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Uşak University, Uşak, Turkey
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Abstract. One of the most important research topics about complex net-

works is examination of their vulnerability. Therefore, there are many studies

in the literature about analyzing the robustness and reliability of networks
using graph theoretical parameters. Among these parameters, the centrality

parameters play an important role. The closeness parameters and its deriva-

tives are widely discussed. In this study, the closeness parameter and the more
sensitive parameter residual closeness which is based on closeness parameter

have been considered. Furthermore, the closeness and residual closeness of

banana tree structure have been calculated.

1. Introduction

With the developments in network science, computer science and its applications
are developing rapidly. Many problems that can appear in real life can be modeled
as a network and the system can be analyzed utilizing relationship between vertices
and edges. Therefore, graph theory is an important scientific tool for determining
vulnerability of a network. Analyzing a network in terms of vulnerability is one
of the main purpose of the graph theory problems. Thus, utilizing graph theory
parameters and techniques, a network can be investigated in terms of robustness
and reliability from many researchers. One of the most important goal of network
analysis is to research concept of centrality. There are several centrality parameters
in the literature yet closeness centrality is one of the quite significant index that
measures how capital position a node is in the network.

Closeness parameter have also changed to provide more sensitive approaches
to network analyzing. First important closeness definition provided in [13]. Nev-
ertheless, it can not suitable for disconnected graphs. The other closeness defi-
nition is given by Latora and Marchiori in [14]. The definition is formulated as
C(i) =

∑
j 6=i

1
d(i,j) . Here d(i, j) denotes distance between vertices i and j. This new
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34 HANDE TUNÇEL GÖLPEK

definition can be applied to disconnected graphs. Afterwards, Danglachev intro-
duced new closeness definition which is varied Latora and Marchiori’s definition
to provide calculation and formulation convention [9]. Dangalachev’s new close-
ness definition is

∑
j 6=i

1
2d(i,j) . Derived from Dangalchev’s closeness definition, many

vulnerability parameters have been appeared to measure resilience of a network.
Among of these new indexes, residual vertex and edge closeness parameters calcu-
late closeness value of a graph after vertex or edge extracted from a graph [9]. The
concept of residual closeness, a more sensitive parameter based on this definition of
closeness, also emerged meanwhile from Dangalchev again [9]. The all-important
point here is to find how a vertex removed from the graph influences the vulnera-
bility of the graph. In order to evaluate closeness value after vertex k is removing
such as Ck =.

∑
i

∑
j 6=i

1
2dk(i,j) where dk(i, j) is distance between vertices i and j after

removing vertex k. Then the vertex residual closeness ,denoted by R, defined as
R = min

k
{Ck}.Another measure is additional closeness which determine maximal

potential of graph’s closeness via adding an edge. It can be referred the readers to
get detailed information about these new sensitive parameters [1–6,10–12,15–17].

In this paper, the graph G is taken as a simple, finite and undirected graph with
vertex set V (G) and edge set E(G). The open neighborhood of any vertex in V (G),
denoted by N(v) = {u ∈ V (G) : (uv) ∈ E(G)}. The degree of a vertex v denoted
by deg(v), is cardinality of its neighborhood. The distance between two vertices u
and v is shortest path between them, denoted by d(u, v). A vertex of degree one is
called pendant vertex and its incident edge is called support edge [7].

In this work, we investigate results about closeness and residual closeness of
Banana Trees. Banana tree is a structure introduced by Chen et al. [8] as obtained
by linking one leaf of each of n copies of an k vertices star graph structure with a
single root vertex that is distinct from all the stars and the tree is denoted by Bn,k.

v

Figure 1. Banana Tree graph illustration with three copy of five
vertices star graph, B3,5

Calculating closeness value for huge graph structures is detailed process. In order
to facilitate this process, it will be easier to use the method of splitting the graph
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into subgraphs in some structures, as in [11]. Utilizing this idea, we will denote root
vertex as v, vertex 1i be neighbour of vertex v in ith copy of star graph, vertex 2i
is hub vertex of ith copy of star graph and 3i, ..., (3 + j)i are leaf vertices in banana
graph where 1 ≤ i ≤ n and 1 ≤ j ≤ k − 2 in order to formulate closeness and
residual closeness value for banana trees.

2. Closeness of Banana Trees

In this section we will get closeness value of Banana Tree structure. In order
to ease of formulation, graph can be split into subforms and relationship between
them. Next theorem gives us closeness value of Banana tree graph in terms of
number of copy, denoted by n and number of vertices of star graph, denoted by k.

Theorem 2.1. Let Bn,k be banana tree with nk+ 1 vertices.The closeness value of
Bn,k is

C(Bn,k) =
16n(k2 + 2k + 2) + (n2 − n)(k + 4)2

64
.

Proof. Due to form of Banana tree, graph can be splitted into three subforms such
as C(v) where v is root vertex, C(Sk) and C(Sk ∼ Sk) where C(v) is closeness value

of vertex v, C(Sk) = (k−1)(k+2)
4 is closeness value of star graph with k vertices [9],

C(Sk ∼ St) is closeness value of vertices in a copy of star graphs to other copies.
Let 1i be neighbour of root vertex v in ith copy of star graph, 2i is hub vertex of
ith copy of star graph and 3i, ..., (3 + j)i are leaf vertices in banana graph where
1 ≤ i ≤ n and 1 ≤ j ≤ k − 2. Distace between v and 1i is one, distance between
v and 2i is two and distance between v and all leaves notated by 3i, ..., (3 + j)i is
three for all 1 ≤ i ≤ n and 1 ≤ j ≤ k − 2. Therefore, closeness value of root vertex
v is

C(v) =
∑

i∈V (Bn,k)
i6=v

2−d(i,v) = (
n

2
+

n

22
+

n(k − 2)

23
)

and in order to calculate C(Sk ∼ Sk) value, without loss of generality, we can
consider distance between vertices of 1stcopy of the Sk and 2stcopy of the Sk initially.
Then, distance of vertex 11 to all vertices of 2stcopy of star graph is A = 1

22 + 1
23 +

(k−2)
24 and distance of vertex 21 to all vertices of 2stcopy of star graph is 1

2A and

distance of any leaf vertex to all vertices of 2stcopy of star graph is 1
22A. Thus,

we can formulate closeness value of vertices between first and second copy of star
graphs as follows

C(S
(1)
k ∼ S

(2)
k ) = A +

1

2
A +

1

22
A

= A(1 +
1

2
+

1

22
)

=
1

22
(1 +

1

2
+

1

22
)2.

We will consider closeness value to every other vertices in both direction and there
are n copies of star graph and also there are n(n − 1) relationship between star
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graph structures. Therefore, we obtain closeness value of banana tree

C(Bn,k) = 2C(v) + nC(Sk) + n(n− 1)(C(Sk ∼ Sk))

=
16n(k2 + 2k + 2) + (n2 − n)(k + 4)2

64
.

�

3. Residual Closeness of Banana Trees

In order to evaluate residual closeness value, a vertex will be removed from the
graph and the minimum closeness value will be calculated after removing. There-
fore, the most sensitive vertex will be determined in the graph. In the banana tree
structure, we will obtain four distinct value after removing. These modification can
be get from removing vertex v, leaf vertex of a banana graph, a center of an star
graph and a leaf of star graph that is connected with vertex v. After determining
the effect of these modifications on the graph in the next theorem, we will get
residual closeness value of banana trees.

Theorem 3.1. Let Bn,k be banana tree with nk+ 1 vertices.The residual closeness
value of Bn,k is

R =
n(k − 1)(k + 2)

4
.

Proof. First determine notation of vertices that will removed from the graph in
order to evaluate residual closeness value. Let v be root vertex, 1i be neighbour of
vertex v in ith copy of star graph, 2i is hub vertex of ith copy of star graph and
3i, ..., (3 + j)i are leaf vertices in banana graph where 1 ≤ i ≤ n and 1 ≤ j ≤ k− 2.
Therefore, we will get four different value after vertex removing.

• If root vertex v will be removed then

R1 = nC(Sk)

=
n(k − 1)(k + 2)

4
(3.1)

• If an 1i removed from the graph for any i where 1 ≤ i ≤ n then

R2 = C(Bn−1,k) + C(Sk−1) (3.2)

• If an 2i removed from the graph for any i where 1 ≤ i ≤ n then

R3 = C(Bn−1,k) + 2C(1i ∼ Bn−1,k). (3.3)

Here the notation 1i ∼ Bn−1,k denote the closeness value of a vertex 1i
after modification
• Let any leaf be removed from the graph. Due to removing any leaf has

same effect on residual value, we can choose one of them. Without loss of
generality, let choose any 3i as removed vertex, where 1 ≤ i ≤ n.

R4 = C(Bn,k)− 2C(3i). (3.4)

If we compare equations 3.1, 3.2, 3.3 and 3.4 , then it can be seen that
the value comes from equation 3.1 is the minimum value. Since the value
C(Bn−1,k) include at least n closeness of star graph value. Hence,

R =
n(k − 1)(k + 2)

4
.

�



VULNERABILITY OF BANANA TREES VIA CLOSENESS AND RESIDUAL CLOSENESS PARAMETERS37

4. Conclusion

In this article, we have calculated closeness value and residual closeness value
of banana tree graphs. In order to evaluate closeness of a graph easily, the graph
can be splitted into subgraphs if we know the closeness of the underlying graph.
Utilizing this idea, we can split the banana tree into subgraphs and using closeness
value of components and relation between them. In addition, we have considered
residual closeness value of banana tree graph. In order to do this calculation, we
acted from the thought of how much a change in the closeness value of a vertex
removed from the graph would cause. We obtained four different values, and the
minimum value we obtained among them was obtained by removing the root vertex
from the graph.
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Abstract. In this paper, we adopt a matrix treatment to solve the varia-

tional problem that consists of determining the physical path traveled by light
between two points in a medium whose refractive index depends on a spatial

coordinate. The considered treatment begins with the trivial repetition of the

expression of the value of the considered functional, repetition expressed in the
form of a matrix. Next, we adopt the trick (of Dirac) originally used as part of

the construction of the dynamic equation of relativistic quantum mechanics,

which allows us to rewrite the (now) matrix integrand in the expression of
the value of the functional in terms of the sum of two (non-diagonal) matrices

brought externally to the problem, which are determined based on some re-

quirements. As a result of this development, we obtain two equivalent versions
of Snell’s law.

1. Introduction

In the context of the variational formulation of optics [1],[2], the functional T is
defined, whose value T [y], for an arbitrary curve y, corresponds to the time of flight
of light along the referred curve, between two fixed points P1 and P2, located within
a medium whose refractive index may depend, in the most general situation, on the
spatial coordinates x; y; z. Suppose, for simplicity, that the medium traversed by
light has an index of refraction that depends only on the spatial coordinate y; that
is, n(y). Therefore, the value of the functional T [y] is written as [3],

T [y] =
1

c

∫ b

a

n(y)
(

1 +
(
y′(x)

)2)1/2

dx =
1

c

∫ b

a

F
(
x, y(x), y′(x)

)
dx. (1.1)

2020 Mathematics Subject Classification. Primary: 70H30; Secondaries: 15A90 .
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38



DIRAC’S LINEARIZATION APPLIED TO THE FUNCTIONAL 39

where c is the magnitude of speed of light in vacuum. The functional T above will
have as an extremal a curve that can be traversed by light in a stationary1 time,
compared to the travel times corresponding to the other curves in the T domain.

The functional T , whose value is defined in (1.1), corresponds to the following
Euler equation [4],

Fy −
d

dx
Fy′ = 0. (1.2)

In the next section we will give T a “matrix clothing”, without changing its essence,
which will be convenient.

On the other hand, the expression “Dirac linearization” is used here to indicate a
simplified version [5], adapted to our problem, of the linearization of a second-order
differential operator raised to the 1/2 power [6]. This idea2 was used by Dirac to
obtain a relativistic dynamic equation [8],[9] for specific quantum particles from a
(non-linear) expression for their energy.

2. “Matrix Clothing” for T [y] and Dirac’s Trick

It is trivial to recognize that the factor that multiplies n(y) in the integrand in
(1.1) is the square root of the sum of two quadratic terms. This factor may receive
a matrix clothing by multiplying each member in (1.1) by any matrix; in particular,
by the identity matrix or by the square root of the identity; that is, we would have,(

1 +
(
y′(x)

)2 )1/2

I or
(

1 +
(
y′(x)

)2 )1/2

I1/2, (2.1)

with the difference that the left term in (2.1) corresponds to a diagonal matrix, but
the right expression corresponds to a matrix that will not necessarily be diagonal3.
As we will see, it would be more convenient to consider a matrix that could contain
as many degrees of freedom as possible.

Then the expression (1.1) will receive such a “matrix clothing”. However, it will
only be about the matrix appearance of (1.1), since the functional T continues to
match functions y with numbers T [y], and not functions with matrices. In fact, such
a matrix clothing will correspond to the trivial repetition of the same expression
(1.1). In concrete terms, what we do is multiply (1.1) by the matrix I1/2, of order
N , which in principle can have an arbitrary value. Soon,

T[y] ≡ T [y] I1/2 =
1

c

∫ b

a

n(y)
(

1 + (y′(x))2
)1/2

I1/2 dx. (2.2)

In the case of considering matrices of order N = 2 we can write,

I1/2 =
1√

1 + ab

(
1 b
a −1

)
, (2.3)

(with arbitrary a and b, but such that ab 6= −1) whose square corresponds precisely
to the identity matrix I; then we would explicitly have the expression,

√
1 + ab T[y] =

(
T [y] b T [y]
a T [y] −T [y]

)
=

1This can be a minimum, as in situations typically found in books.
2Already acknowledged by O. Heaviside who, according to [7], would have stated that: “... the

square root of a differential operator is intrinsic to Physics”.
3For there are non-diagonal matrices whose square is diagonal.
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=

 1
c

∫ b

a
n(y)

(
1 + (y′(x))2

)1/2

dx b
c

∫ b

a
n(y)

(
1 + (y′(x))2

)1/2

dx

a
c

∫ b

a
n(y)

(
1 + (y′(x))2

)1/2

dx − 1
c

∫ b

a
n(y)

(
1 + (y′(x))2

)1/2

dx

 (2.4)

which, as already said, corresponds to the trivial repetition of (1.1).
Expression (2.2)(2.2) can be linearized. It is easy to verify that for matrices of

order 2, non-diagonal and, in general, dependent on y, which we represent here by
A(y) and B(y), which must be properly defined, one can write4,(

1 +
(
y′(x)

)2 )1/2

I1/2 = A(y) + y′(x) B(y), (2.5)

Provided that the following requirements are met,

A2(y) = I, B2(y) = I, A(y)B(y) + B(y)A(y) = 0, (2.6)

Furthermore, it must be taken into account, for a mathematical consistency argu-
ment, that the sum of the matrix on the right side of (2.5) must be non-diagonal,
since the matrix I1/2 has this characteristic, as indicated in (2.3).

Now we can rewrite the value of the functional T with “matrix clothing” as
follows,

T[y] =
1

c

∫ b

a

n(y)

(
A(y) + (y′(x)) B(y)

)
dx, (2.7)

3. The “matrix clothing” for the Euler equation

The integrand in T[y], in the considered context, is written as,

F
(
x, y(x), y′(x)

)
= n(y)

(
A(y) + y′(x) B(y)

)
. (3.1)

On the other hand, the matrix clothing for the corresponding Euler equation is
obtained directly: multiplying the expression (1.2) by the matrix, I1/2, that is,

I1/2

(
Fy −

d

dx
Fy′

)
=

(
Fy −

d

dx
Fy′

)
= I1/2 0 ≡ 0. (3.2)

This clothing is purely formal and obviously trivial, without changing the nature
of the initial problem: we have a functional T that assigns the number T [y] to a
function y, which belongs to the domain of T .

So, from (3.1) we get,

Fy = n(y)

(
A′(y) + y′(x) B′(y)

)
+ n′(y)

(
A(y) + y′(x) B(y)

)
, (3.3)

and,

Fy′ = n(y) B(y), (3.4)

From expression (3.4) we have that,

d

dx
Fy′ = n(y) B′(y) y′(x) + n′(y) y′(x) B(y). (3.5)

4This is essentially the trick used by Dirac [5], which we mentioned earlier.
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Substituting (3.3) and (3.5) into Euler’s equation (3.2) and after simplifications we
obtain the following relation,

n(y)A′(y) + n′(y)A(y) = 0, (3.6)

which corresponds to the development of the derivative of a product,(
n(y) A(y)

)′
= 0, ⇒ n(y) A(y) = C, (3.7)

where C is a constant matrix.
Note: An aspect not discussed here refers to the existence of possible symmetries
associated with the functional T, which would be revealed through its invariance
under specific transformations. In a broader context, we would see that expression
(3.7) can be obtained directly from Noether’s Theorem [10].

4. Determination of matrices A and B

Note that expression (3.7) is independent of matrix B; which we can take ad-
vantage of considering that B is constant, which will simplify its determination.

Now we explicitly write the non-diagonal matrices A and B,

A(y) =

(
a11(y) a12(y)
a21(y) a22(y)

)
, B =

(
b11 b12

b21 b22

)
, (4.1)

The algebraic equations resulting from the requirements in (2.6) correspond, if
placed in terms of the elements of A and B, in (4.1), to the following:

a2
11(y) + a12(y) a21(y) = 1,(
a11(y) + a22(y)

)
a12(y) = 0,(

a11(y) + a22(y)
)
a21(y) = 0,

a2
22(y) + a12(y) a21(y) = 1, (4.2)

b211 + b12 b21 = 1,(
b11 + b22

)
b12 = 0,(

b11 + b22

)
b21 = 0,

b222 + b12 b21 = 1, (4.3)

2a11b11 + a12b22 + a21b12 = 0,

a11b12 + a12b22 + a12b11 + a22b12 = 0,

a21b11 + a22b21 + a11b21 + a21b22 = 0,

2a22b22 + a21b12 + a12b21 = 0, (4.4)

The groups of equations in (4.2)−(4.4) are solved with the elements of the following
matrices,

A(y) =

(
sin(θ(y)) cos(θ(y))
cos(θ(y)) −sin(θ(y))

)
, B =

(
0 i
−i 0

)
, (4.5)

where θ(y) can be freely defined, with y taking an arbitrary value. For example:
θ(y) = arccot(dy/dx), which is to say it corresponds to the angle between the
coordinate direction y is the path of light.

From (3.7) and (4.5) we extract the two independent relations,

n(y) sin(θ(y)) = c1 e n(y) cos(θ(y)) = c2 (4.6)
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with y being free.

5. Conclusion

It is easy to recognize what might be called Dirac’s “matrix trick” in the solution
presented. In the problem analyzed here, it was possible to consider that one of the
two matrices freely brought to the problem is constant. Note that the expression
on the left in (4.6), with the definition of θ(y) given above, corresponds to Snell’s
law; in this case, the expression on the right, in the same expression, is spurious.
But if we define the angle between the light path and a direction orthogonal to y,
like x, as follows,

θ(y) = arctan
(dy
dx

)
,

then the expression of Snell’s law is given by the one on the right, in (4.6), and
the one on the left, in the same expression (4.6), would be spurious. Finally, the
solution presented shows us that Dirac’s trick can find application in other problems,
which should be expected considering that the physical results do not depend on
the mathematical tools used. As an illustration, the “Dirac linearization”, as used
here, can also be applied in the construction of a variant of the Feynman temporal
propagator that, instead of using the action functional (and the Planck constant),
the length functional of path is used (and the Compton wavelength of the considered
particle).
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Abstract. In this paper, we generalize two types of Volterra integral equa-

tions given on time scales and examine their Hyers-Ulam and Hyers-Ulam-
Rassias stabilities. We also prove these stability results for the non-homogeneous

nonlinear Volterra integral equation on time scales and provide an example to

support these results. Moreover, we show that the general Volterra type inte-
gral equation given on time scales has the Hyers-Ulam-Rassias stability. Our

results extend and improve some recent developments announced in the current

literature.

1. Introduction

In 1940, the famous stability theory of the linear functional equation was in-
troduced by Ulam [25]. Since then a series of mathematical questions related to
this stability theory was collected in the book [25] and studied by Hyers [15] and
improved by Rassias [17]. From then on, stabilities of many functional, differential
and integral equations have been investigated, see [1, 4, 5, 9, 14, 16, 19, 20], and
references therein.

A time scale T is an arbitrary non-empty closed subset of the real numbers R.
The theory of time scales analysis has been rising fast and has attracted much
interest. Therefore, many researchers have studied this issue [2, 11, 21, 22, 24].
The pioneer of this theory was Hilger [12]. He introduced this theory in 1988
with the inspiration to unify continuous and discrete calculus. Also, the stability
analysis of dynamic equations has become an important topic both theoretically
and practically because dynamic equations occur in many areas such as mechanics,
physics and economics. For the introduction to the calculus on time scales and to
the theory of dynamic equations on time scales, we recommend the books [6] and
[7] by Bohner and Peterson.
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To the best of our knowledge, the first ones who pay attention to Hyers-Ulam
stability for Volterra integral equations on time scales are Andras and Meszaros [4]
and Hua, Li, Feng [13]. However they restricted their research to the case when
integrand satisfies Lipschitz conditions with some Lipschitz constants.

Yaseen [26] investigated the Hyers-Ulam-Rassias stability for the following class
of Volterra integral equations on time scales

x(t) =

t∫
t0

f (t, s, x(s)) ∆s, t ∈ T. (1.1)

In 2017, Hamza and Ghallab [3] showed that the non-homogeneous Volterra
integral equation of the first kind on time scales

x(t) = f(t) +

t∫
a

K (t, s)x(s)∆s, t ∈ [a, b] ∩ T (1.2)

has the Hyers-Ulam stability and Hyers-Ulam-Rassias stability.
Gachpazan and Baghani [10] discussed the Hyers-Ulam stability of the following

non-homogeneous nonlinear Volterra integral equation

x(t) = f(t) + ϕ

 t∫
a

K (t, s, x(s)) ds

 , t ∈ [a, b]. (1.3)

Finally, in 2020, Reinfelds and Christian [18] studied Hyers–Ulam stability of
general Volterra type integral equations on bounded time scales

x(t) = f

t, x(t), x(σ(t)),

t∫
a

K(t, s, x(s), x(σ(s))∆s

 , t ∈ [a,∞) ∩ T. (1.4)

Motivated by the above papers, we generalize two equations (1.1) and (1.2) given
on time scales and examine their Hyers-Ulam and Hyers-Ulam-Rassias stabilities.
We prove the existence and uniqueness of the solution and the stability results for
equation (1.3) on time scales, and also provide an example to support these results.
After that, we showed that equation (1.4), which is given on a time scale, has the
Hyers-Ulam-Rassias stability.

2. Preliminaries on Time Scales

In this section, we present some basic notations, definitions and properties con-
cerning the calculus on time scales, for more details the reader is referred to [6, 7].

As we said above, a time scale T is an arbitrary non-empty closed subset of the
real numbers R. Since a time scale may or may not be connected, the concept of
jump operator is useful to describe the structure of the time scale under consider-
ation and is also used in defining the delta derivative. The forward jump operator
σ : T → T is defined by σ(t) = inf{s ∈ T : s > t}, while the backward jump
operator ρ : T→ T is defined by ρ(t) = sup{s ∈ T : s < t}.

The jump operators allow the classification of points in a time scale T. A point
t ∈ T is said to be right dense if σ(t) = t, right scattered if σ(t) > t, left dense
if ρ(t) = t, left scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t), and dense if
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ρ(t) = t = σ(t). If T has a left scattered maximum n, then Tκ = T\{n}, otherwise
Tκ = T.

A function f : T → R is called rd-continuous provided it is continuous at every
right dense points in T and its left sided limits exist (finite) at every left dense
points in T. The set of all rd-continuous functions f : T → R will be denoted by
Crd(T,R).

The graininess function µ : T → [0,+∞) is defined by µ(t) = σ(t) − t. The
function f : T→ R is regressive if

1 + µ(t)f(t) 6= 0 for all t ∈ Tκ.

Assume f : T → R is a function and fix t ∈ Tκ. The delta derivative (also
Hilger derivative) f∆(t) exists if for every ε > 0 there exists a neighbourhood
U = (t− δ, t+ δ) ∩ T for some δ > 0 such that∣∣(f(σ(t))− f(s))− f∆(t)(σ(t)− s)

∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

If f is rd-continuous, then there is a function F such that F∆(t) = f(t) (see
[6, 7]). In this case, we define the (Cauchy) delta integral by

s∫
r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

Let β : T → R be a regressive and rd-continuous function. The Cauchy initial
value problem for linear equation

x∆ = β(t)x, x(a) = 1, a ∈ T

has the unique solution eβ(., a) : T → R [6, 7]. More explicitly, the exponential
function eβ(., a) is given by

eβ(t, a) = exp

(∫ t

a

ξµ(s)(β(s))∆s

)
for a, t ∈ T,

where

ξh(z) =

{
z, h = 0;

1
h log(1 + hz), h > 0.

Let |.| denote the Euclidean norm on Rn. We will consider the linear space of
continuous functions C(IT,Rn) such that

sup
t∈IT

|x(t)|
eβ(t, a)

<∞,

and denote it by Cβ(IT,Rn). The space Cβ(IT,Rn), endowed with the Bielecki type
norm

‖x‖β = sup
t∈IT

|x(t)|
eβ(t, a)

,

is a Banach space (see [8, 23]).
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3. Main results

Firstly, we generalize equation (1.1) and prove that it has the Hyers-Ulam-
Rassias stability on time scales.

Consider the following non-linear Volterra integral equation

x(t) = f(t) +

t∫
a

K (t, s, x(s), x(σ(s))) ∆s, s, t ∈ IT = [a,∞) ∩ T, (3.1)

where f ∈ Crd(IT,Rn), K ∈ Crd(IT × IT × Rn × Rn,Rn) and x : IT → Rn is the
unknown function.

Theorem 3.1. Let k1, k2, L1 and L2 are positive constants and assume that K :
IT × IT × Rn × Rn → Rn is a continuous function which additionally satisfies

|K(t, s, p, q)−K(t, s, p, q)| ≤ L1 |p− p|+ L2 |q − q|

for t, s ∈ IT and p, q, p, q ∈ Crd(IT,Rn). If a function g ∈ Crd(IT,Rn) satisfies

∣∣∣∣∣∣g(t)− f(t)−
t∫
a

K (t, s, g(s), g(σ(s))) ∆s

∣∣∣∣∣∣ ≤ θ(t), t ∈ IT, (3.2)

where θ ∈ Crd(IT,R) with

t∫
a

eL1
(t, σ(s)) θ(s)∆s ≤ k1θ(t) and

t∫
a

eL2
(t, σ (σ(s))) θ(s)∆s ≤ k2θ(t),

then there exists a unique solution u ∈ Crd(IT,Rn) of equation (3.1) such that

|g(t)− u(t)| ≤ (1 + k1L1 + k2L2)θ(t), t ∈ IT.

Proof. Set

l(t) = g(t)− f(t)−
t∫
a

K (t, s, g(s), g(σ(s))) ∆s, t ∈ IT.

Then, by (3.2), we have

|l(t)| ≤ θ(t).
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Let u ∈ Crd(IT,Rn) be the unique solution of equation (3.1). Hence, we obtain

|g(t)− u(t)|

=

∣∣∣∣∣∣l(t) + f(t) +

t∫
a

K (t, s, g(s), g(σ(s))) ∆s − f(t)−
t∫
a

K (t, s, u(s), u(σ(s))) ∆s

∣∣∣∣∣∣
≤ |l(t)|+

∣∣∣∣∣∣
t∫
a

[K (t, s, g(s), g(σ(s)))−K (t, s, u(s), u(σ(s)))]∆s

∣∣∣∣∣∣
≤ θ(t) +

t∫
a

|K (t, s, g(s), g(σ(s)))−K (t, s, u(s), u(σ(s)))|∆s

≤ θ(t) + L1

t∫
a

|g(s)− u(s)|∆s+ L2

t∫
a

|g(σ(s))− u(σ(s))|∆s.

By using Gronwall’s Inequality in [6, Section 6.1], we have that

|g(t)− u(t)| ≤ θ(t) + L1

t∫
a

eL1
(t, σ(s)) θ(s)∆s+ L2

t∫
a

eL2
(t, σ (σ(s))) θ(s)∆s

≤ θ(t) + L1k1θ(t) + L2k2θ(t)

≤ (1 + k1L1 + k2L2)θ(t).

This shows that equation (3.1) has the Hyers-Ulam-Rassias stability.

Corollary 3.2. Under the assumptions of Theorem 3.1, if we take θ as a constant
function then we say that equation (3.1) has the Hyers-Ulam stability.

Secondly, by generalizing equation (1.2), the Hyers-Ulam and Hyers-Ulam-Rassias
stabilities on time scales are proved. The Volterra integral equation examined at
this stage is as follows:

x(t) = f(t) + λ

t∫
a

K (t, s)x(s)∆s, t ∈ IT = [a, b] ∩ T, (3.3)

where f ∈ Crd(IT,R), λ ∈ R, K ∈ Crd(IT × IT,R) and x : IT → R is the unknown
function.

Theorem 3.3. The integral equation (3.3) on IT has the Hyers-Ulam-Rassias sta-
bility, that is, for a fixed function ω ∈ Crd(IT,R) we have that for every ψ ∈
Crd(IT,R) with ∣∣∣∣∣∣ψ(t)− f(t)− λ

t∫
a

K (t, s)ψ(s)∆s

∣∣∣∣∣∣ ≤ ω(t),

for which there exist constants P and M with |λMP | < 1 such that
t∫
a

ω(s)∆s ≤

Pω(t) and |K (t, s)| ≤M, ∀t, s ∈ IT, then there exists a unique ϕ ∈ Crd(IT,R) such
that [Ψϕ] (t) = ϕ(t) and |ψ(t)− ϕ(t)| ≤ Cω(t) for some C > 0.
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Proof. Consider the following iterative scheme

ψn(t) := f(t) + λ

t∫
a

K (t, s)ψn−1(s)∆s, n = 1, 2, 3, ... (3.4)

for t ∈ IT with ψ0(t) = ψ(t). We prove that {ψn(t)}n∈N converges uniformly to the

unique solution of equation (3.3) on IT. We write ψn(t) as a telescoping sum

ψn(t) = ψ0(t) +

n∑
i=1

[ψi(t)− ψi−1(t)] ,

so

lim
n→∞

ψn(t) = ψ0(t) +

∞∑
i=1

[ψi(t)− ψi−1(t)] , ∀t ∈ IT. (3.5)

By mathematical induction, it is easy to see that the following estimate

|ψn(t)− ψn−1(t)| ≤ (λMP )n−1ω(t) (3.6)

holds for each n ∈ N and all t ∈ IT. For n = 1, we have

|ψ1(t)− ψ(t)| ≤ ω(t).

Hence, estimate (3.6) holds for n = 1. Assume that estimate (3.6) is true for
n = k ≥ 1. We have

|ψk+1(t)− ψk(t)| ≤ λ

t∫
a

|K (t, s)| |ψk(s)− ψk−1(s)|∆s

≤ λM

t∫
a

(λMP )k−1ω(s)∆s

≤ (λMP )kω(t),

hence estimate (3.6) is valid for n = k + 1. This shows that estimate (3.6) is true
for all n ≥ 1 on IT. We see that

|ψi(t)− ψi−1(t)| ≤ (λMP )i−1ω(t),

and
∞∑
i=1

(λMP )i−1ω(t) =
ω(t)

1− λMP
.

Applying Weierstrass M-Test, we conclude that the infinite series
∞∑
i=1

[ψi(t)− ψi−1(t)]

converges uniformly on t ∈ IT. Thus from (3.5), the sequence {ψn(t)}n∈N converges
uniformly on IT to some ϕ(t) ∈ Crd(IT,R). Next, we show that the limit of the
sequence ϕ(t) is the exact solution of (3.3). For all t ∈ IT and each n ≥ 1, we have∣∣∣∣∣∣

t∫
a

K (t, s)ψn(s)∆s−
t∫
a

K (t, s)ϕ(s)∆s

∣∣∣∣∣∣ ≤M
t∫
a

|ψn(s)− ϕ(s)|∆s.
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Taking the limits as n→∞ we see that the right hand side of the above inequality
tends to zero and so

lim
n→∞

t∫
a

K (t, s)ψn(s)∆s =

t∫
a

K (t, s)ϕ(s)∆s, ∀ t ∈ IT.

By letting n→∞ on both sides of (3.4) we conclude that ϕ(t) is the unique solution
of (3.3). Then there exists a positive integer N such that |ψN (t)− ϕ(t)| ≤ ω(t).
Hence

|ψ − ϕ| ≤ |ψ(t)− ψN (t)|+ |ψN (t)− ϕ(t)|
≤ |ψ(t)− ψ1(t)|+ |ψ1(t)− ψ2(t)|+ ...+ |ψN−1(t)− ψN (t)|+ |ψN (t)− ϕ(t)|

≤
N∑
i=1

|ψi−1(t)− ψi(t)|+ |ψN (t)− ϕ(t)|

≤
N∑
i=1

(λMP )i−1ω(t) + |ψN (t)− ϕ(t)|

≤
∞∑
i=1

(λMP )i−1ω(t) + ω(t)

≤ 1

1− λMP
ω(t) + ω(t) =

(
1 +

1

1− λMP

)
ω(t) = C.ω(t),

which shows that (3.3) has Hyers-Ulam-Rassias stability on IT.

Corollary 3.4. Under the assumptions of Theorem 3.1, if we take ω as a constant
function then we obtain the Hyers-Ulam stability result of equation (3.3).

Thirdly, we generalize equation (1.3) to the time scale and show that it has
Hyers-Ulam and Hyers-Ulam-Rassias stabilities. Consider the following Volterra
integral equation

x(t) = f(t) + ϕ

 t∫
a

K (t, s, x(s)) ∆s

 , t ∈ IT = [a, b] ∩ T, (3.7)

where f ∈ Crd(IT,Rn), K ∈ Crd(IT × IT × Rn,Rn), x : IT → Rn is the unknown
function and ϕ is a bounded linear transformation on IT.

Theorem 3.5. Let f ∈ Crd(IT,Rn), K : IT× IT×Rn → Rn be jointly continuous
in its first and third variables and rd-continuous in its second variable, L : IT → R
be rd-continuous, γ > 1 and β(s) = L(s)γ, where γ > ‖ϕ‖. If

|K(t, s, p)−K(t, s, q)| ≤ L(s) |p− q| , p, q ∈ Rn, s < t,

m = sup
t∈IT

1

eβ(t, a)

∣∣∣∣∣∣f(t) + ϕ

 t∫
a

K (t, s, 0) ∆s

∣∣∣∣∣∣ <∞,
then the integral equation (3.7) has a unique solution x ∈ Crd(IT,Rn).
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Proof. Consider the Banach space Cβ(IT,Rn). To prove the result, we define an
operator F : Cβ(IT,Rn)→ Cβ(IT,Rn) by

[Fx] (t) = f(t) + ϕ

 t∫
a

K (t, s, x(s)) ∆s

 . (3.8)

The fixed point of F will be solution to (3.7). Thus we want to prove that there
exists a unique x such that Fx = x. For any u, v ∈ Cβ(IT,Rn), we obtain

‖Fu− Fv‖β = sup
t∈IT

|[Fu] (t)− [Fv](t)|
eβ(t, a)

≤ sup
t∈IT

1

eβ(t, a)

∣∣∣∣∣∣ϕ
 t∫
a

[K (t, s, u(s))−K (t, s, v(s))]∆s

∣∣∣∣∣∣
≤ sup

t∈IT

1

eβ(t, a)
‖ϕ‖

t∫
a

L(s) |u(s)− v(s)|∆s

= ‖ϕ‖ sup
t∈IT

1

eβ(t, a)

t∫
a

L(s)eβ(s, a)
|u(s)− v(s)|
eβ(s, a)

∆s

≤ ‖ϕ‖ ‖u− v‖β sup
t∈IT

1

eβ(t, a)

t∫
a

L(s)eβ(s, a)∆s

≤ ‖ϕ‖
γ
‖u− v‖β sup

t∈IT

1

eβ(t, a)

t∫
a

β(s)eβ(s, a)∆s

=
‖ϕ‖
γ
‖u− v‖β sup

t∈IT

1

eβ(t, a)

t∫
a

e∆
β (s, a)∆s

=
‖ϕ‖
γ
‖u− v‖β sup

t∈IT

[
1− 1

eβ(t, a)

]
≤ ‖ϕ‖

γ
‖u− v‖β .

Next, we show that F : Cβ(IT,Rn) → Cβ(IT,Rn). Let x ∈ Cβ(IT,Rn). Taking
norms, we get

‖Fx‖β = ‖Fx− F0 + F0‖β ≤ ‖Fx− F0‖β + ‖F0‖β

≤
‖x‖β
γ
‖ϕ‖+m <∞.

As ‖ϕ‖γ < 1, we see that F is a contraction self mapping on Cβ(IT,Rn) and so

Banach’s fixed point theorem applies, yielding the existence of a unique fixed point
x of F .

Theorem 3.6. Under the assumptions of Theorem 3.5 the equation Fx = x, where
F ∈ Crd(IT,Rn) is defined as in (3.8) has the Hyers-Ulam-Rassias stability, that
is, for a fixed function ψ ∈ Crd(IT,R) we have that for every x ∈ Crd(IT,Rn) with
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‖x− Fx‖β ≤ ψ(t) there exists a unique x0 ∈ Crd(IT,Rn) such that Fx0 = x0 and

‖x− x0‖β ≤ Cψ(t).

Proof. From Theorem 3.5, there exists a unique x0 ∈ Crd(IT,Rn) such that Fx0 =
x0. Then, we have

‖x− x0‖β ≤ ‖x− Fx‖β + ‖Fx− x0‖β
≤ ψ(t) + ‖Fx− Fx0‖β

≤ ψ(t) +
‖x− x0‖β

γ
‖ϕ‖ .

Hence, we obtain

‖x− x0‖β ≤ Cψ(t),

where C =
[
1− ‖ϕ‖γ

]−1

> 0.

Remark. If we take ϕ(x) as a constant function and consider the complete metric
space (C[a, b], ‖.‖∞), then we get Theorem 4.1 in [10].

Example 3.1. Consider the scalar integral equation

x(t) = t4 + ϕ

 t∫
a

(s+ σ(s))
[
x(s)2 + 1

] 1
2 ∆s

 , a, t ∈ IT, a ≥ 0.

We claim that this integral equation has a unique solution for arbitrary T and the
equation Fx = x has the Hyers-Ulam Rassias stability.

Proof. We will use Theorem 3.5 and make use of the fact that K(t, s, p) = (s +

σ(s))
[
p2 + 1

] 1
2 has a bounded partial derivative with respect to p everywhere. Con-

sider

|K(t, s, p)−K(t, s, q)| =
∣∣∣(s+ σ(s))

[
p2 + 1

] 1
2 − (s+ σ(s))

[
q2 + 1

] 1
2

∣∣∣
≤ (s+ σ(s)) sup

r∈R

∣∣∣∣∣ r

[r2 + 1]
1
2

∣∣∣∣∣ |p− q|
≤ (s+ σ(s)) |p− q| .

We here used the mean value theorem. So, we have that L(s) = s+σ(s). For choices
of γ = 2 and ‖ϕ‖ = 2

3 , we have β(s) = 2 (s+ σ(s)) . Using Bernoulli’s Inequality in
[18, p.42] we get

eβ(t, a) ≥ 1 + t2 − a2,

which is followed by estimate m <∞. The result now follows from Theorem 3.5.
If a function x ∈ Cβ(IT,Rn) satisfies the inequality ‖x− Fx‖β ≤ ψ(t) where

ψ(t) non-negative function then Theorem 3.6 implies that there exists a unique x0

such that Fx0 = x0 and

‖x− x0‖β ≤
3

2
ψ(t).

From Theorem 3.6, we obtain the following result related to the Hyers-Ulam
stability.

Corollary 3.7. If ψ is a constant function, then equation (3.7) has the Hyers-Ulam
stability.
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Finally, we showed Hyers-Ulam-Rassias stability of equation (1.4) on time scales.

Theorem 3.8. If x0 ∈ Cβ(IT,Rn) is a solution of the Volterra type integral equa-
tion (1.4) and

M

(
1 +

1 + qγ

1− rγ
+

1

γ

)
< 1,

then the Volterra type integral equation (1.4) is Hyers-Ulam-Rassias stable, that is,
for a fixed function ψ ∈ Cβ(IT,R) we have that for every x ∈ Cβ(IT,Rn) with

sup
t∈IT

∣∣∣∣x(t)− f
(
t, x(t), x(σ(t)),

t∫
a

K(t, s, x(s), x(σ(s))∆s

)∣∣∣∣
eβ(t, a)

= ‖x− Fx‖β ≤ ψ(t),

there exists a unique x0 ∈ Cβ(IT,Rn) such that Fx0 = x0 and ‖x− x0‖β ≤ Cψ(t).

Proof. According to Theorem 3.1 in [18], there is a unique solution x0 to the
Volterra type integral equation (1.4) in the Banach space Cβ(IT,Rn). Therefore we
have

‖x− x0‖β ≤ ‖x− Fx‖β + ‖Fx− Fx0‖β

≤ ψ(t) +M

(
1 +

1 + qγ

1− rγ
+

1

γ

)
‖x− x0‖β .

So we get

‖x− x0‖β ≤ Cψ(t),

where

C =

(
1−M

(
1 +

1 + qγ

1− rγ
+

1

γ

))−1

.

Remark. Choosing ψ(t) = ε in Theorem 3.8, yields Theorem 3.3 in [18].

4. Conclusion

In this paper, the Hyers-Ulam stability and Hyers-Ulam-Rassias stability theo-
rems for four types of Volterra integral equations on time scales were investigated.
Additionally, a numerical example to support the study was given. The theorems
proved here generalize some recent results given in [3, 10, 18, 26].
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des équations différentielles ordinaires, Bull. Polish Acad. Sci. Cl. III 4, (1956), 261–264.

[9] L. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J.
Inequal. Pure Appl. Math. 4 no. 1, Article 4, (2003).

[10] M. Gachpazan and O. Baghani, Hyers-Ulam stability of nonlinear integral equation, Fixed

Point Theory Appl., Article ID 927640, 6 pages, (2010).
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[24] N. Tok and M. Başarır, On the λαh -statistical convergence of the functions defined on the

time scale, Proc. Inter. Math. Sci., 1, no. 1, (2019), 1-10.
[25] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.

[26] N. A. Yaseen, Hyers-Ulam-Rassias stability for Volterra integral equations on time scales,
Journal of the ACS, 8, (2014), 33-44.

Zeynep Kalkan

Department of Mathematics, Sakarya University, Sakarya, 54050, Türkiye, ORCID ID:0000-

0001-6760-9820
Email address: zeynepyildiz28@gmail.com

Aynur Şahin
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Abstract. A systematic analytic approach to the evaluation of the eigen-

values and eigenvectors of the 5D discrete number operator N5 is formulated.
This approach is essentially based on the use of the symmetricity of 5D discrete

Fourier transform operator Φ5 with respect to the discrete reflection operator

Pd.

1. Introduction

Let me begin by recalling first that the eigenfunctions of the classical Fourier
inegral transform (FIT), associated with the eigenvalues in, are explicitly given as

ψn(x) := Hn(x) exp(−x2/2), n = 0, 1, 2, ..., (1.1)

where Hn(x) are Hermite polynomials. The functions ψn(x) are usually referred to
as Hermite functions in the mathematical literature, whereas in quantum mechanics
they emerge as eigenfunctions of the Hamiltonian for the linear harmonic oscillator,
which is a self-adjoint differential operator of the second order (see, for example, [1]).
It is well known that the functions ψn(x) are either symmetric or antisymmetric
with respect to the reflection operator P , defined on the full real line x ∈ R as
P x = −x; that is,

P ψn(x) = ψn(−x) = (−1)n ψn(x). (1.2)

Recall also that the discrete (finite) Fourier transform (DFT) based on N points is
represented by an N ×N unitary symmetric matrix Φ with entries

Φkl = N−1/2 qkl, k, l ∈ ZN := {0, 1, 2 . . . , N − 1}, (1.3)

where q = exp (2πi /N) is a primitive N -th root of unity and N is an arbitrary
integer (see, for example, [2]-[7]). The discrete analogue of the above mentioned
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reflection operator P , associated with the DFT operator (1.3), is represented by
the N ×N matrix

Pd := CᵀJN ≡ JN C , (1.4)

where C is the basic circulant permutation matrix with entries Ckl = δk,l−1 and JN
is the N ×N ‘backward identity’ permutation matrix with ones on the secondary
diagonal (see [8], pages 26 and 28, respectively). Note that the matrix of the discrete
reflection operator (1.4) can be partitioned as

Pd =

[
1 0N−1

0ᵀN−1 JN−1

]
, (1.5)

where 0m and 0ᵀn are m-row and n-column zero vectors, respectively.
It is readily verified that the DFT operator (1.3) is Pd-symmetric, that is, the

commutator [Φ, Pd] := ΦPd − Pd Φ = 0. Therefore, similar to the continuous case
(1.2), the eigenvectors of the DFT operator Φ should be either Pd-symmetric or
Pd-antisymmetric.

The purpose of this work is to discuss some additional findings concerning sym-
metry properties of two finite-dimensional intertwining operators with the DFT
matrix 1.3. These operators are represented by matrices A and Aᵀ of the same size
N ×N such that the intertwining relations

AΦ = i ΦA, Aᵀ Φ = − i ΦAᵀ, (1.6)

are valid. The explicit form of the matrices A and Aᵀ is

A = X + iY = X +D , Aᵀ = X − iY = X −D , (1.7)

where X = diag (s0, s1, ..., sN−2, sN−1), sn := 2 sin(2πn/N), n ∈ ZN , and Y =
− i D = i (Cᵀ − C). The operators X and Y are Hermitian and play the role of
finite-dimensional analogs of the operators of the coordinate and momentum in
quantum mechanics, respectively.

The intertwining operators A and Aᵀ have emerged in a paper [9] devoted to
the problem of finding the eigenvectors of the DFT operator Φ. They can be
interpreted as discrete analogs of the quantum harmonic oscillator lowering and

raising operators a = 2−1/2
(
x + d

dx

)
and a† = 2−1/2

(
x − d

dx

)
; their algebraic

properties had been studied in detail in [10] -[12]. In particular, it was shown in
[12] that the operators A and Aᵀ form a cubic algebra Cq with q a root of unity. This
algebra is intimately related to the two other well-known realizations of the cubic
algebra: the Askey-Wilson algebra [13]–[16] and the Askey-Wilson-Heun algebra
[17]. Note also that from the intertwining relations (1.6) it follows at once that
the operator N := AᵀA commutes with the DFT operator Φ, that is, [N ,Φ] = 0.
The discrete number operator N and the DFT operator Φ thus have the same
eigenvectors and one can employ the former for finding an explicit form of the
eigenvectors of the latter (see [9] for a more detailed discussion of this point).

This idea that the discrete number operator N is the one that really governs
the eigenvectors of the DFT operator Φ, was first successfully tested in [18] by
considering the particular case of the 5D DFT operator Φ5. But the explicit form
of the 4 nonzero eigenvalues λk, 1 ≤ k ≤ 4, of the discrete number operator N5 have
been found in [18] by using Mathematica. So it is the main goal of this work to
formulate a systematic analytic approach to the evaluation of the above-mentioned
eigenvalues λk without resorting to the help of any computer programs.
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The lay out of the paper is as follows. In section 2 a detailed account is given
on how one can construct a Pd-symmetrized basis in the eigenspace H5 of the
discrete number operator N5, in terms of the eigenvectors of either the operator
X5, or the operator Y5. In section 3 it is shown that the eigenspace H5 with thus
symmetrized basis splits into two 3D and 2D subspaces H3 and H2; this remarkable
fact is used then to find desired explicit forms of the eigenvalues and eigenvectors
of the discrete number operator N5. Finally, section 4 briefly outlines some further
research directions of interest.

2. 5D operators X5 and Y5 in the Pd-symmetrized basis

This section begins by a quotation from [12]: It is a remarkable fact that the
operators X and Y are ”classical” operators with nice spectral properties. For the
5D operator X5 = diag (s0, s1, s2, s3, s4), it is obvious because the spectrum of X5

is

λn = sn = i(q−n − qn), n ∈ Z5, (2.1)

where q = exp (2πi/5) and we introduced for brevity sn := 2 sin (2πn/5). This
indicates that the spectrum (2.1) belongs to the class of the Askey–Wilson spectra
of the type

λn = C1q
n + C2q

−n + C0 . (2.2)

The eigenvectors of the operator X5 are represented by the Euclidean 5-column
orthonormal vectors ek with the components (ek)l = δkl, k, l ∈ Z5, that is,

X5 ek = sk ek . (2.3)

The spectrum of the matrix Y5 belongs to the same Askey–Wilson family since the
operators X5 and Y5 are unitary equivalent, Y5 = ΦX5Φ†, and hence isospectral
[12]. Note that the spectrum of X5 is simple, i.e., it is nondegenerate. Also, from
the unitary equivalence of the operators X5 and Y5 it follows that the eigenvectors
of the latter operator are of the form

Y5 εk = sk εk , εn := Φ en = 5−1/2
(

1, qn, q2n, q3n, q4n
)ᵀ
. (2.4)

Let me draw attention now to the remarkable symmetry between the operators X5

and Y5: the operator X5 is two-diagonal in the eigenbasis of the operator Y5,

X5 εn = i (εn−1 − εn+1) , (2.5)

whereas the operator Y5 is similarly two-diagonal in the eigenbasis of the operator
X5,

Y5 en = i (en+1 − en−1) . (2.6)

Remark. It may also be worth mentioning here that the N -column eigenvectors of
the operator Y for a general N ,

εn = Φ en =

N−1∑
k=0

Φkn ek = N−1/2
(

1, qn, q2n, . . . , q(N−1)n
)ᵀ
, (2.7)

form an orthonormal basis in the N -dimensional complex plane CN and are fre-
quently used therefore as building blocks of the discrete Fourier transform in ap-
plications (see, for example, p.130 in [19], where the εn referred to as discrete
trigonometric functions).
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Since the operators X and Y generate a particular algebra, associated with the
DFT operator Φ for arbitrary integer values of N , one should use the eigenvectors
of either the operator X, or the operator Y , as the most convenient basis for
finding explicit forms of the eigenvectors of the operator Φ. But we know that the
eigenvectors of the operator Φ should be either Pd-symmetric, or Pd-antisymmetric,
whereas the eigenvectors of both the operators X and Y do not reveal any symmetry
property of this type. The point is that the reflection operator Pd acts in the same
way on both the eigenvectors en and εm, that is,

Pd en = eN−n, eN = e0 , Pd εn = εN−n, εN = ε0 . (2.8)

Hence, the reflection operator Pd does not transform the eigenvectors e0 and ε0,
and acts similarly by cyclic permutation on the other eigenvectors em and εn, with
1 ≤ m,n ≤ N − 1. To overcome this type of obstacle on the way of finding the
eigenvectors of the operator Φ, one thus needs to find first some Pd-symmetric
bases, associated with both of the operators X and Y . This can be achieved as
follows.

Returning now to the case of the 5D operatorsX5 and Y5, let us consider first unit
column-vectors ẽn, n ∈ Z5, defined in terms of the eigenvectors en of the operator
X5 as

ẽ0 = e0, ẽk =
1√
2

(ek−e5−k), k = 1, 2, ẽl =
1√
2

(el+e5−l), l = 3, 4. (2.9)

The explicit componentwise forms of the thus Pd-symmetrized column-vectors ẽn
are

ẽ0 = (1, 0, 0, 0, 0)ᵀ, ẽ1 =
1√
2

(0, 1, 0, 0,−1)ᵀ, ẽ2 =
1√
2

(0, 0, 1,−1, 0)ᵀ,

ẽ3 =
1√
2

(0, 0, 1, 1, 0)ᵀ, ẽ4 =
1√
2

(0, 1, 0, 0, 1)ᵀ. (2.10)

The interrelation (2.9) between the vectors ẽn and the eigenvectors en of the opera-
tor X5 can be written in the compact form as ẽk = Tek, k ∈ Z5, where the unitary
matrix T is

T =
1√
2


√

2 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 −1 1 0
0 −1 0 0 1

 ,
T−1 = T ᵀ , T T−1 = T−1T = I5. (2.11)

Note that from the geometric point of view the matrix T represents simply a product
of two rotations by the same angle α = π/4 in the 14- and 23-planes of the 5D-space,
that is, T = R14(π/4)R23(π/4), where

R14(π/4) =


1 0 0 0 0
0 cos π4 0 0 sin π

4
0 0 1 0 0
0 0 0 1 0
0 − sin π

4 0 0 cos π4

 ,
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R23(π/4) =


1 0 0 0 0
0 1 0 0 0
0 0 cos π4 sin π

4 0
0 0 − sin π

4 cos π4 0
0 0 0 0 1

 . (2.12)

Similarly, let us introduce now 5 orthonormal column-vectors ε̃n, n ∈ Z5, defined
in terms of the eigenvectors εn of the operator Y5 as ε̃k = Tεk, k ∈ Z5, with the same
matrix T as in (2.11). Then the explicit forms of these Pd-symmetrized 5-vectors
ε̃n are

ε̃0 = ε0 =
1√
5

(1, 1, 1, 1, 1)ᵀ, ε̃1 =
1√
2

(ε1 − ε4) =
i√
10

(0, s1, s2,−s2,−s1)ᵀ,

ε̃2 =
1√
2

(ε2 − ε3) =
i√
10

(0, s2,−s1, s1,−s2)ᵀ,

ε̃3 =
1√
2

(ε2 + ε3) =
i√
10

(c0, c2, c1, c1, c2)ᵀ,

ε̃4 =
1√
2

(ε1 + ε4) =
i√
10

(c0, c1, c2, c2, c1)ᵀ, (2.13)

where cn := 2 cos (2πn/5).
It remains only to recall that if Zkl := (ek, Zel) represent the matrix elements of

the operator (matrix) Z in the basis en, then the matrix Z̃ := TZT−1 represents
the matrix elements of the same operator Z in the basis ẽn = Ten. Hence the
explicit forms of the operators X5 and Y5 in the Pd-symmetrized basis ẽn are

X̃5 = TX5T
−1 = −


0 0 0 0 0
0 0 0 0 s1
0 0 0 s2 0
0 0 s2 0 0
0 s1 0 0 0


= −

[
033 x32
xᵀ32 022

]
, x32 :=

 0 0
0 s1
s2 0

 ,

D̃5 = TD5T
−1 =


0 0 0 0 −

√
2

0 0 0 −1 0
0 0 0 1 1
0 1 −1 0 0√
2 0 −1 0 0


=

[
033 d32
− dᵀ32 022

]
, d32 :=

 0 −
√

2
−1 0
1 1

 , (2.14)

where 0nn is the n× n zero matrix.
Finally, from (2.14) it follows that the intertwining operators A5 and Aᵀ

5 in the
basis ẽn can be partitioned as

Ã5 = X̃5 + D̃5 =

[
033 − a32(s)

aᵀ32(−s) 022

]
, a32(s) :=

 0
√

2
1 s1

s2 − 1 −1

 ,
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Ãᵀ
5 = X̃5 − D̃5 =

[
033 a32(−s)

−aᵀ32(s) 022

]
, a32(−s) :=

 0
√

2
1 −s1

− s2 − 1 −1

 .
(2.15)

To close this section, it may be worth drawing attention now to the particu-
lar manner in which the Pd-symmetrization modifies explicit forms of the DFT
eigenvectors fk, k ∈ Z5 in the basis ẽn. It is obvious that the partitioning of the
intertwining operators Ã5 and Ãᵀ

5 of the form (2.15) leads to the need to appropri-
ately split the DFT eigenvectors fk, k ∈ Z5 in the basis ẽn into two components,

that is, to represent the vectors f̃k := Tfk as

f̃k = (ηk, ξk)ᵀ, ηk := (x0, x1, x2), ξk := (x3, x4) . (2.16)

Since every symmetric 5D DFT eigenvector f (s) in the basis en is of the form
f (s) = (a, b, c, c, b)ᵀ, whereas every antisymmetric 5D DFT eigenvector f (a) in the
same basis en is of the form f (a) = (0, b, c,− c,− b)ᵀ, it turns out that

f̃ (s) := Tf (s) = (a,
√

2b,
√

2c, 0, 0)ᵀ, f̃ (a) := Tf (a) = −
√

2 (0, 0, 0, c, b)ᵀ. (2.17)

This means that all 5D DFT eigenvectors f̃k in the basis ẽn are either of the η-
type (that is, with vanishing lower component ξk), or of the ξ-type (with the upper
component ηk = 0).

3. DFT number operator N5 in the Pd-symmetrized basis

Having defined explicitly the matrices A5 and Aᵀ
5 in the Pd-symmetrized basis ẽn

in the previous section, it is not hard to evaluate that the discrete number operator
N5 = Aᵀ

5 A5 in the same basis ẽn is of the following form

Ñ5 = Ãᵀ
5 Ã5 =

[
N3 032
0ᵀ32 N2

]
, (3.1)

where 032 is the 3×2 zero matrix and N3 and N2 are 3×3 and 2×2 full Hermitian
matrices,

N3 :=

 2 −
√

2 s1 −
√

2

−
√

2 s1 3− c2 c1s2 − 1

−
√

2 c1s2 − 1 2(s2 + 2)− c1

 ,
N2 :=

[
2(2− s2)− c1 c1s2 + 1

c1s2 + 1 5− c2

]
, (3.2)

respectively. Thus the Fock space H5 of all eigenvectors of the discrete number
operator N5 in the Pd-symmetrized basis ẽn splits into two 3D and 2D subspaces
H3 and H2; the operator Ñ5 represents in the eigenspace H5 the direct sum of the
operators N3 and N2, that is, Ñ5 = N3⊕N2.

One clarifying remark must be made at this point in connection with (3.1). The

point is that this formula reveals that the discrete number operator Ñ5 in the Pd-
symmetrized basis ẽn has 12 zero matrix elements, whereas its counterpartN5 in the
basis of the eigenvectors en is represented by a 5D matrix with 25 nonzero entries.
Note that it was possible to formulate such a remarkable transformation of the full
matrix N5 into the sparse matrix Ñ5 only because of the Pd-symmetricity of the
DFT operator Φ5. Recall then that the well-known Fast Fourier Transform algo-
rithm of Cooley and Tukey is based essentially on a factorization of the Fourier ma-
trix into a product of sparse matrices (see, for example, [19, 20]). Thus it becomes
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clear now that Cooley and Tukey had been able to construct so ingeniously their
highly efficient implementation of the DFT only because of the Pd-symmetricity of
the Fourier matrix, although they had never employed explicitly this fundamental
symmetry property of the Fourier matrix.

From (3.1) it is evident that the eigenvectors and eigenvalues of the operator Ñ5

may be now defined in terms of the eigenvectors and eigenvalues of the operators N3

and N2 from the separate subspaces H3 and H2, respectively. In order to proceed
to this task under consideration, let me start first with the operator N2.

Lemma 3.1. An arbitrary 2 × 2 Hermitian matrix of the form M =

[
a b
b d

]
can be written as a linear combination of the 2D identity matrix I2 and the 2 × 2
traceless matrix M ′,

M = u I2 +M ′ = u

[
1 0
0 1

]
+

[
v b
b −v

]
, (3.3)

where 2u = a+ d and 2v = a− d. The eigenvalues of the matrix M ′ are equal to

λ1,2 = ±
(
− detM ′

)1/2
= ± (v2 + b2)1/2, (3.4)

whereas the eigenvalues of the matrix M are

µ1,2 = λ1,2 + (a+ d)/2 = (a+ d)/2 ± (v2 + b2)1/2. (3.5)

Proof. Since

det (M ′ − λ I2) = det

[
v − λ b
b − v − λ

]
= λ2 − v2 − b2 , (3.6)

the eigenvalues λ1,2 of the matrix M ′ are roots of the quadratic equation λ2 −
v2 − b2 = 0; hence λ1,2 = ± (v2 + b2)1/2 and formula (3.4) is proved. Then from
(3.3) it follows at once that the eigenvalues of the matix M are equal to µ1,2 =
λ1,2 + (a+ d)/2 and formula (3.5) is proved as well. �

Evidently, the matrix N2 is of the same type as the matrix M from the lemma
above, with a = 2(2− s2)− c1, b = c1s2 + 1 and d = 5− c2. This means that in this

particular case u = 5− s2, v = c2− s2 = c2 b and v2 +b2 = 2
√

5 (s2 +2c1) = (s1)2 b2.
Thus from (3.5) it follows that the eigenvalues of the matrix N2 are

µ1 = 5− s2 + s1 b = 5 + s2 (s2 + c1), µ2 = 5− s2 − s1 b = s1 (s1 + c2). (3.7)

Remark. The equation which is solved to find eigenvalues of n × n matrix M is
usually interpreted as the equation for finding roots of the characteristic polynomial
in λ of degree n,

pn(λ) := det (λ I −M) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn , (3.8)

I is the n × n identity matrix and the coefficient ck is (−1)k times the sum of
the determinants of all of the principal k × k minors of M (in particular, c1 =
− trace (M) and cn = (−1)n detM). The lemma 3.1 has been employed in order to
reduce the characteristic equation p2(λ) = λ2+c1λ+c2 = 0 for the matrix N2 to the
readily solvable equation for the matrix N ′2, which is of the form p2(λ) = λ2+c2 = 0.
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Having defined the eigenvalues µ1 and µ2 of the matrix N2, it is not hard to find
eigenvectors of N2, associated with those eigenvalues (3.7). Indeed, note first that

N2 = (5− s2) I2 +N ′2, N ′2 = (1 + c1 s2)

[
c2 1
1 − c2

]
, (3.9)

where the eigenvalues of the matrix

[
c2 1
1 − c2

]
are ± s1. Therefore to find the

eigenvectors of the matrix N2, it is sufficient to determine the eigenvectors of the

much simpler matrix

[
c2 1
1 − c2

]
. So one readily derives that[

c2 1
1 − c2

] (
c1

1 + s2

)
= s1

(
c1

1 + s2

)
,[

c2 1
1 − c2

] (
1 + s2
−c1

)
= − s1

(
1 + s2
−c1

)
. (3.10)

Thus explicit forms of the two linearly independent eigenvectors of the operator
N2, associated with the eigenvalues (3.7), are

ϕ1 := (c1, 1 + s2)ᵀ , ϕ2 := (1 + s2,− c1)ᵀ, (3.11)

respectively. Note that the vectors ϕ1 and ϕ2 are essentially the same as the

down-components of the antisymmetric eigenvectors f̃1 = Tf1 and f̃3 = Tf3 of the
discrete number operator Ñ5 in the Pd-symmetrized basis ẽn, where f1 and f3 have
been already derived in [18] by employing Mathematica; that is

f̃1 = (03, ϕ1)ᵀ, f̃3 = (03, ϕ1)ᵀ. (3.12)

Turning now to the case of the matrix N3, one may likewise employ the polyno-
mial p3(λ) = λ3 + c1λ

2 + c2λ + c3 in order to find first the eigenvalues of N3. It
turns out that the determinant of the matrix N3 is equal to zero,

det N3 =

∣∣∣∣∣∣
2 −

√
2 s1 −

√
2

−
√

2 s1 3− c2 c1s2 − 1

−
√

2 c1s2 − 1 2(s2 + 2)− c1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2 0 0

−
√

2 s1 s1 − 2 c2 − s2 − 1

−
√

2 3(c2 − s1)− c1 (s2 + 1)2

∣∣∣∣∣∣
= 2

∣∣∣∣ s1 − 2 c2 − s2 − 1
3(c2 − s1)− c1 (s2 + 1)2

∣∣∣∣ = 2(c2 − s1)

∣∣∣∣ −1 −1
s2 + 1 s2 + 1

∣∣∣∣ = 0 . (3.13)

Hence the characteristic equation for the matrix N3 reduces to the form

λ(λ2 + c1λ+ c2) = 0 . (3.14)

Consequently, one of the eigenvalues of the matrix N3 is λ0 = 0, whereas the two
remaining eigenvalues of N3 are roots of the quadratic equation

λ2 + c1λ+ c2 = 0 , (3.15)

where the coefficient c1 = − trace (N3) = −2 (5 + s2) and the coefficient c2, which
represents the sum of the determinants of the three principal 2 × 2 minors of N3,
is readily evaluated to be c2 = 10 + (4 s2 + 3)(s1)2. So one concludes that

λ1,2 = −c1
2
±
√

(c1)2

4
− c2 = 5 + s2 ± (c1 s2 − 1) s1, (3.16)
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upon taking into account the readily verified identity 2(2− s1) = (s2 + c2)2.
Quite similar to the case of the matrix N2, the knowledge of the explicit forms

of the eigenvalues for the matrix N3 essentially simplifies the task of defining the
appropriate eigenvectors of N3 for each of those eigenvalues. Indeed, by looking for
solutions of the equation N3 φλ = λφλ in the form φλ = (x0, x1, x2)ᵀ, one arrives
simply at a system of three homogeneous equations

(2− λ)x0 −
√

2 s1 x1 −
√

2x2 = 0,

−
√

2 s1 x0 + (3− c2 − λ)x1 + (c1s2 − 1)x2 = 0,

−
√

2x0 + (c1s2 − 1)x1 + [2(s2 + 2)− c1 − λ]x2 = 0,

(3.17)

for the components of the 3D column-vector φλ.
1°. In the case of λ0 = 0 the system (3.17) reduces to

√
2x0 − s1 x1 − x2 = 0,

−
√

2 s1 x0 + (3− c2)x1 + (c1s2 − 1)x2 = 0,

−
√

2x0 + (c1s2 − 1)x1 + [2(s2 + 2)− c1]x2 = 0.

(3.18)

Eliminating the component x0 by adding to the second equation in (3.18) the first
one, multiplied by s1, one arrives at the relation x1 = (1 + s2)x2. Substituting this
relation back into the first equation enables one to express the component x0 via
the component x2 as

√
2x0 = s1 x1 + x2 = (s1 − 2 c2)x2.

Taking into account that the system (3.17) defines the eigenvector φ0 up to the
multiplication by an arbitrary constant factor, one thus concludes that

φ0 =
(
s1 − 2 c2,

√
2 (1 + s2),

√
2
)ᵀ
. (3.19)

2°. In the case of λ1 = 5 + s2 + (c1 s2 − 1) s1 = 5 + s2 (s2 − c1), the system of
equations (3.17) reduces to

[c1(s2 + 1)− 5]x0 −
√

2 s1 x1 −
√

2x2 = 0,

−
√

2 s1 x0 + [c1(s2 + 2)− 3]x1 + (c1s2 − 1)x2 = 0,

−
√

2x0 + (c1s2 − 1)x1 − (c2 s1 + 3)x2 = 0,

(3.20)

As in the previous case of λ0 = 0, one eliminates the component x0 by adding to
the second equation in (3.20) the third one, multiplied by − s1. This leads to the
relation

a x1 + b x2 = 0, a =
√

5 s2 + 3 c1 − 5, b = (4− c1) s1 + 3 c2 − 2, (3.21)

interconnecting the components x1 and x2. It turns out that the coefficients a and
b in the relation (3.21) have a common factor,

a = ε (2 s2 − 2c1 + 3), b = ε (2 s2 + 1), ε = − c2 (c2 s1 + 3). (3.22)

Eliminating this common factor from the relation (3.21) reduces it to the simpler
form,

(2 s2 − 2c1 + 3)x1 + (2 s2 + 1)x2 = 0, (3.23)

from which it follows at once that x1 = − (2 s2 + 1) and x2 = 2 (s2 − c1) + 3.
Substituting these values of x1 and x2 into the first equation in (3.20), one finally
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finds that the component x0 =
√

2 c1. Thus the eigenvector φ1, associated with the
eigenvalue λ1, has the form

φ1 =
(√

2 c1,− 2 s2 − 1, 2 (s2 − c1) + 3
)ᵀ
. (3.24)

3°. Finally, in the case of λ2 = 5 + s2 − (c1 s2 − 1) s1 = s1 (s1 − c2), the system of
equations (3.17) reduces to

c2 (s1 + 1)x0 −
√

2 s1 x1 −
√

2x2 = 0,

−
√

2 s1 x0 + (c2 s1 + 1)x1 + (c1s2 − 1)x2 = 0,

−
√

2x0 + (c1s2 − 1)x1 − c21 (s1 + s1)x2 = 0.

(3.25)

As in the previous case of λ1, one eliminates the component x0 by adding to the
second equation in (3.25) the third one, multiplied by − s1. This leads to the
relation x1 = x2, which then enables one to find from the first equation in (3.25)

that x0 = −
√

2 c1 x1. Thus the eigenvector φ2, associated with the eigenvalue λ2,
has the form

φ2 =
(
−
√

2 c1, 1, 1
)ᵀ
. (3.26)

It remains only to add that the vectors φ0, φ1 and φ2, associated with the eigen-
values λ0, λ1 and λ2, are essentially the same as the up-components of the three

symmetric eigenvectors f̃0 = Tf0, f̃4 = Tf4 and f̃2 = Tf2 of the discrete number
operator Ñ5 in the Pd-symmetrized basis ẽn, where f0, f2 and f4 have been already
derived in [18] by employing Mathematica; that is,

f̃0 = (φ0, 02)ᵀ, f̃2 = (φ2, 02)ᵀ, f̃4 = (φ1, 02)ᵀ. (3.27)

4. Concluding remarks

To conclude this work, the following should be recalled first. Recently it has
been proved that the ‘position’ and ‘momentum’ DFT operators X and Y form a
special case of the Askey-Wilson algebra AW (3) [12]. So it would be appropriate
to use the eigenvectors of either X, or Y , as a basis in the eigenspace of the discrete
number operator N , that governs the eigenvectors of the DFT operator Φ. In this
work it is shown that in the case of DFT this technique of employing the ‘position’
en and ‘momentum’ εn eigenvectors for resolving an eigenvalue problem for the
discrete number operator N is not applicable, unless those eigenvectors are being
symmetrized with respect to the discrete reflection operator Pd. Therefore the Pd-
symmetrization operator T is found and a remarkable fact is established: it turns
out that the matrix of the discrete number operator N5 in the Pd-symmetrized
basis ẽn = Ten has only half of the number of the nonzero entries of the same
matrix in the initial basis en. This sparsealization of the discrete number operator
N5 is shown to be essentially helpful for finding explicit forms of the eigenvalues
and eigenvectors of the operator N5. Finally, I believe that just a bit more time is
needed now to resolve an eigenvalue problem for the DFT number operator N of a
general dimension N .
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