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Ahmet Kelesoglu Faculty of Education,

Necmettin Erbakan University,

Konya-TÜRKİYE
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Kadda MAAZOUZ, Dvivek VİVEK, Elsayed ELSAYED 114 - 123

2 Shift Filter of Quasi-ordered Residuated Systems

Daniel A. ROMANO 124 - 130

3 Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping
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1. Introduction

Because of its wide applicability in biology, medicine and in more and more fields, the theory of fractional differential equations

has recently been attracting increasing interest. Especially, many research papers had devoted to generalized fractional

differential operator, this concept of generalized integral and derivative was given through Katugampola [11, 12]. The use

of Katugampola fractional derivative (KFD) is to generalize the Hadamard and Riemann-Liouville integrals and derivatives

which widely discussed by many researchers, one can refer to [8, 11, 12, 22]. Anderson et al. [1] studied some properties of

KFD with potential application in quantum mechanics. In [8], Janaki et al. established existence and uniqueness of solutions

to the impulsive differential equations with inclusions, and the authors also established some conditions for the uniqueness

and existence of solutions for a class of fractional implicit differential equations with KFD [9]. Recently, Vivek et al. [22]

investigated existence and stability of solutions for impulsive type integro-differential equations. Followed by the work, the

existence and Ulam stability of solutions for impulsive type pantograph equations was considered in [23].

As a result of unifying different techniques for initial or boundary conditions, nonlinear boundary conditions received more

and more attention, see [5, 6, 10], [13]-[18].

In this paper, we consider the following boundary value problem for implicit differential equations with KFD of the form







ρ Dα u(t) = Ψ(t,u(t),ρ Dα u(t)), t ∈ J := [a,b], 1 < α < 2, ρ > 0,

c1u(a)−d1u′(a) = u1,

c2u(b)−d2u′(b) = u2,

(1.1)

where ρ Dα is the generalized fractional derivative of order α, Ψ : J×R×R −→ R, is given function, c1,c2,d1,d2,u1,u2 ∈ R

and 0 6 a < b < ∞.
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The paper is organized as follows: In Section 2, we present definitions, lemmas, and some results. Section 3 is devoted to

establish our main results. Finally, two explanatory examples are given to illustrate the theoretical results.

2. Fundamental Results

We now introduce some definitions, preliminary facts about the fractional calculus, notations, and some auxiliary results, which

will be used later.

Definition 2.1. [12] The generalized left-sided fractional integral of order α ∈ C, (Re(α)> 0) is defined for t > a by

ρ Iα h(t) =
ρ1−α

Γ(α)

∫ t

a

(

tρ − sρ
)α−1

sρ−1h(s)ds, (2.1)

if the integral exists, where Γ(.) is the Gamma function.

Definition 2.2. [12] The generalized left-sided fractional derivative, corresponding to the generalized fractional integral (2.1)

is defined for t > a by

ρ Dα h(t) =
ρα−n+1

Γ(n−α)

(

t1−ρ d

dt

)

∫ t

a

(

tρ − sρ
)n−α−1

sρ−1h(s)ds,

where n = [α]+1, if the integral exists.

Lemma 2.3. Let α > 0 and ρ > 0, then the differential equation

ρ Dα f (t) = 0,

has solutions

f (t) = a0 +
n−2

∑
k=1

ak

( tρ −aρ

ρ

)α−k

, ak ∈ R, k = 0,1,2, . . . ,n−2; n = [α]+1.

Lemma 2.4. Let α > 0 and ρ > 0, then

ρ Iα
(ρ

Dα f (t)
)

= f (t)+a0 +
n−2

∑
k=1

ak

( tρ −aρ

ρ

)α−k

,

for some

ak ∈ R, k = 0,1,2, . . . ,n−2; n = [α]+1.

Theorem 2.5. [7](Nonlinear alternative)
Let X be a Banach space with C ⊂ X closed and convex. Assume U is a relatively open subset of C with 0 ∈U and T : U −→C

is a compact. Then either,

1. T has a fixed point in U, or

2. there is a point u ∈ ∂U and λ ∈ (0,1) with u = λTu.

Theorem 2.6. [19] ( Krasnoselskii’s fixed point theorem)
Let E be a bounded closed convex and nonempty subset of a Banach space X . Let A,B two operators such that Ax+By ∈ E for

every pair x,y ∈ E. If A is a contraction and B is completely continuous then there exists z ∈ E such that Az+Bz = z.

3. Main Results

The following lemma is essential to state and prove our main result

Lemma 3.1. Let 1 < α < 2, ρ > 0 and ψ ∈C(J,R) be a continuous function. Then the following boundary value problem







ρ Dα u(t) = ψ(t), t ∈ J,

c1u(a)−d1u′(a) = u1,

c2u(b)−d2u′(b) = u2,

(3.1)
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has a unique solution given by

u(t) =
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds,

where

Kα
t (s) =

ρα−1

Γ(α)
(tρ − sρ)α−1sρ−1

, σt =
( tρ −aρ

ρ

)α−1

,

φa,b =
1

δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)

, K(s) = c2Kα
b (s)−d2ρbρ−1Kα−1

b (s),

and

δ = d2(α −1)bρ−1
(bρ −aρ

ρ

)α−2

− c2

(bρ −aρ

ρ

)α−1

.

Proof. Let u satisfies the problem (3.1) then, by Lemmas 2.3 and 2.3 we have

u(t) = a0 +a1

( tρ −aρ

ρ

)α−1

+
ρα−1

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1ψ(s)ds

= a0 +a1

( tρ −aρ

ρ

)α−1

+
∫ t

a
Kα

t (s)ψ(s)ds.

Then

u′(t) = a1(α −1)tρ−1
( tρ −aρ

ρ

)α−2

+ρtρ−1
∫ t

a
Kα−1

t (s)ψ(s)ds.

Therefore

u(a) = a0 and u′(a) = 0,

so we have

c1u(a)−d1u′(a) = c1a0 = u1

it follows that

a0 =
u1

c1
·

On the other hand, we have

c2u(b) = c2a0 + c2a1

(bρ −aρ

ρ

)α−1

+ c2

∫ b

a
Kα

b (s)ψ(s)ds,

and

d2u′(b) = d2a1(α −1)bρ−1
(bρ −aρ

ρ

)α−2

+d2ρbρ−1
∫ b

a
Kα−1

b (s)ψ(s)ds.

Then we obtain

c2u(b)−d2u′(b) = c2a0 + c2a1

(bρ −aρ

ρ

)α−1

−d2a1(α −1)bρ−1
(bρ −aρ

ρ

)α−2

+
∫ b

a

[

c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
]

ψ(s)ds = u2

=
c2u1

c1
+ c2a1

(bρ −aρ

ρ

)α−1

−d2a1(α −1)bρ−1
(bρ −aρ

ρ

)α−2

+
∫ b

a

[

c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
]

ψ(s)ds = u2

=
c2u1

c1
−a1

(

d2(α −1)bρ−1
(bρ −aρ

ρ

)α−2

− c2

(bρ −aρ

ρ

)α−1

)

+
∫ b

a

[

c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
]

ψ(s)ds.
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From c2u(b)−d2u′(b) = u2 we deduce that

a1 =
1

δ

(c2u1

c1
−u2 +

∫ b

a

[

c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
]

ψ(s)ds
)

=
1

δ

[c2u1

c1
−u2 +

∫ b

a

(

c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
)

ψ(s)ds
]

=
1

δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)

= φa,b.

Then we obtain

u(t) =
c2u1

c1
−u2 +φa,b

( tρ −aρ

ρ

)α−1

+
∫ t

a
Kα

t (s)ψ(s)ds

=
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds.

Then we can accomplish the purpose desired, which complete the proof.

For sake of brevity, we need the following proposition which is very useful in what follows.

Proposition 3.2. For 1 < α < 2, ρ > 0, and t,s ∈ J we have

(i)
∫ t

a Kα
t (s)ds 6

∫ b
a Kα

b (s)ds = ρα−2

Γ(α+1) (b
ρ −aρ)α

(ii)
∫ b

a Kα−1
b (s)ds = ρα−2

(α−1)Γ(α) (b
ρ −aρ)α−1

(iii)
∫ b

a |K(s)|ds 6
(bρ−aρ )α−1ρα−2

(α−1)Γ(α)

(

|c2|(bρ −aρ)+ |d2|ρbρ−1
)

:= K∗.

Proof. The proof of (i) and (ii) is immediate, it remains to prove (iii). Indeed, we have

∫ b

a
|K(s)|ds =

∫ b

a

∣

∣

∣
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

∣

∣

∣
ds

6
|c2|ρα−2

Γ(α +1)
(bρ −aρ)α +

|d2|ρbρ−1ρα−2

(α −1)Γ(α)
(bρ −aρ)α−1

6
(bρ −aρ)α−1ρα−2

Γ(α)

(

|c2|
bρ −aρ

α
+ |d2|

ρbρ−1

α −1

)

6
(bρ −aρ)α−1ρα−2

(α −1)Γ(α)

(

|c2|(bρ −aρ)+ |d2|ρbρ−1
)

= K∗
.

3.1 Existence results

Now, we are in position to first result which is based on Theorem 2.5.

Theorem 3.3. Assume that

(A1) Ψ is continuous.

(A2) There exist constants k > 0 and 0 < l < 1 such that

|Ψ(t,u2,v2)−Ψ(t,u1,v1)|6 k|u2 −u1|+ l|v2 − v1|

for any u1,v1, u2,v2 ∈ R, and t ∈ J.

Then the problem (1.1) has at least one solution.

Proof. Let us consider the operator χ : C (J,R)−→ C (J,R) defined by

(χu)(t) =
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds

where

ψ(s) = Ψ(s,u(s),ψ(s)).
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Step 1: χ is continuous.

Let {un} be a sequence such that un → u in C (J,R). Then for each t ∈ J, we have

∣

∣(χun)(t)− (χu)(t)
∣

∣ =
∣

∣

∣

σt

δ

∫ b

a
K(s)

(

ψn(s)−ψ(s)
)

ds

+
∫ t

a
Kα

t (s)
(

ψn(s)−ψ(s)
)

ds

∣

∣

∣

6
σb

|δ |

∫ b

a
|K(s)|

∣

∣ψn(s)−ψ(s)
∣

∣ds

+
∫ t

a
|Kα

t (s)|
∣

∣ψn(s)−ψ(s)
∣

∣ds

where

ψn(s) = Ψ(s,un(s),ψn(s)).

In virtue of (A2), we have

|ψn(s)−ψ(s)| ≤ k

1− l
|un(s)−u(s)|.

It follows that

|χun(t)−χu(t)| 6
k

1− l

(σbK∗

|δ | +
∫ b

a
Kα

b (s)ds
)

|un(s)−u(s)|

6
k

1− l

(σbK∗

|δ | +
ρα−2

Γ(α +1)
(bρ −aρ)α

)

‖un −u)‖∞.

Since un → u, we get that ‖χun −χu‖∞ → 0 as n → ∞. Hence χ is continuous.

Step 2: χ maps bounded sets into bounded sets in C (J,R).
It is enough to show that there exists a positive constant m for r > 0 such that for each u ∈ Dr = {u ∈ C (J,R) : ‖u‖∞ 6 r} we

have ‖χu‖∞ 6 m. Indeed for each t ∈ J, and u ∈ Dr we have

|(χu)(t)| =
∣

∣

∣

c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds

∣

∣

∣

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+ |φa,b|σb +

∫ t

a
Kα

t (s)|ψ(s)|ds.

According to (A2) we have

|ψ(s)| = |Ψ(s,u(s),ψ(s))−Ψ(s,0,0)+Ψ(s,0,0)|

6
k‖u‖∞ + sups∈J |Ψ(s,0,0)|

1− l

6
kr+Ψ∗

1− l
, where Ψ∗ = sup

s∈J

|Ψ(s,0,0)|.

On the other hand, we have

|φa,b| =

∣

∣

∣

∣

∣

1

δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)

∣

∣

∣

∣

∣

6
1

|δ |

(

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+

∫ b

a
|K(s)||ψ(s)|ds

)

6
1

|δ |

(

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+

kr+Ψ∗

1− l

∫ b

a
|K(s)||ds

)

6
1

|δ |

(

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+

(kr+Ψ∗)K∗

1− l

)

:= φ ∗
a,b.
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Then,

|(χu)(t)| 6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+φ ∗

a,bσb +
kr+Ψ∗

1− l

∫ t

a
Kα

t (s)ds

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+φ ∗

a,bσb +
kr+Ψ∗

1− l

∫ b

a
Kα

b (s)ds := m.

It follows that

‖χu‖∞ 6 m

which implies that χ maps bounded sets into bounded sets of C (J,R).
Step 3: χ maps bounded sets into a equicontinuous set of C (J,R).
Let u ∈ Dr (as defined in Step 2), and t1, t2 ∈ J with t1 < t2, then

|χu(t2)−χu(t1)|

≤ |φa,b||σt2 −σt1 |+
∣

∣

∣

∫ t2

a
Kα

t2
(s)ψ(s)ds−

∫ t1

a
Kα

t1
(s)ψ(s)ds

∣

∣

∣

≤ φ ∗
a,b|σt2 −σt1 |+

∣

∣

∣

∫ t1

a
(Kα

t2
−Kα

t1
)(s)ψ(s)ds+

∫ t2

t1

Kα
t2
(s)ψ(s)ds

∣

∣

∣

≤ φ ∗
a,b|σt2 −σt1 |+

(k‖u‖∞ +Ψ∗)ρα−2

(1− l)Γ(α +1)

∣

∣

∣

∣

∣

∫ t1

a
(Kα

t2
−Kα

t1
)(s)ds+

∫ t2

t1

Kα
t2
(s)ds

∣

∣

∣

∣

∣

≤ φ ∗
a,b|σt2 −σt1 |+

(kr+Ψ∗)ρα−2

(1− l)Γ(α +1)

[

2
(

t
ρ
2 − t

ρ
1

)α
+ t

ρα
1 − t

ρα
2

]

.

As t2 −→ t1 the right-hand side of above inequality tends to zero. As a sequence of Steps 1 to 3 together with Arzelà-Ascoli

theorem, we conclude that χ is completely continuous.

Step 4: A priori bounds.

We show there exists an open set O ⊂ C (J,R) with u 6= λ χ(u) where λ ∈ (0,1) and u ∈ ∂O. Let u ∈ C (J,R) and u = λ χ(u),
with λ ∈ (0,1), then for each t ∈ J we have

|u(t)| = λ
∣

∣

∣

c2u1

c1
+u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds

∣

∣

∣

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+ |φa,b|σb +

∫ b

a
Kα

b (s)|ψ(s)|ds

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+φ ∗

a,bσb +
kr+Ψ∗

1− l

∫ b

a
Kα

b (s)ds.

Thus

‖u‖∞ 6 m.

Let

O = {u ∈ C (J,R) : ‖u‖∞ < m+1}.

By our choosing of O, there is no u ∈ ∂O, such that u = λ χ(u), for λ ∈ (0,1). As a consequence of Theorem 3.3 and the

nonlinear alternative of Leray-Schauder’s fixed point theorem, χ has a fixed point u ∈ O which is a solution of our problem (1.1).

The second result is based on Theorem 2.6.

Theorem 3.4. Assume that (A1), (A2), and

θ =
kσbK∗

|δ |(1− l)
< 1. (3.2)

Then the problem (1.1) has at least one solution.
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Proof. Let

M = {u ∈ C (J,R) : ‖u‖∞ 6 r1 + r2 6 r},

where

r1 =
∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+φ ∗

a,bσb, r2 =
(kr+Ψ∗)(bρ −aρ)α ρα−2

(1− l)Γ(α +1)
.

We define two operators S1 and S2 by

S1u(t) =
c2u1

c1
−u2 +φa,bσt

S2u(t) =
∫ t

a
Kα

t (s)ψ(s)ds

where

ψ(s) = Ψ(s,u(s),ψ(s)).

Step 1: We will show that S1u+S2v ∈ M .

Let u,v ∈ M , and t ∈ J so we have

|S1u(t)| 6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+ |φa,b|σt

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+ |φa,b|σb

6

∣

∣

∣

c2u1

c1

∣

∣

∣
+ |u2|+φ ∗

a,bσb

6 r1,

and

|S2v(t)| 6

∫ t

a
Kα

t (s)|ψ(s)|ds

6
(kr+Ψ∗)

1− l

∫ b

a
Kα

b (s)ds

6
(kr+Ψ∗)(bρ −aρ)α ρα−2

(1− l)Γ(α +1)

6 r2.

Therefore

‖S1u+S2v‖∞ 6 ‖S1u‖∞ +‖S2v‖∞

6 r1 + r2

6 r.

We deduce that S1u+S2v ∈ M .

Step 2: S1 is a contraction on M .

For each t ∈ J, u,v ∈ M , ψ(s) = Ψ(s,u(s),ψ(s)), and φ(s) = Ψ(s,v(s),φ(s)), we have

∣

∣S1u(t)−S1v(t)
∣

∣ =
∣

∣

∣

σt

δ

∫ b

a
K(s)

(

ψ(s)−φ(s)
)

ds

∣

∣

∣

6
σb

|δ |

∫ b

a
|K(s)|

∣

∣ψ(s)−φ(s)
∣

∣ds

6
kσb

|δ |(1− l)

∫ b

a
|K(s)||u(s)− v(s)|ds

6
kσbK∗

|δ |(1− l)
|u(s)− v(s)|.
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Therefore

‖S1u−S1v‖∞ 6
kσbK∗

|δ |(1− l)
‖u− v‖∞.

By (3.2) we deduce that S1 is a contraction.

Step 3: S2 is compact.

It is clear that S2 is continuous and uniformly bounded on M (‖S2u‖∞ 6 r2).

It remains to show that S2 maps bounded sets into a equicontinuous set of C (J,R).
Let u ∈ M , and t1, t2 ∈ J with t1 < t2, then

|S2u(t2)−S2u(t1)| =
∣

∣

∣

∫ t2

a
Kα

t2
(s)ψ(s)ds−

∫ t1

a
Kα

t1
(s)ψ(s)ds

∣

∣

∣

=
∣

∣

∣

∫ t1

a
(Kα

t2
−Kα

t1
)(s)ψ(s)ds+

∫ t2

t1

Kα
t2
(s)ψ(s)ds

∣

∣

∣

6
(k‖u‖∞ +Ψ∗)ρα−2

(1− l)Γ(α +1)

∣

∣

∣

∣

∣

∫ t1

a
(Kα

t2
−Kα

t1
)(s)ds+

∫ t2

t1

Kα
t2
(s)ds

∣

∣

∣

∣

∣

6
(kr+Ψ∗)ρα−2

(1− l)Γ(α +1)

[

2
(

t
ρ
2 − t

ρ
1

)α
+ t

ρα
1 − t

ρα
2

]

.

It is obvious that since t2 −→ t1 we get |S2u(t2)−S2u(t1)| −→ 0. It means that S2 is compact. By Theorem 3.4 we conclude

that our problem (1.1) has a solution in C (J,R).

4. Examples

Example 4.1. Let us consider the following boundary problem











1
3 D

3
2 u(t) = |u(t)|

5+|u(t)| +
1
2

tan
∣

∣

1
3 D

3
2 u(t)

∣

∣, t ∈ [0, π
3
],

u(0)−u′(0) = 3
2
,

u(π
3
)+u′(π

3
) = π

6
.

(4.1)

Let the function Ψ defined by

Ψ(t,u,v) =
u

5+u
+

1

2
tanv, u,v ∈ R+

, t ∈ [0,
π

3
].

Obviously the function Ψ is continuous. Now we check assumption (A2). Indeed for each t ∈ [0, π
3
] and u,v ∈ R+, we have

|Ψ(t,u2,v2)−Ψ(t,u1,v1)| =
∣

∣

∣

u2

5+u2
− u1

5+u1
+

1

2

(

tanv2 − tanv1

)

∣

∣

∣

6

∣

∣

∣

5(u2 −u1)

(5+u2)(5+u1)

∣

∣

∣
+

1

2

∣

∣ tanv2 − tanv1

∣

∣

6
1

5

∣

∣u2 −u1

∣

∣+
2

3

∣

∣v2 − v1

∣

∣.

Therefore (A2) holds for k = 1
5
, and l = 2

3
. Then according to Theorem 3.3 the problem (4.1) has at least one solution.

Example 4.2. Let us consider the following boundary problem



















1
4 D

5
2 u(t) = |u(t)|

3+
∣

∣

1
4

D
5
2 u(t)

∣

∣

+

∣

∣

1
4

D
5
2 u(t)

∣

∣

3+|u(t)| , t ∈ [0,1],

u(0)−u′(0) = 1,

u(1)+u′(1) = 1
2
.

(4.2)

Set the function Ψ as

Ψ(t,u,v) =
u

3+ v
+

v

3+u
, u,v ∈ R+

, t ∈ [0,1].
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It is easy to see that the function Ψ is continuous. On the other hand for each t ∈ [0,1] and u,v ∈ R+, we have

|Ψ(t,u2,v2)−Ψ(t,u1,u1)| =
∣

∣

∣

u2

3+ v2
+

v2

3+u2
− u1

3+ v1
− v1

3+u1

∣

∣

∣

6

∣

∣

∣

3u2 +u2v1 −3u1 −u1v2

(3+u2)(3+ v2)

∣

∣

∣
+
∣

∣

∣

3v2 + v2u1 −3v1 −u2v1

(3+ v1)(3+u1)

∣

∣

∣

6
1

9

(

|3u2 −3u1|+ |3v2 −3v1|
)

6
1

3

(

|u2 −u1|+ |v2 − v1|
)

.

Therefore the assumption (A2) holds for k = l = 1
3
. On the other hand we have

θ =

1
3
×8× 16

15Γ( 5
2 )

11× 2
3

=
128

495
√

π
< 1

By Theorem 3.4 we conclude that the problem (4.2) has at least one solution.

5. Conclusion

In this paper, we studied some existence results of certain type of differential fractional problem involving the concept of the

generalized fractional derivative, in this study we focused on Nonlinear alternative and Krasnoselskii fixed points.
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Abstract
The concept of residuated relational systems ordered under a quasi-order relation was introduced in 2018 by S.

Bonzio and I. Chajda as a structure A= 〈A, ·,→,1,4〉, where (A, ·) is a commutative semigroup with the identity 1

as the top element in this ordered monoid under a quasi-order 4. In 2020, the author introduced and analyzed
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1. Introduction

Let (A, ·,1) be a commutative semigroup with the identity 1. Suppose that on the carrier A there exists another operation → and

one relation R that with multiplication in A have a link (x · y,z) ∈ R ⇐⇒ (x,y → z) ∈ R for each x,y,z ∈ A. A relational system

designed in this way, when R is a quasi-ordered relation on A, is in the focus of this paper.

The concept of residuated relational systems ordered under a quasi-order relation was introduced in 2018 by S. Bonzio

and I. Chajda in [2]. Previously, this concept was discussed in [1]. This paper continues the investigations of quasi-ordered

residuated systems and of their filters which were started in the author article [3]. In particular, the concept of shift filters of a

quasi-ordered residuated system is introduced and analyzed. This type of filter is compared to the concept of filter and the

concept of implicative (introduced in [4]) and comparative filters ([6]) in this algebraic system. It is shown (Theorem 3.2) that

every comparative filter is a shift filter and vice versa does not have to be. In addition, it is shown (Theorem 3.3) that if the

implicative filter F satisfies the added condition

(∀u,v ∈ A)((u → v)→ v ∈ F =⇒ (v → u)→ u ∈ F))

then F is a shift filter. The reverse, of course, does not have to be.

It should be said here that a quasi-ordered residuated system, in the general case, it does not have to be a commutative

residauted lattice (see Example 2.8).

2. Preliminaries

2.1 Concept of quasi-ordered residuated systems
In article [2], S. Bonzio and I. Chajda introduced and analyzed the concept of residual relational systems.
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Definition 2.1 ([2], Definition 2.1). A residuated relational system is a structure A= 〈A, ·,→,1,R〉, where 〈A, ·,→,1〉 is an

algebra of type 〈2,2,0〉 and R is a binary relation on A and satisfying the following properties:

(1) (A, ·,1) is a commutative monoid;

(2) (∀x ∈ A)((x,1) ∈ R);
(3) (∀x,y,z ∈ A)((x · y,z) ∈ R ⇐⇒ (x,y → z) ∈ R) .

We will refer to the operation · as multiplication, to → as its residuum and to condition (3) as residuation.

The basic properties for residuated relational systems are subsumed in the following:

Theorem 2.2 ([2], Proposition 2.1). Let A= 〈A, ·,→,1,R〉 be a residuated relational system. Then

(4) (∀x,y ∈ A)(x → y = 1 =⇒ (x,y) ∈ R);
(5) (∀x ∈ A)((x,1 → 1) ∈ R);
(6) (∀x ∈ A)((1,x → 1) ∈ R);
(7) (∀x,y,z ∈ A)(x → y = 1 =⇒ (z · x,y) ∈ R);
(8) (∀x,y ∈ A)((x,y → 1) ∈ R).

Recall that a quasi-order relation ′ 4 ′ on a set A is a binary relation which is reflexive and transitive (Some authors use the

term pre-order relation).

Definition 2.3 ([2], Definition 3.1). A quasi-ordered residuated system is a residuated relational system A= 〈A, ·,→,1,4〉,
where 4 is a quasi-order relation in the monoid (A, ·)

Example 2.4. Let A = {1,a,b,c,d} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c d

1 1 a b c d

s a a d c d

b b d b d d

c c c d c d

d d d d d d

and

→ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a a c c

c 1 1 b 1 b

d 1 1 1 1 1

Then A= 〈A, ·,→,1〉 is a quasi-ordered residuated systems where the relation ’4’ is defined as follows

4:= {(1,1),(a,1),(b,1),(c,1),(d,1),(b,b),(a,a),(c,a),(d,a),(d,b),(d,c)}.

Example 2.5. For a commutative monoid A, let P(A) denote the powerset of A ordered by set inclusion and ’·’ the usual

multiplication of subsets of A. Then 〈P(A), ·,→,A,⊆〉 is a quasi-ordered residuated system in which the residuum are given by

(∀X ,Y ∈P(A))(Y → X := {z ∈ A : Y z ⊆ X}).

Example 2.6. Let R be a field of real numbers. Define two binary operations ’·’ and ’→’ on A = [0,1] ⊂ R by

(∀x,y ∈ [0,1])(x · y := max{0,x+ y−1}) and x → y := min{1,1− x+ y}).

Then, A is a commutative monoid with the identity 1 and 〈A, ·,→,<,1〉 is a quasi-ordered residuated system.

Example 2.7. Any commutative residuated lattice 〈A, ·,→,0,1,∧,∨,R〉, where R is a lattice quasi-order, is a quasi-ordered

residuated system.

The following example shows that a quasi-ordered residuated system A does not have to be a lattice because:

- in the general case, A does not have to have a common lower bound,

- A doesn’t have to be a lattice.

Example 2.8. Let A = 〈−∞, 1] ⊂R (the real numbers field). If we define ’·’ and ’→’ as follows, (∀y,v ∈ A)(u ·v := min{u,v})
and u → v := 1 if u 6 v and u → v := v if v < u for all u,v ∈ A, then A := 〈A, ·,→,1,<〉 is a quasi-ordered residuated system.

The following proposition shows the basic properties of quasi-ordered residuated systems.

Proposition 2.9 ([2], Proposition 3.1). Let A be a quasi-ordered residuated system. Then

(9) (∀x,y,z ∈ A)(x 4 y =⇒ (x · z 4 y · z ∧ z · x 4 z · y));
(10) (∀x,y,z ∈ A)(x 4 y =⇒ (y → z 4 x → z ∧ z → x 4 z → y));
(11) (∀x,y ∈ A)(x · y 4 x ∧ x · y 4 y).

Estimating that this topic is interesting ([1]-[3]), it is certain that there is interest in the development of the concept of some

substructures such as some types of filters [4]-[7] in these systems.
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2.2 Concepts of filters

In the article [3], in order to determine the concept of filters of quasi-ordered residuated systems, the relationships between the

following conditions are analyzed:

(F0) 1 ∈ F ;

(F1) (∀u,v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F));

(F2) (∀u,v ∈ A)((u ∈ F ∧ u 4 v) =⇒ v ∈ F);

(F3) (∀u,v ∈ A)((u ∈ F ∧ u → v ∈ F) =⇒ v ∈ F).

It is shown ([3], Proposition 3.2) that (F2) =⇒ (F1). In addition, it is shown ([3], Proposition 3.4) that for every nonempty

subset F of system A is valid (F2) =⇒ (F0).

Based on our previous analysis of the interrelationship between conditions (F1), (F2) and (F3) in a quasi-ordered residual

system, we introduced the concept of filters in the following definition.

Definition 2.10 ([3], Definition 3.1). For a subset F of a quasi-ordered residuated system A, we say that it is a filter of A if it

satisfies conditions (F2) and (F3).

Example 2.11. Let A be as in Example 2.8. All filters in this quasi-ordered residuated system are of the form 〈−∞,1], where

x < 1.

Lemma 2.12 ([4], Lemma 3.1). Let a subset F of a quasi-ordered residuated system A satisfy the condition (F2). Then the

following holds

(12) (∀u ∈ A)(u ∈ F ⇐⇒ 1 → u ∈ F).

Lemma 2.13 ([4], Lemma 3.4). Let a subset F of a quasi-ordered residuated system A satisfy the condition (F2). Then the

following holds

(13) (∀u,v,z ∈ A)(u → (v → z) ∈ F ⇐⇒ v → (u → z) ∈ F).

Lemma 2.14 ([6]). Let A be a quasi-ordered residuated system. Then

(14) (∀u,v,z ∈ A)(u → v 4 (v → z)→ (u → z)) and

(15) (∀u,v,z ∈ A)(v → z 4 (u → v)→ (u → z)).

Terms covering some of the requirements used herein to identify various types of filters in the observed algebraic structure

are mostly taken from papers on UP-algebras.

Definition 2.15 ([4], Definition 3.1). For a non-empty subset F of a quasi-ordered residuated system A, we say that the

implicative filter of A if (F2) and the following condition

(IF) (∀u,v,z ∈ A)((u → (v → z) ∈ F ∧ u → v ∈ F) =⇒ u → z ∈ F)

are valid.

It is known that every implicative filter of a quasi-ordered residuated system A is a filter of A ([4], Theorem 3.1) but that the

reverse does not have to be.

Definition 2.16 ([6], Definition 5). For a non-empty subset F of a quasi-ordered residuated system A we say that a comparative

filter of A if (F2) and the following condition

(FC) (∀u,v,z ∈ A)((u → ((v → z)→ v) ∈ F ∧ u ∈ F) =⇒ v ∈ F)

are valid.

Example 2.17. Let A be a quasi-ordered residuated system as in Example 2.4. Then the set F := {1,a,b} is a comparative

filter of A.

Since any comparative filter F of A satisfies the condition (F2), F also satisfies the condition (F0): 1 ∈ F .

Proposition 2.18 ([6], Theorem 3.2). Let F be a filter of a quasi-ordered residuated system A. Then F is a comparative filter

of A if and only if the condition

(16) (∀v,z ∈ A)((v → z)→ v ∈ F =⇒ v ∈ F)

is valid.
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3. The Concept of Shift Filters

In this section, which is the main part of this article, we introduce and analyze the concept of shift filters of quasi-ordered

residuated system.

Definition 3.1. Let A be a quasi-ordered residuated system. A non empty subset F of A is a shift filter of A if it satisfies the

conditions (F2) and the following condition

(SF) (∀u,v,z ∈ A)((u → (v → z) ∈ F ∧ u ∈ F) =⇒ ((z → v)→ v)→ z ∈ F).

Remark 3.2. In some other algebraic systems, request (SF) is recognized as a fantastic filter.

Example 3.3. Let A = {1,a,b,c} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c

1 1 a b c

a a a a c

b b a b c

c c a c c

and

→ 1 a b c

1 1 a b c

a 1 1 1 c

b 1 a 1 c

c 1 a b 1

.

Then A= 〈A, ·,→,1〉 is a quasi-ordered residuated systems where the relation ’4’ is defined as follows

4= {(1,1),(a,a),(b,b),(c,c),(a,1),(b,1),(c,1),(a,b)}.

Then the subsets {1,b} is a shift filter of A.

Example 3.4. Let A = {1,a,b,c} and operations ’·’ and ’→’ be defined on A as follows:

· 1 a b c

1 1 a b c

a a a c c

b b c b c

c c c c c

and

→ 1 a b c

1 1 a b c

a 1 1 1 1

b 1 a 1 c

c 1 a b 1

.

Then A= 〈A, ·,→,1〉 is a quasi-ordered residuated systems, where the relation ’4’ is defined as follows

4= {(1,1),(a,a),(b,b),(c,c),(a,1),(b,1),(c,1),(a,b),(a,c)}.

Then the subsets {1,b} is a filter of A but it is not a shift filter of A. For example, for u = b, v = a and z = c, we have

b → (a → c) = b → 1 = 1 ∈ {1,b} and b ∈ {1,b}, but ((c → a)→ a)→ c = (a → a)→ c = 1 → c = c /∈ {1,b}.

It can be verified that a shift filter of a quasi-ordered residuated system A has the following property:

Proposition 3.5. Let F be a shift filter of a quasi-ordered residuated system A. Then

(17) (∀u,v ∈ A)(u → v ∈ F =⇒ ((v → u)→ u)→ v ∈ F).

Proof. Let F be a shift filter of A. If we put u = 1, v = u and z = v in (SF), we get

(1 → (u → v) ∈ F ∧ 1 ∈ F) =⇒ ((v → u)→ u)→ v ∈ F

whence it follows

u → v ∈ F =⇒ ((v → u)→ u)→ v ∈ F

by (F0) and Lemma 2.12.

Let us show now that the condition (17) is sufficient for a filter F of a quasi-ordered system A satisfying the condition (17)

to be a shift filter of A.

Theorem 3.6. Let F be a filter of a quasi-ordered residuated system A and suppose that F satisfies the condition (17). Then F

is a shift filter of A.
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Proof. Suppose that F is a filter of A that satisfies the condition (17). Let u,v,z ∈ A be such that u → (v → z) ∈ F and u ∈ F .

Then v → z by (F3). Thus ((z → v)→ v)→ z ∈ F by (17). So, F is a shift filter of A.

Our second theorem on this class of filters of quasi-ordered residuated systems is the following:

Theorem 3.7. Every comparative filter of a quasi-ordered residuared system A is a shift filter of A.

Proof. Suppose that F is a comparative filter of A. To prove that F is a shift filter of A, we will show that F satisfies the

condition (17). For this purpose, let us take elements u,v ∈ A such that u → v ∈ F .

From u → v ∈ F and from the valid formula (14) in the form u → v 4 ((v → u) → u) → ((v → u) → v), it follows

((v → u)→ u)→ ((v → u)→ v) ∈ F according (F2), which it is equivalent to

(v → u)→ (((v → u)→ u)→ v ∈ F

according to (13).

On the other hand, from the valid formula (11), in the form (v 4 (v → u)→ u)→ v, with respect to (14), we obtain

(((v → u)→ u)→ v)→ u 4 (v → u).

From here, by acting with ((v → u)→ u)→ v on the last inequality by the right, taking into account the valid formula (14), we

obtain

(v → u)→ (((v → u)→ u)→ v)4

((((v → u)→ u)→ v)→ u)→ (((v → u)→ u)→ v).

From here it follows

((((v → u)→ u)→ v)→ u)→ (((v → u)→ u)→ v) ∈ F.

Since F is a comparative filter in A, we get ((v → u)→ u)→ v ∈ F in accordance with (16). Therefore, F is a shift filter.

The following example shows that any shift filter of a quasi-ordered residuated system A does not have to be a comparative

filter of A.

Example 3.8. Let A = {1,a,b,c} and operations ’·’ and ’→’ be defined on A as follows:

· 1 a b c

1 a a b c

a a a b c

b b b b c

c c c c c

and

→ 1 a b c

1 1 a b c

a 1 1 a b

b 1 a 1 b

c 1 1 1 1

.

Then A= 〈A, ·,→,1〉 is a quasi-ordered residuated systems, where the relation ’4’ is defined as follows:

4= {(1,1),(a,a),(b,b),(c,c),(a,1),(b,1),(c,1),(b,a),(c,a),(c,b)}.

Then the subsets {1} is a shift filter of A but it is not a comparative filter of A. For example, for u = 1, v = a and z = b, we

have 1 → ((a → b)→ a) = 1 → (a → a) = 1 → 1 = 1 ∈ {1} and 1 ∈ {1}, but a /∈ {1}.

Theorem 3.9. Let F be an implicative filter of a quasi-ordered residuated system A satisfying

(18) (∀u,v ∈ A)((u → v)→ v ∈ F =⇒ (v → u)→ u ∈ F).

Then F is a shift of A.

Proof. The proof of this theorem is obtained by combining Theorem 4 in [6] and Theorem 3.7.

The following example shows that any shift filter of a quasi-ordered residuated system A does not have to be an implicative

filter of A.

Example 3.10. Let A = {1,a,b,c} and operations ’·’ and ’→’ defined on A as follows:
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· 1 a b c

1 a a b c

a a a b c

b b b b c

c c c c c

and

→ 1 a b c

1 1 a b c

a 1 1 a b

b 1 1 1 b

c 1 1 1 1

.

Then A= 〈A, ·,→,1〉 is a quasi-ordered residuated systems, where the relation ’4’ is defined as follows:

4= {(1,1),(a,a),(b,b),(c,c),(a,1),(b,1),(c,1),(b,a),(c,a),(c,b)}.

Then the subsets {1} is a shift filter of A but it is not an implicative filter of A. For example, for u = b, v = b and z = c, we have

b → (b → c) = 1 ∈ {1} and b → b = 1 ∈ {1}, but b → c = b /∈ {1}.

We end this section with the following theorem.

Theorem 3.11. The family Fs(A) of all shift filters of a quasi-ordered residuated system A forms a complete lattice.

Proof. Let {Fk}k∈Λ be a family of shift filters of A where Λ is index set. It is clear that 1 ∈
⋂

k∈Λ Fk. Let u,v ∈
⋂

k∈Λ Fk and

u 4 v. Then u ∈ Fk and u 4 v for any k ∈ Λ. Thus v ∈ Fk by (F2) since Fk is a shift filter in A. Hence v ∈
⋂

k∈Λ Fk.

Let u,v,z ∈ A be such that u → (v → z) ∈
⋂

k∈Λ Fk and u ∈
⋂

k∈Λ Fk. Then u → (v → z) ∈ Fk and u ∈ Fk for any k ∈ Λ. Thus

((z → v)→ v)→ z ∈ Fk for all k ∈ Λ. Hence ((z → v)→ v)→ z ∈
⋂

k∈Λ Fk. So, the intersection
⋂

k∈Λ Fk satisfies the condition

(SF). Therefore
⋂

k∈Λ Fk is a shift filter of A.

Let X be the family of all shift filters containing the union
⋃

k∈Λ Fk. Then ∩X is a shift filter of A according to the first part

of this proof.

If we put ⊓k∈ΛFk =
⋂

k∈Λ Fk and ⊔k∈ΛFk = ∩X, then (Fs(A),⊓,⊔) is a complete lattice.

Let A be a quasi-ordered residuated system. Before embarking on further conclusions, let us recall the terms ’minimum

filter’ and ’maximum filter’ in a quasi-ordered residuated system: We shall say that a filter A is a minimal filter of A if there

is no a filter B of A such that B ⊂ A. Also, dually, we shall say that a filter A is a maximal filter of A if there is no a filter B

of A such that A ⊂ B. It is easy to conclude that if A and B are two minimum interiors filters of a quasi-ordered residuated

system A, then A∩B = /0, because, otherwise, according to the previous theorem, A∩B would be a filter of A contained in A

and contained in B, which is impossible.

Corollary 3.12. Let A be a quasi-ordered residuated system. For any subset T of A, there is the unique minimum shift filter of

A that contains T .

Proof. The proof of this Corollary follows directly from the second part of the proof of the previous theorem.

Corollary 3.13. Let A be a quasi-ordered residuated system. For any element x of A, there is the unique minimum shift filter of

A that contains x.

Proof. The proof of this Corollary follows from the previous Corollary if we take T = {x}.

4. Conclusion

The concept of quasi-ordered residuated systems was introduced in 2018 by S. Bonzio and I. Chajda. as a structure A =
〈A, ·,→,1,R〉, where (A, ·) is a commutative semigroup with the identity 1 as the top element in this ordered monoid under a

quasi-order R. In such algebraic systems, the author introduced the concept of filters, and then several types of filters such as

implicative [4], associated [5] and comparative filters [6]. It is shown that a comparative filter is an implicative filter and vice

versa does not have to be.

The concept of shift filters of such algebraic systems was introduced and analyzed in this paper. Also, this class of filters

was compared with previously introduced filters. It is shown (Theorem 3.2) that every comparative filter is a shift filter and vice

versa does not have to be. In addition, it is shown (Theorem 3.3) that if the implicative filter F satisfies the added condition

(∀u,v ∈ A)((u → v)→ v ∈ F =⇒ (v → u)→ u ∈ F))

then F is a shift filter. The reverse, of course, does not have to be.

In our paper [8], we analyze a quasi-ordered residuated system (which we call the ’strong quasi-ordered residuated system’)

in which implicative and comparative filters are coincide. It is a quasi-ordered residuated system in which the formula

(∀u,v ∈ A)((u → v)→ v 4 (v → u)→ u ∧ (v → u)→ u 4 (u → v)→ v)

is a valid formula. We also analyze the possibility of the existence of some new types of filters in such systems as prime and

irreducible filters and their interrelationships ([9, 10]).
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1. Introduction and Preliminaries

In this paper, we focus on the stability of solutions under the sufficent conditions for the following problem














utt +∆
2u−∆u−

(

∫

Ω

|∇u|2 dx

)γ

∆u+ |u|ρ j′ (ut) = |u|q−1
u in Ω× (0,+∞) ,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) on x ∈ Ω,

u(x, t) = ∂
∂n

u(x, t) = 0 on x ∈ ∂Ω,

(1.1)

where γ > 0, j′ denotes the derivative of j (α) [1], n is the outer normal and Ω is a bounded domain in Rn with a smooth

boundary ∂Ω. Also, here

∆u−





∫

Ω

|∇u|2 dx





γ

∆u and |u|ρ j′ (ut)

represent Kirchhoff-type term and degenerate damping term, respectively.

1.1 Kirchhoff-type plate problems

To motivation for this problem comes from the following equation so called Beam equation model

utt +∆
2u−



α +β

∫

Ω

|∇u|2 dx



∆u = |u|q−2
u, (1.2)

without source term
(

|u|q−2
u
)

was firstly introduced by Woinowsky-Krieger [2] to describe the dynamic bucking of a hinged

extensible beam under an axial force. It was extensively studied by several researcers in different contexs. In [3, 4], the authors
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showed the global attractor, convergence and unboundedness of solutions with |ut |
p−2

ut nonlinear damping term. Then, the

model also was investigated in [5, 6] and the authors obtained the existence, decay estimates of solutions and blow up of

solutions with both negative and positive initial energy with |ut |
p−2

ut nonlinear damping term.

Recently, Pereira et al. [7] and Pişkin and Yüksekkaya [8] studied the model (1.2) with ut . Pereira et al. studied existence

of the global solutions through the Faedo-Galerkin approximations and obtained the asymptotic behavior by using the Nakao

method. Pişkin and Yüksekkaya proved the blow up of solutions with positive and negative initial energy.

1.2 Problems with degenerate damping
This kind of degenerate damping effects was firstly investigated by Levine and Serrin [9] and considered the following equation

(

|ut |
l−2

ut

)

t
−a∇.

(

|∇u|q−2
∇u

)

+b |u|ρ |ut |
m−2

ut = c |u|p−2
u.

The authors considered the blow up of solutions with negative initial energy for the case ρ +m < p under several other

restrictions imposed on the paremeters m,ρ, p,q. But Levine and Serrin obtain only blow up solution with negative initial

energy without any guarantees that the solution has a local solution. Then, Pitts and Rammaha [10] proved global and local

existence for ρ +m ≥ p and for the case ρ < 1 established uniqueness. Also, the authors obtained blow up solutions for

negative initial energy and ρ +m < p .

On the other hand, the hyperbolic models with degenerate damping are of much interest in material science and physics. It

particularly appears in physics when the friction is modulated by the strains. There is a wide literature has degenerate damping

terms, namely δ (u)h(ut) where δ (u) is a positive function and h is nonlinear, (see [11]-[27]).

The remaining part of this paper is organized as follows: In the next section, we study the stability result.

Now, we present some preliminary material which will be helpful for the proof of our result. Throughout this paper, we

denote the standart L2 (Ω) norm by ‖.‖= ‖.‖L2(Ω) and Lq (Ω) norm ‖.‖q = ‖.‖Lq(Ω) .

(A1) ρ, p,q ≥ 0; ρ ≤ n
n−2

, q + 1 ≤ 2n
n−2

if n ≥ 3. There exist positive constants c, c0, c1 such that for all α,β ∈ R

j (α) : R → R be a C1 convex real function satisfies

• j (α)≥ c |α |p+1
,

• j′ (α) is single valued and | j′ (α)| ≤ c0 |α|p ,

• ( j′ (α)− j′ (β ))(α −β )≥ c1 |α −β |p+1
.

(A2) u0 (x) ∈ H2
0 (Ω) , u1 (x) ∈ L2 (Ω) , |u(τ)|ρ j (ut) ∈ L2 (Ω× (0,T )) .

The said solution of (1.1) satisfies the energy identity

E ′ (t) =−
∫

Ω

|u(τ)|ρ j (ut)(τ)dxdτ ≤ 0 (1.3)

where

E (t) =
1

2

[

‖ut‖
2 +‖∆u‖2 +‖∇u‖2 +

1

γ +1
‖∇u‖2(γ+1)

]

−
1

q+1
‖u‖q+1

q+1 (1.4)

and

E (0) =
1

2

[

‖u1‖
2 +‖∆u0‖

2 +‖∇u0‖
2 +

1

γ +1
‖∇u0‖

2(γ+1)

]

−
1

q+1
‖u0‖

q+1
q+1 . (1.5)

Moreover, by computation, we get E (t) is a non-increasing function, then

E (t)≤ E (0) . (1.6)

Now, we define

α1 = λ
− 2

q−1

1 , E1 =

(

1

2(γ +1)
−

1

q+1

)

α
q+1
1 ,

α2 =

(

1

(q+1)λ 2
1

) 1
q−1

, E2 =
q+1

2

(

1

2
−

1

q+1

)

α
q+1
2 ,

W0 =
{

(α,E) ∈ R2
,0 ≤ α < α2,0 < E < E2

}

,

V =
{

(α,E) ∈ R2
,α > α1,0 < E < E1

}

where λ1 is the embedding constant (where H2
0 (Ω) is embedded into Lq+1 (Ω)).
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2. Stability

This section is devoted to prove the stability of solutions for problem (1.1).

Lemma 2.1. Assume that (A1) and (A2) hold and
(

‖u0‖q+1 ,E (0)
)

∈W0, then

(

‖u(t)‖q+1 ,E (t)
)

∈W0, t ≥ 0, (2.1)

and

E (t)≥
1

2

[

‖ut (t)‖
2 +‖∆u(t)‖2 +

1

γ +1
‖∇u(t)‖2(γ+1)

]

+
1

4
‖∇u(t)‖2

, t ≥ 0. (2.2)

Proof. By using the embedding theorem and (1.6), we get

E2 > E (0)≥ E (t)

≥
1

2

[

‖ut (t)‖
2 +‖∆u(t)‖2 +

1

γ +1
‖∇u(t)‖2(γ+1)

]

+
1

4
‖∇u(t)‖2 +

1

4
λ−2

1 ‖u(t)‖2
q+1 −

1

2
‖u(t)‖q+1

q+1

≥
1

2

[

‖ut (t)‖
2 +‖∆u(t)‖2 +

1

γ +1
‖∇u(t)‖2(γ+1)

]

+
1

4
‖∇u(t)‖2 +h

(

‖u(t)‖q+1

)

, (2.3)

where h(α) = 1
4
λ−2

1 α2 − 1
2
αq+1, for α ≥ 0. It is not difficult to verify that h(α) reachs its maximum E2 for α = α2, h(α)

is strictly decreasing for α ≥ α2 and h(α) → −∞ as α → ∞. By the continuity of ‖u(t)‖q+1 and α (0) = ‖u0‖q+1 < α2,

α (t)< α2 for all t ≥ 0. Further, E (t)< E2 by (2.3). Then, (2.1) holds.

To obtain (2.2), it remains to the note that h(α)≥ 0 whenever 0 ≤ α < α2. Then (2.2) comes after at once.

Lemma 2.2. Assume that (A1) and (A2) hold, then

‖∇u(t)‖2 ≥ 2‖u(t)‖q+1
q+1 or ‖∇u(t)‖2 −‖u(t)‖q+1

q+1 ≥
1

2
‖∇u(t)‖2

. (2.4)

Furthermore, we have for constant C

{

‖ut (t)‖ ∈ L2 (Ω) ,
‖∇u(t)‖ ≤C, ‖u(t)‖q+1 ≤C, ‖ut (t)‖ ≤C, ‖∆u(t)‖ ≤C.

(2.5)

Proof. By using the embedding theorem, we get

1

2
‖∇u(t)‖2 −

1

2
‖u(t)‖q+1

q+1 ≥
1

4
‖∇u(t)‖2 +

1

4
λ−2

1 ‖u(t)‖2
q+1 −

1

2
‖u(t)‖q+1

q+1

=
1

4
‖∇u(t)‖2 +h

(

‖u(t)‖q+1

)

.

Since h(α)≥ 0, if 0 ≤ α < α2 and 0 ≤ ‖u(t)‖q+1 < α2 by Lemma 1, (2.4) is true.

The initial result in (2.5) comes from the assumption (A2). The remainder of results in (2.5) follows (1.6), (2.2) and

(2.4).

Lemma 2.3. Let
(

‖u0‖q+1 ,E (0)
)

∈W0 and E (t)≥ η , where η > 0 is a constant, then there exists δ = δ (η)> 0 such that

‖ut (t)‖
2 +‖∆u(t)‖2 +‖∇u(t)‖2 +‖∇u(t)‖2(γ+1)−‖u(t)‖q+1

q+1 ≥ δ , t ≥ 0. (2.6)
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Proof. From the definition of E (t) and E (t)≥ η , we get

‖ut (t)‖
2 +‖∆u(t)‖2 +‖∇u(t)‖2 +‖∇u(t)‖2(γ+1) ≥ 2η , t ≥ 0. (2.7)

Now, we suppose by contradiction that (2.6) does not hold. By (2.4), there is a sequences tn ⊂ R+ as follows

‖ut (tn)‖
2 +‖∆u(tn)‖

2 +‖∇u(tn)‖
2 +‖∇u(tn)‖

2(γ+1)−‖u(tn)‖
q+1
q+1

≥ ‖ut (tn)‖
2 +‖∆u(tn)‖

2 +‖∇u(tn)‖
2(γ+1)+

1

2
‖∇u(tn)‖

2 → 0, (n → ∞) .

Then, we get

‖ut (tn)‖
2 → 0,‖∆u(tn)‖

2 → 0,‖∇u(tn)‖
2(γ+1) → 0, ‖∇u(tn)‖

2 → 0, n → ∞.

This is imposible since (2.7) and yield the desired result. This completes the proof of lemma.

Theorem 2.4. Assume that (A1) and (A2) hold, we get

lim
t→∞

E (tn) = 0, lim
t→∞

‖∆u(tn)‖
2 = 0. (2.8)

Proof. Assume that (2.8) fails, then there exists η > 0 such that E (t)≥ η for all t ≥ 0 since (1.6) and E (t)≥ 0. Multiplying

both sides of (1.1) by u, integrating them over [T, t]×Ω (0 < T ≤ t ≤ ∞) and integrating by parts, we have

(ut (s) ,u(s))|
t
s=T

=
∫ t

T

[

2‖ut (s)‖
2 −

(

‖ut (s)‖
2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)−‖u(s)‖q+1

q+1

)

−
∫

Ω

|u(s)|ρ u(s) j′ (ut)(s)dx

]

ds

=
∫ t

T
(K1 +K2 +K3)ds. (2.9)

By (1.6), (2.2) and (2.5), we have

∫ t

T
K1ds =

∫ t

T
2‖ut (s)‖

2
ds ≤ 4E

1
2 (0)

(

∫ t

T
‖ut (s)‖

2
ds

) 1
2
(

∫ t

T
ds

) 1
2

≤C1

(

∫ t

T
ds

) 1
2

. (2.10)

Here and in the next positive constant Ci not depend on t and T. From Lemma 3, we have

∫ t

T
K2ds = −

∫ t

T

(

‖ut (s)‖
2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)−‖u(s)‖q+1

q+1

)

ds

≤ −δ

∫ t

T
ds. (2.11)

Set

H (t) = E1 −E (t) .

From (1.3), we have

H ′ (t) =−E ′ (t) =
∫

Ω

|u(t)|ρ j (ut)(t)dx ≥ 0. (2.12)
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Form (2.12) and since E (t) ≥ 0 for t ≥ 0 and H (t) ∈ C (0,∞) we reach at
∫

Ω
|u(t)|ρ j′ (ut)(t)dx ∈ L1 (0,∞) , using Holder

inequality, (2.4) and embedding theorem H2
0 (Ω) →֒ Lρ+p (Ω) , we have

∫ t

T
K3ds = −

∫ t

T

∫

Ω

|u(s)|ρ u(s) j′ (ut)(s)dxds

≤
∫ t

T

∫

Ω

|u(s)|ρ+1− ρ+p+1
p+1 |u(s)|

ρ+p+1
p+1 |ut (s)|

p
dxds

≤

(

∫ t

T

∫

Ω

|u|ρ j (ut)(s)dxds

)
p

p+1
(

∫ t

T

∫

Ω

|u(s)|ρ+p+1
dxds

) 1
p+1

≤ C2

(

∫ t

T
H ′ (s)ds

)
p

p+1
(

∫ t

T
‖u(s)‖

ρ+p+1
ρ+p+1 ds

) 1
p+1

≤ C3

(

∫ t

T
‖∇u(s)‖ρ+p+1

ds

) 1
p+1

≤C4

(

∫ t

T
ds

) 1
p+1

. (2.13)

Then from (2.9)-(2.13), as p+1 ≤ 2, we know

(ut (s) ,u(s))|
t
s=T ≤C1

(

∫ t

T
ds

) 1
2

+C4

(

∫ t

T
ds

) 1
p+1

−δ

∫ t

T
ds ≤C5

(

∫ t

T
ds

) 1
p+1

−δ

∫ t

T
ds. (2.14)

Moreover, by applying Holder inequality and (2.5),

|(ut (s) ,u(s))| ≤C6

(

‖ut (s)‖
2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)

)

< ∞.

In turn, we arrive a result that is in contradiction with (2.14) for fixing T when t → ∞. Therefore, we derive lim
t→∞

E (t) = 0 and

lim
t→∞

‖∆u(t)‖2 = 0 by (2.2). This completes the proof.
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[5] E. Pişkin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source

terms, Open Math., 13 (2005), 408-420.
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[21] E. Pişkin, F. Ekinci, H. Zhang, Blow up, lower bounds and exponential growth to a coupled quasilinear wave equations

with degenerate damping terms, Dynamics of Continuous, Discrete and Impulsive Systems, In press.
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1. Introduction

In this work, we will be focused on the existence, uniqueness, and exponential decay of global weak solution to the problem

associated with the degenerate hyperbolic equation

K(x, t)u′′−M

(∫

Ω
|∇u|2 dx

)
∆u−∆u′ = 0, in Q = Ω× (0,T ), (1.1)

u(x, t) = 0, on Σ = ∂Ω× (0,T ), (1.2)

u(x,0) = u0(x), u′(x,0) = u1(x), x ∈ Ω, (1.3)

where Ω is a bounded open set of Rn (n ≥ 1), with smooth boundary ∂Ω and T > 0 is a fixed but arbitrary real number. u(x, t)
represents the transversal displacement of a spacial variable x = (x1,x2, · · ·,xn) ∈ R

n at time t > 0, u′ denotes the derivative
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of u with respect to time. M( ·) is a C1([0,∞)) function such that M(λ ) ≥ 0, for all λ ∈ [0,∞) and the operator coefficient

K(x, t) ∈C1([0,T ], L∞(Ω)) satisfying suitable properties. By standard notation,

|∇u(x, t)|2 =
n

∑
i=1

∣∣∣∂u(x, t)

∂xi

∣∣∣
2

and ∆u(x, t) =
n

∑
i=1

∂ 2u(x, t)

∂x2
i

is the Laplace operator.

Equation (1.1) with K(x, t) = 1 has its origin in the nonlinear vibration of an a stretched string and was considered in [1].

Existence of global solution was proved for K(x, t)≥ 0 and M = 1 in [2], see also [3]. For a background and physical properties

of this model we refer the reader to [4]-[7].

In fact,

u′′−M

(∫

Ω
|∇u|2 dx

)
∆u+αu′ = 0 in Q = Ω× (0,T ), (1.4)

when M(λ )≥ m0 > 0 is known as non-degenerate, and for α = 0, global solutions have been obtained by several authors under

various assumption, see [8]-[13].

The operator coefficient K(x, t) plays an important role in the asymptotic behaviour for equation (1.1). The energy of the

equation (1.1) is given by

E(t) =
1

2

[
|K1/2 u′(t)|2 + M̂(a(u(t)))

]

being

M̂(t) =
∫ t

0
M(s)ds (1.5)

and

a(u,v) =
∫

Ω
∇u∇vdx the Dirichlet’s form, for which we write a(u) instead of a(u,u).

When K(x, t) = 1, for non-degenerate case, with α > 0, exponential decay properties was studied in [23]-[26]. However,

the decay rate of the solutions is not so fast in the degenerate case. In fact, in [1], for example was showed that the problem

(1.4) was a polynomial rate of decay given by E(t)≤Ct−(
α+1

α ).
Another example presented by J. G. Dix [27], fully transcribed here, shows that decay of solutions is not necessarily

exponential. Consider for Ω = (0,2π) ∈ R,

u′′−M
(
‖ux‖2

)
uxx +u′ = 0, x ∈ Ω, t ≥ 1+

√
2,

u
(

x,1+
√

2
)
=

1√
π

e1/(1+
√

2) sin(x),

u′
(

x,1+
√

2
)
=

1

9
√

π
e1/(1+

√
2) sin(x),

u(0, t) = 0, u(2π, t) = 0, for t ≥ 1+
√

2,

where M is the non-negative and continuous function defined as

M(r) =

{
1

16
ln2(r)(4−4ln(r)− ln2(r)), if 1 ≤ r ≤ e2/(1+

√
2),

0, otherwise.

Then u(x, t) =
1√
π

e1/t sin(x) is a solution. Since

u′ =− 1

t2
u, u′′ =

(
1

t4
+

2

t3

)
u, ux =

1√
π

e1/t cos(x), uxx =−u,
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‖ux‖2 = e2/t , and M(e2/t) =
1

t2
− 2

t3
− 1

t4
for t ≥ 1+

√
2, it follows that u satisfies the initial-value problem. Notice that ‖u′‖

decays polynomially rather than exponentially as t → ∞. In fact, ‖u′‖2 =
1

t4
e2/t .

Moreover, when is considered the nonhomogeneous equation u′′−M
(
‖ux‖2

)
uxx +u′ = f (x, t), and a general non-constant

function M, in spite of the convergence of ‖u′‖ to zero remains illusive, that is, was not verified it and was not presented a

counter-example, was proved in [27] that if || f (x, t)|| is square integrable on [0,∞) then ‖u′‖ is square integrable on [0,∞).

On the other hand, when the greatest lower bound for M(λ ) is zero, the equation (1.4) is known as degenerate, see [14]-[16].

The degenerate equation (1.1) studied in this manuscript has been considered in just a few publications, see for instance [17, 18]

and references therein.

It is well known that the Cauchy problem is well-posed for strictly hyperbolic differential equations. However, in dimension

one, the Cauchy problem associated with degenerate hyperbolic equations is not well-posed. See [19]. Despite this, nonlinear

degenerate hyperbolic equations are one of the most important classes of partial differential equations. We present some results

in the literature in several contexts. For linear and semilinear equations of Tricomi type, existence, uniqueness, and qualitative

properties of weak solutions to the degenerate hyperbolic Goursat problem, which play a very important part in applied

and engineering sciences, was established in [20]. In [21] was considered the generalized Riemann problem for the Suliciu

relaxation system in Lagrangian coordinates. The Suliciu relaxation system can be considered as a simplified viscoelastic

shallow fluid model. Recently, the mixed Cauchy problem with lateral boundary condition for noncharacteristic degenerate

hyperbolic equations was analyzed in [22], where, unlike other works on mixed Cauchy that the problems under consideration

are obtained in weighted spaces, authors obtained all solutions in classical Sobolev spaces. Then, in the context above, the

degenerate equation gives us a feature yield several striking phenomena that require new mathematical ideas, approaches, and

theories.

The outline of this manuscript is the following. In Section 2 we introduce the notation, necessary assumptions and the main

results. The proof of the existence theorem is performed in section 3, in three steps: approximate problem, a priori estimates

and passage to the limit in the approximated equation. The uniqueness of the solution is given in section 4. Finally in section 5

the asymptotic behaviour is studied where we prove the exponential decay by using the Nakao method.

2. Preliminaries and Main Results

Let Ω ⊂ R
n be a bounded open set with sufficiently smooth boundary ∂Ω. By Hm(Ω), m a non-negative integer, we denote

the Sobolev space of order m. For m = 0, H0(Ω) = L2(Ω). Further, we set Hm
0 (Ω) = the closure of D(Ω) in Hm(Ω), where

D(Ω) is the space of infinitely continuously differentiable functions with compact support contained in Ω. The inner product

and norm in L2(Ω) and H1
0 (Ω) are represented by ( · , ·), | · | and (( · , ·)), || · || respectively. The space H1

0 (Ω)∩H2(Ω) is

equipped with the norm |∆u|.
As in [29] for T > 0 a real number and B a Banach space, we denote

Lp(0,T,B) =


 u mensurable from [0,T] into B

(∫ T

0
||u(t)||pB dt

) 1
p

< ∞, if 1 ≤ p < ∞,

supess
0<t<T

||u(t)||B < ∞, if p = ∞.


 .

From now and on, let us assume that the volume density function K(x, t) satisfies:

(H.1) K(x, t) ∈C1([0,T ] , L∞(Ω)), K(x, t)≥ 0 and K(x,0)≥C0 > 0 for some C0 ∈ R.

(H.2)

∣∣∣∂K(x, t)

∂ t

∣∣∣≤ γ +C(γ)K(x, t), for all γ > 0.

In this manuscript, we deal with a degenerate case, then we consider that M(λ ), λ > 0, a real function satisfying

(H.3) M(λ ) ∈C1([0,∞)) with M(λ )≥ 0, for all, λ > 0.

The well-posedness of problem (1.1) is ensured by



Global Weak Solution, Uniqueness and Exponential Decay for a Class of Degenerate Hyperbolic Equation — 140/149

Theorem 2.1. For u0, u1 ∈ H1
0 (Ω)∩H2(Ω) there exists a unique function u : [0,T ]→ L2(Ω) with the following regularity

u ∈ L∞(0,T ;H1
0 (Ω)∩H2(Ω)), (2.1)

u′ ∈ L2(0,T ;H1
0 (Ω)∩H2(Ω)), (2.2)

u′′ ∈ L2(0,T ;H1
0 (Ω)), (2.3)

such that

K(x, t)u′′−M (a(u(t))∆u−∆u′ = 0 in L2(Q), (2.4)

u(x, t) = 0 on Σ = ∂Ω× (0,T ), (2.5)

u(x,0) = u0(x), u′(x,0) = u1(x), x ∈ Ω. (2.6)

Remark 2.2. From (2.1), (2.2), (2.3) we have that u ∈ C0([0,T ],H1
0 (Ω)∩H2(Ω)) and u′ ∈ C0([0,T ],H1

0 (Ω)) so the initial

conditions (2.6) are well set.

For asymptotic behaviour the exponential stability is given by

Theorem 2.3. Under the hypothesis of Theorem 2.1, the energy E(t) associated to equation (1.1) satisfies

E(t)≤C0e−α t , for all t ≥ 0, where C0 and α are positive constants.

3. Existence of Solution

The aim of this section is to prove the theorem (2.1). For this goal, we use the Faedo-Galerkin method, a standard technique

well described in the book by Temam [30].

3.1 Step 1. Perturbed approximate problem

Let (wν)ν∈N be a basis of H1
0 (Ω)∩H2(Ω) consisting of eigenvectors of the operator −∆, that is,

−∆w j = λ j w j, j = 1,2, · · ·,n, · · ·

where 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · ·, λn → ∞ as n → ∞, w j

∣∣
∂Ω

= 0, j = 1,2, · · ·, and Vm = [w1, · · ·,wm] is the H1
0 (Ω)∩H2(Ω)

subspace generated by the first m eigenfunctions.

For all w ∈Vm, let

uεm(t) =
m

∑
j=1

g jεm(t)w j, 0 < ε < 1,

be a local solution of the approximated problem

((K + ε)u′′εm,v)+M(a(uεm))a(uεm,v)+a(u′εm,v) = 0, ∀v ∈Vm (3.1)

uεm(0) = u0m −→ u0 strongly in H1
0 (Ω)∩H2(Ω), (3.2)

u′εm(0) = u1m −→ u1 strongly in H1
0 (Ω)∩H2(Ω), (3.3)

which exists in a interval [0,Tεm), 0 < Tεm ≤ T , by virtue of Carathéodory’s theorem, see [28]. The extension of the solution to

the whole interval [0,T ] is a consequence of the following priori estimates.

3.2 Step 2. Priori estimates
(I) Replacing w = u′εm(t) in perturbed approximate equation (3.1), we get

1

2

d

dt
(K,u′2εm)+

ε

2

d

dt
|u′εm|2 +

1

2
M(a(uεm))

d

dt
a(uεm)+ ||u′εm||2 =

1

2
(

∂K

∂ t
,u′2εm). (3.4)

From (1.5) we get

d

dt
M̂(a(uεm)) = M(a(uεm))

d

dt
a(uεm),
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then, (H.2), (3.4) leads to

d

dt

[
(K,u′2εm)+ ε|u′εm|2 + M̂(a(uεm))

]
+2||u′εm||2 ≤ γµ||u′εm||2 +C(γ)(K,u′2εm),

where µ1/2 is the Poincaré constant. Performing integration from 0 to t, 0 < t ≤ Tεm we obtain

(K,u′2εm)+ε|u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds ≤ (K(0),u2

1m)+ ε|u1m|2 + M̂(a(u0m))+C(γ)
∫ t

0
(K,u′2εm)ds.

(3.5)

Since K(0) ∈ L∞(Ω), by using (3.2), (3.3) and choosing γ < 2/C we obtain

(K,u′2εm)+ε |u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds ≤C1 +C(γ)

∫ t

0
(K,u′2εm)ds, (3.6)

being C1 > 0 a real constant independent of ε,m and t. Now, applying Gronwall’s inequality in (3.6), we come to

(K,u′2εm)+ε |u′εm|2 + M̂(a(uεm))+(2− γµ)
∫ t

0
||u′εm||2 ds ≤C2,

with C2 > 0 a real constant independent of ε ,m and t. Therefore,

(K1/2u′εm) is bounded in L∞(0,T ;L2(Ω)),

(
√

ε u′εm) is bounded in L∞(0,T ;L2(Ω)),

(u′εm) is bounded in L2(0,T ;H1
0 (Ω)). (3.7)

From (3.7) and of Fundamental Theorem of Calculus, that is, uεm(t) = uεm(0)+
∫ t

0
u′εm(s)ds, we have

(uεm) is bounded in L∞(0,T ;H1
0 (Ω)). (3.8)

(II) Replacing v = u′′εm(t) in equation (3.1), we get

(K,u′′2εm)+ ε|u′′εm|2 +M(a(uεm))a(uεm,u
′′
εm)+

1

2

d

d t
||u′εm||2 = 0. (3.9)

Note that

M(a(uεm))a(uεm,u
′′
εm) = M(a(uεm))

[
d

d t
a(uεm,u

′
εm)−a(u′εm)

]

=
d

d t

[
M(a(uεm))a(uεm,u

′
εm)

]
−2M′(a(uεm))a(uεm,u

′
εm)a(uεm,u

′
εm)−M(a(uεm))a(u′εm).

Thereby

∣∣∣∣
∫ t

0
M(a(uεm))a(uεm,u

′′
εm)ds

∣∣∣∣≤
∣∣M(a(uεm))a(uεm,u

′
εm)

∣∣+
∣∣M(a(u0m))a(u0m,u

′
1m)

∣∣

+ 2

∫ t

0

∣∣M′(a(uεm))a(uεm,u
′
εm)

2
∣∣ ds+

∫ t

0

∣∣M(a(uεm))a(u′εm)
∣∣ ds.

Since, M(λ ) ∈C1([0,∞)), then

M(a(uεm))≤ sup
m≥1

{M(λ ) : 0 ≤ λ ≤ sup ||uεm||L∞(0,T ;H1
0 (Ω))} ≤ c

and

M′(a(uεm))≤ sup
m≥1

{M(λ ) : 0 ≤ λ ≤ sup ||uεm||L∞(0,T ;H1
0 (Ω))} ≤ c,

with c,c positive constants independent of ε,m and t.
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Then,
∣∣∣∣
∫ t

0
M(a(uεm))a(uεm,u

′′
εm)ds

∣∣∣∣≤ c‖uεm‖
∥∥u′εm

∥∥+C3 +2c

∫ t

0
‖uεm‖2

∥∥u′εm

∥∥2
ds+ c

∫ t

0

∥∥u′εm

∥∥2
ds.

From (3.7) and (3.8) we have
∣∣∣∣
∫ t

0
M(a(uεm))a(uεm,u

′′
εm)ds

∣∣∣∣≤C4 +α
∥∥u′εm

∥∥2
, with C4,α positive constants independent of ε,m and t. (3.10)

Integrating (3.9) from 0 to t, 0 < t ≤ T , and using the estimate (3.10) we obtain

∫ t

0
(K,u′′2εm)ds+ ε

∫ t

0
|u′′εm|2 ds+(

1

2
−α)||u′εm||2 ≤C4. (3.11)

Choosing properly 0 < α < 1/2 we obtain directly from estimate (3.11)

(K1/2u′′εm) is bounded in L2(Q),

(
√

ε u′′εm) is bounded in L2(Q),

(u′εm) is bounded in L∞(0,T ;H1
0 (Ω)). (3.12)

(III) Now we will get an estimate for u′′εm(t). At this point we have an additional degree of difficulty. We first obtain an

estimate for u′′εm(0). In this direction, taking t = 0 and v = u′′εm(0) in equation (3.1) we obtain

((K(0),u′′2εm(0))+ ε|u′′εm(0)|2 +M(a(u0m))a(u0m,u
′′
εm(0)).+a(u′1m,u

′′
εm(0)) = 0.

Since K(0)≥C0 > 0 we have

(C0 + ε)|u′′εm(0)|2 ≤ |M(a(u0m))∆u0m +∆u1m| |u′′εm(0)|,

therefore

|u′′εm(0)| ≤ c̃, where c̃ is a positive constant independent of ε,m and t. (3.13)

Deriving the approximate equation (3.1) with respect to t and making v = u′′εm(t) we obtain

(Ku′′′εm,u
′′
εm)+(

∂K

∂ t
u′′εm,u

′′
εm)+ ε(u′′′εm,u

′′
εm)+

d

dt
[M(a(uεm))]a(uεm,u

′′
εm)+M(a(uεm))a(u

′
εm,u

′′
εm)+a(u′′εm) = 0,

that is,

1

2

d

dt
(K,u′′2εm)+

1

2
(

∂K

∂ t
,u′′2εm)+

ε

2

d

dt
|u′′εm|2 +‖u′′εm‖2 =−2M′(a(uεm))a(uεm,u

′
εm)a(uεm,u

′′
εm)−M(a(uεm))a(u

′
εm,u

′′
εm),

and then,

1

2

d

dt

[
(K,u′′2εm)+ ε|u′′εm|2

]
+‖u′′εm‖2 ≤C5 +µ

γ

2
‖u′′εm‖2 +

C(γ)

2
(K,u′′2εm), with C5 independent of ε,m and t. (3.14)

Integrating (3.14) from 0 to t, we obtain

1

2

[
(K,u′′2εm)+ ε|u′′εm|2

]
+(1−µ

γ

2
)
∫ t

0
‖u′′εm‖2 ds ≤C5 +C(γ)

∫ t

0
(K,u′′2εm)ds+

1

2

[
K(0),u′′2εm(0))+ ε|u′′εm(0)|2

]
. (3.15)

By using (3.13) and Gronwall’s inequality, (3.15) leads to

1

2

[
(K,u′′2εm)+ ε|u′′εm|2

]
+(1−µ

γ

2
)
∫ t

0
‖u′′εm‖2 ds ≤C6, with C6 a positive constant independent of ε,m and t.

Therefore,

(K1/2u′′εm) is bounded in L∞(0,T ;L2(Ω)), (3.16)

(
√

ε u′′εm) is bounded in L∞(0,T ;L2(Ω)), (3.17)

(u′′εm) is bounded in L2(0,T ;H1
0 (Ω)). (3.18)
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(IV) Replacing v =−∆uεm in the approximate equation (3.1), we obtain

((K + ε)u′′εm,−∆uεm)+M(a(uεm))a(uεm,−∆uεm)+a(u′εm,−∆uεm) = 0,

that leads us to

1

2

d

dt
|−∆uεm|2 ≤ K0|−∆uεm||u′′εm|+ ε|−∆uεm||u′′εm|+ |M(a(uεm))||−∆uεm|2, where K0 = max

0≤s≤T

(
supess

x∈Ω

K(x,s)

)
.

Performing integration from 0 to t, using Young’s inequality and (3.18), we obtain

|−∆uεm|2 ≤C7 +C8

∫ t

0
|−∆uεm(s)|2ds.

Applying Gronwall’s inequality we get

|−∆uεm|2 ≤C9. (3.19)

Then we obtain,

∥∥uεm

∥∥2

H2(Ω)
≤C9, where the constants C7,C8,C9 are positives and independent of ε,m and t.

In fact we have the following regularity

(uεm) is bounded in L∞(0,T ;H2(Ω)). (3.20)

(V) Replacing v =−∆u′εm in approximated equation (3.1), we get

((K + ε)u′′εm,−∆u′εm)+M(a(uεm))a(uεm,−∆u′εm)+a(u′εm,−∆u′εm) = 0,

then,

|−∆u′εm|2 ≤ K0|−∆u′εm||u′′εm|+ |M(a(uεm))||−∆uεm||−∆u′εm|+ ε|u′′εm||−∆u′εm|.

Performing integration from 0 to t, using Young’s inequality, (3.18) and (3.19) we obtain

∫ t

0
|−∆u′εm(s)|2ds ≤C10 +α

∫ t

0
|−∆u′εm(s)|2ds, thus (1−α)

∫ t

0
|−∆u′εm(s)|2ds ≤C10.

Then

∥∥u′εm

∥∥2

H2(Ω)
≤C10, C10 independent of ε,m and t.

Therefore

(u′εm) is bounded in L2(0,T ;H2(Ω)). (3.21)

3.3 Step 3. Passage to the limit

From estimates (3.9), (3.12), (3.16), (3.17), (3.18), (3.20), and (3.21), there exists a subsequence of (uεm), denoted by same

way, such that,

uεm
∗
⇀ u in L∞(0,T ;H1

0 (Ω)∩H2(Ω)), (3.22)

u′εm ⇀ u′ in L2(0,T ;H1
0 (Ω)∩H2(Ω)), (3.23)

u′′εm ⇀ u′′ in L2(0,T ;H1
0 (Ω)),

√
ε u′′εm ⇀ 0 in L2(0,T ;L2(Ω)).

Ku′′εm ⇀ Ku′′ in L2(Q).
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From compact immersion H1
0 (Ω)∩H2(Ω) →֒H1

0 (Ω), by Aubin-Lions’s lemma [29] follows that uεm → u in L2(0,T ;H1
0 (Ω)),

and so a(uεm)→ a(u) in L2(0,T ), and, as M ∈C1([0,∞)) we obtain

M(a(uεm))→ M(a(u)) in L2(0,T ).

From (3.22) and (3.23) we wave that ∆uεm ⇀ ∆u in L2(Q), and ∆u′εm ⇀ ∆u′ in L2(Q). Thereby,

M(a(uεm))∆uεm ⇀ M(a(u))∆u in L2(Q).

Now consider the approximated equation

(K + ε)u′′εm −M(a(uεm))∆uεm −∆u′εm = 0.

Making the inner product in L2(Ω) by ϕ ∈ L2(Ω) we obtain

((K + ε)u′′εm,ϕ)− (M(a(uεm))∆uεm,ϕ)− (∆u′εm,ϕ) = 0.

Taking the limit with m → ∞ and ε → 0, we get

((Ku′′,ϕ)− (M(a(u))∆u,ϕ)− (∆u′,ϕ) = 0, for all ϕ ∈ L2(Q), and then (2.4) is proven.

The verification of the initial data (2.6) is obtained in a standard way.

4. Uniqueness of Solution

Consider u and û with the hypotheses of regularity (2.1), (2.2) of Theorem 2.1. Then, w = u− û is solution of the equation

Kw′′− (M(a(u))∆w− [M(a(u))−M(a(û))]∆û−∆w′ = 0, (4.1)

with initial conditions

w(0) = 0 and w′(0) = 0. (4.2)

Taking the inner product in L2(Ω) on both sides of (4.1) with w,w′ and w′′ respectively, we get

(Kw′′,w)+(M(a(u))a(w)+ [M(a(u))−M(a(û))]a(û,w)+a(w′,w) = 0,

(Kw′′,w′)+(M(a(u))a(w,w′)+ [M(a(u))−M(a(û))]a(û,w′)+a(w′) = 0,

(K,w′′2)+(M(a(u))a(w,w′′)+ [M(a(u))−M(a(û))]a(û,w′′)+a(w′,w′′) = 0,

that is

(Kw′′,w)+(M(a(u))‖w‖2 +[M(a(u))−M(a(û))]a(û,w)+
1

2

d

d t
‖w‖2 = 0,

1

2

d

dt
(K,w′2)− 1

2
(

∂K

∂ t
,w′2)+

1

2
(M(a(u))

d

d t
‖w‖2 +‖w′‖2 +[M(a(u))−M(a(û))]a(û,w′) = 0,

(K,w′′2)+(M(a(u))a(w,w′′)+ [M(a(u))−M(a(û))]a(û,w′′)+
1

2

d

d t
‖w′‖2 = 0.

Adding the last three equations above and integrating from 0 to t, we obtain

∫ t

0
(K,w′′2)ds+

1

2
(K,w′2)+

1

2
M(a(u))‖w‖2 +

1

2
‖w‖2 +

1

2
‖w′‖2 +

∫ t

0
‖w′‖2 dx

=
∫ t

0

{
1

2
(

∂K

∂ t
,w′2)− (Kw′′,w)−M(a(u))‖w‖2 −M(a(u))a(w,w′′)

}
ds

+
∫ t

0

{
[M(a(û))−M(a(u))] [a(û,w)+a(û,w′)+a(û,w′′)]+M′(a(u))a(u,u′)‖w‖2

}
ds.

Note that

1

2
(

∂K

∂ t
,w′2)≤ δC‖w′‖2 +C(δ )(K,w′2),
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and

∫ t

0
(Kw′′,w)ds = (Kw′,w)−

∫ t

0
(

∂K

∂ t
,w′w)ds−

∫ t

0
(K,w′2)ds

≤C1‖w′‖‖w‖+C2

∫ t

0
‖w′‖‖w‖ds+C(δ )C1

∫ t

0
‖w′‖‖w‖ds+

∫ t

0
(K,w′2)ds.

Then we have,

∫ t

0
(Kw′′,w)ds ≤ α‖w′‖2 +

C3

α
‖w‖2 +

∫ t

0
(K,w′2)ds

≤ α‖w′‖2 +C4

∫ t

0
‖w‖2 ds+C5

∫ t

0
‖w′‖2 ds+

∫ t

0
(K,w′2)ds.

Besides that,

[M(a(û))−M(a(u))]
[
a(û,w)+a(û,w′)+a(û,w′′)

]
≤ |M′(ξ )||a(û)−a(u)|‖û‖‖w‖+‖û‖‖w′‖+‖û‖w′′‖
= |M′(ξ )||(‖û‖−‖u‖)(‖û‖+‖u‖)|‖û‖(‖w‖+‖w′‖+‖w′′‖)
≤ |M′(ξ )||û−u‖)(‖û‖+‖u‖)|‖û‖(‖w‖+‖‖w′‖+‖w′′‖)
= |M′(ξ )|‖w‖(‖û‖+‖u‖)‖û‖(‖w‖+‖‖w′‖+‖w′′‖)
≤C6‖w‖2 +C7‖w′‖2 +C8‖w‖‖w′′‖

and

M(a(u))a(w,w′′) = M(a(u))

[
d

dt
a(w,w′)−a(w′)

]

=
d

dt

[
M(a(u))a(w,w′)

]
−2M(a(u))a(u,u′)a(w,w′)−M(a(u))a(w′),

then,

∫ t

0
M(a(u))a(w,w′)ds ≤C9‖w‖‖w′‖+C10

∫ t

0
‖w‖‖w′‖ds+C11

∫ t

0
‖w′‖2 ds

≤ α‖w′‖2 +C12

∫ t

0
‖w‖2 ds+C13

∫ t

0
‖w′‖2 ds.

Therefore,

1

2
(K,w′2)+

1

2
M(a(u))‖w‖2 +

1

2
‖w‖2 +

(
1

2
−2α

)
‖w′‖2

≤
∫ t

0

[
(1+C(γ))(K,w′2)+M(a(u))‖w‖2 +C14‖w‖2 +C5‖w′‖2

]
ds+C8

∫ t

0
‖w‖‖w′′‖ds.

Then,

(K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2

≤ c

∫ t

0

[
(K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2

]
ds+ c

∫ t

0
‖w‖‖w′′‖ds.

Now, we denote

ϕ(t) = (K,w′2)+M(a(u))‖w‖2 +‖w‖2 +(1−4α)‖w′‖2

and we obtain

ϕ(t)≤ c

∫ t

0
ϕ(s)ds+ c

∫ t

0
g(s)ϕ1/2(s)ds, where g(s) = ‖w′′‖ ∈ L1(0,T ).

Then, we have ϕ(t) = 0, for all t ∈ [0,T ] and finally w = 0, that is, u = û which proves the uniqueness of solution.
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5. Asymptotic Behaviour

In this section we prove the exponential decay of solution to the problem (1.1)-(1.3). Let start by present the following result:

Lemma 5.1 (Nakao’s Lemma, [31]). Suppose that E(t) is a bounded nonnegative function on R
+, satisfying

supess
t≤s≤t+1

E(s)≤C[E(t)−E(t +1)], for t ≥ 0, where C is a positive constant.

Then, we have

E(t)≤Ce−αt , with α =
1

C+1
, for all t ≥ 0.

The main result of this section is given by the following theorem:

Theorem 5.2. Under the hypotheses of Theorem 2.1, the energy associated with the system (1.1)-(1.3) satisfies

E(t)≤Ce−αt , for all t ≥ 0, where C and α are positive constants.

Proof. Multiplying (1.1) by ut and integrating over Ω, we obtain

1

2

d

dt

[
|K1/2u′(t)|2 + M̂(a(u(t))

]
+‖u′(t)‖2 =

1

2
(

∂K

∂ t
,u′(t)), where, M̂(t) =

∫ t

0
M(s)ds.

By (H.2) we have

|(∂K

∂ t
,u′2(t))| ≤ γ|u′2(t))|2 +C(γ)|(K,u′2(t))| ≤ µ(δ +C(γ)K0)|u′(t)|2,

with

K0 = max
t≤s≤T

(
supess

x∈Ω

K(x,s)

)
, and µ > 0 is a constant such that |ϕ|2 ≤ µ‖ϕ‖2, ϕ ∈ H1

0 (Ω).

Whence follows that

1

2

d

dt

[
|K1/2u′(t)|2 + M̂(a(u(t))

]
+[1−µ(γ +C(γ)K0)]‖u′(t)‖2 ≤ 0, (5.1)

where γ > 0 is sufficiently small such that 1−µ(γ +C(γ)K0)> 0.

Now, its important to remember that E(t) =
1

2

[
|K1/2u′(t)|2 + M̂(a(u(t)))

]
.

Integrating (5.1) from t to t +1, we obtain

∫ t+1

t
|u′(s)|2 ds ≤ µ

∫ t+1

t
‖u′(s)‖2 ds ≤C15 [E(t)−E(t +1)]

def
= F2(t), with C15 =

µ

1−µ(γ +C(γ)K0)
> 0. (5.2)

Therefore, from (5.2), there exist t1 ∈
[
t, t + 1

4

]
and t2 ∈

[
t + 3

4
, t +1

]
such that |u′(ti)| ≤ 2F(t), i = 1,2.

The inner product in L2(Ω) of (1.1) with u(t) implies

d

dt
(Ku′(t),u(t))−|K1/2u′(t)|2 +M(a(u))a(u)+((u′(t),u(t))) = (

∂K

∂ t
u′(t),u(t)).

Integrating from t1 to t2 and by using (H.2) we have

∫ t2

t1

M(a(u))a(u)dt ≤ K0|u′(t1)||u(t1)|+K0|u′(t2)||u(t2)|

+µK0

∫ t2

t1

‖u′(s)‖2 ds+
∫ t2

t1

‖u′(s)‖‖u(s)‖ds

+ γ
√

µ

∫ t2

t1

|u′(s)|‖u(s)‖ds+C(γ)K0

√
µ

∫ t2

t1

|u′(s)|‖u(s)‖ds. (5.3)
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Now,

M(a(u))a(u)≥ m0a(u) = m0‖u‖2, where m0 = min
0≤s≤a(u)

M(s)> 0. (5.4)

Then, by (5.2), (5.3) and (5.4), we obtain

m0

∫ t2

t1

‖u(s)‖2 ds ≤ 4µK0F(t) supess
t≤s≤t+1

‖u(s)‖+C16F2(t)+
3

4
m0

∫ t2

t1

‖u(s)‖2 ds,

where C16 = µK0 +
1

m0
+

µγ2

m0
+

µC2(γ)K2
0

m0
> 0.

Then we have,

∫ t2

t1

‖u(s)‖2 ds ≤C17F(t) supess
t≤s≤t+1

‖u(s)‖+C18F2(t)
def
= G2(t), being C17 =

4µK0

m0
and C18 =

4C

m0
. (5.5)

From (5.2) and (5.5) we obtain

∫ t2

t1

[
|u′(s)|2 +‖u(s)‖2

]
ds ≤ F2(t)+G2(t). (5.6)

Thus, by (5.6) there exists t∗ ∈ [t1, t2] such that |u′(t∗)|2 +‖u(t∗)‖2 ≤ 2[F2(t)+G2(t)]. (5.7)

Now, not that,

M̂(a(u((t∗))))≤ m1‖u(t∗)‖2 ≤ 2m1[F
2(t)+G2(t)], with m1 = max

0≤s≤a(u(t∗))
M(s). (5.8)

From (5.7) and (5.8), we have E(t∗)≤C16[F
2(t)+G2(t)]. (5.9)

Since that E(t) is increasing, we obtain supess
t≤s≤t+1

E(s)≤ E(t∗)+ [1−µ(γ +C(γ))K0

∫ t+1

t
‖u′(s)‖2 ds. (5.10)

Now, by (5.2), (5.9) and (5.10), we get supess
t≤s≤t+1

E(s)≤C17[F
2(t)+F(t) supess

t≤s≤t+1

‖u′(s)‖ ≤C18F2(t)+
1

2
supess
t≤s≤t+1

E(s).

Then, by (5.2) supess
t≤s≤t+1

E(s)≤C[E(t)−E(t +1)], where Ci, i = 15,16,17,18 and C are positive constants.

Therefore, by Nakao’s lemma, we obtain E(t)≤Ce−αt , with α =
1

C+1
, for all t ≥ 0.

The exponential decay of the solution was been proven.

6. Conclusion

We prove the existence, uniqueness, and exponential stability of the solution to a degenerate hyperbolic equation where the

greatest lower bound for Kirchhoff function M( ·) is zero. We consider strong damping as a stabilization mechanism. We have

improved previous results in the literature, mainly because the exponential decay for this type of problem, as far as we know,

has not been previously considered.
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1. Introduction

Throughout the paper, N and R denote the set of all positive integers and the set of all real numbers, respectively. The concept

of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [15] and

Schoenberg [34].

The idea of I -convergence was introduced by Kostyrko et al. [27] as a generalization of statistical convergence which is

based on the structure of the ideal I of subset of N [15, 16]. Das et al. [8] introduced the concept of I -convergence of double

sequences in a metric space and studied some properties of this convergence. Gökhan et al. [20] introduced the notions of

pointwise and uniform statistical convergence of double sequences of real-valued functions. Gezer and Karakuş [19] investigated

I -pointwise and I -uniform convergence and I ∗-pointwise and I ∗-uniform convergence of function sequences. Also, they

examined the relationships between them. Baláz et al. [5] investigated I -convergence and I -continuity of real functions.

Balcerzak et al. [6] studied statistical convergence and ideal convergence for sequences of functions. Dündar and Altay [10, 11]

studied the concepts of I2-pointwise and I2-uniform convergence and I ∗
2 - pointwise and I ∗

2 -uniform convergence of double

sequences of functions and investigated some properties about them. Furthermore, Dündar [12] investigated some results of

I2-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [17, 18] in the 1960’s. Since then, this concept has been

studied by many authors. Gürdal and Pehlivan [24] studied statistical convergence, statistical Cauchy sequence and investigated

some properties of statistical convergence in 2-normed spaces. Şahiner et al. [36] and Gürdal [26] studied I -convergence in

2-normed spaces. Gürdal and Açık [25] investigated I -Cauchy and I ∗-Cauchy sequences in 2-normed spaces. Sarabadan and

Talebi [32] presented various kinds of statistical convergence and I -convergence for sequences of functions with values in

2-normed spaces and also defined the notion of I -equistatistically convergence and study I -equistatistically convergence of
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sequences of functions. Recently, Savaş and Gürdal [33] concerned with I -convergence of sequences of functions in random

2-normed spaces and introduce the concepts of ideal uniform convergence and ideal pointwise convergence in the topology

induced by random 2-normed spaces, and gave some basic properties of these concepts. Arslan and Dündar [1, 2] investigated

the concepts of I -convergence, I ∗-convergence, I -Cauchy and I ∗-Cauchy sequences of functions in 2-normed spaces

and showed relationships between them. Yegül and Dündar [39] studied statistical convergence of sequence of functions in

2-normed spaces. Also, Dündar et al. [13] investigated I -uniform convergence of sequences of functions in 2-normed spaces.

Futhermore, a lot of development have been made in this area (see [7, 28, 29, 30, 35, 37]).

2. Definitions and Notations

Now, we recall the concept of 2-normed space, ideal convergence and some fundamental definitions and notations (See

[1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 19, 21, 22, 23, 24, 25, 26, 27, 31, 32, 36, 38]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a function ∥·, ·∥ : X ×X → R which

satisfies the following statements:

(i) ∥x,y∥= 0 if and only if x and y are linearly dependent.

(ii) ∥x,y∥= ∥y,x∥.

(iii) ∥αx,y∥= |α|∥x,y∥, α ∈ R.

(iv) ∥x,y+ z∥ ≤ ∥x,y∥+∥x,z∥.

The pair (X ,∥·, ·∥) is then called a 2-normed space. As an example of a 2-normed space we may take X = R
2 being equipped

with the 2-norm ∥x,y∥ := the area of the parallelogram based on the vectors x and y which may be given explicitly by the

formula

∥x,y∥= |x1y2 − x2y1|; x = (x1,x2),y = (y1,y2) ∈ R
2
.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 ≤ d < ∞.

A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be convergent to L in X if lim
n→∞

∥xn −L,y∥= 0, for every y ∈ X . In

such a case, we write lim
n→∞

xn = L and call L the limit of (xn).

Let X ̸= /0. A class I of subsets of X is said to be an ideal in X provided:

(i) /0 ∈ I , (ii) A,B ∈ I implies A∪B ∈ I , (iii) A ∈ I , B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X ̸∈ I . A nontrivial ideal I in X is called admissible if {x} ∈ I , for each x ∈ X .

Throughout the paper, we let I ⊂ 2N be an admissible ideal.

Let I f be the family of all finite subsets of N. Then, I f is an admissible ideal in N and I f convergence is the usual

convergence.

Throughout the paper we take I2 as a nontrivial admissible ideal in N×N.

A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong to I2 for each i ∈ N.

It is evident that a strongly admissible ideal is admissible also.

I 0
2 = {A ⊂N×N : (∃m(A) ∈N)(i, j ≥ m(A)⇒ (i, j) ̸∈ A)}. Then I 0

2 is a nontrivial strongly admissible ideal and clearly

an ideal I2 is strongly admissible if and only if I 0
2 ⊂ I2.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint

sets {A1,A2, ...} belonging to I2, there exists a countable family of sets {B1,B2, ...} such that A j∆B j ∈ I 0
2 , i.e., A j∆B j is

included in the finite union of rows and columns in N×N for each j ∈ N and B =
⋃

∞

j=1 B j ∈ I2 (hence B j ∈ I2 for each

j ∈ N).
Let X ̸= /0. A non empty class F of subsets of X is said to be a filter in X provided:

(i) /0 ̸∈ F , (ii) A,B ∈ F implies A∩B ∈ F , (iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a nontrivial ideal in X , X ̸= /0, then the class

F (I ) = {M ⊂ X : (∃A ∈ I )(M = X\A)}

is a filter on X , called the filter associated with I .

A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be I -convergent to L ∈ X , if for each ε > 0 and each nonzero

z ∈ X , A(ε,z) = {n ∈ N : ∥xn −L,z∥ ≥ ε} ∈ I . In this case, we write I − lim
n→∞

∥xn −L,z∥= 0 or I − lim
n→∞

∥xn,z∥= ∥L,z∥.

A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be I ∗-convergent to L ∈ X if and only if there exists a set M ∈ F ,

M = {m1 < m2 < · · ·< mk < · · ·} such that lim
k→∞

∥xmk
−L,z∥= 0, for each nonzero z ∈ X .
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Throughout the paper, we let X and Y be two 2-normed spaces, { fn}n∈N and {gn}n∈N be two sequences of functions and

f ,g be two functions from X to Y .

The sequence { fn}n∈N is equi-continuous on X if

(∀z ∈ X)(∀ε > 0)(∃δ > 0)(∀x,x0 ∈ X)∥x− x0,z∥X < δ ⇒∥ fn(x)− fn(x0)∥∞ < ε.

The sequence { fn} is said to be I -uniformly convergent to f (on X) if and only if

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I )(∀n ∈ N\M)(∀x ∈ X)∥ fn(x)− f (x),z∥Y ≤ ε.

We write fn

∥.,.∥Y

⇒ I f .

The sequence of functions { fn} is said to be I ∗-uniformly convergent to f on X , if for every ε > 0 there exists a set

K ∈ F (I ) (N\K ∈ I ) and ∃n0 = n0(ε) ∈ K such that for all n ≥ n0, n ∈ K and for each nonzero z ∈ Y, ∥ fn(x)− f (x),z∥< ε ,

for each x ∈ X and in this case, we write fn

∥.,.∥Y

⇒ I ∗ f .

{ fn} is said to be I -uniformly Cauchy if for every ε > 0 there exists s = s(ε) ∈ N such that for each nonzero z ∈ Y,

{n ∈ N : ∥ fn(x)− fs(x),z∥ ≥ ε} ∈ I , f or each x ∈ X . (2.1)

The sequence of functions { fn} is said to be I ∗-uniformly Cauchy sequence, if there exist a set M ∈ F (I ),M = {m1 <

m2 < ... <mk < ...}⊂N such that for every ε > 0 there is an k0 = k0(ε) such that for each nonzero z∈Y, ∥ fmk
(x)− fmp(x),z∥<

ε, for each x ∈ X and for all k, p > k0.

Throughout the paper, we let I2 ⊂ 2N×N be a strongly admissible ideal, X and Y be two 2-normed spaces, { fmn}(m,n)∈N×N,

{gmn}(m,n)∈N×N and {hmn}(m,n)∈N×N be three double sequences of functions, f , g and k be three functions from X to Y .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be convergent (pointwise) to f if, for each

point x ∈ X and every ε > 0, there exists a positive integer k0 = k0(x,ε) such that for all m,n≥ k0 implies ∥ fmn(x)− f (x),z∥< ε ,

for every z ∈ Y . In this case we write fmn
∥.,.∥Y
→ f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be uniformly convergent to f if, for every

ε > 0 there exists a positive integer k0 = k0(ε) such that for all m,n ≥ k0 implies ∥ fmn(x)− f (x),z∥< ε , for all x ∈ X and every

z ∈ Y . In this case we write fmn

∥.,.∥Y

⇒ f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be I2-convergent (pointwise sense) to f if,

for each x ∈ X and every ε > 0, A(ε,z) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε} ∈ I2, for each nonzero z ∈ Y .

This can be expressed by the formula

(∀z ∈ Y ) (∀x ∈ X) (∀ε > 0) (∃H ∈ I2) (∀(m,n) ̸∈ H) ∥ fmn(x)− f (x),z∥< ε.

In this case, we write I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ or fmn
∥.,.∥Y
−→I2

f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be I ∗
2 -convergent (pointwise sense) to f ,

if there exists a set M ∈ F (I2) (i.e.,H = N×N\M ∈ I2) such that for each x ∈ X , each nonzero z ∈ Y and all (m,n) ∈ M

lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ and we write I ∗
2 − lim

m,n→∞
∥ fmn(x),z∥= ∥ f (x),z∥ or fmn

∥.,.∥Y
−→I ∗

2
f .

A double sequence of functions { fmn} is said to be I2-Cauchy sequence, if for every ∀ε > 0 and each x ∈ X there exist

s = s(ε,x), t = t(ε,x) ∈ N such that

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥ ≥ ε} ∈ I2,

for each nonzero z ∈ Y.

A double sequence of functions { fmn} is said to be I ∗
2 - Cauchy sequence, if there exists a set M ∈ F (I2) (i.e.,H =

N×N \M ∈ I2) and for every ε > 0 and each x ∈ X , k0 = k0(ε,x) ∈ N such that for all (m,n),(s, t) ∈ M and each z ∈ Y

∥ fmn(x)− fst(x),z∥< ε , whenever m,n,s, t > k0. In this case, we write lim
m,n,s,t→∞

∥ fmn(x)− fst(x),z∥= 0.

Now we begin with quoting the lemmas due to Yegül and Dündar [40, 41, 42] which are needed throughout the paper.

Lemma 2.1 ([41]). For each x ∈ X and each nonzero z ∈ Y,

I
∗

2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ implies I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥.
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Lemma 2.2 ([41]). Let I ⊂ 2N×N be an admissible ideal having the property (AP2). For each x ∈ X and each nonzero z ∈ Y,

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ implies I
∗

2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥.

Lemma 2.3 ([42]). If { fmn} is I2-convergent if and only if it is { fmn} is I2-Cauchy double sequence in 2-normed spaces.

Lemma 2.4 ([40]). Let D be a compact subset of X and f and fmn, (m,n = 1,2, ...), be continuous functions on D. Then,

fmn

∥.,.∥Y

⇒ f on D if and only if lim
m,n→∞

cmn = 0, where cmn = max
x∈D

∥ fmn(x)− f (x),z∥.

3. Main Results

In this paper, we define concepts of I2-uniform convergence, I ∗
2 -uniform convergence, I2-uniformly Cauchy and I ∗

2 -

uniformly Cauchy sequence of functions and investigate relationships between them and some properties such as continuity in

2-normed spaces.

Definition 3.1. The double sequence { fmn} is said to be I2-uniformly convergent to f (on X) if for every ε > 0 and each

nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε} ∈ I2, for each x ∈ X .

This can be written by the formula

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I2)(∀m,n ∈ N\M)(∀x ∈ X)∥ fmn(x)− f (x),z∥Y ≤ ε.

We write fmn

∥.,.∥Y

⇒ I2
f .

Theorem 3.2. For each x ∈ X and each nonzero z ∈ Y ,

fmn

∥.,.∥Y

⇒ f implies fmn

∥.,.∥Y

⇒ I2
f .

Proof. Let ε > 0 be given. Since

lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥

for each x ∈ X and each nonzero z ∈ Y , therefore, there exists a positive integer k0 = k0(ε) such that ∥ fmn(x)− f (x),z∥< ε ,

whenever m,n ≥ k0. This implies that for each nonzero z ∈ Y ,

A(ε,z) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥< ε}

⊂ ((N×{1,2, ..,(k0 −1)})∪ ({1,2, ..,(k0 −1)}×N)) .

Since I2 be a strongly admissible ideal, therefore

((N×{1,2, ..,(k0 −1)})∪ ({1,2, ..,(k0 −1)}×N)) ∈ I2.

Hence, it is clear that A(ε,z) ∈ I2 and consequently we have

fmn

∥.,.∥Y

⇒ I2
f .

Theorem 3.3. Let D be a compact subset of X and f , { fmn}, m,n = 1,2, ... be continuous functions on D. Then,

fmn

∥.,.∥Y

⇒ I2
f

on D if and only if for each nonzero z ∈ Y,

I2 − lim
m,n→∞

∥cmn(x),z∥= 0,

where

cmn = max
x∈D

∥ fmn(x)− f (x),z∥.
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Proof. Assume that fmn

∥.,.∥Y

⇒ I2
f on D. Since f and { fmn} be continuous functions on D, so ( fmn(x)− f (x)) is continuous on

D, for each m,n ∈ N. By I2−uniform convergence, for every ε > 0 and each nonzero z ∈ Y
{

(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥
ε

2

}

∈ I2,

for each x ∈ D. Hence, for every ε > 0 and each nonzero z ∈ Y , it is clear that

cmn = max
x∈D

∥ fmn(x)− f (x),z∥ ≥ ∥ fmn(x)− f (x),z∥ ≥
ε

2
,

for each x ∈ D. Thus, we have

I2 − lim
m,n→∞

cmn = 0.

Now, conversely, suppose that I2 − lim
m,n→∞

cmn = 0. For every ε > 0 and each nonzero z ∈ Y, we let following sets

A(ε) = {(m,n) ∈ N×N : max
x∈D

∥ fmn(x)− f (x),z∥ ≥ ε}

and

B(ε) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε},

for each x ∈ D. Since I2− lim
m,n→∞

cmn = 0, then A(ε) ∈I2. Now, we let (m,n) ∈ Ac(ε). Since for every ε > 0 and each nonzero

z ∈ Y,

∥ fmn(x)− f (x),z∥ ≤ max
x∈D

∥ fmn(x)− f (x),z∥< ε,

for each x ∈ D, then (m,n) ∈ Bc(ε) and so, Ac(ε)⊂ Bc(ε). Hence, we have B(ε)⊂ A(ε) and so, B(ε) ∈ I2. This proves the

theorem.

Definition 3.4. The sequence of functions { fmn} is said to be I ∗
2 -uniformly convergent to f on X, if for every ε > 0 there exists

a set K ∈F (I2) (i.e., N×N\K ∈I2) and ∃n0 = n0(ε) ∈ K such that for all m,n ≥ n0, (m,n) ∈ K and for each nonzero z ∈Y,

∥ fmn(x)− f (x),z∥< ε,

for each x ∈ X and in this case, we write fmn

∥.,.∥Y

⇒ I ∗
2

f .

Theorem 3.5. Let { fmn} be a sequence of continuous functions and f be function from X to Y . If fmn

∥.,.∥Y

⇒ I ∗
2

f , then f is

continuous on X.

Proof. Assume fmn

∥.,.∥Y

⇒ I ∗
2

f on X . Then, for every ε > 0, there exists a set K ∈ F (I2) (i.e., H = N×N \K ∈ I2) and

k0 = k0(ε), l0 = l0(ε) ∈ N such that

∥ fmn(x)− f (x),z∥<
ε

3
, (m,n ∈ K)

for each nonzero z ∈Y , each x ∈ X and all m > k0,n > l0. Now, we let x0 ∈ X is arbitrary. Since { fk0l0} is continuous at x0 ∈ X ,

there is a δ > 0 such that for each nonzero z ∈ Y,

∥x− x0,z∥< δ

implies

∥ fk0l0(x)− fk0l0(x0),z∥<
ε

3
.

Then, for all x ∈ X for which ∥x− x0,z∥< δ , we have

∥ f (x)− f (x0),z∥ ≤ ∥ f (x)− fk0l0(x0),z∥+∥ fk0l0(x)− fk0l0(x0),z∥

+ ∥ fk0l0(x)− f (x0),z∥

<
ε

3
+

ε

3
+

ε

3
= ε,

for each nonzero z ∈ Y. Since x0 ∈ X is arbitrary, f is continuous on X .
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Theorem 3.6. Let I ⊂ 2N×N be a strongly admissible ideal with the property (AP2), D be a compact subset of X and { fmn}
be a sequence of continuous function on D. Assume that { fmn} be monotonic decreasing on D, i.e.,

f(m+1),(n+1)(x)≤ fmn(x),(m,n = 1,2, ...)

for every x ∈ D, f is continuous and for each nonzero z ∈ Y ,

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥

on D. Then,

fmn

∥.,.∥Y

⇒ I2
f

on D.

Proof. Let

gmn = fmn − f (3.1)

be a sequence of functions on D. Since { fmn} is continuous and monotonic decreasing and f is continuous on D, then {gmn} is

continuous and monotonic decreasing on D. Since

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥,

for each x ∈ D and nonzero z ∈ Y , then by (3.1),

I2 − lim
m,n→∞

∥gmn(x),z∥= 0

on D and since I2 satisfies the condition (AP2) then, by Lemma 2.2, for each nonzero z ∈ Y, we have

I
∗

2 − lim
m,n→∞

∥gmn(x),z∥= 0,

for each x ∈ D. Hence, for every ε > 0 and each x ∈ D there exists Kx ∈ F (I2) such that

0 ≤ gn(x)<
ε

2
, ((m,n),(m(x) = m(x,ε),n(x) = n(x,ε)) ∈ Kx)

for m ≥ m(x) and n ≥ n(x), (m,n) ∈ Kx. Since {gmn} is continuous at x ∈ D, for every ε > 0 there exists an open set A(x) which

contains x such that for each nonzero z ∈ Y ,

∥gm(x)n(x)(t)−gm(x)n(x)(x),z∥ ≤
ε

2
,

for all t ∈ A(x). Then, for every ε > 0, by monotonicity for each nonzero z ∈ Y , we have

0 ≤ gmn(x)≤ gmn(t)≤ gm(x)n(x)(t) = gm(x)n(x)(t)−gm(x)n(x)(x)+gm(x)n(x)(x)

≤ ∥gm(x)n(x)(t)−gm(x)n(x)(x),z∥+gm(x)n(x)(x)

for every t ∈ A(x) and for all m ≥ m(x) , n ≥ n(x) and for each x ∈ D. Since D ⊂
⋃

x∈D

A(x) and D is a compact set, by the Heine-

Borel theorem D has a finite open covering such that

D ⊂ A(x1)∪A(x2)∪A(x3)...∪A(xi).

Now, let

K = Kx1
∩Kx2

∩Kx3
∩ ...∩Kxi

and define

M = max{m(x1),m(x2),m(x3), ...,m(xi)},
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N = max{n(x1),n(x2),n(x3), ...,n(xi)}.

Since for every Kxi
belong to F (I2), we have K ∈ F (I2). Then, when all (m,n)≥ (M,N)

0 ≤ gmn(t)< ε, (m,n) ∈ K,

for every t ∈ A(x). So

gmn

∥.,.∥Y

⇒ I ∗
2

0,

on D. Since I is an admissible ideal

gn

∥.,.∥Y

⇒ I2
0

on D and by (3.1) we have

fn

∥.,.∥Y

⇒ I2
f

on D.

Definition 3.7. The sequence { fmn}n∈N is equi-continuous on X if

(∀z ∈ X)(∀ε > 0)(∃δ > 0)(∀x,x0 ∈ X)∥x− x0,z∥X < δ ⇒∥ fmn(x)− fmn(x0),z∥∞ < ε.

Theorem 3.8. Let I ⊂ 2N×N be a strongly admissible ideal, X and Y be two 2-normed spaces with dimY < ∞. Assume that

fmn
∥.,.∥Y
−→I2

f on X, where fmn : X → Y, m,n ∈ N are equi-continuous on X and f : X → Y, then f is continuous on X . If X is

compact then, we have fn

∥.,.∥Y

⇒ I2
f on X.

Proof. First we will prove that f is continuous on X . Let x0 ∈ X and ε > 0. By the equi-continuity of fmn’s there exists δ > 0

and for each nonzero z ∈ Y such that

∥ fmn(x)− fmn(x0),z∥<
ε

3

for every m,n ∈ N, x ∈ Bδ (x0) (Bδ (x0) stands for an open ball in X with center x0 and radius δ .) Since fmn

∥.,.∥Y

⇒ I2
f . The set

{

(m,n) ∈ N×N : ∥ fmn(x0)− f (x0),z∥ ≥
ε

3

}

∪
{

(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥
ε

3

}

is in I2 and is different from N×N. Hence, for each nonzero z ∈ Y, there exists (m,n) ∈ N×N such that

∥ fmn(x0)− f (x0),z∥<
ε

3
and ∥ fmn(x)− f (x),z∥<

ε

3
.

Thus, for each nonzero z ∈ Y we have

∥ f (x0)− f (x),z∥ ≤ ∥ f (x0)− fmn(x0),z∥+∥ fmn(x0)− fmn(x),z∥+∥ fmn(x)− f (x),z∥

<
ε

3
+

ε

3
+

ε

3
= ε

so f is continuous on X . We assume that X is compact. Let ε > 0. Since X is compact, it follows that f is uniformly continuous

and fmn’s are equi-uniformly continuous on X. So, pick δ > 0 such that for any x,x
′
∈ X with

∥x− x
′
,z∥< δ ,

then, by equi-uniformly and uniformly continuous for each nonzero z ∈ Y, we have

∥ fmn(x)− fmn(x
′),z∥<

ε

3
and ∥ f (x)− f (x′),z∥<

ε

3
.
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By the compactness of X, we can choose a finite subcover

Bx1
(δ ),Bx2

(δ ),Bx3
(δ ), ...,Bxk

(δ )

from the cover {Bx(δ )}x∈X of X . Using fmn

∥.,.∥Y

⇒ I2
f pick a set M ∈ I2 such that for each nonzero z ∈ Y,

∥ fmn(xi)− f (xi),z∥<
ε

3
, i ∈ {1,2, ...,k},

for all m,n ̸∈ M. Let m,n ̸∈ M and x ∈ X . Thus, x ∈ Bxi
(δ ) for since i ∈ {1,2, ...,k}. Hence, for each nonzero z ∈ Y we have

∥ fmn(x)− f (x),z∥ ≤ ∥ fmn(x)− fmn(xi),z∥+∥ fmn(xi)− f (xi),z∥+∥ f (xi)− f (x),z∥

<
ε

3
+

ε

3
+

ε

3
= ε

and so fmn

∥.,.∥Y

⇒ I2
f on X .

Definition 3.9. { fmn} is said to be I2-uniformly Cauchy if for every ε > 0 there exists s = s(ε) ∈N, t = t(ε) ∈N such that for

each nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥ ≥ ε} ∈ I2, f or each x ∈ X . (3.2)

Now, we give I2-Cauchy criteria for I2-uniformly convergence in 2-normed space.

Theorem 3.10. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property (AP2) and let { fmn} be a sequence of

bounded function on X. Then, { fmn} is I2-uniformly convergent if and only if it is I2-uniformly Cauchy sequence on X .

Proof. Assume that { fmn} I2-uniformly convergent to a function f defined on X . Let ε > 0. Then, for each nonzero z ∈ Y , we

have
{

(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥<
ε

2

}

̸∈ I2

for each x ∈ X . We can select an m(ε),n(ε) ∈ N such that for each nonzero z ∈ Y,
{

(m,n) ∈ N×N : ∥ fm(ε)n(ε)(x)− f (x),z∥<
ε

2

}

̸∈ I2,

for each x ∈ X . The triangle inequality yields that for each nonzero z ∈ Y

{(m,n) ∈ N×N : ∥ fmn(x)− fm(ε)n(ε)(x),z∥< ε} ̸∈ I2,

for each x ∈ X . Since ε is arbitrary, { fmn} is I2-uniformly Cauchy on X .

Conversely, assume that { fmn} is I2-uniformly Cauchy on X . Let x ∈ X be fixed. By (3.2) for every ε > 0 there is an

s = s(ε) and t = t(ε) ∈ N such that for each nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥< ε} ̸∈ I2.

Hence, { fmn} is I2-Cauchy, so by Lemma 2.3 we have that { fmn} is I2-convergent to f .Then, fmn
∥.,.∥Y
−→I2

f on X .

Now we shall show that this convergence must be uniform. Note that since I2 satisfy the condition (AP2), by (3.2) there is

a K ̸∈ I2 such that for each nonzero z ∈ Y,

∥ fmn(x)− fst(x),z∥< ε, ((m,n),(s, t) ∈ K) (3.3)

for all m,n,s, t ≥ N and N = N(ε) ∈ N and for each x ∈ X . By (3.3) for s, t → ∞ and each nonzero z ∈ Y,

∥ fmn(x)− f (x),z∥< ε, ((m,n) ∈ K)

for all n,m > N and each x ∈ X . This shows that

fmn

∥.,.∥Y

⇒ I ∗
2

f

on X . Since I2 ⊂ 2N×N is a strongly admissible ideal we have

fmn

∥.,.∥Y

⇒ I2
f

on X .
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Definition 3.11. Let I2 ⊂ 2N×N be a strongly admissible ideal and { fmn} be a double sequence of function on X. { fmn} is

said to be I ∗
2 -uniformly Cauchy sequence, if there exist a set K ∈ F (I2),(i.e.,H = N×N\K ∈ I2), for every ε > 0 and

each x ∈ X, k0 = k0(ε,x) such that for all ((m,n),(s, t)) ∈ K and each nonzero z ∈ Y,

∥ fmn(x)− fst(x),z∥< ε,

whenever m,n,s, t,> k0. In this case, we write

lim
m,n,s,t→∞

∥ fmn(x)− fst(x),z∥= 0.

Theorem 3.12. If { fmn} is a I ∗
2 -uniformly Cauchy sequence then it is I2-uniformly Cauchy sequence in 2-normed spaces.

Proof. Let { fmn} be a I ∗
2 -uniformly Cauchy sequence in 2-normed spaces then, by definition there exists the set K ∈

F (I2),(i.e.,H = N×N\K ∈ I2) such that for every ε > 0 and for each nonzero z ∈ Y, k0 = k0(ε) and ((m,n),(s, t)) ∈ K

∥ fmn(x)− fst(x),z∥< ε,

for each x ∈ X and m,n,s, t > k0. Let N = N(ε,z). Then for ε > 0 and for each nonzero z ∈ Y, we have

∥ fmn(x)− fN(x),z∥< ε,

for each x ∈ X and m,n > k0. Now put H = N×N\K. It is clear that H ∈ I2 and

A(ε,z) = {n ∈ N : ∥ fmn(x)− fN(x)∥ ≥ ε} ⊂ H ∪K.

Since I2 is an admissible ideal then H ∪K ∈ I2. Hence, for every ε > 0 we find N = N(ε,z) such that A(ε,z) ∈ I2, i.e.,

{ fmn} is I2-uniformly Cauchy sequence.
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