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Comparison Between Some Nonlinear Controllers for
the Position Control of Lagrangian-type Robotic
Systems
Sahar Jenhani ID a,1, Hassène Gritli ID a,b,2 and Giuseppe Carbone ID c,3

aLaboratory of Robotics, Informatics and Complex Systems (RISC Lab, LR16ES07), National Engineering School of Tunis, University of Tunis El Manar, BP.
37, Le Belvédère, 1002 Tunis, Tunisia, bHigher Institute of Information and Communication Technologies, University of Carthage, 1164 Borj Cedria, Tunis,
Tunisia, cDepartment of Mechanical, Energy and Management Engineering, University of Calabria, Via Bucci Cubo 46C, 87036, Rende (Cs), Italy.

ABSTRACT This work addresses the set-point control problem of the position state of fully-actuated Lagrangian-
type robotic systems by means of some nonlinear control laws. We adopt four different nonlinear control
laws: the PD plus gravity compensation controller, the PD plus desired gravity compensation controller,
the computed-torque controller and the augmented PD plus gravity compensation controller. An in-depth
comparison between these control laws and their application is achieved. Indeed, using some properties,
we design some conditions on the matrix feedback gains of the nonlinear controllers ensuring the stability in
the closed loop of the zero-equilibrium point and its uniqueness. At the end of this paper, we adopt a planar
two-degree-of-freedom robotic manipulator to illustrate via simulation the difference between and the efficiency
of the adopted nonlinear controllers.

KEYWORDS
Lagrangian-type
robotic systems
Nonlinear dynamics
Approximate linear
model
Position feedback
control
Nonlinear controllers
Stability
Stabilization
Solution uniqueness

INTRODUCTION

Robotics is a field of activity covering the study, design and manu-
facture of robots or automated machines (Koditschek 2021). Nowa-
days, robots are omnipresent in several sectors, and each robot
is created and modified in such a way that it can perform cer-
tain desired tasks (Biswal and Mohanty 2021; Chai et al. 2021;
da Costa Barros and Nascimento 2021; Gonzalez-Aguirre et al.
2021; González et al. 2021; Gualtieri et al. 2021; Tipary and Erdos
2021). Robotic systems have been introduced and employed in
different fields such as the medical field for the rehabilitation of
upper and lower limbs by building robotic-based orthosis, pros-
thetic leg robot and exoskeleton devices (Ahmed et al. 2021; Islam
et al. 2020; Jafari et al. 2023; Kalita et al. 2021; Narayan and Dwivedy
2021; Tarnita et al. 2022; Wang et al. 2021). An historical overview
of control theory applied to robotic manipulators and fundamental
theoretical foundations of robot control were reported in (Spong
2022).
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Accepted: 28 October 2022.

1saharjenhani1@hotmail.com
2grhass@yahoo.fr (Corresponding author)
3giuseppe.carbone@unical.it

The different types of robotic systems can be subdivided into
three main classes, depending on the degree number of their ac-
tuation (Choukchou-Braham et al. 2014; Gritli and Belghith 2021;
Krafes et al. 2018; Liu and Yu 2013). The first class being the un-
deractuated robotic systems Choukchou-Braham et al. (2014); Liu
and Yu (2013); Zilong Zhang (2022). This type has less of actuators
than the degrees of freedom (DoF), such as the acrobot, the pen-
dubot and the inverted pendulum on a cart, and the inertia wheel
inverted pendulum, just to mention a few (Choukchou-Braham
et al. 2014; Gritli and Belghith 2018, 2021; Krafes et al. 2018; Liu and
Yu 2013; Parulski et al. 2021, 11; Zilong Zhang 2022). The second
class is called the fully-actuated robotic systems. In this class, the
number of actuators in the robotic system is equal to the degrees
of freedom (Li et al. 2020; Zhang and Wu 2021). Finally, the third
class is the overactuated robotic systems, for which the number of
control actuators is more than the number of degrees of freedom
such as the over-actuated hexapod robot (Bjelonic et al. 2016).

In order to control these different types of mechanical systems,
a suitable controller must be designed and hence applied. In
the literature, as in (Abbas et al. 2021; Abdul-Adheem et al. 2021;
Choukchou-Braham et al. 2014; Gritli 2020; Gu 2013; Kelly et al.
2005; Krafes et al. 2018; Kurdila and Ben-Tzvi 2019; Liu et al. 2020;
Liu and Yu 2013; Mobayen et al. 2017; Perrusquia et al. 2020; Spong
et al. 2020), we find different control techniques for robotic sys-
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tems. These controllers can be subdivided into two main families:
(1) the linear controllers such as the Proportional-Derivative (PD)
control law, the Proportional-Integral-Derivative (PID) control law,
the Linear Quadratic Regulator (LQR) control law, and the state-
feedback control law (Chawla and Singla 2021; Kelly et al. 2005;
Narayan and Dwivedy 2021; Singla and Singh 2017), and (2) the
nonlinear controllers like the PD plus gravity compensation con-
trol law, the computed-torque control (CTC) law, the sliding mode
control law, the PD plus desired gravity compensation control law,
among others (Hasan and Dhingra 2021; Jiang et al. 2020; Kelly et al.
2005; Mobayen et al. 2017; Nho and Meckl 2003; Perrusquia et al.
2020). These several types of control laws have been proven to be
applicable for settlement at desired configuration states (position
control problem), i.e. to control and then stabilize the robotic sys-
tem at some desired position/state, or for regulation to reference
trajectories (tracking problem) i.e. to control the trajectory of the
robot.

Recently, in (Gritli et al. 2022; Jenhani et al. 2022b,c), and using
the developed approximate linear dynamic model, we proposed an
affine PD-based control law in order to solve the position control
problem of robotic systems. Indeed, in (Gritli et al. 2022; Jenhani
et al. 2022b), the approximate linear dynamic was used to develop
the conditions ensuring the stability of the closed-loop robotic sys-
tem. Moreover, in (Jenhani et al. 2022b) we presented a comparison
between the affine PD-based control law and the computed-torque
control law. The numerical simulations demonstrated the efficiency
and validity of the proposed affine PD-based control law. Some
LMI stability conditions and improved ones for the stabilization
of the controlled robotic system using the affine PD-based con-
troller have been developed in (Jenhani et al. 2022f,g). Moreover,
we performed in (Jenhani et al. 2022a) a comparison between this
affine PD-based controller and the PD plus gravity compensation
controller and also the PD plus desired gravity compensation con-
troller. In addition, the control problem of underactuated robotic
systems via the affine PD-based controller has been considered in
(Jenhani et al. 2022d). Furthermore, in (Jenhani et al. 2022e), we
applied an affine PID-based controller to control the Lagrangian
robotic systems using the dynamical model which described the
difference into the nonlinear dynamics and its approximated linear
model.

In this research work, we will be interested in solving the posi-
tion feedback control problem for fully-actuated Lagrangian-type
robotic systems (Choukchou-Braham et al. 2014; Kelly et al. 2005;
Spong et al. 2020). Thus, to control the robotic systems and then to
ensure stability at the desired position, we will adopt four nonlin-
ear control laws, namely the PD plus gravity compensation con-
troller, the PD plus desired gravity compensation controller, the
computed-torque controller, and the augmented PD plus gravity
compensation controller. Additionally, we will construct condi-
tions on the matrix feedback gains of these proposed control laws
to ensure stabilization at the desired state. Moreover, for each
case of control problem, we will develop the conditions on these
matrix gains guaranteeing the uniqueness of the solution, that is
the zero-equilibrium point of the closed-loop robotic system. Fur-
thermore, a comparison between these controllers will be achieved.
Finally, we will adopt a 2-DoF planar robotic manipulator as an
illustrative robotic system, to check the validity of the developed
conditions of stability and uniqueness of the zero-equilibrium state
of the controlled Lagrangian-type robotic system, and hence the
efficiency of the adopted nonlinear controllers.

The remaining and following sections of this article are orga-
nized like so. The second section presents the dynamic model of

Lagrangian robotic systems and the problem considered in this
research article. Some useful properties of the nonlinear dynamics
of Lagrangian-type mechanical robot systems are given. The third
section describes the design procedure of the matrix feedback gains
of the PD plus gravity compensation controller. The fourth section
is devoted to developing the stabilizing conditions on the feedback
gain matrices of the PD plus desired gravity compensation control
law. The fifth section presents the computed-torque controller and
the condition on its matrix feedback gains. The design of certain
conditions on the matrix gains of the augmented PD plus gravity
compensation control law will be performed in the sixth section.
The seventh section will be dedicated for the simulation results by
introducing the 2-DoF manipulator robot. In the eighth section,
a discussion about the obtained results and the efficiency of the
proposed control laws is presented. Finally, at the end of this paper
and in the last section, a conclusion and a future direction of this
article will be drawn.

DYNAMIC MODEL OF LAGRANGIAN ROBOTIC SYSTEMS
AND PROBLEM FORMULATION

Nonlinear Dynamics of Lagrangian-type Robotic Systems
In this present work, and for the reason of simplicity, we will
ignore the presence of frictional and elastic forces, unmodeled dy-
namics, external disturbances, and structured and unstructured
uncertainties in the nonlinear dynamics of Lagrangian-type me-
chanical robotic (or mechatronic) systems. Therefore, the dynamics
of these robotic systems under such assumptions is given by the
following nonlinear (and complex) expression:

M(q)q̈ +H(q, q̇)q̇ + G(q) = D(q)U (1)

where in this previous model (1), we have the following notations:

• q ∈ Rn×1 is the positions’ vector of the different
joints/articulations of the Lagrangian robotic system,

• q̇ ∈ Rn×1 refers to the vector of corresponding velocities,
• q̈ ∈ Rn×1 is the vector of corresponding accelerations,
• U ∈ Rn×1 represents the input vector of available actuators

applied to the Lagrangian robotic system,
• M(q) ∈ Rn×n represents the inertia matrix of the robot,
• H(q, q̇)q̇ ∈ Rn×1, where H(q) ∈ Rn×n, is a vector containing

two types of terms containing q̇i q̇j, which are called the cen-
trifugal terms (for the cases i = j) and the Coriolis terms (for
the cases i ̸= j), for all i, j = 1, . . . , n,

• G(q) ∈ Rn×1 stands for the gravity matrix of the robotic
system, and

• D(q) ∈ Rn×n denotes the input matrix or the distribution
matrix of all the actuators applied to the Lagrangian-type
robotic system.

Remark 1 It is worth to indicate that the nonlinear dynamic model (1)
has been considered in some previous works, like (Krafes et al. 2018; Liu
et al. 2020; Liu and Yu 2013). This general for the nonlinear dynamics
(1) can model several types of robotic systems manipulator robots and
wheeled mobile manipulator robots. Furthermore, in several works of the
literature, the vector of control inputs, saying τ, in the dynamic model
(1) was taken to be without the matrix D(q), and then τ = D(q)U .

Problem Formulation
Among the most important axes in the field of robotics research is
the control of the robotic system to solve the stabilization problem.
Such a stabilization problem can be classified into two main classes.
The first is the problem of controlling the position of the robotic
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system and then bringing it from its current configuration state
to some desired one. The second stabilization problem is the
trajectory/motion control, where the goal is to move the robot
through control to a desired path/trajectory. Thus, to achieve these
stabilization problems, we need to design a controller adapted and
simple to apply in practice to the robot.

Our main objective in this article is to solve the position control
problem of fully-actuated Lagrangian-type robotic systems. Then,
our goal is to design an appropriate and simple controller U for
the mechanical system where its (joint) motion is represented by
its nonlinear dynamic model (1). Hence, the objective is to find
and develop an expression of the nonlinear control law U that
allows the robot to change its current configuration state q to a
desired position state qd. In this paper, we will adopt four nonlin-
ear control laws: (i) the PD plus gravity compensation controller,
(ii) the PD plus desired gravity compensation controller, (iii) the
computed-torque control law, and (iv) the augmented PD plus
gravity compensation controller.

Moreover, we will focus in this work on developing some feasi-
ble conditions to help in the right selection of the matrix feedback
gains of the controllers ensuring the stabilization of the zero state,
as the unique equilibrium, of the controlled Lagrangian robotic sys-
tem. In addition, we will develop other conditions to guarantee the
unicity of the zero origin as the unique possible equilibrium point
of the controlled nonlinear dynamical system (1) of the Lagrangian
robot systems.

In the sequel, let us consider ϕ = q − qd. Then, for the position
control of the Lagrangian robot systems, and since qd is constant,
we have ϕ̇ = q̇ and hence ϕ̈ = q̈. Thus, the nonlinear dynamics’
model (1) can be reformulated under the following equivalent
nonlinear dynamic model:

M(q)ϕ̈ +H(q, ϕ̇)ϕ̇ + G(q) = D(q)U (2)

Such nonlinear system (2) represents the nonlinear dynamics
of the position error of the Lagrangian-type robotic system. Thus,
hereafter, we will use the nonlinear dynamic model (2) for the
development of the proposed nonlinear control laws U too solve
the set-point control problem of the position state of fully-actuated
Lagrangian-type robot systems.

Useful Properties and Theorem

In this part, in order to develop some feasible conditions on the
matrix gains of the nonlinear control laws to develop in the sequel,
we present here some properties on the various matrices in the
nonlinear dynamics (1) or the position error dynamics (2) of the
robotic systems.

Useful Properties
We consider first the following useful properties (Jenhani et al.
2022a,c; Kelly et al. 2005).

Property 1 In the nonlinear dynamic model (2), M(q) is such that:

M(q) = M(q)T > 0, ∀ q ∈ Rn (3)

Property 2 For all vector q ∈ Rn and all vector q̇ ∈ Rn, the inertia
matrix M(q) and the matrix H(q, q̇) in (1) satisfy the following equality
constraint:

ξT [
Ṁ(q)− 2H(q, q̇)

]
ξ = 0 (4)

for all vector ξ ∈ Rn.

Property 3 For all vector q ∈ Rn, the gravity matrix G(q) satisfies the
following Lipschitz condition:

∥G(x)− G(y)∥ ≤ kg ∥x − y∥ (5)

for all x ∈ Rn and y ∈ Rn, and where kg satisfies:

kg ≥ n max
i,j,q

∣∣∣∣∣ ∂Gi(q)
∂qj

∣∣∣∣∣ (6)

or the following condition:

kg ≥ λmax

{
∂G(q)

∂q

}
(7)

where λmax stands for the largest eigenvalue.

Contraction Mapping Theorem
In the sequel and in order to check the uniqueness of the zero
solution of an equation constraint, we need to use the contraction
map (Jenhani et al. 2022c; Kelly et al. 2005), which is introduced via
the following theorem.

Theorem 1 (Contraction Map (Jenhani et al. 2022c)) Consider
Ψ ⊂ Rm , a parameters’ vector Θ ∈ Ψ and the continuous nonlinear
function 𭟋 : Rn × Ψ → Rn.

Suppose that there is a constant scalar γ > 0 such that for all vectors
x ∈ Rn and y ∈ Rn, and all vector Θ ∈ Ψ, we obtain:

∥𭟋(x, Θ)−𭟋(y, Θ)∥ ≤ γ ∥x − y∥ (8)

If the constant scalar γ is such that the following condition is well
verified:

γ < 1 (9)

then, for all vector Θ⋆ ∈ Ψ, the nonlinear function 𭟋(z, Θ⋆) has only
one and unique fixed point z⋆ ∈ Rn, satisfying this expression:

𭟋(z⋆, Θ⋆) = z⋆ (10)

DESIGN OF THE PD PLUS GRAVITY COMPENSATION CON-
TROL LAW

In this present section, we will consider the first nonlinear control
law, namely the PD plus gravity compensation controller, to control
the Lagrangian-type robotic system by its own nonlinear dynamics
(1) or (2), in order to control it to and hence stabilize it at the desired
position vector qd.

The Nonlinear PD Plus Gravity Compensation Controller
Let us consider the following nonlinear PD plus gravity compen-
sation control law:

U = D−1(q)(G(q) +Kpϕ +Kvϕ̇) (11)

where Kp and Kv stand for the two matrix feedback gains of the
nonlinear controller (11), that need to be produced in this part.
Moreover, notice that Kp ∈ Rn×n and Kv ∈ Rn×n.

Therefore, our main objective is to develop some feasible con-
straints on the two feedback gain matrices Kp and Kv of the
adopted nonlinear control law (11) ensuring the stability of the
zero state of the nonlinear dynamics (2) of the position state error
of the Lagrangian robotic systems.
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Conditions on the Feedback Gains
The nonlinear dynamic model (2) of the Lagrangian robot systems
under the proposed nonlinear controller (11), and hence in the
closed loop, is reformulated like so:

M(q)ϕ̈ +H(q, ϕ̇)ϕ̇ −Kpϕ −Kvϕ̇ = 0 (12)

Then, in order to design and establish some possible conditions
on the two matrix gains that ensure the control to and hence the
stabilization of the closed-loop robotic system at the desired config-
uration state qd, let us propose the following nonlinear Lyapunov
function:

V(ϕ, ϕ̇) =
1
2

ϕ̇TM(q)ϕ̇ − 1
2

ϕTKpϕ (13)

Notice that since the matrix M(q) satisfies the Property 1, and
by considering the following condition on the feedback gain Kp:

Kp = KT
p < 0 (14)

it stands as a result that V(ϕ, ϕ̇) > 0.
The derivative the adopted candidate Lyapunov function (13)

is described as follows:

V̇(ϕ, ϕ̇) =
1
2

ϕ̈TM(q)ϕ̇ +
1
2

ϕ̇TṀ(q)ϕ̇

+
1
2

ϕ̇TM(q)ϕ̈ − 1
2

ϕ̇TKpϕ − 1
2

ϕTKpϕ̇ (15)

As M(q) = MT(q) (according to Property 1) and Kp = KT
p ,

then expression (15) is simplified as follows:

V̇(ϕ, ϕ̇) =
1
2

ϕ̇TṀ(q)ϕ̇ + ϕ̇TM(q)ϕ̈ − ϕ̇TKpϕ (16)

Additionally, by solving for Mq̈ in the closed-loop dynamic
model (12) and substituting it in (16), it follows that:

V̇(ϕ, ϕ̇) =
1
2

ϕ̇TṀ(q)ϕ̇ − ϕ̇TH(q, ϕ̇)ϕ̇ + ϕ̇TKvϕ̇ (17)

Moreover, by taking into consideration Property 2, and then
relation (4), it follows from (17) that 1

2 ϕ̇TṀ(q)ϕ̇ − ϕ̇TH(q, ϕ̇)ϕ̇ = 0.
Thus, the expression (17) of the derivative of the Lyapunov

function can be simplified as follows:

V̇(ϕ, ϕ̇) = ϕ̇TKvϕ̇ (18)

Therefore, to guarantee the stabilization of the zero point of the
position state error dynamics model (12), we should ensure that
V̇(ϕ, ϕ̇) < 0. Hence, the matrix gain Kv must satisfy this condition:

Kv = KT
v < 0 (19)

Condition Ensuring Equilibrium Unicity
The equilibrium state must satisfy the following conditions ϕ̈ = 0
and ϕ̇ = 0. Then, the expression (12) becomes:

Kpϕ = 0 (20)

According to condition (14), it follows that rank(Kp) = n. Then,
the only solution of the equality (20) is ϕ = 0, and then it follows
that the position vector q = qd is the unique admissible solution of
the condition (20). Thus, the designed conditions (14) and (19) on
the two matrix gains Kp and Kv, respectively, ensure the stabiliza-
tion (and hence stability) of the robotic system under the proposed
PD plus gravity compensation controller (11) at the desired posi-
tion vector qd.

Final Stabilization Conditions
Based on inequalities (14) and (19), and in order to ensure the
control and therefore the stabilization of the Lagrangian robotic
system, we developed the following conditions on the two gain
matrices of the adopted nonlinear PD plus gravity compensation
control law (20):

Kp = KT
p < 0 (21a)

Kv = KT
v < 0 (21b)

DESIGN OF THE PD PLUS DESIRED GRAVITY COMPEN-
SATION CONTROL LAW

This part is dedicated to present a different and simple controller,
namely the PD plus desired gravity compensation controller. As
before, our main objective is to develop conditions on the two
matrix feedback gains of the proposed control law achieving the
control of the Lagrangian robot system and therefore its stabiliza-
tion at the desired state qd.

The PD Plus Desired Gravity Compensation Controller
In order to stabilize the dynamical system (2), we will consider the
following nonlinear PD plus desired gravity compensation control
law:

U = D(q)−1(G(qd) +Kpϕ +Kvϕ̇) (22)

where Kp and Kv are the two matrix feedback gains to design in
the sequel.

It is obvious that compared to the control law (11), the gravity
matrix G(q) is here constant in the adopted controller (22) and
is evaluated at the desired position qd and therefore equal to the
quantity G(qd). Notice that expression of the controller (22) is
simpler than expression (11). Indeed, the controller (11) is more
complex than (22) in realization in practice since it needs much
time to be computed because of the gravity matrix G(q) that takes
more time to be calculated at each iteration, or at each computation
and application of the controller U via expression (11). However,
in (22), we only need the computation of the matrix D(q).

We will focus now on designing the conditions on the matrix
feedback gains Kp and Kv of the nonlinear control law (22) to
ensure the control to and consequently the stabilization of the zero-
equilibrium point of the position error dynamics (2) under such
control law (22), and then guarantee the control/stabilization of
the Lagrangian robot system to/at the desired position state qd.

Conditions on the Feedback Gains
The nonlinear dynamics (2) under the PD plus desired gravity
compensation control law U expressed by (22) is given as follows:

M(q)ϕ̈ +H(q, ϕ̇)ϕ̇ + G(q)− G(qd)−Kpϕ −Kvϕ̇ = 0 (23)

To determinate the stability conditions of the controlled system
(22), we consider the following candidate Lyapunov function:

V(ϕ, ϕ̇) =
1
2

ϕ̇TM(q)ϕ̇ + Pe(q)− ku − 1
2

ϕTKpϕ

− ϕTG(qd)−
1
2
G(qd)

TK−1
p G(qd) (24)

where Pe(q) defines the potential energy. Such quantity Pe(q) is
linked to the gravity vector G(q) like so:

G(q) = ∂Pe(q)
∂q

(25)
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Moreover, the parameter ku in (24) is defined like so:

ku = min
q

{Pe(q)} (26)

Accordingly, from (24) it follows that:

Pe(q)− ku ≥ 0 (27)

Moreover, it is straightforward to demonstrate that:

1
2

ϕTKpϕ + ϕTG(qd) +
1
2
G(qd)

TK−1
p G(qd) =

1
2

 ϕ

G(qd)


T  Kp I

I K−1
p


 ϕ

G(qd)

 (28)

By taking the following condition on the feedback gain matrix
Kp:

Kp = KT
p < 0 (29)

it is easy to demonstrate, based on the Schur complement lemma
(Gritli and Belghith 2018; Turki et al. 2020), that Kp I

I K−1
p

 ≤ 0 (30)

Therefore, based on inequality (28), it follows that:

1
2

ϕTKpϕ + ϕTG(qd) +
1
2
G(qd)

TK−1
p G(qd) ≤ 0 (31)

Moreover, since M(q) = M(q)T > 0 (according to Property 1),
and relying on conditions (27) and (31), we demonstrate that the
adopted candidate Lyapunov function (24) is positive, and hence
we ensure that: V(ϕ, ϕ̇) > 0.

Based on relation (25), the derivative of the candidate Lyapunov
function (24) can be formulated as follows:

V̇(ϕ, ϕ̇) =
1
2

ϕ̇TṀ(q)ϕ̇ + ϕ̇TM(q)ϕ̈

+ ϕ̇TG(q)− ϕTKpϕ̇ − ϕ̇TG(qd) (32)

From the dynamics (23), we can write the following relation:

M(q)ϕ̈ = −H(q, ϕ̇)ϕ̇ − G(q) + G(qd) +Kpϕ +Kvϕ̇ (33)

By replacing this last quantity M(q)ϕ̈ in expression (32), we
obtain:

V̇(ϕ, ϕ̇) =
1
2

ϕ̇TṀ(q)ϕ̇ − ϕ̇TH(q, ϕ̇)ϕ̇ + ϕ̇T (G(qd)− G(q))

+ ϕ̇TKpϕ + ϕ̇TKvϕ̇ + ϕ̇TG(q)
− ϕTKpϕ̇ − ϕ̇TG(qd) (34)

This previous expression can be simplified as follows:

V̇(ϕ, ϕ̇) =
1
2

ϕ̇TṀ(q)ϕ̇ − ϕ̇TH(q, ϕ̇)ϕ̇ + ϕ̇TKvϕ̇ (35)

By virtue of Property 2, the previous function is simplified and
equal to:

V̇(ϕ, ϕ̇) = ϕ̇TKvϕ̇ (36)

Therefore, to guarantee the stabilization of the zero-equilibrium
point of the position error dynamic model (23), the following con-
dition must be satisfied:

Kv = KT
v < 0 (37)

Condition Ensuring Equilibrium Unicity
Note that at the equilibrium state, we have ϕ̇ = 0 and ϕ̈ = 0. Then,
relation (23) can be rewritten and therefore simplified as follows:

G(q)− G(qd)−Kpϕ = 0 (38)

Since the gain matrix Kp satisfies the condition (29), it is then a
non-singular matrix. Hence, we can write from (38) the following
relation/condition:

ϕ = K−1
p (G(q)− G(qd)) (39)

It is straightforward to demonstrate that ϕ = q − qd = 0 is
a solution of the condition (39). Nevertheless, such solution is
not the only one of the constraint (39). This equation (39) can
generate other solutions. Then, as the condition (39) depends on
the feedback gain Kp, our main goal is to develop a condition
on such matrix feedback gain Kp guaranteeing the equilibrium
unicity, that is ϕ = 0. Then, to achieve this objective, we should
refer to the contracting mapping presented in Theorem 1.

Consider the following nonlinear function:

𭟋(ϕ, qd) = K−1
p (G(q)− G(qd)) (40)

Then, relying on (8), our main objective is to search for some
condition on the parameter γ, with γ < 1, satisfying the following
constraint:

∥𭟋(ϕ2, qd)−𭟋(ϕ1, qd)∥ ≤ γ ∥ϕ2 − ϕ1∥ (41)

Using equation (40), we can write the following expression:

𭟋(ϕ2, qd)−𭟋(ϕ1, qd) = K−1
p (G(ϕ2)− G(ϕ1)) (42)

and therefore, we obtain:

∥𭟋(ϕ2, qd)−𭟋(ϕ1, qd)∥ =
∥∥∥K−1

p (G(ϕ2)− G(ϕ1))
∥∥∥ (43)

Moreover, it is evident that:∥∥∥K−1
p (G(ϕ2)− G(ϕ1))

∥∥∥ ≤
∥∥∥K−1

p

∥∥∥× ∥G(ϕ2)− G(ϕ1)∥ (44)

By taking into account the condition (29) on Kp, inequality (44)
is recast as follows:∥∥∥K−1

p (G(ϕ2)− G(ϕ1))
∥∥∥ ≤ λmax(−K−1

p ) ∥G(ϕ2)− G(ϕ1)∥ (45)

Since

λmax(−K−1
p ) =

1
λmin(−Kp)

(46)

it follows that the inequality condition (45) is reformulated as
follows:∥∥∥K−1

p (G(ϕ2)− G(ϕ1))
∥∥∥ ≤ 1

λmin(−Kp)
∥G(ϕ2)− G(ϕ1)∥ (47)

By considering Property 3 on the gravity matrix G(q), we get
the following expression:∥∥∥K−1

p (G(q)− G(qd))
∥∥∥ ≤

kg

λmin(−Kp)
∥ϕ2 − ϕ1∥ (48)

where kg is determined by means of the condition (6).
Hence, relying on expression (43), it follows that:

∥𭟋(ϕ2, qd)−𭟋(ϕ1, qd)∥ ≤
kg

λmin(−Kp)
∥ϕ2 − ϕ1∥ (49)
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By comparing to condition (41), we can deduce that

γ =
kg

λmin(−Kp)
(50)

Accordingly, by taking into account expressions (39) and (40),
and in order to guarantee that the zero state ϕ = 0 is the unique
solution of the following relation:

ϕ = 𭟋(ϕ, qd) (51)

the following condition (since γ < 1) must be satisfied:

kg

λmin(−Kp)
< 1 (52)

This previous condition (52) can be rewritten like so:

λmax(Kp) < −kg (53)

Final Stabilization Conditions
Finally, relying on constraints (29), (37) and (53), the conditions on
the two matrix feedback gains of the adopted control law (20), that
is the PD plus desired gravity compensation controller, guarantee-
ing the control to and hence the stabilization of the Lagrangian-
type robot at the point qd, are reformulated like so:

Kp = KT
p < −kg In (54a)

Kv = KT
v < 0 (54b)

where here in (54a) and in the sequel, In stands for the identity
matrix with dimension (n × n).

Moreover, recall that the constant kg in (54a) should be com-
puted according to expression (6) or expression (7).

DESIGN OF THE COMPUTED-TORQUE CONTROL LAW

In this part, to control the Lagrangian robot system via its nonlinear
dynamics (1) to the desired point qd, we will adopt a computed-
torque controller. Thus, our goal in this present section is to design
some possible and realizable conditions on the two gain matrices
Kp and Kv of such controller guaranteeing the stabilization of the
zero-equilibrium state ϕ = 0 of the position error dynamics (2).

The Computed-Torque Controller
The expression of the proposed computed-torque control law has
the following form:

U = D−1(q)(M(q)v +H(q, ϕ̇)ϕ̇ + G(q)) (55)

where the input v is given by:

v = Kpϕ +Kvϕ̇ (56)

Next, we will determinate some feasible conditions on the two
gain matrices of the proposed control law U defined by (55) and
(56) in order to achieve the stabilization of the Lagrangian-type
robot system under control.

Conditions on the Feedback Gains
Under the adopted computed-torque controller U defined in (55)-
(56), the nonlinear dynamic model (2) of the Lagrangian robot
system becomes like so:

M(q)ϕ̈ = M(q)(Kpϕ +Kvϕ̇) (57)

Based on Property 1, expression (57) becomes:

ϕ̈ −Kvϕ̇ −Kpϕ = 0 (58)

First design approach of stability conditions
To look for stability conditions of the zero state (defined by ϕ = 0
and ϕ̇ = 0) of this previous linear system (58), we take a such
candidate Lyapunov function defined as follows:

V(ϕ, ϕ̇) =
1
2

ϕ̇Tϕ̇ − 1
2

ϕTKpϕ (59)

It is clear that if we take the following condition:

Kp = KT
p < 0 (60)

then, the Lyapunov function (59) is positive.
The derivative with respect to time of the Lyapunov function

(59) is formulated like so:

V̇(ϕ, ϕ̇) = ϕ̇Tϕ̈ − ϕTKpϕ̇ (61)

Using the linear dynamics (58) in expression (61), we obtain
then:

V̇(ϕ, ϕ̇) = ϕ̇TKvϕ̇ (62)

Thus, by taking the following condition on the matrix gain Kv:

Kv = KT
v < 0 (63)

we obtain then V̇(ϕ, ϕ̇) < 0.
Therefore, the two conditions guaranteeing the stabilization of

the zero state of the linear dynamic model (58) are defined like so:

Kp = KT
p < 0 (64a)

Kv = KT
v < 0 (64b)

Second design approach of the stability conditions
In the sequel, we look for designing other conditions on the two
feedback gain matrices of the computed-torque controller (55)-(56).
Thus, let us consider a decoupled controlled linear dynamics (58)
and then the gain matrices Kp and Kv are diagonal. Moreover, we
impose the desired poles of the controlled system (58). Then, our
main objective here is to find conditions on theses two gain matri-
ces ensuring the stabilization of the controlled Lagrangian robot
system by imposing some desired motion (defined with respect
to the desired poles) of a decoupled stable linear system. Then,
suppose that all the position variables, qi with i = 1, · · · , n, of
the Lagrangian-type robot system under the proposed computed-
torque control law and then of the linear dynamics (58) are com-
pletely decoupled and therefore the desired closed-loop linear
dynamics of the position qi is like so:

ϕ̈i − (p1i + p2i) ϕ̇i + (p1i × p2i) ϕi = 0 (65)

where in the previous model, ϕi = qi − (qd)i, and the two parame-
ters p1i and p2i denote together the desired poles of the controlled
robotic system.

It is worth to note that the two poles p1i and p2i should be with
negative real parts in order to have a stable linear dynamical sys-
tem (65). In the case they are complex, they should be imperatively
complex conjugate.

Relying on (65), the desired decoupled dynamics of the con-
trolled robotic system defined by such linear reference model given
as follows:

ϕ̈ + Ωvϕ̇ + Ωpϕ = 0 (66)
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where the matrices Ωv and Ωp are diagonal and positive definite
(Ωv > 0 and Ωp > 0). They are defined like so:

Ωp = diag (p11 × p21, p12 × p22, · · · , p1n × p2n) (67a)

Ωv = −diag (p11 + p21, p12 + p22, · · · , p1n + p2n) (67b)

Then, in order to obtain an appropriate choice of Ωv and Ωp,
the two poles p1i and p2i are adopted to be entirely real. Moreover,
we impose that p1i = p2i = −wi, where here the parameter wi is
such that wi > 0, and it denotes the desired natural frequency of
the subsystem.

Comparing the closed-loop system (58) with that defined by
(66), the two feedback gains are then defined as follows:

Kp = −Ωp (68a)

Kv = −Ωv (68b)

Recall here that the two matrix gains Kp and Kv are diagonal
matrices.

Condition Ensuring Equilibrium Unicity

As previously, at the equilibrium state, we have ϕ̇ = 0 and ϕ̈ = 0.
Then, the controlled dynamics defined by (58) can be simplified as
follows:

Kpϕ = 0 (69)

Since Ωp > 0, then according to (68a), it follows that Kp < 0
and then rank(Kp) = n. Notice that the condition Kp < 0 was
already determined in (64a), where Kp is not diagonal. However,
by adopting the desired closed-loop decouple dynamics, the gain
matrix Kp is diagonal. Hence, since rank(Kp) = n, it follows that
the state ϕ = 0 is the only possible solution of the constraint (69).

Final Stabilization Conditions

In the previous development of the conditions on the two matrix
feedback gains Kp and Kv of the computed-torque controller (55)-
(56), we adopted two approaches. In the first approach using the
Lyapunov method, we developed the two conditions (64a) and
(64b) on Kp and Kv, which are not diagonal matrices. Therefore, by
taking into account the results achieved to check the unicity of the
zero equilibrium, these two conditions (64a) and (64b) on the two
matrix feedback gains Kp and Kv induce the stabilization of the
Lagrangian robot system under the computed-torque controller
(55)-(56), at the desired position qd.

However, by adopting a different design approach by impos-
ing a desired decoupled linear dynamics in the closed loop, we
developed the two conditions/expressions (68a) and (68b) on the
feedback gains Kp and Kv. Thus, relying on expressions in (67),
and by taking p1i = p2i = −wi, with wi > 0 for all i = 1, 2, . . . , n,
the two expressions of Kp and Kv are formulated as follows:

Kv = −2 diag (w1, w2, · · · , wn) (70a)

Kp = −diag
(

w2
1, w2

2, · · · , w2
n

)
(70b)

Accordingly, by selecting positive values of the parameters w1,
w2, · · · , wn, the two conditions on the matrix feedback gains Kp
and Kv defined by (70a) and (70b) ensure the stabilization of the
Lagrangian robot system under the computed-torque controller
(55) at the desired state qd.

DESIGN OF THE AUGMENTED PD PLUS GRAVITY COM-
PENSATION CONTROL LAW

In this present section, we will propose a different controller,
namely the PD+ controller or the augmented PD plus gravity com-
pensation control law, to achieve the stabilization of Lagrangian-
type robotic systems at the desired position vector qd. Such aug-
mented control law depends chiefly on the PD plus gravity com-
pensation control law (11). Thus, as in the previous sections, our
goal is to build some practicable conditions on the two matrix gains
of the augmented control law to ensure the control/stabilization of
the Lagrangian robotic system, modeled by its nonlinear dynamic
model (1), to/at the desired point qd.

The Augmented PD Plus Gravity Compensation Controller
The augmented PD plus gravity compensation control law (or
simply the PD+ controller) is defined:

U =D−1(q)
(
G(q) +Kpϕ +Kvϕ̇

)
−D−1(q) (M(q)Ωϕ̇ +H(q, ϕ̇)Ωϕ)) (71)

where the matrix Ω is given as follows:

Ω = K−1
v Kp (72)

with Kp and Kv are the two matrix gains to determine in the sequel.
It is obvious that the control law (71) contains the part of the PD

plus gravity compensation controller (11). Such part is the first line
in the expression (71). The second line in (71) is the augmented part
in the controller and aims at improving the stabilization process of
the robotic system.

Then, our objective in the following is to design the conditions
on the gain matrices Kp and Kv guaranteeing the stabilization of
the Lagrangian robotic system under the proposed controller (71)
at the desired state qd.

Condition on the Feedback Gains
By considering and applying the adopted augmented PD plus
gravity compensation control law (71), the nonlinear dynamics (2)
becomes:

M(q)ϕ̈ +H(q, ϕ̇)ϕ̇ = Kpϕ +Kvϕ̇ −M(q)Ωϕ̇ −H(q, ϕ̇)Ωϕ (73)

This expression (73) of the closed-loop nonlinear dynamics can
be rearranged and simplified as follows:

M(q)(ϕ̈ + Ωϕ̇) +H(q, ϕ̇)(ϕ̇ + Ωϕ)−Kv(ϕ̇ + Ωϕ) = 0 (74)

We emphasize that the equilibrium point of the closed-loop
system (74) is ϕ = 0, with ϕ̈ = 0 and ϕ̇ = 0. The proof will be
provided in the next section.

Posing in the sequel

ψ = ϕ̇ + Ωϕ (75)

Then, ψ = 0 defines the new equilibrium state. Therefore, using
this previous variable change, expression (74) can be written like
this:

M(q)ψ̇ + (H(q, ϕ̇)−Kv)ψ = 0 (76)

Thus, let us adopt a such candidate Lyapunov function defined
as follows:

V(ψ) = 1
2

ψTM(q)ψ (77)
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The derivative with respect to time of the adopted candidate
Lyapunov function (77) is expressed like so:

V̇(ψ) = ψTM(q)ψ̇ +
1
2

ψTṀ(q)ψ (78)

Moreover, by solving Mψ̇ in the closed-loop dynamic model
(76) and substituting it into (78), we obtain:

V̇(ψ) = ψTKvψ + ψT
(

1
2
Ṁ(q)−H(q, ϕ̇)

)
ψ (79)

Furthermore, based on Property 2, it follows that expression
(79) is simplified like so:

V̇(ψ) = ψTKvψ (80)

Therefore, to ensure the stability of the transformed closed-loop
nonlinear system (76) at the zero-equilibrium point ψ = 0, we
should have V̇(ψ) < 0, and the following condition on the matrix
feedback gain Kv must be verified:

Kv = KT
v < 0 (81)

Moreover, since ψ = ϕ̇ + Ωϕ, and as ψ = 0 is the stable equilib-
rium point of the dynamic model (76), it follows then that the state
ϕ evolves with respect to the following linear dynamics:

ϕ̇ + Ωϕ = 0 (82)

The clear condition for the stabilization of the zero equilibrium,
ϕ = 0, is that Ω > 0. Therefore, as the matrix Ω is defined by
expression (72) and by taking into account the condition (81) on
the gain Kv, we emphasize that the position feedback gain Kp
should satisfy the following condition:

Kp = KT
p < 0 (83)

Condition Ensuring Equilibrium Unicity
Consider the previously closed-loop nonlinear dynamic model
(74) of the Lagrangian robotic system. As in the previous parts,
the equilibrium of such system must satisfy ϕ̇ = 0 and ϕ̈ = 0.
Then, according to these evaluations and by taking into account
expression (72), the nonlinear dynamics (74) at the equilibrium is
simplified as follows:

Kpϕ = H(q, 0)Ωϕ (84)

Relying on condition (83), it follows that rank(Kp) = n. Then,
relation (84) is rewritten like so:

ϕ = K−1
p H(ϕ, 0)Ωϕ (85)

It is easy to show that ϕ = 0 is a solution of the obtained
expression (85), however it is not the only one. It is feasible to
obtain other solutions satisfying this equation (85). Thus, our main
goal in the sequel is to design some possible but feasible conditions
on the two matrix gains Kv and Kp guaranteeing the uniqueness
of the solution ϕ = 0. Then, to achieve this objective, we will rely
on Theorem 1 of the contracting mapping.

To apply such contracting mapping, let us pose first the follow-
ing nonlinear function φ(ϕ):

φ(ϕ) = K−1
p H(ϕ, 0)Ωϕ (86)

and then expression (85) becomes:

ϕ = φ(ϕ) (87)

Then, to guarantee the uniqueness of the zero solution (that is
ϕ = 0) and from expression (85), it is easy to expand the following
inequality:

∥φ(ϕ1)− φ(ϕ2)∥ ≤
∥∥∥K−1

p

∥∥∥× ∥Ω∥

× ∥H(ϕ1, 0)ϕ1 −H(ϕ2, 0)ϕ2∥ (88)

Using expression of the matrix Ω defined by (72), and by taking
into consideration the two conditions (83) and (81) respectively on
Kp and Kv, we can develop the following relation:

∥Ω∥ ≤ λmax(−K−1
v )λmax(−Kp) (89)

Since

λmax(−K−1
v ) =

1
λmin(−Kv)

(90)

it follows then that condition (89) becomes:

∥Ω∥ ≤
λmax(−Kp)

λmin(−Kv)
(91)

Therefore, relying on condition (91), expression (88) is simpli-
fied as follows:

∥φ(ϕ1)− φ(ϕ2)∥ ≤ 1
λmin(−Kp)

λmax(−Kp)

λmin(−Kv)

∥H(ϕ1, 0)ϕ1 −H(ϕ2, 0)ϕ2∥ (92)

Supposing that the matrix H(ϕ, ϕ̇)ϕ satisfies the following Lip-
schitz constraint:

∥H(ϕ1, ϕ̇1)ϕ1 −H(ϕ2, ϕ̇2)ϕ2∥ ≤ kc ∥ϕ1 − ϕ2∥ (93)

where kc is some positive constant like so:

kc ≥ n2 max
k,i,j,q,q̇

∣∣∣Hi,j(qk, q̇k)
∣∣∣ (94)

Using then the constraint (93) in (92), we obtain hence the fol-
lowing condition:

∥φ(ϕ1)− φ(ϕ2)∥ ≤ 1
λmin(−Kp)

λmax(−Kp)

λmin(−Kv)
kc ∥ϕ1 − ϕ2∥ (95)

Relying on the contraction mapping in Theorem 1, and to guar-
antee that ϕ = 0 is a solution and the unique one of the equation
(85) or (87), we obtain the following condition:

kc

λmin(−Kp)

λmax(−Kp)

λmin(−Kv)
< 1 (96)

As we can write the following equivalent equalities:

λmin(−Kp) = −λmax(Kp) (97a)

λmax(−Kp) = −λmin(Kp) (97b)

λmin(−Kv) = −λmax(Kv) (97c)

then the previous condition (96) can be recast as follows:

kc

λmax(Kp)

λmin(Kp)

λmax(Kv)
> −1 (98)

From this condition (98), and since Kp < 0 and Kv < 0, there-
fore we expand such condition on the feedback gain Kv, given as
follows:

λmax(Kv) < −kc
λmin(Kp)

λmax(Kp)
(99)

that ensures the uniqueness of the zero solution ϕ = 0 of the
nonlinear equation (85).
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Final Stabilization Conditions
By considering the three previously established conditions (81),
(83) and (99) on the feedback gains, we obtain the following two
simplified conditions:

Kp = KT
p < 0 (100a)

Kv = KT
v < −kc

λmin(Kp)

λmax(Kp)
In (100b)

We can conclude therefore that the two conditions (100a) and
(100b) on the two feedback gain matrices Kp and Kv of the pro-
posed augmented PD plus gravity compensation controller (71),
guarantee the control of the Lagrangian robot system to the desired
point qd and hence its stabilization at qd.

SIMULATION RESULTS

This present section is devoted to presenting the numerical simula-
tion and graphical results of the different control laws proposed in
this research work, and then to illustrate the efficiency of the built
conditions of the two feedback gain matrices Kp and Kv of these
control laws to control and stabilize the position of Lagrangian-
type robot systems to the desired point qd. Then, we will propose
the planar 2-DoF robot manipulator shown in Fig. 1 as an illustra-
tive example. Such robot system contains two joints/articulations
with absolute angular positions q1 and q2. Thus, let the vector

q =

[
q1 q2

]T
defines the state vector of absolute angular posi-

tions.
Using the nonlinear dynamics (1) and according to the relative

position coordinates q1 and q2, the various matrices of the planar
2-DoF manipulator robot are described as follows (Gritli et al. 2022;
Jenhani et al. 2022a,b,c):

M(q) =

 m1a2
1 + m2l2

1 + I1 m2l1a2 cos (q1 − q2)

m2l1a2 cos (q1 − q2) m2a2
2 + I2

 (101a)

H(q, q̇) = sin (q1 − q2)

 0 m2l1a2q̇2

−m2l1a2q̇1 0

 (101b)

G(q) = g

 (m1a1 + m2l1) cos(q1)

m2a2 cos(q2)

 (101c)

D(q) = D =

 1 −1

0 1

 (101d)

Moreover, the values and descriptions of the various parameters
found in these matrices (101) are defined in Table 1.

Figure 1 The adopted two-degree-of-freedom planar manipulator
robot and its associated geometric and inertial parameters.

It is clear that the manipulator robotic system is composed of
two links that are both controlled. Then, the control input vector U
is composed of two control sub-inputs u1 and u2. The first joint is
controlled via the input u1, whereas the second joint is controlled

via the second input u2. Thus, we have U =

 u1

u2

.

Let consider in the sequel the desired configuration state qd to
be as follows:

qd =

 90◦

−45◦

 (102)

Furthermore, and in order to make a comparison with the evo-
lution of the controlled manipulator robot, all the simulation sim-
ulations with the proposed control laws start at the same initial
position point:

q0 =

 0◦

0◦

 (103)
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■ Table 1 Used parameters and their values for the numerical simulation of the 2-DoF manipulator robotic system in Fig. 1.

Parameter Value Description

m1 2 Kg Mass of the first pendulum of the manipulator robot

a1 0.375 m Distance taken from the first articulation of the robot to the center of mass (CoM) of its first pendulum

m2 1 Kg Mass of the second pendulum of the manipulator robot

a2 0.25 m Distance taken from the second joint to the CoM of the second pendulum of the robotic manipulator

l1 0.5 m Length of the first pendulum of the manipulator robot

I1 0.02 kg.m2 Rotational inertia parameter of the first pendulum of the manipulator robotic system

l2 0.4 m Length of the second pendulum of the manipulator robot

I2 0.01 kg.m2 Rotational inertia parameter of the second pendulum of the manipulator robot

g 9.81 m/s2 Gravitational constant

Simulation Results Obtained Using the PD Plus Gravity Compen-
sation Controller
In this first part, we will consider and use the PD plus gravity
compensation controller (11). Thus, based on the two conditions
(21a) and (21b), the feedback gains Kv and Kp of the adopted
nonlinear control law are computed to be like so:

Kp =

 −20.0 5.0

5.0 −10.0

 (104a)

Kv =

 −10.0 5.0

5.0 −20.0

 (104b)

It is straightforward to verify that the eigenvalues of two ma-
trices Kp and Kv are real (since they are symmetric) and negative.
Therefore, the two inequality constraints (21a) and (21b) on these
feedback gains have been well satisfied.

It is worth to mention that the values of the two gain matrices
Kp and Kv adopted in (104a) and (104b), are selected in order
to compare with the augmented PD plus gravity compensation
control law (71) by choosing the same gains (113a) and (113b).

Using the two feedback gain matrices (104a) and (104b) in the
adopted PD plus gravity compensation controller defined by ex-
pression (11), the 2-DoF robot manipulator will be then controlled
to and stabilize at the point qd. Fig. 2(a) demonstrates the temporal
evolution of the two angular positions q1 and q2 (or the position
vector q) of the robotic system in question. It is clear from the
curves of q1 and q2 that these two states converge to qd. Moreover,
Fig. 2(b) demonstrates that the temporal variation of the angular
velocities q̇1 and q̇2 tends to zero. Furthermore, Fig. 2(c) presents
the evolution of the PD plus gravity compensation controller U . It
is obvious that when the robotic system is controlled and hence
stabilized at qd, the control subinputs u1 and u2 (of the control law
U ) converge towards the constant value 1.7342.

As noted previously, the two gains (104a) and (104b) adopted
for the PD with gravity compensation control law are equal to
(113a) and (113b), which will be adopted for the augmented PD
plus gravity compensation control law. We consider now other
values of the matrix feedback gains Kv and Kp different to those
in (104a) and (104b) as follows:

Kp =

 −2.0 1.0

1.0 −2.0

 (105a)

Kv =

 −2.0 1.0

1.0 −2.0

 (105b)

Notice that the eigenvalues of these matrix gains (105a) and
(105b) are −1 and −3. Then, the two conditions (21a) and (21b) are
well satisfied. We emphasize that these two gains (105a) and (105b)
will not satisfy the conditions (100a) and (100b) for the augmented
PD plus gravity compensation control law.

By introducing the two feedback gain matrices (105a) and (105b)
in the PD plus gravity compensation controller defined by expres-
sion (11), we obtain the results in Fig. 3 revealing the control and
hence stabilization of the 2-DoF robotic manipulator at qd. More-
over, the Fig. 3(a) demonstrates the temporal evolution of the
positions q1 and q2. It is clear from the curves of q1 and q2 that
these two states converge to qd. In addition, the Fig. 3(b) depicts
the variation of the angular velocities q̇1 and q̇2. Compared to
the results in Fig. 2(a) and Fig. 2(b), the stabilization/convergence
time at/to the desired point qd is almost the same, about 7 [s]. Nev-
ertheless, the obvious difference between the two results lies in
the response of the angular velocities of the two links. Indeed,
in Fig. 2(a), the angular velocity q̇1 reaches a high value about
150 [deg/s] before its rapid and asymptotic decrease to zero. How-
ever, in Fig. 3(a), the angular velocity q̇1 reaches a relatively small
value around 60 [deg/s] before its convergence to zero. In contrast,
the angular velocity q̇2 in Fig. 2(a) decreases to the minimal value
≈ −50 [deg/s], whereas in Fig. 3(a) reaches the minimal value
≈ −80 [deg/s].

188 | Jenhani et al. CHAOS Theory and Applications



0 1 2 3 4 5 6 7 8 9 10

Time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100
A

ng
ul

ar
 P

os
iti

on
 [d

eg
] 

q
1

q
2

(a)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-100

-50

0

50

100

150

200

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
] 

dq
1

dq
2

(b)

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-20

-10

0

10

20

30

40

50

C
on

tr
ol

 L
aw

 U
 [N

]

u
1

u
2

(c)

Figure 2 Temporal evolution of: (a) the two angular positions q1 and
q2, (b) the two corresponding angular velocities q̇1 and q̇2, and (c)
the PD with gravity compensation control law U = [u1 u2]

T, by
adopting the two matrix feedback gains (104a) and (104b).

Furthermore, the curves in Fig. 3(c) illustrate the temporal vari-
ation of the controller U applied to the manipulator robot system.
As in Fig. 2(c), when the manipulator robot was control to and
hence stabilized at qd, the two inputs of control u1 and u2 converge
together towards the constant effort 1.7342. Compared to the re-
sults in Fig. 2(c) where u1 (resp. u2) reached the maximal value
about 45 [N] (resp. −15 [N]), in Fig. 3(c) the controller u1 (resp. u2)
reaches the maximal value around 16 [N] (resp. 3 [N]). Hence, the
difference between the two control results is evident.

Numerical Results Obtained with the PD Plus Desired Gravity
Compensation Controller
In this subsection, we will focus on the simulation results ob-
tained by applying the the PD plus desired gravity compensation
controller. Such control law and the associated conditions on its
feedback gains are presented in the forth section. Expression of
such controller is defined by (22) and the designed stabilization
conditions are defined by the two constraints (54a) and (54b). The
computation of the value of the constant kg in the condition (54a)
according to expression (6) gives:

kg = 12.2625 (106)

Then, according to these conditions (54a) and (54b), and by
adopting the previous value of kg in (106), we select the following
matrices of Kp and Kv:

Kp =

 −15.0 −1.0

−1.0 −20.0

 (107a)

Kv =

 −2.0 −1.0

−1.0 −6.0

 (107b)

The eigenvalues of the matrix Kp are −20.1926 and −14.8074.
Since, λmax(Kp) = −14.8074 < −kg = −12.2625, then the first
condition (54a) has been well respected. Moreover, it is obvious
that the matrix Kv is negative definite.

By introducing the two matrix feedback gains (107a) and (107b)
into the PD plus the desired gravity compensation controller (22),
the manipulator robot system will be then controlled to and there-
fore stabilized at qd. Figure 4(a) presents the angular positions
q1 and q2, where q1 and q2 converge towards qd. Additionally,
we reveal from Fig. 4(b) that the temporal behavior of the two
corresponding angular velocities q̇1 and q̇2 of the robotic system
converge to zero. Moreover, Fig. 4(c) shows the behavior of the
proposed PD plus the desired gravity compensation controller U .
Obviously, the two sub-controllers u1 and u2 converge together to
the same constant value 1.7342, as in the previous control case.

Actually, in order to demonstrate the importance of the unicity
condition of the zero solution established for the development of
the stabilizing gains of the control law U , we slightly modified
the matrix Kp in order that the first condition (54a) will be not
respected. Thus, we select the following matrix gain Kp:

Kp =

 −10.0 −1.0

−1.0 −20.0

 (108)

Such matrix (108) has the following eigenvalues : −20.0990
and −9.9010. It is evident that λmax(Kp) = −9.9010 > −kg =
−12.2625. Therefore, the first condition (54a) has not been satisfied.
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Figure 3 Temporal evolution of: (a) the two angular positions q1
and q2, (b) the two corresponding angular velocities q̇1 and q̇2, and
(c) the PD plus gravity compensation controller U = [u1 u2]

T by
adopting the two matrix feedback gains (105a) and (105b).
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Figure 4 Temporal variation of: (a) the two angular positions q1 and
q2, (b) the two corresponding angular velocities q̇1 and q̇2, and (c)
the PD plus desired gravity compensation control law, by adopting
the two matrix feedback gains (107a) and (107b).
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The objective behind this previous modification is to show the
evolution of the robotic system and its stabilization at a position
state completely different to the desired one qd. By using then the
PD plus desired gravity compensation controller U according the
position gain Kp in (108) and the velocity gain Kv in (107b), using
its nonlinear dynamic model (1), we demonstrate the simulation
results in Fig. 5. It is clear from the temporal variation of the an-
gular position of the manipulator robot in Fig. 5(a) and that of the
angular velocity in Fig. 5(b), the robot is stabilized at the position

q∞ =

[
27.2468◦ −42.1061◦

]T
. Thus, this final state q∞ is en-

tirely different to the desired one qd, which was already defined
in (102). Moreover, the evolution of the controller in Fig. 5(a) is
completely different to that in Fig. 4(c). These results demonstrate
accordingly the importance of establishing the condition on the
gains of the controller to guarantee the uniqueness of the desired
position qd when the robotic system is stabilized.

Numerical Results Obtained Under the Computed-Torque Control
Law
The computed-torque controller is defined by expressions (55) and
(56). The designed conditions on the two matrix feedback gains Kp
and Kv are (70a) and (70b). Using these conditions and by taking
w1 = w2 = 2, we get the following diagonal matrices of Kp and
Kv:

Kp =

 −4 0

0 −4

 (109a)

Kv =

 −4 0

0 −4

 (109b)

Thus, by introducing these feedback gains in the proposed
computed-torque control law (55)-(56), the robotic system, that is
the 2-DoF manipulator robot, will be controlled to qd. Figure 6(a)
denotes the dynamic behavior of q1 and q2 of the manipulator
robot, where q1 and q2 converge towards qd. Thus, the temporal
simulation of the corresponding angular velocities is illustrated
in Fig. 6(b), where it reveals that q̇1 and q̇2 converge together
to zero. Moreover, the Fig. 6(c) shows the temporal behavior of
the applied computed-torque controller. In the present case, the
control subinputs u1 and u2 converge together to 1.7342, as in the
two previous cases.

Numerical Results Obtained with the Augmented PD Plus Gravity
Compensation Control Law
The augmented PD with gravity compensation controller is de-
fined by expression (71). Moreover, the established stabilization
conditions are defined by the two inequality constraints (100a)
and (100b). According to condition (100b), the feedback gain Kv
depends on the constant kc and the gain matrix Kp. Recall that
the constant kc should be computed via condition (94). According
to expression (101b) of the matrix H(q, q̇) and the values of the
parameters of the 2-DoF manipulator robotic system in Table 1, it
easy to show that condition (94) leads to the following inequality:

kc ≥ 0.5 (110)

We take here the same gain matrix Kp adopted for the PD
plus gravity compensation controller, that is (104a). The value
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Figure 5 Simulation results of the controlled robot by selecting a
different matrix (108) of Kp: (a) q1 and q2, (b) q̇1 and q̇2, (c) the
applied PD plus desired gravity compensation controller, by adopting
the position gain Kp in (108) and the velocity gain Kv in (107b).
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Figure 6 Temporal variation of: (a) the two angular positions q1
and q2 of the manipulator robot, (b) the two corresponding angular
velocities q̇1 and q̇2, and (c) the applied computed-torque controller
U , by adopting the two matrix feedback gains (109a) and (109b).

of the feedback gain Kv should be selected via condition (100b).
According to the matrix (104a) of Kp, we obtain:

λmin(Kp) = −22.0711 (111a)

λmax(Kp) = −7.9289 (111b)

Hence, using expressions (111a) and (111b) and inequality (110),
it is straightforward to show that according to the condition (100b),
the feedback gain Kv should satisfy and be selected according to
the following constraint:

Kv = KT
v < −1.3918 In (112)

Then, to satisfy this condition (112), we will adopt the same
value (104b) of the feedback gain Kv adopted for the PD plus
gravity compensation control law. Hence, for the controller in
question, we will take the following values of Kp and Kv:

Kp =

 −20.0 5.0

5.0 −10.0

 (113a)

Kv =

 −10.0 5.0

5.0 −20.0

 (113b)

It is obvious that these gains (113a) and (113b) are similar to
those in (104a) and (104b) of the PD plus gravity compensation
controller. The eigenvalues of the two matrices Kp and Kv are
−22.0711 and −7.9289. It is clear that the condition (112) is well
respected.

Using these two gains (113a) and (113b) in the augmented PD
controller defined in (71), the planar 2-DoF manipulator is then
controlled to qd as revealed via Fig. 7(a), where convergence of the
two angular positions q1 and q2 towards qd is clear. In the Fig. 7(b),
we show that the two angular velocities converges to zero, which
justifies the stabilization at the desired point qd. Moreover, Fig. 7(c)
illustrates the applied controller U . As in the previous cases, u1
and u2 converge progressively to the same value, which is almost
equal to 1.734.

We consider now two other values of the two feedback gain
matrices Kp and Kv, and then we select the same gains (105a) and
(105b) that were adopted for the PD plus gravity compensation
controller. Since the eigenvalues of these two matrices Kp and Kv
are −1 and −3, it follows then that the condition (112) was not
verified. To satisfy this stabilization condition (112), we make a
slight change in the two matrices Kp and Kv, and we will take the
following values:

Kp =

 −3.0 1.0

1.0 −2.0

 (114a)

Kv =

 −2.0 1.0

1.0 −3.0

 (114b)

It is easy to show that the eigenvalues of Kp and Kv are −1.3820
and −3.6180. Moreover, we can demonstrate via condition (100b)
that the matrix Kv satisfies the following constraint:

Kv = KT
v < −1.3090 In (115)
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Figure 7 Temporal variation of: (a) the two angular positions q1 and
q2 of the manipulator robot, (b) the two corresponding angular veloci-
ties q̇1 and q̇2, and (c) the augmented PD plus gravity compensation
controller, by adopting the two feedback gains (113a) and (113b).

which is respected by adopting the gain (114b), since
λmax(Kv) = −1.3820.

Using then the two matrix feedback gains (114a) and (114b) in
the adopted augmented PD plus gravity compensation controller
defined by expression (71), the 2-DoF manipulator robot will be
controlled to qd. Fig. 8 shows the obtained outputs of the controlled
manipulator robot. The Fig. 8(a) reveals the convergence of q1 and
q2 towards qd. Moreover, the Fig. 8(b) shows that the two angular
velocities q̇1 and q̇2 converge to zero. In addition, the Fig. 8(c)
depicts the controller U applied to the robotic system. As in the
previous cases, the applied control subinputs u1 and u2 converge
progressively and simultaneously to 1.7342.

Compared to the results obtained in Fig. 3 for the stabilization
by means of the PD plus gravity compensation controller, the
simulation results illustrated in Fig. 8 are found to be almost similar.
The slight difference lies in the maximal values reached by the two
subinputs u1 and u2 and also in the maximum values reached by
the two angular velocities q̇1 and q̇2. This small difference can be
explained by the fact that the adopted feedback gains (114a) and
(114b) are higher (in terms of eigenvalues) than those in (105a) and
(105b).

DISCUSSION

It is important to specify that the four proposed nonlinear con-
trollers can control the position of robotic systems, and more par-
ticularly the 2-DoF manipulator in Fig. 1, and stabilize it at some
desired state. As we have shown previously in the Fig. 2(a), the
Fig. 4(a), the Fig. 6(a) and the Fig. 7(a), the manipulator robot is
controlled to the desired point qd. Furthermore, in all four cases,
the angular velocity presented in Fig. 2(b), Fig. 4(b), Fig. 6(b) and
Fig. 7(b) converges to zero and therefore the robot is well stabilized.
In addition, as reported previously and revealed from Fig. 2(c),
Fig. 4(c), Fig. 6(c) and Fig. 7(c), the control subinputs u1 and u2
converge together to the constant value u∞ ≈ 1.734. Such con-
trol effort is the necessary amount needed to keep the robotic
manipulator at the desired state qd. This result reveals that at the
stabilization at the desired equilibrium point qd, a small control
effort is required/applied.

Furthermore, we showed that using the PD plus gravity com-
pensation control law (11), the robotic system has been stabilized
in almost 10 seconds, although the selected gains Kp and Kv are
relatively high. But, by using the PD plus desired gravity com-
pensation controller (22), almost 4 seconds were needed for the
stability of the robot system at qd. Furthermore, by applying the
computed-torque control law (55)-(56), the manipulator robot was
found to be stabilized at the desired point qd in about 5 seconds.
In addition, by applying the augmented PD plus gravity compen-
sation controller (71), the robotic system has been stabilized in
almost 6 seconds.

It is worth to note that compared to the PD plus gravity compen-
sation controller (11), the augmented version (71) is more efficient.
Indeed, by observing the plots of the angular velocity illustrated
in Fig. 2(b) and Fig. 7(b), it is clear that by applying the PD plus
gravity compensation controller (11), the angular velocities of the
two joints reach higher values than those obtained by applying the
augmented PD controller (71). Furthermore, according to Fig. 2(c)
and Fig. 7(c), the control efforts u1 and u2 applied to the two joints
is slightly small for the case of the augmented PD plus gravity
compensation control law. This result demonstrates that the aug-
mented/added term in the augmented control law (71), compared
to the PD plus gravity compensation controller (11), contributes in
(slightly) reducing the controller effort applied to the robot system.
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Figure 8 Temporal variation of: (a) the two angular positions q1 and
q2 of the manipulator robot, (b) the two corresponding angular veloci-
ties q̇1 and q̇2, and (c) the augmented PD plus gravity compensation
controller, by adopting the two feedback gains (114a) and (114b).

After this previous discussion, we can conclude that the four
controllers proved to be globally effective for the control of
Lagrangian-type robotic systems, for at least for the planar 2-DoF
manipulator in Fig. 1. Nevertheless, more experiences should be
achieved to further study the efficiency of these four controllers by
considering the effect of external disturbances, unmodeled dynam-
ics and the presence of frictions in the nonlinear dynamic model
of the Lagrangian-like robotic systems. In these cases, robust con-
trollers should be designed to deal with these uncertainties and
disturbances.

From practical point-of-view, it is important to indicate that the
design and application of the four proposed nonlinear controllers
require the previous knowledge of all and some parts of the dy-
namic model of the robotic system to control. In fact, the PD plus
desired gravity compensation controller (22) only needs informa-
tion on a single matrix, namely the distribution input matrix D(q),
which needs to be evaluated on-line at each time. Moreover, the
PD plus gravity compensation controller (11) needs the previous
knowledge of the matrix D(q) and also of the gravity matrix G(q).
Thus, this controller is more complicated and needs more time
to be executed than the PD plus desired gravity compensation
controller. Indeed, the control law (11) requires information on the
measurement of the position vector q and the velocity vector q̇(t)
at each instant while the robotic system is moving for the compu-
tation of the two matrices and D(q) and G(q). Furthermore, the
computed-torque controller (55)-(56) depends on all the matrices
of the nonlinear dynamic model (1) of the Lagrangian robot system.
It is usually called as the model-based controller, which explicitly
use the full knowledge of the matrices M(q), H(q, q̇), G(q) and
D(q) of the dynamic robot model (1). Similarly, the augmented PD
plus gravity compensation controller (71) requires the full knowl-
edge of the previous four matrices of the robotic system for its
computation. Compared to the computed-torque control law, the
augmented controller contains more nonlinear terms, and then its
computation requires much time.

CONCLUSION AND FUTURE WORKS

In this research work, we adopted four different nonlinear con-
trollers to solve the control and stabilization problem of the
Lagrangian-type robotic systems to some set-point position. Then,
the main goal was to control the robotic system through its non-
linear dynamic model to change its current configuration state
into a desired position state. In order to achieve this objective,
we adopted the PD plus gravity compensation controller, the PD
plus desired gravity compensation controller, the computed-torque
controller and the augmented PD plus gravity compensation con-
troller. In addition, by applying these control laws in the nonlinear
dynamic model of the Lagrangian robotic systems, we developed
some feasible conditions on the gain matrices Kv and Kp ensur-
ing the stability at the desired state and also guaranteeing the
uniqueness of the desired equilibrium. Finally, we proposed the
planar manipulator robot with 2-DoF, as an illustrative example,
in order to present the simulation results by using the different
adopted nonlinear controllers and a comparison between them
was therefore achieved.

A a possible future direction of this research work, we aim
at analyzing the efficiency of the adopted nonlinear controllers
by considering the effect of external perturbations, unmodeled
dynamics and parametric uncertainties.
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ABSTRACT From decimal expansion of real numbers to complex behaviour in physical, biological and human-
made systems, deterministic chaos is ubiquitous. One of the simplest examples of a nonlinear dynamical
system that exhibits chaos is the well known 1-dimensional piecewise linear Tent map. The Tent map (and
their skewed cousins) are instances of a larger family of maps namely Generalized Lüroth Series (GLS) which
are studied for their rich number theoretic and ergodic properties. In this work, we discuss the unreasonable
effectiveness of the Tent map and their generalizations (GLS maps) in a number of applications in electronics,
communication and computer engineering. To list a few of these applications: (a) GLS-coding: a lossless
data compression algorithm for i.i.d sources is Shannon optimal and is in fact a generalization of the popular
Arithmetic Coding algorithm used in the image compression standard JPEG2000; (b) GLS maps are used as
neurons in the recently proposed Neurochaos Learning architecture which delivers state-of-the-art performance
in classification tasks; (c) GLS maps are ideal candidates for chaos-based computing since they can simulate
XOR, NAND and other gates and for dense storage of information for efficient search and retrieval; (d)
Noise-resistant versions of GLS maps are useful for signal multiplexing in the presence of noise and error
detection; (e) GLS maps are known to be useful in a number of cryptographic protocols - for joint compression
and encryption, and also in generating pseudo-random numbers. The unique properties and rich features of
the Tent Map (GLS maps) that enable these wide variety of engineering applications will be investigated. A list
of open problems are indicated as well.

KEYWORDS

Tent map
Chaos
Generalized
Lüroth Series
Compression
Coding
Cryptography
Neurochaos
Learning
Ergodicity

INTRODUCTION

Deterministic Chaos refers to the seemingly random-like com-
plicated (and often strange) behaviour of simple dynamical sys-
tems (Alligood et al. 2000; Devaney 2018). From decimal expansion
of real numbers to complex behaviour in physical, biological and
human-made systems, deterministic chaos is ubiquitous (Strogatz
2018). One of the simplest examples of a nonlinear dynamical sys-
tem that exhibits chaos is the well known 1-dimensional piecewise
linear Tent map (Alligood et al. 2000). The Tent map is topologically
conjugate to the Logistic Map (the other popular 1D chaotic map)
and finds numerous engineering applications in electronics, com-
munications, compression, coding, computing and cryptography.
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The Tent map and their skewed cousins (Skew Tent map) are
instances of a larger family of maps namely Generalized Lüroth Se-
ries (GLS) which are studied for their rich number theoretic and er-
godic properties (Dajani and Kraaikamp 2002; Barrera and Robert
2022). In this work, we discuss the unreasonable effectiveness of
the Tent map and their generalizations (GLS maps) in a number of
applications in electronics, communication and computer engineer-
ing. To list a few of these applications: (a) GLS-coding (Nagaraj
et al. 2009): a lossless data compression algorithm for independent
and identically distributed (i.i.d) sources is Shannon optimal and
is in fact a generalization of the popular Arithmetic Coding (Rissa-
nen and Langdon 1979) algorithm used in the image compression
standard JPEG2000; (b) GLS maps are used as neurons in a re-
cently proposed novel Neurochaos Learning (Balakrishnan et al. 2019;
Harikrishnan and Nagaraj 2021; Harikrishnan et al. 2022b) architec-
ture which delivers state-of-the-art performance in classification
tasks; (c) GLS maps are ideal candidates for chaos-based comput-
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ing since they can simulate XOR, NAND and other gates (Sinha
and Ditto 1998; Ditto et al. 2010; Jaimes-Reátegui et al. 2014) and for
dense storage of information for efficient search and retrieval (Mil-
iotis et al. 2008); (d) Noise-resistant versions of GLS maps are
useful for signal multiplexing in the presence of noise (Nagaraj
and Vaidya 2009) and error detection (Nagaraj 2019); (e) GLS maps
are shown to be useful in a number of cryptographic protocols (Na-
garaj 2012) - for joint source coding and encryption (Nagaraj et al.
2009; Wong et al. 2010) and also for generating pseudo-random
numbers (Palacios-Luengas et al. 2019; Addabbo et al. 2006); (f)
Skew-tent maps have been employed in chaos based communica-
tions (Hasler and Schimming 2000). The unique properties and
rich features of the Tent Map and its skewed cousins (GLS maps)
that enable these wide variety of engineering applications will be
discussed.

This paper is organized as follows. In the next section we
introduce the Tent map, Binary map and Generalized Lüroth Series
(GLS). The unique properties of GLS are enumerated. What makes
these GLS maps so attractive to a host of engineering applications?
In the following section, the unreasonable effectiveness of the
chaotic Tent map/GLS maps are discussed. We conclude with
some open issues and suggest a few pointers for exciting future
research.

TENT MAP, BINARY MAP AND GENERALIZED LÜROTH
SERIES (GLS)

In this section, we define the Tent map and other closely related
maps. We shall also describe the properties of these maps.

The Tent map (Figure 1(a)) is defined as T : [0, 1) → [0, 1):

T(x) =

 2x, 0 ≤ x < 0.5,

2 − 2x, 0.5 ≤ x < 1.
(1)

The Skew-Tent map (Figure 1(b)) is a generalization of the Tent
map and is defined as Tb : [0, 1) → [0, 1):

Tb(x) =


x
b , 0 ≤ x < b,

(1−x)
(1−b) , b ≤ x < 1,

(2)

where 0 < b < 1 is the skew parameter. Setting b = 0.5 in Eq. 2
gives us the Tent map T(x).

The Binary map (also known as Bernoulli Shift map, Figure 1(e))
is defined as T : [0, 1) → [0, 1):

Tbinary(x) =

 2x, 0 ≤ x < 0.5,

2x − 1, 0.5 ≤ x < 1.
(3)

A similar extension to Skew Binary map is also possible. In these
examples, the maps are piecewise linear onto [0, 1) with either a
positive slope or negative slope. Generalizing this to an arbitrary
finite number of intervals yields the 1D Generalized Lüroth Series
or GLS maps (Figure 1(f)). The GLS map is defined as TGLS :

[0, 1) → [0, 1):

TGLS(x) =



x
p1

, 0 ≤ x < p1,

x−p1
p2

, p1 ≤ x < p1 + p2.

. . .

x−∑N−1
1 pi

pN
, ∑N−1

1 pi ≤ x < 1,

(4)

where the set of intervals {a1, a2, . . . , aN} have lengths
{p1, p2, . . . , pN} respectively (note: ∑N

1 pi = 1). In each of the
intervals ai, we have a linear mapping with a positive slope, but
we could have chosen a line with negative slope instead. Thus,
there are 2N different GLS maps (piecewise linear) having the exact
same set of intervals with the same lengths. They only differ in
the sign of the slope of the linear mapping in one or more of the
intervals (without any intrinsic change in chaotic dynamics).

It is easy to see that the Tent map, Binary map and their skewed
cousins are all special instances of this family of 1D Generalized
Lüroth Series (GLS) maps which we have defined above. We have
to appropriately choose the set of intervals {ai} and their lengths
{pi}. Note that the set of intervals forms a Generating Markov
Partition (GMP) on [0, 1) for the GLS map.

Properties of GLS
GLS maps exhibit several interesting properties. We list a few of
them here:

1. Continuity: GLS maps are piecewise linear and could be ei-
ther continuous or not. This depends on the transition of
the linear mapping across adjacent intervals ai, aj - whether
there is a corner or not. Even if a GLS is continuous, it is not
differentiable at the corner points.

2. Lebesgue measure and invariant distribution: GLS maps pre-
serve the Lebesgue measure (Dajani and Kraaikamp 2002;
Boyarski and Gora 1998) and has the uniform distribution on
[0, 1) as the invariant distribution (Figure 1(d)).

3. Generating Markov Partition: the set of intervals
{a1, a2, . . . , aN} with lengths {p1, p2, . . . , pN} forms a
Generating Markov Partition (GMP).

4. Symbolic dynamics on GLS: given the GMP on the GLS, we
can associate symbols from the alphabet {‘0′, ‘1′, . . . , ‘N − 1′}
to the N intervals {a1, a2, . . . , aN} respectively. Every initial
value on the GLS yields a trajectory which can be associated
with a unique symbolic sequence consisting of symbols from this
alphabet (Dajani and Kraaikamp 2002; Nagaraj 2008).

5. Relationship between Lyapunov Exponent and Shannon En-
tropy: the lyapunov exponent λ of GLS map with the GMP
defined in Figure 1(f) is given by:

λGLS = −
N

∑
i=1

pi log(pi). (5)

The Shannon Entropy H of the symbolic sequence on the GLS
is given by:

HGLS = −
N

∑
i=1

pi log2(pi) bits/symbol. (6)
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(a) (b)

(c) (d)

(e) (f)

Figure 1 (a) Tent map, (b) Skew Tent Map, (c) Lyapunov exponents of the skew tent maps for different values of skew parameter b, (d) His-
togram of a trajectory on the Tent map for a randomly chosen initial value, (e) Binary map, (f) Generalized Lüroth Series (GLS).

CHAOS Theory and Applications 199



(a) (b)

Figure 2 (a) Symbolic sequences of different orders on the Tent map. These form a Gray Code, (b) Bifurcation diagram for the Skew Tent Map.
Absence of windows or attracting periodic orbits indicating Robust Chaos.

If the base of the logarithm is chosen as 2 in computation
of the lyapunov exponent in Eq. 5, then we have λGLS =
HGLS (Nagaraj 2008). We can interpret the lyapunov exponent
as the number of bits of information of the initial value that
is revealed at every iteration of the map. This equality plays
a very significant role in lossless data compression of i.i.d
sources (Nagaraj et al. 2009).

6. Periodic, quasi-periodic and chaotic behaviour: it is well
known that the Tent map, Binary map, their skewed versions
- all of these maps exhibit chaotic behaviour (Devaney 2018).
This is indicated both by a positive lyapunov exponent (Fig-
ure 1(c)) for every value of 0 < b < 1 and by the bifurcation
diagram that reveals the fact that the entire family of GLS
maps exhibit Robust Chaos (Banerjee et al. 1998; Glendinning
2017) - characterized by complete absence of attracting pe-
riodic orbits (Figure 2(b)), also known as windows. This is
a very desirable property for a number of applications such
as pseudorandom number generators (Nagaraj et al. 2008),
chaos based cryptographic protocols and joint compression
and encryption algorithms. As per Devaney’s definition of
chaos (Devaney 2018), GLS maps also have countably infi-
nite number of periodic and quasi-periodic orbits that are
dense, uncountably infinity of non-periodic trajectories and
also exhibit sensitive dependence on initial values (the Butter-
fly Effect). The topological entropy of GLS is positive.

7. Ergodicity, mixing properties - as already noted, GLS maps
preserve the Lebesque measure. They are also known to be
ergodic and exhibit mixing. Variations of GLS show different
degrees of mixing - weak and strong mixing. For more details,
the reader is referred to Dajani and Kraaikamp (2002).

8. Topological transitivity and Universal orbits: GLS maps
exhibit topological transitivity property defined as follows.

Topological transitivity: for every pair of non-empty open sets
A, B ∈ [0, 1), there exists a non-negative integer m such that

Tm(A) ∩ B ̸= ∅. Equivalently, there exists at least one initial
value in A which when iterated a finite number of times
(m ≥ 0 iterations) reaches B.

Universal orbits (also known as dense orbits ) are spe-
cial non-periodic trajectories which visit every possible
non-empty neighbourhoods of [0, 1). Equivalently, there
exists an initial value x0 ∈ [0, 1) such that the set
{x0, T(x0), T2(x0), . . . , Tk(x0), . . .} is dense in [0, 1). This
property is of utmost importance in Neurochaos Learning
(NL) (Balakrishnan et al. 2019).

9. Number theoretic properties - Dajani and Kraaikamp (2002)
discuss number theoretic properties of GLS and other varia-
tions of GLS (β expansions).

10. Implementation in software and hardware: given the piece-
wise linear nature of Tent map (and GLS), it enjoys a very
low computational complexity for software implementation.
There have been a number of hardware/electronic circuit re-
alizations of the Tent map (Valtierra et al. 2017; Kumar et al.
2018; Hernandez et al. 2003; Campos-Cantón et al. 2009).

11. Nonlinear GLS: Nagaraj et al. (2009) propose a non-linear ex-
tension to GLS which preserves the Lebesgue measure that
finds applications in joint compression and encryption tech-
niques.
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■ Table 1 Details of research works that have employed Tent/GLS maps (or their variations) in applications pertaining to electronics,
communication (coding, error correction/detection, encryption) and computer science and engineering. This is not an exhaustive list.

Reference Properties of GLS used Applications

Hasler et al., 2000 Chaotic synchronization Chaos shift keying using iterations of the skew
tent map, chaotic communication systems.

Dajani et al., 2002 Ergodicity, mixing Number theory.

Miliotis et al., 2008 "Be-headed" Tent map Efficient and flexible storage, very fast search,
amenable for parallel implementation.

Nagaraj et al., 2009 λGLS = HGLS GLS-coding: Shannon optimal lossless com-
pression for i.i.d sources. Generalization of
Arithmetic Coding that is used in JPEG2000.

Nagaraj et al., 2009 Noise-resistant GLS maps, symbolic se-
quence invariance

Multiplexing and de-multiplexing chaotic sig-
nals in the presence of noise.

Campos-Cantón et al., 2013 Chaos and ergodicity of the Tent map Reconfigurable logical cell using evolutionary
computation.

Wong et al., 2010 GLS maps with key-based switching Simultaneous arithmetic coding or GLS-
coding and encryption.

Nagaraj, 2012 Ergodicity/mixing Joint compression and encryption. One-Time
Pads that achieve unbreakable encryption
(Perfect Secrecy) are nothing but switched
GLS-coding.

Nagaraj, 2019 Cantor sets on GLS maps with a forbidden
symbol

Error detection, joint compression and error
control coding.

Palacios-Luengas et al., 2019 Ergodcity/mixing properties of Skew-Tent map Psuedo Random Number Generators.

Balakrishnan et al., 2019 GLS used as a neuron. Topological transitivity,
universal orbits, chaotic features

Brain-inspired machine learning (Neurochaos
Learning or NL) for classification. State-of-
the-art performance in low training sample
regime.

Balakrishnan et al., 2021 Stochastic resonance at a GLS neuron NL for classification tasks.

Balakrishnan et al., 2022 Topological transitivity, universal orbits,
chaotic features of trajectories on GLS

Efficient classification of SARS-CoV-2 viral
genome sequences using NL.

Balakrishnan et al., 2022 Causality preservation property of network of
GLS neurons

Causality and machine Learning using NL.
Deep learning fails to preserve causality.

Ajai et al., 2022 Heterogeneous network of GLS and Logistic
map neurons

Classification tasks, further boost in perfor-
mance of heterogeneous NL architecture
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UNREASONABLE EFFECTIVENESS OF TENT/GLS MAPS

Table 1 is an attempt to succinctly summarize some of the pub-
lished past research works that employ the Tent/GLS maps (or
their variations) for applications in electronics and communica-
tions, computer science and engineering. It is by no means an
exhaustive list of such published research. The specific maps used
and the properties of these maps that enable these applications are
also mentioned.

Why not Logistic map?
One may be wondering why we have not discussed the logistic
map which is also an equally popular 1D chaotic map. In fact,
logistic map is continuous and differentiable (unlike GLS maps
which can only be continuous at best). There are a number of
published research papers on properties and applications of the
logistic map as well.

One of the most important reasons why the Tent map and GLS
maps are preferable (over the Logistic map) in engineering appli-
cations is due to the piecewise linear nature of these maps. This
enables an easy implementation of these maps in hardware and
software. Furthermore, one of the important issues in the imple-
mentation of any dynamical system is finite numerical precision.
Given an arbitrarily long symbolic sequence from a GMP of a
GLS, it is possible to find the initial value to arbitrary precision.
This is made possible because of the connection between GLS and
Arithmetic Coding. Using ideas of finite precision implementation
(such as scaling and re-normalization) of Arithmetic Coding, we
can determine the initial value of a given arbitrarily long symbolic
sequence on the GLS. This is used in GLS-coding as well as in mul-
tiplexing and de-multiplexing of chaotic signals in the presence
of noise. Please see Nagaraj and Vaidya (2009) (Appendix) which
describes this algorithm in detail.

This is also the reason that other 1D/2D maps such as the Stan-
dard Map, Sine Map, Circle Map, Hénon Map etc. are not preferred
in practical engineering applications where finite precision effects
can lead to problems.

Symbolic dynamics on GLS
Figure 2(a) depicts the symbolic sequences on the Tent map upto
order 3. These sequences produces a Binary Gray code. A Gray
code has the unique property that successive codes differ only in
one location. A binary Gray code would have the property that
consecutive codewords differ by exactly one hamming distance.
Gray codes are widely employed in electromechanical switches to
prevent spurious outputs and also in digital communications to
enable error correction. This property can be extended to N-ary
Gray codes using GLS with N intervals. The requirement for Gray
codes is that the GLS should be continuous on the entire set [0, 1).

Nagaraj and Vaidya (2009) construct noise-resistant versions of
the Tent map (and Binary map) to enable efficient multiplexing and
de-multiplexing of chaotic signals in the presence of noise. They
employ the symbolic sequence invariance property and provide
a finite precision implementation of finding the initial condition
of an arbitrarily long symbolic sequence on the Tent/Binary map.
Their scheme is able to multiplex/de-multiplex up to 20 chaotic
signals in the presence of additive noise.

Compression, Coding and Cryptography Applications
GLS maps find applications in lossless data compression, joint
compression and error detection and in several cryptographic
schemes. The reason for the success of GLS maps in these kind
of applications is due to the unique property that λGLS = HGLS

(along with the property of chaos and ergodcity/mixing). To the
best of one’s knowledge, such a property is not true with any other
map. This allows a very efficient handshake between dynamical
properties with infotheoretic properties. The well known Kraft–
McMillan inequality and its converse for prefix-free codes and the
celebrated Huffman Coding are both related to symbolic dynamics
on GLS maps (Nagaraj 2009, 2011).

The Tent map (and GLS maps) preserves the Lebesgue measure,
has an uniform distribution as invariant, positive lyapunov expo-
nent for all values of the bifurcation parameter, positive topological
entropy and is ergodic. This is highly desirable for cryptographic
algorithms, methods and protocols. Block ciphers and stream ci-
phers are required to have the properties of confusion and diffusion.
These can be translated to strong mixing/ergodicity of the un-
derlying chaotic map (Alvarez and Li 2006). The fact that Skew
Tent map with the skew parameter b exhibits Robust Chaos for
all values of b is very desirable for hardware implementation of
cryptographic methods. Since there are no windows or attracting
periodic orbits for any value of b, this means that perturbations
to the parameter b due to noise in hardware implementations do
not result in low periodicity. This is the problem with most maps
that exhibit fragile chaos, i.e., the presence of windows or attracting
periodic orbits. The logistic family of maps with the bifurcation
parameter a: xn+1 = axn(1 − xn) exhibits fragile chaos which is
problematic in cryptography applications.

Researchers have also employed GLS maps for simultaneous
compression and encryption (Wong et al. 2010; Nagaraj et al. 2009;
Nagaraj 2008, 2019).

Chaos based computing applications
The power of chaotic maps is their ability to generate a wide variety
of patterns. This feature is available in even simple 1D maps that
exhibit chaos such as the Logistic map and Tent map. Sinha and
Ditto (1998) proposed, for the very first time, thresholded logistic
map to emulate logic gates, encode numbers and perform simple
arithmetic operations such as addition, multiplication and least
common multiplier of a given sequence of integers. Since the
publication of this pioneering work by Sinha and Ditto, several
other researchers have contributed to this rich field of chaos-based
computing. Ditto et al. (2010) proposes the Chaogate – a dynamical
universal computing device which can be rapidly morphed to
serve as any desired logic gate. Experimental realization of the
same using a chaotic circuit has also been accomplished (Murali
et al. 2005).

While the above research works focused on the Logistic map,
it is easily translatable to the Tent map since there exists a topo-
logical conjugacy between these two maps (Alligood et al. 2000).
There have been attempts also to use the Tent map for designing
a reconfigurable logical cell (Campos-Cantón et al. 2013). Miliotis
et al. (2008) employs the "be-headed" Tent map (or thresholded
Tent map) ingeniously to efficiently and flexibly store information.
They demonstrate how a single element can store M items (M
could potentially be very large) and a very fast search by means
of a single global shift operation is possible. Such a scheme is
amenable for parallel implementation of chaos-based computing
architectures.
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Machine Learning: Neurochaos Learning using GLS neurons
One of the recent applications of GLS maps is in the design and
construction of a novel neural network composed of GLS neurons
as the input layer. This learning architecture is dubbed Neurochaos
Learning or NL (Balakrishnan et al. 2019; Harikrishnan and Na-
garaj 2021; Harikrishnan et al. 2022b). NL draws inspiration from
the empirical fact that chaos is ubiquitous in the brain and found
to manifest at several spatiotemporal scales - at the level of sin-
gle neurons, coupled neurons and network of neurons (Korn and
Faure 2003). The performance of NL on publicly available datasets
for classification tasks in the domains of medical diagnosis, ban-
knote fraud detection, environmental applications and spoken-
digit classification is impressive and comparable to state-of-the-art
Machine Learning (ML) and Deep Learning (DL) algorithms. Sethi
et al. (2022) propose a hybrid learning architecture composed of
chaos-based features from GLS neurons (NL) fed to classical ML
algorithms such as Support Vector Machines, Logistic Regression,
AdaBoost, Decision Trees, Random Forest, k−Nearest Neighbours
and Naive Bayes classifiers. Such an approach provides a signifi-
cant boost to the performance of standalone ML algorithms thereby
indicating the efficacy of chaos-based features extracted from GLS
neurons.

GLS neurons are shown to satisfy a version of the Universal Ap-
proximation Theorem (UAT) (Harikrishnan et al. 2022b) which is very
desirable for learning algorithms since it allows for approximat-
ing complicated decision boundaries. The property of topological
transitivity combined with presence of universal/dense orbits and
ergodic/mixing properties of GLS makes it effective for machine
learning applications. Another surprising property of GLS neurons
is that an intermediate amount of noise added to the input is benefi-
cial for classification performance in NL architecture (Harikrishnan
and Nagaraj 2021). This is the well known Stochastic Resonance or
noise-enhanced signal processing property found in certain non-
linear systems. Ajai et al. (Sep. 2022) provide a heterogeneous
Neurochaos Learning architecture using both GLS neurons and
logistic map neurons to further enhance classification performance.
GLS neurons also help preserve causality unlike Deep Learning
architectures (Harikrishnan et al. 2022a).

CONCLUSION AND FUTURE WORKS

In this paper, we have explored the unique properties of the chaotic
Tent map and more generally of Generalized Lüroth Series (GLS)
maps. The Tent map, Binary map, Skew Tent maps are all examples
of 1D GLS maps. We have discussed which specific properties of
these maps contribute to their effectiveness in various engineer-
ing applications. To conclude, we shall list some pointers and
directions for further research:

1. Harikrishnan et al. (2022b) have proven a version of the Uni-
versal Approximation Theorem (UAT) using GLS maps as
neurons in the input layer of a novel learning architecture
(NL). Further explorations on various versions of UAT and
connections to standard Artificial Neural Networks (ANNs)
and NL is a research direction worth investigating.

2. Coupled GLS maps for Neurochaos Learning: currently NL
architecture consists of an input layer of 1D GLS maps which
are independent of each other. Going forward, it would be
interesting to explore addition of hidden layers to the network
that consists of GLS maps which are coupled to the previous
layers. Coupling between GLS neurons within each layer
also needs to be explored. Such a Deep Neurochaos Learning
architecture could further boost classification performance.

3. GLS maps have already proved their effectiveness in lossless
data compression, joint compression and error detection and
joint compression and encryption. However, incorporating
an efficient error correction property along with compression
and/or encryption has been elusive. This is an open problem.

4. GLS maps and other 1D chaotic maps (such as Logistic map)
have shown promise in chaos based computing schemes.
Have these matured to a stage where they can give serious
competition to classical computer architectures?

5. GLS and their variations, especially β expansions have rich
number theoretic properties. Is it possible to use these in
practical engineering applications?

6. It is well understood that digital implementation of dynamical
systems results in degradation of chaotic and ergodic proper-
ties (Li et al. 2005). Have we realized the full implications of
these in practical applications involving GLS maps? What cor-
rections are necessitated to combat the dynamical degradation
of digital piecewise chaotic maps?

7. Another open problem is an efficient software implementa-
tion of determining the initial value for an arbitrarily long
symbolic sequence on other 1D maps such as the Logistic
map (without running into numerical precision issues). As
mentioned earlier, such a method exists for the Tent map (GLS
maps) but no such efficient method is known for other maps
which are not piecewise linear.

To conclude, we foresee exciting novel applications of GLS
maps in new domains. The (un)reasonable effectiveness of GLS
maps (Tent map included) in engineering applications owe to a
unique set of properties which other maps do not enjoy.
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ABSTRACT In this paper, we study the synchronization problem in complex dynamic networks of Piece
Wise Linear (PWL) systems. PWL systems exhibit multi-scrolls and belong to a special class of Unstable
Dissipative Systems (UDS). We consider strongly connected digraphs and linear diffusive couplings. The
synchronization regions are computed using the concept of disagreement vectors, generalized algebraic
connectivity of the network topology, and Lyapunov functions, which provide lower bounds on the coupling gain
of the network. Then, different combinations of linear diffusive coupling are explored by changing the observed
and measured variables to illustrate the contribution of our results. The theoretical results are validated by
numerical simulations.

KEYWORDS

Synchronization;
Complex net-
works
Digraphs
Multi-Scroll at-
tractors
Unstable dissipa-
tive systems.

INTRODUCTION

In the last decade, the study of synchronization phenomena in a
group of coupled Piece-Wise Linear (PWL) in the context of nonlin-
ear systems theory has attracted considerable attention due to its
wide application in fields such as physics, biology, and engineer-
ing, among others (Muñoz-Pacheco et al. 2012; Anzo-Hernández
et al. 2019; Carbajal-Gómez and Sánchez-López 2019; Ruiz-Silva
et al. 2021; Echenausía-Monroy et al. 2021; Ruiz-Silva et al. 2022).

One way to analyze these kinds of interconnected systems is to
model them as complex networks whose nodes are the individual
dynamical systems and the coupling is represented by a static
graph. One of the most important aspects in the study of complex
networks and their emergent behaviour is the structural analysis of
the topology and dynamical properties of their nodes, to determine
the conditions under which a set of interconnected dynamical
systems achieve stable collective behaviour (Boccaletti et al. 2006;
Wu 2007; Ávila-Martínez and Barajas-Ramírez 2018, 2021; Ávila-
Martínez 2022). In this context, the term synchronization refers to
the collective phenomenon in which two or more elements exhibit
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temporally coordinated dynamical behaviour (Boccaletti et al. 2002;
Pikovsky et al. 2002).

A starting point for the study of synchronization in complex net-
works, whether a PWL or other non-linear system, is the assump-
tion that nodes are identical, links are static, and coupling is diffu-
sive. The diffusive condition is a basic assumption in this type of
problem because it is a requirement that occurs naturally in many
real-world networks and is a relatively soft condition on the struc-
ture of the network model (Chen et al. 2014). On the other hand,
to achieve synchronization in a complex network, it is possible to
consider different properties of the network links, such as unidirec-
tional couplings (Anzo-Hernández et al. 2019; Posadas-Castillo et al.
2014), bidirectional or symmetric couplings (Ruiz-Silva et al. 2022;
Soriano-Sánchez et al. 2016), connections with weights (Ruiz-Silva
et al. 2021; Ontañón-García et al. 2021) or changes in the nature of
the coupling functions (Echenausía-Monroy et al. 2021; Mishra et al.
2022). All these properties are reflected in the stability analysis of
the synchronized behaviour, and some of them simplify it.

In this paper, we focus on the synchronization problem for a
complex network under a fixed communication structure, where
the dynamics of each node belongs to a class of affine linear sys-
tems. Traditionally, this problem can be approached by studying
the system stability of the error around the synchronization solu-
tion using the λ2 criterion (Chen et al. 2014), or the master stability
function method (Pecora and Carroll 1998; Huang et al. 2009).

The method proposed in this paper is essentially compatible
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with the λ2 criterion since Lyapunov stability theory is used for
the node dynamics and synchronization of the complex network.
However, it presents a different point of view since the analysis
is performed using the stability region of the nodes, the concept
of disagreement vectors, and the generalized algebraic connectiv-
ity of the network topology (Li et al. 2010; Yu et al. 2010). First,
we focus on the individual dynamics of the nodes and the inter-
nal coupling matrix, since unbounded stability regions must be
determined to simplify the analysis of network synchronization.
Then, using the disagreement vectors, we analyze the effect of the
network topology on the stability regions of the nodes, which can
be adjusted by the strength of the network coupling. Moreover,
it is important to mention that an advantageous feature of this
approach is that it can be used in bidirectional or unidirectional
topologies as long as they represent strongly connected structures.

The rest of the document is structured as follows: We intro-
duce first the multi-scroll system, the network model, and some
helpful graph theory results. Then, we analyze the synchronized
behaviour of strongly connected digraphs using the Lyapunov
stability theory. We later present a case of study, followed by
some numerical simulations illustrating our results. In the end, we
discuss some conclusions.

PRELIMINARIES

Multi-Scroll System
It is known that the generation of attractors with multiple scrolls de-
pends on both the stability of the generated equilibrium points and
the type of switching function implemented (Echenausía-Monroy
et al. 2020). It is possible to analyze the stability of the equilibrium
points of this type of systems using the Unstable Dissipative Sys-
tems (UDS) theory, which describes a variety of three-dimensional
systems with dissipative and conservative components. The co-
existence of both components leads to the appearance of the so-
called attractors with multi-scrolls (Campos-Cantón et al. 2010,
2012; Campos-Cantón 2016).

As in previous works (Gilardi-Velázquez et al. 2017; Echenausía-
Monroy and Huerta-Cuellar 2020), we consider that each dynam-
ical system is defined by a class of affine linear systems given
by:

ẋi = Axi + B(xi), (1)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector of the i-th

system, the constant matrix, A = {aij} ∈ R3×3, is the linear op-
erator of the system, and B = [b1, b2, b3]

T ∈ R3 is a vector with
real entries. It should be noted that the behavior of the system
(1) is determined by the eigen-spectrum of the matrix A, which
can produce a variety of combinations and thus different dynamic
behaviors.

The class of affine linear systems considered here are UDS of
type 1, i.e., the eigenvalues associated with the linear operator A
correspond to a hyperbolic saddle point where one eigenvalue
is real negative and the other two are complex conjugate with
a positive real component. Moreover, the sum of these values
must be less than zero (Campos-Cantón et al. 2010, 2012; Campos-
Cantón 2016). If the affine linear system given by Eq. (1) satisfies
the UDS I definition with B = 0, then it is possible to generate an
attractor with multi-scrolls by constructing a commutation law,
in this case a PWL function. The purpose of the commutation
function is to generate as many equilibrium points as desired and
to control their visitation, which is achieved by coexisting a large
number of unstable single-spiral trajectories (Echenausía-Monroy
and Huerta-Cuellar 2020; Echenausía-Monroy et al. 2020).

Next, before we present the concept of a complex network, we
introduce some preliminaries of algebraic graph theory.

Algebraic Graph Theory
A directed graph (in short, a digraph) of order N, is a pair G =
(V , E), where V = {1, . . . , N} is a set of elements called nodes
and E ⊆ V × V is a set of ordered pair of nodes. For i, j ∈ V
the ordered pair (j, i) ∈ E denotes an edge that starts on node j
and ends in node i. The neighbourhood of node i is defined as
Ni := {j ∈ V : (j, i) ∈ E}. In G a directed path of length m from
node i to j is a sequence of edges with distinct nodes nk, with
k = 1, 2, . . . , m, such that (i, n1), (n1, n2), . . . , (nm, j) ∈ E . A graph
G is strongly connected if there exists a directed path connecting
every nodes pair. A digraph G is called weighted if for every edge
(j, i) ∈ E there is an associated weight wij > 0.

The Laplacian matrix of a weighted digraph G is a zero row
sum non-negative matrix L = [lij] ∈ RN×N defined as:

lij :=

 −wij if (j, i) ∈ E ,

∑N
i=1,j ̸=i wij if i = j.

Now, we present some results related to matrix Laplacians.

Lemma 1. (Li 2015) Suppose that G is strongly connected. Then,
there is a positive left eigenvector z = [z1, · · · , zN ]T ∈ RN of L as-
sociated with the zero eigenvalue and L̂ := ZL + LT Z ≥ 0, where
Z = Diag(z1, · · · , zN).

Lemma 2. (Li 2015) For a strongly connected graph G with Laplacian
L, define its generalized algebraic connectivity as

α := min
zT x=0,x ̸=0

{
xT L̂x
xT Zx

}
, (2)

where z and Z are defined as in Lemma 1. Then, α > 0.

Lemma 3. (Yu et al. 2010) The generalized algebraic connectivity of a
strongly connected digraph G can be computed by the following:

max µ,

subject to QT
(

1
2

L̂ − µZ
)

Q ≥ 0, (3)

where Q =

 IN−1

−ẑT/zN

 ∈ RN×(N−1) and ẑ = [z1, . . . , zN−1]
T ∈

RN−1.

The Complex Dynamical Network Models
A complex dynamic network is defined as a set of interconnected
systems, being each system a fundamental entity whose dynam-
ics depend on the nature of the network (Chen et al. 2014). The
interaction structure or network topology is modeled by a graph
G = (V , E), where V is the set of fundamental units, and an edge
(i, j) ∈ E depicts the interaction between nodes i and j. Therefore,
the state describing the dynamic network are as follows:

ẋi = f (xi)− c ∑
j∈Ni

wijΓ(xi − xj), i ∈ V , (4)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector of node i,

the function f (xi) = Axi + B(xi) can be derived from Eq. (1),
and determines the dynamics of an isolated multi-scroll system.
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The constant c > 0 denotes the uniform coupling strength of
the network. Let Γ = Diag(γ1, γ2, γ3) ∈ R3×3 be a constant
matrix describing the internal coupling between the systems in
the network, constructed as follows: if γk > 0 indicates that the
ith node and the jth node are coupled by their kth state variable,
otherwise γk = 0. The value wij > 0 is the weight of the ij-th edge,
portraying the external coupling. The network described by Eq. (4)
can be rewritten in terms of the matrix Laplacian entries as follows:

ẋi = Axi + B(xi)− c ∑
j∈Ni

ℓijΓxj, i ∈ V , (5)

which in vector form is given by

ẋ =
(
(IN ⊗ A)− c(L ⊗ Γ)

)
x + B̃(x), (6)

where x = [xT
1 , xT

2 , · · · , xT
N ]T ∈ R3N , B̃(x) =

[B(x1)
T , · · · , B(xN)T ]T ∈ R3N , IN is the identity matrix

of size N × N, and ⊗ denotes the Kronecker product. It is worth
noting that the network model describes all kinds of topologies,
where they can consider connection patterns with uniform weights
or non-uniform connections.

SYNCHRONIZATION PROBLEM AND MAIN RESULTS

One of the most-studied collective behaviors for a set of inter-
connected systems is the synchronization phenomenon, which
emerges when the dynamics of the systems correlate over time
(see (Chen et al. 2014; Boccaletti et al. 2002; Pecora and Carroll 1998;
Arenas et al. 2008) and references therein). Although there are
several definitions of synchronization in dynamic networks, this
study focuses on complete synchronization. Mathematically, this is
defined as follows:

Definition 1. (Chen et al. 2014) It is said that the dynamic network (4)
achieves complete asymptotic synchronization when

lim
t→∞

∥xi − xj∥ = 0, i, j ∈ V , (7)

where ∥ · ∥ is the Euclidean norm of a vector.

The goal of this paper is to find sufficient conditions for the
nodes in the network to achieve complete synchronization, i.e., to
ensure that Eq. (7) is satisfied regardless of the initial conditions.
Since the linear operator A, the constant vector B(·), and the matrix
Γ have a particular form, synchronization must be achieved by
suitably designing the coupling strength, taking into account the
structural properties of the network.

Stability Analysis on Strongly Connected Digraphs
Inspired by (R. Olfati-Saber and R. M. Murray 2004; Li et al. 2010),
we introduce disagreement functions to perform stability analysis of
the synchronous behavior of the network (6).

Let z ∈ RN be defined as in Lemma 1 such that zT1 = 1, where
1 ∈ RN denotes the vector where all entries are ones. Thus, the
disagreement vector is defined as:

δ :=
(
(IN − 1zT)⊗ I3

)
x, (8)

where δ = [δT
1 , δT

2 , . . . , δT
N ] ∈ R3N satisfies the condition (zT ⊗

I3)δ := 0. It is important to emphasize that δi = xi −∑N
k=1 zkxk and

δi − δj = xi − xj. Thus, by the Definition 1, the synchronization
state is reached if and only if δ → 0 is t → 0. Also, it can be proved

that δ evolves according to the development given by disagreement
dynamics:

δ̇ =
[
(IN ⊗ A)− c(L ⊗ Γ)

]
δ +

[
(IN − 1zT)⊗ I3

]
B̃(x). (9)

To show the stability for each of the disagreement vectors, the
following assumptions are required for the remainder of this paper:

Assumption 1. For each configuration of the matrix Γ =
Diag(γ1, γ2, γ3) ∈ R3×3 with Γ > 0, there exist constants d > 0
and η > 0 such that

A + AT − dΓ ≤ −ηI3, (10)

where I3 is the identity matrix of size 3 × 3.

Assumption 2. Let us assume that there are known or unknown non-
negative constants βij ≥ 0, so that

∥B(xi)− B(xj)∥ ≤ βij∥xi − xj∥, (11)

with i ̸= j, for i, j = 1, 2, · · · , N.

Under these assumptions, we establish the following result:

Theorem 1. Suppose that the Assumption 1 holds and that the dynamic
network described by Eq. (6) is strongly connected. If the coupling
strength c satisfies the condition

c ≥ d∗

α
, (12)

where d∗ is a non-positive constant and α is the generalized algebraic
Fielder’s connectivity of G. Then the disagreement dynamics is asymp-
totically stable at the equilibrium, or equivalently δi → 0, for any
i = 1, 2, · · · , N. Consequently, the complex dynamical network (6)
achieves synchronization.

Proof. Define the Lyapunov function candidate as:

V(δ) :=
1
2

δT(Z ⊗ I3)δ, (13)

with the positive matrix Z = Diag(z1, z2, · · · , zN) > 0 defined as
in Lemma 1.

The time derivative of Eq. (13) along the trajectories of (9)
yields:

V̇(δ) = δT(Z ⊗ I3)δ̇ = U(δ) + W(δ, B̃(x)), (14)

with

U(δ) :=
1
2

δT
[ (

Z ⊗ (A + AT)
)
− c

(
L̂ ⊗ Γ

) ]
δ

W(δ, B̃(x)) := δT
[

Z(IN − 1zT)⊗ I3

]
B̃(x).

Using Lemma 1 and Lemma 2 in U(δ) we obtain

U(δ) ≤ 1
2

δT
[ (

Z ⊗ (A + AT)
)
− cα (Z ⊗ Γ)

]
δ

=
1
2

δT
[ (

Z ⊗ (A + AT − cαΓ)
) ]

δ

=
1
2

N

∑
i=1

ziδ
T
i

(
A + AT − cαΓ

)
δi, (15)
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where α is the generalized algebraic connectivity of the graph G.
For W(δ, B̃(x)) it is also true that

W(δ, B̃(x)) =
N

∑
i=1

ziδ
T
i

(
B(xi)−

N

∑
k=1

zkB(xk)

)

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄) + B(x̄)−

N

∑
k=1

zkB(xk)

)

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄)

)

+

(
B(x̄)−

N

∑
k=1

zkB(xk)

)T N

∑
i=1

ziδi

=
N

∑
i=1

ziδ
T
i

(
B(xi)− B(x̄)

)
, (16)

where x̄ := ∑N
k=1 zkxk, and we use the fact that ∑N

i=1 ziδi = 0.
Under Assumption 2, it follows that∥∥∥∥∥ N

∑
i=1

ziδ
T
i (B(xi)− B(x̄))

∥∥∥∥∥ ≤
N

∑
i=1

zi ∥δi∥ ∥B(xi)− B(x̄)∥

≤
N

∑
i=1

βzi ∥δi∥ ∥xi − x̄∥

≤
N

∑
i=1

βzi∥δi∥2, (17)

with β > 0 is the largest Lipschitz constant of the function B(·).
Substitute Eqs. (15) and (17) into Eq. (14), we get:

V̇ ≤ 1
2

N

∑
i=1

ziδ
T
i

(
A + AT − cαΓ

)
δi +

N

∑
i=1

βziδ
T
i δi

=
N

∑
i=1

ziδ
T
i

(1
2
(A + AT − cαΓ) + βI3

)
δi. (18)

Let d = cα, then under the Assumption 1 it follows that

A + AT − cαΓ ≤ −ηI3, (19)

with d∗ ≤ d = cα and η > 0. Since d∗ > 0 and α > 0, we solve
for c from the inequality d∗ ≤ cα and we have the condition (12).
Therefore, the inequality (18) can be rewritten as

V̇(δ) ≤
N

∑
i=1

zi

(
β − η

2

)
∥δi∥2 . (20)

Note that the right-hand side of the previous inequality is a
quadratic function and zi > 0 for i = 1, 2, · · · , N. Thus, if we
choose η > 2β, it follows that V̇(δ) < 0. Consequently, δi → 0 as
t → ∞, i.e. the network (6) asymptotically synchronizes.

It should be emphasized that the Assumption 1 provides a
bound on the stability of the linear operator A, while the Assump-
tion 2 indicates that the vector B around zero is a fading pertur-
bation. Moreover, the value of α can be computed as in Lemma
3. Up to this point, the Theorem 1 gives such a value for the cou-
pling strength c that ∥δi∥ → 0 as t → ∞. Thus, there is a certain
range for the coupling strength in which the synchronization of
the digraph is guaranteed. Notice that other values that can lead
to synchronization of the network are not excluded.

A CASE OF STUDY

Consider a multi-scroll system whose dynamics is described by Eq.
(1). In particular, take the following dynamic system:

ẋi1

ẋi2

ẋi3

 =


0 1 0

0 0 1

−a −a −a


︸ ︷︷ ︸

A


xi1

xi2

xi3

+


0

0

ab(xi)


︸ ︷︷ ︸

B(xi)

, (21)

where xi = [xi1, xi2, xi3]
T ∈ R3 is the state vector, a is a dynamical

parameter modifying the Lyapunov exponent, the order and the
magnitude of the attractor (Echenausía-Monroy et al. 2018), and
b(·) : R3 7→ R is a PWL function given as:

b(xi) =



−6 if xi ∈ D1 = {xi | xi1 < −5},

−4 if xi ∈ D2 = {xi | − 5 ≤ xi1 < −3},

−2 if xi ∈ D3 = {xi | − 3 ≤ xi1 < −1},

0 if xi ∈ D4 = {xi | − 1 ≤ xi1 < 1},

2 if xi ∈ D5 = {xi | 1 ≤ xi1 < 3},

4 if xi ∈ D6 = {xi | 3 ≤ xi1 < 5},

6 if xi ∈ D7 = {xi | xi1 ≥ 5},

(22)

where D = {D1, · · · ,D7} is a finite partition of the phase space.
As mentioned before, the parameter a in Eq. (21) determines the
system’s equilibrium points stability, and must satisfy the UDS
I conditions (Campos-Cantón et al. 2010; Anzo-Hernández et al.
2018). To achieve this, a can only take values from the set a ∈ (0, 1)
and thus, generating the same number of scrolls as equilibrium
points in the system.

To illustrate that Eqs. (21)-(22) form a multi-scroll system, take
a = 0.6. Hence, the matrix A has a negative real eigenvalue and
two complex conjugate eigenvalues whose sum is negative, i.e.5

σ(A) = {−0.794, 0.097 ± 0.863i}, and
3

∑
i=1

σi = −0.6. (23)

Under these conditions, system described by Eq. (21) is a UDS
type I system. Figure 1 shows its state trajectories with an initial
condition x0

i = [5, 1, 0.13]T . In Figure 1(a) we show the projection
of the multi-scroll attractor onto the planes (xi1 − xi2) and (xi1 −
xi3). Figure 1(b) corresponds to the temporal behaviour of the
states xi1, xi2 and xi3 with arbitrary units (a.u.) time.

Dynamical Network
For ease of illustration, consider a network of N identical multi-
scroll systems with dynamics described by Eq. (21), with linear
and diffusive couplings. Thus, we describe the dynamic network
by Eq. (5) and βij = β > 0, for all i, j ∈ V , in Assumption 2.

Theorem 1 must satisfy the Assumption 1 and satisfy the in-
equality (12). Note that in order to obtain an appropriate value for
the coupling gain in Eq. (12), we need to compute d as shown in
Assumption 1, and Eq. (10) imposes a Hurwitz condition over the

5 Here i stands for the imaginary unit.
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Figure 1 Attractor and states behaviour generated by Eqs. (21)-(22) with a = 0.6.

matrix A + AT − dΓ. Therefore, in this section we are interested in
finding a method to design the internal coupling matrix Γ and the
external coupling gain c to achieve synchronization. Inspired by
the λ2 criterion (Chen et al. 2014) and the Master Stability Function
(MSF) (Pecora and Carroll 1998; Huang et al. 2009), we compute
synchronizability regions over an (a − d)-plane from which we
can choose a particular matrix Γ and values for d and hence for c.

From the Eq. (10), described in Assumption 1, and the linear
operator A defined in Eq. (21) we obtain the following matrix:

M := A + AT − dΓ =


−dγ1 1 −a

1 −dγ2 1 − a

−a 1 − a −(2a + dγ3)

 , (24)

with characteristic polynomial

p(M) := σ3 + κ2σ2 + κ1σ + κ0, (25)

where

κ2 = 2a + d(γ1 + γ2 + γ3),

κ1 = d2 (γ1γ2 + γ1γ3 + γ2γ3) + 2ad(γ1 + γ2)

−2
(

a + (1 − a)2
)

,

κ0 = d3γ1γ2γ3 + 2adγ1(1 + dγ2)− a2(2 + dγ1)

−d(γ1 + γ3).

Note that M is symmetric and therefore all its eigenvalues are
real. Denote by σk, with k ∈ K := {1, 2, 3}, the eigenvalues of the
matrix M. For all k ∈ K, σk < 0 holds if and only if M satisfies the
Routh-Hurwitz stability criterion, namely

κ2 > 0, κ1 > 0, κ0 > 0, and κ2κ1 − κ0 > 0. (26)

Recall that a is in (0, 1), so two different values of a can lead to
different multi-scroll systems with different parameters for p(M).
Therefore, a particular matrix Γ and a particular value for d may
not be appropriate for every choice. To accommodate a variety of
multi-scroll systems, the proposed method is to choose an internal
coupling matrix Γ and numerically solve the inequalities of Eq. (26)
as a function of a and d. The result is a synchronizability region in
the (a − d) plane. In Figure 2 we show some examples of this; The
blue regions indicate values for which inequalities in Eq. (26) hold.

(a) (b)

Figure 2 Synchronizability region (blue) of the matrix M subject
to parameters a and d with: (a) Γ = Diag(1, 1, 1) and, (b) Γ =
Diag(1, 1, 0).

Remark 1. Although there are up to eight different combinations of the
values for γ1, γ2, and γ3, a quick examination of the inequalities from
Eq. (26) shows that six of them cannot satisfy them. Synchronization can
be achieved only if γ1 > 0, γ2 > 0 and γ3 ≥ 0.
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Remark 2. In Assumption 1, notice that, by the min-max theorem
(Allaire and Kaber 2007), we can choose η = mink∈K {|σk|}.

NUMERICAL ILLUSTRATION

Let the inner coupling matrix Γ = Diag(1, 1, 1) ∈ R3, and let the
topology of the network be as shown in Figure 3, whose elements
satisfy the conditions of a strongly connected graph. Therefore, the
Laplacian matrix and its left eigenvector are given by:

L :=



1 −1 0 0 0 0

0 6 −2 0 −2 −2

0 −2 2 0 0 0

0 0 −3 3 0 0

0 0 0 −4 4 0

−1 0 0 0 −5 6



and z =



0.168

0.237

0.168

0.118

0.118

0.188



.

x1

x2x3

x4

x5 x6

Figure 3 A strongly connected digraph of order N = 6.

As mentioned in the previous section, for each configuration
of the internal coupling matrix and each value of the parameter
a, there are critical values d such that A + AT − dΓ is a negative
definite matrix. For this example, it is possible to choose the value
of d using Figure 2(a), let d = 1.5 hold, which is valid for all a ∈
(0, 1). Then the generalized algebraic connectivity for the graph
shown in Figure 3 is α ≈ 0.7017. Thus, to ensure synchronization
in the nodes, the coupling strength must satisfy c > d/α ≈ 2.13
according to the Theorem 1.

To illustrate the above in more detail, Figure 4 shows the time
series of coupled systems (5) with randomly chosen initial condi-
tions. In the numerical simulations, the Figure 4(a) corresponds to
the time series of the network state with parameter a = 0.45 and
Γ = Diag(1, 1, 1); while the Figure 4(b) corresponds to the time
series of states for a network with a = 0.6 and Γ = Diag(1, 1, 0).
In both simulations, it is assumed that for t < 1000 (a.u.) the
nodes are decoupled, so that each solution evolves its own attrac-
tor. While for t > 1000 (a.u.) the nodes are connected in a network
structure with a coupling strength c = 2.14. Moreover, it can be
observed how the trajectories of all nodes collapse in the three
states, i.e., the nodes achieve complete synchronization.
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Figure 4 Numerical simulation of the system from Eq. (5)
with: (a) a = 0.45 and Γ = Diag(1, 1, 1), (b) a = 0.6 and
Γ = Diag(1, 1, 0).

CONCLUSIONS

This paper studies the synchronization problem in a complex net-
work where each node belongs to a class of PWL systems. The
network’s topology is directed and strongly connected with lin-
ear and diffusive couplings. Using graph theory and Lyapunov
stability theory, we established synchronization conditions utilis-
ing the notion of disagreement vectors and generalized algebraic
connectivity for digraphs. We then use our main result and the
Routh-Hurwitz criterion to determine synchronizability regions
for a given affine system, namely a UDS type-I system. For a
given inner coupling matrix and a directed network topology, we
compute the synchronizability regions as a function of a system
parameter and a ratio between the generalized connectivity and
the coupling strength. In this way, we determine minimum values
for the coupling strength that allow synchronization. An advanta-
geous feature of our approach is its flexibility in network structures.
Although our main result is related to strongly connected digraphs,
it is also suitable for undirected graphs.

In future work, we will further investigate the synchronization
of UDS Type-I systems and provide a general method for com-
puting synchronizability regions. We will also consider networks
of systems with a different number of scrolls, including the ef-
fects of the performance parameters associated with the nonlinear
functions on their electronic implementation.
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The Effect of Agents’ Psychology and Social
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ABSTRACT Opinion dynamics in relative agreement models seen as an extension of bounded confidence
ones, involve a new agents’ variable usually called opinion uncertainty and have higher level of complexity
than that of bounded confidence models. After revising the meaning of the opinion uncertainty variable we
conclude that it has to be interpreted as the agent’s opinion toleration, that changes the type of the variable
from the social to the psychological one. Since the convergence rates to the stationary states in dynamics of
sociological and psychological variables are in general different, we study the effect of agents’ psychology
and social environment interaction on the opinion dynamics, using concord and partial antagonism relative
agreement model in small-world and scale-free societies. The model considers agents of two psychological
types, concord and partial antagonism, that differs it from other relative agreement models. The analysis
of opinion dynamics in particular scenarios was used in this work. Simulation results show the importance
of this approach, in particular, the effect of small variations in initial conditions on the final state. We found
significant mutual influence of opinion and toleration resulting in a variety of statistically stationary states such
as quasi consensus, polarization and fragmentation of society into opinion and toleration groups of different
configurations. Consensus was found to be rather rare state in a wide range of model parameters, especially
in scale-free societies. The model demonstrates different opinion and toleration dynamics in small-world and
scale-free societies.
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INTRODUCTION

Public and personal opinions are key elements in a decision taking
or making over a subject of interest. A decision is followed by
actions that can be of crucial importance for the behavior or even
existence of a social group or the whole society. As a consequence,
both the empirical and theoretical, including mathematical, study
of opinion dynamics is of great significance. Human psychology
and sociology sciences consider the following factors to be impor-
tant in formation of opinion: the status of a topic to be considered,
a person awareness of the theme, the structure of the society, psy-
chological type and profile of society members, pair or mixed way
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of interaction between persons, the influence of opinion leaders
and/or mass media, a way of thinking of persons, among others.
So, the process of opinion formation turns out to be a complex
dynamical system when a combination of these factors is taken
into account.

From nineties of the past century, the mathematical modeling of
opinion dynamics turns out to be one of the important and efficient
tools in studying of opinion formation, considering some of the
features mentioned above. To formalize the study of the prob-
lem, different models of opinion dynamics have been proposed,
which are used to explore the processes of opinion diffusion and
evolution in human populations. Research of opinion dynamics
covers a wide range of social phenomena: rise and popularity of
subjects, spread and preservation of minority opinion, decision
taking, consensus formation, emergence of political parties, spread
of rumors, rise and influence of extremists, among others.
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A formal theory of social power by French (French Jr 1956) can be
considered as the origin of formal opinion dynamics research fol-
lowed by a series of opinion dynamics models and their variations;
those differ each other in representation of opinion space (discrete
or continuous), opinion updating rules, dynamics (regimes) of
agents’ interaction and the structure of a social group, basically.
The key models of opinion dynamics in discrete opinion space
are the voter model (Clifford and Sudbury 1973; Galam 2008), the
Sznajd model (Sznajd-Weron and Sznajd 2000), the Axelrod cul-
tural diffusion (dissemination) model (Axelrod 1997); the bounded
confidence (BC) and relative agreement (RA) models take opinion
as a continuous variable (Dittmer 2001; Deffuant et al. 2001, 2002;
Hegselmann et al. 2002). For more detailed and structured review
of models on opinion dynamics we refer to the work of Xia et al.
(Xia et al. 2011), S. Galam (Galam 2022) and, Dong et al. (Dong et al.
2018).

In the beginning of sociophysics different models and methods
of mathematical physics were adapted to study various social phe-
nomena, in particular, to explore the processes of opinion diffusion
(propagation, spreading) and evolution in human populations.
Later on new models, based on theories and principles of social
sciences, have arisen to give more realistic features to simulation
dynamics. In continuous opinion space, bounded confidence (BC)
and relative agreement (RA) models, being ones of the closest to
the social experience and sociological theories, were proposed for
the studying of opinion dynamics in networked societies; BC mod-
els (Deffuant et al. 2001; Hegselmann et al. 2002; Wang 2022) being
predecessors of the RA ones (Deffuant et al. 2002) are still popular
in opinion evolution simulation. As in any dynamical system, the
convergence and final states of opinion evolution are considered
to be one of the main problems to study. Both BC and RA opinion
models demonstrate convergence to the states of consensus, polar-
ization or fragmentation of opinion at different combinations of
their parameters and with different convergence rate (Dittmer 2001;
Deffuant et al. 2001, 2002; Deffuant 2006; Hegselmann et al. 2002;
Douven and Riegler 2010; Pineda et al. 2013). The state variable of
an agent in BC models is the opinion only, while in RA ones the
uncertainty of opinion is used as an additional variable along with
the opinion; the psycho-social meaning of the latter variable was
not formally defined in psycho-social sense but interpreted as a
range of self-reliance of an agent on its own opinion. Nevertheless,
the meaning of that variable as the opinion uncertainty is somehow
confusing if not wrong, because it is not measurable (see Section
Conclussions and Discussion at the end of article). In addition, in this
case it is considered as one more sociological variable analogous
to the opinion, leaving out of the consideration the influence of
agents’ psychology on opinion formation.

In order to overcome these constraints of RA models, the differ-
entiation of agents in psychological types was first considered in
(Kurmyshev et al. 2011; Abrica-Jacinto et al. 2017) assigning to each
agent one of the two psychological types, Concord (C) or Partial
Antagonism (PA); the latter was reflected in the rules of opinion
updating at agents’ interaction. In addition, after being analyzed
the notion of the psychological profile of human individuals (open
or closed mind persons), we reinterpret the meaning of the variable
opinion uncertainty giving to it the notion of personal toleration to
the opinions of others. New interpretation gives mayor conceptual
consistency to the RA models since it allows to study effects of
interrelation and mutual influence of the opinion (social variable)
and the personal toleration (psychological variable) in evolution
of opinion in artificial societies of different structures.

The main conceptual difference between BC and RA models

is the criterion of the opinion updating. In BC models (homoge-
neous or heterogeneous) an agent changes its opinion if and only
if the distance between the opinions of influenced (passive) agent
and influential (active) ones is less than a certain threshold, that
depends on closeness of opinions only. In RA models an influ-
enced (passive) agent changes its opinion if and only if the opinion
intervals of interacting agents overlap each other, that depends
on both the opinion closeness and the opinion uncertainty. The
rate of convergence to a stationary opinion state is regulated by a
convergence parameter µ ∈ (0, 0.5] along with other factors. The
µ parameter is the intensity of agents’ opinion interaction and it
shows how much other opinions influence the opinion of an agent.
In homogeneous and heterogeneous BC models the influence of
µ on convergence rate and opinion patterns in opinion dynamics
was studied in (Urbig and Lorenz 2007; Deffuant 2006; Lorenz
2008; Huang et al. 2018). It was found that its value, along with
other parameters of the model, influence both the convergence rate
and the final opinion groups distribution; even though, most of
the works on opinion dynamics in BC and RA models use the only
value µ = 0.5. Systematic study of this influence in RA models
was not done. Moreover, when the opinion uncertainty is now rein-
terpreted as the toleration to others’ opinions we have to admit
the difference in convergence rates of variables, expressing them
through the two convergence parameters µ1 and µ2 for the opin-
ion and toleration respectively. Because the evolution of persons’
psychology is used to be slower than that of their opinions, we
consider opinion and toleration dynamics through the variation of
µ2 under the condition µr =

µ2
µ1

≤ 1.
Another essential feature of models are communication regimes

in opinion dynamics that in real life can be quite different, ranging
from pair interactions to meetings of agents or including various
combinations between them (Urbig and Lorenz 2007; Yu et al. 2017).
Random selection of agents for the updating of opinion is usually
used in simulation. The latter turns out the system into a stochastic
one, and as a consequence one has to choose between the analysis
of particular scenarios or the averaging of results of many similar
experiments. In this respect, the influence of initial conditions
on opinion dynamics in a stochastic system has to be taken into
account (Yu et al. 2020).

This work is aimed mainly to the studying of toleration (psy-
chological variable) and opinion (sociological variable) dynamics
of agents in artificial societies of different structure (SW and SF
networks) in the frame of C/PA relative agreement model. We
pay special attention to particular scenarios at small variation in
initial conditions in a wide range of model parameters. The rest
of this document is organized as follows. In next section (C/PA
model) we set out the problem to be studied and briefly describe
the C/PA relative agreement opinion dynamics model. Later, in
section Desing of experiments describes the design of computational
experiments and parameters of the model. The results of extensive
simulations are presented and analyzed in Simulation results and
analysis. Finally, Conclusions and discussion are given.

C/PA MODEL

Agent based mathematical models of opinion dynamics in net-
worked societies are characterized by four basic elements (Kurmy-
shev et al. 2011):

• Networked society – represents a communication system be-
tween agents of a society by means of a graph where nodes
represent agents and communication channels between agents
are represented by links.
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• Opinion space – a discrete or continuous set of values that
represents the opinions of agents. The toleration and respective
space is used along with the opinion in RA models.

• Interaction dynamics – establish the manner and sequence of
agents’ interaction and conditions under which agents update
their state variables.

• Updating rule – basically, the model equations describing opin-
ion change as a result of agents’ interaction.

Opinion dynamics models are usually distinguished by their
specific updating rules and updating dynamics, while other ele-
ments are shared. In this article, we use the C/PA relative agree-
ment opinion dynamics agent based model (Kurmyshev et al. 2011)
that is an extension of the DW model (Deffuant et al. 2002). The
C/PA model contemplates societies of agents of two psycholog-
ical types, concord C-agents and partial antagonism agreement
PA-agents; any substrate network is admitted. Given a society
of N = NC + NPA agents, a subset of NC = p · N agents are C-
type agents and the rest, NPA = (1 − p) · N are PA-agents, where
p ∈ [0, 1] is the fraction (proportion) of C-agents. At each instant
of time t, the state of i-agent is described by the two continuous
variables, its opinion xi(t) ∈ [−1, 1] and toleration (ex-uncertainty)
ui(t) ∈ (0, 1], where i = 1, 2, . . . , N.

The interaction dynamics in C/PA-model is stochastic. Agents
can change their states as a result of pair interaction in a discrete
time. At each instant t, M edges of a network are selected at
random. Each edge connects a pair (i, j) of interacting agents and
one of them is selected at random to be receptive (influenced), say
j-agent, and the other, i-agent, to be influential. So, unidirectional
pair interaction of agents is chosen.

For a pair of selected agents (i, j), the social condition for their
interaction in RA models is defined by the overlap of the opinion
segments,

si(t) = [xi(t)− ui(t), xi(t) + ui(t)]. (1)

Toleration ui(t) defines the borderlines of acceptability of other
agents’ opinions. The overlap of segments is calculated as

hij(t) = min{xi(t) + ui(t), xj(t) + uj(t)}
− max{xi(t)− ui(t), xj(t)− uj(t)}.

(2)

When hij(t) ≤ 0, neither opinion nor toleration of the influ-
enced agent j from (i, j) pair are modified. If hij(t) > 0, then the
receptive j-agent of the interacting pair updates the opinion xj(t)
and toleration uj(t) according to its psychological C or PA-type,
following the equations:

xj(t + 1) = xj(t) + µ1 · raC,PA
ij (t) · [xi(t)− xj(t)], (3)

uj(t + 1) = uj(t) + µ2 · raC,PA
ij (t) · [ui(t)− uj(t)], (4)

where µ1, µ2 ∈ (0, 1/2] are convergence parameters (intensity of
interactions) for the opinion and toleration, respectively. Relative
agreement raC,PA

ij (t) of receptive agent with an active one depends
on the psychological type of the former and is calculated as

raC
ij (t) =

hij(t)
ui(t)

, (5)

raPA
ij (t) =

hij(t)
2ui(t)

[
hij(t)
ui(t)

− 1

]
, (6)

In the C/PA model (Kurmyshev et al. 2011), the interaction of pas-
sive C-agents is always attractive in the opinion space, its opinion
always gets closer to that of the active one as in the DW model (Def-
fuant et al. 2002). Nevertheless, dynamics of passive PA-agents can
be repulsive-attractive in accord to the relative agreement raPA

ij (t),
depending on the overlap of opinion intervals hij(t) (see Eq. 2).

Usually, most of the BC and RA opinion dynamics models han-
dle the convergence parameter equal to µ = 0.5. The exceptions
are (Lorenz 2010; Huang et al. 2018). In (Lorenz 2010) the conver-
gence of opinion in function of different values of the convergence
parameter was studied in the BC Deffuant model. In (Huang
et al. 2018) the heterogeneous convergence parameter, depending
on the distance between the opinions of interacting agents, was
proposed for the BC Deffuant model. The use of heterogeneous
parameters has converted the BC model into a kind of RA one.
In general, the RA models use the same convergence parameter
equal to µ = µ1 = µ2 = 0.5 for both variables, xi and ui (Def-
fuant et al. 2002; Meadows and Cliff 2012; Kurmyshev et al. 2011).
But xi describes the social manifestation and ui corresponds to
the psychological profile of agent; so they can have different time
scales in evolution. In addition, agents’ social manifestation (opin-
ion) and psychological profile (toleration) influence each other
(Abrica-Jacinto et al. 2017). In our work, we study the opinion
and toleration dynamics and their mutual influence varying the
ratio of convergence parameters µr =

µ2
µ1

in the frame of C/PA
relative agreement model on the SW and SF networks. With the
features being integrated into the model, complex system dynam-
ics emerge that has resemblance to the real social processes, at least
qualitatively.

DESING OF EXPERIMENTS

We study opinion and toleration dynamics in artificial societies
of two types, small world (SW) and scale free (SF), consisting
of N = 103 agents each. It is an intermediate size society that
can get the insight into particularities of evolution of both small
and large societies. SW-network (undirected graph) is generated
according to the Watts-Strogatz algorithm with the probability of
reconnection β = 0.25 and average degree < k >= 40 (average
number of neighbors of each node); it has MSW = 20 × 103 links
(Watts and Strogatz 1998). SW-network can be considered as a
prototype of democratic society without noticeable leadership. SF-
network is constructed according to the Barabási-Albert model
(Barabási and Albert 1999), with following parameters: N0 = 2,
with m = m0 = 1; that has MSF = 999 links. SF-network is a
structured network with an intention of hubs to leadership.

Mixed societies composed of C- and PA-agents with the C-
agents’ fractions p = 0.3 and 0.7 are studied. To our opinion, the
two compositions are quite representative to see the difference in
dynamics of opinion and toleration in societies composed of agents
of different psychological types. We understand the term society as
a network (graph), with a particular psychological type (C or PA)
assignment to each agent. For a given value of the p parameter, two
societies represented by the same graph are considered different if
they have different psychological type assigning to the agents.

In C/PA model, the initial mean value of agents’ toleration is
an important parameter, to which was given the following values
U = 0.3, 0.5, 0.7. Societies with U = 0.3 can be considered as
composed of agents with relatively low toleration (enclosed agent),
while U = 0.7 corresponds to high tolerant agents (open agent).

In order to evaluate the effect of convergence parameters on the
opinion and toleration dynamics and their mutual influence, we set
the convergence parameter of opinion at the value µ1 = 1/2 and
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varied the convergence of toleration, µ2 = 1/2, 1/6, 1/10, 1/20,
so that the ratio of convergence parameters was µr =

µ2
µ1

=

1, 1/3, 1/5, 1/10. Finally, each of the experiments are characterized
by the quaternion (Network, p, U, µr) in parametric space.

The updating dynamics of the model is a stochastic one, and
we were faced with the decision of studying particular scenarios or
the averaged results of many individual experiments. Pilot simula-
tions showed that the averaging of experimental results (see also
(Kurmyshev et al. 2011; Abrica-Jacinto et al. 2017)) capture opinion
evolution tendencies, while interesting and important character-
istics of each particular scenario can be lost. On the other hand,
the analysis of particular scenarios shows rather general trends of
opinion evolution in addition to salient particularities. For that
reason, we decided to explore individual scenarios systematically
in a wide range of parameters offered by the model. For a given
society, a particular scenario of opinion and toleration dynamics
is defined by the following elements: given initial opinion and
toleration conditions, and the particular realization of updating
dynamics (a sequence of nodes selected for the opinion and tol-
eration updating). Particular experiment begins with the setting of
initial conditions for the variables:

• Uniform distribution on the interval [−1, 1] is used to assign
the initial opinion to agents.

• Uniform distribution on the interval [U − 0.15, U + 0.15] is
used to assign the initial toleration to agents.

Particular realizations of the uniform distribution are not identi-
cal, being of the same type but with variations due to the generator
of random numbers. To see how much the result of experiment
is sensitive to initial conditions (IC) in the frame of stochastic up-
dating dynamics, we carry out each experiment at four particular
realizations (A, B, C, D) of IC.

After setting the initial conditions, the simulation is conducted
according to the following algorithm:

• M edges are chosen at random.
• On each selected edge (i, j), the receptive agent is chosen at

random.
• The overlap hij of opinion intervals is calculated, Eq. 2.
• If hij > 0, the opinion and toleration of the receptive agent

are updated according to their psychological type, Eqs. 3 and
4. If xi(t) ≤ −1 or xi(t) ≥ 1, then we take xi(t) to be −1 or 1,
respectively. Similarly, the toleration is retained in the interval
ui(t) ≤ [0.05, 1].

• In regard to hij ≤ 0, neither opinion nor toleration of the
receptive agent are modified.

Agents with ui(t) = 0, if they were, are unexpressive. They are
not willing to change their opinion neither toleration despite being
connected in the network, because they have zero opinion interval
overlap with other agents. These agents can be considered as apa-
thetic or socially closed because they do not admit interaction with
other agents. That was the reason to maintain at least a nominal
interaction, so that a small margin (0.05) was left in toleration for
keeping opinion exchange.

Unlike the SW, the SF networks have hubs as “distinguished”
members. In order to maintain the degree, psychological type and
position of hubs in the network, and, finally, to have a detailed
control over the influence of parameters µr and U on the dynamics
of system, we design experiments in SF societies in the following
manner. The SF network was generated once for all experiments.
The three largest degree nodes (Hubs) had 35, 25 and 23 links

and we assigned them PA, C, C and psychological type, respec-
tively. The uniform random distribution was used to assign the
psychological type to the rest of the nodes of network at each of
the two values p = 0.3 and p = 0.7. The structure of the society is
preserved for a part of experiments; afterwards, the psychological
type of Hubs is inverted, C to PA and PA to C, maintaining the
psychological type of the rest of agents. So, we have conducted
experiments with two societies, differed each other in opposed
psychological type of Hubs.

The uniform initial conditions were generated four times
(A, B, C, D) for both SW and SF networks. In order to see the
effect of µr and IC on the dynamics, for each pair of parameters
(p, U) we run 16 = 4 × 4 experiments simultaneously under the
same (stochastic) updating dynamics for all combinations of initial
conditions (×4) and values of parameter µr (×4). In experiments
we used the following values for p = 0, 3, 0.7 and U = 0.3, 0.5, 0.7.

The advantage of this scheme is that the influence of parameters
can be analyzed separately, under the same stochastic updating
dynamics. To see the influence of µr, one has to analyze the results
of experiments along the lines at fixed IC, but the influence of
variation in IC is analyzed along the columns. Through the pre-
liminary experimentation we noticed that the evolution time in SF
networks is greater than that for the SW. So, for the SF experiments
we extended the evolution time from 2000 to 6000 steps.

In order to compare the convergence of opinion and toleration
in networks of different type, SW and SF, one has to choose equal
number of edges to ensure near the same number of agents up-
date their opinion and tolerance. The empiric rule in most of the
publications is to choose at random in each time step the number
of edges equal to the number of agents in the network. So, near
a half of agents has an opportunity to update their opinion and
tolerance.

We use a SF network of 1000 agents that has 999 edges in accord
to the Barabasi-Albert algorithm (Barabási and Albert 1999); the
number of edges in a SF network is much smaller than that of
SW with equal numbers of agents. In opinion dynamics, random
selection (with regression) of network edges for a unit time step can
result in a multiple selection of a link between one agent and the
others. So, one agent can have a number of interactions with others
during unit time step; in particular, it is quite possible between a
hub and common agents, and a hub can participate as a passive or
active agent several times for a time step. Nevertheless, in accord
to the Eqs. 3 and 4, only the ultimate interaction has an effect
on changing the opinion and tolerance; one can see all previous
interactions of the stage as an exploration of the issue (opinion and
toleration situation).

SIMULATION RESULTS AND ANALYSIS

The number of simulated particular scenarios is 192: 2 (networks,
SW and SF) ×2 (composition of society, p = 0.3 and 0.7) ×3 (U’s
values, U = 0.3, 0.5, 0.7) ×4 (µr’s values) ×4 (initial conditions,
A, B, C, D) = 2 · 2 · 3 · 4 · 4 = 192. In order to exclude the influence
of variations in generation of networks on results of simulation, we
use the same SW or SF graph in all experiments with SW and SF
societies; each was generated only once. In this work, no specific
quantitative criteria are used to analyze multiple aspects of the
opinion and uncertainty dynamics; analysis and conclusions are
qualitative more than quantitative. Each experiment was carrying
out up to 2000 generations for SW and 6000 generations for SF
networks. These numbers were chosen on base of preliminary sim-
ulations, because the tracking of evolution trajectories has shown
convergence to a steady state.
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Along with the data files, each experiment provides two plots
of opinion and toleration trajectories of each and all agents, two
color palette histograms of opinion and toleration evolution and
two histograms of final distributions of opinion and toleration –
those are for the visual qualitative analysis. We see that the plots
of agents’ opinion and toleration trajectories can be often confus-
ing and difficult for individual tracking because of their multiple
overlapping. In that cases the evolutionary histograms are of great
benefit. Since the representation of simulation results in a graphic
manner is extensive, we resume them by some instructive exam-
ples and qualitative description. Histograms of opinion are given
in the interval [−1, 1] and for the toleration in the interval [0.05, 1],
both with 21 bins. In order to facilitate comparison of simula-
tion results, we comment them by similar phrases in a repetitive
manner.

Experiments in SW-networks

Each experiment is characterized by the quaternion (SW, p, U, µr)
and by the same set of four realizations of initial conditions
(A, B, C, D); we chose at random M = 1000 links of total num-
ber MSW = 20 × 103 links in each experiment. We think that the
selection of links in each experiment does not influence much on
the updating dynamics, since each node of the network has in
average the same degree.

SW society at p = 0.3. The cross-analysis of plots and histograms
of the opinion and toleration evolution in SW society with C-
agents’ fraction equal to p = 0.3, for the set of parameters
µr = {1, 1/3, 1/5, 1/10} (µr = µ2/µ1) reveals the following fea-
tures in opinion and toleration dynamics (see Figure 1).

At U = 0.3, for the decreasing ratio of convergence coefficients
µr’s: 1. We observe the opinion fragmentation; the number of
opinion groups is decreasing from 7 to 4 with the decrease of
µr. 2. No regular change in the rate of toleration convergence
is detected with the decrease of the convergence parameter µr;
toleration converges to the values smaller than U and agents show
more toleration (ui ≈ U) for the societies with less convergence
parameter µr, meanwhile most of the agents become low tolerant
(ui ≈ 0.06) at µr = 1. Sometimes toleration tends to split into
few close groups. 3. The four generations of initial conditions,
even being each of the same type uniform distribution, are not
identical, and the effects of relatively small variations in IC and
stochastic updating dynamics on the final opinion and toleration
distributions were observed through the variation in size and
position of principal peaks.

At U = 0.5, for the decreasing ratio µr (Figure 2 as an exam-
ple): 1. We observe polarization and, sometimes, fragmentation of
opinion into three groups. The slowing down of toleration conver-
gence is observed as µr decreases and, as consequence, the opinion
evolution is elongated also (Figure 2.b). 2. Toleration shows a
slowing down of convergence with the decrease of µr; toleration
converges to values smaller than U, so agents become less toler-
ant in average; the final values of toleration frequently split into
two groups, one of them is a group of low toleration agents. 3.
Between groups dynamics is observed in evolution of opinion and
tolerance, that is seen in plots of trajectories but almost not seen in
histograms; trajectories of agents migrating from one to another
opinion group are observed – those are bridges connecting groups
of different opinions. 4. The effects of IC on the final opinion and
toleration distributions are observed as the variation in size and
position of principal peaks, those are more noticeable than that in
case of U = 0.3. That is an indication of instability in toleration

a) b) c)

a) b) c)

Figure 1 Opinion and toleration evolution in SW network at (p, U) =
(0.3, 0.3) IC−A. Columns: a) trajectories and b) color palette his-
tograms of agents’ opinion and toleration evolution, c) final distribu-
tion of opinion and toleration. First double line for µr = 1, second
double line for µr = 1/10.

and opinion dynamics, U = 0.5 looks to be near the bifurcation
point.

a) b) c)

a) b) c)

Figure 2 Opinion and toleration evolution in SW network at (p, U) =
(0.3, 0.5), IC−A. Other conditions are the same as in Figure 1.

At U = 0.7, for convergence coefficients µr (see Figure 3) we
observe: 1. Opinion polarization into two asymmetric groups with
final positions generally fluctuating in the opinion space at small
variations of IC (sometimes, fragmentation into three groups at
µr = 1); decreasing of µr (slowing down of toleration convergence)
causes increasing of opinion convergence. 2. Toleration shows
the slowing down of convergence with the decrease of µr, con-
verging to values smaller but close to U. At µr = 1 toleration
sometimes converges to two values, ui ≈ 0.65 and ui ≈ 0.05, the
latter corresponds to low toleration agents, enclosed or unwilling
to collaborate. 3. Between groups dynamics is observed in evolu-
tion of opinion and tolerance, that is seen in plots of trajectories
but almost not seen in histograms; trajectories of agents migrat-
ing from one to another opinion group are observed – those are
bridges connecting groups of different opinions.

It is important to note that in SW societies at p = 0.3 (societies
with a predominant number of PA agents) an opinion consensus
was not observed at any value of U and µr.
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Figure 3 Opinion and toleration evolution in SW network at (p, U) =
(0.3, 0.7), IC−A. Other conditions are the same as in Figure 1.

SW society at p = 0.7. When the psychological composition of
the society is changed from p = 0.3 to p = 0.7 (C-agents are
predominant), the analysis of plots and histograms of the opinion
and toleration evolution, for the set of parameters U = 0.3, 0.5, 0.7
and µr = {1, 1/3, 1/5, 1/10}, shows the following characteristics
of the opinion and toleration dynamics.

At U = 0.3, for µr’s (Figure 4): 1. In the range of µr =
1/3, 1/5, 1/10 we observe the convergence of opinion into one
dominating group (quasi consensus). Centrist dominating group
drifts in opinion space to one of the extremes (see, for example
Figure 4.b); the effect is most noticeable at µr = 1/5 while it is
less visible at µr = 1/10 and absent at µr = 1, 1/3. Final value
of opinion depends on the parameter µr and IC, even though no
regular pattern of this dependence was found. In addition, several
minority groups are formed. In case of µr = 1, polarization or
fragmentation into three dominant groups is observed; several
minority groups are also observed. At all values of µr small groups
of opposed extremists emerge. 2. Decreasing in the rate of tolera-
tion convergence is observed with the decrease of the convergence
parameter µ2, that is not trivial. Predominant compact group of
agents with toleration less than U is formed and, moreover, agents
become less tolerant when the convergence parameter µr increases.
In case of µr = 1, toleration converges to small values, in general,
less than 0.1, so that the society evolves into a state with low tol-
eration agents. 3. The effects of relatively small variations in IC
and stochastic updating dynamics on the final opinion and tolera-
tion distributions were observed through the variation in size and
position of principal peaks.

At U = 0.5, for µr’s (Figure 5 as an example): 1. We observe the
convergence of opinion of agents into one dominant group that
flips its position due to small variations in uniform IC. The final
value of the dominant opinion group seems to depend on the IC
mainly and on the parameter µr partially, even though no regular
pattern of this dependence was found. In addition, one or two
small extremist groups are formed. 2. Composition of SW society
of agents of different psychological type has significant influence
on the formation of opinion. At p = 0.3 (minority of C-agents),
the society tends to separate into two or three opinion and toler-
ance groups. Nevertheless, at p = 0.7 (minority of PA-agents),
the trend to formation of a single dominant group is observed.
In some scenarios, at both p = 0.3 and p = 0.7, the formation
of a compact single one or various groups are observed soon af-
ter the beginning of interaction between agents, then the group
evolves (drifts) as a whole. 3. An interesting and important effect

a) b) c)

a) b) c)

Figure 4 Opinion and toleration evolution in SW network at (p, U) =
(0.7, 0.3), IC−A. Other conditions are the same as in Figure 1.

of convergence parameters in opinion evolution is observed at
(p, U) = (0.7, 0.5). When µr = 1, 1/10 the dominant both opinion
and toleration groups after being formed remain stable in opinion
and toleration spaces (Figure 5.b), but at the intermediate values
of µr = 1/3, 1/5 a notable drift is observed, especially at µr = 1/5.
With the decrease of the convergence parameter µ2, the opinion
converges faster than the toleration due to µ1 > µ2. 4. Toleration of
agents converges to a value smaller than U (predominant compact
group of agents with close tolerances less than U is formed) and,
in addition, agents show more toleration (ui ≈ U) in the societies
with a less convergence parameter µ2. In some cases, toleration
converges to rather small values (in general, less than 0.2), so that
the majority of the society advances into the group of agents with
low tolerance. Drift of the dominant toleration group toward to
U ≈ 0.3 is also observed at µr = 1/5. 5. Effects of relatively
small variations in IC and stochastic updating dynamics on the
final opinion and toleration distributions are observed through the
variation in position of dominant groups.

a) b) c)

a) b) c)

Figure 5 Opinion and toleration evolution in SW network at (p, U) =
(0.7, 0.5), IC−A. Other conditions are the same as in Figure 1.

At U = 0.7, for µr’s (see Figure 6): 1. Similar to the case U = 0.5,
we clearly observe two stages both in the opinion and toleration
dynamics: first a dominant compact group of opinion and tolera-
tion is formed and, then this group evolves in opinion or toleration
space as a whole; drift is obvious, especially at µr = 1/5, 1/10
(Figure 6.b). 2. In the range of µr = 1/3, 1/5, 1/10, the toleration
convergence time grows up with the decreasing of convergence
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parameter µ2; toleration of agents converges to the values smaller
than U and, in addition, toleration normally converges to rather
small values ui ≈ 0.1, so that the society evolves into a state with
low toleration. 3. In the range of µr = 1, 1/3, 1/5, 1/10 we ob-
serve the convergence of opinion into a single consensus group.
Final value of the opinion depends on the parameter µr and IC,
even though no regular pattern of this dependence was found. At
µr = 1 the position of dominant group tends to the center (xi ≈ 0),
nevertheless, for µr = 1/3, 1/5, 1/10 the group takes one of the
extremist positions, xi ≈ −1 or xi ≈ +1, depending on IC and
updating dynamics. 4. Effects of relatively small variations in IC
and stochastic updating dynamics on the final opinion and tolera-
tion distributions is observed through the variation in position of
dominant groups.

a) b) c)

a) b) c)

Figure 6 Opinion and toleration evolution in SW network at (p, U) =
(0.7, 0.7), IC−A. Other conditions are the same as in Figure 1.

It is instructive to revise the histograms of final distributions
of opinion and toleration for the several IC and values of U =
0.3, 0.5, 0.7, at p = 0.3, 0.7 (Figures 7 and 8). Polarization of opinion
is predominant at p = 0.3 and U = 0.5, 0.7 (Figure 7), while at p =
0.7 and U = 0.5, 0.7 an asymmetric quasi-consensus accompanied
by small extremist groups is observed (Figure 8). Small variations
in IC, A and B, cause noticeable change in position of opinion
groups, at U = 0.5, 0.7 especially (see Figure 8, second and third
columns).

Experiments on SF-networks
Trajectories and histograms of agents’ opinion and toleration evo-
lution and the histograms of final distributions of opinion and
toleration were obtained in experiments. To observe the evolution
of the hubs’ opinion and toleration, the trajectories of the three
hubs in figures of temporal evolution are presented in black, cyan
and magenta, respectively. In histograms of final distributions of
opinion and tolerance, the bins containing the hubs are shown in
yellow.

SF society and p = 0.3. When the psychological composition of
the society is p = 0.3, the cross-analysis of plots and histograms
of the opinion and toleration evolution, for the set of parameters
U = 0.3, 0.5, 0, .7 and µr = 1, 1/3, 1/5, 1/10, shows the following
tendencies and particularities of opinion and toleration dynamics.

For the decreasing ratio of convergence coefficients µr =
1, 1/3, 1/5, 1/10 and U = 0.3: 1. The great majority of (if not all)
individual trajectories in opinion and toleration space are straight
lines of steady state after some evolution time, that is rather differ-
ent of SW networks where only a stochastic steady states are ob-

a) b) c)

a) b) c)

a) b) c)

a) b) c)

Figure 7 Final distributions of opinion and toleration on SW network
at p = 0.3. Columns: a) U = 0.3, b) U = 0.5 and c) U = 0.7. First
double line for IC−A, µr = 1; second double line for IC−B, µr = 1;
third double line for IC−A, µr = 1/10 and fourth double line for
IC−B, µr = 1/10. Brown histograms – opinion, green histograms –
toleration.

served (see Figures 9 and 10). This interesting effect is the result of
combination of the three causes: the structure of SF network, high
proportion of PA-agents and relatively low toleration of agents.
Agents with close opinion are located far each other (they are not
nearest neighbors) or close to agents with rather distinct opinion
in the SF network, and for that reason can’t interact each other
(their opinion segments have no overlap in the opinion space). 2.
No substantial changes in the opinion compared to its initial distri-
bution are observed, neither fragmentation no polarization of the
opinion (Figures 9.c and 10.c). The final distributions of opinion
at µr = 1, 1/3, 1/5, 1/10 differs each other not much but in the
position of hubs mainly. The opinion convergence time increases
with the decreasing of µr. 3. The trajectory of principal PA-hub
opinion is much stable and regular than that of the two smaller
C-hubs, each hub behaves similar to Brownian particle (irregular
interaction with neighboring agents causes chaotic motion in opin-
ion space). We observe an irregular change of the final position of
hubs in opinion space with the change of µr. 4. No regular change
in the rate of toleration convergence is detected with the decrease
of the convergence parameter µr; toleration converges to the val-
ues smaller than U, forming a kind of bell distribution.5. The four
generations of IC are not identical (the hubs are included), even
being each of the same type uniform distribution, and the effects
of variations in IC on the final opinion and toleration distributions
were observed, in particular, through the variation of hubs position
and size of bins that include hubs (Figures 9 and 10).
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a) b) c)

a) b) c)

Figure 8 Final distributions of opinion and toleration on SW network
at p = 0.7. Other conditions are the same as in Figure 7.

a) b) c)

a) b) c)

a) b) c)

Figure 9 Opinion and toleration evolution on SF network at (p, U) =
(0.3, 0.3), IC−A. First double line – trajectories of agents’ opinion
and toleration evolution, second double line – trajectories of hubs’
opinion and toleration evolution, third double line – final distributions
of opinion (brown histograms) and toleration (green histograms),
yellow bins include hubs. Columns: a) µr = 1, b) µr = 1/5 and c)
µr = 1/10.

a) b) c)

a) b) c)

a) b) c)

Figure 10 The same conditions as in Figure 9 but for IC−B.

For U = 0.5 and the decreasing ratio of convergence coefficients,
µr’s: 1. The time to reach an opinion stationary state increases
when µr decreases and that is much greater than the time for
SW networks. At µr = 1 neither happens after that time, all
trajectories of opinion evolution are parallel lines. Nevertheless,
the evolution to stationary state is much longer and increasing for
decreasing µr = 1/3, 1/5, 1/10 (see Figure 11, first double line).
2. At µr = 1, 1/3, 1/5, final distributions of opinion are similar
each other and show a tendency to fragmentation in three opinion
groups, but at µr = 1/10 we observe a tendency to polarization
(Figure 11, third double line). 3. The trajectory of principal PA-hub
opinion is much stable and regular than that of the two smaller
C-hubs, hubs behave similar to Brownian particles. We detect an
irregular change of the final position of hubs in opinion space with
the change of µr (Figure 11, second double line). 4. No regular
change in the rate of toleration convergence is detected with the
decrease of the convergence parameter µ2. Toleration converges
to the values smaller than U, forming two groups: one of them is
a kind of bell distribution and the other consists of low tolerant
agents. 5. The four generations of IC are not identical (the hubs are
included), even being each of the same type uniform distribution,
and the effects of their variations on the final opinion and toleration
distributions were observed, in particular, through the variation of
hubs’ position and the size of bins that include hubs.

For U = 0.7 and decreasing ratio of convergence coefficients,
µr’s: 1. The time to reach an opinion stationary state (the hubs
included) increases when µr decreases and that is much greater
than the time for SW networks. Neither happens after that time, all
trajectories of opinion evolution are parallel lines. The evolution
to stationary state takes more time and is increasing for decreasing
µr = 1, 1/3, 1/5, 1/10 (see Figure 12). 2. Final distributions of
opinion, being dependent of initial conditions noticeably, show a
tendency to fragmentation or polarization at µr = 1, 1/3, 1/5, 1/10
(Figure 12, third double line). 3. The trajectory of principal PA-hub
opinion is more stable and regular than that of the two smaller
C-hubs, hubs behave similar to Brownian particles. We detect an
irregular change of the final position of hubs in opinion space with
the change of µ2, that depends of initials conditions also (igure
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Figure 11 Opinion and toleration evolution in SF network at
(p, U) = (0.3, 0.5), IC−A. Other conditions are the same as in
Figure 9.

12, second double line). A hub is frequently located in one of the
important bins. Nevertheless, a hub does not represent an attractor
of opinions because we observe final states when it belongs to a
minority group. 4. Convergence of toleration is decreasing with
decrease of the convergence parameter µ2. Toleration converges to
the values smaller than U, forming two groups: one of them is a
kind of bell distribution and the other consists of a compact group
of low tolerant agents, except for the case of low rate evolution
of tolerance, µr = 1/10 .5. The four generations of IC are not
identical (the hubs are included), even being each of the same type
uniform distribution, and the effects of initial conditions’ variation
on the final opinion and toleration distributions were observed, in
particular, through the variation of hubs position and the size of
bins that include hubs.

Finally, in SF societies at p = 0.3 no compact centrist opinion
groups (a kind of local consensus) were detected and, in general,
final opinion distributions look wide-ranging at almost all U and
µr.

SF society and p = 0.7. When the psychological composition of
the society is p = 0.7 (C-agents are predominant), the cross-
analysis of plots and histograms of the opinion and toleration
evolution, for the set of parameters U = 0.3, 0.5, 0.7 and µr =
1, 1/3, 1/5, 1/10, shows the following tendencies and peculiarities
of opinion and toleration dynamics.

For U = 0.3 and the ratio of convergence coefficients, µr’s: 1.
The time to reach an opinion stationary state increases when de-
creases and that is greater than the time for SW networks. Nothing
happens after that time, all trajectories of opinion and toleration
are parallel lines (see Figure 13). The reason is that agents with
close opinion have no common links or they have no overlap of
opinion segments due to the distant opinions, so they are not pairs
of interacting agents. 2. The trajectory of principal PA-hub opinion
is much stable and regular than that of the two smaller C-hubs,
all hubs behave similar to Brownian particles. We detect an irreg-
ular change of the final position of hubs in opinion space with
the change of µ2 (Figure 13, second double line). 3. We observe a

a) b) c)

a) b) c)

a) b) c)

Figure 12 Opinion and toleration evolution in SF network at
(p, U) = (0.3, 0.7), IC−A. Other conditions are the same as in
Figure 9.

tendency to fragmentation in the final opinion distribution, with
noticeable opinion groups associated to the hubs. The final distri-
butions of opinion for different µr = 1, 1/3, 1/5, 1/10 differ each
other not much, being different in position and size of hubs mainly
(Figure 14). 4. No regular change in the rate of toleration conver-
gence is detected with the decrease of the convergence parameter
µ2; toleration converges to the values smaller than U, with a ten-
dency to form a kind of bell distribution.5. The four generations
(A, B, C, D) of IC are not identical (the hubs are included), even
being each of the same type uniform distribution, and the effects
of variations in IC on the final opinion and toleration distribu-
tions were observed, in particular, through the variation in the
position of hubs and size of bins that include hubs. In addition,
groups of centrists are observed in contrast to that for the case of
(p, U) = (0.3, 0.3) (Figure 14).

a) b) c)

a) b) c)

Figure 13 Opinion and toleration evolution in SF network at
(p, U) = (0.7, 0.3), IC−A. First double line – trajectories of agents’
opinion and toleration evolution, second double line – trajectories
of hubs’ opinion and toleration evolution. Columns: a) µr = 1, b)
µr = 1/5 and c) µr = 1/10.
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Figure 14 Final distributions of opinion and toleration (yellow bins
include hubs) in network at (p, U) = (0.7, 0.3): first double line is
for the initial conditions A, second double line for IC−B, third double
line for IC−C and the fourth double line is for IC−D. Columns: a)
µr = 1, b) µr = 1/5 and c) µr = 1/10.

For the decreasing ratio of convergence coefficients, µr =
1, 1/3, 1/5, 1/10 and U = 0.5: 1. The time to reach a quasi-
stationary opinion state increases when µr decreases and that is
much greater than the time for SW networks; an increasing num-
ber of bridges between opinion groups is also observed (Figure
15). 2. The trajectory of principal PA-hub opinion is much stable
and regular than that of the two smaller C-hubs, all hubs behave
similar to Brownian particles. We detect an irregular change of the
final position of hubs in opinion space with change of µr (Figures
15 and 16, second double line). 3. A decrease in the rate of tolera-
tion convergence is detected with the decrease of the convergence
parameter µ2; toleration converges to the values smaller than U,
with a tendency of forming a group of low tolerant agents, while
the rest of agents are aggregated in a group with the toleration
near U; in the case of µr = 1/10 the toleration converges to a com-
pact distribution centered almost at U (Figures 15, 16 and 17). 4.
Significant difference in final distributions of opinion is observed
as a result of change of µ2 and relatively small variations in initial
conditions (A, B, C, D) (Figure 17). In general, hubs are located in
majority opinion groups. The states of polarization and consensus
at different values of opinion and, sometimes, a tendency to frag-
mentation are observed. The latter indicates a kind of instability of
the opinion in the C-PA society at (p, U) = (0.7, 0.5).

For the decreasing ratio of convergence coefficients, µr =
1, 1/3, 1/5, 1/10 and U = 0.7: 1. The time to reach a quasi-
stationary opinion state increases when µr decreases and that is
much greater than the time for SW networks; a number of bridges
between opinion groups is large and increasing, so that the opinion
variations are continuing for a long time (Figures 18 and 19). 2.

a) b) c)

a) b) c)

a) b) c)

Figure 15 Opinion and toleration evolution in SF network at
(p, U) = (0.7, 0.5), IC−A. First double line – trajectories of agents’
opinion and toleration evolution, second double line – trajectories
of hubs’ opinion and toleration evolution, third double line – color
palette histogram of opinion and toleration evolution. Columns: a)
µr = 1, b) µr = 1/5 and c) µr = 1/10.

a) b) c)

a) b) c)

a) b) c)

Figure 16 The same conditions as in Figure 15 but for IC−B.
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a) b) c)
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Figure 17 Final distributions of opinion and toleration (yellow bins
include hubs) in network at (p, U) = (0.7, 0.5): other conditions are
the same as in Figure 14.

The trajectory of principal PA-hub opinion is much stable and reg-
ular than that of the two smaller C-hubs, all hubs behave similar
to Brownian particles. We detect an irregular change of the final
position of hubs in opinion space with change of µr (Figures 18
and 19, second double line; Figure 20). 3. A decrease in the rate
of toleration convergence is detected with the decrease of the con-
vergence parameter µ2; toleration converges to the values smaller
than U, with a tendency of forming a group of low tolerant agents
at µr = 1, 1/3, 1/5 especially, while the rest of agents are aggre-
gated in a group with the toleration near U; large variations in final
distributions of tolerance, associated to small variations in IC, are
observed (Figures 18, 19 and 20). 4. Significant difference in final
distributions of opinion is observed as a result of change of µr and
of small variations in IC (Figure 20-(A, B, C, D)). In general, hubs
are located in opinion majority groups. The states of polarization
and consensus at different values of opinion and, sometimes a ten-
dency to fragmentation are observed. The latter indicates a kind of
instability of the opinion in the C-PA society at (p, U) = (0.7, 0.7).
Groups of centrists are not observed.

a) b) c)

a) b) c)

a) b) c)

Figure 18 Opinion and toleration evolution in SF network at
(p, U) = (0.7, 0.7). Other conditions are the same as in Figure
15.

a) b) c)

a) b) c)

a) b) c)

Figure 19 The same conditions as in Figure 18 but for IC−B.

Turning over the psychological type of hubs in society
Hubs of a social network, having a large number of links to other
agents, interact more frequently with other agents than that do
ordinary agents. We have turned over the psychological type of
three hubs from PA, C and C to C, PA and PA, in order to see if it
is important in opinion dynamics and run a series of experiments
identical to that of the previous section. Comparative cross analysis
of trajectories and final distributions of opinion and toleration of
previous section show that evolution of opinion and toleration of
hubs are notably affected by their psychological type and the ratio
of timescales µr (Figure 21 as an example).
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a) b) c)

Figure 20 Final distributions of opinion and toleration (yellow bins
include hubs) in network at (p, U) = (0.7, 0.7): other conditions are
the same as in Figures 14 and 17.

CONCLUSION AND DISCUSSION

In the frame of C/PA relative agreement model of opinion dy-
namics we have analyzed mutual influence of social environment
(SW and SF societies) and psychological aspects (psychological
C/PA type and psychological profile) of agents on the opinion and
toleration evolution in SW and SF artificial societies.

Mutual influence of social and psychological aspects of agents
in mathematical models of opinion dynamics was treated system-
atically for the first time. Agents of C and PA psychological type
were organized in SW and SF artificial societies. Psychological
profile of each agent was represented by the toleration variable
ui(t), that was interpreted vague as the opinion uncertainty in all
previous works; the initial average toleration of society was reg-
ulated by the parameter U. C or PA psychological type responds
for the agents’ reaction on the opinion of others during agents’
interaction, while the toleration shows the range of acceptability of
others’ opinions (wideness of agent’s opinion interval). To study
the mutual influence of opinion xi and toleration ui we took into
account different time scale of opinion and toleration evolution
by varying the relative parameter µr = µ2/µ1, keeping in mind
that opinion is the social characteristic and toleration expresses the
psychological profile of agent.

1. Results of simulation demonstrate notable mutual influence
of opinion and toleration on the dynamics of both, in par-
ticular, showing a split of toleration in two or three groups
that was not revealed in other models. In general, the final
toleration of agents shows a tendency to values lower than
the initial U. In SW and SF societies the effects appear in

a) b) c)

a) b) c)

a) b) c)

a) b) c)

Figure 21 Opinion and toleration evolution in SF network for IC−B
at (p, U) = (0.3, 0.5) and (p, U) = (0.7, 0.5). Psychological type
of hubs is C, PA and PA, that is inverted compared to Figures 11
and 15, respectively. Double lines one and three show trajectories
of hubs’ opinion and toleration evolution, lines two and four show
final distributions of opinion and toleration. Columns: a) µr = 1, b)
µr = 1/3 and c) µr = 1/10.

different manner, being influenced by C/PA composition also.
In other words, we observe how social environment influ-
ences psychology of agents, and vice versa. The peculiarity of
opinion and toleration dynamics on SF networks comes from
its tree-type topology, with communication channels that can
be obstructed by the lack of relative agreement between the
adjacent neighbors of network; the effect is observed through
the straight line parallel individual trajectories in opinion and
toleration evolution.

2. Consensus, being an opinion state desirable in some real life
situations, unfortunately is not a typical one in a real soci-
ety. In this concern, we found the consensus in mixed C/PA
societies is the state rare to reach, in contrast to the results re-
ported by other models (Yu et al. 2017). Opinion polarization
and fragmentation accompanied by the formation of extrem-
ist groups resulted to be more recurrent states. In addition,
the model shows the formation of groups of agents with a
low toleration (agents closed for the interaction with others).
In recent work (Huang et al. 2018) focused on the study of
probability of opinion consensus emergence in SW societies,
authors reported the consensus as a dominant state in a wide
range of parameters of a modified DW model. It should be
noted that modifications done to the original bounded con-
fidence DW model have transformed it to a kind of relative
agreement one, but without explicit use of toleration or uncer-
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tainty as an agent’s state variable. To some extent that model
is similar to our one when the latter being applied to pure
concord societies. When C-agents are predominant in C/PA
societies, in our model the consensus is also observed more
frequently.

3. The C/PA model used in this work is a dynamical system
with stochastic elements; those are initial conditions for the
variables and a stochastic updating dynamics through the
random selection of interacting pairs of agents, even when
the distribution of C and PA agents is fixed on a given net-
work. When many simulations are done and the results of
all scenarios are averaged, the latter will represent statistical
tendencies in opinion and toleration evolution. The averaging
of final opinion and toleration distributions, indicates general
tendencies of opinion dynamics and can help to detect the bi-
furcation points of distributions (fragmentation, polarization
or consensus) versus the parameter U. However, the averaged
results can lead to confusing interpretation and explanation of
opinion dynamics with respect to an individual scenario. For
example, when single simulations show a dominant opinion
bin in two alternating locations, then the averaging of these
results will give exactly two groups of opinion and that is
interpreted as splitting or polarization; that is not true for a
single scenario, see the flips of position of predominant opin-
ion groups (SW, 0.7, 0.5, 1/10). This indicates the importance
of particular scenarios analysis, one by one.

4. Dynamics of opinion and toleration in the C/PA societies on
the SF networks is more complex and diverse than that on
the SW networks. Both the process and final results of opin-
ion and toleration evolution in C/PA model show significant
difference for the SW and SF societies. That is due to the struc-
tural differences in organization of these societies; SF network
has tree-like structure and agents-hubs. Having high degree
of connection, hubs could be expected to be natural leaders of
opinion, but our simulation experiments have shown it is not
true. Even though hubs used to belong to majority but not
outstanding groups, they behave like Brownian particles in
opinion space more than leaders, their final states are not pre-
dictable. The size of the group of opinion followers depends
on the degree of a hub and its psychological type. Sometimes,
two hubs meet each other in the same group despite of differ-
ent initial opinions. The final opinion and toleration states of
SF society depend notably on small variations in initial condi-
tions for the hubs (quasi leaders) and their psychological type,
C or PA agent; the influence of timescale ratio µr is clearly
important.

Few words in favor of toleration. In dynamical systems, any
variable has to be measurable and that is evaluated by external
measuring tool, in case of opinion models it is a kind of social
enquiry. When the variable ui(t) is considered as an individual
characteristic of i-agent at instant t and interpreted as the opinion
uncertainty we meet a methodological difficulty if not a contradic-
tion. In order to evaluate the state of a person, in sociology and
psychology a specialist uses a kind of enquiry or a set of enquiries.
To measure opinion uncertainty ui at instant t one has to measure the
opinion of an individual many times at an instant (in order to have
statistical validation of the result), but that is not possible. Suppose
we apply the individual enquiry for a short period of time. In this
case the interval of time has to be so short that the opinion of the
individual remains unvaried, and that has to be valid for each and
every person of the society. That is also impossible because we

don’t know how fast or slow an individual opinion is changing.
On the other hand, if we apply the enquiry to a set of persons,
the result can’t be considered as an individual characteristic. So,
the “uncertainty” can’t be measured instantaneously or it can’t be
considered as an individual variable.

The way to reconcile these contradictions is to interpret ui(t)
as the toleration of i-agent to the opinions of others, that can be
measured at each instant applying the same enquiry for a reason-
ably short interval of time (individual opinion remains unvaried)
to each and every agent. Opinion uncertainty, as it was defined, can
be self-evaluated only and, so there is no an objective criterion to
validate it. Whereas the toleration (acceptability) can be measured,
simply evaluating the range of opinions a person can accept. Ac-
ceptability is the base of agents’ interaction and opinion exchange,
but the opinion uncertainty of agent does not.

Opinion leadership is an important, if not crucial element in
public opinion formation. So, for the future work we shall extent
the model for the studying of the opinion leadership, using the
self-organization of opinion and toleration in SW and SF societies
of this work as the background. Pure mathematical study of the
model is working on also.

Acknowledgments
Special thanks to the reviewers.

Availability of data and material
Not applicable.

Conflicts of interest
The authors declare that there is no conflict of interest regarding
the publication of this paper.

LITERATURE CITED

Abrica-Jacinto, N. L., E. Kurmyshev, and H. A. Juárez, 2017 Effects
of the interaction between ideological affinity and psychological
reaction of agents on the opinion dynamics in a relative agree-
ment model. Journal of Artificial Societies and Social Simulation
20.

Axelrod, R., 1997 The complexity of cooperation. In The Complexity
of Cooperation, Princeton university press.

Barabási, A.-L. and R. Albert, 1999 Emergence of scaling in random
networks. science 286: 509–512.

Clifford, P. and A. Sudbury, 1973 A model for spatial conflict.
Biometrika 60: 581–588.

Deffuant, G., 2006 Comparing extremism propagation patterns in
continuous opinion models. Journal of Artificial Societies and
Social Simulation 9.

Deffuant, G., F. Amblard, G. Weisbuch, and T. Faure, 2002 How
can extremism prevail? a study based on the relative agree-
ment interaction model. Journal of artificial societies and social
simulation 5.

Deffuant, G., D. Neau, F. Amblard, and G. Weisbuch, 2001 Mixing
beliefs among interacting agents. Advances in Complex Systems
p. 11.

Dittmer, J. C., 2001 Consensus formation under bounded confi-
dence. Nonlinear Analysis: Theory, Methods & Applications 47:
4615–4621.

Dong, Y., M. Zhan, G. Kou, Z. Ding, and H. Liang, 2018 A survey
on the fusion process in opinion dynamics. Information Fusion
43: 57–65.

Douven, I. and A. Riegler, 2010 Extending the hegselmann–krause
model i. Logic Journal of IGPL 18: 323–335.

224 | Kurmyshev and Abrica-Jacinto CHAOS Theory and Applications



French Jr, J. R., 1956 A formal theory of social power. Psychological
review 63: 181.

Galam, S., 2008 Sociophysics: A review of galam models. Interna-
tional Journal of Modern Physics C 19: 409–440.

Galam, S., 2022 Opinion dynamics and unifying principles: A
global unifying frame. Entropy 24: 1201.

Hegselmann, R., U. Krause, et al., 2002 Opinion dynamics and
bounded confidence models, analysis, and simulation. Journal
of artificial societies and social simulation 5.

Huang, C., Q. Dai, W. Han, Y. Feng, H. Cheng, et al., 2018 Effects
of heterogeneous convergence rate on consensus in opinion
dynamics. Physica A: Statistical Mechanics and its Applications
499: 428–435.

Kurmyshev, E., H. A. Juárez, and R. A. González-Silva, 2011 Dy-
namics of bounded confidence opinion in heterogeneous social
networks: Concord against partial antagonism. Physica A: Sta-
tistical Mechanics and its Applications 390: 2945–2955.

Lorenz, J., 2008 Fixed points in models of continuous opin-
ion dynamics under bounded confidence. arXiv preprint
arXiv:0806.1587 .

Lorenz, J., 2010 Heterogeneous bounds of confidence: meet, dis-
cuss and find consensus! Complexity 15: 43–52.

Meadows, M. and D. Cliff, 2012 Reexamining the relative agree-
ment model of opinion dynamics. Journal of Artificial Societies
and Social Simulation 15: 4.

Pineda, M., R. Toral, and E. Hernández-García, 2013 The noisy
hegselmann-krause model for opinion dynamics. The European
Physical Journal B 86: 1–10.

Sznajd-Weron, K. and J. Sznajd, 2000 Opinion evolution in closed
community. International Journal of Modern Physics C 11: 1157–
1165.

Urbig, D. and J. Lorenz, 2007 Communication regimes in opin-
ion dynamics: Changing the number of communicating agents.
arXiv preprint arXiv:0708.3334 .

Wang, C., 2022 Opinion dynamics with higher-order bounded
confidence. Entropy 24: 1300.

Watts, D. J. and S. H. Strogatz, 1998 Collective dynamics of ‘small-
world’networks. nature 393: 440–442.

Xia, H., H. Wang, and Z. Xuan, 2011 Opinion dynamics: A mul-
tidisciplinary review and perspective on future research. Inter-
national Journal of Knowledge and Systems Science (IJKSS) 2:
72–91.

Yu, Y., V. X. Nguyen, and G. Xiao, 2020 Effects of initial state on
opinion formation in complex social networks with noises. arXiv
preprint arXiv:2004.00319 .

Yu, Y., G. Xiao, G. Li, W. P. Tay, and H. F. Teoh, 2017 Opinion diver-
sity and community formation in adaptive networks. Chaos: An
Interdisciplinary Journal of Nonlinear Science 27: 103115.

How to cite this article: Kourmychev, E. and Abrica-Jacinto, N. L.
A. The Effect of Agents’ Psychology and Social Environment on
the Opinion Formation: C/PA Relative Agreement Model in SW
and SF Societies. Chaos Theory and Applications, 4(4), 212-225, 2022.

CHAOS Theory and Applications 225



Effects of Optical Laser Injection in Multistable Erbium
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ABSTRACT During the past years, the study of optical injection has been intensely carried in theoretical and
experimental realizations, showing interesting emergent behaviors, and synchronized states between other
results. This work proposes an experimental scheme of an array of three driven erbium-doped fiber lasers
(EDFLs), which dynamics exhibit the coexistence of multiple attractors. The laser array is controlled by a driver
EDFL by injecting its optical intensity into the three coupled driven EDFLs array. The experimental realization
was with the aim to induce an attractor tracking in the driving lasers, then to get coexisting states with increasing
output power, and to study other emergent behavior given by the differences between doped fibers. To find the
multistability regions, some bifurcation diagrams of the laser peak intensities are constructed. The obtained
results are identified by comparing them with the modulation frequency. In some cases, the obtained results
show that the intensity of the optical output signal of the driven systems is increased with respect to the initial
individual response. In the case of synchronized states, it’s possible to get an increased signal from the whole
system. The obtained results could have important applications in repeaters of communications systems.

KEYWORDS

Erbium doped
fiber laser
Multistability
Coupling
Non-linearity
Power increase

INTRODUCTION

Since some years ago, a rapid increase has been achieved in com-
mercialization and research on erbium-doped fiber laser (EDFLs).
This devices have been studied extensively for their flexible appli-
cations in several important optical systems as optical communica-
tions, laser surgery, nonlinear optics, optical sensing, and optical
materials (Digonnet 2001; Luo and Chu 1998; Duarte 2009; Pis-
archik et al. 2013; R. Mary and Kar 2014; Zhao et al. 2017). The
EDFL active gain medium offers a long interaction length of pump
light because the active ions that lead to a single transversal opera-
tion mode and a high gain produced by the correct choice of fiber
parameters (Kir’yanov et al. 2013). Moreover, the signal amplifi-
cation in optical fibers offers great advantages for technological
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applications due to its particular characteristics like electromag-
netic field robustness, efficiency, reliability, compactness with an
additional alignment-free structure, and spatial beam profile (Liu
et al. 2020; Jafry et al. 2020). In that sense, the optical power in-
crease is in constant evolution for the implementation of better
fiber optical amplifiers capable of transmitting a signal in a fiber
optical network along hundreds of kilometers with a minimum
attenuation (Bouzid 2011).

It is well known that EDFL amplifiers wavelength, especially
1550 nm, shows very small losses in optical fibers (Castillo-
Guzmán et al. 2008), as well as, a very rich dynamical behavior that
the EDFL can exhibit (chaos, multistability, period-doubling„etc.)
(Reategui et al. 2004; Huerta-Cuellar et al. 2008) that can be have
applications in different applications, such as, e.g., industrial micro-
machining (Kraus et al. 2010), medicine (Morin et al. 2009), spectral
interferometry (Keren and Horowitz 2001), optical sensing (Wu
et al. 2014), optical coherence tomography (Lim et al. 2005), optical
metrology (Droste et al. 2016), and LiDAR systems (Philippov et al.
2004). In such systems, a particular state is determined by initial
conditions (Pisarchik et al. 2005, 2011).
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Among many results showing the nonlinear behavior in EDFLs,
few researchers are interested in the study of multistability in these
lasers (Reategui et al. 2004; Huerta-Cuellar et al. 2008; Pisarchik
et al. 2005; Huerta-Cuellar et al. 2009). EDFL’s can exhibit up to four
coexisting states under periodic modulation of the pump laser, in
this sense, a high period attractor contains a high pulse energy (Pis-
archik et al. 2011). Some other results in multistable systems show
the possibility to obtain a monostable behavior by eliminating un-
desirable attractors, and in that sense some methods and results
on attractor annihilation have been shown Sevilla-Escoboza et al.
(2017); Pisarchik and Jaimes-Reategui (2009); Magallón et al. (2022).
Recently Barba-Franco et al. (2023), shown the implementation of
an electronical version of an EDFL based on differential equations.

The phenomenon of optical injection in lasers have been ex-
tensively studied since more than twenty years ago, and some
recent results have been reported in VCSEL’s Doumbia et al. (2022),
showing the nonlinear dynamics and the polarization properties of
a VCSEL by using a frequency comb. Between interesting results
in the case of optical injection in semiconductor lasers, extreme
events (EEs) have been recently investigated, and the probability of
appearance of EEs can be controlled by the injection parameters ap-
plied to the locking regions of the diver-driving laser configuration
(Huang et al. 2022). In the case of numerical injected semiconduc-
tor lasers modelated by the Lang-Kobayashi equations, different
noise-induced transitions have been reported Tseng et al. (2022).
Erbium doped fiber lasers has show different behaviors when
optical injection is performed in this devices. In Xu et al. (2022),
experimentally observed the evolutionary dynamics of convention
solitons(CSs) in a simplified Erbium-doped fiber laser. An interest-
ing phenomenon known as Q-switching was recently reported by
Cai et al. (2022), they shown that the pulse evolution and dynam-
ics of a pulsed erbium-doped fiber laser with plasmonic titanium
nitride nanoparticles under different pump powers can result in
two states: mode-locking and Q-switched mode-locking (QS-ML).
Aditionally, the presence of noise-like behavior in doped fiber laser
is one of the most interesting phenomena when the lasers are op-
erating in a mode-looking regime, some results in this topic was
presented by Soboń (2022).

Reported results about EDFL’s injection shows the apparition
of energetic pulses and some applications as the mentioned Q-
switching phenomenon for certain laser type, but the dynamical
response of a fiber laser depends on the doped level, and the dis-
tribution of the doping atoms in the fiber material as reported by
Kir’yanov et al. (2013). In that sense, each of the implemented
driven lasers were constructed with the same erbium doped fiber,
but with different segments of fiber. With the aim of study the
different possible behaviors when each of the EDFL’s are injected
by the driver EDFL, and looking for a high power emission in mul-
tistable EDFLs array, an experimental study of a four lasers system
is implemented. Despite the existence of different results reported
by injection into erbium-doped fiber lasers, this paper compares
differences that may exist when using lasers implemented with
different sections of the same doped fiber. The experimental setup
is constructed by using a multistable driver EFDL Huerta-Cuellar
et al. (2008), that injects an optical signal of a controlled state to
three coupled multistable EFDLs.

This next sections of this paper is structured as follows. In
Section 2, numerical model, materials and methods, the tools and
basics of this work are shown, section 3, is about the experimental
obtained results, and its discussion. Finally, the main conclusions
of this work are given in section 4.

METHODS AND MATERIALS

Mathematical model
As first part of this research work, the model aproximation of the
experimental setup is studied. The mathematical model of one
normalized EDFL equations is shown in eq. 1:

dx
dt

= axy − bx + c(y + 0.3075),

dy
dt

= −δxy − (y + 0.3075)+ ...

... Ppump(1 − exp(−18(1 − (y + 0.3075)/0.6150))),

(1)

where the laser intensity is represented by x, the population inver-
sion by y, the constants have the next values: a = 6.6206 × 107,
b = 7.4151 × 106, c = 0.0163, and δ = 4.0763 × 103 . The numerical
model presented in 1, can reproduce periodic behavior depending
on the combination of the initial conditions with the frequency of
modulation for the bistable and multistable regions (as shown in
1(c))), and chaotic behavior as shown in Figure 1(a) for a modu-
lation frequency (Fm), 0 < Fm < 12kHz. Being a nonautonomous
dynamic system, a pump function is required which is represented
by eq. 2 where Ppump is the pump power, m is the modulation
amplitude, and Fm is the modulation frequency.

Ppump = 506(1 + m ∗ sin(2ϕFmt)) (2)

To obtain the numerical results, the Runge-Kutta method of 4th

order is implemented as in Reategui et al. (2004). As first annalysis
of this laser model, a bifurcation diagram (BD) of local maxima of
time series of the laser intensity x is constructed, as shown in Fig-
ure 1(a), as in Pisarchik et al. (2012); Esqueda-de-la Torre et al. (2022).
This BD is obtained by sweeping the modulation frequency in a
range 1kHz < Fm < 100kHz, and by changing 30 times the initial
conditions of the system. In this figure, the multistability region is
obtained for a modulation frequency of 73kHz < Fm < 80kHz and
m = 1 for which is Fm = 84kHz is selected to generate the informa-
tion of Figure 1(b), and (c), four labeled branches are distinguished
for period one (P1), period three (P3), period four (P4), and period
five (5) behavior, which represents coexistent states or multistable
attractor. For the mentioned frequency Fm = 80kHz, in Figure 1(b),
four time series of these coexistent attractors are shown with the
pump power modulation signal Ppump, the ratio of the periodic
attractors P1, P3, P4 and P5, are subharmonics of the modulation
frequency Fm, respectively P1

Fm
= 1, P3

Fm
= 1

3 , P4
Fm

= 1
4 , and P5

Fm
= 1

5 ,
where P5 represents the higher intensity atractor. The Figure 1(c)
shows the basin of attraction of the equation 1, with Fm = 80kHz,
here, the colors yellow, red, blue, and green represent the initial
conditions (x0, y0) where the EDFL shows periodic behavior rep-
resented by P1, P3, P4 and P5 respectively. Intial conditions (I.C.)
used to obtain the periodical series shown in Figure 1(c), are the
mentioned in table 1.

■ Table 1 Initial conditions used to get the periodic behavior
shown in Figure 1(b).

P1 P3 P4 P5

I.C. (x) 7.0614 24.2265 5.987 91.1913

I.C. (y) 0.0095 0.0542 0.0187 0.096
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Figure 1 a) bifurcation diagram of the driver EDFL behavior , b) time series of multistable states, and pump frequency for a Fm= 80 kHz,
and c) basin of attraction of the driver EDFL existing states for Fm= 80 kHz.

Experimental setup

The experimental setup of this work is shown in Figure 2, and is
defined as in Esqueda-de-la Torre et al. (2022). The equipment and
materials used are three temperature controllers ITC510, four func-
tion generators AFG3021B conected to the driver EDFL, four laser
diodes BL976-PAG500, four EDFLs, eigth 1550nm Bragg gratings,
four 980/1550nm wavelength divisor multiplexors WD9860BA,
four photodetectors PBD481-AC, one data acquisition card NI
BNC-2110, an Optical Attenuator and, a personal computer.

The driver laser (ML) which injects its optical power to the
array of three erbium doped fiber lasers (SL’s) is shown in Figure
2 (i). The bifurcation diagram of this laser is shown in Figure 3
(d). It has been chosen as driver due it has the richest dynamics
over all the characterized lasers, showing a multistable behavior
containing 5 behaviors. The injected information from the ML to
the SLs could given by the for possible periodic states in the region
of multistability, but in the presented results just the P5 and P4
behavior were used. It has its own function generator, current and
temperature driver, a cavity and its output, as shown in Figure 2

(i).
Figure 2 (ii) shows an optical attenuator used to control the

intensity of the driver laser signal, definning as coupling strength.
The laser intensity variate by the optical attenuator from 8.5 V
to 0 V, that corresponds to an attenuation from 0% to 100% re-
spectively. Figures 2 (iii), (iv), and (v) represent the experimental
implementation of each erbium-doped fiber driving lasers (SL’s)
whose bifurcation diagrams are shown in Figure 3 (a), (b), and (c)
respectively. Each current Driver is being modulated by adding
both the function generator and the coupling of the driver laser
signal.

Figure 2 (vi) shows the data acquisition card (DAQ), previously
configured in the PC to acquire the time series coming from the
output optical detectors of the three erbium doped fiber driving
lasers and the driver laser. In Figure 2 (vii) a personal computer
appears, where all time series of the whole system are saved and
analyzed to study their dynamics.
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Figure 2 Experimental setup.

In the present work, the three SLs are constructed with com-
mercial erbium doped fibers defined as type M5 Kir’yanov et al.
(2013), and the ML is constructed by a highly doped erbium fiber
laser wich presents a rich dynamical behavior as the obtained in
Fig. 2 Pisarchik et al. (2012). As part of the characterization of
the different EDFLs in this work, and in spite of the four EDFLs
used in experiments are close in fiber type, and fiber measures, a
bifurcation diagram of local maxima of time series for each EDFL
is constructed, as shown in Huerta-Cuellar et al. (2008). In order to
understand the behavior, modulation frequency ranges, and the
multistability regime for each EDFL, the experimental bifurcation
diagrams are shown in Figure 3.
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Figure 3 Bifurcation diagrams corresponding to to (a) SL1, (b)
SL2, (c) SL3, and (d) ML.

RESULTS

In this section, experimental obtained results are shown. To guar-
antee that the behavior of the SLs is different to the behavior of the
ML, each initial behavior (I.C.) is manually fixed by turning on and
off the function generators shown in Figure 2(iii-v). As the results
are obtained from the experimental setup, it isn’t possible to know
exactly the I. C. value, as in the case of numerical implementation.

All of the different periodic behaviors in the EDFLs have dissimi-
lar probability as shown in Pisarchik et al. (2012). From the later,
is easy to obtain a P1 behavior, and it is difficult to obtain a P5
behavior, as has been experimentally shown by Huerta-Cuellar et.
al. in Huerta-Cuellar et al. (2008).

One interesting result about optical injection was theoretically
and experimentally shown by Doumbia et al. (2020), they uses an
optical frequency comb to inject to a single frequency semicon-
ductor, from that they obtained several dynamic behavior from
periodical to chaos and other behaviors. Some dynamical effects of
optical injection in multistable lasers has been recently considered
by Pisarchik and Hramov (2022), from which the dynamical an-
swer of optical injection is studied from gas lasers, semiconductor
lasers, and VCELs.

Few works are devoted to studying the effects of optical injec-
tion in EDFLs. In this work, the dynamical response from three
different injected EDFLs, whose were constructed from the same
erbium-doped fiber are shown. The obtained results are ordered
considering some of the different combinations, first by fixing the
driven laser in P5 dynamics, and then it is fixed in P4, for each of
the driving EDFLs (SLs), by showing what happens for each sce-
nario for different coupling strengths. Experimental results whit
coupling between ML with SLs are shown in the next sub-sections.

Fixing driver laser in period five (P5) In this subsection an eval-
uation of the coupling strenght between the ML and the SLs is
revised. The Figure 4 shows the bifurcation diagrams of local max-
ima of time series for the three driving lasers (SL). Each of the SLs
has been modulated by the driver laser (ML) with a previously
fixed signal in P5 behavior, this can be obtained by changing the
initial condition by turning on and off the function generator.

Having fixed the ML in a P5 behavior it has been applied a
coupling strength k variation between the ML and each of the
SLs (for SL1, SL2, and SL3). From obtained results, in Table 1 its
possible to observe that the coupling value k, and the modulation
amplitude are not the same, it is because the differences between
the SLs behaviors that can be appreciated from Fig. 3. As result
of the coupling strength between the ML and the SLs, also it is
possible to see that the final behavior is not a tracking attractor
from SLs to ML.

For the case that the SLs are initially in P1, Fig 4(a–c), the final
obtained behavior corresponds to P5, here it worths to mention
that P5 is not a possible behavior in those lasers, but the SLs reach
a tracking attractor. For the coupling with SLs with a behavior
different from P1, i.e. P2, and P3, the resulting behavior is not a
tracking attractor between ML and SLs, and aditionally, in some
cases, it is chaotic.

A comparision between the SLs is realized to know the ob-
tained behavior after the ML perturbation. In order to see if the
arrangement of three SLs reach the tracking attractor of the ML,
the average values of their intensities differences has been done.
When the value is close to zero, it implies the tracking attractor
between the ML and the SLs, see Fig. 5.

In order to compare the obtained results from the optical injec-
tion of the ML to the SLs, the sums of the resulting behaviors of
the SLs are achieved. In Fig. 6(a-d), it is possible to see from the
obtained results, that in the case of SLs with initial behavior of P1,
the similitude does not have a big change, while with the other
initial states the results are too different between the SLs and the
ML.

Fixing driver laser in period five (P4) In this subsection an eval-
uation of the coupling strenght between the ML and the SLs is
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■ Table 2 Behavior of the SL for threshold k for ML P5 oscilla-
tion.

Figure threshold Amplitude Modulation LS Initial Final

k (V) frequency (kHz) number behavior behavior

4 (a) 69 0.80 110 LS1 P1 P5

4 (b) 92 1.40 110 LS2 P1 P5

4 (c) 88 1.00 110 LS3 P1 P5

4 (d) 93 0.80 66 LS1 P2 CH

4 (e) 88 1.40 65 LS2 P2 P1

4 (f) 94 1.00 66 LS3 P2 CH

4 (g) NA 0.80 66 LS1 P3 P3

4 (h) NA 0.80 66 LS2 P3 P3

4 (i) 84 0.80 66 LS3 P3 CH
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Figure 4 Bifurcation diagrams of the three SLs, under P5 periodic
injected signal from the ML. The figures corresponds to the infor-
mation shown in Table 2

.

revised. The Figure 7 shows the bifurcation diagrams of local max-
ima of time series for the three driving lasers (SL). Each of the SLs
has been modulated by the driver laser (ML) with a previously
fixed signal in P4 behavior, this can be obtained by changing the
initial condition by turning on and off the function generator. Hav-
ing fixed the ML in a P4 behavior, it has been applied a coupling
strength k variation between the ML and each of the SLs (for SL1,
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Figure 5 Average values of difference between: a) SL 2 (red
color), SL 3 (blue color) and ML (black color) from SL 1, b) SL
1 (red color), SL 3 (blue color) and ML (black color) from SL 2, c)
SL 1 (red color), SL 2 (blue color) and ML (black color) from SL
3, and d) SL 1 (red color), SL 2 (blue color) and SL 3 (black color)
from ML laser.
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Figure 6 Average values of sum of the three SLs time series for
each coupling strength value (k).

SL2, and SL3). From obtained results, in Table 2 its possible to
observe that the coupling value k, and the modulation amplitude
are not the same, it is because the differences between the SL be-
haviors that can be apreciated from Fig. 3. As result of the coupling
strength between the ML and the SLs, also it is possible to see that
the final behavior is not a tracking attractor between ML and SLs.
For the case that the SLs are initially in P1, Fig 7(a–c), the final
obtained behavior corresponds to P4, here it worths to mention
that P4 is not a possible behavior in those lasers, but the SLs reach
the tracking attractor. For the coupling with SLs with a behavior
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different from P1, i.e. P2, see Figs. 7(d–f), and P3, see Figs. 7(g–i),
the resulting behavior does not completely follow the P4 attractor,
and aditionally, in some cases, it is chaotic.

■ Table 3 Behavior of the SL for threshold k for ML P4 oscilla-
tion.

Figure threshold Amplitude Modulation LS Initial Final

k (V) frequency (kHz) number behavior behavior

7 (a) 74 0.80 110 LS1 P1 P4

7 (b) 84 1.40 110 LS2 P1 P4

7 (c) 61 1.00 110 LS3 P1 P4

7 (d) 96 0.80 66 LS1 P2 CH/P3

7 (e) 92 and 97 1.40 65 LS2 P2 CH/P4

7 (f) 95 1.00 66 LS3 P2 CH

7 (g) 73 and 85 0.80 66 LS1 P3 CH/P3

7 (h) 86 0.80 66 LS2 P3 CH

7 (i) 76 0.80 66 LS3 P3 CH
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Figure 7 Bifurcation diagrams of the three SLs, under P5 periodic
injected signal from the ML. The figures corresponds to the infor-
mation shown in Table 3

.

A comparision between the SLs is realized to know the ob-
tained behavior after the ML perturbation. In order to see if the
arrangement of three SLs reach the tracking attractor of the ML,

the average values of their intensities differences has been done.
When the value is close to zero, it implies the tracking attractor
between ML and SLs, see Fig. 8.
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Figure 8 Average values of difference between: a) SL 2 (red
color), SL 3 (blue color) and ML (black color) from SL 1, b) SL
1 (red color), SL 3 (blue color) and ML (black color) from SL 2, c)
SL 1 (red color), SL 2 (blue color) and ML (black color) from SL
3, and d) SL 1 (red color), SL 2 (blue color) and SL 3 (black color)
from ML laser.

In order to compare the obtained results from the optical injec-
tion of the ML to the SLs, the sums of the resulting behaviors of
the SLs are achieved. In Fig. 9(a-d), it is possible to see from the
obtained results, that in the case of SLs with initial behavior of P1,
the similitude does not have a big change, while with the other
initial states the results are too different between the SLs and the
ML.
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Figure 9 Average values of sum of the three SLs time series for
each coupling strength value (k).
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CONCLUSIONS

By considering that the SLs have different global behavior, as can
be confirmed from Figure 3, the analysis of their answer to the same
optical injection was made. The construction of the bifurcation
diagram and basin of attraction of the coexistent states of EDFL,
allowed us to know the multistable behavior in the driver laser
output signal. The output signal from the ML was implemented as
additional modulation to the pump power of the three multistable
SLs array and in turn. The results obtained when the ML injects a
P5, and P4 dynamical behavior shows an attractor tracker response,
in this sense when SLs have P1 dynamics a phase synchronization
to a single state is favored. This synchronization phenomenon has
been reported and studied from other authors by different coupling
techniques in other type of lasers, but in one-to-one coupling. In
the case of synchronized lasers, a result through the suitable choice
of the coupling strength value and the sum of the output signals
of the three slave lasers allowed us to obtain maximal power. This
optimal power crucially depends on the kthreshole value.

Results obtained when the SLs have an initial behavior of P2,
shown chaos and P1 monostable behavior when the ML operates
in P5. In the case of P1 response, is a possible effect related with
one of the three actual behavior of the SL but the answer of chaos
reserves another analysis related with the interaction of different
periodic states. The obtained results of the injected SLs when the
ML is oscillating in P4, shown a richer dynamics in the case when
bistable behavior of CH/P3, and CH/P4 is obtained. The activity
of P4 is more related to harmonic behavior from the I.C. of the SL,
while the P3 is one of the possible dynamics of the SLs.

The presented results are just an analysis of the possible answer
of the SLs, that are implemented with the same erbium doped
fiber, and the differences on the dynamical behavior are because
this systems are real and the small differences in the erbium con-
centration can produce changes in the final result, as the chaos
theory affirms. In this sense, more analysis and research could
be implemented. In the case of SLs synchronized with the ML in
P5 behavior, we consider that one possible application is in the
repeaters of communication systems.
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ABSTRACT In this work, we propose an approach to generate multistability based on a class of unstable
systems that have all their roots in the right complex half-plane. Multistability is the coexistence of multiple
stable states for a set of system parameters. The approach is realized by using linear third order differential
equations that consists of two parameters. The first bifurcation parameter transforms the unstable system with
all its roots in the right complex half-plane into an unstable system with one root in the left complex half-plane
and two roots remaining in the right complex half-plane. With this first transformation, the system is capable of
generating attractors by means of a piecewise linear function and the system presents monostability. We then
use the another bifurcation parameter to switch from a monostable multiscroll attractor to several multistable
states showing a single-scroll attractor.

KEYWORDS

Chaos
Multistability
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systems
Attractors

INTRODUCTION

The coexistence of two or more attractors, for a given set of pa-
rameters, is called multistability and the convergence to one of the
different attractors depends only on the initial condition. The co-
existence of multiple behaviors is a universal phenomenon found
in many area of science and in nature, from electronic devices and
chemical reactions to weather and the brain. One of the pioneering
studies on multistability was reported on visual perception (At-
tneave 1971). In electronic devices, the phenomenon of bistability
has been widely explored and its applications in technological
devices such as cell phones, computers, etc. Many studies have
reported various multistability phenomena through different types
of systems, for example, through coupled systems, delayed feed-
back systems, stochastic systems, among others (Feudel 2008).

There are different mechanisms for multistability emergence
in dynamical systems. We can find in the reported literature the
generation of multistable systems via Unstable Dissipative Systems
(UDS). These dissipative systems with unstable dynamics defined
in the space can be of type I or II. The system based on UDS-
type I presents a one-dimensional stable manifold leading the
trajectory to the equilibrium point and a two-dimensional unstable
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manifold leading the trajectory away from the equilibrium point.
The UDS-type II presents a two-dimensional stable manifold and
a one-dimensional unstable manifold, see Anzo-Hernández et al.
(2018), Gilardi-Velázquez et al. (2017). In this work we focus on the
creation of multistable systems from an proposed unstable system
which is transformed into a system UDS-I.This class of systems
UDS-I are useful for the generation of multiscroll attractors through
a linear function by parts (PWL), and thus through a bifurcation
parameter to obtain the multistability.

Recently, the fractional calculus has been used to make mul-
tistable systems based on fractional derivatives instead of in-
teger derivatives in PWL systems that display multiple scrolls
Echenausía-Monroy et al. (2022). The mechanisms that produce
multistable behavior in integer and fractional PWL systems are
currently a topic of research. In Gilardi-Velázquez et al. (2022)
a PWL system showing multistable behavior was presented, in
this system the nearest integer function was used to control the
switching processes and the corresponding equilibrium between
the individual switching surfaces was found.

In this paper our approach to generate chaotic systems is based
on an transformation of unstable system to a class of unstable dissi-
pative systems (UDS). Therefore, the chaotic self-excited attractor
emerges from saddle equilibria. The manifolds of these hyperbolic
equilibrium points are determined by the eigenvalues associated
to the linear operator of the system. Therefore, the first require-
ment is to obtain a system based on a linear operator that has a
complex conjugate eigenvalue pair with a positive real part and a
negative real eigenvalue. With this first transformation, the system
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is capable of generating a monostable attractor. The next step is to
switch the system from monostability to multistability.

The manuscript is organized in the following sections: In the
first section , definitions are given for clarity in developing the
approach to obtaining multistability. In the second section , we
classify the types of unstable systems capable of generating fami-
lies of systems that can generate multiscroll. In the third section by
using another bifurcation parameter, we generate multistability in
the given system. Finally, in the last section, the conclusions are
given.

PRELIMINARIES

In this section, we give some basic definitions to understand the
coexistence of multiple chaotic attractors. Two important features
of chaotic system solutions are unpredictable behavior and trajec-
tory divergence. A chaotic system usually displays the types of
behavior listed above. The following definitions can be reviewed
in Lynch (2004).

Definition 1 A minimal closed invariant set A, F(A) ⊂ A, that at-
tracts nearby trajectories that are in the basin of attraction B, A ⊂ B,
towards it is called an attractor.

Definition 2 A strange attractor generated by a chaotic system is an
attractor that shows fractal structure and sensitivity to initial conditions.

There are many approaches to check that a system has chaotic
behavior. For instance, Lyapunov exponents is a widely used method
to verify whether a system is chaotic or not. A chaotic system
presents a positive Lyapunov exponent and if the system presents
two positive Lyapunov exponents it is called hyperchaotic. Other
approach to generate chaotic behavior is by using homoclinic and
heteroclinic orbits, this chaotic behavior is known as homoclinic
and heteroclinic chaos. Two chaotic trajectories with very close
initial conditions in the strange attractor will separate with a rate
of divergence given by the positive Lyapunov exponent.

Lyapunov exponents can be computed by different methods
and their performance can be consulted in Geist et al. (1990). Three-
dimensional autonomous systems have been useful for modeling
many phenomena of nature. For example, the highly simplified
model of a convective fluid proposed by Edward Lorenz to gener-
ate meteorological data Lorenz (1963). A wide variety of behaviors
was discovered in the simplified Lorenz model, finding that for
some parameter values the system behave chaotically. Sparrow’s
work on the Lorenz system is an excellent reference for more details
about the system, see Sparrow (1982).

The trajectories revolve around two equilibrium points C1 and
C2 in an apparently stochastic way, which makes the trajectories
unpredictable. This pioneer model has been widely study, for
example, Guanrong Chen and Tetsushi Ueta introduced a vari-
ation on the Lorenz model. Another iconic chaotic system was
introduced by Leon O. Chua in the mid-1980s, his system was
implemented electronically and is known as the Chua circuit, and
it exhibits a variety of behaviors. A review of Chua’s circuit is pre-
sented in Madan (1993) and exhibits many interesting bifurcation
and chaotic phenomena.

As the Lorenz system as the Chua system generate attractors
that present a double scroll attractor. In this paper, one of our
objectives is to control an attractor that present five scrolls, we
called this attractor multiscroll attractor. One of the approaches
used to generate a multiscroll attractor is by means the use of a
piecewise linear function in the system ẋ = Ax + B, see Campos-
Cantón et al. (2010, 2012).

Dissipative systems and attractors
Let us consider a system given a set of nonlinear autonomous
differential equations, as follows

ẋ = F(x),

where x ∈ R3 is the state vector. Important information is obtained
by the equilibrium points x∗ that satisfy F(x∗) = 0. These points
give qualitative information about the local behaviors of its so-
lutions. The local behavior of a nonlinear system is obtained by
the Jacobian matrix DF(x∗). For a hyperbolic equilibrium point, the
eigenvalues of the Jacobian matrix DF(x∗) are nonzero. Hartman-
Grobman Theorem states that in a vicinity of a hyperbolic equilib-
rium point x∗ in which the phase portrait for the nonlinear system
ẋ = F(x) resembles the linearization. The linearization is given as
follows:

ẋ = DF(x∗)
= Ax. (1)

What we have is that the phase portraits are qualitatively equiva-
lent in the neighborhood of a hyperbolic critical point, see Hartman
(1964). Other important concept is the volume contraction rate of a
dynamical system

ẋ = F(x),
where x = (x, y, z)T is the state vector and F(x) =
(F1(x), F2(x), F3(x)) determines the evolution of the system, then
the volume contraction rate is given by:

Λ = ∇ · F(x) =
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

.

Notice that the time evolution in phase space is determined by
V(t) = V0eΛt, where V0 = V(0) and Λ is a constant. When a
system is capable of dissipating energy, it is known as a dissipative
system and is given for a negative value of Λ. When Λ is negative
it leads to a fast exponential shrinks of the volume in state space.
If the system is dissipative, it can develop attractors. Without loss
of generality we analyze a jerk system. On the other hand, for
the given system to be dissipative, it is necessary and sufficient
that the sum of the roots of the characteristic polynomial be a
negative quantity. That is, the eigenvalues associated with the
matrix A ∈ R3 of the system (1) is ∑3

i=1 λi < 0. The saddle
equilibria of a system in R3 can be characterized into two types
according to the eigenvalues associated with matrix A.

Definition 3 Let us consider a system defined by (1) in the space with
eigenvalues λj, j = 1, . . . , 3 associated with matrix A. The system is
called Unstable Dissipative System (UDS) Type I if one eigenvalue
λ1 ∈ R−, the other two λ2,3 ∈ C+, and the sum of the eigenvalues
is negative. Where R− and C+ denote the negative real numbers and
complex conjugate numbers with a positive real part, respectively.

Definition 4 Let us consider a system given by (1) in R3 with eigen-
values λi, i = 1, 2, 3 associated with matrix A. The system is said UDS
Type II if one eigenvalue λ1 is positive real number and the other two are
complex conjugate numbers with a negative real part, and the sum of the
eigenvalues is negative.

Attractors in R3 are generated by several kind of dynamical sys-
tems, and particularly PWL systems based on the aforementioned
two types of UDS have been employed to generate multiscroll
attractors. Also some systems present the two types of UDS’s
to generate attractors, For example, the Chua system mentioned
above considers two UDS Type I equilibria to generate the scrolls of
the attractos and another UDS Type II equilibrium point between
the two UDS Type I equilibria. This last equilibrium point does
not generate a scroll in the attractor.
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FROM UNSTABLE SYSTEMS TO SYSTEMS THAT GENER-
ATE ATTRACTORS

In this section we generate attractors that present multiscroll. In
this work we are interested in continuous piecewise functions as
controllers for the generation of multiscroll atractors. We use a
similar technique as in Díaz-González et al. (2017) where a bifurca-
tion parameter is used to generate a family of multiscroll attractors.
The idea is to destabilize Hurwitz polynomial for the generation
of a class of systems that display multiscroll attractor based on
unstable dissipative systems. One of our goals in this paper is to
explain how to transform a totally unstable system into an unstable
system capable of generating attractor through a piecewise linear
function.

Unstable systems
Let us propose the following controlled linear system

ẋ = Ax + bu(r, ν) + B(ν)S, (2)

where A ∈ R3×3 is a linear operator, b = (0, 0, 1)T is a constant
vector, and B = (0, 0, ν)T with ν ∈ R. We apply a feedback of the
form

u(r, ν) = cT(r, ν) · x,

where S = S(x) is the following step function:

S =



s1 for c1 < x,

s2 for c2 < x ≤ c1,
...

sm for x ≤ cm,

leads
ẋ = A(ν)x + B(ν)S. (3)

which describes a closed-loop or feedback system. The way to
select the values of c′is in such a way that they help to develop UDS
systems will be explained below. For the generation of multiscroll
attractors we take ν = 1 to analyze the location of the parameter
r. Our goal is to set the appropriate value of the parameter r in
such a way that the control linear system generates multiscroll
attractors. Firstly we assume that u(r, ν) equal to 0, B = 0 and
Re(λ) > 0 for all λ ∈ σ(A) where σ(A) is the set of eigenvalues of
A. If all eigenvalues of A have positive real part, then the system
is totally unstable. For the system (2), the equilibrium point 0 has
a neighborhood such that every nonzero solution that starts in the
neighborhood must eventually leave the neighborhood and not
return in the future time. Without loss of generality we consider
the matrix form of the third-order jerk equation x′′′ + a1x′′ + a2x′ +
a3x + β = 0, where a1, a2, a3, β ∈ R. The generated system is of the
form (2) with u ≡ 0 where the matrix A has the following form:

A =


0 1 0

0 0 1

−a3 −a2 −a1

 (4)

where B = (b1, b2, b3)
T is a vector with the following entries

B = (0, 0,−β)T . The characteristic polynomial associated with
A is defined by p(t) = t3 + a1t2 + a2t + a3. We are going to char-
acterize the unstable systems that can generate attractors through

a bifurcation parameter. We begin with a test to characterize the
roots of a polynomial of degree three.

Lemma 1 The polynomial p(t) = t3 + a1t2 + a2t + a3 has a positive
real root and two complex conjugate roots α ± β with α > 0 and β ̸= 0
if and only if 4a3

2 + 27a2
3 + 4a3

1a3 − a2
1a2

2 − 18a1a2a3 > 0.

Proof 1 Consider the polynomial p(t)given by the following form
p(t) = t3 + a1t2 + a2t + a3, we define ∆ = 4a3

2 + 27a2
3 + 4a3

1a3 −
a2

1a2
2 − 18a1a2a3. The proof is obtained from Cardano’s formulas to

obtain the roots of a cubic equation, see Uspensky (1987).

Example 1 If we consider the following polynomial p(t) = t3 −
0.86t2 + 2.65t − 0.24, we can see that it satisfies 4a3

2 + 27a2
3 + 4a3

1a3 −
a2

1a2
2 − 18a1a2a3 = 61.56 > 0. That is, p(t) satisfies condition from

Lemma 1, so it has one real positive root and two roots in the form α + iβ
with α > 0 and β ̸= 0.

Instability parameter to generate unstability and multiscrolls at-
tractors
We will use a polynomial approach that will help us to find bounds
that will allow us to obtain the necessary instability in UDS-I to
generate attractors by using an instability parameter. The unstabil-
ity parameter of p(t) is set according to the following definition.

Definition 5 Let p(t) be the characteristic polynomial of A and t1, t2,
. . . , tn are its zeros in the complex right half-plane (C+). The abscissa
of instability σp of the polynomial p(t) is defined as follows

σp = min
1≤i≤n

{Re (ti)}. (5)

If σp and σp are numbers such that σp ≤ σp ≤ σp, then they are named
lower and upper bound, respectively.

Now we are going to follow a similar approach to Aguirre-
Hernández et al. (2015) where a polynomial approach is given.
The characteristic polynomial of the system (3) is given by fr(t) =
p(t − r), note that fr(t) is a set of polynomials such that f0(t) =
p(t) is an unstable polynomial. Now by Taylor’s theorem fr(t) can
be rewritten as

fr(t) = tn +
p(n−1)(−r)
(n − 1)!

tn−1 + · · ·+ p′(−r)
1!

t + p(−r)

= tn + An−1(r)tn−1 + · · ·+ A1(r)t + A0(r). (6)

Our goal is to generate the chaotic behavior with a translation of
the characteristic polynomial with an upper bound of the abscissa
of instability. The roots of fr(t) are in the imaginary axis when
r = −σp. Therefore the system (2) could generate multiscroll
attractors for r in an interval contained in (−σp,−σp), where σp is
an upper bound of the abscissa of instability.

Maximal instability interval
It is important to know the maximum range of the r parameter
in order to control that the system remains UDS-I. In addition,
a necessary condition for generating attractors is that system (2)
satisfies the condition of dissipativity. Thus we have the following
lemma for a system of dimension three.

Lemma 2 Let p(t) = t3 + a1t2 + a2t + a3 be a real unstable character-
istic polynomial with roots t1 = α1, t2 = α2 + iβ2 and t3 = α2 − iβ2,
(α2 > α1), in the complex right half-plane. If fr(t) = p(t − r) is un-
stable and dissipative, then we have that the following conditions are
fulfilled.

i) r < a1
3 .
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ii) r > −α2.

Proof 2 If the sum of its roots, r + tj, is negative, then the family fr(t)
is dissipative if the sum of its roots. So, 2α2 + α1 + 3r < 0 and hence
r < −2α2−α1

3 . On the other hand

p(t) = t3 − (α1 + 2α2)t2 + (2α1α2 + α2
2 − β2

2)t − α1α2
2 + α1β2

2

= t3 + a1t2 + a2t + a3.

Therefore we have that r < a1
3 . (ii) The roots of fr(t) are in the imaginary

axis for r = −σu, if α2 + r > 0, then fr(t) is UDS-I. So r > −α2.

Let us summarize all of this in a theorem.

Theorem 1 Let p(t) be the unstable polynomial of degree three with a
pair of conjugate complex roots and one real root as in Lemma 2. Then
fr(t) is UDS-type I if and only if r ∈ (−α2, a1

3 ).

Proof 3 The proof follows from Lemma 2.

Example 2 Consider the system given by (2) for

A =


0 1 0

0 0 1

0.15 −2.36 0.687


whose characteristic polynomial is p(t) = t3 − 0.687t2 + 2.36t − 0.15,
from Lemma (1) we have that 4a3

2 + 27a2
3 + 4a3

1a3 − a2
1a2

2 − 18a1a2a3 =
46.3728 > 0. That is, p(t) satisfies the condition from Lemma 1, so it
has one real positive root and two roots in the form α + iβ with α > 0
and β ̸= 0. The abscissa of instability of the polynomials is σu =
0.0647. Now we will use the result of Theorem 1 taking the value of
r = −0.3 for the created fr(t). We obtain the polynomial f−0.3(t) =
t3 + 0.663t2 + 1.1342t + 1.1422 whose eigenvalues are λ1 = −0.8695,
λ2,3 = 0.1032±i1.1415.

Therefore, for f−0.3(t) we have an UDS type I capable of generating
multiscroll attractors by using a piecewise linear function.

Generation of multiscroll

Now, let us consider a control PWL system to generate multiscroll
attractors as follows

ẋ = Ax + bu(r) + BS (7)

where x = (x, y, z)T ∈ R3 is the state vector, b = B = (0, 0, 1)T is
a constant vector, A = [aij] ∈ R3×3 with i, j = 1, 2, 3 denotes a
nonsingular linear matrix.

We have that pA(t) is the characteristic polynomial of the sys-
tem and S is a step function defined as follows

S =



s1 for c1 < x,

s2 for c2 < x ≤ c1,
...

sm for x ≤ cm.

Define the linear control u = cT(r) · x = [a3 − A0(r), a2 −
A1(r), a1 − A2(r)] · x, where Aj(r) =

pj(−r)
j! . Therefore the con-

trolled system can be given as follows

ẋ =


0 1 0

0 0 1

−A0(r) −A1(r) −A2(r)

 x + BS = Acx + BS. (8)

Then, the closed-loop characteristic polynomial is given by:

fr(t) = t3 + A2(r)t2 + A1(r)t + A0(r),
= pA(t − r).

The equilibrium points of the system (8) are x∗i = −A−1
c BS, with

i = 1, . . . , m, and each entry si of the PWL system is considered
to preserve bounded trajectories of system and let the generation
of an attractor. Therefore, the choice of c′is determines the atoms
D′

i s in step function S. Each atom D′
i s of the partition of the space

contains an equilibrium x∗i . The design of the si depends on the
region we want to place the equilibrium point and the switching
surfaces, we choose them so that the equilibrium point is in the
center of these varieties, that is, we calculate the Euclidean distance

d(x∗0 , x∗1) =
√
(x∗0 − x∗1)

2 + (y∗0 − y∗1)
2 + (z∗0 − z∗1)

2,

which has to be the same between each equilibrium point. Con-
sider the following system to illustrate the generation of multiscroll
attractors.

ẋ =


0 1 0

0 0 1

0.15 −2.36 0.687

 x +


0

0

1

 u +


0

0

1

 S. (9)

For this example, we define S as follows:

S(x) =



1.0280, for 0.7500 < x;

0.6853, for 0.4500 < x ≤ 0.7500;

0.3427, for 0.1500 < x ≤ 0.4500;

0, for − 0.1500 < x ≤ 0.1500;

−0.3427 for x ≤ −0.1500.

and u(r) = (−0.15 − p(−r), 2.36 − p′(−r)
1! ,−0.687 − p′′(−r)

2! )x
where p(t) = t3 − 0.687t2 + 2.36t − 0.15 is unstable.

The controlled system is

ẋ =


0 1 0

0 0 1

−p(−r) −−p′(−r)
1! −−p′′(−r)

2!

 x +


0

0

1

 S. (10)

We have that fr(t) = t3 +
p′′(−r)

2! t2 +
p′(−r)

1! t + p(−r). For r = 0,
f0(t) = t3 − 0.687t2 + 2.36t − 0.15 is a unstable polynomial and
there is not multiscroll. The instability parameter of f0(t) is
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σf0 = 0.0647. Then other behavior could appear when r ∈
(−Udiss(pA),−σpA ). By example 2 for r = −0.3 we have that
f−0.3(t) = t3 + 0.663t2 + 1.1342t + 1.1422. Hence ∑3

j=1 tj < 0
consequently the system (10) is dissipative when r = −0.3.

Next, in the following Figure 1 the generation of the attractor
from the system (10) is illustrated. The following Figure 2 shows

a)

b)

c)

Figure 1 Attractor generated by the system (10) for r = −0.30.
a) Solution of the system (10) with initial condition x0 =
(0.2, 0.0, 0.0)T . b) Projections of the attractor on the planes: b)
(x, y). And c) (x, z).

the generation of attractors for five different conditions: a) x0 =
(−0.4, 0, 0)T , b) x0 = (−0.1, 0.0, 0.0)T , c) x0 = (0.2, 0.0, 0.0)T , d)

x0 = (0.5, 0.0, 0.0)T and e) x0 = (0.8, 0.0, 0.0)T .

a)

b)

c)

Figure 2 Generation of five attractors with five different condi-
tions. a) [Blue, x0 = (−0.4, 0.0, 0.0)T ; red, x0 = (−0.1, 0.0, 0.0)T ;
green, x0 = (0.2, 0.0, 0.0)T ; cyan, x0 = (0.5, 0.0, 0.0)T and yellow,
x0 = (0.8, 0.0, 0.0)T . Projections of the attractor on the planes: b)
(x, y). And c) (x, z).

GENERATION OF MULTISTABILITY FROM INSTABILITY

In this section, we present the way to move from a system with
monostability to a system that generates multistability through
moving the stable and unstable varieties. The phenomenon of
having two attractors coexisting generated by a nonlinear system
has been reported by Arecchi et al. (1985), who called this behavior
generalized multistability. Two problems related to the coexistence
of attractions have been studied. The first problem is about choos-
ing a desired attractor to which the system should converge, and
the second problem is about excluding certain unwanted attractors
from the dynamics (Pisarchik and Feudel 2014).
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By moving the stable and unstable varieties of the system we
can trap the trajectory of the system in different attractors, where
any initial condition belonging to some basin of attraction will
always converge to the same attractor, that is, a single attractor of
the different ones that coexist. Depending on the initial condition
that is split, the trajectory remains oscillating around of any of
the equilibrium points of the system, and all the dynamics will
be maintained in the attractor where the system’s trajectory is
enclosed. The region of coexistence of these attractors is critical,
since a small noise can commute the physical system, adding a
new characteristic to usual chaotic scenarios. In such cases, the
properties of the areas of attraction are largely determined by the
structure of saddle-type equilibrium points.

Description of the model
Consider the system UDS-I

ẋ = A(ν)x + B(ν)S (11)

where x = (x, y, z) ∈ R3 is vector states, B = (0, 0, ν)T with ν ∈ R,
S function linear piecewise and A(ν) = (aij) ∈ R3 is of the form

A(ν) =


0 1 0

0 0 1

− pAc (−r)
0! · ν − p′Ac (−r)

1! · ν − p′′Ac (−r)
2! · ν

 . (12)

The mission of the parameter ν, better known as the bifurcation
parameter, is to control the stable and unstable varieties in each
si to catch the trajectories in a single attraction. This parameter
can affect the dissipativity of the system since the dissipativity is

given by − p′′Ac (−r)
2! · ν. For ν = 1 system (11) is a system capable of

generating attractor multiscroll, when ν varies we need the system

to remain dissipative, this is true if − p′′Ac (−r)
2! · ν < 0, which allows

us to obtain qualitative information about the interval where ν

can vary and generate multistability. If we take − p′′Ac (−r)
2! · ν = −1

we obtain that ν = 1.5383 and for this value the system (11) can
generate multistability as shown in the following example.

Example 3 Consider the system

ẋ = A(ν)x + B(ν)S (13)

with

S(x) =



1.028, for 0.75 < x;

0.6853, for 0.45 < x ≤ 0.75;

0.3427, for 0.15 < x ≤ 0.45;

0, for − 0.15 < x≤0.15;

−0.3427 for x ≤ −0.15.

and

A =


0 1 0

0 0 1

−1.1422 · ν −1.1342 · ν −0.663 · ν


with characteristic polynomial p(t) = t3 + 0.663t2 + 1.1342t + 1.1422
the system (13) is UDS-I for ν = 1. As mentioned, our first challenge

is that we need the sum of the eigenvalues of the system to be negative.

Taking the value of ν from the equation − p′′Ac (−r)
2! · ν = −1 we have that

ν = 1.5083. For this value the system has the following form:

ẋ =


0 1 0

0 0 1

−1.7228 −1.7107 −1

 x +


0

0

1.5083

 S. (14)

We can observe in the Figure 3 the graphical representation of multista-
bility.

a)

b)

c)

Figure 3 a) Attractors for five different initial conditions: (blue)
x0 = (−0.4, 0.0, 0.0)t, (red) x0 = (−0.1, 0.0, 0.0)t, (green)
x0 = (0.2, 0.0, 0.0)t,(cian ) x0 = (0.5, 0.0, 0.0)t,(yellow)
x0 = (0.8, 0.0, 0.0)t. Projections of the attractors on the planes:
b) (x, y); c) (x, z).

In Figure 3 we can see that for five different initial conditions, the
dynamics of the system remains trapped in a single attractor of the
five attractors coexisting, this depends on the initial condition
is within the attraction basin of one of the five attractors that
coexist. In the graph of the Figure 3 c) we can see how to move the
bifurcation parameter ν such that the stable and unstable manifolds
can be controlled, that is, at the moment trajectory of the system
leaves by the unstable manifolds Wu, the stable manifolds Ws

manages to catch the trajectory to again maintain it within the
domain of the equilibrium point.
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The initial conditions to generate multistability are the same as
those used in the figure 2. Thus the dynamics of the system remain
trapped in some region depending on the initial condition that is
chosen.

CONCLUSION

By using a system of linear differential equations we generate mul-
tistability starting from a totally unstable system. First, we use a
parameter for moving the eigenvalues of the associated matrix and
to obtain a UDS-I system. Next, by means of another parameter
we control the stable and unstable manifolds of the system to catch
the generated trajectory from a given initial condition only in an
attractor.
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Dynamics of Indoctrination in Small Groups around
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ABSTRACT In this work, we consider the dynamics of opinion among three parties: two small groups of
agents and one very persuasive agent, the indoctrinator. Each party holds a position different from that of
the others. In this situation, the opinion space is required to be a circle, on which the agents express their
position regarding three different options. Initially, each group supports a unique position, and the indoctrinator
tries to convince them to adopt her or his position. The interaction between the agents is in pairs and is
modeled through a system of non-linear difference equations. Agents, in both groups, give a high weight to
the opinion of the indoctrinator, while they give the same weight to the opinion of their peers. Through several
computational experiments, we investigate the times required by the indoctrinator to convince both groups.

KEYWORDS

Opinion dynam-
ics
Non-linear
difference-
equations
Indoctrination
Agent-based
model

INTRODUCTION

The dynamics of opinion attempt to understand the processes of
opinion formation in society through the use of different agent-
based models, considering different social networks, different opin-
ion updating rules, and different opinion spaces. To date, there are
many models, and the topic is far from exhausted. Some reviews
of the topic can be found in Noorazar et al. (2020); Dong et al. (2018).
According to Zha et al. (2020), these models can be classified into
two categories depending on whether opinions are discrete or con-
tinuous, and the dynamics associated with them evolve towards
three stable states: consensus, polarization, or fragmentation.

Some models of opinion dynamics have used circles and n-
dimensional spheres to study the formation of consensus and
dissensus (Caponigro et al. 2015; Hegarty et al. 2016; Zhang et al.
2021, 2022). These spaces are very convenient for modeling the
evolution of the preferences of a group of agents around a discrete
set of options. For example, in Medina-Guevara et al. (2017); Med-
ina Guevara et al. (2018), the evolution of preferences around three
political options is considered.The opinion space is considered
being a circle, where the options are separated at the same distance
from each other, and the preference of the agents can freely evolve

Manuscript received: 17 October 2022,
Revised: 13 December 2022,
Accepted: 13 December 2022.

1maria.mguevara@academicos.udg.mx
2evguenii.kourmychev@academicos.udg.mx
3hvargas@culagos.udg.mx (Corresponding author).

from one of them to any other, without approaching the third of
them. For example, assuming that the options are located at the
points 0◦, 120◦ and 240◦; an agent whose preference is 240◦ sup-
ports completely this option, while an agent whose opinion is 60◦

is insecure about the options at 0◦ and 120◦, while completely re-
jects the option at 240◦, this last agent has a diametrically opposed
opinion (its opinion is in the opposed side of the circle, they are
separated 180◦). So, in order to give the agents the knowledge
about where the options are located, a non linear map is used.

For certain values of the maps’s parameter, it introduces three
attractors, one for each option, however, for other values of that
parameter, the map also offer the agents the possibility to reject all
three options, or to manifest doubt when opinion converges with
oscillation to the attractor, or a dilemma when the maps has a 2-
cycle around the option. In this sense it is considered that this map
emulates an internal reflexion process in the agents, allowing them
to update their opinion according with their preferences regarding
those three options.

In this work we use the model presented in Medina-Guevara
et al. (2017), to study the process of indoctrination of a polarized
group, the group is formed by two factions of equal size that
support two different positions, and a highly influential agent, the
indoctrinator, who tries to convince the rest of the agents to adopt a
position different from theirs. As the interaction of the agents is in
pairs, and to have an even number of agents, an additional agent
is considered, who is undecided between the two majority options,
but openly in opposition to the indoctrinator. In this work we use
the term indoctrination in the same way as in Medina-Guevara et al.
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(2019), so it is interpreted as the fact of trying to impose an opinion
different from that of others. That the indoctrinated is influential
is because the other agents give significant weight to his opinion.
While they trust each other equally. Thus, the indoctrinator is an
opinion leader like the one discussed in Boccaletti et al. (2018).

The work is organized in the following way. Section 1 presents
the introduction. Section 2, The mathematical model, introduces
the agent based model used in Medina-Guevara et al. (2017). Sec-
tion 3, Numerical Experiment Settings, considers the initial condi-
tions and settings under which the model emulates the dynamics
of the indoctrination of two small groups that support opposite
positions to those of the indoctrinator. Section 4, Results, presents
the required average times to indoctrinate small groups of agents.
Section 5 presents the conclusions of the work. For convenience
we use both radians and degrees, in this sense radians are used in
Section 2, while degrees are used in Section 3.

THE MATHEMATICAL MODEL

We employ the agent based model given in Medina-Guevara et al.
(2017). In that model, a set of N agents manifest their opinion
with regard to three options, in this sense their opinion space S1

is a circle with the options located at the points: 0 rad, 2π/3 rad,
4π/3 rad. Agents have two attributes their opinion or preference
x, and a personal parameter κ ∈ K = [−1.5, 1.5], that allows them
to have a posture and a behavior regarding those options.

Hence, in order to distinguish these three points in the opinion
space, a non-linear function Ξ : S1 × K → S1 is introduced, it is
defined as:

Ξ(xn, κ) = xn − κ sin(3xn). (1)

For 0 < κ < 2/3, the map xn+1 = Ξ(xn, κ) possesses three at-
tractors in 0, 2π/3, 4π/3, and three repellers in π/3, π, 5π/3,
if −2/3 < κ < 0 the attracting nature of these fixed points re-
verses. The map also possess n−cycles which after a cascade of
bifurcations lead to chaos, see Figure 1.

As it is already mentioned in Medina Guevara et al. (2018), the
parameter κ can be used to model different behaviors in agents
regarding those options. For example, when the preference of the
agent is governed only by this map, and his personal parameter
satisfies 0 < κ < 2/3, the preference of the agent is attracted
to those options, but an agent whose personal parameter satis-
fies −2/3 < κ < 0 rejects the options, and become attracted to
the intermediate postures at π/3 rad, π rad and 5π/3 rad; the
preference of a secure agent, with κ ∈ [0, 1/3], converges with-
out oscillation to the options; but the preferences of a vacillating
agent, the one with κ ∈ [1/3, 2/3] converges with oscillation to
the options; the preferences of an agent whose personal parameter
satisfies −1.045 < κ < −2/3] will evolve into a 2-cycle, a dilemma
where the agent is insecure about two options, consider, for exam-
ple, the case when its preference is initially near π, it will evolve
to be jumping from preferences near 2π/3 to preferences near
4π/3.Perhaps, it is even possible to have agents whose preferences
evolve chaotically in a scenario where information is changing
every moment.

Hence the iterative model is the following:

1. In the first temporal step each agent is assigned an opinion
and a personal parameter κ.

2. In the following steps, arbitrarily chosen pairs of agents inter-
act according to the affinity of their opinions. To do this, an
affinity parameter ϵ is introduced. Depending on how similar
the opinions of the agents are, two different situations are
contemplated:

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
k (rad) 

−1

0

1

2

3

4

5

6

x
 (

ra
d
)

Figure 1 The figure shows the bifurcation diagram corresponding
to the iterated map xn+1 = Ξ(xn, κ), it can be appreciated the
fixed points corresponding to 0, 2π/3 and 4π/3 for 0 < κ < 2/3;
and π/6, π, 5π/3 for −2/3 < κ < 0. Both axis are in radians.
This maps allows the agents to identify three equal options in the
opinion space, as well as to have different behaviors to update their
opinions.

• Agents’ opinions are affine. In this case, |xi
n − xj

n| <
ϵ, the opinions for the (n + 1)th temporal step will be
defined through: xi

n+1 = aiiΞ(xi
n, κi) + aijx

j
n,

xj
n+1 = ajixi

n + ajjΞ(xj
n, κ j),

(2)

where the coefficients aij represent the relative weight
that agent number i grants to the opinion of agent
number j, they satisfied 0 ≤ aij ≤ 1, aii + aij = 1 and
aji + ajj = 1.

• Agents’ opinions are not affine. In this case, |xi
n − xj

n| >
ϵ the agents update their opinions considering only their
individual preferences. Thus, xi

n+1 = Ξ(xi
n, κi),

xj
n+1 = Ξ(xj

n, κ j).
(3)

NUMERICAL EXPERIMENTS SETTINGS

As the initial conditions we consider

1. A small group of N agents formed by one indoctrinator sup-
porting the choice 240◦, two subgroups of equal size, the
first one supporting choice 0◦ and the second one supporting
choice 120◦, and an indecisive agent with a posture 60◦ be-
tween those of the two subgroups. We consider group sizes
N = 4, 6, 8, ..., 22.

2. We consider an affinity ϵ = 120◦, which prevents the indoc-
trinator to interact with the indecisive agent, notice that this
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last agent has a diametrally opposed preference to that of the
indoctrinator.

3. In order to have a very persuasive indoctrinator, agent number
1, we consider that all agents grant to her (or his) opinion a
great relative weight,

a11 =
a

1 + a
, a1i =

1
1 + a

, (4)

ai1 =
a

1 + a
, aii =

1
1 + a

(5)

where a > 1 and i = 2, 3, ..., N. While among themselves, they
give each other the same weight.

aii =
1
2

, aij =
1
2

, (6)

aji =
1
2

, ajj =
1
2

, (7)

here i, j ̸= 1.

4. To measure the indoctrinator’s convincing power we use a
quantity defined in Medina-Guevara et al. (2019), the charisma,
it is defined as in the following manner:

ηij =
aij

aii
, (8)

hence de charisma of the jth-agent as perceived by the ith-
agent is simple the ratio of the relative weight of that agent rel-
ative to his own weight, for example, the perceived charisma
of the indoctrinator is the number ηi1 = a for i ̸= 1, while
that of any other agent is ηij = 1 for i, j ̸= 1. We will consider
indoctrinators with a ∈ {2, 3, 4, 5, 10}.

5. For simplicity, we consider a fixed value of the agents’ param-
eter κi, we choose κi = 28◦.

RESULTS

After performing 100 computational experiments for each of the
above settings, we have the following results:

1. Table 1 presents the average number, T̄ and the standard devi-
ation, σ, of the temporal steps (computational cycles) required
by a given indoctrinator to convince the groups of agents of
her (or his) posture. There were cases when the indoctrina-
tor was unable to convince the whole group, in those cases a
dash is reported on the table. In all cases, the average number
of cycles grows with the size of the group. Hence relatively
large groups of equally trusting agents become immune to be
convinced of a different posture.

2. Table 2 reports the minimum number of cycles, found among
each series of 100 computational experiments, to indoctrinate
the full group, this table shows that for some relatively large
groups, and in a few cases, an indoctrinator is still able to
convince the group. For example, for a group of 20 agents
(including the indoctrinator), an indoctrinator of charisma
10 convinced the group in 55 cycles, although the average
number of cycles found for this case was 2638 cycles.

3. Table 3 reports the maximum number of cycles to indoctrinate
the full group, these are the maximum number of cycles found
among each series of 100 computational experiments. The
dashes correspond to the cases when the indoctrinator was
unable to convince the group.

4. Table 4 reports the cases when the indoctrinator was con-
vinced of a different posture. For example, an indoctrina-
tor of charisma 2 is always convinced of a different posture
by groups of 12 or more agents. While an indoctrinator of
charisma 3, was convinced by groups of 12, 14 or 16 agents
in few cases; but it always was convinced by groups of 18 or
more agents. Indoctrinators with charisma 4 or greater are
not persuaded to change their opinion.

In Figures 2(a) and 2(b), just to illustrate the dynamics, we
present two examples of the time evolution of the preferences
of groups of 16 agents under the presence of an indoctrinator
of charisma 10, Figures 2(c) and 2(d) present the evolution of
the number of agents in each of the basin options: The number
of agents in basin (−300◦, 60◦) are represented by the red line,
agents in basin (60◦, 180◦) by the blue line, and agents in the basin
(180◦, 300◦) by the green line.

(a) (b)
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Figure 2 Figures (a) and (b) show the evolution of the opinion pref-
erences of a group of 16 agents. Initially, there are two subgroups
each one in a consensus around opinions 0◦ and 120◦, an indeci-
sive agent between those two postures with a 60◦ opinion, and in-
doctrinator with charism 10 suporting opinion 240◦. Here t denotes
the number of cycles, and x the preference regarding the options. In
Figure 2(a) the group is indoctrinated after 33 cycles while in Figure
2(b) the group is indoctrinated after 91 cycles. Notice that on fig-
ures 2(a) and 2(b), the values 0◦ and 360◦ should be identified, the
graphic is on a cylinder. Figures 2(c) and 2(d) show the evolution of
the agent numbers in each attraction basin. Respectively, red, blue
and green lines represents the number of agents in the basin corre-
sponding to the attractors 0◦, 120◦ and 240◦. Figure 2(c) correspond
to the time series 2(a), while 2(d) to 2(b).
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■ Table 1 Average indoctrination time and standard deviation vs group size for different charismatic indoctrinators

charisma 2 3 4 5 10

Agents T̄ σ T̄ σ T̄ σ T̄ σ T̄ σ

4 17.29 5.56 13.94 3.27 13.8 3.3 13.86 2.88 13.96 5.15

6 22.92 6.29 21.96 5.41 20.75 4.96 19.86 4.62 19.73 3.80

8 33.91 4.56 31.72 6.30 27.90 5.34 27.18 5.40 26.12 4.46

10 30.6 3.61 49.35 12.71 35.82 6.96 32.91 5.62 31.08 5.74

12 - - 230.63 227.65 55.27 23.39 45.07 13.36 37.38 7.33

14 - - - - 137.89 79.56 68.27 29.86 51.77 14.61

16 - - - - 1412.43 1398.77 252.45 196.98 79.05 36.17

18 - - - - 48676 55111 3604 3854 256.8 203.73

20 - - - - - - 114712 101086 2638 2535

22 - - - - - - - - 63464 54877

■ Table 2 Minimum time for indoctrination vs group size for
different charismatic indoctrinators

XXXXXXXXXAgents
Charisma

2 3 4 5 10

4 8 8 8 7 8

6 14 11 13 11 12

8 27 14 18 14 17

10 25 25 23 24 22

12 - 23 28 20 19

14 - 31 29 29 29

16 - 19347 39 27 26

18 - - 673 94 45

20 - - - 1388 55

22 - - - - 383

■ Table 3 Maximum time for indoctrination vs group size for
different charismatic indoctrinators

XXXXXXXXXAgents
Charisma

2 3 4 5 10

4 32 23 25 23 50

6 47 39 41 32 29

8 43 53 43 43 37

10 35 98 49 51 45

12 - 1614 192 113 58

14 - - 436 174 104

16 - - 6448 1088 230

18 - - 419114 24151 1119

20 - - - 291994 11328

22 - - - - 250165
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■ Table 4 Indoctrinator is convinced by the group in less than
100 cycles

```````````Agents
Charisma

2 3

4 6 % 0 %

6 64 % 0 %

8 89 % 0 %

10 95 % 0 %

12 100 % 1 %

14 100 % 3 %

16 100 % 3 %

18 100 % 9 %

20 100 % 9 %

22 100 % 24 %

CONCLUSIONS

In this paper, we have used the model proposed in Medina-
Guevara et al. (2017) to investigate the influence of an indoctrinator,
a very persuasive agent, on a polarized group made up of two
factions of equal size. Each faction supports a unique position
than the indoctrinator does. In this sense, the opinion space is a
circle where the agents express their preferences regarding three
equidistant options. To distinguish these options on the circle, the
model employs a system of difference equations that introduces
three attractors, which are then identified with the options. The
interaction between the agents is in pairs, which is why it is neces-
sary to have an even total number of agents, so we introduce an
undecided agent between the two factions to complete that even
number of agents.

Following Medina-Guevara et al. (2019), to ensure that the in-
doctrinator is a very persuasive agent, we have made all agents
in the group give a high weight to his opinion. While, among
themselves, the agents give the opinion of their peers the same
weight that they give to their own. To measure the persuasive
strength of the indoctrinator, the definition of charisma was also
adopted, which is the ratio between the weights mentioned, see
eq. (8).

In the model, each faction of agents has the possibility to con-
vince its members back, as well as to persuade the others to adopt
its position. So groups can offer resistance to changing their minds.

From the results shown in the previous section, it can be seen
that:

1. The average number of temporal steps to indoctrinate a group
grows with the size of the group, indeed large groups become
immune to the indoctrinator’s attempts to persuade them, as
long as its agents are free to interact with any other agent in
the group.

2. Uncharismatic indoctrinators can be convinced to take the

stance of the winning faction.

3. Very charismatic indoctrinators are stubborn and cannot be
persuaded to adopt a different opinion, no matter how large
groups they interact with.
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ABSTRACT It is widely known that an appropriately built unpowered bipedal robot can walk down an inclined
surface with a passive steady gait. The features of such gait are determined by the robot’s geometry and
inertial properties, as well as the slope angle. The energy needed to keep the biped moving steadily comes
from the gravitational potential energy as it descends the inclined surface. The study of such passive natural
motions could lead to ideas for managing active walking devices and a better understanding of the human
locomotion. The major goal of this study is to further investigate order, chaos and bifurcations and then to
demonstrate the complexity of the passive bipedal walk of the compass-gait biped robot by examining different
bifurcation diagrams and also by studying the variation of the eigenvalues of the Poincaré map’s Jacobian
matrix and the variation of the Lyapunov exponents. We reveal also the exhibition of some additional results
by changing the inertial and geometrical parameters of the bipedal robot model.

KEYWORDS
Compass biped robot
Passive dynamic
walking
Poincaré map
Characteristic multipli-
ers
Complexity
Chaos
Bifurcations
Bubbles
Lyapunov exponents

INTRODUCTION

The history of chaos theory began more than a century ago, in 1900,
when mathematicians like Henri Poincaré studied the intricate
motions of moving bodies (Walter 2014). Edward Lorenz finds the
first chaotic weather system, sometimes known as an odd attractor,
at the start of the 1960s. The paper “Period three indicates chaos”
was an article written by Tien-Yien Li and James A. Yorke in 1975
that first used the word chaos (Li and Yorke 2004). And in 1990,
James A. Yorke, Edward Ott, and Celso Grebogi introduced the
idea of controlling chaos (Grebogi et al. 1997; Ott et al. 1990). The
first application of chaos is the management of erratic behavior in
systems and circuits (Andrievskii and Fradkov 2003, 2004). More
applications and methods for analyzing and controlling chaos in
engineering systems can be found for example in (Andrievskii and
Fradkov 2003, 2004; Boccaletti et al. 2000; Fradkov and Evans 2005;
Fradkov et al. 2006; Guanrong 2021; Harrison et al. 2022; Sprott
2020; Xiaoting et al. 2022; Yang and Zhou 2014).
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There are many applications for chaos (Andrievskii and Frad-
kov 2004; Boubaker and Jafari 2019; Grassi 2021; Jun 2022), but
a few come to mind, such as in the engineering (Vibration con-
trol and circuit stabilization) (Akgul et al. 2016; Azar et al. 2017;
Jimenez et al. 2009; Volos et al. 2017; Yang and Zhou 2014), in the
computers (Encryption and packet switching in computer net-
works) (Beritelli et al. 2000). Additionally, in the world of medicine,
there are techniques for analyzing heart rhythms (Ferreira et al.
2011), environment study (Aricioğlu and Berk 2022), enzyme-
substrate reactions in a brain waves model via a biological snap
oscillator (Vaidyanathan et al. 2018), predicting irregular heart-
beats (Firth 1991), observation of performance of asynchronous
machine (Öztürk 2020), stepper motor (Miladi et al. 2021), and
controlling them. Moreover, in the field of mechanics and robotics,
there are some applications of chaos in complex systems like the
mechanical oscillators (Buscarino et al. 2016; Gritli and Belghith
2018a; Khraief Haddad et al. 2017), the mobile robots (Sambas
et al. 2016; Vaidyanathan et al. 2017; Volos et al. 2012, 2013), and
also the bipedal walking robots (Gritli and Belghith 2017a, 2018b;
Iqbal et al. 2014; Montazeri Moghadam et al. 2018). The chaotic
systems have been considered as important and attractive areas of
research that have constantly evolved over the years which have
an unpredictable behavior while changing the some parameters.
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For a few years, the scientific community’s and manufactur-
ers’ interest in mobile robotics has not waned. This sort of robot
has a wide range of uses. There are primarily service robotics
jobs (manoeuvrings, package distribution, and so on), as well as
monitoring or obtaining information on the task environment of
manufacturing carried out in a hostile or dangerous setting for
humans (Bekey and Goldberg 2012).

In light of this, legged mobile robots have a lot of promise. The
fundamental reason is that the employment of paws increases a
mobile robot’s overall mobility (Chevallereau et al. 2009; Goswami
and Vadakkepat 2019; Meng and Song 2022). Indeed, only specif-
ically equipped sites (roads, corridors, platforms) or areas with
low inclination are accessible to a wheeled or tracked robot (fields,
orchards). In steep situations, locations packed with obstructions
on the ground, or urban spaces meant for people (issues with stairs,
doorsteps, and side-walk), the legs are the optimum mode of loco-
motion. On rough floors, using the legs provides for a smoother
movement and better performance than using the wheels (Meng
and Song 2022).

Walking is a mode of locomotion for the lower limbs (the legs)
of the body during which the subject always has at least one foot
on the ground. This locomotion type gives birth to an alternation
between the phase of simple support (one foot on the ground) and
the phase of double support (two feet on the ground). Among
biped walking mammals, human is the only one to adopt the erect
attitude as its natural position that we want to imitate. Walking
robots come in a variety of shapes and sizes: bipeds (Chevallereau
et al. 2009; Reher and Ames 2021; Westervelt et al. 2007) and hu-
manoids (Goswami and Vadakkepat 2019), etc.

McGeer developed a type of walking robots called passive dy-
namic walkers in the 1990s that can walk steadily down a slope
without the aid of any actuators (McGeer 1990). In a lot of cases,
impulsive hybrid nonlinear dynamics are used to describe bipedal
walking robots (Chevallereau et al. 2009; Grizzle et al. 2001; West-
ervelt et al. 2007). Here, we are referring to impulsive mechanical
systems that make stiff or even jarring interactions with particular
surfaces. Using a biped robot that resembles a human is important
to accurately examine the walking phenomenon. Particularly, ar-
ticulated mechanical systems that experience collisions with the
walking surface are designated as bipedal robots (Chevallereau
et al. 2009; Westervelt et al. 2007).

In the present research work, we are interested in passive biped
robots, and specially the compass-type bipedal robot, which is the
simplest device that can more faithfully replicate human walking
(Collins et al. 2005; Deng et al. 2017; Garcia et al. 2000, 1998; Kuo
2007; Miladi et al. 16-19 March 2015). It consists of two rigid legs
with no knees and ankles, and it produces punctual contacts with
the ground while walking.

The walk of a bipedal robot is modeled by a hybrid impulsive
nonlinear dynamics (Fathizadeh et al. 2019; Goswami et al. 1998;
Iqbal et al. 2014), which is considered complex and which can gen-
erate periodic cycles, quasi-periodic behaviors, chaotic motions
and several types of bifurcation, including the period-doubling
bifurcation, the cyclic-fold bifurcation, and the Neimark-Sacker
bifurcation (called also the torus bifurcation), as for example in
(Added and Gritli 2022, 2023; Added et al. 2021a,c; Fathizadeh et al.
2018; Goswami et al. 1998; Gritli and Belghith 2016a,b, 2017a,b,
2018b; Gritli et al. 2012, 2011, 2018; Jun 2022; Makarenkov 2020;
Montazeri Moghadam et al. 2018; Nourian Zavareh et al. 2018).
The existence and study of the period-doubling bifurcations ex-
hibited in the biped robots’ walking has been widely realized in
the literature using the principle of Poincaré maps and also by

determining its analytical expression like in (Znegui et al. 2020a,
2021) and also by using it in the chaos control (Znegui et al. 2020b).
In (Added and Gritli 2022, 2023; Added et al. 2021b), a further
study of the period-doubling bifurcations and their route to chaos
has been realized. Moreover, in (Added and Gritli 2022), the nu-
merical proof of the existence of the Neimark-Sacker bifurcation
in the passive compass-gait bipedal robot has been achieved. The
existence of such bifurcation has been demonstrated via only one
set of parameters of the compass robot. In (Added et al. 2021a), an
additional study of the complex motions of the passive bipedal
gait of the compass walker has been realized using mainly bifurca-
tion diagrams. Some unforeseen behaviors like the bubbles have
been developed. A study of these behaviors and other motions
including chaos, bifurcations and chaos in bubbles, has been also
presented in (Added et al. 2021c).

The objective of this work is to further investigate the passive
dynamic walking of the compass-type bipedal robot by mathemat-
ically modeling this dynamics for both phases: the swinging phase
and the simple support phase, and simulating it numerically in
order to observe the different complex behaviors. However, faced
to the complexity of this task by observing chaos and bifurcations
that appear for certain modification of the biped robot’s parame-
ters that has been recently started in (Added and Gritli 2022, 2023;
Added et al. 2021a,b,c), then a thorough analysis of gait stability of
the biped robot is necessary to proceed with and hence develop the
analysis of this type of legged walking bipedal robots. We are then
going to highlight the diversity of the complex behaviors covered
by the fact of walking passively down sloped surfaces.

In previous articles, we have presented a variety of control
methods based on tracking the passive dynamic walking and
tracking a certain created trajectory with spline or Bezier func-
tions (Added and Gritli 2020a,b; Added et al. 2021b, 2022a,b) to
control the chaotic behavior in the bipedal walking of the compass-
gait walker. Some other techniques like the OGY control and the
delayed-feedback control methods have been widely employed for
the suppression of chaos (Gritli et al. 2015, 2013; Iqbal et al. 2014;
Znegui et al. 2020b).

Additionally, in order to analyze the walking behavior of the
biped robot, it is crucial to apply the Poincaré map approach to
determine therefore the fixed point for each walking gait due to
the complexity of the impulsive hybrid nonlinear dynamics. By
simulating this complex dynamics, an analysis of the behavior
of the bipedal walking of the compass robot will be achieved by
modifying its inertial and geometrical parameters and also the
slope angle of the walking surface. Such analysis will be realized
by means of the bifurcation diagrams that will reveal the presence
of the period-doubling bifurcation, the Neimark-Sacker bifurcation,
the cyclic-fold bifurcation and chaos. In addition, our analysis of
the passive bipedal walking will be carried out by drawing the
attractors in the phase planes and via the Poincaré section, and
also by drawing the tendency of the eigenvalues of the Jacobian
matrix of the Poincaré map. Some novel complex behaviors will
be revealed in the bifurcation diagrams.

Our main contributions in this paper are summarized as fol-
lows:

• Analysis of chaos and bifurcations in the impulsive hybrid
nonlinear dynamics of the passive dynamic walking of the
compass bipedal robot under variation of two (bifurcation)
parameters, namely the slope angle of the inclined walking
surface and the length of the lower-half segment.

• Analysis and demonstration, via bifurcation diagrams, of
existence of some period-doubling routes to chaos, period-
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remerging scenario and bifurcation of bubbles (period bub-
bling).

• Investigation of the different motions by plotting and studying
the resulting attractors in the phase planes and the Poincaré
sections.

• Study of the stability of the period-1 walking gaits of the
compass bipedal robot via the eigenvalues of the Jacobian
matrix of the Poincaré map, and hence study of the occurrence
of the period-doubling bifurcation and the Neimark-Sacker
bifurcation.

• Use of the spectrum of Lyapunov exponents in the analysis
of the scenario of period-doubling route to chaos. This study
will be realized for only one case of the bifurcation diagram
by varying only one parameter: the slope angle.

The remaining structure of this paper is as follows. A quick
introduction of the compass-type bipedal robot and the mathe-
matical model of its walking phases can be found in the second
section. Then, by describing the Poincaré map approach in the
third section for the localization of the period-1 fixed points, we
will be interested in the hunting of a one-periodic bipedal walk
of the compass robot using. The bifurcation diagrams and the
analysis of various attractors in the fourth section are used to offer
a study of the compass-type bipedal gait and to show the novel
exhibited complex walking behaviors. The conclusion and a few
upcoming projects are covered in the fifth and last Section.

PASSIVE DYNAMIC WALKING OF THE COMPASS BIPEDAL
ROBOT

Geometric structure of the compass robot
Figure 1 shows a graphical presentation of the compass-gait biped
robot, with Table 1 listing the significant parameters in the dynam-
ics description. This biped robot is a type of rigid mechanical sys-
tem with unilateral configuration space constraints (Chevallereau
et al. 2009; Gritli et al. 2013; Westervelt et al. 2007).

The compass-type bipedal robot is made up of two legs that
are exactly identical: a right leg and a left leg, as well as a fric-

Figure 1 The passive compass bipedal robot walking down an in-
clined surface of angle φ. Here, θs and θns stand respectively for the
support angle of the support/stance leg, and the nonsupport angle
of the swing leg. These angles are defined with regard to the vertical
lines. Moreover, the positive angles are calculated in the counter-
clockwise direction.

■ Table 1 Significant parameters used in the dynamics de-
scription of the passive compass-type biped walker.

Notation Value Unit

a 0.5 m

b 0.5 m

l 1 m

m 5 Kg

mh 10 Kg

g 9.8 ms−2

tionless hip that connects the two legs. The two legs are depicted
as stiff bars without knees and ankles. The mass m of each leg is
concentrated at a distance b from the mass mh of the hip.

The compass robot performs a passive walk without any exter-
nal activity and relies solely on gravity for a suitable initial state
and a corresponding slope φ. The passive walk of the compass
robot contains two phases: a swing phase and a double-support
phase or impact phase, which is a very fast transition phase. The
compass-type bipedal robot can be modeled as a double pendulum
in the first case with the stance leg stationary on the ground as
a pivot and the other leg swinging above the ground as it walks
down the hill. When the swing leg reaches the ground, the impul-
sive transition phase begins (and occurs instantaneously). As a
result, the prior support leg departs the ground, and hence a new
swing phase is developed.

We assume that the impact is totally inelastic and that there is
no sliding at the point of contact between the leg and the ground
(Gritli et al. 2015; Znegui et al. 2020a). In Figure 1 and in the sequel,
θs is the angle of the support leg, whereas θns is the angle of the
swing leg. These two angles establish together the compass walk
configuration. Note that positive angles are computed counter-
clockwise.

Modeling of the bipedal walk of the compass robot
The hybrid model of the compass-gait biped robot’s passive dy-
namic walking combines of the nonlinear differential equation (3)
for the swing phase and the nonlinear algebraic equation (7) for
the impact phase.

Swing phase dynamics
Let q = [θns θs]T be the compass-gait biped robot’s vector of
generalized coordinates. According to (Znegui et al. 2020a), only
one natural unilateral restriction is applied to this biped robot,
namely

L1(q) = θns + θs + 2φ ≥ 0 (1)

which corresponds to the distance between the hip of the swing leg
and the ground. Thus, this constraint (1) represents the situation
where and when the swing leg is upper the ground. This ensures
that during bipedal walking, the unilateral restriction L1 ≥ 0 is
always satisfied.

The motion of the compass-gait biped robot can be defined as
follows, by considering some basic assumptions (Gritli et al. 2015;
Znegui et al. 2020a). Indeed, during the swing phase, we employ

248 | Added et al. CHAOS Theory and Applications



the Euler-Lagrange method to determine the biped robot’s dy-
namic model. The following is the expression for Euler-Lagrange
equation for an uncontrolled robotic system, and therefore for the
passive compass bipedal robot.

d
dt

∂L(q, q̇)
∂q̇

− ∂L(q, q̇)
∂q

= 0 (2)

From this previous expression (2), we get the following nonlin-
ear differential equation:

M(q)q̈ +H(q, q̇)q̇ + G(q) = 0 (3)

where M(q) is the inertia matrix:

M(q) =

 mb2 −mlb cos(θs − θns)

−mlb cos(θs − θns) (m + mh)l2 + ma2

 (4)

the matrix H(q, q̇) includes Coriolis and centrifugal forces:

H(q, q̇) =

 0 mbl sin(θs − θns)θ̇s

−mbl sin(θs − θns)θ̇ns 0

 (5)

and G(q) is the vector of gravitational torques:

G(q) =

 −gmb sin(θns)

g [(m + mh)l + ma] sin(θs)

 (6)

It is worth noting that the control input, saying u, in the non-
linear dynamics (2) of the bipedal walking of the compass biped
robot was not introduced, and then it is zero, u = 0. As a result,
the compass bipedal robot is not controlled, and the swing phase,
and consequently the complete bipedal walking, is hence entirely
passive

Impact phase dynamics
The angular momentum conservation approach is used to de-
termine the dynamics of the impact phase (Added et al. 2021b;
Goswami et al. 1996, 1998). For this, we will use the two signs "+"
and "−" that will be placed to the right of a variable to refer to the
value of that variable, respectively, just after and just before the
impact of the biped robot’s swing leg with the ground.

The impact phase begins when the swing phase ends, which
occurs when the compass walker’s swing leg makes contact with
the walking surface. When the swing leg encounters the walking
surface, the angular momentum is conserved according to the
following algebraic equation (Added et al. 2021b; Goswami et al.
1996, 1998):

Q+(q+)q̇+ = Q−(q+)q̇− (7)

with q̇+ and q̇− are the angular velocities just after and just before
the impact, where:

Q+(q) =

 mb(b − l cos (θs − θns))

mb2

ma2 + mhl2 + ml(l − b cos (θs − θns))

−mlb cos (θs − θns)

 (8)

and

Q−(q) =

 −mab l (mhl + 2ma) cos (θs − θns)− mab

0 −mab

 (9)

Furthermore, when the impact with the ground occurs, a switch-
ing between the two legs happens. This situation is described by
means of the following relation:

q+ = Rq− (10)

where R is a constant matrix and is defined like so:

R =

 0 1

1 0

 (11)

Relying on expressions of matrices Q−(q) and Q−(q), and by
taking into consideration expressions (10) and (11), it is easy to
demonstrate that the relation (7) can be recast as follows:

q̇+ =
{
Q+(q−)

}−1 Q−(q−)q̇− (12)

Impact conditions
According to the results in (Znegui et al. 2020a) and relying on the
unilateral constraint (1), we can note the following condition:

L1(q) = 2φ + θs + θns = 0 (13)

which is the first impact condition and which reveals the case
where the swing leg hits the walking surface.

Moreover, to ensure that the impact with the walking surface
happens, we should add the following condition:

L2(q, q̇) =
dL1(q)

dt
=

∂L1(q)
∂q

q̇ < 0 (14)

which is the second impact condition revealing the case where the
swing leg descends towards the walking surface.

In addition, in order to guarantee that the impact occurs after a
complete swing phase, we add the following inequality constraint

L3(q) = sin(θns)− sin(θs) > 0 (15)

which is the third impact condition defining the case where the
swing leg is opposite to (or it is in front of) the support leg.

Then, by arranging the previous expressions (13), (14) and (15),
the impact conditions of the swing leg with the walking surface
are defined by the following set:

L1(q) = 2φ + θns + θs = 0

L2(q, q̇) = ∂L1(q)
∂q q̇ < 0

L3(q) = sin(θns)− sin(θs) > 0

(16)

Complete dynamic model
The continuous dynamics presented in (3), the discrete dynamics
presented in form of the two algebraic equations (12) and (10),
and the set of impact conditions (16) form together the impulsive
hybrid nonlinear dynamics of the passive dynamic walking model
of the compass biped robot. Let x = [q q̇]T be the state vector.
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Then, these previous expressions are grouped together to form the
following impulsive hybrid nonlinear model:ẋ = f (x) if x ∈ Ω

x+ = h(x−) if x ∈ ∆
(17)

whereΩ = {x ∈ R2n : L1(x) > 0}

∆ = {x ∈ R2n : L1(x) = 0;L2(x) < 0;L3(x) > 0}
(18)

where here n = 2, and in (17),

f (x) =

 q̇

−M−1(q) (H(q, q̇)q̇ + G(q))

 (19a)

h(x) =

 Rq{
Q+(q)

}−1 Q−(q)q̇

 (19b)

Moreover, it is straightforward to show that the functions L1(x)
and L2(x) are expressed like so:

L1(x) = C1x + 2φ (20a)

L2(x) = C2x (20b)

where

C1 =

[
1 1 0 0

]
(21a)

C2 =

[
0 0 1 1

]
(21b)

In addition, it is easy to show that the function L2(x) is equiva-
lent to:

L2(x) = C1 ẋ (22)

IDENTIFICATION AND STABILITY OF THE ROBOT BIPED’S
PERIODIC MOVEMENT

In this section, we will develop expressions of the fundamental
solution matrix, the jump matrix, and the monodromy matrix, and
use them to find a fixed point of the periodic movement of the
compass-type bipedal robot.

Fundamental solution matrix
The first equation in the hybrid impulsive dynamic model (17)
results from continuous behavior, whereas the second equation
results from the discrete behavior. We consider first the nonlinear
differential equation ẋ = f (x), which proposes as a solution, which
is expressed in terms of flow, defined like so:

x(t) = ϕ(t, x0) (23)

and x0 = ϕ(t0, x0), to be the initial condition.
It is simple to show that:

ẋ = f (x(t)) =
dx(t)

dt
=

dϕ(t, x0)

dt
(24)

Then, it is possible to write the following expressions:ϕ̇(t, x0) = f (ϕ(t, x0))

ϕ(t0, x0) = x0

(25)

The derivative of these previous expressions in (25) with respect
to the initial condition x0, yields:

∂ϕ̇(t,x0)
∂x0

=
∂ f (ϕ(t,x0))

∂x
∂ϕ(t,x0)

∂x0

∂ϕ(t0,x0)
∂x0

= I2n

(26)

where here and in the sequel I2n stands for the identity matrix
with dimension (2n × 2n).

We pose Φ(t, x0) to be the fundamental solution matrix, which
is expressed as follows:

Φ(t, x0) =
∂ϕ(t, x0)

∂x0
(27)

Then, the derivative of this matrix with respect to time leads to
the following expression:

Φ̇(t, x0) =
∂ϕ̇(t, x0)

∂x0
(28)

Therefore, we can write the model (26) as follows:Φ̇(t, x0) = J (x)Φ(t, x0)

Φ(t0, x0) = I2n

(29)

where J (x) is the Jacobian matrix of the nonlinear function f (x),
and is defined like so:

J (x) =
∂ f (ϕ(t, x0))

∂x
(30)

The fundamental solution matrix Φ(t, x0) is simple to calculate
for continuous systems. However, its calculation is quite difficult
for systems that are discontinuous or even show discontinuities,
such as the impulsive hybrid dynamic systems as our biped robot’s
case. This problem to solve calls for the calculation of the jump
matrix, as it will be explained in the next paragraph.

Jump matrix
The biped robots exhibit discontinuities as a result of the impact
event in the Jacobian matrix during the transition of the state vector
that results in a discontinuity or even a jump in the fundamental
solution matrix Φ(t, x0).

Let pose Φ+(t, x0) to be the fundamental solution matrix im-
mediately after the impact, and Φ−(t, x0) to be the fundamental
solution matrix immediately before the impact. The relation be-
tween Φ+(t, x0) and Φ−(t, x0) is obtained by means of the jump
matrix S(x(τ+), x(τ−)), as follows:

Φ+(t, x0) = S(x(τ+), x(τ−))Φ−(t, x0) (31)

Therefore, finding expression of the jump matrix
S(x(τ+), x(τ−)) is our goal in the next part.

Let posing for simplicity x(τ+) = x+ and x(τ−) = x− with τ+

and τ− are the moments right after and right before the impact.
Moreover, we pose f+ to be the vector f immediately after the
impact, and f− to be the vector f immediately before the impact.
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For simplicity, let us use in the next the following notations:

Φ+ = Φ(τ+, x0)

Φ− = Φ(τ−, x0)

f+ = f (x(τ+))

f− = f (x(τ−))

(32)

As the flow ϕ(t, x0) depends on t and x0, it is then easy to write
the following expression:

dϕ(t, x0) =
∂ϕ(t, x0)

∂x0
dx0 +

∂ϕ(t, x0)

∂t
dt (33)

Thus, we can write the relation:

dϕ(t, x0)

dx0
=

∂ϕ(t, x0)

∂x0
+

∂ϕ(t, x0)

∂t
dt

dx0
(34)

Let us consider expressions (24) and (27), and posing τx0 =
dt

dx0
.

Then, relation (34) can be reformulated as follows:

dϕ(t, x0)

dx0
= Φ(t, x0) + f (ϕ(t, x0))τx0 (35)

Then, we can write for t = τ− and t = τ+, the following
expressions: 

dx(τ−)
dx0

= Φ(τ−, x0) + f (x(τ−))τx0

dx(τ+)
dx0

= Φ(τ+, x0) + f (x(τ+))τx0

(36)

Then, using notation (32), expressions in (36) become:
dx−

dx0
= Φ− + f−τx0

dx+

dx0
= Φ+ + f+τx0

(37)

According to the second equation of the model (17), we have
x+ = h(x−). Then, it follows that:

dx+

dx0
=

dh(x−)
dx0

=
∂h(x−)

∂x−
dx−

dx0
(38)

We pose h−x = ∂h(x−)
∂x− . Then, relation (38) is rewritten like so:

dx+

dx0
= h−x

dx−

dx0
(39)

Therefore, based on the two results in (37), we can write from
relation (39), the following expression:

Φ+ + f+τx0 = h−x (Φ
− + f−τx0 ) (40)

According to the first impact condition in the set ∆ in (18), we
can write the following expression:

∂L1(x−)
∂x−

dx−

dx0
= 0 (41)

Using expression (20a), and according to (41), it follows that:

C1
dx−

dx0
= 0 (42)

Therefore, relying on the first relation in (37), we obtain from
the previous relation (42), the following expression:

C1(Φ− + f−τx0 ) = 0 (43)

Relying on the dynamics of the swing phase (24), we have:

C1 f− = C1 ẋ− (44)

Moreover, relying on expression (22), it follows that (44) is recast
like so:

C1 f− = L2(x−) (45)

Then, according to the impact conditions describing the set ∆
in (18), and then by considering the second condition L2(x) < 0,
we obtain hence the following inequality:

C1 f− < 0 (46)

Accordingly, by taking into account this previous condition (46),
and from the relation (43), expression of the quantity τx0 is defined
as follows: :

τx0 =
−C1
C1 f−

Φ− (47)

Hence, based on the equations (40) and (47), we can write the
following relation:

Φ+ = (h−x − (h−x f− − f+)C1
C1 f−

)Φ− (48)

Therefore, compared to relation (31), the following expression
describes the jump matrix:

S(x+, x−) = h−x − (h−x f− − f+)C1
C1 f−

(49)

Monodromy matrix
Let the set or hyperplan ∆ describes our choice of the Poincaré
section. Starting from the initial condition x0 (x0 ∈ ∆), then the
system trajectory will return to the Poincaré section ∆. The time
required between two consecutive intersections with the Poincaré
section is Tr(x0), which is called as the return time to the Poincaré
section. For a one-periodic trajectory, the return time is the same
as the period of the trajectory, and it defines the step period of the
walking gait of the compass bipedal robot.

It is important to note that since the impact of the swing leg of
the robot with the walking surface is instantaneous, then we can
write the following relation:

Tr(x0) = τ+ = τ− (50)

For a 1-periodic trajectory and according to the equation (31),
the monodromy matrix, namely Φ+, is defined by the following
relation:

Φ+ = S(x+, x−)Φ− (51)

where:

Φ− = Φ(Tr(x0), x0) =
∂ f (ϕ(t, x0))

∂ϕ(t, x0)

∣∣∣∣
t=τ−

(52)

Notice that Φ(Tr(x0), x0) is the fundamental solution matrix
Φ(t, x0), which is the solution of the differential system (29), and
evaluated at the first return time Tr(x0). Then, we stress that the
fundamental solution matrix Φ(t, x0) depends on the values of
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the state vector x just before (x−) and just after (x+) the impact
event. These two states x− and x+ are completely different, and
hence they will give us two different values of the fundamental
solution matrix Φ(t, x0) at the impact that are related via relation
(48). Therefore, this sudden and non-continuous change in values
of the fundamental solution matrix causes a discontinuity.

It is worth to mention that the search for the one-periodic
walk for the compass-type biped robot lies in the search for a
one-periodic fixed point of the period-1 limit cycle.

Finding a period-1 fixed point
The period-1 fixed point is the solution of the following equation:

F (x0) = P(x0)− x0 = ϕ(Tr(x0), x0)− x0 = 0 (53)

To determine the solutions of this equation (53), we use the nu-
merical Newton-Raphson algorithm. We choose an initial estimate
of x0 as an initial condition, then we iterate the Poincaré map only
once to find the flow ϕ(τ+, x0).

Algorithm
The search algorithm for a period-1 fixed point is based on the
following iterative scheme:

xk+1
0 = xk

0 −
{
DF (xk

0)
}−1

F (xk
0) (54)

where DF (xk
0) is the Jacobian of the function F presented in the

equation (53).
The algorithm stops when the norm of F (xk

0) will be lower than
a certain fixed threshold.

Expression of the Jacobian matrix DF (x0)
To solve the equation (54), the Jacobian matrix DF (xk

0) must be
first calculated. This matrix is defined by the following expression:

DF (x0) =
dF (x0)

dx0
(55)

Then, using relation (53), we have:

DF (x0) =
d

dx0
(ϕ(Tr(x0), x0)− x0) (56)

Thus, we obtain the following expression:

DF (x0) =
dϕ(Tr(x0), x0)

dx0
− I2n (57)

Expression of the quantity d
dx0

ϕ(Tτ(x0), x0)

Relying on expression (33), we can write the following relation:

dϕ(Tr(x0), x0) =
∂ϕ(Tr(x0), x0)

∂x0
dx0 +

∂ϕ(Tr(x0), x0)

∂Tr(x0)
dTr(x0)

(58)

Then, we obtain the following expression of the quantity
dϕ(Tτ(x0),x0)

dx0
:

dϕ(Tτ(x0), x0)

dx0
=

∂ϕ(Tτ(x0), x0)

∂x0
+

∂ϕ(Tτ(x0), x0)

∂Tτ(x0)

dTr(x0)

dx0
(59)

The previous expression can be rewritten like so:

dϕ(Tτ(x0), x0)

dx0
= Φ(Tτ(x0), x0) + f (x(Tr(x0)))

dTr(x0)

dx0
(60)

where Φ(Tτ(x0), x0) is the fundamental solution matrix Φ(t, x0)
evaluated at the return time Tτ(x0) = τ+, and then
Φ(Tτ(x0), x0) = Φ+. Moreover, we have f (x(Tr(x0))) =
f (x(τ+)) = f+.

Then, the equation (57) becomes:

DF (x0) = Φ(Tτ(x0), x0) + f (x(Tτ(x0)))
dTτ(x0)

dx0
− I2n (61)

The only unknown in this expression (61) is the quantity dTr(x0)
dx0

,
which will be determined in the next section.

Expression of the quantity dTr(x0)
dx0

Let us reconsider the two first impact conditions in the impact set
∆ defined in (18):

L1(x) = C1x + 2φ = 0 (62a)

L2(x) = C2x < 0 (62b)

For a period-1 fixed point, we should have x0 = ϕ(Tr(x0), x0).
Then, the two impact conditions in (62a) and (62b) are recast as
follows:

L1(ϕ(Tr(x0), x0)) = C1ϕ(Tr(x0), x0) + 2φ = 0 (63a)

L2(ϕ(Tr(x0), x0)) = C2ϕ(Tr(x0), x0) < 0 (63b)

The derivative of the first constraint (63a) with respect to x0 is
as follows:

dL1(ϕ(Tr(x0), x0))

dx0
=

∂L1(ϕ(Tr(x0), x0))

∂x0

+
∂L1(ϕ(Tr(x0), x0))

∂Tr(x0)

dTr(x0)

dx0
= 0 (64)

Moreover, we can write the following relations:

∂L1(ϕ(Tr(x0), x0))

∂x0
=

∂L1(ϕ(Tr(x0), x0))

∂ϕ(Tr(x0), x0)

∂ϕ(Tr(x0), x0)

∂x0
(65a)

∂L1(ϕ(Tr(x0), x0))

∂Tr(x0)
=

∂L1(ϕ(Tr(x0), x0))

∂ϕ(Tr(x0), x0)

∂ϕ(Tr(x0), x0)

∂Tr(x0)
(65b)

According to expression (63a), we obtain:

∂L1(ϕ(Tr(x0), x0))

∂ϕ(Tr(x0), x0)
= C1 (66)

Then, the two expressions (65a) and (65a) become:

∂L1(ϕ(Tr(x0), x0))

∂x0
= C1

∂ϕ(Tr(x0), x0)

∂x0
(67a)

∂L1(ϕ(Tr(x0), x0))

∂Tr(x0)
= C1

∂ϕ(Tr(x0), x0)

∂Tr(x0)
(67b)

Then, relation (64) is recast as follows:

C1
∂ϕ(Tr(x0), x0)

∂x0
+ C1

∂ϕ(Tr(x0), x0)

∂Tr(x0)

dTr(x0)

dx0
= 0 (68)

This expression (68) is rewritten like so:

C1Φ(Tr(x0), x0) + C1 f (x(Tr(x0)))
dTr(x0)

dx0
= 0 (69)

Accordingly, as C1 f (x(Tr(x0))) = C1 f−, and based on the con-
dition (46), we can obtain expression of the quantity dTτ(x0)

dx0
as

follows:

dTτ(x0)

dx0
=

−C1
C1 f (x(Tτ(x0)))

Φ(Tτ(x0), x0) (70)
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We substitute expression (70) into the equation (61), then we
get expression of the matrix DF (x0) as follows:

DF (x0) = (I2n − f (x(Tr(x0)))C1
C1 f (x(Tr(x0)))

)Φ(Tr(x0), x0)− I2n (71)

or under its simplified version

DF (x0) = (I2n − f−C1
C1 f−

)Φ+ − I2n (72)

It is important to show that the Jacobian matrix of the Poincaré
map P is defined as follows:

DP(x0) = (I2n − f−C1
C1 f−

)Φ+ (73)

ANALYSIS OF THE COMPASS-TYPE BIPEDAL ROBOT’S
PASSIVE WALK

The impulsive hybrid nonlinear system describing the compass-
gait biped walker’s walking dynamics is thought to be difficult
to analyze and can produce complex appealing behaviors. The
cascade of repeated period-doubling bifurcations and their con-
sequent route to chaos is the most prevalent behavior revealed in
the passive dynamic walking of the compass-gait bipedal walker
as it moves down the walking surface. All circumstances must
be taken into consideration in order to more accurately resemble
humans especially the physically handicapped which are more
and more apparent. When the knee is not in the middle of the leg,
for instance, the length of the shank and the thigh are not equal,
which shifts the center of gravity from its typical location. We
shall analyze this situation by walking on various slope angles
of surfaces. To achieve this, we will use bifurcation diagrams to
demonstrate novel exhibited behaviors by changing two param-
eters: the length a of the lower-half segment of the two legs (see
Figure 1) and the slope φ of the inclined walking surface.

Analysis via bifurcation diagrams
Complex exhibited behavior with respect to the slope angle φ
In this section, we adjust the slope angle φ of the walking surface
and we calculate the new walking step of the compass biped robot
while maintaining constant the other geometrical characteristic
parameters listed in Table 1.

A conventional bifurcation diagram is shown in Figure 2(a) that
illustrates the period-doubling scenario exhibited for the parameter
a = 0.5. The diagram starts with a 1-periodic behavior for φ values
between 0◦ and 4.385◦, then changes to a 2-periodic behavior as
indicated by the two red arrows, then to a 4-periodic gait, to a
8-periodic gait, and so on, until reaching chaos, which is framed in
green.

Similarly, and by fixing another value of the parameter a = 0.87,
we obtain the bifurcation diagram in Figure 2(b). This diagram
shows a period-doubling phenomenon as a route to chaos. Such
scenario begins at the value φ = 7.552◦ and doubles until chaos,
and ends with the fall of the bipedal robot (for φ ≈ 11◦). The
difference between the two first diagrams (Figure 2(a) and Fig-
ure 2(b)) is that for a = 0.87, the biped robot’s passive gait returns
to another periodic behavior to start another period-doubling sce-
nario to chaos instead of falling after the initial formation of chaos,
as it has been occurred in Figure 2(a). This new period-doubling
scenario will be finished around the value of φ = 9.864◦. This
phenomenon reveals the appearance of periodicity window that
was born within the chaotic regime contrary to the bifurcation
diagram in Figure 2(a).

Furthermore, for the parameter a = 0.881, we observe from
Figure 2(c) that the band of φ-values in which chaos occurs is quite
narrow, which is another feature that is revealed. Such band occurs
between φ = 10.79 and φ = 10.93. That is to say, as soon as chaos
sets in, the robot falls fairly quickly.

Figure 2(d) illustrates a different kind of bifurcation scenario
and then another phenomenon. It is found that the period dou-
bles from 1-periodic to 2-periodic to 4-periodic up to 8-periodic
behavior. After that, a remerging-period bifurcation is developed
before going back to one-periodic behavior. The bipedal robot falls
down at the point φ = 12.21◦, shortly after the Neimark-Sacker
bifurcation (NSB), which will be clearer in the next diagram.

In Figure 2(e), and for the parameter a = 0.895, the period-
doubling schema has been changed and reduced to a single period-
doubling bifurcation follows by another one. Thus, the 1-periodic
gait is bifurcated into a 2-periodic gait and it returns again to the
1-periodic gait via the period-doubling bifurcation. Thus, by in-
creasing the bifurcation parameter φ, a Neimark-Sacker bifurcation
is hence produced giving rise to the formation of a quasi-periodic
behavior. Further analysis of this Neimark-Sacker bifurcation will
be realized in the sequel.

In the bifurcation diagram of Figure 2(f) depicted for a = 0.95,
only the period-1 passive gait was observed. Moreover, the single
and attractive element in this bifurcation diagram is the zoomed-
out red-circled part that reveals occurrence of the Neimark-Sacker
bifurcation. As in Figure 2(e), this bifurcation demonstrates how,
for φ = 7.7◦, the behavior changes from a 1-periodic to quasi-
periodic. The quasi-periodic behavior occurs in a very small in-
terval of slopes, which is not clear in the bifurcation diagram of
Figure 2(f), compared to that in Figure 2(e).

Complex exhibited behavior with respect to the lower-leg seg-
ment length a
In this part, we maintain the other geometrical properties stated
in the Table 1 while adjusting the lower-leg segment length a and
calculating the new walking stride of the compass biped robot. The
simulation results for different values of the bifurcation parameter
a are illustrated in Figure 3.

It can be reported from the bifurcation diagrams in Figure 3 that
every minor change in the value of the parameter a can result in a
significant change in the walking behavior of the compass robot.
Moreover, in all these bifurcation diagrams in Figure 3, the passive
gaits exhibit a 1-periodic behavior for the values of a greater than
the value 0.5◦.

A single period-doubling bifurcation from 1-periodic gait to
2-periodic gait is seen in Figure 3(a) for φ = 0.1◦. In the other
diagrams, it gradually alters.

Figure 3(b) shows the exhibited phenomenon for φ = 0.54◦

and demonstrates how the robot’s behavior or step period changes
from 2-periodic to 4-periodic as a result of the emergence of tiny
bubbles.

For φ = 0.56◦ in Figure 3(c), the periodicity is clearly obvious.
The bipedal robot falls down as a result of the Neimark-Sacker
bifurcation at the end of this period doubling.

Figure 3(d) depicts further bubbles that form within these fi-
nal ones. In the center of these bubbles, we notice a 16-periodic
behavior. It is therefore pretty obvious that within these bubbles
and by raising the value of φ, we find a period doubling that can
lead to chaos, as shown in Figure 3(e) for φ = 0.6◦, followed by
a remerging-period bifurcation to go back to 2-periodic, which
finishes at the Neimark-Sacker bifurcation. A classical period-
doubling bifurcation from 1-periodic gait to chaotic one can be
seen in Figure 3(f) for the parameter φ = 0.61◦.
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(d) a = 0.8846
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(e) a = 0.895
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Figure 2 Bifurcation diagrams of the step period of the bipedal’s walking plotted by varying the slope angle φ for (a) a = 0.5 showing the
classical period-doubling bifurcation (PDB) route from 1-periodic to chaos, (b) for a = 0.87 showing the PDB with a large part of chaos con-
taining bifurcation/periodicity windows, (c) for a = 0.881 showing also the PDB with a compass robot that falls down quickly after chaos, (d)
for a = 0.8864 showing succession of the PDB and the remerging-period bifurcation followed by the Neimark-Sacker bifurcation (NSB), (e) for
a = 0.895 showing a bubble that is the result of the 1-PDB and the 1-remerging-period bifurcation also followed by the NSB in a wide interval,
and (f) for a = 0.95 showing the NSB.
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(c) φ = 0.56◦
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(d) φ = 0.59◦
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(e) φ = 0.6◦
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(f) φ = 0.61◦

Figure 3 Bifurcation diagrams plotted by varying the lower-leg segment length a for (a) φ = 0.1◦ showing the 1-PDB, (b) for φ = 0.54◦, (c) for
φ = 0.56◦, (d) for φ = 0.59◦, (e) for φ = 0.6◦ showing the succession of the PDB route to chaos and the remerging-period bifurcation from
chaos followed by the NSB, and (f) for φ = 0.61◦ showing the PDB ended by the fall of the bipedal robot.
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Remark 1 In addition to the step period, there are other descriptors of
the passive dynamic walking of bipedal robots such as the step length, the
average speed of each walking step, the mechanical energy, the angular
positions and angular velocities just after/before the impact event with
the ground (Goswami et al. 1996, 1998). The study of the apex can refer
to the complexity of the bipedal walking as in (Gupta and Kumar 2017;
Xie et al. 2020). The study of the apex consists in seeking the maximum
position of the hip that can be reached by the biped robot while walking.
Thus, such maximum position is such that the vertical speed of the hip is
zero.

It is straightforward to find that the vertical position of the hip of the
compass robot is defined by the following expression:

zhip = l cos(θs) (74)

Thus, the vertical speed of the hip is defined as follows:

żhip = −lθ̇s sin(θs) (75)

Therefore, to obtain a zero vertical speed of the hip, we should have
żhip = 0, and then we should obtain:

θ̇s sin(θs) = 0 (76)

Obviously, either sin(θs) = 0 or θ̇s = 0 to verify equality constraint
(76). Relying on the structure of the compass robot, only the angular
position θs = 0 is realizable. Moreover, the angular position of the stance
leg is always in variation as seen in the attractors in Figure 9. It can
be seen that the angular velocity of the stance leg is always negative
(θ̇s < 0). Therefore, the angular velocity of the stance leg θ̇s cannot be 0.
Hence, the only feasible solution that verifies the equality condition (76)
is:

θs = 0 (77)

Then, we should look for the descriptors of the passive bipedal walking
of the compass robot such that the condition (77) is satisfied. Actually,
this equality constraint (77) defines a new Poincaré section on which
we look for new observation of the dynamics of the bipedal walking of
the compass robot. Figure 4 shows two bifurcation diagrams revealing
the complex behavior of the passive bipedal walking of the compass robot
at its apex position while varying the slope angle φ and with a = 0.5.
Figure 4(a) reveals the walking time, whereas Figure 4(b) illustrates the
angular velocity of the stance leg at the apex position. Notice that for
a = 0.5, the bifurcation diagram at the impact of the swing leg with
the ground was given by Figure 2(a) with a = 0.5. It is clear that by
comparing the bifurcation diagram in Figure 2(a) with that in Figure 4(a),
the behavior is almost similar, where the classical period-doubling route
to chaos was revealed. However, in Figure 4(a), the (median) walking
time at the apex position is almost constant while varying the slope angle
φ. In contrast, in Figure 2(a), the (median) step period increases with
respect to the increase of the slope φ. This result shows that the swing
phase that happens just after the apex becomes longer by increasing the
slope parameter φ.

Analysis of complex and strange behaviors
Figure 5, which is an addition to the previous section’s illustrations,
reveals a different phenomenon. By comparing the two figures, it
seems that they are identical, with the exception that in Figure 5(a),
there is some missing component that was present in Figure 5(b)
and that was disappeared at the value φ = 9.008◦ in Figure 5(a).

The same previous observation can be seen in Figure 6 by con-
sidering the bifurcation parameter a. For φ = 0.605◦, the passive
gait shows a classical period-doubling route to chaos, as seen in
Figure 6(a). This exhibited behavior ends at the value a = 0.133,
which provokes the fall of the bipedal robot. However, by slightly
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(b) a = 0.83

Figure 4 Bifurcation diagrams revealing the behavior of the bipedal
walking at the apex position of the compass robot: (a) the walking
time, and (b) the angular velocity of the stance leg. Here, the bifurca-
tion parameter is the slope angle φ and the other parameter a was
fixed to the nominal value a = 0.5.

decreasing the value of the slope angle to φ = 0.604◦, we see a com-
pletely different phenomenon. Indeed, a period-doubling route to
chaos was first generated by decreasing the bifurcation parameter
a. By decreasing further a, an inverse period-doubling scenario
from chaos to a period-2 gait was observed. This period-2 gait was
disappeared at the value a = 0.0877.

Accordingly, a very slight change in the value of the slope φ
induces an almost different bifurcation diagram by varying the
parameter a. As in Figure 5 by moving from the value a = 0.83
to a = 0.82 and where a complete part of the bifurcation diagram
was disappeared, in Figure 6 and by changing/increasing the
value of the slope from φ = 0.604◦ to φ = 0.604◦, a complete
part of the bifurcation diagram was also disappeared without any
explanation.
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(b) a = 0.83

Figure 5 Bifurcation diagrams of the step period plotted by varying
the slope angle φ for (a) a = 0.82 and (b) a = 0.83, showing the
large variation of the step period (walking behavior) with respect to a
tiny variation of the parameter a, which confirms the chaotic/strange
nature of the passive walking dynamics of the compass bipedal
robot. A large periodicity window appears in the bifurcation diagram
(b). Such window and the result behavior leading to the formation of
chaos was not observed in the bifurcation diagram (a).

Analysis via the characteristic multipliers

In addition to the stable solutions shown in the bifurcation diagram
of Figure 5(a), we also presented the unstable solutions in the
same plot as seen in Figure 7(a). These unstable solutions were
represented by a dotted magenta line with the designation p1-ULC,
which began at the first period-doubling bifurcation at the value
of φ = 6.771◦. This shaky solution comes to an end at or near the
value of φ = 18◦. The persistence of this unstable solution long
after the biped robot has fallen suggests the presence of additional
isolated components, which are depicted in Figure 5(b).

Figure 7(b) shows the evolution of the eigenvalues of the Ja-
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(b) φ = 0.604◦

Figure 6 Bifurcation diagrams of the step period plotted by varying
the parameter a for (a) φ = 0.605◦ and (b) φ = 0.604◦, showing
the sudden disappearance of some region/part of steady gaits of the
passive compass robot. Such disappeared part is that located at the
left side of the bifurcation diagram revealing the period-remerging
scenario from chaos to the period-2 gait to the quasi-periodic gait.
Such abrupt disappearance of these phenomena was occurred
under a small variation of the slope angle φ.

cobian matrix of the Poincaré map calculated via expression (71).
This diagram in Figure 7(b) provides a strong support for this
previous observation. We can see that the green eigenvalue takes
values above the value 1, which is shown by a dotted line in black.
Note that the value φ = 6.771◦ marks the birth of the bifurcation.
This eigenvalue continues to vary even after the end of chaos at
the value of φ = 9.01◦, which reveals the continued appearance of
solutions but that is evident that they are unstable. According to
the stability condition, as long as the characteristic multipliers lie
inside the unit circle, the periodic solution is asymptotically stable.
As φ is increased, a real characteristic multiplier moves out of the
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Figure 7 (a) Bifurcation diagram of the step period for a = 0.82 by varying the slope angle φ showing the period-1 unstable limit cycle (marked
as p1-ULC), (b) Variation of the module of the eigenvalues of the Jacobian matrix of the Poincaré map, and (c) Variation of the loci of the char-
acteristic multipliers with respect to the unit circle, as varying the slope angle φ for the fixed parameter a = 0.82.

258 | Added et al. CHAOS Theory and Applications



5 6 7 8 9 10 11 12 13

Slope [deg]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

S
te

p 
P

er
io

d 
[s

]

(a)

5
6

7
8

9
10

11
12

13

S
lope [deg]

-2 0 2 4 6 8 10 12 14

Module of the Characteristic Multipliers

(b)

-2 0 2 4 6 8 10 12 14

Real Part of Characteristic Multipliers

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

in
ar

y 
P

ar
t o

f C
ha

ra
ct

er
is

tic
 M

ul
tip

lie
rs

(c)

Figure 8 (a) Bifurcation diagram of the step period for the fixed parameter a = 0.895 by varying the slope angle φ showing the period-1 unsta-
ble limit cycle, (b) Variation of the module of the Jacobian matrix eigenvalues of the Poincaré map, and (c) Variation of the loci of the character-
istic multipliers with respect to the unit circle, as varying the slope angle φ for a = 0.895.
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unit circle through -1, indicating a period-doubling bifurcation.
We observe in Figure 7(a) that the green eigenvalue leaves the unit
circle via the real axis via the point −1, to mark hence the appear-
ance of the period-doubling bifurcation and hence the beginning
of the period-doubling scenario.

In Figure 8(a), we added the unstable solutions to the diagram
that is shown in Figure 2(e) with a dashed magenta line. We see
that the stable solution ends with a Neimark-Sacker bifurcation,
but the diagram continues to evolve with unstable solutions
until φ = 12.44◦. This Neimark-Sacker bifurcation is presented
by the two eigenvalues green and cyan which take values
greater than 1 in Figure 8(b), which presents the module of the
eigenvalues of the Jacobian matrix of the Poincaré map. To show
the Neimark-Sacker bifurcation well, we have presented the loci
characteristic multipliers in Figure 8(c) where we see the location
and variation of all the eigenvalues with respect to the unit circle.

Analysis through attractors
From a certain initial condition and for a set of parameters φ and
a, the trajectory of the compass bipedal robot finally settles into
an attractor state (in the state space). It can be a straightforward
equilibrium point, a periodic trajectory (represented by a limit
cycle in the phase plane or a some distinct points in the Poincaré
section), a quasi-periodic trajectory (represented by a torus in the
phase plane or a closed curve (like a closed circle) in the Poincaré
section), or a strange/chaotic attractor, which is a type of trajectory
on which a system moves from one situation to another without
ever settling.

Attractors in the phase plane
Examples of periodic attractors in the phase plane and for different
values of the two parameters a and φ, are shown in Figure 9(a),
Figure 9(b), Figure 9(c), Figure 9(d) and Figure 9(e). They present
respectively a 1-periodic attractor represented by a single closed
trajectory, a 2-periodic attractor, a 4-periodic attractor, a 6-periodic
attractor and an 8-periodic attractor.

We stated that the first attractor in Figure 9(a) plotted for φ =
4◦ clearly demonstrates that the step period of the biped robot’s
locomotion for a = 0.5 is 1-periodic as shown by a red arrow in
Figure 2(a). The same remark for the second 2-periodic attractor
of Figure 9(b), which supports the findings in Figure 2(b) for all
the values of the parameter φ between 8.944◦ and 10.19◦ for a =
0.895 inside the bubble. The 4-periodic shape of Figure 9(c) is the
attractor of the 4-periodic behavior of the compass-type bipedal
robot shown in Figure 2(d) for a = 0.8846 and for the values of φ
between 10.5◦ and 10.92◦. The 6-periodic attractor in Figure 9(d)
exhibited for a = 0.87 and φ = 10.48◦ reveals the 6-periodic
behavior of the compass robot presented in Figure 2(b). For a =
0.881, which is comparable to what is depicted in Figure 2(c), we
depict in Figure 9(e) an 8-periodic attractor.

Examples of chaotic attractors are shown in Figure 10(a), Fig-
ure 10(b), Figure 10(c) and Figure 10(d). All these diagrams present
chaotic attractors, which are characterized by an infinity of unsta-
ble limit cycles embedded within it. These figures support what
was reported about the bifurcation diagrams in the previous sub-
section.

Attractors in the Poincaré section
A useful methodology for investigating dynamic systems, such as
the bipedal compass robot, is the Poincaré section. We concentrate
on certain location along the system’s trajectory that correlates to
the point where the trajectory meets the hyperplan, which is the

Poincaré section, rather than the continuous trajectory where the
attractor is traced in the plane phase. For instance, if we have a
1-periodic behavior, we find a single point at which the 1-period
trajectory intersects the Poincaré section. If we have a 2-periodic be-
havior, we find 2 points at which the system’s trajectory intersects
with the Poincaré section

We notice new shapes for the attractors in the Poincaré section in
Figure 11. Due to the infinite number of points, a chaotic attractor
is shown in the first plot in Figure 11(a). Additionally, Figure 11(b)
displays an infinite number of points, but they all diverge outward,
which is what attracts the behavior that is almost periodic due to
the Neimark-Sacker bifurcation (NSB).

Analysis via Lyapunov exponents

The calculation of Lyapunov exponents is a numerical method that
proves the existence of bifurcation in nonlinear dynamical systems.
Moreover, they reveal the sensitive dependence of the dynamic
system on neighboring initial conditions. Furthermore, the sign
of the largest Lyapunov exponents demonstrates the type of the
generated attractor, which can be either periodic or quasi-periodic
or chaotic.

The computation of the spectrum of Lyapunov exponents for
continuous-time as well as discrete-time dynamical systems has
been widely investigated in several research works. A nonlinear
dynamic system of dimension n has n Lyapunov exponents and
for a smooth nonlinear dynamical system, the computation of the
Lyapunov exponents becomes classic nowadays. For the hybrid im-
pulsive nonlinear dynamics of the passive compass bipedal robot,
and since the dimension of the state vector x is 4, then we have 4
Lyapunov exponents. Nevertheless, because of the impulsive and
hybrid feature of the bipedal dynamics (17) of the passive compass
robot, the computation of the Lyapunov exponents is complicated
(Gritli and Belghith 2015, 2016a; Gritli et al. 2012). The calculation of
the spectrum of Lyapunov exponents depends chiefly on the jump
matrix S(x+, x−) that was defined by expression (49), and then
on the fundamental solution matrix Φ+(t, x0). The computation
of the spectrum of Lyapunov exponents for the passive compass
bipedal robot and also for the semi-passive torso-driven bipedal
robot has been achieved previously in (Gritli et al. 2012) and also
using the explicit analytical expression of the controlled hybrid
Poincaré map (Gritli and Belghith 2015, 2016a).

The variation of the four Lyapunov exponents λ1, λ2, λ3, and
λ4 is shown in Figure 12(a) by adopting the lower-leg segment
length a = 0.5 and then by varying the slope parameter φ from
the value 4◦. Evolution of the two largest Lyapunov exponents λ1
and λ2 with respect to φ is depicted in Figure 12(b). The largest
Lyapunov exponent λ1 is presented in blue whereas λ2 is colored
in red. When λ1 takes the value 0 and while the other exponents
are negative for the slope angle φ varies between 4◦ and 5.03◦, this
situation indicates hence that the passive bipedal walking of the
compass robot is periodic. As it was presented in Figure 2(a), and
for this same interval of the values of φ, we have a period doubling
schema towards chaos. In Figure 12, this period-doubling scenario
is presented by a succession of parabolic shapes formed by the two
Lyapunov exponents λ2 and λ3. Each intersection of the second
exponent λ2 with the first one λ1 i.e. with the value of 0, indicates
the presence of a period-doubling bifurcation.

For the values of φ > 5.03◦ and referring to Figure 2(a), chaos
starts to happen. In Figure 12, this complex behavior is presented
by a positive value of the largest Lyapunov exponent λ1. As φ
increases, λ1 increases as well. Furthermore, when the walking
behavior is chaotic, the second Lyapunov exponent λ2 takes the
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(b) 2-periodic attractor
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(c) 4-periodic attractor
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(d) 6-periodic attractor
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(e) 8-periodic attractor

Figure 9 Attractors in the phase plane: (a) A 1-periodic attractor for a = 0.5 and φ = 4◦, (b) A 2-periodic attractor for a = 0.895 and φ = 9.5◦,
(c) A 4-periodic attractor for a = 0.8846 and φ = 10.5◦, (d) A 6-periodic attractor for a = 0.87 and φ = 10.48◦, and (e) An 8-periodic attractor for
a = 0.881 and φ = 10.75◦.
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Figure 10 Chaotic attractors in the phase plane for (a) a = 0.5 and φ = 5.2◦, (b) a = 0.87 and φ = 9.85◦, (c) a = 0.87 and φ = 10.1◦, and (d)
a = 0.87 and φ = 10.6◦. The portrait in (a) reveals the classical chaotic attractor that was observed for the classical parameter a = 0.5. The
other plots show that the chaotic attractor becomes larger by varying/increasing the slope angle φ.
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(a) A chaotic attractor
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(b) A quasi-periodic attractor

Figure 11 Attractors in the Poincaré section for (a) chaotic attractor
for a = 0.87 and φ = 10.3◦, and (b) NSB attractor fora = 0.8846 and
φ = 12.21◦.

value 0, while the two other Lyapunov exponents λ3 and λ4 remain
always negative.

It is important to note that within the chaotic regime, that is
for φ > 5.03◦, there are some fluctuations of the largest Lyapunov
exponent λ1 to zero. This behavior indicates the existence of peri-
odicity windows inside the chaotic regime.

CONCLUSIONS

In this research study, we analyzed the passive gait of a planar
biped robot using a motion that resembled a compass. We em-
ployed the bifurcation diagrams, the Poincaré sections, the phase
planes and the variation of the characteristic multipliers to investi-
gate the exhibited behaviors. Two different bifurcation parameters
were considered: the parameter a which is the length of the lower
leg segment and the parameter φ which is the slope angle of the
inclined walking surface. We presented different simulation results
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Figure 12 Variation of the Lyapunov exponents for a = 0.5 and
by varying the slope angle of the walking surface φ from the value
4◦. (a) reveals the four Lyapunov exponents λ1, λ2, λ3, and λ4,
whereas (b) shows the two largest Lyapunov exponents λ1 and λ2.

to analyze the complex behavior of the passive dynamic bipedal
walking of the compass robot. We demonstrated how the value of
the parameter a can alter the stability and the overall behavior of
the bipedal robot. We showed how the traditional period-doubling
route to chaos can be transformed into a completely different be-
havior under some slight variation of the two parameters φ and a.
In addition, we showed that the passive gait of the compass robot
reveals the exhibition of the Neimark-Sacker bifurcation and hence
the existence of the quasi-periodic passive gaits.

In our future research, the objective is to analyze the compass-
gait walker’s passive motion using the explicit analytical represen-
tation of the Poincaré map (Znegui et al. 2020a, 2021). In addition,
our goal is to achieve an in-depth study of the Lyapunov exponents
for different bifurcation diagrams and then for different scenarios
that were presented in this paper.
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ABSTRACT
Complex systems pervade nature and form the core of many technological applications. An exciting feature
of these systems is that they exhibit a wide range of temporal behaviors, ranging from collective motion,
synchronization, pattern formation, and chaos, among others. This has not only caught the attention of
scientists, but also the interest of a wider audience. Consequently, our goal in this work is to provide a simple
but descriptive explanation of some concepts related to complex systems. Specifically, the reader embarks on
a journey that begins in the 17th century with the discovery of synchronization by Dutch scientist Christiaan
Huygens and ends in the chaotic world explored by meteorologist Edward Lorenz around 1963. The journey is
filled with examples, including synchronized clocks and metronomes, electronic fireflies that flash harmoniously,
and even a chaotic dress.
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INTRODUCTION

The term complex system is increasingly used nowadays. It is is
used for describing phenomena ranging from our daily lives to
behaviors typical of the scientific field, and has implications for
social sciences, anthropology, mathematics, and biology, to name
a few (Ottino 2003; Larsen-Freeman and Cameron 2008). This in-
terdisciplinary field of science aims to study, characterize, and un-
derstand complex systems, their interactions, physical/biological
effects, and the mechanisms that produce their particular behaviors
(Huerta-Cuéllar et al. 2022).

It is relatively easy to identify a complex system using climate as
an example, but it is somewhat more complex to clearly define the
concept itself. This is because this definition changes depending
on the field of application and adapts to the research subject’s own
needs. For example, in computer science, a complex system may
refer to the computational time required by the processor to esti-
mate the solution, while in biology it may refer to the interactions
between different species in a wild area.

Although different definitions can be found in the literature,
complex systems have in common the fact that they consist of
various interconnected, interdependent, adaptive, and temporally
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changing actors whose interactions lead to emergent phenomena
(Ladyman et al. 2013). In general, we can define a complex system
as an organized and inseparable entity that consists of different in-
terconnected parts and, considered as a whole, exhibits properties
and behaviors that do not result from the sum of the individual
parts or behaviors of any of its elements.

In other words, it is possible to know each of the agents that
are part of a Complex System (CS), as well as their independent
dynamics, but since they are interconnected and interact with
each other, behaviors arise that are not very obvious based on
individual knowledge of each element. Because of this peculiarity,
complex systems are studied as living entities where it is necessary
to consider all the elements and interactions that make them up.
Let us take as an example the flight of a bird compared to the flight
of a flock (Wang and Lu 2019). We can study individually the
behavior of a bird and the mechanisms it needs to take to the skies.

We are able to understand the mechanics of wing flapping,
the dynamics of the airflow that allows it to fly, the density and
distribution of its feathers, and the limitations of the bird when
flying at higher altitudes or speeds. Knowing all this about a single
bird, one cannot predict (without prior knowledge) that a flock of
birds (of the same species) will behave in such a way and form
the flight patterns necessary to fly long distances or to protect the
young from predators. This lack of answers in extrapolating data
is the prerequisite for studying complex systems as living entities,
and it is the behavior that arises from the interactions between
them that we call emergent behavior, i.e., it is impossible to obtain
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said result by studying and interacting only one of the entities that
make up the CS.

Once the concept of complex system is defined, realize that
they are present in many of the phenomena that surround us, that
we are a part of them, and that this type of behavior exists in
our bodies. Classic examples of complex systems can be found in
something as mundane as the behavior of climate, which is one of
the most studied complex systems. The behavior of stocks and all
currencies, or the dynamics of planets and galaxies are examples
of complex systems. The brain behavior and the transmission of
information by neurons are examples of CS’s which takes place in
our bodies. The transmission of electrical energy, traffic in the air
and on land are also clear examples of complex systems.

Note that in each of these examples it is possible to know the
behavior of the individual elements that compose the CS, but we
cannot estimate their behavior on the basis of individual dynamics.
Take the example of land traffic in a city: it is possible to know the
number of vehicles, the layout of roads and their traffic direction,
the position of stop signs and traffic lights. But even with all
this information and knowledge of the individual elements, it is
impossible to predict the exact location and timing of a traffic jam.
To understand the complex traffic system, one must study it as a
living entity.

The rest of the article deals with two of the most common behav-
iors in complex systems: Synchronization and Chaos. Equations
and proofs are deliberately omitted, and the text focuses on describ-
ing and explaining the main ideas about these behaviors. These
are in turn illustrated with everyday references and illustrated
with videos of simple experiments that the reader can consult on
the Internet. The last part of the paper draws some preliminary
conclusions.

SYNCHRONIZATION

In our time we speak more and more often of synchronization.
We speak of synchrony between a user’s cell phone, his TV and
his computer. We also speak of synchronization in sports, for ex-
ample synchronized swimming or rowing, and even in electronic
transfers with dynamic keys linked to the cell phone number. Al-
though the meaning of synchronization yields something obvious
and commonplace, it can be defined as the coincidence in time of
two or more events resulting from the interaction between two
dynamic entities, which can be of almost any kind and nature.
This makes synchronization an omnipresent behavior that can be
found everywhere. The occurrence of synchronized behavior is
very common in nature, with examples in biology, ecology, clima-
tology, sociology, technology, and even art (Pikovsky et al. 2003;
Strogatz 2004; Osipov et al. 2007).

To show how widespread this exciting phenomenon is, let us
consider the universe, and in particular the Moon, which orbits
our planet. The Moon spins on its own axis (rotation) at the same
speed it spins around the Earth (translation), in other words, the
Moon’s rotation and translation speeds are synchronized. Because
of this timing, we always see the same side of the moon. This
behavior is also found in the animal kingdom. Have you ever
observed birds flying in a "V" formation and flapping their wings
at the same time? This allows them to use less energy and travel
greater distances. Another example of synchronization in animals
is a school of fish. A school is a group of synchronized fish that all
move at the same speed and in the same direction as their nearest
neighbors. Fish join together in schools for two main reasons: to
protect themselves and to migrate. Just like birds that migrate or
cyclists that group together, fish move in sync to move faster and

expend less energy, which helps them survive.
People also synchronize, for example, the members of an orches-

tra playing in perfect synchronicity. A ballet performing a routine
in time to the music, and even at the Olympic Games synchroniza-
tion is present. There is also a symphony of synchronized rhythms
in our bodies. For example, each beat of our heart is controlled by
thousands of pacemaker cells that send out electrical impulses that
stimulate the heart cells and cause them to contract or relax in a
perfectly synchronized rhythm.

The first precursor in literature dealing with the concept of
synchronization is the work of the extraordinary Dutch scientist
Christiaan Huygens, mathematician, physicist and inventor of
the pendulum clock (Pena Ramirez and Nijmeijer 2020). In 1665,
Huygens noticed that two pendulum clocks suspended side by
side from a crossbeam showed a kind of sympathy, that is, the
pendulums of each clock swung at the same frequency, and when
disturbed, they returned to the same rate of oscillation after about
thirty minutes. In his writings Huygens points out that the main
reason for this fact is the connection between the clocks, the cross-
bar being the said means of communication. Figure 1 shows the
original hand drawing made by Huygens. It shows two pendulum
clocks suspended from a wooden rod supported by two chairs.

Figure 1 Synchronization scheme developed by Huygens for two
pendulum clocks

To demonstrate in a simple way the synchronization between
two inanimate objects, and inspired by the same Huygens ex-
periment, we consider three monumental pendulum clocks (they
are known as monumental clocks because this type of mecha-
nism is used in towers, churches, obelisks and other monuments)
(Pena Ramirez et al. 2016). Two of them are connected by a simple
wooden rod, while the third has no connection with the other two,
see Figure 2 and (Echenausía-Monroy 2022g). Some time after
the clocks are set in motion, the two connected mechanisms syn-
chronize, their pendulums working at the same time and in the
same direction, while the third clock is free and never follows the
rhythm or time of the two synchronized clocks. This illustrates
three important points:

• Synchronization is ubiquitous and can be found in living and inani-
mate systems;

• For synchronization you need at least two systems, agents, complex
systems or dynamic units to be synchronized;

• For the phenomenon to appear, there must be a means of communi-
cation: physical, optical, acoustic, gravitational, electronic, etc.

Regardless of the size of the object, synchronization is possi-
ble. Now consider metronomes, variable frequency pendulum
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Figure 2 Modern version of the Huygens experiment, synchro-
nizing two monumental clocks. Note that the means of commu-
nication between the two clocks is the orange wooden stick.

clocks that help music students keep time. These metronomes
are mounted on a suspended floor structure, with the base free to
move depending on the tension of the struts supporting it. When
the metronomes are put into operation, they transmit their motion
to the base on which they stand, which starts moving according to
the number of metronomes. After a certain time, the base transmits
this movement back to the metronomes and serves as a means of
communication (coupling), giving the metronomes a synchronized
response, see Figure 3 and (Echenausía-Monroy 2022c).

Figure 3 Hanging platform with synchronized metronomes
(Echenausía-Monroy 2022c).

This phenomenon is similar to that observed when crossing a
suspension bridge, where the movement of the pedestrians causes
the bridge itself to vibrate so that it sways in the direction of
travel, or to the phenomenon observed at the inauguration of the
Millennium Bridge in London (2000), where the bridge swayed
to the same extent as the pedestrians due to the lightness of the
tensioners and the large number of visitors.

As with the size transition between monumental clocks and
metronomes, it is possible to reduce the number of clocks and
the size of the base to achieve a synchronous response. Now
consider three metronomes on a 50 cm board standing on two
cans of iced tea. If the clocks operate according to the scheme
described, synchronization will occur between the metronomes as

they transfer their motion to the table, causing the cans to move
slightly and act in place of the struts. After a short time, this
transfer of motion will cause the metronomes to operate at the
same time and in the same direction. The experimental setup is
shown in Figure 4, and the operation can be found in (Echenausía-
Monroy 2022i).

Figure 4 Experimental set-up to synchronize 3 metronomes.

As mentioned earlier, synchronization is not an unknown phe-
nomenon in the animal kingdom; take fireflies, for example. These
small insects, which are capable of biologically producing light
(bioluminescence), are one of the many examples where synchro-
nization occurs in animals (Buck and Buck 1976). During the
breeding season, fireflies migrate to specific forested regions that
meet certain climatic conditions. Once there, the males, like males
of almost all species, try to attract the attention of females, in this
case by the brightness and rhythm of their light. As expected, there
is not just one male and one female, but hundreds of them, which
leads to the males "seeing" each other. The fact that they see the
light of the other male fireflies causes them to synchronize the
rhythm of their blinking.

Figure 5 Electronic design of a firefly that can synchronize in
four directions.

Using the electronic circuit shown in Figure 5, cf. (Arellano-
Delgado et al. 2015), it is possible to electronically reproduce the
behavior of a firefly. And in turn, it is possible to mimic the synchro-
nization of these insects without having to enter their reproductive
habitats. So these are friendly and didactic devices with which
we show that synchronization is ubiquitous and that the type of
communication between systems does not matter, as long as there
is one, synchronization will emerge. In Figure 6 you can see the
electronic firefly, and in (Echenausía-Monroy 2022h) you can see
its operation in a beehive.
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Figure 6 Electronic firefly that can synchronize in four directions.
The picture shows the circuit without components and the final
version.

It should be noted that in the above examples, the systems com-
pletely synchronize: the pendulums of the monumental clocks
oscillate in harmony, moving in the same direction and with the
same amplitudes; the electronic fireflies fire in unison, i.e., at the
same frequency and with the same intensity, and also, the triplet of
metronomes keep a rhythmic behavior such that their pendulums
move with the same amplitude, frequency, and phase. However,
many other types of synchronous motion can also be observed, like
for example, the pendulum clocks moving at the same frequency
but in opposite direction, a phenomenon called anti-phase syn-
chronization, the electronic fireflies flashing at the unison but with
different light intensities, which is referred to as frequency syn-
chronization, and in the triplet of metronomes, they can produce a
synchronized rotating wave: the metronomes oscillate a the same
frequency and amplitude, but the pendulums of the metronomes
have a phase difference of 120 degrees between them (Martens
et al. 2013; Goldsztein et al. 2021).

Finally, it is important to note that in all the experiments de-
scribed above, we can formally explain the onset of spontaneous
synchronization using mathematical tools such as Lyapunov stabil-
ity theory, the master stability function approach, or perturbation
methods such as Poincaré’s method (Ramirez and Nijmeijer 2016).

CHAOS

In the wonder world of complex systems (Cuesta-García 2022;
Echenausía-Monroy 2022j), we are mostly dealing with nonlin-
ear systems. This means that the dynamics of these systems are
described by equations of motion with nonlinear terms, such as
multiplications between variables of the same system, powers
with degree greater than two, special nonlinear functions such as
trigonometric or Piece Wise Linear (PWL) functions, to name a
few (Drazin and Drazin 1992; Echenausía-Monroy et al. 2020). This
type of complex systems does not respond to the superposition
principle, where the system response cannot be decomposed as
the sum of two or more responses corresponding to the number
of system variables. In this type of system, it is possible to find
chaotic behaviors or chaotic dynamics.

When we speak of "chaos" in science, we do not refer to the
Greek cosmological stories that point to what existed before the
existence of everything "before the gods and the elemental forces there
was CHAOS". Nor do we refer to the absence of rules or order.
Colloquially, chaos is often confused with examples such as a
teenager’s messy room, the actions of an angry mob, the behavior
of an elementary school class when the teacher is absent for more
than three minutes, or the mental disaster left behind after failing
to conquer a summer love.

Mathematical chaos, which is generated by deterministic equa-
tions, is bounded aperiodic behavior that cannot be predicted.
Also, a particular feature of chaotic behavior, which in general
tends to be of oscillatory nature, is a high sensitivity to initial con-
ditions, i.e., for two arbitrarily close starting points, the distance
between the generated trajectories will exponentially diverge in
time, see e.g. (Sprott 2010; Devaney 2018). When we say it is aperi-
odic, it simply means that there is no recurrence pattern and it is
not known when the event occurs. When we say it is sensitive to
initial conditions, it means that a small change at the beginning can
cause a very large change over time. The first person to discover
chaos was the famous polymath Henry Poincaré when he was
working on solving the three-body problem (Chenciner 2015). A
cinematic allusion to chaos is found in the first Jurassic Park movie,
where Dr. Ian Malcolm (played by Jeff Goldblum) explains that
chaos is unpredictable, citing as an example the trajectory of two
drops of water in the hand of a beautiful lady.

This unpredictable behavior is also known as the "butterfly
effect," which also appears in pop culture in the movie of the same
name (The Butterfly Effect, starring Ashton Kutcher). In this movie,
the protagonist travels to his past and can change certain events.
Changing a small event in his past causes very big changes in his
future, which is the essence of the Butterfly Effect.

(a) (b)

Figure 7 (a) Numerically determined Lorenz attractor for σ =
10, r = 28, b = 8/3 and all initial conditions are set to one. (b)
Analogy of the Lorenz butterfly with the attractor formed by the
system of the same name.

Edward Lorenz, an American mathematician and meteorolo-
gist, discovered this behavior in 1963 when he studied and reduced
a system of twelve differential equations that described climatolog-
ical behavior (Lorenz 1963). Lorenz programmed these equations
into a computer and analyzed the results, which were accurate to
six decimal places. He then took a value that the computer had
already provided as a system solution and set it as the initial value
so that the computer could "get on" with the simulation. After
running the simulation again, Lorenz made himself a cup of coffee.
When he returned, he hoped that the graphs he received were the
same or very similar to the original ones. To his surprise, the re-
sults seemed to match at first, but after a while they diverged and
no longer matched. Thus Lorenz proved sensitivity to initial condi-
tions, and the analogy to the butterfly effect was born, summed up
in Lorenz’s maxim: "Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?". The mathematical model of the Lorenz
system is described by the folowing set of equations

ẋ = −σ(x + y),

ẏ = x(r − z)− y,

ż = xy − bz,

(1)
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which is derived from the simplified equations of convection rolls
in the dynamical equations of the Earth’s atmosphere (see (Lorenz
2000; Ambika 2015) and references therein for further information).
The state variables (x, y, z) describe the behavior of the velocity
and the direction of circulation of the convection rolls for state
x, y is proportional to the temperature difference between the
updrafts and downdrafts, and z is proportional to the deviation
of the vertical temperature gradient from linearity. If the state
variables of this system of equations are plotted on the x − z plane,
the result is a so-called attractor resembling the shape of a butterfly
(Figure 7).

To easily introduce and demonstrate the concept of the butterfly
effect, imagine a touch screen onto which a numerical simulation of
the Lorenz attractor is projected. Since the butterfly effect is based
on changing the initial conditions of the system, the simulation
considers the touch point (on the touch screen) as the initial condi-
tion, so that when you repeatedly touch "the same point", you get
different trajectories of the Lorenz system under different colors,
which initially agree in their behavior, but diverge over time and
follow completely different paths. Figure 8 shows an experiment
based on the demonstration of the butterfly effect, the video of this
experiment is available on (Echenausía-Monroy 2022f).

Figure 8 Experimental setup of the touchscreen to illustrate the
butterfly effect of the Lorenz attractor.

Chaos is not only found in systems as complex as climate, but
can also be observed in relatively simple models. Consider the
behavior of a pendulum, like that of a wall clock, which behaves
in a completely predictable, periodic, and monotonic manner; it
always moves from left to right as long as the clock has a battery.
Now, if the pendulum is disconnected from the clock, it will only
move from left to right for a certain amount of time until it loses
its energy and stops moving. If you attach another pendulum to
the end of the system, you get a double pendulum. Since you
know the behavior of a simple pendulum, you can assume that
the new system will behave similarly to the first one. Surprisingly,
the double pendulum follows unpredictable paths that change
depending on the starting point of the pendulum, i.e., it shows
chaotic behavior.

To observe the behavior of a double pendulum, consider its con-
struction attached to an ultraviolet light-sensitive screen with a UV
LED at the bottom. This allows visualization of the trajectories of
the system when the pendulum is started in very similar positions,
and the effects of initial conditions. Figure 9 shows the trajec-
tory of the photoluminescent double pendulum, and the video of
the experiment in operation can be found at (Echenausía-Monroy
2022b).

Figure 9 Double pendulum working with UV led placed on the
tip of the second join. The image was taken with ISO 125 and a
shutter speed of 4 seconds.

Chaos is not a phenomenon unique to weather or mechani-
cal systems; rather, it is a quantifiable property (see (Wolff 1992;
Abraham et al. 2013) and the references therein). As mentioned
earlier, it is a phenomenon that surrounds us and that we can take
advantage of. Take, for example, the logistic map, described by Eq.
(2):

xn+1 = rxn(1 − xn), (2)

which is one of the most studied complex systems in discrete time
and has been applied in studying the dynamics of population
growth (see (May 2004) for more information). In 2003, Professor
Kazuyuki Aihara, a professor emeritus at the University of Tokyo,
found that the bifurcation diagram of the logistic map (the behavior
over time when a parameter changes) has a shape that resembles
the silhouette of a dress, as shown in Figure 10 (a). This result was
presented at Tokyo Fashion Week later that year ((Bulletin 2019))
and gave us a new perspective on the applications of chaos in our
lives. A version of Aihara’s chaotic dress can be seen in Figure 10
(b). For a 360° view, see (Echenausía-Monroy 2022e).

It has already been mentioned that there are chaotic dynamics
in our body, which include the behavior of neurons. An example
of this is the Hindmarsh-Rose model (HR), which describes the
behavior of a single neuron in terms of axion potentials and the
sodium-calcium channels that activate them (see (Shilnikov and
Kolomiets 2008; Barrio et al. 2017) for more information). Although
this complex system describes the behavior of a neuron and its
excitatory agents, it is possible to take this model as a basis and
use it to improve daily life.

Imagine a homemade blender spinning at a certain speed in the
same direction. If we give the same blender a chaotic behavior, that
is, it spins randomly in one direction or another and for different
periods of time, it is possible to obtain a much faster homogeneous
shake. This is exactly what Ricardo Núñez, an experimentalist
researched based at CICESE, did when he developed a chaotic
stirrer based on the Chua system. His idea, like Lorenz’s discovery,
was based on the morning coffee in the office and the time it takes
to dissolve the different ingredients we add to the invigorating
drink. As a result, he obtained a stirrer that homogenizes solutions
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(a) (b)

Figure 10 (a) Section of interest from the bifurcation diagram
of the logistic map by varying parameter r in Eq. (2). (b) Dress
based on the logistic map designed by the authors. The original
dress presented by Prof. Ahihara can be found at (Bulletin 2019).

more efficiently and in less time than a conventional one, Figure 11.
For a video of the chaotic mixer in action, see (Echenausía-Monroy
2022d), and for more information, see (Núñez-Pérez 2022).

(a)

(b)

Figure 11 Stirrers mixing honey in water. The periodic shaker
is shown on the left and the shaker based on a chaotic system is
shown on the right. (a) 4 seconds of shaking versus (b) 12 sec-
onds (Núñez-Pérez 2022).

In the last section, we described examples of how chaos occurs
in our environment, how we can observe it, and how it can even
help us in our daily lives. But for those of us who explore this
exciting area of mathematics and physics, chaos has a beauty all
its own. Each of the behaviors and models described can be repre-
sented by systems of equations. These, in turn, can be observed
geometrically through so-called "attractors" that can be interpreted

as the face of any system. In these chaotic attractors the whole
beauty of chaos is shown. For example, consider the work of the
Swiss artist "Chaotic Atmospheres", who has projected in his portfo-
lio various chaotic attractors as graphic works of art, which you
can find at (Atmospheres 2022). With the same idea and using 3D
printing, it is possible to turn a system of differential equations
into something tangible and bring chaos to the real plane, as seen
in Figure 12, where four 3D-printed chaotic attractors are shown.
This is not only a clear example of the use of technology to provide
new educational tools, but also serves to explain and teach com-
plex concepts such as chaos to people with visual impairments.
Printed attractors can be found at (Echenausía-Monroy 2022a).

Figure 12 Chaotic attractors printted in 3D. (a) Lorenz, (b)
Rössler, (c) Dequan Li, and (d) Thomas attractor.

Finally, it should be noted that the chaotic behavior discussed
in this section and the phenomenon of synchronization presented
in the previous section are two related concepts. Indeed, a pair
or network of chaotic systems can synchronize provided they are
suitably coupled, as shown in the pioneering work of Fujisaka and
Yamada (Fujisaka and Yamada 1983).

CONCLUSION

It is our believe that the examples presented in this work may
be useful for introducing concepts from complex systems like
synchronization, emergent behavior and chaos, to non specialist
and to further motivate the excitement for investigating these
systems in the new generations.
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ABSTRACT Many drawbacks in chaos-based applications emerge from the chaotic maps’ poor dynamic
properties. To address this problem, in this paper a chaotification model based on modulo operator and secant
functions to augment the dynamic properties of existing chaotic maps is proposed. It is demonstrated that by
selecting appropriate parameters, the resulting map can achieve a higher Lyapunov exponent than its seed
map. This chaotification method is applied to several well-known maps from the literature, and it produces
increased chaotic behavior in all cases, as evidenced by their bifurcation and Lyapunov exponent diagrams.
Furthermore, to illustrate that the proposed chaotification model can be considered in chaos-based encryption
and related applications, a voice signal encryption process is considered, and different tests are being used
with respect to attacks, like brute force, entropy, correlation, and histogram analysis.
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INTRODUCTION

Chaos theory, as a mathematical discipline aims to study the dy-
namic behavior of systems that are highly sensitive to the initial
conditions and parameter values (Grassi 2021). Chaos can be
found basically in almost all fields from natural and social sciences,
to engineering, and medicine, even economics (Nagashima et al.
2019). As a result chaos theory has evolved to a large attraction for
researchers, and the past decades is continuously being studied,
due to a number of appealing characteristics such as randomness,
and unpredictability, nonlinearity, and initial condition sensitivity,
which over the years led to many interesting and varying appli-
cations. Examples of chaos applicability can be found in robotics
(Petavratzis et al. 2022), weather forecast (Mammedov et al. 2022),
pandemic crisis management (Borah et al. 2022), information secu-
rity (Fadil et al. 2022), circuits (Xiu et al. 2022), and signal processing
(Abd et al. 2022).

Generally in chaos-based applications, and in particular cryp-
tography, better chaotic properties are imperative, since they imply
enhanced performance or security. However, many classic chaotic
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maps like the logistic map and the sine map exhibit weaknesses.
For instance, simple phase portraits which makes it easy to identify
their equilibrium points. This allows potential attackers to predict
the chaotic sequence and the parameter values just by analyzing
the equilibrium points (Shahi et al. 2022; Wang et al. 2022). Another
example is low chaos complexity, which in turn leads to degrada-
tion of the chaotic behavior (Liu et al. 2021). Furthermore, small
regions of chaos also constitutes a weakness, since within an inter-
val of the control parameter values, only a subset is admitted for
use, leading to limited applicability of the chaotic map (Zeraoulia
2012). Consequently, achieving strong chaos with enhanced perfor-
mance has the potential to vastly improve chaos theory research
into the development of related applications.

In this direction, optimization methods to increase Lyapunov
exponents of chaotic systems are developed, for example via dif-
ferential evolution and particle swarm optimization algorithms
(de la Fraga et al. 2012; Adeyemi et al. 2022). The reason for that
is because the Lyapunov exponent measures the sensitivity of the
initial conditions for a chaotic map to small changes (Bovy 2004).
Additionally, since positive Lyapunov exponent values indicate
chaos, the higher they are the more complex a chaotic system is
regarded.

Furthermore, as of recent, there is a movement to develop fami-
lies of chaotic systems, often called chaotification models (Moysis
et al. 2022a), that holistically improve the chaotic behavior for any
given existing chaotic map. To do so, the goal is to prove that a
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chaotification model can achieve higher Lyapunov exponent val-
ues than the existing chaotic maps, and verify that with numerical
experiments. Such examples are to combine any map with a cosine
function (Natiq et al. 2019), a sine function (Hua et al. 2018), a sine
and cosecant functions (Li et al. 2021), a cascade sine operation
(Wu 2021), an internal perturbation model (Dong et al. 2021), a
remainder operation addition (Moysis et al. 2022b), or the mod-
ulo operator, which has been shown to be effective in improving
chaotic behavior (Ablay 2022; Zhang et al. 2022).

Influenced by this, a chaotification model based on the modulo
operation and secant function to strengthen the complexity of ex-
isting chaotic maps is constructed. Its structure is comprised of the
secant function, which influences directly the output of existing
chaotic maps, acting as a chaotification agent, and the modulo
operator, which limits the set of possible output values. To assess
the model’s performance, a theoretical analysis based on the Lya-
punov exponent is conducted. Additionally, four one-dimensional
chaotic maps acting as seed maps are applied to the model, leading
to four new chaotic maps. The chaos complexity of these maps is
then evaluated through common tools for studying the dynamical
behavior of chaotic systems, namely phase, bifurcation, Lyapunov
exponent diagrams, and the fuzzy entropy.

Moreover, to illustrate an application of the proposed chaotifica-
tion model, a voice signal encryption technique is designed based
on one of the new chaotic maps. This map is used to shuffle, and
modulate the signal to obtain the ciphered signal. This voice signal
encryption technique’s security is validated and tested using a
variety of tests and measures such as histogram, and key space
and sensitivity analysis, approximate entropy, spectral distortion,
log-likelihood, and signal to noise ratio.

The outline of the paper is as follows: Section 2 presents the
proposed chaotification model, and the theoretical analysis of its
performance. Section 3 introduces four new chaotic maps. In
Section 4 the dynamics of the new maps is discussed. Section 5
considers the application of voice encryption. In Section 6 the
encryption performance is discussed. Section 7 conclusions are
presented, along with a suggestion for future research based on
the shortcomings of the suggested model.

CHAOTIFICATION MODEL BASED ON MODULO OPERA-
TOR AND SECANT FUNCTIONS

In this section is introduced the proposed chaotification model
and are presented various examples of modified chaotic maps to
illustrate the model’s effectiveness.

Concept of the chaotification model

The proposed chaotification model uses a double nonlinear trans-
formation based on the modulo operator and secant function to
improve the chaotic properties and complexity of existing chaotic
maps as shown in Fig. 1.

Consider the modulo operator mod (·, N), and the secant
function sc(·) = 1

cos(·) , then the chaotic system is of the following
form:

xi+1 = mod(a · sc(b · F(xi)), N) (1)

where xi is the input, a, b ∈ R+ are the system’s parameters, F(xi)
the existing chaotic maps, and N ∈ N∗ the control parameter that
limits the map’s values in the interval [0, N].

The following aspect primarily reflects the augmentation of
the chaotic complexity of the resulting new maps. The chaotifica-
tion model expands the chaotic range of one dimensional chaotic

F(xi) a · sc(b · F(xi)) mod(a · sc(b · F(xi)), N)
xi xi+1

Figure 1 Structure of the chaotification model based on modulo
operator and secant functions.

maps. Meaning that the modified maps have larger control param-
eter range than before. This will be confirmed theoretically and
experimentally.

Lyapunov exponent analysis
One of the most well-known tools for studying the quantitative
behavior of chaotic systems is the Lyapunov exponent. The Lya-
punov exponent for a dynamical system of the form xi+1 = f (xi)
is defined as follows:

λ = lim
n→∞

1
n

n−1

∑
i=0

ln | ḟ (xi) | (2)

When λ > 0 implies existence of chaos. Furthermore, a greater
Lyapunov exponent is an indication of a more complex chaotic
behavior.

By the definition of Lyapunov exponent a chaos complexity
analysis of the proposed chaotification method can be derived.
The derivative in Eq. (2) is known that is the slope of the tangent
line at any given point (xi, f (xi)) of the chaotic system’s curve.
In addition, the modulo operator has an inherent property that
allows it to translate a curve’s part that is outside the phase space
inside of it without alterations.

Therefore, without loss of generality, the modulo operator can
be disregarded, and the chaotification model in (1) be regarded as

xi+1 = M(xi) = a · sc(b · F(xi)). (3)

Hence, the following theorem is proven.

Theorem 1. The proposed map (1) achieves a higher Lyapunov expo-
nent (LE) compared to its source map F(xi), for appropriate choice of
parameters a, b.

Proof. This proof is inspired by (Zhang et al. 2022; Li et al. 2021).
Consider two initial conditions y0 and x0, where x0 differs from y0
by a small number ϵ > 0. Then, after iterating once are obtained
y1 and x1. Their difference is computed as follows,

|y1 − x1| = |M(y0)−M(x0)|
= |a · sc(b · F(y0))− a · sc(b · F(x0))|

=

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)(
F(y0)− F(x0)

y0 − x0

)
(y0 − x0)

∣∣∣∣
=

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)∣∣∣∣ ∣∣∣∣( F(y0)− F(x0)

y0 − x0

)∣∣∣∣ |y0 − x0|.

(4)

Because from hypothesis y0 → x0, consequently F(y0) → F(x0),
then

lim
y0→x0

∣∣∣∣( F(y0)− F(x0)

y0 − x0

)∣∣∣∣ ≈ dF
dx

|x0

lim
F(y0)→F(x0)

∣∣∣∣( a · sc(b · F(y0))− a · sc(b · F(x0))

F(y0)− F(x0)

)∣∣∣∣ ≈ dM
dx

|F(x0)
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Therefore,

|y1 − x1| ≈
∣∣∣∣ dMdx

|F(x0)

∣∣∣∣ ∣∣∣∣ dF
dx

|x0

∣∣∣∣ |y0 − x0|. (5)

In similar way, after iterating for a second time y2 and x2 are
obtained. Their difference is calculated as

|y2 − x2| = |M(y1)−M(x1)|
= |a · sc(b · F(y1))− a · sc(b · F(x1))|

=

∣∣∣∣( a · sc(b · F(y1))− a · sc(b · F(x1))

F(y1)− F(x1)

)(
F(y1)− F(x1)

y1 − x1

)
(y1 − x1)

∣∣∣∣
=

∣∣∣∣( a · sc(b · F(y1))− a · sc(b · F(x1))

F(y1)− F(x1)

)∣∣∣∣ ∣∣∣∣( F(y1)− F(x1)

y1 − x1

)∣∣∣∣ |y1 − x1|

≈
∣∣∣∣ dMdx

|F(x1)

∣∣∣∣ ∣∣∣∣ dF
dx

|x1

∣∣∣∣ ∣∣∣∣ dMdx
|F(x0)

∣∣∣∣ ∣∣∣∣ dF
dx

|x0

∣∣∣∣ |y0 − x0|. (6)

After iterating for the nth time and yn and xn are obtained, their
difference can be computed as

|yn − xn| = |M(xn−1)−M(xn−1)|

≈
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣ |y0 − x0|. (7)

The average divergence after n iterations will be denoted ∆M(x),
and is calculated as follows:

∆M(x) =

∣∣∣∣ yn − xn

y0 − x0

∣∣∣∣
1
n

=

(
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣
) 1

n
(8)

Hence, from equation (2) the Lyapunov exponent of λM(x) can be
obtained.

λM(x) = lim
n→∞

ln(∆M(x))

= lim
n→∞

1
n

ln

(
n−1

∏
i=0

∣∣∣∣ dMdx
|F(xi)

dF
dx

|xi

∣∣∣∣
)

= lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣ dMdx

|F(xi)
dF
dx

|xi

∣∣∣∣
= lim

n→∞

1
n

n−1

∑
i=0

ln
∣∣∣∣ abḞ(xi) sin(bF(xi))

cos2(bF(xi))

∣∣∣∣
= lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣abḞ(xi) sin(bF(xi))

∣∣− ln
∣∣∣cos2(bF(xi))

∣∣∣)
= lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣abḞ(xi) sin(bF(xi))

∣∣)
− lim

n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣)
= λ + ln |a|+ lim

n→∞

1
n

n−1

∑
i=0

(ln |b sin(bF(xi))|)

− lim
n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣)
= λ + ln | a | +λC(x) + γ (9)

where

λ = lim
n→∞

1
n

n−1

∑
i=0

ln |Ḟ(xi)|,

γ = − lim
n→∞

1
n

n−1

∑
i=0

(
ln
∣∣∣cos2(bF(xi))

∣∣∣) ,

and

λC(x) = lim
n→∞

1
n

n−1

∑
i=0

(ln |b sin(bF(xi))|)

Notice that since 0 ≤ cos2(b(F(xi))) ≤ 1 then γ ≥ 0, and ln |a| > 0
iff a > 1. Furthermore, it can be noticed that ln |b sin(bF(xi))| > 0

iff |b sin(bF(xi))| > 1 as such |b| > 1
|sin(bF(xi))|

, and because

b ∈ R+, b >
1

|sin(bF(xi))|
. Thus, λC(x) > 0 if and only if,

b >
1

|sin(bF(xi))|
. However, because b is depended on F(xi) it is

very difficult to identify a particular set of values for b from this
condition.

Similarly to (Li et al. 2021) in order to identify values for the
parameter b such that λC(x) > 0, design the chaotic map

xi+1 = − cos(bxi). (10)

with corresponding Lyapunov exponent

lim
n→∞

1
n

n−1

∑
i=0

(ln |b sin(bxi)|)

According to the bifurcation and Lyapunov exponent diagram
of Eq. (10) depicted in Fig. 2, the map exhibits chaotic behavior
with respect to parameter b for a variety of values. For example,
b = 1 or 20. Thus, it can be concluded that for the same value of
parameter b, λC(x) > 0.

Hence, the chaotic properties based on the above analysis can
be summarized as follows:

1. When λ > 0 and λM(x) > λ > 0. In this case, the generated
new map shows chaos and has larger Lyapunov exponent
than the seed map.

2. If λ < 0, and λ > −(λC(x) + γ + ln |a|). In this case also the
generated new map shows chaos.

3. When λ < 0, and λ ≤ −(λC(x) + γ + ln |a|). Then the gener-
ated new map does not have chaotic behavior.

Hence, it has been proved that the proposed chaotification
model can improve the complexity of the seed map and the modi-
fied map can obtain larger Lyapunov exponents.

EXAMPLES OF NEW CHAOTIC MAPS

To showcase our previous result, the logistic map, the sine map,
the sine sine map, and the cosine logistic map are used as seeds,
yielding four new chaotic maps of the form (1). It should be noted
that all initial conditions are set x0 = 0.1. Furthermore, the parame-
ter b when directly multiplied with a seed map’s control parameter
is set b = 1, if not then b can take any positive real number under
the condition that the value of b is within a chaotic region of the
map xi+1 = − cos(bxi).
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Figure 2 The bifurcation and Lyapunov exponent diagram of Eq.
(10) with respect to b.

Modified logistic map
Consider the Logistic map F(xi) = rxi(1 − xi) as a seed map to Eq.
(1), then the following map is obtained:

xi+1 = mod(a · sc(brxi(1 − xi)), N) (11)

Modified sine map
Let the Sine map F(xi) = η sin(πxi) be a seed map to Eq. (1), then
the following map is obtained:

xi+1 = mod(a · sc(bη sin(πxi)), N) (12)

Modified sine sine map
If the Sine Sine map F(xi) = sin(πη sin(πxi)) is considered as a
seed map to Eq. (1), then the following map is obtained:

xi+1 = mod(a · sc(b sin(πη sin(πxi))), N) (13)

Modified cosine logistic map
Consider the Cosine Logistic map F(xi) = k cos(rxi(1 − xi)) as a
seed map to Eq. (1), then a new modified map is obtained:

xi+1 = mod(a · sc(bk cos(rxi(1 − xi))), N) (14)

PERFORMANCE EVALUATION

To evaluate the behavior of the new chaotic maps the following
tools are used:

Phase diagrams
By projecting the inputs and outputs, phase diagrams can provide
a qualitative portray of the behavior of chaotic maps. Irregular-
ities in the phase diagram imply that the map’s behavior is less
predictable.

In Figs. 3, 4, 5, 6 the phase diagrams of the new chaotic maps
and the phase diagrams of their corresponding seed maps are
presented. It can be observed that while the shape of the seed
maps’ phase diagrams is distinguishable, the shape of the modified
chaotic maps’ phase diagram is indistinguishable. This means that
the fixed points of the modified maps can not be obvious, contrary
to the fixed points of the seed maps. As such, the task of predicting
the parameters and states becomes considerably more difficult.
Hence, the complexity of the new maps is higher.

Figure 3 On the left the phase diagram of the modified Logistic
map (11) is depicted, where r = 4, a = 2 · 106, b = 1 and N = 1.
On the right the phase diagram of the Logistic map, where r = 4.

Figure 4 On the left the phase diagram of the modified sine map
(12) is depicted, where η = 10, a = 2 · 106, b = 1 and N = 1. On
the right the phase diagram of the sine map, where η = 10.

Figure 5 On the left the phase diagram of the modified sine sine
map (13) is depicted, where η = 10, a = 2 · 106, b = 20 and N =
1. On the right the phase diagram of the sine sine map, where
η = 10.

Figure 6 On the left the phase diagram of the modified cosine
logistic map (14) is depicted, where k = 10, a = 2 · 106, b = 1,
r = 4 and N = 1. On the right the phase diagram of the cosine
logistic map, where k = 10 and r = 4.
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Bifurcation diagrams
By projecting the outputs with respect to the system’s parameters,
bifurcation diagrams shows the qualitative behavior of the system.
Provides an insight on when, and the conditions under which the
system enters or exits chaos.

From the comparison of the bifurcation diagrams in Figs. 7, 8,
9, 10 between the new maps and their classic counterparts, it can
be seen that the enhanced maps exhibit larger regions of chaotic
behavior, as well as the set of values is in the whole interval [−1, 1].
Therefore, it can be concluded that the modified maps exhibit more
complicated behavior than their seed maps.

Figure 7 On the left the bifurcation diagram of the modified logi-
stic map (11) with respect to r is depicted, where a = 2 · 106, b = 1
and N = 1. On the right the bifurcation diagram of the Logistic
map with respect to r.

Figure 8 On the left the bifurcation diagram of the modified sine
map (12) with respect to η is depicted, where a = 2 · 106, b = 1
and N = 1. On the right the bifurcation diagram of the Sine map
with respect to η.

Figure 9 One the left the bifurcation diagram of the modified
sine sine map (13) with respect to η is depicted, where a = 2 · 106,
b = 20 and N = 1. On the right the bifurcation diagram of the
Sine Sine map with respect to η.

Lyapunov exponent diagrams
The Lyapunov exponent describes the average divergence of trajec-
tories that begin from almost the same initial conditions. A positive
Lyapunov exponent suggests that two neighboring trajectories in a
dynamical system exponentially separate in each iteration, becom-
ing different trajectories as time approaches infinity. As such, a
positive Lyapunov exponent suggests chaos, and large Lyapunov
exponent values indicate high complexity.

In Fig. 12, it can be seen that there exists a small region where
the modified sine map (12) exhibits periodic behaviour. How-
ever, this is not visible to the corresponding bifurcation diagram

Figure 10 On the left the bifurcation diagram of the modified
cosine logistic map (14) with respect to k is depicted, where a =
2 · 106, b = 1, r = 4 and N = 1. On the right the bifurcation
diagram of the cosine cogistic map with respect to k.

8, because the size of the region is much smaller than the overall
interval in which the bifurcation diagram is plotted.

In addition, Figs. 11, 12, 13, 14 a comparison between the
Lyapunov exponent diagrams of the modified chaotic maps and
their original counterparts are presented. Immediately, from the
high Lyapunov exponent values of the modified maps becomes
apparent that they exhibit more complex behaviors than their seed
maps.

Furthermore, from a first glance it seems that the modified maps
mostly overcome chaos degradation, something very desirable in
chaos based encryption. However, next it will be shown that this
is not the case.

Figure 11 The Lyapunov exponent diagrams of the modified
Logistic map (11) (black) and the Logistic map (red).

Figure 12 The Lyapunov exponent diagrams of the modified
Sine map (12) (black) and the Sine map (red).
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Figure 13 The Lyapunov exponent diagrams of the modified
Sine Sine map (13) (black) and the Sine Sine map (red).

Figure 14 The Lyapunov exponent diagrams of the modified
cosine logistic map (14) (black) and the cosine logistic map (red).

Fuzzy entropy
Like approximate, and sample entropy, fuzzy entropy is another
measure to assess the complexity of a dynamical system based on
fuzzy logic. High values of fuzzy entropy indicate high complexity.
The reason for using fuzzy over sample entropy is because the
complexity estimate is computed via the Gaussian function (Chen
et al. 2009; Alawida et al. 2022; Dong et al. 2021),

Θ(wm
i,j, t) = exp{

−(wm
i,j)

2

t
} (15)

where m is the embedding dimension which is set to 2, t is the toler-
ance value set to be t = 0.15 ∗ std(x), where std(x) is the standard
deviation of the time-series, and w = max(i,j)∈(0,m−1) |x(i)− x(j)|
the maximum distance between two sequences of length m.

In Figs. 15,17,19,21 a comparison of the fuzzy entropy values
between the modified chaotic maps, and their classic counterparts
is presented. It can be seen that the modified maps indeed display
higher complexity than their counterparts. However, an undesir-
able effect in chaos cryptography that is not visible in the Lyapunov
exponent diagrams depicted in Figs. 11, 12, 13, 14 becomes ap-
parent, chaos degradation. This degradation in small periodic
windows making it impossible to identify them in the bifurcation
or Lyapunov exponent diagrams. Additionally, Fig. 17 verifies the
periodic behavior of the modified sine map (12) presented in Fig.
12.

Furthermore, to investigate further these small periodic win-
dows, and better understand the systems’ behavior, the fuzzy
entropy values were computed with respect to two parameters of

the modified maps depicted in Figs. 16, 18, 20, 22. Again these
diagrams verify that the modified chaotic maps exhibit a more
complex behavior than their counterparts. However, the periodic
windows, due to their size are not clearly visible in the diagrams.

Hence, despite the higher complexity of the new maps, a chal-
lenging problem is to modify the proposed chaotification technique
in such way that chaos degradation is limited or absent.

Figure 15 Fuzzy entropy comparison between the modified lo-
gistic map (11) with a = 2 · 106, b = 1 and x0 = 0.1, and the classic
logistic map.

Figure 16 Fuzzy entropy of the modified logistic map (11) with
respect to two parameters r, a with initial conditions x0 = 0.1
and b = 1.

Figure 17 Fuzzy entropy comparison between the modified sine
map (12) with a = 2 · 106, b = 1 and x0 = 0.1, and the classic sine
map.
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Figure 18 Fuzzy entropy of the modified sine map (12) with
respect to two parameters η, a with initial conditions x0 = 0.1
and b = 1.

Figure 19 Fuzzy entropy comparison between the modified sine
sine map (13) with a = 2 · 106, b = 20 and x0 = 0.1, and the classic
sine sine map.

Figure 20 Fuzzy entropy of the modified sine sine map (13) with
respect to two parameters η, a with initial conditions x0 = 0.1
and b = 20.

ENCRYPTION OF SOUND SIGNAL

In this section the encryption of a sound signal is presented. The
encryption consists of two parts, a sample shuffling, and a modu-
lation of the source signal. The simulated signals are depicted in
Fig. 23. As a source signal was used the poem Three Things by Ella
Wheeler Wilcox. It can be downloaded by archive.org.

Step 1: A permutation to the source signal is performed. To
do that consider two chaotic sequences of the form (11) with pa-
rameters (x0, ax, bx, rx) and (y0, ay, by, ry) of same length as the
samples of the source signal n. Consider also a sequence z =
mod (x + y, 1) with length n. Then, consider a vector P of length
n, that takes its values in the interval [1, n], applying the following

Figure 21 Fuzzy entropy comparison between the modified co-
sine logistic map (14) with a = 2 · 106, b = 1, r = 4 and x0 = 0.1,
and the cosine logistic map with r = 4.

Figure 22 Fuzzy entropy of the modified cosine logistic map
(14) with respect to two parameters k, a with initial conditions
x0 = 0.1 and parameter values r = 4 and b = 1.

rule, pi = ⌈ mod (1012zi, n)⌉ for i = 1, . . . , n, where ⌈·⌉ is the
ceiling operator. If pi = pj for i, j = 1, . . . , n, then pj is rejected
until all locations in the vector are unique. Then P provides the
permutation order of the source signal. For example, let p1 = 200,
then the 1st element of the source signal will move to the 200th

position. This is process is repeated until all elements in the source
signal are repositioned and a new P̃ signal is obtained.

Step 2: Then a modulation to the permuted signal is performed
to obtain the final encrypted signal. To do that consider a chaotic
sequence of any of the forms (11), (12), (13), (14) of length n. In
this scenario it was chosen the chaotic map (11) with parameters
(q0, aq, bq, rq). Finally, the encrypted signal is obtained by,

E = P̃ + cos(πq).

Then the ciphered signal can be transmitted, and the receiver
can reconstruct the original signal by solving

P̃ = E − cos(πq)

and reversing step 1.

ENCRYPTION PERFORMANCE

A series of tests are run on the original, permuted, and encrypted
signals to evaluate the performance of the encryption algorithm.
Table 1 summarizes the results of the simulation performed in
Matlab R2019a. The encryption key values are x0 = 0.2, y0 =
0.8, q0 = 0.1, ax = 2 · 106, ay = 2 · 106, aq = 2 · 106, bx = 1, by =
1, bq = 1, rx = 3, ry = 4, rq = 5.
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Figure 23 Original voice signal, permuted signal, and encrypted
signal.

Histogram
The original, permuted, and encrypted signal histograms are de-
picted in Fig. 24. As it can be observed contrary to the normal-like
distributions of the original and permuted histograms, the en-
crypted signal exhibits a more complex histogram. As such, the
hidden information is successfully masked. It should be noted that
the original and permuted histograms are alike, since the values of
the original signal were not altered but only shuffled.

Structural Similarity Index
The structural similarity (Algarni et al. 2021) between two signals
is computed by,

SSIM =
(2µxµy + S1)(2cov(x, y) + S2)

(µ2
x + µ2

y + S1)(var2x + var2y + S2)
(16)

where µx, µy the mean of the original and encrypted (or permuted)
signals respectively, varx, vary their variances, and cov(x, y) their
cross-covariance. It should be noted that S1, S2 are set to small
values, in order to ensure stable results when the denominator is
close to zero.

Figure 24 Histograms of the Original, Permuted, and Encrypted
Signal.

The structural similarity index value is in the interval [−1, 1],
with 1 implying matched signals, and 0 when the signals have
no similarity. Therefore, if the value is closing to zero, then the
encryption is better. The structural similarity index between the
original and the permuted signal is equal to 0.1253, and between
the original and the encrypted signal is equal to 0.0019. Hence,
since these values are close to zero, it can be concluded that the
encryption is good.

Log-Likelihood Ratio

The Log-Likelihood Ratio estimates the encryption reliability
(Elshamy et al. 2015). It assumes the segment can be depicted
by a pth order all-pole linear predictive coding model,

xi =
p

∑
m=1

amxi−m + Gxui (17)
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where xi is the ith signal sample, am, m = 1, ..., p the coefficients
of the all-pole filter, Gx is the filter gain, and ui is an appropriate
signal excitation input. Then the Log-Likelihood Ration is given
by,

LLR =

∣∣∣∣∣log

(
axRyaT

x

ayRzaT
y

)∣∣∣∣∣ (18)

where ax, ay the vectors of the Linear Prediction Coefficients of
the form [1 a1 a2 . . . am] of the original signal, and the encrypted,
or permuted signal respectively, and Ry the autocorrelation matrix
of the encrypted or permuted signal. High Log-Likelihood Ratio
values suggest a successful encryption. In order to short the com-
putational time because the original signal is comprised by about
2.4 million samples, the original and encrypted (or permuted) sig-
nals were split to several segments, then the Log-Likelihood Ratio
was computed as the mean value of the Log-Likelihood Ratio val-
ues of those segments. As such, the Log-Likelihood Ratio among
the original and permuted signals is computed 2.5940 with vari-
ance 1.3347 and standard deviation 1.1553. Between the original
and encrypted signals the Log-Likelihood Ration is 2.5930 with
variance 1.3419 and standard deviation 1.1584. Since the values
are both high, it can be concluded that the encryption is successful.

Signal to Noise Ration
The signal-to-noise ratio is another metric used to assess the quality
of an encryption (Mosa et al. 2011). The signal-to-noise ratio is
given by,

SNR = 10 log10
∑N

i=1 x2
i

∑N
i=1(xi − yi)2

(19)

where x, y are the original and encrypted (or permuted, decrypted)
signals respectively. High positive signal-to-noise ratio value indi-
cate strong relation between the two signals, while low negative
signal-to-noise ratio value imply mismatch between the signals.
The signal-to-noise ratio among the original and the decrypted
signals is 306.8672. Therefore, indicating that the decryption is
successful. The signal-to-noise ratio between the original and per-
muted signals is −3.0148, and among the original and encrypted
signals is −21.6418. Hence, also from this measure it can be de-
duced that the encryption is good.

Correlation Coefficient
The correlation coefficient (Renza et al. 2019; Algarni et al. 2021)
among two signals is given by,

rxy =
cov(x, y)√

var(x)
√

var(y)
(20)

where cov(x, y) is the covariance of the two signals and
var(x), var(y) their variances. The correlation coefficient takes
its values in the interval [0, 1]. When the value is close to zero
means that the two signals are uncorrelated. The correlation coef-
ficient between the original and the permuted signal is −0.0010,
between the original and the encrypted signal is −0.00047, in both
of these cases is implied uncorrelated signals, while the correlation
coefficient between the original and the decrypted signal is 1, and
that is because they are identical, as it should.

Spectral Distortion
The spectral distortion is the measure to quantify the mismatch
between two signals (Renza et al. 2019). Therefore, spectral distor-
tion can be used to compare the original sound with the permuted,

encrypted, and the decrypted sounds. It is given by,

SD =
1
N

N−1

∑
i=0

|Vx,i − Vy,i| (21)

where Vx,i, Vy,i are the spectrum of the signals in decibels at any
given point in time i. When the spectral distortion value is high,
a higher difference between the two signals is implied, and when
the spectral distortion value is equal to zero the two signals are
matched. As such, large values of spectral distortion are indicative
of a good encryption, and zero or close to zero value implies suc-
cessful decryption. The spectral distortion among the original and
permuted signals is 29.3021, between the original and encrypted
signals is 36.7113, and among the original and decrypted signals is
3.7596 · 10−12 ≈ 0. Hence, it can be deduced that the encryption is
good as well that the decryption is successful.

Approximate Entropy
The approximate entropy proposed in (Pincus 1991) provides an
indication for the complexity of a time series. The higher the
approximate entropy of a time series, the more complex it is con-
sidered (Liu et al. 2021). As a result, the approximate entropy value
of the encrypted signal must be greater than that of the original.
The approximate entropy of the original signal is 0.6235, 1.9402
after the permutation is performed, and 1.9696 for the encrypted
one, indicating that the encrypted signal has the highest approxi-
mate entropy. It should be noted that the original, permuted, and
encrypted signals were divided into several sub-signals for compu-
tational reasons, and their approximate entropy is computed as the
mean approximate entropy of those sub-signals. The variance for
each signal is 0.2453, 0.0561, and 0.0011, and the standard deviation
is 0.4953, 0.2369, and 0.0342 respectively.

Key space and Sensitivity
Every encryption system must be robust to brute force attacks.
This requires that the key space be higher than 2100 (Alvarez and
Li 2006). Three chaotic maps (11) are used in the proposed en-
cryption system, with parameters (x0, ax, bx, rx), (y0, ay, by, ry) and
(q0, aq, bq, rq), given that for this map the parameter b is set to be
always 1. As a result, the system has 9 parameters. For a precision
of 16 digits, the upper bound for the key space is computed as
109·16 = 10144 = (103)48 ≈ (210)48 = 2480. Note, that since the
map (11) exhibits periodic windows in very small regions with
respect to its control parameters the actual key space is less than
2480. However, the requirement to resist brute force attacks is still
met.

Moreover, since this encryption system is chaos-based, any
minor change in the parameter values will result in a flawed de-
cryption process. As a result, any encrypted signal can only be
decrypted by the receiver only as long as the given keys are pre-
cisely known.
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■ Table 1 Performance of the encryption scheme

Signals Original Sound Permuted Sound Encrypted Sound Decrypted Sound

Structural Similarity Index - 0.1253 0.0019 1

Log-Likelihood Ratio - 2.5940 2.5930 -

Signal Noise Ratio - −3.0148 −21.6418 306.8672

Correlation Coefficient - −0.0010 −0.00047 1

Spectral Distortion 0 29.3021 36.7113 3.7596 · 10−12

Approximate Entropy 0.6235 1.9402 1.9696 0.6235

CONCLUSION

In this work, a new chaotification method is proposed by using a
double nonlinear transformation based on the modulo operator
and secant function to enhance the chaotic behavior and complex-
ity of existing chaotic maps. The theoretical analysis based on
the Lyapunov exponent revealed that for a given seed map ap-
plied on the proposed chaotification model, the modified map
can achieve higher Lyapunov exponent values than the original
map. As a result, the proposed chaotification technique can en-
large the chaotic region of a one-dimensional chaotic map while
also improving its dynamic properties. To validate this theoretical
result, numerical experiments were applied using as seed maps,
the logistic, sine, sine sine, and the cosine logistic maps, through
well-known tools for studying the dynamical behavior of chaotic
systems, namely the phase diagrams, bifurcation diagrams, Lya-
punov exponent diagrams, and the fuzzy entropy. From these
experiments it was shown that indeed the modified maps exhibit
larger chaotic regions, higher lyapunov exponents, indistinguish-
able phase diagrams. Therefore, the chaotification technique im-
proves the dynamic properties of the seed maps. However, the
fuzzy entropy showed chaos degradation in the new maps which
is in the form of small periodic windows. These periodic windows
are not a desirable property, especially in chaos based encryption.
As such, a modification of the chaotification technique must be
considered. A possible modification which will be studied is as
follows:

xi+1 = mod (a · 1
(b cos(F(xi)) + c)

, N)

where parameter c is small in order to guarantee consistent perfor-
mance when the denominator is close to zero.

Moreover, to illustrate a practical application of the proposed
chaotification model, a voice encryption scheme was designed.
The system is based on a permutation, and a modulation process
both derived by the modified logistic map 11. A variety of tests
and measures were used to showcase that the resulting encrypted
signal is both random and secure.

Furthermore, for future research the implementation of this
proposed encryption scheme on digital hardware, such as ARM
processors, FPGA, and microcontrollers will be considered. When
it comes to digital implementation of chaos-based cryptography
techniques, the problem of chaotic map reproducibility from one
device to another arises. Given the nonlinear nature of the maps,
computational accuracy is of the utmost importance. One round-
off error in the least significant digits can lead to completely differ-

ent trajectories throughout various devices even with exact initial
conditions and control parameter values (Teh et al. 2020; Sayed et al.
2020). Therefore, the output replication problem across different
devices becomes apparent. In addition, an investigation of the
increased computational effort by the modulo operator and the
secant function in comparison to the classic maps is of interest.

Finally, it is intended to extent our results to multidimensional
chaotic maps, and construct new hyperchaotic systems.
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