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HYPOGEOMETRIC DISTRIBUTION AND RELATED
DISCRETE TIME POINT PROCESS

Stefanka Chukova*
School of Mathematics and Statistics,
Victoria University of Wellington,

Wellington, NZ

Leda Minkova and Silvana Paralloi
Faculty of Mathematics and Informatics,

Sofia University,
Sofia, Bulgaria

Abstract: In this paper we propose and study a new distribution, called the hypogeometric distribution,
which is a sum of independent geometrically distributed variables with different parameters. Also, we propose
and study a discrete time point process based on this distribution. As an example, we focus on a particular
form of this process. Also, we show that this type of processes could be used as an appropriate tool to model
arrivals with increasing or decreasing time trends. Some possible extensions of this work are also included
in the paper.

Key words : Geometric distribution, Hypogeometric distribution, Waiting time, Counting process.

1. Introduction
Most theoretical risk models are formulated for continuous time and results of interest for the

particular study are derived. On the other hand, the practical world is discrete, and the continu-
ous time models have to be modified and adjusted to the discrete time scenario. The results for
discrete time risk models can provide a good background for better understanding the ideas of
the continuous-time scenario and their results can be used as approximations or bounds for the
corresponding results in the continuous case, see [3] and [2] for the approximating procedures. The
discrete-time risk models have their special features and require specific set of ideas and appara-
tus to analyze. Also, they are of independent interest since formulas for discrete-time models are
mostly recursive and hence suitable for computing the quantities of interest in practice while still
reproducing, in limit, the corresponding continuous time results.

It is well-known that if the counting process in the discrete time risk model is the binomial
process, the interarrival times are independent, identically distributed geometric random variables,
see for example [5]. In this paper we consider a point process, with interarrival times that are
independent, geometrically distributed with different parameters random variables. The geometric
summands with different parameters are used in [1] and [6] for representing the number of shocks
in an engineering system.

The main goal of this paper is to introduce the discrete-time hypogeometric process (HPGP),
which has similar structure as the Binomial process, but the interarrival times are not identically
distributed. In order to define this process, we firstly introduce the hypogeometric distribution,
which is an analogue to the hypoexponential distribution given in [7], and use it to propose and
study the HPGP.

In the next Section 2, we introduce the hypogeometric distribution. The corresponding discrete
time pure birth process with some properties is introduced in Section 3. In Section 4 we illustrate

*Corresponding author. E-mail address:leda@fmi.uni-sofia.bg
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our ideas on an example. The discussion in Section 5 provides some pictorial illustrations of the
defined process and discuss some of its properties. Some conluding remarks for this study are given
in Section 6.

2. Hypogeometric distribution
Let us consider the sequence

{Xj, j = 1,2, . . .} (2.1)

of mutually independent, geometrically distributed random variables with different parameters
πj ∈ (0,1) with πi �= πj, i �= j. The corresponding probability mass function (PMF), cumulative
distribution function (CDF) and probability generating function (PGF) of Xj, j = 1,2, . . . in (2.1)
are given by

P (Xj = n) = (1−πj)π
n−1
j , n= 1,2, . . . , (2.2)

FXj
(n) = P (Xj ≤ n) = 1−πn

j , n= 1,2, . . . , (2.3)

and

ΨXj
(s) =

(1−πj)s

1−πjs
, j = 1,2, . . .

Let τk =X1+ . . .+Xk, k= 1,2, . . . be the sum of k of these random variables. Then, the following
lemma holds:

Lemma 1. The PMF of τk, k= 1,2, . . . is given by

P (τk = n) =

{
0, n < k∑k

j=1w(k, j)P (Xj = n), n= k, k+1, . . . ,
(2.4)

where

w(k, j) =Πk
i=1,i �=j

1−πi

πj −πi

, j = 1,2, . . . , k, (2.5)

and w(1,1) = 1.

Proof. According to the definition, the PGF of τk is given by

Ψτk(s) = sk Πk
j=1

1−πj

1−πjs
= skΦ(s),

where

Φ(s) =Πk
j=1

1−πj

1−πjs
=

Πk
j=1(

1
πj

− 1)

Πk
j=1(

1
πj

− s)
=

H̃(s)

D(s)

is the PGF of some random variable Y with distribution P (Y = n) = pn, n= 0,1, . . . . Then, due
to the properties of PGF, we have the following representation for τk

τk = Y + k,

i.e., P (τk = n) = P (Y = n− k) = pn−k, n≥ k. Therefore, to find the distribution of τk it suffices to
find the distribution of Y. We invert Φ(s) by using the partial-fraction expansion method, given in
[4], p.220.

The roots of the denominator D(s) = Πk
j=1(

1
πj

− s) are sj =
1
πj
, j = 1,2, . . . , k and its derivative

is given by D′(s) =−∑k

i=1Π
k
j=1,j �=i(

1
πj

− s). Then

D′(si) =D′
(

1

πi

)
=−Πk

j=1,j �=i

(
1

πj

− 1

πi

)
.
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Then, for the coefficients fi, we have

fi =− H̃(si)

D′(si)
=

Πk
j=1(

1
πj

− 1)

Πk
j=1,j �=i(

1
πj

− 1
πi
)
, i= 1,2, . . . k.

Hence, according to the inversion method, the PMF of the random variable Y is as follows

P (Y = n) =
k∑

i=1

Πk
j=1(

1
πj

− 1)

Πk
j=1,j �=i(

1
πj

− 1
πi
)
πn+1
i

=
k∑

i=1

Πk
j=1(1−πj)

Πk
j=1,j �=i(1− πj

πi
)
πn
i

=
k∑

i=1

Πk
j=1,j �=i

(
1−πj

πi −πj

)
(1−πi)π

n+k−1
i

=
k∑

i=1

w(k, i)P (Xi = n+ k), n= 0,1, . . .

(2.6)

Now, using the distribution of Y in (2.6), we find that the PMF of τk is given by

P (τk = n) = P (Y = n− k) =

{
0, n < k∑k

j=1w(k, j)P (Xj = n), n= k, k+1, . . .

�
Remark 1. Due to (2.4), the following identity is true

P (τk+1 = n) =

k+1∑
j=1

w(k+1, j)P (Xj = n) = 0, n= 1,2, . . . , k. (2.7)

Remark 2. The following identities are true

w(k, j) =
πj −πk+1

1−πk+1

w(k+1, j), j = 1,2, . . . k+1. (2.8)

and
k∑

j=1

w(k, j)πk−1
j = 1, k= 1,2, . . . (2.9)

The equation (2.9) is equivalent to the fact that
∑∞

n=k P (τk = n) = 1, k= 1,2, . . .

Definition 1. The distribution of τk, given in (2.4) is called a hypogeometric distribution with
parameters π1, π2, . . . , πk, π1 �= π2 �= . . . �= πk, and it is denoted by HPG(π1, π2, . . . , πk).

Lemma 2. The cumulative distribution function of τk, k= 1,2, . . . is given by

P (τk ≤ n) =
k∑

j=1

w(k, j)πk−1
j (1−πn−k+1

j ), k≤ n. (2.10)
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Proof. According to the definition, we have the following

P (τk ≤ n) =
∑n

i=k

∑k
j=1w(k, j)P (Xj = i)

=

k∑
j=1

w(k, j)
n∑

i=k

P (Xj = i)

=
k∑

j=1

w(k, j)(1−πj)

n∑
i=k

πi−1
j ,

which leads to (2.10). �

3. Point process with HPG(π1, π2, . . . , πk) distributed kth waiting time
Let us consider a point process, whose waiting times are HPG(π1, π2, . . . , πk). For this process,

we will use the following notation HPGP (π1, π2, . . . , πk). Then, it is well-known that the expected
value and the variance of the jth interevent time are equal to

E(Xj) =
1

1−πj

and V (Xj) =
πj

(1−πj)2
. (3.1)

For this process, let us denote by N(n) the number of events up to and including time n, with
N(0) = 0. Then the following theorem holds:

Theorem 1. The PMF of N(n), n= 1,2, . . . is given by

P (N(n) = k) =

{
πn
1 , k= 0,

1
1−πk+1

∑k+1

j=1 w(k+1, j)P (Xj = n+1), k= 1,2, . . . , n.
(3.2)

Proof. Firstly, let k= 0. The events {N(n) = 0} ≡ {X1 >n} are equivalent, i.e., P (N(n) = 0) =
P (X1 >n). But P (X1 >n) = πn

1 , therefore (3.2) is true for k= 0.
Let k= 1,2, . . . , n. According to the well-known relation

P (N(n) = k) = P (τk ≤ n)−P (τk+1 ≤ n),

we have that

P (N(n) = k) =
k∑

j=1

w(k, j)πk−1
j (1−πn−k+1

j )−
k+1∑
j=1

w(k+1, j)πk
j (1−πn−k

j ).

Then, using the identity (2.8), we have

P (N(n) = k) =
∑k

j=1w(k+1, j)
πj−πk+1

1−πk+1
(πk−1

j −πn
j )−

∑k
j=1w(k+1, j)πk

j (1−πn−k
j )

−w(k+1, k+1)πk
k+1(1−πn−k

k+1 )

=
k∑

j=1

w(k+1, j)
1−πj

1−πk+1

(πn
j −πk+1π

k−1
j )−w(k+1, k+1)(πk

k+1 −πn
k+1)

=

k+1∑
j=1

w(k+1, j)
1−πj

1−πk+1

(πn
j −πk+1π

k−1
j ).

According to the identity (2.7), the second part of this expression is zero, which leads to (3.2). �
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Remark 3. The PMF of N(n) for k = 1,2, . . . , n given in (3.2), has the following equivalent
representation:

P (N(n) = k) =Πk
m=1(1−πm)

k+1∑
j=1

πn
j

Πk+1
m=1,m �=j(πj −πm)

. (3.3)

It follows from the definition of w(k, j) in (2.5).
Remark 4. Due to (3.2), the mean of N(n) is given by

E(N(n)) =
n∑

k=1

k

1−πk+1

k+1∑
j=1

w(k+1, j)P (Xj = n+1), n= 1,2, . . .

Next, let us assume that the state transition probabilities of a counting process N∗(n), with
N∗(0) = 0, are governed by the following assumptions:

P (N∗(1) = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π1, k= 0,

1−π1, k= 1,

0, k≥ 2,

(3.4)

and for every k= 0,1, . . . , and n= 1,2, . . .

P (N∗(n+1) = k+ j |N∗(n) = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πk+1, j = 0,

1−πk+1, j = 1,

0, j ≥ 2,

(3.5)

which defines N∗(n) as a discrete pure birth process. Next, we show that the following theorem
holds.

Theorem 2. The process N∗(n) defined by the assumptions (3.4) and (3.5) coincides with the
counting process N(n) whose interevent times are given by the sequence (2.1) with (2.2).

Proof. It suffices to show that the distribution of N∗(n) coincides with the distribution of N(n)
given in Theorem 1. We use mathematical induction to prove this coincidence.
For n= 0, we have P (N(0) = 0) = P (N∗(0) = 0) = 1 by definition. For n= 1, the distribution of

N∗(1) is given by (3.4). The distribution of N(1), using (3.2) for n= 1 and {k = 0,1}, we obtain
(3.4).

For n= 2, the distribution of N∗(2), using the probability rules and the total probability rule
we get

� k= 0

P (N∗(2) = 0) = P (N∗(2) = 0|P (N∗(1) = 0)P (N∗(1) = 0) = π1π1 = π2
1.

� k= 1
P (N∗(2) = 1) = P (N∗(2) = 1|P (N∗(1) = 0)P (N∗(1) = 0)

+P (N∗(2) = 1|P (N∗(1) = 1)P (N∗(1) = 1)
= π1(1−π1)+ (1−π1)π2 = (1−π1)(π1 +π2).

� k= 2

P (N∗(2) = 2) = P (N∗(2) = 2|P (N∗(1) = 1)P (N∗(1) = 1) = (1−π1)(1−π2).
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For the distribution of N(2), using (3.2) for n= 2 and {k= 0,1,2}, we obtain the same distribution
as for N∗(2).

Now, assume that the two distributions coincide for some n= i > 2, i.e., P (N(i) = k) = P (N∗(i) =
k) for k= 0,1,2, . . . , i. Next, we show that they coincide for n= i+1. The distribution of N∗(i+1)
is as follows

� k= 0

P (N∗(i+1) = 0) = P (N∗(i+1) = 0|P (N∗(i) = 0)P (N∗(i) = 0) = π1π
i
1 = πi+1

1 .

� For k= 1,2, . . . , i+1, we have

P (N∗(i+1) = k) = P (N∗(i+1) = k|P (N∗(i) = k− 1)P (N∗(i) = k− 1)
+P (N∗(i+1) = k|P (N∗(i) = k)P (N∗(i) = k)

=Πk−1
m=1(1−πm)

k∑
j=1

πi
j

Πk
m=1,m �=j(πj −πm)

(1−πk)

+Πk
m=1(1−πm)

k+1∑
j=1

πi
j

Πk+1
m=1,m �=j(πj −πm)

πk+1

=Πk
m=1(1−πm)

k∑
j=1

πi
j

Πk
m=1,m �=j(πj −πm)

(
πk+1

πj −πk+1

+1

)

+
Πk

m=1(1−πm)

Πk
m=1(πk+1 −πm)

πi+1
k+1

=Πk
m=1(1−πm)

k+1∑
j=1

πi+1
j

Πk+1
m=1,m �=j(πj −πm)

.

Using (3.3) for n= i+1 and {k= 1,2, . . . , i+1}, we obtain that the distribution of N(i+1) is the
same as the distribution of N∗(i+1).

�
Theorem 3. The counting process N(n) satisfies the following recursion formula

P (N(n) = k) =

⎧⎨
⎩

πn
1 , k= 0,

πk+1P (N(n− 1) = k)+ (1−πk)P (N(n− 1) = k− 1), k= 1,2, . . . , n− 1
(1−π1) . . . (1−πn), k= n.

Proof. The recursion follows from the assumptions (3.4) and (3.5). �

4. An example: HPGP (π1, π
a
1 , . . . , π

ak−1

1 )

According to the definition of the HPGP (π1, π
a
1 , . . . , π

ak−1

1 ), the PMF of Xj, j = 1,2,3, . . . is
given by

P (Xj = n) = (1−πaj−1

1 )π
aj−1(n−1)
1 , n= 1,2, . . . (4.1)

The mean and the variance of Xj, are given by

E(Xj) =
1

1−πaj−1

1

and V (Xj) =
πaj−1

1

(1−πaj−1

1 )2
. (4.2)

In this case, there are only two parameters that affect the behaviour of the process, that is why
we denote it by HPGP (a,π1).

If a > 1, it is easy to verify that πaj−1

1 → 0 and then E(Xj) → 1 and V (Xj) → 0, as j → ∞.

If a < 1, πaj−1

1 → 1 and E(Xj)→∞ and V (Xj)→∞. It is always a �= 1, due to the assumption
πi �= πj, i �= j in the initial settings of the process. If a = 1, the random variables X1,X2, . . . are
i.i.d., geometrically distributed as X1, therefore HPGP (a,π1) is a discrete time renewal process
and the corresponding counting process is the binomial process.
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4.1. The kth waiting time for HPGP (a,π1)
Let τk is the waiting time until the occurrence of the kth event in a HPGP(a,π1),

i.e. τk =X1 + . . .+Xk. Therefore, using Lemma 1, we obtain the following theorem:

Theorem 4. The distribution of the waiting time τk until the kth event for a
HPGP (a,π1) is given by

P (τk = n) =

{
0, n < k∑k

j=1w(k, j)P (Xj = n), n= k, k+1, . . . ,
(4.3)

where

w(k, j) =Πk
l=1,l �=j

1−πal−1

1

πaj−1

1 −πal−1

1

, j = 1,2, . . . , k.

Proof. It follows from Lemma 1 with πj = πaj−1

1 . �
Also, we get that

E(τk) =

k∑
j=1

1

1−πaj−1

1

and V (τk) =

k∑
j=1

πaj−1

1

(1−πaj−1

1 )2
.

4.2. The HPGP (a,π1) counting process
Denote by N(n) the counting process, representing the number of events in a HPGP(a,π1) up

to and including time n≥ 0, i.e., N(n) =max{k, τk ≤ n}. The state space of N(n) is N , the set of
the non-negative integers. Then we have the following result:

Theorem 5. The probability mass function of N(n) in given by

P (N(n) = k) =

{
πn
1 , k= 0,
1

1−πak
1

∑k+1

j=1 w(k+1, j)P (Xj = n+1), k= 1,2, . . . , n. (4.4)

Proof. The proof follows directly from Theorem 1 with πj = πaj−1

1 . �
According to Theorem 2, the assumption (3.5 ) is given by

P (N(n+1) = k+ j |N(n) = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πak

1 , j = 0,

1−πak

1 , j = 1,

0, j ≥ 2,

(4.5)

for every k= 0,1, . . . , and n= 1,2, . . . , with the initial distribution given by

P (N(1) = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π1, k= 0,

1−π1, k= 1,

0, k≥ 2,

(4.6)

which leads to the following equivalent definition of the HPGP:
Definition 2. The counting process N(n), n= 1,2, . . . , defined by the assumptions (4.5) and

(4.6) is a HPGP (a,π1).
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4.3. The expected waiting time
Let us define

τN(n) =

{
0, N(n) = 0,
X1 +X2 + . . .+XN(n), N(n) = 1,2, . . . , n.

Theorem 6. The expected waiting time of τN(n) is given by

E(τN(n)) =

n∑
j=1

E(Xj)P (N(n)≥ j). (4.7)

Proof. For the mean of τN(n) we have

E(τN(n)) =E[E(
∑N(n)

i=1 Xi|N(n))]

=
∑n

k=1E(τk)P (N(n) = k)

=
∑n

k=1

∑k

j=1
1

1−πaj−1
1

P (N(n) = k)

=
∑n

j=1
1

1−πaj−1
1

∑n

k=j P (N(n) = k),

(4.8)

and then (4.7).

5. Discussion on HPGP (π1, π2, . . . , πk)
In what follows, we provide some insight on the behaviour of HPGP (π1, π2, . . . , πk) and its

particular version HPGP (a,π1). Recall that the consecutive interarrival times Xj, j = 1,2,3 . . . of
the HPGP (π1, π2, . . . , πk) are geometrically distributed with parameter (1− πj). Also, see (3.1),
we have

E(Xj) =
1

1−πj

and V (Xj) =
πj

(1−πj)2
.

Let us consider the following sequence of the consecutive parameters of HPG(π1, π2, . . . , πk)

π1 <π2 < . . . < πk, k = 2, 3, 4, . . . , i.e.,
1−π1 > 1−π2 > . . . > 1−πk, k = 2, 3, 4, . . . (5.1)

Then, using formula (2.3) and the definition of usual stochastic order, denoted by “≺st ”, it is easy
to see that

P (Xj >n) = πn
j ≤ πn

j+1 = P (Xj+1 >n), then Xj ≺st Xj+1.

For details on stochastic orderings see [8]. Then, the consecutive interarrival times {Xj}∞1 of
the HPGP (π1, π2, . . . , πk) form a stochastically increasing sequence. Also, it is easy to see that
E(X1) < E(X2) < . . . < E(Xk) < . . .. Therefore, HPGP (π1, π2, . . . , πk) can be used as a tool to
model increasing trends over time.

Similarly, if

π1 >π2 > . . . > πk, k = 2, 3, 4, . . . , i.e.,
1−π1 < 1−π2 < . . . < 1−πk, k = 2, 3, 4, . . . , (5.2)

then the consecutive interarrival times of the process form a stochastically decreasing sequence and
E(X1)>E(X2)> . . . > E(Xk)> . . ..

Analogously, if a< 1,
π1 <πa

1 <πa2

1 < . . .
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Figure 1. N(n) for HPGP (a,π1) with different parameter values

and, using (5.1), we conclude that the HPGP (a,π1) is a stochastically increasing, whereas for
a > 1 it is stochastically decreasing process, which is illustrated in Figure 1. In each of the plots
included in Figure 1, we have shown six sample paths of the counting process of the HPGP with
the parameters as given in the plots’ label. Comparing the two plots on the first column of Figure
1, we see that it takes much longer (it takes many more discrete time steps) for HPGP (0.9,0.7)
to reach level 70 than for HPGP (1.05,0.7) to reach the same level. Similar comparison is in place
for the second column plots of Figure 1.
Next, we provide some insight on the behaviour of E(N(n)) of HPGP (a,π1) depending on the

values of its parameters. We use Remark 4 (and also simulation) to compute E(N(n)). The plots
on Figure 2 agree with our intuition regarding the behaviour of E(N(n)). Indeed, HPGP (0.8,0.7)
is a stochastically increasing process, therefore its expected number of events at time 30 should be
less than corresponding number of events of HPGP (1.10,0.7), which forms a decreasing process,
at the same time. So, Figure 2 depicts the corresponding E(N(n))’s for HPGP, with parameters
given in the legend, having a relationship as we have expected.
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Figure 2. E(N(n)) for HPGP (a,π1) with different parameter values

6. Conclusion
In this study, analogueslly to the ideas of the hypoexponential distribution in [7], we proposed

a new discrete distribution, called hypogeometric distribution, which is a sum of independent
geometrically distributed random variables with different parameters. Also, we studied a point
process with hypogeometrically distributed waiting times and derived some of its basic properties.
An example of this type of process, with a particular hypogeometric distribution for its waiting
times, is also included in the paper. In addition, a discussion on some useful properties of these
type of processes to model time trends is included.

There are many open research questions related to the newly introduced hypogeometric distri-
bution and related discrete-time point process. For example, questions related to the statistical
inference for the distribution/process parameters as well as fitting these to real datasets. Also,
how to introduce a compound HPGP (π1, π2, . . . , πk) and HPGP (a,π1)? What are the possible
applications of these processes in risk theory?
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DN12/11/20.dec.2017 of the Ministry of Education and Science of Bulgaria.
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1. Introduction
Let X and Y be random variables having joint cumulative distribution function H and mar-

gins F, G, respectively. Sklar [15] defined copula representation of H as given by H(x, y) =
C(F (x),G(y)), where C is a unique cumulative distribution function having uniform margins on
unit interval. Copula must satisfy the following properties:

Definition 1. A bivariate copula is a function with following properties:
1. C is 2-increasing function for all x1 ≤ x2, y1 ≤ y2 ∈ [0,1] such that

C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1)≥ 0,

2. C is grounded such that C(x,0) =C(0, y) = 0 for all x, y ∈ [0,1],
3. C has uniform margins such that C(x,1) = x and C(1, y) = y for all x, y ∈ [0,1],

4.
∂2C(u, v)

∂ u ∂ v
≥ 0.

We note that first condition is an equivalent condition for fourth condition in Definition 1 if C(u, v)
is twice differentiable. See Lu and Ghosh [10].

Many nonparametric measures of dependence can be viewed as functions of copula C. For
bivarate case, Kendall’s tau τ and Spearman’s rho ρ can be defined, respectively, as

τ = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1,

ρ= 12

∫
[0,1]2

uvdC(u, v)− 3.

One of the most used bivariate family of the copula, because of its simple form, is the FGM
family defined as

C(u, v) = uv+ θu(1−u)v(1− v); θ ∈ [−1,1],

*E-mail address: orhunsusam@munzur.edu.tr
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and studied in Farlie [4], Gumbel [5] and Morgenstern [11]. Kendall’s tau and Spearman’s rho for
FGM copula can given as

τ = 2
θ

9
, ρ=

θ

3
.

It is clear that, FGM copula has the positive dependence struructure for the dependence parameter
θ ∈ [0,1]. Essepecially, in this paper, we mainly interested for the FGM copula having positive
dependence structures.

FGM copula have been stuied in different fields, such as finance (Cossette et al. [3]), economics
(Patton [14]), and reliability engineering (Navarro et al. [13]; Navarro and Durante [12]). Since the
FGM copula has only one parameter, many FGM generated copulas have been introduced with the
aim of adding extra parameters to the model. Huang and Kotz [6] proposed the following copula:

C1(u, v) = uv
(
1+ θ(1−u)(1− v)+βuv(1−u)(1− v)

)
;

where

θ ∈ [−1,1], β ≤ 3− θ+
√
9− 6θ− 3θ2

2
.

Huang and Kotz [7] proposed the following two copulas:

C2(u, v) = uv
(
1+ θ(1−uβ)(1− vβ)

)
, β > 0,−min(1,

1

β2
)< θ <

1

β
,

C3(u, v) = uv
(
1+ θ(1−u)β(1− v)β

)
, β > 1,−1< θ <

(β+1

β− 1

)β−1
.

In addition, Lai and Xie [9], Bairamov and Bairamov [1] gave a generalization of the FGM copula
family in their works.

In this study we prefer to use a different approach for enriching the FGM copula inspired by
the Kelner et al. [8]. We attempt to replace θ, the generator parameter θ by new two parameters
α and β, by using the compound tecnique in order to create new FGM copula while preserving
its membership in FGM type copula. The paper is organized as follows: In Section 2, the new
compound FGM copula is proposed and also, we investigate the its dependence structure. In Section
3, the performance of the proposed copula is investigated for the real data examples according to
its goodness of fit results. Finally, last section is devoted for the conclusion.

2. Compound FGM copula
In this section, we present a tool for generating new compound positively dependent FGM copula

having two dependence parameter α and β. This is achieved by using a compound of an existing
positively dependent FGM copula cdf with respect to fα,β(θ) which is probability density of the
dependence parameter θ,

CT (u, v) =

∫ 1

0

Cθ(u, v)fα,β(θ)dθ, (2.1)

where fα,β is the probabilty distribution function of beta distribution defined as

fα,β(θ) =
θα−1(1− θ)β−1

Beta(α,β)
; α,β > 0.

Then the compuond FGM copula can be derived as following:

CT (u, v) =

∫ 1

0

(
uv+ θu(1−u)v(1− v)

)θα−1(1− θ)β−1

Beta(α,β)
dθ

=uv+
α

α+β
u(1−u)v(1− v); α,β > 0,
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where Beta is the Beta function defined as as Beta(x1, x2) =
∫ 1

0
tx1−1(1− t)x2−1dt for x1, x2 positive

integers. We now show that the new compound FGM copula satisfies the all properties of copula
function.

Lemma 1. Let CT (u, v) =
∫ 1

0
Cθ(u, v)fα,β(θ)dθ be a compound FGM copula based on density

function fα,β(θ) of θ ∈ [0,1]. Then for any Cθ(u, v) the compound FGM copula CT is also an valid
copula function.

For the proof of Lemma 1, using the fact that for existing FGM copula complies properties
defined in Definition 1 we get

CT (0, v) =CT (u,0) =

∫ 1

0

Cθ(0, v)fα,β(θ)dθ=

∫ 1

0

Cθ(u,0)fα,β(θ)dθ= 0,

CT (1, v) =

∫ 1

0

Cθ(1, v)fα,β(θ)dθ= v

∫ 1

0

fα,β(θ)dθ= v,

CT (u,1) =

∫ 1

0

Cθ(u,1)fα,β(θ)dθ= u

∫ 1

0

fα,β(θ)dθ= u.

Also we know that δ2Cθ(u,v)

δ u δ v
≥ 0 then

∂2CT (u, v)

∂ u ∂ v
=

∫ 1

0

δ2Cθ(u, v)

δ u δ v
fα,β(θ)dθ≥ 0,

then proof is completed.
Proposed compound FGM copula has the following Kendall’s tau, Spearman’s rho, lower tail

dependence and upper tail dependence coefficients given by respectively

τT =
11α+9β

9(α+β)
− 1,

ρT =
10α+9β

3(α+β)
− 3,

λT,L = 0, λT,U = 0.

Figure 1 represents the values for the Kendall’s tau and Spearman’s rho of the compound FGM
copula with different fixed values of α and varying values of β. From the this figure, it can be
conclude that the compound FGM copula exhibits a varying dependence structures depending
on the dependence parameters. Also, we can state that Kendall’s tau and Spearman’s rho are,
respectively, limited to (0,0.22) and (0,0.33) as in FGM copula.
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Figure 1. τ and ρ values for compound FGM copula

3. Case study
In this section, we put the new compound copula into the most used double parameter families

of FGM copula as discussed in Section 1. Especially, in this case study, it is aimed to investigating
the goodness of fit performance of proposed compund FGM copula under the different dependence
structures. We use uranium dataset available in R package “copula”. According the this package
“These data consist of log concentrations of 7 chemical elements in 655 water samples collected
near Grand Junction, CO (from the Montrose quad-rangle of Western Colorado). Concentrations
were measured for the following elements: Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K),
Cesium (Cs), Scandium (Sc), And Titanium (Ti).” We prefer to modelling the pairs of variables
U-Co, Li-Sc and K-Cs.

To avoid decision about marginal distributions, the observations were transformed to pseudo-
observation (normalized ranked data) by their corresponding empirical distribution functions. Fig-
ure 2(a), 2(b) and 2(c) show the scatter plots of pseudo-observation for the pairs U-Co, Li-Sc and
K-Cs, respectively. Looking at the graphs, strong positive dependence structure with τ = 0.2074,
mild positive dependence structure with τ = 0.0595 and moderate dependence structure with τ =
0.1021 can be observed for the pairs of K-Cs, U-Co and Li-Sc, respectively.
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Figure 2. Scatter plots of real data sets
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Table 1. Goodness-of-Fit results for real data sets

Copula Data set θ̂ α̂ β̂ CvM P-Val

Cθ U-Co 0.2681 — — 0.0612 0.0241

C1 0.3812 — -0.4700 0.0565 0.501

C2 0.7100 — 0.5142 0.0583 0.0487

C3 0.4488 — 1.3734 0.0521 0.0547

CT — 0.0676 0.1920 0.0611 0.0251

Cθ Li-Sc 0.3762 — — 0.0618 0.0231

C1 0.3081 — -0.1990 0.0308 0.0905

C2 0.5650 — 0.5873 0.0307 0.0912

C3 0.3347 — 1.1980 0.0293 0.0847

CT — 0.0742 0.2121 0.0218 0.1027

Cθ K-Cs 0.9333 — — 0.0397 0.0784

C1 0.9543 — -0.3472 0.0340 0.0817

C2 1.2087 — 0.7888 0.0326 0.0907

C3 0.4255 — 0.6905 0.0991 0.0034

CT — 0.2682 0.0401 0.0367 0.0797

In order to asses goodness of fit we use Cramér-von Mises distance which measure the distance
beetwen empirical copula and null hypothesis copula distribution functions are given by

CvM =

∫ 1

0

∫ 1

0

n
(
Cn(u, v)−Cθ(u, v)

)2

dCn(u, v), (3.1)

where empirical copula is defined by

Cn(u, v) =
1

n

n∑
i=1

n∑
j=1

I(Ui ≤ u,Vi ≤ v).

Thus test statistic defined in Eq. (3.1) allows us to compare the distances among copulas (smaller
is the better). Also, the parameters of the copulas are estimated by minimizing the Eq. (3.1) under
the consideration of constraints (α, β > 0). Goodness of fit results and estimated parameters for
the pairs of K-Cs, U-Co and Li-Sc are shown in Table 1. P-values of the test statistic is computed
according to Berg [2]. According to the this table, C3 is the best performing copula model for
the pair U-Co since it possesses the greatest p-value (0.0547) and lowest CvM (0.0521) values.
Similarly, from Table 1, the best fit among all possible copulas for the pairs of Li-Sc and K-Cs are
CT (P-val:0.1027) and C2 (P-val:0.0907), respectively.

For the performance of the new compound FGM copula in real data examples, it has smaller
CvM diastance and greates P-Value for the pair Li-Sc which has a modarate dependence coefficient.
On the contrary, for the pairs of U-Co and K-Cs which have mild and high dependence respectively,
there is no difference with the classical FGM copula in terms of real data performance.
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4. Conclusions
We have introduced compound FGM copula, describing its Kendall’s tau and Spearman’s rho

with closed-form. We create new copula using a compound distribution method with a Beta proba-
bility density function of its dependence parameter θ. The proposed compound FGM copula make
us possible to work with powerful models that can provide a much better goodness-of-fit results
for the data set which have moderate dependence structure.
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Abstract: Multivariable analysis methods are frequently used in studies in the field of health carried out
through the variables such as heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure
(DBP), etc. In this respect, the basic purpose of this study is to demonstrate that it is more appropriate to
analyze the clinical variables that change over time with time series analysis. Data used in the study were
obtained from twenty-four-hour rhythm and blood pressure results of holter monitor worn by the patients
who have consulted cardiology policlinic with the complaint of blood pressure and heart attack. Heart rate
rates (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) variables were obtained from
the appropriate 250 files. According to the results, there is a causal relationship between HR with SBP and
DBP for male and female patients. The p values are 0.0017 and 0.0084 for males and 0.0056 and 0.0001
for females, respectively. This result shows that SBP and DBP can be used to predict HR. According to
the results of the time series analysis, it is shown that HR and SBP and DBP variables are correlated but
correlations are immediate, and stabilized over time. In our study, it has been shown that applying time
series analysis for the time-varying data will give more detailed results.

Key words : Time series, Cointegration, Granger causality.

1. Introduction

Time series is called as a dataset of consecutive observations of an event in a given time period

(hours, days, weeks, months, years, etc.). Changes in observations in time series arise from trends,

seasonal movements, cyclical movements, and irregular fluctuations [3]. Analysis approaches in

time series depends on whether the series is stationary or not. Whether initially non-stationary

series act in the same way in later period is examined by cointegration analysis [7]. The time series

consist of four components [10]:

a) Trend (T).

b) Seasonal Variations (S).

c) Cyclic Variations (C).

d) Random or Irregular movements (R).

*Corresponding author. E-mail address:kmbrkasali76@gmail.com
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A time series can contain one or a few of the above components. Between the actual observation
values of the time series Y and the above components

Y = T +S+C +R,Y = T ∗S ∗C ∗R, (1.1)

there is such a relationship given in Eq. (1.1). Many clinical variables in the field of health are likely
to change over time (HR, SBP and DBP, etc.). Use of time series in examining these variables is
believed to help reveal important findings of clinical facts [4].

2. Material and methods

2.1. Methods

2.1.1. The stationarity in time series
In time series, if the first mean and variance of the series as well as the high-order moments do

not show a change with respect to time, the series is expressed as a stationary time series if it is
free from periodic fluctuations in time [9]. The conditions required for any Yt series to be stationary
can be listed as follows:

E(Yt) = μ (for all t’s, Constant average), (2.1)

V ar(Yt) =E(Yt −μ) = σ2 (for all t’s, Constant variance), (2.2)

γt =E[(Yt −μ)(Yt+k)−μ (for all t and all k �= 0, Constant covariance based on delay distance).
(2.3)

Here k is the lag distance. γt is the covariance between two values with k period difference between
them. In addition, if the joint and conditional probability distribution process does not change over
time, the series is expressed as strongly stationary [13].

2.1.2. Model selection criteria
In time series analyzes, criteria such as R2 are used to select the most suitable model

Yt = δ+φ1Yt−1 + et; t= 1,2,3, ..T (2.4)

R2 value in above AR (1) model,

R2 = 1−σ2/[σ2/(1−φ2
1)] = φ2

1. (2.5)

The R2 value depends on φ1 and as the φ1 value gets bigger, the R
2 value will also increase. For this

reason, R2 value in time series is not used much as a selection criterion. There are many selection
criteria in time series models. The most commonly used of these are the information criteria put
forward by [1] and [15].

AIC = ln(ESS/n)+ 2k/n, (2.6)

SIC = ln(ESS/n)+ (k.lnn)/n. (2.7)

Here n is the number of observations, k is the number of estimated parameters, the ESS is the sum
of squares of error terms, and it is expressed as follows:

ESS =
∑

(Y −Y ′)2. (2.8)

AIC and SIC criteria are also required to have small values. The delay order with the smallest
values is accepted as the most appropriate delay order [7].
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2.1.3. The stationarity tests
Many statistical methods are used to determine whether the series is stationary or not. These

are generally: Graphical Analysis, Correlogram Analysis and Unit Root Analysis. The Unit Root
Analysis: One of the most common methods used to determine stationarity in time series is the
”Unit Root” analysis. This analysis is tested with different methods that take into account the
breakage that may occur in the series. Dickey-Fuller (DF) Unit Root Test: Dickey and Fuller have
revealed whether time series models have a unit [5]. If the following AR (1) process is considered;

Yt = α1Yt−1 +ut,

in this process, there are 3 different situations for α1.
1. |α1|< 1 if so, there is a stable root and the series is stationary.
2. |α1|= 1 if so, the series is not stationary, that is, it is unit rooted.
3. |α1|> 1 if so, it is unstable and there is no unit root.

Augmented Dickey-Fuller (ADF) Unit Root Test: Correlation can occur between variables in
analysis in time series. In cases with such problem, the Augmented Dickey-Fuller (ADF) test, the
extended version of Dickey-Fuller test, is used [8].
Phillips-Perron (PP) Unit Root Test: When the assumptions of DF and ADF tests were not

followed, Phillips and Perron [11] assert the Phillips and Perron test. Phillips and Perron is a
non-parametric test that predicts correcting error terms. The Phillips and Perron test’s model is
given below:

Yt = μ+φ1Yt−1 +u1, (2.9)

and
(1−φ1L)Yt = μ+u1. (2.10)

Here t= 1,2,..,T and the unit root for this model are calculated with 1/φ1. If φ1 = 1 is in the model,
the serial is unit root.

Cointegration Analysis: In case the time series is not stationary, whether the series act together
in the long term is investigated by cointegration analysis. Engle-Granger Cointegration Test: Engle-
Granger [12] was the first to mention the cointegration relationship between series. With this
method, the long-term balance relationship between two variables is investigated [2].

2.1.4. Vector error correction model (VECM)
If there is cointegration between time series variables, it is more appropriate to make the causality

between variables with error correction (VECM) model. The VECM model is used to distinguish
between the long-term balance of variables and short-run dynamics between variables. The VECM
model is given in (2.11):

ΔXt = α+

m∑
t=1

βiΔXt−i +

n∑
t=1

γiΔYt−i +

p∑
t=1

ψiΔZt−i +λECt−1 + et. (2.11)

The x in the model is the error correction value that allows the variables to come to equilibrium
in the long term.

2.1.5. Vector autoregression (VAR) model
If there is no cointegration between time series variables, it is expressed with the serial vector

autoregressive (VAR) model. The VAR model is given below:

Yt = α1 +
m∑
i=1

α2Yt−i +
n∑

j=1

α3Xt−j + e1t. (2.12)
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Xt = β1 +

p∑
i=1

β2Yt−i +

q∑
j=1

β3Xt−j + e2t. (2.13)

In the VARmodel, there are dependent and independent variables. Sims [14] said that no distinction
should be made between intrinsic and extrinsic variables in the VAR model. Sims proposed the
VAR model.

2.1.6. Granger causality test
The testability of the causality of two AR model variables was demonstrated by Granger [6].

The applicability of the test depends on whether both variables are stationary and stochastic.

Yt = α+

r∑
i=1

biYt−i +

m∑
j=1

cjXt−j + et; t= 1,2, ..T (2.14)

In the model given in Eq. (2.14), α is constant; bi, Yt’s previous period coefficient; cj, Xt’s previous
period coefficient and is an error term with a white noise process [6].

2.2. Data
The data used in the study were collected from 24-hour rhythm and blood pressure results of

holter monitors worn by patients who came to the cardiology outpatient clinic of Haseki Training
and Research Hospital with the complaint of blood pressure and heart palpitations. 450 folders of
patients were analyzed from hospital records and thus the data were gathered from 250 files as 125
men’s and 125 women’s files. Those with missing measurements in the data of 450 patients were
excluded from the study. The results of 125 men and women were averaged and A single 24-hour
data set was obtained for males and females. The variables such as heart rate (HR), systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were obtained from the files that met the cri-
teria. The definitions for the variables used in the study are summarized below:

1. Heart rate is a fluctuation in the endpoints of the arteries when blood is pumped from the
left ventricle to the major arteries,

2. Systolic blood pressure is the pressure in the vein wall of the blood that is excreted from the
heart towards the veins when the heart contracts,

3. Diastolic blood pressure is the pressure that is still present in the vessel wall when the heart
relaxes.

2.3. Statistical analysis
The results were presented as means, standard deviations, median, minimum and maximum,

percentages, and frequencies. The normality distribution of continuous variables was investigated
with the Shapiro Wilk test. If there is normality, we used independent samples t-test for two groups
comparison. If not, we used Mann Whitney U test for two groups comparison. These analyses
were conducted with a statistical analysis program, IBM SPSS 20. The stationarity of HR, SBP
and DBP variables were checked using ADF and PP Analyses. Non-stationarity variables were
made stationarity by taking their differences. Autocorelation of the model was investigated by
the Lagrange Multiplier (LM) test and its heteroskedasticity (varying variance) was checked using
White test. When the variables were determined to be an integrated series of the same degree, the
cointegration test was conducted using Engle Granger and Johansen methods. Since cointegration
was present between the variables, the vector autoregressive model was selected as a candidate
model, and thus, the Granger causality test was applied. These analyses were carried out with the
EViews 8 statistical analysis program and statistical significance was defined as p < 0.05.
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3. Results
Findings of this study were summarized below.

Table 1. Descriptive statistics

MALE (N:125 t:24) FEMALE (N:125 t:24)
HR SBP DBP HR SBP DBP

Mean 76.14 125.17 77.1 74.65 132.23 80.45
95% confidence interval Upper limit 73.36 123.16 75.29 71.7 130.17 78,65

Lower limit 78.93 127.19 78.91 77.6 134.3 82.25
Standard Deviation 6.59 4.77 4.29 6.98 4.9 4.27

Median 78.53 126.72 78.6 76.77 134.34 81.55
Minimum 65.86 116.15 68.5 63.7 122.87 73.16
Maksimum 85.7 131.7 83.81 83.45 137.66 87.76

Range 19.84 15.55 15.31 19.75 14.79 14.6

IQR (İnterquartile Range) 12.68 8.77 6.85 14.15 9.09 7.65
Skewness -0.27 -0.69 -0.62 -0.38 -0.64 -0.4
Kurtosis -1.41 -0.85 -0.76 -1.45 -1.18 -1.09

Table 2. Gender comparison

Male (N:125 t:24) Female (N:125 t:24)
Mean � SD Median � IQR Mean � SD Median � IQR Z p

HR 76.14 � 6.59 78.53 � 12.68 74.65 � 6.98 76.77 � 14.15 -0.969 0.332
SBP 125.17 � 4.77 126.72 � 8.77 132.23 � 4.9 134.34 � 9.09 -3.794 <0.001
DBP 77.1 � 4.29 78.6 � 6.85 80.45 � 4.27 81.55 � 7.65 -2.608 0.009
Z: Statistical value for Mann Whitney U Test

As shown in the Table 2, there was not a statistically significant difference between male and
female patients in terms of HR (p=0.332), whereas the SBP (p<0.001) and DBP (p<0.001) vari-
ables were statistically significant in terms of gender. In this study, the data of men and women
were analyzed as different layers in order to examine the trends of the sexes separately.

3.1. Results of time series analysis
The relationship between HR and SBP and DBP obtained from 125 male patients was examined

using both Engle-Granger and Johansen cointegration tests. Before applying the cointegration
tests, the series should have become stationary when the differences of the same degree are taken.
Because the degree of integration of the series must be the same. ADF and PP unit root tests will
be applied to the series to show whether this required condition is fulfilled. Therefore, the graphs
will be first examined to see the properties of series. The graphics for the series dealt with are
shown separately and together below (Figure 1, Figure 2).
When looking carefully at the graphs (Figure 1, Figure 2), it is seen that the series show non-

stationary properties and move parallel together. Before moving on to the analysis, our expectation
is that the series are unit-rooted at the level and are related in the long run. Unit root tests are
required to indicate this condition. The unit root test results of the series are given below (Table
3).

When looking at the graphs of the series (Figure 1, Figure 2), it is understood that fixed and
trending equations should be considered. Since there is a 24-hour-time-series, maximum 5 delays
are given and the appropriate delay is determined according to Schwarz. The obtained results from
ADF and PP tests are as follows:
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Figure 1. HR, SBP and DBP graph of male patients’ average.

Figure 2. HR, SBP and DBP graph of female patients’ average.

Table 3. ADF and PP tests results

Male Patients Female Patients
I(0) I(1) I(0) I(1)

ADF PP ADF PP ADF PP ADF PP
HR 0.755 0.677 0.042 0.041 0.794 0.714 0.047 0.047
SBP 0.799 0.702 0.013 0.013 0.746 0.662 0.006 0.006
DBP 0.704 0.61 0.037 0.043 0.706 0.628 0.012 0.013

Looking at the results in the tables, the ADF and PP unit root test results of the HR, SBP and
DBP series can be seen. When p>0.05, the series are unit-rooted, not stationary. In the original
I(0) state of the series, it is seen that they are not stationary (p>0.05). For this reason, the test
was applied again by taking the first difference I(1) of the series. As the trend effect disappeared
for the first difference series, it became stationary (p<0.05).
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3.2. Examination of autocorrelation between data of patients by LM test
When the LM test results (Table 4) are looked, it is seen that there is autocorrelation since

P<0.05 is present even in 1 delayed state. The Newey-West Test was used to eliminate the problem
of autocorrelation. The Newey-West test result is shown below:

Table 4. LM tests results

Male Patients Female Patients
SBP, DBP with HR LM(1) LM(2) LM(3) LM(1) LM(2) LM(3)

P 0.001 0.006 0.017 0.009 0.016 0.027

3.3. Heteroskedasticity white correction test between the data of patients
According to the White test result (Table 5), there is no heteroskedasticity problem in our

model. The Newey-west test is used to eliminate this problem. The Newey-west Test simultaneously
eliminates both the problems of autocorelation and heteroskedasticity. The Newey-west correction
version of our model is given below once again The equation obtained from this test will be used
to find the cointegration relationship.

Table 5. Heteroskedasticity white correction test results

Heteroskedasticity Test: White
Male Patients Female Patients

Statistical value p Statistical value p
F-statistic 1.521.049 0.2327 F-statistic 1.181.623 0.3566

Obs*R-squared 7.128.456 0.2113 Obs*R-squared 5.930.823 0.3130
Scaled explained SS 4.044.196 0.5431 Scaled explained SS 3.721.332 0.5902

3.4. Newey-west correction test for autocorelation and heteroskedasticity between
data of patients

The unit root tests of the residue series obtained from the above model were examined by
applying ADF test and PP test (Table 6).

In the Enger-Granger method, the residue series obtained from the regression model is stable with
respect to all levels of significance (Table 7). Results were obtained from ADF and PP tests. This
result shows that a cointegration relationship exists between HR and SBP and DBP in males.In
other words, it shows that these series have acted together in the long term. The series has been
found to have no short-term relationship.

Table 6. Heteroskedasticity Newey-west correction test results

Dependent variable: D(HR)
Male Patients Female Patients

Variable Coefficient Std. Error T p Variable Coefficient Std. Error t p
D(SBP) 0.410275 0.33894 1.210.45 0.240 D(SBP) 0.514639 0.19845 2.593.28 0.017
D(DBP) 0.573361 0.31488 1.820.84 0.083 D(DBP) 0.269124 0.29050 0.92639 0.365

C -0.002745 0.35370 -0.00776 0.993 C 0.235660 0.43854 0.53736 0.596
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Table 7. ADF and PP test results

Male Patients Female Patients
ADF PP ADF PP

Residue series 0,004 0,003 0,016 0,016

Table 8. Granger causality test results

VEC Granger Causality/Block Exogeneity Wald Tests
Male Patients Female Patients

Dependent variable: D(HR) Dependent variable: D(HR)
Chi-Square P Chi-Square p

D(SBP) 12.78838 0.0017 D(SBP) 7.684185 0.0056
D(DBP) 9.555896 0.0084 D(DBP) 16.21758 0.0001

All 14.34794 0.0063 All 16.58381 0.0003
Dependent variable: D(SBP) Dependent variable: D(SBP)

Chi-Square P Chi-Square p
D(HR) 2.656929 0.2649 D(HR) 0.787467 0.3749
D(DBP) 1.194488 0.5503 D(DBP) 4.477577 0.0343

All 4.238053 0.3747 All 9.673283 0.0079
Dependent variable: D(DBP) Dependent variable: D(DBP)

Chi-Square P Chi-Square p
D(HR) 0.684889 0.7100 D(HR) 0.145798 0.7026
D(SBP) 4.131397 0.1267 D(SBP) 1.533346 0.2156

All 5.729465 0.2203 All 1.539706 0.4631

3.5. Granger causality test
According to the results in the Table 8, there is a causality between SBP and DBP with HR for

male patients. Because the p values were 0.0017 and 0.0084 respectively. These p values lead to
the rejection of the Ho hypothesis for male patients, which states that ”the HR series of SBP and
DBP series is not the cause of Granger”. This result shows us that SBP and DBP are the causes
of Granger of HR, that is, they can be used for estimation. Our results show that DBP is not
the cause of Granger SBP (p=0.553) and that SBP is not the cause of Granger DBP (p=0.126).
Likewise, it is observed that KAH was not seen to be the cause of Granger neither for the SKB
nor for the DKB. (P=0.2649; p=0.7100). Consequently, our study shows that male patients have a
one-way causality between SBP and DBP with HR. Likewise, the direction of this causality appears
to be from SBP and DBP to HR. According to the results in the table, there is a causality between
SBP and DBP with HR for female patients since the p values were 0.0056 and 0.0001 respectively.
These p values lead to the rejection of the H0 hypothesis for female patients which states that ”the
HR series of SBP and DBP series is not the cause of Granger”. This result shows us that SBP and
DBP are the cause of Granger of HR, that is, they can be used for estimation. Our results show
that DBP is the cause of Granger of SBP (p=0.034) and that SBP is not the cause of Granger of
DBP (p=0.215). Likewise, it is observed that HR was not seen to be the cause of Granger neither
for SBP nor for DBP (P=0.375; p=0.703). As a result, Our study shows that female patients have
a one-way causality between SBP and DBP with HR, and the direction of this causality appears
to be from SBP and DBP to HR. It also shows that DBP is the cause of Granger of SBP and that
the DBP variable can be used in estimating the SBP variable.
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4. Discussion
It is important how the time series coheres with each other, or how they relate to each other.

Whether these series act together in the short term or the long term is a question of curiosity. How
the changing variables change over time provides information about the patients’ condition. This
information can be extremely important to save lives. While multiple comparisons are being made
for time-varying variables in the field of biosatatistics, time series analysis is not used very often.
Nevertheless Studies on time-varying data in the medical field have increased recently. Analyses of
these data have been tried to be explained by using multiple comparison methods. These methods
do not provide information about the change of the series over time. Under these circumstances,
it leads misunderstanding in time series. HR, SBP and DBP variables were used in our study. The
relationship between variables was examined by using the time series cointegration method. In 2017,
Diego Giulliano Destro Christofaro et al. [4] in their study titled ”Relationship between Resting
heart Rate, Blood Pressure and Pulse Pressure in Adolescents” analysed the relationship between
the same variables by using linear regression multiple comparison method. In the study published
by Diego Giulliano Destro Christofaro et al., 24-hour data from 716 female and 515 male adolescent
patients aged between 14-17 were collected. HR values were calculated (80.1�11.0 beats/minute)
for women and (75.9�12.7 beats/minute) for men and were statistically significant (p<0.001). In
the same study, Resting HR was associated with SBP in males (Beta=0.15 [0.04-0.26]) and female
(Beta=0.24 [0.16-0.33]), with DBP in male (Beta=0.50 [0.37-0.64]) and female (Beta=0.41 [0.30-
0.53]). Results were calculated and found to be statistically significant. The relationship between
variables was revealed in the study, but no information was given about the change of variables over
time and about the relationship between short and long term. In our study, when the results of the
time series cointegration analysis were checked, the probability values between HR and SBP and
DBP were calculated as 0.0017 and 0.0084 in males and 0.0056 and 0.0001 p in females respectively.
These p values show us that the Ho hypothesis stating that ”SBP and DBP are not the cause of
Granger of HR” is rejected. This shows us that SBP and DBP are the causes of granger of HR,
that is, they can be used for HR values estimation. In conclusion, both male and female patients
have a one-way causality between SBP and DBP with HR. The direction of causality appears to
be from SBP and DBP to HR.

5. Conclusions
Looking at the results, it is seen that time series analysis results put forward more detailed

results than multiple comparison methods. According to the time series analysis results, it was
shown that SBP and DBP with HR variables are related, relations are instantaneous relations, and
they come to equilibrium over the long term.
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Abstract: The continuous probability distributions have wide applications in the field of transportation
and reliability engineering. The continuous distributions are used to estimate how funds can be allocated
to improve roads, railways, bridges, waterways, airports etc. and used to check the reliability/performance
of a product. The Gompertz exponential (GoE) distribution is derived using Gompertz G generator. Some
basic properties of the model have been derived. The parameters of the GoE distribution are estimated by
maximum likelihood estimation method. The upper record values from the GoE distribution have also been
introduced with various properties. Moreover, applications of the GoE distributions has been provided in the
field of reliability to check the performance of some transportation related parts and the suggested model
provides better fit than the existing well-known models. Finally, a simulation study is carried out. Random
numbers of size 50 are generated 15 times for GoE distribution and upper records has been noted.

Key words : Gompertz family of distributions, Exponential, MLE, GoE, Reliability.

1. Introduction
In several real-life applications, the classical distributions do not appropriately work to some real

data sets. Thus, researchers introduced many generators by introducing one or more parameters
to generate new distributions. The new generated distributions are more flexible as compared to
the classical distributions.

Some well-known generators are as follows: Marshall and Olkin [14] generated Marshal-Olkin
family, Eugene et al [12] and Jones [13] introduced Beta G, Cordeiro and de Castro [10] devel-
oped Kumaraswamy G, Alexander et al [2] presented McDonald G, Zografos and Balakrishnan [22]
introduced gamma G type 1, Risti�c and Balakrishnan [19] introduced gamma G type 2, Torabi
and Hedesh [21] developed gamma G type 3, Amini et al [6] developed log-gamma G, Cordeiro et
al [11] developed exponentiated generalized G, Alzaatreh et al [4] and Alzaghal et al [5] introduced
transformed transformer T-X and exponentiated T-X respectively, Bourguignon et al [7] devel-
oped Weibull G, Cordeiro et al [9] generated exponentiated half logistic family. Morad et al [15]
introduced another generator for continuous distributions called the Gompertz G generator and
presented several mathematical properties of it.

In this article the Gompertz family of distribution is considered to develop a new model. Alizadeh
et al [3], and Abdal-Hameed, et al [1] used this generator in their work. The cumulative distribution
function (cdf) and probability density function (pdf) of the Gompertz family of distributions is

F (x) = 1− e
α
β [1−[1−G(x)]−β ], α > 0, β > 0 (1.1)

f(x) = αg(x)[1−G(x)]−β−1e
α
β [1−[1−G(x)]−β ], α > 0, β > 0 (1.2)

*Corresponding author. E-mail address: shakilabashir@fccollege.edu.pk
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where α and β are extra shape parameters and the cdf in Eq. (1.1) and the pdf in Eq. (1.2) was
developed using the following transformation:

F (x) =

∫ −log[1−G(x)]

0

w(t)dt,

w(t) is the probability density function (pdf) of the Gompertz distribution, where t is a random
variable. G(x) and g(x) are the cdf and pdf of the baseline distribution. The probability density
function (pdf) of the exponential distribution is

f(x) = θe−θx, θ > 0, x > 0, (1.3)

where θ is scale parameter.
The cumulative distribution function (cdf) of the exponential distribution is

F (x) = 1− e−θx, θ > 0, x > 0. (1.4)

If an observation is greater than (or less than) of all the values in the experiment, then this
value is called a record values. Records values, extreme and lower both have wide application in
the fields of studies such as in the science of climates, sports, engineering, medical fields, traffic
and transportation, and other industry. Basically, Chandler [8] developed the initials of the record
value theory and then later many works has been done it. Further work done by many researchers
on almost every continuous probability distribution. The pdf of the sequence of upper record values
[XU(n), n > 1] is

fn(x) =
[R(x)]n−1

Γ(n)
f(x),−∞<x<∞, (1.5)

where R(x) =− ln[1−F (x)].

2. Development of the GoE Distribution
The cumulative distribution function of the GoE distribution is obtained by substituting Eq.

(1.4) in Eq. (1.1),

F (x) = 1− e
α
β [1−eβθx]; α,β, θ > 0, x > 0, (2.1)

f(x) = αθeβθxe
α
β [1−eβθx]; α,β, θ > 0, x > 0, (2.2)

where θ is scale parameter and α,β are shape parameters. The Gompertz Exponential distribution
is graphically represented in Figures 1 and 2.
In Figure 1, the proposed pdf is positively skewed for various combinations of parameters.

2.1. Properties of the GoE Distribution
In this section, some GoE distribution properties have been derived. The graph for the reliability

measures have also been presented and discussed.
The mean of the GoE distribution is

E(X) = αθ

∫ ∞

0

xeβθxe
α
β (1− eβθx)dx. (2.3)

The variance of the GoE distribution can be calculated by solving the integral in eq (2.3) and
in eq (2.4)

E(X2) = αθ

∫ ∞

0

x2eβθxe
α
β (1− eβθx)dx. (2.4)

The above integrals are unsolvable therefore the numerical values for the mean and variance
have been calculated for different values of parameters and presented in Table 1.
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(a) (b) (c)

Figure 1. Pdf plots for various parametric values

(a) (b) (c)

Figure 2. Cdf plots for various parametric values

Table 1. Mean and variance for the Gompertz exponential distribution

θ= 2, β = 3 α Mean Variance CV

1 0.192801 0.01232 57.57
2 0.129332 0.007197 65.59
3 0.099391 0.004897 70.41
4 0.081352 0.003604 73.79
5 0.069123 0.002786 76.36

θ= 2, α= 2 β Mean Variance CV

4 0.115364 0.005150 62.21
5 0.104783 0.003903 59.62
7 0.089546 0.002502 55.86
9 0.078908 0.001509 49.23
10 0.074667 0.001509 52.03

α= 2, β = 2 θ Mean Variance CV

1 0.258665 0.030330 67.32
3 0.086222 0.003199 65.60
4 0.064666 0.001798 65.57
5 0.051733 0.001152 65.61
6 0.043111 0.000799 65.57
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From Table 1, mean and variance are decreasing as α increasing at fixing β and θ. Similarly

mean and variance are decreasing while fixing α and θ with increasing β and same trend is with

fixing α and β and increasing θ. While CV is increasing with increasing α, CV is decreasing with

increasing β and CV is not varying much with increasing θ.

Reliability function, hazard rate function, reversed hazard rate function and odd function are as

follows respectively,

R(x) = e
α
β [1−eβθx], (2.5)

h(x) = αθeβθx. (2.6)

In Eq. (2.6), for β = 0 the hazard rate function is constant as given below,

h(x) = αθ. (2.7)

The hazard rate function given in Eq. (2.7) is constant due to putting β = 0, in Eq. (2.6). Therefore,

we can say that if the shape parameter β is zero then GoE distribution showing the constant hazard

rate.

r(x) =
αθeβθxe

α
β [1−eβθx]

1− e
α
β [1−eβθx],

(2.8)

O(x) =
1− e

α
β [1−eβθx]

e
α
β [1−eβθx].

(2.9)

The cumulative hazard function for GoE distribution is

H(x) =
α

β
[eβθx − 1]. (2.10)

The Shannon entropy for GoE distribution is

S(x) =
θ(α+β)

β
− ln(αθ)− α2θ

β2
− αe

α
β

β
ΨX(

α

β
), (2.11)

where ΨX =
∫∞
1

ln (x)e−
α
β xdx.

The graphs of the reliability function and hazard rate function of the GoE are presented in

Figures 3 and 4. From Figure 3, the reliability function is monotonically decreasing with varying

parametric values.

From Figure 4, we can see that the hazard rate function of the GoE distribution shows the

increasing form of bath tub (IBT) shape or J-shaped. As the time passes on, or aging a person,

there is greater chance of death and same concept with the products, as the life time of the product

increases there more chances of failure that product.
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(a) (b)

(c)

Figure 3. Reliability graphs for different parametric values

(a) (b)

(c)

Figure 4. Hazard rate graphs for different parametric values
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2.2. Quantile Function and Median

The quantile function of the GoE distribution is

Q(u) =
ln[1− β

α
ln[1−u]]

βθ
. (2.12)

The median of the GoE distribution is

median=
ln[1− β

α
ln[0.5]]

βθ
. (2.13)

Mode of the GoE distribution

mode=
ln[ β

α
]

βθ
. (2.14)

2.3. Order Statistics of the Gompertz Exponential Distribution

The probability density function of the rth order statistics from GoE distribution is

fr:n(x) =
n!

(r− 1)!(n− r)!
αθeβθxe

(n−r+1)α
β (1−eβθx)[1− e

α
β [1−eβθx]]r−1;α,β, θ, x > 0. (2.15)

The probability density function of smallest and largest order statistics from GoE distribution

is

f1:n(x) = nαθeβθxe
nα
β (1−eβθx), ;α,β, θ, x > 0, (2.16)

fn:n(x) = nαθeβθxe
α
β (1−eβθx)[1− e

α
β [1−eβθx]]n−1;α,β, θ, x > 0. (2.17)

3. Record Values from GoE distribution

Using Eq. (2.1) and Eq. (2.2) in Eq. (1.5) the pdf of the upper record values from Gompertz

exponential distribution (UR-GoED) is

fn(x) =
αnθ

βn−1Γ(n)
eβθx(eβθx − 1)n−1e

α
β (1−eβθx);α,β, θ, x > 0. (3.1)

The cumulative distribution function of the UR-GoED is

Fn(x) =
1

Γ(n)
γ(n,

x́α

β
). (3.2)

The reliability function of the UR-GoED is



Bashir and Qureshi: Gompertz-exponential distribution: Record value theory and applications in reliability
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Rn(x) =
1

Γ(n)
Γ(n,

x́α

β
). (3.3)

The hazard rate function of the UR-GoED is

hn(x) =
αnθeβθx(eβθx − 1)n−1e

α
β (1−eβθx)

βn−1Γ(n, x́α
β
)

. (3.4)

The mean of the UR-GoED is

E(XU(n)) =
1

θβΓ(n)

∞∑
k=1

(−1)k−1Γ(k+n)

k

(β
α

)k

. (3.5)

The relation between pdf and cdf of the GoE distribution using Eq. (2.1) and Eq. (2.2), we get

f(x) = αθeβθx[1−F (x)]. (3.6)

4. Parameter Estimation

The Maximum Likelihood Estimation (MLE) methodology is used to estimate the parameters

of the GoE distribution. Let x1, x2, x3, ..., xn be the random samples distributed GoE distribution.

L(x1, x2, ..., xn;α,β, θ) =
n∏

i=1

αθeβθxie
α
β (1−eβθxi ),

lnL(α,β, θ) = n log θ+n logα+βθ

n∑
i=1

xi +
α

β

n∑
i=1

(1− eβθxi), (4.1)

∂L(α,β, θ)

∂θ
=

n

θ
+β

n∑
i=1

xi −α
n∑

i=1

xie
βθxi , (4.2)

∂L(α,β, θ)

∂α
=

n

α
+

1

β

n∑
i=1

(1− eβθxi), (4.3)

∂L(α,β, θ)

∂β
= θ

n∑
i=1

xi − αθ

β

n∑
i=1

xie
βθxi − α

β2

n∑
i=1

(1− eβθxi). (4.4)

5. Simulations

Random numbers of size 50 from GoE distribution are generated 15 times and the upper record

are noted. That are considered the upper record values from GoE distribution. To simulate the

random numbers, we use the quantile function given in Eq. (2.12). Simulations are done by using

R-package. Then some descriptive measures are calculated from the upper records from GoE dis-

tribution.

The below table mentioned that how we can record the upper records (lower records) in real life

situations and used them to forecast the results.
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Table 2. Descriptive measures for UR-GoE distribution when n= 15, α= 0.05, β = 0.25, θ= 0.3

Mean Median G.M H.M Variance S.D M.D C.V
41.4374 41.1112 41.2872 41.1407 12.7347 3.5686 2.9141 8.6120%

6. Model Validation and Application
In this section the proposed distribution GoE is applied on two real life data sets and compared

with some well-known models. R software is used for the applications and the criterion used for
model selection are AIC, CAIC, BIC, NLL and HQIC.

Firstly, we have used data of failure and service times for a particular windshield taken from
Murthy et al. [16] Ramos et al. [18] also used this data. There are 147 observations in the data
from which 84 are failed windshields, and 63 are service times of windshields that had not failed
at the time of observation.

Secondly, this data is relating to the strengths of 1.5cm glass fibers which taken from Oguntunde
et al. [17], and Bourguignon, Silva, and Cordeiro [7], Smith and Naylor [20] were also used this
data.

Table 3. NLL and goodness of fit criterion for failure times of 84 Aircraft Windshield data

Models Estimates NLL AIC CAIC BIC HQIC

GoED (proposed)

α̂=0.0753

β̂=0.7658

θ̂=1.0372

128.71 263.42 263.72 266.28 266.35

WL

â=0.0118

b̂=0.6462
α̂=5.9950

λ̂=1.3790

127.837 263.675 264.175 273.446 267.605

EL
δ̂=0.0237
α̂=6.3074

λ̂=3.7412

130.549 267.099 267.099 274.427 270.046

KGL

â=2.9739

b̂=19.877
α̂=2.2171

λ̂=12.385

134.888 277.776 278.276 287.546 281.706

GL

α̂=5.7000

λ̂=3.7700

β̂=1.7e+5
σ̂=5.1e+4

135.071 278.143 278.643 287.913 282.073

Exponentiated Lomax

â=3.5417
α̂=11653

λ̂=15521
141.405 288.811 289.107 296.139 291.758

Exponentiated LP

γ̂=1e-10
σ̂=3.5473
α̂=22063

λ̂=29382

141.404 290.808 291.308 300.578 294.738

Lomax
α̂=30087

λ̂=76941
164.989 333.978 334.124 338.863 335.943

*WL (Weibull Lomax), EL (exponential Lomax), KGL (Kumaraswamy-Generalized Lomax),
GL (Gumbel-Lomax), Exponentiated LP (Lomax Poisson)
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Table 4. NLL and goodness of fit criterion for service times of 63 Aircraft Windshield data

Models Estimates NLL AIC CAIC BIC HQIC

GoED (proposed)

α̂=0.25528

β̂=0.59955

θ̂=0.81140

98.27665 202.5533 202.9601 204.8396 205.0820

WL

â=0.1276

b̂=0.9204
α̂=3.9136

β̂=3.0067

98.11712 204.2342 204.9239 212.8068 207.6059

McL

â=1.3230

b̂=53.7712
ĉ=5.7144
α̂=7.4371

β̂=42.8972

98.5883 207.1766 208.2292 217.8923 211.3911

KwL

â=1.6691

b̂=60.5673
α̂=2.5649

β̂=65.0640

100.8676 209.7353 210.4249 218.3078 213.1069

GL

â=1.9073
α̂=35842.4330

β̂=39197.5715
102.8332 211.6663 212.0731 218.0958 214.1951

BL

â=1.9218

b̂=31.2594
α̂=4.9684

β̂=169.5719

102.9611 213.9223 214.6119 222.4948 217.2939

EL

â=1.9145
α̂=22971.1536

β̂=32881.9966
103.5498 213.0995 213.5063 219.5289 215.6282

Lomax Distribution
α̂=99269.7800

β̂=207019.3700
109.2988 222.5976 222.7976 226.8839 224.2834

*WL (Weibull Lomax), McL (McDonald Lomax), KwL (Kumaraswamy Lomax),
GL (Gumbel-Lomax), BL (Beta Lomax), EL (Exponential Lomax)

Table 5. NLL and goodness of fit criterion for the strength of 1.5cm glass fibers

Models Estimates NLL AIC CAIC BIC HQIC

GoED (proposed)

α̂=0.007459

β̂=2.762845

θ̂=1.298306

14.8237 35.64743 36.0542 37.9337 38.1761

GoWei.

α̂=0.228488761

β̂=0.009628097

θ̂=0.794918813

λ̂=5.612111282

15.18847 38.37694 39.06659 46.94948 41.74856

GL

α̂=0.004592168

β̂=8.179090955

θ̂=0.506999370

λ̂=1.515829085

14.50274 37.00548 37.69513 45.57802 40.3771

*GoWei (Gompertz Weibull), GL (Gompertz Lomax)
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7. Conclusions
The proposed model named Gompertz exponential (GoE) distribution is derived in this article

and shape of the model can be seen from Figure 1, it is having longer right tail means positively
sewed distribution. Generally, positively skewed distributions are mostly preferred in lifetime data
sets. Some basic properties of the GoE model have been derived including some reliability mea-
sures. Order statistics and upper record values have also been introduced for the proposed model.
Parameters of the GoE distribution are estimated by the method of maximum likelihood estima-
tion. A simulation study is carried out for the GoE model by generating random numbers. From the
simulated data the upper records have been noted and some descriptive measures are calculated.
The record values are used to learn how we can get record from any known model and used them
to get results. Finally, the model is applied on three lifetime data sets (Failure times of 84 Aircraft
Windshield, Service times of 63 Aircraft Windshield and strengths of 1.5cm glass fibers) and com-
pared with other models.It can be seen from Table 3, 4 and 5 GoE distribution is better fitted as
compared to the other well-known distributions. GoE distribution is more flexible as compared to
GoWei, Gompertz Lomax, WL, EL, KGL, GL, Exponentiated LP, Lomax, McL, BL, KwL. The
continuous probability distributions have great importance in the field of transportations (they are
used to estimate how funds can be allocated for to improve roads, railways, bridges, waterways,
airports etc.), reliability engineering (to check the reliability of a product or even to check the
reliability of a system, failure chances etc.). The newly derived distribution GoE, is applied here
in this article on the data sets mentioned previously and it can be seen not only the newly derived
model is providing better approach on these data sets with comparison of other well-known existing
models also it is showing application in the theory of reliability and transportation. The record
values derived from GoE is a new approach that if we find maximum or minimum records in these
fields (reliability, transportation, or others) then the record values from GoE distribution can be
the best option to apply.
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