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i



Editorial Secretariat

Bahar Doğan Yazıcı
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Abstract

This article aims to express the daily and yearly apparent movement of the Sun in the same

curve by using quaternions as a rotation operator. To achieve this, the daily and yearly

apparent movement of the Sun, the algebraical structure of quaternions, and how quaternions

work as rotation operators have been examined. For each of the apparent movements of

the Sun, a quaternion that will work as a rotation operator has been determined. Afterward,

these two rotation operators have been applied to the vector that is found between point

(0,0,0) and the accepted starting point of the apparent movement of the Sun. As a result,

a curve on a sphere is obtained. The importance of this study is to emphasize the use of

quaternions in other areas of study and to provide the science of astronomy with a new

outlook with regards to expressing the apparent movement of the Sun.

1. Introduction

Astronomy is considered the oldest science in the world. Humankind has always observed the stars in the sky and especially the Sun. At the

end of these observations, it was noticed that the daily and yearly movement of the Sun followed a certain cycle. By observing the Sun’s

movement in the sky the formation of the night-day and the seasons was noted.

For thousands of years, mankind accepted that Earth was the center of the universe and believed that the Sun, like all other celestial bodies

rotated around the Earth. However, Copernicus proved that this belief was not accurate because it was the Earth that rotated around the

Sun [1]. After this discovery, the expression of “the Sun’s movement” was replaced with the expression of “the Sun’s apparent movement”.

Even though the daily and yearly apparent movement of the Sun occurs at the same time, in calculation these movements are considered

separable. The two main reasons for why these movements are considered separable are: firstly, the dyad Earth-Sun is not alone in the solar

system which means that the problem does not remain limited to the two-body problem. Secondly, the difference between the periods of the

daily and yearly movement is too big.

Showing the daily and yearly apparent movement of the Sun in the same curve is important in helping understand these movements, especially

for young astronomers. At the same time, there exist situations in which great precision is not required but where nonetheless finding

these two movements in the same curve would be useful. In many areas, such as using solar panels, planning agricultural activities, and in

determining prayer time, doing the calculation of this curve would bring many benefits.

In our time astronomy problems that have in their base periodical repetition of the movement find a solution by using spherical trigonometry

and Kepler’s Laws [2]. Solving this problem by using the rotation matrix is theoretically possible from the mathematical perspective,

however, using this method is considerably difficult. Therefore, the question arises, is it possible to obtain a faster mathematical approach to

calculate the apparent movement of the Sun that would take the place of the rotation matrices or the long calculations of Kepler’s equations?

There are some studies done in this direction in the relevant literature. In 1996, M. Kummer proved that one can obtain the orbit’s parameters

by solving Kepler’s equations with the Hamilton systems [3]. This study, on the other hand, has researched whether there can be easier

and faster solutions done by using quaternions and the conclusion has been that quaternions can indeed be used in analyzing the apparent

movement of the Sun.
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To understand and present the problem the author has benefited from the references [1]- [3] and [5] - [15]. The details about the quaternions

can be viewed from the references [4] and [16] - [22]. The information needed for the other calculations is found in the references [23] - [24].

2. Notations and Preliminaries

2.1. Quaternion algebra

The quaternion, a hyper-complex number of rank 4, was invented by Hamilton. The most important rule of this invention is:

i2 = j2 = k2 = i jk =−1

i, j and k are the components of the vector part of the quaternion.

Henceforth the quaternions will be denoted with the letters q, p or r. i, j and k will be used to represent the standard ortogonal base of R3.

Accordingly:

i = (1,0,0) , j = (0,1,0) , k = (0,0,1)

The quaternion, from the Latin kuattur meaning four, can be thought of as a quadruplet of the real numbers. This makes it an element of R4.

Accordingly, quaternion q can be expressed as below where q0,q1,q2,q3 are each a real number

q = (q0,q1,q2,q3)

or the quaternion q is accordingly:

α = iq1 + jq2 + kq3

q = q0 +α = q0 + iq1 + jq2 + kq3

where q0 is the scalar part and α is the vector part. Throughout the article, q will be displayed with q = q0 +α .

Some algebraic properties of the quaternions are given as follows:

q+ p = (q0 + p0)+ i(q1 + p1)+ j(q2 + p2)+ k(q3 + p3)

aq = aq0 + iaq1 + jaq2 + kaq3 , a ∈ R

Multiplication of quaternions is done according to the following rule

i2 = j2 = k2 = i jk =−1 and i j = k =−i j, jk = i =−k j,ki = j =−i j

for p = p0 +αp = p0 + ip1 + jp2 + kp3 and q = q0 +αq = q0 + iq1 + jq2 + kq3

p × q = (p0 + ip1 + jp2 + kp3) × (q0 + iq1 + jq2 + kp3)

= p0q0 − (p1q1 + p2q2 + p3q3)+ p0(iq1 + jq2 + kq3)+q0(p0 + ip1 + jp2 + kp3)

+ i(p2q3 − p3q2)+ j (p3q1 − p1q3)+ k (p1q2 − p2q1)

= p0q0 −
〈

αp,αq

〉

+ p0αq +q0αp +αp ∧αq

“〈 , 〉” represents the scalar product of vectors and “∧” represents the cross-produc of vectors.

Let q be a quaternion q = q0 + iq1 + jq2 + kq3 then q’s complex conjugent is:

q∗ = q0 − iq1 − jq2 − kq3

Finally, we can state that the set of quaternions together with the addition and multiplication operation satisfies the properties of a field

except that multiplication is not commutative. Before quaternions are expressed as a rotation operator the definition of pure quaternions will

be given.

Definition 2.1. The quaternion whose scalar part is zero is called a pure quaternion.

According to the definition above, the set of pure quaternions is one-to-one correspondent with the v ∈R
3 vector set. It can be shown that for

any v ∈ R
3 and for whichever q ∈ R

4, there can be found w1 = q × v × q∗ vector w1 ∈ R
3 and w2 = q∗ × v × q vector w2 ∈ R

3.

The unit quaternion q = q0 +α satisfies the following equality q2
0 + |α|2 = 1. It is known that for whichever ϕ angle cos2ϕ + sin2ϕ = 1. In

this case, a ϕ angle which would make possible the equations below can be found:

cos2ϕ = q2
0 and sin2ϕ = |α|2.

If we select the ϕ angle in −π < ϕ ≤ π , this angle will simultaneously have a singular value. In light of this data, the quaternion that will be

used as a rotation operator is:

q = q0 +α = cosϕ +usinϕ and q∗ = q0 −α = cosϕ −usinϕ

where

u =
α

|α|
=

α

sinϕ
.
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Theorem 2.2. For any Q = Q0 +Q = cosϕ +usinϕ unit quaternion (where Q0 is the scalar part and Q is the vector part of the quaternion)

and for any vector v ∈ R
3 the action of the operator

LQ(v) = Q × v × Q∗

on v may be interpreted geometrically as a rotation of the vector v through an angle 2ϕ about Q as the axis of the rotation, [4].

In addition: the action of the operator LQ(v) = Q∗× v × Q on v may be interpreted geometrically as a rotation of the vector v through an

angle 2ϕ in a negative direction about Q as the axis of the rotation.

Theorem 2.3. Suppose that k and r are unit quaternions that define the quaternion rotation operators:

Lk(u) = k × u × k∗ and Lr(v) = r × v× r∗.

Then the quaternion product r× k defines a quaternion operator Lrk which represents a sequence of operators, Lk followed by Lr. The axis

and the angels of rotation are those represented by the quaternion product, q = r × k [4].

In this study, two methods will be used to solve the problem. The first method will benefit from the characteristic of quaternions used as

rotation operators. The second method will use the rotation matrix, which is a product of the unit quaternion. This matrix is as below:

for Q = q0 + iq1 + jq2 + kq3 unit quaternion, the rotation matrix DQ is shown below [4].

DQ =





2q2
0 −1+2q2

1 2q1q2 −2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 2q2
0 −1+2q2

2 2q2q3 −2q0q1

2q1q3 −2q0q2 2q2q3 +2q0q1 2q2
0 −1+2q2

3



 (2.1)

and let β = (β1,β2,β3) be the vector that is obtained by the rotation of vector α = (α1,α2,α3) then:





β1

β2

β3



=





2q2
0 −1+2q2

1 2q1q2 −2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 2q2
0 −1+2q2

2 2q2q3 −2q0q1

2q1q3 −2q0q2 2q2q3 +2q0q1 2q2
0 −1+2q2

3









α1

α2

α3



 . (2.2)

2.2. The Sun’s daily and yearly apparent movement

2.2.1. The Sun’s daily apparent movement

The Earth rotates around its axis in a positive direction every day, so from the west to the east. Because the movement of the Earth cannot

be felt, it is perceived instead that it’s the other celestial bodies that rotate from the east to the west around the axis of the celestial sphere

which in itself is the lengthening of the axis of the Earth. Among these celestial bodies, there is the Sun. So it can be said that the Sun in

appearance moves every day in the negative direction in the celestial sphere. This movement occurs with a particular velocity in an orbit

parallel to the celestial equator plane. The celestial equator plane is the lengthening of the Earth’s equator plane [5].

2.2.2. The Sun’s yearly apparent movement

The Earth orbits around the Sun in an elliptical orbit and a positive direction, in the elliptical plane throughout the year. However, in

appearance, it is the Sun that orbits around the Earth in the same plane and a positive direction. The angle between the elliptical plane and

the equatorial plane is 23027′. This plane forms a 23027′ angle with the plane of the celestial equator. If in the center of the celestial system

instead of the Sun we placed the Earth and then drew the apparent elliptical orbit of the Sun,the orbit in Figure 2.1 would be obtained. To

obtain this orbit the Earth will be imagined as fixed and the Sun as the body that rotates around it. Because the Earth’s orbit is well-known

the Earth will be fixed in what will be called point A henceforth which is found in its orbit. When the Earth is on day 21 March at the Y1

point the Sun appears in the direction of Aries. If we transfer point Y1 to point A and find point G1 for which AG1 = Y1G and AG1 is parallel

to Y1G, it would mean that the Sun would appear at point G1 at this date. In the same manner, if P1G to AP2, Y2G to AG2, Y3G to AG3, and

Y4G to AG4 are transferred a new ellipse is formed which has at its center point A. This is the Sun’s yearly apparent elliptical orbit. Every

year the Sun moves in this elliptical orbit. Below are five important points that concern this orbit [5].

1. Both orbits are found in the same plane and this plane is the elliptical plane.

2. The Earth is found in one of the focal points of the apparent elliptic orbit.

3. These two ellipses are equal in shape and size.

4. The rotation period is the same in both and it is a one-star year long.

5. Both rotations are in the positive direction.
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Figure 2.1: The Earth’s orbit and the Sun’s apparent orbit

3. Obtaining the Parametric Equation of the Curve of Both the Daily and Yearly Apparent Move-

ment the Sun Makes in the Celestial Sphere by Using Quaternions

In this paper, it is assumed the apparent movement of the Sun occurs in ideal conditions. This means that the Earth will rotate around the Sun

with a constant angular velocity (this velocity will be accepted as equal to the yearly average angular velocity of the Earth around the Sun)

and it will be accepted that the orbit of rotation will be circular instead of elliptic. So, it will be accepted that the apparent movement of the

Sun in the ecliptic plane will occur in a circular orbit with a constant angular velocity.

Firstly, it is necessary to define the problem in physical terms.

Let us accept that a celestial body completes a circular motion in plane E that intersects with plane XY in axis x and forms with it an ε

angle. Let us also accept that this movement starts from point P = (1,0,0) in a positive direction, and under force, F1 completes a circular

movement with a constant angular velocity w1. Lastly, let us also accept that a force F2 = c F1, c > 2 (there is a linear relationship between

the scalar magnitude of the forces), forces the same celestial body to move parallel to plane XY in a positive direction with a constant angular

velocity w2. In this case, the celestial body whose vectors are linear independent is under the effect of two forces and is bound to both

velocities. This body, however, will not move parallel to either plane XY or plane E instead it will move with the unified velocity in a

different direction. How can we express the celestial body’s interaction with the velocities w1 and w2?

Between the scalar magnitudes of w1 and w2 velocities, a linear relation is found. This linear relation will be the same as the linear relation

between the scalar magnitudes of F1 and F2. In the same manner, the θ and ϕ angles these angular velocities trace in the same unit of time

will also have the same linear relationship between their magnitudes. So ϕ = cθ because the forces are directly proportional to the angular

velocities and the angular velocities are directly proportional to the angles they trace. To conclude, the curve that this celestial body traces on

the sphere is a product of two rotations. One of the rotations will be in a positive direction around the axis of the plane E (let this axis be

called N) and the other will be in a positive direction around axis Z.

Let plane E represent the elliptic plane while plane XY represents the plane of the celestial equator and angle ε represents the angle

ε = 23027′ which is the angle that is formed from the intersection of the celestial equatorial plane and the ecliptic plane (Figure 3.1). In this

case, point (0,0,0) represents the Earth. In addition, the positive direction of axis X will represent the Aries constellation. The direction of

the vector (0,−cosε,−sinε) will represent the Capricorn constellation. The direction of the vector (0,cosε,sinε) will represent the Cancer

constellation. The negative direction of axis X will represent the Libra constellation.

Now let us show the daily apparent movement of the Sun. This movement occurs in a negative direction parallel to the celestial equatorial

plane. In this case, the second rotation movement in the negative direction of the celestial body that was presented in the problem above

represents the movement of the daily apparent movement of the Sun.

Finally, above, it was stated that between the scalar magnitudes of w1 (if we adapt w1 to the velocity of the Sun this corresponds with the

velocity of the Sun’s movement in the elliptical plane) and w2 (if we adapt w2 to the velocity of the Sun this corresponds with the velocity of

the movement the Sun makes parallel to the celestial equatorial plane) exists a linear relation. The same linear relation exists between the

angles these velocities trace. In this case; because w2 = 365,25w1 (when the Sun rotates once around the ecliptic axis it rotates 365,25

times parallel to the celestial equatorial plane) ϕ = 365,25θ . So, c = 365,25.
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Figure 3.1: The system in which the apparent movement of the Sun occurs

Let Q1 be the quaternion that will realize the movement in the positive direction around axis N. Let Q2 be the quaternion that will realize the

movement in the positive direction around axis Z. With the help of these two quaternions, the parametric equation of the curve of the daily

and yearly apparent movement the Sun makes in the celestial sphere will be obtained. The starting point of the movement is P = (1,0,0)
which coincides with the Aries constellation. The vector OP that is found in the direction of the Earth-Aries constellation is v = (1,0,0) .
First, let this vector be transferred to the quaternion space so:

v1 = (1,0,0) vector → w1 = 0+ i+0 j+0k = i corresponds to a pure quaternion. The first rotation movement will be realized around axis

u =− j sinε + k cosε with θ angle. The second rotation movement will be realized around axis k with a ϕ angle in a negative direction. In

this case, the Q1 and Q2 quaternions that will operate as rotation operators are: For a = sinε and b = cosε ,

Q1 = cos

(

θ

2

)

− j asin

(

θ

2

)

+ k bsin

(

θ

2

)

and

Q2 = cos
(ϕ

2

)

+ k sin
(ϕ

2

)

.

It is stated that the second rotation movement (daily movement) occurs around axis k in the negative direction. If the necessary adjustments

are made, instead of Q2 = cos
(ϕ

2

)

+ k sin
(ϕ

2

)

for the second rotation, the complex conjugate of Q2 will be used.

Q∗
2 = cos

(ϕ

2

)

− k sin
(ϕ

2

)

.

According to Theorem 2.3, for LQ1
(w1) = Q1 × w1 × Q∗

1 , LQ∗
2
(w2) = Q∗

2 × w2 × Q2 , and w2 = Q1 × w1 × Q∗
1

LQ∗
2Q1

(w1) = (Q∗
2 × Q1)× w1 × (Q∗

2 × Q1)
∗
.

If Q∗
2 × Q1 = Q and w1 = i then

LQ∗
2Q1

(w1) = Q × i × Q∗.

So the calculations are as such:

Q = Q2
∗× Q1 =

(

cos
(ϕ

2

)

− k sin
(ϕ

2

))

×

(

cos

(

θ

2

)

− j asin

(

θ

2

)

+ k bsin

(

θ

2

))

Q =

(

cos
(ϕ

2

)

cos

(

θ

2

)

+b sin
(ϕ

2

)

sin

(

θ

2

))

− ia sin
(ϕ

2

)

sin

(

θ

2

)

− j a cos
(ϕ

2

)

sin

(

θ

2

)

+ k

(

b cos
(ϕ

2

)

sin

(

θ

2

)

− sin
(ϕ

2

)

cos

(

θ

2

))

L = Q × i × Q∗ = L0 + iL1 + j L2 + k L3

L0 = 0
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L1 =

(

cos
(ϕ

2

)

cos

(

θ

2

)

+b sin
(ϕ

2

)

sin

(

θ

2

))2

+a2sin2
(ϕ

2

)

sin2

(

θ

2

)

−a2cos2
(ϕ

2

)

sin2

(

θ

2

)

−

(

b cos
(ϕ

2

)

sin

(

θ

2

)

− sin
(ϕ

2

)

cos

(

θ

2

))2

= cos2
(ϕ

2

)

cos2

(

θ

2

)

+2b cos
(ϕ

2

)

cos

(

θ

2

)

sin
(ϕ

2

)

sin

(

θ

2

)

+b2sin2
(ϕ

2

)

sin2

(

θ

2

)

−a2 sin2

(

θ

2

)

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

−b2cos2
(ϕ

2

)

sin2

(

θ

2

)

+2bcos
(ϕ

2

)

sin

(

θ

2

)

sin
(ϕ

2

)

cos

(

θ

2

)

− sin2
(ϕ

2

)

cos2

(

θ

2

)

= cos2

(

θ

2

)

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

−b2sin2

(

θ

2

)

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

−a2sin2

(

θ

2

)

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

+
(

2b cos
(ϕ

2

)

sin
(ϕ

2

))

(

2bcos

(

θ

2

)

sin

(

θ

2

))

= cos2

(

θ

2

)

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

− sin2

(

θ

2

)

(

a2 +b2
)(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

+
(

2b cos
(ϕ

2

)

sin
(ϕ

2

))

(

2b cos

(

θ

2

)

sin

(

θ

2

))

=

(

cos2

(

θ

2

)

− sin2

(

θ

2

))

(

cos2
(ϕ

2

)

− sin2
(ϕ

2

))

+

(

2b cos

(

θ

2

)

sin

(

θ

2

))

(

2b cos
(ϕ

2

)

sin
(ϕ

2

))

L1 = cosϕ cosθ +b sinϕ sinθ .

Likewise:

L2 = b cosϕ sinθ − sinϕ cosθ

L3 = a sinθ

then

LQ2
∗Q1

(w1) = Q × i ×Q∗ = i(cosϕ cosθ +b sinϕ sinθ)+ j (bcosϕ sinθ − sinϕ cosθ)

+ k a sinθ = w.

When vector w that was obtained in the quaternion space is transferred to vector v in the real space:

v = (x,y,z) = (cosϕ cosθ +bsinϕ sinθ , bcosϕ sinθ − sinϕ cosθ , asinθ) .

If c > 2, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ nπ , n and c are constants and ϕ = cθ are kept in mind then:

X = cosθ cos(cθ)+bsinθ sin(cθ)

Y = bsinθ cos(cθ)− cosθ sin(cθ)

Z = asinθ

c = 365,25 and 0 ≤ θ ≤ 2π, a = sin23027′ and b = cos23027′.

The quaternion that will be used for the first rotation movement, was defined before as:

Q1 = cos
(

θ
2

)

− jasin
(

θ
2

)

+ k bsin
(

θ
2

)

. From here, we have:

q10 = cos

(

θ

2

)

q11 = 0

q12 =−asin

(

θ

2

)

q13 = bsin

(

θ

2

)
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According to (2.1) rotation matrix A which is produced by the unit quaternion above is:

A =











2cos2
(

θ
2

)

−1 −2bcos
(

θ
2

)

sin
(

θ
2

)

−2acos
(

θ
2

)

sin
(

θ
2

)

2bcos
(

θ
2

)

sin
(

θ
2

)

2cos2
(

θ
2

)

−1+2
(

−asin
(

θ
2

))2
−2absin

(

θ
2

)

sin
(

θ
2

)

2cos
(

θ
2

)

asin
(

θ
2

)

−2absin
(

θ
2

)

sin
(

θ
2

)

2cos2
(

θ
2

)

−1+2
(

bsin
(

θ
2

))2











.

The quaternion that will be used for the second rotation movement, was defined before as:

Q2
∗ = cos

(ϕ
2

)

− k sin
(ϕ

2

)

From here:

q20
∗ = cos

(ϕ

2

)

q21
∗ = 0

q22
∗ = 0

q23
∗ =−sin

(ϕ

2

)

According to (2.1) rotation matrix B which is produced by the unit quaternion above is:

B =





2cos2
(ϕ

2

)

−1 2cos
(ϕ

2

)

sin
(ϕ

2

)

0

−2cos
(ϕ

2

)

sin
(ϕ

2

)

2cos2
(ϕ

2

)

−1 0

0 0 1





Let matrix be the resultant matrix of matrixes and then:

C = BA

When the necessary calculations are done:

C =





2q2
0 −1+2q2

1 2q1q2 −2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 2q2
0 −1+2q2

2 2q2q3 −2q0q1

2q1q3 −2q0q2 2q2q3 +2q0q1 2q2
0 −1+2q2

3





where

q0 = cos
(ϕ

2

)

cos

(

θ

2

)

+b sin
(ϕ

2

)

sin

(

θ

2

)

q1 =−a sin
(ϕ

2

)

sin

(

θ

2

)

(3.1)

q2 =−a cos
(ϕ

2

)

sin

(

θ

2

)

q3 = b cos
(ϕ

2

)

sin

(

θ

2

)

− sin
(ϕ

2

)

cos

(

θ

2

)

As expected, the values in equation (3.1) are the same as the values of Q = Q2
∗×Q1.

According to (2.2), the vector w = (w1,w2,w3) obtained when rotation matrix C is applied in vector~v = (1,0,0) is:

w =C~v

w(w1,w2,w3) =





w1

w2

w3



=





2q2
0 −1+2q2

1 2q1q2 −2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 2q2
0 −1+2q2

2 2q2q3 −2q0q1

2q1q3 −2q0q2 2q2q3 +2q0q1 2q2
0 −1+2q2

3









1

0

0





w1 = 2q2
0 −1+2q2

1 = 2

(

cos
(ϕ

2

)

cos

(

θ

2

)

+b sin
(ϕ

2

)

sin

(

θ

2

))2

−1+2

(

−a sin
(ϕ

2

)

sin

(

θ

2

))2

w1 = cosϕ cosθ +bsinϕ sinθ
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w2 = (2q1q2 +2q0q3)

= 2

(

−asin
(ϕ

2

)

sin

(

θ

2

))(

−a cos
(ϕ

2

)

sin

(

θ

2

))

+2

(

cos
(ϕ

2

)

cos

(

θ

2

)

+bsin
(ϕ

2

)

sin

(

θ

2

))(

bcos
(ϕ

2

)

sin

(

θ

2

)

− sin
(ϕ

2

)

cos

(

θ

2

))

w2 = bcosϕ sinθ − sinϕ cosθ

w3 = 2

(

−asin
(ϕ

2

)

sin

(

θ

2

))(

b cos
(ϕ

2

)

sin

(

θ

2

)

− sin
(ϕ

2

)

cos

(

θ

2

))

−2

(

cos
(ϕ

2

)

cos

(

θ

2

)

+bsin
(ϕ

2

)

sin

(

θ

2

))(

−acos
(ϕ

2

)

sin

(

θ

2

))

= 2acos

(

θ

2

)

sin

(

θ

2

)

w3 = asinθ

w = (w1,w2,w3) = (cosϕ cosθ +bsinϕ sinθ , bcosϕ sinθ − sinϕ cosθ , a sinθ) .

If c > 2, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ nπ, n and c constants and ϕ = cθ , are kept in mind then:

w1 = X = cosθ cos(cθ)+bsinθ sin(cθ)

w2 = Y = bsinθ cos(cθ)− cosθ sin(cθ) (3.2)

w3 = Z = asinθ

c = 365,25 and 0 ≤ θ ≤ 2π, a = sin23027′ and b = cos23027′

If the graphic of the equation (3.2) we obtained above was drawn, the three-dimensional graphic shown in Figure 3.2 will be acquired. This

curve covers the entirety of the sphere found between the planes z =−sin23027′ and z = sin23027′ because the constant c is c = 365,25.

For this reason, to be able to comprehend the shape of the curve, c = 12 is chosen instead of c = 365,25 and this way the graphic shown in

Figure 3.3 is obtained. As shown in Figure 3.3, the curve is a spherical spiral limited between the planes z =−sin23027′ and z = sin23027′.

If in equation (3.2) ε = 900 then the parametric equation of the spherical spiral is procured.

Figure 3.2: The curve of the apparent movement of the Sun for c = 365,25
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Figure 3.3: The curve of the apparent movement of the Sun for c = 12
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Abstract

In this work, we deal with the wave equation with variable coefficients. Under proper

conditions on variable coefficients, we prove the nonexistence of global solutions.

1. Introduction

In this paper, we are concerned with the following problem:







utt −∆u−∆ut +µ1 (t) |ut |
p−2 ut = µ2 (t) |u|

q−2 u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn (n ∈ N), with a smooth boundary ∂Ω, p ≥ 2, q > 2, µ1 (t) is a non-negative function of t and µ2 (t) is

a positive functions of t. The quantity |ut |
p−2 ut is a damping term which assures global existence, and |u|q−2 u is the source term which

contributes to nonxistence of global solutions. µ1 (t) and µ2 (t) can be regarded as two control buttons which can dominate the polarity

between damping term and source term.

In the absence of the strong damping term ∆ut , and µ1 (t) = µ2 (t)≡ 1, then the problem (1.1) can be reduced to the following wave equation

utt −∆u+ |ut |
p−2 ut = |u|q−2 u.

Many authors established the existence, nonexistence and decay of solutions, see [1–6]. The interaction between nonlinear damping

(|ut |
p−2 ut) and the source term (|u|q−2 u) makes the problem more interesting. Levine [2, 3] first studied the interaction between the linear

damping (p = 2) and source term by using Concavity method. But this method can’t be applied in the case of a nonlinear damping term.

Georgiev and Todorova [1] extended Levine’s result to the nonlinear case (p > 2). They showed that solutions with negative initial energy

blow up in finite time. Later, Vitillaro in [6] extended these results to situations where the nonlinear damping and the solution has positive

initial energy.

In [7], Yu investigated the equation with constant coefficients

utt −∆u−∆ut + |ut |
p−2 ut = |u|q−2 u. (1.2)

He showed globality, boundedness, blow-up, convergence up to a subsequence towards the equilibria and exponential stability. Gerbi and

Said-Houari [8] proved exponential decay of solutions (1.2) for p = 2.

Email addresses and ORCID numbers: episkin@dicle.edu.tr, 0000-0001-6587-4479 (E. Pişkin), afidanmat@gmail.com, 0000-0001-6988-8333 (A.

Fidan)

https://orcid.org/0000-0001-6587-4479
https://orcid.org/0000-0001-6988-8333


52 Universal Journal of Mathematics and Applications

Zheng et al. [9] considered the Petrovsky equation

utt +∆
2u+ k1 (t) |ut |

m−2 ut = k2 (t) |u|
p−2 u

in a bounded domain. They proved the blow up of solutions.

In this paper, we established the nonexistence of solutions. To our best knowledge, the nonexistence of solutions of the wave equation with

variable coefficients not yet studied.

This paper is organized as follows: In the next section, we present some lemmas, notations and local existence theorem. In section 3, the

nonexistence of global solutions are given.

2. Preliminaries

In order to state the main results to problem (1.1) more clearly, we start to our work by introducing some notations and lemmas which will be

used in this paper. Throughout this paper ‖u‖p = ‖u‖Lp(Ω) and ‖u‖2 = ‖u‖ denote the usual Lp (Ω) norm and L2 (Ω) norm, respectively.

Also, W
m,2
0 (Ω) = Hm

0 (Ω) is a Hilbert spaces (see [10, 11], for details).

Lemma 2.1. [4]. Assume that
{

2 ≤ q < ∞, n ≤ 2,

2 < q <
2(n−1)

n−2 , n ≥ 3.

Then, there exist a positive constant C > 1, depending on Ω only, such that

‖u‖s
q ≤C

(

‖∇u‖2 +‖u‖q
q

)

(2.1)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ q.

Lemma 2.2. Assume that p ≥ 2, q > 2, µ1 (t) is a nonnegative function of t, µ2 (t) is a positive functions of t and µ ′
2 (t)≥ 0. Let u(t) be a

solution of problem (1.1) then the energy functional E (t) is non-increasing, namely E ′ (t)≤ 0.

Proof. Multiplying the equation (1.1) with ut and integrating with respect to x over the domain Ω, we obtain

d

dt

(

1

2
‖ut‖

2 +
1

2
‖∇u‖2 −

µ2 (t)

q
‖u‖q

q

)

=−µ1 (t)‖ut‖
p
p −‖∇ut‖

2 −
µ ′

2 (t)

q
‖u‖q

q . (2.2)

By the equality (2.2), we get

E ′ (t) =−µ1 (t)‖ut‖
p
p −‖∇ut‖

2 −
µ ′

2 (t)

q
‖u‖q

q ≤ 0,

and E (t)≤ E (0) , where

E (t) =
1

2
‖ut‖

2 +
1

2
‖∇u‖2 −

µ2 (t)

q
‖u‖q

q , (2.3)

and

E (0) =
1

2
‖u1‖

2 +
1

2
‖∇u0‖

2 −
µ2 (0)

q
‖u0‖

q
q .

In order to obtain our main results, we set

H (t) =−E (t) . (2.4)

In the following remark, C denotes a generic constant that varies from line to line. Combining (2.1), (2.3) and (2.4), we obtain

Remark 2.3. Assume that
{

2 ≤ q < ∞, n ≤ 2,

2 < q <
2(n−1)

n−2 , n ≥ 3

and energy functional E (t)< 0. Then, there exist a positive constant C, depending only on Ω, such that

‖u‖s
q ≤C

(

H (t)+‖ut‖
2 +

(

µ2 (t)

q
+1

)

‖u‖q
q

)

(2.5)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ q.

Next, we state the local existence theorem that can be established by combining arguments of [1, 12].

Theorem 2.4. (Local existence). Suppose that
{

2 ≤ q < ∞, n ≤ 2,

2 < q <
2(n−1)

n−2 , n ≥ 3.

Then, for any given (u0,u1) ∈
(

H1
0 (Ω)×L2 (Ω)

)

, the problem (1.1) has a local solution satisfying

u ∈C
(

[0,T ] : H1
0 (Ω) ,ut ∈C

(

[0,T ] ;L2 (Ω)
)

∩Lp (Ω, [0,T ])
)

for some T > 0.
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3. Nonexistence of Global Solutions

In this section, we will consider the nonexistence of global solutions for the problem (1.1). By using the same techniques as in [9].

Theorem 3.1. Let the assumptions of Lemma 2.2 hold. And assume that µ1 (t) is a nonnegative function of t, µ2 (t) is a positive functions of

t, µ ′
2 (t)≥ 0 and

lim
t→∞

µ1 (t)µ2 (t)
α(p−1)

exists, where

0 < α ≤ min

{

q−2

2q
,

q− p

q(p−1)

}

.

Then the solution of Eq. (1.1) blows up in finite time T ∗ and

T ∗ ≤
1−α

αγL
α

1−α (0)

if q > p and the initial energy function

E (0)< 0,

where

L(0) = [H (0)]1−α + ε

∫

Ω

u0u1dx > 0.

Proof. From (2.2)-(2.4), we have

d

dt
H (t) = µ1 (t)‖ut‖

p
p +‖∇ut‖

2 +
µ ′

2 (t)

q
‖u‖q

q ≥ 0 (3.1)

for almost, every t ∈ [0,T ) . Therefore

0 < H (0)≤ H (t)≤
µ2 (t)

q
‖u‖q

q , t ∈ [0,T ) . (3.2)

Define

L(t) = H1−α (t)+ ε

∫

Ω

uutdx+
ε

2
‖∇u‖2 (3.3)

where ε > 0 is small to be chosen later, and

0 < α ≤ min

{

q−2

2q
,

q− p

q(p−1)

}

. (3.4)

Differentiating (3.3) with respect to t and combining the first equation of (1.1), we have

L′ (t) = (1−α)H−α (t)H ′ (t)+ ε

∫

Ω

(

uutt +u2
t

)

dx+ ε

∫

∇u∇utdx

= (1−α)H−α (t)H ′ (t)+ ε

∫

∇u∇utdx

+ε

∫

Ω

(

u∆u+u∆ut −µ1 (t) |ut |
p−1 u+µ2 (t)uq +u2

t

)

dx

= (1−α)H−α (t)H ′ (t)+ ε ‖ut‖
2 − ε ‖∇u‖2

+εµ2 (t)‖u‖q
q − εµ1 (t)

∫

Ω

|ut |
p−1 udx. (3.5)

Due to the Hölder’s and Young’s inequalities, we have

∣

∣

∣

∣

µ1 (t)
∫

Ω

|ut |
p−1 udx

∣

∣

∣

∣

≤ µ1 (t)
∫

Ω

|ut |
p−1 udx

≤

(

∫

Ω

µ1 (t) |ut |
p dx

)
p−1

p
(

∫

Ω

µ1 (t) |u|
p dx

)
1
p

≤
p−1

p
µ1 (t)δ

− p

p−1 ‖ut‖
p
p +

δ p

p
µ1 (t)‖u‖p

p , (3.6)

where δ is positive constant to be determined later. According to the conditions µ1 (t)≥ 0,µ ′
2 (t)≥ 0 and (3.1), we get

H ′ (t)≥ µ1 (t)‖ut‖
p
p . (3.7)
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Combining (2.3), (2.4), (3.5), (3.6) and (3.7), we have

L′ (t) ≥

[

(1−α)H−α (t)−
p−1

p
εδ

− p

p−1

]

H ′ (t)

+ε

(

qH (t)−
δ p

p
µ1 (t)‖ut‖

p
p

)

+ε
(q

2
+1
)

‖ut‖
2 + ε

(q

2
−1
)

‖∇u‖2
. (3.8)

Since the integral is taken over the variable x, it is reasonable to take δ depending on variable t. From (3.2), we obtain

0 < H−α (t)≤ H−α (0) ,

for every t > 0. Hence H−α (t) is a positive function and bounded. Thus, by taking δ
− p

p−1 = mH−α (t) , for large m to be specified later, and

substituting in (3.8), we get

L′ (t) ≥

[

(1−α)−
p−1

p
εm

]

H−α (t)H ′ (t)

+ε
(q

2
+1
)

‖ut‖
2 + ε

(q

2
−1
)

‖∇u‖2

+ε

[

qH (t)−
m1−p

p
µ1 (t)Hα(p−1) (t)‖u‖p

p

]

. (3.9)

By using the (2.3), (2.4), (3.2) and the embedding Lq (Ω) →֒ Lp (Ω) (q > p) , we arrive at ‖u‖p
p ≤C‖u‖p

q and

L′ (t) ≥

[

(1−α)−
p−1

p
εm

]

H−α (t)H ′ (t)

+ε
(q

2
+1
)

‖ut‖
2 + ε

(q

2
−1
)

‖∇u‖2

+ε

[

qH (t)−
Cm1−p

p
µ1 (t)

(

µ2 (t)

q

)α(p−1)

‖u‖p+qα(p−1)
q

]

. (3.10)

From (3.4), we get 2 ≤ s = p+qα (p−1)≤ q. Combining (2.3), (2.4), Remark 2.3 and (3.10), we obtain

L′ (t) ≥

[

(1−α)−
p−1

p
εm

]

H−α (t)H ′ (t)+ ε
(q

2
+1
)

‖ut‖
2 + ε

(q

2
−1
)

‖∇u‖2

+ε

[

qH (t)−C1m1−pµ2 (t)
α(p−1) µ1 (t)

(

H (t)+‖ut‖
2
2 +

µ2 (t)

q
+1

)

‖u‖q
q

]

≥

[

(1−α)−
p−1

p
εm

]

H−α (t)H ′ (t)+ ε

(

q+2

2
−C1m1−pµ2 (t)

α(p−1) µ1 (t)

)

H (t)

+ε

[

q+6

4
−C1m1−pµ2 (t)

α(p−1) µ1 (t)

]

‖ut‖
2

+ε

[

q−2

2q
µ2 (t)−C1m1−pµ2 (t)

α(p−1) µ1 (t)

(

µ2 (t)

q
+1

)]

‖u‖q
q , (3.11)

where C1 =
C

pqα(p−1) . Since limt→∞ µ1 (t)µ2 (t)
α(p−1) exists, µ1 (t)µ2 (t)

α(p−1) is bounded for every t > 0. Then, we choose m large enough

so that the coefficients of H (t) , ‖ut‖
2 and ‖u‖q

q in (3.11) are strictly positive. Therefore, we arrive at

L′ (t) ≥

[

(1−α)−
p−1

p
εm

]

H−α (t)H ′ (t)

+εβ

[

H (t)+‖ut‖
2
2 +

(

µ2 (t)

q
+1

)

‖u‖q
q

]

, (3.12)

where

β = min

{

q+2

2
−C1m1−pµ2 (t)

α(p−1) µ1 (t) ,

q+6

4
−C1m1−pµ2 (t)

α(p−1) µ1 (t) ,

q−2

2q
µ2 (t)−C1m1−pµ2 (t)

α(p−1) µ1 (t)

}

is the minimum of the coefficients of H (t) , ‖ut‖
2 and ‖u‖q

q . Once m is fixed, we can take ε small enough so that 1−α − p−1
p εm ≥ 0 and

L(0) = H1−α (0)+ ε

∫

Ω

u0u1dx > 0. (3.13)
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Then (3.12) becomes

L′ (t)≥ εβ

[

H (t)+‖ut‖
2
2 +

(

µ2 (t)

q
+1

)

‖u‖q
q

]

≥ 0. (3.14)

Then, we have

L(t)≥ L(0)> 0. (3.15)

For the definition of L(t) (see (3.3)) we have

∣

∣

∣

∣

∫

Ω

uutdx

∣

∣

∣

∣

≤ ‖u‖‖ut‖

≤ C‖u‖q ‖ut‖ (3.16)

using Hölder’s inequality and the embedding Lq (Ω) →֒ Lp (Ω) (q > p). Thanks to Young’s inequality, we have

∣

∣

∣

∣

∫

Ω

uutdx

∣

∣

∣

∣

1
1−α

≤ C‖u‖
1

1−α
q ‖ut‖

1
1−α

≤ C

(

‖u‖
2

1−2α
q +‖ut‖

2

)

(3.17)

from (3.4), we arrive at 2
1−2α < q.

Combining (3.17) and Remark 2.3, we get

∣

∣

∣

∣

∫

Ω

uutdx

∣

∣

∣

∣

1
1−α

≤C

(

H (t)+‖ut‖
2
2 +

(

µ2 (t)

q
+1

)

‖u‖q
q

)

. (3.18)

Therefore, we obtain

L
1

1−α (t) =

[

H1−α (t)+ ε

∫

Ω

uutdx

]
1

1−α

≤ 2
1

1−α

(

H (t)+

∣

∣

∣

∣

ε

∫

Ω

uutdx

∣

∣

∣

∣

1
1−α

)

≤ C

(

H (t)+‖ut‖
2
2 +

(

µ2 (t)

q
+1

)

‖u‖q
q

)

. (3.19)

Combining (3.14), (3.15) and (3.19), we have

L′ (t)≥ γL
1

1−α (t) (3.20)

where γ is a constant depending only on C, β and ε. Integrating (3.20), we arrive at

L
1

1−α (t)≥
1

L− α
1−α (0)− α

1−α γt
. (3.21)

If

t →

[

1−α

αγL
α

1−α (0)

]−

, L− α
1−α (0)−

α

1−α
γt → 0.

Hence, L(t) blows up in finite time T ∗ and

T ∗ ≤
1−α

αγL
α

1−α (0)
,

which complete the proof of the Theorem.

4. Conclusion

In this paper, we obtained the nonexistence of global solutions for a strongly damped wave equation with variable coefficients. This improves

and extends many results in the literature.
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Abstract

In this study, connected square network graphs are introduced and two different definitions

are given. Firstly, connected square network graphs are shown to be a Hamilton graph.

Further, the labelling algorithm of this graph is obtained by using gray code. Finally, its

topological properties are obtained, and conclusion are given.

1. Introduction

Nowadays, many types of interconnection network topologies have been extensively studied by researchers. The most popular of these are

trees, cycles, grids, tori, meshes and hypercubes. A new network topology will be introduced in this study. This new network structure is

obtained using squares and called the Connected Square Network Graph (CSNG). Two different definitions are given for the connected

square network graph. Firstly, it is obtained by combining a finite number of squares in 2D space. Secondly, it is obtained recursively from

square and compound cubes in the first way.

In the literature, hypercube, and its variants (Folded Hypercube, Crossed Cube and the Hierarchical Cubic Network) have been studied

extensively in the interconnection network [1–9]. Karcı and Selçuk introduced new hypercube variants and investigated it’s Hamilton-like

features. These; Fractal Cubic Network Graph (FCNG) [10] uses the fractal structures and Connected Cubic Network Graph [11] uses

hypercube. They investigated the topological properties of new hypercube variants.

Motivated by the [10] and [11], a new network structure will be defined in this study. The outline of this study is as follows. Section 2

informs basic information about graph theory and explains the definitions of CSNG. Section 3 investigates the analytical properties of

CSNG and is obtained Hamiltonian properties of CSNG is obtained. Labelling algorithm for this graph is given in Section 4. In Section 5,

topological features of CSNG are obtained and a projection for future work is presented.

2. Preliminaries

Rest of the study, G = (V,E) is a graph where V is a vertex set and E is a edge set. (x,y) is an edge in E where (x,y) ∈ G. The degree of

vertex x ∈V (G) is denoted by deg(x) and d(x,y) is a shortest path from x to y in G.

”||” indicates the concatenation of two strings. The Hamming distance is ∑
n−1
i=0 (ai ⊕bi) since ⊕ is bitwise-XOR operation. S(2) is denoted a

square in 2D space. The 2D coordinate system is given below:

Figure 2.1: Two-dimensional coordinate space

Two different definitions be given to obtain these graphs, in this section.

Email addresses and ORCID numbers: bselcuk@karabuk.edu,tr 0000-0002-5141-5148 (B. Selçuk)

https://orcid.org/0000-0002-5141-5148
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Definition 2.1. (CSNG): Let CSNG(0,0) = S(2) (Fig 2.(a)). CSNG(k,m) can be defined in two steps.

Case I. Construction in one direction

(i) Suppose ∑
m
i=0 2i squares with common two nodes (an edge) are connected along the y-axis. This graph will be called a CSNG(0,m).

For example, the mesh structure given in Figure 2(b)-(c) are CSNG(0,1) and CSNG(0,2).
(ii) Suppose ∑

k
i=0 squares with common two nodes (an edge) are connected along the x-axis. This graph will be called a CSNG(k,0).

Case II. Construction in two directions

(i) Suppose ∑
m
i=0 2i CSNG(k,0)s with common two nodes (an edge) are connected along the y-axis. This graph will be called a

CSNG(k,m).

(ii) Suppose ∑
k
i=0 2i CSNG(0,m)s with common lower and upper surfaces (one surface) are connected along the x-axis. This graph will

be called a CSNG(k,m).

CSNG(0,0) is represented by S(2) in the Figure 2.2-(a). In Figure 2.2-(b) (Figure 2.2-(c)), CSNG(0,1) (CSNG(0,2)) is obtained by

combining 3 (7) squares with one side in common. CSNG(1,2) is obtained by combining 3-CSNG(0,2)s which have top and bottom

horizontal surfaces to be in common in Figure 3.1-(b).

Figure 2.2: a. CSNG(0,0), b. CSNG(0,1), c. CSNG(0,2), respectively

Figure 2.3: CSNG(1,2)

Definition 2.2. Two CSNG(k,m − 1)s (or CSNG(k − 1,m)s) can be merged to construct a new mesh of size doubling the size of

CSNG(k,m) = G(V,E),k ≥ 0,m ≥ 0. There are two situations:

(i) If doubling dimension is x, then the nodes and edges in 0||CSNG(k − 1,m) and 1||CSNG(k − 1,m) are also included in

CSNG(k,m) = G(Vx,Ex). If ∀vi ∈V, p = 0, ...,k+m−1, 2p ≤ Label(vi)≤ 2p +1, |k−m| ≤ 1, then ∀(0||vi,1||vi) ∈ Ex.

(ii) If doubling dimension is y, then the nodes and edges in 0||CSNG(k,m − 1) and 1||CSNG(k,m − 1) are also included in

CSNG(k,m) = G(Vy,Ey). If ∀vi ∈V,Label(vi) is even, Label(vi)< 2k+m, |k−m| ≤ 1, then ∀(0||vi,1||vi) ∈ Ey.

CSNG(0,1) and CSNG(0,2) can be constructed using definition 2.2-(i) in Fig. 2.4-(a) and Fig. 3.1-(a), respectively. Similarly, CSNG(1,0)
and CSNG(1,2) can be constructed using definition 2.2-(ii) in Fig. 2.4-(b) and Fig. 3.2-(a), respectively.

Figure 2.4: a. CSNG(0,1), b. CSNG(0,1), respectively
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Figure 3.1: a. Construction of CSNG(0,2) using Definiton 2.2, b. Labelling of CSNG(0,2), respectively

3. Topological Features of Connected Square Network Graphs

3.1. Hamilton features of CSNG(0,m) (CSNG(k,0))

In this subsection, we analyzed Hamilton features of CSNG(0,m) (CSNG(k,0)). Firstly, we give an example. CSNG(0,2) is a Hamilton

graph labelled with a 4-bit gray code in Fig. 3.1-(b).

Theorem 3.1. Suppose ∑
m
i=0 2i-squares with common two nodes (an edge) are connected along the y-axis in definition 2.1-(a). This graph,

CSNG(0,m), has 3×2m+1 −2 edges and 2m+2 nodes. Further, CSNG(0,m) is a Hamilton graph and is labeled with a m+2-bit gray code.

Proof. The total node number of nodes of CSNG(0,m) can be calculated by using definition 2.1-(a) and mathematical induction.

First Step: Let m = 2. Suppose ∑
2
i=0 2i = 7-squares with common two nodes (an edge) are connected along the y-axis. The total number

node is along the y-axis 2
(

∑
2
i=0 2i +1

)

= 22+2.

Hypothesis Step: Let m = n−1. Suppose ∑
n−1
i=0 2i-squares with common two nodes (an edge) are connected along the y-axis. Assume that

CSNG(0,n−1) has 2n+1 nodes.

Final Step: Let m = n. Suppose ∑
n
i=0 2i-squares with common two nodes (an edge) are connected along the y-axis. The following equation

applies for the proof of final step:

n

∑
i=0

2i =
n−1

∑
i=0

2i +2n.

CSNG(0,n) is obtained by adding 2n S(2) to the CSNG(0,n−1) with 2 edges in common. Namely,

(

n

∑
i=0

2i

)

S(2) =

(

n−1

∑
i=0

2i

)

S(2)+2nS(2),

CSNG(0,n) =CSNG(0,n−1)+2nS(2).

Hence, total node number of CSNG(0,n) is 2n+1 +2n ×2 = 2n+2.

Secondly, the total number edge is along the x-axis 2∑
m
i=0 2i = 2

(

2m+1 −1
)

= 2.2m+1 − 2. The total number edge is along the y-axis

∑
m
i=0 2i +1 = 2m+1. Total edge number of CSNG(0,m) is 3.2m+1 −2.

Finally, we showed that CSNG(0,m) is a Hamilton graph. Mathematical induction will be used for proof.

First Step: Let m = 2. CSNG(0,2) is a Hamilton graph which is labelled with help of 4-bit Gray code seen in Fig. 3.1-(b).

Hypothesis Step: Let m = n−1. Suppose CSNG(0,n−1) is a Hamilton graph which is labelled with help of n+1-bit Gray code and has

2n+1 nodes.

Final Step: Let m = n. The following equality is obtained

CSNG(0,n) = 0||CSNG(0,n−1)∪1||CSNG(0,n−1)

since CSNG(0,n) has 2n+2 = 2.2n+1 nodes. Suppose xi and x j are two nodes in CSNG(0,n−1) and xi⊕x j = 1. The edges (0||Label(xi),1||Label(xi))
and (0||Label(x j),1||Label(x j)) are in CSNG(0,n−1) and they are in Hamilton circuit in CSNG(0,n). Namely, CSNG(0,n) is a Hamilton

graph which is labelled with help of n+2-bit Gray code and has 2n+2 nodes.

Similar results can be obtained in CSNG(k,0).

3.2. Hamilton features of CSNG(k,m)

In this subsection, we analyzed Hamilton features of CSNG(k,m). Firstly, we give an example. CSNG(1,2) is a Hamilton graph labelled

with a 5-bit gray code in Fig. 3.2-(b).
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Figure 3.2: a. Construction of CSNG(1,2) using Definiton 2.2, b. Labeling of CSNG(1,2)

Theorem 3.2. Suppose ∑
k
i=0-CSNG(0,m)s with common lower and upper surfaces (one surface) are connected along the x-axis. This graph

will be called a CSNG(k,m). CSNG(k,m) has 2k+m+2 nodes and 2k+m+3 −2m+1 −2k+1 edges. Further, CSNG(k,m) is a Hamilton graph

and is labeled with a k+m+2-bit gray code.

Proof. Firstly, CSNG(k,m) is consist of ∑
k
i=0-CSNG(0,m)s. Besides, CSNG(0,m) is consist of ∑

m
j=0-CSNG(0,0)s where CSNG(0,0) is a

S(2) square. Hence,

CSNG(k,m) =
k

∑
i=0

CSNG(0,m) =
k

∑
i=0

m

∑
j=0

CSNG(0,0)S(2).

Node numbers of CSNG(k,m) is

(

k

∑
i=0

2i +1

)(

m

∑
j=0

2 j +1

)

= 2k+12m+1 = 2k+m+2.

Because there are ∑
k
i=0 2i +1 nodes along the x-axis and ∑

m
j=0 2 j +1 nodes along the y-axis.

Secondly, total number of edges along the x-axis is
(

∑
m
i=0 2i

)

(

∑
k
j=0 2 j +1

)

and, total number of edges along the y-axis is
(

∑
k
i=0 2i

)

(

∑
m
j=0 2 j +1

)

.

Total number of edges of CSNG(k,m) is

(

m

∑
i=0

2i

)(

k

∑
j=0

2 j +1

)

+

(

k

∑
i=0

2i

)(

m

∑
j=0

2 j +1

)

= (2m+1 −1)2k+1 +(2k+1 −1)2m+1 = 2k+m+3 −2m+1 −2k+1.

A similar proof of Theorem 3.1 can be done to show that CSNG(k,m) is a Hamilton graph.

4. Labelling Algorithm

In this section, an algorithm will be designed to label CSNG(k,m) with the help of the reference [12].

Example 4.1. Let k = 1,m = 2 and S = {00 01 11 10}, inv S = {10 11 01 00}. Assume that CSNG(0,0) = S, inv CSNG(0,0) = inv S

where inv CSNG is reverse sorting of CSNG. It can be calculation for k+m = 3 iteration.

1. Iteration (k = 0,m = 1):

CSNG(0,1) = 0||CSNG(0,0)∪1||inv CSNG(0,0)

= 0||{00 01 11 10}∪1||{10 11 01 00}

= {000 001 011 010 110 111 101 100}

and

inv CSNG(0,1) = 1||CSNG(0,0)∪0||inv CSNG(0,0)

= 1||{00011110}∪0||{10110100}

= {100 101 111 110 010 011 001 000}



Universal Journal of Mathematics and Applications 61

2. Iteration (k = 0,m = 2):

CSNG(0,2) = 0||CSNG(0,1)∪1||inv CSNG(0,1)

= 0||{000 001 011 010 110 111 101 100}∪1||{100 101 111 110 010 011 001 000}

= {0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000}

and

inv CSNG(0,2) = 1||CSNG(0,1)∪0||inv CSNG(0,1)

= 1||{000 001 011 010 110 111 101 100}∪0||{100 101 111 110 010 011 001 000}

= {1000 1001 1011 1010 1110 1111 1101 1100 0100 0101 0111 0110 0010 0011 0001 0000}

3. Iteration (k = 1,m = 2).

CSNG(1,2) = 0||CSNG(0,2)∪1||inv CSNG(0,2)

= 0||{0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000}∪

1||{1000 1001 1011 1010 1110 1111 1101 1100 0100 0101 0111 0110 0010 0011 0001 0000}

That is, labelling of nodes of CSNG(1,2) is

00000 00001 00011 00010 00110 00111 00101 00100

01100 01101 01111 01110 01010 01011 01001 01000

11000 11001 11011 11010 11110 11111 11101 11100

10100 10101 10111 10110 10010 10011 10001 10000.

Remark 4.2. The Algorithm 1 finds the labeling of CSNG(k,m) using recursive process. The running time of the Algorithm 1 is O(p) where

p = max(k,m). (Algorithm 1 in Appendix)

5. Comparison Results

Connected square network graphs are scalable. It has been shown that CSNG(k,m) is an Hamiltonian graph and is not an Euler graph.

CSNG(0,m) (or CSNG(k,0)) has nodes with 2 and 3 are degree nodes and total node number of is 2m+2 in Table 1. CSNG(k,m) has nodes

with 2,3 and 4 are degree nodes and total node number of is 2k+m+2 in Table 2. The edge-node relationship for CSNG(0,m) and CSNG(k,m)
is given in Table 3 and Table 4, respectively. (Tables in Appendix)

Remark 5.1. (see [13]) Sum connectivity-index of CSNG(0,m) is calculated as follows

χα (G) = ∑
(x,y)∈E

(degx+degy)α

= 2.4α +4.5α +(2k+m+3 −2m+1 −2k+1 −6)6α

and sum connectivity-index of CSNG(k,m) is calculated as follows

χα (G) = ∑
(x,y)∈E

(degx+degy)α

= 8.5α +(2m+2 +2k+2 −12)6α +(2m+2 +2k+2 −8)7α +(2k+m+3 −2m+1 −2k+1 −2m+3 −2k+3 +12)8α

where α ∈ R.

The general Randic index Rα (G) of CSNG(0,m) is calculated as follows

Rα (G) = ∑
(x,y)∈E

(degxdegy)α

= 2.4α +4.6α +(2k+m+3 −2m+1 −2k+1 −6)9α

and, the general Randic index Rα (G) of CSNG(k,m) is calculated as follows

Rα (G) = ∑
(x,y)∈E

(degxdegy)α

= 8.6α +(2m+2 +2k+2 −12)9α +(2m+2 +2k+2 −8)12α +(2k+m+3 −2m+1 −2k+1 −2m+3 −2k+3 +12)16α

where α =−1,−1/2,1/2,1.

6. Conclusion

In this paper, connected square network graphs are introduced. Two different definitions are given to obtain connected square network graphs.

The topological properties of these graphs have been investigated and it has been proven to be a Hamilton graph. These graphs can be

thought of as a hypercube variant. A labeling algorithm is given that reinforces this idea.
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7. Appendix

Algorithm 1: This algorithm calculate labelled of CSNG(k,m).

Data: k,m, S = {00 01 11 10}, inv S = {10 11 01 00}
Result: labelled of CSNG(k,m)

1 begin

2 CSNG(0,0) = S

3 inv CSNG(0,0) = inv S

4 for j = 1 to m do

5 CSNG(0, j) = 0||CSNG(0, j−1)∪1||inv CSNG(0, j−1)

6 inv CSNG(0, j) = 1||CSNG(0, j−1)∪0||inv CSNG(0, j−1)

7 for i = 1 to k do

8 CSNG(i, j) = 0||CSNG(i−1, j)∪1||inv CSNG(i−1, j)

9 inv CSNG(i, j) = 1||CSNG(i−1, j)∪0||inv CSNG(i−1, j)

10 return CSNG(i, j)

Table 1: The number of degree of nodes of CSNG(0,m)

deg(2) deg(3)) Total Node

4 2m+2 −4 2m+2
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Table 2: The number of degree of nodes of CSNG(k,m)

deg(2) deg(3)) deg(4)) Total Node

4 2m+2 +2k+2 −8 2k+m+2 −2m+2 −2k+2 +4 2k+m+2

Table 3: The number of the edges of CSNG(0,m)

(deg(2),deg(2)) (deg(2),deg(3)) (deg(3),deg(3)) Total Edge

2 4 2k+m+3 −2m+1 −2k+1 −6 2k+m+3 −2m+1 −2k+1

Table 4: The number of the edges of CSNG(k,m)
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Abstract

The purpose of this paper is to introduce a modified iteration process to approximate

endpoints of multivalued nonexpansive mappings in Banach space. We prove weak and

strong convergence theorems of proposed iterative scheme under some suitable assumptions

in the framework of a uniformly convex Banach space.

1. Introduction and Preliminaries

In this study, we shall denote by N the set of natural numbers. Let (E,‖.‖) be a Banach space and C be a nonempty convex subset of E. The

distance from a x ∈ E to a nonempty subset C ⊂ E is defined by

dist (x,C) := inf{‖x− z‖ : z ∈C} .

The radius of C relative to x is defined by

R(x,C) = sup{‖x− z‖ : z ∈C} .

Definition 1.1. A Banach space E is said to be uniformly convex if for each ε ∈ (0,2], there is a δ > 0 such that for every x,y ∈ E

‖x‖ ≤ 1

‖y‖ ≤ 1

‖x− y‖ ≥ ε







⇒
‖x+ y‖

2
≤ 1−δ .

We shall denote the family of nonempty compact subsets of C by K(C). The Hausdorff metric H on K(C) is defined as follows:

H (A,B) = max

{

sup
x∈A

dist (x,B) , sup
y∈B

dist(y,A)

}

for A,B ∈ K(C).

A multivalued mapping T : C → K(C) is said to be nonexpansive if

H (T x,Ty)≤ ‖x− y‖ , for each x,y ∈C.

A point x ∈ K is a fixed point of a multivalued mapping T : C → K(C) if x ∈ T (x). Moreover,if T (x) = {x}, then x is called an endpoint (or

a stationary point) of T . We shall denote the set of all endpoints and the set of all fixed points of T by ET (or End(T )) and FT , respectively.

It is clear that End(T )⊆ Fix(T ). Endpoint for multivalued mappings is an important concept. Many researchers have studied the exsitence

of an endpoint of a multivalued mapping. In 1980, Aubin and Siegel [1] proved that every multivalued dissipative mapping on a complete
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metric space has always an endpoint. In 1986, Corley [2] showed that a maximization with respect to a cone is equivalent to the problem of

finding an endpoint of certain multivalued mapping. In 2018, Panyanak [3] showed that the modified Ishikawa iteration process converge to

an endpoint of a multivalued nonexpansive mapping in Banach spaces. In 2020, Laokul [4] proved Browder’s convergence theorem for

multivalued mappings in Banach space without the endpoint condition by using the notion of diametrically regular mapping. Abdeljawad et

al. [5] introduced the modified S- iteration process for finding endpoints of multivalued nonexpansive mappings in Banach spaces. Ullah et

al. [6] proved the strong and ∆-convergence results of endpoints for multivalued generalized nonexpansive in Metric spaces.

Definition 1.2. A Banach space (E,‖.‖) is said to have Opial property [7] if for each sequence {xn} in E which weakly converges to x ∈ E

and y 6= x, it follows that

limsup
n→∞

‖xn − x‖< limsup
n→∞

‖xn − y‖.

Definition 1.3. [3] A mapping T : C → K (C) is said to satisfy condition (J) if there exists a nondecreasing function h : [0,∞)→ [0,∞) with

h(0) = 0, h(r)> 0 for r ∈ (0,∞) such that

R(x,T (x))≥ h(dist(x,End(T )) for all x ∈C.

Definition 1.4. [3] The mapping T : C → K (C) is said to be semicompact if for any sequence {xn} in C such that

lim
n→∞

R(xn,T (xn)) = 0,

there exists a subsequence {xnk
} of {xn} and q ∈C such that limk→∞ xnk

= q.

Definition 1.5. A sequence {xn} in E is said to be Fejĕr monotone with respect to C if

‖xn+1 − p‖ ≤ ‖xn − p‖

for all p ∈C and n ∈ N.

The purpose of this paper is to introduce a modified iteration process to approximate endpoints of multivalued nonexpansive mappings in

Banach space.

Let C be a nonempty subset of a Banach space and T : C → K(C) be a nonexpansive multivalued mapping. Let αn,βn,γn ∈ [a,b]⊂ (0,1) are

real sequences. We introduce our iteration process as follows: x1 ∈C

zn = (1− γn)xn + γnvn, n ∈ N

where vn ∈ T (xn) such that‖xn − vn‖= R(xn,T (xn)), and

yn = (1−βn)vn +βnwn (1.1)

where wn ∈ T (zn) such that‖zn −wn‖= R(zn,T (zn)), and

xn+1 = (1−αn)vn +αnun

where un ∈ T (yn) such that ‖yn −un‖= R(yn,T (yn)).

Following lemmas will be useful to prove our main results.

Lemma 1.6. [3] For a multivalued mapping T : C → K(C), the following statements hold.

(i) x ∈ F(T ) ⇔ dist(x,T (x)) = 0.

(ii) x ∈ End(T )⇔ R(x,T (x)) = 0.

(iii) If T is nonexpansive, the mapping g : C → R defined by g(x) := R(x,T (x)) is continuous.

Lemma 1.7. [8] A Banach space E is uniformly convex if and only if an arbitrary k > 0, there exists a strictly increasing continuous

function Ψ : [0,∞)→ [0,∞) with Ψ(0) = 0 such that

lim
n→∞

‖αx+(1−α)y‖2 ≤ α ‖x‖2 +(1−α)‖y‖2 −α (1−α)Ψ(‖x− y‖) ,

for all x,y ∈ Bk(0) = {x ∈ X : ‖x‖ ≤ k}, and α ∈ [0,1].

Lemma 1.8. [9] Let {αn},{βn} be two real sequences such that

(i) 0 ≤ αn,βn < 1,

(ii) βn → 0 as n → ∞,

(iii) ∑αnβn = ∞,

Let {δn} be a nonnegative real sequence such that ∑αnβn (1−βn)δn < ∞. Then {δn} has a subsequence which converges to zero.

Definition 1.9. [10] Let T : C →CB(C) be a multivalued mapping. A sequence {xn} in C is called an approximate fixed point sequence

(resp. an approximate endpoint sequence) for T if lim
n→∞

dist(xn,T (xn)) = 0 (resp. lim
n→∞

R(xn,T (xn)) = 0). The mapping T is said to have

the approximate fixed point property (resp. the approximate endpoint property) if it has an approximate fixed point sequence (resp. an

approximate endpoint sequence) in C.
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Let C be a nonempty subset of a metric space (X ,d) and {xn} be a bounded sequence in X . The asymptotic radius of {xn} relative to C is

defined by

r(C,{xn}) = in f

{

limsup
n→∞

d(xn,x) : x ∈C

}

.

The asymptotic center of {xn} relative to E is defined by

A(C,{xn}) =

{

x ∈C : limsup
n→∞

d(xn,x) = r(C,{xn})

}

.

Lemma 1.10. [11] Let C be a nonempty closed convex subset of a uniformly convex Banach space and T : C → K(C) be a mutlivalued

nonexpansive mapping. Then the following implication holds:

{xn} ⊆C, xn ⇀ x, R(xn,T (xn))→ 0 ⇒ x ∈ End(T ).

Proposition 1.11. [10] Let C be a nonempty subset of a metric space (X ,d),{xn} be a sequence in E, and T : C → K(X) be a mapping.

Then R(xn,T (xn))→ 0 if and only if dist(xn,T (xn))→ 0 and diam(T (xn))→ 0.

Theorem 1.12. [10] Let (X ,‖.‖) be a uniformly convex Banach space, C be a nonempty bounded closed convex subset of X, and

T : C → K(C) be a nonexpansive mapping. Then T has an endpoint if and only if T has the approximate endpoint property.

2. Main Results

We start with the following lemma.

Lemma 2.1. Let C be a nonempty closed convex subset of an uniformly convex Banach space E and T : C → K (C) be a multivalued

nonexpansive mapping with ET 6= /0. Let {xn} be a sequence as defined in (1.1). Then limn→∞ ‖xn − p‖ exists for each p ∈ ET .

Proof. Let p ∈ End (T ). By (1.1), we have

‖xn+1 − p‖= ‖(1−αn)vn +αnun − p‖

≤ (1−αn)‖vn − p‖+αn ‖un − p‖

= (1−αn)dist(vn,T (p))+αndist(un,T (p))

≤ (1−αn)H (T (xn) ,T (p))+αnH (T (yn) ,T (p))

≤ (1−αn)‖xn − p‖+αn ‖yn − p‖ . (2.1)

and

‖yn − p‖= ‖(1−βn)vn +βnwn − p‖

≤ (1−βn)‖vn − p‖+βn ‖wn − p‖

= (1−βn)dist(vn,T (p))+βndist(wn,T (p))

≤ (1−βn)H (T (xn) ,T (p))+βnH (T (zn) ,T (p))

≤ (1−βn)‖xn − p‖+βn ‖zn − p‖ (2.2)

and

‖zn − p‖= ‖(1− γn)xn + γnvn − p‖

≤ (1− γn)‖xn − p‖+ γn ‖vn − p‖

= (1− γn)‖xn − p‖+ γndist(vn,T (p))

≤ (1− γn)‖xn − p‖+ γnH (T (xn) ,T (p))

≤ (1− γn)‖xn − p‖+ γn ‖xn − p‖

= ‖xn − p‖ . (2.3)

Using (2.3) and (2.2) ,we obtain

‖yn − p‖ ≤ (1−βn)‖xn − p‖+βn ‖xn − p‖= ‖xn − p‖

which implies that

‖xn+1 − p‖ ≤ (1−αn)‖xn − p‖+αn ‖xn − p‖= ‖xn − p‖ .

Thus{‖xn − p‖} is nonincreasing sequence and bounded, which implies that limn→∞ ‖xn − p‖ exists for each p ∈ ET . Also {xn} is

bounded.

Theorem 2.2. Let E be a uniformly convex Banach space with Opial property, C be a nonempty closed convex subset of E and T : C → K (C)
be a multivalued nonexpansive mapping with ET 6= /0. If {xn} is the sequence defined by (1.1) with αn,βn,γn ∈ [a,b]⊂ (0,1) for all n in N,

then {xn} converges weakly to an element of ET .
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Proof. Fix p ∈ ET . Then, as in the proof of Lemma 2.1,{xn}is bounded and so {yn},{zn} are bounded. Therefore, there exists k > 0 such

that xn − p, yn − p, zn − p ∈ Bk(0) for all n ≥ 0. Since E is a uniformly convex, by Lemma 1.7, there exists a strictly increasing continuous

function Ψ : [0,∞)→ [0,∞) with Ψ(0) = 0 such that

‖zn − p‖2=‖(1− γn)xn + γnvn − p‖2

≤ (1− γn)‖xn − p‖2 + γn ‖vn − p‖2 − γn (1− γn)Ψ(‖xn − vn‖)

≤ (1− γn)‖xn − p‖2 + γndist2 (vn,T (p))− γn (1− γn)Ψ(‖xn − vn‖)

≤ (1− γn)‖xn − p‖2 + γnH2 (T (xn) ,T (p))− γn (1− γn)Ψ(‖xn − vn‖)

≤ ‖xn − p‖2 − γn (1− γn)Ψ(‖xn − vn‖) . (2.4)

By Lemma 1.7 and (2.4), we have

‖yn − p‖2=‖(1−βn)vn +βnwn − p‖2

≤ (1−βn)‖vn − p‖2 +βn ‖wn − p‖2 −βn (1−βn)Ψ(‖vn −wn‖)

≤ (1−βn)dist2 (vn,T (p))+βndist2 (wn,T (p))−βn (1−βn)Ψ(‖vn −wn‖)

≤ (1−βn)H2 (T (xn) ,T (p))+βnH2 (T (zn) ,T (p))−βn (1−βn)Ψ(‖vn −wn‖)

≤ (1−βn)‖xn − p‖2 +βn ‖zn − p‖2 −βn (1−βn)Ψ(‖vn −wn‖)

≤ (1−βn)‖xn − p‖2 +βn ‖zn − p‖2

≤ ‖xn − p‖2 −βnγn (1− γn)Ψ(‖xn − vn‖) (2.5)

from (2.4), (2.5) and by Lemma 1.7 , we have

‖xn+1 − p‖2=‖(1−αn)vn +αnun − p‖2

≤ (1−αn)‖vn − p‖2 +αn ‖un − p‖2 −αn (1−αn)Ψ(‖vn −un‖)

≤ (1−αn)dist2 (vn,T (p))+αndist2 (un,T (p))−αn (1−αn)Ψ(‖vn −un‖)

≤ (1−αn)H2 (T (xn) ,T (p))+αnH2 (T (yn) ,T (p))−αn (1−αn)Ψ(‖vn −un‖)

≤ (1−αn)‖xn − p‖2 +αn ‖yn − p‖2 −αn (1−αn)Ψ(‖vn −un‖)

≤ (1−αn)‖xn − p‖2 +αn ‖yn − p‖2

≤ ‖xn − p‖2 −αnβnγn (1− γn)Ψ(‖xn − vn‖) . (2.6)

so,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 −αnβnγn (1− γn)Ψ(‖xn − vn‖) .

This implies that

∞

∑
n=1

αnβnγn (1− γn)Ψ(‖xn − vn‖)< ∞

By Lemma 1.8, we have limn→∞ Ψ(‖xn − vn‖) = 0. As Ψ is strictly increasing and continuous, we get limn→∞ ‖xn − vn‖= 0. Hence

lim
n→∞

R(xn,T (xn)) = lim
n→∞

‖xn − vn‖= 0. (2.7)

We want to show that {xn} converges weakly to an element of ET . For this, it must be showen that {xn} has unique weak subsequential

limit in ET . Therefore, we assume that there are subsequences {xni
} and

{

xn j

}

of {xn}such that xni
⇀ u and xn j

⇀ v. By (2.7),

limni→∞ R(xni
,T (xni

) = 0. It follows from Lemma 1.10 that u ∈ ET . Similarly, we can be shown that v ∈ ET . Now, suppose u 6= v. By

Lemma 2.1 and the Opial property, we get

lim
n→∞

‖xn −u‖= lim
ni→∞

‖xni
−u‖

< lim
ni→∞

‖xni
− v‖

= lim
n→∞

‖x− v‖

= lim
n j→∞

∥

∥xn j
− v

∥

∥

< lim
n j→∞

∥

∥xn j
−u

∥

∥

= lim
n→∞

‖xn −u‖

which is a contradiction. Hence {xn} converges weakly to an element of ET .

Next, we prove strong convergence theorems in uniformly convex Banach spaces.
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Theorem 2.3. Let E,C and T be as in Theorem 2.2. Let {xn}be the sequence defined by (1.1) with αn,βn,γn ∈ [a,b] ⊂ (0,1). If T is

semi-compact, then {xn} converges strongly to an element of ET .

Proof. In view of (2.6), we have

αnβnγn (1− γn)Ψ(‖xn − vn‖)< ∞ .

By Lemma 1.8, there exists subsequence {vnk
} and {xnk

} of {vn} and {xn}, respectively, such that limk→∞ Ψ(‖xnk
− vnk

‖) = 0. Since Ψ is

strictly increasing and continuous, limk→∞ ‖xnk
− vnk

‖= 0. So,

lim
k→∞

R(xnk
,T (xnk

)) = lim
k→∞

‖xnk
− vnk

‖= 0. (2.8)

Conversely, T is semicompact, we may assume, by passing through a subsequence, that xnk
→ q for some q ∈C. We need show that q ∈ ET

and xn → q. By Lemma 1.6 (iii), together with (2.8), we have

R(q,T (q)) = lim
k→∞

R(xnk
,T (xnk

)) = 0. (2.9)

It follows from Lemma 1.6 (ii) that q ∈ ET . By Lemma 2.1 limn→∞ ‖xn −q‖ exists for each q ∈ ET and hence q is the strong limit of

{xn}.

Proposition 2.4. [12] Let C be a nonempty closed subset of a Banach space and {xn} be a Fejer monotone sequence with respect to C.

Then {xn} converges strongly to an element of C if and only if limn→∞dist(xn,C) = 0.

Theorem 2.5. Let E,C,T and {xn} be as in Theorem 2.2. If T satisfies condition (J), then {xn} converges strongly to an endpoint of T .

Proof. Since T is a nonexpansive mapping, ET is closed. As T satisfies condition (J), limn→∞ dist(xn,ET ) = 0. Lemma 2.1 implies that

{xn} is Fejer monotone with to respect ET . By Proposition 2.4, {xn} converges strongly to an element of ET .
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Abstract

In this paper, we investigate the generalized Woodall sequences and we deal with, in

detail, four special cases, namely, modified Woodall, modified Cullen, Woodall and Cullen

sequences. We present Binet’s formulas, generating functions, Simson formulas, and the

summation formulas for these sequences. Moreover, we give some identities and matrices

related with these sequences.

1. Introduction

The Woodall numbers {Rn}, sometimes called Riesel numbers, and also called Cullen numbers of the second kind, are numbers of the form

Rn = n×2n −1.

The first few Woodall numbers are:

1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575, . . .

(sequence A003261 in the OEIS [22]). Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in [6] in 1917,

inspired by James Cullen’s earlier study of the similarly-defined Cullen numbers.

The Cullen numbers {Cn} are numbers of the form

Cn = n×2n +1.

The first few Cullen numbers are:

1,3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521, ...

(sequence A002064 in the OEIS).

Woodall and Cullen sequences have been studied by many authors and more detail can be found in the extensive literature dedicated to these

sequences, see for example, [1,2,6,9,10,11,13,15,16,17,18] and references therein.

Note that {Rn} and {Cn} hold the following relations:

Rn = 4Rn−1 −4Rn−2 −1,

Cn = 4Cn−1 −4Cn−2 +1.
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Note also that the sequences {Rn} and {Cn} satisfy the following third order linear recurrences:

Rn = 5Rn−1 −8Rn−2 +4Rn−3, R0 =−1,R1 = 1,R2 = 7, (1.1)

Cn = 5Cn−1 −8Cn−2 +4Cn−3, C0 = 1,C1 = 3,C2 = 9. (1.2)

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e., Woodall, Cullen numbers) via their

third order linear recurrence relations (1.1) and (1.2). First, we recall some properties of generalized Tribonacci numbers.

The generalized (r,s, t) sequence (or generalized Tribonacci sequence or generalized 3-step Fibonacci sequence)

{Wn(W0,W1,W2;r,s, t)}n≥0

(or shortly {Wn}n≥0) is defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.3)

where W0,W1,W2 are arbitrary complex (or real) numbers and r,s, t are real numbers.

This sequence has been studied by many authors, see for example [3,4,5,7,8,14,19,20,21,24,25,27,28,29].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n =− s

t
W−(n−1)−

r

t
W−(n−2)+

1

t
W−(n−3)

for n = 1,2,3, ... when t 6= 0. Therefore, recurrence (1.3) holds for all integer n.
As {Wn} is a third-order recurrence sequence (difference equation), it’s characteristic equation is

x3 − rx2 − sx− t = 0 (1.4)

whose roots are

α = α(r,s, t) =
r

3
+A+B,

β = β (r,s, t) =
r

3
+ωA+ω2B,

γ = γ(r,s, t) =
r

3
+ω2A+ωB,

where

A =

(

r3

27
+

rs

6
+

t

2
+
√

∆

)1/3

, B =

(

r3

27
+

rs

6
+

t

2
−
√

∆

)1/3

,

∆ = ∆(r,s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
, ω =

−1+ i
√

3

2
= exp(2πi/3).

Note that we have the following identities

α +β + γ = r,

αβ +αγ +βγ =−s,

αβγ = t.

In the case of two distinct roots, i.e., α = β 6= γ, Binet’s formula can be given as follows:

Theorem 1.1. (Two Distinct Roots Case: α = β 6= γ) Binet’s formula of generalized Tribonacci numbers is

Wn = (A1 +A2n)×αn +A3γn

where

A1 =
−W2 +2αW1 − γ(2α − γ)W0

(α − γ)2
,

A2 =
W2 − (α + γ)W1 +αγW0

α (α − γ)
,

A3 =
W2 −2αW1 +α2W0

(α − γ)2
.

Next, we give the ordinary generating function
∞

∑
n=0

Wnxn of the sequence Wn.

Lemma 1.2. Suppose that fWn
(x) =

∞

∑
n=0

Wnxn is the ordinary generating function of the generalized (r,s, t) sequence (the generalized

Tribonacci sequence) {Wn}n≥0. Then,
∞

∑
n=0

Wnxn is given by

∞

∑
n=0

Wnxn =
W0 +(W1 − rW0)x+(W2 − rW1 − sW0)x

2

1− rx− sx2 − tx3
. (1.5)
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Matrix formulation of Wn can be given as





Wn+2

Wn+1

Wn



=





r s t

1 0 0

0 1 0





n



W2

W1

W0



 . (1.6)

For matrix formulation (1.6), see [12]. In fact, Kalman gave the formula in the following form





Wn

Wn+1

Wn+2



=





0 1 0

0 0 1

r s t





n



W0

W1

W2



 .

Now, we present Simson’s formula of generalized Tribonacci numbers.

Theorem 1.3 (Simson’s Formula of Generalized Tribonacci Numbers). For all integers n, we have

∣

∣

∣

∣

∣

∣

Wn+2 Wn+1 Wn

Wn+1 Wn Wn−1

Wn Wn−1 Wn−2

∣

∣

∣

∣

∣

∣

= tn

∣

∣

∣

∣

∣

∣

W2 W1 W0

W1 W0 W−1

W0 W−1 W−2

∣

∣

∣

∣

∣

∣

. (1.7)

Proof. For a proof, see Soykan [23]. �

Next, we consider two special cases of the generalized (r,s, t) sequence {Wn} which we call them (r,s, t) and Lucas (r,s, t) sequences. (r,s, t)
sequence {Gn}n≥0 and Lucas (r,s, t) sequence {Hn}n≥0 are defined, respectively, by the third-order recurrence relations

Gn+3 = rGn+2 + sGn+1 + tGn, G0 = 0,G1 = 1,G2 = r, (1.8)

Hn+3 = rHn+2 + sHn+1 + tHn, H0 = 3,H1 = r,H2 = 2s+ r2. (1.9)

The sequences {Gn}n≥0 and {Hn}n≥0 can be extended to negative subscripts by defining

G−n =− s

t
G−(n−1)−

r

t
G−(n−2)+

1

t
G−(n−3),

H−n =− s

t
H−(n−1)−

r

t
H−(n−2)+

1

t
H−(n−3)

for n = 1,2,3, ... respectively. Therefore, recurrences (1.8)-(1.9) hold for all integers n.
In the case of two distinct roots, i.e., α = β 6= γ , for all integers n, Binet’s formula of (r,s, t) and Lucas (r,s, t) numbers (using initial

conditions in (1.8)-(1.9)) can be expressed as follows:

Theorem 1.4. (Two Distinct Roots Case: α = β 6= γ) For all integers n, Binet’s formula of (r,s, t) and Lucas (r,s, t) numbers are

Gn =

(

−γ

(α − γ)2
+

1

(α − γ)
n

)

×αn +
γ

(α − γ)2
γn,

Hn = 2αn + γn,

respectively.

Lemma 1.2 gives the following results as particular examples (generating functions of (r,s, t) and Lucas (r,s, t) numbers).

Corollary 1.5. Generating functions of (r,s, t) and Lucas (r,s, t) numbers are

∞

∑
n=0

Gnxn =
x

1− rx− sx2 − tx3
,

∞

∑
n=0

Hnxn =
3−2rx− sx2

1− rx− sx2 − tx3
,

respectively.

The following theorem shows that the generalized Tribonacci sequence Wn at negative indices can be expressed by the sequence itself at

positive indices.

Theorem 1.6. For n ∈ Z, we have

W−n = t−n(W2n −HnWn +
1

2
(H2

n −H2n)W0).

Proof. For the proof, see Soykan [26, Theorem 2.]. �

Now, we present a basic relation between {Hn} and {Wn} which can be used to write Hn in terms of Wn.

Lemma 1.7. The following equality is true:

(W 3
2 +(t + rs)W 3

1 + t2W 3
0 +(r2 − s)W 2

1 W2 −2rW1W 2
2 − sW0W 2

2 + rtW 2
0 W2 +(s2 + rt)W0W 2

1 +2stW 2
0 W1 +(rs−3t)W0W1W2)Hn = (3W 2

2 +

(r2 − s)W 2
1 + rtW 2

0 − 4rW1W2 − 2sW0W2 +(rs− 3t)W0W1)Wn+2 +(−2rW 2
2 + 3tW 2

1 − 2sW1W2 − 3tW0W2 + 3rsW 2
1 + 2stW 2

0 + 2r2W1W2 +
2s2W0W1 + rsW0W2 +2rtW0W1)Wn+1 +(−sW 2

2 +(s2 + rt)W 2
1 +3t2W 2

0 +(rs−3t)W1W2 +2rtW0W2 +4stW0W1)Wn.
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Proof. It is given in Soykan [25]. �

Using Theorem 1.6, we have the following corollary, see Soykan [26, Corollary 6].

Corollary 1.8. For n ∈ Z, we have

(a)

G−n =
1

tn+1
((2rt − s2)G2

n + tG2n + sGn+2Gn − (3t + rs)Gn+1Gn).

(b)

H−n =
1

2tn
(H2

n −H2n).

Note that G−n and H−n can be given as follows by using G0 = 0 and H0 = 3 in Theorem 1.6,

G−n = t−n(G2n −HnGn +
1

2
(H2

n −H2n)G0) = t−n(G2n −HnGn),

H−n = t−n(H2n −HnHn +
1

2
(H2

n −H2n)H0) =
1

2tn
(H2

n −H2n),

respectively.

2. Generalized Woodall Sequence

In this paper, we consider the case r = 5,s =−8, t = 4. A generalized Woodall sequence {Wn}n≥0 = {Wn(W0,W1,W2)}n≥0 is defined by the

third-order recurrence relations

Wn = 5Wn−1 −8Wn−2 +4Wn−3 (2.1)

with the initial values W0 = c0,W1 = c1,W2 = c2 not all being zero.

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 2W−(n−1)−
5

4
W−(n−2)+

1

4
W−(n−3)

for n = 1,2,3, .... Therefore, recurrence (2.1) holds for all integer n.
Theorem 1.1 can be used to obtain Binet formula of generalized Woodall numbers. Binet formula of generalized Woodall numbers can be

given as

(two distinct roots case: α = β 6= γ)

Wn = (A1 +A2n)×αn +A3γn

where

A1 =
−W2 +2αW1 − γ(2α − γ)W0

(α − γ)2
,

A2 =
W2 − (α + γ)W1 +αγW0

α (α − γ)
,

A3 =
W2 −2αW1 +α2W0

(α − γ)2
.

Here, α,β and γ are the roots of the cubic equation

x3 −5x2 +8x−4 = (x−2)2 (x−1) = 0.

Moreover

α = β = 2,

γ = 1.

So,

Wn = (A1 +A2n)×2n +A3

where

A1 =−W2 +4W1 −3W0,

A2 =
W2 −3W1 +2W0

2
,

A3 =W2 −4W1 +4W0,
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i.e.,

Wn = ((−W2 +4W1 −3W0)+
W2 −3W1 +2W0

2
n)×2n +(W2 −4W1 +4W0). (2.2)

The first few generalized Woodall numbers with positive subscript and negative subscript are given in the following Table 1.

Table 1. A few generalized Woodall numbers

n Wn W−n

0 W0 W0

1 W1
1
4 (8W0 −5W1 +W2)

2 W2 (11W0 −9W1 +2W2)

3 4W0 −8W1 +5W2
1

16 (52W0 −47W1 +11W2)
4 20W0 −36W1 +17W2 (57W0 −54W1 +13W2)

5 68W0 −116W1 +49W2
1
64 (240W0 −233W1 +57W2)

6 196W0 −324W1 +129W2 (247W0 −243W1 +60W2)

7 516W0 −836W1 +321W2
1

256 (1004W0 −995W1 +247W2)

8 1284W0 −2052W1 +769W2
1

256 (1013W0 −1008W1 +251W2)

9 3076W0 −4868W1 +1793W2
1

1024 (4072W0 −4061W1 +1013W2)

10 7172W0 −11268W1 +4097W2
1

1024 (4083W0 −4077W1 +1018W2)

11 16388W0 −25604W1 +9217W2
1

4096 (16356W0 −16343W1 +4083W2)

12 36868W0 −57348W1 +20481W2
1

4096 (16369W0 −16362W1 +4089W2)

13 81924W0 −126980W1 +45057W2
1

16384 (65504W0 −65489W1 +16369W2)

Now, we define four special cases of the sequence {Wn}. Modified Woodall sequence {Gn}n≥0 , modified Cullen sequence {Hn}n≥0,

Woodall sequence {Rn} and Cullen sequence {Cn} are defined, respectively, by the third-order recurrence relations

Gn = 5Gn−1 −8Gn−2 +4Gn−3, G0 = 0,G1 = 1,G2 = 5, (2.3)

Hn = 5Hn−1 −8Hn−2 +4Hn−3, H0 = 3,H1 = 5,H2 = 9, (2.4)

Rn = 5Rn−1 −8Rn−2 +4Rn−3, R0 =−1,R1 = 1,R2 = 7, (2.5)

Cn = 5Cn−1 −8Cn−2 +4Cn−3, C0 = 1,C1 = 3,C2 = 9. (2.6)

The sequences {Gn}n≥0, {Hn}n≥0, {Rn}n≥0 and {Cn}n≥0 can be extended to negative subscripts by defining

G−n = 2G−(n−1)−
5

4
G−(n−2)+

1

4
G−(n−3),

H−n = 2H−(n−1)−
5

4
H−(n−2)+

1

4
H−(n−3),

R−n = 2R−(n−1)−
5

4
R−(n−2)+

1

4
R−(n−3),

C−n = 2C−(n−1)−
5

4
C−(n−2)+

1

4
C−(n−3),

for n = 1,2,3, ... respectively. Therefore, recurrences (2.3)-(2.6) hold for all integer n.

Next, we present the first few values of the modified Woodall, modified Cullen, Woodall and Cullen numbers with positive and negative

subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Gn 0 1 5 17 49 129 321 769 1793 4097 9217 20481 45057 98305

G−n 0 1
4

1
2

11
16

13
16

57
64

15
16

247
256

251
256

1013
1024

509
512

4083
4096

4089
4096

Hn 3 5 9 17 33 65 129 257 513 1025 2049 4097 8193 16385

H−n 2 3
2

5
4

9
8

17
16

33
32

65
64

129
128

257
256

513
512

1025
1024

2049
2048

4097
4096

Rn −1 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495

R−n − 3
2 − 3

2 − 11
8 − 5

4 − 37
32 − 35

32 − 135
128 − 33

32 − 521
512 − 517

512 − 2059
2048 − 1027

1024 − 8205
8192

Cn 1 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497

C−n
1
2

1
2

5
8

3
4

27
32

29
32

121
128

31
32

503
512

507
512

2037
2048

1021
1024

8179
8192

Gn,Hn, Rn and Cn are the sequences A000337, A000051 (and A048578), A003261 and A002064 in [22], respectively. Note that {Hn}
satisfies the following second order linear recurrence:

Hn = 3Hn−1 −2Hn−2, H0 = 3,H1 = 5

and satisfies the following first order non-linear recurrence:

Hn = 2Hn−1 −1, H0 = 3.
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For all integers n, modified Woodall, modified Cullen, Woodall and Cullen numbers (using initial conditions in (2.2)) can be expressed using

Binet’s formulas as

Gn = (n−1)2n +1

Hn = 2n+1 +1

Rn = n×2n −1

Cn = n×2n +1

respectively.

Next, we give the ordinary generating function
∞

∑
n=0

Wnxn of the sequence Wn.

Lemma 2.1. Suppose that fWn
(x) =

∞

∑
n=0

Wnxn is the ordinary generating function of the generalized Woodall sequence {Wn}n≥0. Then,

∞

∑
n=0

Wnxn is given by

∞

∑
n=0

Wnxn =
W0 +(W1 −5W0)x+(W2 −5W1 +8W0)x

2

1−5x+8x2 −4x3
.

Proof. Take r = 5,s =−8, t = 4 in Lemma 1.2. �

The previous lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of modified Woodall, modified Cullen, Woodall and Cullen numbers are

∞

∑
n=0

Gnxn =
x

1−5x+8x2 −4x3
,

∞

∑
n=0

Hnxn =
3−10x+8x2

1−5x+8x2 −4x3
,

∞

∑
n=0

Rnxn =
−1+6x−6x2

1−5x+8x2 −4x3
,

∞

∑
n=0

Cnxn =
1−2x+2x2

1−5x+8x2 −4x3
,

respectively.

3. Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 −F2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be written in the form
∣

∣

∣

∣

Fn+1 Fn

Fn Fn−1

∣

∣

∣

∣

= (−1)n.

The following theorem gives generalization of this result to the generalized Woodall sequence {Wn}n≥0.

Theorem 3.1 (Simson Formula of Generalized Woodall Numbers). For all integers n, we have
∣

∣

∣

∣

∣

∣

Wn+2 Wn+1 Wn

Wn+1 Wn Wn−1

Wn Wn−1 Wn−2

∣

∣

∣

∣

∣

∣

=−22n−4(W2 −4W1 +4W0)(W2 −3W1 +2W0)
2.

Proof. Take r = 5,s =−8, t = 4 in Theorem 1.3. �

The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, Simson formula of modified Woodall, modified Cullen, Woodall and Cullen numbers are given as
∣

∣

∣

∣

∣

∣

Gn+2 Gn+1 Gn

Gn+1 Gn Gn−1

Gn Gn−1 Gn−2

∣

∣

∣

∣

∣

∣

=−22n−2,

∣

∣

∣

∣

∣

∣

Hn+2 Hn+1 Hn

Hn+1 Hn Hn−1

Hn Hn−1 Hn−2

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

Rn+2 Rn+1 Rn

Rn+1 Rn Rn−1

Rn Rn−1 Rn−2

∣

∣

∣

∣

∣

∣

= 22n−2,

∣

∣

∣

∣

∣

∣

Cn+2 Cn+1 Cn

Cn+1 Cn Cn−1

Cn Cn−1 Cn−2

∣

∣

∣

∣

∣

∣

=−22n−2,

respectively.
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4. Some Identities

In this section, we obtain some identities of generalized Woodall, modified Woodall, modified Cullen, Woodall and Cullen numbers. First,

we can give a few basic relations between {Wn} and {Gn}.

Lemma 4.1. The following equalities are true:

(a) 16Wn = (52W0 −47W1 +11W2)Gn+4 +(199W1 −216W0 −47W2)Gn+3 +4(57W0 −54W1 +13W2)Gn+2.
(b) 4Wn = (11W0 −9W1 +2W2)Gn+3 +(40W1 −47W0 −9W2)Gn+2 +(52W0 −47W1 +11W2)Gn+1.
(c) 4Wn = (8W0 −5W1 +W2)Gn+2 +(25W1 −36W0 −5W2)Gn+1 +4(11W0 −9W1 +2W2)Gn.
(d) Wn =W0Gn+1 +(−5W0 +W1)Gn +(8W0 −5W1 +W2)Gn−1.
(e) Wn =W1Gn +(−5W1 +W2)Gn−1 +4W0Gn−2.
(f) 4(4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Gn

=(8W 2
1 −5W1W2−4W0W1+W 2

2 )Wn+4+(−36W 2
1 −5W 2

2 +20W0W1−4W0W2+25W1W2)Wn+3+4(4W 2
0 +16W 2

1 +2W 2
2 −16W0W1+

5W0W2 −11W1W2)Wn+2.
(g) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Gn

= (W 2
1 −W0W2)Wn+3 +(4W 2

0 −8W0W1 +5W0W2 −W1W2)Wn+2 +(8W 2
1 +W 2

2 −4W0W1 −5W1W2)Wn+1.
(h) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Gn

= (4W 2
0 +5W 2

1 −8W0W1 −W1W2)Wn+2 +(W 2
2 −4W0W1 +8W0W2 −5W1W2)Wn+1 +4(W 2

1 −W0W2)Wn.
(i) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Gn

= (20W 2
0 +25W 2

1 +W 2
2 −44W0W1 +8W0W2 −10W1W2)Wn+1 +4(−8W 2

0 +16W0W1 −W2W0 −9W 2
1 +2W2W1)Wn +4(4W 2

0 +5W 2
1 −

8W0W1 −W1W2)Wn−1.
(j) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Gn

= (68W 2
0 +89W 2

1 +5W 2
2 −156W0W1 +36W0W2 −42W1W2)Wn +4(−36W 2

0 +80W0W1 −16W0W2 −45W 2
1 +19W1W2 −2W 2

2 )Wn−1 +
4(20W 2

0 +25W 2
1 +W 2

2 −44W0W1 +8W0W2 −10W1W2)Wn−2.

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing

Wn = a×Gn+4 +b×Gn+3 + c×Gn+2

and solving the system of equations

W0 = a×G4 +b×G3 + c×G2

W1 = a×G5 +b×G4 + c×G3

W2 = a×G6 +b×G5 + c×G4

we find that a = 1
16 (52W0 −47W1 +11W2),b =− 1

16 (216W0 −199W1 +47W2),c =
1
4 (57W0 −54W1 +13W2). The other equalities can be

proved similarly. �

Note that all the identities in the above Lemma 4.1 can be proved by induction as well.

Next, we present a few basic relations between {Wn} and {Hn}.

Lemma 4.2. The following equalities are true:

(a) 2(2W0 −3W1 +W2)(4W0 −4W1 +W2)Hn = (8W0−10W1+3W2)Wn+4+(36W1−28W0−11W2)Wn+3+2(12W0−16W1+5W2)Wn+2.
(b) (2W0 −3W1 +W2)(4W0 −4W1 +W2)Hn = (6W0 −7W1 +2W2)Wn+3 +(24W1 −20W0 −7W2)Wn+2 +2(8W0 −10W1 +3W2)Wn+1.
(c) (2W0 −3W1 +W2)(4W0 −4W1 +W2)Hn = (10W0 −11W1 +3W2)Wn+2 +2(18W1 −16W0 −5W2)Wn+1 +4(6W0 −7W1 +2W2)Wn.
(d) (2W0 −3W1 +W2)(4W0 −4W1 +W2)Hn = (18W0 −19W1 +5W2)Wn+1 +4(15W1 −14W0 −4W2)Wn +4(10W0 −11W1 +3W2)Wn−1.
(e) (2W0 −3W1 +W2)(4W0 −4W1 +W2)Hn = (34W0 −35W1 +9W2)Wn +4(27W1 −26W0 −7W2)Wn−1 +4(18W0 −19W1 +5W2)Wn−2.

Now, we give a few basic relations between {Wn} and {Rn}.

Lemma 4.3. The following equalities are true:

(a) 8Wn = (42W1 −39W0 −11W2)Rn+4 +(151W0 −161W1 +42W2)Rn+3 +(151W1 −144W0 −39W2)Rn+2.
(b) 8Wn = (49W1 −44W0 −13W2)Rn+3 +(168W0 −185W1 +49W2)Rn+2 +4(42W1 −39W0 −11W2)Rn+1.
(c) 2Wn = (15W1 −13W0 −4W2)Rn+2 +(49W0 −56W1 +15W2)Rn+1 +(49W1 −44W0 −13W2)Rn.
(d) 2Wn = (19W1 −16W0 −5W2)Rn+1 +(60W0 −71W1 +19W2)Rn +4(15W1 −13W0 −4W2)Rn−1.
(e) Wn = (12W1 −10W0 −3W2)Rn +2(19W0 −23W1 +6W2)Rn−1 +2(19W1 −16W0 −5W2)Rn−2.
(f) 2(4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Rn

=(−12W 2
0 +36W0W1−13W0W2−26W 2

1 +18W1W2−3W 2
2 )Wn+4+(52W 2

0 +108W 2
1 +12W 2

2 −152W0W1+53W0W2−73W1W2)Wn+3+
(−48W 2

0 +140W0W1 −48W0W2 −100W 2
1 +67W1W2 −11W 2

2 )Wn+2.
(g) 2(4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Rn

=(−8W 2
0 +28W0W1−12W0W2−22W 2

1 +17W1W2−3W 2
2 )Wn+3+(48W 2

0 +108W 2
1 +13W 2

2 −148W0W1+56W0W2−77W1W2)Wn+2+
4(−12W 2

0 +36W0W1 −13W0W2 −26W 2
1 +18W1W2 −3W 2

2 )Wn+1.
(h) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Rn

= (4W 2
0 −W 2

1 −W 2
2 −4W0W1−2W0W2+4W1W2)Wn+2+2(4W 2

0 +18W 2
1 +3W 2

2 −20W0W1+11W0W2−16W1W2)Wn+1+2(−8W 2
0 +

28W0W1 −12W0W2 −22W 2
1 +17W1W2 −3W 2

2 )Wn.
(i) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Rn

=(28W 2
0 +31W 2

1 +W 2
2 −60W0W1+12W0W2−12W1W2)Wn+1+2(−24W 2

0 +44W0W1−4W0W2−18W 2
1 +W1W2+W 2

2 )Wn+4(4W 2
0 −

W 2
1 −W 2

2 −4W0W1 −2W0W2 +4W1W2)Wn−1.
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(j) (4W0 −4W1 +W2)(2W0 −3W1 +W2)
2Rn

=(92W 2
0 +119W 2

1 +7W 2
2 −212W0W1+52W0W2−58W1W2)Wn+4(−52W 2

0 +116W0W1−26W0W2−63W 2
1 +28W1W2−3W 2

2 )Wn−1+
4(28W 2

0 +31W 2
1 +W 2

2 −60W0W1 +12W0W2 −12W1W2)Wn−2.

Next, we present a few basic relations between {Wn} and {Cn}.

Lemma 4.4. The following equalities are true:

(a) 8Wn = (25W0 −22W1 +5W2)Cn+4 +(95W1 −105W0 −22W2)Cn+3 +(112W0 −105W1 +25W2)Cn+2.
(b) 8Wn = (20W0 −15W1 +3W2)Cn+3 +(71W1 −88W0 −15W2)Cn+2 +4(25W0 −22W1 +5W2)Cn+1.
(c) 2Wn = (3W0 −W1)Cn+2 +(8W1 −15W0 −W2)Cn+1 +(20W0 −15W1 +3W2)Cn.
(d) 2Wn = (3W1 −W2)Cn+1 +(3W2 −7W1 −4W0)Cn +4(3W0 −W1)Cn−1.
(e) Wn = (4W1 −2W0 −W2)Cn +2(3W0 −7W1 +2W2)Cn−1 +2(3W1 −W2)Cn−2.
(f) 2(4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Cn

= (4W 2
0 + 10W 2

1 +W 2
2 − 12W0W1 + 3W0W2 − 6W1W2)Wn+4 + (−12W 2

0 + 40W0W1 − 11W0W2 − 36W 2
1 + 23W1W2 − 4W 2

2 )Wn+3 +
(16W 2

0 +44W 2
1 +5W 2

2 −52W0W1 +16W0W2 −29W1W2)Wn+2.
(g) 2(4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Cn

=(8W 2
0 +14W 2

1 +W 2
2 −20W0W1+4W0W2−7W1W2)Wn+3+(−16W 2

0 +44W0W1−8W0W2−36W 2
1 +19W1W2−3W 2

2 )Wn+2+4(4W 2
0 +

10W 2
1 +W 2

2 −12W0W1 +3W0W2 −6W1W2)Wn+1.
(h) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Cn

=(12W 2
0 +17W 2

1 +W 2
2 −28W0W1+6W0W2−8W1W2)Wn+2+2(−12W 2

0 +28W0W1−5W0W2−18W 2
1 +8W1W2−W 2

2 )Wn+1+2(8W 2
0 +

14W 2
1 +W 2

2 −20W0W1 +4W0W2 −7W1W2)Wn.
(i) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Cn

= (36W 2
0 +49W 2

1 +3W 2
2 −84W0W1 +20W0W2 −24W1W2)Wn+1 +2(−40W 2

0 +92W0W1 −20W0W2 −54W 2
1 +25W1W2 −3W 2

2 )Wn +
4(12W 2

0 +17W 2
1 +W 2

2 −28W0W1 +6W0W2 −8W1W2)Wn−1.
(j) (4W0 −4W1 +W2)(2W0 −3W1 +W2)

2Cn

=(100W 2
0 +137W 2

1 +9W 2
2 −236W0W1+60W0W2−70W1W2)Wn+4(−60W 2

0 +140W0W1−34W0W2−81W 2
1 +40W1W2−5W 2

2 )Wn−1+
4(36W 2

0 +49W 2
1 +3W 2

2 −84W0W1 +20W0W2 −24W1W2)Wn−2.

Now, we give a few basic relations between {Gn} and {Hn}.

Lemma 4.5. The following equalities are true:

4Hn = 5Gn+4 −19Gn+3 +18Gn+2,

2Hn = 3Gn+3 −11Gn+2 +10Gn+1,

Hn = 2Gn+2 −7Gn+1 +6Gn,

Hn = 3Gn+1 −10Gn +8Gn−1,

Hn = 5Gn −16Gn−1 +12Gn−2.

Next, we present a few basic relations between {Gn} and {Rn}.

Lemma 4.6. The following equalities are true:

8Gn =−13Rn+4 +49Rn+3 −44Rn+2,

2Gn =−4Rn+3 +15Rn+2 −13Rn+1,

2Gn =−5Rn+2 +19Rn+1 −16Rn,

Gn =−3Rn+1 +12Rn −10Rn−1,

Gn =−3Rn +14Rn−1 −12Rn−2,

and

8Rn =−11Gn+4 +43Gn+3 −40Gn+2,

2Rn =−3Gn+3 +12Gn+2 −11Gn+1,

2Rn =−3Gn+2 +13Gn+1 −12Gn,

Rn =−Gn+1 +6Gn −6Gn−1,

Rn = Gn +2Gn−1 −4Gn−2.

Now, we give a few basic relations between {Gn} and {Cn}.

Lemma 4.7. The following equalities are true:

8Gn = 3Cn+4 −15Cn+3 +20Cn+2,

2Gn =−Cn+2 +3Cn+1,

Gn =−Cn+1 +4Cn −2Cn−1,

Gn =−Cn +6Cn−1 −4Cn−2,
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and

8Cn = 5Gn+4 −21Gn+3 +24Gn+2,

2Cn = Gn+3 −4Gn+2 +5Gn+1,

2Cn = Gn+2 −3Gn+1 +4Gn,

Cn = Gn+1 −2Gn +2Gn−1,

Cn = 3Gn −6Gn−1 +4Gn−2.

Next, we present a few basic relations between {Hn} and {Rn}.

Lemma 4.8. The following equalities are true:

4Hn =−3Rn+4 +13Rn+3 −14Rn+2,

2Hn =−Rn+3 +5Rn+2 −6Rn+1,

Hn = Rn+1 −2Rn,

Hn = 3Rn −8Rn−1 +4Rn−2.

Now, we give a few basic relations between {Hn} and {Cn}.

Lemma 4.9. The following equalities are true:

4Hn = 5Cn+4 −19Cn+3 +18Cn+2,

2Hn = 3Cn+3 −11Cn+2 +10Cn+1,

Hn = 2Cn+2 −7Cn+1 +6Cn,

Hn = 3Cn+1 −10Cn +8Cn−1,

Hn = 5Cn −16Cn−1 +12Cn−2.

Next, we present a few basic relations between {Rn} and {Cn}.

Lemma 4.10. The following equalities are true:

4Rn =−6Cn+4 +23Cn+3 −21Cn+2,

4Rn =−7Cn+3 +27Cn+2 −24Cn+1,

Rn =−2Cn+2 +8Cn+1 −7Cn,

Rn =−2Cn+1 +9Cn −8Cn−1,

Rn =−Cn +8Cn−1 −8Cn−2,

and

4Cn =−6Rn+4 +23Rn+3 −21Rn+2,

4Cn =−7Rn+3 +27Rn+2 −24Rn+1,

Cn =−2Rn+2 +8Rn+1 −7Rn,

Cn =−2Rn+1 +9Rn −8Rn−1,

Cn =−Rn +8Rn−1 −8Rn−2.

5. On the Recurrence Properties of Generalized Woodall Sequence

Taking r = 5,s =−8, t = 4 in Theorem 1.6, we obtain the following Proposition.

Proposition 5.1. For n ∈ Z, generalized Woodall numbers (the case r = 5,s =−8, t = 4) have the following identity:

W−n = 4−n(W2n −HnWn +
1

2
(H2

n −H2n)W0)

where

Hn =
((10W0 −11W1 +3W2)Wn+2 −2(16W0 −18W1 +5W2)Wn+1 +4(6W0 −7W1 +2W2)Wn)

(2W0 −3W1 +W2)(4W0 −4W1 +W2)
(5.1)

Note that if we take r = 5,s =−8, t = 4 in Lemma 1.7 (or using Lemma 4.2 (c)) we get (5.1).

From the above Proposition 5.1 and Corollary 1.8, we have the following Corollary 5.2 which gives the connection between the special cases

of generalized Woodall sequence at the positive index and the negative index: for modified Woodall, modified Cullen, Woodall and Cullen

numbers: take Wn = Gn with G0 = 0,G1 = 1,G2 = 5, take Wn = Hn with H0 = 3,H1 = 5,H2 = 9, Wn = Rn with R0 =−1,R1 = 1,R2 = 7

and Wn =Cn with C0 = 1,C1 = 3,C2 = 9, respectively. Note that in this case Hn = Hn.

Corollary 5.2. For n ∈ Z, we have the following recurrence relations:

(a) Modified Woodall sequence:

G−n = 4−n(−6G2
n +G2n −2Gn+2Gn +7Gn+1Gn).
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(b) Modified Cullen sequence:

H−n = 2−2n−1
(

H2
n −H2n

)

.

(c) Woodall sequence:

R−n = 2−2n−1(−R2
n+1 +R2n+1 +2Rn+1Rn).

(d) Cullen sequence:

C−n = 2−2n−1(4C2
n+2 +49C2

n+1 +24C2
n −2C2n+2 +7C2n+1 −4C2n −28Cn+1Cn+2 +20CnCn+2 −70CnCn+1).

6. Sum Formulas

The following Theorem 6.1 presents some formulas of of generalized Woodall numbers numbers with indices in arithmetic progression.

Theorem 6.1. For all integers m and j, we have the following sum formula:

n

∑
k=0

Wmk+ j =
1

2(2m −1)2
(Γ1 +Γ2 +Γ3)

where

Γ1 = (( j+mn−2)2mn+2m+ j − ( j+m+mn−2)2mn+m+ j +(m− j+2)2m+ j +( j−2)2 j +2(n+1)(2m −1)2)W2,

Γ2 = (−(3 j+3mn−8)2mn+2m+ j +(3 j+3m+3mn−8)2mn+m+ j +(3 j−3m−8)2m+ j − (3 j−8)2 j −8(n+1)(2m −1)2)W1,

Γ3 = 2(( j+mn−3)2mn+2m+ j − ( j+m+mn−3)2mn+m+ j +(m− j+3)2m+ j +( j−3)2 j +4(n+1)(2m −1)2)W0.

Proof. Use the Binet’s formula of generalized Woodall numbers, i.e.,

Wn = ((−W2 +4W1 −3W0)+
W2 −3W1 +2W0

2
n)×2n +(W2 −4W1 +4W0). �

The following Proposition 6.2 presents some formulas of generalized Woodall numbers numbers with positive subscripts.

Proposition 6.2. For n ≥ 0, we have the following formulas:

(a) ∑
n
k=0 Wk = ((n−3)2n +n+3)W2 − ((3n−11)2n +4n+11)W1 +((n−4)2n+1 +4n+9)W0.

(b) ∑
n
k=0 W2k =

1
9 (((3n−4)22n+2 +9n+16)W2 −12((3n−5)22n +3n+5)W1 +((6n−11)22n+2 +36n+53)W0).

(c) ∑
n
k=0 W2k+1 =

1
9 (((6n−5)22n+2 +9n+20)W2 −3((6n−7)22n+2 +12n+25)W1 +4((3n−4)22n+2 +9n+16)W0).

Proof. Take m = 1, j = 0; m = 2, j = 0 and m = 2, j = 1, respectively, in Theorem 6.1. �

From Theorem 6.1, we have the following Corollary.

Corollary 6.3. For all integers m and j, we have the following sum formulas:

(a) ∑
n
k=0 Gmk+ j =

1

(2m−1)2 (( j+mn−1)2mn+2m+ j − ( j+m+mn−1)2mn+m+ j +(n+1)22m − (n+1)2m+1 − ( j−m−1)2m+ j

+( j−1)2 j +n+1).
(b) ∑

n
k=0 Hmk+ j =

1
(2m−1)

(2mn+m+ j+1 +(n+1)2m −2 j+1 −n−1).

(c) ∑
n
k=0 Rmk+ j =

1

(2m−1)2 (( j+mn)2mn+2m+ j − ( j+m+mn)2mn+m+ j − (n+1)22m +(n+1)2m+1 +(m− j)2m+ j +2 j j−n−1).

(d) ∑
n
k=0 Cmk+ j =

1

(2m−1)2 (( j+mn)2mn+2m+ j − ( j+m+mn)2mn+m+ j +(n+1)22m − (n+1)2m+1 +(m− j)2m+ j +2 j j+n+1).

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.4 which gives sum formulas of modified Woodall

numbers (take Wn = Gn with G0 = 0,G1 = 1,G2 = 5).

Corollary 6.4. For n ≥ 0 we have the following formulas:

(a) ∑
n
k=0 Gk = (n−2)2n+1 +n+4.

(b) ∑
n
k=0 G2k =

1
9 ((6n−5)22n+2 +9n+20).

(c) ∑
n
k=0 G2k+1 =

1
9 ((3n−1)22n+4 +9n+25).

Taking Wn = Hn with H0 = 3,H1 = 5,H2 = 9 in the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.5 which

presents sum formulas of modified Cullen numbers.

Corollary 6.5. For n ≥ 0 we have the following formulas:

(a) ∑
n
k=0 Hk = 2n+2 +n−1.

(b) ∑
n
k=0 H2k =

1
3 (2

2n+3 +3n+1).

(c) ∑
n
k=0 H2k+1 =

1
3 (2

2n+4 +3n−1).

From the last Proposition 6.2 (or using Corollary 6.3), we have the following Corollary 6.6 which gives sum formulas of Woodall numbers

(take Wn = Rn with R0 =−1,R1 = 1,R2 = 7).

Corollary 6.6. For n ≥ 0 we have the following formulas:
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(a) ∑
n
k=0 Rk = (n−1)(2n+1 −1).

(b) ∑
n
k=0 R2k =

1
9 ((3n−1)22n+3 −9n−1).

(c) ∑
n
k=0 R2k+1 =

1
9 ((6n+1)22n+3 −9n+1).

Taking Wn =Cn with C0 = 1,C1 = 3,C2 = 9 in the last Proposition 6.2, we have the following Corollary 6.7 which presents sum formulas of

Cullen numbers.

Corollary 6.7. For n ≥ 0 we have the following formulas:

(a) ∑
n
k=0 Ck = (n−1)2n+1 +n+3.

(b) ∑
n
k=0 C2k =

1
9 ((3n−1)22n+3 +9n+17).

(c) ∑
n
k=0 C2k+1 =

1
9 ((6n+1)22n+3 +9n+19).

7. Matrices Related With Generalized Woodall numbers

We define the square matrix A of order 3 as:

A =





5 −8 4

1 0 0

0 1 0





such that detA = 4. From (2.1) we have





Wn+2

Wn+1

Wn



=





5 −8 4

1 0 0

0 1 0









Wn+1

Wn

Wn−1



 (7.1)

and from (1.6) (or using (7.1) and induction) we have





Wn+2

Wn+1

Wn



=





5 −8 4

1 0 0

0 1 0





n



W2

W1

W0



 .

If we take W = G in (7.1) we have





Gn+2

Gn+1

Gn



=





5 −8 4

1 0 0

0 1 0









Gn+1

Gn

Gn−1



 .

We also define

Bn =





Gn+1 −8Gn +4Gn−1 4Gn

Gn −8Gn−1 +4Gn−2 4Gn−1

Gn−1 −8Gn−2 +4Gn−3 4Gn−2





and

Cn =





Wn+1 −8Wn +4Wn−1 4Wn

Wn −8Wn−1 +4Wn−2 4Wn−1

Wn−1 −8Wn−2 +4Wn−3 4Wn−2





Theorem 7.1. For all integer m,n ≥ 0, we have

(a) Bn = An

(b) C1An = AnC1

(c) Cn+m =CnBm = BmCn.

Proof. Take r = 5,s =−8, t = 4 in Soykan [25, Theorem 5.1.]. �

Some properties of matrix An can be given as

An = 5An−1 −8An−2 +4An−3

and

An+m = AnAm = AmAn

and

det(An) = 4n

for all integer m and n.

Corollary 7.2. For all integers n, we have the following formulas for the modified Woodall, Woodall and Cullen numbers.
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(a) Modified Woodall Numbers.

An =





5 −8 4

1 0 0

0 1 0





n

=





Gn+1 −8Gn +4Gn−1 4Gn

Gn −8Gn−1 +4Gn−2 4Gn−1

Gn−1 −8Gn−2 +4Gn−3 4Gn−2





=





2n+1n+1 4×2n −6×2nn−4 4×2nn−4×2n +4

2nn−2n +1 5×2n −3×2nn−4 2×2nn−4×2n +4
1
2 2nn−2n +1 2n+2 − 3

2 2nn−4 2nn−3×2n +4



 .

(b) Woodall Numbers.

An =
1

2





−5Rn+3 +19Rn+2 −16Rn+1 24Rn+2 −92Rn+1 +76Rn 4(−5Rn+2 +19Rn+1 −16Rn)
−5Rn+2 +19Rn+1 −16Rn 24Rn+1 −92Rn +76Rn−1 4(−5Rn+1 +19Rn −16Rn−1)
−5Rn+1 +19Rn −16Rn−1 24Rn −92Rn−1 +76Rn−2 4(−5Rn +19Rn−1 −16Rn−2)



 .

(c) Cullen Numbers.

An =





−Cn+2 +4Cn+1 −2Cn 6Cn+1 −26Cn +16Cn−1 4(−Cn+1 +4Cn −2Cn−1)
−Cn+1 +4Cn −2Cn−1 6Cn −26Cn−1 +16Cn−2 4(−Cn +4Cn−1 −2Cn−2)
−Cn +4Cn−1 −2Cn−2 6Cn−1 −26Cn−2 +16Cn−3 4(−Cn−1 +4Cn−2 −2Cn−3)



 .

Proof.

(a) It is given in Theorem 7.1 (a).

(b) Note that, from Lemma 4.6, we have

2Gn =−5Rn+2 +19Rn+1 −16Rn.

Using the last equation and (a), we get required result.

(c) Note that, from Lemma 4.7, we have

Gn =−Cn+1 +4Cn −2Cn−1.

Using the last equation and (a), we get required result. �

Theorem 7.3. For all integers m,n, we have

Wn+m =WnGm+1 +Wn−1(−8Gm +4Gm−1)+4Wn−2Gm (7.2)

=WnGm+1 +(−8Wn−1 +4Wn−2)Gm +4Wn−1Gm−1

Proof. Take r = 5,s =−8, t = 4 in Soykan [25, Theorem 5.2.]. �

By Lemma 4.1, we know that

(4W0 −4W1 +W2)(2W0 −3W1 +W2)
2Gm = (4W 2

0 +5W 2
1 −8W0W1 −W1W2)Wm+2

+(W 2
2 −4W0W1 +8W0W2 −5W1W2)Wm+1 +4(W 2

1 −W0W2)Wm.

so (7.2) can be written in the following form

(4W0 − 4W1 +W2)(2W0 − 3W1 +W2)
2Wn+m = Wn((4W 2

0 + 5W 2
1 − 8W0W1 −W1W2)Wm+3 + (W 2

2 − 4W0W1 + 8W0W2 − 5W1W2)Wm+2 +
4(W 2

1 −W0W2)Wm+1)+(−8Wn−1 +4Wn−2)((4W 2
0 +5W 2

1 −8W0W1 −W1W2)Wm+2

+(W 2
2 −4W0W1+8W0W2−5W1W2)Wm+1+4(W 2

1 −W0W2)Wm)+4Wn−1((4W 2
0 +5W 2

1 −8W0W1−W1W2)Wm+1+(W 2
2 −4W0W1+8W0W2−

5W1W2)Wm +4(W 2
1 −W0W2)Wm−1).

Corollary 7.4. For all integers m,n, we have

Gn+m = GnGm+1 +Gn−1(−8Gm +4Gm−1)+4Gn−2Gm,

Hn+m = HnGm+1 +Hn−1(−8Gm +4Gm−1)+4Hn−2Gm,

Rn+m = RnGm+1 +Rn−1(−8Gm +4Gm−1)+4Rn−2Gm,

Cn+m =CnGm+1 +Cn−1(−8Gm +4Gm−1)+4Cn−2Gm,

and

2Rm+n = −5RnRm+3 +(19Rn +40Rn−1 −20Rn−2)Rm+2

+4(−4Rn −43Rn−1 +19Rn−2)Rm+1 +4(51Rn−1 −16Rn−2)Rm −64Rn−1Rm−1,

2Cm+n = −CnCm+3 +(3Cn +8Cn−1 −4Cn−2)Cm+2

+4(−7Cn−1 +3Cn−2)Cm+1 +12Cn−1Cm.
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Taking m = n in the last Corollary we obtain the following identities:

G2n = 4G2
n−1 +(Gn+1 −8Gn−1 +4Gn−2)Gn,

H2n = HnGn+1 −4(2Hn−1 −Hn−2)Gn +4Hn−1Gn−1,

R2n = RnGn+1 −4(2Rn−1 −Rn−2)Gn +4Rn−1Gn−1,

C2n =CnGn+1 −4(2Cn−1 −Cn−2)Gn +4Cn−1Gn−1,

and

2R2n =−5RnRn+3 +(19Rn +40Rn−1 −20Rn−2)Rn+2 +4(−4Rn −43Rn−1 +19Rn−2)Rn+1

+4(51Rn−1 −16Rn−2)Rn −64Rn−1Rn−1,

2C2n =−CnCn+3 +(3Cn +8Cn−1 −4Cn−2)Cn+2 +4(−7Cn−1 +3Cn−2)Cn+1 +12Cn−1Cn.
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[1] P. Berrizbeitia, J. G. Fernandes, M. J. González, F. Luca, V. J. M. Huguet, On Cullen numbers which are Both Riesel and Sierpiński numbers, Journal of
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