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Near Soft Topological Groups Based on Near Soft Element

Hatice Taşbozana

aDepartment of Mathematics, Hatay Mustafa Kemal University, Hatay, Turkey.

Abstract. In this article, we introduce the concept of the near soft element and define the near soft group
using near soft element with binary operation in the whole set non-empty near soft elements of a dedicated
near soft set. In addition, the concepts of topology and continuity of the near soft group are mentioned. The
concept of near soft topological group was created with the help of continuous transformations defined on
the near soft group. Finally, an example is given for the concept of near soft topological group.

1. Introduction

The concept of near sets Peters [1, 2] and the concept of soft theory is given by Molodtsov [3]. It was
later examined by many scientists with [3–11]. The binary soft element definition given by Wardowski
[12] is operating on all non-empty soft elements of a dedicated soft set. Next, J.Ghosh [13, 14] defines
the soft groupoid according to the soft elements set. Many other researchers have created the topological
version of soft set theory and soft algebra. Following these articles, Wardowski [12] gave his ideas about
soft topological groups with the help of soft elements. Starting from this definition, scientists studied the
soft transformation and continuity of soft mapping [15]. on the other hand Feng and Li [5] came up with
the notion of rough soft sets by combining soft sets with rough sets. Similar algebraic studies have been
done on rough sets. Later, Tasbozan et al. [16–18] combined the near-set approach with the soft-set. Also,
the concept of the near soft set was presented. Next, the concept of a near soft element is defined and the
near soft groupoid is defined using a near soft element by binary operation on the set of all nonempty near
soft elements of a dedicated near soft set [19].

In this study, first a near soft group definition was made, then a topology structure was created on this
near soft group, and the concept of a near soft topological group was defined with the help of the topology
defined on this near soft group and continuous mapping. In addition, examples were given for the new
concepts defined.

2. Preliminary

In this part, the notions of near approximation(NA), nearness approximation space (NAS) and other
definitions of this concept are given. Then we define a binary composition on near soft sets and this form
is called near soft group over near soft set.
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Definition 2.1. [18, 20] Let (O,F ,∼Br,Nr, υNr ) be a NAS and σ = (F,B) be a soft set over O.

Nr∗((F,B)) = (Nr∗(F(k) = ∪{x ∈ O : [x]Br ⊆ F(k)},B))

and
N∗r((F,B)) = (N∗r(F(k) = ∪{x ∈ O : [x]Br ∩ F(k) , ∅},B))

are lower and upper near approximation operators. The SS Nr((F,B)) with BndNr(B)((F,B)) ⩾ 0 called a near soft
set(NSS).

The collection of all NSS on Owill be denoted NSS(O).

Definition 2.2. [18] Let O be an universe set, E be the parameters and B ⊆ E. For NSS (F,B) over O, the set

Supp(F,B) = {ϕ ∈ B : F(ϕ) , ∅}

is called the support of the NSS (F,B).

1. A NSS (F,B) is called non-null NSS (with respect to the parameters of B) if Supp(F,B) , ∅. Otherwise (F,B) is
called null NSS.

2. A near soft set (F,B) is called full null NSS if Supp(F,B) = B. A collection of all full NSS on O will be denoted
by NS f (O).

Definition 2.3. [21] LetO be an initial set, E be the parameters and B ⊆ E and (F,B) ∈ NSS(O).We say that (ϕ, {xk})
is a nonempty near soft element (NSE) of (F,B) if ϕ ∈ B and xk ∈ F(ϕ). The pair (ϕ, ∅), where ϕ ∈ B is an empty NSE
of (F,B).Then (ϕ, {xk}) = {xk}ϕ is a NSE of (F,B) and denoted by FB.

3. Near Soft Group

Definition 3.1. [19] Let (F , ◦) and (O, ∗) be two groupoids and B ⊆ F . Also let (F,B) ∈ NS f (O), ∀ ϕ ∈ B, ∋ ∃
nonempty NSE of (F,B).We define a binary composition ∗ on (F,B) by

(ϕi, {xa}) ∗ (ϕ j, {xb}) = (ϕi ◦ ϕ j, {xa ∗ xb})

for all (ϕi, {xa}), (ϕ j, {xb}) ∈ (F,B). (F,B) is said to be closed under the binary composition ∗ if and only if (ϕi ◦ϕ j, {xa ∗

xb}) ∈ (F,B) , ϕi ◦ ϕ j ∈ B and xa ∗ xb ∈ F(ϕi ◦ ϕ j) for all (ϕi, {xa}), (ϕ j, {xb}) ∈ (F,B). Then (FB, ∗) is a near soft
groupoid (NSG) over (F,O).

Theorem 3.2. [19] Let (F,B) ∈ NS f (O), then ((F,B), ∗) forms a NSG over (F,O) if and only if

1. B is a subgroupoid of F, i.e., ϕi ◦ ϕ j ∈ B for all ϕi, ϕ j ∈ B,
2. for ϕi, ϕ j ∈ B , xa ∈ F(ϕi), xb ∈ F(ϕ j) then xa ∗ xb ∈ F(ϕi ◦ ϕ j).

Definition 3.3. [19] Let (FB, ∗) be a NSG over (F,O). Then ∗ binary composition said to be

1. commutative if (ϕi, {xa}) ∗ (ϕ j, {xb}) = (ϕ j, {xb}) ∗ (ϕi, {xa}),
2. associative if

[(ϕi, {xa}) ∗ (ϕ j, {xb})] ∗ (ϕk, {xc}) = (ϕi, {xa}) ∗ [(ϕ j, {xb}) ∗ (ϕk, {xc})]

for all (ϕi, {xa}), (ϕ j, {xb}), (ϕk, {xc}) ∈ FB.

Definition 3.4. A (NSE) (ϕ, {x}) ∈ FB is a near soft identity element in a NSG (FB, ∗) if for all (ϕi, {xa}) ∈ FB

(ϕ, {x}) ∗ (ϕi, {xa}) = (ϕi, {xa}) = (ϕi, {xa}) ∗ (ϕ, {x}).
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Definition 3.5. Let (FB, ∗) be a NSG with near soft identity element (ϕ, {x}). A NSE (ϕi, {xa}) ∈ FB is an invertible
if there exists a (NSE) (ϕ′i , {x

′
a}) ∈ FB such that

(ϕi, {xa}) ∗ (ϕ′i , {x
′

a}) = (ϕ, {x}) = (ϕ′i , {x
′

a}) ∗ (ϕi, {xa})

Then (ϕ′i , {x
′
a}) is a near soft inverse of (ϕi, {xa}) and denoted by (ϕi, {xa})−1.

Definition 3.6. Let B ⊆ F and (F,B) ∈ NS(O). We say that (ϕ, {x}) is a nonempty NSE of (F,B)if ϕ ∈ B and x ∈
F(ϕ). The pair (ϕ, ∅), where ϕ ∈ F , is called an empty NSE of (F,B).

Definition 3.7. Let (F , ◦) and (O, ∗) be two groups, A,B ⊆ F and (F,B) ∈ NS(O). (NSG) (FB, ∗) is a near soft group
(NSGp) over (O,F ) if,

1. ∗ is associative,
2. there exist a NSE (ϕ, {x}) such that

(ϕ, {x}) ∗ (ϕi, {xa}) = (ϕi, {xa}) = (ϕi, {xa}) ∗ (ϕ, {x})

for all (ϕi, {xa}) ∈ (F,B),
3. for each (ϕi, {xa}) ∈ (F,B) there exist a NSE (ϕ′i , {xa}

′) such that

(ϕi, {xa}) ∗ (ϕ′i , {xa}
′) = (ϕ, {x}) = (ϕ′i , {xa}

′) ∗ (ϕi, {xa}).

Example 3.8. Let (O, ∗) be a group with ∗ operation being multiplication modula 8 on the set {1, 3, 5, 7} and (B, ◦) be
a group with ◦ operation. The composition table of ◦ on B is given by Table 1.

Table 1: The composition table of ◦ on B.
◦ ϕ1 ϕ2

ϕ1 ϕ1 ϕ2
ϕ2 ϕ2 ϕ1

and define the (NSS) σ = (F,B) = {(ϕ1, {1, 3}), (ϕ2, {5, 7})}. For r = 1

[1]ϕ1 = {1, 3, 7}, [5]ϕ1 = {5}
[1]ϕ2 = {1, 3}, [5]ϕ2 = {5, 7}

N∗(σ) = {(ϕ2, {5, 7})},N∗(σ) = {(ϕ1, {1, 3}), (ϕ2, {5, 7})},Bnd(σ) ≥ 0.

For r = 2; N∗(σ) = {(ϕ1, {1, 3}), (ϕ2, {5, 7})} = N∗(σ),Bnd(σ) ≥ 0. Then σ is a NSS. Hence all the NSE of σ
are;

FB. = (ϕ1, {1}), (ϕ1, {3}), (ϕ2, {5}), (ϕ2, {7}).

The table of operation ∗ on FB. is given in Table 2.

Table 2: The table of operation ∗ on FB..
∗ (ϕ1, {1}) (ϕ1, {3}) (ϕ2, {5}) (ϕ2, {7})

(ϕ1, {1}) (ϕ1, {1}) (ϕ1, {3}) (ϕ2, {5}) (ϕ2, {7})
(ϕ1, {3}) (ϕ1, {3}) (ϕ1, {1}) (ϕ2, {7}) (ϕ2, {5})
(ϕ2, {5}) (ϕ2, {5}) (ϕ2, {7}) (ϕ1, {1}) (ϕ1, {3})
(ϕ2, {7}) (ϕ2, {7}) (ϕ2, {5}) (ϕ1, {3}) (ϕ1, {1})

(FB., ∗) is commutative NSGp with near soft identity (ϕ1, {1}).
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Definition 3.9. Suppose that (O,B) is a group then (F,B) ∈ NS(O) is called a NSGp (resp. near normal soft group )
over (O,B)⇔ (F(ϕ),B) is a subgroup (resp. normal subgroup) of (O,B), ∀ϕ ∈ B .

Definition 3.10. Suppose that (F,B) is a NSGp over (O,B). Then (G,A) ∈ NS(O) is called a near soft subgroup
(NSsGp) (resp. near soft normal subgroup (NSNsGp) of (F,B) if and only if A ⊆ B and (G(ϕ),A) is a subgroup (resp.
a normal subgroup) of (F(ϕ),B), ∀ϕ ∈ B .

Definition 3.11. Let (FB∗) be a NSGp over (O,F ) and (G,A) be (NSsGp) of (F,B). If for all (ϕ j, {xb}) ∈ (F,B)

(ϕi, {xa}) ∗ (G,A) ∗ (ϕi, {xa})−1 = (G,A)

then (G,A)is called NSNsGp of (F,B).

Definition 3.12. Let (F,B) be a NSS over O and τ be the collection of NSs of O, if if the following are provided

i) (∅,B), (O,B) ∈ τ

ii) (F1,B), (F2,B) ∈ τ then (F1,B) ∩ (F2,B) ∈ τ

iii) (Fi,B),∀ϕ ∈ B then ∪
i
(Fi,B) ∈ τ

Then (O, τ,B) is a near soft topological space(NSTS) [18].

Definition 3.13. (O, τ,B) be a NSTS and G ⊆ O. The near soft topology (NST) on (G,B) induced by the NST τ is
the family τG of the near soft subsets of G of the form τG = {V ∩G : V ∈ τ}. Thus (G, τG,B) is a near soft topological
subspace of (O, τ,B).

Definition 3.14. NS(O,B) denotes the family of all NSS over (O,B).Let (F,A), (G,C) ∈ NS(O,B),A,C ⊆ B.
the near soft cartesian product of (F,A), (G,C) denoted by (F,A) × (G,C) is a NSS on (O,B) × (O,B) such that
(F,A) × (G,C) = {((ϕ1, ϕ2),F(ϕ1) × G(ϕ2)) : ϕ1, ϕ2 ∈ B}

Definition 3.15. Let (O, τ,B) be a NSTS over O . A, NSS (F,B) in (O, τ,B) is called a near soft neighbourhood of
the NSP (xe,B) ∈ (F,B) if there exists a NSOS (G,B) such that (xe,B) ∈ (G,B) ⊂ (F,B).

Definition 3.16. Let (F,A), (G,C) ∈ NS(O,B) and f : (F,A)→ (G,C) a near soft mapping NSM then the following
hold:

1. The image of X ⊆ F under (NSM) f is the near soft set of the form ( f (X),C) = (∪α∈X f (α),C) and for each
NSM ( f (∅),B) = (∅,B).

2. The invese of Y ⊆ G under NSM f is the NSS of the form ( f−1(Y),A) = (∪{{α} : α ∈ (F,A), f (α) ∈ (Y,C)},B) .

Definition 3.17. Let (F, τ,B), (G, υ,B) be a NSTS and f : (F,B)→ (G,B) be a NSM. If for each V ∈ υ, f−1(V) ∈ τ
then f is a near soft continuous mapping and denoted by NSCM.

Definition 3.18. Let (O1, τ,B) and (O2, τ,B) be two NSTS. f : (O1, τ,B)→ (O2, τ,B) be a mapping. For each near
soft neighbourhood (H,B) of ( f (x)ϕ,B), if there exists a near soft neighbourhood f ((F,B)) ⊂ (H,B) then f is a NSCM
(xϕ,B). If f is (NSCM) for all (xϕ,B), then f is a NSCM.

Definition 3.19. Let (O1, τ,B) and (O2, τ,B) be two NSTS. f :O1→O2 be a mapping. O1 is near soft homeomorphic
to O2 if f is a bijection, NSC and f−1 is a near soft homeomorfizm.
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Example 3.20. Let σ = (F,B) be a NSS given in example 10. Then all near soft subsets of σ = (F,B) are;

(F1,B) = {(ϕ1, {1, 3})}
(F2,B) = {(ϕ2, {5, 7})}
(F3,B) = {(ϕ1, {1, 3}), (ϕ2, {5})}
(F4,B) = {(ϕ1, {1, 3}), (ϕ2, {7})}
(F5,B) = {(ϕ1, {1}), (ϕ2, {5, 7})}
(F6,B) = {(ϕ1, {3}), (ϕ2, {5, 7})}
(F7,B) = {(ϕ1, {1, 3}), (ϕ2, {5, 7})}

...

τ = {(F1,B), (F2,B), (F7,B), (∅,B)} is a NST on (F,B). (FB., ∗) is a NSGp with a topology τ. Then ı : FB. → FB. which
defined by

ı((ϕi, {xa})) = ((ϕi, {xa}))−1

ı((ϕ1, {1})) = ((ϕ1, {1}))−1 = (ϕ1, {1})
ı((ϕ1, {3})) = ((ϕ1, {3}))−1 = (ϕ1, {3})
ı((ϕ2, {5})) = ((ϕ2, {5}))−1 = (ϕ2, {5})
ı((ϕ2, {7})) = ((ϕ2, {7}))−1 = (ϕ2, {7})

is continuous.

Definition 3.21. Let (O, τ) be a NSTS of NSE and (ϕ j, {xa}) ∈ FB. If (ϕ j, {xa}) ∈ HC ⊆ GA is an open set then a near
soft subset GA of FB is a near soft neighborhood of NSE (ϕ j, {xa}). The collection of all near soft neighborhoods of the
NSE (ϕ j, {xa}) is denoted N(ϕ j,{xa}).

Definition 3.22. Let (OF, τ) be a NSTS over (F,B).A NSS (G,A) ⊆ (F,B) is near soft open⇔ for each NSEγ ∈ (G,A)
there exist a NSS (H,C) ∈ τ such that γ ∈ (H,C) ⊆ (G,A) .

Definition 3.23. Let (OF, τ1) and (OG, τ2) be a NSTS over (F,B) and (G,B) respectively and λ = {OF ×OG : F ∈ τ1
and G ∈ τ2}. The collection τ of all arbitrary union of elements of λ is a near soft product topology over OF × OG.

4. Near Soft Topological Group Based on Near Soft Element

Definition 4.1. A near soft group (FB, ∗) with a topology τ on FB is called a near soft semi- topological group
(NSsTGp) if for each near soft neighborhood FA of (ϕi, {xa}) ∗ (ϕ′i , {xa}

′), there exists a near soft neighborhood FC of
(ϕi, {xa}) and a near soft neighborhood FD of (ϕ′i , {xa}

′) such that FC ∗ FD ⊆ FA.

Example 4.2. Let σ = (F,B) be a NSs given in example 10. τ = {(F1,B), (F2,B), (F7,B), (∅,B)} is a NSTS where

(F1,B) = {(ϕ1, {1, 3})}
(F2,B) = {(ϕ2, {5, 7})}

.Then (FB., ∗, τ) is a NSsTGp.

Definition 4.3. A near soft group (FB, ∗) with a topology τ on FB is a near soft topological group (NSTGp) if the
following hold:

1. f : FB × FB → FB which defined by

f ((ϕi, {xa}), (ϕ′i , {xa}
′)) = (ϕi, {xa}) ∗ (ϕ′i , {xa}

′)

is continuous with respect to a product topollogy on FB × FB.
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2. ı : FB → FB which defined by ı((ϕi, {xa})) = ((ϕi, {xa}))−1 is continuous.

Definition 4.4. Let τ be a topology defined on a additive group G. Let (F,B) be a non-null near soft set defined over
G. Then, the triplet (F,B, τ) is a NSTGp over G if

i. F(ϕ) is a subgroup of G for all ϕ ∈ B
ii. the mapping (x1, x2)→ x1 − x2 of the topological space F(ϕ) × F(ϕ) onto F(ϕ) is continuous for all ϕ ∈ B.

Definition 4.5. Suppose that O is an additive group and τ be a near soft topology it. Then the NSTS (O, τ,B) is
called a NSTGp if the mapping (x1, x2)→ x1 − x2 is a NSCM from (O × O, τ × τ) to (O, τ,B).

Example 4.6. Let σ = (F,B) be a NSS given in example 10. τ = {(F1,B), (F2,B), (F7,B), (∅,B)} is a near soft topology
on (F,B). (FB., ∗) is a NSGp with a topology τ. (FB., ∗, τ) is a NSTGp;

1. f : FB × FB → FB which defined by

f ((ϕi, {xa}), (ϕ′i , {xa}
′)) = (ϕi, {xa}) ∗ (ϕ′i , {xa}

′)

is continuous with respect to a product topollogy on FB × FB.
2. ı : FB → FB which defined by ı((ϕi, {xa})) = ((ϕi, {xa}))−1 is continuous from example 25.

5. Conclusion

Soft set theory and near set theory, which have been successfully studied by many researchers to date,
have a very good resource for applications. To contribute to the applications in this article, we introduce
near soft topological groups with the help of the near soft element. These results provide an environment
for studying applications on Near soft topological algebraic structures.
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Abstract. In this study, the modified frames with both the non-zero curvature and the torsion of the
non-unit speed curves in Euclidean 3-space E3 are examined. The relationships between the derivative
vectors of the modified frames and the Frenet vectors or the vectors of the modified frames of the curve are
given. Besides, the Darboux vectors obtained from the modified orthogonal frames with both the curvature
and torsion of the curve and the unit vectors in the direction of these Darboux vectors are investigated.
Finally, all these results are shown on the example curves.

1. INTRODUCTION

The Frenet frame, which is a moving frame at a given point on any regular curve in Euclidean 3-space
E3, is one of the most important tools used to analyze the curve. The Frenet frame is an orthonormal
frame consisting of the tangent vector, the principal normal vector and binormal vector of the curve. The
curvature and the torsion functions can be defined on the curve using this frame. Studies on the Frenet
frame of a regular curve in E3 are available in various sources, such as [5, 9–11, 16, 19, 20]. According to the
fundamental theorem of regular curves, a regular curve is a curve with functions κ > 0 (curvature) and τ
(torsion) that can be differentiated at every point of the curve, [6]. However, it is possible for the curvature
function to be zero at certain points on the analytical curves. The principal normal and binormal vectors of
these curves are generally discontinuous at the zero point of the curvature, that is, the curvature function
is not always differentiable. In this case, the Frenet derivative equations of an analytical curve causes
ambiguity at a point where the curvature vanishes. Hord and Sasai pondered this problem and discussed
another frame that works fine on these points, [12, 17]. In a simple but useful approach, an orthogonal
frame was introduced for unit speed analytical curves by Sasai, [18]. Although the vectors of this modified
orthogonal frame are obtained by multiplying each Frenet vector by the curvature function κ, they allow
the use of a new formula corresponding to the Frenet derivative equations for the above-mentioned case.
It is also a useful tool for investigating analytical curves with singular points. Then, Bükcü and Karacan
have developed the Sasai’s study and they have obtained the newly modified frame through the coefficient
of torsion τ by the Frenet vectors and them spherical curves, [3, 4]. There are many studies on the modified
orthogonal frame of a curve in Euclidean or Lorentzian 3-space, [1, 2, 7, 8, 14, 15, 21]. Also, the Darboux

Corresponding author: SGM sumeyyegur@gumushane.edu.tr ORCID:0000-0003-2471-1627, MB ORCID:0000-0002-5797-4944
Received: 17 June 2022; Accepted: 22 July 2022; Published: 30 September 2022
Keywords. (Modified orthogonal frame, Frenet frame, Darboux vector)
2010 Mathematics Subject Classification. 45F10, 53A05, 53A55, 53A05
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vector of a space curve is the areal velocity vector of the moving frame of the curve. The direction of the
Darboux vector is the direction of the instantaneous rotation axis. The Darboux vector can be expressed in
terms of the apparatus of the moving frame. The Darboux vector can also be studied in a modified way for
space curves with singular points, [13, 22].

In this study, the modified frames with both the non-zero curvature and the torsion of the non-unit
speed curves in Euclidean 3-spaceE3 are examined. The derivatives of the vectors belong to these modified
frames are calculated. The relationships between these derivative vectors and the Frenet vectors of the
curve or the vectors of the modified frame are given. Besides, the Darboux vectors obtained from the
modified orthogonal frames with both the curvature and torsion of the curve and the unit vectors in the
direction of these Darboux vectors are investigated. Finally, these all results are investigated on the example
curves. The aim of this study is to generalize the modified frame formulas, created for unit speed curves
by Sasai, for non-unit speed curves. And thus, it provides ease of operation for the solution of the problem
at singular points on a non-unit speed analytic curve, that is, there is no need to transform the curve into a
unit speed curve every time.

2. PRELIMINARIES

Let the curve α (t) be a differentiable space curve in E3. The Frenet vectors, the curvature and the torsion
of the curve α (t) are given as follows:

T (t) =
α′ (t)
v(t)
, B (t) =

α′ (t) ∧ α′′ (t)
∥α′ (t) ∧ α′′ (t)∥

, N (t) = B (t) ∧ T (t) , (1)

κ (t) =
∥α′ (t) ∧ α′′ (t)∥

v3(t)
and τ (t) =

det (α′ (t) , α′′ (t) , α′′′ (t))

∥α′ (t) ∧ α′′ (t)∥2
, (2)

where v (t) = ∥α′ (t)∥, respectively. The Frenet derivative formulas of this curve are as follows:
T′ (t)

N′ (t)

B′ (t)

 =


0 v (t)κ (t) 0

−v (t)κ (t) 0 v (t) τ (t)

0 −v (t) τ (t) 0




T (t)

N (t)

B (t)

 , (3)

[11], [16]. The Darboux vector W (t) of the non-unit speed curve α (t) is as follows:

W (t) = N (t) ∧N′ (t) = v (t) (τ (t) T (t) + κ (t) B (t)) , (4)

where,
T′ (t) =W (t) ∧ T (t) , N′ (t) =W (t) ∧N (t) , B′ (t) =W (t) ∧ B (t) . (5)

The unit vector C (t) in direction of the Darboux vector of the non-unit speed curve α (t) is

C (t) =
W(t)
∥W(t)∥

=
v (t)√

κ2 (t) + τ2 (t)
(τ (t) T (t) + κ (t) B (t)) , (6)

or if the angle between of the binormal vector B (t) and the Darboux vector W (t) of the curve α (t) is φ (t),
then the unit vector is

C (t) = sinφT (t) + cosφB (t) , (7)

[16]. If v (t) = 1, then the curve α (t) is called unit speed curve. Let’s define a orthogonal frame
{E1 (t) ,E2 (t) ,E3 (t)} for the unit speed curve α (t) as follows:

E1 (t) = α′ (t) , E2 (t) = E′1 (t) , E3 (t) = E1 (t) ∧ E2 (t) . (8)
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If the curvature κ (t) of the curve α (t) is non-zero, then there are the following relationships between the
vectors E1 (t) ,E2 (t) ,E3 (t) and the Frenet vectors of the curve:

E1 (t) = T (t) , E2 (t) = κ (t) N (t) , E3 (t) = κ (t) B (t) , (9)

where,
⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0, (10)

and
⟨E1 (t) ,E1 (t)⟩ = 1, ⟨E2 (t) ,E2 (t)⟩ = ⟨E3 (t) ,E3 (t)⟩ = κ2 (t) . (11)

The orthogonal frame {E1 (t) ,E2 (t) ,E3 (t)} is called the modified frame with the curvature κ (t) of the unit
speed curve α (t). It is noted that the modified orthogonal frame coincides with Frenet frame for κ = 1.
There are the following relationships between the vectors E1 (t) ,E2 (t) ,E3 (t) and them derivative vectors:

E′1 (t)

E′2 (t)

E′3 (t)

 =


0 1 0

−κ2 (t)
κ′ (t)
κ (t)

τ (t)

0 −τ (t)
κ′ (t)
κ (t)




E1 (t)

E2 (t)

E3 (t)

 , (12)

here, τ (t) = det(α′(t),α′′(t),α′′′(t))
κ2(t) is the torsion of the curve (α), we know that any zero point of κ2(t) is a removable

singularity of τ(t), [17]. Or, let the torsion τ (t) of the curve α (t) be non-zero. Then let’s define the following
orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} for the unit speed curve α (t) as follows:

A1 (t) = T (t) , A2 (t) = τ (t) N (t) , A3 (t) = τ (t) B (t) , (13)

where,
⟨A1 (t) ,A2 (t)⟩ = ⟨A2 (t) ,A3 (t)⟩ = ⟨A1 (t) ,A3 (t)⟩ = 0, (14)

and
⟨A1 (t) ,A1 (t)⟩ = 1, ⟨A2 (t) ,A2 (t)⟩ = ⟨A3 (t) ,A3 (t)⟩ = τ2 (t) . (15)

The orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} is called the modified frame with the torsion τ (t) of the unit
speed curve α (t). And, there are the following relationships between the vectors A1 (t) ,A2 (t) ,A3 (t) and
them derivative vectors:


A′1 (t)

A′2 (t)

A′3 (t)

 =


0
κ (t)
τ (t)

0

−κ (t) τ (t)
τ′ (t)
τ (t)

τ (t)

0 −τ (t)
τ′ (t)
τ (t)




A1 (t)

A2 (t)

A3 (t)

 . (16)

The Darboux vector D (t) obtained from the modified orthogonal frame with the curvature κ (t) of a unit
speed curve α (t) is obtained as follows:

D (t) = τ (t) E1 (t) + E3 (t) (17)

and
E2 (t) ∧ E′2 (t) = κ2 (t) D (t) . (18)

If the angle between of the Darboux vector D(t) and the vector E3 (t) is φ (t), the unit vector in direction of
the Darboux vector is

G (t) = sinφE1 (t) +
cosφ
κ(t)

E3 (t) . (19)
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3. The Modified Orthogonal Frames of the Non-Unit Speed Curve in E3

Let the Frenet frame, the curvature and the torsion of a non-unit speed curve α (t) be {T (t) ,N (t) ,B (t)} , κ (t)
and τ (t), respectively.

3.1. The Modified Orthogonal Frame With the Curvature κ (t) of a Non-Unit Speed Curve in E3

Theorem 3.1. Let the Frenet frame and the curvature be {T (t) ,N (t) ,B (t)} and κ (t) of the non-unit speed space
curve α (t), respectively. The modified orthogonal frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the curve
α (t) is as follows: 

E1 (t) = v (t) T (t) ,

E2 (t) = v2 (t)κ (t) N (t) ,

E3 (t) = v3 (t)κ (t) B (t) .

(20)

Proof. Let’s create the vectors E1 (t) ,E2 (t) ,E3 (t) using the Gram-Schmidt orthogonalization procedure as
follows: 

E1 (t) = α′ (t) ,

E2 (t) = E′1 (t) −

〈
E′1 (t) ,E1 (t)

〉
⟨E1 (t) ,E1 (t)⟩

E1 (t) ,

E3 (t) = E1 (t) ∧ E2 (t) .

(21)

Here, since the curve α (t) is not an unit speed curve, we can’t use the expression (8). From the expression
(1), the vector E1 (t) is obtained as follows:

E1 (t) = v (t) T (t) . (22)

From the expressions (3) and (22), the following equation is gotten:〈
E′1 (t) ,E1 (t)

〉
⟨E1 (t) ,E1 (t)⟩

=
v′ (t)
v (t)
. (23)

From the expressions (3), (21) and (23), the vectors E2 (t) and E3 (t) are obtained as follows:

E2 (t) = v2 (t)κ (t) N (t) , (24)

E3 (t) = v3 (t)κ (t) B (t) . (25)

The proof is completed from the expressions (22), (24) and (25).

Corollary 3.2. As a result of Theorem 3.1, the following equations are obtained for the vectors E1 (t) ,E2 (t) ,E3 (t):

⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0, (26)
⟨E1 (t) ,E1 (t)⟩ = v2 (t) ,

⟨E2 (t) ,E2 (t)⟩ = v4 (t)κ2 (t) ,

⟨E3 (t) ,E3 (t)⟩ = v6 (t)κ2 (t) ,

(27)

and 
E1 (t) ∧ E2 (t) = E3 (t) ,

E2 (t) ∧ E3 (t) = v4(t)κ2(t)E1 (t) ,

E3 (t) ∧ E1 (t) = v2(t)E2 (t) .

(28)
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Remark 3.3. The modified frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the non-unit speed curve α (t) is
indeed orthogonal (from the expression (26)), but is not orthonormal (from the expression (ref20)), because the vectors
E1 (t) ,E2 (t) ,E3 (t) are not unit vectors (if not v (t) = κ (t) = 1 at the same time). If v (t) = κ (t) = 1 at the same time,
then the modified frame {E1 (t) ,E2 (t) ,E3 (t)} becomes an orthonormal frame.

Theorem 3.4. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and κ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the curvature κ (t) of the curve α (t)
be {E1 (t) ,E2 (t) ,E3 (t)}. There are the following equations between the Frenet vectors and the derivative vectors
E′1 (t) ,E′2 (t) ,E′3 (t):


E′1 (t)

E′2 (t)

E′3 (t)

 =


v′ (t) v2 (t)κ (t) 0

−v3 (t)κ2 (t) 2v (t) v′ (t)κ (t) + v2 (t)κ′ (t) v3 (t)κ (t) τ (t)

0 −v4 (t)κ (t) τ (t) 3v2 (t) v′ (t)κ (t) + v3 (t)κ′ (t)




T (t)

N (t)

B (t)

 . (29)

Proof. By using the expression (3), from the expression (20), we obtain the derivative vectors E′1 (t), E′2 (t),
E′3 (t) in terms of the Frenet vectors T (t) ,N (t) ,B (t) as follows:

E′1 (t) = (v (t) T (t))′ ,

E′1 (t) = v′ (t) T (t) + v2 (t)κ (t) N (t) , (30)

E′2 (t) =
(
v2 (t)κ (t) N (t)

)′
,

E′2 (t) = −v3 (t)κ2 (t) T (t) +
(
2v (t) v′ (t)κ (t) + v2 (t)κ′ (t)

)
N (t) + v3 (t)κ (t) τ (t) B (t) , (31)

E′3 (t) =
(
v3 (t)κ (t) B (t)

)′
E′3 (t) = −v4 (t)κ (t) τ (t) N (t) +

(
3v2 (t) v′ (t)κ (t) + v3 (t)κ′ (t)

)
B (t) . (32)

The proof is completed from the expressions (30), (31) and (32).

Theorem 3.5. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the curvature κ (t) of the curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. There are the following equations between their derivatives and the vectors E1 (t) ,E2 (t) ,E3 (t):


E′1 (t)

E′2 (t)

E′3 (t)

 =


v′ (t)
v (t)

1 0

−v2 (t)κ2 (t)
2v′ (t)
v (t)

+
κ′ (t)
κ (t)

τ (t)

0 −v2 (t) τ (t)
3v′ (t)
v (t)

+
κ′ (t)
κ (t)




E1 (t)

E2 (t)

E3 (t)

 . (33)

Proof. From the expression (20), the Frenet vectors T (t) ,N (t) ,B (t) are written in terms of the vectors
E1 (t) ,E2 (t) ,E3 (t) as follows:

T (t) =
E1 (t)

v (t)
, N (t) =

E2 (t)

v2 (t)κ (t)
, B (t) =

E3 (t)

v3 (t)κ (t)
. (34)
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If the expression (34) is substituted in the expressions (30), (31) and (32), respectively, we get

E′1 (t) =
v′ (t)
v (t)

E1 (t) + E2 (t) , (35)

E′2 (t) = −v2 (t)κ2 (t) E1 (t) +
(

2v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E2 (t) + τ (t) E3 (t) , (36)

E′3 (t) = −v2 (t) τ (t) E2 (t) +
(

3v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E3 (t) . (37)

The proof is completed from the expressions (35), (36) and (37).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, from the expressions (20) and
(27), the expressions (9) and (11) are obtained, respectively. And the expression (28) would be as follows:

E1 (t) ∧ E2 (t) = E3 (t) , E2 (t) ∧ E3 (t) = κ2(t)E1 (t) , E3 (t) ∧ E1 (t) = E2 (t) . (38)

Also, from the expression (33), the following equations are obtained:
E′1 (t)

E′2 (t)

E′3 (t)

 =


0 κ (t) 0

−κ2 (t) κ′ (t) κ (t) τ (t)

0 −κ (t) τ (t) κ′ (t)




T (t)

N (t)

B (t)

 . (39)

Finally, we obtain the equalities between of the modified orthogonal frame and the derivative vectors of
the modified orthogonal frame with the curvature κ (t) of the unit speed curve α (t), like the expression (12).

3.2. The Modified Orthogonal Frame With the Torsion τ (t) of a Non-Unit Speed Curve in E3

Theorem 3.6. Let the Frenet frame and the curvature be {T (t) ,N (t) ,B (t)} and κ (t) of the non-unit speed space
curve α (t), respectively. The modified orthogonal frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the curve α (t)
is as follows: 

A1 (t) = v (t) T (t) ,

A2 (t) = v2 (t) τ (t) N (t) ,

A3 (t) = v3 (t) τ (t) B (t) .

(40)

Proof. Let’s create the vectors A1 (t) ,A2 (t) ,A3 (t) using the Gram-Schmidt orthogonalization procedure as
follows: 

A1 (t) = α′ (t) ,

A2 (t) =
τ (t)
κ (t)

A′1 (t) −

〈
A′1 (t) , A1 (t)

〉
⟨A1 (t) , A1 (t)⟩

A1 (t)

 ,
A3 (t) = A1 (t) ∧ A2 (t) .

(41)

Here, since the curve α (t) is not an unit speed curve, we can’t use the expression (13). From the expression
(1), the vector A1 (t) is obtained as follows:

A1 (t) = v (t) T (t) . (42)
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From the expression (22), we see that the vectors E1 (t) and A1 (t) are equal. So from the expression (23), we
get 〈

A′1 (t) ,A1 (t)
〉

⟨A1 (t) ,A1 (t)⟩
=

v′ (t)
v (t)
. (43)

From the expressions (3), (42) and (43), the vectors A2 (t) and A3 (t) are obtained as follows:

A2 (t) = v2 (t) τ (t) N (t) , (44)

A3 (t) = v3 (t) τ (t) B (t) . (45)

The proof is completed from the expressions (42), (44) and (45).

Corollary 3.7. As a result of Theorem 3.6, the following equations are obtained for the vectors A1 (t) ,A2 (t) ,A3 (t):

⟨A1 (t) , A2 (t)⟩ = ⟨A2 (t) , A3 (t)⟩ = ⟨A1 (t) , A3 (t)⟩ = 0, (46)


⟨A1 (t) , A1 (t)⟩ = v2 (t) ,

⟨A2 (t) , A2 (t)⟩ = v4 (t) τ2 (t) ,

⟨A3 (t) , A3 (t)⟩ = v6 (t) τ2 (t) ,

(47)

and 
A1 (t) ∧ A2 (t) = A3 (t) ,

A2 (t) ∧ A3 (t) = v4(t)τ2(t)A1 (t) ,

A3 (t) ∧ A1 (t) = v2(t)A2 (t) .

(48)

Remark 3.8. The modified frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the non-unit speed curve α (t) is
indeed orthogonal (from the expression (46)), but is not orthonormal (from the expression (47)), because the vectors
A1 (t) ,A2 (t) ,A3 (t) are not unit vectors (if not v (t) = τ2 (t) = 1 at the same time). If v (t) = τ2 (t) = 1 at the same
time, then the modified frame {A1 (t) ,A2 (t) ,A3 (t)} becomes an orthonormal frame.

Theorem 3.9. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the non-unit
speed space curve α (t), respectively. And let the modified orthogonal frame with the torsion τ (t) of the curve α (t)
be {A1 (t) ,A2 (t) ,A3 (t)}. There are the following equations between the Frenet vectors and the derivative vectors
A′1 (t) ,A′2 (t) ,A′3 (t):


A′1 (t)

A′2 (t)

A′3 (t)

 =


v′ (t) v2 (t)κ (t) 0

−v3 (t)κ (t) τ (t) 2v (t) v′ (t) τ (t) + v2 (t) τ′ (t) v3 (t) τ2 (t)

0 −v4 (t) τ2 (t) 3v2 (t) v′ (t) τ (t) + v3 (t) τ′ (t)




T (t)

N (t)

B (t)

 .
(49)

Proof. By using the expression (3), from the expression (40), we obtain the derivative vectors A′1 (t), A′2 (t),
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A′3 (t) in terms of the Frenet vectors T (t), N (t), B (t) as follows:

A′1 (t) = (v (t) T (t))′ ,

A′1 (t) = v′ (t) T (t) + v2 (t)κ (t) N (t) , (50)

A′2 (t) =
(
v2 (t) τ (t) N (t)

)′
A′2 (t) =

(
−v3 (t)κ (t) τ (t)

)
T (t) +

(
2v (t) v′ (t) τ (t) + v2 (t) τ′ (t)

)
N (t) + v3 (t) τ2 (t) B (t) , (51)

A′3 (t) =
(
v3 (t) τ (t) B (t)

)′
A′3 (t) = −v4 (t) τ2 (t) N (t) +

(
3v2 (t) v′ (t) τ (t) + v3 (t) τ′ (t)

)
B (t) . (52)

The proof is completed from the expressions (50), (51) and (52).

Theorem 3.10. Let the Frenet frame, the curvature and the torsion be {T (t) ,N (t) ,B (t)}, κ (t) and τ (t) of the
non-unit speed space curve α (t), respectively. And let the modified orthogonal frame with the torsion τ (t) of the
curve α (t) be {A1 (t) ,A2 (t) ,A3 (t)}. There are the following equations between their derivatives and the vectors
A1 (t) ,A2 (t) ,A3 (t):


A′1 (t)

A′2 (t)

A′3 (t)

 =


v′ (t)
v (t)

κ (t)
τ (t)

0

−v2 (t)κ (t) τ (t)
2v′ (t)
v (t)

+
τ′ (t)
τ (t)

τ (t)

0 −v2 (t) τ (t)
3v′ (t)
v (t)

+
τ′ (t)
τ (t)




A1 (t)

A2 (t)

A3 (t)

 . (53)

Proof. From the expression (40), the Frenet vectors T (t) ,N (t) ,B (t) are written in terms of the vectors
A1 (t) ,A2 (t) ,A3 (t) as follows:

T (t) =
A1 (t)

v (t)
, N (t) =

A2 (t)

v2 (t) τ (t)
, B (t) =

A3 (t)

v3 (t) τ (t)
. (54)

If the expression (54) is substituted in the expressions (50), (51) and (52), respectively, we get

A′1 (t) =
v′ (t)
v (t)

A1 (t) +
κ (t)
τ (t)

A2 (t) , (55)

A′2 (t) = −v2 (t)κ (t) τ (t) A1 (t) +
(

2v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A2 (t) + τ (t) A3 (t) , (56)

A′3 (t) = −v2 (t) τ (t) A2 (t) +
(

3v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A3 (t) . (57)

The proof is completed from the expressions (55), (56) and (57).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expressions (40) and (47),
the expressions (13) and (15) are obtained, respectively. And the expression (48) would be as follows:

A1 (t) ∧ A2 (t) = A3 (t) , A2 (t) ∧ A3 (t) = τ2(t)A1 (t) , A3 (t) ∧ A1 (t) = A2 (t) . (58)
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Also, from the expression (49), the following equations are obtained:
A′1 (t)

A′2 (t)

A′3 (t)

 =


0 κ (t) 0

−κ (t) τ (t) τ′ (t) τ2 (t)

0 −τ2 (t) τ′ (t)




T (t)

N (t)

B (t)

 .
Finally, we obtain the equalities between of the modified orthogonal frame and the derivative vectors of
the modified orthogonal frame with the torsion τ (t) of the unit speed curve α (t), like the expression (16).

4. The Darboux vectors obtained from the modified orthogonal frames the non-unit speed curves in
Euclidean 3-space E3

In this section, we will calculate the equivalent of the Darboux vector W(t) (or the unit vector in the direction
of the Darboux vector C(t)) obtained from the Frenet frame in terms of the vectors of the modified frame of
a non-unit speed curve α (t). But to avoid confusion, we will denote the Darboux vector (the unit vector in
the direction of the Darboux vector) obtained from the modified frame with D(t) (or G(t)).

4.1. The Darboux vector obtained from the modified orthogonal frame with the curvature κ (t) of a non-unit
speed curve in Euclidean 3-space E3

Theorem 4.1. Let the modified orthogonal frame with the curvature κ (t) of the non-unit speed space curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. The Darboux vector D (t) obtained from this frame is as follows:

D (t) = τ (t) E1 (t) +
E3 (t)
v2 (t)

, (59)

here, (
E1 (t)
v (t)

)′
= D (t) ∧

E1 (t)
v (t)

=
E2 (t)
v (t)

, (60)

(
E2 (t)

v2 (t)κ (t)

)′
= D (t) ∧

E2 (t)
v2 (t)κ (t)

= −κ (t) E1 (t) +
τ (t)

v2 (t)κ (t)
E3 (t) , (61)

(
E3 (t)

v3 (t)κ (t)

)′
= D (t) ∧

E3 (t)
v3 (t)κ (t)

= −
τ (t)

v (t)κ (t)
E2 (t) . (62)

Proof. From the expression (4) and (34), the Darboux vector D (t) is obtained as the expression (59). Also,
from the expression (33), we can write the following equations:

(
E1 (t)
v (t)

)′
=

1
v (t)

E′1 (t) −
v′ (t)
v2 (t)

E1 (t) , (63)

(
E1 (t)
v (t)

)′
=

E2 (t)
v (t)

. (64)

On the other hand, from the expression (28), we get

D (t) ∧
E1 (t)
v (t)

=

(
τ (t) E1 (t) +

E3 (t)
v2 (t)

)
∧

E1 (t)
v (t)

,

D (t) ∧
E1 (t)
v (t)

=
E2 (t)
v (t)

. (65)

From the equality of the expressions (64) and (65), the expression (60) is gotten. If similar operations are
applied for E2(t) and E3(t) vectors, the equations (61) and (62) are obtained.
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Corollary 4.2. As a result of Theorem 4.1, the following equations are obtained:

E′1 (t) = D (t) ∧ E1 (t) +
v′ (t)
v (t)

E1 (t) ,

E′2 (t) = D (t) ∧ E2 (t) +
(

2v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E2 (t) ,

E′3 (t) = D (t) ∧ E3 (t) +
(

3v′ (t)
v (t)

+
κ′ (t)
κ (t)

)
E3 (t) .

(66)

Corollary 4.3. As a result of Corollary 4.2, the following equations are obtained:
E1 (t) ∧ E′1 (t) = E3 (t) ,

E2 (t) ∧ E′2 (t) = v4 (t)κ2 (t) D (t) ,

E3 (t) ∧ E′3 (t) = v6 (t)κ2 (t) τ (t) E1 (t) .

(67)

Corollary 4.4. From Corollary 4.3, the following equation are gotten:

D (t) =
E2 (t) ∧ E′2 (t)

v4 (t)κ2 (t)
. (68)

Remark 4.5. Here, we have actually expressed the Darboux vector W (t) of the Frenet frame of the non-unit speed
curve α (t) in terms of the modified frame {E1 (t) ,E2 (t) ,E3 (t)} with the curvature κ (t) of the curve, with the vector
D (t) in the expression (68).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (59) is obtained
as in expression (17). And the expressions (66) and (67) would be as following:

E′1 (t) = D(t) ∧ E1 (t) ,

E′2 (t) = D(t) ∧ E2 (t) +
κ′ (t)
κ (t)

E2 (t) ,

E′3 (t) = D(t) ∧ E3 (t) +
κ′ (t)
κ (t)

E3 (t)

and
E1 (t) ∧ E′1 (t) = E3 (t) , E2 (t) ∧ E′2 (t) = κ2 (t) D (t) , E3 (t) ∧ E′3 (t) = κ2 (t) τ (t) E1 (t) .

Finally, the expression (68) is obtained as in the expression (18).

Theorem 4.6. Let the modified orthogonal frame with the curvature κ (t) of the non-unit speed space curve α (t) be
{E1 (t) ,E2 (t) ,E3 (t)}. And let the angle between the Darboux vector D(t) and the vector E3 (t) be φ (t). The unit
vector in the direction of the Darboux vector G (t) is as follows:

G (t) =
sinφ
v(t)

E1 (t) +
cosφ

v3(t)κ(t)
E3 (t) . (69)

Proof. From the expressions (27) and (59), we get

∥D(t)∥ =

√
⟨E1 (t) ,E1 (t)⟩ τ2 (t) +

⟨E3 (t) ,E3 (t)⟩
v4 (t)

,

∥D(t)∥ = v(t)
√
κ2 (t) + τ2 (t). (70)



S. Gür Mazlum, M. Bektaş, / TJOS 7 (2), 58–74 68

From the expressions (59) and (70), the unit vector in the direction of the Darboux vector G (t) is gotten as
follows:

G (t) =
τ (t)

v(t)
√
κ2 (t) + τ2 (t)

E1 (t) +
1

v3(t)
√
κ2 (t) + τ2 (t)

E3 (t) . (71)

Figure 1: The Darboux vector obtained from the modified orthogonal frame with the curvature κ (t)

If the angle between of the Darboux vector D(t) and the vector E3 (t) is φ (t) , from the Figure 1 and the
expressions (27) and (70), we write

cosφ =
κ(t)√

κ2 (t) + τ2 (t)
and sinφ =

τ (t)√
κ2 (t) + τ2 (t)

. (72)

From the expressions (71) and (72), the expression (69) is obtained.

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (69) is obtained
as in expression (19).

4.2. The Darboux vector obtained from the modified orthogonal frame with the torsion τ (t) of a non-unit
speed curve in Euclidean 3-space E3

Theorem 4.7. Let the modified orthogonal frame with the torsion τ (t) of the non-unit speed space curve α (t) be
{A1 (t) ,A2 (t) ,A3 (t)}. The Darboux vector D (t) obtained from this frame is as follows:

D (t) = τ (t) A1 (t) +
κ (t)

v2 (t) τ (t)
A3 (t) , (73)

here, (
A1 (t)
v (t)

)′
= D (t) ∧

A1 (t)
v (t)

=
κ(t)

v (t) τ(t)
A2 (t) , (74)

(
A2 (t)

v2 (t) τ (t)

)′
= D (t) ∧

A2 (t)
v2 (t) τ (t)

= −κ (t) A1 (t) +
A3 (t)
v2 (t)

, (75)

(
A3 (t)

v3 (t) τ (t)

)′
= D (t) ∧

A3 (t)
v3 (t) τ (t)

= −
A2 (t)
v (t)

. (76)

Proof. From the expressions (4) and (54), the Darboux vector D (t) is obtained as the expression (73). Also,
from the expression (53), we can write the following equations:(

A1 (t)
v (t)

)′
=

1
v (t)

A′1 (t) −
v′ (t)
v2 (t)

A1 (t) , (77)

(
A1 (t)
v (t)

)′
=

κ (t)

v (t) τ(t)
A2 (t) . (78)



S. Gür Mazlum, M. Bektaş, / TJOS 7 (2), 58–74 69

On the other hand, from the expression (48), we get

D (t) ∧
A1 (t)
v (t)

=

(
τ (t) A1 (t) +

κ (t)
v2 (t) τ (t)

A3 (t)
)
∧

A1 (t)
v (t)

,

D (t) ∧
A1 (t)
v (t)

=
κ(t)

v (t) τ(t)
A2 (t) . (79)

From the equality of the expressions (78) and (79), the expression (74) is gotten. If similar operations are
applied for A2(t) and A3(t) vectors, the equations (75) and (76) are obtained.

Corollary 4.8. As a result of Theorem 4.7, the following equations are obtained:

A′1 (t) = D (t) ∧ A1 (t) +
v′ (t)
v (t)

A1 (t) ,

A′2 (t) = D (t) ∧ A2 (t) +
(

2v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A2 (t) ,

A′3 (t) = D (t) ∧ A3 (t) +
(

3v′ (t)
v (t)

+
τ′ (t)
τ (t)

)
A3 (t) .

(80)

Corollary 4.9. As a result of Corollary 4.8, the following equations are obtained:

A1 (t) ∧ A′1 (t) =
κ(t)
τ (t)

A3 (t) ,

A2 (t) ∧ A′2 (t) = v4 (t) τ2 (t) D (t) ,

A3 (t) ∧ A′3 (t) = v6 (t) τ3 (t) A1 (t) .

(81)

Corollary 4.10. From Corollary 4.9, the following equation is gotten:

D (t) =
A2 (t) ∧ A′2 (t)

v4 (t) τ2 (t)
. (82)

Remark 4.11. Here, we have actually expressed the Darboux vector W (t) of the Frenet frame of the non-unit speed
curve α (t) in terms of the modified frame {A1 (t) ,A2 (t) ,A3 (t)} with the torsion τ (t) of the curve, with the vector
D (t) in the expression (82).

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expressions (73), (80), (81)
and (82) would be as following:

D (t) = τ (t) A1 (t) +
κ (t)
τ (t)

A3 (t) ,

A′1 (t) = D (t) ∧ A1 (t) ,

A′2 (t) = D (t) ∧ A2 (t) +
τ′ (t)
τ (t)

A2 (t) ,

A′3 (t) = D (t) ∧ A3 (t) +
τ′ (t)
τ (t)

A3 (t) ,
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A1 (t) ∧ A′1 (t) =
κ(t)
τ (t)

A3 (t) , A2 (t) ∧ A′2 (t) = τ2 (t) D (t) , A3 (t) ∧ A′3 (t) = τ3 (t) A1 (t)

and

D (t) =
A2 (t) ∧ A′2 (t)
τ2 (t)

.

Theorem 4.12. Let the modified orthogonal frame with the torsion τ (t) of the non-unit speed space curve α (t) be
{A1 (t) ,A2 (t) ,A3 (t)}. And let the angle between the Darboux vector D(t) and the vector A3 (t) be φ (t). The unit
vector in the direction of the Darboux vector G (t) is as follows:

G (t) =
sinφ
v(t)

A1 (t) +
cosφ

v3(t)τ(t)
A3 (t) . (83)

Proof. From the expressions (47) and (73), we get

∥∥∥D(t)
∥∥∥ =

√
⟨A1 (t) ,A1 (t)⟩ τ2 (t) +

⟨A3 (t) ,A3 (t)⟩κ2 (t)
v4 (t) τ2 (t)

,

∥∥∥D(t)
∥∥∥ = v(t)

√
κ2 (t) + τ2 (t). (84)

From the expressions (73) and (84), the unit vector in the direction of the Darboux vector G (t) is gotten as
follows:

G (t) =
τ (t)

v(t)
√
κ2 (t) + τ2 (t)

A1 (t) +
κ (t)

v3(t)τ (t)
√
κ2 (t) + τ2 (t)

A3 (t) . (85)

Figure 2: The Darboux vector obtained from the modified orthogonal frame with the torsion τ (t)

If the angle between of the Darboux vector D(t) and the vector A3 (t) is φ (t) , from the Figure 2 and the
expressions (47) and (84), we write

cosφ =
κ(t)√

κ2 (t) + τ2 (t)
and sinφ =

τ (t)√
κ2 (t) + τ2 (t)

. (86)

From the expressions (85) and (86), the expression (83) is obtained.

Special Case: If the curve α (t) is an unit speed curve, v (t) = 1. In this case, the expression (83) is obtained
as follows:

G (t) = sinφA1 (t) +
cosφ
τ(t)

A3 (t) . (87)
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Example 4.13. Let’s consider the non-unit speed Euler spiral (clothoid or Cornu spiral)

α (t) =

a

t∮
0

cos
(
πx2

2

)
dx, a

t∮
0

sin
(
πx2

2

)
dx, at

 ,

.

Figure 3: Euler spiral

Figure 3, [9]. Here the components
t∮

0
cos

(
πx2

2

)
dx and

t∮
0

sin
(
πx2

2

)
dx are called Fresnel integrals. Then the first,

second and third derivative vectors of α (t) are as follows:

α′ (t) =
(
a cos

(
πt2

2

)
, a sin

(
πt2

2

)
, a

)
,

α
′′

(t) =
(
−aπt sin

(
πt2

2

)
, aπt cos

(
πt2

2

)
, 0

)
,

α
′′′

(t) =
(
−aπ2t2 cos

(
πt2

2

)
,−aπ2t2 sin

(
πt2

2

)
, 0

)
.

Here, ∥α′ (t)∥ = v (t) =
√

2 |a| , if a , ± 1
√

2
, the curve be α (t) is not an unit speed curve. So the Frenet vectors, the

curvature and the torsion are obtained as follows:

T (t) =

(
a
√

2 |a|
cos

(
πt2

2

)
,

a
√

2 |a|
sin

(
πt2

2

)
,

a
√

2 |a|

)
,

N (t) =

(
−

at
|a| |t|

sin
(
πt2

2

)
,

at
|a| |t|

cos
(
πt2

2

)
, 0

)
,

B (t) =

(
−

t
√

2 |t|
cos

(
πt2

2

)
,−

t
√

2 |t|
sin

(
πt2

2

)
,

t
√

2 |t|

)
,

κ (t) =
π |t|
2 |a|

, τ(t) =
πt
2a
.



S. Gür Mazlum, M. Bektaş, / TJOS 7 (2), 58–74 72

Now, let’s examine the left and right limits of the vectors N(t) and B(t):

lim
t→0+

N (t) =
(
0,

a
|a|
, 0

)
and lim

t→0−
N (t) =

(
0,−

a
|a|
, 0

)
,

lim
t→0+

B (t) =
(
−

1
√

2
, 0,

1
√

2

)
and lim

t→0−
B (t) =

(
1
√

2
, 0,−

1
√

2

)
.

Since lim
t→0+

N (t) , lim
t→0−

N (t) and lim
t→0+

B (t) , lim
t→0−

B (t) , there is no limit at t = 0. So the normal vector and binormal

vector are discontinuous at t = 0. And it is clear that, the curvature function is not differentiable at t = 0. Then,
to prevent the occurrence of two reverse oriented principal normal vector and binormal vector, it is helpful to use the
following modified orthogonal frame with the curvature κ (t), obtained from Frenet vectors:

E1 (t) =

(
a cos

(
πt2

2

)
, a sin

(
πt2

2

)
, a

)
,

E2 (t) =

(
−aπt sin

(
πt2

2

)
, aπt cos

(
πt2

2

)
, 0

)
,

E3 (t) =

(
−a2πt cos

(
πt2

2

)
, − a2πt sin

(
πt2

2

)
, a2πt

)
,

κ2 (t) =
π2t2

4a2 , τ(t) =
πt
2a
.

Thus, the problem of not being able to differentiate of the curvature at the point t = 0 is eliminated.

Example 4.14. Let a non-unit speed space curve be

β (t) =
(
t cos t − sin t, cos t + t sin t,

t2

2

)
,

.

Figure 4: The curve α (t) = (t cos t − sin t, cos t + t sin t, t)

Figure 4. Then the first, second and third derivative vectors of β (t) are as follows:

β′ (t) = (−t sin t, t cos t, t) ,

β′′ (t) = (−t cos t − sin t, cos t − t sin t, 1) ,

β′′′ (t) = (−2 cos t + t sin t,−t cos t − 2 sin t, 0) ,
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Since
∥∥∥β′ (t)∥∥∥ = v (t) =

√
2 |t| , the curve be β (t) is not an unit speed curve. So the Frenet vectors, the curvature, the

torsion, the Darboux vector, the unit vector in direction of the Darboux vector of the curve β(t) are obtained as follows:

T (t) =

(
−

t
√

2 |t|
sin t,

t
√

2 |t|
cos t,

t
√

2 |t|

)
,

N (t) =
( t
|t|

cos t,
t
|t|

sin t, 0
)
,

B (t) =

(
1
√

2
sin t,−

1
√

2
cos t,

1
√

2

)
,

κ (t) =
1
√

2 |t|
, τ (t) =

1
2t
,

W (t) =
(

t − t3

√
2 |t|

sin t,
t3
− t
√

2 |t|
cos t,

t + t3

√
2 |t|

)
,

C (t) =

 t − t3

√
2 |t| (1 + t4)

sin t,
t3
− t

√
2 |t| (1 + t4)

cos t,
t + t3

√
2 |t| (1 + t4)

 .
Now, let’s examine the left and right limits of the vectors T(t) and N(t). Since lim

t→0+
T (t) , lim

t→0−
T (t), lim

t→0+
N (t) ,

lim
t→0−

N (t) and lim
t→0+

W (t) , lim
t→0−

W (t), there is no limit at t = 0. So the tangent vector and principal normal vector are

discontinuous at t = 0. And, it is clear that, the curvature is not differentiable at t = 0. So, to solve the problem at
t = 0, let’s create the modified orthogonal frame of the curve. The modified orthogonal frame with the curvature κ (t)
of the non-unit speed curve β (t) is gotten as follows:

E1 (t) = (−t sin t, t cos t, t) ,

E2 (t) =
(√

2t cos t,
√

2t sin t, 0
)
,

E3 (t) =
(√

2t2 sin t,−
√

2t2 cos t,
√

2t2
)
,

where,
⟨E1 (t) ,E2 (t)⟩ = ⟨E2 (t) ,E3 (t)⟩ = ⟨E1 (t) ,E3 (t)⟩ = 0,

⟨E1 (t) ,E1 (t)⟩ = ⟨E2 (t) ,E2 (t)⟩ = 2t2, ⟨E3 (t) ,E3 (t)⟩ = 4t4

and
E1 (t) ∧ E2 (t) = E3 (t) ,

E2 (t) ∧ E3 (t) =
(
−2t3 sin t, 2t3 cos t, 2t3

)
= v4(t)κ2(t)E1 (t) ,

E3 (t) ∧ E1 (t) =
(
2
√

2t3 cos t, 2
√

2t3 sin t, 0
)
= v2(t)E2 (t) .

Also, the curvature, the torsion, the Darboux vector and the unit vector in direction of the Darboux vector of the
modified orthogonal frame with the curvature κ (t) of the non-unit speed curve β (t) are as following:

κ2 (t) =
1

2t2 , τ (t) =
1
2t
,

D (t) =
(

1 − t2

√
2

sin t,
t2
− 1
√

2
cos t,

1 + t2

√
2

)
,
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G (t) =

 1 − t2

√
2(1 + t4)

sin t,
t2
− 1

√
2(1 + t4)

cos t,
1 + t2

√
2(1 + t4)

 .
Thus, instead of the Frenet frame of the curve, which causes problem at t = 0, the properties of the curve at this point
can be examined with this modified orthogonal frame.

5. Conclusions

At singular points (or sharp points) on the analytical curves (or the discontinuous curves), one or more of
the Frenet vectors, or the curvature and torsion functions, cannot be differentiated because their right and
left limits are not the same. At these points, the use of the modified orthogonal frame instead of the Frenet
frame is sufficient and necessary to solve the problem at that point. Apart from this, there is no harm in
creating a modified orthogonal frame of any regular curve. Just like the Frenet frame, the characteristic
features of the curve can also be examined with the modified orthogonal frame. Since the Frenet frame
provides more ease of operation, the modified orthogonal frame is not preferred much in studies on regular
curves. In this study, we have shown that the modified orthogonal frame works well not only for unit
speed curves, but also for non-unit speed curves.
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[15] Lone MS, Es H, Karacan MK, Bükcü B. Mannheim curves with modified orthogonal frame in Euclidean 3-space. Turkish Journal

of Mathematics, 43(2), 2019, 648 – 663.
[16] Özdemir M. Diferansiyel Geometri. Altin Nokta Yayinevi, 2020.
[17] Sasai T. The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations. Tohoku

Math Journal. 36, 1984, 17 – 24.
[18] Sasai T. Geometry of analytic space curves with singularities and regular singularities of differential equations. Funkcial. Ekvac.

30, 1987, 283 – 303.
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Abstract. In this paper, we study tubular hypersurfaces according to one of the extended Darboux frame
field in Euclidean 4-space. We obtain the Gaussian and mean curvatures of tubular hypersurfaces according
to extended Darboux frame field of first kind and give some results for them. Also, we prove a theorem
about linear Weingarten tubular hypersurface and construct an example.

1. INTRODUCTION

A canal surface is formed by the envelope of the spheres whose centers lie on a curve and radii vary
depending on this curve [18]. In case of a constant radius function, the envelope is called tubular or pipe
surface [19]. Also for a canal surface, if the center curve is a straight line, then it becomes a revolution
surface. Canal surfaces (especially tubular surfaces) have been applied to many fields, such as the solid
and the surface modeling for CAD/CAM, construction of blending surfaces, shape re-construction and so
on. In this context, canal and tubular (hyper)surfaces have been studied by many geometers in Euclidean,
Minkowskian, Galilean or pseudo-Galilean spaces (see [7], [14], [20]-[24], [28]-[30], [32], [34]-[37], and etc).

On the other hand, Frenet frame has been used in lots of studies about curves and surfaces, but sometimes
scienticists have needed alternative frames because Frenet frame cannot be identified at the points where
the curvature is zero. Therefore, new alternative frames to the Frenet frame such as Bishop frame, Darboux
frame or extended Darboux frame have been defined by geometers and the theories of curves and surfaces
have been started to handle according to these alternative frames (see [2], [3], [9]-[13], [25], [27], [33], and
etc).

After recalling some basic notions about one type of extended Darboux frame field and the curvatures
of hypersurfaces in E4 in the second section of this paper, we deal with tubular hypersurfaces according
to extended Darboux frame field of first kind in E4 in the third section. We obtain the Gaussian and
mean curvatures of tubular hypersurface according to extended Darboux frame field of first kind and give
some results when the curve which constructs the tubular hypersurfaces is (unit speed) asymptotic or line
of curvature on tubular hypersurface. Finally, we prove a theorem that states the tubular hypersurface
according to extended Darboux frame field of first kind in E4 is a linear Weingarten hypersurface.
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2. PRELIMINARIES

Let {e1, e2, e3, e4} be the standart basis of Euclidean 4-space E4. If −→s = (s1, s2, s3, s4),
−→
t = (t1, t2, t3, t4) and

−→v = (v1, v2, v3, v4) are three vectors in E4, then the inner product and vector product are given by〈
−→s ,
−→
t
〉
= s1t1 + s2t2 + s3t3 + s4t4

and

−→s ×
−→
t × −→v = det


e1 e2 e3 e4
s1 s2 s3 s4
t1 t2 t3 t4
v1 v2 v3 v4

 ,
respectively. Also, the norm of the vector −→s is

∥∥∥−→s ∥∥∥ = √〈−→s ,−→s 〉. Let M ⊂ E4 denote a regular hypersurface
and α : I ⊂ R −→M be a unit speed curve. If {T,n, b1, b2} is the moving Frenet frame along α, then the Frenet
formulas are given by [15] 

T′

n′

b′1
b′2

 =


0 k1 0 0
−k1 0 k2 0

0 −k2 0 k3
0 0 −k3 0




T
n
b1
b2

 ,
where T, n, b1 and b2 denote the unit tangent, the principal normal, the first binormal and the second
binormal vector fields; k1, k2 and k3 are the curvature functions of the curve α.

Here, we will recall the extended Darboux frame field of first kind (for simplicity, we’ll call it ED1-frame
field throughout this paper) and for details about the construction of extended Darboux frame fields, we
refer to [13].

We consider an embedding Ψ : U ⊂ E3
−→ E4, where U is an open subset of E3. Now, we denote

M = Ψ(U) and identify M and U through the embeddingΨ. Let ᾱ : I −→ U be a regular curve and we have
a curve α : I −→ M ⊂ E4 defined by α(s) = Ψ(ᾱ(s)) and so, the curve α is on the hypersurface M. If M is
an orientable hypersurface oriented by the unit normal vector fieldN in E4 and α is a Frenet curve of class
Cn(n ≥ 4) with arc-length parameter s lying on M, then we denote the unit tangent vector field of the curve
by T and denote the hypersurface unit normal vector field restricted to the curve by N, i.e.

T(s) = α′(s) and N(s) = N(α(s)).

The differential equations of ED-frame fields of first kind {T,E,D,N} of the curve α on M in E4 by matrix
notation can be given as 

T′

E′

D′

N′

 =


0 κ1
1 0 κn

−κ1
1 0 κ2

1 τ1
1

0 −κ2
1 0 τ2

1

−κn −τ1
1 −τ2

1 0




T
E
D
N

 , (1)

where ⟨E′,N⟩ = τ1
1, ⟨D′,N⟩ = τ2

1, ⟨T′,E⟩ = κ1
1, ⟨E′,D⟩ = κ2

1 and τi
1 and κi

1 are called the geodesic torsions and
geodesic curvatures of order i, respectively. Also, ⟨T′,N⟩ = κn is the normal curvature of the hypersurface
in the direction of the tangent vector T [13].

Now, the relation matrix may be expressed as [13]
T
n
b1
b2

 =


1 0 0 0
0 cosϕ1 cosϕ2 cosϕ3
0 cosψ1 cosψ2 cosψ3
0 cosθ1 cosθ2 cosθ3




T
E
D
N

 (2)
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and 
T
E
D
N

 =


1 0 0 0
0 cosϕ1 cosψ1 cosθ1
0 cosϕ2 cosψ2 cosθ2
0 cosϕ3 cosψ3 cosθ3




T
n
b1
b2

 . (3)

Also, we have

κ1
1 = ⟨T′,E⟩ = k1 cosϕ1, κn = ⟨T′,N⟩ = k1 cosϕ3,
τ1
1 = −ϕ

′

1 sinϕ1 cosϕ3 − ψ′1 sinψ1 cosψ3 − θ′1 sinθ1 cosθ3

+ k2(cosϕ1 cosψ3 − cosψ1 cosϕ3) + k3(cosψ1 cosθ3 − cosθ1 cosψ3),
τ2
1 = −ϕ

′

2 sinϕ2 cosϕ3 − ψ′2 sinψ2 cosψ3 − θ′2 sinθ2 cosθ3

+ k2(cosϕ2 cosψ3 − cosψ2 cosϕ3) + k3(cosψ2 cosθ3 − cosθ2 cosψ3),
κ2
1 = −ϕ

′

1 sinϕ1 cosϕ2 − ψ′1 sinψ1 cosψ2 − θ′1 sinθ1 cosθ2

+ k2(cosϕ1 cosψ2 − cosψ1 cosϕ2) + k3(cosψ1 cosθ2 − cosθ1 cosψ2).


(4)

Furthermore, the differential geometry of different types of (hyper)surfaces in 4-dimensional spaces has
been a popular topic for geometers, recently ([1], [4], [5], [6], [8], [16], [17], [26], and etc). If

Ψ : U ⊂ E3
−→ E4 (5)

(s, t, v) −→ Ψ(s, t, v) = (Ψ1(s, t, v),Ψ2(s, t, v),Ψ3(s, t, v),Ψ4(s, t, v))

is a hypersurface in E4, then the unit normal vector field, the matrix forms of the first and second fundamental
forms are

NΨ =
Ψs ×Ψt ×Ψv

∥Ψs ×Ψt ×Ψv∥
, (6)

[1i j] =

 111 112 113
121 122 123
131 132 133

 (7)

and

[hi j] =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 , (8)

respectively. Here 1i j =
〈
Ψυi ,Ψυ j

〉
, hi j =

〈
Ψυiυ j ,NΨ

〉
,Ψυi =

∂Ψ(υ1,υ2,υ3)
∂υi

,Ψυiυ j =
∂2Ψ(υ1,υ2,υ3)

∂υiυ j
, i, j ∈ {1, 2, 3}. Also,

the shape operator of the hypersurface (5) is

S = [ai j] = [1i j].[hi j], (9)

where [1i j] is the inverse matrix of [1i j].
With the aid of (6)-(9), the Gaussian and mean curvatures of a hypersurface in E4 are given by

K = det(S) =
det[hi j]
det[1i j]

(10)

and

H =
1
3

tr(S), (11)

respectively [31]. We say that a hypersurface is flat or minimal, if it has zero Gaussian curvature or zero
mean curvature, respectively.
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3. TUBULAR HYPERSURFACES ACCORDING TO ED1-FRAME FIELD IN EUCLIDEAN 4-SPACE

In this section, we obtain the Gaussian and mean curvatures of tubular hypersurfaces according to
ED1-frame field in Euclidean 4-space E4 and give some results for these curvatures when the curve αwhich
constructs the tubular hypersurface is an asymptotic curve, a unit-speed asymptotic curve and a line of
curvature lying on M.

Let α : I −→ M be a unit speed curve lying on a regular hypersurface M and we consider the tubular
hypersurface T according to ED1-frame field of α in E4 given by

T (s, t, v) = α(s) ± ρ [(cos t cos v) E(s) + (sin t cos v) D(s) + (sin v) N(s)] , (12)

where α(s) is the center curve of tubular hypersurface T , ρ ∈ R is constant radius, s ∈ [0, l] and t, v ∈ [0, 2π).
From now on, we state α = α(s), T = T(s), E = E(s), D = D(s), N = N(s) and we will consider the ”±” as ”+”.

Firstly, from (1) and (12) the first derivatives of the tubular hypersurface (12) are obtained as

Ts =
(
1 − ρ(κ1

1 cos t cos v + κn sin v)
)

T − ρ
(
κ2
1 cos v sin t + τ1

1 sin v
)

E
+ ρ
(
κ2
1 cos t cos v − τ2

1 sin v
)

D + ρ cos v
(
τ1
1 cos t + τ2

1 sin t
)

N,

Tt = −
(
ρ sin t cos v

)
E +
(
ρ cos t cos v

)
D,

Tv = −
(
ρ cos t sin v

)
E −
(
ρ sin t sin v

)
D +
(
ρ cos v

)
N.


(13)

From (6) and (13), the unit normal vector field of T in E4 is

N = (cos t cos v) E + (sin t cos v) D + (sin v) N. (14)

Also, the coefficients of the first fundamental form are

111 =
(
ρ
(
κ2
1 cos v sin t + τ1

1 sin v
))2
+
(
ρ cos v

(
τ1
1 cos t + τ2

1 sin t
))2

+
(
ρ
(
κ2
1 cos t cos v − τ2

1 sin v
))

2 +
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
)

2,

112 = 121 = ρ2 cos v
(
κ2
1 cos v + sin v(τ1

1 sin t − τ2
1 cos t)

)
,

113 = 131 = ρ2
(
τ2
1 sin t + τ1

1 cos t
)
,

122 = ρ2 cos2 v, 123 = 132 = 0, 133 = ρ2


(15)

and it follows that

det[1i j] = ρ4(−1 + ρκ1
1 cos t cos v + ρκn sin v)2 cos2 v. (16)

Now, for obtaining the coefficients of the second fundamental form, we give the second derivatives
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Tυiυ j =
∂2
T

∂υiυ j
of the tubular hypersurface (12):

Tss = T
1

ss T + T 2
ss E + T 3

ss D + T 4
ss N,

Tst = Tts =
(
ρκ1
1 sin t cos v

)
T −
(
ρκ2
1 cos t cos v

)
E −
(
ρκ2
1 sin t cos v

)
D

−

(
ρ(τ1

1 sin t − τ2
1 cos t) cos v

)
N,

Tsv = Tvs =
(
ρ
(
κ1
1 sin v cos t − κn cos v

))
T +
(
ρ
(
κ2
1 sin v sin t − τ1

1 cos v
))

E
−

(
ρ
(
κ2
1 sin v cos t + τ2

1 cos v
))

D −
(
ρ
(
τ1
1 cos t + τ2

1 sin t
)

sin v
)

N,

Ttt = −
(
ρ cos t cos v

)
E −
(
ρ sin t cos v

)
D,

Ttv = Tvt =
(
ρ sin t sin v

)
E −
(
ρ cos t sin v

)
D,

Tvv = −
(
ρ cos t cos v

)
E −
(
ρ sin t cos v

)
D −
(
ρ sin v

)
N,



(17)

where

T
1

ss = ρ

 κ1
1

(
κ2
1 cos v sin t + τ1

1 sin v
)
− (κn)′ sin v

−

(
τ1
1κn cos t + τ2

1κn sin t + (κ1
1)′ cos t

)
cos v

 ,
T

2
ss = −ρ

(
(κ1
1)2 + (κ2

1)2 + (τ1
1)2
)

cos t cos v + κ1
1(1 − ρκn sin v)

− ρ((−κ2
1τ

2
1 + (τ1

1)′) sin v + (τ2
1τ

1
1 + (κ2

1)′) sin t cos v),

T
3

ss = −ρ
(
(κ2
1)2 + (τ2

1)2
)

sin t cos v + (τ2
1τ

1
1 − (κ2

1)′) cos t cos v
+ (κ2

1τ
1
1 + (τ2

1)′) sin v),

T
4

ss = −ρτ
1
1(κ2
1 sin t cos v + τ1

1 sin v) + ρτ2
1(κ2
1 cos t cos v − τ2

1 sin v)
− κn

(
−1 + ρκ1

1 cos t cos v + ρκn sin v
)
+ ρ
(
(τ1
1)′ cos t + (τ2

1)′ sin t
)

cos v.

Thus, from (8), (14) and (17), the coefficients of the second fundamental form are

h11 = −ρ
((

(κ1
1)2 + (τ1

1)2
)

cos2 t + (κ2
1)2 + 2τ1

1τ
2
1 sin t cos t + (τ2

1)2 sin2 t
)

cos2 v
− ρ
(
(τ1
1)2 + (τ2

1)2 + (κn)2
)

sin2 v − κ1
1

(
−1 + 2ρκn sin v

)
cos t cos v

− ρκ2
1

(
τ1
1 sin t − τ2

1 cos t
)

sin(2v) + κn sin v,

h12 = h21 = −ρ
(
κ2
1 cos v + sin v(τ1

1 sin t − τ2
1 cos t)

)
cos v,

h13 = h31 = −ρ
(
τ1
1 cos t + τ2

1 sin t
)
,

h22 = −ρ cos2 v, h23 = h32 = 0, h33 = −ρ



(18)

and it implies that

det[hi j] = −ρ2 cos2 v
(
κ1
1 cos t cos v + κn sin v

) (
−1 + ρκ1

1 cos t cos v + ρκn sin v
)
. (19)

So, from (10), (16) and (19), we have

Proposition 3.1. The Gaussian curvature of the tubular hypersurfaces (12) in E4 is

K = −
κ1
1 cos t cos v + κn sin v

ρ2(−1 + ρκ1
1 cos t cos v + ρκn sin v)

. (20)
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Corollary 3.2. The Gaussian curvature of the tubular hypersurfaces (12) in E4 does not depend on the geodesic
curvature of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.3. The tubular hypersurfaces (12) in E4 is flat if and only if

κ1
1 cos t cos v = −κn sin v

holds.

Corollary 3.4. If κ1
1 = κn = 0, then the tubular hypersurfaces (12) in E4 is flat.

Also, after finding the inverse of the matrix of the first fundamental form and using this and (18) in (9),
the shape operator of the tubular hypersurface (12) is obtained by

S =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 , (21)

where

S11 = −
κ1
1 cos t cos v + κn sin v

−1 + ρκ1
1 cos t cos v + ρκn sin v

, S12 = S13 = 0,

S21 =
sec v

(
κ2
1 + tan v

(
τ1
1 sin t − τ2

1 cos t
))

ρ
(
− sec v + ρκ1

1 cos t + ρκn tan v
) , S22 = −

1
ρ
, S23 = 0,

S31 =
τ1
1 cos t + τ2

1 sin t

ρ
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) , S32 = 0,S33 = −

1
ρ
.

Hence from (11) and (21), we get

Proposition 3.5. The mean curvature of the tubular hypersurfaces (12) in E4 is

H =
2 − 3ρ

(
κ1
1 cos t cos v + κn sin v

)
3ρ
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) . (22)

Corollary 3.6. The mean curvature of the tubular hypersurfaces (12) in E4 does not depend on the geodesic curvature
of order 2 and geodesic torsions of order 1 and order 2.

Corollary 3.7. The tubular hypersurfaces (12) in E4 is minimal if and only if

κ1
1 cos t cos v + κn sin v =

2
3ρ

(23)

holds.

Corollary 3.8. If κ1
1 = κn = 0, then the tubular hypersurface (12) in E4 has negative constant mean curvature with

−2
3ρ .

Here, from (20) and (22), we can state the following theorem which gives an important relation between
Gaussian and mean curvatures:
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Theorem 3.9. The Gaussian curvature K and the mean curvature H of tubular hypersurfaces (12) in E4 satisfy

3H = ρ2K −
2
ρ
. (24)

Also, from (21) we have

det(S − λI3) = −

(
1 + λρ

)2 (
−λ +

(
1 + λρ

)
κ1
1 cos t cos v +

(
1 + λρ

)
κn sin v

)
ρ2
(
−1 + ρκ1

1 cos t cos v + ρκn sin v
) . (25)

By solving the equation det(S − λI3) = 0 from (25), we obtain the principal curvatures of the tubular
hypersurfaces (12) in E4 as follows:

Proposition 3.10. The principal curvatures of the tubular hypersurfaces (12) in E4 are

λ1 = λ2 = −
1
ρ

and λ3 = −
κ1
1 cos t cos v + κn sin v

−1 + ρκ1
1 cos t cos v + ρκn sin v

. (26)

Furthermore, if a curve α is a unit-speed asymptotic curve parametrized by arc-length on an oriented
hypersurface M in E4, then we have

κn = 0, κ1
1 = k1, κ

2
1 = k2 cosφ, τ1

1 = −k2 sinφ, τ2
1 = k3 +

dφ
ds
, (27)

where φ denotes the angle between D and B1 [13]. Thus using (27), we have

Corollary 3.11. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E4 are

K = −
k1 cos t cos v

ρ2 (−1 + ρk1 cos t cos v
) (28)

and

H =
2 − 3ρk1 cos t cos v

3ρ
(
−1 + ρk1 cos t cos v

) , (29)

respectively.

Corollary 3.12. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurface (12) in E4 are independent of the angle φ.

Also in [24], the authors have studied on canal and tubular hypersurfaces according to the Frenet frame
in E4 and they have obtained the Gaussian and mean curvatures of tubular hypersurface

T (s, t, v) = α(s) + ρ [(cos t cos v) n(s) + (sin t cos v) b1(s) + (sin v) b2(s)] (30)

as (28) and (29). Therefore

Theorem 3.13. If the curve α is a unit-speed asymptotic curve lying on M, then the Gaussian and mean curvatures
of tubular hypersurfaces (12) according to ED1-frame field and (30) according to Frenet frame coincide.

On the other hand, the curve α lying on M is a line of curvature if and only if τ1
1 = τ

2
1 = 0 [13]. So, we

have

Corollary 3.14. If the curve α is line of curvature lying on M, then the Gaussian and mean curvatures of tubular
hypersurface (12) in E4 are (20) and (22) respectively.
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Finally, we will give a theorem about linear Weingarten tubular hypersurface according to ED1-frame
field of unit speed curve α lying on M in E4. We know that, a hypersurface is called a linear Weingarten
hypersurface, if it satisfies

aH + bK = c, (31)

where a, b, c are not all zero constants. Thus, we have

Theorem 3.15. The tubular hypersurface (12) in E4 is a linear Weingarten hypersurface.

Proof. We know that, the relation between the mean and Gaussian curvatures of the tubular hypersurface
(12) in E4 is given by (24). So, if we take a = 3, b = −ρ2 and c = −2

ρ in (31), the proof completes.

Example 3.16. We take the unit speed curve

α(s) =
(
sin
(3s

5

)
, cos
(3s

5

)
, sin
(4s

5

)
, cos
(4s

5

))
(32)

on the hypersphere M...x2 + y2 + z2 + t2 = 2 in E4. The Frenet apparatus of this curve is

T = 1
5

(
3 cos

(
3s
5

)
,−3 sin

(
3s
5

)
, 4 cos

(
4s
5

)
,−4 sin

(
4s
5

))
,

n = − 1
√

337

(
9 sin

(
3s
5

)
, 9 cos

(
3s
5

)
, 16 sin

(
4s
5

)
, 16 cos

(
4s
5

))
,

b1 =
1
5

(
4 cos

(
3s
5

)
,−4 sin

(
3s
5

)
,−3 cos

(
4s
5

)
, 3 sin

(
4s
5

))
,

b2 = −
1
√

337

(
16 sin

(
3s
5

)
, 16 cos

(
3s
5

)
,−9 sin

(
4s
5

)
,−9 cos

(
4s
5

))


(33)

and

k1 =

√
337
25

, k2 =
84

25
√

337
, k3 =

12
√

337
. (34)

Also, we have the ED1-frame fields of unit speed curve α as

T = 1
5

(
3 cos

(
3s
5

)
,−3 sin

(
3s
5

)
, 4 cos

(
4s
5

)
,−4 sin

(
4s
5

))
,

E = 1
√

2

(
sin
(

3s
5

)
, cos
(

3s
5

)
,− sin

(
4s
5

)
,− cos

(
4s
5

))
,

D = 1
5

(
−4 cos

(
3s
5

)
, 4 sin

(
3s
5

)
, 3 cos( 4s

5 ),−3 sin( 4s
5 )
)
,

N = 1
√

2

(
sin
(

3s
5

)
, cos
(

3s
5

)
, sin
(

4s
5

)
, cos
(

4s
5

))


(35)

and the normal curvature, geodesic curvatures and geodesic torsions of order 1 and 2 are obtained as

κn = −
1
√

2
, κ1
1 =

7

25
√

2
, κ2
1 = −

12
√

2
25

, τ1
1 = 0, τ2

1 = 0, (36)

respectively. Hence using (35) in (12), we get the tubular hypersurface according to ED1-frame field in E4 as

T (s, t, v) =



−
4
5ρ cos( 3s

5 ) cos v sin t + 1
2 sin( 3s

5 )
(
2 +
√

2ρ (cos v sin t + sin v)
)
,

4
5ρ sin( 3s

5 ) cos v sin t + 1
2 cos( 3s

5 )
(
2 +
√

2ρ (cos v sin t + sin v)
)
,

3
5ρ cos( 4s

5 ) cos v sin t + 1
2 sin( 4s

5 )
(
2 +
√

2ρ (− cos v sin t + sin v)
)
,

−
3
5ρ sin( 4s

5 ) cos v sin t + 1
2 cos( 4s

5 )
(
2 +
√

2ρ (− cos v sin t + sin v)
)


(37)
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and from (20), (22) and (36), we obtain the Gaussian and mean curvatures of the tubular hypersurface (37) as

K = −
7 cos t cos v − 25 sin v

ρ2
(
7ρ cos t cos v − 25

(√
2 + ρ sin v

)) and H =
100 − 3

√
2ρ (7 cos t cos v − 25 sin v)

3ρ
(
−50 +

√
2ρ (7 cos t cos v − 25 sin v)

) , (38)

respectively. In the following figures, one can see the projections of the tubular hypersurface (37) for v = π
3 and ρ = 3

into x1x2x3 (A), x1x2x4 (B), x1x3x4 (C) and x2x3x4-spaces (D).

Figure 1
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[12] F. Doğan and Y. Yaylı; Tubes with Darboux Frame, Int. J. Contemp.Math. Sci., 7(16), (2012), 751-758.
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Abstract. The purpose of this article is to define a new generalization of Szász-Kantorovich operators.
First, by using the Korovkin theorem on the new operator we define, its convergence properties and rates
are examined. Then, the Voronovskaja-type theorem for the new operator is proven. Additionally, with the
help of the modulus of continuity in the weighted space, rate of convergence the new operator is examined,
and a theorem is proven for the operator we define by using functions that satisfy the Lipschitz condition.
Finally, the convergence is demonstrated more clearly by numerical examples and plots.

1. INTRODUCTION

Linear positive operators have been studied by several mathematicians in the context of many fields of
mathematics from the past to the present. In 1885, Weierstrass [18] proved the existence of a polynomial
for any function in a finite interval that converges to this function within the same finite interval. However,
he did not provide information on the properties of such a polynomial. In 1912, Russian mathematician
Bernstein [3] defined the following operator as proof of the concept defined by Weierstrass.

Bb
(
j (i) ; s

)
=: Bb

(
j; s

)
=

b∑
l=0

j
(

l
b

) (
b
l

)
sl (1 − s)b−l (1)

here j ∈ C[0, 1], s ∈ [0, 1] and b ∈N.
After Bernstein’s study, in different places and at different times, Bohman [4] in 1952 and Korovkin [11]

in 1953 presented important theorems that proved the possibility of this convergence by providing only
three conditions and pioneered this field regarding the convergence of positive operators to a function that
is an element of C[a, b] in a finite range. These theorems are generally known as the Korovkin conditions.

Afterward, studies in the field of convergence theory gained momentum, and several mathematicians
[1, 2, 7, 9, 10, 12–14] conducted studies in this field.

L. V. Kantorovich [8] in 1930 and O. Szász [15] in 1950 completed their generalizations in which they
defined the Bernstein operator in different spaces. These operators they defined are known by their names.
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Later, in 1985, the operator called the Szász-Kantorovich operator was studied by many mathematicians

[6, 16]. The classical Szász-Kantorovich operator is as follows: Let Sb, f (s) = e−bs (bs) f

f !

W j
u (s) = ue−us

∞∑
v=0


v+1

u∫
v
u

j (s) ds

 (us)v

v!
; u > 0 (2)

In this study, we defined an operator as a generalization of classical Szász-Kantorovich operators as
follows:

Zb
(
j ; s

)
=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

( f+1)
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

j (i) di ; 0 ≤ i < ∞ (3)

here c, e ∈ R and 0 ≤ c ≤ e .

Remark 1.1. Szász-Kantorovich type operators defined by (3) are linear and positive.

2. PRELIMINARIES

This section presents the examination of the convergence characteristics of our operator (3) which is a
novel generalization of classical Szász Kantorovich operators (2). Additionally, for an arbitrary A > 0, the
uniform convergences of the operator are examined for continuous functions and functions bounded on the
entire real axis in the closed compact interval [0,A]. The convergences and convergence rates are calculated
in intervals diverging to [0,∞) and weighted spaces. The Voronovskaja-type theorem for functions that are
differentiable in [0,∞) whose derivatives are in Cp[0,∞) is calculated.

To make these calculations and demonstrate that our operator satisfies the Korovkin conditions, let us
calculate the 1, i, i2, i3, and i4 values of our operator. After this, with the help of these values, let us calculate
its central moments.

Theorem 2.1. The operator (3) satisfies the following equations for ∀s ∈ [0,A]

Zb (1 ; s) = 1

Zb (i ; s) = s +
(c − e)
(b + e)

s +
1
2

(b + c)
b (b + e)

Zb

(
i2 ; s

)
= s2 +

(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

Zb

(
i3 ; s

)
= s3 +

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(e + b)3 s3

+
9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

Zb

(
i4 ; s

)
= s4 +

(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(b + e)4 s4

+8
(b + c)4

b (b + e)4 s3 + 15
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4
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Proof.

Zb (1 ; s) =
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

1di

=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

(
f + 1

b
(b + c)
(b + e)

−
f
b

(b + c)
(b + e)

)
=

b (b + e)
(b + c)

.
(b + c)

b (b + e)
( f + 1 − f )

= 1

Zb (i ; s) =
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

idi

=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
2

(b + c)2

b2 (b + e)2

 ( f + 1
)2

(b)2

(b + c)2

(b + e)2 −

(
f
)2

(b)2

(b + c)2

(b + e)2


=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
2

(b + c)2

b2 (b + e)2

(
f 2 + 2 f + 1 − f 2

)
=

b (b + e)
(b + c)

(b + c)2

b2 (b + e)2

1
2

e−bs
∞∑

f=0

(bs) f

f !
(2 f + 1)

=
b (b + e)
(b + c)

e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!
(bs)

1
2

2 f +
(b + c)

b (b + e)
e−bs

∞∑
f=0

(bs) f

f !
1
2

1

=
(b + c)

b (b + e)
(bs) +

1
2

(b + c)
b (b + e)

=
(b + c)
(b + e)

s +
1
2

(b + c)
b (b + e)

= s +
(c − e)
(b + e)

s +
1
2

(b + c)
b (b + e)

Zb

(
i2 ; s

)
=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

i2di

=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
3

 ( f + 1
)3

(b)3

(b + c)3

(b + e)3 −

(
f
)3

(b)3

(b + c)3

(b + e)3


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=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
3

(b + c)3

b3 (b + e)3 ( f 3 + 3 f 2 + 3 f + 1 − f 3)

=
1
3

(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f

f !
(3 f 2 + 3 f + 1) ; f 2 = f ( f − 1) + f

=
1
3

(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f

f !
3 f 2

+
1
3

3
(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f

f !
f +

1
3

(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f

f !
1

=
(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f

f !
( f ( f − 1) + f )

+
(b + c)2

b2 (b + e)2 e−bs
∞∑

f=0

(bs) f−1

f
(

f − 1
)
!

(bs) f +
1
3

(b + c)2

b2 (b + e)2

=
(b + c)2

b2 (b + e)2 e−bs
∞∑

f=2

(bs) f−2

f
(

f − 1
) (

f − 2
)
!

(bs)2 f
(

f − 1
)

+
(b + c)2

b2 (b + e)2 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f +
(b + c)2

b2 (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

=
(b + c)2

(b + e)2 s2 +
(b + c)2

b (b + e)2 s +
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

=
(b + c)2

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

= s2 +
(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

Zb

(
i3 ; s

)
=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

i3di

=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
4

 ( f + 1
)4

(b)4

(b + c)4

(b + e)4 −

(
f
)4

(b)4

(b + c)4

(b + e)4


=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
4

(b + c)4

b4 (b + e)4 (
(

f + 1
)4
− f 4)

=
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
1
4

( f 4 + 4 f 3 + 6 f 2 + 4 f + 1 − f 4)

=
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
1
4

4 f 3 +
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
1
4

6 f 2

+
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
1
4

4 f +
1
4

(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
1
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If the equation f 3 = f ( f − 1)( f − 2) + 3 f ( f − 1) + 3 f − 2 f is substituted into the last equation, the following
is obtained:

=
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
(

f ( f − 1)( f − 2) + 3 f ( f − 1) + 3 f − 2 f
)

+
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=0

(bs) f

f !
3
2
(

f ( f − 1) + f
)

+
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f +
1
4

(b + c)3

b3 (b + e)3

=
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
) (

f − 2
) (

f − 3
)
!

(bs)3 f
(

f − 1
) (

f − 2
)

+3
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=2

(bs) f−2

f
(

f − 1
) (

f − 2
)
!

(bs)2 f
(

f − 1
)

+3
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f − 2
(b + c)3

b3 (b + e)3 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f

+
3
2

(b + c)3

b3 (b + e)3 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f

+
3
2

(b + c)3

b3 (b + e)3 e−bs
∞∑

f=2

(bs) f−2

f
(

f − 1
) (

f − 2
)
!

(bs)2 f
(

f − 1
)

+
(b + c)3

b3 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

=
(b + c)3

(b + e)3 s3 +
9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

= s3 +

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3 s3

+
9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

Zb

(
i4 ; s

)
=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

i4di

=
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
5

 ( f + 1
)5

(b)5

(b + c)5

(b + e)5 −

(
f
)5

(b)5

(b + c)5

(b + e)5


=

b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !
1
5

(b + c)5

b5 (b + e)5 ( f 5 + 5 f 4 + 5 f + 10 f 2 + 10 f 3 + 1 − f 5)

If the equations
f 3 = f ( f − 1)( f − 2) + 3 f ( f − 1) + 3 f − 2 f
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and

f 4 = f
(

f − 1
) (

f − 2
) (

f − 3
)
+ 6 f 3 + 11 f 2 + 6 f

are entered into the last equation, the following is obtained:

=
1
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=0

(bs) f

f !

(
5
(

f
(

f − 1
) (

f − 2
) (

f − 3
)
+ 6 f 3 + 11 f 2 + 6 f

))
+10

(
f ( f − 1)( f − 2) + 3 f ( f − 1) + 3 f − 2 f

)
+ 10( f ( f − 1) + f ) + 5 f + 1

Here, the sum can be calculated in two parts for easy operation:

=
1
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=0

(bs) f

f !

(
5
(

f
(

f − 1
) (

f − 2
) (

f − 3
)
+ 6 f 3 + 11 f 2 + 6 f

))
+10

(
f ( f − 1)( f − 2) + 3 f ( f − 1) + 3 f − 2 f

)
+ 10( f ( f − 1) + f ) + 5 f + 1

I1 =
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=4

(bs) f−4

f
(

f − 1
) (

f − 2
) (

f − 3
) (

f − 4
)
!

f
(

f − 1
) (

f − 2
) (

f − 3
)

(bs)4

+6
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
) (

f − 2
) (

f − 3
)
!

f
(

f − 1
) (

f − 2
)

(bs)3

+18
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=2

(bs) f−3

f
(

f − 1
) (

f − 2
)
!

f
(

f − 1
)

(bs)2

+18
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
)
!

f (bs) − 12
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
)
!

f (bs)

+11
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=2

(bs) f−3

f
(

f − 1
) (

f − 2
)
!

f
(

f − 1
)

(bs)2

+11
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
)
!

f (bs) + 6
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
)
!

f (bs)

=
(b + c)4

(b + e)4 s2 + 6
(b + c)4

b (b + e)4 s3 + 18
(b + c)4

b2 (b + e)4 s2 + 18
(b + c)4

b3 (b + e)4 s

−12
(b + c)4

b3 (b + e)4 s + 11
(b + c)4

b2 (b + e)4 s2 + 11
(b + c)4

b3 (b + e)4 s + 6
(b + c)4

b3 (b + e)4 s

=
(b + c)4

(b + e)4 s2 + 6
(b + c)4

b (b + e)4 s3 + 29
(b + c)4

b2 (b + e)4 s2 + 23
(b + c)4

b3 (b + e)4 s
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and

I2 =
10
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=3

(bs) f−3

f
(

f − 1
) (

f − 2
) (

f − 3
)
!

(bs)3 f
(

f − 1
) (

f − 2
)

+
30
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=2

(bs) f−2

f
(

f − 1
) (

f − 2
)
!

(bs)2 f
(

f − 1
)

+
30
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f

−
20
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f

+
10
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=2

(bs) f−2

f
(

f − 1
) (

f − 2
)
!

(bs)2 f
(

f − 1
)

+
10
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f

+
(b + c)4

b4 (b + e)4 e−bs
∞∑

f=1

(bs) f−1

f
(

f − 1
)
!

(bs) f +
1
5

(b + c)4

b4 (b + e)4 e−bs
∞∑

f=0

(bs) f

f !

= 2
(b + c)4

b (b + e)4 s3 + 6
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 s − 4
(b + c)4

b3 (b + e)4 s

+2
(b + c)4

b2 (b + e)4 s2 + 2
(b + c)4

b3 (b + e)4 s +
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4

= 2
(b + c)4

b (b + e)4 s3 + 8
(b + c)4

b2 (b + e)4 s2 + 5
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4

The following is obtained from I1 and I2

=
(b + c)4

(b + e)4 s4 + 8
(b + c)4

b (b + e)4 s3 + 15
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4

Zb

(
i4 ; s

)
= s4 +

(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(n + b)4 s4

+8
(b + c)4

b (b + e)4 s3 + 15
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 x +
1
5

(b + c)4

b4 (b + e)4

QED.

Theorem 2.2. Some of the central moments for our new Szász-Kantorovich operator (3) are as follows:

Zb

(
(i − s)0 ; s

)
= 1

Zb ((i − s) ; s) =
(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)
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Zb

(
(i − s)2 ; s

)
=

(
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + e)

)
s +

1
3

(b + c)2

b2 (b + e)2

Zb

(
(i − s)3 ; s

)
=


(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(b + e)3

−3
(2bc + c − 2be − e)

(b + e)2 + 3
(c − e)
(b + e)

)
s3

+

(
4

(b + c)3

b (b + e)3 − 6
(b + c)2

b (b + e)2 +
3
2

(b + c)
b (b + e)

)
s2 +(

7
2

(b + c)3

b2 (b + e)3 −
(b + c)2

b2 (b + e)2

)
s +

1
4

(b + c)3

b3 (b + e)3

Zn

(
(t − x)4 ; x

)
=


(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(b + e)4

−

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3

+6
(2bc + c − 2be − e)

(b + e)2 − 4
(c − e)
(b + e)

)
s4

+

(
8

(b + c)4

b (b + e)4 − 16
(b + c)3

b (b + e)3 + 12
(b + c)2

b (b + e)2 − 2
(b + c)

b (b + e)

)
s3

+

(
15

(b + c)4

b2 (b + e)4 − 14
(b + c)3

b2 (b + e)3 + 2
(b + c)2

b2 (b + e)2

)
s2

+

(
6

(b + c)4

b3 (b + e)4 −
(b + c)3

b3 (b + e)3

)
s +

1
5

(b + c)4

b4 (b + e)4

Proof.

Zb

(
(i − s)0 ; s

)
= Zb (1; s) = 1

it is clear that.

Zb ((i − s) ; s) = Zb (i; s) − sZb (1; s)

= s +
(c − e)
(b + e)

s +
1
2

(b + c)
b (b + e)

− s.1

=
(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)
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Zb

(
(i − s)2 ; s

)
= Zb

(
i2 − 2si + s2 ; s

)
= Zb

(
i2; s

)
− 2sZb (i; s) + s2Zb (1; s)

= s2 +
(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s

+
1
3

(b + c)2

b2 (b + e)2 − 2s
(
s +

(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

)
+ s2.1

=

(
2 +

(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

− 2
)

s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + e)

)
s +

1
3

(b + c)2

b2 (b + e)2

=

(
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + e)

)
s +

1
3

(b + c)2

b2 (b + e)2

Zb

(
(i − s)3 ; s

)
= Zb

(
i3 − 3si2 + 3is2

− s3; s
)

= Zb

(
i3; s

)
− 3s Zb

(
i2; s

)
+ 3s2Zb (i; s) − s3Zb (1; s)

= s3 +

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(b + e)3 s3

+
9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

−3s
(
s2 +

(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

)
+3s2

(
s +

(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

)
− s3

= s3 +

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(b + e)3 s3

+
9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

−3s3
− 3

(2bc + c − 2be − e)

(b + e)2 s3
− 6

(b + c)2

b (b + e)2 s2

−
(b + c)2

b2 (b + e)2 s + 3s3 + 3
(c − e)
(b + e)

s3 +
3
2

(b + c)
b (b + e)

s2
− s3

=


(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(b + e)3

−3
(2bc + c − 2be − e)

(b + e)2 + 3
(c − e)
(b + e)

)
s3
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+

(
9
2

(b + c)3

b (b + e)3 − 6
(b + c)2

b (b + e)2 +
3
2

(b + c)
b (b + e)

)
s2

+

(
7
2

(b + c)3

b2 (b + e)3 −
(b + c)2

b2 (b + e)2

)
s +

1
4

(b + c)3

b3 (b + e)3

Zb

(
(i − s)4 ; s

)
= Zb

(
i4 − 4si3 + 6s2i2 − 4s3i + s4 ; s

)
= Zb

(
i4 ; s

)
− 4sZb

(
i3 ; s

)
+ 6s2Zb

(
i2 ; e

)
− 4s3Zb (i ; s) + s4Zb (1 ; s)

= s4 +

(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(n + b)4 s4

+8
(b + c)4

b (b + e)4 s3 + 15
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4

−4s

s3 +

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3 s3

9
2

(b + c)3

b (b + e)3 s2 +
7
2

(b + c)3

b2 (b + e)3 s +
1
4

(b + c)3

b3 (b + e)3

)
+6s2

(
s2 +

(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

)
−4s3

(
s +

(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

)
+ s4

= s4 +

(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(n + b)4 s4

+8
(b + c)4

b (b + e)4 s3 + 15
(b + c)4

b2 (b + e)4 s2 + 6
(b + c)4

b3 (b + e)4 s +
1
5

(b + c)4

b4 (b + e)4

−4s4
− 4

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3 s4

− 18
(b + c)3

b (b + e)3 s3

−14
(b + c)3

b2 (b + e)3 s2
−

(b + c)3

b3 (b + e)3 s + 6s4 + 6
(2bc + c − 2be − e)

(b + e)2 s4

+12
(b + c)2

b (b + e)2 s3 + 2
(b + c)2

b2 (b + e)2 s2
− 4s4

− 4
(c − e)
(b + e)

s4
− 2

(b + c)
b (b + e)

s3 + s4

=


(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(b + e)4

−

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3

+6
(2bc + c − 2be − e)

(b + e)2 − 4
(c − e)
(b + e)

)
s4

+

(
8

(b + c)4

b (b + e)4 − 16
(b + c)3

b (b + e)3 + 12
(b + c)2

b (b + e)2 − 2
(b + c)

b (b + e)

)
s3
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+

(
15

(b + c)4

b2 (b + e)4 − 14
(b + c)3

b2 (b + e)3 + 2
(b + c)2

b2 (b + e)2

)
s2

+

(
6

(b + c)4

b3 (b + e)4 −
(b + c)3

b3 (b + e)3

)
s +

1
5

(b + c)4

b4 (b + e)4

QED.

Theorem 2.3. Let A > 0, and j ∈ C [0,A] be bounded on the entire real axis. In this case, the following is obtained:

lim
b→∞

∥∥∥Zb j − j
∥∥∥

C[0,A]
= 0

Proof. If we use the Korovkin theorem, for b→∞, it is sufficient to demonstrate the following:
i) Zb (1 ; s)⇒ 1
ii) Zb (i ; s)⇒ s
iii) Zb

(
i2 ; s

)
⇒ s2

The following is clear, ∥Zb (1 ; s) − 1∥C[0,A] = 0. Thus,Zb (1 ; s)⇒ 1 is obtained.

∥Zb (i ; s) − s∥C[0,A] = max
0≤s≤A

|Zn (i ; s) − s|

= max
0≤s≤A

∣∣∣∣∣s + (c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

− s
∣∣∣∣∣

=

∣∣∣∣∣ (c − e)
(b + e)

A +
1
2b

(b + c)
(b + e)

∣∣∣∣∣ buradan

=

∣∣∣∣∣2b (c − e)
2b (b + e)

A +
(b + c)

2b (b + e)

∣∣∣∣∣
We obtain lim

b→∞

∣∣∣∣ 2b(c−e)
2b(b+e) A +

(b+c)
2b(b+e)

∣∣∣∣→ 0, which shows that Zb (i ; s)⇒ s.

∥∥∥∥Zb

(
i2 ; s

)
− s2

∥∥∥∥
C[0,A]

= max
0≤s≤A

∣∣∣∣Zb

(
i2 ; s

)
− s2

∣∣∣∣
= max

0≤s≤A

∣∣∣∣∣∣s2 +
(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2 − s2

∣∣∣∣∣∣
= max

0≤s≤A

∣∣∣∣∣∣ (2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (2bc + c − 2be − e)

(b + e)2 A2 + 2
(b + c)2

b (b + e)2 A +
1
3

(b + c)2

b2 (b + e)2

∣∣∣∣∣∣
Since it is lim

n→∞

∣∣∣∣ (2bc+c−2be−e)
(b+e)2 A2 +

(b+c)2

(b+e)2

(
2
b A + 1

3
1
b2

)∣∣∣∣→ 0, Zb

(
i2 ; s

)
⇒ s2 is obtained. QED.

Let us now examine convergence in weighted spaces.

Theorem 2.4. If j ∈ C0
ρ [0,∞) , then

lim
b→∞

∥∥∥Zb j − j
∥∥∥
ρ,[0,∞) = 0.
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Proof. Because ∥∥∥Zb j − j
∥∥∥
ρ,[0,∞) = sup

s∈[0,∞)

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣
1 + s2

and based on the properties of the modulus of continuity in weighted spaces, we obtain the following:

lim
b→∞
∥Zb1 − 1∥ρ,[0,∞) = lim

b→∞
sup

s∈[0,∞)

|Zb (1 ; s) − 1|
1 + s2 = 0

Using the results we obtained in the central moments and the norm definition in weighted spaces, the
following can be expressed

∥Zbi − s∥ρ,[0,∞) = sup
s∈[0,∞)

∣∣∣∣s + (c−e)
(b+e) s +

1
2b

(b+c)
(b+e) − s

∣∣∣∣
1 + x2

≤
2b (c − e)
2b (b + e)

+
(b + c)

2b (b + e)

lim
b→∞

∥Zbi − s∥ρ,[0,∞) ≤ lim
b→∞

(
2b (c − e)
2b (b + e)

+
(b + c)

2b (b + e)

)
→∞.

Likewise, because

∥∥∥Zbi2 − s2
∥∥∥
ρ,[0,∞) = sup

s∈[0,∞)

∣∣∣∣s2 +
(2bc+c−2be−e)

(b+e)2 s2 + 2 (b+c)2

b(b+e)2 s + 1
3

(b+c)2

b2(b+e)2 − s2
∣∣∣∣

1 + s2

= sup
s∈[0,∞)

∣∣∣∣ 3b2(2bc+c−2be−e)+6b(b+c)2+(b+c)2

3b2(b+e)2

∣∣∣∣
1 + s2

If 0 ≤ s2

1+s2 ≤ 1 based on the above, the following is obtained:

≤
3b2 (2bc + c − 2be − e) + 6b (b + c)2 + (b + c)2

3b2 (b + e)2

lim
b→∞

∥∥∥Zbi2 − s2
∥∥∥
ρ,[0,∞) = lim

b→∞

(
3b2 (2bc + c − 2be − e) + 6b (b + c)2 + (b + c)2

3b2 (b + e)2

)
→∞

Therefore,
lim
b→∞

∥∥∥Zb j − j
∥∥∥
ρ
= 0

QED.

Let as examine rate of convergence the operator in weighted spaces.

Theorem 2.5. If j ∈ C0
ρ [0,∞) , then

∥∥∥Zb j − j
∥∥∥
ρ,[0,∞) ≤MΩ

 j ;

√
1
b

 .
Here, M = 808.

Proof. Because our operator is linear and monotone, the following can be written:∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤ Zb

(∣∣∣ j (i) − j (s)
∣∣∣ ; s

)
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Using the properties of the modulus of continuity in weighted spaces, the following is obtained:

∣∣∣ j (i) − j (s)
∣∣∣ ≤ 2

(
1 + η2

b

) (
1 + s2

) (
1 +
|i − s|
ηb

) (
1 + (i − s)2

)
Ω

(
j ; ηb

)
∣∣∣ j (i) − j (s)

∣∣∣ ≤ 2
(
1 + η2

b

) (
1 + s2

)
Ω

(
j ; ηb

)
.Sb (i ; s)

Sb (i ; s) =

(
1 +
|i − s|
ηb

) (
1 + (i − s)2

)
From here,

Sb (i ; s) ≤

 2
(
1 + η2

b

)
|i − s| < ηb

2
(
1 + η2

b

)
|i−s|4

η4
b

; |i − s| ≥ ηb


and thus, the following can be written:

Sb (i ; s) ≤ 2
(
1 + η2

b

) 1 + |i − s|4

η4
b


Based on the above, the following is obtained:

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤ Zb

(∣∣∣ j (i) − j (s)
∣∣∣ ; s

)
≤ 2

(
1 + η2

b

) (
1 + s2

)
Ω

(
j ; ηb

)
Zb (Sb (i ; s) ; s)

≤ 4
(
1 + η2

b

)
Ω

(
j ; ηb

) (
1 + s2

) 1 + 1
η4

b

Zb (i − s)4 ; s


≤


(
4na3 + 4n3a + 6n2a2 + a4

− 4nb3
− 4n3b + 6n2b2 + b4

)
(n + b)4

+6
(2na + a − 2nb − b)

(n + b)2

)
s4 +

(
8

(n + a)4

n (n + b)4 + 12
(n + a)2

n (n + b)2

)
s3

+

(
37

(n + a)4

n2 (n + b)4 + 2
(n + a)2

n2 (n + b)2

)
s2

+

(
28

(n + a)4

n3 (n + b)4

)
x +

(
(n + a)4

5n4 (n + b)4

)

Consequently, we get

Zb

(
(i − s)4 ; s

)
≤


(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
+ 6 (b + e)2 (2bc + c − 2be − e)

(n + b)4

 s4

+

(
8 (b + c)4 + 12 (b + e)2 (b + c)2

b (b + e)4

)
s3 +

(
15 (b + c)4 + 2 (b + e)2 (b + c)2

b2 (b + e)4

)
s2

+

(
6 (b + c)4

b3 (b + e)4

)
s +

(
(b + c)4

5b4 (b + e)4

)
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If the suprema of both sides in [0,∞) are taken, and if the negative operations are removed,

sup
s∈[0,∞)

Zb

(
(i − s)4 ; s

)
≤

(
5b4

(
4bc3 + 4b3c + 6b2c2 + c4 + 6b2e2 + e4

)
+ 30b4 (b + e)2 (2bc + c)

)
5b4 (b + e)4

+

(
5b4

(
40c3 (b + c)4 + 60 (b + e)2 (b + c)2 + 185b2 (b + c)4

))
5b4 (b + e)4

+

(
5b4

(
2 (b + e)2 (b + c)2 + 140b (b + c)4 + (b + c)4

))
5b4 (b + e)4

Because c ≤ e if c is replaced with e, the following is found:

≤ 100
b3

(b + e)4 ≤ 100
1
b

Hence,

sup
s∈[0,∞)

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣
1 + s2 ≤ 4

(
1 + η2

b

)
Ω

(
j ; ηb

) 1 + 100
η4

b

1
b


Is obtained. If ηb =

√
1
b and because ηb → 0 ,ηb < 1 is found after a certain b. Therefore, when M = 808, the

following is obtained: ∥∥∥Zb j − j
∥∥∥
ρ,[0,∞) ≤MΩ

 j ;

√
1
b


QED.

Theorem 2.6. Let j be a function that is differentiable in [0,∞) and j′ ∈ C0
ρ [0,∞) , the following inequality is

provided: ∥∥∥Zb j − j
∥∥∥
ρ,[0,∞) ≤ L

√
2
b
Ω

 j́ ;

√
2
b

 .
Proof. Because j is a function that is differentiable in [0,∞) and j′ ∈ C0

ρ [0,∞) , based on the mean value
theorem, there is a u between i and s such that

j′ (u) =
j (i) − j (s)

i − s

As the equation will not change if we add − j′ (s) + j′ (s) to the left-hand side, the following can be written:

j(i) − j(s) = (i − s) j′ (u) + (i − s)
[
j′ (u) − j′ (s)

]
(1)

When |u − s| ≤ |i − s|, Ω
(
j ; |u − s|

)
≤ Ω

(
j ; |i − s|

)
Therefore, the following inequality is true:∣∣∣ j′ (u) − j′ (s)

∣∣∣ ≤ 2
(
1 + η2

b

) (
1 + s2

) (
1 +
|u − s|
ηb

) (
1 + (u − s)2

)
Ω

(
j ′; ηb

)
≤ 2

(
1 + η2

b

) (
1 + s2

) (
1 +
|i − s|
ηb

) (
1 + (i − s)2

)
Ω

(
j ′; ηb

)
= 2

(
1 + η2

b

) (
1 + s2

) [
1 +
|i − s|
ηb

+ (i − s)2 +
|i − s| (i − s)2

ηb

]
Ω

(
j ′; ηb

)
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Let us calculate the multiplication below in equation (1).

The following result is obtained:

|i − s|
∣∣∣ j′ (u) − j′ (s)

∣∣∣ ≤ 2
(
1 + η2

b

) (
1 + s2

)
[|i − s|

+
(i − s)2

ηb
+ |i − s| (i − s)2 +

(i − s)4

ηb

]
Ω

(
j ′; ηb

)
(2)

If we apply the operator to equation (1),

Zb
(
j ; s

)
− j (s) = Zb ((i − s) ; s) j′ (s) + Zb

(
(i − s)

[
j′ (u) − j′ (s)

]
; s

)
From here, the following is obtained:

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤ Zb (|i − s| ; s)
∣∣∣ j′ (s)

∣∣∣ + Zb
(
|i − s|

[
j′ (u) − j′ (s)

]
; s

)
Here, let Zb (|i − s| ; s)

∣∣∣ j′ (s)
∣∣∣ = I1 and Zb

(
|i − s|

[
j′ (u) − j′ (s)

]
; s

)
= I2.

Then, ∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤ I1 + I2

Using the Cauchy-Schwarz inequality, the following can be written:

I1 = Zb (|i − s| ; s)
∣∣∣ j′(s)

∣∣∣ ≤ √
Zb

(
(i − s)2 ; s

) ∣∣∣ j′ (s)
∣∣∣ ≤ √

Ab (b)M j′
(
1 + s2

)
Here, M j′ is a constant dependent on j′ − ne and

Ab (s) =

((
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + e)

b (b + e)

)
x +

1
3

(b + c)2

b2 (b + e)2

)
.

From (2), the following can be written:

I2 = Zb

(
|i − s|

∣∣∣ f ′ (u) − j′ (s)
∣∣∣ ; s

)
≤ 2

(
1 + η2

b

) (
1 + s2

) (√
Zb

(
(i − s)2 ; s

)
+

1
ηb

Zb

(
(i − s)2 ; s

)
+

√
Zb

(
(i − s)2 ; s

)√
Zb

(
(i − s)4 ; s

)
+

1
ηb

Zb ((i − s) 4; s)
)
Ω

(
j ′; ηb

)
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Here, let Zb

(
(i − s)4 ; s

)
= Bb (s) ; then consequently,

Bb (s) =


(
4bc3 + 4b3c + 6b2c2 + c4

− 4be3
− 4b3e + 6b2e2 + e4

)
(b + e)4

−

(
3bc2 + 3b2c + c3

− 3be2
− 3b2e − e3

)
(n + b)3

+6
(2bc + c − 2be − e)

(b + e)2 − 4
(c − e)
(b + e)

)
s4

+

(
8

(b + c)4

b (b + e)4 − 16
(b + c)3

b (b + e)3 + 12
(b + c)2

b (b + e)2 − 2
(b + c)

b (b + e)

)
s3

+

(
15

(b + c)4

b2 (b + e)4 − 14
(b + c)3

b2 (b + e)3 + 2
(b + c)2

b2 (b + e)2

)
s2

+

(
6

(b + c)4

b3 (b + e)4 −
(b + c)3

b3 (b + e)3

)
s +

1
5

(b + c)4

b4 (b + e)4

because

I1 + I2 ≤√
Ab (s)M j′

(
1 + s2

)
+ 2

(
1 + η2

b

) (
1 + s2

) [√
Ab (s) +

1
ηb

Ab (s) +
√

Ab (s)
√

Bb (s) +
1
ηb

Bb (s)
]
Ω

(
j ′; ηb

)
The following is written:∣∣∣Zb

(
j ; s

)
− j (s)

∣∣∣
1 + s2 ≤

√
Ab (s)M j′ + 2

(
1 + η2

b

) [√
Ab (s) +

1
ηb

Ab (s)

+
√

Ab (s)
√

Bb (s) +
1
ηb

Bb (s)
]
Ω

(
j ′; ηb

)
If the supremum of each side in [0,∞) is taken, the following inequality is obtained:

sup
s∈[0,∞)

∣∣∣Zb
(
j ; x

)
− j (s)

∣∣∣
1 + s2 ≤ sup

s∈[0,∞)

√
Ab (s)M j′ + 2

(
1 + η2

b

) [√
Ab (s)

+
1
ηb

Ab (s) +
√

Ab (s)
√

Bb (s) +
1
ηb

Bb (s)
]
Ω

(
j ′; ηb

)
Here, we obtain

sup
s∈[0,∞)

Ab (s) = sup
s∈[0,∞)

(
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + e)

)
s +

1
3

(b + c)2

b2 (b + e)2

≤
(2bc + c − 2be − e)

(b + e)2 + 2
(b + c)2

b (b + e)2 +
1
3

(b + c)2

b2 (b + e)2

≤
6b (b + e)2 + (b + e)2

3b2 (b + e)2
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and the following result is found:

sup
s∈[0,∞)

Ab (s) ≤
2
b

From the result we obtained for Theorem 2.5 sup
s∈[0,∞)

Bb (s) ≤ 100 1
b is written. Hence,

sup
s∈[0,∞)

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣
1 + s2 ≤


√

2
b

M j ′ + 2
(
1 + η2

b

) 
√

2
b
+

1
ηb

2
b
+

√
2
b

√
100

1
b
+

1
ηb

100
1
b

Ω (
j ′; ηb

)
=

√
2
b

M j′ + 2
(
1 + η2

b

) 1 + 1
ηb

√
2
b
+

10
b
+

1
ηb

100
1
√

b

Ω (
j ′; ηb

)
Here, if ηb =

√
2
b is selected, the following is obtained:

sup
s∈[0,∞)

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣
1 + s2 ≤

√
2
b

(
M j ′ + 4 [1 + 1 + 10 + 100]Ω

(
j ′; ηb

))

≤ L

√
2
b
Ω

 j ′;

√
2
b


Here L =M j ′ + 448. QED.

Theorem 2.7. If j is a function providing the Lipschitz condition and 0 < α ≤ 1, the following equation is true:∥∥∥Zb
(
j ; s

)
− j (s)

∥∥∥
C[0,A]

= 0
((4

b

)α/2)
.

Proof. When Zb (1 ; s) = 1, and because the operator is linear, the following can be written:∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ = ∣∣∣Zb
(
j ; s

)
− j (s) Zb (1 ; s)

∣∣∣
=

∣∣∣Zb
(
j ; s

)
− Zb( j (s) ; s)

∣∣∣∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤

(
Zb

∣∣∣ j (i) − j (s)
∣∣∣ ; s

)
.

Because j satisfies the Lipschitz condition and
∣∣∣ j (i) − j (s)

∣∣∣ ≤M |i − s|α,the following result is obtained:

∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤ b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

M |i − s|α di

≤ M
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

|i − s|α di

= M
b (b + e)
(b + c)

e−bs
∞∑

f=0

(bs) f

f !

f+1
b

(b+c)
(b+e)∫

f
b

(b+c)
(b+e)

|i − s|α di

= MZb (|i − s|α ; s)
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From Hölder’s inequality, we obtain the following:

Zb (|i − s|α ; s) ≤ Zb

(
(i − s)2 ; s

)α/2
Therefore,

Zb (|i − s|α ; s) ≤M
(((

(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2 +

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + e)

)
s +

1
3

(b + c)2

b2 (b + e)2

))α/2
If the maximum of the inside expression is taken,

max
0≤s≤A

(2bc + c − 2be − e)

(b + e)2 s2 + 2
(b + c)2

b (b + e)2 s +
1
3

(b + c)2

b2 (b + e)2

=

(
3b2 (2bc + c − 2be − e)

3b2 (nb + e)2 +
6b (b + c)2

3b2 (b + e)2 +
(b + c)2

3b2 (b + e)2

)
=

3b2 (2bc + c − 2be − e) + 6b (b + c)2 + (b + c)2

3b2 (b + e)2

is obtained. If a = b is selected here,

≤
(b + e)2 (6b + 1)

3b2 (b + e)2

≤
6 (b + 1)

3b2

≤
2 (b + 1)

b2

≤ 2
(1

b
+

1
b2

)
≤

4
b

Then, ∣∣∣Zb
(
j ; s

)
− j (s)

∣∣∣ ≤M
(4

b

)α/2
and thus, ∥∥∥Zb

(
j ; s

)
− j (s)

∥∥∥
C[0,A]

≤M
(4

b

)α/2
QED.

Theorem 2.8. Let the functions j ∈ [0,A] and j, j′, j′′ be bounded functions in [0,A], the following limit

lim
b→∞

(b + e)
(
Zb

(
j ; s

)
− j (s)

)
= (c + 1 − e) j′ (c) + xj′′ (s) .

Proof. The Taylor series expansion of the function j at point s and the form of this expansion in the operator
are as follows:

j (i) = j (s) +
1
1!

j′ (s) (i − s) +
1
2!

j
′′

(s) (i − s)2 +
1
3!

j
′′′

(s) (i − s)3 +
1
4!

j4 (s) (i − s)4 + ...
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j (i) − j (s) =
1
1!

j′ (s) (i − s) +
1
2!

j
′′

(s) (i − s)2 + (i − s)2 µ (i − s)

µ (i − s) =
( 1

3!
j
′′′

(s) (i − s)3 +
1
4!

j4 (s) (i − s)4 + ...
)

Zb
(
j ; s

)
− j (s) = Zb ((i − s) ; s) j′ (s) +

1
2

Zb

(
(i − s)2 ; s

)
j′′ (s) + Zb

(
(i − s)2 µ (i − s) ; s

)
If we substitute in the central moments in the last equation, we obtain the following:

Zb
(
j ; s

)
− j (s) =

(
(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

)
j′ (s)

+
1
2

((
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + n)

)
s

+
1
3

(b + c)2

b2 (b + e)2 j ′′ (s) + Zb

(
(i − s)2 µ (i − s) ; s

))
If both sides of the equation are multiplied by (b + e), we obtain the following result:

(b + e)
(
Zb

(
j ; s

)
− j (s)

)
= (b + e)

(
(c − e)
(b + e)

s +
1
2b

(b + c)
(b + e)

)
j′ (s) +

1
2

(b + e)((
(2bc + c − 2be − e)

(b + e)2 − 2
(c − e)
(b + e)

)
s2

+

(
2

(b + c)2

b (b + e)2 −
(b + c)

b (b + n)

)
s

+
1
3

(b + c)2

b2 (b + e)2 j′′ (s) + (b + e) Zb

(
(i − s)2 µ (i − s) ; s

))
Because lim

i→s
µ (i − xi) = 0 is bounded, and thus, the following equation can be written:

(b + e) Zb

(
(i − s)2 µ (i − s) ; s

)
≤

√
(b + e) Zb

(
(i − s)4 ; s

)√
(b + e) Zb

(
µ (i − s)2 ; s

)
As lim

b→∞
(b + e) Zb

(
(i − s)4 ; s

)
= 0 when the limit of the last equation is taken, we obtain the following:

lim
b→∞

(b + e)
(
Zb

(
j; s

)
− j (s)

)
= (c + 1 − e) j′ (s) + sj′′ (s)

QED.

3. MAIN RESULTS

This section will review the main results. That is, we will exemplify the results of our operator’s
convergence with graphs and numerical values.

Let us now present the plots that we drew on the Maple program showing the convergence of our
operator Zb( j; s) to the function h (s) = sin

(
πs
2

) √
s for different b values.
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Figure 1: Convergence of the operators S and Z to the function h(s) for b = 10

Figure 2: Convergence of the operators S and Z to the function h(s) for b = 20
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Figure 3: Convergence of the operators S and Z to the function h(s) for b = 50

Then, we also demonstrate the convergence numerically with the numerical value table including the
error margins. In the plots and the table, S refers to the classical Szász operator, while Z is the operator that
we defined.

As seen here, as the values of b increase, the convergence becomes clearer, and our operator Z shows a
better convergence than the operator S. Now, let us express the convergence rats of the operators S and Z
with numerical values.

When

N (s) =

∣∣∣∣∣∣W j
u (h; s) − h (s)

Zb (h; s) − h (s)

∣∣∣∣∣∣
for different b and s values in N(s), the following table of numerical values can be given.

b − s 0, 1 1, 5 2, 5 4
10 1, 02755 0, 99899 1, 284817 0, 92587
100 1, 01513 0, 96156 1, 25418 0, 97556
300 1, 01415 0, 95843 1, 25139 0, 98571
500 1, 01397 0, 9578 1, 25085 0, 98889
700 1, 01392 0, 95752 1, 25072 0, 99059
1000 1, 01403 0, 95732 1, 25061 0, 99208

Table 1: N(s) rate results for different b and s values.

The values given in the table show better convergence by S when they are greater than 1 and better
convergence by Z when they are smaller than 1. Because the values are approximately 1 in general, it may
be stated that these to operators are indeed equivalent.
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Abstract. In this paper, we apply the finite difference method to a Schrödinger equation which contains
a momentum operator. For this, we constitute a difference scheme. A priori estimate for the solution of
difference scheme is obtained. By using this estimate, we prove that the difference scheme is unconditionally
stable.

1. INTRODUCTION

Schrödinger equation,

iℏ
∂u
∂t

(ς, t) =
[
−
ℏ2

2m
∇

2 + V(ς, t)
]

u(ς, t) = (T + V) u(ς, t)

is a partial differential equation, where i2 = −1, ς and t are the variables of space and time, respectively,
u(ς, t) is a wave function; ℏ = h

2m is the reduced Planck’s constant; h is the Planck’s constant; m is the mass

of particle; T = p2

2m is the kinetic energy operator; p = −iℏ∇ is the momentum operator; V = V(ς, t) is the
potential energy operator; ∇ is the gradient operator; ∇2 is the Laplace operator.

As seen, the left hand side (l.h.s.) of above-mentioned equation describes the ratio of change of wave
function u according to time, namely; Schrödinger equation is a equation describing how the energy of a
quantum mechanical system evolves in time. It is a very sophisticated model applicable to many disciplines
in engineering and applied sciences.

Many researchers analyzed the solutions of different versions of Schrödinger equation by using various
methods (exactly, approximately or numerically). For example, Khuri and Sadighi et al. applied the
Adomian decomposition method to Schrödinger equation [18, 25]; Biazar et al., He, Mousaa et al. studied
the linear and nonlinear Schrödinger equations by Homotopy perturbation method [4, 12, 22]; Alomari et al.,
Ghanbari examined the linear and nonlinear Schrödinger equations by Homotopy analysis method [2, 11];
Hosseinzadeh, Wazwaz analyzed the linear and nonlinear Schrödinger equations by Variational iteration
method [13, 29]; Iskenderov et.al., Mahmudov, Yagub et al., Yıldırım Aksoy examined the solvability of
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Schrödinger equations by Galerkin’s method [15, 16, 21, 31–33]. Besides, there is a great variety of solution
procedure for Schrödinger equation.

In this work, we apply the finite difference method to a linear Schrödinger equation. In studies [3, 7,
8, 10, 16, 27], the solutions of linear Schrödinger equations is examined by finite difference method and,
in that studies, generally, the stability and convergence of difference scheme are shown. Also, in studies
[5, 9, 14, 17, 23, 24, 26, 28, 30] the finite difference method is applied to the boundary value problems for
nonlinear Schrödinger equations and in most of them, the stability, error and convergence of method are
analyzed.

In the most of studies mentioned above, Schrödinger equations do not include the momentum operator.
Especially, [27], the numerical solution of linear Schrödinger equation including a momentum operator is
investigated. For this, the finite difference method is applied to the considered problem and the conditionally
stability of method is proved. As distinct from the earlier studies in literature, in this work, we examine a
boundary value problem for the linear Schrödinger equation including a momentum operator and apply the
finite difference method to it. We analyze the difference scheme and prove that scheme is unconditionally
stable.

Consider the following problem for linear Schrödinger equation including a momentum operator;

i
∂u
∂t
+ a0
∂2u
∂ς2 + ia1

∂u
∂ς
− a2(ς)u + a3(ς)u = 1(ς, t), (ς, t) ∈ Ω (1)

u(ς, 0) = f (ς), ς ∈ I (2)
u(0, t) = u(X, t) = 0, t ∈ (0,T) (3)

where I = (0,X) ,Ω = I× (0,T), a0, a1 > 0 are real numbers; a2(ς) and a3(ς) are real valued functions such that

0 < a2(ς) ≤ µ0 almost everywhere (a.e.) in I, µ0 = const. > 0 , (4)
a3 ∈ L2(I), |a3(ς)| ≤ b0 a.e. in I, (5)

b0 > 0 is a given number; f ∈ W̊2
2(I), 1 ∈W0,1

2 (Ω).
Here, L∞(I) is the space of all functions that are essentially bounded on I equipped with the norm

∥u∥L∞(I) = ess supI |u| ;

Wr
p(Ω) ≡

{
u ∈ Lp(Ω) : Dγu ∈ Lp(Ω) for every multi-index γwith

∣∣∣γ∣∣∣ ≤ r,
where Dγu is the weak(or distributional) partial derivative

}
and

W̊r
p(Ω) ≡ the closure of C∞0 (Ω) in the space Wr

p(Ω)

[1].
In [19], it was shown that the following theorem is valid:

Theorem 1.1. Assume that (4) and (5) are satisfied and f ∈ W̊2
2(I), 1 ∈W0,1

2 (Ω). Then there exists a unique solution
u ∈ W̊2,1

2 (Ω) of the problem (1)-(3) and the following estimate holds

||u(., t)||W̊2,1
2 (Ω) ≤ c0(|| f ||W̊2

2 (I) + ||1||W0,1
2 (Ω)) (6)

where c0 > 0 is a constant independent of f , 1.

2. NOTATIONS AND DIFFERENCE SCHEME

In this section, we will denote the notations used in the paper and discretize the problem (1)-(3). Later,
we will express some lemmas and inequalities used in the paper.
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Let α, β be any positive integers, h = X
α−1 , τ =

T
β ,

Ωh =

{
ςk : ςk = kh −

h
2
, k = 1, α − 1, ς1 −

h
2
= 0, ςα−1 +

h
2
= X,

}
,

Ωτ =
{
tl : tl = lτ, l = 0, β

}
,

Ωτh = Ωh ×Ωτ.

Let ukl, k = 0, α, l = 0, β be the numerical approximation of u(ς, t) at the point (ςk, tl) on Ωτh.
Introduce the following notations:

δtukl =
ukl − ukl−1

τ
, δςukl =

ukl − uk−1l

h
,

δςukl =
uk+1l − ukl

h
, δςςukl =

δςukl − δςukl

h
=

uk+1l − 2ukl + uk−1l

h2 ,

(v,w) = h
α−1∑
k=1

vkwk, ∥v∥p =
p

√√√
h
α−1∑
k=1

|vk|
p, ∥v∥∞ = max

1≤k≤α−1
|vk| ,
∥∥∥δςv∥∥∥2 =

√√√
h
α−1∑
k=1

∣∣∣δςvk

∣∣∣2
where v,w ∈ Vh = {v : v = (v1, v2, ..., vα−1)} are discrete grid functions onΩh.We denote by ∥.∥2, ∥.∥∞ , (., .) the
discrete norms on spaces L2(I), L∞(I) and discrete inner product on L2(I), respectively. Also, throughout this
paper, we denote by ck = 1, 2, ..., 5 the positive constants independent from τ, h and m.

Now, we present finite difference scheme of problem (1)-(3) as follows:

iδtukl + a0δςςukl + ia1δςukl − a2kukl + a3kukl = 1kl, k = 1, α − 1, l = 1, β, (7)

uk0 = fk, k = 0, α, (8)

u0l = uαl = 0, l = 1, β, (9)

where the grid functions a2k, a3k, 1kl and fk are Steklov averages of the functions a2(ς), a3(ς), 1(ς, t) and f (ς)
respectively, defined by

a2k =
1
h

ςk+h/2∫
ςk−h/2

a2(ς)dς, k = 1, α − 1

a3k =
1
h

ςk+h/2∫
ςk−h/2

a3(ς)dς, k = 1, α − 1

1kl =
1
τh

tl∫
tl−1

ςk+h/2∫
ςk−h/2

1(ς, t)dςdt, k = 1, α − 1, l = 1, β

fk =
1
h

ςk+h/2∫
ςk−h/2

f (ς)dς, k = 1, α − 1, f0 = fα = 0

[6]. Also, from conditions (4) and (5), the inequalities

0 ≤ a2k ≤ µ0, k = 1, α − 1, (10)

0 ≤ |a3k| ≤ b0, k = 1, α − 1 (11)

is written.
In the paper, the lemmas and inequalities we need are as follows:
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Lemma 2.1. (Discrete Gronwall’s Inequality [9]): Assume that the nonnegative grid functions{
w(z), y(z), z = 1, 2, ..., β, βτ = T

}
satisfy the inequality

w(z) ≤ y(z) + τ
z∑
ι=1

Bιw(ι),

where Bι
(
ι = 1, 2, ..., β

)
are nonnegative constant. Then, for any 0 ≤ z ≤ β, there is

w(z) ≤ y(z) exp

zτ z∑
ι=1

Bι

 .
Lemma 2.2. (Summation by Parts Formula): For any two grid functions

v,w ∈ Vh = {v : v = (v0, v1, v2, ..., vα−1, vα) , v0 = vα = 0} ,we have

h
α−1∑
k=1

(
δςςvk

)
wk = −h

α∑
k=1

(
δςvk

) (
δςwk

)
.

Lemma 2.3. (∈ −Cauchy′s inequality [20]): For any ∈> 0 and arbitrary a and b, the inequality

ab ≤
∈

2
a2 +

1
2 ∈

b2

is valid.

Lemma 2.4. (Young’s İnequality): Let a, b ≥ 0. Then,

ab ≤
1
p

ap +
1
q

bq

when 1
p +

1
q = 1 and p ∈ (1,+∞) .

3. THE STABILITY OF DIFFERENCE SCHEME

In this section, firstly, we obtain an estimate for solution of scheme (7)-(9). Later, using this estimate we
prove the stability of scheme.

Theorem 3.1. Assume that (4) and (5) are satisfied and f ∈ W̊2
2(I), 1 ∈ W0,1

2 (Ω). Then, the solution ukm of scheme
(7)-(9) for any m ∈

{
1, 2, ..., β

}
satisfies the estimate

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

c1

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 . (12)

Proof. For any grid function ξkl defined on Ωτh with conditions ξ0l = ξαl = 0 for l = 1, β, scheme (7)-(9) is
equivalent to the summation identity

ih
α−1∑
k=1

δtuklξkl + a0h
α−1∑
k=1

δςςuklξkl + ia1h
α−1∑
k=1

δςuklξkl −

h
α−1∑
k=1

a2kuklξkl + h
α−1∑
k=1

a3kuklξkl = h
α−1∑
k=1

1klξkl, (13)
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where ξkl is the conjugate of ξkl. If we substitute τukl for ξkl in (13) and apply the formula of summation by
parts, we get

ihτ
α−1∑
k=1

δtuklukl − a0hτ
α−1∑
k=1

∣∣∣δςukl

∣∣∣2 + ia1hτ
α−1∑
k=1

δςuklukl −

hτ
α−1∑
k=1

a2k |ukl|
2 + hτ

α−1∑
k=1

a3k |ukl|
2 = hτ

α−1∑
k=1

1klukl. (14)

If we extract its complex conjugate from (14) and then, use the relations

τ
(
δtuklukl + δtuklukl

)
= |ukl|

2
− |ukl−1|

2 + |ukl − ukl−1|
2 (15)

h
(
δςuklukl + δςuklukl

)
= |ukl|

2
− |uk−1l|

2 + |ukl − uk−1l|
2 (16)

we get

h
α−1∑
k=1

(
|ukl|

2
− |ukl−1|

2 + |ukl − ukl−1|
2
)
+ a1τ

α−1∑
k=1

(
|ukl|

2
− |uk−1l|

2 + |ukl − uk−1l|
2
)
=

2hτ
α−1∑
k=1

Im
(
1klukl

)
f or l = 1, β. (17)

If we sum all equalities in (17) in l from 1 to m ≤ β and consider

m∑
l=1

α−1∑
k=1

(
|ukl|

2
− |ukl−1|

2
)
=

α−1∑
k=1

(
|ukm|

2
− |uk0|

2
)
=

α−1∑
k=1

|ukm|
2
−

α−1∑
k=1

∣∣∣ fk∣∣∣2
m∑

l=1

α−1∑
k=1

(
|ukl|

2
− |uk−1l|

2
)
=

m∑
l=1

(
|uα−1l|

2
− |u0l|

2
)
=

m∑
l=1

|uα−1l|
2

by (8) and (9), we obtain from (17) the inequality

h
α−1∑
k=1

|ukm|
2 + h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + a1τ

m∑
l=1

|uα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤ 2hτ

m∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣ |ukl| + h
α−1∑
k=1

∣∣∣ fk∣∣∣2 .
Let’s distinguish m-th term from first summation in the right-hand side (r.h.s.) of above inequality and
apply ϵ−Cauchy′s inequality to distinguished term. Then, if we take ϵ = 2τ and use Young’s inequality we
get

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

2hτ
m−1∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 4Tτh
α−1∑
k=1

∣∣∣1km

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2
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which is equal to

h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

4Thτ
β∑

l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2 (18)

for any m ∈
{
1, 2, ..., β

}
. Since all terms in the l.h.s. of (18) are non-negative, it is written that

h
α−1∑
k=1

|ukm|
2
≤ 4Thτ

β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|ukl|
2 + 2h

α−1∑
k=1

∣∣∣ fk∣∣∣2 . (19)

In (19), using discrete Gronwall’s Inequality, we obtain

h
α−1∑
k=1

|ukm|
2
≤ c2

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 for any m ∈
{
1, 2, ..., β

}
. (20)

If we use the inequality (20) in (18), we get for any m ∈
{
1, 2, ..., β

}
h
α−1∑
k=1

|ukm|
2 + 2h

m∑
l=1

α−1∑
k=1

|ukl − ukl−1|
2 + 2a1τ

m∑
l=1

|uα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|ukl − uk−1l|
2
≤

c3

h α−1∑
k=1

∣∣∣ fk∣∣∣2 + τh β∑
l=1

α−1∑
k=1

∣∣∣1kl

∣∣∣2 (21)

which shows the hypothesis of theorem 3.1 is valid.

Theorem 3.2. Suppose that u1
kl, is a solution corresponding to the initial value f 1

k and the right side 11
kl of scheme

(7)-(9) and u2
kl is a solution corresponding to the initial value f 2

k and the right side 12
kl of scheme (7)-(9). Assume that

the conditions of theorem 3.1 are fulfilled. Let Φkl = u1
kl − u2

kl. Then, for any m ∈
{
1, 2, ..., β

}
and h, τ > 0

h
α−1∑
k=1

|Φkm|
2
≤ c4

h α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 + hτ
β−1∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 .
Hence, the difference scheme (7)-(9) is unconditionally stable.

Proof. It is clear that Φkl satisfies the scheme

iδtΦkl + a0δςςΦkl + ia1δςΦkl − a2kΦkl + a3kΦkl = 1
1
kl − 1

2
kl, k = 1, α − 1, l = 1, β

Φk0 = f 1
k − f 2

k , k = 0, α

Φ0l = Φαl = 0, l = 1, β

which is equivalent to

ih
α−1∑
k=1

δtΦklΘkl + a0h
α−1∑
k=1

δςςΦklΘkl + ia1h
α−1∑
k=1

δςΦklΘkl −

h
α−1∑
k=1

a2kΦklΘkl + h
α−1∑
k=1

a3kΦklΘkl = h
α−1∑
k=1

(
11

kl − 1
2
kl

)
Θkl, (22)
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for any grid functionΘkl,whereΘkl is the conjugate ofΘkl defined onΩτh such thatΘ0l = Θαl = 0 for l = 1, β.
From (22) for Θkl = τΦkl it is written that

ihτ
α−1∑
k=1

δtΦklΦkl − a0hτ
α−1∑
k=1

∣∣∣δςΦkl

∣∣∣2 + ia1hτ
α−1∑
k=1

δςΦklΦkl −

hτ
α−1∑
k=1

a2k |Φkl|
2 + hτ

α−1∑
k=1

a3k |Φkl|
2 = hτ

α−1∑
k=1

(
11

kl − 1
2
kl

)
Φkl. (23)

with summation by parts. Extracting its complex conjugate from (23) and using (15) and (16) for Φkl, we
obtain

h
α−1∑
k=1

(
|Φkl|

2
− |Φkl−1|

2 + |Φkl −Φkl−1|
2
)
+ a1τ

α−1∑
k=1

(
|Φkl|

2
− |Φk−1l|

2 + |Φkl −Φk−1l|
2
)
=

2hτ
α−1∑
k=1

Im
((
11

kl − 1
2
kl

)
Φkl

)
f or l = 1, β. (24)

Summing all equalities in (24) in l from 1 to m ≤ β and usingΦk0 = f 1
k − f 2

k for k = 0, α, Φ0l = 0 for l = 1, β,
we have

h
α−1∑
k=1

|Φkm|
2 + h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + a1τ

m∑
l=1

|Φα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤ 2hτ

m∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣ |Φkl| + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 .
which is equal to

h
α−1∑
k=1

|Φkm|
2 + h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + a1τ

m∑
l=1

|Φα−1l|
2 +

a1τ
m∑

l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤ 2hτ

α−1∑
k=1

∣∣∣11
km − 1

2
km

∣∣∣ |Φkm| +

2hτ
m−1∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣ |Φkl| + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 . (25)

Applying ϵ − Cauchy′s and Young’s inequalities to (25), we get

h
α−1∑
k=1

|Φkm|
2 + 2h

m∑
l=1

α−1∑
k=1

|Φkl −Φkl−1|
2 + 2a1τ

m∑
l=1

|Φα−1l|
2 + 2a1τ

m∑
l=1

α−1∑
k=1

|Φkl −Φk−1l|
2
≤

4Thτ
β∑

l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|Φkl|
2 + h

α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 (26)

by ϵ = 2τ. It is clear that all terms in the l.h.s. of (26) are non-negative. So, we write that

h
α−1∑
k=1

|Φkm|
2
≤ 4Thτ

β∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + 2hτ
m−1∑
l=1

α−1∑
k=1

|Φkl|
2 + h

α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 . (27)
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Thus, applying discrete Gronwall’s inequality to (27), we obtain

h
α−1∑
k=1

|Φkm|
2
≤ c5

hτ β∑
l=1

α−1∑
k=1

∣∣∣11
kl − 1

2
kl

∣∣∣2 + h
α−1∑
k=1

∣∣∣ f 1
k − f 2

k

∣∣∣2 for any m ∈
{
1, 2, ..., β

}
which this complete the proof.

4. Conclusion

In this paper, a finite difference scheme for the Schrödinger type equation has been introduced and
analyzed. We have obtained a priori estimate for solution of scheme. We have also proved that the
proposed scheme is unconditionally stable, without any restriction on both time and spatial step sizes.
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Abstract. In the present study, firstly we state symmetry properties for curvatures of a statistical manifold
and give some relations between the Riemannian curvature R̂ and the curvatures R, R∗ and RS. After, by
defining the notion of para-Sasakian statistical manifold, we give the necessary and sufficient conditions for
a structure (D, h,Ψ,w, ζ) to be a para-Sasakian structure when (D, h) is a statistical structure and (Ψ,w, ζ, h)
is an almost paracontact Riemannian manifold. Also, we give some results for curvatures R, R∗, RS and
Ricci tensor of these curvatures on a para-Sasakian statistical manifold. We construct an example of
para-Sasakian statistical manifold of dimension 3. Finally, we examined the Einsteinian of para-Sasakian
statistical manifolds according to certain conditions.

1. INTRODUCTION

The theory of statistical manifolds, (at the same time it is called information geometry), has started with
a study in 1945, where a statistical model was considered as a Riemannian manifold with the tensor given
by the Fisher information matrix [15]. After that, the information geometry, which is typically deals with
the study of various geometric structures on a statistical manifold, has begun as a study of the geometric
structures possessed by a statistical model of probability distributions.

The notion of dual connection, which is also called conjugate connection in affine geometry, has been
first introduced into statistics by Amari in 1985 [2]. A statistical model equipped with a Riemannian metric
together with a pair of dual affine connections is called a statistical manifold. For details about statistical
manifolds and information geometry, one can see [3], [5], [6], [10], [11], [12], [13], [14], [19] and etc.

Also, if Ψ is a tensor field of type (1, 1), w is a 1-form and ζ is a vector field on a (2n + 1)-dimensional
differentiable manifold M, then almost contact structure (Ψ,w, ζ) which is related to almost complex struc-
tures and satisfies the conditionsΨ2 = −I+w⊗ζ, w(ζ) = 1 has been determined by Sasaki in 1960 [16]. After
in 1976, on an n-dimensional differentiable manifold M, almost paracontact structure which is a similar
structure with almost contact structure, related to almost product structures and satisfies the conditions
Ψ2 = I −w ⊗ ζ, w(ζ) = 1 has been determined by Sato [17]. With the aid of these definitions, different types
of manifolds have been defined and studied by many mathematicians.

According to these notions, nowadays lots of studies have been started to be done by scientists. For
example, in [22] the authors have defined the concept of quaternionic Kähler-like statistical manifold and
derived the main properties of quaternionic Kähler-like statistical submersions, extending in a new setting
some previous results obtained by K. Takano concerning statistical manifolds endowed with almost complex
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(in [20]) and almost contact structures (in [21]). In [7], the authors have introduced the notion of Sasakian
statistical structure and obtained the condition for a real hypersurface in a holomorphic statistical manifold
to admit such a structure. Also in [8], the notion of a Kenmotsu statistical manifold is introduced, which is
locally obtained as the warped product of a holomorphic statistical manifold and a line by authors. And
they have showed that, a Kenmotsu statistical manifold of constant Ψ-sectional curvature is constructed
from a special Kahler manifold, which is an important example of holomorphic statistical manifold.

In this paper, after giving some basic notions about statistical structures and para-Sasakian manifolds
in Preliminaries, in Section 3 we give symmetry properties of curvatures R and R∗ which are the curvatures
of the connections D and D∗, respectively and RS which is statistical curvature of a statistical manifold and
obtain some results for relations between the Riemannian curvature R̂ and the curvatures R, R∗ and RS.
In fourth section, we define the notion of para-Sasakian statistical manifold and give the necessary and
sufficient coditions for a structure (D, h,Ψ,w, ζ) to be a para-Sasakian structure when (D, h) is a statistical
structure and (Ψ,w, ζ, h) is an almost paracontact Riemannian manifold. Also, we give some results about
the curvatures R, R∗, RS and Ricci tensor of these curvatures on a para-Sasakian statistical manifold. We
construct an example of 3-dimensional para-Sasakian statistical manifold and give its all of connections
and components of curvature tensors. And in the fifth section, we study on Ricci semi-symmetric and
Ricci pseudo-symmetric para-Sasakian statistical manifolds and after we give some characterizations for
ζ-projectively flat, projectively flat andΨ-projectively semi-symmetric para-Sasakian statistical manifolds.

2. PRELIMINARIES

In this section, we recall some notions about statistical structures and para-Sasakian manifolds, respec-
tively. Througout this paper, we suppose that M is an n-dimensional manifold, h is a Riemannian metric
and Γ(TM(p,q)) means the set of tensor fields of type (p, q) on M.

On M, a parametric family of torsion-free connections D(α) indexed by α ∈ R can be defined by

D(α) =
1 + α

2
D −

1 − α
2

D∗, (1)

with
D(1) = D, D(−1) = D∗, D(0) =

1
2

(D +D∗) := D̂. (2)

Here D̂ denotes the Levi-Civita (L-C) connection associated with h.
Also, a pair (D, h) is called a statistical structure on M, if D is torsion-free and

(DΩ1 h)(Ω2,Ω3) = (DΩ2 h)(Ω1,Ω3), ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)) (3)

holds, where the equation (3) is generally called Codazzi equation. In this case (M,D, h) is called a statistical
manifold.

If (D, h) is a statistical structure on M, then the connection D∗ which is given by

Ω1h(Ω2,Ω3) = h(DΩ1Ω2,Ω3) + h(Ω2,D∗Ω1
Ω3) (4)

is called conjugate or dual connection of D with respect to h. If (D, h) is a statistical structure on M, then (D∗, h)
is a statistical structure on M, too.

For a statistical structure (D, h), the difference tensor field κ ∈ Γ(TM(1,2)) can be defined as

κ(Ω1,Ω2) = DΩ1Ω2 − D̂Ω1Ω2, ∀Ω1,Ω2 ∈ Γ(TM(1,0)). (5)

Moreover, κ satisfies

κ(Ω1,Ω2) = κ(Ω2,Ω1), (6)
κ̃(Ω1,Ω2,Ω3) = h(κ(Ω1,Ω2),Ω3) = h(Ω2, κ(Ω1,Ω3)) = κ̃(Ω1,Ω3,Ω2), (7)
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where κ̃ ∈ Γ(TM(0,3)). Furthermore, we have

κ = D̂ −D∗ =
1
2

(D −D∗). (8)

For a more detailed treatment, we refer to [6], [7] and [23].
Now, let us recall some fundamental informations about para-Sasakian manifolds.
A differentiable manifold M is said to admit an almost paracontact Riemannian structure (Ψ,w, ζ, h), where

Ψ is a tensor field of type (1,1), ζ is a vector field, w is a 1-form and h is a Riemannian metric on M such that

Ψζ = 0, w(ζ) = 1, h(ζ,Ω1) = w(Ω1),

Ψ2Ω1 = Ω1 − w(Ω1)ζ, (9)
h(ΨΩ1,ΨΩ2) = h(Ω1,Ω2) − w(Ω1)w(Ω2),

for any vector fields Ω1, Ω2 on M. In addition, if (Ψ,w, ζ, h) satisfy the equations

dη = 0, D̂Ω1ζ = ΨΩ1, (10)

(D̂Ω1Ψ)Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2w(Ω1)w(Ω2)ζ, (11)

then M is called a para-Sasakian (PS) manifold. On a PS-manifold, for ∀Ω1,Ω2 ∈ Γ(TM(1,0)) we have the
following equations:

R̂ic(Ω1, ζ) = (1 − n)w(Ω1), (12)

Q̂ζ = (1 − n)ζ, (13)

R̂(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1, (14)

R̂(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ, (15)

R̂(ζ,Ω1)ζ = Ω1 − w(Ω1)ζ, (16)

w(R̂(Ω1,Ω2)Ω3) = h(Ω1,Ω3)w(Ω2) − h(Ω2,Ω3)w(Ω1), (17)

R̂ic(ΨΩ1,ΨΩ2) = R̂ic(Ω1,Ω2) − (1 − n)w(Ω1)w(Ω2), (18)

where R̂, R̂ic and Q̂ denotes the Riemannian curvature tensor, Ricci tensor and Ricci operator of L-C
connection D̂, respectively (for detail, see [1], [17] and [18]).

3. R, R∗ AND RS CURVATURES OF STATISTICAL MANIFOLDS

In this section, firstly we recall symmetry properties of curvatures R, R∗ and give these properties for
RS. After, we give some results for relations between the Riemannian curvature R̂ and the curvatures R, R∗

and RS.

Lemma 3.1. Let (M,D, h) be a statistical manifold. Then, the curvatures R and R∗ satisfy the following symmetry
properties:

i) R(Ω1,Ω2)Ω3 + R(Ω2,Ω3)Ω1 + R(Ω3,Ω1)Ω2 = 0,
R∗(Ω1,Ω2)Ω3 + R∗(Ω2,Ω3)Ω1 + R∗(Ω3,Ω1)Ω2 = 0;

ii)R(Ω1,Ω2,Ω3,Ω4) + R(Ω1,Ω2,Ω4,Ω3) = 2h((D̂Ω1κ)(Ω2,Ω4) − (D̂Ω2κ)(Ω1,Ω4),Ω3),
R
∗(Ω1,Ω2,Ω3,Ω4) + R∗(Ω1,Ω2,Ω4,Ω3) = 2h((D̂Ω2κ)(Ω1,Ω4) − (D̂Ω1κ)(Ω2,Ω4),Ω3);

iii)
R(Ω1,Ω2,Ω3,Ω4) − R(Ω3,Ω4,Ω1,Ω2) = 0,
R
∗(Ω1,Ω2,Ω3,Ω4) − R∗(Ω3,Ω4,Ω1,Ω2) = 0 if (D̂Ω1κ)(Ω2,Ω4) = (D̂Ω2κ)(Ω1,Ω4),

where R and R∗ ∈Γ(TM(0,4)) are Riemannian-Christoffel curvature tensors of R and R∗, respectively and they
are defined by h(R(Ω1,Ω2)Ω3,Ω4) = R(Ω1,Ω2,Ω3,Ω4) and h(R∗(Ω1,Ω2)Ω3,Ω4) = R∗(Ω1,Ω2,Ω3,Ω4), for
∀Ω1,Ω2,Ω3,Ω4 ∈ Γ(TM(1,0)).
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Proof. The proof can be found in [9].

In [7], the authors have defined a curvature tensor field S∈Γ(TM(1,3)) as

S(Ω1,Ω2)Ω3 =
1
2
{R(Ω1,Ω2)Ω3 + R∗(Ω1,Ω2)Ω3}, (19)

for ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)) and they have called it statistical curvature tensor field of (D, h). Hereafter, in
our results we’ll denote the statistical curvature tensor field S by RS. So, let us give the following Theorem
which gives the symmetry properties of RS:

Theorem 3.2. Let (M,D, h) be a statistical manifold. Then, the statistical curvature tensor field RS satisfies the
following symmetry properties:

i) RS(Ω1,Ω2)Ω3 + RS(Ω2,Ω3)Ω1 + RS(Ω3,Ω1)Ω2 = 0,
ii) RS(Ω1,Ω2,Ω3,Ω4) + RS(Ω1,Ω2,Ω4,Ω3) = 0,
iii) RS(Ω1,Ω2,Ω3,Ω4) − RS(Ω3,Ω4,Ω1,Ω2) = 0,

where RS
∈Γ(TM(0,4)) is Riemannian-Christoffel curvature tensor of RS and it is defined by

h(RS(Ω1,Ω2)Ω3,Ω4) = RS(Ω1,Ω2,Ω3,Ω4), for ∀Ω1,Ω2,Ω3,Ω4 ∈ Γ(TM(1,0)).

Proof. Using Lemma 3.1-(i) in (19), we get (i). Using Lemma 3.1-(ii) in (19), we reach (ii). And finally, from
(i) and (ii), we have (iii).

Also, we can give the following relations, which have been stated in [9] too, between Riemannian
curvature R̂ and the curvatures R, R∗ when (M,D, h) is a statistical manifold and we give these relations for
RS.

Using D = D̂ + κ in R(Ω1,Ω2)Ω3 = DΩ1 DΩ2Ω3 −DΩ2 DΩ1Ω3 −D[Ω1,Ω2]Ω3, we have

R(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + (DΩ1κ)(Ω2,Ω3) − (DΩ2κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3)). (20)

Again using D = D̂ + κ in (20), we get

R(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + (D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (21)

Thus, from (20) and (21) we can write

(DΩ1κ)(Ω2,Ω3) − (DΩ2κ)(Ω1,Ω3) − (D̂Ω1κ)(Ω2,Ω3) + (D̂Ω2κ)(Ω1,Ω3) = 2{κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3))}.
(22)

Similarly, using D∗ = D̂ − κ in R∗(Ω1,Ω2)Ω3 = D∗
Ω1

D∗
Ω2
Ω3 −D∗

Ω2
D∗
Ω1
Ω3 −D∗[Ω1,Ω2]Ω3, we have

R∗(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 − (D∗Ω1
κ)(Ω2,Ω3) + (D∗Ω2

κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3)) (23)

and again using D∗ = D̂ − κ in (23), we get

R∗(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 − (D̂Ω1κ)(Ω2,Ω3) + (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (24)

So, from (23) and (24) we can write

(D∗Ω1
κ)(Ω2,Ω3)− (D∗Ω2

κ)(Ω1,Ω3)− (D̂Ω1κ)(Ω2,Ω3)+ (D̂Ω2κ)(Ω1,Ω3) = −2{κ(Ω1, κ(Ω2,Ω3))−κ(Ω2, κ(Ω1,Ω3))}.
(25)

And finally, using (21) and (24) in (19), we reach that

RS(Ω1,Ω2)Ω3 = R̂(Ω1,Ω2)Ω3 + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3)). (26)
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4. PARA-SASAKIAN (PS) STATISTICAL MANIFOLDS

In this section, firstly we define the notion of para-Sasakian (PS) statistical manifold and give the
necessary and sufficient coditions for a structure (D, h,Ψ,w, ζ) to be a PS-structure when (D, h) is a statistical
structure and (Ψ,w, ζ, h) is an almost paracontact Riemannian manifold. After that, we give some results
about the curvatures R, R∗ and RS and Ricci tensor of these curvatures on a PS-statistical manifold.

Let Ω be the fundamental 2-form of a PS-manifold (M,Ψ,w, ζ, h) defined by

Ω(Ω1,Ω2) = h(Ω1,ΨΩ2), (27)

for ∀Ω1,Ω2 ∈ Γ(TM(1,0)). Then, we have

Lemma 4.1. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be an almost paracontact Riemannian structure on
M. Then, we have

i) (DΩ1Ω)(Ω2,Ω3) = h(Ω2,D∗Ω1
ΨΩ3 −ΨDΩ1Ω3),

ii) (DΩ1Ω)(Ω2,Ω3) − (D∗
Ω1
Ω)(Ω2,Ω3) = −21(Ω2, κ(Ω1,ΨΩ3) +Ψκ(Ω1,Ω3)),

iii) DΩ1ΨΩ2 −ΨD∗
Ω1
Ω2 = (D̂Ω1Ψ)Ω2 + κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2),

for ∀Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Proof. i) From (4) and (27), we get

(DΩ1Ω)(Ω2,Ω3) = DΩ1Ω(Ω2,Ω3) −Ω(DΩ1Ω2,Ω3) −Ω(Ω2,DΩ1Ω3)
= Ω1h(Ω2,ΨΩ3) − h(DΩ1Ω2,ΨΩ3) − h(Ω2,ΨDΩ1Ω3)
= h(DΩ1Ω2,ΨΩ3) + h(Ω2,D∗Ω1

ΨΩ3) − h(DΩ1Ω2,ΨΩ3) − h(Ω2,ΨDΩ1Ω3)

= h(Ω2,D∗Ω1
ΨΩ3 −ΨDΩ1Ω3). (28)

ii) Substracting the dual of equation (28) from (28) and using (8), the proof completes.
iii) From (5) and (8), we have (iii).

Definition 4.2. (D, h,Ψ,w, ζ) is a PS-statistical structure on M, if
i) (D, h) is a statistical structure,
ii) (Ψ,w, ζ, h) is a PS-structure,
iii) for ∀Ω1,Ω2 ∈ Γ(TM(1,0)), the equation

κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2) = 0 (29)

is satisfied.

Thus, we can prove the following Theorem:

Theorem 4.3. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be an almost paracontact Riemannian structure
on M. Then, (D, h,Ψ,w, ζ) is a PS-statistical structure on M iff the equations

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ (30)

and
DΩ1ζ = ΨΩ1 + w(DΩ1ζ)ζ (31)

hold for ∀Ω1,Ω2 ∈ Γ(TM(1,0)).

Proof. Let (D, h) be a statistical structure and (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Then, from (11)
and Lemma 4.1-(iii), we get

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ + κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2).
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So, if (D, h,Ψ,w, ζ) is a PS-structure on M, then from (29) we have (30). Also, puttingΩ2 = ζ in the expression
of the dual of (30), from (9) we obtain (31).

Conversely, let us assume that the equations (30) and (31) hold for ∀Ω1,Ω2 ∈ Γ(TM). TakingΨΩ2 instead
of Ω2 in the equation (30) and applyingΨ to the resulting equation, from (9) and (31) we have

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ

and this is the dual of (30). Finally we have to see that, (Ψ,w, ζ, h) is a PS-structure and the equation (29)
holds. Using (5) and (8) in the equation which is in the Lemma 4.1-(iii), we have

DΩ1ΨΩ2 −ΨD∗Ω1
Ω2 =

1
2
{(DΩ1Ψ)Ω2 + (D∗Ω1

Ψ)Ω2} +
1
2
{DΩ1ΨΩ2 −D∗Ω1

ΨΩ2} +
1
2
Ψ{DΩ1Ω2 −D∗Ω1

Ω2}.

Taking the dual of the last equation, we get

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = (D̂Ω1Ψ)Ω2 − κ(Ω1,ΨΩ2) −Ψκ(Ω1,Ω2). (32)

The dual of the equation (30), i.e. (30)∗, is

D∗Ω1
ΨΩ2 −ΨDΩ1Ω2 = −h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ.

Thus, from (32) and (30)∗ we obtain that

−(D̂Ω1Ψ)Ω2 − h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ = −κ(Ω1,ΨΩ2) −Ψκ(Ω1,Ω2). (33)

Also, from Lemma 4.1-(iii) and (30), we get

−(D̂Ω1Ψ)Ω2 − h(Ω1,Ω2)ζ − w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ = κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2). (34)

So, from (33) and (34) we can reach that, κ(Ω1,ΨΩ2)+Ψκ(Ω1,Ω2) = 0 holds and also we have (D̂Ω1Ψ)Ω2 =
−h(Ω1,Ω2)ζ−w(Ω2)Ω1 + 2η(Ω1)w(Ω2)ζ. Thus, (Ψ,w, ζ, h) is a PS-structure and this completes the proof.

Example 4.4. Let (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Set the connection D̆ as

D̆Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)Ω2 + w(Ω2)Ω1 + h(Ω1,Ω2)ζ, (35)

for any Ω1,Ω2 ∈ Γ(TM(1,0)). Then, D̆ is torsion-free and satisfies the Codazzi equation (3). So, (D̆, h) is a statistical
structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h).

Also, from (5) and (35) we have κ(Ω1,Ω2) = w(Ω1)Ω2 + w(Ω2)Ω1 + h(Ω1,Ω2)ζ. So, for this structure we have

κ(Ω1,ΨΩ2) +Ψκ(Ω1,Ω2) = 2η(Ω1)ΨΩ2 + w(Ω2)ΨΩ1 + h(Ω1,ΨΩ2)ζ.

Now, let us suppose that κ(Ω1,ΨΩ2) + Φκ(Ω1,Ω2) = 0 is satisfied for this structure. Then, we have

2η(Ω1)ΨΩ2 + w(Ω2)ΨΩ1 + h(Ω1,ΨΩ2)ζ = 0.

Applying w to the last equation, we get h(Ω1,ΨΩ2) = 0 ⇒ Ψ = 0 and this is a contradiction. So, κ(Ω1,ΨΩ2) +
Ψκ(Ω1,Ω2) cannot be zero. Hence, (D̆, h) is a statistical structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h)
but it isn’t a p-S statistical structure.

Example 4.5. Let (Ψ,w, ζ, h) be a PS-Riemannian structure on M. Set the connection D̃ as

D̃Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)w(Ω2)ζ, (36)

for any Ω1,Ω2 ∈ Γ(TM(1,0)). Then, D̃ is torsion-free and satisfies the Codazzi equation (3). So, (D̃, h) is a statistical
structure on the PS-Riemannian manifold (M,Ψ,w, ζ, h).

Also, from (5) and (36) we have κ(Ω1,Ω2) = w(Ω1)w(Ω2)ζ. So, κ(Ω1,ΨΩ2) + Ψκ(Ω1,Ω2) = 0 is satisfied for
the connection D̃. Hence (D̃, h,Ψ,w, ζ) is a PS-statistical structure on M.
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Here, we obtain some results about the curvatures R, R∗ and RS. For this, we’ll give some results for a
PS-statistical manifold (M,Ψ,w, ζ, h).

Taking Ω2 = ζ in (30) and (30)∗ and using (9), we have

D∗Ω1
ζ = ΨΩ1 + w(D∗Ω1

ζ)ζ (37)

and
DΩ1ζ = ΨΩ1 + w(DΩ1ζ)ζ, (38)

respectively. Also, from (5), (8), (37) and (38) we have

κ(Ω1, ζ) = DΩ1ζ − D̂Ω1ζ = w(DΩ1ζ)ζ (39)

and
κ(Ω1, ζ) = D̂Ω1ζ −D∗Ω1

ζ = −w(D∗Ω1
ζ)ζ, (40)

respectively. Thus, from (37)-(40) we get

D∗Ω1
ζ = ΨΩ1 − κ(Ω1, ζ) (41)

DΩ1ζ = ΨΩ1 + κ(Ω1, ζ) (42)

and
Ψκ(Ω1, ζ) = 0. (43)

Furthermore, from (5), (10), (39) and (42) we have

κ(Ω1, κ(Ω2, ζ)) = w(DΩ1ζ)w(DΩ2ζ)ζ (44)

and so, we get
κ(Ω1, κ(Ω2, ζ)) = κ(Ω2, κ(Ω1, ζ)). (45)

Now, we can give some results about the curvatures R, R∗ and RS.
Using (14), (15) and (45) in (21), we have

R(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 + (D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ) (46)

and

R(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ+ (D̂ζκ)(Ω1,Ω2)− (D̂Ω1κ)(ζ,Ω2)+ κ(ζ, κ(Ω1,Ω2))− κ(Ω1, κ(ζ,Ω2)). (47)

From Lemma 3.1-(iv) and (46), we get

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) + h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3). (48)

Also, from (21), we have

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3)

+ w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) + κ(Ω1, κ(Ω2,Ω3)) − κ(Ω2, κ(Ω1,Ω3))). (49)

Thus from (48) and (49), we obtain that

h((D̂Ω1κ)(Ω2, ζ)−(D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3)−(D̂Ω2κ)(Ω1,Ω3)+κ(Ω1, κ(Ω2,Ω3))−κ(Ω2, κ(Ω1,Ω3))).
(50)

Similarly, using (14), (15) and (45) in (24), we have

R∗(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 − (D̂Ω1κ)(Ω2, ζ) + (D̂Ω2κ)(Ω1, ζ) (51)
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and

R∗(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ− (D̂ζκ)(Ω1,Ω2)+ (D̂Ω1κ)(ζ,Ω2)+κ(ζ, κ(Ω1,Ω2))−κ(Ω1, κ(ζ,Ω2)). (52)

From Lemma 3.1-(iv) and (51), we get

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) − h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3). (53)

Also, from (24), we have

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3)

− w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3) − κ(Ω1, κ(Ω2,Ω3)) + κ(Ω2, κ(Ω1,Ω3))). (54)

Thus from (53) and (54), we obtain that

h((D̂Ω1κ)(Ω2, ζ)−(D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3)−(D̂Ω2κ)(Ω1,Ω3)−κ(Ω1, κ(Ω2,Ω3))+κ(Ω2, κ(Ω1,Ω3))).
(55)

Furthermore, from (50) and (55) we have

w(κ(Ω1, κ(Ω2,Ω3))) = w(κ(Ω2, κ(Ω1,Ω3))). (56)

Hence, the equations (49) and (54) reduces to

w(R(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) + w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)) (57)

and

w(R∗(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3) − w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)), (58)

respectively. Also, the equations (50) and (55) reduces to

h((D̂Ω1κ)(Ω2, ζ) − (D̂Ω2κ)(Ω1, ζ),Ω3) = w((D̂Ω1κ)(Ω2,Ω3) − (D̂Ω2κ)(Ω1,Ω3)). (59)

Likewise, let us obtain some equations about the statistical curvature of a PS-statistical manifold
(M,Ψ,w, ζ, h).

From (14), (26) and (45) (or from (19), (46) and (51)), we get

RS(Ω1,Ω2)ζ = w(Ω1)Ω2 − w(Ω2)Ω1 (60)

and from (15) and (26) (or from (19), (47) and (52)), we have

RS(ζ,Ω1)Ω2 = w(Ω2)Ω1 − h(Ω1,Ω2)ζ + κ(ζ, κ(Ω1,Ω2)) − κ(Ω1, κ(ζ,Ω2)). (61)

From (60) (or from (61) and (45)), we get

RS(ζ,Ω1)ζ = Ω1 − w(Ω1)ζ. (62)

From Theorem 3.2-(iv) and (60) (or from (26) and (56)), we obtain that

w(RS(Ω1,Ω2)Ω3) = −w(Ω1)h(Ω2,Ω3) + w(Ω2)h(Ω1,Ω3). (63)

At the end of this section, let us deal with the Ricci tensor of these curvatures on a PS-statistical manifold.
Let {Λi}, i = 1, 2, ...,n, be an orthonormal basis of the tangent space at any point p of the PS-statistical

manifold. From (21), we have

Ric(Ω1,Ω2) =
n∑

i=1

h(R(Ω1,Λi)Λi,Ω2) (64)

= R̂ic(Ω1,Ω2) +
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi) + κ(Ω1, κ(Λi,Λi)) − κ(Λi, κ(Ω1,Λi)),Ω2).
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From (12), (56) and (64), we get

Ric(Ω1, ζ) = (1 − n)w(Ω1) +
n∑

i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)). (65)

Also, using the definition of Ricci tensor, from Lemma 3.1-(iv) and (46) we have

Ric(Ω1, ζ) =
n∑

i=1

h(R(Ω1,Λi)Λi, ζ)

= (1 − n)w(Ω1) +
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi). (66)

From (65) and (66), we get

n∑
i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)) =
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi)

and this equation is equivalent with the equation (59).
From (12) and (64) (or from the definition of Ricci tensor and (47)), we have

Ric(ζ,Ω1) = (1 − n)w(Ω1) +
n∑

i=1

h((D̂ζκ)(Λi,Λi) − (D̂Λiκ)(ζ,Λi) + κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1). (67)

Similarly, from (24)

Ric∗(Ω1,Ω2) =
n∑

i=1

h(R∗(Ω1,Λi)Λi,Ω2) (68)

= R̂ic(Ω1,Ω2) −
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi) − κ(Ω1, κ(Λi,Λi)) + κ(Λi, κ(Ω1,Λi)),Ω2).

From (12), (56) and (68), we get

Ric∗(Ω1, ζ) = (1 − n)w(Ω1) −
n∑

i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)). (69)

Also, using the definition of Ricci tensor, from Lemma 3.1-(iv) and (51) we have

Ric∗(Ω1, ζ) =
n∑

i=1

h(R∗(Ω1,Λi)Λi, ζ)

= (1 − n)w(Ω1) −
n∑

i=1

h((D̂Ω1κ)(Λi, ζ) − (D̂Λiκ)(Ω1, ζ),Λi). (70)

From (69) and (70), we get

n∑
i=1

w((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi)) =
n∑

i=1

h((D̂Ω1κ)(Λi,Λi) − (D̂Λiκ)(Ω1,Λi),Λi)

and this equation is equivalent with the equation (59).
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From (12) and (68) (or from the definition of Ricci tensor and (52)), we have

Ric∗(ζ,Ω1) = (1 − n)w(Ω1) −
n∑

i=1

h((D̂ζκ)(Λi,Λi) − (D̂Λiκ)(ζ,Λi) − κ(ζ, κ(Λi,Λi)) + κ(Λi, κ(ζ,Λi)),Ω1). (71)

Finally, let us give similar results for Ricci tensor of the curvature RS on a PS-statistical manifold.
From (26), we have

RicS(Ω1,Ω2) = R̂ic(Ω1,Ω2) +
n∑

i=1

h(κ(Ω1, κ(Λi,Λi)) − κ(Λi, κ(Ω1,Λi)),Ω2). (72)

From Theorem 3.2-(iv) and (60), we get

RicS(Ω1, ζ) =
n∑

i=1

h(RS(Ω1,Λi)Λi, ζ) = −
n∑

i=1

h(RS(Ω1,Λi)ζ,Λi) = (1 − n)w(Ω1). (73)

From (12) and (72), we have

RicS(ζ,Ω1) = (1 − n)w(Ω1) +
n∑

i=1

h(κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1). (74)

Since the Ricci tensor of RS is symmetric, from (73) and (74) we obtain

n∑
i=1

h(κ(ζ, κ(Λi,Λi)) − κ(Λi, κ(ζ,Λi)),Ω1) = 0. (75)

Example 4.6. Let we deal with the manifold M = {(x, y, z) ∈ R3, z , 0} of dimension 3, where (x, y, z) are the
standart coordinates in R3.

We choose the vector fields {Λ1,Λ2,Λ3} as

Λ1 = ex ∂
∂y
, Λ2 = ex

(
∂
∂y
−
∂
∂z

)
, Λ3 = −

∂
∂x
, (76)

which are linearly independent at each point of M.
Let h be the Riemannian metric defined by h(Λi,Λ j) = 0, i , j, i, j = 1, 2, 3 and h(Λκ,Λκ) = 1, κ = 1, 2, 3.
Let w be the 1-form defined by w(Ω3) = h(Ω3,Λ3), for any Ω3 ∈ Γ(TM(1,0)).
LetΨ be the (1, 1)-tensor field defined by

ΨΛ1 = Λ1, ΨΛ2 = Λ2, ΨΛ3 = 0. (77)

Using the linearity of Ψ and h, we have w(Λ3) = 1, Ψ2Ω3 = Ω3 − w(Ω3)Λ3 and h(ΨΩ3,ΨΩ5) = h(Ω3,Ω5) −
w(Ω3)w(Ω5), for any Ω3,Ω5 ∈ Γ(TM(1,0)). Thus, for Λ3 = ζ, (Ψ, ζ,w, h) defines an almost paracontact metric
structure on M.

Now, we have
[Λ1,Λ2] = 0, [Λ1,Λ3] = Λ1, [Λ2,Λ3] = Λ2. (78)

The L-C connection D̂ of h is given by Koszul’s formula which is defined as

21(D̂Ω1Ω2,Ω3) = Ω1h(Ω2,Ω3) +Ω2h(Ω1,Ω3) −Ω3h(Ω1,Ω2) (79)
− h(Ω1, [Ω2,Ω3]) − h(Ω2, [Ω1,Ω3]) + h(Ω3, [Ω1,Ω2]).
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Taking Λ3 = ζ and using (79), we have

D̂Λ1Λ1 = −Λ3, D̂Λ1Λ2 = 0, D̂Λ1Λ3 = Λ1,

D̂Λ2Λ1 = 0, D̂Λ2Λ2 = −Λ3, D̂Λ2Λ3 = Λ2, (80)

D̂Λ3Λ1 = 0, D̂Λ3Λ2 = 0, D̂Λ3Λ3 = 0.

From above, one can be easily see that (ϕ, ζ,w, h) is a PS-structure on M. Consequently, (M, ϕ, ζ,w, h) is a
3-dimensional PS-manifold (for detail, see [18]).

Now, let us suppose the PS-statistical structure (36) which is defined as D̃Ω1Ω2 = D̂Ω1Ω2 + w(Ω1)w(Ω2)ζ
(D̃∗
Ω1
Ω2 = D̂Ω1Ω2 − w(Ω1)w(Ω2)ζ and κ(Ω1,Ω2) = w(Ω1)w(Ω2)ζ) for this para-Sasakian manifold. Thus, from

(80) we have

D̃Λ1Λ1 = D̃∗Λ1
Λ1 = −Λ3, D̃Λ1Λ2 = D̃∗Λ1

Λ2 = 0, D̃Λ1Λ3 = D̃∗Λ1
Λ3 = Λ1,

D̃Λ2Λ1 = D̃∗Λ2
Λ1 = 0, D̃Λ2Λ2 = D̃∗Λ2

Λ2 = −Λ3, D̃Λ2Λ3 = D̃∗Λ2
Λ3 = Λ2, (81)

D̃Λ3Λ1 = D̃∗Λ3
Λ1 = 0, D̃Λ3Λ2 = D̃∗Λ3

Λ2 = 0, D̃Λ3Λ3 = −D̃∗Λ3
Λ3 = Λ3.

Actually, one can easily see from (81) that, T̃(Λi,Λ j) = 0 and (D̃Λi h)(Λ j, eκ) = 0 hold for all i, j, κ = 1, 2, 3. So,
(D, h) is a statistical structure and since κ(Λi,Ψe j) + Ψκ(Λi,Λ j) = 0 holds for all i, j = 1, 2, 3, (D̃, h,Ψ,w, ζ) is a
PS-statistical structure on M.

From the above results, we can obtain the components of the curvature tensors with respect to the connections D
and D∗, respectively, as follows:

R̃(Λ1,Λ2)Λ1 = Λ2, R̃(Λ1,Λ2)Λ2 = −Λ1, R̃(Λ1,Λ2)Λ3 = 0,

R̃(Λ1,Λ3)Λ1 = 2Λ3, R̃(Λ1,Λ3)Λ2 = 0, R̃(Λ1,Λ3)Λ3 = 0, (82)

R̃(Λ2,Λ3)Λ1 = 0, R̃(Λ2,Λ3)Λ2 = 2Λ3, R̃(Λ2,Λ3)Λ3 = 0.

and

R̃∗(Λ1,Λ2)Λ1 = Λ2, R̃∗(Λ1,Λ2)Λ2 = −Λ1, R̃∗(Λ1,Λ2)Λ3 = 0,

R̃∗(Λ1,Λ3)Λ1 = 0, R̃∗(Λ1,Λ3)Λ2 = 0, R̃∗(Λ1,Λ3)Λ3 = −2Λ1, (83)

R̃∗(Λ2,Λ3)Λ1 = 0, R̃∗(Λ2,Λ3)Λ2 = 0, R̃∗(Λ2,Λ3)Λ3 = −2Λ2.

With the help of the equations (82) and (83), we get the Ricci tensors of the curvature tensors R̃ and R̃∗, respectively,
as follows:

R̃ic(Λ1,Λ1) = −1, R̃ic(Λ1,Λ2) = 0, R̃ic(Λ1,Λ3) = 0,

R̃ic(Λ2,Λ1) = 0, R̃ic(Λ2,Λ2) = −1, R̃ic(Λ2,Λ3) = 0, (84)

R̃ic(Λ3,Λ1) = 0, R̃ic(Λ3,Λ2) = 0, R̃ic(Λ3,Λ3) = −4

and

R̃ic
∗

(Λ1,Λ1) = −3, R̃ic
∗

(Λ1,Λ2) = 0, R̃ic
∗

(Λ1,Λ3) = 0,

R̃ic
∗

(Λ2,Λ1) = 0, R̃ic
∗

(Λ2,Λ2) = −3, R̃ic
∗

(Λ2,Λ3) = 0, (85)

R̃ic
∗

(Λ3,Λ1) = 0, R̃ic
∗

(Λ3,Λ2) = 0, R̃ic
∗

(Λ3,Λ3) = 0.

Furthermore, from the definition of the statistical curvature tensor, (82) and (83), we can obtain the components
of the statistical curvature tensor as

R̃S(Λ1,Λ2)Λ1 = Λ2, R̃S(Λ1,Λ2)Λ2 = −Λ1, R̃S(Λ1,Λ2)Λ3 = 0,

R̃S(Λ1,Λ3)Λ1 = Λ3 , R̃S(Λ1,Λ3)Λ2 = 0, R̃S(Λ1,Λ3)Λ3 = −Λ1, (86)

R̃S(Λ2,Λ3)Λ1 = 0, R̃S(Λ2,Λ3)Λ2 = Λ3, R̃S(Λ2,Λ3)Λ3 = −Λ2
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and from (86), we get the Ricci tensors of the statistical curvature tensor as

R̃ic
S
(Λ1,Λ1) = −2, R̃ic

S
(Λ1,Λ2) = 0, R̃ic

S
(Λ1,Λ3) = 0,

R̃ic
S
(Λ2,Λ1) = 0, R̃ic

S
(Λ2,Λ2) = −2, R̃ic

S
(Λ2,Λ3) = 0, (87)

R̃ic
S
(Λ3,Λ1) = 0, R̃ic

S
(Λ3,Λ2) = 0, R̃ic

S
(Λ3,Λ3) = −2.

5. SOME CHARACTERIZATIONS FOR THESE MANIFOLDS

In this section, we investigate some special curvature conditions for a PS-statistical manifold. For this,
firstly we study on Ricci semi-symmetric and Ricci pseudo-symmetric PS-statistical manifolds and after we
give some results for ζ-projectively flat, projectively flat and Ψ-projectively semi-symmetric PS-statistical
manifolds.

5.1. Ricci Semi-Symmetric and Ricci Pseudo-Symmetric PS-Statistical Manifolds

We know that, if (M, h) is a connected n-dimensional, n ≥ 3, semi-Riemannian manifold of class C∞, then
for a (0, k)-tensor field T on M, k ≥ 1, the (0, k + 2)-tensors R · T and Q(h,T) are defined by

(R · T)(X1, ...,Xk;Ω1,Ω2) = (R(Ω1,Ω2) · T)(X1, ...,Xk)
= −T(R(Ω1,Ω2)X1,X2, ...,Xk)
− ... − T(X1, ...,Xk−1,R(Ω1,Ω2)Xk) (88)

and

Q(h,T)(X1, ...,Xk;Ω1,Ω2) = ((Ω1 ∧h Ω2) · T)(X1, ...,Xk)
= −T((Ω1 ∧h Ω2)X1,X2, ...,Xk)
− ... − T(X1, ...,Xk−1, (Ω1 ∧h Ω2)Xk) (89)

respectively, for all X1, ...,Xk,Ω1,Ω2 ∈ Γ(TM(1,0)). Here R is the Riemannian curvature tensor field of M
and R is the Riemannian Christoffel tensor field given by R(Ω1,Ω2,Ω3,Ω4) = h(R(Ω1,Ω2)Ω3,Ω4). Also, the
endomorphisms are defined by

R(Ω1,Ω2)Ω3 = [DΩ1 ,DΩ2 ]Ω3 −D[Ω1,Ω2]Ω3 (90)

and
(Ω1 ∧h Ω2)Ω3 = h(Ω2,Ω3)Ω1 − h(Ω1,Ω3)Ω2. (91)

So, we can give the following definition for PS-statistical manifolds:

Definition 5.1. Let M be an n-dimensional PS-statistical manifold. Then, M is called Ricci pseudo-symmetric with
respect to RS if at every point of M the tensor RS

· RicS and Q(h,RicS) are linearly dependent. This is equivalent to
the fact that the equality

R
S
· RicS = LRicS Q(h,RicS), (92)

hold the set URicS = {x ∈ M : Q(h,RicS) , 0}, for some function LRicS on URicS , where RicS is the Ricci tensor of RS.
Also, if LRicS = 0 holds in (92), i.e.,

R
S
· RicS = 0 (93)

holds, then M is called Ricci semi-symmetric with respect to RS.
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Firstly let us assume that M is Ricci semi-symmetric with respect to RS. Then, we can write

(RS
· RicS)(U,V;Ω1,Ω2) = (RS(Ω1,Ω2) · RicS)(U,V)

= −RicS(RS(Ω1,Ω2)U,V) − RicS(U,RS(Ω1,Ω2)V). (94)

Using (93) in (94), we have

RicS(RS(Ω1,Ω2)U,V) + RicS(U,RS(Ω1,Ω2)V) = 0. (95)

Putting Ω2 = V = ζ in (95) and using (61), we get

− w(U)RicS(Ω1, ζ) + h(Ω1,U)RicS(ζ, ζ) − RicS(κ(ζ, κ(Ω1,U)), ζ) + RicS(κ(Ω1, κ(ζ,U)), ζ)

+ w(Ω1)RicS(U, ζ) − RicS(U,Ω1) = 0. (96)

Using (56) and (73) in (96), we have

RicS(U,Ω1) = (1 − n)h(U,Ω1).

Hence, we can state the following Theorem:

Theorem 5.2. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is Ricci semi-
symmetric with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

Now, let us assume that M is Ricci pseudo-symmetric with respect to RS. Then, from (92) we can write

(RS(Ω1,Ω2) · RicS)(U,V) = −LRicS

{
RicS((Ω1 ∧h Ω2)U,V) + RicS(U, (Ω1 ∧h Ω2)V)

}
, (97)

for all Ω1,Ω2,U,V ∈ Γ(TM(1,0)). Using (91) in (97), we get

−RicS(RS(Ω1,Ω2)U,V) − RicS(U,RS(Ω1,Ω2)V) = −LRic.S

{
RicS(Ω1,V)h(Ω2,U) − RicS(Ω2,V)h(Ω1,U)
+RicS(U,Ω1)h(Ω2,V) − RicS(U,Ω2)h(Ω1,V)

}
.

(98)
Putting Ω2 = V = ζ in (98) and using (56), (61) and (73), we get

RicS(U,Ω1) = (1 − n)h(U,Ω1).

So, we can give the following Theorem:

Theorem 5.3. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is Ricci pseudo-
symmetric with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

5.2. Projectively Flat andΨ-Projectively Semi-Symmetric PS-Statistical Manifolds

Let M be an n-dimensional PS-statistical manifold. Then, the projective curvature tensor PS of M with
respect to the statistical curvature RS is defined by

PS(Ω1,Ω2)Ω3 = RS(Ω1,Ω2)Ω3 −
1

n − 1

{
RicS(Ω2,Ω3)Ω1 − RicS(Ω1,Ω3)Ω2

}
(99)

for all Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Definition 5.4. A PS-statistical manifold is called projectively flat with respect to the statistical curvature RS, if
the projective curvature tensor PS vanishes at each point of the manifold. Also, a PS-statistical manifold is called
ζ-projectively flat with respect to the statistical curvature RS, if PS(Ω1,Ω2)ζ = 0 holds for all Ω1,Ω2 ∈ Γ(TM(1,0)).
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Theorem 5.5. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). Then, M is ζ-
projectively flat with respect to the statistical curvature RS.

Proof. It is obvious from (60), (73) and (99).

Now, let us suppose that M is projectively flat with respect to the statistical curvature RS. Then, since
PS = 0, from (99) we can write

RS(Ω1,Ω2)Ω3 =
1

n − 1

{
RicS(Ω2,Ω3)Ω1 − RicS(Ω1,Ω3)Ω2

}
. (100)

Taking Ω1 = ζ in (100) and using (61), we have

w(Ω3)Ω2 − h(Ω2,Ω3)ζ + κ(ζ, κ(Ω2,Ω3)) − κ(Ω2, κ(ζ,Ω3)) =
1

n − 1

{
RicS(Ω2,Ω3)ζ − (1 − n)w(Ω3)Ω2

}
. (101)

Applying w to (101), from (56) we get

RicS(Ω2,Ω3) = (1 − n)h(Ω2,Ω3).

Thus, we have

Theorem 5.6. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M is projectively
flat with respect to statistical curvature RS, then M is Einstein with respect to Ricci tensor of RS.

Definition 5.7. A PS-statistical manifold is called Ψ-projectively semi-symmetric with respect to the statistical
curvature RS, if it satisfies (PS(Ω1,Ω2)Ψ)Ω3 = 0 holds for all Ω1,Ω2,Ω3 ∈ Γ(TM(1,0)).

Finally, let us assume that M is Ψ-projectively semi-symmetric with respect to the statistical curvature
RS. So, from (PS(Ω1,Ω2)Ψ)Ω3 = 0 we can write

PS(Ω1,Ω2)ΨΩ3 −ΨPS(Ω1,Ω2)Ω3 = 0. (102)

Using (99) in (102) and taking Ω1 = ζ, from (61) and (74) we have

−h(Ω2,ΨΩ3)ζ+κ(ζ, κ(Ω2,ΨΩ3))−κ(Ω2, κ(ζ,ΨΩ3))−
1

n − 1
RicS(Ω2,ΨΩ3)ζ−Ψκ(ζ, κ(Ω2,Ω3))+Ψκ(Ω2, κ(ζ,Ω3)) = 0.

(103)
Applying w to (103), from (56) we get

RicS(Ω2,ΨΩ3) = (1 − n)h(Ω2,ΨΩ3). (104)

TakingΨΩ2 instead of Ω2 and using (9), (29), (56) and (72), we obtain

RicS(Ω2,Ω3) + 2
n∑

i=1

{−h(κ(Ω2, κ(Λi,Λi)),Ω3) + w(κ(Ω2, κ(Λi,Λi)))w(Ω3)} = (1 − n)h(Ω2,Ω3). (105)

Hence, we can give the following Theorem:

Theorem 5.8. Let M be a PS-statistical manifold with PS-statistical structure (D, h,Ψ,w, ζ). If M isΨ-projectively
semi-symmetric with respect to statistical curvature RS and

n∑
i=1

{h(κ(Ω2, κ(Λi,Λi)),Ω3) − w(κ(Ω2, κ(Λi,Λi)))w(Ω3)} = 0

holds for all Ω2,Ω3 ∈ Γ(TM(1,0)), then M is Einstein with respect to Ricci tensor of RS.
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6. CONCLUSION

One of the fundamental concept in information theory is that of the Fisher-Rao Information Matrix,
which provides us with another measure of the distance between two different probability distributions.
Such a measure endows the statistical manifold with a Riemannian structure. In fact, while the relative
entropy does not define a real distance between distributions (for example, it is not symmetric), it can be
shown that the Fisher-Rao Information Matrix arises as the Hessian of the relative entropy over a stationary
point. The entries of such a matrix are in correspondence with the components of the metric tensor over
the manifold of probability distributions [4].

On the other hand, the role played by differential geometry in statistics was not fully acknowledged
until 1975 when Efron first introduced the concept of statistical curvature for one-parameter models and
emphasized its importance in the theory of statistical estimation. Efron pointed out how any regular
parametric family could be approximated locally by a curved exponential family and that the curvature of
these models measures their departure from exponentiality. It turned out that this concept was intimately
related to Fisher’s theory of information loss. Efron’s formal theory did not use all the bells and whistles of
differential geometry. The first step to an elegant geometric theory was done by Dawid, who introduced a
connection on the space of all positive probability distributions and showed that Efron’s statistical curvature
is induced by this connection. The use of differential geometry in its elegant splendor for the elaboration of
previous ideas was systematically achieved by Amari, who studied the informational geometric properties
of a manifold with a Fisher metric on it. This is the reason why sometimes this is also called the Fisher–
Efron–Amari theory [5]. In the light of these studies, we focused on the curvature tensors of para-Sasakian
(PS) statistical manifolds in terms of differential geometry. We started building this with Theorem 1, which
we have used connections while doing it. In the context of PS geometry there is another connection of
geometric significance which is parallel with respect to the metric and the other tensors defining the contact-
metric strucuture. We have given our results using the connections ∇ and ∇∗ on statistical manifolds. We
have also studied the Ricci tensor of the statistical curvature and studied the cases of the manifold being
Einstein under certain conditions in Theorem 3, Theorem 4 and Theorem 6. We have proved the projective
flatness of the PS-statistical manifold. We believe that the concepts investigated in this work can be also
studied in some new settings. The submanifolds of this subject can be examined as well as the inequality
situation.
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Abstract. In this study, we get over the challenge of recovering unknown space dependent coefficient in
space-time fractional diffusion equations by means of fractional scaling transformations method. Fractional
differential equation is given in the sense of the conformable fractional derivative having substantial
properties. By these properties and fractional scaling transformations method the fractional problem is
reduced into integer order problem which allows us to tackle the problem better. Then we establish the
solution and unknown coefficient of the reduced problem. Later, by employing inverse transformation,
the solution and unknown coefficient of the fractional problem are obtained. Finally, some examples are
presented to illustrate the implementation and effectiveness of the method.

1. Introduction

Last couple of decades fractional differential equations play a significant role in modelling of various
processes. As a result, they attract growing attention of many scientists in diverse branches of sciences
such as engineering, mathematics, chemistry and physics [1–8]. Consequently, numerous analytical and
numerical methods have been utilized to construct solutions of mathematical problems including fractional
differential equations [9–15].
Therefore, identification of unknown coefficients in fractional differential equations with or without ad-
ditional measured data becomes one of the trend challenges in inverse problems [16–18]. Hence, many
researchers in various research areas have been developing new methods to tackle with this kind of inverse
problems including fractional derivatives [16–20].
In this research, our focus is on establishing space dependent diffusivity coefficient and the solution of the
mathematical problem including space-time fractional diffusion equation by means of fractional scaling
transformation methods. The main advantage of this method is that it turns fractional order differential
equations into integer order differential equations which makes the problem easier to tackle with. We
remark that this method works out for the fractional differential equations in the sense of conformable
fractional derivative. The main goal in this article is to reveal the unknown coefficient of the following
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governing space-time fractional diffusion equation:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)) + f (x, t), 0 < x < x1, 0 < t < t1, 0 < α, β ⩽ 1, (1)

where u(x, t) and k(x) > 0 represent the temperature and thermal diffusivity, respectively. Associated to (1)
the prescribed initial condition is

u(x, 0) = φ(x), 0 ⩽ x ⩽ x1, (2)

and the prescribed Dirichlet boundary conditions are

Dβxu(0, t) = 0, 0 < t ⩽ t1, (3)

u(x1, t) = 1(t), 0 < t ⩽ t1, (4)

with additional condition

u(x, t1) = E(x), 0 < x ⩽ x1. (5)

Having the condition k(x) > 0 makes the problem (1)-(5) well-posed.

2. Preliminaries

Definition 1. [21] Given a function f : [0,∞) → R. Then the conformable fractional derivative of f of
order α is defined by

Tαt ( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

, (6)

for all t > 0, αϵ(0, 1).
Theorem 2. [21] Let αϵ(0, 1] and f be α-differentiable at a point t > 0. Then Tαt f (t) = t1−α f ′(t).
Theorem 3. [21] Let αϵ(0, 1] and f , 1 be α-differentiable at a point t > 0. Then,
i)Tα(a f + b1) = aTα( f ) + bTα(1) for all real constant a, b,
ii)Tα(tp) = ptp−α for all pϵR,
iii)Tα( f1) = f Tα(1) + 1Tα( f ),
iv)Tα( f

1
) = 1T

α( f )− f Tα(1)
12 ,

v)Tα(λ) = 0, for all constant functions f (t) = λ.
Definition 4. [21] Let αϵ(n,n + 1],nϵN and f be an α-differentiable at t where t > 0, then the conformable
fractional derivative of f of order α is defined as

Tαt ( f )(t) = lim
ε→0

f (n)(t + εtn+1−α) − f (n)(t)
ε

, (7)

where f is n-differentiable at t > 0.
Definition 5. [21] The conformable α-fractional integral of a function f is defined by

Iαt ( f )(t) =

t∫
0

f (x)
x1−α dx, αϵ(0, 1). (8)

Theorem 6. [21, 22] Let a ⩾ 0 and α ∈ (0, 1). Also, let f : (a, b) → R be a continuous function such that Iα
exist, then for all t > a, we have

Tαt (Iαt ( f )(t)) = f (t), t ≥ 0, (9)
Iαt (Tαt ( f )(t)) = f (t) − f (a). (10)
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3. Analysis of the new fractional derivative

By means of the following fractional scaling transformations

X =
xβ

β
,T =

tα

α
,u(x, t) = V(X,T), (11)

the problem (1)-(5) is converted to into the following integer order problem

VT = (k(X)VX)X + f (X,T), 0 < X <
xβ1
β
, 0 < T <

tα1
α
, (12)

with initial conditions

V(X, 0) = φ(X), 0 < X ⩽
xβ1
β
, (13)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽
tα1
α
, (14)

V(
xβ1
β
,T) = 1(T), 0 < T ⩽

tα1
α
, (15)

and additional condition

V(X,
tα1
α

) = E(X), 0 < X ⩽
xβ1
β
. (16)

After establishing the solution and unknown coefficient of problem (12)-(16), by employing inverse trans-
formation we obtain the solution u(x, t) and an unknown diffusivity coefficient k(x).

4. Illustrative Examples

In this section, we illustrate three examples of inverse problems about determination of unknown space
dependent coefficient.
Example 1. Consider the inverse coefficient problem involving space-time fractional differential equations
[23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)), 0 < x < β
1
β , 0 < t < α

1
α , (17)

u(x, 0) =
x3β

β3 , 0 ⩽ x ⩽ β
1
β , (18)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (19)

u(β
1
β , t) = exp(t), 0 < t ⩽ α

1
α , (20)

u(x, α
1
α ) =

x3β

β3 exp(1), 0 ⩽ x ⩽ β
1
β . (21)
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By taking fractional scaling transformation methods into account the problem (17)-(21) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (22)

with initial conditions

V(X, 0) = X3, 0 < X ⩽ 1, (23)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (24)

V(1,T) = exp(T), 0 < T ⩽ 1, (25)

and additional condition

V(X, 1) = X3exp(1), 0 < X ⩽ 1. (26)

This inverse problem have the solution V(X,T) = X3exp(T) and unknown diffusivity coefficient becomes
k(X) = 1

12 X2 . As seen from Figs.1-4, by means of inverse transformation the solution of problem (17)-(21)
and unknown diffusivity coefficient are obtained in the following form respectively.

u(x, t) =
x3β

β3 exp(
tα

α
) (27)

and

k(x) =
1
12

x2β

β2 . (28)

Moreover, the values of exact and approximate solutions of problem (17)-(21) at t = 0.8 for different values
of orders of α and β are presented in Table 1.

Table 1: The table of exact and approximate solutions of Ex. 1 at t = 0.8 .

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.01780 0.01780 0.01780 0.02276 0.03958 0.04414 0.05060

0.4 0.14243 0.14243 0.15883 0.18209 0.25720 0.28680 0.32881

0.6 0.48072 0.48072 0.53605 0.61457 0.76863 0.85710 0.98264

0.8 1.13948 1.13948 1.27063 1.45675 1.67129 1.86366 2.13664

1 2.22554 2.22554 2.48171 2.84522 3.05287 3.40426 3.90290
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Figure 1: The graphics of exact and approximate solution for k(x) in Ex. 1 .
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Figure 2: The graphics of exact solution for u(x, t) in Ex. 1 .
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Figure 3: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 1 .
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Figure 4: The graphics of approximate solution for u(x, t) with α = 0.9 and β = 0.9 in Ex. 1 .
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Example 2. Consider the inverse coefficient problem involving space-time fractional differential equa-
tions [23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)), 0 < x < β
1
β , 0 < t < α

1
α , (29)

u(x, 0) =
x2β

β2 exp
(xβ
β

)
, 0 ⩽ x ⩽ β

1
β , (30)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (31)

u(β
1
β , t) = exp(1 +

tα

α
), 0 < t ⩽ α

1
α , (32)

u(x, α
1
α ) =

x2β

β2 exp
(xβ
β
+ 1
)
, 0 ⩽ x ⩽ β

1
β . (33)

By taking fractional scaling transformation methods into account the problem (29)-(33) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (34)

with initial conditions

V(X, 0) = X2exp(X), 0 < X ⩽ 1, (35)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (36)

V(1,T) = exp(1 + T), 0 < T ⩽ 1, (37)

and additional condition

V(X, 1) = X2exp(X + 1), 0 < X ⩽ 1. (38)

This inverse problem have the solution V(X,T) = X2exp(X+T) and unknown diffusivity coefficient becomes
k(X) = X2

−2X+2
X2+2X . As seen from Figs.5-8, by means of inverse transformation the solution of problem (34)-(38)

and unknown diffusivity coefficient are obtained in the following form respectively.

u(x, t) =
x2β

β2 exp
(xβ
β
+

tα

α

)
(39)

and

k(x) =
x2β
− 2βxβ + 2β2

x2β + 2βxβ
(40)

Moreover, the values of exact and approximate solutions of problem (28)-(32) at t = 0.8 for different values
of orders of α and β are presented in Table 2.
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Table 2: The table of exact and approximate solutions of Ex. 2 at t = 0.8.

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.10873 0.10873 0.12125 0.13901 0.19686 0.21952 0.25168

0.4 0.53122 0.53122 0.59236 0.67913 0.85941 0.95833 1.09870

0.6 1.45987 1.45987 1.62791 1.86636 2.20967 2.46401 2.82492

0.8 3.16994 3.16994 3.53481 4.05257 4.56313 5.08836 5.83369

1 6.04965 6.04965 6.74598 7.73410 8.34642 9.30711 10.67038

Figure 5: The graphics of exact and approximate solution for k(x) in Ex. 2 .
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Figure 6: The graphics of exact solution for u(x, t) in Ex. 2 .
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Figure 7: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 2.
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Figure 8: The graphics of approximate solution for u(x, t) with α = 0.9 and β = 0.9 in Ex. 2 .
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Example 3. Consider the inverse coefficient problem involving space-time fractional differential equa-
tions [23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)) + (x2
− 4x)exp(t),

0 < x < β
1
β , 0 < t < α

1
α , (41)

u(x, 0) =
x2β

β2 , 0 ⩽ x ⩽ β
1
β , (42)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (43)

u(β
1
β , t) = exp(t), 0 < t ⩽ α

1
α , (44)

u(x, α
1
α ) =

x2β

β2 exp(1), 0 < x ⩽ β
1
β . (45)

By taking fractional scaling transformation methods into account the problem (41)-(45) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (46)

with initial conditions

V(X, 0) = X2, 0 < X ⩽ 1, (47)
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and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (48)

V(1,T) = exp(T), 0 < T ⩽ 1, (49)

V(X, 1) = X2exp(1), 0 < X ⩽ 1, (50)

This inverse problem have the solution V(X,T) = X2exp(T) and unknown diffusivity coefficient becomes
k(X) = X . As seen from Figs.9-12, by means of inverse transformation the solution of problem (34)-(38) and
unknown diffusivity coefficient are obtained in the following form respectively

u(x, t) =
x2β

β2 exp(
tα

α
) (51)

and

k(x) =
xβ

β
. (52)

Moreover, the values of exact and approximate solutions of problem (41)-(45) at t = 0.8 for different values
of orders of α and β are presented in Table 3.

Table 3: The table of exact and approximate solutions of Ex. 3 at t = 0.8.

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.08902 0.08902 0.09927 0.11381 0.15164 0.16909 0.19386

0.4 0.35609 0.35609 0.39707 0.45523 0.52803 0.58881 0.67505

0.6 0.80119 0.80119 0.89341 1.02428 1.09553 1.22162 1.40056

0.8 1.42435 1.42435 1.58829 1.82094 1.83871 2.05035 2.35067

1 2.22554 2.22554 2.48171 2.84522 2.74758 2.05035 3.51261
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Figure 9: The graphics of exact and approximate solution for k(x) in Ex. 3 .
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Figure 10: The graphics of exact solution for u(x, t) in Ex. 3 .
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Figure 11: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 3 .
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Figure 12: The graphics of approximate solution for u(x, t) with β = 0.9 in Ex. 3 .
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5. Conclusion

In this study, we tackle with the challenge of constructing the solution and unknown space dependent
coefficient of space-time fractional diffusion equations by utilizing fractional scaling transformation method.
This method enable us to reduce the problem into integer order inverse problem which gives us the
opportunity to cope with easier problem. Then, taking the inverse transformation into account, the solution
and the unknown coefficient are recovered. The outcomes illustrate that this method works better for the
fractional problems in the sense of conformable fractional derivative. Future work will be concerned with
the construction of the unknown parameter in space-time fractional differential equations with various
boundary conditions.

References

[1] Oldham, KB, Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order.
Academic Press. 1974.

[2] Miller, KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons. 1993.
[3] Debnath LA. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 2003, 3413 — 3442.
[4] Kilbas AA., Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier. 2006.
[5] Podlubny I. Fractional differential equation. San Diego. CA: Academic Press. 1999.
[6] Ergun A. A half inverse problem for the singular diffusion operator with jump condition. Miskolch Mathematical Notes. 21(2),

2020, 805 – 821.
[7] Ergun A, Amirov R. A half-inverse problem for singular diffusion operator with certain boundary conditions. Numer. Methods

Partial Diff. Eq. 38, 2022, 916 — 927.
[8] Ergun A, Amirov R. Half inverse problem for diffusion operators with jump conditions dependent on the spectral parameter.

Numer Methods Partial Diff. Eq. 38, 2022, 577 -– 590.
[9] Sabatier J, Agarwal OP, Machado JAT(eds). Advances in fractional calculus: theoretical developments and applications in physics

and engineering. Dordrecht: Springer. 2007.
[10] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives theory and applications. Amsterdam: Gordon and

Breach. 1993.
[11] Odibat Z. Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput.178, 2006, 527 – 533.
[12] Momani S, Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett.

A 355, 2006, 271 – 279.
[13] Atangana A. On the new fractional derivative and application to nonlinear Fisher-reaction- diffusion equation. Appl. Math.

Comput. 273, 2016, 948 – 956..
[14] El-Ajou A, Abu Arqub O, Momani S, Baleanu D, Alsaedi A. A novel expansion iterative method for solving linear partial

differential equations of fractional order. Appl. Math. Comput. 257, 2015, 119 – 133.
[15] Bayrak MA, Demir A. A new approach for space-time fractional partial differential equations by residual power series method.

Appl. Math. Comput. 336, 2018, 215 – 230.
[16] Lesnic D, Yousefi SA, Ivanchov M. Determination of a time-dependent diffusivity from nonlocal conditions. J. Appl. Math.

Comput. 41, 2013, 301 -– 320.
[17] Xiangtuan X, Hongbo G, Xiaohong L. An inverse problem for a fractional diffusion equation. J. of Comput. Appl. Math. 236,

2012, 4474 -– 4484.
[18] Mansur II, Muhammed C. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions.

Appl. Math. Model. 40(4), 2016, 891 – 899.
[19] Songshu L, Lixin F. An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation. Math. Prob. Eng. 2020,

Article ID 5865971, 13 pages.
[20] Zhiyuan L, Xing C, Gongsheng L. An inverse problem in time-fractional diffusion equations with nonlinear boundary condition.

J. of Math. Phys. 60, 091502 , 2019.
[21] Khalil R, Al Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. Journal of Computational and Applied

Mathematics, 2014, 65 -– 70.
[22] Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional calculus models and numerical methods. Series on Complexity. Nonlinearity

and Chaos. World Scientific. Boston. 2012.
[23] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results.

Comput. Math. Appl, 51, 2006, 1367 -– 1376.
[24] Zhou G, Wu B, Ji W, Rho S. Time- or Space-Dependent Coefficient Recovery in Parabolic Partial Differential Equation for Sensor

Array in the Biological Computing. Mathematical Problems in Engineering. 2015, Article ID 573932, 9 pages.


	TJOS Cover
	jenerik
	Tam Sayı Dosyası
	7-1129744 Mine Aylin Bayrak 


