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ABSTRACT Complex problems in nonlinear dynamics foreground the critical support of artificial phenomena so that

each domain of complex systems can generate applicable answers and solutions to the pressing challenges. This sort of

view is capable of serving the needs of different aspects of complexity by minimizing the problems of complexity whose

solutions are based on advanced mathematical foundations and analogous algorithmic models consisting of numerous

applied aspects of complexity. Evolutionary processes, nonlinearity and all the other dimensions of complexity lie at

the pedestal of time, reveal time and occur within time. In the ever-evolving landscape and variations, with causality

breaking down, the idea of complexity can be stated to be a part of unifying and revolutionary scientific framework to

expound complex systems whose behavior is perplexing to predict and control with the ultimate goal of attaining a global

understanding related to many branches of possible states as well as high-dimensional manifolds, while at the same time

keeping abreast with actuality along the evolutionary and historical path, which itself, has also been through different

critical points on the manifold. In view of these, we put forth the features of complexity of varying phenomena, properties

of evolution and adaptation, memory effects, nonlinear dynamic system qualities, the importance of chaos theory and

applications of related aspects in this study. In addition, processes of fractional dynamics, differentiation and systems in

complex systems as well as the dynamical processes and dynamical systems of fractional order with respect to natural

and artificial phenomena are discussed in terms of their mathematical modeling. Fractional calculus and fractional-order

calculus approach to provide novel models with fractional-order calculus as employed in machine learning algorithms

to be able to attain optimized solutions are also set forth besides the justification of the need to develop analytical and

numerical methods. Subsequently, algorithmic complexity and its goal towards ensuring a more effective handling of

efficient algorithms in computational sciences is stated with regard to the classification of computational problems. We

further point out the neural networks, as descriptive models, for providing the means to gather, store and use experiential

knowledge as well as Artificial Neural Networks (ANNs) in relation to their employment for handling experimental data

in different complex domains. Furthermore, the importance of generating applicable solutions to problems for various

engineering areas, medicine, biology, mathematical science, applied disciplines and data science, among many others,

is discussed in detail along with an emphasis on power of predictability, relying on mathematical sciences, with Artificial

Intelligence (AI) and machine learning being at the pedestal and intersection with different fields which are characterized

by complex, chaotic, nonlinear, dynamic and transient components to validate the significance of optimized approaches

both in real systems and in related realms.

KEYWORDS

Complex systems

Chaos theory

Chaos-order and

complexity

Computational

complexity

Fractal operators

Fractional calculus

Fractional dynam-

ics

Evolutionary mod-

els

Fractional-order

algorithms

Complex-valued

neural networks

Nonlinear systems

Data science

Mathematical biol-

ogy and medicine

Prediction of

changes

Fractional integro-

differentiation

Artificial Intelli-

gence.

CHAOS Theory and Applications 111

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
EDITORIAL

Vol.4 / No.3 / 2022 / pp.111-118

https://orcid.org/0000-0001-8725-6719
https://orcid.org/0000-0002-0286-7244


INTRODUCTION

Having existed as a notion since antiquity, complexity is a concept
and scientific term that entails the nexus of the origin of complex
components accompanied not only by meticulous and detailed
computations but also causal processes. A complex system, in
that regard, is one with multiple interactions emerging and occur-
ring among interacting components with adapting, synchronizing,
noisy, reacting, self-ordering, self-steering, self-similar, irregular,
non-periodic and unpredictable elements, feedback loops as well
as evolving features, amidst many others. Complexity starts when
causality breaks down and it reveals many deep layers consid-
ering the structure with variational principles and far-reaching
conditions including spontaneous order, nonlinearity, feedback,
robustness, lack of central control, numerosity, hierarchical organi-
zation and emergence.

The substantial number of independent interacting components
and multiple pathways through which the complex system can
evolve further point out a number of the reasons causality breaks
down as complexity starts. Along these lines, causality is relative,
prone to fundamental variations that depend on perception, the
environment, external factors, space, time and so (Karaca 2022c).
The inherent complexity of the varying phenomena in complex
systems needs to exceed a reductionist outlook of traditional sci-
ence; thus, complexity requires an understanding extending across
a class of complex problems with myriad of intricate and subtle at-
tributes based on innovative and novel ways of thinking as well as
applicable laws. In view of these, evolution, order and complexity
can more conspicuously reveal the relationship between natural
and social worlds, which actually reflects a modern way of think-
ing that challenges the dichotomy of natural and social. Complex
problems in nonlinear dynamics necessitate the critical support
of artificial phenomena so that each domain of complex systems
addresses research aspects and theories towards the solutions to
the pressing challenges which almost exceed the possible limits of
human comprehension. This view is capable of serving the needs
of different aspects of complexity by minimizing the problems of
complexity whose solutions are based on advanced mathematical
foundations and corresponding algorithmic models that are made
up of numerous applied aspects of complexity.

Evolutionary processes, nonlinearity and all the other dimen-
sions of complexity rest on time, reveal time and occur within
time. In the ever-changing landscape and variations, with causal-
ity breaking down, the idea of complexity can be stated to be a
part of unifying and revolutionary scientific framework for the
understanding of complex systems whose behavior is challenging
to predict and control with the ultimate goal of attaining a global
understanding pertaining to many branches of possible states as
well as high-dimensional manifolds, while at the same time keep-
ing up with actuality along the evolutionary and historical path,
which itself, has also been through different critical points on the
manifold. In this sense, evolution is dependent upon exploration,
innovation and causal learning. Yet, changing or removing the
causes does not necessarily mean to be capable of removing or
altering the outcomes, and hence, modern scientific way of think-
ing is catered towards the development of models benefiting from
theoretical insights, local computations and task-related manifolds
in spaces with high dimensions instead of just route learning the
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rules or representations of the world (Karaca 2022c). Within this
scope, the exploration of the way patterns evolves in time spans
across turbulent flow of fluids, geological formations, microstruc-
tures of materials, spatial organization of microbes, germs, even
the behavior of genes, covering quantitative biology, physics, evo-
lution, materials science, ecology, chemistry, neurology, applied
mathematics, nonequilibrium statistical mechanics, among many
other ones. These aspects point to the observation that nature
can produce complex structures even in simple situations, and
can obey simple laws even in complex situations (Goldenfeld and
Kadanoff 1999).

The nonlinear character and being out of equilibrium are the
important qualities characterizing complex systems which have
a substantial number of interacting variables or elements which
can be simple elements that interact in a nonlinear, either locally or
globally (Mateos 2009). In complex systems, the local interactions
between the components of the system lead to regularities in the
overall, global behavior of the system that appear to be impos-
sible to be derived in a rigorous and analytic way based on the
knowledge of the local interactions, which point to both an em-
pirical fact and mathematical intuition (Waldrop 1993). Nonlinear
dynamical systems, reflected as a complex library of plethora of dif-
ferent behaviors, overflow with models of varying phenomena in
complex systems. Given that, nonlinearity signifies a relationship
that cannot be explained or modeled through a linear algebraic or
differential combination of input or state variables. Hence is the
reason why it is often possible to characterize nonlinear dynamical
systems by highly unpredictable and dynamic behaviors, which
proves to be challenging for analysis as they occur across different
temporal and spatial planes (Karaca 2022a; Kia et al. 2017). Across
this strand of thought, nonlinear science serves to reveal the nonlin-
ear descriptions of broadly different systems, with a fundamental
impact on complex dynamics.

Complex and nonlinear dynamical systems are regarded as
thriving as models of natural phenomena, usually characterized
by unpredictable behavior whose analysis is challenging to be per-
formed due to occurring like the incidents in chaotic systems. The
essence of the problem is rooted in exactly understanding which
sort of information, particularly concerned with their long-term
evolution and memory properties, can be expected to be derived
from those systems. Correspondingly, complexity, chaos, order
and evolution all unearth the relationship between natural and
social worlds, representing a modern process of thinking (Karaca
2022b). Complexities require a horizon that takes into account the
subtleties making their own means of solutions and applicability
necessary and applicable. Evolvability in this sense is concerned
with the species owing their existence to the capability of their
ancestors with respect to evolving and adapting besides the cor-
relation between the complexity of model, design, visualization
and optimality. These perspectives are of utmost importance in
the future science of complexity as well (Karaca 2022b).

The properties of evolution and adaptation can shed light on
the understanding of past to interpret the present in a holistic way
and to design future plans and schemes in an appropriate, adap-
tive, systematic and timely way. If there is a situation of getting
stuck in between two extremes of order and chaos under uncer-
tain and unpredictable conditions, complexity thinking and theory
can render the systems be adaptive, respond to the world and act
spontaneously. Furthermore, being cognizant of complex systems
ensures the analysis of the essence of the problem by understand-
ing the way systems self-organize their structures and self-regulate
their dynamics and nonlinearity. On theoretical aspect, the theory
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of complexity entails powerful evidence, providing elucidation
to challenge mechanistic thinking to steer humanity toward the
adaptation of an integrative way of thinking (Karaca 2022b).

Chaos theory, being an interdisciplinary theory, not only as a
mathematical art but also as a means for practical engineering
challenges, represents a set of techniques to analyze dynamical
systems. As the founder of chaos theory, Edward Lorenz, put
in summarized form: “When the present determines the future, but
the approximate present does not approximately determine the future”,
which means that the systems are deterministic but a small change
in initial conditions bring about evolution of a highly unpredictable
behavior.

It should be noted that the deterministic behavior appears to
be random and in that regard, chaos theory specifies the geomet-
ric patterns to be discerned in the seemingly random events of a
complex system and introduces linear and nonlinear progressions.
Initially originated from the simulation of dynamic systems in nat-
ural world, some practical applications of chaos include electronic
circuit design, biological system analysis, information encryption,
synchronization for communication and control, behavior predic-
tion in complex systems, random number generators, modeling,
parameter estimation of nonlinear systems, among others. The
majority of the applications can benefit from the power of chaos
theory in terms of modeling an irregular system with a determinis-
tic equation which has high sensitivity to the initial condition.

Being able to utilize a chaotic system, which has sensitivity to
initial condition, density of unstable periodic orbits in a chaotic
attractor and topological transitivity, is treated as a library of dif-
ferent behaviors and patterns from which each behavior or pattern
can be selected based on the related needs. These qualities pave
the way to advances for understanding the physical world or de-
sign technology that interfaces with dynamical complex systems.
As computation chaos was proposed, it was revealed that chaotic
behavior exists not only in natural dynamic systems but also in the
discretization process, including instances in which the original
system manifests periodicity with its computational simulation
being chaotic.

The investigation of the relationship between chaos theory and
computational simulation shows that the precision of computer
arithmetics has a remarkable impact on the final outcome of the
simulation of a dynamic system where even a trivial change in
arithmetic computation can modify the structure of orbits signif-
icantly. To put the defining idea of chaos differently, in chaotic
systems, even minuscule uncertainties in measurements of initial
position and momentum can lead to radical errors in the long-
term predictions of the quantities. Yet, sensitive dependence upon
initial conditions hints that even the tiniest errors in initial mea-
surements in chaotic systems eventually produce critical errors in
the prediction of the future motion of an object (Mitchell 2009).

In addition, a nonlinear dynamical system owns complex and
flexible dynamics which combine different behaviors, and thus,
it can be morphed for the implementation of different functions.
Bifurcation parameters in a nonlinear dynamical system can be
changed and the dynamics can be altered, namely qualitative be-
havior of the circuit. Hence, when a nonlinear system is in a chaotic
regime, it is very sensitive to its initial conditions or state. There-
fore, a change to its initial state can change the future state, and
as a result, the type of function it builds. The number of these dif-
ferent functions that a nonlinear, complex system can implement
exponentially increases by the evolution time (Kia et al. 2020).

In summary, this study puts forth the features of complexity of
varying phenomena, properties of evolution and adaptation, mem-
ory effects, nonlinear dynamic system qualities, the importance
of chaos theory and applications of related aspects. Processes of
fractional dynamics, differentiation and systems in complex sys-
tems as well as the dynamical processes and dynamical systems of
fractional order with respect to natural and artificial phenomena
are discussed in terms of their modeling by ordinary or partial
differential equations with integer order, ordinary and partial dif-
ferential equations.

Fractional calculus and fractional-order calculus approach to
provide novel models with fractional-order calculus as employed
in machine learning algorithms to achieve optimized solutions
is also discussed besides the justification of the need to develop
analytical and numerical methods. Subsequently, algorithmic com-
plexity and its goal to ensure a better handling of efficient algo-
rithms in computational sciences is pointed out with regard to the
classification of computational problems. Moreover, we set forth
the importance of stochastic differential equations with respect
to some of the real world problems for an effective and intensive
addressing of real world problems which manifest randomness.
Characteristics of and benefits derived from nonlinear science are
elaborated on with a focus on their essential impact observed in
complex dynamics, explores the implicit, latent and obscure de-
pendence of schema, serving to reveal the nonlinear descriptions
of widely different systems.

The study further points out the neural networks, as descriptive
models, for providing the means to gather, store and use experi-
ential knowledge as well as Artificial Neural Networks (ANNs)
in relation to their employment for handling experimental data
in differing domains. Furthermore, evolutionary computational
models and their role in retrieving applicable answers to optimiza-
tion problems for various engineering areas, medicine, biology,
mathematical science, applied disciplines and data science, among
many others, is discussed along with an emphasis on mathemati-
cal sciences, with Artificial Intelligence (AI) and machine learning
being at the pedestal and intersection with different fields which
are characterized by complex, chaotic, nonlinear, dynamic and
transient components in order to demonstrate the significance of
novel approaches in real systems and related realms.

PROCESSES OF FRACTIONAL DYNAMICS, DIFFERENTIA-
TION AND SYSTEMS IN COMPLEX SYSTEMS

Dynamical processes and dynamical systems of fractional order
with respect to natural and artificial phenomena are modeled by
ordinary or partial differential equations with integer order, which
can be described aptly by employing ordinary and partial differ-
ential equations. Fractional calculus approach, remarkably, pro-
vides novel models through the introduction of fractional-order
calculus to optimization methods, and thus, is employed in ma-
chine learning algorithms since this scheme is geared towards
attaining optimized solutions by maximizing the model accuracy
and minimizing functions like the computational burden. Hence,
mathematical-informed frameworks can be employed for enabling
reliable and robust understanding of various complex processes
that involve a variety of temporal and spatial scales. This complex-
ity requires a holistic understanding of different processes through
multi-stage integrative models capable of capturing the significant
attributes on the respective scales.
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Fractional-order differential and integral equations, frac-
tals, fractional integro-differentiation (non-integer order integro-
differentiation), nonlinear time-delay systems, linear and nonlin-
ear fractional ordinaries, nonlinear differential equations, integral
fractional differential equations, partial differential equations and
stochastic integral problems, in those regards, can provide the
generalization of traditional integral and differential equations
through the extension of the conceptions.

Analytical and numerical methods have been developed to
solve ordinary and partial differential equations whose classes
have been investigated in depth. Despite being useful to model
some of the real world problems with efficiency, some classes of
such differential equations have failed to replicate the observed
facts due to complexities of several real world problems. For in-
stance, since some real world problems manifest randomness that
cannot be captured by these differential equations, stochastic dif-
ferential equations can be suggested and are employed intensively
in an effective way. Furthermore, algorithmic complexity, as a way
of comparing the efficiency of an algorithm, can ensure a better
grasping and designing of efficient algorithms in computational
sciences while enabling the classification of computational prob-
lems based on their algorithmic complexity, as defined according
to how the resources are required for the solution of the prob-
lem, including the execution time and scale with the problem size
(Karaca 2022a). These sorts of approaches through the applica-
tion of fractional-order calculus to optimization methods and the
experimental results reveal the benefit maximizing the model’s
accuracy and minimizing the cost functions like the computational
burden, as mentioned above, pointing toward the applicability
of the methods in different domains which are characterized by
complex, chaotic, nonlinear, irregular, asymmetric, dynamic and
transient components.

Fractional (non-integer order) calculus, as an interdisciplinary
field, is able to build mathematical models that are concise enough
to describe the dynamic events occurring in complex elements,
which is important to understand the underlying multiscale pro-
cesses that arise when there are electrical stimulation or mechanical
stress. Fractional calculus attends to the co-evolving entities, actual
state properties, observations and patterns of complex systems in a
spot-on manner with respect to nonlinear dynamic systems, mod-
eling of complexity evolution, order of fractional chaotic as well as
complex systems.

Fractional differential equations, associated with non-local phe-
nomena, benefit from both qualitatively and quantitatively dif-
ferent properties as compared to the classical ones since the non-
locality of fractional calculus turns it into a sound means to un-
earth new properties of non-local phenomena. Furthermore, when
compared with classical integer-order models, the preliminary
advantage of fractional models is their potential use in chaotic dy-
namics in engineering and applied fields. Besides these points, the
dynamics of fractional order systems have captured prominence
through the development of fractional-order algorithm (Sun et al.
2022).

The dynamics of many systems, whether they be biological, eco-
nomic, medical, physical, mechanical, electrical, thermal, and so
forth, can be described in terms of differential equations. Fractional
derivatives are extensively employed to model realistic systems
since these derivatives are capable of modeling memory and hered-
itary effects observed in physical systems owing to their nonlocal
nature. Systems that involve fractional derivatives can exhibit
chaos, and when below a certain threshold value of fractional or-
der derivative, the systems can show regular behavior. Being a

nonlocal operator, contrary to ordinary derivative, the fractional
derivative is particularly useful for modeling the system’s both
memory and hereditary properties (Baleanu et al. 2015).

Fractional calculus is frequently opted for mathematical model-
ing to analyze the evolutionary systems which are known to have
memory effect on dynamics. To extend ordinary calculus to frac-
tional calculus, there are different ways, with the related common
definitions, Riemann-Liouville fractional integral and derivative,
the Grünwald-Letnikov fractional integral and derivative as well
as the Caputo fractional derivative as being some of them (Karaca
and Baleanu 2022b). Within this framework, Caputo definition
is preferred to be used to solve differential equations, which is
denoted as per Equation 1:

Dm
α f (t) =

1
Γ(m − α)

∫ t

0

f(m)(τ)

(t − ø)α+1−m dτ (1)

The fundamental results on fractional integral and derivatives
of the power function (t − t0)β f or β > −1 are the case and for
the Caputo’s derivative, Equation 2 is employed in the following
manner (see (Karaca and Baleanu 2022b) for further details):

Dα
t0
(t − t0)

β =


0 βϵ{0, 1, ..., m − 1}

Γ(β+1)
Γ(β−α+1) (t − t0)

β−α β > m − 1

nonexisting otherwise
(2)

Taken together, fractional calculus, equations with fractional
derivatives, integrals and differences prove to be powerful tools for
the description of local processes in time and space with different
nonlocality types (Diethelm et al. 2022).

Nonlinear science, which has had a central impact on complex
dynamics, explores the implicit, latent and obscure dependence
of schema, serving to reveal the nonlinear descriptions of widely
different systems (Karaca 2022a). As a substitution for fractional
derivatives, the memory-dependent derivative reflects the memory
effect distinctively, and as an application, representative processes
are remodeled with it, considering the temporal-spatial evolution
mechanisms of the related complex processes. Accordingly, the
theory of fractional differentiation and applications constitutes a
significant component of nonlinear analysis to be able to address
highly diverse real-life problems. Analysis and control of frac-
tional order nonlinear systems can appear to be another pressing
challenge with the observation of unknown inputs and concepts
used and derived analytically. Being a noteworthy attribute of
complex systems, nonlinearity represents the various interactions
between the variables in a nonlinear fashion.

Emergence, feedback, adaptiveness, irreducibility, chaos, op-
erating between order and chaos, having multilayers of structure
as well as self-organization seem to be among some of the other
related attributes. Multiple nonlinear complex systems manifest
phenomena in which oscillations enhance periodic behaviors and
the system’s synchronization. Accordingly, fractional-order control
as a field of control theory employs the fractional-order integrator
as part of the control system design compilation, through which
well-established control methods and strategies can be generalized
and improved (Monje et al. 2010). More complex physical prob-
lems, on the other hand, require advanced mathematical operators
of differentiation.

114 | Karaca and Baleanu CHAOS Theory and Applications



The concept of non-local operators of differentiation some of
which are power law, exponential decay law and generalized
Mittag-Leffler law, has been employed by different engineering
and medicine fields, applied sciences and technology owing to
the fact that they have the capability of integrating more complex
natural aspects into mathematical equations (Kober 1940; Baleanu
and Karaca 2022). Thus, the extension of classical and modern
control theories to integrative and novel perspectives ensures the
development of algorithms applicable both in integer and non-
integer order systems. Therefore, fractional and integral equa-
tions, fractional discrete calculus, fuzzy fractional calculus as well
as fractional dynamics concern not only theoretical aspects but
also the applications related to fractional differentiation extending
broadly across other mathematical models within mathematical sci-
ences and engineering mathematics (i.e.: entropy, fractals, wavelet,
quantum, etc.) ranging along mathematical analysis, numerical
analysis, chaos, image and/or signal analysis, bifurcation, data
analysis, time series analysis, medicine, neurology, bioengineering,
economics, finance, control systems, artificial intelligence, mathe-
matical biology, biotechnology, genetics, nanotechnology, and so
forth.

PROCESSES OF MATHEMATICAL SCIENCE, ARTIFICIAL
INTELLIGENCE AND APPLICATIONS IN COMPLEX SYS-
TEMS

Complexity, as a highly correlated nonlinear phenomena evolving
along an extensive array of timescales and length scales, poses
challenges for technical analyses, theoretical modeling and numer-
ical simulations in many domains. It becomes critical to control
the underlying systems and processes across their spatio-temporal
evolution. Thus, data, concerning biological, financial, physical
or technological complex systems, can be rendered manageable
through computer simulations that employ the effective nonlinear
dynamic methods.

The attempt to understand a complex system with multiple
interacting components, human body, for example, or weather
patterns, financial market, living systems concern two factors, one
of which is chaos and the other one being complexity. An impor-
tant finding of modern chaos theory is that even though complex
systems may be predictable in the short term, that would not be
the case for the long term since there exists an element of uncer-
tainty and unpredictability in all complex systems (Schueler 1996).
In other words, complex interactions may make the prediction of
long-term outcomes almost impossible; and complexity constitutes
complex interacting systems with new emergent properties that
make them more than the sum of their parts (Clegg 2020). A slight
disturbance in the chaotic system could make one be unable to
specify the future state with precision, meaning its evolution could
not be predictable, which points to an intrinsic uncertainty situ-
ation (Sanjuán 2021). These significant findings of chaos theory
have accordingly been transposed to other disciplines.

Chaos, which is a long-term aperiodic and random-like behav-
ior, is exhibited by many nonlinear complex dynamic systems,
which requires the revealing of accessible and applicable paths
into abundance of complexity and the superfluity of experimental
processes to generate novel, diverse and robust means. The use of
predictive tools, Artificial Intelligence (AI) and machine learning
techniques has made the number of applications possible, includ-
ing the prediction of mechanisms ranging extensively from living
organisms to other interactions across incredible spectra. These
techniques combined with fractal analysis highlight the fractal di-
mension and measurement of lacunarity both on local and global

scale as well as the entire volume of the samples being handled.
Machine learning, as a subset of AI, signifies the methods which
are capable of learning from experience, which enables the perfor-
mance of designated tasks such as detection, recognition, iteration,
diagnosis, optimization and prediction.

Machine learning is employed in different domains of complex
systems within nonlinear dynamic processes, which involve the
identification of the basic system structure, for instance network
nodes and links, as well as the exploration of dynamic behavior of
nonlinear systems like determining exponents, prediction of future
evolution and inferring causality of interactions. Reservoir com-
puting and long short-term memory which are machine learning
processes are usually dynamical in nature, whose understanding
of when, how and why to function well based on data can poten-
tially be addressed by employing tools from dynamical systems
theory (Tang et al. 2020).

Neural networks and physical systems have emergent collec-
tive computational abilities and their architecture is capable of
producing an emergent associative memory. By providing an ex-
plicit physical interpretation, efficiency for practical applications
and more manageable computational complexity, fractional math-
ematics and Artificial Intelligence (AI) can capture the history of
dynamical effects existent in different natural and artificial phe-
nomena, proving to be essential modes with their conceptions sup-
porting a productive interplay in the exploration of the structure
and functions with respect to complex system dynamics (Karaca
2022c). To be able to capture and observe the dynamic variations in
complex systems, distributions can also be employed. For instance,
heavy-tailed distributions, as found throughout many naturally
occurring phenomena, are particularly preferable concerning their
use in stochastic dynamical models for extreme events which dis-
play the presence of outliers and possibility of extreme values.

Machine learning and control theory, with high technologi-
cal impacts, comprise gateways that are in proximity with each
other in the complex landscape of the universe of mathematics.
Involving the prompting of a dynamical system from an initial
configuration to the final one over extended ranges of time and fre-
quency through aptly designed and applicable controls, the notion
of controllability allows the disclosing of the pathways between
the disciplines. Hence, control theory can be stated to lie on the
pillars of machine learning.

Machine learning and data science, as integrative domains,
entail an optimized method to calculate mathematics and meta-
mathematics derivatives in minimum timeframe with maximum
efficiency; hence, evolutionary computation, in computer science,
constitutes a cluster of algorithms for global optimization, which
draws its inspiration from nature and biological evolutionary pro-
cesses. Evolutionary computational models own a sophisticated
searching technological foundation besides a mathematical prob-
lem optimization tool taking up less time and reducing complexity
so that the precise and applicable answer to optimization problems
for various engineering, mathematical and applied disciplines
can be sought and found. Accordingly, AI and machine learning,
situated at the core, can extend broadly across the related math-
ematical models within the framework of mathematical sciences
and engineering mathematics as well as across the intersection of
different fields.

Fractional-order calculus is concerned with the differentiation
and integration of non-integer orders, and fractional calculus (FC),
based on fractional-order thinking, is the quantitative analysis of
functions using non-integer order integration and differentiation.
Therein, the order can be a complex number, a real number of
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the function of a variable. Owing to these features, FC, entailed
by complexity, can enhance the processing of complex signals,
improve the control of complex systems extend the enabling of
the potential for creativity, considering the fact that an observable
phenomenon that is represented by a fractal function has integer-
order derivatives which diverge. Hence, complex phenomena, no
matter if they are natural or engineered, need to be described by
fractional dynamics as such point of view is to be consulted for
the characterization and regulation of complexity (West 2022). In
view of these attributes, innovative approaches to machine learn-
ing with the introduction of fractional-order calculus have started
to be extensively used as optimization methods used in machine
learning algorithms. By performing the training of the models,
making inferences and solving optimization problems, machine
learning techniques are geared towards maximizing model’s ac-
curacy and minimizing cost functions. In short, these techniques
provide flexible options for the analysis and prediction of changes
that could occur in the dynamics of complex and chaotic systems.

Life, being the most complex physical system in the universe,
at all scales, requires the understanding of the massive complexity
encompassing its origin, structure, dynamics, adaptation and orga-
nization. The number of substructures and interacting pathways
of each of the substructure along with the other ones as well as
neurons determine the degree of complexity. Neural networks,
as descriptive models provide the means to gather, store and use
experiential knowledge; and are designed in such a way that they
can emulate different operations of the human brain. A neuron
is an imitation of the observations occurring in the human brain
which is composed of interconnected neurons that transmit elec-
trochemical elements, which forms the basis of all neural networks
(Karaca and Baleanu 2022a).

A synapse is the connection between nodes, or neurons, in an
artificial neural network (ANN); and in this configuration, the
strength or amplitude controls this connection between the nodes,
which is called the synaptic weight. There exists a complex struc-
ture with multiple connections as multiple synapses can connect
with the same neurons, in which each synapse has a different level
of trigger or impact on whether the neuron is fired and activates
the next neuron. With relation to machine learning, a synapse is
often referred to as a node in machine learning; yet, the artificial
neurons, which output a value from a continuous function, do
not fire, unlike biological neurons. To put differently, the main
different point between a biological process and artificial process
is concerned with the level of control imposed on the input values.
Thus, the resulting output of the nodes is utilized as the input
for the next layer of nodes, in an ongoing process, throughout the
neural network brain until the final output layer is reached (Karaca
and Baleanu 2022a) (see Figure 1).

One major ongoing challenge of integrating fractional calculus
in cases of complexity is the effective use of empirical, numerical,
experimental and analytical methods to be able to tackle com-
plexity. In that regard, ANNs, including a family of nonlinear
computational methods, can be employed to handle experimental
data in various domains as a result of their capability of manag-
ing complex computations to direct their progressive application
towards serving the applicable and timely solutions of practical
problems.

The specific neural architectures are generated by AI, as instan-
tiated in the brain, can provide applicable answers to the problems
of cognition through the understanding of the way architectures
implement cognitive processes. Thereby, if programmed properly
and adjusted to the data at hand appropriately, AI enables availabil-
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Figure 1 Biological versus artificial neuron interconnection from
inputs at dendritic compartments to outputs at axon terminals:
(a) the basic building blocks of biological neural processing with
neurons and synapses. (b) artificial implementation of a neuron,
as electrically excitable cell producing action potential. (c) synap-
tic interrelation among input layer, hidden layers and output
layer (Karaca and Baleanu 2022a).

ity at all times, providing more prompt decision-making processes,
digital assistance, new inventions and rapid pattern analysis of
large datasets while also reducing human error. To attain these
goals, Bidirectional Encoder Representations from Transformers
(BERT), as one of the applicable methods of Natural Language
Processing (NLP) can be employed, with the related models which
have the main stages like pre-training and fine-tuning. In the for-
mer one, the model is trained on unlabeled data over different
pre-training tasks and in the latter stage, the BERT model is ini-
tialized with the pre-trained parameters (Karaca et al. 2022) (see
Figure 2).
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Figure 2 BERT model’s pre-training and fine-tuning stages
(Karaca et al. 2022).

All in all, the advanced theory and applications of computabil-
ity enables one to distinguish complexity classes of problems, 
considering the order of corresponding functions that describe 
computational time pertaining to their algorithms or computa-
tional problems. This refers to the essential requirement of being 
concerned not only with the complexity of universal problem solv-
ing but also with the complexity of knowledge-based programs 
(Mainzer and Mainzer 1997). Through that perspective in con-
junction with advanced mathematical modeling with AI support, 
it would be possible to generate applicable cumulative answers 
and customized solutions to real world problems in a novel, con-
structive, adaptive and flexible way on the ever-evolving global 
landscape.
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CONCLUDING REMARKS AND FUTURE DIRECTIONS

The use of different predictive mathematical modeling, Artificial
Intelligence (AI) and machine learning techniques has made the
number of applications possible, including the prediction of mech-
anisms ranging extensively from life at simple level to other inter-
actions getting gradually complex across incredible spectra. It is
possible to observe that nature can produce complex structures
even in simple situations, and can obey simple laws even in com-
plex situations. Consequently, complex problems in nonlinear
dynamics require the precarious support of artificial phenomena
along with interpretability and predictability in order that each
domain of complex systems can yield applicable answers and so-
lutions to the pressing challenges of our current era. This view can
help to cater the needs of different aspects of complexity by signif-
icantly diminishing the problems of complexity whose solutions
are based on advanced mathematical foundations and correspond-
ing algorithmic models that include numerous applied aspects of
complexity.

Constituting the prompting of a dynamical system from an ini-
tial configuration to the final one over extended ranges of time
and frequency through aptly designed and applicable controls,
the notion of controllability allows the disclosing of the pathways
across the related disciplines. Furthermore, processes of fractional
dynamics, differentiation and systems in complex systems as well
as the dynamical processes and dynamical systems of fractional
order with relation to natural and artificial phenomena are impor-
tant in terms of their modeling by ordinary or partial differential
equations with integer order, ordinary and partial differential equa-
tions. Fractional calculus and fractional-order calculus approach to
provide novel models with fractional-order calculus as employed
in machine learning algorithms to achieve optimized solutions is
also noteworthy considering the need to develop analytical and
numerical methods.

Machine learning, a subset of AI, referring to the methods ca-
pable of learning from experience, enables the performance of
designated tasks such as detection, recognition, iteration, diag-
nosis, optimization and prediction. It is employed in different
domains of complex systems within nonlinear dynamic processes
that involve the identification of the basic system structure, such
as network nodes and links, as well as the exploration of dynamic
behavior of nonlinear systems like determining exponents, pre-
diction of future evolution and inferring causality of interactions.
Besides conventional methods like approximation, estimation, con-
vergence, stability analysis, and so forth, it is important to capture
the latent aspects of complex nonlinear dynamic structures so that
prediction can be made possible.

Accurate and prompt predictive processes can ensure foresee-
ing to be put in practice in order to cater the needs of our era with
the landscape being transient and ever-evolving. These pressing
challenges and needs point to the importance of yielding applica-
ble solutions to problems for various engineering areas, medicine,
biology, mathematical science, applied disciplines and data science,
among many others. These points have been discussed in detail
in this study along with an emphasis on power of predictability,
relying on mathematical sciences and engineering mathematics
with Artificial Intelligence (AI) and machine learning being at the
pedestal and intersection with different fields characterized by
complex, chaotic, nonlinear, dynamic and transient components to
reveal the significance of optimized approaches in real systems and
related realms. Significant developments based on these critical

points and perspectives can pave the way for the future research to-
wards optimized applicable solutions of unsolved problems arising
as formidable challenges of our ever-evolving and fast-changing
global landscape.
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ABSTRACT In this paper we have introduced and investigated the collective behavior of a network of
memristive Hindmarsh-Rose (HR) neurons. The proposed model was built considering the memristive autapse
of the traditional 2D HR neuron. Using the one-parameter bifurcation diagram and its corresponding maximal
Lyapunov exponent graph, we showed that the proposed model was able to exhibit a reverse period doubling
route to chaos, phenomenon of interior and exterior crises. Three different configurations of the ring-star
network of the memristive HR neuron model, including ring-star, ring, and star, have been considered. The
study of those network configurations revealed incoherent, coherent , chimera and cluster state behaviors.
Coherent behavior is characterized by synchronization of the neurons of the network, while incoherent
behaviors are characterized by the absence of synchronization. Chimera states refer to a differet state where
there is a coexistence of synchroniaed and asynchronized nodes of the network. One of the interesting result
of the paper is the prevalence of double-well chimera states in both ring and ring-star network and has been
first mentioned in the case of memrisitve HR neuron model.
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INTRODUCTION

A brain, like a complex organ, is built from the interconnection of
a very large number of neurons. These interconnected neurons are
very important because they are the seat of the processing, calcula-
tion, storage, and transfer of information (Lin et al. 2021). These
neurons are connected to each other using a synapse.As a result, a
synapse is the part of the nervous system that allows a presynaptic
neuron the transmission of electrical or chemical signals to the
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postsynaptic neuron. (Zhang et al. 2018). As a result, several math-
ematical models have been developed and studied in the literature
to study some of the dynamical mechanisms of the brain. The Hop-
field neural network model (Njitacke et al. 2021a; Tabekoueng Nji-
tacke et al. 2020a; Doubla Isaac et al. 2020; Tabekoueng Njitacke et al.
2020b), the Hodgkin-Huxley neuron (Hodgkin and Huxley 1990),
the 2-D Hindmarsh-Rose (HR), the 3D-HR neuron models (Hind-
marsh and Rose 1982, 1984), the FitzHugh-Nagumo (FHN) neuron
model (Izhikevich and FitzHugh 2006), the MorrisLecar neuron
model (Tsumoto et al. 2006), the Chay neuron model (Chay 1985),
the Izhikevich neuron model (Izhikevich 2003), and the Rulkov
neuron model (Xu et al. 2021) are some examples. In the same vein,
several artificial synapse models for presynaptic and postsynap-
tic neuron coupling have been developed in the literature. Some
of them are hybrid synapse (Liu et al. 2019), Josephson junction
synapse (Zhang et al. 2020b), memristive synapse (Li 2021), elec-
trical synapse (Shaffer et al. 2016; Zhou et al. 2021a), and chemical
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synapse (Burić et al. 2008). Following that, a large number of single
neurons (Bao et al. 2018, 2019; Hou et al. 2021; Liu et al. 2020; Zhang
et al. 2020a; Zhou et al. 2021b; Cai et al. 2021; Li et al. 2021a) and cou-
pled neurons (Zhou et al. 2021b; Njitacke et al. 2022a, 2020, 2021b,c;
Tabekoueng Njitacke et al. 2020c; Guo et al. 2020; Joshi 2021; Li et al.
2021b; Lin et al. 2020; Wu et al. 2020; Yao et al. 2021; Wouapi et al.
2020, 2021) models have been introduced and addressed in the
literature using the quoted artificial synapses.

The authors of ref. (Qin et al. 2021) investigated the phe-
nomenon of phase-amplitude coupling in nonlinearly coupled
Stuart-Landau oscillators. Among the architectures used by the au-
thors, it can be found the high-frequency neural oscillation driven
by an external low-frequency input and two interacting local oscil-
lations with distinct, locally generated frequencies. The problem
of reconstructing the model equations for the network of 3rd or-
der neuron-like oscillators from time series has been addressed
in ref. (Sysoeva et al. 2021). The authors showed that by using
phase-locked loop systems as nodes of the networks, dynamical
regimes such as quasiharmonic oscillations, spiking, bursting, and
chaotic behavior are based on different network typologies such
as star, ring, chain, and random architectures. The dynamical
and physiological effects of the presence of electric field on an im-
proved version of FitzHugh-Nagumo model was investigated in
(Takembo et al. 2022). Using the multiple scale expansion method
on the system of N-differential equations, the authors obtained the
angular frequency of the modulated impulse wave along the net-
work. Finally, the formation of localized nonlinear wave patterns
was confirmed in the proposed network.

The behavior of both single and a network of FHN neuron with
memristors were investigated in ref. (Njitacke et al. 2022c). The
investigation of the single neuron revealed the presence of hidden
dynamics, which is an interesting feature in the qualitative theory
of dynamical systems. The biophysical energy of that model was
established using the famous the Helmholtz theorem. The authors
found that variation of external current on the model had no effect
on the energy. Interestingly, the autapse coupling strength affects
the energy released by the neuron. A plethora of spiking and burst-
ing patterns is observed in the model. Hysteretic dynamics due to
the coexistence of different firing patterns was confirmed. To verify
both the analytical, numerical results, an equivalent electronic cir-
cuit was constructed. It was found that the results obtained from
the circuit are in good agreement with the numerical simulations.
In the end, information pattern stability was explored statistically
via modulational instability under memristive autapse strength
using a chain network of 500 identical neurons. It was discov-
ered that the new network enables localized information patterns
with attributes of synchronization as a means of information cod-
ing when initial conditions are considered as slightly modulated
plane waves. The improved information coding pattern and po-
tential mode transition were also confirmed by stronger autaptic
couplings caused by fixing the stimulation current.

After researchers have studied coupled pendulums and their
dynamical behavior Willms et al. (2017), there has been a plethora
of studies on network of oscillators. When the network elements
have similar phases and frequencies the oscillators get synchro-
nized. If the phases and frequencies are different they get desyn-
chronized. Kuramoto found a new type of network state in which
oscillators synchronize and desynchronize in a network of oscil-
lators and these were termed as chimera states Kuramoto and
Battogtokh (2002). There has been a lot of works on chimeras
thereafter Schöll (2016); Majhi et al. (2019); Omel’chenko (2018);
Panaggio and Abrams (2015), just to name a few. Scientists have

even uncovered epilepsy and schizophernia as topological diseases
that depend on the topology of the neurons interconnected in the
brain Uhlhaas and Singer (2006). Neurons can also be considered
as dynamical oscillators and in brain millions of neurons are inter-
connected in a complex fashion and neurons transmit nerve signals
and sensory informations. This motivates to study the behavior of
networks in neuron oscillators.

An autapse is a specific synapse developed from an auxiliary
loop that enables it to connect the axon and the dendrite of the
same neuron together. In this contribution, a memristor is intro-
duced in a 2D Hindmarsh-Rose neuron model. Therefore, the
memristive Hindmarsh-Rose neuron thus obtained is also called
the 2D Hindmarsh-Rose neuron with a memristive autapse. The
study of the network is based on the ring-star, ring, and star con-
nection from the introduced model. So the outline of the paper is
as follows: In Section 2, the mathematical model of the memris-
tive Hindmarsh-Rose model is discussed. Its complex dynamical
behavior is revealed through some numerical simulations. Its
network topology is also presented. In Section 3, numerical simu-
lations are used to explore the collective behavior of the various
network topologies considered. Lastly, in Section 4, we conclude
and present scope for further research work. All the simulations in
the paper is carried out using M AT L A B.

PRESENTATION OF THE NEURON MODEL

Framework of memristive autapse
When an axon is injured, such as by poisoning in ion channels
or heterogeneity in a local area of the axon, signal transmission
can be terminated or blocked during neuronal communication.
As a result, neurons can develop new loops or secondary loops
to help with signal transmission. This auxiliary loop is known
as an autapse, which can be electrical autapse current, chemical
autapse current, or memristive autapse current. Using memristor
definition (Galinsky and Frank 2021) and applying Ohm’s law, we
get Eq.(1).The term G(u) represents the memductance and i, u, v
are state variables. im = G (u) v = α cos (u) v,

du
dt = g (u, v) = sin (u) + ev.

(1)

Figure 1 Complex interconnections of millions of neurons in the
brain(Galinsky and Frank 2021)

The memristive nature of the autapse proposed in (1) is sup-
ported by the well-known fingerprint of the memristor, charac-
terized by a pinched hysteresis loop at the origin of the current-
voltage characteristic when applying an external stimulus in the
form v = A sin (Ft). For the sake of brevity, that result is not
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provided. Recall that the memristive neuron model used for this
investigation was previously introduced in (Njitacke et al. 2022b).
In that work, the global dynamical behavior as well as the effect of
the initial condition on the behavior of the neuronal model have
been investigated. The authors discovered the considered neuron
model with memristive autapse was able to exhibit a homogenous
extreme multistability characterized by the coexistence of an in-
finite number of patterns of the same shape. Since the work was
focused only on the dynamics of a single neuron, the investiga-
tion of the collective behavior of such a model with homogeneous
extreme multistability has further supported the aim of this study.

Design of the coupled neurons
Neurons are the central organs of the brain since they enable com-
putation, processing, and storage of information, just to name a few.
As it can be seen in Fig.(1), the brain is made up of interconnections
of a very large number of neurons. As a result, the investigation
of a ring-star network of neurons composed of Hindmarsh-Rose
neurons with memristive autapse will be addressed in this contri-
bution. The mathematical model of the memristive HR neuron is
given in (2). 

ẋ = y − ax3 + bx2 + α cos (u) x + is

ẏ = c − dx2 − y

u̇ = sin (u) + ex

(2)

In (2), x is the membrane potential of the HR neuron, y repre-
sents the retrieval variable related to a fast current of either Na+ or
K+. The state variable u stands for the inner variable of the memris-
tive autapse , variable is = m sin (2π f t) represents outward input
current and α indicates the connection strength of the memristive
autapse. For parameters a = 1, b = 3, c = 1, d = 5, e = 0.5, m =
2, f = 0.5 and α is tuneable. As it can be seen in Fig.(2). The single
HR neuron with a memristive autapse is able to exhibit very rich
and striking bifurcations. When decreasing the control parameter,
phenomena such as reverse period doubling bifurcation, interior
and exterior crises are observed.

These crises occur when a chaotic motion is suddenly destroyed
and gives birth to periodic motion, or when a chaotic motion is
suddenly created from a periodic one instead of being destroyed.
As it can be seen in Fig.(3), four phase space trajectories have
been computed to further support the phenomenon of the reverse
period doubling bifurcation when the memristive autapse strength
α is decreased. When decreasing α, it is observed that period-1 for
α = 2, period-2 for α = 1.5, period-4 for α = 1.15 and a chaotic
attractor for α = 1.

In addition, as the control parameter in the system is var-
ied, alternating transitions of periodic and chaotic behavior is
observed. When the control parameter α is tuned to 0.5, some
two-dimensional and three-dimensional projections of the chaotic
activity, generated by the memristive neuron of the network con-
sidered in this work, are provided in Fig.(4).

Figure 2 In (a), one-parameter bifurcation diagram of u vs α
showing reverse period-doubling route to chaos as parameter
α is increased. In (b), the corresponding Lyapunov exponent is
estimated numerically. The parameters are set as f = 0.5, m = 2
with the initial condition (0, 0, 1).

Figure 3 Phase space trajectories showing the phenomenon of
the reverse period doubling bifurcation for some discrete values
of the control parameter α

Figure 4 Phase space trajectories for a discrete value α = 0.5
of model of the neuron memristive autapse displaying chaotic
dynamics.
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RING-STAR NETWORK OF MEMRISTIVE HINDMARSH-
ROSE MODEL

After exploring the dynamical analysis of the memristive
Hindmarsh-Rose neuron model in brief, we explore the collective
behavior in a ring-star network of memristive Hindmarsh-Rose
neuron model. An advantage of this mixed topological network
is we get three different networks for free (ring-star, ring, and star
network).

Ring and star networks find their applications in various real
world systems (Roberts and Wessler 1970), gene regulatory net-
works (Shu et al. 2021), just to name a few. It is an important
fundamental network to study first for a dynamical oscillator. A
sketch of a ring-star network is illustrated in Fig. 5.
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N

Figure 5 The memristive Hindmarsh-Rose neuron system con-
nected in a ring-star network. Here we consider N = 100 mem-
ristive HR neurons where the central one is labeled i = 1 and
the end nodes are labeled from i = 2, . . . , N. The ring and star
coupling strengths are denoted by σ and µ respectively.
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Figure 6 Ring-Star network of memristive Hindmarsh Rose neu-
ron model with σ ̸= 0, µ ̸= 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes considered
is N = 100. Asynchronous behavior in (a), synchronous behavior
in (b), chimera state in (c) is shown.

The dynamical equations of the ring-star network are given by

ẋi = fx + µ(xi − x1) +
σ

2P

n=i+P

∑
n=i−P

(xi − xn),

ẏi = fy,

u̇i = fu,

ẇi = fw.

(3)

The central node (i = 1) is governed by the following system of
differential equations:

ẋ1 = fx +
N

∑
j=1

µ(xj − x1),

ẏ1 = fy,

u̇1 = fu,

ẇ1 = fw.

(4)

where

fx = yi − ax3
i + bx2

i − αxi cos(ui) + m sin(wi),

fy = c − dx2
i − yi,

fu = sin(ui) + exi,

fw = 2π f .

with periodic boundary conditions:

xi+N(t) = xi(t),
yi+N(t) = yi(t),
ui+N(t) = ui(t),
wi+N(t) = wi(t)

for i = 2, 3, . . . , N. The parameters used throughout this study are:
a = 1, b = 3, c = 1, d = 5, e = 0.5, α = 0.5, f = 0.5. The size of the
network is considered to be of 100 nodes with P nearest neighbors
connected to each other. The network parameters such as the ring
coupling strength σ, star coupling strength µ, and the coupling
range P will be varied to explore different synchronization patterns
arising in the ring-star network of memristive Hindmarsh-Rose
neuron system.

Note that the ring-star network transforms to a ring network
when µ = 0 and it transforms to a star network when σ = 0. The
mixed topological ring-star network prevails when σ ̸= 0 and
µ ̸= 0. We have divided our whole network analysis into three
categories: category A: ring-star network, category B: ring network,
category C: star network.

Characterization of chimera states
In order to characterize the spatiotemporal patterns obtained in the
study, we use the measure of strength of incoherence (SI). SI was
developed as a measure to characterize different spatiotemporal
patterns exhibited by the network of neurons. Many studies have
shown that SI is able to characterize different spatiotemporal states
in a network of neurons.

Here we give a sketch of the method adapted by the Strength
of Incoherence. The idea lies in transforming the original variables
into new variables. Suppose xi, i = 1, . . . , N represents the original
set of variables of the network system. Next, define new set of
variables as zi = xi − xi−1, i = 1, . . . , N. The average of zi’s is
denoted by

⟨z⟩ = 1
N

N

∑
i=1

zi.
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We then evaluate the quantity

χ(m) =

〈√√√√ nm

∑
j=n(m−1)+1

(zj − ⟨z⟩)2⟩t

〉
.

We calculate sm = Θ(δ−χ(m)), where δ is a predetermined thresh-
old based on which different characterizations of the network is
carried out, and m denotes the number of bins the network is
grouped, m = N/n. Strength of Incoherence (SI) is then defined as

SI = 1 − ∑M
m=1 sm

M
(5)

If SI ≈ 1, it denotes incoherent state, if SI = 0, it denotes a syn-
chronized state, cluster state, and if 0 < SI < 1, it denotes chimera
state.

Ring-star network
Here we consider the effect of both ring and star coupling strengths
(σ ̸= 0, µ ̸= 0) for our network and analyse the spatiotemporal
patterns. When σ = 0.05, µ = 0.04, the neuron nodes exhibit asyn-
chronous patterns, see Fig. 6 (a) showing the nodes oscillating in
an asynchronous fashion. The SI value is also 1, signifying inco-
herence. The leftmost plot shows the variation of the membrane
potential (x) as time evolves. The right most plot illustrates the
recurrence plot of the nodes of the network under study by consid-
ering the Euclidean norm of the x state values of different nodes.
Each point (i, j) on the grid is color coded depending on the value
of the Rij = ||xi − xj||, where 1 ≤ i, j ≤ N and ||.|| denotes the
Euclidean norm.

Let us consider the figure on the left of Fig. 6 (a). The x-state
variable is color coded according to its value. This gives us an
idea as to how the oscillators are evolving with time, are they
synchronized with their neighboring elements or not? This can be
seen if the oscillators have same value or color. The leftmost plot
illustrates the evolution of the network with time. The recurrence
plot on the right, measures the Euclidean norm of the i th oscillator
node versus the j th oscillator node. The color coding is done based
on the Euclidean norm. If the norm between the i th and j th node
is zero, then the nodes are synchronized. The shades represent the
magnitude of the Euclidean norm of the ith oscillator versus the
jth oscillator. When i = j, observe that the diagonal line is always
blue denoting zero norm.

When the ring coupling strength σ is decreased to −6, the node
gets synchronised. This is illustrated in Fig. 6 (b). Observe that
the values of the x state variable are all arranged horizontally. The
SI value here is 0 signifying synchronized state. This can also be
confirmed from the spatiotemporal plot and the recurrence plot.

The ring-star network of memristive Hindmarsh-Rose neuron
system shows chimera state when σ = 7, µ = 1, see Fig. 6
(c). Observe that initial nodes and final nodes remain synchro-
nised whereas nodes in the middle (30 ≤ Nodes ≤ 60 ) oscillate
asynchronously. From such coexistence of synchronous and asyn-
chronous states, it can confirmed as a chimera state. This can also
be seen from the spatiotemporal plot on the left and the formation
of the regular structures of colours other than blue in the recur-
rence plot. The SI value in this case is 0.7, confirming a chimera as
0 < SI < 1. Interestingly, double-well chimera state is found in this
system. We refer the reader to the author’s previous work in (Muni
and Provata 2020), where double well chimera state were found
in the ring-star network of Chua circuits. Double well chimera
state is an important type of chimera state which traverses both
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Figure 7 Ring-Star network of memristive Hindmarsh Rose neu-
ron model with σ ̸= 0, µ ̸= 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes considered
is N = 100. Double well chimera in (a), another double well
chimera in (b), two synchronized cluster state in (c) is shown.

the positive and negative values of x state variable. It is interesting
to observe in the case of memristive HR neuron system.

Such a double well chimera state is shown in Fig. 7 (a). Observe
that in the middle plot, some nodes are in synchronous pattern in
the positive range of x and some in the negative range of x. Notice
that the spatiotemporal pattern on the left, has alternating strips of
both red (in negative region) and blue (in positive regions). The
regular structures in the recurrence plot on the right also confirms
this as a double well chimera state.The SI value in this case is 0.68
and denotes a chimera. Another such double well chimera state is
shown in Fig. 7 (b). The SI value is 0.68, denoting a chimera state.

The prevalence of the double-well chimera state was found to
be robust with the variation of σ till σ < 15. When σ = 15, µ = 1,
the double well chimera state is destroyed and formation of the
two clustered state takes place as shown in Fig. 7 (c). The SI value is
around 0.02 ≈ 0, signifying a cluster state. The middle plot shows
the two almost synchronized clusters traversing both positive and
negative values of x. The right most plot shows very tiny square
like regular structures indicating the presence of clusters and the
recurrence plot differs topologically form other patterns such as
synchronous, chimera states. In the next section, we discuss about
the topological patterns shown by the ring network.

Ring network
In this section, we address various spatiotemporal patterns in the
ring network of memristive Hindmarsh Rose neuron system by
setting σ ̸= 0, µ = 0. In Fig. 8 (a), we showcase the asynchronous
behavior of the end nodes of the ring network. This can be con-
firmed from the spatiotemporal plot and the recurrence plot. The
SI value is 1 denoting an asynchronous state. In Fig. 8 (b), we
showcase a double well chimera state. This can be confirmed by
the regular structures in the recurrence plot on the right and the
spatiotemporal plot on the left. The SI value is 0.44, signifying a
chimera state.
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Figure 8 Ring network of memristive Hindmarsh Rose neuron
model with σ ̸= 0, µ = 0. Random initial conditions are set with
the coupling range of P = 70. Number of nodes considered is
N = 100. Asynchronous behavior in (a), double well chimera
state in (b) is shown.

Moreover, cluster states are also possible in ring network, see
Fig. 9 (a). The SI value is 0.02, signifying synchronous state/ cluster
state. This can be shown by the presence of small square structures
in the recurrence plots. A single cluster synchronization state is
shown in Fig. 9 (b).The SI value is 0, denoting a synchronized state.
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Figure 9 Ring network of memristive Hindmarsh Rose neuron
model with σ ̸= 0, µ = 0. Random initial conditions are set
with the coupling range of P = 70. Number of nodes consid-
ered is N = 100. Two cluster synchronized state behavior in (a),
synchronized state in (b) is shown.

Star network
In this section, we explore the spatiotemporal patterns exhbited
by the star network of memristive Hindmarsh Rose neuron model.
Star networks is useful in many engineering systems, network hub
system. Study on the synchronization aspect of star connected
Chua oscillator were carried out in (Muni and Provata 2020). Un-
like previous cases of ring-star and ring network, chimera state
seems to be absent in the case of star networks.

The presence of sole central node drives more information to the
end nodes of the network and hence chances of full synchroniza-
tion is much more common in star networks. When µ = −0.5, the
star network enters the regime of asynchronization. The SI value
is 1, signifying asynchronization. Increasing the star coupling
strength µ to 1, we observe full synchronization in the system.The
SI value is 0, signifying synchronization.

2000 4000 6000 8000
time

20

40

60

80

100

i

-1

-0.5

0

0.5

1

1.5

0 50 100
Nodes

-1.2

-1

-0.8

-0.6

-0.4

-0.2

X

=0, = -0.5

20 40 60 80 100
i

20

40

60

80

100

j

0

0.2

0.4

0.6

0.8

0 50 100
Nodes

-7

-6

-5

-4

-3

-2

X

=0, = 1

2000 4000 6000 8000
time

20

40

60

80

100

i

-6

-5

-4

-3

20 40 60 80 100
i

20

40

60

80

100

j

0

1

2

3

4

(a)

(b)
20 40 60 80

i

20 40 60 80
i

2000

4000

6000

8000

10000

tim
e

2000

4000

6000

8000

10000

tim
e

x

x

Figure 10 Star network of memristive Hindmarsh Rose neuron
model with σ = 0, µ ̸= 0. Random initial conditions are set with
the coupling range of P = 70. Number of nodes considered is
N = 100. Asynchronous behavior in (a), synchronized state in (b)
is shown.

Variation of the Strength of Incoherence with respect to coupling
strength
Here we observe the variation of the strength of incoherence
(SI) with respect to the ring coupling strength (σ), star coupling
strength (µ). In Fig. 11 (a), (b), and (c), we have considered the vari-
ation of the strength of incoherence with the variation of the star
coupling strength µ for three different values of coupling range
P = 30, 70, and 90. In Fig. 11 (a), with negative µ, the SI value is
almost same and then increases as µ becomes positive and then
follows an increasing trend as µ is increased.

The behavior is robust with the change in the coupling range
P as evident from Fig. 11 (b), (c). In Fig. 11 (d), (e), (f), we have
considered the variation of the strength of incoherence with the
variation of ring coupling strength σ for three different values of
coupling range P = 30, 70, and 90. As can be seen in Fig. 11 (d),
SI is 1 for negative values of σ and starts to decrease for positive
σ and reaches to zero. So variation of σ from negative to positive
value, we see a variation from asynchronous to synchronous state
or cluster state. The behavior is robust for different other values of
coupling ranges in Fig. 11 (e), and (f).
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Figure 11 Variation of the strength of incoherence (SI) with re-
spect to the star coupling strength (µ) in panels (a), (b), (c) for
various coupling ranges P = 30, 70, and 90 respectively. Simi-
larly, variation of the strength of incoherence (SI) with respect
to the ring coupling strength σ for various values of coupling
ranges P = 30, 70, and 90 respectively. The network size is
N = 100.

CONCLUSION

In this manuscript, we have considered a memristive version of the
Hindmarsh-Rose neuron model. We found the proposed model
was able to exhibit a reverse period doubling route to chaos, as
well as phenomena of interior and exterior crises. Three differ-
ent networks (ring-star, ring, and star) networks of memristive
Hindmarsh Rose neuron models were explored. Chimera states,
including double well chimera states, were found in the ring-star
and ring network, which shows that the memristive Hindmarsh-
Rose neuron model is a promising neuron model to be explored
further in the future. Many future directions emerge from this
study. Study of lattice Shepelev et al. (2020a, 2021a), multilayer net-
works Shepelev et al. (2021c) of the neuron model can be explored.
Emergence of spiral waves can be studied in the latter networks
and a proper quantification can be carried similar to the methods
used in Shepelev et al. (2020b).

The basin of attraction of double-well chimera state, syn-
chronous and asynchronous state, can be explored in the future.
Does the system exhibit anti-phase synchronization Shepelev et al.
(2021b) is a topic that can be thought of. Does a discretized version
of the proposed model in the present paper show extra qualitative
dynamics is a future direction that can be looked upon in a similar
spirit in Muni et al. (2022). Recently extreme multistability was
found in memrisitve Hindmarsh-Rose model in Njitacke Tabek-
oueng et al. (2022), can this model also exhibit extreme multistabil-
ity? A deep investigation of the global dynamics of the memristive
Hindmarsh-Rose neuron proposed in this work will be carried out.
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ABSTRACT In the last two decades, the dynamics of difference and differential equations have found a cele-
brated place in science and engineering such as weather forecasting, secure communication, transportation
problems, biology, the population of species, etc. In this article, we deal with the dynamical behavior of the
logistic map using Euler’s numerical algorithm. The dynamical properties of the Euler’s type logistic system
are derived analytically as well as experimentally using the bifurcation diagram. In the analytical section the
dynamical properties such as fixed point, period-doubling, and irregularity are examined followed by a few
theorems. Further, in the experimental section, the dynamical properties of the Euler’s type logistic system
are studied using the period-doubling bifurcation plot. Because the dynamics of the Euler’s map depend on
the Euler’s control parameter h, therefore, the three major cases are discussed for h = 0.1, 0.4 and 0.7. The
result shows that as the value of parameter h decreases from 1 to 0 the growth rate parameter r increases
rapidly. Therefore, the improved chaotic regime in bifurcation plots may improve the chaos based applications
in science and engineering such as secure communication.
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Fixed point
Periodic orbit
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Chaos

INTRODUCTION

In the last few decades, the term “Chaos” has become the subject
matter of the study in mathematics which determines the fixed
and periodic and irregularity in the nonlinear dynamical systems.
This concept was described by Poincare (1899) when he examined
the qualitative results in nonlinear systems and celestial mechan-
ics. But in 1960’s Lorenz (1963) again recalled it and examined it
chaotic part which depends on the initial condition. Further, May
(1976) and Lorenz (1963) researched much important arithmetic
after that all the nonlinear dynamical system has been saturated
with analytical and numerical results of difference and differential
equations. The logistic map rx(1 − x), is the most researched dif-
ference map in the nonlinear dynamics which is also known as the
model of population growth introduced by V. F. Verhulst. In 1978,
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Feigenbaum (1978) examined the generic dynamical properties of
the logistic map using experimental and analytical simulations.
Moreover, for a brief elementary analysis of about the nonlinear
dynamical systems and their qualitative properties one may read
the following published and unpublished research like Robinson
(1995), Alligood et al. (1996), Ausloos et al. (2006), Devaney (1948),
Holmgren (1994), and Ashish et al. (2019b).

Since 1930, the nonlinear dynamical systems have played a
vital role in various applications of science and engineering such
as cryptography, transportation problems, traffic signal control
system, secure communication systems, neural network, switch
technology, electronics and many other branches of science. In last
two decades the discrete logistic map and its various generalized
versions have been studied in the literature as a road map in the
nonlinear dynamical systems. In 1996, Song et al. (1996) researched
the dynamical behavior of logistic map using error valued feedback
method for synchronization of the dynamics and Molina et al.
(1996) examined the embedded dimension of various chaotic maps
using time series methodology.

A communication system to develop irregular signals was de-
veloped using difference maps by Singh et al. (2010) in 2010. Fur-
ther, in 2013 Radwan et al. (2013) introduced the various modulated
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discrete difference systems and described their dynamical proper-
ties such as fixed-point state, period-doubling interpretations and
chaotic behavior. Parasad et al. (2014) described the stabilization
in the fixed and periodic states of the logistic maps. In 2005, Rani
et al. (2005) and Kumaret al. (2005), using the new technology ex-
amined the stabilization in the chaotic maps. They introduced a
two-step feedback method, that is, Ishikawa iterates, that shows
that the logistic map has fast convergence for the extra range of the
control parameter r as compared to one-step feedback procedure
and also presented a comparative study in Picard orbit in Agarwal
and Rani Rani et al. (2009). In 1953, Mann (1953) introduced a
novel three-step feedback procedure also known as Mann iterative
method which give superior results in functional analysis and ev-
ery branch of mathematics. Further, Chugh et al. (2012), in 2012
examined the stability and convergence of the logistic map using
another four-step feedback procedure also known as Noor iterative
method. Khamosh (2020) and Kumar (2020) studied the dynamics
of the generalized logistic map in superior orbit (see also Renu et
al. (2022)).

Recently, He et al. (2023) introduced an homotopy perturbation
method which increases the effectiveness in nonlinear oscillator
systems. It is also observed that the frequency accuracy may be
improved the oscillators by increasing the iteration in the system.
Ashish et al. (2019a) established the chaotic behavior of the logistic
map using superior technique and examined the onset chaos prop-
erties like period-doubling to chaos, period-3 window a road map
to chaos and maximum Lyapunov exponent. Later, they examined
the dynamical properties using cobweb plot, time-series analysis
and bifurcation plot in superior orbit Ashish et al. (2018).

In 2019, stabilization in fixed and periodic states was examined
and its application in transportation system was examined Ashish
et al. (2021a), Ashish et al. (2021b), and Ashish et al. (2021c). The
article is divided into five major sections. Section 1 is introductory
in nature and describes a brief literature review and Section 2
contains the basic definition of fixed point, periodic point and
Picard feedback procedure. In Section 3, the analytical results are
proved for the Euler’s type logistic map and experimental analysis
is carried out in section 4. Finally, the article is concluded in Section
5.

PRELIMINARIES

This section deals with the basic terminologies, notions and defini-
tion which are continuously used in the article.

Definition 1. . Let f be a one-dimensional map defined on non-
empty sets X. Then the Picard orbit which is also known as orbit
of function is the set of all iterates of an initial point x and defined
as xn+1 = f (xn) .

Definition 2. . Let f be a one-dimensional map defined on a set X,
where X is a non-empty set. A point x ∈ X is said to be periodic
fixed point of period-p or cycle-p if it satisfies f p(x) = x, where p
is a positive integer.

Definition 3. . Let f be a one-dimensional map defined on a set X,
where X is a non-empty set. A point x ∈ X is said to be fixed if it
satisfies the condition f (x) = x.

ANALYTICAL INTERPRETATION

This section deals with the analytical study of the logistic map
rz(1 − z) where r ∈ [0, 4] and z ∈ [0, 1] using Euler’s numerical
algorithm. The Euler’s numerical algorithm is given by

Eh(z, r) = z + h fr(z). (1)

This equation has two regular fixed points z∗ = 0 and z∗ = 1.
Since the solutions for an initiator z0 ∈ [0, 1] and r > 0, approaches
to the regular fixed state z∗ = 1 from the interval [−z, z]. But
such type of system has not much importance in the dynamics of
one-dimensional chaotic maps. Therefore, the given system (1) is
modified in more simplified quadratic discrete system. For this
let us consider the parameter x = hr

1+hr z, then the relation (1) is
described by

Eh(x, r) = (1 + hr)x(1 − x) (2)

where x belongs to the closed interval [0, 1] and the relation (2) is
called as Euler’s type novel logistic system. Now, let us determine
the following result regarding fixed point, periodic point and the
stability of this novel Euler’s logistic map.

Theorem 1. Let fr(x) = rx(1− x) be the one-dimensional logistic map
defined on the closed interval [0, 1] and r ∈ [0, 4]. Then, show that 0 and

hr
1+hr are the fixed points for the Euler’s type logistic map.

Proof. Since fr(x) = rx(1 − x) and Eh(x, r) = (1 + hr)x(1 − x), is
the Euler’s logistic system, then from the definition of the fixed
point, we can say

Eh(x, r) = x,

(1 + hr)x(1 − x) = x,

(1 + hr)x(1 − x)− x = 0,

x[(1 + hr)(1 − x)− 1] = 0,

thus, x = 0 and x =
hr

1 + hr
.

Thus, the point x = 0 and x = hr
1+hr , where h, r > 0 is the

Euler’s fixed point for the Euler’s Logistic map. This completes
the proof of the theorem. While, Figure 1 shows the functional
representation of the logistic map in Euler’s numerical algorithm.
Figure shows the fixed-point x = 0 and x = hr

1+hr where the
diagonal axis intersects the functional graph of the map. Similarly,
the periodic fixed point of order two are also derived using the
following theorem.

Theorem 2. Let fr(x) = rx(1 − x) be the one-dimensional logistic
map defined on the closed interval [0, 1] and r ∈ [0, 4]. Then, show that
E2

h(x, r) has four fixed points for the Euler’s map.

Proof. Since fr(x) = rx(1 − x) and Eh(x, r) = (1 + hr)x(1 − x), is
the Euler’s logistic system, then from the definition of fixed point,
we can say

E2
h(x, r) = Eh(Eh(x, r), r) = x,

(1 + hr)2x(1 − x)(1 − ((1 + hr)x(1 − x))) = x,

(1 + hr)2x(1 − x)(1 − ((1 + hr)x(1 − x)))− x = 0.
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Then, solving the above relation, we obtain the following four
roots:

x1 = 0,

x2 =
hr

1 + hr
,

x3 =
(1 + hr)−

√
(hr − 2)(2 + hr)

2(1 + hr)
,

x4 =
(1 + hr) +

√
(hr − 2)(2 + hr)

2(1 + hr)
.

Thus, x1, x2, x3, and x4 are the four fixed points for the system
E2

h(x, r). The fixed point x1 and x2 are the trivial point of order
one as discussed in Theorem 1 and x3 and x4 are periodic point of
order two for the given Euler’s logistic system. But it is observed
that the periodic roots are real if and only if r > 2/h. Further, the
Figure 2 shows the graphical representation for the fixed points
x1, x2, x3, and x4 which intersect the diagonal axis y = x of the
graph. Proceeding in this way the we can get the periodic points
of higher orders, that is the periodic points of order 4, 8, 16, 32,
and so on using the dynamical system E3

h(x, r), E4
h(x, r), E5

h(x, r),
E6

h(x, r), and so on. But it is not so simple to solve the higher order
equations using analytically. Therefore, they are determined using
the numerical simulation in computational software Mathematica,
and SPSS.
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EXPERIMENTAL INTERPRETATION

This section deals with the experimental study of the one-
dimensional logistic map rx(1 − x), where r ∈ [0, 4] and x ∈ [0, 1]
using Euler’s numerical algorithm. As studied in the above section
the dynamics of the Euler’s type logistic map depends on the two-
control parameter, Euler’s parameter h and the logistic parameter r.
Therefore, the nature of the Euler’s system Eh(x, r) is examined for
different parameter values of h and the regime and the dynamical
behavior for the advanced range of parameter r is determined. Let
us take the three cases for h = 0.1, 0.4 and 0.7 and examine the
dynamical nature using bifurcation plot as follows:

Case-1: Dynamics for Eh(x, r) at h = 0.1, and 0 ≤ r ≤ 30
When h = 0.1, the Euler’s map has stable fixed-point behavior up
to value r = 20, after that the first bifurcation is seen at r > 20 at
which the Euler’s orbit is divided in to two period orbits x3 and
x4 of order two as determined in above section and. The stability
in the periodic fixed point of order 2 is then studied for 20 < r ≤
24.899 as shown in Figures 3 and 4. Further, for r > 24.899 the
characteristics of the Euler’s map is again noticed in which the
periodicity of order two, that is, x3 and x4 are further divided in
to the periodic fixed points of order four as shown in the Figure 4
for the range of parameter 24.899 < r ≤ 25.44. But the parameter
r increases through 24.899, the periodicity of order two becomes
unstable and the periodic point of order four become stable for
24.899 < r ≤ 25.44.

Proceeding in this way as the value of parameter r increases
through 25.44 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon
as shown in the Figure 4. But as the parameter r approaches to
25.6996 the dynamics of the Euler’s logistic map tends to chaotic
regime. The magnified Figure 4 shows the complete period-
doubling regime, Figure 5 shows the magnified chaotic regime
and Figure 6 represents the magnified period-3 window regime.
Finally, the above analysis is summarized in the following proposi-
tion.

Proposition 1. It is noticed that the dynamics of the Euler’s type logistic
system admits higher range of the control parameter r, that is, r lies
between 0 and 30 at h = 0.1 as compared to the standard logistic system
rx(1 − x), where r approaches from 0 to 4.
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Figure 3 Bifurcation plot for the map Eh(x, r) for
h = 0.1 and r ∈ [0, 30]
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Figure 5 Magnified Chaotic regime for the map
Eh(x, r) for h = 0.1

Case-2: Dynamics for Eh(x, r) at h = 0.4, and 0 ≤ r ≤ 7.5

Further, as the range of parameter h is increased and is taken as
h = 0.4, range the control parameter r decreases rapidly, that is,
r approaches from 0 to 7.5 as shown in bifurcation plot Figure 4.
While Figure 7 gives the complete dynamics of the Euler’s logistic
system which describes fixed-point state, periodic state and chaotic
regime. At h = 0.4, the Euler’s map has stable fixed-point behavior
up to r = 5, after that the first bifurcation occurs at r = 6.1255
at which the Euler’s orbit is divided in to two period orbits x3
and x4 of order two as determined in above the section. The
stability in the periodic fixed points of order 2 is then studied for
6.1255 < r ≤ 6.3573 as shown in Figure 8. Further, for r > 6.3573
the orbit of the Euler’s logistic map is again noticed in which the
periodicity of order two, that is, x3 and x4 are further divided in
to the periodic fixed points of order four as shown in the Figure 8
for the range of parameter 6.1255 < r ≤ 6.3573. But the parameter
r increases through 6.1255, the periodicity of order two becomes
unstable and the periodic point of order four become stable for
6.1255 < r ≤ 6.3573.

Proceeding in this way as the value of parameter r increases
through 6.4299 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon as
shown in the Figure 8. But as the parameter r approaches to 6.4299
the dynamics of the Euler’s logistic map tends to chaotic regime as
shown in the magnified Figure 9. The magnified Figure 8 shows
the complete period-doubling regime while the magnified Figure
10 represent the complete chaotic regime with period-3 window.
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Figure 6 Magnified period-3 window for the map
Eh(x, r) for h = 0.1

Proposition 2. It is noticed that the dynamics of the Euler’s type logistic
system again admits higher range of the control parameter r, that is, r
lies between 0 and 7.5 at h = 0.4 as compared to the standard logistic
system rx(1 − x), where r approaches from 0 to 4.
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Figure 7 Bifurcation plot for the map Eh(x, r) for
h = 0.4 and r ∈ [0, 7.5]
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Case-3: Dynamics for Eh(x, r) at h = 0.7, and 0 ≤ r ≤ 4.25
Further, as the range of parameter h is increased and is taken as
h = 0.4, range the control parameter r decreases rapidly, that is, r
approaches from 0 to 4.25 as shown in bifurcation plot Figure 11.
While Figure 11 gives the complete dynamics of the Euler’s logistic
system which describes fixed-point state, periodic state and chaotic
regime. At h = 0.7, the Euler’s map has stable fixed-point behavior
up to r = 2.8339, after that the first bifurcation occurs at r = 3.4953
at which the Euler’s orbit is divided in to two period orbits x3 and
x4 of order two as determined in above section and.

Proceeding in this way as the value of parameter r increases
through 3.4953 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon as
shown in the Figure 12. But as the parameter r approaches to 3.6696
the dynamics of the Euler’s logistic map tends to chaotic regime.
The magnified Figure 12 shows the complete period-doubling
regime while the magnified Figure 13 represent the complete
chaotic regime with period-3 window. While Figure 14 shows
a comparative representation of the bifurcation plots for the pa-
rameter value h = 0.1, 0.4 and 0.7. Thus, we summarize the case 3
as follows:

Proposition 3. It is observed that as the Euler’s parameter range of
the h is increased the range of the growth rate parameter r are decreases
simultaneously. But for the lower range of Euler’s parameter h the growth
rate parameter range is higher than the standard logistic system.
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Figure 11 Bifurcation plot for the map Eh(x, r) for
h = 0.7 and r ∈ [0, 4.25]
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CONCLUSION

In this article using some computational work on conventional
logistic map in Euler’s numerical algorithm is studied. The whole
dynamics depends on the two control parameters h and r. There-
fore, the following results are concluded from the main section:

• The dynamical properties of the Euler’s type logistic map are
determined analytically as well as experimentally.

• In the analytical section the Euler’s logistic type map is de-
rived and the fixed and periodic points are calculated followed
by the Theorem 1 and Theorem 2.

• Further, in experimental section the dynamical properties of
the Euler’s logistic map are studied using period-doubling
bifurcation plot. Because the dynamics of the Euler’s map
depends on the Euler’s control parameter h, three cases are
discussed for all the dynamical properties for h = 0.1, 0.4 and
0.7.

• It is also observed that the map exhibits its dynamical prop-
erties for a large range of parameter r, as compared to the
existing methods. It is also observed that as compared to Pi-
card iteration method which has growth rate r ∈ [0, 4] and
Mann iteration r ∈ [0, 4.22], in this technique the growth rate
parameter r approaches to 30. Hence it may improve the
chaos-based application in engineering and science such as
secure communication and cryptography.
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Modeling Love with 4D Dynamical System
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ABSTRACT Dynamic modeling of romantic relationships explains the development of love/hate feelings
between two people over time with a system of differential equations. Rather than postulating an individual’s
emotions as a one-component feeling of love, this study assumed two-component feelings of intimacy and
passion. As a result of this assumption, relationship dynamics are represented by a four-dimensional system
of equations. The possible outcomes of this new 4D model were compared with the results of the classical
2D model and it was seen that they could give very different outputs. In addition, situations that cannot be
explained by classical models such as the end of passion in long-term relationships, relationships that turn
from friendship to love, and the reunion of couples after separation are interpreted.
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INTRODUCTION

The dynamic systems approach has been used for many years in
applied mathematics and physics to model the behavior of many
physical systems, such as the motion of planets (position and ve-
locity), mass-spring systems, oscillators, and electrical circuits.
Afterward, it expanded its field of use in the field of engineering
and gained a respectable place. An example of this is the solu-
tion of flow models, which are in the form of partial differential
equations, by converting them to systems of ordinary differential
equations (Shah et al. 2022) (Shahzad et al. 2023) (Bilal et al. 2021)
(Qureshi et al. 2022). In the last few decades, its use has become
widespread in disciplines such as biology, economics, and psy-
chology (Richardson et al. 2014). This study primarily scanned the
dynamic modeling efforts of the study of romantic relationships in
the literature, which are included in the field of psychology, and
aimed to make psychological theories and dynamical approaches
consistent with each other.

Psychologists have developed various theories to explain love.
According to Rubin, liking and loving are separate emotions. He
defines liking with feelings such as being appreciated, admired,
enjoying, spending time, and wanting to be with the partner. He
defines love as a more intense emotion with strong desires for phys-
ical contact and intimacy (Rubin 1970). The color wheel model
was developed by Lee in 1973 and according to Lee, there are three
main styles of love. These are EROS with physical and emotional
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passion, LUDUS with playful style, and STORGE, which combines
family love with friendship (Lee et al. 1988). In 1987, Hazan and
Shaver put forward the attachment theory, three styles of adult
attachment; she described them as "anxious-indecisive" who fears
that her partner does not love her, "avoidant" who has difficulty de-
veloping trust, and "safe" who has no fear of abandonment (Hazan
and Shaver 2017). According to Hatfield, there are two basic types
of love, compassionate and passionate. While mutual trust and
respect are at the forefront of tender love, deep feelings and sex-
ual attraction are at the forefront of passionate love (Hatfield et al.
1988).

One of the most popular love theories is the triangular love
theory developed by Sternberg in 1986. Three basic components of
love in this theory are named intimacy, passion, and commitment.
Intimacy encompasses the emotions that lead to the experience of
warmth in a loving relationship. Passion represents emotions that
lead to sexual attraction and romance. Finally, the commitment
component describes the determination to maintain the relation-
ship for a long time (Sternberg 1986).

There are also psychological studies on the relationship between
intimacy and passion. Baumeister and Bratslavsky reported that
passion is a function of the change in intimacy, hence the time
derivative of intimacy, and that there may be a positive or neg-
ative correlation between passion and intimacy within the same
relationship(Baumeister and Bratslavsky 1999). In addition, Ayku-
toğlu and Uysal state that they found evidence for the existence
of a relationship between intimacy and passion, and that phys-
ical attraction is effective on this relationship (Aykutoğlu 2015)
(Aykutoğlu and Uysal 2017).
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■ Table 1 Several models expressing the love dynamics between couples or love-triangle among triples.

1 ẋ1 = a1x1 (t) + b1x2 (t) ,
ẋ2 = b2x1 (t) + a2x2 (t) .

(Sprott 2004), (Erbaş
2022) and (Sunday et al.
2012)

2
ẋ1 = −α1x1 (t) + β1x2 (t) + γ1 A2,

ẋ2 = −α2x2 (t) + β2x1 (t) + γ2 A1.
(Rinaldi 1998b) and (Biel-
czyk et al. 2012)

3 ẋ1 = −α10x1 (t) + β10x2 (t) + F10 (t) ,
ẋ2 = −α20x2 (t) + β20x1 (t) + F20 (t) .

(Wauer et al. 2007) and
(Chen et al. 2016)

4

ṘJ = aRJ + b(J − G),

J̇ = cRJ + dJ,

ṘG = aRG + b(G − J),

Ġ = eRG + f G.

(Sprott 2004)

5
Ṙ = aR + bJ (1 − |J|) ,

J̇ = cR (1 − |R|) + dJ.
(Sprott 2004)

6
Ṙ = aR + bJ (1 − |J|) + y(t),

J̇ = cR (1 − |R|) + dJ + f (t) .
(Huang and Bae 2018a)

7 ẋ = RL (y (t)) + RA (A) (1 + B (x (t)))− αx(t) (Rinaldi and Della Rossa
2020)

8
ẋ1 = ax1 + bx2

(
1 − εx2

2
)

,

ẋ2 = dx2 + cx1
(
1 − εx2

1
)

.
(Barley and Cherif 2011)

9 ẋ1 = −α10x1 + β10
x2

1+ε0|x2| + F10,

ẋ2 = −α20x2 + β20
x1

1+ε0|x1| + F20.

(Wauer et al. 2007)

10
ẋ1 = −α1x1 (t) + ρ1 A2 + R1(x2),

ẋ2 = −α2x2 (t) + ρ2 A1 + R2(x1).
(Rinaldi et al. 2013a), (Ri-
naldi et al. 2010), (Rinaldi
et al. 2013b), (Liao and
Ran 2007), (?)

11

L̇ = −α1L + β1

[
P(1 − (P/γ)2) + AP

]
Ṗ = −α2P + β2

[
L + AL

1+δZ

]
Ż = −α3Z + β3P

(Rinaldi 1998a)

12

ṘJ = aRJ + b (J − G)
(

1 − (J − G)2
)

,

J̇ = cRJ

(
1 − R2

J

)
+ dJ − mJG,

ṘG = aRG + b(G − J)
(

1 − (G − J)2
)

,

Ġ = eRG
(
1 − R2

G
)
+ f G − nJG.

(Liu and Chen 2015)
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■ Table 2 continuation of Table 1

13

ṘJ = aRJ + b (J − G) (1 − |J − G|) ,

J̇ = cRJ
(
1 −

∣∣RJ
∣∣)+ dJ,

ṘG = aRG + b(G − J) (1 − |G − J|) ,

Ġ = eRG (1 − |RG|) + f G.

(Ahmad and El-Khazali
2007)

14
Dα

t u (t) = −ρ1u (t) + σ1v (t)
(
1 − ϵv2 (t)

)
+ φ1

Dα
t v (t) = −ρ2v (t) + σ2u (t)

(
1 − ϵu2 (t)

)
+ φ2

(Owolabi 2019), (Goyal
et al. 2019) and (Ozalp
and Koca 2012)

15 dαR/dtα = aR + bJ(1 − J) + 5sin(πt)
dβ J/dtβ = cR(1 − R) + dJ

(Huang and Bae 2018b)

16

dαRJ/dtα = aRJ + b sgn (J − G) ,

dβ J/dtβ = c sgn(RJ) + dJ,

dγRG/dtγ = aRG + b sgn(G − J),

dη G/dtη = e sgn(RG) + f G.

(Ahmad and El-Khazali
2007)

17

D2αx1 (t) = −α1x1 (t) + β1(x2 − x3)
(

1 − ε(x2 − x3)
2
)
+ γ1

D2αx2 (t) = −α2x2 (t) + β2x4
(
1 − εx2

1
)
+ γ2

D2αx2 (t) = −α2x3 (t) + β3x4
(
1 − εx2

4
)
+ γ3

D2αx4 (t) = −α1x4 (t) + β1(x3 − x2)
(

1 − ε(x3 − x2)
2
)
+ γ4

(Koca and Ozalp 2014)

18

CDΘ,ρ
t Mr (t) = βa + L2

r − L2
i + βc Mr,

CDΘ,ρ
t Mi (t) = 2Lr Li + βc Mi,

CDΘ,ρ
t Lr (t) = βb + M2

r − M2
i + βdLr,

CDΘ,ρ
t Li (t) = 2Mr Mi + βdLi.

(Kumar et al. 2021) and
(Jafari et al. 2016)

Dynamical modeling of romantic relationships has led re-
searchers in physics, mathematics, and engineering to the idea
of explaining the evolution of romantic relationships with a system
of differential equations. There is a consensus that the first attempt
at this was a short article published by Strogatz. Strogatz suggested
the following system of equations in the study of Romeo and Juliet
in which he tried to predict the love relationship (Strogatz 1988):

dR
dt

= −aJ and
dJ
dt

= bR (1)

In Equation 1, R(t) represents the quantity of Romeo’s love/hate
for Juliet and, J(t) represents the quantity of Juliet’s love/hate for
Romeo at time t. Here, a and b are the positive parameters that
characterize their romantic styles of the couple. After Strogatz, re-
searchers proposed more complex models to obtain the love/hate
evolution of individuals in a romantic relationship as a function of
time. In general, the models in the literature can be generalized by
Equation 2 (Erbaş 2022).

dx
dt

= f (x, y, t) and
dy
dt

= g (x, y, t) (2)

In this equation, the left-hand sides of the equation are the deriva-
tives with respect to time and the right-hand sides are functions
( f1 and f2) that explain the rate of change in their feelings with
instantaneous feelings and time. The models proposed by various
authors in their studies are summarized in Table 1. Same equations
are combined in the table so notations of the authors may be dif-
ferent from their original papers. The reader who wants to reach
detailed information about these studies can refer to the references
in the last column.

The first five rows in Table 1 are examples of homogeneous or in
homogeneous first-order systems of linear equation. Rows 5-10 are
nonlinear first order systems with two unknowns, rows 14 and 18
are systems of fractional order equations. In the literature, systems
of equations with more than two unknown functions have also
been used. The system of equations seen in row 11 deals with the
relationship of Laura and Petrarch. L(t) indicates Laura’s feelings
towards Petrarch, P(t) indicates Petrarch’s feelings toward Laura,
and Z(t) indicates Petrarch’s poetic inspiration.
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The four-dimensional models in rows 4, 12, 13 and 16-18 model
three-person romantic relationships, called love triangles. In the
love triangle model, Sprott assumes that Romeo has a mistress
named Guinevere and that she and Juliet do not know each other.
In this case, Romeo has two different affections or interests (RJ and
RG), while Juliet and Guinevere only have feelings for Romeo (J
and G).

While systems of fractional differential equations are used be-
tween lines 14-18, the feelings of individuals are modeled with
complex numbers in the last line. In line 18, Jafari and Sprott
represent feelings with complex numbers, while their fractional
derivatives are assigned as nonlinear functions of feelings (Jafari
et al. 2016). In studies of the dynamic analysis of love, the individ-
ual’s feeling for his partner is called love for positive values and
hate for negative values. In models that express emotions with
complex numbers, Jafari and Sprott consider the individual’s feel-
ings as a state of indecision in which love and hate coexist (Jafari
et al. 2016). But even this is far from the fact that the individual has
two-dimensional emotions that affect each other.

The triangular theory of love, which has a wide research
area in psychology, sees emotions in a romantic relationship as
two components (intimacy and passion) that affect each other.
Although this distinction has been accepted in the school of
psychology, there is, to our knowledge, no work in the school of
mathematics where dynamic calculations are made. To fill this
gap in the literature and to help interdisciplinary reconciliation
between psychology and mathematics, in this study, the dynamics
of the relationship between individuals with two-dimensional
feelings were modeled with a four-dimensional differential
equation system. This study, which is a first in this respect, aimed
to construct and test the simplest linear model. If this model is
developed;

• Relationships that minimal models cannot explain can be
explained more comprehensively,

• Relationships evolving from friendship to love can be
predicted,

• The situations of couples who come together after a long
separation are predictable.

MATHEMATICAL MODEL

In the studies on the dynamic modeling of love, the emotions of
the individual were handled as one-dimensional in the love/hate
range. This study aims to linearly model how individuals’ roman-
tic relationships evolve in a two-dimensional emotional state. For
this reason, a two-component emotional state, which is the inti-
macy of the individual to his/her partner and the deeper passions
he feels, has been determined as a function of time. The intimacy
and passion of x to his/her partner y are shown with xi(t) and
xp(t) respectively. For example, if the individual is in the emo-
tional state of (xi,xp) = (2,−1), she has sincere feelings towards
her partner and wants to spend time with him, but has no passions
and desires with him. That is, she does not feel romantic or sexual
desire.

Throughout the study, the emotions denoted by x and y will
represent the emotions of the fictional couples named Xena and
Yorgo. xi and xp will show Xena’s intimacy and passion for
Yorgo, and yi and yp will show Yorgo’s intimacy and passion
for Xena. Since an individual’s state of emotion is handled in
two components, four qualitative combinations can occur. These

combinations can be interpreted as follows according to the signs
of the components.

(xi,xp) = (+,+): Xena feels warm, close, and passionate
toward Yorgo. She enjoys spending time and being with him and
desires romance/sexuality with him.

(xi,xp) = (+,−): Xena has a good time with Yorgo and likes
him friendly. But they have no romantic or sexual desires toward
him.

(xi,xp) = (−,+): Xena does not find Yorgo close or sincere,
and even finds him boring. But she is fascinated by Yorgo’s charm
and desires him.

(xi,xp) = (−,−): Xena does not feel intimacy or passion
towards Yorgo. He does not enjoy spending time with her and
does not desire romance or sex with her.

In the two-component feeling of love modeling, it is clear that a
romantic relationship can be expressed with a total of four func-
tions. The simplest dynamic modeling of these four functions is
the linear differential equation system. In Equation 3, the intimacy
and passion of individuals x and y and their relationship with the
rate of change of these feelings are shown.

d
dt



xi

yi

xp

yp


=



axx axy bxx bxy

ayx ayy byx byy

cxx cxy dxx dxy

cyx cyy dyx dyy





xi

yi

xp

yp


(3)

In this equation, the parameters that make up the coefficients
matrix was defined in Table 3. After these parameters and initial
feelings of the couple are determined, readers can use the MAT-
LAB script in the Appendix to visualize the future of the relation.
How to comment on the visualizations is expressed in the Results
section.

RESULTS AND DISCUSSION

Results of some possible scenarios

To set an example for the model described above, a scenario was
prepared considering the characteristics of Xena and Yorgo when
they met. According to this scenario, the romantic styles of Xena
and Yorgo are shown in Table 3. The explanations of the parame-
ters in the tables are given. In the first interview, it was assumed
that both of them started with neutral emotions and the initial con-
dition was chosen as (0,0,0,0). The development of the relationship
starting from this condition over time is shown in Figure 1a. As
can be seen from this figure, as Xena’s sense of intimacy increases,
her passions decrease over time. On the contrary, Yorgo’s passion
for her increases as he gets colder from Xena.

One of the interesting features in this scenario is the influence
of individuals’ impressions on each other. When a small change is
made in the values shown in Table 3, the course of the relationship
changes. If Yorgo had found Xena sympathetic, that is, if fyx was
one instead of zero, the development of the relationship would
have been as in Figure 1b. In Figure 1b, while Yorgo’s intimacy
and passions increase over time.
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■ Table 3 Romantic styles of Xena and Yorgo.

axx = −0.2 Forgetting coefficient of the intimacy of Xena to Yorgo.

axy = −0.4 If Yorgo’s intimacy increases, Xena’s will decrease, and if it decreases, it will increase. If Xena’s partner shows
closeness/interest to her, Xena gradually loses her sense of intimacy.

bxx = +0.5 If Xena’s passion increases, her sense of intimacy increases, and if it decreases, it decreases. She is intimate with
someone she is passionate about. She might just want to fall in love.

bxy = −0.2 As Yorgo’s passion for Xena increase, Xena’s closeness to Yorgo decreases. When she realizes that Yorgo is not in
love, Xena increases her intimacy. Maybe she doesn’t want someone in love with her.

cxx = +0.3 Her passion increase when Xena feels close. Men with whom she does not feel close are not attractive, but men with
whom she feels sincere can be attractive.

cxy = +0.7 Intimate men are very attractive to Xena. Her passion for men who do not behave closely is significantly reduced.

dxx = −0.1 Forgetting coefficient of the passion of Xena for Yorgo.

dxy = +0.4 As Yorgo’s passion grows, so does Xena’s. A man who acts romantic may attract her.

fxy = +1.0 Xena’s impression of intimacy or friendship with Yorgo. Xena finds Yorgo intimate and friendly. She enjoys being friends
and spending time with him.

gxy = −1.0 Xena’s impression of glamorousness or attractiveness about Yorgo. Xena does not find Yorgo romantically or sexually
attractive.

ayy = −0.2 Forgetting coefficient of the intimacy of Yorgo to Xena.

ayx = +0.6 If Yorgo’s intimacy increases, Xena’s will decrease, if it decreases, it will increase. If Yorgo’s partner shows inti-
macy/interest to him, Yorgo increases his sense of intimacy.

byy = −0.5 If Yorgo’s passion increases, his sense of intimacy decreases, and if it decreases, it increases. He is intimate with
someone he is not passionate about. He might just want not to fall in love.

byx = +0.6 As Xena’s passion for Yorgo increases, Yorgo’s intimacy with Xena increases. When he realizes that Xena is not in love,
Yorgo decreases his intimacy. Maybe he wants someone in love with her.

cyy = −0.3 His passion decreases when Yorgo feels close. Women with whom he does not feel close are attractive, but women
with whom he feels intimacy are not attractive.

cyx = −0.1 Intimate women are not attractive to Yorgo. His passion for women who are close to him weakens a little.

dyy = −0.1 Forgetting coefficient of the passion of Yorgo to Xena.

dyx = −0.4 As Xena’s passion increases, Yorgo’s decreases. A romantic woman does not attract him.

fyx = +0.0 Yorgo’s impression of intimacy or friendship with Xena. Yorgo found Xena neither sympathetic nor antisympathetic.

gyx = +1.0 Yorgo’s impression of glamorousness or attractiveness about Xena. Yorgo finds Xena attractive. He desires her
romantically and sexually.
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Xena’s emotions show a similar development. However, as
Xena’s intimacy decreases initially and then increases, her passion
initially increases and then decreases. But they still enter into an
ideal relationship together. While the relationship shown in the
first case goes to the incompatible regions (2nd and 3rd quadrants)
in every sense, in the second case it goes to the best region. In
Figure 1a, while Zeyna wants to remain friends and not have emo-
tional relations, Yorgo wants an emotional relationship and refuses
to meet. In Figure 1b, they both enter into a friendly and passion-
ate relationship. What makes such a big difference is that Yorgo
doesn’t find Xena sympathetic. It can be said that the impressions
of individuals on each other affect the relationship very sensitively.

In another scenario, the romantic styles of our fictional char-
acters Xena and Yorgo are parameterized as in Table 4. In the
relationship that started according to these parameters, it can be
understood from Figure 2a that Xena wants friendship without
a romantic relationship and Yorgo seeks love, not intimacy. As
an example of Yorgo’s strategy for obtaining Xena, when the ayx
parameter is increased to -3, the relationship evolves as in figure 2b.
So if Yorgo exaggerates his avoidance of friendship, it may cause
Xena to desire him because a friendly man is not attractive to Xena,
but a man who avoids intimacy with her is attractive (cxy = −1).

Suppose that individuals with romantic styles in Table 3 meet
again after a long separation, but during this time their impressions
of each other, not their characteristics, have changed. Now both of
them have neutralized the impression of being close to each other
( fxy = fyx = 0), but their attraction has become gxy = 0.5 and
gyx = 0.7. How such an encounter would progress is shown in
Figure 3a. We can see that their feelings of intimacy are gradually
developing, but Yorgo’s passion first increases and then decreases,
while Xena’s passion increases steadily. In other words, ex-lovers
reconcile and become friends, but it can be said that while Xena
wants to try again, Yorgo does not take kindly to this.

When the matrix in Equation 3 is grouped and divided into
four sub-matrices, 2x2 matrices A, B, C, and D in Eqs.4 and 5 are
obtained. Matrices A and D respectively model the effect of intima-
cies on intimacies, while matrix D represents the effect of passions
on passions. The B matrix represents the influence of passions on
intimacy, and the C matrix represents the influence of intimacy on
passions. Situations, where there is no reciprocal cross-effect on
intimacies and passions, can be expressed by Equations 4 and 5. In
general, the studies seen in the literature are 2-dimensional. The
two-dimensional work done by ignoring the cross-interactions and
the four-dimensional study with the cross-interaction introduced
in this study are visualized with the data in Table 2, and the re-
sults are compared in Figure 3b. According to Figure 3b, intimacy
and passion follow a very different course when cross interactions
come into play.−→I′ 2x1

−→
P′

2x1

 =

Â2x2 B̂2x2

Ĉ2x2 D̂2x2


−→I 2x1

−→
P 2x1

+

−→f 2x1

−→g 2x1

 (4)

If B2x2=C2x2=0, then

−→
I′ 2x1 = Â2x2

−→
I 2x1 +

−→
f 2x1,

−→
P′

2x1 = D̂2x2
−→
P 2x1 +

−→g 2x1.
(5)

Discussion
When the results obtained here are discussed, perhaps the first
issue that comes to mind is how to determine the parameters that
determine romantic styles. The parameters explained in Table
2 can be obtained by surveys to be applied to individuals, by
observation, or by examining the past relationships of individuals.
But as this would be a thorny work in psychology, it is not covered
here. The signs of these parameters will give the romantic style of
the individual, but the question of how much is quite difficult to
answer.

Another issue that needs to be discussed is that the relationship
dynamics are linear. One might argue that a complex subject
such as human behavior cannot be modeled with linear systems.
Suggesting more complicated non-linear equations will of course
give results closer to reality, but the fact that a four-dimensional
structure is tried for the first time and measurement difficulties
in human emotions made it necessary to start with the simplest
model, the linear model. Moreover, the approximation of nonlinear
systems by linearizing them around fixed points is a commonly
used approximation technique. The model described here can
be said to be a model that approximately explains the evolution
of a short-term relationship around neutral emotions. It would
be appropriate to interpret the evolution of the relationship for
the first few days or a week or two. Otherwise, in long-term
developments, the model will deviate too much from reality.

To model the chaotic nature of love, it is necessary to construct
two-dimensional nonlinear and non-homogeneous or at least three-
dimensional nonlinear dynamic systems (Sprott 2010). Although
nonlinear studies have been tried in the studies in the literature, it
does not seem possible for a system with two unknowns to create
a chaotic system by itself. However, it has been determined that
chaos occurs when non-homogeneous terms are added.

In addition, since the love triangle models are expressed with
a system of equations with four unknowns, it has been observed
that four-dimensional nonlinear models can produce chaos (Kacar
et al. 2018; Wang et al. 2022). However, when the individual’s
feelings for his partner are divided into two intimacy and passion,
a nonlinear four-dimensional system alone can produce chaos.
There is no need for two-dimensional homogeneous systems as
Huang and Bae have pointed out (Huang and Bae 2018a) or for
the four-dimensional nonlinear love triangle dynamics as Liu and
Chen (Liu and Chen 2015). Even the simplest love affair can be
chaotic, with no outside human influence or involvement of a third
party.
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Figure 1 Evolution of the intimacy (black dot) and passion (red dot) between Xena and Yorgo according to the parameter in Table 3 with a)
fyx = 0 and b) fyx = +1.0.

Figure 2 Evolution of the intimacy (black dot) and passion (red dot) between Xena and Yorgo according to the parameter in Table 4 with a)
ayx = −1.0 and b) ayx = −3.0.

Figure 3 a) Intimacy (black dot) and passion (red dot) after a long separation ( fxy = fyx = 0, gxy = 0.5, gyx = 0.7), b) Grouping the matrix
according to Eqs.4 and 5.
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■ Table 4 Romantic Styles for Scenario 2

Xena axx=-1 axy=-1 bxx=+1 bxy=-2 cxx=-1 cxy=-1 dxx=-1 dxy=-1 fxy=+1 gxy=-1

Yorgo ayy=-1 ayx=-1 byy=-1 byx=+1 cyy=+1 cyx=+1 dyy=-1 dyx=+1 fyx=0 gyx=+1

CONCLUSION

As a result, in this study, emotions in a romantic relationship are
discussed in two dimensions, intimacy, and passion, which are
predicted by the triangular love theory. In cases where an indi-
vidual’s sense of intimacy influences his passion, results appear
very different from those predicted by classical one-dimensional
emotion models. In addition, it has been seen that the parame-
ters that determine the romantic styles of individuals and their
impressions of each other can affect the future of the relationship
quite sensitively. Finally, it can be said that romantic relationships,
which are seen as fragile in one-dimensional emotion models, are
more fragile in two-dimensional models.

APPENDIX

clear all; clc; close all;
% Input the parameters and initial conditions
axx= -0.2; axy= -0.4; bxx= +0.5; bxy= -0.2; cxx= +0.3; cxy= +0.7;
dxx= -0.1; dxy= +0.4; fxy=0; gxy=0.5;
ayy= -0.2; ayx= +0.6; byy= -0.5; byx= +0.6; cyy= -0.3; cyx= -0.1;
dyy= -0.1; dyx= -0.4; fyx=0; gyx=0.7;
xi0=-0.0; yi0=-0.0; xp0=+0.0; yp0=+0.0;
% Matrix and calculations. Do not type anything below
A=[axx axy bxx bxy;ayx ayy byx byy;cxx cxy dxx dxy;cyx cyy dyx
dyy]; B=[fxy;fyx;gxy;gyx];
f = @(t,x) A*[x(1);x(2);x(3);x(4)]+B;
[t,xa] = ode45(f,[0 4],[xi0 yi0 xp0 yp0]);
% Xena vs Yorgo. Black dot:intimacy, Red dot:passion
subplot(2,2,1)
%figure(1);
s1=scatter(xa(:,1),xa(:,2),40,t,’filled’); grid on; ax = gca;ax.XDir
= ’normal’;view(-31,14); xlabel(’Xena’,’FontSize’,16); yla-
bel(’Yorgo’,’FontSize’,16);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;hold
on;
s2=scatter(xa(:,3),xa(:,4),40,t,’filled’); grid on; ax = gca;ax.XDir =
’normal’;view(-31,14);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;
hold on;L1 = plot(xa(50,1),xa(50,2), ’ob’, ’MarkerSize’,7, ’Marker-
FaceColor’,’black’); axis tight;
hold on;L2 = plot(xa(50,3),xa(50,4), ’ob’, ’MarkerSize’,7, ’Marker-
FaceColor’,’red’); axis tight;
hold on; L3 = plot(xa(1,1),xa(1,2), ’ob’, ’MarkerSize’,7, ’MarkerFace-
Color’,’blue’);
hold on; L4 = plot(xa(1,3),xa(1,4), ’ob’, ’MarkerSize’,7, ’MarkerFace-
Color’,’blue’); view(2);
% Intimacy vs Passion. Black dot:Yorgo, Red dot:Xena
subplot(2,2,2)
%figure(2);
s3=scatter(xa(:,1),xa(:,3),40,t,’filled’); grid on;
ax = gca;ax.XDir = ’normal’;view(-31,14); xla-
bel(’intimacies’,’FontSize’,16); ylabel(’passions’,’FontSize’,16);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;hold
on;
s4=scatter(xa(:,2),xa(:,4),40,t,’filled’); grid on;

ax = gca;ax.XDir = ’normal’;view(-31,14);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;
hold on;L1 = plot(xa(50,1),xa(50,3), ’ob’, ’MarkerSize’,7, ’Marker-
FaceColor’,’r’); axis tight;
hold on;L2 = plot(xa(50,2),xa(50,4), ’ob’, ’MarkerSize’,7, ’Marker-
FaceColor’,’black’); axis tight;
hold on; L3 = plot(xa(1,2),xa(1,4), ’ob’, ’MarkerSize’,7, ’MarkerFace-
Color’,’blue’);
hold on; L4 = plot(xa(1,1),xa(1,3), ’ob’, ’MarkerSize’,7, ’MarkerFace-
Color’,’blue’); view(2);
% Intimacy of Xena vs intimacy of Yorgo vs passion of Xena.
subplot(2,2,3)
%figure(3);
s5=scatter3(xa(:,1),xa(:,2),xa(:,3),40,t,’filled’); grid on;
ax = gca;ax.XDir = ’normal’;view(-31,14); xlabel(’intimacy of
Xena’,’FontSize’,16); ylabel(’passion of Xena’,’FontSize’,16); zla-
bel(’passion of Xena’,’FontSize’,16);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;hold
on;
% Intimacy of Xena vs intimacy of Yorgo vs passion of Yorgo.
subplot(2,2,4)
%figure(4);
s6=scatter3(xa(:,1),xa(:,2),xa(:,4),40,t,’filled’); grid on;
ax = gca;ax.XDir = ’normal’;view(-31,14); xlabel(’intimacy of
Xena’,’FontSize’,16); ylabel(’passion of Yorgo’,’FontSize’,16); zla-
bel(’passion of Yorgo’,’FontSize’,16);
cb = colorbar;cb.Label.String = ’time’; cb.Label.FontSize = 14;
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Erbaş, K. C., 2022 Determination of romantic relationship cate-
gories and investigatıon of their dynamical properties. Chaos
Theory and Applications 4: 37–44.

Goyal, M., A. Prakash, and S. Gupta, 2019 Numerical simulation
for time-fractional nonlinear coupled dynamical model of ro-
mantic and interpersonal relationships. Pramana 92: 1–12.

Hatfield, E., R. J. Sternberg, and M. L. Barnes, 1988 Passionate
and companionate love. the psychology of love. Sternberg RJ &
Barnes MSL .

Hazan, C. and P. Shaver, 2017 Romantic love conceptualized as
an attachment process. In Interpersonal Development, pp. 283–296,
Routledge.

Huang, L. and Y. Bae, 2018a Analysis of chaotic behavior in a novel
extended love model considering positive and negative external
environment. Entropy 20: 365.

Huang, L. and Y. Bae, 2018b Chaotic dynamics of the fractional-
love model with an external environment. Entropy 20: 53.

Jafari, S., J. C. Sprott, and S. Golpayegani, 2016 Layla and majnun:
a complex love story. Nonlinear Dynamics 83: 615–622.

Kacar, S., Z. Wei, A. Akgul, and B. Aricioglu, 2018 A novel 4d
chaotic system based on two degrees of freedom nonlinear me-
chanical system. Zeitschrift für Naturforschung A 73: 595–607.

Koca, I. and N. Ozalp, 2014 On a fractional order nonlinear dy-
namic model of a triadic relationship. Journal: Journal of Ad-
vances in Mathematics 5.

Kumar, P., V. S. Erturk, and M. Murillo-Arcila, 2021 A complex
fractional mathematical modeling for the love story of layla and
majnun. Chaos, Solitons & Fractals 150: 111091.

Lee, J. A. et al., 1988 Love-styles. The psychology of love pp. 38–67.
Liao, X. and J. Ran, 2007 Hopf bifurcation in love dynamical mod-

els with nonlinear couples and time delays. Chaos, Solitons &
Fractals 31: 853–865.

Liu, W. and K. Chen, 2015 Chaotic behavior in a new fractional-
order love triangle system with competition. J. Appl. Anal. Com-
put 5: 103–113.

Owolabi, K. M., 2019 Mathematical modelling and analysis of
love dynamics: A fractional approach. Physica A: Statistical
Mechanics and its Applications 525: 849–865.

Ozalp, N. and I. Koca, 2012 A fractional order nonlinear dynamical
model of interpersonal relationships. Advances in Difference
Equations 2012: 1–7.

Qureshi, Z. A., S. Bilal, U. Khan, A. Akgül, M. Sultana, et al.,
2022 Mathematical analysis about influence of lorentz force and
interfacial nano layers on nanofluids flow through orthogonal
porous surfaces with injection of swcnts. Alexandria Engineering
Journal 61: 12925–12941.

Richardson, M. J., R. Dale, and K. L. Marsh, 2014 Complex dy-
namical systems in social and personality psychology: Theory,
modeling, and analysis. .

Rinaldi, S., 1998a Laura and petrarch: An intriguing case of cyclical
love dynamics. SIAM Journal on Applied Mathematics 58: 1205–
1221.

Rinaldi, S., 1998b Love dynamics: The case of linear couples. Ap-
plied Mathematics and Computation 95: 181–192.

Rinaldi, S. and F. Della Rossa, 2020 From individual traits to cou-

ple behavior. International Journal of Bifurcation and Chaos 30:
2050219.

Rinaldi, S., F. Della Rossa, and P. Landi, 2013a A mathematical
model of “gone with the wind”. Physica A: Statistical Mechanics
and its Applications 392: 3231–3239.

Rinaldi, S., P. Landi, and F. D. ROSSA, 2013b Small discoveries
can have great consequences in love affairs: the case of beauty
and the beast. International Journal of Bifurcation and Chaos 23:
1330038.

Rinaldi, S., F. D. Rossa, and F. Dercole, 2010 Love and appeal in
standard couples. International Journal of Bifurcation and Chaos
20: 2443–2451.

Rubin, Z., 1970 Measurement of romantic love. Journal of person-
ality and social psychology 16: 265.

Shah, I. A., S. Bilal, A. Akgül, M. T. Tekin, T. Botmart, et al., 2022 On
analysis of magnetized viscous fluid flow in permeable channel
with single wall carbon nano tubes dispersion by executing
nano-layer approach. Alexandria Engineering Journal 61: 11737–
11751.

Shahzad, A., M. Imran, M. Tahir, S. A. Khan, A. Akgül, et al.,
2023 Brownian motion and thermophoretic diffusion impact on
darcy-forchheimer flow of bioconvective micropolar nanofluid
between double disks with cattaneo-christov heat flux. Alexan-
dria Engineering Journal 62: 1–15.

Sprott, J., 2004 Dynamical models of love. Nonlinear dynamics,
psychology, and life sciences 8: 303–314.

Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.
World Scientific.

Sternberg, R. J., 1986 A triangular theory of love. Psychological
review 93: 119.

Strogatz, S. H., 1988 Love affairs and differential equations. Mathe-
matics Magazine 61: 35–35.

Sunday, J., D. Zirra, and M. Mijinyawa, 2012 A computational
approach to dynamical love model: The romeo and juliet sce-
nario. International Journal of Pure and Applied Sciences and
Technology 11: 10.

Wang, X., Y. Feng, and Y. Chen, 2022 A new four-dimensional
chaotic system and its circuit implementation. Frontiers in
Physics p. 376.

Wauer, J., D. Schwarzer, G. Cai, and Y. Lin, 2007 Dynamical models
of love with time-varying fluctuations. Applied Mathematics
and Computation 188: 1535–1548.
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ABSTRACT This article is about the dynamic nature of a prey-predator model exposed to the harvesting effect
on prey. Firstly, the model’s fixed points’ existence and stability are determined, and then, the presence and
direction of a Neimark-Sacker bifurcation are examined. By using the bifurcation theory, we show that the
system experiences Neimark-Sacker bifurcation. The hybrid control strategy is handled to control the chaos
caused by the Neimark-Sacker bifurcation. Additionally, some numerical simulations are given to validate the
theoretical outcomes obtained.
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INTRODUCTION

Basic models based on biological assumptions are used to better
understand the behavior of populations. Lotka and Volterra (Lotka
1925; Volterra 1978) are pioneers in proposing a mathematical prey-
predator model. In the interaction of the prey and the predator,
both the prey and the predator develop various strategies to sur-
vive and adapt to their environment. The balance of nature is
maintained by the continuity of the life of the species. Models are
used as tools to learn about future numbers of species. Here, the
analysis conducted by including the factors affecting the popula-
tion in the model allows us to reach more realistic results. It is
possible to have information about the dynamics of the population
with model analysis depending on these factors.

The analysis of prey-predator models with the harvesting effect
has an important place in dynamic systems. Since there is great
interest in the use of bioeconomic models (Clark 1985; Clark and
Clark 1990), the dynamic behaviors of harvesting populations are
examined in many studies. At the same time, this factor is effective
in controlling populations (Liu et al. 2008; Paul et al. 2021). In most
cases, the goal is not only population control; but also getting a
significant harvest gain from the population. If the harvest pushes
the population to extinction, this process should be stopped for a
certain period. It is possible to reach qualified conclusions about
the dynamics of these models with stability, bifurcation analy-
sis, presence of chaotic behaviors and chaos control (Elaydi 1996;
Gümüş and Feckan 2021; Kuznetsov et al. 1998; Liu et al. 2008;

Manuscript received: 1 October 2022,
Revised: 16 November 2022,
Accepted: 17 November 2022.

1 akgumus@adiyaman.edu.tr (Corresponding Author)

Madhusudanan et al. 2014; Murray 2002; Peng et al. 2009; Robinson
1998).

In the literature, many continuous-time prey-predator models
have been introduced to explain the complex relationships be-
tween species. However, in ecology, populations evolve in discrete
time steps, as there is no overlap between successive generations.
It is therefore benefical to use difference equations (Ak Gümüş
2014; Gümüş and Kose 2012; Gümüş et al. 2022b,c; Merdan and
Gümüş 2012; Merdan et al. 2018) or discrete-time systems involv-
ing prey-predator models (Danca et al. 2019; Elsadany et al. 2012;
Gümüş 2020; Liu and Xiao 2007; Rana 2015), host-parasitoid mod-
els (Gümüş 2015; Gümüş and Kangalgil 2015; Gümüs et al. 2020),
epidemic models (Gümüş et al. 2022a, 2019), and also fractional
models (Selvam et al. 2020; Singh et al. 2019).

In prey-predator population models, one can say that the prey
population has a limiting influence on the population dynamics
since the size of the predator population depends on the size of
the prey population. The size of predator populations that do
not catch sufficient numbers of prey decreases. Therefore, small
numerical changes in the prey population can cause large changes
in the dynamics of such models. To maintain a balanced life in
prey-predator populations, the prey population must have an ap-
propriate growth rate. The harvesting factor on the prey will affect
the growth rate of the prey population. In this study, our aim is
to investigate prey-predator dynamics by examining the effect of
the harvest factor on the internal growth rate of the prey popula-
tion. For this purpose, the prey population’s growth rate is taken
as the bifurcation parameter, and results are obtained about the
long-term behavior of the population.
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This paper examines a discrete-time prey-predator system that
depicts interactions between two populations of non-overlapping
generations that are affected by the harvesting effect.

xn+1 = axn(1 − xn)− bxnyn − hxn (1)

yn+1 = dxnyn

where xn and yn denote the numbers of prey and predator in
year (generation) n, respectively, and the parameters a, b, h, and d
are all positive parameters. In this model, bxn indicates the number
of prey individuals ingested per unit area and per unit time by an
individual predator, and dxnyn is the predator reaction. Here, a is
the growth rate of the prey population which has a logistic growth
rate, d is the growth rate of the predator population limited by the
number of prey, and h is the harvesting rate, where 0 < h < 1.

In a previous study (Danca et al. 2019), the dynamics of discrete-
time prey-predator model (1) are presented without the harvesting
effect. We explore the stability and bifurcation of the system (1) by
incorporating the harvesting effect and observe the dynamics of
the system. We refer to studies (Elaydi 1996; Liu and Xiao 2007;
Din 2013) for some basic concepts that we have used throughout
our paper.

The paper is arranged as follows: In Section 2, we present the
existence and local asymptotic stability of fixed points of the sys-
tem (1) in R2

+ with plots showing system behavior. In Section 3,
the dynamics of system (1) which undergoes a Neimark-Sacker
bifurcation are investigated by choosing a as a bifurcation param-
eter. The chaos emerging with the Neimark-Sacker bifurcation is
controlled by a hybrid method. The dynamical characteristics of
the system (1) are displayed via numerical simulations in the form
of trajectories, bifurcation diagrams, and phase portraits. The last
section provides a summary of the results.

THE EXISTENCE AND STABILITY OF FIXED POINTS OF
SYSTEM (1)

The analyses of the system (1)’s fixed points’ existence and local
stability are presented in this section. First, let us examine the
existence of all available fixed points of system (1). System (1)
has a trivial (extinction) fixed point E0 = (0, 0) for all positive
parameters. If a > h + 1, then, system (1) has an exclusion fixed
point E1 = ( a−h−1

a , 0).

If a > d(h+1)
d−1 such that d > 1, then E∗ = ( 1

d , ad−a−d−dh
bd ) is a

unique coexistence fixed point of system (1).

Remark 1 When a < h + 1, the fixed point E0 is locally asymptotically
stable, and when 1 < d and h + 1 < a < min (3 − h, d(h+1)

d−1 ), the fixed
point E1 is locally asymptotically stable. The magnitude of the eigenval-
ues of the Jacobian matrix determines the local stability conditions of the
fixed points of discrete-time systems.

• The Local Stability of the Coexistence Fixed Point

Let us investigate the locally asymptotic stability of the coexis-
tence fixed point as follows:

E∗ = (x∗, y∗) = (
1
d

,
ad − a − d − dh

bd
). (2)

where a > d(h+1)
d−1 , d > 1. The Jacobian matrix of system (1) as-

sessed at E∗ is

JE∗ =

 1 − a
d

−b
d

−a−d+ad−dh
b 1


and the characteristic polynomial of the Jacobian matrix is

F(λ) = λ2 + [−2 +
a
d
]λ + a − 2a

d
− h.

So, we have the following Lemma.

Lemma 2 Suppose that a > d+dh+d2h
d−1 , d > 3. Then the coexistence

fixed point E∗ is respectively locally asymptotically stable and unstable,
if the following cases are provided:

(i) If a < d(h+1)
d−2 , h < 1

d2−2d−1 , then E∗ is a sink point.

(ii) If a > d(h+1)
d−2 , h < 1

d2−2d−1 , then E∗ is a source point.

We can give examples to confirm the results obtained in Lemma
2. The trajectories and phase portrait of the prey-predator densities
are exhibited in Figure 1 and Figure 2 with the parameter values
b = 0.2, and d = 3.5 which are taken from a previous study (Danca
et al. 2019).

Example 3 Let us take into account the following population model to
expose the appearance of the trajectories and phase portrait of system (1)
for the parameter values a = 2.33, b = 0.2, d = 3.5, and h = 0.002:

xn+1 = 2.33xn(1 − xn)− 0.2xnyn − 0.002xn, (3)

yn+1 = 3.5xnyn

where the initial conditions are x0 = 0.5 and y0 = 2.5.

Figure 1 (a) The trajectories of the prey and predator densities in sys-
tem (3) when a = 2.33, b = 0.2, h = 0.002, and d = 3.5. (b) The phase
portrait of system (3) when a = 2.33, b = 0.2, h = 0.002 and d = 3.5.

In this example, it is seen that the fixed point (0.285714, 3.31143)
is locally asymptotically stable (see Lemma 2-(i)).

Example 4 Let us take into account the following population model to
expose the appearance of the trajectories and phase portrait of system (1)
for a = 2.34, b = 0.2, h = 0.002 and d = 3.5:

xn+1 = 2.34xn(1 − xn)− 0.2xnyn − 0.002xn, (4)

yn+1 = 3.5xnyn

where the initial conditions are x0 = 0.5 and y0 = 2.5.
The fixed point (0.285714, 3.34714) of system (4) with the selected

values is unstable (see the Lemma 2-(ii)).
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Figure 2 (a) The trajectories of the prey and predator densities in sys-
tem (4) when a = 2.34, b = 0.2, h = 0.002, and d = 3.5. (b) The
phase portrait of system (4) when a = 2.34, b = 0.2, h = 0.002 and
d = 3.5.

NEIMARK-SACKER BIFURCATION ANALYSIS AND CHAOS
CONTROL

• Neimark-Sacker Bifurcation

In this section, we discuss whether system (1) experiences
a Neimark-Sacker bifurcation by using the bifurcation theory
(Kuznetsov et al. 1998; Wiggins 2003).As the prey population’s
growth rate changes, we see that system (1) has a Neimark-Sacker
bifurcation. In other words, a is taken as a bifurcation parameter to
get the conditions of Neimark–Sacker bifurcations. The direction
of the Neimark–Sacker bifurcation is also obtained for system (1).
If system (1) ensures the eigenvalue assignment, transversality and
nonresonance conditions, then the Neimark–Sacker bifurcation
emerges at a bifurcation point aNS. The conditions that cause the
bifurcation to occur at the coexistence fixed point E∗ are deter-
mined as

NSBE∗ = {a, b, h, d ∈ R+ : d > 3, a1 < a < a2 and a = aNS}

where

a1 = −2
√

d4 − 2d3 − d2h + 2(−d + d2),

a2 = +2
√

d4 − 2d3 − d2h + 2(−d + d2),

h < −2

√
(−1 + d)2d[−1 + (−2 + d)d2]

(1 + d)4 +
−1 + d[1 + 2(−2 + d)d]

(1 + d)2 ,

and

aNS =
d(1 + h)

d − 2
.

By using the transformation u = x − 1
d , v = y − ad−a−d−dh

bd , the
fixed point E∗ is shifted to the origin. So, we obtain u

v

→ JE∗

 u

v

+

 F1(u, v)

F2(u, v)

 . (5)

where

F1(u, v) = −au2 − buv + O(∥U∥3) (6)

F2(u, v) = duv + O(∥U∥3) (7)

such that U = (u, v)T . From here, system (1) becomes

(Un+1) → JE∗ (Un) +
1
2

B(un, un) +
1
6

C(un, un, un) + O(∥Un∥4),

(8)

with the multilinear vector functions of u, v, w ∈ R2 :

B(u, v) =

 B1(u, v)

B2(u, v)


and

C(u, v, w) =

 C1(u, v, w)

C2(u, v, w)

 .

These vectors are stated by

B1(u, v) =
2

∑
j,k=1

∂2F1
∂ξ j∂ξk

|ξ=0 ujvk =−2au1v1−b(u2v1+u1v2)

B2(u, v) =
2

∑
j,k=1

∂2F2
∂ξ j∂ξk

|ξ=0 ujvk = d(u2v1 + u1v2)

C1(u, v, w) =
2

∑
j,k=1

∂3F1
∂ξ j∂ξkξl

|ξ=0 ujvkwl = 0

C2(u, v, w) =
2

∑
j,k=1

∂3F2
∂ξ j∂ξkξl

|ξ=0 ujvkwl = 0.

For a = aNS, the eigenvalues of the matrix JE∗ associated with
the linearization in map (5) are conjugate complex numbers. These
eigenvaues are

λ, λ |a=aNS=
−5 + 2d − h ± i

√
(1 + h)(−9 + 4d − h)

2(d − 2)

such that

|λ(aNS)| = 1.

For a ∈ NSBE∗ , we get

∂ |λi(a)|
∂a

|a=aNS ̸= 0 , i = 1, 2. (9)

Moreover, if
trJ(a) |a=aNS ̸= 0,−1, (10)

then, we reach
λk(aNS) ̸= 1 , k = 1, 2, 3, 4. (11)

Let q, p ∈ C2 be the eigenvectors which correspond to the
eigenvalues λ of J(NSBE∗ ) and the eigenvalues λ of J(NSBE∗ )T ,
respectively. If these eigenvectors are computed with the Mathe-
matica program, then we get

q ∼
(
−b(h + 1) + ib

√
(−9 + 4d − h)(h + 1)

2d(h + 1)
, 1

)T
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and

p ∼
(

d(h + 1)− id
√
(−9 + 4d − h)(h + 1)

2b(d − 2)
, 1

)T

.

By using the inner product in C2 : < p, q >= p1q1 + p2q2, we get
the following vector to normalize p in accordance with q

p∼
(

d2(1+h)
bdi
√

(−9+4d−h)(h+1)
, 2(d−2)
−9+4d−h+i

√
(−9+4d−h)(h+1)

)T

where < p, q >= 1. ∀ U ∈ R2 can be uniquely represented for
some z as

U = zq + zq (12)

Here, z denotes the conjugate of the complex number z, and z =<
p, U >. For all sufficiently small |a| about aNS, we can convert
system (1) as follows:

z → λ(a)z + g(z, z, a), (13)

where λ(a) = (1 + ω(a))eiθ(a) for ω(aNS) = 0, and g(z, z, a) is a
smooth function of z and z. The Taylor expression of g with respect
to g(z, z) is

g(z, z, a) = ∑
k+l≥2

1
k!l!

gkl(a)zkzl , (14)

and the Taylor coefficients gkl calculated through multilinear vector
functions are expressed by the formulae

g20(aNS) =< p, B(q, q) >

g11(aNS) =< p, B(q, q) >

g02(aNS) =< p, B(q, q) >

g21(aNS) =< p, C(q, q, q) > .

For system (5) which exhibits the Neimark-Sacker bifurcation, the
coefficient φ(aNS) determining the direction of the appearance of
the invariant curve can be calculated as:

φ(aNS) = Re(
e−iθ(aNS)g21

2
)−Re

(
(1 − 2eiθ(aNS))e−2iθ(aNS)

2(1 − eiθ(aNS))
g20g11

)
(15)

−1
2
|g11|2 −

1
4
|g02|2

where eiθ(aNS) = λ(aNS). As a result, we get the following theorem
regarding the Neimark-Sacker bifurcation:

Theorem 5 If (10) holds, φ(aNS) ̸= 0 and the parameter a changes
in the small vicinity of NSBE∗ , then system (1) experiences a Neimark-
Sacker bifurcation at the only fixed point E∗. Moreover there is a unique
attracting (φ(aNS) < 0) or repelling ((φ(aNS) > 0)) invariant closed
curve that bifurcates from E∗.

Example 6 Let us take into account the following system for the param-
eter values b = 0.2, d = 3.5, and h = 0.002,

xn+1 = 2.338xn(1 − xn)− 0.2xnyn − 0.002xn, (16)

yt+1 = 3.5xnyn

where aNS = 2.338 is the Neimark-Sacker bifurcation point. The
computation yields (x∗, y∗) = (0.285714, 3.34), and the Jacobian matrix
assessed at (x∗, y∗) is

J(x∗ ,y∗) =

 0.332 −0.0571429

11.69 1

 .

The eigenvalues are λ1,2 = 0.666 ± 0.745952i such that |λ1,2| = 1. Let
q, p ∈ C2 be the complex eigenvectors corresponding to λ1,2, respectively,
q ∼ (−0.0285714 + 0.0638111i, 1)T and p ∼ (5.845 − 13.0542i, 1)T .
We get the vector p ∼ (−7.83563i, 0.5 − 0.223875i)T by normalizing p
according to q, such that < p, q >= 1. So, we obtain

g20(aNS) = 2.338 + 1.31495i
g11(aNS) = 2.238 + 1.09161i
g02(aNS) = −2.538 + 0.868276i
g21(aNS) = 0

where

F1(u, v) = −au2 − buv + O(∥U∥3)

F2(u, v) = duv + O(∥U∥3)

B(q, q) =

 0.145029 − 0.323905i

−0.2 + 0.446678i



C(q, q, q) =

 0

0



C(q, q, q) =

 0

0



B1(u, v) = −4.676u1v1 − 0.2(u2v1 + u1v2)

B2(u, v) = 3.5(u2v1 + u1v2)

C1(u, v, w) = 0

C2(u, v, w) = 0.

From (15), we get φ(aNS) = −3.57837 < 0. Consequently, the Neimark-
Sacker bifurcation emerges at aNS = 2.338. The Figure 3 gives the
bifurcation and phase portraits of system (16) with the initial conditions
x0 = 0.5 and y0 = 2.5. Figure 3.(a) shows Neimark-Sacker bifurcation
diagram of the system (16). The phase portraits of system (16) are
presented in Figure 3.(b)-(d).

• Chaos control

For many researchers, the focus point is the control of chaos in
dynamic systems. It is possible to avoid chaos with some chaos
strategies applied to systems (Danca et al. 2019; Din et al. 2017;
Gümüş and Feckan 2021; Gümüş et al. 2022b; Liu et al. 2008; Yuan
and Yang 2015). We apply a controlling strategy based on the hy-
brid control feedback methodology to control the chaos in system
(1).

As system (1) undergoes a Neimark-Sacker bifurcation at the
fixed point (x∗, y∗), the corresponding controlled system can be
handled as follows:

xn+1 = β[axn(1 − xn)− bxnyn − hxn] + (1 − β)xn (17)

yn+1 = βdxnyn + (1 − β)yn

where β is the control parameter for 0 < β < 1. The Jacobian
matrix of the controlled system (17) is provided by
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(a) (b)

(c) (d)

Figure 3
(a) Bifurcation diagram of the prey-predator system (16) with the param-
eter values a ∈ (2, 3), b = 0.2, d = 3.5, and h = 0, 002. (b) The phase
portrait of system (16) when a = 2.31, b = 0.2, d = 3.5, and h = 0, 002.
(c) The phase portrait of system (16) when a = 2.338, b = 0.2,
d = 3.5, and h = 0, 002. (d) The phase portrait of system (16) when
a = 2.35, b = 0.2, d = 3.5, and h = 0, 002.

 1 − β + (−h + a(1 − x∗)− ax∗ − by∗)β −bx∗β

dy∗β 1 − β + dx∗β

 .

If

∣∣∣∣ aβ

d
− 2
∣∣∣∣ < 1 +

−aβ(1 + β) + d(1 + (−1 + a − h)β2)

d
< 2

is provided, then the positive fixed point (x∗, y∗) of the controlled
system (17) is locally asymptotically stable.

Example 7 We consider the parameters b = 0.2, d = 3.5, h = 0.002,
and a = 2.35 for the initial conditions x0 = 0.5 and y0 = 2.5. For these
parametric values, the controlled system is

xn+1 = β[2.35xn(1 − xn)− 0.2xnyn − hxn] + (1 − β)xn(18)

yn+1 = 3.5βxnyn + (1 − β)yn

and system (18) has a unique coexistence fixed point (x∗, y∗) =
(0.285714, 3.38286). Additionally, the Jacobian matrix evaluated at
(0.285714, 3.38286) is 1 − 0.671429β −0.0571429β

11.84β 1

 (19)

and the characteristic equation (19) is obtained as

λ2 + (−2 + 0.671429β)λ + 1 − 0.671429β + 0.676571β2 = 0. (20)

From the Jury condition, we conclude that if 0 < β < 0.9923991, then
the roots of (20) lie in a unit open disk. Therefore, the Neimark-Sacker
bifurcation is fully controlled for values β in the obtained range.

Figure 4 (a) The trajectories of the controlled system (18) for b = 0.2,
d = 3.5, h=0.002, a = 2.35, and β = 0.9. (b) The phase portrait of the
controlled system (18) for b = 0.2, d = 3.5, h=0.002, a = 2.35, and
β = 0.9.

CONCLUSION

Harvesting in a natural population is one of the most important
concerns in population ecology. In this study, the dynamics of sys-
tem (1) are investigated depending on the harvest effect applied
to the prey population. We determine that system (1) has a trivial
(extinction) fixed point E0, an exclusion fixed point E1, and a co-
existence fixed point E∗. The stability conditions of extinction and
exclusion fixed points are investigated. The stability and bifurca-
tion conditions of the coexistence fixed point of system (1) are also
obtained. To examine the Neimark-Sacker bifurcation, the growth
rate of the prey population a is taken as a bifurcation parameter.
The stabilization of the unstable fixed point of system (1) is pro-
vided by the hybrid control method. The hybrid control strategy
allows us to successfully control the chaotic behavior by suppress-
ing the unstable fixed point. The dynamic properties of system
(1) are presented by the trajectories, phase portraits, and bifurca-
tion diagram belonging to system (1) by means of SageMath (see
Kapçak (2018)). Furthermore, diagrams presenting the dynamic
behaviour of system (1) with and without the harvesting effect
are included in Figure 5 and Figure 6. A comparison is provided
by giving the bifurcation value obtained without the harvesting
effect. These dynamic behaviours are applied to understand the
difference caused by the harvesting effect. In the examples given,
the system behaviour is examined by choosing the initial point
close to the fixed point.

Without the harvesting effect while system (1) undergoes a
Neimark-Sacker bifurcation for a = d

d−2 , with the harvesting effect,

it undergoes a Neimark-Sacker bifurcation for a = d(1+h)
d−2 . For h =

0.025, the bifurcation values are a = 2.88864 and a = 2.81818 with
and without the harvesting effect, respectively. With this effect,
the system will continue to remain stable for a certain period. If h
is taken as 0.002, the bifurcation point is obtained as a = 2.82382.
The smaller the effect value, the shorter the equilibrium time of
the system. In other word, as the harvesting effect value increases,
the bifurcation of the system will be delayed. We conclude that
the harvesting effect on the prey population delays the Neimark-
Sacker bifurcation (see (Danca et al. 2019)). Thus, the population
will remain in equilibrium for a while.
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Figure 5
(a) Bifurcation diagram of the prey-predator system (1) without the harvesting effect for the parameter values a ∈ (2.7, 3.3), b = 0.2, and d = 3.1. (b)
Bifurcation diagram of the prey-predator system (1) with the harvesting effect for a ∈ (2.7, 3.3), b = 0.2, d = 3.1 and h = 0.020. (c) The phase portrait
of system (1) without the harvesting effect for a = 2.7, b = 0.2, and d = 3.1 (d) The phase portrait of system (1) without the harvesting effect for
a = 2.9, b = 0.2, d = 3.1. (e) The phase portrait of system (1) with the harvesting effect for a = 2.8, b = 0.2, d = 3.1, and h = 0.020. (f) The phase
portrait of system (1) with the harvesting effect for a = 3, b = 0.2, d = 3.1, and h = 0.020.
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(a) (b)

(c) (d)

Figure 6
(a) Time series diagram of system (1) without the harvesting effect for
the parameter values a = 2.7, b = 0.2, and d = 3.1. (b) Time
series diagram of system (1) without the harvesting effect for the
parameter values a = 2.9, b = 0.2, and d = 3.1. (c) Time series
diagram of system (1) with the harvesting effect for the parameter
values a = 2.8, b = 0.2, d = 3.1 and h = 0.020. (d) Time series
diagram of system (1) with the harvesting effect for the parameter
values a = 3, b = 0.2, d = 3.1and h = 0.020.
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Danca, M.-F., M. Fečkan, N. Kuznetsov, and G. Chen, 2019 Rich dy-
namics and anticontrol of extinction in a prey–predator system.
Nonlinear Dynamics 98: 1421–1445.

Din, Q., 2013 Dynamics of a discrete lotka-volterra model. Ad-
vances in Difference Equations 2013: 1–13.
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How to cite this article: Gümüş, Ö. A. Dynamics of a Prey-Predator
System with Harvesting Effect on Prey. Chaos Theory and Applica-
tions, 4(3), 144-151, 2022.

CHAOS Theory and Applications 151



Numerical Analysis of Semiconductor Ring Lasers with
Backscattering Coefficients Mismatch
Nasr Saeed ID ∗,1, Alain Francis Talla ID α,2, Alhadji Abba Oumate ID β,3 and Sifeu Takougang Kingni ID α,4

∗Department of Physics, College of Education, Nyala University, P.O. Box: 155, Nyala, Sudan, αDepartment of Mechanical Petroleum and Gas Engineering,
National advanced school of Mines and Petroleum Industries, University of Maroua, P.O. Box 46, Maroua, Cameroon, βDepartment of Physics, Faculty of
Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.

ABSTRACT The numerical analysis of a semiconductor ring laser (SRL) by using the basic two-mode model
and a parameter mismatch in the backscattering coefficients is presented in this paper to account for the
asymmetry along the ring. The operation of SRL is discovered to be affected by changing the conservative
backscattering parameter for a fixed value of the dissipative backscattering parameter, and the bidirectional
regime with alternating oscillation can be suppressed. The numerical results of this paper and the experimental
results of the literature depicts a good correspondence.
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INTRODUCTION

Semiconductor ring lasers are particularly well suited for mono-
lithic integration because, unlike integrated lasers of the Fabry-
Perot type, they do not require cleaved facets or gratings to provide
the essential optical feedback (M. Sorel and Donati 2002; M. Sorel
and Laybourn 2002; T. Krauss and Roberts 1990). Key elements of
photonic integrated circuits are SRLs. Due to the active cavity’s
circular design, a SRL can function in either the clockwise (CW) or
counterclockwise (CCW) directions (CCW). For applications such
as wavelength filtering, multiplexing-demultiplexing, electrical
and all-optical switching, and bistable optical memory, SRLs are
potential possibilities (J. J. Liang and Ballantyne 1997). For the
investigation of generalized rings and two-mode laser systems,
many theoretical models with an emphasis on the interaction be-
tween two counter-propagating modes and their interaction with
the active medium have been developed. The He-Ne ring laser
(Menegozzi and Lamb 1973) and the CO2 laser (H. Zeghlache and
Mello 1988) are the systems that have received the most atten-
tion, as they were able to take advantage of the rotation-induced
asymmetry between the two counter-propagating modes.

In the case of two-mode semiconductor lasers, Etrich et al.
(C. Etrich and Zeghlache 1992) have proposed a model based
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on the time evolution of the electric fields. They discussed how
the two counter-propagating modes’ interference caused a slowly
fluctuating carrier-induced grating that had an impact on how the
device operated. In other studies, the formation of intensity oscilla-
tions brought on by mode-to-mode phase-coupling is highlighted
(R. C. Neelen and Woerdman 1992; P. Mandel and Otsuka 1993;
P. A. Khandokhin and Mande 1995). A particular treatment was
devised for the SRL by Sargent et al. (Sargent 1993) who derived
a simple model for the intensities of the two modes starting from
first principles, enlightening the importance of the self- and cross-
gain saturation parameters. Later, Sorel et al. (M. Sorel and Donati
2002) proposed a model which takes into account self- and cross-
gain saturation effects as in the work of Sargent (Sargent 1993) and
includes backscattering contributions originating at the coupling
to an output waveguide.

An oscillating bidirectional regime in SRLs was experimentally
observed, and this model, which is based on two mean-field equa-
tions for the counter-propagating modes and a third rate equation
for the carriers, has been successful in explaining this finding. By
studying optical switching has been found to be helpful as well
(T. Perez and Mirasso 2007) However, as shown by the experi-
mental data, it has not been able to explain the discrepancy in
the intensities of the two counter-propagating modes observed in
the bidirectional continuous wave (bi-cw) and bidirectional with
alternate oscillations (bi-AO) regimes (M. Sorel and Donati 2002;
M. Sorel and Donat 2003).
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In addition some of the experiments made in SRLs (M. Sorel
and Laybourn 2002) showed that applying a current bias on the
output waveguide contacts affects the laser operation and unidi-
rectional mode can be achieved. To the best of our knowledge,
there is not yet a numerical explanation of the above mentioned
experimental results. This paper shows that parameter mismatch
in the backscattering coefficients explains the experimental results.
The remainder of the paper is as follows. Section 2 presents the
rate equations of SRLs and the results obtained during the nu-
merical investigation of SRLs under the backscattering coefficients
mismatch .Section 3 concludes the paper.

RATE EQUATIONS OF SRLS AND RESULTS

Due to the fact that the two-mode model has represented SRLs as
gyroscopes (Numa 2000) and accounted for the noticed alternating
oscillation regime in the light-intensity (L-I) characteristics of the
SRL (M. Sorel and Donati 2002). So the model used in this paper is
built on the fundamental two-mode model but has a mismatched
parameter in the dissipative kd

′ and conservative kc
′ backscattering

coefficients. The ideal symmetry along the ring is actually never
achieved in a real system for a variety of reasons, including flaws in
the waveguide, output coupler, and scattering centers [1]. The sum
of the two counter-propagating waves can be used to represent the
overall electric field inside the ring cavity in the single longitudi-
nal mode operation: E′(x, t) = E1

′e−i(!0t−kx) + E2
′e−i(!0t−kx) + cc

where E1
′ and E2

′ are the mean-field slowly varying complex am-
plitudes of the electric field associated with the two propagation
directions, i.e., mode 1 is CCW and mode 2 is CW; x is the longi-
tudinal spatial coordinate along the ring circumference, assumed
positive in the CCW direction and ω0 is the optical frequency of
the selected longitudinal mode. The rate equations are given by
(M. Sorel and Donati 2002; M. Sorel and Donat 2003; L. Gelens and
Danckaer 2009; S. T. Kingni and Danckaert 2012; S. T. Kingni and
Orou 2020).

dE1
′

dt′
= (1 + iα)[Gn(N − N0)(1 − εs)|E1

′|2 − εc|E2
′|2 − 1

τp
]E′

1

− k′1E′
1 (1a)

dE2
′

dt′
= (1 + iα)[Gn(N − N0)(1 − εs)|E2

′|2 − εc|E1
′|2 − 1

τp
]E′

2

− k′1E′
2 (1b)

dN
dt′

=
J
el

− N
τs

− Gn(N − N0)(1 − εs|E1
′|2 − εc|E2

′|2)

− Gn(N − N0)(1 − εs|E2
′|2 − εc|E1

′|2) . (1c)

where E1,2 the fields, N(t) the carrier density, α denotes the
linewidth enhancement factor accounting for phase-amplitude
coupling in the semiconductor medium, Gn the modal gain factor
for the two modes, which depending on the semiconductor gain
factor, N0 the carrier density at transparency, εs and εc are self-and
cross-gain saturation coefficients, respectively and τp the photon
lifetime in the ring cavity. The parameters k′1,2 = k′d1,d2

+ ik′c1,c2
are

the complex backscattering coefficient where k′d1,d2
the parameters

and k′c1,c2
represent the dissipative and conservative components

of backscattering respectively. The parameter J, e, l, τs represent
the injected ring current density, the electron charge, the active
layer thickness and the carrier lifetime, respectively. A suitable
normalization of equations (1a) to (1c) leads to the following
dimensionless form (M. Sorel and Donati 2002):

dE1
dt

= (1 + iα)
[
n
(

1 − s|E1|2 − c|E2|2
)
− 1

]
E1

− (kd1 + ikc1 ) E2 (2a)
dE2
dt

= (1 + iα)
[
n
(

1 − s|E2|2 − c|E1|2
)
− 1

]
E2

− (kd2 + ikc2 ) E1 (2b)
dn
dt

= γ(µ − n
(

1 − s|E1|2 − c|E2|2
)
|E1|2

− n
(

1 − s|E2|2 − c|E1|2
)
|E2|2) . (2c)

with the following rescalings:

t = t′
τp

; E1 =
(
Gnτp

) 1
2 E′

1,2; n = Gn (N − N0) τp;

s = εs
Gnτs

; c = εc
Gnτs

; γ =
τp
τs

kd1,2 = τpk′d1,2; kc1,2 = τpk′c1,2;

J0 = el
τs

N0; Jth = el
τs

(
N0 +

1
Gnτp

)
; µ = J−J0

Jth−J0
.

(3)

SRL is numerically analyzed by integrating the set of equa-
tions (2a) to (2c) with similar values of parameters to those of
(M. Sorel and Donati 2002), but assuming that the backscattering co-
efficients are varied following the general rule: kc1,d1

= kc2,d2 + σc,d
or kc2,d2 = kc1,d1

+ σc,d where the values of the backscattering pa-
rameters coincide with those used in (M. Sorel and Donati 2002)
and σc,d are the mismatch parameters kc2,d2 or kc1,d1

in the con-
servative and dissipative backscattering coefficients, respectively.
The authors of (Kenmogne et al. 2022, 2021) present the bifurca-
tion diagrams which depict the local maxima of the trajectories
of the systems under investigation. While, Figures 1,2,4,5 and 6
are the amplitude curves which present the global maxima of the
trajectories of the sets equations (2a) to (2c). Figure 1 illustrates
the L-I curves of both modes by using numerical simulation of
sets equations (2a) to (2c) obtained for kd1

= kd2 = 3.27 × 10−4;
kc2 = 4.4 × 10−2; σc = 10−3 and kc1 = kc2 + σc.

Figure 1 L–I curve for α = 3.5, s = 5 × 10−3, c = 10−2, γ =
2 × 10−3,kd1

= kd2 = 3.27 × 10−4, kc2 = 4.4 × 10−2, σc = 10−3 and
kc1 = kc2 + σ .
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When the injection currentµ is increased, Figure 1 exhibits bi-
cw (regime A), bi-A0 (regime B) and unidirectional (regime C).
Figure 1 shows that |E1|2 is a bit larger than |E2|2 in bi-cw and
bi-AO regimes as the revealed experimental results of Figure 2.a
of (M. Sorel and Donati 2002) whereas in Fig. 2.b of (M. Sorel and
Donati 2002) without taking into account the parameter mismatch
in the backscattering coefficients, the two modes have the same
intensities in regimes A and B. The threshold current in Fig. 2.b
of (M. Sorel and Donati 2002) (µth = 1.0) is equal to the one of
Fig. 1 This means that parameter mismatch in the conservative
backscattering coefficient does not affect the threshold current in
the model. So, one can note that Fig. 1 is more close to the exper-
imental results (see Fig. 2.a of (M. Sorel and Donati 2002)) than
Fig. 2.b of (M. Sorel and Donati 2002). Therefore, the mathematical
model with parameters mismatch used here is the most indicated
way to explain the SRL behaviour. Assuming now kc2 = kc1 + σ
and σc = 10−3 Figure 2 presents three distinct operating regimes
and the same threshold current (µth = 1.0) as in Fig. 1 but the
intensity of CW mode is a bit larger than the intensity of CCW
mode.

Figure 2 L–I curve for α = 3.5, s = 5 × 10−3, c = 10−2, γ =
2 × 10−3, kd1

= kd2 = 3.27 × 10−4, kc2 = 4.4 × 10−2, σc = 10−3

and kc2 = kc1 + σc .

From Figure 2, one can remark a selection between the two
modes according to whether the corresponding mode of is larger
or not. The implications of the ring lasing direction when the
output waveguide contacts are forward biased, as seen in Figure
3 , are discussed in (M. Sorel and Laybourn 2002), which clarifies
this behavior.

According to (M. Sorel and Laybourn 2002) applying bias cur-
rent IW1 on port 1 larger than 30 mA, the CCW mode is completely
suppressed by the increased power sent back into the ring, which
also directs the unidirectional laser output to port 2, i.e., on CW
mode. This can be seen in Figure 5 of (M. Sorel and Laybourn 2002)
, which reports CW power for increasing ring current and for two
different bias current values IW1 . Figure 4 presents the L-I curves
of both modesobtained for kc2 = kc1 + σc in order to have the CW
mode as a dominating mode.

The numerical findings of this paper and the experimental re-
sults of (M. Sorel and Laybourn 2002) are in good accord in Figure
4. To complete this comparison, the L- I curves of both modes are
plotted by using the same parameters values as in Fig. 4.

Figure 3 Geometry of ring laser illustrating the layout contact:
IR, IW1 , IW2 indicate the current biases applied to the ring and to
the two output waveguide contacts, respectively .

Figure 4 L- I curve of CW mode for α = 3.5, s = 5 × 10−3,
c = 10−2, γ = 2 × 10−3, kd1

= kd2 = 3.27 × 10−4, kc2 = 4.4 × 10−2,
and kc2 = kc1 + σc. σc = 0 (solid line) and σc = 2.2 × 10−3 (dashed
line).
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Figure 5 L- I curve of both modes. Parameters values of Figure 4
are conserved.

Figure 5 reveals that for high shift between the two conservative
backscattering coefficients, the laser operates only in unidirectional
regime. The existing mode is the one having the higher value of
conservative backscattering parameters. Fig. 5 also illustrates
a good correspondence with the experimental results of Sorel et
al. (M. Sorel and Laybourn 2002). Therefore we can note that
the experimental correspondence of conservative backscattering
parameters (kc1,c2 ) can be the current biases applied to the two
output waveguide contacts (IW1,W2 ). The higher value of conser-
vative backscattering coefficient of a mode corresponds to lower
current bias applied to one of the two output waveguides. The
disappearance (or death) of switching observed in Figs. 4 and 5
is sufficient to assert that (kc1,c2 ) can be a control parameter for
switching phenomenon.

For a fixed value of dissipative backscattering parameter kd1
=

kd2 = 3.27 × 10−4, and when varying the conservative backscatter-
ing parameter according to σc(kc2 = 4.4 × 10−2 and kc1 = kc2 + σ

) it is found that the gap between Q1
2 = |E1|2 and Q2

2 = |E2|2
modes seen in bi-cw and bi-A0 regimes widens when σc is in-
creased. We have also noted by increasing σc how the SRL acts to
suppress the bi-A0 regime as shown Fig. 6.

In Figure 6, when σc is increased, the Q1,2
2 = |E1,2|2 in bi-A0

regime narrows progressively. This reduction is due to the decrease
of maximum values and the increase of minimum values of each
mode simultaneously. In addition, the pump current (µ) interval
for the bi-A0 shrinks (see Fig. 6.a to Fig. 6.c) when σc is increased
and can definitely disappear (see Fig.6.d). Then, we have noted
that by increasing σc the switching between the two modes is not
suppressed, but it is observed just for high value of (µ). Now as
the mismatch in the dissipative backscattering is concerned, we
have found that using (kc1 = kc2 ) and kc1 = kc2 + σ there is no
significant change in the SRL behaviour.

Figure 6 L- I curve of mode 1 displaying the effect of increasing
σc on the bi-AO regime for α = 3.5, s = 5 × 10−3, c = 10−2,
γ = 10−3, kd1

= kd2 = 3.27 × 10−4, kc2 = 4.4 × 10−2, kc2 = kc1 + σ.
a) σc = 0 ; b) σc = 10−3 ; c) σc = 1.7 × 10−3 and d) σc = 3 × 10−3

CONCLUSION

This paper was devoted to the numerical investigation of semicon-
ductor ring laser based on the basic two-modes model with inclu-
sion of a parameter mismatch in the dissipative and conservative
backscattering parameters. By varying the conservative backscat-
tering parameter, it was demonstrated that the pump interval for
the bidirectional with alternate oscillationsregime shrinks and fi-
nally disappears for a given value of the dissipative backscattering
parameter. While the difference between the intensities of the two
counter-propagating modes were observed in the bidirectional con-
tinuous wave and bidirectional with alternate oscillations regimes
grows. The mismatch in dissipative backscattering coefficient has
no effect on the SRL behaviour. A good correspondence between
our numerical resultsof this paper and the experimental results of
Sorel et al. (M. Sorel and Donati 2002; M. Sorel and Laybourn 2002)
is revealed.
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ABSTRACT Crypto assets succeeded in making their name known to large masses with Bitcoin, which
emerged as a result of the creation of the first genesis block in 2008. Until 2010, the aforementioned
recognition showed itself mostly in areas such as games, but over time it managed to enter the portfolios of
individual investors. Especially as of end of 2017, the rapid increases in monetary value quickly attracted
the attention of corporate companies and then the (Central Banks). These assets have created different
alternatives (also know as altcoins) by working and have managed to become one of the important financial
instruments today. This study has examined in detail the techniques (Chaos theory, Onchain analysis and
Sentiment analysis) developed on the price predictions of crypto assets, which are very important in terms
of the number and quality of investors. In the study, findings were obtained that new techniques such as
onchain and sentiment are more prominent in estimating crypto asset prices compared to traditional asset
price estimation methods of crypto assets and that these techniques can make consistent estimations.
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INTRODUCTION

Blockchain is a revolutionary technology that allows transactions
to be conducted without the need for intermediaries in peer-to-
peer transfer. First mentioned in Satoshi Nakamoto’s (2008) article
"Bitcoin: A Peer-to-Peer Electronic Cash System", this system has
the ability to perform financial/non-financial transactions on a
decentralized infrastructure. The basic premise of the system initi-
ated from Stuart Haber and W. Scott Stornetta’s idea of presenting
digital documents with a time stamp, which prevents these docu-
ments from being changed, while allowing for a computationally
useful solution (AJ and Vanstone 1990). It has become known for
its structure that can reliably organize different processes without
a systems tool and without the need for a central authority, as well
as through Bitcoin, a cryptocurrency that has affected the whole
world. The production of Bitcoin started with the creation of the
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first block and currently has reached a weight that can be consid-
ered important in the portfolio of investors with its alternatives
approaching 18000.

Cryptocurrencies are new currencies and are also among the
popular investment tools. There are many questions about this
type of money, which is newly included in the financial system,
as they are decentralized and are separated from the conventional
monetary system by their nature. Since cryptocurrencies are freely
shaped according to supply and demand in the market, one of
the most curious subjects in literature has been their value; what
will they be and how they will be shaped. There are many studies
and methods for determining the future price of a security in
traditional financial markets. However after a brief introduction
to the research topic in the first part, the second part includes a
literature review, followed by a basic and technical analysis, the
studies on chaos theory, onchain analysis, and sentiment analysis.

Hacinliyan and Kandiran (2015) investigated the possible frac-
tal behaviors in the Istanbul Stock Exchange indices within the
scope of chaos theory. To observe whether there were any chaotic
and fractal behaviors, Higuchi and Katz methods were used to
analyze the monofractal behavior of the selected indices while the
Transformed Width (R/S) and Adjusted Fluctuation (DFA) ana-
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lyzes were used to examine the chaotic behavior. As a result, it was
concluded that there is chaotic behavior in the relevant indices.

Alpar and Özge (2016) used the data between 1988-2004 in
order to prove the existence of chaos theory in the stock market.
Using the Lyapunov exponential model, the result was found to
be 18. The time series analysis showed that the stock market
is chaotic the direction of price movements can be predicted as
the 2 days before and 4 days after repeated each other. Biswas
et al. (2018) has defined the chaos theory for the sciences and gave
information about the detection and management of chaos for the
related sciences. In these areas, the boundaries of chaos theory
were drawn and relevant literature studies were included.

Abraham et al. (2018) collected Twitter and Google trend data to
analyse the Etherum and Bitcoin price changes. Sentiment analysis
of VADER (Valence Aware Dictionary For Sentiment Reasoning)
was used to analyze the collected data. This method was chosen
in the study because VADER analysis provided several benefits,
including not only classifying text as positive, negative, or neutral,
but also measuring the density of words used. The sentiment of
tweets was not included as it was said not to be a reliable indicator
when crypto currency prices were falling. Tweet volume was taken
into account. Both Google Trends and tweet volumes were found
to be highly correlated with price. In addition, the correlation held
during periods of increasing and decreasing prices shows that the
relationship is robust against periods with high variance and non-
linearity. Direct one-to-one comparisons were made using a linear
model, as the input variables followed the same nonlinear trends
as the response. As a result, it was shown that it is partly due
to work done at a time when cryptocurrency prices were always
rising. Additionally, Twitter sentiment regarding cryptocurren-
cies tended to be positive regardless of the future price changes.
A positive correlation was also observed by the author between
Google searches and the value of cryptocurrencies, and the price
changes in the relevant cryptocurrencies were followed, and it was
concluded that it was indeed compatible with the model created.

In order to comprehend the temporal link between variables,
Cortez et al. (2018) concentrated on the pricing of mineral commodi-
ties and used econometric techniques, machine learning, and chaos
theory-based techniques. They concluded that while Gaussian and
stochastic algorithms did not perform well enough, chaotic be-
havior may be seen when using machine learning techniques and
methodologies based on chaos theory.

The study by Lahmiri and Bekiros (2018) focused on multiple
fractalism and chaos theory in the Bitcoin market, where they in-
vestigated whether the prices followed the random law repetitively
between the years 2010-2017. The Lyapunov exponent, Shannon
entropy and generalized Hurst exponent models were applied and
chaos, randomness and multi fractal stylized features of price and
returns in the Bitcoin market were examined. As a result of the
study, it was concluded that, contrary to returns, prices included
and exhibited chaotic dynamics, but the prices did not repeat in
a predictable way. It focused on three digital currencies namely
Bitcoin, Digital Cash and Ripple. The analysis showed that all
three tools have fractal dynamics, long memory and self-similarity.

By trying to predict Bitcoin and Litecoin prices two hours in
advance, based on the sentiment expressed in the current Tweets,
Jain et al. (2018) aimed to explore whether social factors can predict
of cryptocurrency prices. Therefore, they used the Multiple Linear
Regression (MLR) model to estimate a two-hour average price from
the number of positive, neutral, and negative Tweets accumulated
every two hours between March 1-11, 2018.

Bouri et al. (2019) examined the effect of herd behavior in the
cryptocurrency market. As a result, strong evidence was found to
support the existence of herd behavior in this market. The results
of the logistic regression analysis, showed that the increase in
uncertainty, the herd tendency also provides evidence for this.

To understand the relationship between Bitcoin and Etherum
news and the price prediction, Vo et al. (2019) conducted an analysis
based on the assumption that there is a relationship between the
mood of the public and the cryptocurrency market, like traditional
financial markets. Data were obtained using daily time series data
from July 30, 2017 to October 5, 2018. For the sensitivity analysis,
the news of the last 7 days were collected. An algorithm was
created with a dictionary-based approach, with the thought of
distinguishing the effect of the news about cryptocurrencies on the
price movement, and with the thought that it can provide investors
with a buying and selling advantage. They created a model that
can directly predict the price direction by specifying whether to
buy, sell or hold, and they concluded that the model they created
correctly predicts the price movement in two cryptocurrencies.

Holiachenko et al. (2022) aimed to explain cryptocurrencies
using fundamental and technical analysis. A technical analysis
method was developed with different currencies in the same stock
market in order to achieve maximum gain. In the conclusion part of
the study, where many scenarios and graphics related to arbitrage
were created, it was stated that the developed methodwas resistant
to fluctuations in oil and gold prices.

Hudson and Urquhart (2021) conducted atechnical analysis
of Bitcoin, Ethereum, Bitstamp and Litecoin in their study and
although predictability continues in other cryptocurrency markets,
it has been concluded that there is no predictability for Bitcoin in
the out-of-sample period.

In order to test the validity of the efficient market hypothesis in
the crypto money market, Kang et al. (2019) investigated the ran-
dom walk theory. They concluded that among crypto exchanges
established before November 2017, large exchanges are more likely
to satisfy weak and semi-strong forms of market efficiency.

Pietrych et al. (2021) investigated the existence of chaos the-
ory in cryptocurrencies. The nonlinearity and chaos in cryptocur-
rencies (Bitcoin, Ethereum, Ripple and Litecoin) were tested and
concluded that these time series show strong evidence support-
ing the hypothesis that these time series come from an unknown
production process that behaves nonlinearly and chaotically.

The effect of crypto money on the economy was analyzed by
Yue et al. (2021) using a bibliometric analysis. Literature studies
related to the subject were extensively covered. Bibliometric anal-
ysis aims to reveal previously unknown patterns by collecting a
large number of relevant information in a specific area or a specific
area of the subject. In this context, starting from the keywords in
the literature, using the CiteSpace 5.7. the research outline of the
economic effects of the study was created. Data obtained from the
literature studies were clustered according to events that could
affect the value of Bitcoin and its effects on the economy, and made
available for analysis. the results obtained for direct economic
effects are as follows:

1) While the impact of speculative trading on cryptocurrency
differs in different studies, bitcoin price fluctuations will affect
macroeconomic policy to some extent.

2) The hedging and safe-haven characteristics of cryptocurren-
cies continue to change over different periods of research. Some
research finds that Bitcoin can act as a speculative asset.

3) External events such as the Covid pandemic can increase
price fluctuations and improve the hedge effectiveness of cryp-
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tocurrencies.
Another valuable result of the study is as follows: While com-

puter science literature and interdisciplinary fields are concerned
with the economic phenomenon caused by technologies, it has
been concluded that previous researches are more concerned with
economic results in economic fields.

Gözde (2021) examined sentiment analysis of Tweets posted as
“Bitcoin” on Twitter. Orange Data Mining program was used for
this. As a result; It has been observed that there is a predominant
sense of joy about Bitcoin and investors feel happy when they buy
Bitcoin.

Gurrib and Kamalov (2021) tried fluctuations in the crypto
money market to be predicted by using sentiment analysis. It was
determined that tweets about crypto money in a 3-week period
were directly related to the market value of coins, and the model
used in this study was determined to be critical. It is emphasized
that it is a good model for predicting the value of pto money.

Jagannath et al. (2021) conducted an onchain analysis study
in order not to predict Ethereum prices. It was chosen because
it is Etherum, which is the most popular currency after Bitcoin,
and because it uses an open network structure. In this paper,
data has been collected from the public Ethereum blockchain and
application programming interfaces (APIs) of online resources.
In this study, the linear effect of each important Ethereum on-
chain metric on price is examined using Pearson’s and Spearman
correlation coefficients. In addition, there is a model study for
calculating the estimated price using machine learning models.
The author’s working comment on the result obtained is: An
LSTM model was developed that uses three different self-adaptive
methods to determine the best hyperparameter values to predict
Ethereum price. Each self-adaptive technique was compared with
each other and with a traditional LSTM model. In contrast, self-
adaptive algorithm-based LSTM models provide a faster and more
accurate price prediction for Ethereum.

Gu et al. (2022) tried to detect abnormal transaction amount in
cryptocurrency exchanges with On-Chain analysis. In order to
obtain the most important factors affecting the trading volume of
different exchanges, a correlation analysis was performed and a
model was developed to predict the effect of various factors on the
trading volume. A case study of the detection results revealed that
some abnormal transaction amounts were related to policy changes
and industry events, while others were legal. He calculated the
deviation between the estimated transaction amount and the actual
transaction amount based on deep learning to provide a basis for
the abnormal transaction amount detection.

El Montasser et al. (2022) calculated the closing prices of differ-
ent cryptocurrencies in his study. The results of the authors who
made balloon studies in terms of market size were interpreted by
comparing them with the Covid 19 period. As a result of the study,
a high correlation was found between the Covid 19 period and the
crypto market. This indicates that the market activity behavior of
major traded cryptocurrencies has changed strongly following the
COVID-19 pandemic announcement.

We examine the efficiency of cryptocurrency markets by ex-
ploring how cryptocurrency bubbles and the COVID-19 pandemic
affect market efficiency that changes over time. Our results show
that the market activity behavior of major traded cryptocurren-
cies has changed strongly following the COVID-19 pandemic an-
nouncement. However, the results identified three cryptocurrency
bubbles; End of 2017, beginning of 2018 and throughout July 2020.
It is concluded that these decentralized finance bubbles have a
lower impact on cryptocurrency market efficiency. The purpose of

the study is mainly the effectiveness of cryptocurrencies and the
existence of price bubbles.

Nie (2022) used a network method to identify critical events
in the correlation dynamics of cryptocurrencies, taking networks
around January 6, 2021 as an example to illustrate local and drastic
changes in the correlation structure, helping to analyze the dy-
namics of the emerging market, the correlation structure in the
cryptocurrency market. analyze its stability and fragility. The basic
analysis in the network method used is: Using the influence power
of the relevant cryptocurrency network (IS). The empirical anal-
ysis concluded that the market index showed large fluctuations
near the critical event and that there was a correlation between the
dynamics of the correlation matrix and the market conditions. In
addition, he found a synchronization between changes in correla-
tion and changes in network structure, and a positive correlation
is observed

Wasiuzzaman et al. (2022) examined the performance of Islamic
gold-backed cryptocurrencies during the 2020 bear market. Price
data was collected for three Islamic gold-backed cryptocurrencies,
OneGram, HelloGold and X8X, and traditional gold-backed cryp-
tocurrency PaxGold. Bitcoin, the traditional fiat-backed cryptocur-
rency from December 2019 to November 2020. Analysis through
ARMA-EGARCH models shows that returns for all cryptocurren-
cies were lower during the bear market, but only with the Islamic
gold-backed cryptocurrency. It was concluded that volatility is
higher for all five cryptocurrencies, but the impact of the bear mar-
ket on volatility is significant only for traditional cryptocurrencies.

BLOCKCHAIN TECHNOLOGY

Blockchain is the infrastructure technology that forms the basis of
the relevant subject for the trading of cryptocurrencies and the exe-
cution of smart contracts. This system, which was first mentioned
in Satoshi Nakamoto’s article named "Bitcoin: A Peer-to-Peer Elec-
tronic Cash System", has found a wide application area not only in
cryptocurrencies, but also in the traditional financial system, allow-
ing new application areas to be opened. Since Blockchain is known
for Bitcoin, negative attitudes towards Bitcoin were initially consid-
ered within the Blockchain, but over time, this technology brought
by Bitcoin began to receive the attention it deserved. However,
the emergence of Blockchain dates back to the early 1990s, when
Stuart Haber and W. Scott Stornetta first applied cryptographic
techniques as an alternative way of storing digital documents and
protecting against cyber attack. Blockchain brought; transparency,
decentralization, verifiable and strong structure and started to be
the center of attention and multifaceted academic reviews were
realized. After examining its definition, functions and potential
in general terms, the following definition emerged: Blockchain
Technology not only processes monetary transactions, but can
also enable transactions to comply with programmable rules in
the form of "smart contracts" (Tschorsch and Scheuermann 2016).
Thus, the ability of the parties to carry out their transactions freely
without any trust problems played a leading role in the interest in
digital systems.

Although blockchain is anonymous, decentralized, what makes
it unique is that it cannot be hacked. Data is stored in a network on
the blockchain. Computers working connected to a network called
miner, bring together the processed data, archive it in accordance
with encryption standards, and turn it into blocks. Transactions
turn into a Hash algorithm as a summary function, and either a
thousand-page text or a one-line 64-character cryptography infor-
mation is encrypted with the encryption system for the relevant
network (for example, Hash-256 in Bitcoin). That is, as input, the
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desired length of file data and etc. are. entered, but its output is
called Hash or Digital Digest The information about the network
participants, called “Node” is verified and added to the network.

Since each node is connected with the previous node, a change
made in the related node causes a change in all other nodes. Since
the core of the system is based on a decentralized and interme-
diary system, a ledger is required, for example for crypto money
transfer or trading registration. In this system, the name of this
notebook is “Ledger”, which is responsible for keeping the nec-
essary records transparently. It acts as an exceptionally secure
intermediary between the sender and the receiver. Thanks to the
e-signature, it assumes the function of confirming the amount
sent by the sender to the recipient. In the digital world, trans-
fer and registration transactions are more reliable thanks to this
technology, compared to the type of fraud and insecurity, such as
forged signature etc in real life. It is a database that is included
and synchronized in the decentralized network (Sarmah 2018).
Some of the areas where Blockchain is used are: Finance, Health,
Logistics, Creation and storage of valuable documents and official
documents, E-commerce, Tokens and cryptocurrencies, Insurance,
Supply Chain. While many fields such as Games, Media, Real
Estate and art collecting use it, research shows that Blockchain is
used in the production and industry sector applications.

Figure 1 Blockchain usage area (Sarmah 2018)

Considering that the idea of decentralized digital money has
just emerged with all this technology, when viewed chronologi-
cally, many steps are encountered in the way of creating digital
money and the use of blockchain. In the first place, studies were
made mostly on encryption and privacy, and with these encryption
techniques that developed over time, the financial system and cur-
rency continued to develop with cryptographic and digitalization.
The information obtained from the studies carried out are listed
chronologically as follows:

In 1976, Diffie and Hellman published a paper and presented
a method based on a secure exchange in an environment where
there is no sense of trust by using private keys and cryptographic
encryption techniques (Diffie and Hellman 2022).

An algorithm called RSA was proposed by Shamir, Rivest and
Adleman in 1977. In this way, the RSA algorithm was devel-
oped in accordance with asymmetric encryption algorithms and
e-signature, and authentication processes were developed. A sys-
tem was developed to be used in secure key sharing operations
(Yerlikaya 2006).

In 1980-1990, David Chaum developed a cryptographic encryp-
tion. In fact, there is quite a lot of work in this field. Although
he first worked on encryption, the encryption system was not in
demand because it was not sufficient in terms of mutual trust and
confidentiality. He has also developed E-Cash, that is, electronic
payment systems, and made innovations such as saving money or
investing in the digital environment through the bank.

In 1995, DigiCash company created the first digital currency
with e-Cash. In 1996, it introduced e-gold into the system. This
system has received a lot of attention, because it allowed system
users to open a gold account and then be able transfer this gold
(Simsek et al. 2020). Then, he laid the foundations of the idea
of creating an institution that can make money payments with-
out an intermediary institution, called B-Money. Chaum, who
is considered the inventor of digital money. It is known for his
contribution to the system on privacy and cryptography. It was
the first known proposal of a blockchain protocol. Dr. Chaum
continued to develop the first digital currency, eCash, and made
numerous contributions to secure voting systems in the 1990s. To-
day, Dr. Chaum Co-founded Elixxir and Praxxis networks, which
combines decades of research and contributions in cryptography
and privacy to deliver cutting-edge blockchain solutions.

• In 1999, the Napster program, which allows online and peer-
to-peer file sharing, took its place on the market.

• In 2003, the Second Life game became one of the first stages
of the transition to virtual currency and digital economy.

• In 2008, Satoshi Nakomato made a creative destruction in
this process with his article describing the blockchain-based
crypto currency that include all these systems announcing the
creation of a decentralized and anonymous crypto currency
without the need for a financial intermediary security-based
transparent system has been outlined (Nakamoto 2008).

There is no government or banks in the system. A peer-to-peer
transfer system has been created in a 24/7 open digital environ-
ment. Cryptocurrencies are created with a value whose rate is
determined according to the supply and demand in the current
system. The Prof of Work(POW) cryptography at the base of the
system has solved two basic problems:

1) Problem with keeping records among network participants,
2) Resistance to cyber attack.
Before the emergence of Bitcoin, the function of transferring and

preserving money could not be imagined without an intermediary
institution, but after the emergence of Bitcoin, it was an important
step to overcome the intermediary institution costs or transaction
costs that were most criticized in the current financial system.

In this process starting from 2008, many different cryptocur-
rencies have emerged. There are cryptocurrencies, called Altcoin
(Alternative Coin), that have the same production method as Bit-
coin and exist on a completely different Blockchain network. These
cryptocurrencies, whose number is about 2700, are based on smart
contracts due to their organizational structure, and also include
many corporate companies in its ecosystem (Şahin 2020). Although
the system was created in 2008, it started to attract attention after
2015. At first it consisted of a crypto money given to the miners
who contributed to the functioning of the system. Miners perform
the most important task of the Blockchain system, for example,
they approve the transfer process in a transfer transaction. The
operations performed by the miners, who perform tasks such as
adding a new Bitcoin to the system, solving the double-spending
problem and posting unconfirmed Bitcoins, are as follows:
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1) Announcing a new transaction to the entire network,
2) Collecting the node transaction to the relevant block,
3) Issuing a new block after each transaction,
4) Confirming the transactions made.
With each completed task, a new Bitcoin or cryptocurrency ap-

pears. According to the data of CoinMarketCap for 2022, there are
over 12,954 cryptocurrencies, mainly Bitcoin, Ethereum, XRP, and
Bitcoin Cash. According to literature, the ten most popular cryp-
tocurrencies are Bitcoin, in particular, Etherum, Tether, Biancecoin,
USDC, Binancecoin, USD, XRP, Cardano, Solana, Dogecoin.

Bitcoin is the most known and most invested in the world
of crypto money. However, there are also Altcoins in the crypto
money ecosystem. Altcoins were created right after Bitcoin became
popular and its formation is clear. Altcoins that can be converted
as alternative coins are essentially the name given to cryptocurren-
cies other than Bitcoin. The first Altcoin created was “Namecoin”.
The emergence of altcoins is used to eliminate the problems expe-
rienced during the formation of Bitcoin, for example, there is an
intense energy consumption during the mining phase for the for-
mation of Bitcoin and it is time-consuming. On the other hand, the
"Proof of stake" system is used instead of the POW system. This
system provides comparative advantage and speed. Although
technically crypto investors often refer to low-value cryptocurren-
cies as Altcoins, which are easy to use and turn into cash faster,
they are relatively more affordable than Bitcoin in mining equip-
ment. The disadvantage is that they are very open to speculation.
The most popular altcoins are Ethereum, XRP, Tether, Cardano,
Polkadot, Stellar, Dogecoin, Chainlink, Uniswap.

METHODS USED FOR PRICE PREDICTION OF CRYPTO
ASSETS

Fundamental-Technical Analysis

The analysis that investors basically use in their financial invest-
ments is fundamental and technical analysis. While fundamental
analysis considers the macroeconomic trend, technical analysis is
an analysis that helps predict future price movements of financial
assets based on past price movements. The most widely used
type of analysis is technical analysis, but whether it is possible to
repeat past price movements in the future is a controversial issue.
Both types of analysis contradict the Efficient Markets Hypothesis
(EPH). The reason for this is the principle that no investor gets
abnormal returns since all information is reflected in the prices
(Malkiel 2003). With technical analysis, based on past price move-
ments, current prices do not reflect the market.

Fundamental Analysis Various macroeconomic factors are brought
together to try to predict the price of the security. The main goal is
that the investor’s security is overvalued? Is it low value? to seek
answers to questions such as Fundamental analysis is examined
in 3 groups as firm, sector and economic analysis. In economic
analysis, the investor makes a general assessment of the current
macroeconomic situation, examines the profitability of the firm
during the expansion or contraction periods in the cyclical fluc-
tuation of the economy and tries to predict the direction of the
movement of the stock price. After the economic analysis, issues
such as sector analysis, the competitive situation of the relevant
company in the sector, how much the firm’s sector will/will be
affected during economic contraction and expansion periods are
taken into consideration. After the economic and sector analysis,
a firm analysis is made and the return of the stock of the relevant
firm is calculated and expected.

The application of this analysis to the cryptocurrency market is
to decide whether the price of an asset is higher or lower than its
value, depending on how the intrinsic value of the asset is viewed.
Fundamental analysis is done by looking at more objective indi-
cators of the estimated value of the relevant crypto-asset, such as
the usage density of the network, the activity status of the relevant
network, or the business model and the roadmap (Lyashenko et al.
2021). Generally, the news and comments about crypto money
are evaluated, and then if there are any, speculation or manipula-
tion movements are tried to be detected. All information about
the relevant crypto currency is tried to be collected. In order to
calculate the returns of alternative investment instruments, domes-
tic macroeconomic variables and investment instruments are also
followed. However, using social media for this analysis will not
generate correct results because of the possibility of fake accounts
and manipulation. Therefore, fundamental analysis of cryptocur-
rency looks at 3 metrics: on-chain metrics, project metrics, and
financial metrics.

To put it briefly:

• On-Chain Metrics, involves obtaining and looking at
blockchain data. The node for the desired network is run
and viewed by accessing the relevant information. However,
since it is a time-consuming method, websites designed for
this process are used for more practically. The network trans-
action count is also a good guide.

• Project Metric, where on-chain metrics relate to observable
blockchain data, it includes a qualitative approach that looks
at factors such as project metrics, team performance (if appli-
cable), whitepaper, and upcoming roadmap.

• Financial Metrics are concerned with the value of the crypto
asset in the relevant period, the price of which it was traded
before. Interests can be useful in fundamental analysis. How-
ever, other metrics that might fall into this category include
gathering information about the economics and incentives
of the crypto-asset protocol. The importance of fundamental
analysis in terms of cryptocurrencies helps us to determine the
suspected values correctly, or to put it more clearly, to conduct
a long-term value analysis for cryptocurrencies where there
is doubt about buying and selling, or if there is investment
hesitation.

Technical Analysis In technical analysis, the investor makes an
investment decision with the price and volume information of the
asset he wants to invest. Technical analysis defines it as the study
of any market that uses price and volume information solely to
predict future price movements and trends (Stevens 2002). The
most widely used analysis tool for technical analysis is charts.
Information is collected by using the graphics of the relevant fi-
nancial asset. Trends and support and resistance points are also
analyzed with the moving average method and various indicators.
It is tried to make predictions about the future based on the price
movements in the past. Dow theory forms the basis of technical
analysis. To summarize this theory, the market consists of a cycle
and all prices continue on a continuum. This event is like a tide
event.Technical analysis is extremely helpful when reading charts
in Cryptocurrencies. Some of these benefits are:

• A single graph reading gives information about an entire
process.

• Even just reading charts on trading volume and prices can
provide an understanding of the overall picture.

• It is tried to predict the direction of the market with the help
of technical analysis.
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• With Bitcoin technical analysis, the past and future of crypto
money are followed.In general, movements in crypto currency
exchanges occur downward, upward and horizontally.To sum-
marize the usefulness of technical analysis in terms of cryp-
tocurrencies, it helps about short-term price movements.

Chaos Theory
Chaos theory has been used in various branches of science to
describe order within disorder. Its application in the field of eco-
nomics was used by G.D.Cole while investigating the causes of
the crisis, as well as of the Great Depression of 1929, with the view
that nonlinear relations could be explained in the market under
certainty conditions.

The most important contribution to chaos theory was by Lorenz
during the preparation of the weather forecast report. Chaos theory
is a sub-title of nonlinear systems. In the 19th and 20th centuries,
it was called the ‘butterfly effect’ because the Lorenz Diagram is
shaped like a Butterfly that popularizes this theory.

Figure 2 Lorenz chaotic system (x-z)

With the use of chaos theory in the economic sense, studies on,
investor and decision-maker behaviors in stock markets and for-
eign exchange markets, foreign trade problems, crisis period cause-
effect relations, hyperinflation periods and banks are the areas
where nonlinear equations have also started. The financial appli-
cation of nonlinear equations is the result of knowledge economy
and some models have been developed within the scope of chaos
theory. These models are: Logistics equation, One-dimensional
discrete maps, High-order discrete maps, and continuous Time
Models (Tosun 2006).

Chaos theory is not an induction or a mathematical method.
In essence, it explains the tendency of the parts that make up the
whole to form that whole separately. The reason for the interest in
Chaos theory in economics stems from the fact that this theory can
also offer a new perspective on system control strategies, which
has some particularly interesting insights for economic policies
(Faggini and Parziale 2012).

Chaotic behavior is used in a wide variety of scientific disci-
plines, including astronomy, biology, chemistry, ecology, engineer-
ing, and physics. In economic models, the chaotic existence and
cause of the variable, which is tightly connected to the initial cause,
is tried to be determined tightly, but it may be difficult to distin-
guish between random economic shocks and internal fluctuations.
For this reason, some analyzes are made to investigate the compat-
ibility with Chaos theory: Correlation, Lyapunov Test, and BDS
Test (Klioutchnikov et al. 2017).

In order to investigate the chaos, randomness and multi-scale
temporal correlation structure for the crypto money market, it is
a suitable theory to measure the chaos in prices, the uncertainty
in the returns during the high price period, or the change in the
returns in the time period when the value decreases. However,
when performing a chaos analysis for an econometric series, the
basic question is if the fluctuation in the current variable from a
stochastic system or if it comes from a deterministic, i.e. chaotic
system. One of the most common approaches to answer these ques-
tion is time series analysis The basic techniques used to measure
chaotic systems in general are:

1) Lyapunov Exponent: It is the name given to the instruction
that a signal follows along the phase space. It is a measure of the
amount of separation between neighboring orbitals. It can measure
the stability and instability of the chaotic system (Lv et al. 2022).

2) Dimensions (Fractal Dimension): The trend from unidentified
disorder to identifiable order is proved with the help of fractal
curves. Fractal structures can provide important information about
the long-term and repetitive process of market behavior, since the
parts are completely similar (Ural and Demireli 2009).

3) Unpredictability: Chaos theory sees the world not as a pre-
dictable mechanism, but as an open and flexible system. argues
that we are never capable of reaching the initial conditions of nec-
essary certainty related to the functioning of the physical world
(Trigg and Yerci 1996).

4) Mixing and Feedback: The order formed in the chaos process
shows commitment in a very short time and this is a kind of
feedback.

5) Butterfly Effect (Dependence on Initial State): This concept
emerged with Lorenz, and when considered for economics, it can
be interpreted as that it is sensitive to the initial values for time
series and subtle changes will affect the final shape and state of the
whole structure (Su 2021).

The efficient market hypothesis, which is the most important
theory in financial terms, states that the fluctuations in prices fol-
low the normal distribution within the scope of the random walk
feature and that a fair or efficient price will be formed in the market.
However, in reality, the fluctuations in prices do not show a ran-
dom walk feature and do not follow the normal distribution. As
an explanation for this situation, the "Fractal Market Hypothesis"
was developed. It highlights that the fractal feature can be seen
in financial markets. Here, two important points are emphasized
that are not included in the efficient market hypothesis: market
liquidity and information (Erdoğan 2017).

Market liquidity consists of different opinions on the value of a
security based on the trading transactions of investors with each
other. In other words, one thinks that the value of the relevant
security will increase, while the other thinks that the value of the
related security will decrease. Because of the information they do
not provide to each other, one party can gain because they reach
the information before the other. The second factor, information, is
that different values are attributed to the available information in
different periods, since the periods in which the investors invest are
different. Therefore, prices may consist of a short-term technical
and long-term heuristic dimension. To express this differently,
there is randomness in the short term and global determinism in
the long term, which is related to the fractal dimension.

Fractalism has 3 basic dimensions: Power law, Self-similarity,
and fixed scale. An object is fractal if it is similar to its smaller
sized parts and is directly related to fractals. The fractal size of the
object indicates the degree of similarity to itself. Fractal models are
statistical and the standard deviation of the part is proportional
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to the standard deviation of the whole, giving meaningful results.
In addition to being statistical, it is similar to itself, that is, to be
expressed mathematically as the similarity seen in printing an
image vertically and horizontally.

In the literature, Chaos theory is generally applied for time
series to show whether the time series move randomly. Instead of
"Efficient Market Hypothesis" and "Random Walk Model", which
are basically the bedside theories of finance science, "chaos theo-
rem" has begun to be accepted. Because with globalization, fluctu-
ations in financial markets have started to be seen much more. In
financial markets, the chaos theorem is against the efficient market
hypothesis, and each investor and system has taken on a very
chaotic structure. As can be seen in the studies in the literature
review section, chaotic behaviors have been observed in the crypto
money market, especially after 2010.

Onchain Analysis
Onchain analysis is the study of data stored in a blockchain net-
work. In essence, it can be called a blockchain analysis. It is
possible to see the entire data as all transactions are recorded on
the Blockchain and cannot be changed. In this way, the thoughts
and investment direction of all system users can be predicted. To a
bitcoin Merchant, it gives another idea of where the price might go
depending on the transaction patterns, the type of Bitcoin owner
making the transaction, and where the coins might move. This
analysis is similar to technical analysis but is more fundamen-
tal. The data used to make the relevant analysis can be broadly
classified into three different categories:

1) Transaction Data (sending and receiving address, amount
transferred, remaining value for a given address),

2) Block Data (time stamps, miner fees, rewards),
3) Smart contract code (i.e. business logic encoded on a

blockchain).

Figure 3 Onchain analysis indicators

Looking at its history, it dates back to 2011. By comparing the
value of the network with the transaction volume recorded on
the blockchain, it is possible to determine when a cryptocurrency
is overvalued. For this, various ratios and indicators have been
developed. In this way, market sentiment analysis is made, and
the amount of traded /untraded crypto money or token can be de-
termined because whales (people or organizations who own large
amounts of crypto currency) sometimes pose a great danger for
the crypto money world. Popularized by CoinMetrics, Chris Bur-
niske and Jack Tatar developed the Network Value-to-Transaction

(NVT) ratio in the summer of 2017 to measure the utility value of a
cryptocurrency, specifically its transactional utility. It was one of
the commonly used measures for cryptocurrencies. According to
the NTV ratio if the network value is high, the NTV ratio decreases.
Conversely, as the value of the network decreases, the NTV ratio
increases. The explanation for this is that, if the network value
is extremely low, it may indicate that a more substantial price is
warranted given the trading volume.

The so-called UTXO (unspent transaction outputs) is a very
important concept. It represents the amount of crypto money left
over from each transaction. By using this, it is possible to see how
long these funds are kept in the wallet. Based on the UTXO data,
HODL waves are drawn. Using UTXO, the amount of unused
crypto money in the wallets are determined and for how long they
are kept.

Holder with an increasing number of investments means that
the circulating supply is lower, that is, they do not decrease the sale
and the circulating supply can said to be less. This indicator also
reflects the investor psychology, allowing us to observe whether
people want to sell coins or not. For example, considering investors
who have started to sell the coins they have kept in their wallets
for more than 1 year, Holder decreases, which means that the
investor is selling his crypto asset because they are making a profit.
With this indicator, investments can be made by looking at the
buying/selling times. Warm colors, such as red, orange, yellow,
represent Bitcoin that has been used within 1 year, while cold
colors represent Bitcoin that has not been used for more than 1
year.

Another indicator used in onchain analysis is MVRV Z-SCORE.
This indicator shows the period when Bitcoin is overvalued and
undervalued. Certain values in the past are taken into account and
the formula is as follows:

MVRVZ − Score :
MarketCapUSD − RealizedCapUSD

StdDev (orMarketCapUSD)
(1)

The MVRV Z-score is a function obtained by dividing the dif-
ference between the total market value and the realized market
value by the standard deviation of the market value. This shows
how many standard deviations the market value differs from the
realized value. Market value indicates a peak if it is significantly
higher than realized value, but a bottom vice versa. In other words,
it shows whether the realized value with the market value is over
or undervalued than the Bitcoin price. The ultimate goal is 7. The
probability of a Balloon asset above 7 is high.

The Z-Score is a number used to measure the relationship of a
value with the group average of that value. It is measured with a
standard deviation, and for example, Z-Score 0 means the value is
the same as the group mean, and if the Z-Score is 1, that value is 1
standard deviation from the group mean. It is more important in
determining extraordinary movements. If the Z-Score -Red Line-
enters the pink box, it means that there is an excessive increase
beyond the true value. The probability of the price falling increases.
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Figure 4 HODL Wave Graph (Lookintobitcoin 2022 (accessed November 7, 2022)

Figure 5 MVRV Z-Score (Lookintobitcoin 2022 (accessed November 7, 2022)
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Another indicator is NUPL. NUPL is derived from both the
market value and realizable value. Market Cap is the current price
of Bitcoin multiplied by the number of coins in circulation. Actual
Value is the price of Bitcoin at the time it was last transferred,
that is, the last time it was transferred from one wallet to another.
All these individual prices are then summed up and averaged,
then multiplie with the total number of coins in circulation. It is
the difference between the market value and the realized value.
Formula NUPL value it is:

NUPL=
MarketCap − RealizedCap

MarketCap
(2)

Net Unrealized Profit/Loss (NUPL) can use market participant
data to help predict when Bitcoin price hits highs or lows. It is a
convenient tool to show potential market participant sentiment at
a given moment, which can be useful for predicting the Bitcoin
price and where it may move over time. How this tool should be
interpreted in its graph is shown in the Fig 6.

Figure 6 NUPL Graph (Lookintobitcoin 2022 (accessed Novem-
ber 7, 2022)

To generate this indicator, the difference between unrealized
losses and unrealized gains is calculated, so that when it acquires a
value greater than zero it indicates that at that moment the network
is in profit, while values less than zero indicate a state of loss. The
indicator is shown on a graph as a curve that oscillates between
positive and negative values, and in general, the further the NUPL
curve moves away from zero, the closer the prices are to the market
highs or lows.

Puell Multiple metric focuses on the revenue of bitcoin miners.
In this environment where prices are volatile, miners can affect
prices in order to meet fixed costs. The daily issuance value of
Bitcoins is calculated by averaging the 365-day issuance value.
If the values are higher than the annual average it indicate the
current miner profitability. Low values indicate that current miner
profitability is lower than the annual average.

The Mayer Multiple shows the time period when it is overval-
ued and undervalued above the 200-day moving average. If this
value falls below 1, it is a buying opportunity. In the short term,
this value is desired to exceed 1. Falling below 1 is not a good
indicator for the investor. It is calculated using the formula:

MayerMultiple=
BTCUSD

MA200(BTCUSD)
(3)

Reserve Risk is a cyclical indicator that monitors the risk-reward
balance based on the confidence and belief of long-term holders.
It is an indicator that models the ratio between the current price
(sell incentive) and long-term investors’ opinion (opportunity cost

of not selling). This indicator is compatible with bull and bear
markets. If confidence is high and the price is low, the Reserve
Risk is low, making it attractive to invest. If the confidence is low,
the reserve risk is high, and this may mean a price peak. In other
words, low reserve risk can mean low value and high reserve risk
can mean overvaluation.

There are some free websites that provide on-chain analysis
for cryptocurrencies : Glassnode offers simple on-chain metrics at
zero cost, plus advanced metrics and high-frequency time series
data for a fee. CoinMetrics offers free data for around 37 crypto
assets. This includes on-chain metrics and correlations.

IntoTheBlock is also a platform that provides a wide range of
analytical tools. It covers sentiment analysis, order book data, and
on-chain analysis for various crypto assets.

Other sites include Santiment/Sanbase and CQ.Live. There
can be various difficulties in performing Onchain analysis. Not
all blockchains are evenly distributed. For example, the Bitcoin
network has the motivation to make digital money, while the
Etherum network has a wider range of services. Measurements
may differ due to inequality in the blockchain. When comparing
Bitcoin to other new Altcoins, Bitcoin has more than ten years of
data to support historical analysis, while new altcoins have less
data, as well as longer term analysis. It may not give the right
buy-sell signal in the short term.

Sentiment Analysis
It is the formation of thoughts on the subject through the evaluation
of the feelings and thoughts of a community. The idea is to obtain
efficient and usable findings from these evaluations. Its other name
is “Idea mining”. Sentiment Analysis is used in many fields such as
finance, medicine, stockbroking, media, politics. It is a widely used
technique in product reviews to measure a consumers satisfaction
with a product. The data related to the subject in question can be
defined as positive, negative, or neutral. In terms of Sentiment
Analysis research levels are examined under three main headings;
document level, sentence level (sentence level) and view level
(aspect level).

Sentiment analysis at the document level: In this method, with-
out going into too much detail, the entire document is considered
as a single idea and classified according to whether it expresses
positive or negative emotions. However, this method cannot be
used in cases where there is more than one variable, since it gives
a single result.

Sentence Level Sentiment: After checking whether each sen-
tence is subjective or objective, if the sentence is subjective, clas-
sification is made according to whether the sentence expresses
positive or negative emotions (Medhat et al. 2014).

At The Level of View, Sentiment: Makes it possible to deal with
all aspects of existence. In the classifications at the document and
sentence levels, the comments do not have to be detailed, but at
this view level, the comments are detailed because it is aimed to
determine the direction of emotion regarding certain features of a
certain entity (Medhat et al. 2014).

Sentiment Analysis Methods are divided into 3 as Machine
Learning, Hybrid Model and Dictionary Based Approach.

CHAOS Theory and Applications 165



Figure 7 Types of sentiment analysis

Dictionary Based Approach Using natural language processing
method and the tools of this method, methods based on emotional
analysis of sentences are used. Here, sentences related to the
relevant subject are analyzed and it is desired to reach a conclusion
about these sentences. Three methods are used when applying this
method are:

a) Conditional Random Fields: Based on the words in the sen-
tence, the purpose of the chosen word is determined.

b) Dependency Tree: Elements are created in the sentence and
the dependencies of the created elements are investigated. A senti-
ment analysis is performed by analyzing the relationships between
the nodes in the created loyalty tree.

c) Rule Based Approach: Rules based on different natural lan-
guage processing features, especially word types and word type
patterns, are determined, and semantic inferences are made by
analyzing sentence structures that comply with these rules.

Hybrid Approach They are approaches in which machine learning
algorithms and dictionary-based approaches are used together.
Sentiment analysis in crypto money is generally related to social
media etc. about crypto money. It started to be implemented based
on the findings that opinions affect the value of crypto money.
If emotion is expressed in financial terms, they are an opinion
expressed about the state of a market. Crypto market sentiment
defines the general emotional views and attitudes of investors
towards the asset. In essence, Sentiment analysis for cryptocurren-
cies can yield several notable statistics that can be used to analyze
cryptocurrency market sentiment: funding rates, sentiment indices,
social media and community analytics, and tracking of cryptocur-
rency whales, trajectory and movements of crypto assets.

The basis of this analysis is based on Sentiment analysis meth-
ods. It can answer many questions for the investor who has in-
vested in the crypto money market for at least a year, such as coin
transactions. For example, if a coin, which is stated to have given
a "buy" order on social media, has been purchased and sufferes a
loss in the future, this victimization of the investor may affect the
view of the entire crypto money investment. Here, the concepts
of “FOMO” and “FUD” come to the fore. These concepts are from
everyday language, but are also used in literature to reflect the
psychological state of the user.

Fear of missing out (FOMO) is the fear of people of not knowing

or missing out on the news, developments and information in
daily life. It is the concern that a crypto-related opportunity will be
missed. Fud (fear, uncertainty and doubt) expresses the uneasiness
that there will be a loss which will decrease the prices in the market.

The emotions expressed here may belong to the individual or
the community. In the existing studies in the literature, for ex-
ample Husband 2021, a Sentiment Analysis study with Twitter
Data on Bitcoin was carried out. A predominant feeling of joy was
observed. Another study in the literature included the relation-
ship between news about Bitcoin and ether and price prediction.
Sentiment Analysis related to the relevant crypto money can be
made.

Machine Learning Approach Present data using mathematical and
statistical methods is a sub-branch of artificial intelligence con-
sisting of modeling and algorithms that make inferences from
the future and make predictions about the unknown with these
inferences. It is divided into three as supervised machine learn-
ing, unsupervised machine learning and semi-supervised machine
learning.

a) Supervised Machine Learning: The target values correspond-
ing to an existing group of input values are given, and it is aimed
to produce the outputs closest to the target values by learning the
dependency between the input and the target of the created model
(Ciftci and Apaydin 2018). We can use supervised machine learn-
ing to learn a model for the relationship between example: x and
y. It reason it is called supervised machine learning is because re-
quires human oversight. The majority of the data that is currently
available is unlabeled. For data to be adequately labeled and ready
for supervised learning, human input is typically necessary. Super-
vised learning is used in financial applications for credit scoring,
algorithmic trading, and bond classification. Supervised learning
problems can be further grouped into regression and classification
problems.

b) Semi-Supervised Machine Learning: Labeled and unlabeled
data are separated in order to form the appropriate model. If unla-
beled data is less, semi-supervised machine learning is preferred.
It is a relatively more flexible model.

c) Unsupervised Machine Learning: It finds similar samples
within the group and aims to model the underlying structure or
distribution in the data to learn more. It is desired to make a
meaning out of meaningless data. It is applied on raw data. It is
used quite often to determine the trends, likes, etc. of the datasets
we have.

The requirement for labeled training data distinguishes super-
vised learning from unsupervised learning. Unsupervised ma-
chine learning processes unlabeled or raw data, whereas super-
vised machine learning uses labelled input and output training
data. The Possibilistic Fuzzy C-Means (PFCM) and Fuzzy C-Means
(FCM) algorithms are frequently utilized techniques (Wang et al.
2020).

Deep learning techniques have been used recently in research
projects to forecast bitcoin prices. compared cutting-edge deep
neural networks for predicting Bitcoin price, including Long Short-
Term Memory (LSTM), Deep Neural Networks (DNNs), deep resid-
ual network, and their combinations.

Cryptocurrencies give very successful results in terms of price
prediction thanks to their own features. When the studies in the
literature are examined, successful results are obtained (Chen et al.
2020). There is consensus in the literature that machine learning
provides robust techniques for exploring the predictability of cryp-
tocurrencies even in adverse market conditions and developing
profitable trading strategies in these markets (Sebastião and God-
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inho 2021). The combination of these trust frameworks, which
hold the frontiers of machine-work analytics and blockchain, en-
ables smarter decisions, increased trust, more automation, and
decentralized intelligence.

As a result, a machine computer and blockchain duo sustain
the positive effects of the workload and its financial performance.
It creates a system for storing and sharing big data with the help
of smart contracts in blockchain networks. Machine learning is
the basis of system behaviors necessary to optimize blockchain
mechanisms. Trade forecasting is known for its great forecasting
capabilities and efficient data analysis methods. Also, ML mod-
els can be used to improve data validation procedures and detect
malicious attacks or fraudulent transactions on the blockchain.
Machine learning and blockchain build a mutually beneficial re-
lationship that is all about data. However, if you use machine
learning for blockchain management, you have a chance to gain
unprecedented data security. But at the same time, machine learn-
ing can take advantage of the decentralized nature of blockchain
to build better models and handle large volumes of data.

CONCLUSION

Cryptocurrency is a new unit that is used and there are many ques-
tions about it. One of these questions is what its value will be in
the future. When we look at the studies in the literature, the value
of this crypto money using onchain and sentiment analysis, which
are couple of the chaotic behaviors and new analysis types, as well
as fundamental and technical analyses. It is possible to monitor
the correct predictions and crypto money behavior. Sentiment
analysis is used in cryptocurrency forecasting, just as it is used in
traditional finance, and produces successful analyzes about the
investor’s thoughts about the relevant currency. When viewed
from the framework of chaotic behavior, it is highly dependent on
initial conditions because it is not centralized. In most startups,
this currency behaves chaotically and that small effects make big
changes.

Fundamental and technical analysis in the Crypto market refers
to the evaluation of the market environment and other important
factors that can affect the market trend. It includes the analysis of
numbers and statistics that can determine the price movements
and trading volume of digital assets. Investors identify past market
trends and price movements to determine whether digital assets
are worth investing in. It seems to be a commonly used method.
Technical analysts use a variety of indicators to identify market
trends based on charts and historical price movements. One of
the key premise of technical analysis is that market prices already
reflect all fundamental factors. However, unlike the approach of
technical analysis, which focuses heavily on historical price data,
fundamental analysis adopts a broader research strategy with a
greater emphasis on qualitative factors. For this reason, many
investors seem to use a combination of both methods to get the
most accurate insight.

Onchain analysis, on the other hand, needs to be able to look
at various metrics for the analysis of Bitcoin and other cryptocur-
rencies. Traders and investors often pair On-Chain analysis with
technical analysis to identify suitable short-term entry and exit
points for crypto assets. In other words, it is not based on specula-
tion, it will help to make more accurate short or long targeting by
making an interpretation as a result of these metrics and analyzes
that are shared regularly and consistently. It is mostly like techni-
cal analysis, but on-chain analysis is achieved by interpreting all
transactions that have taken place completely on the blockchain.
Just like in technical analysis, there are indicators used in on-chain

analysis. On-chain analysis gives us ideas about where we are now
and what may happen in the future. On-chain sentiment analysis
means the interpretation of crypto money transfers that take place
on-chain. These two new analyzes can contain the most reliable
price predictions as they reflect the nature of crypto money. In
short, on-chain analysis offers cryptographers a fascinating tool to
explore real-time insights into a blockchain network. This gives
them the opportunity to take advantage of a more abundant and
transparent data encryption market.

In this study, analysis methods and explanations of these meth-
ods are included in order to make price estimation. The wide
definition of sentiment analysis and onchain analysis, which are
two new types of analysis, makes the study valuable. Besides all
these, the discovery of the chaotic behavior of the decentralized
currency will help us understand the nature of cryptocurrencies.
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ABSTRACT
The number of studies based on chaos theory is quite high. Therefore, it is important to analyze chaos theory’s
development over the years deeply. However, there is no study in the literature examining the research status
of this field. The article presents the bibliometric analysis of the studies on the keywords “Chaos Theory”
and “Applications” indexed in Scopus between 1987 and 2021. This study aims to quantitatively evaluate the
academic output in chaos theory research, make sense of the data, reveal the state of scientific knowledge in
the field, and provide scientists with a general perspective on the subject. Bibliometrix and Microsoft Excel
programs were used for bibliometric analysis. Nine thousand one hundred different authors identified a total of
5088 studies. Of these studies, 60.3% were research articles, and 32.9% were conference papers. Chaos
Solitons and Fractals was the most published journal, with 206 articles. Only China and the USA contributed
39.7% to the studies. Vaidyanathan, S. was the most prolific author with 72 articles. Vel Tech Rangarajan Dr.
Sagunthala R&D Institute of Science and Technology was the most productive institution with 74 studies. The
most cited article was the econometrics of financial markets.
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INTRODUCTION

Chaos, characterized by the high sensitivity of its initial values, is
significant in science. Chaos theory continues to pique people’s
interest because it describes nonlinear and unpredictable behav-
ior. Chaos theory examines the dependence of motion-expressing
systems (physical, economic, mathematical, biological, etc.) on
initial conditions, unpredictable phase spaces of time series, and
non-periodic system behavior. Scientifically, “chaos” refers to a
combination that allows us to understand the cause of seemingly
complex and random events.

Chaos is a branch of science aimed at understanding the move-
ments of all kinds of events and structures that occur in the uni-
verse, from the most microstate to the most macro-state (Leutcho
et al. 2020). Their most crucial characteristic is that chaotic systems
depend on the initial condition. These systems consistently display
unpredictable behavior and non-periodic traits (Thompson et al.
1990; Wei et al. 2019). Chaos studies have been observed in many
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branches of science, such as biology, medicine, ecology, electronics,
economics, encryption, etc. (Wang et al. 2016; Liu et al. 2009; Sun
et al. 2020; Pandey et al. 2016; Rajagopal et al. 2019). Bibliometric
analysis is a common technique for researching and analyzing vast
scientific data. The latest status in a field related to the available
scientific knowledge can be mapped using bibliometrics. Biblio-
metric analysis has gained immense popularity in recent years as
the availability and accessibility of software such as Gephi, Lexi-
mancer, VOSviewer, and Bibliometrix and scientific databases such
as Scopus and Web of Science have increased (Donthu et al. 2021;
Sengupta 1992).

Bibliometric analysis is a helpful tool for mapping the literature
pertinent to a specific research area (Falagas et al. 2006). Bibliomet-
ric analysis is employed for several purposes, including examining
the performance of articles and journals, patterns of collaboration,
new developments in research components, and the intellectual
composition of a specific field in the body of literature (Donthu
et al. 2021; Verma and Gustafsson 2020). While bibliometrics facili-
tates retrospective research, it can also aid in the quantitative and
objective exploration of research points and development trends
in disciplines. The results of bibliometric analysis contribute to
advancement in a specific field of research in various ways. The
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bibliometric analysis assesses progress, identifies the most reli-
able and popular sources of scientific publication, recognizes key
scientific actors such as authors and institutions, establishes the
academic foundation for evaluating new developments, identifies
emerging research interests, and forecasts future research success.
It also assists researchers in identifying potential research topics,
appropriate research institutions with which to collaborate, and
potential academic collaborators (Song et al. 2019; Martínez et al.
2015; Mazloumian 2012; Geng et al. 2017).

This study, which covers top journals, institutions, keyword
features, citation network analysis, and a review of the most signif-
icant articles, offers the potential to track historical and geographic
trends at a global level using proper bibliometric analysis tech-
niques. This work aims to reveal the state of scientific knowledge
in the field by making sense of large volumes of data on “Chaos
theory” and “Applications” and to present a general viewpoint to
scientists on the subject.

In addition, it is aimed to evaluate the academic outputs of
chaos theory research quantitatively. This study can make vari-
ous contributions to the research field. First, it can provide field
experts with a comprehensive overview of the research situation.
Additionally, it can help researchers identify authors, institutions,
journals, and countries/regions with the most significant potential.
It can also increase researchers’ awareness when deciding on topic
selection. Finally, it can explain how the subject has evolved over
time.

MATERIAL AND METHODS

The bibliometric methodology covers the application of quanti-
tative methods to bibliometric data. Early discussions on biblio-
metrics, which began in the 1950s, show that bibliometric method-
ology is not new (Donthu et al. 2021; Broadus 1987; Wallin 2005;
Pritchard 1969). Scopus was preferred for the collection of bib-
liometric information. It has been determined that Scopus offers
a more comprehensive journal profile to the user than WoS and
brings faster results from more articles in citation analysis.

All publications indexed in Scopus (accessed 21.10.2022) on
Chaos Theory between 1987-2021 were analyzed using bibliometric
methods. “Chaos Theory” and “Applications” were used as search
keywords. Documents were searched in article title, abstract, and
keywords. Scopus codes used in our search are as follows; (“Chaos
Theory” AND “Applications”) AND (EXCLUDE (PUBYEAR, 2023)
OR EXCLUDE (PUBYEAR, 2022)).

With this search method, all articles published between 1987-
2021 containing the words “Chaos Theory” and “Applications” in
the title, abstract, and keywords of the studies were found in the
Scopus database. Microsoft Excel and Bibliometrix (Aria and Cuc-
curullo 2017) were used for bibliometric network visualizations.

BIBLIOMETRIC ANALYSIS OF PUBLICATIONS ON CHAOS
THEORY AND APPLICATIONS

Literature Distribution
From 1987 to 2021, 5088 publications of different types appeared:
articles (3068, 60.3%), conference papers (1674, 32.9%), reviews
(117, 2.3%), book chapters (78, 1.5%), conference reviews (77, 1.5%),
book (52, 1%) and others (15, 0.29%). As shown in Figure 1, articles
on Chaos Theory; “Engineering” (2815, 33%), “Computer Science”
(2291, 21%), “Mathematics” (1625, 19%), “Physics and Astronomy”
(1355, 16%), “Materials Science” (499, 6%) and “Multidisciplinary
and others” (453, 5%). Since a study can be matched into different
categories, the total number of studies is more than 5088.

Figure 1 The distribution of subject areas

Development of Publications
Figure 2 shows the annual scientific production graphic. Despite
some fluctuations, the number of publications generally increased
until 2004. It is seen that the number of studies decreased from
2004 to 2008. Although there was a slight increase in the number
of publications in the following years, it generally remained stable.

Figure 2 Annual scientific production

Active Authors
A total of 5088 publications were produced by 9100 authors. Of
these, 3068 authors published articles, and 1674 authors published
conference papers. The top five authors producing the highest
number of publications were Vaidyanathan S. (72, 1.4%), Zhang
Y. (54, 1%), Wang X. (48, 0.94%), Chen G. (39, 0.76%) and Wang
Y. (36, 0.7%). These authors were significant research pioneers in
“Chaos Theory” and “Applications” related fields. Table 1 shows
the top 25 authors with the highest h_index for “Chaos Theory”
and “Applications”.

Figure 3 shows the collaboration network of the top 25 authors.
The larger the circle, the greater the cooperation. Clusters are
separated by colors. The strength of collaboration between authors
is expressed in the thickness of the lines.
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■ Table 1 Top 25 authors with h_index (TC: Total Citation, NP: Number of Publication, PY_start: Start of Publication Year).
No Author h_index g_index m_index TC NP PY_start
1 VAIDYANATHAN S. 26 55 Sec. 2.6 3048 72 2013
2 CHEN G. 19 39 0.633 2890 39 1993
3 WANG X. 16 28 0.667 834 48 1999
4 LIAO X. 15 16 0.75 1197 16 2003
5 ZHANG Y. 14 34 0.56 1207 54 1998
6 AIHARA K. 13 19 0.406 753 19 1991
7 WANG L. 13 32 0.52 1379 32 1998
8 LEUNG H. 11 20 0.344 636 20 1991
9 LI C. 11 21 0.55 960 21 2003
10 LIU L. 11 16 0.524 709 16 2002
11 PEHLIVAN I. 11 14 0.917 952 14 2011
12 SAVI MA. 11 16 0.579 313 16 2004
13 ROVATTI R. 10 15 0.385 742 15 1997
14 SETTI G. 10 17 0.385 748 17 1997
15 WANG Y. 10 16 0.4 278 36 1998
16 BANERJEE S. 9 11 0.375 610 11 1999
17 JAFARI S. 9 9 0.6 413 9 2008
18 KURTHS J. 9 10 0.31 1274 10 1994
19 LIU X. 9 20 0.45 559 20 2003
20 PHAM VT. 9 14 1.125 700 14 2015
21 ZHANG X. 9 13 0.391 207 29 2000
22 AKGUL A. 8 9 1.143 569 9 2016
23 CHEN Z. 8 15 0.333 397 15 1999
24 LI H. 8 13 0.364 196 19 2001
25 LIU J. 8 14 0.308 212 20 1997

Figure 3 Authors collaboration network
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Active Institutions
The top 7 organizations that contributed the most to the litera-
ture were: Vel Tech Rangarajan Dr.Sagunthala R&D Institute of
Science and Technology (74, 1.4%), City University of Hong Kong
(57, 1.1%), Zhejiang University (45, 0.88%), Ministry of Education
China (42, 0.82%), and Shanghai Jiao Tong University (41, 0.8%).
Figure 4 shows the number of publications published by institu-
tions over the 1987-2021 period, with an increasing trend with
slight fluctuations.

Figure 4 Affiliation production over time

Figure 5 shows the cooperation network of the top 25 institu-
tions. The larger the circle, the greater the cooperation. Clusters
are separated by colors. The strength of collaboration between
institutions is expressed in the thickness of the lines.

Figure 5 Instutions collaboration network

Active Journals
In total, 5088 articles were published in 659 journals. Table 2
shows the top 25 journals with the highest h_index on “Chaos
Theory” and “Applications”. Chaos, Solitons, and Fractals by
chart IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, Nonlinear Dynamics, Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, International
Journal of Bifurcation and Chaos are the most productive journals.
More than 22% of 5088 articles are from these 25 sources.

The citation visualization map between these journals is given
in Figure 6. Figure 6 shows the common citation network of the top
25 journals. The larger the circle, the greater the number of citations.
Clusters are separated by colors. The strength of collaboration
between magazines is expressed in the thickness of the lines.

Figure 6 Sources co-citation network

In Figure 7, there is a graph of the increase in the number of
publications according to the topics that are the research subject
for the first six journals in terms of the number of publications
between 1987-2021.

Active Countries
The analyses showed that the articles covered 91 different countries
(or regions). The publication numbers of the first 25 countries are
shown in Figure 8. a, and the collaboration network is shown in
Figure 8. b. As for the number of publications, China ranked first
with 1415 (27.8%) studies. The USA was in second place with 852
(16.7%) studies. India and Japan ranked third and fourth with
287 (5.6%) studies. The United Kingdom was ranked 5th with 276
(5.4%).

The geographical distribution of country collaboration for the
overall study period is shown in Figure 9. Figure 10 shows the
growth trends of publications for the six most productive countries
from 1987 to 2021. Compared to the other five countries, the up-
ward trend in the number of publications in China increased more
rapidly after 2003. It is observed that the number of publications
originating in the USA has decreased in the growth trend since
2006. It is seen that the number of publications in India has been
on increasing trend since 2013. The growth trends of the number
of publications in Japan, Italy, and the United Kingdom seem to
have had a low rate of increase in the last fifteen years.
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■ Table 2 Top 25 journals with h_index (TC: Total Citation, NP: Number of Publication, PY_start: Start of Publication Year).
No Journals h_index g_index m_index TC NP PY_start
1 Chaos, Solitons and Fractals 46 84 1.484 8133 206 1992
2 IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 35 58 1.129 5574 58 1992
3 Nonlinear Dynamics 34 54 1.172 3261 92 1994
4 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 27 42 1.227 1928 67 2001
5 International Journal of Bifurcation and Chaos 24 42 1.333 2164 107 2005
6 Physical Review Letters 20 24 0.769 2187 24 1997
7 Physica D: Nonlinear Phenomena 19 46 0.704 2392 46 1996
8 Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics
18 27 0.692 1911 27 1997

9 Communications in Nonlinear Science and Numerical Simulation 17 29 0.895 1352 29 2004
10 International Journal of Chemtech Research 17 19 2.125 942 19 2015
11 Journal of Sound and Vibration 17 25 0.515 776 25 1990
12 IEEE Access 16 30 2.286 926 39 2016
13 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 16 42 0.762 1844 50 2002
14 Physica A: Statistical Mechanics and Its Applications 16 33 0.593 1145 44 1996
15 Optik 13 20 1.083 704 20 2011
16 Physics Letters, Section A: General, Atomic, and Solid State Physics 13 28 0.481 791 29 1996
17 IEEE Journal of Quantum Electronics 12 16 0.414 1238 16 1994
18 Multimedia Tools and Applications 12 23 1.5 564 23 2015
19 Neurocomputing 12 16 0.444 819 16 1996
20 IEEE Transactions on Circuits and Systems I: Regular Papers 11 14 0.579 628 14 2004
21 Neural Networks 11 14 0.344 460 14 1991
22 Proceedings - IEEE International Symposium on Circuits and Systems 11 18 0.344 446 60 1991
23 Signal Processing 11 14 0.379 1524 14 1994
24 Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics)
10 13 0.357 302 64 1995

25 Nonlinear Dynamics, Psychology, and Life Sciences 10 18 0.556 327 23 2005

Figure 7 Top 6 journals with the highest number of articles
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Figure 8 a) Bar chart showing the 25 most productive countries in the world. b) Network visualization map for international collabora-
tion of countries on “Chaos Theory” and “Applications”. Footnote: As the size of the circle increases, the number of publications also
increases. Clusters are separated by colors. The thickness of the lines expresses the strength of cooperation between countries.

Figure 9 Country collaboration map.
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Figure 10 Country production over time

Citations
Citations are shown in Table 1 according to authors, Table 2 accord-
ing to journals, and Table 3 according to publications. Figure 11
shows the co-citation network of the top 25 authors. As the size of
the circle increases, the number of citations also increases. Clusters
are separated by colors. The amount of citations between authors
is expressed in line thickness.

Figure 11 Author co-citation network

Price’s Law

Price’s Law is the most commonly used indicator when the aim is
to analyze productivity in a specific discipline or a given country;
it reflects an essential fact of scientific production, which is its
exponential growth. According to Price’s Law, the total number of
citations for the first authors, obtained by taking the square root
of the number of authors in our study, should be half the total
number of citations. The total number of citations is 21783. When
the square root of the number of 25 authors is taken, the number
of citations of the first five authors with the highest number of
scientific publications was found to be 9738. To assess whether the
growth of scientific production in citations follows Price’s Law of
exponential growth, we made a linear adjustment of the data ob-
tained, according to the equation y = 80.096x - 169.93, and another
adjustment to an exponential curve, according to the equation
y = 196.94e0.0947 (Fig. 12).

Figure 12 Price’s Law
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■ Table 3 Top 25 publications by the number of citations (TC: Total Citations).
No Paper Total

Citations
TC per Year Normalized

TC
1 CAMPBELL JY, 2012, THE ECONOMETRICS OF FINANC MARK 2933 266.64 86.41
2 JAEGER H, 2004, SCIENCE 2150 113.16 56.15
3 SUDRET B, 2008, RELIAB ENG SYST SAF 1496 99.73 61.88
4 TULINO AM, 2004, FOUND TRENDS COMMUN INF THEORY 1086 57.16 28.36
5 CUOMO KM, 1993, IEEE TRANS CIRCUITS SYST II ANALOG DIGITAL SIGNAL

PROCESS
968 32.27 31.39

6 MORMANN F, 2000, PHYS D NONLINEAR PHENOM 961 41.78 21.79
7 LIPSITZ LA, 1992, JAMA 909 29.32 19.79
8 LIU B, 2005, CHAOS SOLITONS FRACTALS 843 46.83 33.70
9 NOWAK MA, 2004, SCIENCE 792 41.68 20.68
10 BOCCALETTI S, 2000, PHYS REP 763 33.17 17.30
11 MARWAN N, 2002, PHYS REV E 740 35.24 24.58
12 YANG T, 1997, IEEE TRANS CIRCUITS SYST I FUNDAM THEOR APPL 699 26.88 33.58
13 ZHANG J, 2006, PHYS REV LETT 611 35.94 23.57
14 VINGA S, 2003, BIOINFORMATICS 598 29.90 27.44
15 NAJM HN, 2009, ANN REV FLUID MECH 567 40.50 28.50
16 MAO Y, 2004, INT J BIFURCATION CHAOS APPL SCI ENG 501 26.37 13.08
17 EL NASCHIE MS, 2004, CHAOS SOLITONS FRACTALS-a 490 25.79 12.80
18 LÜ. J, 2006, INT J BIFURCATION CHAOS 478 28.12 18.44
19 LIAO TL, 2000, CHAOS SOLITONS FRACTALS 475 20.65 10.77
20 KUREMOTO T, 2014, NEUROCOMPUTING 409 45.44 26.62
21 AREF H, 2002, PHYS FLUIDS 385 18.33 12.79
22 PAK C, 2017, SIGNAL PROCESS 384 64.00 22.46
23 GENESIO R, 1992, AUTOMATICA 375 12.10 8.16
24 GUAN ZH, 2005, IEEE TRANS AUTOM CONTROL 369 20.50 14.75
25 STOJANOVSKI T, 2001, IEEE TRANS CIRCUITS SYST I FUNDAM THEOR APPL-a 369 16.77 17.06

Keyword Analysis

The 25 most used keywords in 5088 articles were visualized. The
network visualization map for the trend keywords obtained accord-
ing to the actuality of the publications is shown in Figure 13. As the
size of the circle increases, the number of uses of the keyword also
increases. Clusters are separated by colors. The thickness of the
lines expresses the link strength between keywords. Chaos theory,
chaotic systems, Lyapunov methods, synchronization, bifurcation
(mathematics), dynamical systems, differential equations, random
processes, numerical methods, and Lyapunov exponent were the
most frequently used keywords in the articles.

Figure 13 Keyword analysis

Thematic Evolution
The analysis of the evolution of the keywords in the research is
shown in Figure 14. Figure 14 shows the most common keywords
and their transformation over the years. The cut-off year was
determined as 2008.

Figure 14 Thematic evolution by author’s keywords

DISCUSSION

Despite the fluctuations in the distribution of the number of pub-
lications by years from 1987 to 2021, it is seen that the number
of publications in general increased until 2004, and the number
of publications decreased from 2004 to 2008. Although there has
been a slight increase in the number of publications since 2008, it
has been observed that it has not changed much in recent years.
The subjects of the studies were engineering, computer science,
mathematics, physics, and material science, respectively. Authors
with the highest h_index on the subject: Vaidyanathan S., Chen G.,
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Wang X., Liao X. and Zhang Y. Journals with the highest h_index
on the subject: Chaos, Solitons and Fractals, IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications,
Nonlinear Dynamics, Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics and International Journal of Bifurcation
and Chaos. Institutions with the highest h_index on the subject:
Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and
Technology, City University of Hong Kong, Zhejiang University,
Ministry of Education China, and Shanghai Jiao Tong University.

When evaluating international cooperation, it is commonly as-
sumed that regional geographical location has an impact on coop-
eration. When the number of publications in a particular country
is evaluated, it is seen that countries with large populations or high
economic power, such as China, the USA, India, Japan, and the
United Kingdom, publish the most studies on chaos theory. This
is in line with the literature showing that academic productivity
has a significant relationship with economic power (Demir 2019;
Yildirim and Demir 2019; Doğan and Kayır 2020).

From the Price’s Law and curve-fitting analyses, we can con-
clude that the analyzed database is compatible with a more expo-
nential fit than a linear one and that the Price law assumptions are
met. López-Muoz et al. used Price’s Law as a bibliometric indica-
tor of production in their studies (López-Muñoz et al. 2016, 2014).
The Price Law was calculated in my study, and similar results were
obtained in these studies. The most cited article (Campbell et al.
1998) was published in Macroeconomic Dynamics with the title
“The econometrics of financial markets” (Campbell et al. 1998). The
next most cited article (Jaeger and Haas 2004) was published in the
journal Science with the title “Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication”
(Jaeger and Haas 2004). The next most cited article (Sudret 2008) is
“Global sensitivity analysis using polynomial chaos expansions”
(Sudret 2008).

The most frequently used keywords in the articles were chaos
theory, chaotic systems, Lyapunov methods, synchronization, bi-
furcation (mathematics), dynamical systems, differential equations,
random processes, numerical methods, and Lyapunov exponent.
The limitations of the study, although the Scopus database is ad-
vantageous compared to other databases in terms of the number
of publications, not all publications were included in the study.

CONCLUSION

This study presents a holistic review of articles on chaos theory and
its applications from 1987-2021. According to the findings, there
has been a decrease in the annual number of studies produced
after 2003. It was seen that the author with the highest h_index
on the subject was Vaidyanathan S., the journal with the high-
est h_index was Chaos, Solitons, and Fractals, and the institution
with the highest h_index was Vel Tech Rangarajan Dr.Sagunthala
R&D Institute of Science and Technology. The most cited article
(Campbell et al. 1998) was published in Macroeconomic Dynamics
with the title “The econometrics of financial markets.” The most
productive countries in publications on the subject are developed
or overpopulated countries. It can assist researchers in develop-
ing or underdeveloped countries in conducting more research on
this topic by planning multinational studies rather than regional
studies.
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