. Since $\lim _{t \rightarrow \infty} \mu_{1}(t) \mu_{2}(t)^{\alpha(p-1)}$ exists, $\mu_{1}(t) \mu_{2}(t)^{\alpha(p-1)}$ is bounded for every $t>0$. Then, we choose m large enough so that the coefficients of $H(t),\left\|u_{t}\right\|^{2}$ and $\|u\|_{q}^{q}$ in (3.11) are strictly positive. Therefore, we arrive at

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{p-1}{p} \varepsilon m\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon \beta\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\left(\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right] \tag{3.12}
\end{align*}
$$

where

$$
\begin{aligned}
\beta= & \min \left\{\frac{q+2}{2}-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t),\right. \\
& \frac{q+6}{4}-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t) \\
& \left.\frac{q-2}{2 q} \mu_{2}(t)-C_{1} m^{1-p} \mu_{2}(t)^{\alpha(p-1)} \mu_{1}(t)\right\}
\end{aligned}
$$

is the minimum of the coefficients of $H(t),\left\|u_{t}\right\|^{2}$ and $\|u\|_{q}^{q}$. Once m is fixed, we can take ε small enough so that $1-\alpha-\frac{p-1}{p} \varepsilon m \geq 0$ and

$$
\begin{equation*}
L(0)=H^{1-\alpha}(0)+\varepsilon \int_{\Omega} u_{0} u_{1} d x>0 . \tag{3.13}
\end{equation*}
$$

Then (3.12) becomes

$$
\begin{equation*}
L^{\prime}(t) \geq \varepsilon \beta\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\left(\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right] \geq 0 \tag{3.14}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
L(t) \geq L(0)>0 \tag{3.15}
\end{equation*}
$$

For the definition of $L(t)$ (see (3.3)) we have

$$
\begin{align*}
\left|\int_{\Omega} u u_{t} d x\right| & \leq\|u\|\left\|u_{t}\right\| \\
& \leq C\|u\|_{q}\left\|u_{t}\right\| \tag{3.16}
\end{align*}
$$

using Hölder's inequality and the embedding $L^{q}(\Omega) \hookrightarrow L^{p}(\Omega)(q>p)$. Thanks to Young's inequality, we have

$$
\begin{align*}
\left|\int_{\Omega} u u_{t} d x\right|^{\frac{1}{1-\alpha}} & \leq C\|u\|_{q}^{\frac{1}{1-\alpha}}\left\|u_{t}\right\|^{\frac{1}{1-\alpha}} \\
& \leq C\left(\|u\|_{q}^{\frac{2}{1-2 \alpha}}+\left\|u_{t}\right\|^{2}\right) \tag{3.17}
\end{align*}
$$

from (3.4), we arrive at $\frac{2}{1-2 \alpha}<q$.
Combining (3.17) and Remark 2.3, we get

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t} d x\right|^{\frac{1}{1-\alpha}} \leq C\left(H(t)+\left\|u_{t}\right\|_{2}^{2}+\left(\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right) \tag{3.18}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
L^{\frac{1}{1-\alpha}}(t) & =\left[H^{1-\alpha}(t)+\varepsilon \int_{\Omega} u u_{t} d x\right]^{\frac{1}{1-\alpha}} \\
& \leq 2^{\frac{1}{1-\alpha}}\left(H(t)+\left|\varepsilon \int_{\Omega} u u_{t} d x\right|^{\frac{1}{1-\alpha}}\right) \\
& \leq C\left(H(t)+\left\|u_{t}\right\|_{2}^{2}+\left(\frac{\mu_{2}(t)}{q}+1\right)\|u\|_{q}^{q}\right) \tag{3.19}
\end{align*}
$$

Combining (3.14), (3.15) and (3.19), we have

$$
\begin{equation*}
L^{\prime}(t) \geq \gamma L^{\frac{1}{1-\alpha}}(t) \tag{3.20}
\end{equation*}
$$

where γ is a constant depending only on C, β and ε. Integrating (3.20), we arrive at

$$
\begin{equation*}
L^{\frac{1}{1-\alpha}}(t) \geq \frac{1}{L^{-\frac{\alpha}{1-\alpha}}(0)-\frac{\alpha}{1-\alpha} \gamma t} \tag{3.21}
\end{equation*}
$$

If

$$
t \rightarrow\left[\frac{1-\alpha}{\alpha \gamma L^{\frac{\alpha}{1-\alpha}}(0)}\right]^{-}, \quad L^{-\frac{\alpha}{1-\alpha}}(0)-\frac{\alpha}{1-\alpha} \gamma t \rightarrow 0
$$

Hence, $L(t)$ blows up in finite time T^{*} and

$$
T^{*} \leq \frac{1-\alpha}{\alpha \gamma L^{\frac{\alpha}{1-\alpha}}(0)}
$$

which complete the proof of the Theorem.

4. Conclusion

In this paper, we obtained the nonexistence of global solutions for a strongly damped wave equation with variable coefficients. This improves and extends many results in the literature.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., 109(2) (1994), 295-308.
[2] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=A u+F(u)$, Trans. Am. Math. Soc., 192 (1974), 1-21.
[3] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.
[4] S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachrichten, 231 (2001), 105-111.
[5] X. Runzhang, S. Jihong, Some generalized results for global well-posedness for wave equations with damping and source terms, Math. Comput. Simul., 80 (2009), 804-807
[6] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), $155-182$.
[7] S. Yu, On the strongly damped wave equation with nonlinear damping and source terms, Electron. J. Qual. Theory Differ. Equ., 39 (2009), 1-18.
[8] S. Gerbi, B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete. Cont. Dyn. - S, 5(3) (2012), 559-566.
[9] X. Zheng, Y. Shang, X. Peng, Blow up of solutions for a nonlinear Petrovsky type equation with time-dependent coefficients, Acta Math. Appl. Sin., 36(4) (2020), 836-846.
[10] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Academic Press, New York, 2003
[11] E. Pişkin, B. Okutmuştur, An Introduction to Sobolev Spaces, Bentham Science, 2021.
[12] E. Pişkin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math., 13 (2015), 408-420.

Connected Square Network Graphs

Burhan Selçuk ${ }^{1}$
${ }^{1}$ Department of Computer Engineering, Faculty of Engineering, Karabü̈k University, Karabük, Turkey

Article Info
Keywords: Hamilton graph, Interconnection network, Graphical indices 2010 AMS: 05C09, 05C45, 68M10
Received: 15 January 2022
Accepted: 25 June 2022
Available online: 30 June 2022

1. Introduction

Nowadays, many types of interconnection network topologies have been extensively studied by researchers. The most popular of these are trees, cycles, grids, tori, meshes and hypercubes. A new network topology will be introduced in this study. This new network structure is obtained using squares and called the Connected Square Network Graph (CSNG). Two different definitions are given for the connected square network graph. Firstly, it is obtained by combining a finite number of squares in 2D space. Secondly, it is obtained recursively from square and compound cubes in the first way.
In the literature, hypercube, and its variants (Folded Hypercube, Crossed Cube and the Hierarchical Cubic Network) have been studied extensively in the interconnection network [1-9]. Karcı and Selçuk introduced new hypercube variants and investigated it's Hamilton-like features. These; Fractal Cubic Network Graph (FCNG) [10] uses the fractal structures and Connected Cubic Network Graph [11] uses hypercube. They investigated the topological properties of new hypercube variants.
Motivated by the [10] and [11], a new network structure will be defined in this study. The outline of this study is as follows. Section 2 informs basic information about graph theory and explains the definitions of CSNG. Section 3 investigates the analytical properties of CSNG and is obtained Hamiltonian properties of CSNG is obtained. Labelling algorithm for this graph is given in Section 4. In Section 5, topological features of CSNG are obtained and a projection for future work is presented.

2. Preliminaries

Rest of the study, $G=(V, E)$ is a graph where V is a vertex set and E is a edge set. (x, y) is an edge in E where $(x, y) \in G$. The degree of vertex $x \in V(G)$ is denoted by $\operatorname{deg}(x)$ and $d(x, y)$ is a shortest path from x to y in G.
$"\left|\mid "\right.$ indicates the concatenation of two strings. The Hamming distance is $\sum_{i=0}^{n-1}\left(a_{i} \oplus b_{i}\right)$ since \oplus is bitwise-XOR operation. $S(2)$ is denoted a square in $2 D$ space. The $2 D$ coordinate system is given below:

Figure 2.1: Two-dimensional coordinate space
Two different definitions be given to obtain these graphs, in this section.

Definition 2.1. (CSNG): Let $\operatorname{CSNG}(0,0)=S(2)$ (Fig 2.(a)). $\operatorname{CSNG}(k, m)$ can be defined in two steps.

Case I. Construction in one direction

(i) Suppose $\sum_{i=0}^{m} 2^{i}$ squares with common two nodes (an edge) are connected along the y-axis. This graph will be called a $\operatorname{CSNG}(0, m)$. For example, the mesh structure given in Figure 2(b)-(c) are $\operatorname{CSNG}(0,1)$ and $\operatorname{CSNG}(0,2)$.
(ii) Suppose $\sum_{i=0}^{k}$ squares with common two nodes (an edge) are connected along the x-axis. This graph will be called a $\operatorname{CSNG}(k, 0)$.

Case II. Construction in two directions
(i) Suppose $\sum_{i=0}^{m} 2^{i} \operatorname{CSNG}(k, 0) \mathrm{s}$ with common two nodes (an edge) are connected along the y-axis. This graph will be called a $\operatorname{CSNG}(\mathrm{k}, \mathrm{m})$.
(ii) Suppose $\sum_{i=0}^{k} 2^{i} \operatorname{CSNG}(0, m)$ s with common lower and upper surfaces (one surface) are connected along the x-axis. This graph will be called a $\operatorname{CSNG}(k, m)$.
$\operatorname{CSNG}(0,0)$ is represented by $S(2)$ in the Figure 2.2-(a). In Figure 2.2-(b) (Figure 2.2-(c)), $\operatorname{CSNG}(0,1)(\operatorname{CSNG}(0,2))$ is obtained by combining 3 (7) squares with one side in common. $\operatorname{CSNG}(1,2)$ is obtained by combining 3 - $\operatorname{CSNG}(0,2)$ s which have top and bottom horizontal surfaces to be in common in Figure 3.1-(b).

Figure 2.2: a. $\operatorname{CSNG}(0,0)$, b. $\operatorname{CSN}(0,1)$, c. $\operatorname{CSNG}(0,2)$, respectively

Figure 2.3: $\operatorname{CSNG}(1,2)$

Definition 2.2. Two $\operatorname{CSNG}(k, m-1) \mathrm{s}$ (or $\operatorname{CSNG}(k-1, m) \mathrm{s}$) can be merged to construct a new mesh of size doubling the size of $\operatorname{CSNG}(k, m)=G(V, E), k \geq 0, m \geq 0$. There are two situations:
(i) If doubling dimension is x, then the nodes and edges in $0 \| \operatorname{CSNG}(k-1, m)$ and $1 \| \operatorname{CSNG}(k-1, m)$ are also included in $\operatorname{CSNG}(k, m)=G\left(V_{x}, E_{x}\right)$. If $\forall v_{i} \in V, p=0, \ldots, k+m-1,2^{p} \leq \operatorname{Label}\left(v_{i}\right) \leq 2^{p}+1,|k-m| \leq 1$, then $\forall\left(0 \|\left|v_{i}, 1\right| \mid v_{i}\right) \in E_{x}$.
(ii) If doubling dimension is y , then the nodes and edges in $0 \| \operatorname{CSNG}(k, m-1)$ and $1 \| \operatorname{CSNG}(k, m-1)$ are also included in $\operatorname{CSNG}(k, m)=G\left(V_{y}, E_{y}\right)$. If $\forall v_{i} \in V, \operatorname{Label}\left(v_{i}\right)$ is even, $\operatorname{Label}\left(v_{i}\right)<2^{k+m},|k-m| \leq 1$, then $\forall\left(0 \| v_{i}, 1| | v_{i}\right) \in E_{y}$.
$\operatorname{CSNG}(0,1)$ and $\operatorname{CSNG}(0,2)$ can be constructed using definition 2.2-(i) in Fig. 2.4-(a) and Fig. 3.1-(a), respectively. Similarly, $\operatorname{CSNG}(1,0)$ and $\operatorname{CSNG}(1,2)$ can be constructed using definition 2.2-(ii) in Fig. 2.4-(b) and Fig. 3.2-(a), respectively.

Figure 2.4: a. $\operatorname{CSNG}(0,1)$, b. $\operatorname{CSNG}(0,1)$, respectively

Figure 3.1: a. Construction of $\operatorname{CSNG}(0,2)$ using Definiton 2.2, b. Labelling of $\operatorname{CSNG}(0,2)$, respectively

3. Topological Features of Connected Square Network Graphs

3.1. Hamilton features of $\operatorname{CSNG}(0, m)(\operatorname{CSNG}(k, 0))$

In this subsection, we analyzed Hamilton features of $\operatorname{CSNG}(0, m)(\operatorname{CSNG}(k, 0))$. Firstly, we give an example. $\operatorname{CSNG}(0,2)$ is a Hamilton graph labelled with a 4-bit gray code in Fig. 3.1-(b).
Theorem 3.1. Suppose $\sum_{i=0}^{m} 2^{i}$-squares with common two nodes (an edge) are connected along the y-axis in definition 2.1-(a). This graph, $\operatorname{CSNG}(0, m)$, has $3 \times 2^{m+1}-2$ edges and 2^{m+2} nodes. Further, $\operatorname{CSNG}(0, m)$ is a Hamilton graph and is labeled with a $m+2$-bit gray code. Proof. The total node number of nodes of $\operatorname{CSNG}(0, m)$ can be calculated by using definition 2.1-(a) and mathematical induction.
First Step: Let $m=2$. Suppose $\sum_{i=0}^{2} 2^{i}=7$-squares with common two nodes (an edge) are connected along the y-axis. The total number node is along the y-axis $2\left(\sum_{i=0}^{2} 2^{i}+1\right)=2^{2+2}$.
Hypothesis Step: Let $m=n-1$. Suppose $\sum_{i=0}^{n-1} 2^{i}$-squares with common two nodes (an edge) are connected along the y-axis. Assume that $\operatorname{CSNG}(0, n-1)$ has 2^{n+1} nodes.
Final Step: Let $m=n$. Suppose $\sum_{i=0}^{n} 2^{i}$-squares with common two nodes (an edge) are connected along the y-axis. The following equation applies for the proof of final step:

$$
\sum_{i=0}^{n} 2^{i}=\sum_{i=0}^{n-1} 2^{i}+2^{n} .
$$

$\operatorname{CSNG}(0, n)$ is obtained by adding $2^{n} S(2)$ to the $\operatorname{CSNG}(0, n-1)$ with 2 edges in common. Namely,

$$
\begin{aligned}
& \left(\sum_{i=0}^{n} 2^{i}\right) S(2)=\left(\sum_{i=0}^{n-1} 2^{i}\right) S(2)+2^{n} S(2) \\
& \operatorname{CSNG}(0, n)=\operatorname{CSNG}(0, n-1)+2^{n} S(2)
\end{aligned}
$$

Hence, total node number of $\operatorname{CSNG}(0, n)$ is $2^{n+1}+2^{n} \times 2=2^{n+2}$.
Secondly, the total number edge is along the x-axis $2 \sum_{i=0}^{m} 2^{i}=2\left(2^{m+1}-1\right)=2.2^{m+1}-2$. The total number edge is along the y-axis $\sum_{i=0}^{m} 2^{i}+1=2^{m+1}$. Total edge number of $\operatorname{CSNG}(0, m)$ is $3.2^{m+1}-2$.
Finally, we showed that $\operatorname{CSNG}(0, m)$ is a Hamilton graph. Mathematical induction will be used for proof.
First Step: Let $m=2 \cdot \operatorname{CSNG}(0,2)$ is a Hamilton graph which is labelled with help of 4-bit Gray code seen in Fig. 3.1-(b).
Hypothesis Step: Let $m=n-1$. Suppose $\operatorname{CSNG}(0, n-1)$ is a Hamilton graph which is labelled with help of $n+1$-bit Gray code and has 2^{n+1} nodes.
Final Step: Let $m=n$. The following equality is obtained

$$
\operatorname{CSNG}(0, n)=0\|\operatorname{CSNG}(0, n-1) \cup 1\| \operatorname{CSNG}(0, n-1)
$$

since $\operatorname{CSNG}(0, n)$ has $2^{n+2}=2.2^{n+1}$ nodes. Suppose x_{i} and x_{j} are two nodes in $\operatorname{CSNG}(0, n-1)$ and $x_{i} \oplus x_{j}=1$. The edges $\left(0\left|\left|\operatorname{Label}\left(x_{i}\right), 1\right|\right| \operatorname{Label}\left(x_{i}\right)\right)$ and $\left(0\left|\left|\operatorname{Label}\left(x_{j}\right), 1\right|\right| \operatorname{Label}\left(x_{j}\right)\right)$ are in $\operatorname{CSNG}(0, n-1)$ and they are in $\operatorname{Hamilton}$ circuit in $\operatorname{CSNG}(0, n)$. Namely, $\operatorname{CSNG}(0, n)$ is a Hamilton graph which is labelled with help of $n+2$-bit Gray code and has 2^{n+2} nodes.
Similar results can be obtained in $\operatorname{CSNG}(k, 0)$.

3.2. Hamilton features of $\operatorname{CSNG}(k, m)$

In this subsection, we analyzed Hamilton features of $\operatorname{CSNG}(k, m)$. Firstly, we give an example. $\operatorname{CSNG}(1,2)$ is a Hamilton graph labelled with a 5 -bit gray code in Fig. 3.2-(b).

Figure 3.2: a. Construction of $\operatorname{CSN}(1,2)$ using Definiton 2.2, b. Labeling of $\operatorname{CSNG}(1,2)$

Theorem 3.2. Suppose $\sum_{i=0}^{k}-\operatorname{CSNG}(0, m)$ s with common lower and upper surfaces (one surface) are connected along the x-axis. This graph will be called a $\operatorname{CSN} G(k, m) . \operatorname{CSN} G(k, m)$ has 2^{k+m+2} nodes and $2^{k+m+3}-2^{m+1}-2^{k+1}$ edges. Further, $\operatorname{CSNG}(k, m)$ is a Hamilton graph and is labeled with a $k+m+2$-bit gray code.
Proof. Firstly, $\operatorname{CSN} G(k, m)$ is consist of $\sum_{i=0}^{k}-\operatorname{CSNG}(0, m)$ s. Besides, $\operatorname{CSNG}(0, m)$ is consist of $\sum_{j=0}^{m} \operatorname{CSNG}(0,0) \mathrm{s}$ where $\operatorname{CSNG}(0,0)$ is a $S(2)$ square. Hence,

$$
\operatorname{CSNG}(k, m)=\sum_{i=0}^{k} \operatorname{CSNG}(0, m)=\sum_{i=0}^{k} \sum_{j=0}^{m} \operatorname{CSNG}(0,0) \operatorname{S}(2) .
$$

Node numbers of $\operatorname{CSNG}(k, m)$ is

$$
\left(\sum_{i=0}^{k} 2^{i}+1\right)\left(\sum_{j=0}^{m} 2^{j}+1\right)=2^{k+1} 2^{m+1}=2^{k+m+2} .
$$

Because there are $\sum_{i=0}^{k} 2^{i}+1$ nodes along the x-axis and $\sum_{j=0}^{m} 2^{j}+1$ nodes along the y-axis.
Secondly, total number of edges along the x-axis is $\left(\sum_{i=0}^{m} 2^{i}\right)\left(\sum_{j=0}^{k} 2^{j}+1\right)$ and, total number of edges along the y-axis is $\left(\sum_{i=0}^{k} 2^{i}\right)\left(\sum_{j=0}^{m} 2^{j}+1\right)$. Total number of edges of $\operatorname{CSNG}(k, m)$ is

$$
\left(\sum_{i=0}^{m} 2^{i}\right)\left(\sum_{j=0}^{k} 2^{j}+1\right)+\left(\sum_{i=0}^{k} 2^{i}\right)\left(\sum_{j=0}^{m} 2^{j}+1\right)=\left(2^{m+1}-1\right) 2^{k+1}+\left(2^{k+1}-1\right) 2^{m+1}=2^{k+m+3}-2^{m+1}-2^{k+1} .
$$

A similar proof of Theorem 3.1 can be done to show that $\operatorname{CSNG}(k, m)$ is a Hamilton graph.

4. Labelling Algorithm

In this section, an algorithm will be designed to label $\operatorname{CSNG}(k, m)$ with the help of the reference [12].
Example 4.1. Let $k=1, m=2$ and $S=\left\{\begin{array}{lll}00 & 011110\}, \text { inv } S \\ S\end{array}=\left\{\begin{array}{lll}101101 & 00\end{array}\right\}\right.$. Assume that $\operatorname{CSN}(0,0)=S$, inv_CSNG $(0,0)=$ inv_S where inv_CSNG is reverse sorting of CSNG. It can be calculation for $k+m=3$ iteration.

1. Iteration ($k=0, m=1$):

$$
\begin{aligned}
\operatorname{CSNG}(0,1) & =0\|\operatorname{CSNG}(0,0) \cup 1\| \text { inv_CSNG }(0,0) \\
& =0\|\{00011110\} \cup 1\|\{10110100\} \\
& =\{000001011010110111101100\}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { inv_CSNG }(0,1) & =1\|\operatorname{CSNG}(0,0) \cup 0\| \mid i n v _\operatorname{CSNG}(0,0) \\
& =1\|\{00011110\} \cup 0\|\{10110100\} \\
& =\{100101111110010011001000\}
\end{aligned}
$$

2. Iteration ($k=0, m=2$):

$$
\begin{aligned}
\operatorname{CSNG}(0,2) & =0| | \operatorname{CSNG}(0,1) \cup 1| | \text { inv_CSNG }(0,1) \\
& =0| |\{000001011010110111101100\} \cup 1| |\{100101111110010011001000\} \\
& =\{0000000100110010011001110101010011001101111111101010101110011000\}
\end{aligned}
$$

and

```
inv_CSNG(0,2)=1|CSNG(0,1)\cup0|inv_CSNG(0,1)
    = 1||{000 001011010110111101 100}\cup0||{100101111110010011 001 000}
    = {1000100110111010111011111110111000100010101110110001000110001 0000}
```

3. Iteration ($k=1, m=2$).

$$
\begin{aligned}
\operatorname{CSNG}(1,2)= & 0\|\operatorname{CSNG}(0,2) \cup 1\| \text { inv } \operatorname{CSNG}(0,2) \\
= & 0 \|\{0000000100110010011001110101010011001101111111101010101110011000\} \cup \\
& 1 \|\{1000100110111010111011111101110001000101011101100010001100010000\}
\end{aligned}
$$

That is, labelling of nodes of $\operatorname{CSNG}(1,2)$ is
0000000001000110001000110001110010100100
0110001101011110111001010010110100101000
1100011001110111101011110111111110111100
1010010101101111011010010100111000110000 .

Remark 4.2. The Algorithm 1 finds the labeling of $\operatorname{CSNG}(k, m)$ using recursive process. The running time of the Algorithm 1 is $O(p)$ where $p=\max (k, m)$. (Algorithm 1 in Appendix)

5. Comparison Results

Connected square network graphs are scalable. It has been shown that $\operatorname{CSNG}(k, m)$ is an Hamiltonian graph and is not an Euler graph. $\operatorname{CSNG}(0, m)$ (or $\operatorname{CSNG}(k, 0)$) has nodes with 2 and 3 are degree nodes and total node number of is 2^{m+2} in Table 1. $\operatorname{CSNG}(k, m)$ has nodes with 2,3 and 4 are degree nodes and total node number of is 2^{k+m+2} in Table 2. The edge-node relationship for $\operatorname{CSNG}(0, m)$ and $\operatorname{CSNG}(k, m)$ is given in Table 3 and Table 4, respectively. (Tables in Appendix)

Remark 5.1. (see [13]) Sum connectivity-index of $\operatorname{CSNG}(0, m)$ is calculated as follows

$$
\begin{aligned}
\chi_{\alpha}(G) & =\sum_{(x, y) \in E}(\operatorname{deg} x+\operatorname{deg} y)^{\alpha} \\
& =2.4^{\alpha}+4.5^{\alpha}+\left(2^{k+m+3}-2^{m+1}-2^{k+1}-6\right) 6^{\alpha}
\end{aligned}
$$

and sum connectivity-index of $\operatorname{CSNG}(k, m)$ is calculated as follows

$$
\begin{aligned}
\chi_{\alpha}(G) & =\sum_{(x, y) \in E}(\operatorname{deg} x+\operatorname{deg} y)^{\alpha} \\
& =8.5^{\alpha}+\left(2^{m+2}+2^{k+2}-12\right) 6^{\alpha}+\left(2^{m+2}+2^{k+2}-8\right) 7^{\alpha}+\left(2^{k+m+3}-2^{m+1}-2^{k+1}-2^{m+3}-2^{k+3}+12\right) 8^{\alpha}
\end{aligned}
$$

where $\alpha \in R$.
The general Randic index $R_{\alpha}(G)$ of $\operatorname{CSNG}(0, m)$ is calculated as follows

$$
\begin{aligned}
R_{\alpha}(G) & =\sum_{(x, y) \in E}(\operatorname{deg} x \operatorname{deg} y)^{\alpha} \\
& =2.4^{\alpha}+4.6^{\alpha}+\left(2^{k+m+3}-2^{m+1}-2^{k+1}-6\right) 9^{\alpha}
\end{aligned}
$$

and, the general Randic index $R_{\alpha}(G)$ of $\operatorname{CSN} G(k, m)$ is calculated as follows

$$
\begin{aligned}
R_{\alpha}(G) & =\sum_{(x, y) \in E}(\operatorname{deg} x \operatorname{deg} y)^{\alpha} \\
& =8.6^{\alpha}+\left(2^{m+2}+2^{k+2}-12\right) 9^{\alpha}+\left(2^{m+2}+2^{k+2}-8\right) 12^{\alpha}+\left(2^{k+m+3}-2^{m+1}-2^{k+1}-2^{m+3}-2^{k+3}+12\right) 16^{\alpha}
\end{aligned}
$$

where $\alpha=-1,-1 / 2,1 / 2,1$.

6. Conclusion

In this paper, connected square network graphs are introduced. Two different definitions are given to obtain connected square network graphs. The topological properties of these graphs have been investigated and it has been proven to be a Hamilton graph. These graphs can be thought of as a hypercube variant. A labeling algorithm is given that reinforces this idea.

Acknowledgements

The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

There are no competing interests.

Author's contributions

The author contributed to the writing of this paper. The author read and approved the final manuscript.

References

[1] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst., 2(1) (1991), 31-42.
[2] H. Y. Chang, R. J. Chen, Incrementally extensible folded hypercube graphs, J. Inf. Sci. Eng., 16(2), (2000), 291-300.
[3] Q. Dong, X. Yang, J. Zhao, Y. Y. Tang, Embedding a family of disjoint 3D meshes into a crossed cube, Inf. Sci. 178 (2008), 2396-2405.
[4] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst., 40 (1991), 1312-1316.
[5] C. J. Lai, C. H. Tsai, H. C. Hsu, T. K. Li, A dynamic programming algorithm for simulation of a multi-dimensional torus in a crossed cube, Inf. Sci., 180 (2010), 5090-5100.
[6] M. Abd-El-Barr, T. F. Soman, Topological properties of hierarchical interconnection networks a review and comparison, J. Electr. Comput. Eng., (2011).
[7] K. Chose, K. R. Desai, Hierarchical cubic networks, IEEE Trans. Parallel Distrib. Syst., 6 (1995), 427-435.
[8] A. Karci, Hierarchical extended Fibonacci cubes, Iran. J. Sci. Technol. Trans. B Eng., 29 (2005), 117-125.
[9] A. Karci, Hierarchic graphs based on the Fibonacci numbers, Istanbul Univ. J. Electr. Electron. Eng., 7(1) (2007), 345-365.
[10] A. Karcı, B. Selçuk, A new hypercube variant: Fractal Cubic Network Graph, Eng. Sci. Technol. an Int. J., 18(1) (2014), 32-41.
11] B. Selçuk, A. Karcı, Connected cubic network graph, Eng. Sci. Technol. an Int. J., 20(3) (2017), 934-943.
[12] E. D. Knuth, Generating all n-tuples, The Art of Computer Programming, Volume 4A: Enumeration and Backtracking, Pre-Fascicle 2a, 2004.
[13] G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(1) (2003), 85-90.

7. Appendix

```
Algorithm 1: This algorithm calculate labelled of \(\operatorname{CSNG}(k, m)\).
Data: \(k, m, S=\{00011110\}\), inv_ \(S=\{10110100\}\)
Result: labelled of \(\operatorname{CSNG}(k, m)\)
begin
    \(\operatorname{CSNG}(0,0)=S\)
    \(i n v \_C S N G(0,0)=i n v \_S\)
    for \(j=1\) to \(m\) do
            \(\operatorname{CSNG}(0, j)=0\|\operatorname{CSNG}(0, j-1) \cup 1\| i n v \_\operatorname{CSNG}(0, j-1)\)
            inv_CSNG \((0, j)=1\|\operatorname{CSNG}(0, j-1) \cup 0\| i n v_{-} \operatorname{CSNG}(0, j-1)\)
        for \(i=1\) to \(k\) do
            \(\operatorname{CSNG}(i, j)=0\|\operatorname{CSNG}(i-1, j) \cup 1\| i n v_{-} \operatorname{CSNG}(i-1, j)\)
            \(i n v \_C S N G(i, j)=1\|\operatorname{CSNG}(i-1, j) \cup 0\| i n v \_\operatorname{CSNG}(i-1, j)\)
    return \(\operatorname{CSNG}(i, j)\)
```

Table 1: The number of degree of nodes of $\operatorname{CSNG}(0, m)$

$\operatorname{deg}(2)$	$\operatorname{deg}(3))$	Total Node
4	$2^{m+2}-4$	2^{m+2}

Table 2: The number of degree of nodes of $\operatorname{CSNG}(k, m)$

$\operatorname{deg}(2)$	$\operatorname{deg}(3))$	$\operatorname{deg}(4))$	Total Node
4	$2^{m+2}+2^{k+2}-8$	$2^{k+m+2}-2^{m+2}-2^{k+2}+4$	2^{k+m+2}

Table 3: The number of the edges of $\operatorname{CSNG}(0, m)$

$(\operatorname{deg}(2), \operatorname{deg}(2))$	$(\operatorname{deg}(2), \operatorname{deg}(3))$	$(\operatorname{deg}(3), \operatorname{deg}(3))$	Total Edge
2	4	$2^{k+m+3}-2^{m+1}-2^{k+1}-6$	$2^{k+m+3}-2^{m+1}-2^{k+1}$

Table 4: The number of the edges of $\operatorname{CSNG}(k, m)$

The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces

Makbule Kaplan Özekes ${ }^{1}$
${ }^{1}$ Sinop University, Faculty of Education, Sinop, Turkey

Article Info
 Keywords: Endpoint, Multivalued mappings, Strong and weak convergence 2010 AMS: 47H10, 47J25
 Received: 4 November 2021
 Accepted: 1 March 2022
 Available online: 30 June 2022

1. Introduction and Preliminaries

In this study, we shall denote by \mathbb{N} the set of natural numbers. Let $(E,\|\|$.$) be a Banach space and C$ be a nonempty convex subset of E. The distance from a $x \in E$ to a nonempty subset $C \subset E$ is defined by

$$
\operatorname{dist}(x, C):=\inf \{\|x-z\|: z \in C\} .
$$

The radius of C relative to x is defined by

$$
R(x, C)=\sup \{\|x-z\|: z \in C\} .
$$

Definition 1.1. A Banach space E is said to be uniformly convex if for each $\varepsilon \in(0,2]$, there is a $\delta>0$ such that for every $x, y \in E$

$$
\left.\begin{array}{c}
\|x\| \leq 1 \\
\|y\| \leq 1 \\
\|x-y\| \geq \varepsilon
\end{array}\right\} \Rightarrow \frac{\|x+y\|}{2} \leq 1-\delta
$$

We shall denote the family of nonempty compact subsets of C by $K(C)$. The Hausdorff metric H on $K(C)$ is defined as follows:

$$
H(A, B)=\max \left\{\sup _{x \in A} d i s t(x, B), \sup _{y \in B} d i s t(y, A)\right\} \text { for } A, B \in K(C) .
$$

A multivalued mapping $T: C \rightarrow K(C)$ is said to be nonexpansive if

$$
H(T x, T y) \leq\|x-y\|, \text { for each } x, y \in C .
$$

A point $x \in K$ is a fixed point of a multivalued mapping $T: C \rightarrow K(C)$ if $x \in T(x)$. Moreover, if $T(x)=\{x\}$, then x is called an endpoint (or a stationary point) of T. We shall denote the set of all endpoints and the set of all fixed points of T by E_{T} (or $\operatorname{End}(T)$) and F_{T}, respectively. It is clear that $\operatorname{End}(T) \subseteq F i x(T)$. Endpoint for multivalued mappings is an important concept. Many researchers have studied the exsitence of an endpoint of a multivalued mapping. In 1980, Aubin and Siegel [1] proved that every multivalued dissipative mapping on a complete
metric space has always an endpoint. In 1986, Corley [2] showed that a maximization with respect to a cone is equivalent to the problem of finding an endpoint of certain multivalued mapping. In 2018, Panyanak [3] showed that the modified Ishikawa iteration process converge to an endpoint of a multivalued nonexpansive mapping in Banach spaces. In 2020, Laokul [4] proved Browder's convergence theorem for multivalued mappings in Banach space without the endpoint condition by using the notion of diametrically regular mapping. Abdeljawad et al. [5] introduced the modified S - iteration process for finding endpoints of multivalued nonexpansive mappings in Banach spaces. Ullah et al. [6] proved the strong and Δ-convergence results of endpoints for multivalued generalized nonexpansive in Metric spaces.

Definition 1.2. A Banach space $(E,\|\|$.$) is said to have Opial property [7] iffor each sequence \left\{x_{n}\right\}$ in E which weakly converges to $x \in E$ and $y \neq x$, it follows that

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\| .
$$

Definition 1.3. [3] A mapping $T: C \rightarrow K(C)$ is said to satisfy condition (J) if there exists a nondecreasing function $h:[0, \infty) \rightarrow[0, \infty)$ with $h(0)=0, h(r)>0$ for $r \in(0, \infty)$ such that

$$
R(x, T(x)) \geq h(\operatorname{dist}(x, \operatorname{End}(T)) \text { for all } x \in C
$$

Definition 1.4. [3] The mapping $T: C \rightarrow K(C)$ is said to be semicompact iffor any sequence $\left\{x_{n}\right\}$ in C such that

$$
\lim _{n \rightarrow \infty} R\left(x_{n}, T\left(x_{n}\right)\right)=0
$$

there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and $q \in C$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=q$.
Definition 1.5. A sequence $\left\{x_{n}\right\}$ in E is said to be Fejĕr monotone with respect to C if

$$
\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|
$$

for all $p \in C$ and $n \in \mathbb{N}$.
The purpose of this paper is to introduce a modified iteration process to approximate endpoints of multivalued nonexpansive mappings in Banach space.
Let C be a nonempty subset of a Banach space and $T: C \rightarrow K(C)$ be a nonexpansive multivalued mapping. Let $\alpha_{n}, \beta_{n}, \gamma_{n} \in[a, b] \subset(0,1)$ are real sequences. We introduce our iteration process as follows: $x_{1} \in C$

$$
z_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} v_{n}, n \in \mathbb{N}
$$

where $v_{n} \in T\left(x_{n}\right)$ such that $\left\|x_{n}-v_{n}\right\|=R\left(x_{n}, T\left(x_{n}\right)\right)$, and

$$
\begin{equation*}
y_{n}=\left(1-\beta_{n}\right) v_{n}+\beta_{n} w_{n} \tag{1.1}
\end{equation*}
$$

where $w_{n} \in T\left(z_{n}\right)$ such that $\left\|z_{n}-w_{n}\right\|=R\left(z_{n}, T\left(z_{n}\right)\right)$, and

$$
x_{n+1}=\left(1-\alpha_{n}\right) v_{n}+\alpha_{n} u_{n}
$$

where $u_{n} \in T\left(y_{n}\right)$ such that $\left\|y_{n}-u_{n}\right\|=R\left(y_{n}, T\left(y_{n}\right)\right)$.
Following lemmas will be useful to prove our main results.
Lemma 1.6. [3] For a multivalued mapping $T: C \rightarrow K(C)$, the following statements hold.
(i) $x \in F(T) \Leftrightarrow \operatorname{dist}(x, T(x))=0$.
(ii) $x \in \operatorname{End}(T) \Leftrightarrow R(x, T(x))=0$.
(iii) If T is nonexpansive, the mapping $g: C \rightarrow \mathbb{R}$ defined by $g(x):=R(x, T(x))$ is continuous.

Lemma 1.7. [8] A Banach space E is uniformly convex if and only if an arbitrary $k>0$, there exists a strictly increasing continuous function $\Psi:[0, \infty) \rightarrow[0, \infty)$ with $\Psi(0)=0$ such that

$$
\lim _{n \rightarrow \infty}\|\alpha x+(1-\alpha) y\|^{2} \leq \alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha) \Psi(\|x-y\|)
$$

for all $x, y \in B_{k}(0)=\{x \in X:\|x\| \leq k\}$, and $\alpha \in[0,1]$.
Lemma 1.8. [9] Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be two real sequences such that
(i) $0 \leq \alpha_{n}, \beta_{n}<1$,
(ii) $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$,
(iii) $\sum \alpha_{n} \beta_{n}=\infty$,

Let $\left\{\delta_{n}\right\}$ be a nonnegative real sequence such that $\sum \alpha_{n} \beta_{n}\left(1-\beta_{n}\right) \delta_{n}<\infty$. Then $\left\{\delta_{n}\right\}$ has a subsequence which converges to zero.
Definition 1.9. [10] Let $T: C \rightarrow C B(C)$ be a multivalued mapping. A sequence $\left\{x_{n}\right\}$ in C is called an approximate fixed point sequence (resp. an approximate endpoint sequence) for T if $\lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, T\left(x_{n}\right)\right)=0\left(\right.$ resp. $\left.\lim _{n \rightarrow \infty} R\left(x_{n}, T\left(x_{n}\right)\right)=0\right)$. The mapping T is said to have the approximate fixed point property (resp. the approximate endpoint property) if it has an approximate fixed point sequence (resp. an approximate endpoint sequence) in C.

Let C be a nonempty subset of a metric space (X, d) and $\left\{x_{n}\right\}$ be a bounded sequence in X. The asymptotic radius of $\left\{x_{n}\right\}$ relative to C is defined by

$$
r\left(C,\left\{x_{n}\right\}\right)=\inf \left\{\limsup _{n \rightarrow \infty} d\left(x_{n}, x\right): x \in C\right\} .
$$

The asymptotic center of $\left\{x_{n}\right\}$ relative to E is defined by

$$
A\left(C,\left\{x_{n}\right\}\right)=\left\{x \in C: \limsup _{n \rightarrow \infty} d\left(x_{n}, x\right)=r\left(C,\left\{x_{n}\right\}\right)\right\} .
$$

Lemma 1.10. [11] Let C be a nonempty closed convex subset of a uniformly convex Banach space and $T: C \rightarrow K(C)$ be a mutlivalued nonexpansive mapping. Then the following implication holds:

$$
\left\{x_{n}\right\} \subseteq C, x_{n} \rightharpoonup x, R\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0 \Rightarrow x \in \operatorname{End}(T) .
$$

Proposition 1.11. [10] Let C be a nonempty subset of a metric space $(X, d),\left\{x_{n}\right\}$ be a sequence in E, and $T: C \rightarrow K(X)$ be a mapping. Then $R\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$ if and only if dist $\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$ and diam $\left(T\left(x_{n}\right)\right) \rightarrow 0$.
Theorem 1.12. [10] Let $(X,\|\cdot\|)$ be a uniformly convex Banach space, C be a nonempty bounded closed convex subset of X, and $T: C \rightarrow K(C)$ be a nonexpansive mapping. Then T has an endpoint if and only if T has the approximate endpoint property.

2. Main Results

We start with the following lemma.
Lemma 2.1. Let C be a nonempty closed convex subset of an uniformly convex Banach space E and $T: C \rightarrow K(C)$ be a multivalued nonexpansive mapping with $E_{T} \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence as defined in (1.1). Then $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in E_{T}$.

Proof. Let $p \in \operatorname{End}(T)$. By (1.1), we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-\alpha_{n}\right) v_{n}+\alpha_{n} u_{n}-p\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|v_{n}-p\right\|+\alpha_{n}\left\|u_{n}-p\right\| \\
& =\left(1-\alpha_{n}\right) \operatorname{dist}\left(v_{n}, T(p)\right)+\alpha_{n} \operatorname{dist}\left(u_{n}, T(p)\right) \\
& \leq\left(1-\alpha_{n}\right) H\left(T\left(x_{n}\right), T(p)\right)+\alpha_{n} H\left(T\left(y_{n}\right), T(p)\right) \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\left\|y_{n}-p\right\| . \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|\left(1-\beta_{n}\right) v_{n}+\beta_{n} w_{n}-p\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|v_{n}-p\right\|+\beta_{n}\left\|w_{n}-p\right\| \\
& =\left(1-\beta_{n}\right) \operatorname{dist}\left(v_{n}, T(p)\right)+\beta_{n} \operatorname{dist}\left(w_{n}, T(p)\right) \\
& \leq\left(1-\beta_{n}\right) H\left(T\left(x_{n}\right), T(p)\right)+\beta_{n} H\left(T\left(z_{n}\right), T(p)\right) \\
& \leq\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}\left\|z_{n}-p\right\| \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
\left\|z_{n}-p\right\| & =\left\|\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} v_{n}-p\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|v_{n}-p\right\| \\
& =\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n} \operatorname{dist}\left(v_{n}, T(p)\right) \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n} H\left(T\left(x_{n}\right), T(p)\right) \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|x_{n}-p\right\| \\
& =\left\|x_{n}-p\right\| . \tag{2.3}
\end{align*}
$$

Using (2.3) and (2.2) ,we obtain

$$
\left\|y_{n}-p\right\| \leq\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|=\left\|x_{n}-p\right\|
$$

which implies that

$$
\left\|x_{n+1}-p\right\| \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n}-p\right\|=\left\|x_{n}-p\right\| .
$$

Thus $\left\{\left\|x_{n}-p\right\|\right\}$ is nonincreasing sequence and bounded, which implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in E_{T}$. Also $\left\{x_{n}\right\}$ is bounded.

Theorem 2.2. Let E be a uniformly convex Banach space with Opial property, C be a nonempty closed convex subset of E and $T: C \rightarrow K(C)$ be a multivalued nonexpansive mapping with $E_{T} \neq \emptyset$. If $\left\{x_{n}\right\}$ is the sequence defined by (1.1) with $\alpha_{n}, \beta_{n}, \gamma_{n} \in[a, b] \subset(0,1)$ for all n in \mathbb{N}, then $\left\{x_{n}\right\}$ converges weakly to an element of E_{T}.

Proof. Fix $p \in E_{T}$. Then, as in the proof of Lemma 2.1, $\left\{x_{n}\right\}$ is bounded and so $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are bounded. Therefore, there exists $k>0$ such that $x_{n}-p, y_{n}-p, z_{n}-p \in B_{k}(0)$ for all $n \geq 0$. Since E is a uniformly convex, by Lemma 1.7, there exists a strictly increasing continuous function $\Psi:[0, \infty) \rightarrow[0, \infty)$ with $\Psi(0)=0$ such that

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} & =\left\|\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} v_{n}-p\right\|^{2} \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|v_{n}-p\right\|^{2}-\gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n} d i s t^{2}\left(v_{n}, T(p)\right)-\gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n} H^{2}\left(T\left(x_{n}\right), T(p)\right)-\gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) \\
& \leq\left\|x_{n}-p\right\|^{2}-\gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) . \tag{2.4}
\end{align*}
$$

By Lemma 1.7 and (2.4), we have

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & =\left\|\left(1-\beta_{n}\right) v_{n}+\beta_{n} w_{n}-p\right\|^{2} \\
& \leq\left(1-\beta_{n}\right)\left\|v_{n}-p\right\|^{2}+\beta_{n}\left\|w_{n}-p\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right) \Psi\left(\left\|v_{n}-w_{n}\right\|\right) \\
& \leq\left(1-\beta_{n}\right) d i s t^{2}\left(v_{n}, T(p)\right)+\beta_{n} d i s t^{2}\left(w_{n}, T(p)\right)-\beta_{n}\left(1-\beta_{n}\right) \Psi\left(\left\|v_{n}-w_{n}\right\|\right) \\
& \leq\left(1-\beta_{n}\right) H^{2}\left(T\left(x_{n}\right), T(p)\right)+\beta_{n} H^{2}\left(T\left(z_{n}\right), T(p)\right)-\beta_{n}\left(1-\beta_{n}\right) \Psi\left(\left\|v_{n}-w_{n}\right\|\right) \\
& \leq\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|^{2}+\beta_{n}\left\|z_{n}-p\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right) \Psi\left(\left\|v_{n}-w_{n}\right\|\right) \\
& \leq\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|^{2}+\beta_{n}\left\|z_{n}-p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) \tag{2.5}
\end{align*}
$$

from (2.4), (2.5) and by Lemma 1.7, we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\left(1-\alpha_{n}\right) v_{n}+\alpha_{n} u_{n}-p\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)\left\|v_{n}-p\right\|^{2}+\alpha_{n}\left\|u_{n}-p\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right) \Psi\left(\left\|v_{n}-u_{n}\right\|\right) \\
& \leq\left(1-\alpha_{n}\right) d i s t^{2}\left(v_{n}, T(p)\right)+\alpha_{n} d i s t^{2}\left(u_{n}, T(p)\right)-\alpha_{n}\left(1-\alpha_{n}\right) \Psi\left(\left\|v_{n}-u_{n}\right\|\right) \\
& \leq\left(1-\alpha_{n}\right) H^{2}\left(T\left(x_{n}\right), T(p)\right)+\alpha_{n} H^{2}\left(T\left(y_{n}\right), T(p)\right)-\alpha_{n}\left(1-\alpha_{n}\right) \Psi\left(\left\|v_{n}-u_{n}\right\|\right) \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|y_{n}-p\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right) \Psi\left(\left\|v_{n}-u_{n}\right\|\right) \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|y_{n}-p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) . \tag{2.6}
\end{align*}
$$

so,

$$
\left\|x_{n+1}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right) .
$$

This implies that

$$
\sum_{n=1}^{\infty} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right)<\infty
$$

By Lemma 1.8, we have $\lim _{n \rightarrow \infty} \Psi\left(\left\|x_{n}-v_{n}\right\|\right)=0$. As Ψ is strictly increasing and continuous, we get $\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|=0$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} R\left(x_{n}, T\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|=0 . \tag{2.7}
\end{equation*}
$$

We want to show that $\left\{x_{n}\right\}$ converges weakly to an element of E_{T}. For this, it must be showen that $\left\{x_{n}\right\}$ has unique weak subsequential limit in E_{T}. Therefore, we assume that there are subsequences $\left\{x_{n_{i}}\right\}$ and $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup u$ and $x_{n_{j}} \rightharpoonup v$. By (2.7), $\lim _{n_{i} \rightarrow \infty} R\left(x_{n_{i}}, T\left(x_{n_{i}}\right)=0\right.$. It follows from Lemma 1.10 that $u \in E_{T}$. Similarly, we can be shown that $v \in E_{T}$. Now, suppose $u \neq v$. By Lemma 2.1 and the Opial property, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\| & =\lim _{n_{i} \rightarrow \infty}\left\|x_{n_{i}}-u\right\| \\
& <\lim _{n_{i} \rightarrow \infty}\left\|x_{n_{i}}-v\right\| \\
& =\lim _{n \rightarrow \infty}\|x-v\| \\
& =\lim _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-v\right\| \\
& <\lim _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-u\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\|
\end{aligned}
$$

which is a contradiction. Hence $\left\{x_{n}\right\}$ converges weakly to an element of E_{T}.

Next, we prove strong convergence theorems in uniformly convex Banach spaces.

Theorem 2.3. Let E, C and T be as in Theorem 2.2. Let $\left\{x_{n}\right\}$ be the sequence defined by (1.1) with $\alpha_{n}, \beta_{n}, \gamma_{n} \in[a, b] \subset(0,1)$. If T is semi-compact, then $\left\{x_{n}\right\}$ converges strongly to an element of E_{T}.

Proof. In view of (2.6), we have

$$
\alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) \Psi\left(\left\|x_{n}-v_{n}\right\|\right)<\infty
$$

By Lemma 1.8 , there exists subsequence $\left\{v_{n_{k}}\right\}$ and $\left\{x_{n_{k}}\right\}$ of $\left\{v_{n}\right\}$ and $\left\{x_{n}\right\}$, respectively, such that $\lim _{k \rightarrow \infty} \Psi\left(\left\|x_{n_{k}}-v_{n_{k}}\right\|\right)=0$. Since Ψ is strictly increasing and continuous, $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-v_{n_{k}}\right\|=0$. So,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} R\left(x_{n_{k}}, T\left(x_{n_{k}}\right)\right)=\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-v_{n_{k}}\right\|=0 \tag{2.8}
\end{equation*}
$$

Conversely, T is semicompact, we may assume, by passing through a subsequence, that $x_{n_{k}} \rightarrow q$ for some $q \in C$. We need show that $q \in E_{T}$ and $x_{n} \rightarrow q$. By Lemma 1.6 (iii), together with (2.8), we have

$$
\begin{equation*}
R(q, T(q))=\lim _{k \rightarrow \infty} R\left(x_{n_{k}}, T\left(x_{n_{k}}\right)\right)=0 \tag{2.9}
\end{equation*}
$$

It follows from Lemma 1.6 (ii) that $q \in E_{T}$. By Lemma $2.1 \lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists for each $q \in E_{T}$ and hence q is the strong limit of $\left\{x_{n}\right\}$.

Proposition 2.4. [12] Let C be a nonempty closed subset of a Banach space and $\left\{x_{n}\right\}$ be a Fejer monotone sequence with respect to C. Then $\left\{x_{n}\right\}$ converges strongly to an element of C if and only if $\lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, C\right)=0$.

Theorem 2.5. Let E, C, T and $\left\{x_{n}\right\}$ be as in Theorem 2.2. If T satisfies condition (J), then $\left\{x_{n}\right\}$ converges strongly to an endpoint of T.

Proof. Since T is a nonexpansive mapping, E_{T} is closed. As T satisfies condition $(J), \lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, E_{T}\right)=0$. Lemma 2.1 implies that $\left\{x_{n}\right\}$ is Fejer monotone with to respect E_{T}. By Proposition 2.4, $\left\{x_{n}\right\}$ converges strongly to an element of E_{T}.

Acknowledgements

The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

There are no competing interests.

Author's contributions

The author contributed to the writing of this paper. The author read and approved the final manuscript.

References

[1] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Am. Math. Soc., 78(3) (1980), $391-398$
[2] H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120(2) (1986), 528-532.
[3] B. Panyanak, Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2) (2018), Article ID: 77, 8 pages, doi:10.1007/s11784-018-0564-z.
[4] T. Laokul, Browder's convergence theorem for multivalued mappings in Banach spaces without the endpoint condition, Abstract and Applied Analysis, 2020 (2020), Article ID: 6150398, 7 pages, doi:10.1155/2020/6150398.
[5] T. Abdeljawad, K. Ullah, J. Ahmad, N. Mlaiki, Iterative approximation of endpoints for multivalued mappings in Banach spaces, Journal of Function Spaces, 2020 (2020), Article ID: 2179059, doi:10.1155/2020/2179059.
[6] K. Ullah, J. Ahmad, M. Arshad, M. Sen, M. S. U. Khan, Approximating stationary point of multivalued generalized nonexpansive mappings in Banach spaces, Advances in Mathematical Physics, 2020 (2020), Article ID: 9086078, 6 pages, doi:10.1155/2020/9086078.
[7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(4)(1967), 591-597.
[8] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis: Theory, Methods \& Applications, 16(12) (1991), 1127-1138, doi:10.1016/0362-546X(91)90200-K.
[9] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6) (2007), 872-877 doi:10.1016/j.camwa.2007.03.012.
[10] B. Panyanak, Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 2015, Article ID: 147, 11 pages, doi:10.1186/s13663-015-0398-y.
[11] B. Panyanak, The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal., 17(10) (2016), $2063-2070$.
[12] P. Chuadchawna, A Farajzadeh, A. Kaewcharoen, Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolics spaces, J. Comp. Anal. Appl., 28(5) (2020), 903-916.

Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations

Yüksel Soykan ${ }^{1 *}$ and Vedat İrge ${ }^{1}$
${ }^{1}$ Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
*Corresponding author

Article Info
Keywords: Cullen numbers, Tribonacci numbers, Woodall numbers
2010 AMS: 11B37, 11B39, 11B83
Received: 13 January 2022
Accepted: 1 July 2022
Available online: 30 June 2022

Abstract

In this paper, we investigate the generalized Woodall sequences and we deal with, in detail, four special cases, namely, modified Woodall, modified Cullen, Woodall and Cullen sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.

1. Introduction

The Woodall numbers $\left\{R_{n}\right\}$, sometimes called Riesel numbers, and also called Cullen numbers of the second kind, are numbers of the form

$$
R_{n}=n \times 2^{n}-1
$$

The first few Woodall numbers are:

$$
1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575, \ldots
$$

(sequence A003261 in the OEIS [22]). Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in [6] in 1917, inspired by James Cullen's earlier study of the similarly-defined Cullen numbers.
The Cullen numbers $\left\{C_{n}\right\}$ are numbers of the form

$$
C_{n}=n \times 2^{n}+1
$$

The first few Cullen numbers are:

$$
1,3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521, \ldots
$$

(sequence A002064 in the OEIS).

Woodall and Cullen sequences have been studied by many authors and more detail can be found in the extensive literature dedicated to these sequences, see for example, $[1,2,6,9,10,11,13,15,16,17,18]$ and references therein.
Note that $\left\{R_{n}\right\}$ and $\left\{C_{n}\right\}$ hold the following relations:

$$
\begin{aligned}
& R_{n}=4 R_{n-1}-4 R_{n-2}-1 \\
& C_{n}=4 C_{n-1}-4 C_{n-2}+1
\end{aligned}
$$

Note also that the sequences $\left\{R_{n}\right\}$ and $\left\{C_{n}\right\}$ satisfy the following third order linear recurrences:

$$
\begin{array}{ll}
R_{n}=5 R_{n-1}-8 R_{n-2}+4 R_{n-3}, & R_{0}=-1, R_{1}=1, R_{2}=7, \\
C_{n}=5 C_{n-1}-8 C_{n-2}+4 C_{n-3}, & C_{0}=1, C_{1}=3, C_{2}=9 . \tag{1.2}
\end{array}
$$

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e., Woodall, Cullen numbers) via their third order linear recurrence relations (1.1) and (1.2). First, we recall some properties of generalized Tribonacci numbers.
The generalized (r, s, t) sequence (or generalized Tribonacci sequence or generalized 3-step Fibonacci sequence)

$$
\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; r, s, t\right)\right\}_{n \geq 0}
$$

(or shortly $\left\{W_{n}\right\}_{n \geq 0}$) is defined as follows:

$$
\begin{equation*}
W_{n}=r W_{n-1}+s W_{n-2}+t W_{n-3}, \quad W_{0}=a, W_{1}=b, W_{2}=c, n \geq 3 \tag{1.3}
\end{equation*}
$$

where W_{0}, W_{1}, W_{2} are arbitrary complex (or real) numbers and r, s, t are real numbers.
This sequence has been studied by many authors, see for example [3,4,5,7,8,14,19, 20,21,24,25,27,28,29].
The sequence $\left\{W_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
W_{-n}=-\frac{s}{t} W_{-(n-1)}-\frac{r}{t} W_{-(n-2)}+\frac{1}{t} W_{-(n-3)}
$$

for $n=1,2,3, \ldots$ when $t \neq 0$. Therefore, recurrence (1.3) holds for all integer n.
As $\left\{W_{n}\right\}$ is a third-order recurrence sequence (difference equation), it's characteristic equation is

$$
\begin{equation*}
x^{3}-r x^{2}-s x-t=0 \tag{1.4}
\end{equation*}
$$

whose roots are

$$
\begin{aligned}
& \alpha=\alpha(r, s, t) \\
&=\frac{r}{3}+A+B, \\
& \beta=\beta(r, s, t)=\frac{r}{3}+\omega A+\omega^{2} B, \\
& \gamma=\gamma(r, s, t)=\frac{r}{3}+\omega^{2} A+\omega B,
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left(\frac{r^{3}}{27}+\frac{r s}{6}+\frac{t}{2}+\sqrt{\Delta}\right)^{1 / 3}, B=\left(\frac{r^{3}}{27}+\frac{r s}{6}+\frac{t}{2}-\sqrt{\Delta}\right)^{1 / 3}, \\
& \Delta=\Delta(r, s, t)=\frac{r^{3} t}{27}-\frac{r^{2} s^{2}}{108}+\frac{r s t}{6}-\frac{s^{3}}{27}+\frac{t^{2}}{4}, \omega=\frac{-1+i \sqrt{3}}{2}=\exp (2 \pi i / 3) .
\end{aligned}
$$

Note that we have the following identities

$$
\begin{aligned}
\alpha+\beta+\gamma & =r, \\
\alpha \beta+\alpha \gamma+\beta \gamma & =-s, \\
\alpha \beta \gamma & =t .
\end{aligned}
$$

In the case of two distinct roots, i.e., $\alpha=\beta \neq \gamma$, Binet's formula can be given as follows:
Theorem 1.1. (Two Distinct Roots Case: $\alpha=\beta \neq \gamma$) Binet's formula of generalized Tribonacci numbers is

$$
W_{n}=\left(A_{1}+A_{2} n\right) \times \alpha^{n}+A_{3} \gamma^{n}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{-W_{2}+2 \alpha W_{1}-\gamma(2 \alpha-\gamma) W_{0}}{(\alpha-\gamma)^{2}}, \\
& A_{2}=\frac{W_{2}-(\alpha+\gamma) W_{1}+\alpha \gamma W_{0}}{\alpha(\alpha-\gamma)}, \\
& A_{3}=\frac{W_{2}-2 \alpha W_{1}+\alpha^{2} W_{0}}{(\alpha-\gamma)^{2}} .
\end{aligned}
$$

Next, we give the ordinary generating function $\sum_{n=0}^{\infty} W_{n} x^{n}$ of the sequence W_{n}.
Lemma 1.2. Suppose that $f_{W_{n}}(x)=\sum_{n=0}^{\infty} W_{n} x^{n}$ is the ordinary generating function of the generalized (r, s, t) sequence (the generalized Tribonacci sequence) $\left\{W_{n}\right\}_{n \geq 0}$. Then, $\sum_{n=0}^{\infty} W_{n} x^{n}$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{n} x^{n}=\frac{W_{0}+\left(W_{1}-r W_{0}\right) x+\left(W_{2}-r W_{1}-s W_{0}\right) x^{2}}{1-r x-s x^{2}-t x^{3}} . \tag{1.5}
\end{equation*}
$$

Matrix formulation of W_{n} can be given as

$$
\left(\begin{array}{c}
W_{n+2} \tag{1.6}\\
W_{n+1} \\
W_{n}
\end{array}\right)=\left(\begin{array}{ccc}
r & s & t \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n}\left(\begin{array}{l}
W_{2} \\
W_{1} \\
W_{0}
\end{array}\right) .
$$

For matrix formulation (1.6), see [12]. In fact, Kalman gave the formula in the following form

$$
\left(\begin{array}{c}
W_{n} \\
W_{n+1} \\
W_{n+2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
r & s & t
\end{array}\right)^{n}\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2}
\end{array}\right) .
$$

Now, we present Simson's formula of generalized Tribonacci numbers.
Theorem 1.3 (Simson's Formula of Generalized Tribonacci Numbers). For all integers n, we have

$$
\left|\begin{array}{ccc}
W_{n+2} & W_{n+1} & W_{n} \tag{1.7}\\
W_{n+1} & W_{n} & W_{n-1} \\
W_{n} & W_{n-1} & W_{n-2}
\end{array}\right|=t^{n}\left|\begin{array}{ccc}
W_{2} & W_{1} & W_{0} \\
W_{1} & W_{0} & W_{-1} \\
W_{0} & W_{-1} & W_{-2}
\end{array}\right| .
$$

Proof. For a proof, see Soykan [23].
Next, we consider two special cases of the generalized (r, s, t) sequence $\left\{W_{n}\right\}$ which we call them (r, s, t) and Lucas (r, s, t) sequences. (r, s, t) sequence $\left\{G_{n}\right\}_{n \geq 0}$ and Lucas (r, s, t) sequence $\left\{H_{n}\right\}_{n \geq 0}$ are defined, respectively, by the third-order recurrence relations

$$
\begin{array}{ll}
G_{n+3}=r G_{n+2}+s G_{n+1}+t G_{n}, & G_{0}=0, G_{1}=1, G_{2}=r, \\
H_{n+3}=r H_{n+2}+s H_{n+1}+t H_{n}, & H_{0}=3, H_{1}=r, H_{2}=2 s+r^{2} . \tag{1.9}
\end{array}
$$

The sequences $\left\{G_{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
\begin{aligned}
& G_{-n}=-\frac{s}{t} G_{-(n-1)}-\frac{r}{t} G_{-(n-2)}+\frac{1}{t} G_{-(n-3)} \\
& H_{-n}=-\frac{s}{t} H_{-(n-1)}-\frac{r}{t} H_{-(n-2)}+\frac{1}{t} H_{-(n-3)}
\end{aligned}
$$

for $n=1,2,3, \ldots$ respectively. Therefore, recurrences (1.8)-(1.9) hold for all integers n.
In the case of two distinct roots, i.e., $\alpha=\beta \neq \gamma$, for all integers n, Binet's formula of (r, s, t) and Lucas (r, s, t) numbers (using initial conditions in (1.8)-(1.9)) can be expressed as follows:

Theorem 1.4. (Two Distinct Roots Case: $\alpha=\beta \neq \gamma$) For all integers n, Binet's formula of (r, s, t) and Lucas (r, s, t) numbers are

$$
\begin{aligned}
& G_{n}=\left(\frac{-\gamma}{(\alpha-\gamma)^{2}}+\frac{1}{(\alpha-\gamma)} n\right) \times \alpha^{n}+\frac{\gamma}{(\alpha-\gamma)^{2}} \gamma^{n}, \\
& H_{n}=2 \alpha^{n}+\gamma^{n}
\end{aligned}
$$

respectively.

Lemma 1.2 gives the following results as particular examples (generating functions of (r, s, t) and Lucas (r, s, t) numbers).
Corollary 1.5. Generating functions of (r, s, t) and Lucas ($r, s, t)$ numbers are

$$
\begin{aligned}
& \sum_{n=0}^{\infty} G_{n} x^{n}=\frac{x}{1-r x-s x^{2}-t x^{3}}, \\
& \sum_{n=0}^{\infty} H_{n} x^{n}=\frac{3-2 r x-s x^{2}}{1-r x-s x^{2}-t x^{3}},
\end{aligned}
$$

respectively.
The following theorem shows that the generalized Tribonacci sequence W_{n} at negative indices can be expressed by the sequence itself at positive indices.

Theorem 1.6. For $n \in \mathbb{Z}$, we have

$$
W_{-n}=t^{-n}\left(W_{2 n}-H_{n} W_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) W_{0}\right) .
$$

Proof. For the proof, see Soykan [26, Theorem 2.].
Now, we present a basic relation between $\left\{H_{n}\right\}$ and $\left\{W_{n}\right\}$ which can be used to write H_{n} in terms of W_{n}.
Lemma 1.7. The following equality is true:
$\left(W_{2}^{3}+(t+r s) W_{1}^{3}+t^{2} W_{0}^{3}+\left(r^{2}-s\right) W_{1}^{2} W_{2}-2 r W_{1} W_{2}^{2}-s W_{0} W_{2}^{2}+r t W_{0}^{2} W_{2}+\left(s^{2}+r t\right) W_{0} W_{1}^{2}+2 s t W_{0}^{2} W_{1}+(r s-3 t) W_{0} W_{1} W_{2}\right) H_{n}=\left(3 W_{2}^{2}+\right.$ $\left.\left(r^{2}-s\right) W_{1}^{2}+r t W_{0}^{2}-4 r W_{1} W_{2}-2 s W_{0} W_{2}+(r s-3 t) W_{0} W_{1}\right) W_{n+2}+\left(-2 r W_{2}^{2}+3 t W_{1}^{2}-2 s W_{1} W_{2}-3 t W_{0} W_{2}+3 r s W_{1}^{2}+2 s t W_{0}^{2}+2 r^{2} W_{1} W_{2}+\right.$ $\left.2 s^{2} W_{0} W_{1}+r s W_{0} W_{2}+2 r t W_{0} W_{1}\right) W_{n+1}+\left(-s W_{2}^{2}+\left(s^{2}+r t\right) W_{1}^{2}+3 t^{2} W_{0}^{2}+(r s-3 t) W_{1} W_{2}+2 r t W_{0} W_{2}+4 s t W_{0} W_{1}\right) W_{n}$.

Proof. It is given in Soykan [25].
Using Theorem 1.6, we have the following corollary, see Soykan [26, Corollary 6].
Corollary 1.8. For $n \in \mathbb{Z}$, we have
(a)

$$
G_{-n}=\frac{1}{t^{n+1}}\left(\left(2 r t-s^{2}\right) G_{n}^{2}+t G_{2 n}+s G_{n+2} G_{n}-(3 t+r s) G_{n+1} G_{n}\right)
$$

(b)

$$
H_{-n}=\frac{1}{2 t^{n}}\left(H_{n}^{2}-H_{2 n}\right) .
$$

Note that G_{-n} and H_{-n} can be given as follows by using $G_{0}=0$ and $H_{0}=3$ in Theorem 1.6,

$$
\begin{aligned}
& G_{-n}=t^{-n}\left(G_{2 n}-H_{n} G_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) G_{0}\right)=t^{-n}\left(G_{2 n}-H_{n} G_{n}\right), \\
& H_{-n}=t^{-n}\left(H_{2 n}-H_{n} H_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) H_{0}\right)=\frac{1}{2 t^{n}}\left(H_{n}^{2}-H_{2 n}\right),
\end{aligned}
$$

respectively.

2. Generalized Woodall Sequence

In this paper, we consider the case $r=5, s=-8, t=4$. A generalized Woodall sequence $\left\{W_{n}\right\}_{n \geq 0}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2}\right)\right\}_{n \geq 0}$ is defined by the third-order recurrence relations

$$
\begin{equation*}
W_{n}=5 W_{n-1}-8 W_{n-2}+4 W_{n-3} \tag{2.1}
\end{equation*}
$$

with the initial values $W_{0}=c_{0}, W_{1}=c_{1}, W_{2}=c_{2}$ not all being zero.
The sequence $\left\{W_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
W_{-n}=2 W_{-(n-1)}-\frac{5}{4} W_{-(n-2)}+\frac{1}{4} W_{-(n-3)}
$$

for $n=1,2,3, \ldots$ Therefore, recurrence (2.1) holds for all integer n.
Theorem 1.1 can be used to obtain Binet formula of generalized Woodall numbers. Binet formula of generalized Woodall numbers can be given as
(two distinct roots case: $\alpha=\beta \neq \gamma$)

$$
W_{n}=\left(A_{1}+A_{2} n\right) \times \alpha^{n}+A_{3} \gamma^{n}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{-W_{2}+2 \alpha W_{1}-\gamma(2 \alpha-\gamma) W_{0}}{(\alpha-\gamma)^{2}}, \\
& A_{2}=\frac{W_{2}-(\alpha+\gamma) W_{1}+\alpha \gamma W_{0}}{\alpha(\alpha-\gamma)}, \\
& A_{3}=\frac{W_{2}-2 \alpha W_{1}+\alpha^{2} W_{0}}{(\alpha-\gamma)^{2}} .
\end{aligned}
$$

Here, α, β and γ are the roots of the cubic equation

$$
x^{3}-5 x^{2}+8 x-4=(x-2)^{2}(x-1)=0 .
$$

Moreover

$$
\begin{gathered}
\alpha=\beta=2, \\
\gamma=1 .
\end{gathered}
$$

So,

$$
W_{n}=\left(A_{1}+A_{2} n\right) \times 2^{n}+A_{3}
$$

where
$A_{1}=-W_{2}+4 W_{1}-3 W_{0}$,
$A_{2}=\frac{W_{2}-3 W_{1}+2 W_{0}}{2}$,
$A_{3}=W_{2}-4 W_{1}+4 W_{0}$,
i.e.,

$$
\begin{equation*}
W_{n}=\left(\left(-W_{2}+4 W_{1}-3 W_{0}\right)+\frac{W_{2}-3 W_{1}+2 W_{0}}{2} n\right) \times 2^{n}+\left(W_{2}-4 W_{1}+4 W_{0}\right) . \tag{2.2}
\end{equation*}
$$

The first few generalized Woodall numbers with positive subscript and negative subscript are given in the following Table 1 .
Table 1. A few generalized Woodall numbers

n	W_{n}	W_{-n}
0	W_{0}	W_{0}
1	W_{1}	$\frac{1}{4}\left(8 W_{0}-5 W_{1}+W_{2}\right)$
2	W_{2}	$\left(11 W_{0}-9 W_{1}+2 W_{2}\right)$
3	$4 W_{0}-8 W_{1}+5 W_{2}$	$\frac{1}{16}\left(52 W_{0}-47 W_{1}+11 W_{2}\right)$
4	$20 W_{0}-36 W_{1}+17 W_{2}$	$\left(57 W_{0}-54 W_{1}+13 W_{2}\right)$
5	$68 W_{0}-116 W_{1}+49 W_{2}$	$\frac{1}{64}\left(240 W_{0}-233 W_{1}+57 W_{2}\right)$
6	$196 W_{0}-324 W_{1}+129 W_{2}$	$\left(247 W_{0}-243 W_{1}+60 W_{2}\right)$
7	$516 W_{0}-836 W_{1}+321 W_{2}$	$\frac{1}{256}\left(1004 W_{0}-995 W_{1}+247 W_{2}\right)$
8	$1284 W_{0}-2052 W_{1}+769 W_{2}$	$\frac{1}{256}\left(1013 W_{0}-1008 W_{1}+251 W_{2}\right)$
9	$3076 W_{0}-4868 W_{1}+1793 W_{2}$	$\frac{1}{1024}\left(4072 W_{0}-4061 W_{1}+1013 W_{2}\right)$
10	$7172 W_{0}-11268 W_{1}+4097 W_{2}$	$\frac{1}{1024}\left(4083 W_{0}-4077 W_{1}+1018 W_{2}\right)$
11	$16388 W_{0}-25604 W_{1}+9217 W_{2}$	$\frac{1}{4096}\left(16356 W_{0}-16343 W_{1}+4083 W_{2}\right)$
12	$36868 W_{0}-57348 W_{1}+20481 W_{2}$	$\frac{1096}{4096}\left(16369 W_{0}-16362 W_{1}+4089 W_{2}\right)$
13	$81924 W_{0}-126980 W_{1}+45057 W_{2}$	$\frac{1}{16384}\left(65504 W_{0}-65489 W_{1}+16369 W_{2}\right)$

Now, we define four special cases of the sequence $\left\{W_{n}\right\}$. Modified Woodall sequence $\left\{G_{n}\right\}_{n \geq 0}$, modified Cullen sequence $\left\{H_{n}\right\}_{n \geq 0}$, Woodall sequence $\left\{R_{n}\right\}$ and Cullen sequence $\left\{C_{n}\right\}$ are defined, respectively, by the third-order recurrence relations

$$
\begin{array}{ll}
G_{n}=5 G_{n-1}-8 G_{n-2}+4 G_{n-3}, & G_{0}=0, G_{1}=1, G_{2}=5, \\
H_{n}=5 H_{n-1}-8 H_{n-2}+4 H_{n-3}, & H_{0}=3, H_{1}=5, H_{2}=9, \\
R_{n}=5 R_{n-1}-8 R_{n-2}+4 R_{n-3}, & R_{0}=-1, R_{1}=1, R_{2}=7, \\
C_{n}=5 C_{n-1}-8 C_{n-2}+4 C_{n-3}, & C_{0}=1, C_{1}=3, C_{2}=9 . \tag{2.6}
\end{array}
$$

The sequences $\left\{G_{n}\right\}_{n \geq 0},\left\{H_{n}\right\}_{n \geq 0},\left\{R_{n}\right\}_{n \geq 0}$ and $\left\{C_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
\begin{aligned}
& G_{-n}=2 G_{-(n-1)}-\frac{5}{4} G_{-(n-2)}+\frac{1}{4} G_{-(n-3)}, \\
& H_{-n}=2 H_{-(n-1)}-\frac{5}{4} H_{-(n-2)}+\frac{1}{4} H_{-(n-3)}, \\
& R_{-n}=2 R_{-(n-1)}-\frac{5}{4} R_{-(n-2)}+\frac{1}{4} R_{-(n-3)}, \\
& C_{-n}=2 C_{-(n-1)}-\frac{5}{4} C_{-(n-2)}+\frac{1}{4} C_{-(n-3)},
\end{aligned}
$$

for $n=1,2,3, \ldots$ respectively. Therefore, recurrences (2.3)-(2.6) hold for all integer n.
Next, we present the first few values of the modified Woodall, modified Cullen, Woodall and Cullen numbers with positive and negative subscripts:
Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
G_{n}	0	1	5	17	49	129	321	769	1793	4097	9217	20481	45057
G_{-n}		0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{11}{16}$	$\frac{13}{16}$	$\frac{57}{64}$	$\frac{15}{16}$	$\frac{247}{256}$	$\frac{251}{256}$	$\frac{1013}{1024}$	$\frac{509}{512}$	$\frac{4083}{4096}$
H_{n}	3	5	9	17	33	65	129	257	513	$\frac{4089}{4096}$			
H_{-n}		2	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{9}{8}$	$\frac{17}{16}$	$\frac{33}{32}$	$\frac{65}{64}$	$\frac{129}{128}$	$\frac{257}{256}$	$\frac{513}{512}$	$\frac{1025}{1024}$	$\frac{2049}{2048}$
R_{n}	-1	1	7	23	63	159	383	895	2047	4607	10239	22527	49151
R_{-n}		$-\frac{3}{2}$	$-\frac{3}{2}$	$-\frac{11}{8}$	$-\frac{5}{4}$	$-\frac{37}{32}$	$-\frac{35}{32}$	$-\frac{135}{128}$	$-\frac{33}{32}$	$-\frac{521}{512}$	$-\frac{517}{512}$	$-\frac{2059}{2048}$	$-\frac{1027}{1024}$
C_{n}	1	3	9	25	65	161	385	897	2049	4605			
C_{-n}		$\frac{1}{2}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{27}{32}$	$\frac{29}{32}$	$\frac{121}{128}$	$\frac{31}{32}$	$\frac{503}{512}$	$\frac{507}{512}$	$\frac{2037}{2048}$	$\frac{1021}{1024}$

$\overline{G_{n}}, H_{n}, R_{n}$ and C_{n} are the sequences A000337, A000051 (and A048578), A003261 and A002064 in [22], respectively. Note that $\left\{H_{n}\right\}$ satisfies the following second order linear recurrence:

$$
H_{n}=3 H_{n-1}-2 H_{n-2}, \quad H_{0}=3, H_{1}=5
$$

and satisfies the following first order non-linear recurrence:

$$
H_{n}=2 H_{n-1}-1, H_{0}=3 .
$$

For all integers n, modified Woodall, modified Cullen, Woodall and Cullen numbers (using initial conditions in (2.2)) can be expressed using Binet's formulas as

$$
\begin{aligned}
G_{n} & =(n-1) 2^{n}+1 \\
H_{n} & =2^{n+1}+1 \\
R_{n} & =n \times 2^{n}-1 \\
C_{n} & =n \times 2^{n}+1
\end{aligned}
$$

respectively.
Next, we give the ordinary generating function $\sum_{n=0}^{\infty} W_{n} x^{n}$ of the sequence W_{n}.
Lemma 2.1. Suppose that $f_{W_{n}}(x)=\sum_{n=0}^{\infty} W_{n} x^{n}$ is the ordinary generating function of the generalized Woodall sequence $\left\{W_{n}\right\}_{n \geq 0}$. Then, $\sum_{n=0}^{\infty} W_{n} x^{n}$ is given by

$$
\sum_{n=0}^{\infty} W_{n} x^{n}=\frac{W_{0}+\left(W_{1}-5 W_{0}\right) x+\left(W_{2}-5 W_{1}+8 W_{0}\right) x^{2}}{1-5 x+8 x^{2}-4 x^{3}} .
$$

Proof. Take $r=5, s=-8, t=4$ in Lemma 1.2.
The previous lemma gives the following results as particular examples.
Corollary 2.2. Generated functions of modified Woodall, modified Cullen, Woodall and Cullen numbers are

$$
\begin{aligned}
\sum_{n=0}^{\infty} G_{n} x^{n} & =\frac{x}{1-5 x+8 x^{2}-4 x^{3}}, \\
\sum_{n=0}^{\infty} H_{n} x^{n} & =\frac{3-10 x+8 x^{2}}{1-5 x+8 x^{2}-4 x^{3}}, \\
\sum_{n=0}^{\infty} R_{n} x^{n} & =\frac{-1+6 x-6 x^{2}}{1-5 x+8 x^{2}-4 x^{3}}, \\
\sum_{n=0}^{\infty} C_{n} x^{n} & =\frac{1-2 x+2 x^{2}}{1-5 x+8 x^{2}-4 x^{3}},
\end{aligned}
$$

respectively.

3. Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence $\left\{F_{n}\right\}$, namely,

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be written in the form

$$
\left|\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right|=(-1)^{n} .
$$

The following theorem gives generalization of this result to the generalized Woodall sequence $\left\{W_{n}\right\}_{n \geq 0}$.
Theorem 3.1 (Simson Formula of Generalized Woodall Numbers). For all integers n, we have

$$
\left|\begin{array}{ccc}
W_{n+2} & W_{n+1} & W_{n} \\
W_{n+1} & W_{n} & W_{n-1} \\
W_{n} & W_{n-1} & W_{n-2}
\end{array}\right|=-2^{2 n-4}\left(W_{2}-4 W_{1}+4 W_{0}\right)\left(W_{2}-3 W_{1}+2 W_{0}\right)^{2} .
$$

Proof. Take $r=5, s=-8, t=4$ in Theorem 1.3.
The previous theorem gives the following results as particular examples.
Corollary 3.2. For all integers n, Simson formula of modified Woodall, modified Cullen, Woodall and Cullen numbers are given as

$$
\begin{aligned}
\left|\begin{array}{ccc}
G_{n+2} & G_{n+1} & G_{n} \\
G_{n+1} & G_{n} & G_{n-1} \\
G_{n} & G_{n-1} & G_{n-2}
\end{array}\right|=-2^{2 n-2}, \\
\left|\begin{array}{ccc}
H_{n+2} & H_{n+1} & H_{n} \\
H_{n+1} & H_{n} & H_{n-1} \\
H_{n} & H_{n-1} & H_{n-2}
\end{array}\right|=0, \\
\left|\begin{array}{ccc}
R_{n+2} & R_{n+1} & R_{n} \\
R_{n+1} & R_{n} & R_{n-1} \\
R_{n} & R_{n-1} & R_{n-2}
\end{array}\right|=2^{2 n-2}, \\
\left|\begin{array}{ccc}
C_{n+2} & C_{n+1} & C_{n} \\
C_{n+1} & C_{n} & C_{n-1} \\
C_{n} & C_{n-1} & C_{n-2}
\end{array}\right|=-2^{2 n-2},,
\end{aligned}
$$

respectively.

4. Some Identities

In this section, we obtain some identities of generalized Woodall, modified Woodall, modified Cullen, Woodall and Cullen numbers. First, we can give a few basic relations between $\left\{W_{n}\right\}$ and $\left\{G_{n}\right\}$.

Lemma 4.1. The following equalities are true:
(a) $16 W_{n}=\left(52 W_{0}-47 W_{1}+11 W_{2}\right) G_{n+4}+\left(199 W_{1}-216 W_{0}-47 W_{2}\right) G_{n+3}+4\left(57 W_{0}-54 W_{1}+13 W_{2}\right) G_{n+2}$.
(b) $4 W_{n}=\left(11 W_{0}-9 W_{1}+2 W_{2}\right) G_{n+3}+\left(40 W_{1}-47 W_{0}-9 W_{2}\right) G_{n+2}+\left(52 W_{0}-47 W_{1}+11 W_{2}\right) G_{n+1}$.
(c) $4 W_{n}=\left(8 W_{0}-5 W_{1}+W_{2}\right) G_{n+2}+\left(25 W_{1}-36 W_{0}-5 W_{2}\right) G_{n+1}+4\left(11 W_{0}-9 W_{1}+2 W_{2}\right) G_{n}$.
(d) $W_{n}=W_{0} G_{n+1}+\left(-5 W_{0}+W_{1}\right) G_{n}+\left(8 W_{0}-5 W_{1}+W_{2}\right) G_{n-1}$.
(e) $W_{n}=W_{1} G_{n}+\left(-5 W_{1}+W_{2}\right) G_{n-1}+4 W_{0} G_{n-2}$.
(f) $4\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{n}$

$$
=\left(8 W_{1}^{2}-5 W_{1} W_{2}-4 W_{0} W_{1}+W_{2}^{2}\right) W_{n+4}+\left(-36 W_{1}^{2}-5 W_{2}^{2}+20 W_{0} W_{1}-4 W_{0} W_{2}+25 W_{1} W_{2}\right) W_{n+3}+4\left(4 W_{0}^{2}+16 W_{1}^{2}+2 W_{2}^{2}-16 W_{0} W_{1}+\right.
$$

$$
\left.5 W_{0} W_{2}-11 W_{1} W_{2}\right) W_{n+2}
$$

(g) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{n}$

$$
=\left(W_{1}^{2}-W_{0} W_{2}\right) W_{n+3}+\left(4 W_{0}^{2}-8 W_{0} W_{1}+5 W_{0} W_{2}-W_{1} W_{2}\right) W_{n+2}+\left(8 W_{1}^{2}+W_{2}^{2}-4 W_{0} W_{1}-5 W_{1} W_{2}\right) W_{n+1}
$$

(h) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{n}$

$$
=\left(4 W_{0}^{2}+5 W_{1}^{2}-8 W_{0} W_{1}-W_{1} W_{2}\right) W_{n+2}+\left(W_{2}^{2}-4 W_{0} W_{1}+8 W_{0} W_{2}-5 W_{1} W_{2}\right) W_{n+1}+4\left(W_{1}^{2}-W_{0} W_{2}\right) W_{n}
$$

(i) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{n}$

$$
=\left(20 W_{0}^{2}+25 W_{1}^{2}+W_{2}^{2}-44 W_{0} W_{1}+8 W_{0} W_{2}-10 W_{1} W_{2}\right) W_{n+1}+4\left(-8 W_{0}^{2}+16 W_{0} W_{1}-W_{2} W_{0}-9 W_{1}^{2}+2 W_{2} W_{1}\right) W_{n}+4\left(4 W_{0}^{2}+5 W_{1}^{2}-\right.
$$

$$
\left.8 W_{0} W_{1}-W_{1} W_{2}\right) W_{n-1}
$$

(j) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{n}$

$$
=\left(68 W_{0}^{2}+89 W_{1}^{2}+5 W_{2}^{2}-156 W_{0} W_{1}+36 W_{0} W_{2}-42 W_{1} W_{2}\right) W_{n}+4\left(-36 W_{0}^{2}+80 W_{0} W_{1}-16 W_{0} W_{2}-45 W_{1}^{2}+19 W_{1} W_{2}-2 W_{2}^{2}\right) W_{n-1}+
$$

$$
4\left(20 W_{0}^{2}+25 W_{1}^{2}+W_{2}^{2}-44 W_{0} W_{1}+8 W_{0} W_{2}-10 W_{1} W_{2}\right) W_{n-2}
$$

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing

$$
W_{n}=a \times G_{n+4}+b \times G_{n+3}+c \times G_{n+2}
$$

and solving the system of equations

$$
\begin{aligned}
& W_{0}=a \times G_{4}+b \times G_{3}+c \times G_{2} \\
& W_{1}=a \times G_{5}+b \times G_{4}+c \times G_{3} \\
& W_{2}=a \times G_{6}+b \times G_{5}+c \times G_{4}
\end{aligned}
$$

we find that $a=\frac{1}{16}\left(52 W_{0}-47 W_{1}+11 W_{2}\right), b=-\frac{1}{16}\left(216 W_{0}-199 W_{1}+47 W_{2}\right), c=\frac{1}{4}\left(57 W_{0}-54 W_{1}+13 W_{2}\right)$. The other equalities can be proved similarly. \square
Note that all the identities in the above Lemma 4.1 can be proved by induction as well.
Next, we present a few basic relations between $\left\{W_{n}\right\}$ and $\left\{H_{n}\right\}$.
Lemma 4.2. The following equalities are true:
(a) $2\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right) H_{n}=\left(8 W_{0}-10 W_{1}+3 W_{2}\right) W_{n+4}+\left(36 W_{1}-28 W_{0}-11 W_{2}\right) W_{n+3}+2\left(12 W_{0}-16 W_{1}+5 W_{2}\right) W_{n+2}$.
(b) $\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right) H_{n}=\left(6 W_{0}-7 W_{1}+2 W_{2}\right) W_{n+3}+\left(24 W_{1}-20 W_{0}-7 W_{2}\right) W_{n+2}+2\left(8 W_{0}-10 W_{1}+3 W_{2}\right) W_{n+1}$.
(c) $\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right) H_{n}=\left(10 W_{0}-11 W_{1}+3 W_{2}\right) W_{n+2}+2\left(18 W_{1}-16 W_{0}-5 W_{2}\right) W_{n+1}+4\left(6 W_{0}-7 W_{1}+2 W_{2}\right) W_{n}$.
(d) $\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right) H_{n}=\left(18 W_{0}-19 W_{1}+5 W_{2}\right) W_{n+1}+4\left(15 W_{1}-14 W_{0}-4 W_{2}\right) W_{n}+4\left(10 W_{0}-11 W_{1}+3 W_{2}\right) W_{n-1}$.
(e) $\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right) H_{n}=\left(34 W_{0}-35 W_{1}+9 W_{2}\right) W_{n}+4\left(27 W_{1}-26 W_{0}-7 W_{2}\right) W_{n-1}+4\left(18 W_{0}-19 W_{1}+5 W_{2}\right) W_{n-2}$.

Now, we give a few basic relations between $\left\{W_{n}\right\}$ and $\left\{R_{n}\right\}$.
Lemma 4.3. The following equalities are true:
(a) $8 W_{n}=\left(42 W_{1}-39 W_{0}-11 W_{2}\right) R_{n+4}+\left(151 W_{0}-161 W_{1}+42 W_{2}\right) R_{n+3}+\left(151 W_{1}-144 W_{0}-39 W_{2}\right) R_{n+2}$.
(b) $8 W_{n}=\left(49 W_{1}-44 W_{0}-13 W_{2}\right) R_{n+3}+\left(168 W_{0}-185 W_{1}+49 W_{2}\right) R_{n+2}+4\left(42 W_{1}-39 W_{0}-11 W_{2}\right) R_{n+1}$.
(c) $2 W_{n}=\left(15 W_{1}-13 W_{0}-4 W_{2}\right) R_{n+2}+\left(49 W_{0}-56 W_{1}+15 W_{2}\right) R_{n+1}+\left(49 W_{1}-44 W_{0}-13 W_{2}\right) R_{n}$.
(d) $2 W_{n}=\left(19 W_{1}-16 W_{0}-5 W_{2}\right) R_{n+1}+\left(60 W_{0}-71 W_{1}+19 W_{2}\right) R_{n}+4\left(15 W_{1}-13 W_{0}-4 W_{2}\right) R_{n-1}$.
(e) $W_{n}=\left(12 W_{1}-10 W_{0}-3 W_{2}\right) R_{n}+2\left(19 W_{0}-23 W_{1}+6 W_{2}\right) R_{n-1}+2\left(19 W_{1}-16 W_{0}-5 W_{2}\right) R_{n-2}$.
(f) $2\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} R_{n}$
$=\left(-12 W_{0}^{2}+36 W_{0} W_{1}-13 W_{0} W_{2}-26 W_{1}^{2}+18 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n+4}+\left(52 W_{0}^{2}+108 W_{1}^{2}+12 W_{2}^{2}-152 W_{0} W_{1}+53 W_{0} W_{2}-73 W_{1} W_{2}\right) W_{n+3}+$
$\left(-48 W_{0}^{2}+140 W_{0} W_{1}-48 W_{0} W_{2}-100 W_{1}^{2}+67 W_{1} W_{2}-11 W_{2}^{2}\right) W_{n+2}$.
(g) $2\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} R_{n}$

$$
=\left(-8 W_{0}^{2}+28 W_{0} W_{1}-12 W_{0} W_{2}-22 W_{1}^{2}+17 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n+3}+\left(48 W_{0}^{2}+108 W_{1}^{2}+13 W_{2}^{2}-148 W_{0} W_{1}+56 W_{0} W_{2}-77 W_{1} W_{2}\right) W_{n+2}+
$$

$$
4\left(-12 W_{0}^{2}+36 W_{0} W_{1}-13 W_{0} W_{2}-26 W_{1}^{2}+18 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n+1}
$$

(h) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} R_{n}$
$=\left(4 W_{0}^{2}-W_{1}^{2}-W_{2}^{2}-4 W_{0} W_{1}-2 W_{0} W_{2}+4 W_{1} W_{2}\right) W_{n+2}+2\left(4 W_{0}^{2}+18 W_{1}^{2}+3 W_{2}^{2}-20 W_{0} W_{1}+11 W_{0} W_{2}-16 W_{1} W_{2}\right) W_{n+1}+2\left(-8 W_{0}^{2}+\right.$ $\left.28 W_{0} W_{1}-12 W_{0} W_{2}-22 W_{1}^{2}+17 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n}$.
(i) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} R_{n}$
$=\left(28 W_{0}^{2}+31 W_{1}^{2}+W_{2}^{2}-60 W_{0} W_{1}+12 W_{0} W_{2}-12 W_{1} W_{2}\right) W_{n+1}+2\left(-24 W_{0}^{2}+44 W_{0} W_{1}-4 W_{0} W_{2}-18 W_{1}^{2}+W_{1} W_{2}+W_{2}^{2}\right) W_{n}+4\left(4 W_{0}^{2}-\right.$
$\left.W_{1}^{2}-W_{2}^{2}-4 W_{0} W_{1}-2 W_{0} W_{2}+4 W_{1} W_{2}\right) W_{n-1}$.
(j) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} R_{n}$

$$
=\left(92 W_{0}^{2}+119 W_{1}^{2}+7 W_{2}^{2}-212 W_{0} W_{1}+52 W_{0} W_{2}-58 W_{1} W_{2}\right) W_{n}+4\left(-52 W_{0}^{2}+116 W_{0} W_{1}-26 W_{0} W_{2}-63 W_{1}^{2}+28 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n-1}+
$$

$$
4\left(28 W_{0}^{2}+31 W_{1}^{2}+W_{2}^{2}-60 W_{0} W_{1}+12 W_{0} W_{2}-12 W_{1} W_{2}\right) W_{n-2} .
$$

Next, we present a few basic relations between $\left\{W_{n}\right\}$ and $\left\{C_{n}\right\}$.
Lemma 4.4. The following equalities are true:
(a) $8 W_{n}=\left(25 W_{0}-22 W_{1}+5 W_{2}\right) C_{n+4}+\left(95 W_{1}-105 W_{0}-22 W_{2}\right) C_{n+3}+\left(112 W_{0}-105 W_{1}+25 W_{2}\right) C_{n+2}$.
(b) $8 W_{n}=\left(20 W_{0}-15 W_{1}+3 W_{2}\right) C_{n+3}+\left(71 W_{1}-88 W_{0}-15 W_{2}\right) C_{n+2}+4\left(25 W_{0}-22 W_{1}+5 W_{2}\right) C_{n+1}$.
(c) $2 W_{n}=\left(3 W_{0}-W_{1}\right) C_{n+2}+\left(8 W_{1}-15 W_{0}-W_{2}\right) C_{n+1}+\left(20 W_{0}-15 W_{1}+3 W_{2}\right) C_{n}$.
(d) $2 W_{n}=\left(3 W_{1}-W_{2}\right) C_{n+1}+\left(3 W_{2}-7 W_{1}-4 W_{0}\right) C_{n}+4\left(3 W_{0}-W_{1}\right) C_{n-1}$.
(e) $W_{n}=\left(4 W_{1}-2 W_{0}-W_{2}\right) C_{n}+2\left(3 W_{0}-7 W_{1}+2 W_{2}\right) C_{n-1}+2\left(3 W_{1}-W_{2}\right) C_{n-2}$.
(f) $2\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} C_{n}$

$$
=\left(4 W_{0}^{2}+10 W_{1}^{2}+W_{2}^{2}-12 W_{0} W_{1}+3 W_{0} W_{2}-6 W_{1} W_{2}\right) W_{n+4}+\left(-12 W_{0}^{2}+40 W_{0} W_{1}-11 W_{0} W_{2}-36 W_{1}^{2}+23 W_{1} W_{2}-4 W_{2}^{2}\right) W_{n+3}+
$$

$$
\left(16 W_{0}^{2}+44 W_{1}^{2}+5 W_{2}^{2}-52 W_{0} W_{1}+16 W_{0} W_{2}-29 W_{1} W_{2}\right) W_{n+2} .
$$

(g) $2\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} C_{n}$

$$
=\left(8 W_{0}^{2}+14 W_{1}^{2}+W_{2}^{2}-20 W_{0} W_{1}+4 W_{0} W_{2}-7 W_{1} W_{2}\right) W_{n+3}+\left(-16 W_{0}^{2}+44 W_{0} W_{1}-8 W_{0} W_{2}-36 W_{1}^{2}+19 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n+2}+4\left(4 W_{0}^{2}+\right.
$$

$$
\left.10 W_{1}^{2}+W_{2}^{2}-12 W_{0} W_{1}+3 W_{0} W_{2}-6 W_{1} W_{2}\right) W_{n+1}
$$

(h) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} C_{n}$

$$
=\left(12 W_{0}^{2}+17 W_{1}^{2}+W_{2}^{2}-28 W_{0} W_{1}+6 W_{0} W_{2}-8 W_{1} W_{2}\right) W_{n+2}+2\left(-12 W_{0}^{2}+28 W_{0} W_{1}-5 W_{0} W_{2}-18 W_{1}^{2}+8 W_{1} W_{2}-W_{2}^{2}\right) W_{n+1}+2\left(8 W_{0}^{2}+\right.
$$

$$
\left.14 W_{1}^{2}+W_{2}^{2}-20 W_{0} W_{1}+4 W_{0} W_{2}-7 W_{1} W_{2}\right) W_{n}
$$

(i) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} C_{n}$

$$
=\left(36 W_{0}^{2}+49 W_{1}^{2}+3 W_{2}^{2}-84 W_{0} W_{1}+20 W_{0} W_{2}-24 W_{1} W_{2}\right) W_{n+1}+2\left(-40 W_{0}^{2}+92 W_{0} W_{1}-20 W_{0} W_{2}-54 W_{1}^{2}+25 W_{1} W_{2}-3 W_{2}^{2}\right) W_{n}+
$$

$$
4\left(12 W_{0}^{2}+17 W_{1}^{2}+W_{2}^{2}-28 W_{0} W_{1}+6 W_{0} W_{2}-8 W_{1} W_{2}\right) W_{n-1} .
$$

(j) $\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} C_{n}$

$$
\begin{aligned}
& =\left(100 W_{0}^{2}+137 W_{1}^{2}+9 W_{2}^{2}-236 W_{0} W_{1}+60 W_{0} W_{2}-70 W_{1} W_{2}\right) W_{n}+4\left(-60 W_{0}^{2}+140 W_{0} W_{1}-34 W_{0} W_{2}-81 W_{1}^{2}+40 W_{1} W_{2}-5 W_{2}^{2}\right) W_{n-1}+ \\
& 4\left(36 W_{0}^{2}+49 W_{1}^{2}+3 W_{2}^{2}-84 W_{0} W_{1}+20 W_{0} W_{2}-24 W_{1} W_{2}\right) W_{n-2} .
\end{aligned}
$$

Now, we give a few basic relations between $\left\{G_{n}\right\}$ and $\left\{H_{n}\right\}$.
Lemma 4.5. The following equalities are true:

$$
\begin{aligned}
4 H_{n} & =5 G_{n+4}-19 G_{n+3}+18 G_{n+2}, \\
2 H_{n} & =3 G_{n+3}-11 G_{n+2}+10 G_{n+1}, \\
H_{n} & =2 G_{n+2}-7 G_{n+1}+6 G_{n}, \\
H_{n} & =3 G_{n+1}-10 G_{n}+8 G_{n-1}, \\
H_{n} & =5 G_{n}-16 G_{n-1}+12 G_{n-2} .
\end{aligned}
$$

Next, we present a few basic relations between $\left\{G_{n}\right\}$ and $\left\{R_{n}\right\}$.
Lemma 4.6. The following equalities are true:

$$
\begin{aligned}
8 G_{n} & =-13 R_{n+4}+49 R_{n+3}-44 R_{n+2}, \\
2 G_{n} & =-4 R_{n+3}+15 R_{n+2}-13 R_{n+1}, \\
2 G_{n} & =-5 R_{n+2}+19 R_{n+1}-16 R_{n}, \\
G_{n} & =-3 R_{n+1}+12 R_{n}-10 R_{n-1}, \\
G_{n} & =-3 R_{n}+14 R_{n-1}-12 R_{n-2},
\end{aligned}
$$

and

$$
\begin{aligned}
8 R_{n} & =-11 G_{n+4}+43 G_{n+3}-40 G_{n+2}, \\
2 R_{n} & =-3 G_{n+3}+12 G_{n+2}-11 G_{n+1}, \\
2 R_{n} & =-3 G_{n+2}+13 G_{n+1}-12 G_{n}, \\
R_{n} & =-G_{n+1}+6 G_{n}-6 G_{n-1}, \\
R_{n} & =G_{n}+2 G_{n-1}-4 G_{n-2} .
\end{aligned}
$$

Now, we give a few basic relations between $\left\{G_{n}\right\}$ and $\left\{C_{n}\right\}$.
Lemma 4.7. The following equalities are true:

$$
\begin{aligned}
8 G_{n} & =3 C_{n+4}-15 C_{n+3}+20 C_{n+2}, \\
2 G_{n} & =-C_{n+2}+3 C_{n+1}, \\
G_{n} & =-C_{n+1}+4 C_{n}-2 C_{n-1}, \\
G_{n} & =-C_{n}+6 C_{n-1}-4 C_{n-2},
\end{aligned}
$$

and

$$
\begin{aligned}
8 C_{n} & =5 G_{n+4}-21 G_{n+3}+24 G_{n+2}, \\
2 C_{n} & =G_{n+3}-4 G_{n+2}+5 G_{n+1}, \\
2 C_{n} & =G_{n+2}-3 G_{n+1}+4 G_{n}, \\
C_{n} & =G_{n+1}-2 G_{n}+2 G_{n-1}, \\
C_{n} & =3 G_{n}-6 G_{n-1}+4 G_{n-2} .
\end{aligned}
$$

Next, we present a few basic relations between $\left\{H_{n}\right\}$ and $\left\{R_{n}\right\}$.
Lemma 4.8. The following equalities are true:

$$
\begin{aligned}
4 H_{n} & =-3 R_{n+4}+13 R_{n+3}-14 R_{n+2}, \\
2 H_{n} & =-R_{n+3}+5 R_{n+2}-6 R_{n+1}, \\
H_{n} & =R_{n+1}-2 R_{n}, \\
H_{n} & =3 R_{n}-8 R_{n-1}+4 R_{n-2} .
\end{aligned}
$$

Now, we give a few basic relations between $\left\{H_{n}\right\}$ and $\left\{C_{n}\right\}$.
Lemma 4.9. The following equalities are true:

$$
\begin{aligned}
4 H_{n} & =5 C_{n+4}-19 C_{n+3}+18 C_{n+2}, \\
2 H_{n} & =3 C_{n+3}-11 C_{n+2}+10 C_{n+1}, \\
H_{n} & =2 C_{n+2}-7 C_{n+1}+6 C_{n}, \\
H_{n} & =3 C_{n+1}-10 C_{n}+8 C_{n-1}, \\
H_{n} & =5 C_{n}-16 C_{n-1}+12 C_{n-2} .
\end{aligned}
$$

Next, we present a few basic relations between $\left\{R_{n}\right\}$ and $\left\{C_{n}\right\}$.
Lemma 4.10. The following equalities are true:

$$
\begin{aligned}
4 R_{n} & =-6 C_{n+4}+23 C_{n+3}-21 C_{n+2}, \\
4 R_{n} & =-7 C_{n+3}+27 C_{n+2}-24 C_{n+1}, \\
R_{n} & =-2 C_{n+2}+8 C_{n+1}-7 C_{n}, \\
R_{n} & =-2 C_{n+1}+9 C_{n}-8 C_{n-1}, \\
R_{n} & =-C_{n}+8 C_{n-1}-8 C_{n-2},
\end{aligned}
$$

and

$$
\begin{aligned}
4 C_{n} & =-6 R_{n+4}+23 R_{n+3}-21 R_{n+2}, \\
4 C_{n} & =-7 R_{n+3}+27 R_{n+2}-24 R_{n+1}, \\
C_{n} & =-2 R_{n+2}+8 R_{n+1}-7 R_{n}, \\
C_{n} & =-2 R_{n+1}+9 R_{n}-8 R_{n-1}, \\
C_{n} & =-R_{n}+8 R_{n-1}-8 R_{n-2} .
\end{aligned}
$$

5. On the Recurrence Properties of Generalized Woodall Sequence

Taking $r=5, s=-8, t=4$ in Theorem 1.6, we obtain the following Proposition.
Proposition 5.1. For $n \in \mathbb{Z}$, generalized Woodall numbers (the case $r=5, s=-8, t=4$) have the following identity:

$$
W_{-n}=4^{-n}\left(W_{2 n}-H_{n} W_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) W_{0}\right)
$$

where

$$
\begin{equation*}
H_{n}=\frac{\left(\left(10 W_{0}-11 W_{1}+3 W_{2}\right) W_{n+2}-2\left(16 W_{0}-18 W_{1}+5 W_{2}\right) W_{n+1}+4\left(6 W_{0}-7 W_{1}+2 W_{2}\right) W_{n}\right)}{\left(2 W_{0}-3 W_{1}+W_{2}\right)\left(4 W_{0}-4 W_{1}+W_{2}\right)} \tag{5.1}
\end{equation*}
$$

Note that if we take $r=5, s=-8, t=4$ in Lemma 1.7 (or using Lemma 4.2 (c)) we get (5.1).
From the above Proposition 5.1 and Corollary 1.8, we have the following Corollary 5.2 which gives the connection between the special cases of generalized Woodall sequence at the positive index and the negative index: for modified Woodall, modified Cullen, Woodall and Cullen numbers: take $W_{n}=G_{n}$ with $G_{0}=0, G_{1}=1, G_{2}=5$, take $W_{n}=H_{n}$ with $H_{0}=3, H_{1}=5, H_{2}=9, W_{n}=R_{n}$ with $R_{0}=-1, R_{1}=1, R_{2}=7$ and $W_{n}=C_{n}$ with $C_{0}=1, C_{1}=3, C_{2}=9$, respectively. Note that in this case $H_{n}=H_{n}$.
Corollary 5.2. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a) Modified Woodall sequence:

$$
G_{-n}=4^{-n}\left(-6 G_{n}^{2}+G_{2 n}-2 G_{n+2} G_{n}+7 G_{n+1} G_{n}\right) .
$$

(b) Modified Cullen sequence:

$$
H_{-n}=2^{-2 n-1}\left(H_{n}^{2}-H_{2 n}\right) .
$$

(c) Woodall sequence:

$$
R_{-n}=2^{-2 n-1}\left(-R_{n+1}^{2}+R_{2 n+1}+2 R_{n+1} R_{n}\right)
$$

(d) Cullen sequence:

$$
C_{-n}=2^{-2 n-1}\left(4 C_{n+2}^{2}+49 C_{n+1}^{2}+24 C_{n}^{2}-2 C_{2 n+2}+7 C_{2 n+1}-4 C_{2 n}-28 C_{n+1} C_{n+2}+20 C_{n} C_{n+2}-70 C_{n} C_{n+1}\right) .
$$

6. Sum Formulas

The following Theorem 6.1 presents some formulas of of generalized Woodall numbers numbers with indices in arithmetic progression.
Theorem 6.1. For all integers m and j, we have the following sum formula:

$$
\sum_{k=0}^{n} W_{m k+j}=\frac{1}{2\left(2^{m}-1\right)^{2}}\left(\Gamma_{1}+\Gamma_{2}+\Gamma_{3}\right)
$$

where

$$
\begin{aligned}
& \Gamma_{1}=\left((j+m n-2) 2^{m n+2 m+j}-(j+m+m n-2) 2^{m n+m+j}+(m-j+2) 2^{m+j}+(j-2) 2^{j}+2(n+1)\left(2^{m}-1\right)^{2}\right) W_{2}, \\
& \Gamma_{2}=\left(-(3 j+3 m n-8) 2^{m n+2 m+j}+(3 j+3 m+3 m n-8) 2^{m n+m+j}+(3 j-3 m-8) 2^{m+j}-(3 j-8) 2^{j}-8(n+1)\left(2^{m}-1\right)^{2}\right) W_{1}, \\
& \Gamma_{3}=2\left((j+m n-3) 2^{m n+2 m+j}-(j+m+m n-3) 2^{m n+m+j}+(m-j+3) 2^{m+j}+(j-3) 2^{j}+4(n+1)\left(2^{m}-1\right)^{2}\right) W_{0} .
\end{aligned}
$$

Proof. Use the Binet's formula of generalized Woodall numbers, i.e.,

$$
W_{n}=\left(\left(-W_{2}+4 W_{1}-3 W_{0}\right)+\frac{W_{2}-3 W_{1}+2 W_{0}}{2} n\right) \times 2^{n}+\left(W_{2}-4 W_{1}+4 W_{0}\right) .
$$

The following Proposition 6.2 presents some formulas of generalized Woodall numbers numbers with positive subscripts.
Proposition 6.2. For $n \geq 0$, we have the following formulas:
(a) $\sum_{k=0}^{n} W_{k}=\left((n-3) 2^{n}+n+3\right) W_{2}-\left((3 n-11) 2^{n}+4 n+11\right) W_{1}+\left((n-4) 2^{n+1}+4 n+9\right) W_{0}$.
(b) $\sum_{k=0}^{n} W_{2 k}=\frac{1}{9}\left(\left((3 n-4) 2^{2 n+2}+9 n+16\right) W_{2}-12\left((3 n-5) 2^{2 n}+3 n+5\right) W_{1}+\left((6 n-11) 2^{2 n+2}+36 n+53\right) W_{0}\right)$.
(c) $\sum_{k=0}^{n} W_{2 k+1}=\frac{1}{9}\left(\left((6 n-5) 2^{2 n+2}+9 n+20\right) W_{2}-3\left((6 n-7) 2^{2 n+2}+12 n+25\right) W_{1}+4\left((3 n-4) 2^{2 n+2}+9 n+16\right) W_{0}\right)$.

Proof. Take $m=1, j=0 ; m=2, j=0$ and $m=2, j=1$, respectively, in Theorem 6.1.
From Theorem 6.1, we have the following Corollary.
Corollary 6.3. For all integers m and j, we have the following sum formulas:
(a) $\sum_{k=0}^{n} G_{m k+j}=\frac{1}{\left(2^{m}-1\right)^{2}}\left((j+m n-1) 2^{m n+2 m+j}-(j+m+m n-1) 2^{m n+m+j}+(n+1) 2^{2 m}-(n+1) 2^{m+1}-(j-m-1) 2^{m+j}\right.$

$$
\left.+(j-1) 2^{j}+n+1\right) .
$$

(b) $\sum_{k=0}^{n} H_{m k+j}=\frac{1}{\left(2^{m}-1\right)}\left(2^{m n+m+j+1}+(n+1) 2^{m}-2^{j+1}-n-1\right)$.
(c) $\sum_{k=0}^{n} R_{m k+j}=\frac{1}{\left(2^{m}-1\right)^{2}}\left((j+m n) 2^{m n+2 m+j}-(j+m+m n) 2^{m n+m+j}-(n+1) 2^{2 m}+(n+1) 2^{m+1}+(m-j) 2^{m+j}+2^{j} j-n-1\right)$.
(d) $\sum_{k=0}^{n} C_{m k+j}=\frac{1}{\left(2^{m}-1\right)^{2}}\left((j+m n) 2^{m n+2 m+j}-(j+m+m n) 2^{m n+m+j}+(n+1) 2^{2 m}-(n+1) 2^{m+1}+(m-j) 2^{m+j}+2^{j} j+n+1\right)$.

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.4 which gives sum formulas of modified Woodall numbers (take $W_{n}=G_{n}$ with $G_{0}=0, G_{1}=1, G_{2}=5$).
Corollary 6.4. For $n \geq 0$ we have the following formulas:
(a) $\sum_{k=0}^{n} G_{k}=(n-2) 2^{n+1}+n+4$.
(b) $\sum_{k=0}^{n} G_{2 k}=\frac{1}{9}\left((6 n-5) 2^{2 n+2}+9 n+20\right)$.
(c) $\sum_{k=0}^{n} G_{2 k+1}=\frac{1}{9}\left((3 n-1) 2^{2 n+4}+9 n+25\right)$.

Taking $W_{n}=H_{n}$ with $H_{0}=3, H_{1}=5, H_{2}=9$ in the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.5 which presents sum formulas of modified Cullen numbers.

Corollary 6.5. For $n \geq 0$ we have the following formulas:
(a) $\sum_{k=0}^{n} H_{k}=2^{n+2}+n-1$.
(b) $\sum_{k=0}^{n} H_{2 k}=\frac{1}{3}\left(2^{2 n+3}+3 n+1\right)$.
(c) $\sum_{k=0}^{n=0} H_{2 k+1}=\frac{1}{3}\left(2^{2 n+4}+3 n-1\right)$.

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.6 which gives sum formulas of Woodall numbers (take $W_{n}=R_{n}$ with $R_{0}=-1, R_{1}=1, R_{2}=7$).
Corollary 6.6. For $n \geq 0$ we have the following formulas:
(a) $\sum_{k=0}^{n} R_{k}=(n-1)\left(2^{n+1}-1\right)$.
(b) $\sum_{k=0}^{n} R_{2 k}=\frac{1}{9}\left((3 n-1) 2^{2 n+3}-9 n-1\right)$.
(c) $\sum_{k=0}^{n} R_{2 k+1}=\frac{1}{9}\left((6 n+1) 2^{2 n+3}-9 n+1\right)$.

Taking $W_{n}=C_{n}$ with $C_{0}=1, C_{1}=3, C_{2}=9$ in the last Proposition 6.2 , we have the following Corollary 6.7 which presents sum formulas of Cullen numbers.

Corollary 6.7. For $n \geq 0$ we have the following formulas:
(a) $\sum_{k=0}^{n} C_{k}=(n-1) 2^{n+1}+n+3$.
(b) $\sum_{k=0}^{n} C_{2 k}=\frac{1}{9}\left((3 n-1) 2^{2 n+3}+9 n+17\right)$.
(c) $\sum_{k=0}^{n} C_{2 k+1}=\frac{1}{9}\left((6 n+1) 2^{2 n+3}+9 n+19\right)$.

7. Matrices Related With Generalized Woodall numbers

We define the square matrix A of order 3 as:

$$
A=\left(\begin{array}{ccc}
5 & -8 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

such that $\operatorname{det} A=4$. From (2.1) we have

$$
\left(\begin{array}{c}
W_{n+2} \tag{7.1}\\
W_{n+1} \\
W_{n}
\end{array}\right)=\left(\begin{array}{ccc}
5 & -8 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
W_{n+1} \\
W_{n} \\
W_{n-1}
\end{array}\right)
$$

and from (1.6) (or using (7.1) and induction) we have

$$
\left(\begin{array}{c}
W_{n+2} \\
W_{n+1} \\
W_{n}
\end{array}\right)=\left(\begin{array}{ccc}
5 & -8 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n}\left(\begin{array}{l}
W_{2} \\
W_{1} \\
W_{0}
\end{array}\right) .
$$

If we take $W=G$ in (7.1) we have

$$
\left(\begin{array}{c}
G_{n+2} \\
G_{n+1} \\
G_{n}
\end{array}\right)=\left(\begin{array}{ccc}
5 & -8 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
G_{n+1} \\
G_{n} \\
G_{n-1}
\end{array}\right) .
$$

We also define

$$
B_{n}=\left(\begin{array}{ccc}
G_{n+1} & -8 G_{n}+4 G_{n-1} & 4 G_{n} \\
G_{n} & -8 G_{n-1}+4 G_{n-2} & 4 G_{n-1} \\
G_{n-1} & -8 G_{n-2}+4 G_{n-3} & 4 G_{n-2}
\end{array}\right)
$$

and

$$
C_{n}=\left(\begin{array}{ccc}
W_{n+1} & -8 W_{n}+4 W_{n-1} & 4 W_{n} \\
W_{n} & -8 W_{n-1}+4 W_{n-2} & 4 W_{n-1} \\
W_{n-1} & -8 W_{n-2}+4 W_{n-3} & 4 W_{n-2}
\end{array}\right)
$$

Theorem 7.1. For all integer $m, n \geq 0$, we have
(a) $B_{n}=A^{n}$
(b) $C_{1} A^{n}=A^{n} C_{1}$
(c) $C_{n+m}=C_{n} B_{m}=B_{m} C_{n}$.

Proof. Take $r=5, s=-8, t=4$ in Soykan [25, Theorem 5.1.],
Some properties of matrix A^{n} can be given as

$$
A^{n}=5 A^{n-1}-8 A^{n-2}+4 A^{n-3}
$$

and

$$
A^{n+m}=A^{n} A^{m}=A^{m} A^{n}
$$

and

$$
\operatorname{det}\left(A^{n}\right)=4^{n}
$$

for all integer m and n.
Corollary 7.2. For all integers n, we have the following formulas for the modified Woodall, Woodall and Cullen numbers.
(a) Modified Woodall Numbers.

$$
\begin{aligned}
A^{n} & =\left(\begin{array}{ccc}
5 & -8 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n}=\left(\begin{array}{ccc}
G_{n+1} & -8 G_{n}+4 G_{n-1} & 4 G_{n} \\
G_{n} & -8 G_{n-1}+4 G_{n-2} & 4 G_{n-1} \\
G_{n-1} & -8 G_{n-2}+4 G_{n-3} & 4 G_{n-2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2^{n+1} n+1 & 4 \times 2^{n}-6 \times 2^{n} n-4 & 4 \times 2^{n} n-4 \times 2^{n}+4 \\
2^{n} n-2^{n}+1 & 5 \times 2^{n}-3 \times 2^{n} n-4 & 2 \times 2^{n} n-4 \times 2^{n}+4 \\
\frac{1}{2} 2^{n} n-2^{n}+1 & 2^{n+2}-\frac{3}{2} 2^{n} n-4 & 2^{n} n-3 \times 2^{n}+4
\end{array}\right) .
\end{aligned}
$$

(b) Woodall Numbers.

$$
A^{n}=\frac{1}{2}\left(\begin{array}{ccc}
-5 R_{n+3}+19 R_{n+2}-16 R_{n+1} & 24 R_{n+2}-92 R_{n+1}+76 R_{n} & 4\left(-5 R_{n+2}+19 R_{n+1}-16 R_{n}\right) \\
-5 R_{n+2}+19 R_{n+1}-16 R_{n} & 24 R_{n+1}-92 R_{n}+76 R_{n-1} & 4\left(-5 R_{n+1}+19 R_{n}-16 R_{n-1}\right) \\
-5 R_{n+1}+19 R_{n}-16 R_{n-1} & 24 R_{n}-92 R_{n-1}+76 R_{n-2} & 4\left(-5 R_{n}+19 R_{n-1}-16 R_{n-2}\right)
\end{array}\right) .
$$

(c) Cullen Numbers.

$$
A^{n}=\left(\begin{array}{ccc}
-C_{n+2}+4 C_{n+1}-2 C_{n} & 6 C_{n+1}-26 C_{n}+16 C_{n-1} & 4\left(-C_{n+1}+4 C_{n}-2 C_{n-1}\right) \\
-C_{n+1}+4 C_{n}-2 C_{n-1} & 6 C_{n}-26 C_{n-1}+16 C_{n-2} & 4\left(-C_{n}+4 C_{n-1}-2 C_{n-2}\right) \\
-C_{n}+4 C_{n-1}-2 C_{n-2} & 6 C_{n-1}-26 C_{n-2}+16 C_{n-3} & 4\left(-C_{n-1}+4 C_{n-2}-2 C_{n-3}\right)
\end{array}\right)
$$

Proof.
(a) It is given in Theorem 7.1 (a).
(b) Note that, from Lemma 4.6, we have

$$
2 G_{n}=-5 R_{n+2}+19 R_{n+1}-16 R_{n}
$$

Using the last equation and (a), we get required result.
(c) Note that, from Lemma 4.7, we have

$$
G_{n}=-C_{n+1}+4 C_{n}-2 C_{n-1}
$$

Using the last equation and (a), we get required result.
Theorem 7.3. For all integers m, n, we have

$$
\begin{align*}
W_{n+m} & =W_{n} G_{m+1}+W_{n-1}\left(-8 G_{m}+4 G_{m-1}\right)+4 W_{n-2} G_{m} \tag{7.2}\\
& =W_{n} G_{m+1}+\left(-8 W_{n-1}+4 W_{n-2}\right) G_{m}+4 W_{n-1} G_{m-1}
\end{align*}
$$

Proof. Take $r=5, s=-8, t=4$ in Soykan [25, Theorem 5.2.].
By Lemma 4.1, we know that

$$
\begin{aligned}
\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} G_{m} & =\left(4 W_{0}^{2}+5 W_{1}^{2}-8 W_{0} W_{1}-W_{1} W_{2}\right) W_{m+2} \\
& +\left(W_{2}^{2}-4 W_{0} W_{1}+8 W_{0} W_{2}-5 W_{1} W_{2}\right) W_{m+1}+4\left(W_{1}^{2}-W_{0} W_{2}\right) W_{m}
\end{aligned}
$$

so (7.2) can be written in the following form
$\left(4 W_{0}-4 W_{1}+W_{2}\right)\left(2 W_{0}-3 W_{1}+W_{2}\right)^{2} W_{n+m}=W_{n}\left(\left(4 W_{0}^{2}+5 W_{1}^{2}-8 W_{0} W_{1}-W_{1} W_{2}\right) W_{m+3}+\left(W_{2}^{2}-4 W_{0} W_{1}+8 W_{0} W_{2}-5 W_{1} W_{2}\right) W_{m+2}+\right.$ $\left.4\left(W_{1}^{2}-W_{0} W_{2}\right) W_{m+1}\right)+\left(-8 W_{n-1}+4 W_{n-2}\right)\left(\left(4 W_{0}^{2}+5 W_{1}^{2}-8 W_{0} W_{1}-W_{1} W_{2}\right) W_{m+2}\right.$
$\left.+\left(W_{2}^{2}-4 W_{0} W_{1}+8 W_{0} W_{2}-5 W_{1} W_{2}\right) W_{m+1}+4\left(W_{1}^{2}-W_{0} W_{2}\right) W_{m}\right)+4 W_{n-1}\left(\left(4 W_{0}^{2}+5 W_{1}^{2}-8 W_{0} W_{1}-W_{1} W_{2}\right) W_{m+1}+\left(W_{2}^{2}-4 W_{0} W_{1}+8 W_{0} W_{2}-\right.\right.$ $\left.\left.5 W_{1} W_{2}\right) W_{m}+4\left(W_{1}^{2}-W_{0} W_{2}\right) W_{m-1}\right)$.

Corollary 7.4. For all integers m, n, we have

$$
\begin{aligned}
G_{n+m} & =G_{n} G_{m+1}+G_{n-1}\left(-8 G_{m}+4 G_{m-1}\right)+4 G_{n-2} G_{m} \\
H_{n+m} & =H_{n} G_{m+1}+H_{n-1}\left(-8 G_{m}+4 G_{m-1}\right)+4 H_{n-2} G_{m} \\
R_{n+m} & =R_{n} G_{m+1}+R_{n-1}\left(-8 G_{m}+4 G_{m-1}\right)+4 R_{n-2} G_{m} \\
C_{n+m} & =C_{n} G_{m+1}+C_{n-1}\left(-8 G_{m}+4 G_{m-1}\right)+4 C_{n-2} G_{m}
\end{aligned}
$$

and

$$
\begin{aligned}
2 R_{m+n}= & -5 R_{n} R_{m+3}+\left(19 R_{n}+40 R_{n-1}-20 R_{n-2}\right) R_{m+2} \\
& +4\left(-4 R_{n}-43 R_{n-1}+19 R_{n-2}\right) R_{m+1}+4\left(51 R_{n-1}-16 R_{n-2}\right) R_{m}-64 R_{n-1} R_{m-1} \\
2 C_{m+n}= & -C_{n} C_{m+3}+\left(3 C_{n}+8 C_{n-1}-4 C_{n-2}\right) C_{m+2} \\
& +4\left(-7 C_{n-1}+3 C_{n-2}\right) C_{m+1}+12 C_{n-1} C_{m}
\end{aligned}
$$

Taking $m=n$ in the last Corollary we obtain the following identities:

$$
\begin{aligned}
G_{2 n} & =4 G_{n-1}^{2}+\left(G_{n+1}-8 G_{n-1}+4 G_{n-2}\right) G_{n}, \\
H_{2 n} & =H_{n} G_{n+1}-4\left(2 H_{n-1}-H_{n-2}\right) G_{n}+4 H_{n-1} G_{n-1}, \\
R_{2 n} & =R_{n} G_{n+1}-4\left(2 R_{n-1}-R_{n-2}\right) G_{n}+4 R_{n-1} G_{n-1}, \\
C_{2 n} & =C_{n} G_{n+1}-4\left(2 C_{n-1}-C_{n-2}\right) G_{n}+4 C_{n-1} G_{n-1},
\end{aligned}
$$

and

$$
\begin{aligned}
2 R_{2 n} & =-5 R_{n} R_{n+3}+\left(19 R_{n}+40 R_{n-1}-20 R_{n-2}\right) R_{n+2}+4\left(-4 R_{n}-43 R_{n-1}+19 R_{n-2}\right) R_{n+1} \\
& +4\left(51 R_{n-1}-16 R_{n-2}\right) R_{n}-64 R_{n-1} R_{n-1}, \\
2 C_{2 n} & =-C_{n} C_{n+3}+\left(3 C_{n}+8 C_{n-1}-4 C_{n-2}\right) C_{n+2}+4\left(-7 C_{n-1}+3 C_{n-2}\right) C_{n+1}+12 C_{n-1} C_{n} .
\end{aligned}
$$

References

[1] P. Berrizbeitia, J. G. Fernandes, M. J. González, F. Luca, V. J. M. Huguet, On Cullen numbers which are Both Riesel and Sierpiński numbers, Journal of Number Theory, 132 (2012), 2836-2841, http://dx.doi.org/10.1016/j.jnt.2012.05.021
[2] Y. Bilu, D. Marques, A. Togbe, Generalized Cullen numbers in linear recurrence sequences, Journal of Number Theory, 202 (2019), 412-425, https://doi.org/10.1016/j.jnt.2018.11.025
[3] I. Bruce, A modified Tribonacci sequence, Fibonacci Quarterly, 22(3) (1984), 244-246.
[4] M. Catalani, Identities for Tribonacci-related sequences, (2012), arXiv:math/0209179.
[5] E. Choi, Modular Tribonacci numbers by matrix method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics, 20(3) (2013), 207-221.
[6] A. J. C. Cunningham, H. J. Woodall, Factorisation of $Q=\left(2^{q} \mp q\right)$ and $\left(q .2^{q} \mp 1\right)$, Messenger of Mathematics, 47 (1917), 1-38.
[7] M. Elia, Derived sequences, The Tribonacci recurrence and cubic forms, Fibonacci Quarterly, 39(2) (2001), 107-115.
[8] M. C. Er, , Sums of Fibonacci numbers by matrix methods, Fibonacci Quarterly, 22(3) (1984), 204-207.
[9] J. Grantham, H. Graves, The abc conjecture implies that only finitely many s-Cullen numbers are repunits, (2021) http://arxiv.org/abs/2009.04052v3, MathNT.
[10] R. Guy, Unsolved Problems in Number Theory (2nd ed.), Springer-Verlag, New York, 1994.
[11] C. Hooley, Applications of the sieve methods to the theory of numbers, Cambridge University Press, Cambridge, 1976.
[12] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quarterly, 20(1) (1982), 73-76.
[13] W. Keller, New Cullen primes, Math. Comput. 64 (1995), 1733-1741.
[14] P. Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quarterly, 26 (1988), 131-134.
[15] F. Luca, P. Stanica, Cullen numbers in binary recurrent sequences, FT. Howard (ed.), Applications of Fibonacci Numbers : Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Kluwer Academic Publishers, 9 (2004) 167-175.
[16] D. Marques, On Generalized Cullen and Woodall numbers that are also Fibonacci numbers, Journal of Integer Sequences, 17 (2014), Article 14.9.4
[17] D. Marques, Fibonacci s-Cullen and s-Woodall numbers, , Journal of Integer Sequences, 18 (2015), Article 15.1.4
[18] N. K. Meher, S. S. Rout, Cullen numbers in sums of terms of recurrence sequence, (2020), http://arxiv.org/abs/2010.10014v1, MathNT.
[19] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quarterly, 26(2) (1988), 144-151.
[20] A. Scott, T. Delaney, V. Jr. Hoggatt, The Tribonacci sequence, Fibonacci Quarterly, 15(3) (1977), 193-200.
[21] A. Shannon, Tribonacci numbers and Pascal's pyramid, Fibonacci Quarterly, 15(3) (1977), 268-275.
[22] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
[23] Y. Soykan, Simson Identity of Generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. and Mech. 7(2) (2019), 45-56.
[24] Y. Soykan, Tribonacci and Tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74.
[25] Y. Soykan, A study on generalized ($r, s, t)$-numbers, MathLAB Journal, 7 (2020), 101-129.
[26] Y. Soykan, On the recurrence properties of generalized Tribonacci sequence, Earthline Journal of Mathematical Sciences, 6(2) (2021), 253-269, https://doi.org/10.34198/ejms. 6221.253269
[27] W. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quarterly, 20 (1982), 118-120.
[28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quarterly, 10(3) (1972), 231-246.
[29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Applied Mathematical Sciences, 8(39) (2014), 1947-1955.

