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TURKEY

F. G. Lupianez
Complutense University of Madrid,

SPAIN
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Abstract

In this paper, we investigate the boundedness and uniformly asymptotically stability of
the solutions to a certain third order non-autonomous differential equations with bounded
delay. By constructing a Lyapunov functional, sufficient conditions for the stability and
boundedness of solutions for equations considered are obtained. We used an example to
demonstrate the feasibility of our results. The results essentially improve, include, and
complement the results in the literature.

1. Introduction

For years, researchers have focused on the qualitative behavior of differential equation solutions, such as stability, asymptotic stability,
uniform asymptotic stability, boundedness, and uniform boundedness. In the application areas of mathematics such as physics, chemistry,
biology, engineering and dynamical systems, many events are modeled with differential equations [1, 2]. The qualitative behavior of the
differential equations corresponding to these models is important and finds concrete responses in the application areas [3]-[5]. Also, the rapid
expansion of differential equations with lag arguments in recent years and now covers not only many physics and technology questions, but
also certain areas of economics and biological sciences [6, 7]. Therefore, the qualitative behavior of the solutions of differential equations
with delay arguments remains up-to-date and attracts the attention of many researchers.
The fact that the trajectory curve of a solution starting in a region does not leave this region is known as the stability of the solution [8]. A
great advantage of the method known as Lyapunov’s second method for determining the stability behavior of solutions of linear and nonlinear
systems is to examine the stability of the solutions without any prior knowledge of the solutions [9]. The simplest form of third-order
differential equations is of the form

x′′′+ax′′+bx′+ cx = 0 (1.1)

where a,b,c are constants. In this case it is well known that all solutions tend to the trivial solution, as t→∞ provided that the Routh-Hurwitz
criteria a > 0,c > 0,ab− c > 0 are satisfied [10]. In [10], author obtains sufficient conditions for the asymptotic stability of the trivial
solution of differential equations of the form

x′′′+ f (x,x′)x′′+g(x′)+h(x) = 0 (1.2)

considering the criteria Routh-Hurwitz for equation (1.1).
In [11]-[19], the authors investigated the behavior of solutions of differential equations such as asymptotic stability, global asymptotic
stability, global stability, boundedness, uniform boundedness in different third-order nonlinear models using the Lyapunov method.
In [20], the author constructed some new Lyapunov functions to examine the asymptotic stability and boundedness of the solutions of
non-linear delay differential equation described by

x′′′+a(t)x′′+b(t)x′+ c(t) f (x(t− r)) = p(t) (1.3)
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with p≡ 0 and p 6= 0, respectively. In [21], the authors established sufficient conditions for the asymptotic stability and boundedness of
solutions of a certain third order nonlinear non-autonomous delay differential equation described by

[g(x(t))x′(t)]′′+a(t)x′′(t)+b(t)x′(t))+ c(t) f (x(t− r)) = p(t) (1.4)

with p(t)≡ 0 and p(t) 6= 0, respectively. In recent years [22]-[33], the authors obtained remarkable results by using the Lyapunov method of
the behavior of the solutions of differential equations with or without delay in different third-order nonlinear models. For detailed information
on the behavior of solutions of third order lagged or undelayed differential equations, references and their references can be consulted.
Inspired by the studies above, especially by expanding the scope of [21], that is, the behavior of the solutions of a new equation is examined
by taking the delay variable and the coefficients as the functions of the dependent variable.
In this paper, we investigate the uniform asymtotic stability of the solutions for p(t,x,x′,x′′)≡ 0 and additionally boundedness of solutions
to the third order nonlinear differential equation with bounded delay

[P(x(t))x′(t)]′′+a(t)(Q(x(t))x′(t))′+b(t)(R(x(t))x′(t))+ c(t) f (x(t− r(t))) = p(t,x,x′,x′′). (1.5)

For convenience, we let

θ1(t) =
P′(x(t))
P2(x(t))

x′(t),

θ2(t) =
Q′(x(t))P(x(t))−Q(x(t))P′(x(t))

P2(x(t))
x′(t),

and

θ3(t) =
R′(x(t))P(x(t))−R(x(t))P′(x(t))

P2(x(t))
x′(t).

We write (1.5) in the system form

x′ =
1

P(x)
y,

y′ = z,

z′ = −a(t)θ2(t)y−
a(t)Q(x)

P(x)
z− b(t)R(x(t))y

P(x(t))
− c(t) f (x(t))+ c(t)

t∫
t−r(t)

1
P(x)

f ′(x)ydη + p(t,x,y,z) (1.6)

where r is a bounded delay, 0 ≤ r(t) ≤ Ω, r′(t) ≤ λ , 0 < λ < 1, λ and Ω some positive constants, Ω which will be determined late, the
functions a,b,c are continuously differentiable functions and the functions P,Q,R, f , p are continuous functions depending only on the
arguments shown. Also derivatives P′(x),P′′(x),Q′(x),R′(x) and f ′(x) exist and are continuous, f (0) = 0. The continuity of the functions
a,b,c,P,Q,R, f and p guarantees the existence of the solutions of equation (1.5). If the right hand side of the system (1.6) satisfies a Lipchitz
condition in x(t),y(t),z(t) and x(t− r(t)) and exists of solutions of system (1.6) , then it is unique solution of system (1.6).
Assume that there are positive constants a0,b0,c0, p0,q0,r0,a1,b1,c1, , p1,q1, and r1 such that the following assumptions hold:

(A1) 0 < a0 ≤ a(t)≤ a1, 0 < b0 ≤ b(t)≤ b1 and 0 < c0 ≤ c(t)≤ c1 for all t ≥ 0;
(A2) 0 < p0 ≤ P(x)≤ p1, 0 < q0 ≤ Q(x)≤ q1, and 0 < r0 ≤ R(x)≤ r1 for x ∈ R;
(A3) f (x)

x ≥ δ0 > 0 for x 6= 0 and | f ′(x)| ≤ δ1 for all x; and
(A4) |p(t,x,y,z)| ≤ |e(t)| .

Using the Lyapunov’s functional approach, we establish some new results on the uniformly asymtotically stability and boundedness of the
solutions, which are motivated by the results of references. Our results differ from those existing in the literature (see, references and the
references therein). By this way, we mean that this work offers to the literature on the subject and may be significant for researchers who
study the qualitative behaviour of solutions of higher-order functional differential equations. The uniqueness and originality of the present
paper can be checked based on all of the above facts.

2. Preliminaries

We also consider the functional differential equation
.
x = f (t,xt), xt(θ) = x(t +θ), − r ≤ θ ≤ 0, t ≥ 0 (2.1)

where f : I×CH →Rn is a continuous mapping, I = [0,∞), f (t,0) = 0,CH := {φ ∈ (C[−r,0],Rn) : ‖φ‖ ≤H}, and for H1 < H, there exists
L(H1)> 0, with | f (t,φ)|< L(H1) when ‖φ‖< H1.

Lemma 2.1. ([5]) Let V (t,φ) : I×CH → R be a continuous functional satisfying a local Lipchitz condition, V (t,0) = 0 , and wedges Wi
such that :

(i) W1(‖φ‖)≤V (t,φ)≤W2(‖φ‖);
(ii) V ′(3)(t,φ)≤−W3(‖φ‖).

Then, the zero solution of equation (2.1) is uniformly asymptotically stable.
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3. The Main Results

Theorem 3.1. In addition to the basic assumptions imposed on the functions a,b,c,P,Q,R and e suppose that there are positive constants
δ0,δ1,η1 and η2 such that the following conditions are satisfied:

(i) p1δ1
r0

< d < a0q0;
(ii) c(t)≤ b(t) and b′(t)≤ c′(t)≤ 0 for t ∈ [0,∞);

(iii) 1
2 da′(t)Q(x)−b0(dr0− p1δ1)≤−ε < 0;

(iv)
∞∫
−∞

(|P′(u)|+ |Q′(u)|+ |R′(u)|)du≤ η1 < ∞; and

(v)
∞∫
0
|e(s)|ds≤ η2 < ∞.

Then any solution x(t) equation (1.5) are bounded and trival solution of equation (1.5) for p(t,x,x′,x′′) ≡ 0 is uniformly asymtotically
stability, if

Ω <
2p0

p1c1δ1
min

{
ε(1−λ )p0

p1 (p0 +d(2−λ ))
, (a0q0−d)

}
. (3.1)

Proof. To prove the theorem, we define a Lyapunov functional

W =W (t,x,y,z) = exp
(
−1
η

∫ t

0
γ(s)ds

)
V, (3.2)

where

γ(t) = |θ1(t)|+ |θ2(t)|+ |θ3(t)| , (3.3)

and

V =V (t,x,y,z) = dc(t)F(x)+ c(t) f (x)y+
b(t)R(x)

2P(x)
y2 +

1
2

z2 +
1
2

da(t)Q(x)
P2(x)

y2 +
d

P(x)
yz+σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds (3.4)

with F(x) =
∫ x

0 f (s)ds, and η are positive constants that will be determined at a later point of the proof. We can write V as

V = dc(t)F(x)+M(x,y)− c2(t)P(x) f 2(x)
2b(t)R(x)

+
1
2

z2 +
d

P(x)
yz+

da(t)Q(x)
2P2(x)

y2 +σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds

where

M(x,y) =
b(t)R(x)

2P(x)

{
y+

c(t) f (x)P(x)
b(t)R(x)

}2
≥ 0.

Note that

1
2

f 2(x) =
∫ x

0
f (u) f ′(u)du≤

∫ x

0
f (u)δ1du

and

σ

∫ 0

−r(t)

∫ t

t+s
y2(γ)dγds≥ 0.

From conditions (A1)–(A3) and (ii), we have

−c2(t)P(x) f 2(x)
2b(t)R(x)

≥− c(t)
b(t)

c(t)p1

r0

f 2(x)
2
≥−c(t)p1

r0
δ1

∫ x

0
f (u)du.

Hence,

V ≥ dc(t)
∫ x

0

(
1− p1δ1

dr0

)
f (u)du+

1
2

(
z+

d
P(x)

y
)2

+
d(a0q0−d)

2P2(x)
y2 ≥ δ4δ0

2
x2 +

1
2

(
z+

d
P(x)

y
)2

+
d(a0q0−d)

2P2(x)
y2,

where δ4 = dc0

(
1− p1δ1

dr0

)
> 0 by (i). So we can find a constant d0 > 0 small enough, such that

V ≥ d0(x2 + y2 + z2). (3.5)
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It is clear that V (t,x,y,z)≥ 0 and V (t,0,0,0) = 0 if and only if x2 = y2 = z2 = 0. Now contidions (A2) and (iv) imply

t∫
0

γ(s)ds ≤ (1+ r1 +q1)
∫

α2(t)

α1(t)

|P′(u)|
P2(u)

du+
∫

α2(t)

α1(t)

|R′(u)|+ |Q′(u)|
P2(u)

du

≤ (1+ r1 +q1)

p2
0

∫
α2(t)

α1(t)
|P′(u)|du+

1
p0

∫
α2(t)

α1(t)
(|R′(u)|+ |Q′(u)|)du

≤ N < ∞, (3.6)

where α1(t) = min{x(0),x(t)} and α2(t) = max{x(0),x(t)}. Hence,

W ≥ D0(x2 + y2 + z2) (3.7)

for some D0 > 0. Also, from (A1)–(A3), it is not difficult to see that

W ≤ D1(x2 + y2 + z2), (3.8)

for all x, y, and z.
From (3.7), and (3.8), it is easy to see that W (t,x,y,z) = 0 if and only if x2 +y2 + z2 = 0 for all t ≥ 0, and W (t,x,y,z)> 0 if x2 +y2 + z2 6= 0.
Now, we illustrate that

.
W is a negative definite function. The derivative of the function V along any solution (x(t),y(t),z(t)) of system (1.6),

with respect to t is after rearranging

d
dt

V (t) =

[
da′(t)Q(x)+2c(t)P(x) f ′(x)−2db(t)R(x)

2P2(x)

]
y2

+V1(t)+V2(t)+
1

P(x)
(d−a(t)Q(x))z2 +σr(t)y2(t)−σ(1− r′(t))

∫ t

t−r(t)
y2(η)dη

+c(t)
(

d
P(x)

y+ z
) t∫

t−r(t)

1
P(x)

f ′(x)ydη +

(
d

P(x)
y+ z

)
p(t,x,y,z)

where

V1 = dc′(t)F(x)+ c′(t)y f (x)+
b′(t)R(x)

2P(x)
y2

V2 = −dθ1(t)
(

yz+
a(t)Q(x)

2P(x)
y2
)
+

b(t)
2

θ3(t)y2−a(t)θ2(t)
(

yz+
d

2P(x)
y2
)
.

By regarding conditions (A2), (A3), and (ii), we have the following

da′(t)Q(x)+2c(t)P(x) f ′(x)−2db(t)R(x)≤ da′(t)Q(x)+2c(t)P(x)δ1−2db(t)r0 ≤ da′(t)Q(x)+2b(t)(p1δ1−dr0).

From (A1), (A2), (i) and (iii), and using the inequality 2ab≤ a2 +b2, we can rearrange

V ′(t) ≤ V1(t)+V2(t)−

(
ε

p2
1
−σr(t)− dδ1c1r(t)

2p2
0

)
y2−

(
1
p1

(a0q0−d)− δ1c1r(t)
2p0

)
z2

+

(
δ1c1 p0 +dδ1c1

2p2
0

−σ(1−λ )

) t∫
t−r(t)

y2(η)dη +

(
d

P(x)
|y|+ |z|

)
|p(t,x,y,z)| (3.9)

By choosing σ = δ1c1 p0+dδ1c1
2p2

0(1−λ )
, we have

V ′(t) ≤ −

(
ε

p2
1
− δ1c1 p0 +dδ1c1(2−λ )

2p2
0(1−λ )

Ω

)
y2−

(
1
p1

(a0q0−d)− δ1c1

2p0
Ω

)
z2

+V1(t)+V2(t)+
(

d
P(x)

|y|+ |z|
)
|p(t,x,y,z)| . (3.10)

We claim that V1(t)≤ 0. To show this we distinguish two cases. If c′(t) = 0, then V1 =
b′(t)R(x)

2P(x) y2 ≤ 0.

If c′(t)< 0, then we can write

V1(t) = dc′(t)
[

F(x)+
1
d

y f (x)+
b′(t)R(x)

2dP(x)c′(t)
y2
]

= dc′(t)

[
F(x)+

b′(t)R(x)
2dP(x)c′(t)

{
y+

c′(t)P(x) f (x)
b′(t)R(x)

}2
− c′(t)P(x) f 2(x)

2db′(t)R(x)

]
,
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from which condition (ii) implies

V1(t) ≤ dc′(t)
∫ x

0

(
1− P(x) f ′(u)

dR(x)

)
f (u)du

≤ dc′(t)
∫ x

0

(
1− p1δ1

dr0

)
f (u)du

≤ c′(t)
δ4

c0
F(x)≤ 0.

Combining the two cases, we have V1(t)≤ 0.
Using the inequality 2ab≤ a2 +b2, we obtain the estimate

V2 ≤
[

d
2
|θ1(t)|

(
1+

a1q1

p0

)
+

a1

2
|θ2(t)|

(
1+

d
p0

)]
(y2 + z2)+

b1

2
|θ3(t)|y2

≤ k1(|θ1(t)|+ |θ2(t)|+ |θ3(t)|)(y2 + z2),

where k1 = max
{

d
2

(
1+ a1q1

p0

)
, a1

2

(
1+ d

p0

)
, b1

2

}
. Using these estimates for V1 and V2 in (3.10), we obtain

V ′(t)≤−D2

(
y2 + z2

)
+ k1(|θ1(t)|+ |θ2(t)|+ |θ3(t)|)(y2 + z2)+

(
d

P(x)
y+ z

)
p(t,x,y,z) (3.11)

where D2 = min
{

ε

p2
1
− δ1c1 p0+dδ1c1(2−λ )

2p2
0(1−λ )

Ω, 1
p1
(a0q0−d)− δ1c1

2p0
Ω

}
.

From (A4), (3.5), (3.6), (3.7), (3.11) and the Cauchy Schwartz inequality, we get

.
W (2) =

(
.

V (2)−
1
η

γ(t)V
)

exp
(
−1
η

∫ t

0
γ(s)ds

)
≤

(
−D2

(
y2 + z2

)
+

(
d

P(x)
y+ z

)
p(t,x,y,z)

)
exp
(
−1
η

∫ t

0
γ(s)ds

)
≤

(
d
p0
|y|+ |z|

)
|p(t,x,y,z)|

≤ D3

(
2+ y2 + z2

)
|e(t)|

≤ D3

(
2+

1
D0

W
)
|e(t)|

≤ 2D3 |e(t)|+
D3

D0
W |e(t)| , (3.12)

where D3 = max
{

d
p0
,1
}
, η = d0

k1
. Using the Gronwall inequality and the condition (v) and integrating inequalty (3.12) from 0 to t, we have

W ≤ W (0,x(0),y(0),z(0))+2D3η2 +
D3

D0

∫ t

0
W (s,x(s),y(s),z(s)) |e(s)|ds

≤ (W (0,x(0),y(0),z(0))+2D3η2)exp
(

D3

D0

∫ t

0
|e(s)|ds

)
≤ (W (0,x(0),y(0),z(0))+2D3η2)exp

(
D3

D0
η2

)
= K1 < ∞ (3.13)

Because of inequalities (3.7) and (3.13), we write

(
x2 + y2 + z2

)
≤ 1

D0
W ≤ K2, (3.14)

where K2 =
K1
D0

. Clearly (3.14) imlies that

|x(t)| ≤
√

K2, |y(t)| ≤
√

K2, |z(t)| ≤
√

K2 for all t ≥ 0.

That is

|x(t)| ≤
√

K2,
∣∣x′(t)∣∣≤√K2,

∣∣x′′(t)∣∣≤√K2 for all t ≥ 0 (3.15)

which completes the proof boundedness solutions of equation (1.5).
Now we show that the solutions of equation (1.5) for p(t,x,x′,x′′)≡ 0 is uniformly asymtotically stability. The inequality (3.12) can write as

.
W (2) =

(
.

V (2)−
1
η

γ(t)V
)

e−
1
η

∫ t
0 γ(s)ds

≤ −D2

(
y2 + z2

)
e−

1
η

∫ t
0 γ(s)ds

≤ −µ(y2 + z2),

where µ =D2e−
N
η . It can also be observed that the unique solution of system (1.6) for which

.
W(2)(t,x,y,z,w) = 0 is the solution x= y= z= 0.

Due to the the above discussion, the trival solution of the equation system (1.6) is uniformly asymptotically stable.
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Example 3.2. We consider the following third order non-autonomous nonlinear differential equation with delay[(
xcosx

7(1+ x6)
+2
)

x′
]′′

+

(
e−t cos t

4
+

1
2

)((
x2 sinx

7(1+ x6)
+3
)

x′
)′

+

(
1

2+ t6 +1
)(

x
2(e2x + e−2x)

+
21
10

)
x′

+
1

50

(
1

3+ t6 +
1
4

)(
x(t− 1

et +100
)+

x(t− 1
et+100 )

1+ x6(t− 1
et+100 )

)
(3.16)

=
2sin t

t2 +1+ x2 +(x′x′′)2

where P(x) = xcosx
7(1+x6)

+ 2, Q(x) = x2 sinx
7(1+x6)

+ 3, R(x) = x
2(e2x+e−2x)

+ 21
10 , f (x) = x+ x

1+x6 , r(t) = 1
et+100 , a(t) = e−t cos t

4 + 1
2 ,

b(t) = 1
2+t6 +1, c(t) = 1

3+t6 +
1
4 , p(t) = 2sin t

t2+1+x2+(x′x′′)2 .

It is easy to see that p0 = 1, p1 = 3, q0 = 1, q1 = 3, r0 = 2, r1 =
7
3 , a0 = 0.25, a1 = 0.75, b0 = 1, b1 = 1.5, c0 = 0.25, c1 =

7
12

δ0 =
1

50
≤ f (x)

x
=

1
50

(
1+

1
1+ x2

)
for x 6= 0, | f ′(x)| ≤ 1

25
= δ1,

p1δ1

r0
=

3
50

< d <
1
4
= a0q0,

and

1
2

da′(t)Q(x)−b0(dr0− p1δ1)≤−
d
8
+

3
25

< 0 for d =
1
10

.

Also we have ∫ +∞

0
|a′(t)|dt =

∫ +∞

0

∣∣∣∣−e−t cos t− e−t sin t
4

∣∣∣∣dt ≤
∫ +∞

0

2
4

e−tdt =
1
2
,

∫ +∞

−∞

|P′(u)|du =
1
7

∫ +∞

−∞

∣∣∣∣ (cosu−usinu)(1+u6)−6u6 cosu
(1+u6)2

∣∣∣∣du

=
1
7

∫ +∞

−∞

∣∣∣∣ cosu
1+u6 −

usinu
1+u6 −

6u6 cosu
(1+u6)2

∣∣∣∣du

≤ 1
7

∫ +∞

−∞

[
7

1+u6 +
u2

1+u6

]
du

=
5
7

π,

∫ +∞

−∞

|Q′(u)|du =
1
7

∫ +∞

−∞

∣∣∣∣ (2usinu+u2 cosu)(1+u6)−6u7 sinu
(1+u6)2

∣∣∣∣du

=
1
7

∫ +∞

−∞

∣∣∣∣2usinu
1+u6 +

u2 cosu
1+u6 −

6u7 sinu
(1+u6)2

∣∣∣∣du

≤ 1
7

∫ +∞

−∞

[
3u2

1+u6 +
6u8

(1+u6)2

]
du

=
2
7

π,

∫ +∞

−∞

|R′(u)|du =
1
2

∫ +∞

−∞

∣∣∣∣ (e2u + e−2u)−2u(e2u− e−2u)

(e2u + e−2u)2

∣∣∣∣du

=
1
2

∫ +∞

0

[
1

e2u + e−2u +2u
e2u− e−2u

(e2u + e−2u)2

]
du+

1
2

∫ 0

−∞

[
1

e2u + e−2u +2u
e2u− e−2u

(e2u + e−2u)2

]
du

=
π

4
,

and ∫ +∞

0
|p(t,x,x′,x′′)|dt ≤

∫ +∞

0
| 2sin t
t2 +1+ x2 +(x′x′′)2 |dt

≤
∫ +∞

0

∣∣∣∣ 2sin t
t2 +1

∣∣∣∣dt

≤
∫ +∞

0

2
t2 +1

dt

= π

As a result, all of Theorem assumptions hold, indicating that any solution x(t) equation (3.16) are bounded and trival solution of equation
(3.16) for p(t,x,x′,x′′)≡ 0 is uniformly asymtotically stability.
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4. Conclusion

For the asymptotic stability of solutions of a class of nonlinear differential equation systems with bounded delay is obtained new sufficient
conditions using a theorem presented in this paper. Since the special cases of our equation are the studies done in the literature, our results
include the present results. The effectiveness of the theorem is demonstrated using an example.
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[7] L. È. Èl’sgol’ts, S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Translated from the

Russian by John L. Casti. Mathematics in Science and Engineering, Vol. 105. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers],
New York, London, 1973.

[8] N. N. Krasovskii, Stability of Motion, Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay, Translated by J. L.
Brenner Stanford University Press, Stanford, Calif. 1963.

[9] A. M. Lyapunov, The General Problem of the Stability of Motion, Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian
original and edited by A. T. Fuller. Taylor & Francis, Ltd., London, 1992.

[10] J. O. C. Ezeilo, On the stability of solutions of certain differential equations of the third order, Quart. J. Math. Oxford Ser., 11(2) (1960), 64-69.
[11] K. Swick, On the boundedness and the stability of solutions of some nonautonomous differential equations of the third order, J. London Math. Soc., 44

(1969), 347-359.
[12] K. E. Swick, Asymptotic behavior of the solutions of certain third order differential equations, SIAM J. Appl. Math. 19 (1970), 96-102.
[13] T. Hara, On the asymptotic behavior of solutions of certain of certain third order ordinary differential equations, Proc. Japan Acad., 47 (1971), 903-908.
[14] H. O. Tejumola, A note on the boundedness and the stability of solutions of certain third-order differential equations, Ann. Mat. Pura Appl., 92(4)

(1972), 65-75.
[15] T. Hara, On the asymptotic behavior of the solutions of some third and fourth order non-autonomous differential equations, Publ. Res. Inst. Math. Sci.,

9(74) (1973), 649-673.
[16] T. Hara, On the asymptotic behavior of solutions of certain non-autonomous differential equations, Osaka J. Math., 12 (1975), 267-282.
[17] T. Hara, On the uniform ultimate boundedness of the solutions of certain third order differential equations, J. Math. Anal. Appl., 80 (1981), 533-544.
[18] Y. F. Zhu, On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system, Ann. Differential

Equations, 8(2) (1992), 249-259.
[19] C. Qian, On global stability of third-order nonlinear differential equations, Nonlinear Anal. 42 (2000), 651-661.
[20] M. O. Omeike, Stability and boundedness of solutions of some non-autonomous delay differential equation of the third order, An. Stiint. Univ. Al. I.

Cuza Iasi. Mat. (NS), 55(1) (2009), 49-58.
[21] M. Remili, L. D. Oudjedi, Stability and boundedness of the solutions of nonautonomous third order differential equations with delay, Acta Univ. Palack.

Olomuc. Fac. Rerum Natur. Math., 53 (2014), 139-147.
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Abstract

In this paper, the intuitionistic fuzzy PROMETHEE method is explained in detail and an
original application has been made. The aim of the paper is to bring innovation to the
evaluation system in the field of education by using the intuitionistic fuzzy PROMETHEE
method. The advantages of using the PROMETHEE method, which is one of the many
methods used in multi-criteria decision-making problems, in the intuitionistic fuzzy sense
are explained in detail. Intuitionistic fuzzy PROMETHEE is a method that attracts our
attention thanks to its benefits such as allowing the researcher to observe the positive
and negative rankings simultaneously, expressing the degree of hesitation, changing the
significance weights of the criteria, and using different methods when identifying the
significance levels for each criterion, putting the degree of hesitation of significance weights
into action, and enabling decision-makers, who are given the opportunity to use different
criteria types and different criteria types for alternatives and criteria, to establish a unique
system; moreover, the method also provides us numerous advantages while using it in our
application area. It is of great importance for decision-makers to determine the specific
importance level for each criterion. In this paper, controlled sets are used to express the
importance of the criteria in the form of intuitionistic fuzzy values. The intuitionistic
fuzzy-based PROMETHEE algorithm, aiming to contribute to the education system by
examining the factors affecting the students’ achievement, is a unique algorithm, and it is
the first to shed light on various researchers.

1. Introduction

The main purpose of this paper is to explain the intuitionistic fuzzy PROMETHEE method and present an application that demonstrates the
usefulness of the method. In addition, there is an example to improve the evaluation system, which is a first in the field of education, in this
application where the intuitionistic fuzzy PROMETHEE method is used. This paper, it is aimed to create an intuitionistic fuzzy logic-based
intelligent assessment system in which factors affecting students’ success at the same time with their exam results are also activated. In order
to create a training module suitable for individuals, a multi-criteria decision-making (MCDM) algorithm in intuitionistic fuzzy logic has
been created using the PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations) method. Creating a new
algorithm with PROMETHEE method, it is aimed to solve this MCDM problem in the healthiest way with the help of the intuitionistic fuzzy
theory-based PROMETHEE method. With the algorithm we did present, it is aimed to evaluate students’ success not only according to the
exam results, but also by considering their psychological, economic, social, and talented characteristics. Fuzzy logic was firstly defined
by Zadeh in 1965 [1]. Then, the Intuitionistic fuzzy set (shortly IFS) was defined by K. Atanassov [2, 3]. If we give a brief information
about these issues; we cannot say that every situation is completely true-false, good-bad as a fact and the problem. Therefore, the classical
(Aristotle) logic used is insufficient in solving our problems or in situations we encounter. “There are shades of gray between black and
white.” According to the fuzzy logic that can be explained with the sentence, we can solve more of the problems we encounter in daily
life. Fuzzy logic is built on the foundations of classical logic to include classical logic. While the studies on fuzzy logic were continuing,
researchers encountered events in which they realized that fuzzy logic was also insufficient and that hesitation should have value in the
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decision-making process. The IF logic concept, which has proven useful for the solution of these and similar problems, is defined. Smart
systems become more meaningful and applicable since the IFS includes the degree of membership, non-membership and hesitation. Since
IFS also includes uncertainty, they are used in decision-making for incompletely defined and incomplete data, allowing us to obtain more
consistent results. Intuitionistic fuzzy logic is based on fuzzy logic. As can be seen here, classical, fuzzy and intuitionistic fuzzy logic
are intertwined. Intuitionistic fuzzy logic is a generalization of fuzzy logic. Intuitionistic fuzzy logic comes into play in situations where
fuzzy logic cannot respond or is insufficient.The intuitionistic fuzzy set theory is useful in various application areas such as; medicine,
medical diagnosis, medical application, career determination, real-life situations, education, decision making, multi-criteria decision making,
artificial intelligence, networking, computer, smart systems, economy, and various fields. The decision-making process involves choosing
between two or more choices. Multi-criteria decision-making (MCDM) is a well-known notion that aims to choose the best solution
among various alternatives in decision-making. The working style of all MCDM methods is as follows: the Selection of Criteria, the
Selection of Alternatives, the Selection of Aggregation Methods, and ultimately the Determination of Ranking which is based on weights or
outranking [4]. Some of the MCDM methods are Analytical Hierarchy Process (AHP), Fuzzy Multi-Criteria Decision Making Process,
ELECTRE, PROMETHEE, and the TOPSIS Method. Bellman and Zadeh were the first researchers who introduced decision-making in fuzzy
logic. Multi-criteria fuzzy decision-making has been one of the rapidly growing areas in recent years thanks to its practicality. In MCDM
problems, usually, the best alternative is chosen from those depending on the criteria. One of the multi-criteria decision-making methods
PROMETHEE was developed by Jean Pierre Brans (1982) [5]. Using the PROMETHEE method could be taken a partial or complete ranking
of alternatives based on the positive outranking flow, the negative outranking flow, and the net outranking flow. This method is different from
other decision methods because it evaluates each alternative within itself. The main idea of PROMETHEE is to derive a partial or complete
ranking of alternatives based on the positive outranking flow, the negative outranking flow, and the net outranking flow. Then it has been
expanded in different forms. After being defined in the fuzzy field, it has been expanded in the sense of the intuitionistic fuzzy field. Many
researchers have developed applications using PROMETHEE methods and intuitionistic fuzzy sets [6]- [16].

2. Preliminaries

Definition 2.1. [2, 3] Let X 6= /0 . An intuitionistic fuzzy set A in X;

A = {〈x,µA(x),νA(x)〉| x ∈ X} ,

µA(x),νA(x),πA(x) : X → [0,1]

defined membership, nonmembership and hesitation degree of the element x ∈ X respectively.

µA(x)+νA(x)+πA(x) = 1.

Intuitionistic fuzzy value (IFV) defined by Xu [17]. Intuitionistic fuzzy value (IFV) is shown as follows: ã = (µã,νã,πã), where µã,νã,πã ∈
[0,1].
For each IFS Ã;

πÃ = 1−µÃ−νÃ. (2.1)

In this paper; we will not write the third part so we’ll show ã = (µã,νã) shape instead of ã = (µã,νã,πã). The degree of hesitation can be
obtained by equation (2.1).
For IFVs ã = (µã,νã) and b̃ = (µb̃,νb̃) the following operations have been carried out [17, 18]:

(1) ã⊕ b̃ =
(
µã +µb̃−µãµb̃,νãνb̃

)
(2.2)

(2) ã⊗ b̃ =
(
µãµb̃,νã +νb̃−νãνb̃

)
(2.3)

(3) ⊕m
j=1ã j =

(
1−

m

∏
j=1

(1−µ j),
m

∏
j=1

ν j

)
(2.4)

(4) ⊗m
j=1ã j =

(
m

∏
j=1

µ j,
m

∏
j=1

(1−ν j)

)
(2.5)

Many researchers have suggested approaches for comparing the IFVs [18, 19]. The following method will be used in this paper. This method
was proposed by Szmidt and Kacprzyk, which leads to more consistent results than other methods [19]. This function is used to rank IFVs:

ρ(α) = 0.5(1+πα )(1−µα )) (2.6)

As the ρ(α) value decreases, the preferred value α increases.

2.1. The intuitionistic fuzzy PROMETHEE

When a MCDM problem is encountered, the decision maker is expected to choose the best alternative among the alternatives according
to certain criteria. However, the significance of all the criteria can vary. In such cases, the weighting of the criteria shall be taken into
consideration. The benefit of the PROMETHEE method is to assess considering the weight of the criterion. The criteria’s weights indicate
how important they are. Considering both intuitionistic fuzzy sets and weights of criteria at the same time, more consistent and rational
results will be obtained. Therefore; using intuitionistic fuzzy PROMETHEE method will provide advantageous results. The criteria’s
weights could be depicted as IFVs: w̃ j where µw̃ j ∈ [0,1],νw̃ j ∈ [0,1],µw̃ j +νw̃ j ≤ 1, j = 1,2, ...,m. According to the weights, µω̃ j and
νω̃ j demonstrate the membership and non-membership degrees of the alternative xi respectively. Indeed; the concept of weight represents
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the importance of that criteria. The weights are expressed as IFV in the intuitionistic fuzzy PROMETHEE. It is of great importance for
decision-makers to determine the specific importance level for each criterion. In this paper, controlled sets are used to express the importance
of the criteria in the intuitionistic fuzzy PROMETHEE method in the form of intuitionistic fuzzy values. Some methods can help decision
makers in determining intuitionistic fuzzy weights [20–25]. The basic definitions for controlled sets are as follows:

Definition 2.2. [22] Let E be an universe, α is a function from E to I then E is called α− set.

Definition 2.3. [22] Let E be an α− set. The set E is called α− controlled set if

∀x ∈ E,∃y ∈ E 3 1−α(x) = α(y).

The family of α− controlled set on an universe E is represented by E ∈CS(α).

Definition 2.4. [22] Let E ∈CS(α) and a ∈ E. The following set is called control set of a,

ā = {b ∈ E|1−µ(a) = µ(b)}

Definition 2.5. [21] Let E be an α− set. We define the following mapping on E so that

α
∗(x) =


1−α(x), x ∈ Eα

supyα(y), y ∈ E 3 α(x)< 1−α(y)
0, otherwise.

(2.7)

where Eα = ∪a∈E ā.

Definition 2.6. [21] Let E be α− set. Then the set A = {〈x,α(x),α∗(x)〉|x ∈ E} is called (α,α∗)− controlled set.

In this research, V shape criterion type has been used [26]:

P(d) =


0, d ≤ q
d−q
p−q , q < d ≤ p

1, d > p

(2.8)

Parameter thresholds q and p are indicated as indifference and strict preference, respectively. Decision makers are free to change these
thresholds according to the desired situation. Evaluate the alternatives xi(i = 1,2, ...,n) with respect to the criteria c j( j = 1,2, ...,m) and
determine the deviations based on pairwise comparisons:

d j(x,y) = c j(x)− c j(y) (2.9)

where d j(x,y) shows the distinction between the alternatives’ the assessments x and y on the criterion c j.

The decision maker first determines the assessment values of each alternative relative to different criteria and creates the paired preferences
via the preference function, , which is also called as the general criterion in the classical PROMETHEE. There are six different types of
generalized criteria. The preferences are limited in [0,1] by the generalized criterion. If these preference functions are handled with a
fuzzy set, membership functions and preference values are represented by Pj(x,y). Besides preference values can be taken directly as fuzzy
numbers as they are limited to [0,1]. However, with the help of the fuzzy set, only the preferred density defined by the membership function
can be expressed. It is more convenient for the decision maker to use intuitionistic fuzzy set because it addresses all aspects of the criteria.
Also with the help of intuitionistic fuzzy set, PROMETHEE method is more advantageous. Since; the intuitionistic fuzzy set could express
not only the intensity of preferred but also the degrees of non-preferred and uncertain.

Definition 2.7. [27] An intuitionistic fuzzy preference relation R on the set X = x1,x2, ...,xn is represented by a matrix R = (rik)n×n,
where rik = 〈(xi,xk),µ(xi,xk),ν(xi,xk)〉 for all i,k = 1,2, ...,n. For convenience, we let rik = (µik,νik) where µik denotes the degree to
which the object xi is preferred to the object xk,νik indicates the degree to which the object xi is not preferred to the object xk, and
π(xi,xk) = 1−µ(xi,xk)−ν(xi,xk) is interpreted as an indeterminacy degree or a hesitancy degree, with the condition:

µik, νik ∈ [0,1], µik +νik ≤ 1, µik = νki, µki = νik, µii = νii = 0.5, πik = 1−µik−νik, f or all i,k = 1,2, ...,n. (2.10)

2.2. Algorithm of intuitionistic fuzzy PROMETHEE

The preferences µik between the alternatives xi and xk according to the criterion c j could be calculated by Equations (2.9) and (2.8), and then
the preference matrix according to the criterion c j is obtained as follows [28]:

U ( j) = (µ
( j)
ik )n×n =


− µ

( j)
12 . . . µ

( j)
1n

µ
( j)
21 − . . . µ

( j)
2n

...
... −

...
µ
( j)
n1 µ

( j)
n2 . . . −

 (2.11)

Using the equations νki = µik and νik = µki, the nonmembership degree of an IFV could be obtained. Matrix of the intuitionistic fuzzy
preference relation is as follows:

R( j) = (r( j)
ik )n×n =


− (µ

( j)
12 ,ν

( j)
12 ) . . . (µ

( j)
1n ,ν

( j)
1n )

(µ
( j)
21 ,ν

( j)
21 ) − . . . (µ

( j)
2n ,ν

( j)
2n )

...
... −

...
(µ

( j)
n1 ,ν

( j)
n1 ) (µ

( j)
n2 ,ν

( j)
n2 ) . . . −

 (2.12)
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Then; considering the c j( j = 1,2, . . . ,m) criteria, we must establish the general preference index for each alternative. We can get what we
want by using weighted aggregation operators. There are a number of aggregation operators for intuitionistic fuzzy sets, such as the IFWA,
IFWG, IFOWA, IFOWG, IFHA and IFHG operators [17, 18]. We will use the IFWA operator in this paper. The all intuitionistic fuzzy
preference index of the alternative xi to xk on all criteria can be derived as:

r(xi,xk) = rik =
m⊕

j=1

(
w̃ j
⊗

r( j)
ik

)
(2.13)

where r(xi,xk) = rik shows the degree to which the alternative xi is preferred to the alternative xk all criteria. Also, rik is an IFV.
w̃ j = (µw̃ j,νw̃ j), then according to Equation (2.2), (2.3):

w̃ j
⊗

r( j)
ik =

(
µ
( j)
ik µw̃ j,ν

( j)
ik +νw̃ j−ν

( j)
ik νw̃ j

)
(2.14)

If Equations (2.4), (2.13) and (2.14) are combined;

r(xi,xk) =
m⊕

j=1

(
w̃ j
⊗

r( j)
ik

)
=

(
1−

m

∏
j=1

(1−µ
( j)
ik µw̃ j),

m

∏
j=1

(ν
( j)
ik +νw̃ j−ν

( j)
ik νw̃ j)

)
Overall intuitionistic fuzzy preference relationship is established as follows:

R = (rik)n×n =


− (µ12,ν12) . . . (µ1n,ν1n)

(µ21,ν21) − . . . (µ2n,ν2n)
...

... −
...

(µn1,νn1) (µn2,νn2) . . . −

 (2.15)

Every alternative is compared to option (n−1). As a result of intuitionistic fuzzy positive and negative outranking flow can be achieved as
follows:

(1) The intuitionistic fuzzy positive outranking flow:

ϕ̃
+(xi) =

1
n−1

n⊕
k=1,k 6=i

r(xi,xk) =
1

n−1

n⊕
k=1,k 6=i

rik (2.16)

(2) The intuitionistic fuzzy negative outranking flow:

ϕ̃
−(xi) =

1
n−1

n⊕
k=1,k 6=i

r(xk,xi) =
1

n−1

n⊕
k=1,k 6=i

rki (2.17)

The relationship between ϕ̃+(xi) and ϕ̃−(xi) can be explained with the help of Equation (2.6). The intuitionistic fuzzy net cannot be obtained
by directly subtraction the outranking flow. The difference between the intuitionistic fuzzy positive and negative outranking flow can be
calculated using the function defined by Szmidt and Kacprzyk.

ρ(ϕ(xi)) = ρ(ϕ̃+(xi))−ρ(ϕ̃−(xi)) (2.18)

Three different ranking for ϕ̃+(xi) and ϕ̃−(xi) can be achieved [28]:

(1) Partial ranking: xi outranks xk if ϕ̃+(xi)≥ ϕ̃+(xk) and ϕ̃−(xi)≤ ϕ̃−(xk);
(2) Equality: ϕ̃+(xi) = ϕ̃+(xk) and ϕ̃−(xi) = ϕ̃−(xk) hold at the same time involves indifference between two options.
(3) Incomparability: This takes if ϕ̃+(xi)> ϕ̃+(xk) and ϕ̃−(xi)> ϕ̃−(xk) or ϕ̃+(xi)< ϕ̃+(xk) and ϕ̃−(xi)< ϕ̃+(xk).

If incomparability happens, intuitionistic fuzzy net outranking flow can be obtained by the help of Equation (2.18).

2.3. General algorithm

In this section, the steps of the algorithm that can be applied in every field are explained in detail. The algorithm we need to use when we
want the best, the most accurate and the smartest solution, where the importance of the criteria are different, multiple criteria and alternatives
are together, is given below by explaining all the steps. This algorithm is an algorithm that has an application area in all areas of multi-criteria
decision making and will give us the most accurate result in any situation. At the same time, by using this algorithm in our study, we have
shown its application and usefulness in the field of education. When we want to choose among alternatives with more than one criteria, not
only in the field of education, this algorithm is used to make the best choice and the most accurate ranking among the alternatives. The
general algorithm for the intuitionistic fuzzy PROMETHEE have been created as follows [16]:
Step 1: Alternatives X = x1,x2, . . . ,xn to be evaluated are determined. And criteria C = c1,c2, . . . ,cm that are important to evaluate
alternatives are determined.
Step 2: The importance degree of the criteria is determined w̃ j( j = 1,2, . . . ,m) where µw̃ j +νw̃ j ≤ 1,µw̃ j ∈ [0,1], νw̃ j ∈ [0,1].
Step 3: The parameters q as an indifference threshold and p as a strict preference threshold are determined. Deviations d j(x,y) using
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Equation (2.9), the preferences µ
( j)
ik for the alternative xi against alternative xk with respect to the criterion c j by using the V-shape with

indifference criterion are calculated. Then, the preference matrix U ( j)( j = 1,2, . . . ,m) are created.
Step 4: The intuitionistic fuzzy preference relation R( j) = (r( j)

ik )n×n is created.
Step 5: The overall intuitionistic fuzzy preference relation R = (rik)n×n using Equation (2.13) is obtained.
Step 6: The IF positive outranking flow ϕ̃+(xi) and the intuitionistic fuzzy negative outranking flow ϕ̃−(xi) by using Equation (2.15) and
(2.15) are obtained.
Step 7: The relationship between ϕ̃+(xi) and ϕ̃−(xi) is determined. According to this relationship is made a ranking.

3. A Current Application of Intuitionistic Fuzzy PROMETHEE

The aim of this application; it is to create an algorithm that takes into account not only exam scores but also other factors affecting success
of students. According to this algorithm, the factors affecting student achievement and exam scores have been evaluated together and the
evaluation scores of the students have been calculated with the intuitionistic fuzzy PROMETHEE method. Each school points has been
calculated depending on student examination score. While investigating the factors affecting the success, interviews were made with experts
in the field and the resources related to this field were examined. As a result of these researches, interviews were made with school guidance
teacher. In this process, the results of the exams applied to the students at school and private courses were examined. In addition, the method
of individual interview was used to evaluate other factors affecting exam success. During the individual interview, the guidance teachers gave
points to the students according to some criteria. Some of the interview questions asked are sub criteria, some are basic criteria. The weights
of the criteria were determined in line with expert opinion. The basic lessons in the exam for students are Mathematics, Science, Social and
Turkish. Other factors that affect success are; the economic situation of the family, the health status of the student, the study order of the
student, the study discipline, the student’s self-confidence, his relationship with his friends, his relationship with his family, and his private
working environment. The guidance teachers were asked to give points in the range of 0-10 to these criteria for each student. The success of
the students for each course was determined according to the points of the exam that the students took regularly every month. Afterwards, an
evaluation score was calculated for each student by considering all the lessons and factors at the same time. As a result of this evaluation
score, the success graph of the students was obtained and the success ranking was made. The personal information form have been prepared
for the students and have been filled out with the support of guidance teacher for each student.
The set of criteria is as follows:

• K1 :Turkish
• K2 :Social
• K3 :Mathematics
• K4 :Science
• K5 :Family factor- relationship to family
• K6 :Study factor

– Study system of the student
– Study discipline
– Private study environment

• K7 :Self-confidence factor

– Student’s self-confidence
– Relationship with friends, sociability

• K8 :Demographic factors

– Economic status of the family

• K9 :Other factors

– Health status of the student
– Socio Cultural factors

Step 1: {A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15} be set of alternatives (students).
{K1,K2,K3,K4,K5,K6,K7,K8,K9} be set of criteria. Table 1 was created according to the net numbers of the students according to the
results of the trial exams they took and the personal information forms filled in by the guidance teacher:



Journal of Mathematical Sciences and Modelling 53

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 23.5 12 27 14 9 10 5.5 8 9
A2 27.5 12 10.25 0 9 9.66 8.5 7 4
A3 20.75 6.5 20.75 0 9 9 7 8 7
A4 17.5 12.5 14.25 0 3 5.33 5.5 7 6
A5 19.5 8.5 10.75 8.25 9 8.33 7.5 8. 9
A6 19 0 21 5.25 4. 7.33 9 7 9
A7 26.5 0 11 0 3 7.66 6.5 5 9
A8 20 3.75 9.5 2 6 7 4 8 3
A9 17 13 1 0 9 8.33 7.5 10 10
A10 21 8.5 0 0 3 7 7.5 5 9
A11 15 7 1.75 0 9 9.33 8.5 7 10
A12 9.25 5.25 0 0 9 9.33 8 8 10
A13 8.25 5.25 0 0 3.5 8 5.5 10 10
A14 7 0.5 0 1 6 9 6 9 6
A15 29 0.5 24.75 2 10 8.66 8.5 8 8

Table 1: Exam results of students

Step 2: The weights of the criteria were calculated with the help of controlled sets. Weights of criteria µw̃ j ,νw̃ j determined with 3.1 in Table
2 according to the following situations:

Weights µw̃ j νw̃ j

w̃1 1 0
w̃2 0.5015 0.3
w̃3 1 0
w̃4 0.5015 0.3
w̃5 0.3 0.5015
w̃6 0.1126 0.5015
w̃7 0.15 0.5015
w̃8 0.1126 0.5015
w̃9 0.075 0.5015

Table 2: Weights of criteria

• The contribution rates of the courses in the exam are as follows: (% 80)

– K1 :Turkish: %33,33
– K2 :Social: %16,67
– K3 :Mathematics: %33,33
– K4 :Science: %16,67

• Contribution rates of other factors that affect success are as follows:(%20) (These contribution rates have been determined with the
opinions of experts in their field.)

– K5 :Family factor- relationship to family: %40
– K6 :Study factor: %15
– K7 :Self-confidence factor: %20
– K8 :Demographic factors: %15
– K9 :Other factors: %10

Step 3: Deviation d j(xi,xk) for each criterion; V-shape was calculated using generalization criteria. For the V-shape generalization criterion,
the q indifference threshold is 40 for the K1 and K3 criteria, 20 for the K2 and K4 criteria, 10 for the criteria K5,K6,K7,K8,K9, and the
absolute preference threshold is p, and is 0 for all criteria. This is the threshold set by the researcher or decision maker. Threshold calculations
for each study may vary.

d j(xi,xk) = c j(xi)− c j(xk)

µ
( j)
ik =


0, d j(xi,xk)≤ q
d j(xi,xk)−q

p−q , q < d j(xi,xk)≤ p

1, d j(xi,xk)> p

Step 4: The intuitionistic fuzzy preference matrices R( j) = (r( j)
ik )n×n are determined by benefitted from equation νik = µki and νki = µik.

Step 5: Overall intuitionistic fuzzy preference relation R = (rik)n×n is created using Equation (2.15).
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Step 6: The intuitionistic fuzzy positive outranking flows and intuitionistic fuzzy negative outranking flows are calculated using Equation
(2.16), (2.17).
Step 7: The values are ranked in Table 3:

ρ(ϕ̃+(x1)) = 0.895408163 ρ(ϕ̃−(x1)) = 0.939320674
ρ(ϕ̃+(x2)) = 0.895408163 ρ(ϕ̃−(x2)) = 0.898759017
ρ(ϕ̃+(x3)) = 0.89541498 ρ(ϕ̃−(x3)) = 0.900289988
ρ(ϕ̃+(x4)) = 0.895547851 ρ(ϕ̃−(x4)) = 0.895508379
ρ(ϕ̃+(x5)) = 0.895424014 ρ(ϕ̃−(x5)) = 0.898117312
ρ(ϕ̃+(x6)) = 0.895418008 ρ(ϕ̃−(x6)) = 0.895566097
ρ(ϕ̃+(x7)) = 0.895700692 ρ(ϕ̃−(x7)) = 0.895439819
ρ(ϕ̃+(x8)) = 0.896767967 ρ(ϕ̃−(x8)) = 0.895470838
ρ(ϕ̃+(x9)) = 0.895709231 ρ(ϕ̃−(x9)) = 0.895446384
ρ(ϕ̃+(x10)) = 0.899104761 ρ(ϕ̃−(x10)) = 0.895412326
ρ(ϕ̃+(x11)) = 0.898075022 ρ(ϕ̃−(x11)) = 0.895419782
ρ(ϕ̃+(x12)) = 0.903031948 ρ(ϕ̃−(x12)) = 0.89540828
ρ(ϕ̃+(x13)) = 0.921333364 ρ(ϕ̃−(x13)) = 0.895408168
ρ(ϕ̃+(x14)) = 0.927293663 ρ(ϕ̃−(x14)) = 0.895408162
ρ(ϕ̃+(x15)) = 0.895408181 ρ(ϕ̃−(x15)) = 0.89873238

Table 3: The intuitionistic fuzzy positive and negative outranking flows

The graphs of the alternatives in the positive, negative and net outranking flow are shown in Graph 1, Graph 2, Graph 3:

Figure 3.1: Graph of positive outranking flow

Figure 3.2: Graph of negative outranking flow

When the graphs are investigated, the ranking obtained between alternatives is as follows:

• Positive ranking:
A1, A2, A15, A3, A6, A5, A4, A7, A9, A8, A11, A10, A12, A13, A14

• Negative ranking:
A14, A13, A12, A10, A11, A7, A9, A8, A4, A6, A5, A15, A2, A3, A1

• According to these rankings, the students whose order is changed positively and negatively are A15,A2,A3,A6,A5,A7,A8 students.
When the scores of these students according to the criteria are examined, the following judgments can be reached:

– When all the criteria of these students were examined one by one, it was seen that the scores of some criteria were very low. In a
positive sense, although we see a successful picture in general, the low scores of some criteria have attracted these students to
the front ranks negatively.

– According to the data obtained in this study; It has been observed that ranking only positively while making the decision process
can lead to wrong results.

– The method that allows us to make the right decision is the method that takes into account both positive and negative ranking at
the same time.
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In order to make a general ranking, a net outranking is needed since positive outranking and negative outranking are not the same. The net
outranking flow in Table 4 is calculated with the help of the equation (2.18) and its graph is as follows:

ρ(ϕ̃(x1)) = -0.043912511
ρ(ϕ̃(x2)) = -0.003350854
ρ(ϕ̃(x3)) = -0.004875008
ρ(ϕ̃(x4)) = 0.0000394712
ρ(ϕ̃(x5)) = -0.002693298
ρ(ϕ̃(x6)) = -0.000148089
ρ(ϕ̃(x7)) = 0.000260873
ρ(ϕ̃(x8)) = 0.001297128
ρ(ϕ̃(x9)) = 0.000262847
ρ(ϕ̃(x10)) = 0.003692435
ρ(ϕ̃(x11)) = 0.00265524
ρ(ϕ̃(x12)) = 0.007623668
ρ(ϕ̃(x13)) = 0.025925196
ρ(ϕ̃(x14)) = 0.031885501
ρ(ϕ̃(x15)) = -0.003324199

Table 4: Values of net outranking flow

Figure 3.3: Graph of net outranking flow

As a result, the ranking from the best alternative to the worst alternative is as follows:

A1, A3, A2, A15, A5, A6, A4, A7, A9, A8, A11, A10, A12, A13, A14

With net ranking, only the difference between positive and negative rankings is clearly visible. When choosing, ranking and evaluating, not
only positive sense but also positive and negative sense alternatives are compared and a net ranking is obtained, the most accurate result is
achieved. The ranking of the students was made, starting with the most successful according to the net ranking.

4. Conclusion

In this study, it is aimed to find the most rational solution to evaluate the youth of a country in education. Thanks to the method have been
created an evaluation system that takes into account not only the exam scores of the students, but also other factors that affect the success of
the students. In our previous studies, we developed and analyzed different methods that calculate students’ success based on exam scores.
One of the deficiencies we see while evaluating in education is that evaluation is made only according to the exam results. Based on these
reasons, an intuitionistic fuzzy logic-based evaluation system was created for the first time in education with this method, which will add
an innovation to the education system. More objective and rational results will be obtained thanks to this new method that we present
to the evaluation system in education. The general algorithm is detailed to show the applicability of this new method in all areas. This
algorithm can be applied in any situation where it is desired to be preferred among multi-criteria alternatives. New research can be done by
following the steps in the algorithm given in this study. This study will lead to innovations not only in the field of education but also in many
applications. Thanks to this system that we will create that will have the ability to apply not only in the field of education, but also in many
fields, many factors will be evaluated at the same time and different degrees of importance will be determined for each factor.
Intuitionistic fuzzy PROMETHEE is a method that attracts our attention thanks to its benefits such as allowing the researcher to observe the
positive and negative rankings simultaneously, expressing the degree of hesitation, changing the significance weights of the criteria, and using
different methods when identifying the significance levels for each criterion, putting the degree of hesitation of significance weights into
action, and enabling decision-makers, who are given the opportunity to use different criteria types and different criteria types for alternatives
and criteria, to establish a unique system; moreover, the method also provides us numerous advantages while using it in our application area.
Because of these advantages, the intuitionistic fuzzy PROMETHEE method continues to be applied in many decision-making processes.
In the last part of our study, our method is explained, visualized and interpreted with graphics. Factors affecting student achievement and
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exam scores were evaluated together with the intuitive fuzzy PROMETHEE method and the evaluation scores of the students were calculated
with the determined algorithm. The accuracy, suitability and rationality of the developed method has been proven with the given application.
This method will provide rational, useful, profitable results in many areas and will facilitate the work of many decision makers. Thanks to
our work, we shed light on many areas where our method will be applied.
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Abstract

In this article, two methods are proposed to solve the fractional Cahn-Hilliard equation.
This model describes the process of phase separation with nonlocal memory effects. Cahn-
Hilliard equations have numerous applications in real-world scenarios, e.g., material sci-
ences, cell biology, and image processing. Different types of solutions have been obtained.
For this, the fractional complex transformation has been used to convert fractional differen-
tial equation to ordinary differential equation of integer order. As a result, these solutions
are new solutions that do not exist in the literature.

1. Introduction

Shallow water areas show nonlinear effects during the propagation and transformation of swelling waves. Nonlinear equations such as Cahn-
Hilliard equation exhibit significant spectral energy transfer for finite amplitude waves in shallow areas above the flat seafloor [1]. Chaotic
oscillations usually occur in nonlinear dynamical systems (especially in watersheds). This systems can be represented by Cahn-Hilliard
equation with nonlinear oscillations and external periodic excitation [2].
Fractional differential equations (FDEs) are generalizations of known differential equations (ODEs). Fractional order partial differential
equations (fPDEs) are used effectively in many fields of science because they give more realistic results in modeling real life problems. [3–6].
Many useful methods have been presented for exact solutions of fPDEs as the

(
G′
G

)
-expansion [7–9], the sub-equation [10, 11], the

exp-function [12–15], the first integral [16], the functional variable [17, 18], the modified simplest equation [19, 20]. The Kudryashov
method [21]. With the help of these methods, solutions of fPDEs in many different forms are calculated.
In the next section, the extended tanh method and the sine-cosine method are introduced. In the next section, we will find the traveling wave
solutions of the fractional Cahn-Hilliard equation (fCHE) via the this methods. We will talk about the data obtained in the last section.

2. Presentment of the Methods

2.1. The conformable derivative

The basic limit definition of this derivative is [22]:

Dα
t f (t) =


1

Γ(1−α)
d
dt
∫ t

0(t−ξ )−α ( f (ξ )− f (0))dξ , 0 < α < 1

( f (n)(t))(α−n) , n≤ α < n+1, n≥ 1.
(2.1)

Some important properties of the conformable derivative were summarized in [23, 24]. Now, we briefly describe the definition and theorems
of conformable derivatives:
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Definition 2.1. Let g : (0,∞)→ R be a function. The conformable derivative of g for order α is defined by

Tα (g(k)) = lim
ε→0

g
(
k+ εk1−α

)
−g(k)

ε
(2.2)

for all k > 0, α ∈ (0,1).

Theorem 2.2. If a function g : [0,∞)→ R is α−differentiable at t0 > 0, α ∈ (0,1], g is continuous at t0.

Theorem 2.3. Let f and g be α−differentiable at a point t > 0, α ∈ (0,1]:

Tα (α f +bg) = aTα ( f )+bTα (g), for all a,b ∈ R.

Tα (t p) = pt p−α , for all p ∈ R.

Tα (λ ) = 0, for all constant functions f (t) = λ . (2.3)

Tα ( f g) = f Tα (g)+gTα ( f ).

Tα

(
f
g

)
=

gTα ( f )− f Tα (g)
g2 .

If g is differentiable:

Tα (g)(t) = t1−α dg
dt

(t). (2.4)

A nonlinear conformable partial differential equations (CPDEs) with two independent variables are:

P
(

∂ α u
∂ tα

,
∂ α u
∂xα

,
∂ 2α u
∂ t2α

,
∂ 2α u
∂x2α

, ...

)
= 0, 0 < α ≤ 1, (2.5)

u(x, t) =U(ξ ), ξ = k
xα

α
− c

tα

α
, (2.6)

u(x, t) is a traveling wave solution and c is a constant and will be calculated later.

∂ α

∂ tα
=−c

∂

∂ξ
,

∂ 2α

∂ t2α
= c2 ∂ 2

∂ξ 2 ,
∂ α u
∂xα

= k
∂

∂ξ
,

∂ 2α u
∂x2α

= k2 ∂ 2

∂ξ 2 , ...

using equation (2.6), nonlinear CPDE equation (2.5) can be reduced to a nonlinear ODE equation (2.7):

Q(U,U ′,U ′′,U ′′′, ...) = 0. (2.7)

where the prime denotes the derivation with respect to ξ .

2.2. The extended tanh−coth method

In [25], this method is summarized as follows:
From the Y independent variable and its derivatives:

Y = tanh(ξ ) or Y = coth(ξ ), (2.8)

d
dξ

=
(

1−Y 2
) d

dY
,

d2

dξ 2 =
(

1−Y 2
)(
−2Y

d
dY

+
(

1−Y 2
) d2

dY 2

)
. (2.9)

The tanh−coth method:

U(ξ ) = S(Y ) =
m

∑
k=0

akY k, (2.10)

where ak(k = 0,1,2, ...,m) are constants.
Equation (2.10) can be expanded as follows [26].

U(ξ ) = S(Y ) =
m

∑
k=0

akY k +
m

∑
k=1

bkY−k, (2.11)

where ak(k = 0,1,2, ...,m), bk(k = 0,1,2, ...,m) are constants. The positive integer m can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing in equation (2.7).
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2.3. The sine-cosine method

In [27], this method is summarized as follows:
The solutions of nonlinear equations is

u(x, t) =

{
λ sinβ (µξ ), |ξ | ≤ π

µ
,

0, otherwise

}
, (2.12)

u(x, t) =

{
λ cosβ (µξ ), |ξ | ≤ π

2µ
,

0, otherwise

}
(2.13)

where λ ,µ and β are parameters to be calculated. µ and c in wave transform are the wave number and the wave speed.
From equation (2.12):

u(ξ ) = λ sinβ (µξ ),

un(ξ ) = λ nsinnβ (µξ ),

(un)ξ = nµβλ ncos(µξ )sinnβ−1(µξ ),

(un)ξ ξ =−n2µ2β 2λ nsinnβ (µξ )+nµ2λ nβ (nβ −1)sinnβ−2(µξ ),

(2.14)

and from equation (2.13):

u(ξ ) = λ cosβ (µξ ),

un(ξ ) = λ n cosnβ (µξ ),

(un)ξ =−nµβλ n sin(µξ )cosnβ−1(µξ ),

(un)ξ ξ =−n2µ2β 2λ n cosnβ (µξ )+nµ2λ nβ (nβ −1)cosnnβ−2(µξ ).

(2.15)

We substitute equation (2.15) or (2.14) in the reduced equation (2.7). We can sum all terms with the same power in cosk(µξ ) or sink(µξ )
and set their coefficients to zero to get a system of algebraic equations. So, we can get all values of parameters µ,β and λ .

3. Applications

Let us investigate traveling wave solutions of space-time fCHE in order to demonstrate the effectiveness of the methods.

3.1. Exact solutions of the fCHE

3.1.1. The extended tanh method

Now we will investigate the solutions of equation (3.1) with the extended tanh method. We will then interpret the results obtained.

∂ α u
∂ tα
− r

∂ α u
∂xα
−6u

(
∂ α u
∂xα

)2
−
(

3u2−1
)

∂ 2α u
∂x2α

+
∂ 4α u
∂x4α

= 0, 0 < α ≤ 1, (3.1)

nonlinear wave equation. We have applied intended tanh method on the Conformable CHE for gaining the exact solutions:

u(x, t) =U(ξ ), ξ = k
xα

α
− c

tα

α
.

Equation (3.1) can be reduced to equation (3.2):

−cU− krU−3k2U2U ′+ k2U ′+ k4U ′′′ = 0, (3.2)

c,r and k are constants.
Balancing U ′′′ with U2U ′ yields m = 1. So, the solution of equation is equation (3.3) format.

U(ξ ) = a0 +a1Y +b1Y−1, Y = tanh(ξ ), Y ′ = 1−Y 2. (3.3)
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Here a0, a1,b1,k and c are constants such that a1 6= 0. Substituting equation (3.3) into equation (3.2), collecting the coefficients of Y i

(i =−4, ...4) and set it to zero we obtain the system

3a3
1k2−6a1k4 = 0,

6a0a2
1k2 = 0,

3a2
0a1k2−3a3

1k2 +3a2
1b1k2 +8a1k4−a1k2 = 0,

6a0a2
1k2−a1kr−a1c = 0,

(a1 +b1)(k2−2k4−3a2
0k2−3k2a1b1)−a0(kr+ c) = 0, (3.4)

6a0b2
1k2−b1kr−b1c = 0,

3a2
0b1k2 +3a1b2

1k2−3b3
1k2 +8b1k4−b1k2 = 0,

6a0b2
1k2 = 0,

3b3
1k2−6b1k4 = 0.

The exact solutions obtained from this system of equations are:

u1 (x, t) =
1

tanh

(
±
√

2
2

xα ±
√

2
2

rtα

) ,

u2 (x, t) =− 1

tanh

±
√

2
4

xα±

√
2

4
rtα

 ,

u3 (x, t) = tanh

(
±
√

2
2

xα ±
√

2
2

rtα

)
,

u4 (x, t) =− tanh

(
±
√

2
4

xα ±
√

2
4

rtα

)
,

u5 (x, t) =±
1
2

tanh

(
±
√

2
4

xα ±
√

2
4

rtα

)
± 1

2tanh

(
±
√

2
4

xα ±
√

2
4

rtα

) ,

u6 (x, t) =±
i
√

2
2

tanh
(
± i

2
xα ± i

2 rtα

)
± 1

2
i
√

2

tanh

(
±

i
2

xα±
i
2

rtα

) ,

(3.5)

where r is arbitrary constant.

3.1.2. The sine-cosine method

Now we will investigate the solutions of equation (3.1) with this method. We will then interpret the results obtained. We have applied the
method on the Conformable CHE for gaining the exact solutions. Using the ξ wave transform, equation (3.1) can be reduced to equation
(3.6):

−cU− krU−3k2U2U ′+ k2U ′+ k4U ′′′+q = 0, (3.6)

c,r and k are constants, q is a constant of integration.
Balancing U ′′′ with U2U ′ yields m = 1. So, the solution of equation is equation (3.7) or equation (3.8) format:

u(x, t) = λ cosβ (µξ ), (3.7)

u(x, t) = λ sinβ (µξ ). (3.8)

We substitute equation (3.7) into the reduced equation obtained from equation (3.6).
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(−k2λ µ +11k4λ 3µ3 +qsin(µξ ))

sin(µξ )
= 0,

(−cλ sin(µξ )− krλ sin(µξ ))

sin(µξ )
= 0,

(−12λ µ3k4 +3λ 3µk2 +a1µk2)

sin(µξ )
= 0,

(6λ µ3k4−3λ 3µk2)

sin(µξ )
= 0.

(3.9)

After the necessary arrangements have been made the following exact solutions obtained:

u7,8(x, t) =

√
3

3
cos−1

(
± r2

6c

(
−1
r

xα − tα

))
. (3.10)

where r and c are arbitrary constants.

4. Conclusion

In this paper we have been successfully obtained traveling wave solutions of the fractional Cahn-Hilliard equation. Many of the results
obtained are new solutions that do not exist in the literature. This hyperbolic solutions are significant for the explanation of many physical
phenomena, ocean engineering and science. This implies that the methods are more powerful and effective in finding the exact solutions
of nonlinear fractional differential equations. Many new solutions can be found with this methods. Using this methods possible to solve
other similar nonlinear equations and systems of equations. The obtained solutions in this research have been found by aid of Maple packet
program.
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Abstract

Blair et. al. [3] have recently determined the maximum number of edges of a chordal graph
with a maximum degree less than d and the matching number at most ν by exhibiting a
family of chordal graphs achieving this bound. We provide simple proof of their result.

1. Introduction

Consider a graph G = (V,E) with maximum degree ∆(G)< d and matching number ν . Vizing’s theorem states that there exists a coloring of
E using at most ∆(G)+1≤ d colors. Each color class contains at most ν edges, since it constitutes a matching. Therefore, G has at most
d ·ν edges, i.e., bounding both the matching number and the maximum degree of a graph bounds the number of its edges. We want to note
that none of the parameters d and ν alone is sufficient to bound the number of edges of G, as the following examples show. The graph mK2
that is a matching with m vertices has maximum degree 1 and an unbounded number of edges. On the other hand, the graph K1,m which is a
star with m leaves has matching number 1 and an unbounded number of edges.
This observation gives rise to the following two questions

• What is the maximum number m(d,ν) of edges of a graph with matching number at most ν and maximum degree less than d?
• What is the set M (d,ν) graphs with maximum degree less than d and matching number at most ν that contain (exactly) m(d,ν)

edges ?

The first question is resolved in the work [1] and the second is resolved later in the work [2] that provided a constructive proof.
The same questions can be posed by confining ourselves to any graph class C , therefore defining:

• mC (d,ν) as the maximum number of edges of a graph G ∈ C with maximum degree ∆(G)< d and matching number at most ν , and
• MC (d,ν) the set of graphs G ∈ C with maximum degree ∆(G)< d, matching number at most ν having mC (d,ν) edges.

A graph G ∈M (d,ν) (resp. G ∈MC (d,ν)) is said to be edge-extremal (resp. edge-extremal-C ).
The authors of [3] consider the class of chordal graphs, and determine the number mCHORDAL(d,ν) by exhibiting a set of edge-extremal-
chordal graphs. In this work we provide a short proof of their following result.

Theorem 3.3. [3] There exists an edge-extremal graph in MCHORDAL(d,ν) that is a disjoint union of cliques and stars.

The result is obtained by showing that all the minimal elements of a carefully chosen preorder on the set of minimal representations of the
graphs in MCHORDAL(d,ν) have this property. Namely, they are disjoint unions of cliques and stars.

2. Preliminaries

A vertex v of a graph G is simplicial if its neighbourhood is a clique and universal if its closed neighbourhood is the entire graph. A star
is a tree with at most one non-leaf vertex. A d-star is a star with maximum degree d. Any total order on a set A defines a corresponding
lexicographic order on the set A∗ of all sequences over the elements of A. In a way similar to a dictionary, the order between two distinct
elements a,b of A∗ in the lexicographic order is determined by the order of the entries ai,bi ∈ A where i is the lowest index such that ai 6= bi.

Email address and ORCID number: cmshalom@gmail.com, 0000-0002-2688-5703 (M. Shalom)

https://orcid.org/0000-0002-2688-5703


64 Journal of Mathematical Sciences and Modelling

Observation 2.1. A simplicial vertex of a graph G is of maximum degree if and only if G is a complete graph.

A graph G is factor-critical if every subgraph obtained by the removal of a single vertex from G admits a perfect matching. It is easy to see
that a factor-critical graph is odd and connected.

Definition 2.2. A graph class C is special hereditary if

• C is closed under the vertex deletion and disjoint union operations, and
• C contains all stars and cliques.

We will use the following theorem proven in [2].

Theorem 2.3. [2] Let C be a special hereditary graph class. Let G ∈ C be an edge-extremal graph having the maximum possible number
of connected components that are stars . Then every other connected component of G is factor-critical.

Chordal graphs and subtree representations: A hole of a graph is an induced cycle of at least four vertices. A graph is chordal if it does
not contain a hole.
Consider a forest T and a set T = {T1, . . . ,Tn} of n subtrees of T . Without loss of generality we assume that every edge of T is used by at
least one tree in T . In other words, T is the union of the trees in T . We denote by G(T ) the intersection graph of these subtrees, i.e., the
graph with vertex set [n] = {1,2, . . .n} such that two vertices i, j ∈ [n] of G are adjacent if and only if Ti and Tj intersect (in at at least one
vertex of T ). Given a graph G, a set T of subtrees such that G(T ) = G is termed a subtree intersection representation of G. In the rest of
this work we refer to the vertices of T as nodes to distinguish them from the vertices of G. It is well known that a graph is chordal if and only
if it has a subtree intersection representation [4]. Note that the set of trees of the forest T is in one-to-one correspondence with the connected
components of G(T ).
Minimal representations and maximal cliques: For a node v of T , let Tv ⊆T be the set of subtrees in T that contain the node v, and let
Kv be the set of vertices of G that correspond to the subtrees Tv. It follows from the definitions that Kv is a clique. Moreover, it is known that
a chordal graph G has a subtree representation T in which the nodes of T are in one-to-one correspondence with the maximal cliques of
G. Such a representation is termed minimal (see also [5]) and the forest T is termed a clique forest of G. By definition, Ku \Kv 6= /0 and
Kv \Ku 6= /0 for any two maximal cliques Ku and Kv of a graph G. In particular, this holds whenever G is chordal and uv is an edge of a
clique forest T of G.
Let uv be an edge of T where u is a leaf. From the above definitions and facts, it follows that every vertex in Ku \Kv 6= /0 is simplicial. We
term such a vertex as leaf-simplicial vertex of T .

3. The Short Proof

We start with definitions that are needed for our proof.
Given a minimal representation T of a chordal graph G with T being the union of the subtrees in T we denote:

• by d2(T ) the number of degree-two nodes of T ,
• by L(T ) the set of leaves of T ,

• by `(T )
de f
= |L(T )| the number of leaves of T ,

• by k(T )
de f
= maxu∈L(T ) |Ku|, the maximum size of a clique of G that corresponds to a leaf of T , and

• by s(T ) the number of leaf-simplicial vertices of T .

We associate with every minimal representation T a quadruple Q(T )
de f
= (`(T ),−k(T ),−d2(T ),s(T )). Denote by ≺LEX the lexico-

graphic order on Z4 and by �LEX its reflexive closure. We write T ≺LEX T ′ (resp. T �LEX T ′) as a shorthand for Q(T )�LEX Q(T ′)
(resp. Q(T )�LEX Q(T ′)).

Lemma 3.1. Let d,ν be two integers. If all the graphs in MCHORDAL(d,ν) are factor-critical then K2ν+1 ∈MCHORDAL(d,ν).

Proof. Among all minimal representations of graphs in MCHORDAL(d,ν) let T be one such that Q(T ) is minimum in�LEX . Let G = G(T )
and let T be the union of the subtrees in T . By the assumption of the lemma G is factor-critical, thus contains n = 2ν +1 vertices.
If T consists of one node then G has one maximal clique, i.e., G is a clique and the proof is completed. If T has exactly two nodes, then
they are necessarily adjacent, i.e., G consists of two maximal cliques with at least one common vertex. Then this vertex is universal and
has degree at most d−1. Therefore, n−1 < d, i.e., n≤ d. Then, the clique Kn on n vertices is a chordal graph with matching number ν ,
maximum degree less than d and more edges than G contradicting the assumption that G ∈MCHORDAL(d,ν). In the rest of the proof we
assume that T has at least three nodes.
We will now present two successive transformations on T by which we obtain two minimal representations T ′ and T ′′ such that

T ′′ �LEX T ′ ≺LEX T . (3.1)

Denote G′ = G(T ′), G′′ = G(T ′′). The transformations will preserve the number of subtrees, thus the number of vertices of the graphs.
Therefore, the graphs G′ and G′′ will be chordal graphs on n = 2ν +1 vertices. As such, their matching numbers are at most ν .
The transformations ensure that G′ is obtained by adding one edge i j to G where j is a simplicial vertex of G, and G′′ is obtained from G′ by
removing one edge i j′. The only vertex whose degree increases after these transformations is j. Since j is simplicial in G it does not have
maximum degree. Therefore, ∆(G′′)≤ ∆(G)< d. Clearly, G and G′ have the same number of edges. Then G′′ ∈MCHORDAL(d,ν). Since
T ′′ ≺LEX T , this is a contradiction to the way T is chosen.
We now describe the first transformation: Let u ∈ L(T ) be a leaf of T such that |Ku| = k(T ) and let v be the unique neighbour of u in
T . Let also T̄ = T \{u,v} be the forest obtained by removing the nodes u and v from T . If Kv contains a simplicial vertex i then it is not
of maximum degree. Then adding the edge i j to G will not violate the degree restriction, contradicting the fact that G ∈MCHORDAL(d,ν).
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Figure 3.1: The first transformation

Therefore, Kv does not contain simplicial vertices. Consider a vertex i ∈ Kv \Ku. Since i is not simplicial, it has at least one neighbour in
G\Ku \Kv In other words, the subtree Ti ∈T that corresponds to vertex i has a non-empty intersection with the forest T̄ .
We consider four disjoint and complementing cases. Consult Figure 3.1 for illustrations.

(a) Ku \Kv = { j} and Kv \Ku = {i}: In this case we contract the edge uv to obtain a node w and set Kw = Ku∪Kv = Ku∪{ j}. If w is not
a leaf then `(T ) decreases. Otherwise, w is a leaf and |Kw|= |Kv|+1, i.e., `(T ) remains intact and k(T ) increases.

(b) Ku \Kv = { j} and Kv \Ku ) {i}: In this case we add i to Ku, leaving the number of leaves intact and increasing k(T ) by one.
(c) Ku \Kv ) { j} and Kv \Ku = {i}: In this case we add j to Kv decreasing s(T ) and leaving the rest of the parameters intact.
(d) Ku \Kv ) { j} and Kv \Ku ) {i}: In this case subdivide the edge uv by adding a new node w and set Kw = (Ku∩Kv)∪{i, j}. This

does not affect `(T ) and k(T ) and increases d2(T ) by one.

In all the above cases we have T ′ ≺LEX T as required.
We now proceed with the second transformation. Let u′ be a leaf of Ti∩ T̄ that is most distant from v. Let v′ be the unique neighbour of u′ in
Ti∩ T̄ (possibly v′ = v) and let j′ be a vertex of Ku′ \Kv′ . By definition i ∈ Ku′ ∩Kv′ . We consider two disjoint and complementing cases.
Consult Figure 3.2 for illustrations.

(a) Ku′ \Kv′ = { j′}: In this case we remove i from Ku′ , effectively removing the edge i j′ from G′. Note that this transformation does not
disconnect G′ since we assume that all the graphs in MCHORDAL(d,ν) are factor-critical, thus connected. Therefore, T is not affected
by the transformation, leaving `(T ) and d2(T ′) intact. Since i is not simplicial, s(G) is left intact too.

(b) Ku′ \Kv′ ) { j′}: In this case we subdivide the edge u′v′ by adding a new node w′ and set Kw′ = Ku′ \{i}. As in the previous case this
modification does not disconnect G′. The transformation leaves `(T ′) intact and increases d2(T ′).

Since the transformation does not modify Ku and |Ku| = k(T ′) does not decrease. In both of the cases above we have T ′′ �LEX T ′ as
required.

Observation 3.2. Let C be a special hereditary graph class, and d,ν two positive integers, and let G be a graph of MC (d,ν) with maximum
number of connected components that are stars and maximum number of connected components subject to this constraint. Let ν ′ > 1 be the
matching number of a connected component G′ of G. Then all the graphs in MC (d,ν ′) are factor-critical.

Proof. Suppose that MC (d,ν ′) contains a graph G′′ that is not factor-critical. By replacing G′ by G′′ in G we obtain a graph in MC (d,ν).
If G′′ contains a connected component that is a star then the resulting graph has one star more than G. If G′′ is not connected then the
resulting graph has one more connected component than G. If G′′ is connected it contradicts Theorem 2.3.

We are now ready to prove the main result.

Theorem 3.3. There exists a graph G ∈MCHORDAL(d,ν) that is the disjoint union of (d−1)-stars and odd cliques.

Proof. Let G be a graph in MCHORDAL(d,ν) with maximum number of stars and maximum number of connected components subject to this
condition. Clearly, every connected component of G that is a star, is a (d−1)-star, since otherwise we can add at least one edge to G. Let
G1, . . . ,Gk be the connected components of G that are not stars, and let νi be the matching number of Gi for every i ∈ [k]. It is easy to verify
that the class of chordal graphs is special hereditary. By Observation 3.2, all the graphs in MCHORDAL(d,νi) are factor-critical. By Lemma
3.1, Gi can be replaced by a K2νi+1.
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Figure 3.2: The second transformation

4. Conclusion

We have presented a short proof of the number of edges of an edge-extremal chordal graph. The simplicity of our technique opens room for
further improvements. We believe that this proof may be further enhanced to characterize the edge-extremal chordal graphs.
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Abstract

The use of mathematical modeling to predict and investigate the effect of process variables
in the research and engineering field of energy conversion and energy storage has also
received special attention from scientists and industrial designers in this field due to their
importance in the global economy. This review article investigates the applications of
mathematical modeling and simulation in energy conversion and energy storage processes,
and finally, with a case study, the application of mathematical modeling in the desired
processes to be tested and compared with the reported results in the papers. In the first
part, the main emphasis is on energy conversion, especially on the structure of solar cells
and fuel cells and mathematical modeling methods, and predicting the effect of operating
variables on their performance. The basic principles of modeling solar cells and fuel cells
to understand the relationships governing the current, voltage, performance, and power of
PV modules are to be discussed. And with a case study, modeling of the process to estimate
the performance of PV modules and SOFC in various conditions has been investigated. In
the second part, the main focus is on the mathematical modeling of energy storage devices
including batteries and supercapacitors. Supercapacitors and batteries are electrochemical
energy storage devices that can be charged within a few seconds to a few minutes. This
efficient energy storage is based on the electrocatalytic effect of the electrode with a high
surface area. The mathematical equations governing the battery and supercapacitor are
discussed in the article, and battery and supercapacitor performance are to be simulated
as a case study. Due to the Multiphysics nature of energy conversion and storage systems,
the simulation is performed in two stages. In the first step, the semiconductor equations
are applied and the electrical response of the electrochemical device is modeled. In the
second step, if needed, the thermal equations can be entered into the main calculations and
the net amount of heat and the temperature profile in the desired device is evaluated. The
main goals and ideas of compiling this review article are expressing the importance and
role of electrochemical and electrocatalysts in energy production and storage processes and
paying attention to the governing mechanism and mathematical equations and highlighting
important and common models used in different parts of energy conversion and storage in a
coherent article.

1. Introduction

1.1. Why do mathematical modeling?

Mathematical modeling has always been an important activity in all scientific research and development in science and engineering. On
another side, the model formulation of qualitative questions and physical phenomena, as mathematical problems was an important motivation
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for and an integral part of the development of mathematics from the very beginning. In the last decades, the use of mathematics as a very
effective tool in problem-solving has gained prominence, mainly due to rapid developments in computing. Computational calculations
are particularly important in modeling chemical engineering processes because of the complexity of the physical and chemical laws of
these processes. In the chemical processes, heat and mass balances and also momentum balances, are basic mathematical models used in
the modeling of chemical reactions engineering. Nevertheless, mathematical equations are the best tools for engineers and scientists to
understand important systems and processes. In all engineering contexts, mathematical modeling is a prerequisite such as process control,
optimization, mechanistic understanding, design and planning of experiments, simulation instead of costly experiments, feasibility studies,
and scale-up of the process.

This article reviews mathematical modeling applications in energy conversion and energy storage. So, it focuses on the energy sector in two
sections. In the first section, the major emphasis is on energy conversion, especially on solar cells and fuel cells’ structure and methods
of modeling and predicting their performances. In the second section, the major emphasis is on energy storage focuses on modeling the
structure and performance of batteries and supercapacitors. Supercapacitors and batteries are electrochemical energy storage devices that can
be charged in a matter of seconds to minutes. This efficient energy storage is based on an electrolyte’s adsorption to a high-surface-area
electrode. These marvelous properties led to extensive concerted research into the nature of the storage mechanism, electrode design,
and especially new optimized materials. Because of the multi-physics nature of energy conversion and storage systems, the simulation is
performed in two steps. In the first step, the semiconductor equations are applied and the electrical response of the electrochemical device is
modeled. The second step calculates the thermal equations, while the heat generated in the first step is used as the heat source.

2. Energy Conversion in Solar Cells and Fuel Cells

2.1. Solar Cells

Solar energy is one of the applicable substitutions for non-renewable energy generation sources. Devices that are utilized for solar energy
applications are named solar panels which are consisted of solar cells on small scales. These devices are a subset of photovoltaic systems.
Their performance is based on two charge carriers named electron with negative charge and hole with positive charge. These opposite charges
lead to potential differences through electrodes and accordingly electricity generation. In the practical phase, solar cells are synthesized and
deposited in laboratories. Besides, solar panels are fabricated for industrial applications. However, a better understanding of photovoltaic
devices’ design, simulation, and modeling application are required. It will help researchers to reduce experimental and fabrication errors.

In the case of solar cell simulation, many numerical and modeling software packages were developed. Among them, SCAPS-1D and
COMSOL-Multiphysics simulators are common [1, 2]. All of the software packages employ three basic equations including Poisson and
electron and hole continuity equations in their software base. In a general perspective, solar cell simulation is performed in three physics
containing electrical, optical, and thermal considerations. The base of modeling in the mentioned physics is as below:

2.1.1. Optical section modeling

All of the software packages utilize some basic optical assumptions. Among them, the most popular ones refer to air mass and reflection in
the electrodes. Air mass is relevant to the sun’s angle with the PV system. In most simulations, the 48◦ angle or A.M.1.5 is assumed. The
other important factor in the optical part refers to the reflection in the front electrode that can be designed in some software packages [3].

2.1.2. Electrical section modeling

In the second physics named electrical part, the Poisson equation (2.1) and the continuity equations for electrons (2.2) and holes (2.3) are
solved simultaneously [4, 5]:

Poisson’s equation:

∇.ε∇φ =−q(p−n+ND−NA) (2.1)

Electron continuity equation:

∂n
∂ t

=
1
q

∇ jn +Gn−Un (2.2)

Hole continuity equation:

∂ p
∂ t

=
1
q

∇ jp +GP−UP (2.3)

Un and Up are the electron and hole recombination rates, respectively. It should be noted that the recombination factor refers to the dissipation
created due to the electron and hole recombination. Gn and Gpare the total rate of electron and hole generation, respectively.

One of the parameters required for the calculations of this part is the refractive index and the extinction coefficient related to each layer of the
solar cell, which must be considered [6]-[10]:

G(y) =
4000nm∫

280nm

−a(λ )φ (y,λ )dλ
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Three types of recombination may occur in solar cells: radiative recombination, SRH (Shockley Reed Hall) recombination, and Auger
recombination. Note that the SRH recombination is enabled in the semiconductor module:

RSRH =
np−n j

2

τn

(
n+n j exp

(
−ET−E j

KBT

)
+ τp

(
p+n j exp

(
−ET−E j

KBT

)))
2.1.3. Thermal section modeling

This modeling is set in a few software packages. For instance, the COMSOL software is capable of considering thermal physics in solar cell
simulation. The physics of heat transfer in solids for thermal calculations is used. The equation (2.4) governing heat transfer is as follows:

−k∇
2T +Q = ρpCp

dT
dt

(2.4)

Where k is the conductive heat transfer coefficient of the material [W/m.K], CP is the specific heat [J/(kg.K)], ρ is the density
[
kg/m3]. Q

is the term for heat generation due to various factors. A summary of each model was mentioned in the previous sections. They are the basics
of the physics of each simulation software.

2.1.4. Case studies

As mentioned above, some of the results of recent studies around the applications of solar cells simulation and modeling tools in some
custom solar cells are given.

In 2021, Hosseini et al. [2] studied the effect of different layer properties of a perovskite solar cell such as their thickness and charge carrier
density and obtained their optimal parameters using SCAPS-1D software. The optimum cell’s final current-voltage curve was represented in
Figure 2.1 Another simulation study with the SCAPS-1D tool was performed by Hosseini et al. in 2021 that was based on investigating
different configurations of HTL in a custom perovskite solar cell, [11]. They studied three common HTL types, Spiro-OMeTAD, P3HT , and
Cu2O, and their effects on cell performance in different composite, tandem, and single forms, and their results were compared.

Moreover, other simulation tools were employed by researchers in recent years. For instance, Delibas et al. [1], investigated the effect of
using different hole transfer layers, both polymeric and non-polymeric by using COMSOL Multiphysics software. For this purpose, three
HTM layers (Spiro-OMETAD, CuSCN, P3HT ) have been investigated. The I-V curves of the mentioned structures were collected in Figure
2.1.

Figure 2.1: Current-Voltage Curve of the Perovskite Solar Cell using different HTMs [1]

A summary of the mentioned studies’ performance parameters (electrical-optical physics) was given in Table 2.1.

It should be noted that the parameters mentioned in Table 2.1 including VOC, JSC, FF, and PCE refer to the solar cell’s open circuit voltage,
short circuit current, Fill Factor, and power conversion efficiency, respectively.

All of the studies mentioned in Table 2.1, were validated with similar experimental data. For instance, according to the data validated for the
Au/ Spiro-OMeTAD/ CH3NH3PbI3/ TiO2/ FTO in the mentioned work in the table ([11]), the photovoltaic parameters including VOC, JSC,
FF , PCE was 1.08V , 22.43 mA/cm2, 79.63%, 19.26% for simulation and 0.98V , 21.20mA/cm2, 77.60%, 18.70% for experimental works,
respectively.

In 2021, Bouarissa et al. modeled a CZTS solar cell with the new proposed ZnO/MoS2/CZT S structure using the SCAPS-1D software
package. They performed the optimization of each layer’s thickness and obtained a final efficiency of about 23% [12]. In another study,
in 2021, Islam et al. studied the numerical modeling of a CdTe solar cell with the WS2 buffer layer through SCAPS-1D simulation. They
obtained an efficiency of 20.55 % [13].

Other simulation tools were employed to perform the numerical modeling of solar cells. In 2021, microcrystalline silicon solar cells were
simulated by Plotnikova et al. using TCAD software. In that research, the structures and characteristics of the custom solar cell were
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Configuration Structure VOC
(V)

JSC
(mA/cm2)

FF
(%)

PCE
(%)

Ref.

simple
Au/ Spiro-OMeTAD/ P3HT/
CH3NH3PbI3/ TiO2/ FTO with the ultrathin P3HT
polymeric layer

1.18 25.54 88.11 26.52 [2]

simple
Spiro-OMeTAD 1.08 22.43 79.63 19.26 [11]
P3HT 0.87 32.09 57.09 15.92 [11]
Cu2O 1.08 22.44 81.60 19.77 [11]

composite
(Spiro-OMeTAD)0.1(P3HT)0.9 1.05 29.59 79.37 24.57 [11]
(Spiro-OMeTAD)0(Cu2O)1 1.08 22.44 81.60 19.77 [11]
(Cu2O)0.4(P3HT)0.6 1.02 25.00 80.84 20.66 [11]

tandem
Spiro-OMeTAD/P3HT 1.09 31.47 78.37 26.97 [11]
P3HT/Spiro-OMeTAD 1.08 22.43 77.86 18.81 [11]
Spiro-OMeTAD/Cu2O 1.08 22.44 81.03 19.63 [11]

simple
Spiro-OMeTAD 21 0.973 82.00 16.80 [1]
CuSCN 20 0.949 83.00 15.70 [1]
P3HT 20 0.720 84.00 12.10 [1]

Table 2.1: The photovoltaic parameters obtained for different perovskite solar cells studies [2].

obtained and the photovoltaic parameters were calculated using the TCAD modeling system [14]. For other modeling tools, a simulation was
performed in 2020 by Rasheed et al. using MATLAB software. The simulation was performed around Single-Diode solar cells. In their
study, they suggest and analyze two algorithms; a new Inverse Quadratic Interpolation and Illinois for solving the nonlinear equation of a
solar cell single diode type with initial value x0 and load resistance R varies from 1 to 5Ω is implemented in MATLAB program. Using
five numerical testes examples, the results secured reveal that the suggested algorithm has lesser iterations than the other method (Illinois
method), so the accuracy and efficiency of the proposed method are the best [15].

In the case of thermal modeling, in 2019, Saxena et al. [16] presented an extended 3D simulation of heat distribution in perovskite solar
cells. They studied the temperature distribution in conventional perovskite solar cells through paired optical-electrical-thermal modules. The
wave optical module, the semiconductor module, and the heat transfer in the solid module are coupled in their simulation in the 3-D wizard.
The simulation results indicated that the heat generated in the cell is best dissipated from the metallic contact where the PbI2 defect forms
because of oxidation or decomposition of the perovskite layer at moisture exposure.

In conclusion, it can declaim that simulation can possess many positive effects in understanding the behaviors of solar cells and can help us
orientation in solar cell study.

2.2. Fuel cells: Current, temperature, and concentration distribution of a solid oxide fuel cell with COMSOL: 3D
modeling

2.2.1. Why is solid oxide fuel cell?

Solid Oxide Fuel Cell (SOFC) is one of the important parts of energy conversion systems. The most significant parts of SOFC are two
electrodes and the electrolyte between them. Anode and cathode electrodes should be porous, ion conductor, electron conductor, thermally
compatible with electrolytes, and stable in high temperatures. For a good understanding, Figure 2.2 demonstrates the operation of SOFC
with H2 as fuel [17]-[19].

Figure 2.2: The operation of SOFC with H2 as fuel [19].

The main structure of SOFC, which contains the electrolyte has some special properties like being dense, ion conductor, thermally compatible
with electrodes, stable in both reduction and oxidation environments, and weak electron conductor or not being an electron conductor at
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all. In the cathode, the oxygen reduction reaction (ORR) happens, and then the oxygen transfers to the anode through the electrolyte and
anode, where the hydrogen turns to the proton, oxygen ions and protons react and turn to water. Generally, the following mechanisms can be
described these phenomena:

1
2

O2 +2e−→ O2−

O2−+H2→ H2O+2e−

In this reaction, electrons are released and transferred to the cathode and this way electricity required for transport, or electronic devices can
be produced [20]-[23].

2.2.2. Mathematical modeling in SOFC

To simulate SOFC in 3D, to be used the capabilities of COMSOL Multiphysics software to draw models in 2D. At first, a cross-section of the
desired SOFC is to be drawn in the work plane, then with the use of Extrude mode, turn the two-dimensional model into a three-dimensional
model (Figure 2.3 ).

In this modeling, the secondary current distribution, gas diffusion in porous media and flow channels, transport of concentrated species, and
heat transfer in solids and fluids are considered. The detail of this mentioned section is described in detail below (2.5)-(2.7):

Figure 2.3: Two-dimensional model into a three-dimensional model [18].

Secondary Current Distribution: The relationship between charge transfer and over potential can be described using the Butler-Volmer
and Tafel equations as below:

i = io.a

[
Ch2

Ch2.re f

exp
(

0.5Fη

RT

)
−

(
Ch2o

Ch2.re f

)
exp
(
−1.5Fη

RT

)]
(2.5)

where io.a, F , Ch2, Ch2o the are the anode exchange current density, the Faraday’s constant, molar concentration of H2 and the molar
concentration of H2O respectively.

The overvoltage is defined by:

η = φelectronic−φionic−∆φeq (2.6)

where ∆φeq is the equilibrium potential difference. The cathode charge transfer kinetics is given by:

i = i0.c

[
exp
(

3.5Fη

RT

)
− xo2

(
Ct

Co2.re f

)
exp
(
−0.5Fη

RT

)]
(2.7)

where i0.c is the cathode exchange current density and xo2is the molar fraction of O2.

Gas diffusion in porous media and flow channel: For gas diffusion in porous electrodes calculation, the Brinkman equation (2.8) is used:

∇p =− µ

K
v+µe∇

2 (v) (2.8)

where v,µ , and µe is the fluid velocity, fluid viscosity, and effective viscosity parameter respectively.

And the weakly compressible Navier-Stokes equation (2.9) is used for modeling gas flows in open channels:

ρ

(
∂u
∂ t

+u.∇u
)
=−∇p+∇(µ (∇u)+(∇u)T )− 2

3
µ (∇u) I)+F (2.9)

where u, p,ρ,µ and F are the fluid velocity, fluid pressure, fluid density fluid dynamic viscosity, and external forces respectively [21]-[23].
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Transport of concentrated species: The Stefan- Maxwell equation (2.10) is used to modeling of fluid transfer, both bulk transfer and
diffusion in porous electrodes (anode and cathode flow channels).

∂ρωi

∂ t
+∇.( ji +ρωiu) = Ri (2.10)

where ρωi, ji, and Ri denotes the density, the mass fraction molecular mass flux, and reaction rate respectively.

Heat transfer in solids and fluids: The general equation (2.11) of heat transfer intended for the model is given below. In this model, it is
used steady state heat transfer and considered the convection heat transfer only for gas channels. In addition, it is ignored radiation heat
transfer.

ρ.cp.u.∇T = ∇.(k∇T )+Q (2.11)

Here Q is the heat generation or consumption, k is the effective thermal conductivity, T is the temperature, and cp is the gas phase-specific
heat. The heat generated by electrochemical suction, ohmic polarization, etc. given by (2.12):

Q = i.
(

T.∆Sr

ne.F
+η

)
+∑

i2

σ
+∑

(
rre f .∆Hre f

)
(2.12)

where ∆Sr is the entropy change of the reaction, rre f the reforming reaction rates
(
inmol/m3s

)
, and ∆Hre f the enthalpy of the reactions.

The energy equation (2.13) for the anode and cathode channel walls is as follows:

n.(−k∇T ) = h.
(
Tw−Tf

)
(2.13)

where Tw is the channel wall temperature and Tf is the fluid temperature and h is the heat transfer coefficient in gas flow channels is calculated
by the Nusselt number [24]-[26].

2.2.3. Numerical simulation

Based on the geometry and physics of the problem shown in Figure 2.5, after selecting the appropriate boundary conditions, the fuel cell
mesh is adjusted and the model is prepared with mathematical equations that can be solved numerically by the FEM method in COMSOL or
any similar software’s. It is noteworthy that to increase the accuracy of calculations, the meshing in the electrode and electrolyte sections is
finer compared to flow channels.

2.2.4. Case study

To apply the governing mathematical equations in the fuel cell, a sample cell study with certain characteristics has been simulated in the
COMSOL environment. In this study, a three-dimensional mathematical model of a SOFC that can show the temperature, concentration, and
distribution of current inside the cell and the performance of a solid oxide fuel cell is investigated and analyzed. In addition, the flow pattern
parameter and operational variables such as input and output current affect the cell performance. The flow pattern changes from the opposite
flow to the simultaneous flow. The results showed that the temperature distribution, flow, and concentration of reactants (O2 and H2) are
related and wherever the concentration of substances is higher, cell performance and the amount of temperature and flow produced increase.
However, solid oxide fuel cell performance is better when the flow pattern is concurrent. The results of the study when the flow pattern was
simultaneous, both the cathode and anode currents entered from behind the fuel cell and exited the front of the cell.

Figure 2.4: Power density- current density plot for counter-current flow pattern [18].
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For the reverse flow pattern, the input of the cathode current channel is behind the cell while the input of the anode current channel is in front
of the fuel cell. The results of this study in Figures 2.4 and 2.5 show a three-dimensional view of the temperature distribution across the fuel
cell [18].

Figure 2.5: Distribution of temperature inside the cell for co-current flow pattern [18].

3. Energy Storage in Batteries and Supercapacitors

3.1. Batteries

The energy stored in the batteries is very important in the energy sector and can be used to power your home and help stabilize the grid.
Therefore, batteries are one of the important technology platforms that can be used to improve the state of the world and combat climate
change. Electric vehicle battery could be used to help power homes and stabilize the grid. Batteries will increasingly play important role in
the future world. different materials in the structure of batteries have different electrochemical properties, and so they produce different
results when you put them together in a battery cell. So, in this study, it focused on one of the important batteries with a Lithium-ion
structure [27]-[30]. Lithium-ion batteries are an important source of energy storage that attracts scientists and researchers to improve their
performance experimentally and computationally. The schematic structure of an electrochemical cell of a lithium-ion (Li-ion) battery is
shown in the Figure 3.1. Computational work can help researchers predict and optimize battery performance, saving time and money. The
use of mathematical modeling along with powerful simulations such as COMSOL is a great help in designing and creating new ideas in this
field. By modeling and simulating different batteries with different geometries and structural materials are designed and their performance is
tested in different conditions. High-efficiency batteries are designed by analyzing the results obtained from mathematical modeling and
simulation. In this study, the simulation of the discharge mode of the battery connected to the consumer with constant current density is
investigated. As a study sample, COMSOL simulation software was performed [31, 32].

Figure 3.1: The detailed structure of an electrochemical cell of a lithium-ion (Li-ion) battery [28].

3.2. Mathematical models

A simplified structure of a Lithium-ion battery, with the geometry as shown in Figure 3.2 was used and the mathematical model was used
based on this two-dimensional structure [33, 34].
The battery in this simulation consists of a negative electrode, an electrolyte, and a positive electrode, in which the negative electrode

is applied to the geometry in the form of a surface boundary condition, but the electrolyte and the positive electrode are applied to the
geometry of the software. The general module for solving this simulation is a Lithium-ion battery. The main important and relevant equations
(3.1)-(3.4) that be used in the COMSOL software are demonstrated below [35]-[37].

∂c
∂ t

+∇.J1 = R1 (3.1)

∂c
∂ t

+∇.J1 = R1 (3.2)
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Figure 3.2: Two-dimensional simulation of a Li-ion battery [27].

J1 =−D1∇c1 +
i1t+
F

(3.3)

i1 = σ1∇φ1 +
2σRT

F

(
1+

∂ ln f
∂ lnc1

)
(1− t+)∇ lnc1 (3.4)

For the electrode and electrolyte, the “Electrode Surface” the suitable boundary condition was used in the COMSOL software. For the
electrolyte, LiPF6 has been used, the parameters of which are available in the software database. For the positive electrode, LiMn2O4 has
been used, and the parameters required to simulate this material are also available in the database of COMSOL software. For the Positive
electrode, the Porous Electrode boundary condition is added to the volume of the positive electrode in the simulation geometry. As the name
implies, in this case, the electrode is considered a porous space and the fine particles penetrate the porous spaces which are considered
spherical. The equations (3.5)-(3.12) used in this boundary condition are shown below:

∇.Jı = R1,R1 =−∑m
vLi+,m iv,m

F
+Rl,src (3.5)

∇.il = iv,total +Ql (3.6)

∇.is = iv,total +Qs (3.7)

J1 =−Dl,e f f ∇c1 +
ilt+
F

(3.8)

il =−σ,e f f ∇φl +

(
2σl,e f f RT

F

)(
1+

∂ ln f
∂ lncl

)
(1− t+)∇ lncl (3.9)

is =−σs,e f f ∇φs (3.10)

Dl,e f f = εl
1.5Dl ,σl,e f f = εl

1.5
σl ,σs,e f f = ε1.5

1.5
σs (3.11)

iv,total = ∑m iv,m + iv,dl (3.12)

This boundary condition has two subheadings entitled Particle Intercalation and Porous Electrode Reaction. In the first part, the parameters
required for the mass transfer process between the porous spaces of the spherical face electrode are given. It should be noted that Fick’s law
has been used to establish equations and mass transfer relations. In the Porous Electrode Reaction part, the parameters related to performing
the reaction are entered. It should be noted that the kinetic expression of the chemical reaction in this simulation is in the state of Lithium
Insertion because this equation requires parameters that are easier to measure, and COMSOL software offers the same state in the default
state for lithium-ion batteries.

3.2.1. Case study

In this case study, the discharge time of the battery in two different temperatures in a Lithium-ion battery has been investigated. The battery
discharge time is one of the most important parameters in simulating lithium-ion batteries. So, the quantity was examined in the graph of
changes in battery potential over time. And in all the simulation processes, battery temperature is considered constant in all stages. In the
structure of the battery, the positive electrode is considered to be LiMn2O4 and LiPF6 is considered the electrolyte, and the negative electrode
is considered as the form of a surface boundary condition in the geometry of the battery [27]. The 2D simulated model of a Li-ion battery
with COMSOL software was with 50A/m2 as discharge current density.
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Figure 3.3: Electric potential on boundary versus Time a) at 273◦K b) at 350◦K [27].

As shown in Figure 3.3 , showing that temperature changes can have a direct effect on battery discharge time, so the higher the temperature,
the higher the discharge time. In fact, by increasing the temperature the rate of discharge current enhances, and when the discharge current
is considered constant the discharge time increases. The obtained plots demonstrated that the discharge time increases as the battery’s
temperature enhances. The results are related to the reduction of the resistances inside the battery as the temperature increases which can
lead to better performance and higher discharge time of the battery. Also, increasing the temperature improves battery performance. But
these batteries are often used in devices such as mobile phones and laptops, so the temperature cannot be considered too high because other
components may be damaged. So, there is always an optimal value for the battery temperature depending on its use in devices in which the
battery has the maximum efficiency.

3.2.2. Supercapacitor, electrochemical energy storage devices modeling. Temperature, and concentration distribution

3.2.3. Why supercapacitors?

Supercapacitors are electrochemical energy storage devices that can be charged in seconds to minutes and have the distinct advantage of
a combination of high output power and high cycle life compared to batteries, as they can be stable for more than 100,000 cycles. This
energy-efficient storage is based on the adsorption of an electrolyte to a high surface electrode. The special properties and superiority of
supercapacitors have led to extensive coordinated research on the nature of supercapacitors, storage mechanism, electrode design, and the
use of new special and efficient nanomaterials in the construction of supercapacitors. In this regard, mathematical modeling and the use
of specialized simulators in this field such as COMSOL and FLUENT are effective and powerful tools in the design, development, and
optimization of energy storage devices. And the effect of effective parameters in design and construction, especially the effect of material
type on the performance of the supercapacitor, in this modeling and simulation is examined in detail and the performance of the fabricated
part can be easily predicted [38, 39].

Certainly, the type of mathematical model used to express the physics of the problem will play a key role in predicting the accuracy of the
calculations performed. Farsi and Gobald [40]-[42] investigated the behavior of capacitors consisting of metal oxide nanoparticles using the
Lin model et al [43]. In addition, Pech et al. [44] used simulation to investigate the effect of the geometric configuration of tangled surface
micro capacitors on their performance. It seems that none of the above models can be used to predict the performance of the new asymmetric
capacitor because previous models are designed for capacitors with two identical electrodes. HAO et al. 2016focused on the modeling of the
asymmetric supercapacitors that represent the good future of energy storage devices because of their good performance concerning both
energy density and power density [45].

They present a mathematical model for the simulation of an asymmetric supercapacitor, that structure consists of a LiMn2O4 electrode and
an activated carbon (AC) electrode. Generally, the dynamic model is used to investigate the effective parameters of supercapacitor structure
for the prediction of electrical, and concentration fields and the effect of the thickness of the AC electrode on supercapacitor performance in
COMSOL multiphysics. A mathematical model is created to predict the performance of asymmetric capacitors. In this model, the Faraday
process and the two-layer process occur at different electrodes. The falls are considered separately with a series of related settings. In the
developed dynamic model, both electric field and concentration are included and nonlinear pair equations are solved by the COMSOL
Multiphysics technique. Using the model, the effect of the thickness of an AC electrode on the performance of a supercapacitor has been
investigated. With this simulation, the production, consumption, and transmission of lithium ions are discussed and energy densities and
power densities are calculated [45]. For a proper simulation, it needs to have correct modeling of the system under study and with proper
simulation, and can design different supercapacitors with different sizes, geometries, and materials and test their performance in different
conditions.

3.2.4. Mathematical models in supercapacitors

For mathematical modeling of supercapacitors, some of the important material balance and electrical balance will be solved simultaneously.
In this regard, model equations such as the Continuity equation for material balances of ion transfer, the faradaic process for modeling
electric characteristics, the double-layer process, the porosity characteristic of the electrodes, and the ion transport along with the capacitor
and inside the particles will be considered. Figure 3.4 presents a sample schematic diagram of an asymmetric supercapacitor in the typical
structure that was considered to use in the modeling of a supercapacitor as a case study to be used. Which consists of two different electrodes
and a separator and the faradaic redox reaction occurs in the positive electrode during charge/discharge. Mathematical modeling and several
simulation methods have been developed to describe and predict the voltammetry of supercapacitor cycles. In this regard, the use of an
equivalent resistance-capacitor circuit is one of the most widely used methods for tracking voltammograms, which connects the desired
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number of resistors and capacitors in series or parallel. However, resistor-capacitor circuit models with shortcomings such as ion diffusion,
non-uniform ion concentration in electrolytes, and electrode morphology are ignored [46].

Figure 3.4: Schematic diagram of a typical rGO/ANF nanosheet in a supercapacitor [44].

Generally, the Poisson-Nernst-Planck equation (3.13) is used to calculate the ion transfer across the electrolyte. The local electric potential
E (x, t) in the diffuse layer for binary electrolyte solution is determined by the one-dimensional Poisson equation as [43]-[46].

∂

∂x

(
∈0∈r

∂E
∂x

)
=−F ∑

2
i=1 zici (3.13)

In this equation, zi and ci (x, t) is the charge number of the species iand concentration
(
mol/m3), respectively. ε0 is the vacuum permittivity

and εr is the relative permittivity of the electrolyte solution. The ion concentration in the electrolyte diffuse layer is calculated by the
Nernst-Planck equation (3.14), [46]-[49].

∂ci

∂ t
= ∇.

[
Di

(
∇Ci +Ci

ziF
RT

∇E
)]

(3.14)

where Di is the diffusion coefficient, F is the Faraday’s constant, R is the universal gas constant and T/K is the temperature.

On another side, the natural convection in the solution is not considered, since it is assumed that the solution is in a stagnant condition, the
diffusion of the electroactive species within the thin layer and near the surface is described by Fick’s second law as (3.15), [50]-[52].

∂Ci

∂ t
= Di

∂Ci

∂x
(3.15)

At the electrode-electrolyte interface, during cyclic voltammetry measurements, the potential of E (t) is applied linearly with time. Both
Faradaic jF and non-Faradaic ( jc capacitive) processes can take place at an electrode-electrolyte interface. The total current density at the
pseudocapacitive electrode-electrolyte interface in equation (3.16) is the sum of jc and jF current densities.

jtotal = jF + jc (3.16)

In above equation (3.16), the capacitive current density jc is expressed in below equation (3.17) as:

jc =−Cdl∂E/∂x, (3.17)

The Faradaic current density jF is expressed by the concentration-dependent Butler-Volmer equation (3.18) as below [50], [53]-[55]

j f = j0

{
CR exp

[
αa

f
RT

η

]
−C0 exp

[
αc

F
RT

η

]}
(3.18)

Where F , αa, αc, j0 are the Faraday’s constant, anodic and cathodic transfer coefficients, and the exchange current density respectively. And
the η is calculated by the following equation (3.19).

η = E−Eeq (3.19)

The necessary boundary conditions of the model are assumed and established to solve the charge balance and ion transfer balance in the
electrode structure. Usually, in using simulation software such as COMSOL it is easy to establish these boundary conditions.
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Figure 3.5: The cyclic voltammetry measurements of rGO supercapacitors nanostructures [46].

3.2.5. Case study

To use these mathematical models in supercapacitors as a case study, cyclic voltammetry of a supercapacitor was examined and the results
the below [46].
In this case study, the cyclic voltammetry of rGO-ANF (reduced graphene oxide with aramid nanofiber) structural supercapacitors is
simulated through COMSOL Multiphysics modeling. The result shows that during cyclic voltammetry, the reaction kinetics can be explained
varying by electric potential. The simulation of cyclic voltammetry can be used to determine the more important parameters such as exchange
current density, equilibrium potential, and reaction rates by comparing the predicted and measured voltammograms.

4. Conclusion

Considering that the basic principles of both energy conversion and energy storage systems are based on the properties of semiconductors
and based on the electrochemical principles of electron transfer, the difference is that in the solar cell system, the principles based on
electron-hole transfer and the electrical properties of semiconductors are of interest, and in the case of fuel cells, the principles based on
electron-ion transfer and the electrical properties of semiconductors are of interest in these Multiphysics phenomena.

Similarly, it can be stated that the basic principles of both energy storage systems such as batteries and supercapacitors are also based on the
electrochemical principles of electron and ion transfer. Therefore, the mathematical equations governing these processes are very similar and
often common. Based on this review study, the common mathematical models in electrochemical devices are concluded and described below:
Poisson’s equation is the common equation between all electrochemical processes. Usually, reaction kinetics related to supercapacitors and
fuel cells use the Butler-Volmer equation, which is a common equation in these electrochemical processes.

Also, Ohm’s law for electron exchange is common in most electron transfer systems for modeling electron exchange. The relationship
between charge transfer and over potential can be described using the Butler-Volmer and Tafel equations. This equation is common for most
energy conversion and storage phenomena.

The Stefan- Maxwell and/or Fick’s law equations are to be used to modeling of mass transfer, both bulk transfer and diffusion in porous
electrodes (anode and cathode flow channels) depending on the structure and type of the energy device. The heat conduction equation is used
to model heat transfer phenomena in the energy system with solid/ liquid systems. In general, the heat conduction equation is to be used in
the modeling of the temperature profiles of all electrochemical devices such as solar cells, fuel cells, batteries, and supercapacitors.
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[1] N. Delibaş, A. Moradi, S. Hosseini, M. Maleki, M. Bahramgour, A. Niaei, Investigation of the effect of polymeric and non-polymeric materials in the
hole transfer layer on the performance of perovskite solar cell, KSU J. Eng. Sci., 25(1) (2022), 1–6.
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