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Certain Curvature Conditions on (k, u)-Paracontact
Metric Spaces

Pakize Uygun'*, Siileyman Dirik?, Mehmet Atceken3, Tugba Mert*

Abstract

The aim of this paper is to classify (k,u)-paracontact metric spaces satisfying certain curvature conditions.
We present the curvature tensors of (k,u)-Paracontact manifold satisfying the conditions R- W =0, R-W; =0,
R-Wg =0 and R-Wy = 0. According these cases, (k, it)-Paracontact manifolds have been characterized. Also,
several results are obtained.
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1. Introduction

Paracontact manifolds are smooth manifolds of dimension (2n+ 1) equipped with a 1-form 1, a vector field & and a field of
endomorphisms of tangent spaces ¢ such that (&) = 1, 9> =7 —n ® & and ¢ induces an almost paracomplex structure by
kernel of 1) [1]. On the other hand, if the manifold is equipped with a pseudo-Riemannian metric g of signature (n+ 1,n)
satisfying

8(0X,9Y) = —g(X,Y)+n(X)n(Y), dn(X,Y) = g(X,¢Y),

(M,n) becomes a contact manifold and (¢,&,1,g) is said to be a paracontact metric structure on M. In 1985, Kaneyuki and
Williams initiated the perspective of paracontact geometry [5]. Zamkovoy performed a thorough study of paracontact metric
Manifolds. [15]. Recently, B. Cappeletti-Montano, I. Kiipeli Erken and C. Murathan introduced a new type of paracontact
geometry so-called paracontact metric (k, i )—space, where k and u are constant [4].

M. M. Tripathi and P. Gupta studied T-curvature tensors in semi-Riemannian manifolds. They defined T-conservative
semi-Riemannian manifolds and give necessary and sufficient tensor on a Riemannian manifolds to be T-conservative. They
proved that every T-flat semi-Riemannian manifold is Einstein. They also gave the conditions for semi-Riemannian manifold to
be T-flat [8]. Since then several geometers studied curvature conditions and obtain various important properties [2, 6], [9]-[13].

The object of this paper is to study properties of the some certain curvature tensor in a (k, [t)—paracontact metric manifold.
In the present paper we survey R-Wg =0, R-W; =0, R-Wg =0 and R- Wy = 0, where W, W7, W5 and Wy denote curvature
tensors of manifold, respectively.
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2. Preliminaries

An (2n + 1)-dimensional manifold M is called to have an paracontact structure if it admits a (1, 1)—tensor field ¢, a vector field
& and a 1-form 7 satisfying the following conditions [5]:
(i) ¢>X =X —n(X)E, for any vector field X € (M), the set of all differential vector fields on M,

(@) n(§)=1,n0¢=0,05 =0.

An almost paracontact structure is called to be normal if and only if the (1,2)—type torsion tensor Ny = [¢,¢] —2dn Q&
vanishes identically, where [¢, ¢](X,Y) = ¢2[X, Y] +[0X,0Y]— ¢[0X,Y]— ¢[X,dY]. An almost paracontact manifold equipped
with a pseudo-Riemannian metric g so that

g(9X,0Y) = —g(X,Y) +n(X)n(Y), g(X,5)=n(X) 2.1)

for all vector fields X,Y € (M) is said almost paracontact metric manifold, where signature of g is (n+ 1,n). An almost
paracontact structure is called to be a paracontact structure if g(X,¢Y) = dn(X,Y) with the associated metric g [15]. We now
define a (1, 1) tensor field h by h = %Lé ¢, where L denotes the Lie derivative. Then & is symmetric and satisfies the conditions

h¢ =—¢h, hE =0, Trh=Tr.¢h=0. 2.2)
If V denotes the Levi-Civita connection of g, then we have the following relation
Vx& = —0X + ohX (2.3)

for any X € x(M)[15]. For a paracontact metric manifold M*>"+!(¢, &, 7, g), if € is a killing vector field or equivalently, i = 0,
then it is called a K-paracontact manifold.
An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds [15].

(Vx@)Y = —g(X,¥)E +n(¥)X
forall X,Y € (M) [15]. A normal paracontact metric manifold is para-Sasakian and satisfies
R(X,Y)§ = —(n(¥)X —n(X)Y) 24)

for all X,Y € (M), but this is not a sufficient condition for a para-contact manifold to be para-Sasakian. It is clear that every
para-Sasakian manifold is K-paracontact. But the converse is not always true[3].

A paracontact manifold M is said to be n-Einstein if its Ricci tensor S of type (0,2) is of the from S(X,Y) = ag(X,Y) +
bn(X)n(Y),where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein and if @ = 0, then it is
called special type of n-Einstein manifolds [14].

A paracontact metric manifold is said to be a (k, () —paracontact manifold if the curvature tensor R satisfies
R(X,Y)E = k[n(Y)X = (X)Y]+u[n(Y)hX — 1 (X)hY) (2.5)

forall X,Y € (M), where k and u are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying
R(X,Y)E =01[16).

In particular, if 4 = 0, then the paracontact metric (k, i) —manifold is called paracontact metric N(k)-manifold . Thus for a
paracontact metric N (k)-manifold the curvature tensor satisfies the following relation

R(X,Y)E = kn(Y)X —kn(X)Y (2.6)

for all X,Y € x(M). Though the geometric behavior of paracontact metric (k, (t)—spaces is different according as k < —1, or
k > —1, but there are some common results for k < —1 and k > —1[4].

Lemma 2.1. There does not exist any paracontact (k, ) —manifold of dimension greater than 3 with k > —1 which is Einstein
whereas there exits such manifolds for k < —1 [4].
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In a paracontact metric (k, it)—manifold M>"*!(¢,&,n,g), n > 1, the following relation hold :

h? = (k+1)¢?, fork # —1, 2.7)
(Vx)Y = —g(X —hX,¥)E +71(Y)(X — hX), 2.8)
SX,Y) = [2(1—n)+nulg(X,Y)+[2(n—1)+pulg(hX,Y) + [2(n— 1) +n(2k — p)In(X)n(Y), (2.9)
S(X,8) = 2nkn(X), (2.10)
QY = [2(1—n)+nulY +[2(n—1)+ulhyY +2(n—1)+n(2k —p)n(Y)E, 2.11)
Q& = 2nkE, (2.12)
00— 90 =2[2(n—1)+ulh¢ (2.13)

for any vector fields X,Y on M¥+1 where Q and S denotes the Ricci operator and Ricci tensor of (M 2+l g), respectively[4].

The concept of Wg-curvature tensor was defined by [7]. We-curvature tensor, W7-curvature tensor, Wg-curvature tensor and
Wo-curvature tensor, of a (2n+ 1)-dimensional Riemannian manifold are, respectively, defined as

We(X,¥)Z = R(X,Y)Z ~ 2_[S(Y,2)X ~(X,Y)07, (2.14)
Wa(X,¥)Z = R(X,1)Z— - [S(Y, Z)0X — g(¥, 2)0X), @.15)

We(X,Y)Z =R(X,Y)Z - 2] [S(Y,Z)X — S(X,Y)Z], (2.16)

2n
1
Wo(X,¥)Z = R(X.Y)Z+ 5-[S(X,Y)Z — g(¥,Z)0X], (2.17)
n
for all X,Y,Z € x(M) where, x (M) is set of all vector spaces [7].
3. Certain Curvature Conditions on (k, u)-Paracontact metric spaces
We will provide the significant themes of this work in this part.

Let M be (2n+ 1)—dimensional (k, it)—paracontact metric manifold and we explain Wy curvature tensor from (2.14), we
have

We(X,Y)E = k(g(X,Y)E —n(X)Y) +u(n(Y)hX —n(X)hY). (3.1)
Putting X = &, in (3.1), we get

We(G,Y)S =k(n(Y)§ —Y) — uhY. 3.2)
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In (2.15) choosing Z = & and using (2.5), we obtain

Wo(X,Y)E = K(X)Y + 2 0(¥)QX +(n(¥ A ~n(X)hY). (33)
It follows
Wi(E,Y)E = K(n(Y)E —Y) - uhY. (3.4)

In the same way, putting Z = & in (2.16) and using (2.5), we have
1
Ws(X,Y)E = 5 S(X,Y)S —kn(X)Y +u(n(¥Y)hX —1(X)hY). 3.5)
In (2.16), choosing X = &, we get
We(&,Y)E =k(n(Y)§ —Y) — uhY. (3.6)
In (2.17), choosing Z = &, we obtain

Wo(X,Y)G = k(ﬂ(Y)X—TI(X)Y)+ﬂ(77(Y)hX—U(X)hY)ﬂLﬁ(S(XvY)i —n(Y)QX). (3.7

In(3.7) it follows

Wo(8,Y)E =k(n(Y)§ —Y) — uhy. (3.8)
In (2.5), we arrive

R(E.Y)Z=k(g(Y.Z)E —n(Z)Y)+ u(g(hY,Z)E —n(Z)hY), (3.9
choosing Z = €, in (3.9)

R(E,Y)E =k(n(Y)E —Y) — phy. (3.10)

Theorem 3.1. Let M*"*1(¢,&,n,g) be a (k, u)-paracontact space. Then M is a Wg semi-symmetric if and only if M is an
Einstein manifold.

Proof. Suppose that M is a Wg semi-symmetric. This implies that

(RXYWe)(UW)Z = RX,Y)We(U,W)Z — We(R(X,Y)U,W)Z
—Ws(U,R(X,Y)W)Z — We(U,W)R(X,Y)Z =0, G.11)
forany X,Y,U,W,Z € x(M). Taking X = Z = & in (3.11), making use of (3.1) and (3.9), for A = 21—,,, we have
(REYIW)(UWIE = R(EY)(k(g(Y,W)E —n(U)W)+p(n(W)hU

—nU)hW)) —We(k(g(Y,U)E —m(U)Y)
+u(g(hY,U)E —n(U)hY),W)&
~Wes(U,k(g(Y,W)E —n(W)Y)
+u(g(hY,W)& —n(W)hy)&
~We(U,W)(k(n(Y)§ —Y) — phY) =0. (3.12)
Taking into account (3.1) and (3.2) in (3.12), we have
kWs (U, W)Y + uWe(U,W)hY +ku(n(W)g(Y,hU)E&
—g(Y,W)hU) + > (1+k)(n(W)g(Y,U)&
—n(U)g(Y,W)&) +kp(g(hY,U)W — g(hY,W)hU)
+uk(g(hY,U)hW — g(hY,W)U) + u*(g(hY,U)hW
—g(hY,W)hU) + 2 (g(Y,W)n(U)& — g(¥,W)U)
+hkp(g(Y, U)W + g(U,W)hY )+ k*(g(Y, U)W
—g(U,W)Y)=0. (3.13)
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Putting (2.10), (2.14), choosing U = & and taking inner product with & € x (M) in (3.13), we arrive
AKS(W,Y) +AuS(W,hY) +k>g(W,Y) + kug(W,hY) = 0. (3.14)
Using (2.7) and replacing 7Y of Y in (3.14), we get
AKSW,hY)+Au(14+k)S(W,Y) —2nkA(1 +k)g(W,hY )+ ku(1+k)g(W,Y) =0. (3.15)
From (3.14) and (3.15), we have
S(W.,Y) =2nkg(W.Y).

So, M is an Einstein manifold. Conversely, let M>"*!(¢, &, 1, ¢) be an Einstein manifold, i.e. S(W,Y) = 2nkg(W,Y ), then from
equations (3.15), (3.14), (3.13), (3.12) and (3.11) we obtain M is a Wg semi-symmetric. Which verifies our assertion. O

Theorem 3.2. Let M*"*1(¢,E,m,g) be a (k, u)-paracontact space. Then M is a Wy semi-symmetric if and only if M is an
n—Einstein manifold.

Proof. Assume that M is a W7 semi-symmetric. This yields to

(RX,Y)W5)(U,W)Z = R(X,Y)Wy(U,W)Z—W;(R(X,Y)U,W)Z

—Ws(U,R(X,Y)W)Z —W;(U,W)R(X,Y)Z =0, (3.16)
for any X,Y,U,W,Z € x(M). Taking X = Z = £ in (3.16) and using (3.3), (3.9), (3.10), for A = —ﬁ, we obtain
(RE.Y)W7)(U,W)E = R(E.Y)(kn(U)W —An(W)QU + p(n(W)hU

—n(U)hW)) =Wy (k(g(Y,U)E —n(U)Y)

+u(g(hY,U)E —n(U)hY),W)S

Wi (U, kg(Y,W)E —n(W)Y)

+u(g(hY,W)E —n(W)hY)&

—W7(U,W)k(n(Y)E —Y) — phY) =0. (3.17)
Taking into account that (3.4) and (3.9) in (3.17), we get

KWq (U, W)Y + uWy (U,W)hY +ku(n(U)g(hY,W)&

—g(Y,W)hU) + (1 + k) (n(W)g(Y,U)&

—n(U)g(Y,W)&) —Ak(S(Y,U)n(W)& +n(W)n(U)QY)

+AR(2nkn(W)n(U)hY — S(hY,U)n(W)&)

+E(N(U)g(Y,W)E —n(W)g(Y,U)E) + ki (g(Y, U)W

—g(hY,W)U) + u?(g(hY,U)hW — g(hY,W)hU)

+1(kg(hY, U)W —An(U)n(W)QhY) +k*(g(Y,W)n(U)&

+2nAN(U)N(W)Y) + K (g(Y,U)W — g(Y,W)U) =0. (3.18)
Putting U = £ and using (3.3) in (3.18), we get

AS(Y, W)+ uS(W,hY) + 2kg(Y,W) — 2nkAg(Y,W) + ug(W,hY) = 0. (3.19)
Replacing hY of Y in (3.19) and making use of (2.7), we have

AS(Y,hW) + u(14+k)S(Y,W) —2nku(14+k)n(¥Y)n(w)

—2nkAg(Y,hW) + u(1+k)g(Y,hW) —u(1+k)n(¥Y)n(W) =0. (3.20)
From (3.19), (3.20) and by using (2.9), for the sake of brevity, we set
P = (anA2 2kA + (14 k) [2(n — 1) + ] + (A 4 2nkAp — 2kp) [2(1 — n) +ny],

P2 = (A —p?(1+k)[2(n— 1)+ p] + (2ky — 2nkAp — Ap),
p3 = (A[,H—anAu 2kp)2(n—1)4+n(2k—u)] —
(W21 +k)2n+1)[2(n—1)+ u]
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we conclude

p2S(Y,W) = p1g(Y, W)+ pan(Y)n(W).

Thus, M is an —Einstein manifold. Conversely, let M>"*!(p,&,1,g) be an —Einstein manifold, i.e. pyS(Y,W) =
p18(Y, W)+ p3n(Y)n (W), then from equations (3.20), (3.19), (3.18), (3.17) and (3.16) we obtain M is a Wy semi-symmetric.
O

Theorem 3.3. Let M**1(¢,E.1,g) be a (k, u)-paracontact space. Then M is a Wy semi-symmetric if and only if M is an
n—Einstein manifold..

Proof. Suppose that M is a W3 semi-symmetric. This implies that

(R(XaY)WS)(U7W)Z = R(va)WS(U7W)Z_WS(R(X7Y)U5W)Z
—Ws(U,R(X,Y)W)Z —We(U,W)R(X,Y)Z =0, (3.21)
forany X,Y,U,W,Z € x(M). Setting X = Z = £ in (3.21) and making use of (3.5), (3.9), (3.10), for A = —ﬁ, we obtain
(R(EY)We)(U,W)E = R(E,Y)(—kn(U)W —AS(U,W)E + pu(n(W)hU

—n(U)W)) = Wy(k(g(Y,U)S —n(U)Y)
+u(g(hY,U)E —n(U)hY), W)
W (U, k(g(Y,W)E —n(W)Y)
+1(g(hY, W)E —n(W)hY ))&
—Ws(U,W)(k(n(Y)E —¥) — phY) = 0. (3.22)
Inner product both sides of (3.22) by Z € y(M) and using of (3.5), (3.6) and (3.9), we get
kg(Ws(U, W)Y, Z) + ug(Ws (U,W)hY, Z) + (1 + k) (n(W)n(Z)g(Y,U)
—nU)NZ)g(Y,W)) +Ak(n(Y)n(Z2)S(U, W) —n(Z)n(W)S(U,Y))
+Au(g(hY,Z)S(U,W) —n(W)n(Z)S(hY,U))+Ak(S(U,W)g(Y,Z)
—S(U,W)n(Y)N(Z))+K(g(Y,U)g(W,Z) +¢(Y,W)g(U,Z))
+1P (g (hY, U)g(hW,Z) — g (hY, W)g(hU, Z)) + ki (g (hY,U)g(W, Z)
—g(hY,W)g(U,Z)) — A(uS(hY, W)n(U)n(Z) +kS(Y,W)n(U)n(Z))
+kp(g(Y,U)g(hW,Z) — g(Y,W)g(hU,Z)) —k(n(W)n(Z)g(Y,U)
+nU)N(Z)g(Y,hW)) = 0. (3.23)
Making use of (2.7), (2.16) and choosing W =Y =¢;, &, 1 <i < n, for orthonormal basis of Y (M) in (3.23), we have

kS(U,Z)+ uS(U,hZ) + (kAr +2nAu(1+k)[2(n— 1) + ]
—2nk? + 2 (1+k))g(U, Z) + k(1 —2n)g(U, hZ)
—(2nkPA+ u* (1 +k)(2n+ 1) + k> + Akr
+2nAp(1+k)[2(n— 1)+ p] + 2nkAp)n (U)n(Z) = 0. (3.24)
In (3.24), hZ of Z, we arrive
kS(U,hZ) + u(1+k)S(U,Z) — 2nku (1 +k)n (U)n(Z)
+(kAr +2nAu (1 +k)[2(n — 1) + p] — 2nk>
+u*(1+k))g(U,hZ) +ku(1 —2n)(1+k)g(U,Z)
—kp(1—-2n)(14+k)n(U)n(Z) =0. (3.25)
From (3.24), (3.25) and by using (2.9), for the sake of brevity, we set
p1 = (KAr+2nAp(1+k)[2(n— 1)+ pu] —2nk* + u>(1+k)),
p2 = ku(l-2n),
p3 = —QukPA+pP(1+k)(2n+1) + K +Akr +2nAp(1 +k)[2(n— 1) + p] + 2nkAp),
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we conclude
g1 = (pa(1+k) —kp1)[2(n—1) +pu] + (kp2 — p1p) [2(1 —n) +npu],
e (K — w> (14 k) [2(n— 1)+ p] + (p11 — kpa),
e (kp2 — pru) [2(n— 1) +n(2k — )] — (psk+ 2nkp® (1 + k) + paut (1 +k))[2(n — 1) + ],
0S(U,Z) = q18(U,Z) +qg3n(U)n(Z),

So, M is an ) —Einstein manifold. Conversely, let M>**!(¢p,& 1, g) be an n—Einstein manifold, i.e. ¢2S(U,Z) = q1g(U,Z) +
q3n(U)n(Z), then from equations (3.25), (3.24), (3.23), (3.22) and (3.21) we get M is a Wy semi-symmetric. O

Theorem 3.4. Let M**1(¢,E.n,g) be a (k, )-paracontact space. Then M is a Wy semi-symmetric if and only if M is an
Einstein manifold.

Proof. Assume that M is a Wy semi-symmetric. This means that
(R(X,Y)Wo)(U,W,Z) = R(X,Y)Wo(U,W)Z—-Wo(R(X,Y)U,W)Z
—Wo(U,R(X,Y)W)Z—Wo(U,W)R(X,Y)Z =0, (3.26)
forany X,Y,U,W,Z € x(M). Setting X = Z = £ in (3.26) and making use of (3.9), (3.7), for A = ﬁ we obtain
(REY)Wo)(U,W)e = R(E,Y)(k(n(W)U —n(U)W)+u(n(W)hU
—nU)AW) +A(S(U,W)E —n(W)QU))
—Wo(k(g(Y,U)§ —n(U)Y)+u(g(hY,U)g
—NU)Y,W)& —Wo (U, k(g(Y,W)E —n(W)Y)
+u(g(hY,W)E —n(W)hY))§
~Wo(U,W)(k(n(Y)§ —Y) —uhY) =0. (3.27)
Using (3.7), (3.8), (3.9) in (3.27), we get
kWo (U, W)Y + uWo(U,W)hY +ku(n(W)g(Y,hU)E
—n(U)g(Y,hW)&) + i (1+k)(n(W)g(Y,U)&
—n(U)g(Y,W)&) +k*(g(Y, U)W —g(Y,W)U)
+kA(MU)S(Y,W)E —n(W)n(U)QY)
+Au(n(U)S(hY,W)&E +2nkn (U)n(W)hY)
+kp(g(Y, U)W —g(Y,W)hU) + ki (g(hY, U)W
—g(hY,W)U) +Au(SU,hY)n(W)¢ —n(W)n(U)QhY)
+u*(g(hY,U)hW + g(hY,W)hU) — Au(S(U, W )hY
+S(hY, Un(W)E) + Ak(2nkn(W)n(U)Y —S(U,W)Y) =0. (3.28)
Making use of (2.17), (2.1) and choosing U = &, in (3.28), we have

kS(Y, W)+ uS(hY, W) — 2nk*g (Y, W) — 2nkpg(hY, W) = 0. (3.29)

Replacing 1Y of Y in (3.29) and taking into account (2.7), we arrive

KS(Y,hW) +u(14+k)S(Y,W) —2nku(1+k)n(Y)n(w)

—2nk*g(W,hY) — 2nkp (14 k)g(Y,W)

+2nkp(1+k)n(W)n(y)=0. (3.30)
From (3.29), (3.30) and by using (2.7), we have

S(Y,W) = 2nkg(Y,W).

This tell us, M is an Einstein manifold. Conversely, let M***! (¢, &, 1, ) be an Einstein manifold, i.e. S(Y,W) = 2nkg(Y,W),
then from equations (3.26), (3.27), (3.28) and (3.30), we obtain M is a Wy semi-symmetric. Which verifies our assertion. [
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Example 3.5. We consider the 3-dimensional manifold M = {(x,y,z) € R, z # 0}, where (x,y,z) are standart coordinates of R>. The
vector fields

_9
T ox’

d )
29 9 _9
=4 3x+c9y7 S5

€]

Let g be the Riemannian metric defined by

gler,e2) = gler,e3) =glez,e3) =0,
gler,er) = glez,e) =1, glez,e3)=—1

Let 1 be the 1-form defined by (X) = g(X,ey) for any X € y(M). Let ¢ be the (1,1) tensor field defined by
¢le1) =0,  ¢(e3) =—e2,  P(e2) = —es.

Let V be the Levi-Civita connection with respect to the metric tensor g. Then we get
[e3,e1] =0, [e1,e2] =0, [en,e3] = —8ze;.

Then we have
n(er) =gler,er) =1, $°X =X —n(X)er, g(9X.9Y)=—g(X.¥)+n(X)n(¥),

forany XY € x(M). Hence, (¢,€,1,g) defines a paracontact metric structure on M for e; = §&.
The Levi-Civita connection V of the metric g is given by the Koszul’s formula

2¢(VxY,Z) = Xg(Y,2)+Yg(Z,X)—Zg(X,Y)
—g(X, [szD —g(Y, [sz]) —|—g(Z, [va})'

Using the above formula, we obtain.

Veer = 0, Ve,e1 = —4ze3, Ve,e1 = —4zes,
Vel [} = —4263, Ve2 ey = 07 Ve3 ey = 4261,
Vees = —4zes, Ve,e3 = —4zey, Ve,e3 =0.

Comparing the above relations with Vxey = —¢X + ohX, we get
hey = —(4z+1)ey, hes =—(4z+1)es, he; =0.

Using the formula R(X,Y)Z = VxVyZ —VyVxZ —Vx y|Z, we calculate the following:

2
R(ez,e1)er = {ﬁ—l} {n(er)ez—nlex)er}+ (4Zi1)3—146é++11 {n(er)hes —n(ex)her}
= flézzez
_ _ _ ,
Rlesener = | g 1| nlees—nles)er}+ | G — e | {nfenhes —n(ea)hen)
= —1612e3
_ _ _ .
Rleveer = | 1| nleea—nleresh+ | g — ey | (nfeahes —n(ea)hes)
= 0.

By the above expressions of the curvature tensor and using (2.9), we conclude that M is a generalized (k, ) —paracontact metric manifold
o 1 _ 1 _ 16241
Wlthk*[(4z,])2 1} and U = [<4271)3 prean) ] .

4. Conclusion

The aim of this paper is to classify (k, i )-paracontact metric spaces satisfying certain curvature conditions. We present the
curvature tensors of (k,u)-Paracontact manifold satisfying the conditions R-Wg =0, R-W7 =0, R-Wg =0 and R- Wy = 0.
According these cases, (k, it)-Paracontact manifolds have been characterized. Also, several results are obtained.
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Abstract

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict
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1. Introduction

A crossed module [20] &7 = (d : C — R) of commutative algebras is given by an algebra morphism 0 : C — R together with
an action - of R on C such that the relations below hold for each r € R and each c, dec ,

a(r- c), = rd (,C)

d(c)-c = cc.

Group crossed modules were firstly introduced by Whitehead in [21],[22]. They are algebraic models for homotopy 2-types,
in the sense that [5],[15] the homotopy category of the model category [6],[9] of group crossed modules is equivalent to the
homotopy category of the model category [11] of pointed 2-types: pointed connected spaces whose homotopy groups 7; vanish,
if i > 3. The homotopy relation between crossed module maps &7 — &7 " was given by Whitehead in [22], in the contex of
“homotopy systems” called free crossed complexes.

In [2] it is addressed the homotopy theory of maps between crossed modules of commutative algebras. It is proven that if
o and o/ are crossed modules of algebras without any restriction on .27 and &/ " then the crossed module maps &/ — &/ " and
their homotopies give a groupoid.

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras
is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy
for 2-algebras. This definition is essentially a special case of 2-natural transformation due to Gray in [12]. And we explore
the relations between the crossed module homotopies and 2-algebra homotopies. Similar results are given [13] by Igen for
2-groupoids.
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2. Preliminaries

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is
equivalent to the category of crossed modules in commutative algebras.

2.1 2-algebras
Definition 2.1. A weak 2-algebra consists of

- a 2-module A equipped with a functor e : A X A — A, which is defined by (x,y) — x ey and bilinear on objects and
defined by (f,g) — f @ g on morphisms satisfying interchange law, i.e.,

(freg1)o(f2082) = (fiof2)e(81082)
- k—Dbilinear natural isomorphisms

Oy (xey)ez—>xe(yez)

Li:lex—x

re:xel —x

such that the following diagrams commute for all objects w,x,y,z € Ag.

Qhyex,y,z

(wex)ey)ez—— (wex)e(yez)

Oy, x,yez
Oy xyol;

(we(xey))ez g —>=we((xey)ez) ——>we(xe(yez))

(xe1)ey "> xe(ley)

1xely
ryely

xXe y
A strict 2-algebra is the special case where 0., ;, L, v are all identity morphisms. In this case we have

(xey)ez=uxe(yez)
lex=xx0l=x

Strict 2-algebra is called commutative strict 2-algebra if xey =y e x for all objects x,y € Ag and f e g = g e f for all morphisms
f?g € A1~

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomorphism between
2-algebras should preserve both the 2-module structure and the e functor.

Definition 2.2. Given 2-algebras A and A, a homomorphism
F:A—A

consists of
- a linear functor F from the underlying 2-module of A to that of A', and
- a bilinear natural transformation

Fy(x,y) : Fo(x) e Fy(y) — Fo(xey)

- an isomorphism F : 1" — Fy(1) where 1 is the identity object of A and 1 is the identity object of A,
such that the following diagrams commute for x,y,z € Ao,



F201

(F(x) o F(y)) o F(2) 2> F(xey) o F(z) —— F((xey)e2)
OF (x),F (v),F (2) J{ iF (0yz2)
F(x)e(F(y)oF(2) fm=F(x)eF(yez) ——>F(xe(yez)).

leF>

, )
l'eF(x) ————F(x)

Fo.ll TF(ZX)

F(l1)eF(x) F—>F(1 ox).

2

r/F(x)
F(x)el ———— F(x)

1'F()\L TF(VQ

F(x)eF(1) ?F(xo 1).
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Definition 2.3. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by 2Alg .

Therefore if A = (Ag,Ay,s,t,e,0,e) is a 2-algebra, Ag and A; are algebras with this e bilinear functor. Thus we can take that
2-algebra is a 2-category with a single object say *, and Ag collections of its 1-morphisms and A collections of its 2-morphisms

are algebras with identity.

2.2 Crossed modules

Crossed modules have been used widely and in various contexts since their definition by Whitehead [23] in his investigations of
the algebraic structure of relative homotopy groups. We recalled the definition of crossed modules of commutative algebras

given by Porter [20].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together with a

commutative action of R on C and a morphism
d:C—R

such that forallc € C, r € R

CM1) d(rw» c) =rdc.
This is a crossed R-module if in addition for all ¢,c¢’ € C

CM2) dec» ¢ =cc'.

The last condition is called the Peiffer identity. We denote such a crossed module by (C,R,d).
A morphism of crossed modules from (C,R,d) to (C',R’,d’) is a pair of k-algebra morphisms ¢ : C — C',y: R — R

such that

' =wyad and o(rwc)=y(r)» ¢(c).

Thus we get a category XMod,, of crossed modules (for fixed k).
Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, inc : I — R which is a crossed module. Conversely given an arbitrary R-module
d : C — R one easily sees that the Peiffer identity implies that JC is an ideal in R.
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2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero morphism 0 : M — R
sending everything in M to the zero element of R is a crossed module. Conversely: If (C,R, d) is a crossed module, d(C) acts
trivially on kerd, hence ker d has a natural R/d(C)-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules. Both aspects
are important.

3. Let be .# (C) multiplication algebra. Then (C,.# (C), ) is multiplication crossed module. p : C — .# (C) is defined
by u (r) = 8, with 8, (r') = rv for all r,¥' € C, where & is multiplier § : C — C such that forall r,/ € C, § (rr') = & (r) r. Also
A (C) acts on C by & » r =0 (r).(See [3] for details).

In [20] Porter states that there is an equivalence of categories between the category of internal categories in the category of
k-algebras and the category of crossed modules of commutative k-algebras. In the following theorem, it is given a categorical
presentation of this equivalence.

Theorem 2.4. [1] The category of crossed modules XMody, is equivalent to that of 2-algebras, 2Alg.

Proof. Let A = (Ag,A1,s,t,e,0,e) be a 2-algebra consisting of a single object say * and an algebra Ay of 1-morphisms and
an algebra A; of 2-morphisms and d = t|g.,s algebra homomorphism by 0 : Kers — Ag,d(h) = t(h). Then (Kers,Ag,d) is a
crossed module.

Let &7 = (Ao,Al1,s,t,e,0,0) and o = (AB,A’l,sl,t/,e,,ol7o,) be 2-algebras and F = (Fy,F) : & — o bea 2-algebra
morphism. Then Fy : Ag — A:) and F} : A — A'1 are the k-algebra morphisms. For f] = Fi|gers : Kers — Kers and
fo=Fy:A) — Aé), (f1, fo) map is a crossed module morphism (Kers,Ag,d) — (Kers,,Aé),al). So it is got a functor

I': 2Alg — XMod;.

Conversely, let (G,C,d) be a crossed module of algebras. For s, : GxC — Cande:C — G xC by s(g,c) =c,t(g,¢c) =
d(g) +c,e(c) = (0,c) and
the compositions

(g,c)o(h,d)=(c»h+dw g+gh,cd)

(8:¢)o(8',d(8) +¢) = (g+4,c)
such that #(g,c) = s(g’,d(g) +¢) = d(g) +c, it is constructed a 2-algebra &7 = (C,G x C,s,t,e,0,e) consists of the single
object say * and the k-algebra C of 1-morphisms and the k-algebra G x C of 2-morphisms. Let (G,C,d) and (G/,C/, 8/) be
crossed modules and f = (f1, /o) : (G,C,d) — (G',C',d’) be a crossed module morphism. For
Fi: GxC — G «C
(g,(,‘) — Fl(gvc):(fl(g)vfo(c))
and

/

FK: C — C
¢ +— Fyle) = folo).
F = (F1, Fp) is a 2-algebra morphism from (C,G x C,s,t,e,0,e) to (C/7 G xC st o,). Thus it is got a functor

¥ : XMod; — 2Alg.

3. Homotopies of Crossed Modules and 2-Algebras

The notion of homotopy for morphisms of crossed modules over commutative algebras is given in [2]. In this section, we
explain the relation between homotopies for crossed modules over commutative algebras and homotopies for 2-algebras. The
formulae given below are playing important role in our study.

Definition 3.1. [2] Let o/ = (E,R,J) and o = (EI,R',al) be crossed modules and fy : R —> R be an algebra morphism.
An fo-derivation s : R — E' is a k-linear map satisfying for all r, r e R,

s(rr') = fo(r) » s(F ) + fo(r ) » s(r) + s(r)s(r).
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Let f = (f1, fo) be a crossed module morphism of — /' and s be an fy-derivation. If g = (g1,82) is defined as (where e € E
andr € R)

go(r) = fo(r)+(25)(r)

gi(e) = file)+(sd)(e),

then g is also crossed module morphism of — o/ ' In such a case we write f (fo—s>) g and say that (fo,s) is a homotopy
connecting f to g.

If (fo,s) and (go,s/) are homotopies connecting f to g and g to u respectively, then (fo,s + sl) is a homotopy connecting f
to u, where s+s : R —s E is an fy-derivation defined by (s+s )(r) = s(r) +s (r).
The notion of homotopy for 2-algebras is essentially a special case of 2-natural transformation due to Gray in [12].

Definition 3.2. Let A = (Ag,Al,s,t,e,0,0) and A'= (A;),A/l,sl,t/,e/, 0/70/) be 2-algebras and let F = (F|,Fy) and G = (G, Gy)

be 2-algebra morphisms A — A.A k-algebra morphism L : Ay — Al1 satisfying the following conditions is called a homotopy
connectlng FtoG:

])S‘LL Fy
Z)ZI.L Go

3) F o ut =pus o G1. In such a case we write F .6
Theorem 3.3. Let of = (Ag,Ay,s,t,e,0,0), o = (AE),A/I,S/,t/7e/,o/,o/) be 2-algebras, F = (F|,F), G = (G1,Gy) and
U = (Uy,Uy) be 2-algebra morphisms of — o and U be a homotopy connecting F to G, ﬂ/ be a homotopy connecting G to
U. Then the map ' : Ag — Ay defined by e ,u/)(x) =pu(x)+ ul(x) —e (I/u)(x) is a homotopy connecting F to U.
Proof. We first show that 1+ 1 is an algebra morphism. Since y and " are algebra morphisms, u(x ox,) = u(x) o u(x,) and
u’(xox/) = ,u,(x) o u/(x,) for all x,x € Ag. Then we get

/

(') (xox) pxox )+ (vox ) =€ (1) (xex)
p(rex) 1 (xox) € (Go)(xo)
,u(xox)o,ul(xtx) o
(e ) 1 ) ()
(1 (x)o (x))e /(,u(x)o /(x)) , (ilnte,rchar/lge law)/
(1 (X)+H(X)—€(§0) x))e (p(x)+u (x)—e(Go)lx))
(xp)(x) o (s p)(x).

!/

For all x € Ag
s () (x) /( (x) + (X)*e/Go( )
) ) 5€ Gol)
= Fy(x)+Go(x) — Go(x)
= FQ()C)

L)) = (0 + (6 ¢ Gol)
tp(x)+1p(x)—teGolx)
= G()()C)ﬁ’U()()C)*G()()C)

= UO(X)a

and since Fj o ut = us o G and G4 o ,u/t = u/s o Ui, we get

Fo ut o ,u/t = us 0 Gy o u’z
= [.Lso/ ,u/so/ U.
Thus, we get
Fo (uxu) = Fo /(‘ufo, H/t)
— (usd Ws)o'U
= (u*u)so U.

Therefore p u’ :Ag — A is a homotopy connecting F' to U. O
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Theorem 3.4. Let I":: 2Alg —: XMody be the functor as mentioned in Teorem 1.4 and [L be homotopy connecting F to G.
Then
L(u)=h : Ay — Kers
X h(x)=p(x) —e (s 1))
is a homotopy of corresponding crossed module morphisms.

Proof. We first show that 4 is an fy—derivation where fy: Ag — Aé) defined by fy(x) = Fy(x). For x,x € Ao,

fol) > () o R
o) ) ()8 B = R (1) € (7 B)R))
FRE ) ()~ (5 ) ()

I

) —€ (S ) ()8 (L) =€ (s m)))

I

= (R0 (1) ¢ R()
€ (Fo)) o (1) — ¢ Fo) + p(x) ()
—u(x )o eFo(x)—ng(x)o w(x )+eF0(x)o e Fo(x)

N(Mx )—e(sp)(xex)
h(xex).

Therefore & is an fp—derivation.
Now we show that

go(x) = folx)+9 h(x)
gi(n) = fi(n)+hd(n)

for x € Ag and n € Kers.

Ih(x) = 9 (nlx) € fol)

9 (u(x) =0 ( folx)
() () = (') folx)
8o(x) — fo(x)

and we get go(x) = fo(x) + 0 h(x).
Since A| ~ Kers x Ay, we take a = (n,x) for a € A| where n =a —es(a) € Kers and x = s(a) € Ag. We define u* : Ag —
Kers ><1AE], as ¥ (x) = ((x) —e's (1(x)),s p(x)) and h* : Ag — Kers ><1A/0, as h*(x) = (h(x), Fo(x)). Therefore

e

., T

A1 2 Ker(s) x Ay - Ap

t

(G1,Go) (F1,F) Go Fy

Al = Ker(s") x A}

for (Fi,Fo)(n,x),(1*1)(n,x) € A =~ Kers x A, such that t(Fy,Fo)(n,x) = s(u*r)(n,x), we have (Fi,Fy)(n,x)o u*t(n,x)
= (Fi(n)+ ut(n), Fy(x)) and —(F1, Fy)(n,x) = (—Fi(n),t Fi(n)+ Fy(x)) and then, since

(F1,Fo)(n,x) 0 wt(n.x) = *s(n,x) o (Gy,Go)(n,x)
we have

wirlnx) = —(Fi,Fo)(n.x)0 ps(n,x)o' (Gr,Go) (n,)
(=Fi(n) +h(x) + Gi(n),t Fi(n) + Fo(x))



and
— Fot(n,x) = (0,7 fi(n) + fo(x)).
Hence we get

wt(n,x) — e Fot(n,x) (L Fn)+Fo ) out)(n,x)
= Wi(nx).
Then

u*(t(n,x)) —/6’/ (s ") (t(n,x))
wt(n,x) — e Fyr* (n,x)
urt(n,x)

h*(t(n,x))

and

H* (1(n,x)) )
+x

d(n)) + fo(x))

t Fi(n) +Fy(x)).

[
—
=
—~
SRS EICSRNE)

|
—

=
—~

Therefore from (1) and (2) we have
h(d(n)) + h(x) = —Fi(n) +h(x) + Gi(n)
and

h(d(n)) = —Fi(n) + Gy (n).

Then
g1(n) = fi(n) +ha(n).
Hence
h: Ay — Kers'
x — h(x)=ux) —eFRk)

(fi,f0) : (Kers =5 Ag) —

Let F % G and G 25 H. Then we have

is a homotopy connecting f =

(=Fi(n) +h(x)+ Gy (n),i Fi(n) + Fy(x))

(Kers 9, AE)) tog=
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6]

©))

(g1,80) : (Kers i)Ao) — (Kers' i>A£)).

D(pep)x) = (ep)) —e (s pxp)(x)
= ) ()¢ () ()~ () )
= 1)+ )~ )W)~ ()
(B0 —€'(s 1) () + (1 (x) = (s 1) ()
D(u)(x) + (w0 ) (%)

for all x € Ag.

O

Theorem 3.5. Let ¥ : XMody — 2Alg be the functor as mentioned in Theorem 1.4 and h be homotopy connecting f :

(G,C,d) — (G ,C',d) 10 g: (G,C,0) — (G ,C',d"). Then

G xC
(h(x), fo(x))

is a homotopy of corresponding 2-algebra morphisms.

Y(h)=u cC —

x o p(x) =
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Proof. We first show that ft is an algebra morphism. For x,x €C

(o), foxr)) | ,
(fox) » h(x') + o) B h3) + B ), folw)fo(x))
(), fo(0) (), fo(x )

pE@R().

p(xx)

Now we show that
Dsu=F 2t u=Go  3)(fi,fo)o ut=puso’ (g1,80)
For all x € C,

s (h(x), fo(x)
0(x) = Fo(x),

s u(x)

\®]
N’
T
Q

=

=2
=
=

m
)

(x) (x), fo(x))
(x)) + fo(x)
9 h(x) + fo(x)

8o(x) = Go(x),
3)For all x € C,a € G, since t/(fl (@), folx)) = d'fi (@) + fo(x),

S: (1(d(a)+x))

s (h(d(a) +x), fo(d(a) +x))
fo(d(a)+x)

fo(d(a))+ fo(x)

d fia) + fo(x)

thent (fi(a), fo(x)) = s (ut(a,x)) and (f1, fo) . Ut are composable pairs. Also since

(1) =1 (h(x). folx))
9 (h(x)) + fo(x)
go(x)

N\
=

f (h
{ (h

s (ur(a,x))

{ (us(a,x))

and s (g1(a),g0(x)) = go(x) then ¢’ (is) = s (g1,80) and s, (g1, o) are composable pairs.
Therefore we get

(fila), fo(x) o ut(ax) = (fi(a)+h(d(a)+x). folx)
and
ps(a,x)o (g1(a).g0(x) = (fila)+h(d(a)+x), folx)).
Then (fi, fo) o pt = pso (g1,80). So
u: C —» G xC
c — px)=(h(x),fox))
is a homotopy connectin/g F = ((f1,f0),f0) to G= ((g1,80),80)-
Let f LN gand g s . Then we have
((h+h')§x),fo(X))
(h(x) + 1 (3), fo()
(h(x), fo(x)) + (h (x),80(x)) — (0,80(x))
x)

() (x) + W (1) (x) € (1 (¥) (1)) (x)
(W (h) *¥(h))(x)-

W(h+h)(x)
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Abstract

In recent years, there has been increasing interest in interval analysis. Thanks to interval numbers, many real
world problems have been modeled and analyzed. Especially, complex intervals have an important place for
interval-valued data and interval-based signal processing. In this paper, firstly we introduce the notion of a
complex interval sequence and we present the complex interval sequence spaces I(w) and I(/,), 1 < p < .
Secondly, we show that these sequence spaces have an algebraic structure called quasilinear space. Further,
we construct an inner-product on I(/;) and we show that I(/;) is an inner-product quasilinear space.

Keywords: Complex interval, Complex interval sequence, Consolidate space, Inner product quasilinear spaces
2010 AMS: 32A70, 46C50, 47H04, 54C60, 65G40

1. Introduction

In many real life situations, it is very difficult to deal with a process with reliable information about the properties of the
expected variations. This has naturally led to an increased interest in intervals. Because the most ideal way to represent the loss
of information is to use intervals.

An interval x is the compact-convex subset of real numbers and x is denoted by x = [x,X] where x and X are the left and right
endpoints of x, respectively [1]. Further, if x = X then we say that x is a degenerate interval and it can be shown by {x} or [x,x].
The set of all real intervals is denoted by I.

The idea of using intervals has been highly preferred by many researchers recently [1]-[4]. The interval sequence spaces
have been studied by many authors [5, 6]. Also, we presented the notion of a complex interval which is significant for
interval-valued data and interval-based signal processing in [7]. A complex interval is defined by

X = [, %] +i[x, 5]

where @JT] and @,)Ts] are real intervals and i = v/—1 is the complex unit. @,)T,] and @,xﬁ] are called real and imaginary
part of X, respectively. Further, [&,xﬁ} and @,xfs] are called real and imaginary part of X, respectively.

In this work, we introduce the notion of complex interval sequence and we analyze some sequence spaces of the complex
intervals, e.g., I(w) and I(/,), 1 < p < 0. However, each element of these sequence spaces does not have an inverse according
to the addition operation. These sequence spaces are not a linear space and the algebraic structure on these spaces is called as
“quasilinear space”. In 1986, Aseev defined the concept of quasilinear space [8]. Further, he present an approach for analysis of



On the Inner-Product Spaces of Complex Interval Sequences — 181/188

set-valued functions. This work has motivated a lot of authors the introduce new results on set-valued analysis [9]-[12]. Let us
give the definition:

A set 2 is called a quasilinear space on field K if a partial order relation ”=<”, an algebraic sum operation, and an operation
of multiplication by real or complex numbers are defined in it in such a way that the following conditions hold for any elements
x,y,z,v € X and any «, f € K:

x =X x,
x=<zifx<yandy =<z,
x=yifx<yandy=<ux,
X+y=y-+x,
x+y+z)=(x+y) +z
there exists an element (zero) 6 € 2 such that x+ 6 = x,
o () = (B,
o(x+y) =ox+ ay,
Ix=ux,
Ox=20,
(+B)x = ax+ B,
x+z=y+vifx<yandz <v,
ax = ayifx <y.
The most popular examples are Q(E) and Q¢ (E) which are defined as the sets of all non-empty closed bounded and

non-empty convex closed bounded subsets of any normed linear space E, respectively. Both are a quasilinear space with the
inclusion relation“C”, the algebraic sum operation

A+B={a+b:acA, beB}

where the closure is taken on the norm topology of E and the real-scalar multiplication
AM={La:a€cA}.

Actually, Q¢ (R) is the set Ig and for x,y € Ig and A € R, the Minkowski sum and scalar multiplication operations are defined
by

x+y=[xx+[yy] =x+yx+3]
and

PR 7 EY%: B
T AxAy L A<O,

respectively. Further, the product of two intervals x = [x,X] and y = [X7 ﬂ is given by
x-y=[x,3][y,y] = [min$, max ] (1.1)

where S = {xy, xy,%y, Xy}, [1].
The Minkowski sum and scalar multiplication on I¢ are defined by

X+Y = [0, 5] + i, 5] + 3]+ s3]
= Dby X ] [y 6+ 3]
={atib:acu+y,T+w], be [x+y,%+5]}
and
AX =2 [ 5] +i (A [x,%])
= {la+ilb ta € [&,xﬁ] ,be [&,xﬁ]}
on I where i = +/—1 and A € C. Further, the relation
X ZYAff [x %] C [yr,37] and [x, 5] € [y, 5]

is a partial order relation on I¢. Thus, I¢ is a quasilinear space [7].
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2. Preliminaries

Let us start with some main definitions, notions and theorems.

Suppose that £~ is a quasilinear space and % C 2. Then % is called a subspace of Z whenever % is a quasilinear
space with the same partial order and the restriction to ¢ of the operations on 2. % is subspace of a quasilinear space 2~ if
and only if for every x,y € % and o, € K, ox+ By € #. Proof of this theorem is quite similar to its classical linear space
analogue. Let 2 be a subspace of a quasilinear space 2" and suppose each element x in ¢ has an inverse in . Then the
partial order on ¢ is determined by the equality. In this case % is a linear subspace of .2, [14].

An element x in a quasilinear space 2" is said to be symmetric if —x = x and Z,,, denotes the set of all symmetric elements.
Also, 2, stands for the set of all regular elements of 2~ while Z; stands for the sets of all singular elements and zero in 2.
Further, it can be easily shown that 2, £y, and Z; are subspaces of Z". They are called regular, symmetric and singular
subspaces of 2", respectively. Furthermore, it isn’t hard to prove that summation of a regular element with a singular element
is a singular element and the regular subspace of 2 is a linear space while the singular one is nonlinear at all. Further, I¢ is a
closed subspace of Q(C), [13].

A real-valued function |.|| on the quasilinear space 2" is called a norm if the following conditions hold:

|lx[| > 0 if x £ 0, 2.1)
x4yl < llxll + Iyl 2.2)
[[oex][ =[] [|x]], 2.3)
if x <y, then ||x|| <y, 2.4)
if for any € > 0 there exists an element x; € 2 such that 2.5

x 3 y+xeand ||Jxg|| < € thenx <y,

here x,y, x¢ are arbitrary element in 2" and « is any scalar. A quasilinear space 2~ with a norm defined on it, is called normed
quasilinear space, [8].
For a normed linear space E, a norm on Q(E) is defined by

1A]lq = supllal|¢ -
ackE

Hence Q¢ (E) and Q(E) are normed quasilinear spaces. A norm on [ is defined by

[lx[l = llx,X]]l = sup [¢].
t€x.x]

Moreover, I¢ is a normed quasilinear space with the norm
Xl = sup{le] : z € X}
=sup{la+ib|:ac &7)67} ,be &,xﬁ]},

for X =[x, %] +i x5, %], [12].
Now we will give the notion of consolidate quasilinear space defined in [12]. Thanks to this definition, we were able to give
a representation to every element in a quasilinear space and we were able to define an inner-product quasilinear space.

Definition 2.1. [12] Let 2" be a quasilinear space and 'y € 2. The floor of y is the set of all regular elements y of 2 such
that x < y. It is denoted by F}‘Y and Fy% C Z'. Hence F‘,“Jz ={xe Z :x =<y}
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Definition 2.2. [12] A quasilinear space Z  is called consolidate or Solid-Floored whenever

sup{x € 2, :x <y} =supF;”
=< =

exists and

y=sup{x€ %, :x 3y}
=

foreachy € Z . Otherwise, 2" is called a non-consolidate quasilinear space.

From above example immediately we can see that I is consolidate while (Ir); is not. Analogous results are also true for
the spaces I¢ and (I¢), .

Definition 2.3. [13] Let 2 be a consolidate quasilinear space. A mapping { , } : Z x Z — Q(K) is called an inner product
on Z if for any x,y,z € Z and o € K the following conditions are satisfied :

Ifx,y € Z; then (x,y) € Qc(K), =K,

432 € (59 +302),

(ax,y) = o (x,y),

(o) = ),

(x,x) >0forx € Z; and (x,x) =0<x=0,

I )llg = sup{ @b}l :a € F” e £},
if x X yand u < vthen (x,u) C (y,v),

if for any € > 0 there exists an element x; € 2 such that
x = y+xe and (xg,x¢) CSe(0) thenx < y.

A quasilinear space with an inner product is called as an inner-product quasilinear space.
Z is a linear Hilbert space, then the space Q(.2") is a Hilbert quasilinear space with the inner product defined by

(A,B)o ={(a,b) o :a€A,be B}
for A,B € Q(Z"). Especially, the inner product on Q(C) given by
(A,B)g ={(a,b)c:acAbcB}. 2.6)
If A, B € I then the inner-product (2.6) is equivalent to the following:
(A, B) = [av,a@i] [b1,b1] + [a2,@] [ba, bo] +i([a2, @] [b1,B1] = [ar,@1] [ba, b2])

where A = @,CTJ +1i @,(72} ,B= @,bﬁ} +1i @,E and the product of two intervals is given in (1.1). Namely, the above
equality is the reduction of the inner-product on Q(C) to the inner-product on I¢.
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3. Complex Interval Sequence Spaces

In this section, firstly we present the complex interval sequence spaces I(w) and I(I,), 1 < p < oo and we show that these
spaces are the normed quasilinear spaces. Later, we construct a set-valued inner-product on I(1,).
The sequence X = (X;)7, is called as complex interval sequence if X; € Ic, i = 1,2,.... The set I(/,,) denotes the set of all
complex interval sequences X = (X;)7> ;. The addition and multiplication operations I(w) are defined by
X+Y=0X,X,...)+ (11,Ya,...)
=X+, X +1,...)

and
oX = o(Xy,Xz,...) = (aX;,0Xa,...),

respectively where X; +Y; is the sum of two complex intervals and aX; is the multiplication of a complex interval with the
scalar a. Further, the partial order relation on I(w) is that

X <YiffX; <Y, i=1,2,...

where the relation ”=<” is the partial order relation on I¢. Thus, I(l,,) is a quasilinear space with the above operations and the
partial order relation.
For 1 < p < oo, I(l,) is the set of all complex interval sequences X = (X;)7 ; such that

Y X2 <
i=1

The space I(/,,) is a quasilinear space with the operations and the partial order relation on I(/,,). Really, for X,Y € I(/,) we
write that by the Minkowski inequality

o

Y (1% +YilIf, Z(HXII +I¥IE)Y?

i=1

< (Il )P+ (L IBIE)P < oo
i=1 i=1
Further,
Y IAXE, = 1A (LI, <
1= =

forX €1(l,) and A € C.

Proposition 3.1. 1(/,), 1 < p < o is a normed quasilinear space with the norm defined by

v 1
X1 = (L IXil5.)"/7.
i=1

Proof. 1t is obvious that |X|| > 0 for any X € I(l,). Further, for any X,Y € I(l,) and A € C by the triangle inequality and
Minkowski inequality we write that

=

IX +¥ ] = Y (X4 %)Y < (T2 + (%0207 = 1x ]+ 7]
i=1 i=1 i=1

and
12X = (CIAXE )Y = (AL IXIIE )P = AL 1]
i=1 i=1

Let us assume that X < Y for any X, Y € [(/,). Then [|X;[|y. < [|Yilly, fori=1,2,...since X; X¥;,i=1,2,...and Icis a
normed quasilinear space. This implies that

1= (L IIE)7 < (L IHIE) = 71,

i=1
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Now suppose that there exists an element X € I(/,) such that X < Y +X* and ||X?|| < € for any € > 0. Then we have that
X; CYi+Xfand fori=1,2,... and

X[ = (L IXFIP )P <e.
i=1

Hence, we obtain that HXi||]I<c < g fori=1,2,.... By the fourth condition of norm on I we write that X; < Y; fori=1,2,...
and so X <Y. O

Example 3.2. Let us take the complex interval sequence X = (Xi)7_, given as follows:

o 1 1 1, 1
(X0is = (o +il0, 2 = (3 410,31, 400,551, ..)
We can say that X = (Xi)7_, € I(l2) since
= |l 1 12
P = % | e +0. 1]
= _ 1 1.,
= Z(sup{|a+zb| ta= ?,be [0,?]})

x~
Il
—

1 =1 1
-2y — =~ —2/3.
(22k 22k) Zl4k 21=1ja 3

MS

,\N
Il

Hence, the norm of the sequence X = (Xy)y_, is that

- 2
1= )2 =2
k=1

Among the I(/,) spaces, I(l>) has an important place. Because I(/2) is an inner-product quasilinear space. Before we
construct an inner-product on I(/,), we must show that it is a consolidate space.

Lemma 3.3. The space (1), 1 < p < o is a consolidate quasilinear space.

Proof. To complete the proof we will show that
X =sup{Y € (I(l,))r: Y < X}.
o
IfY < X forY € (I(l,)) then we write that ¥; < X; fori = 1,2,... and X; € Ic. Since I¢ is a consolidate quasilinear space, we
obtain that
X; =supFx, =sup{l; € I¢ : ¥; < X;}
for each i = 1,2,.... This means that sup Fy = X for X = (X;)7*, € I(I,,). O

Theorem 3.4. The quasilinear space 1(l) with the inner-product

(X,Y) =) (XY, 3.1)

i=1

is an inner-product quasilinear space where

(s = (o7 it ] [ooo7] + 053]
:[ }+ i i) i [ x ][y,,yl} [7} yi' v ])-
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Proof. Firstly, we will show that the equality (3.1) is well-defined, i.e., (X,Y) € Q(C):
By the Holder and Schwartz inequalities we observe that

Mz

XY = | X (X6 Yy,

<ZH XisYiln, Q

1

(HXH]ICHYH]IC <(»21:||X”HC ) ZI,HYHHC )2
i £

||X|| 1Yl

\Ms

for X,Y € I(l,). This means that the set (X,Y) is bounded. Now let us take a sequence (X,):_, in the set (X,Y) such
that X, — Xo. Then {X,} — {Xo} for n = 1,2,... in Q(C) since X, € (X,Y) for n = 1,2,.... Further, we can say that
(Xu,Yy) = (X,Y). The Lemma 4-a in [8] implies {Xp} C (X,Y). Consequently, we obtain that Xy € (X,Y).

1. IfX,Y € (I(l)), then

(X,¥) =Y (X:.Y;)1. € (Q(C)),=C
i=1
since X;,Y; € Cfori=1,2,....

2. By the second condition of inner-product on I we write that

Il
i agk

(X+7.Z) (X; +Y,,Z>

Il
—_

N
™

Il
—_

(X, Zi)y, + (Vi Zi)y)

(Xi,Zi)y. + Z Yi,Zi);

i=1

,Z> +(Y,Z).

[l
= I

3. By the third condition of inner-product on [ we obtain that

(Xi,Yi)p, = a(X,Y).

Mg

(aX,Y) = i (0X;, Yy, Za Xi, Yy, =
i=1

i
Further, it can be easily shown that (X, oY) = & (X,Y).

4. By the fourth condition of inner-product on I¢,

= oo

(X,Y)= Z <Xi’Yi>]1C =(X.,Y) = Z<Yi7Xi>]IC =(Y,X).

i=1 i=1

X,X)={0} & Zi (Xi,Xi). = {0} & Xi=0,i=12,.. X =6.
=

and for any X € (I()), we write that

X, X)=Y (X;,X;); Z\x\ > 0.

Mx

i=1
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(X, V) q=

Z Xi,Yi)1.
i=1 Q

=sup{|z]:z € i (Xi, Yi)r. }

i=1

=sup{lz|: z € g([ ] + ', 3] +i([xi ] {y,,y,} [ ,r} ')

= sup{|{x,y)| : x € Fx,y € Fy }.

7. U X <Y and Z <K T then X; <Y;and Z; <X T; for i = 1,2, .... By the seventh condition of inner-product on I we write
that (X;, Z;)y. € (Y, Ti)y,. fori=1,2,... and so (X,Z) C (¥, T).

8. Suppose that for any € > 0 there exists an element X¢ € I(/,) such that X < ¥ +X® and (X%,X?) C S¢(0). Then we say
that X; C ¥;+XF fori = 1,2,.... By the hypotesis we write that

™

(X XF). CSe(0).

Since I¢ is an inner-product quasilinear space, if X; C ¥; + X fori = 1,2,... and || X, < € then X; C Y fori = 1,2, ..
This implies X < Y.

4. Conclusion

In this paper, we have presented the notion of complex interval sequence and some important complex interval sequence spaces.
In this way, we brought a new perspective to sequence spaces with the help of interval analysis and quasilinear functional
analysis. We also have defined the inner product function on the complex interval sequence space I(l;) , which is one of the
most important sequence spaces. Thus, by using quasilinear functional analysis techniques, we have introduced a new type of
space to the literature.
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On the Global of the Difference Equation
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M. A. EI-Moneam*

Abstract
In this article, we consider and discuss some properties of the positive solutions to the fol-

lowing rational nonlinear DE x,,; = ﬁ+‘;§”‘rx+”;z';‘k:f§” 30 n = 01, where the parameters
n—k*n—1\Xn— n—

o,B,7,0,n € (0,), while m,k,I are positive integers, such that m < k </ and the initial conditions
Xty eees X—fyeeeg X_[geeey
x_1,...,x9 are arbitrary positive real numbers, we will give also, some numerical examples to illustrate our results.

Keywords: Difference equations, Equilibrium,Oscillates, Globally asymptotically stable, Prime period two
solution, Rational difference equations, Qualitative properties of solutions of difference equations
2010 AMS: 39A11, 39A10, 39A99, 34C99

1. Introduction

The study of the solution of nonlinear rational sequence of high order is quite challenging and rewarding. Every dynamical
system b1 = f (b,) determines DE and vice versa. An interesting class of nonlinear DE is the class of solvable DEs, and
one of the interesting problems is to find equations that belong to this class and to solve them in closed form or in explicit
form [1]-[14], [16]-[26]. Note that most of these Eq. often show increasingly complex behavior such as the existence of a
bounded. The qualitative study of difference equations is a fertile research area and increasingly attracts many mathematicians.
This topic draws its importance from the fact that many real life phenomena are modeled using difference equations. The
applications of these difference equations can be found on the economy, biology and so on. It is known that nonlinear difference
equations are capable of producing a complicated behavior regardless its order. The aim of this paper is to investigate some
qualitative behavior of the solutions of the nonlinear DE

OXp—m + nxnfk'i‘axn

. n=0,1,2,.. (1.1)
ﬁ + VXn—kXn—1 (Xn,k +xn7l)

Xn+1 =

where the parameters o, 3, v, 8, N € (0,00), while m, k, I, are positive integers, such that m < k <[ and the initial
conditions X_y, ..., X_j, ..oy X[y .00y X1, ..., Xo are arbitrary positive real numbers. Equation (1.1) has been discussed in [15],
whenm =1, k=2and [ =4, and in [28], when 6 = 0, where some global behavior of the more general nonlinear rational Eq.
(1.1), we need the following well-known definitions and results [29]-[34].
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Definition 1.1. A difference equation of order (k+ 1) is of the form
Xpr1 = F (X, %p—1,.0x k), n=0,1,2,..... (1.2)

where F is a continuous function which maps some set J**' into J and J is a set of real numbers. An equilibrium point
X of this equation is a point that satisfies the condition X = F (X,X, ....,X). That is, the constant sequence {x,},__, with
X, =X for all n> —kis a solution of that equation.

Definition 1.2. Ler X € (0,0) be an equilibrium point of the difference equation (1.2). Then
(i) An equilibrium point X of the difference equation (1.2) is called locally stable if for every € > 0 there exists 8 > 0 such that,
if X_gy oo, X_1,%0 € (0,00) with |x_j —X| + ...+ |x_1 —X] + |x0 —X] < &, then |x, —X| < € forall n> —k.

(ii) An equilibrium point X of the difference equation (1.2) is called locally asymptotically stable if it is locally stable
and there exists y > 0 such that, if x_y, ..., x_1, xo € (0,00) with |x_; —X| + ...+ |x_1 —X| + |xo — X| < 7, then

lim x, = X.
n—yoo

(iii) An equilibrium point X of the difference equation (1.2) is called a global attractor if for every x_y, ..., x_1, xo € (0,00) we
have

lim x, = X.

n—oo

(iv) An equilibrium point X of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global
attractor.

(v) An equilibrium point X of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence {x,},__, is said to be periodic with period p if Xnip = x, for all n> —k. A sequence {x,},__;
is said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. We say that a sequence {x,};__, is bounded and persisting if , there exists positive constants m and M such
that

m<x, <M, forall n>—k.

Definition 1.5. A positive semicycle of {x,};__, consists of "a string” of terms x;, X1, ..., Xn all greater than or equal to %,
with | > —k and m < oo such that

either l=—k or [|>—k and x_1<3,
and
either m=oc or m<o and Xpy] <X

A negative semicycle of {x,}__, consists of "a string” of terms x;,Xi41, ..., %m all less than %, with | > —k and m < e such
that

either l=—k or [|I>—k and x_| >3,
and
either m=oc or m<o and Xp41 >X.
Definition 1.6. The linearized Eq. of Eq. (1.2) about the equilibrium point X is the linear Eq.

£ OF (%5, %)

Ynt+1 = Z

& o " (1.3)
Now, assume that the characteristic Eq. associated with Eq. (1.3) is

p(A) = poAk + p AR b L g A+ =0, (1.4)
where

pPi = oF ()7,)?, ,)NC) /axn,i.
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Theorem 1.7. Let p; €R, i=1,2,..., and k€ {0,1,2,...}, then

k

Z |pl| < 17

i=1

is sufficient condition for asymptotic stability of difference equation

Xtk + P1Xngk—1+ e+ X =0, n=0,1,2,...

Theorem 1.8 (The Linearized Stability Theorem).

Suppose that F is a continuously differentiable function defined on an open neighbourhood of the equilibrium Xx. Then the
following statements are true.

(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then the
equilibrium point X is locally asymptotically stable.

(ii) If at least one root of Eq.(1.4) has an absolute value greater than one, then the equilibrium point X is unstable.

2. Change of Variables

1
By using the change of variables x,, = (%) ’ Yn, the equation (1.1) reduces to the following difference equation

TYn—m+tYn—k+SYn

. n=0,1,2,.. Q.1
1+yn7kynfl (ynfk +ynfl)

Yn+1 =

where r = 4 > 0,5 = LIS 0,7 =1 >0, and the initial conditions y_;, ..., Y_k,..c;Y—ms--esY—1,Y0 € (0,0). In the next section,
we shall study the global behavior of Eq. (2.1).

3. The Dynamics of Eq. (2.1)

The equilibrium points ¥ of Eq. (2.1) are the positive solutions of equation

[r+s+t]5y

. .1
1+253 (3.1

)’7:

Thus ¥, = 0, is always an equilibrium point of the equation (2.5). If (r-+s+¢) > 1, then the only positive equilibrium point ¥,
of equation (2.1) is given by

o = (Wzt]_ly (3.2)

Let us introduce a continuous function F : (0,00)* — (0,00), which is defined by

rvo+svi+tvy
F(vo,vi,v2,v3) =

= 3.3
L+v3v3+vp13 (3.3)

Consequently, we get

JF (vo,v1,v2,v3) r

v 1+ V%V3 + VZV% ’
IF (vo,vi,v2,v3) s

vy 1+V%V3 +vzv§’

dF (vo,vi,v2,v3) t(1+ V%V3 + vzvg)— (rvotsvi+tvy) (2vavs + v%)

I (1+v3vs +vzv%)2
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IF (vo,v1,v2,v3)  — (rvo+svi+tvo) (V3 +2va13)
avs (1+v3vs +vzv§)2
At §; = 0, we have aF(g,‘%0,0) =r ‘9”3’3;0‘0) =y, aF(S’VOZ’O*O) =t, aF(%’(v);O’O) =0, and the linearized equation of Eq. (2.1) about
31 = 0, is the equation
Znt1 = P0Zn — P1Zn—m — P22Zn—k = 0, (3.4)
1
where po=s, p1=r, p2=t. Aty = (W) ’ , we have
OF (52,52,52,52) _ r r _
o 14253 14 ([r+s+]— 1) [r+s+1]’
OF (32,92,92,52) _ s s _ s
vy 14255 1+ ([r+s+]—1)  [r+s+1]

IF (¥2,52,92,52) . 3([r+s+t] = 1)

I 2[r+s+1] ’
OF (92,92, 92, 52) _ —3([r+s+1]—1)
dvs 2[r+s-+1]

1
And the linearized equation of Eq. (2.1) about y, = <w) ? is the equation

Znt1 = P0Zn — P1Zn—m — P2Zn—k — P3Zn—1 = 0, (3.5)
_ 5 _ r — 2t-3([r+s+1]-1) — =3([rs+]-1)
where po = st P = s P2 = Arstd] 0 P3T T 2]

Theorem 3.1. (i) If [r+s+t] < 1, then the equilibrium point 5, = 0 is locally asymptotically stable.
(ii) If [r+s+t] > 1, then the equilibrium point 5| = 0 is unstable.

1
(iii) If [r+s+t] > 1, 2t > 3 ([r+s+t] — 1), then the equilibrium point 3, = (%) * is unstable.

Proof. With reference to Theorem 1.1, we deduce from Eq. (3.4) that |po| + |p1] + |p2]| = [r+s+¢] < 1, and then the proof of
parts (i), (ii) follow. Also, from Eq. (3.5) we deduce for [r+s+t] > 1 that |po| +|p1| +|p2| +|p3] = 1+ % > 1, and

hence the proof of part (iii) follows. O

Theorem 3.2. Assume that [r+s—+t] > 1, and let {y,};r__, be a solution of Eq. (2.1) such that

Vb5 Y =142 s Y=142n5 s Y —ks Y —k+25 -5 Y—k+2n5 -+
Yomt1:Y=m435 s YomA2n415 -, Y0 = Y2
and (3.6)
Vol 15 Y1435 -y Y1420+ 15 -+ Yk 15 Y —k4-35 -+
Vka 21y os Yoty YA 2y ooy Yo 2my s Y—1 < V2.
1

Then {y,};__, oscillates about §, = (W) * with a semicycle of length one.

Proof. Assume that (3.6) holds. Then

oy msyotty ry—m+Syo+ty i [rs+1]yo
Y1 = < 3 < =Y2,
L+y oy (yx+y) 1+25, L+ ([r+s+1] = 1)
and
_ FY—m1HSY1+1Y k41 FY—m1HSY1+H1Y k41 [r+s+t]y2
2= > 3 > =2,
Ty gty 11 (Vi1 +y-141) 14255 L4 ([r+s+t] 1)

and hence the proof follows by induction.
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Theorem 3.3. Assume that [r+s+t] < 1, then the equilibrium point §| = 0 of Eq. (2.1) is globally asymptotically stable.

Proof. We have shown in Theorem 3 that if [r+s+¢] < 1 then the equilibrium point §; = 0 is locally asymptotically stable. It
remains to show that §; = 0 is a global attractor. To this end, let {y,};.__, be a solution of Eq. (2.1). It suffics to show that
lgn yn = 0. Since

n—roo

FYn—m+SYn+tYn—k
1 +yn—kyn—l(Yn—k +y11—l)

0 < Ynt+1 = < TYn—m+SYn+t¥n—k < Yn—k-

Then we have lim y, = 0. This completes the proof. O
n—yoo

Theorem 3.4. Assume that [r+s—+t] > 1, then Eq. (2.1) possesses an unbounded solution.

Proof. With the aid of Theorem 3.3, we have

7Y —m42n+1+SY2n+1FHY k2t 1 TY—m+2n+1+SY2n+1+1Y —k+2n+1
Ly g2nit Yot42n41(Voki2n1 +Y-112011) 14253
TY—m+2n+1FSYon+ 1+ k201 TY—mt+2n+1+SYon+1HY —k42n+1

~ 1+ ([rs+1]— 1) - [rs+1] ’

Y2n+2 =

and

rY—m+2n+2+SYon+2 1Y —k+on+2 < rY—m+2n+2+8Yon+2+1Y—k+2n+2
L4y k2ns2 Y-i+ant2(V—ks2n+2 +Y—142n12) ~ 1425
7Y —mA2n42F8Yon42 Y —k42n42 1Y —m4 2042 T8V 42+ k42042

1+ ([r+s+1] — 1) B [r+s-+t] '

Yon+3 =

From which it follows that

lim yp, =0 and lim yy,11 =0.
n—yoo n—yoo

Hence, the proof of Theorem 3.4 is now completed. O

Theorem 3.5. (1) If m is odd, and k,l are even, Eq. (2.1) has prime period two solution if (r — [s+t]) < 1 and has not prime
period two solution if (r — [s+t]) > 1.

(2) If m is even and k,l are odd, Eq. (2.1) has not prime period two solution.

(3) If all m,k,l are even, Eq. (2.1) has prime period two solution.

(4) If all m,k,l are odd, Eq. (2.1) has prime period two solution if (r — [s+t]) > 1, and has not prime period two solution if
(r—I[s+1]) <L

(5) If m,k are even and | is odd, Eq. (2.1) has not prime period two solution.

(6) If m,k are odd and | is even, Eq. (2.1) has prime period two solution if (r — [s+t]) > 1, and has not prime period two
solution if (r — [s+t]) < 1.

(7) If m,l are odd and k is even, Eq. (2.1) has prime period two solution if (r — [s+t]) > 1, and has not prime period two
solution if (r — [s+1]) < 1.

(8) If m,l are even and k is odd, Eq. (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

"'a¢7Wa¢7 V...

of prime period two of Eq. (2.1).
(1) If m is odd, and k,! are even, then y, | = y,—,, and y, = y,_x = y,—;. It follows from Eq. (2.1) that

_ ro+[s+t]y _ ry+[s+t] ¢

=iy 0 VT i

Consequently, we have

0<20y(¢+y)=1—(r—[s+1]). (3.7)
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We deduce that (3.7) is always true if (r — [s+¢]) < 1 and hence Eq. (2.1) has prime period two solution. If (r — [s+7]) > 1, we
have a contradiction, and hence Eq. (2.1) has not prime period two solution.
(2) If m is even, and k, [ are odd, then y, = y,_,,and y,4+1 = Y, = Y. It follows from Eq. (2.1) that

0= [r+s+t] _ [rts+i]o
o 1+293 V= 1+2y3 "
Consequently, we have
0<2(¢+y)(¢?+y?) = —([r+s+1]+1). (3.8)

Since [r+s-+t] > 0, we have a contradiction. Hence Eq. (2.1) has not prime period two solution.
(3) If all m, k,[ are even, then y, = y,—» = Yu—k = Yu—:. It follows from Eq. (2.1) that

[r+s+t|y  [rds+t] ¢
14+2y3 14293

Consequently, we get

o=

0<20y(¢p+y)=[r+s+1]+1. (3.9)

Since [r+s-+t] > 0, the formula (3.14) is always true. Hence Eq. (2.1) has prime period two solution.
(4) If all m,k,[ are odd, then y,,+1 = Yp—m = Yn—k = Yn—1. It follows from Eq. (2.1) that

o +sy Ty +s¢
T1120 VT 112w

Consequently, we get

0<2(0+w)(¢*+v?) = (r—[s+1]) — 1. (3.10)

¢

If (r — [s+1]) > 1, the formula (15) is always true, and hence Eq. (2.1) has prime period two solution. If (r — [s+1]) < 1, we
have a contradiction and hence Eq. (2.1) has not prime period two solution.
(5) If m,k are even, and [ is odd, then y, = y,—x = Yn—m, and y,+1 = y,—;. It follows from Eq. (2.1) that

o— [rt+s+t]y _ [rtstt]¢
TTrveryer T Tty oy

Consequently, we have
0<oy(9+y)=—([r+s+1]+1). (3.11)

Since [r+s+t] > 0, we have a contradiction. Hence Eq. (2.1) has not a prime period two solution.
(6) If m,k are odd, and [ is even, then y, 1 = y,—m = Yu—&, and y, = y,—;. It follows from Eq. (2.1) that

0= [r+1] ¢ + sy ]y +se
B Y I AR E e Ry
Consequently, we have
0<oy(dp+wy)=(r+t]—s)—1. (3.12)

If ([r+t] —s) > 1,the formula (3.17) is always true, and hence Eq. (2.1) has prime period two solution. If ([r+f] —s) < 1, we
have a contradiction. Hence Eq.(2.5) has not a prime period two solution.
(7) If m,[ are odd, and k is even, then y, 1 = y,—m = yu—s, and y, = y,_i. It follows from Eq. (2.1) that

o— rg + [s+1]y _ ry+[s+]¢
IR R S B ST

which give the same results of case (6).
(8) If m, [ are even, and k is odd, then y, = y,—, = ¥,—;, and y,+1 = y,_x. It follows from Eq. (2.1) that

o syt resotiy
Ty e VT gty gy?

which give the same results of case (5). Hence the proof of Theorem 3.5 is now completed. O
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4. Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical
examples in this section. These examples represent different types of qualitative behavior of solutions of Eq. (2.1).

Example 4.1. Figure 4.1, shows that the solution of Eq. (2.1) is bounded if x_3=1,x_p=2,x_1=3,x0=4, m=1, k=
2,1=3,r=0.1,5=0.2,1r=0.3, i.e [r+s+1] < L.

plot of y(n+1)
4 T T T T T T T
51
3k
I:_ 251 1
=
L™
a L 4
z 2
o
3 L
e J
h
1
05 7
D sl 1 1 ] 1 ] | [l |
0 10 20 30 40 5 60 70 80 9 100
n-iteration

Figure 4.1. The solution of Eq. (2.1) is bounded.

Example 4.2. Figure 4.2, shows that the solution of Eq. (2.1) is unbounded if x_3 =1, x_,=2,x_1=3,x0=4, m=1, k=
2,1=3,r=1,5s=2,1t=3, i.e [r+s+1] > L.

plot of y(n+1)

.
T

solution of y(n+1)
Ca

ra
T

D Il 1 1 1 1 Il | 1 |
0 10 20 30 40 50 60 70 80 90 100

n-iteration
Figure 4.2. The solution of Eq. (2.1) is unbounded.

Example 4.3. Figure 4.3, shows that Eq. (2.1) is globally asymptotically stable if x_4=1,x_3=2,x_2=3,x_1=4,x =95,
m=2k=3,1=4,r=0.1,5=05,t=0.2, i.e [r+s+t] < 1.
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plot of y(n+1)

solution of y({n+1)

0 10 2 30 40 50 60 70 80 90 100
n-iteration
Figure 4.3. The solution of Eq. (2.1) is globally asymptotically stable.

0

Example 4.4. Figure 4.4, shows that Eq. (2.1) has no positive prime period two solutions if x_3 =1, x_p=2,x_1 =3, xo =
4, m=2k=1,1=3, r=100, s =300, r =400.

x10* plot of y(n+1)
9 T T T T T T

solution of y({n+1)
2 - on [=3] - oo
T T T T T T

ra
T

-
T
|

D | | |. | | | I |
0 10 2 30 40 50 60 70 80 90 100
n-iteration
Figure 4.4. The solution of Eq. (2.1) is globally asymptotically stable.




In this article, we have shown that Eq. (2.1) has two equilibrium points y; = 0 and j, = (
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5. Conclusions

1
%) LIf [rs41] < 1, we

have proved that ; = 0 is globally asymptotically stable, while if [r+s+¢] > 1, the solution of Eq. (2.1) oscillates about the

point §; = (

1
% * with a semicycle of length one. When [r+s+¢] > 1, we have proved that the solution of Eq. (2.1) is

unbounded. The periodicity of the solution of Eq. (2.1) has been discussed in details in Theorem 3.5.
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Abstract

Let R be a commutative semiring with 1 # 0. In this paper, we study the concept of weakly 1-absorbing primary
ideal which is a generalization of 1-absorbing ideal over commutative semirings . A proper ideal I of a semiring
R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a,b,c¢ € R and 0 # abc € I, then
ab €1, or c € v/I. A number of results concerning weakly 1-absorbing primary ideals and examples of weakly
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1. Introduction

The algebraic structure of semirings, that are considered as a generalization of rings, plays an important role in different
branches of mathematics, especially in applied sciences and computer engineering. For general references on semiring theory
one may refer to [1],[4],[13] and [16].

The first formal definition of semirings was introduced by H.S Vandiver in 1934 [20] ”Note on a simple type of algebra in
which cancelation law of addition does not holds”.

In this paper we need a special kind of ideals that was defined by Henriksen [14] in 1958 which is called k-ideal or subtractive
ideals. A subtractive ideal / of a semiring R is an ideal such that if x,x+y € I, theny € I.

Since prime and primary ideals have key roles in commutative semiring theory, many authors have studied generalizations
of prime and primary ideals. One of the generalization of that concept is 2-absorbing ideals.
In 2012, Darani [12] introduced the connotation of a 2-absorbing ideal of a commutative semiring. A proper ideal I of a
semiring R is said to be a 2-absorbing primary ideal if whenever a,b,c € R and abc € I, thenab € I, or bc € I, or ac € 1.
In [8], the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal was introduced. A proper
ideal 7 of a ring R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a,b,c € R and 0 # abc € I, then
ab € 1, or ¢ € /I and studied n number of results concerning weakly 1-absorbing primary ideals and examples of weakly
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1-absorbing primary ideals .

We assume throughout this paper that all semirings are commutative with unity 1 # 0. We start by recalling some background
material. By a proper ideal I of R, we mean an ideal I of R with I # R. Let I be a proper ideal of R. Before we state some
results, let us introduce some notation and terminology. By /I, we mean the radical of R, that is, {a €R | an €I} for some
positive integer 7}. In particular, 1/0 denotes the set of all nilpotent elements of R. We define Z;(R) = {r € R | rs € I for some
s € R\I}. A semiring R is called a reduced semiring if it has no non-zero nilpotent elements; i.e., v/0 = 0. For two ideals
I and J of R, the residual division of I and J is defined to be the ideal (I :J) = {a € R | aJ C I}. Let R be a commutative
semiring with identity and M a unitary R-semimodule. Then R(+)M = R M(direct sum) with coordinate-wise addition and
multiplication (a,m)(b,n) = (ab,an+ bm) is a commutative semiring with identity called the idealization of M. A semiring R
is called a quasilocal semiring if R has exactly one maximal ideal. As usual we denote Z and Z, by the semiring of integers and
the semiring of integers modulo 7.

In this paper, we introduce the concept of (weakly) 1-absorbing ideal of a semiring R. A proper ideal / of a semiring R is
called a weakly 1-absorbing primary ideal of R if whenever nonunit elements a,b,c € R, and 0 # abc € I, then ab € I, or
¢ € V/I. A proper ideal I of a semiring R is called 1-absorbing primary ideal of R if whenever nonunit elements a, b, c € R, and
abc €I, then ab € 1, or ¢ € /1. Tt is clear that a 1-absorbing primary ideal of R is a weakly 1-absorbing primary ideal of R.
However, since 0 is always weakly 1-absorbing primary, a weakly 1-absorbing primary ideal of R needs not be a 1-absorbing
primary ideal of R. Among many results, we show (Theorem 2.5) that if a proper ideal  of R is a weakly 1-absorbing ideal
of R such that /7 is a maximal ideal of R, then [ is a primary ideal of R, and hence [ is 1-absorbing primary ideal of R. We
show (Theorem 2.6 ) that if R is a reduced semiring, and I is a weakly 1-absorbing primary ideal of R, then /T is a prime ideal
of R. If I is a proper nonzero ideal of a von-Neumann regular semiring R, then we show (Theorem 2.7 ) that [ is a weakly 1-
absorbing primary ideal of R if and only if / is a 1-absorbing primary ideal of R if and only if / is a primary ideal of R. We
show (Theorem 2.8) that if R is a nonquasilocal semiring, and / be a proper ideal of R such that ann(i) = {r € R | ri = 0} is not
a maximal ideal of R for every element i € I, then [ is a weakly 1-absorbing primary ideal of R if and only if I is a weakly
primary ideal of R. If I is a proper ideal of a reduced divided semiring R, then we show (Theorem 2.11) that / is a weakly
1-absorbing primary ideal of R if and only if / is a weakly primary ideal of R. If ] is a weakly 1-absorbing primary of a semiring
R that is not a 1-absorbing primary ideal of R, then we give (Theorem 3.4) sufficient conditions so that P=0(@Ge.,IC \ﬁ). In
Theorem 3.2, we obtain some equivalent conditions for weakly 1-absorbing primary ideals of u-semirings. In (Theorem4.1
), a characterization of weakly 1-absorbing primary ideals in R = R| X R,, where R and R, are commutative semirings with
identity that are not semifields is given. If Ry, R, ..., R, are commutative semirings with identity for some 2 < n < oo, and let
R=R;x.... X R,, then it is shown in (Theorem 4.2 ) that every proper ideal of R is a weakly 1-absorbing primary ideal of R if
and only if n = 2 and R, R, are semifields. For a weakly 1-absorbing primary ideal of a semiring R, we show (Theorem 4.8)
that S(-1)1 is a weakly 1-absorbing primary ideal of S(~")R for every multiplicatively closed subset S of R that is disjoint from
I, and we show that the converse holds if SNZ(R) = ¢ and SNZ;(R) = ¢.

2. Properties of Weakly 1 -absorbing Primary Ideals
In this section, we will define some basic properties of weakly 1-absorbing primary ideals in a commutative semi-ring R.

Definition 2.1. Let R be a commutative semiring, and I a proper ideal of R. We call I a weakly 1-absorbing primary ideal of R
if whenever nonunit elements a,b,c € R and 0 # abc € I, then ab € I, or ¢ € VI

Definition 2.2. Let R be a commutative semiring, and I a proper ideal of R. We call I a 1-absorbing primary ideal of R if
whenever nonunit elements a,b,c € R and abc € I, then ab € I, or c € VI

It is clear that every 1-absorbing primary ideal of a semiring R is a weakly 1-absorbing primary ideal of R.
The following example shows that the converse is not true.

Example 2.3. 1. I ={0} is a weakly I-absorbing primary ideal of R = Zg that is not a 1-absorbing primary of R. Indeed,
2.2.3 €1, but neither 2.2 € I nor 3 € /1.

2. LetJ=1{0,6} as an ideal of Z1», and let R =Zi5(+)J. Then an ideal I = {(0,0),(0,6)} is a weakly 1-absorbing primary
ideal of R. Observe that abc € I for some a,b,c € R | I if and only if abc = (0,0). However, it is not a I-absorbing
primary ideal of R. Indeed; (2,0)(2,0)(3,0) € I, but neither (2,0)(2,0) € I nor (3,0) € V/I.

We begin with the following trivial result:
Theorem 2.4. Let be a proper ideal of a commutative semiring R. Then the following statements hold.

1. If I is a weakly prime ideal, then I is a weakly 1-absorbing primary ideal.
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If I is a weakly primary ideal, then I is a weakly 1-absorbing primary ideal.
If I is a 1-absorbing primary ideal, then I is a weakly 1-absorbing primary ideal.

If I is a weakly 1-absorbing primary ideal, then I is a weakly 2-absorbing primary ideal.

R N

IfR/I is an semi-integral domain, then I is a weakly 1-absorbing primary ideal if and only if I is a 1-absorbing primary
ideal of R.

6. Let R be a quasilocal semiring with maximal ideal \/0. Then every proper ideal of R is a weakly 1-absorbing primary
ideal of R.

Theorem 2.5. Let R be a semiring and I be a weakly 1-absorbing primary ideal of R. If /I is a maximal ideal of R, then I is a
primary ideal of R, and hence I is a 1-absorbing ideal primary of R.

In particular, If I a weakly 1-absorbing primary ideal of R that is not a 1-absorbing ideal primary of R, then is not a maximal
ideal of R.

Proof. Suppose that v/7 is a maximal ideal of R. Then I is a semiprimary ideal of R. by [21] since /. Now, assume nonunit
elements a,b,c € R and abc € 1. Assume ab not belong / . Since [ is primary ideal, we have for some positive integer m, we
have ¢ € v/I. Hence, I is 1-absorbing primary ideal. O

Theorem 2.6. Let R be a reduced semiring. If I is a nonzero weakly 1-absorbing primary ideal of R, then \/T is a prime ideal of
R. In particular, if \/1i is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R.

Proof. Proof: Suppose that 0 # ab € \/If, for some a,b € R. We may assume that a,b are nonunit. Then there exists an
even positive integer n = 2m(m > 1) such that (ab)" € I. Since v/0 = {0}, we have (ab)" # 0. Hence, 0 # a™a"b" € I. Thus,
ama™ =g" €1 or b" € \/1, and therefore /1 is a weakly prime ideal of R. Since R is reduced and I # {0}, we conclude that VI
is a prime ideal of R by [2] . The proof of the "in particular” statement : by Theorem 2, v/ is a maximal ideal of R, then I is a
primary ideal of R, and hence I is a 1-absorbing ideal primary of R. O

Recall that a commutative semiring R is called a von-Neumann regular semiring if and only if for every x € R, there is a
Y €y such that x?y = x. It is known that a commutative semiring R is a von-Neumann regular semiring if and only if for each
X € R, there is an idempotent e € R and a unit # € R such that x = eu. We have the following result.

Theorem 2.7. Let R be a von-Neumann regular semiring and I be a nonzero ideal of R. Then the following statements are
equivalent.

1. I is a weakly 1-absorbing primary ideal of R.
2. 1 is a primary ideal of R.
3. 1is a I-absorbing ideal primary of R.

Proof. (1) = (2). R is a von-Neumann regular semiring, we know that R is reduced. Hence /T is a prime ideal of R by
Theorem 2.6. Since every prime ideal of a von-Neumann regular semiring is maximal, we conclude that v/7 is a maximal ideal
of R. Hence I is a primary ideal of R by Theorem 2.5.

(2) = (3). Let nonunit elements a,b,c € R, and abc € I. Assume ab not belong I. Since [ is a primary ideal, we have ¢ € I
for some positive integer m, so ¢ € v/I. Thus, I is a 1-absorbing primary ideal.

(3) = (1). Let nonunit elements a,b, ¢ € R, and 0 # abc € I. Since I is a 1-absorbing primary ideal, we have ab € I, or ¢ € VI
Now, if a,b and ¢ # 0, then 0 # abc € 1. As aresult [ is a weakly 1-absorbing primary ideal. O

Theorem 2.8. Let R be a non-quasilocal semiring and I be a k-ideal of R such that ann(i) = {r € R | ri = 0} is not a maximal
ideal of R for every element i € I. Then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of
R.

Proof. 1f I is a weakly primary ideal of R, then [ is a weakly 1-absorbing primary ideal of R by Theorem 2.4. Now, suppose
that I is a weakly 1-absorbing primary k-ideal of R and suppose that 0 # ab € I for some elements a,b € R. We show thata € I
or b € v/I. We may assume that a,b are nonunit elements of R. Let ann(ab) = {c € R | cab = 0}. Since ab # 0, ann(ab) is
a proper ideal of R. Let L be a maximal ideal of R such that ann(ab) C L. Since R is a non-quasilocal semiring, there is a
maximal ideal M of R such that M # L. Let m € M\ L. Hence m not belong to ann(ab), and 0 # mab € I. Since I is a weakly
1-absorbing primary ideal of R, we have ma € I or b € V1. If b € /I, then we are done. Hence assume that b not belong to V1.
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Hence ma € I. Since m not belong to L and L is a maximal ideal of R, we conclude that m not belong to J(R). Hence there exists
an r € R such that 1 + rm is a nonunit element of R. Suppose that 1 + rm not belong to ann(ab). Hence 0 # (14 rm)ab € I.
Since / is a weakly 1-absorbing primary k-ideal of R and b not belong to v/, we conclude that (1 + rm)a = a+ rma € I. Since
rma € I, we have a € I and we are done. Suppose that 1+ rm € ann(ab). Since ann(ab) is not a maximal ideal of R and
ann(ab) C L, there is aw € L\ ann(ab). Hence 0 # wab € I. Since I is a weakly 1-absorbing primary k-ideal of R and b not
belong to v/7, we conclude that wa € I. Since 1+ rm € ann(ab) C L and w € L\ ann(ab), we have 1 +rm+ w is a nonzero
nonunit element of L. Hence 0 # (1 4+rm+w)ab € I. Since I is a weakly 1-absorbing primary k-ideal of R and b not belong
V1, we conclude that (1+rm+w)a=a+rma+wa € I. Since rma,wa € I, we conclude that a € I. O

In light of the proof of Theorem 2.8, we have the following result.

Theorem 2.9. Let I be a weakly 1-absorbing primary k-ideal of R such that for every nonzero element i € I, there exists a
nonunit w € R such that wi # 0, and w + u is a nonunit element of R for some unit u € R. Then I is a weakly primary k-ideal of
R.

Proof. Suppose that 0 # ab € I and b not belong to /T for some a,b € R. We may assume that a,b are nonunit elements of R.
Hence there is a nonunit w € R such that wab # 0 and w + u is a nonunit element of R for some unit u € R. Since 0 # wab € 1
and b not belong to v/7 and I is a weakly 1-absorbing primary k-ideal of R, we conclude that wa € I.

Since (w+u)ab € I and I is a weakly 1-absorbing primary k-ideal of R and b not belong V1, we conclude that (w+ u)a =
wa—+ua € I. Since wa € I and wa + ua € I, we conclude that ua € I. Since u is a unit, we have a € I. O

Corollary 2.10. Let R be a semiring and A = Rx]. Suppose that I is a weakly 1-absorbing primary k-ideal of A. Then I is a
weakly primary k-ideal of A.

Proof. Since xi # 0 for every nonzero i € I and x+ 1 is a nonunit element of A, we are done by Theorem 2.9. O

Recall that a semiring R is called divided if for every prime ideal P of R and for every x € R\ P, we have x | p for every
p € P. We have the following result.

Theorem 2.11. Let R be a reduced divided semiring and I be a proper ideal of R. Then the following statements are equivalent:

1. Iis a weakly 1-absorbing primary ideal of R.
2. 1 is a weakly primary ideal of R.

Proof. (1) = (2). Suppose that 0 # ab € I for some a,b € R and b not belong to v/I. We may assume that a,b are nonunit
elements of R. Since /1 is a prime ideal of R by Theorem 2.6, we conclude that a € V1. Since R is divided, we conclude
that b | a. Thus a = bc for some ¢ € R. Observe that ¢ is a nonunit element of R as b not belong to v/7 and a € v/I. Since
0 # ab = bcb € I and I is weakly 1-absorbing primary, and b not belong to v/1, we conclude that bc = a € I. Thus I is a weakly
primary ideal of R.

(2) = (1). It is clear by Theorem 2.4. O

Recall that a semiring R is called a chained semiring if for every x,y € R, we have x | y or y | x. Every chained semiring is
divided. So, if R is a reduced chained semiring, then a proper ideal I of R is a weakly 1-absorbing primary ideal if and only if it
is a weakly primary ideal of R.

Theorem 2.12. Let R be a semiDedekind domain and I be a nonzero proper ideal of R. Then I is a weakly 1-absorbing primary
ideal of R if and only if /1 is a prime ideal of R.

Proof. (—). Suppose that I is a weakly 1-absorbing primary ideal of R. Then /T is a prime ideal of R by Theorem 2.6.

(). Suppose /1 is a prime ideal of R. Since R is a semiDedekind domain, it is well known that every nonzero prime
ideal of R is a maximal ideal of R. Thus /7 is a maximal ideal of R. Hence I is a primary ideal of R, and thus / is 1-absorbing
primary ideal of R. O



On Weakly 1-Absorbing Primary Ideals of Commutative Semirings — 203/208

3. Characterizations of Weakly 1-absorbing Primary Ideals in u-semirings

In this section, we will study some characterizations of weakly 1-absorbing primary ideals in u-semirings

Definition 3.1. If an ideal of R contained in a finite union of ideals must be contained in one of those ideals, then R is said to
be a u-semiring.

Theorem 3.2. Let R be a commutative u-semiring, and I a proper ideal of R. Then the following statements are equivalent.
1. I is a weakly 1-absorbing primary ideal of R.
2. For every nonunit elements a,b € R with ab not belong to I, (I : ab) = (0 : ab), or (I : ab) C \/1.

3. For every nonunit element a € R, and every ideal I, of R with I} ¢ VI If (I:aly) is a proper ideal of R, then
(I:al})=(0:aly), or (I:al}) C (I:a).

4. Foreveryideals 11, I, of Rwith I} ¢ VI If (I: 1) is a proper ideal of R, then (I : 1) = (0: I1L), or (I : I1) C (I1: I).
5. Forevery ideals I ,I,,I5 of R with 0 £ 1115 C I, C I or Is C /1.

Proof. (1) = (2). Suppose that I is a weakly 1-absorbing primary ideal of R, ab not belong to I for some nonunit elements
a,b € Rand c € (I: ab). Then abc € I. Since ab not belong to I, ¢ is nonunit. If abc = 0, then ¢ € (0: ab). Assume that
0 # abc € 1. Since I is weakly 1-absorbing primary, we have ¢ € v/I. Hence we conclude that (I : ab) C (0 : ab) U+/I. Since R
is a u-semiring, we obtain that (I : ab) = (0 : ab) or (I : ab) C V/I.

(2) = (3). If al; C I, then we are done. Suppose that al; ¢ I for some nonunit element a € R and ¢ € (I : al;). It is clear that ¢
is nonunit. Then acl; C 1. Now I} C (I : ac). If ac € I, then ¢ € (I : a). Suppose that ac not belong to I. Hence (I : ac) = (0: ac)
or (I:ac) C \ﬁby 2. ThusI; C(0:ac)orl; C V1. Since I ;( I by hypothesis, we conclude I} C (0: ac); i.e. c € (0:al}).
Thus (1 :al;) C (0:al;)U(I : a). Since R is a u-semiring, we have (I : al;) = (0:aly) or (I:al}) C (I: a).

(3) = (4). If I) C V/1, then we are done. Suppose that I; ¢ VI and ¢ € (I : I112). Then I, C (I : cIy). Since (I: I15) is
proper, ¢ is nonunit. Hence b, C (0:clj) or b C(I:¢)by2.6. f L, C(0:cly), thenc e (I:L1L). If L, C(I:¢),thenc € (I: D).
So, (I: 1) C (0:11,)U (I : L) which implies that (I : 1) = (0: 11 ), or (I : 1Io) C (I : I), as needed.

(4) = (5). It is clear.

(5) = (1). Let a,b,c € R be nonunit elements and 0 # abc € I. Put I} = aR, [, = bR, and I = cR. Then 1 is now clear by
5 O

Definition 3.3. Let I be a weakly 1-absorbing primary ideal of R and a,b,c be nonunit elements of R. We call (a,b,c) a
I-triple-zero of I if abc = 0, ab not belong to I, and ¢ not belong to \/I.

Observe that if 1 is a weakly 1-absorbing primary ideal of R that is not 1- absorbing primary, then there exists a 1-triple-zero
(a,b,c) of I for some nonunit elements a,b,c € R.

Theorem 3.4. Let I be a weakly 1-absorbing primary k-ideal of R, and (a,b,c) be a I-triple-zero of I. Then
1. abl =0.
2. Ifa,b not belong to (I : ¢), then bcl = acl = al> = bI* = cI*> = 0.
3. Ifa,b not belong to (I : ¢), then I> = 0.

Proof. 1. Suppose that abl # 0. Then abx # 0 for some nonunit x € I. Hence 0 # ab(c +x) € I. Since ab not belong to I,
(c+x) is nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab not belong to I, we conclude
that (¢ +x) € V/I. Since x € I, we have ¢ € \/I, a contradiction. Thus abl = 0.

2. Suppose that bel # 0. Then bey # 0 for some nonunit element y € 1. Hence 0 # bey = b(a+y)c € I. Since b not belong
to (I : ¢), we conclude that a +y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and
ab € I and by € I, we conclude that b(a + y) not belong to I, and hence ¢ € V1, a contradiction. Thus bel = 0. We show
that acl = 0. Suppose that acl # 0. Then acy # 0 for some nonunit element y € I. Hence 0 # acy = a(b+y)c € I. Since
a not belong to (1 : ¢), we conclude that b+ y is a nonunit element of R. Since / is a weakly 1-absorbing primary k-ideal
of R and ab not belong to I and ay € I, we conclude that a(bh + y) not belong to I, and hence ¢ € /T, a contradiction.
Thus bel = 0. We show that acl = 0. Suppose that acl # 0. Then acy # 0 for some nonunit element y € I. Hence
0# acy =a(b+y)c € I. Since a not belong to (I : ¢), we conclude that b+ y is a nonunit element of R. Since [ is a
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weakly 1-absorbing primary k-ideal of R and ab not belong to I and ay € I, we conclude that a(b + y) not belong to /,
and hence ¢ € /1, a contradiction.

Thus acl = 0. Now we prove that al> = 0. Suppose that axy # 0 for some x,y € I. Since abl = 0 by (1) and acl = 0 by
(2),0#axy=a(b+x)(c+y) €l

Since ab not belong to I, we conclude that ¢ +y is a nonunit element of R. Since a not belong to (I : ¢), we conclude
that b+ x is a nonunit element of R. Since / is a weakly 1-absorbing Primary k-ideal of R, we have a(b+x) € I or
(c+y) € V1. Since x,y € I, we conclude that ab € I or ¢ € \/I, a contradiction. Thus al*> = 0. We show bI> = 0. Suppose
that bxy # 0 for some x,y € I. Since abl = 0 by (1) and bcI = 0 by (2), bxy = b(a+x)(c+Yy) € I. Since ab not belong
to 1, we conclude that ¢ +y is a nonunit element of R. Since b not belong to (I : ¢), we conclude that a + xis a nonunit
element of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have b(a+x) € I or (c+y) € v/I. Since x,y € I,
we conclude that ab € I or ¢ € V/1, a contradiction. Thus bI2 = 0. We show c¢I? = 0.

Suppose that cxy # 0 for some x,y € I . Since acl = bel =0 by (2), 0 # cxy = (a+x)(b+y)c € I. Since a,b not belong
to (I : ¢), we conclude that a + x and b + y are nonunit elements of R. Since [ is a weakly 1-absorbing primary k-ideal of
R, we have (a+x)(b+y) €I or ¢ € /1. Since x,y € I, we conclude that ab € I or ¢ € /I, a contradiction. Thus c/? = 0.

3. Assume that xyz # 0 for some x,y,z € I. Then 0 # xyz = (a+x)(b+y)(c+2z) €I by (1) and (2). Since ab not belong
to I, we conclude ¢ + z is a nonunit element of R. Since a,b not belong to (I : ¢), we conclude that a +x and b+ y are
nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have (a+x)(b+y) €l orc+z € V1.
Since x,y,z € I, we conclude that ab € [ or ¢ € \ﬁ, a contradiction. Thus I° = 0.

O

Theorem 3.5. 1. Let I be a weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing
ideal primary ideal of R and (a,b,c) is a I-triple-zero of I such that a,b not belong to (I : ¢). Then I = 0.

2. Let I be a nonzero weakly I-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing
ideal primary ideal of R and (a,b,c) is a I-triple-zero of I. Then ac € I or bc € .

Proof. 1. Since a,b not belong to (I : ¢), then I = 0 by Theorem 3.4. Since R is reduced, we conclude that I = 0.

2. Suppose that neither ac € I nor bc = 0. Then I = 0 by (1), a contradiction, since / is a nonzero ideal of R by hypothesis.
Hence if (a,b,c) is a 1-triple-zero of I, then ac € I or bc € I.
O

Theorem 3.6. Let I be a weakly 1-absorbing primary ideal of R. If I is not a weakly primary ideal of R, then there exist an
irreducible element x € R and a nonunit element y € R such that xy € I, but neither x € I nory € \/I. Furthermore, if ab € I for
some nonunit elements a,b € R such that neither a € I nor b € V1, then a is an irreducible element of R.

Proof. Suppose that I is not a weakly primary ideal of R. Then there exist nonunit elements x,y € R such that 0 # xy € I with x
not belong to 7, y not belong to v/I. Suppose that x is not an irreducible element of R. Then x = cd for some nonunit elements
¢,d € R. Since 0 # xy = cdy € I and I is weakly 1-absorbing primary and y not belong to /7, we conclude that cd =x €1, a
contradiction. Hence x is an irreducible element of R. O

In general, the intersection of a family of weakly 1-absorbing primary ideals need not be a weakly 1-absorbing primary
ideal.

Example 3.7. consider the semiring R = Zg. Then I = (2) and J = (3) are clearly weakly 1-absorbing primary ideals of Zg
but INJ = 0 is not a weakly 1-absorbing primary ideal of R.

However, we have the following result.

Proposition 3.8. Let {I; : i € A} be a collection of weakly 1-absorbing primary ideals of R such that Q = \/I; = \/1 j for every
distinct i, j € A. Then I = Nicpl; is a weakly 1-absorbing primary ideal of R.

Proof. Suppose that 0 # abc € I = Niecpl; for nonunit elements a,b,c € R and ab not belong to I. Then for some k € A,
0 # abc € I and ab not belong to I;. It implies that ¢ € VI = Q = V/I. O

Proposition 3.9. Let I be a weakly 1-absorbing primary ideal of R and ¢ be a nonunit element of R\ 1. Then (I : ¢) is a weakly
primary ideal of R.
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Proof. Suppose that 0 # ab € (I : ¢) for some nonunit ¢ € R\ I and assume that a not belong to (I : ¢). Hence b is a nonunit
element of R. If a is unit, then b € (I : ¢) C /(I : ¢), and we are done. So assume that a is a nonunit element of R. Since
0 # abc = acb € I and ac not belong to I and I is a weakly 1-absorbing primary ideal of R, we conclude that b € v/I C /(I : c).
Thus, (I : ¢) is a weakly primary ideal of R. O

4. Characterization for Weakly 1-absorbing Primary Ideal of R =R| X R;

The next theorem gives a characterization for weakly 1-absorbing primary ideals of R = R; x R, where R and R, are
commutative semirings with identity that are not semifields

Theorem 4.1. Let Ry and Ry be commutative semirings with identity that are not semifields, and let R=R| X Ry and [ be a a
nonzero proper ideal of R. Then the following statements are equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. I =1 X Ry for some primary ideal I} of Ry or [ = R| X I for some primary ideal I of R;.
3. 1is a I-absorbing primary ideal of R.

4. 1is a primary ideal of R;.

Proof. (1) = (2). Suppose that I is a weakly 1-absorbing primary ideal of R. Then [ is of the form I; x I, for some ideals
I; and I, of Ry and R,, respectively. Assume that both /; and I, are proper. Since [ is a nonzero ideal of R, we conclude
that I; # 0 or I, # 0. We may assume that I; # 0. Let 0 # ¢ € I} Then 0 # (1,0)(1,0)(c,1) = (¢,0) € I} x L. It implies that
(1,0)(1,0) € I} x L or (c,1) € \/(I} x ) = /I) X /I, that is I = Ry or I = Ry, a contradiction. Thus either I, or I, is a
proper ideal. Without loss of generality, assume that [ = I} x R, for some proper ideal /; of R;. We show that /; is a primary
ideal of R;. Let ab € I, for some a,b € R;. We can assume that @ and b are nonunit elements of R;. Since R; is not a semifield,
there exists a nonunit nonzero element x € Ry. Then 0 # (a,1)(1,x)(b,1) I} x R, which implies that either (a,1)(1,x) € I} xR,
or (b,1)in\/T; xRy =\/I) x Rysie.,a €l orb € V1.

(2) = (3). Since I is a primary ideal of R, I is a 1-absorbing primary ideal of R by [ [9], Theorem (1)].

(3) = (4) Since I a 1-absorbing primary ideal of R and R is not a quasilocal semring, we conclude that / is a primary ideal of R
by [9, Theorem(3)].

(4) = (1) Let nonunit elements a,b,c € R, and 0 # abc € I. Assume ab not belong to /. Since I is primary ideal, we have
¢ € I for some positive integer 1, so ¢ € v/I. So I is a weakly 1-absorbing primary ideal. O

Theorem 4.2. Let Ry, ...,R, be commutative semirings with 1 # 0 for some 2 < n < oo, and let R=Rj X ...... X R,,. Then the
Jollowing statements are equivalent.

1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.
2. n=2 and Ry,R, are semifields.

Proof. (1) = (2). Suppose that every proper ideal of R is a weakly 1-absorbing primary ideal. Without loss of generality, we
may assume that n = 3. Then I = R| x {0} x {0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero a € R|,
we have(0,0,0) # (1,0,1)(1,0,1)(a,1,0) = (a,0,0) € 1, but neither (1,0,1)(1,0,1) € I nor (a,1,0) € v/1, a contradiction.
Thus n = 2. Assume that R; is not a semifield. Then there exists a nonzero proper ideal A of R;. Hence I = A x {0} is a
weakly 1-absorbing primary ideal of R. However, for a nonzero a € A, we have (0,0) # (1,0)(1,0)(a,1) = (a,0) € I, but
neither(1,0)(1,0) € I nor (a,1) € v/, a contradiction. And, assume that R, is not a semifield. Then there exists a nonzero
proper ideal B of R,. Hence I = B x {0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero b € B, we have
(0,0) # (1,0)(1,0)(b,1) = (a,0) € I, but neither (1,0)(1,0) € I nor (a, 1) € /1, a contradiction. Hence n = 2 and R, R; are
semifields.

(2) = (1). Suppose that n = 2 and R;, R, are semifields. Then R has exactly three proper ideals, i.e., {(0,0)},{0} x R, and
R; x {0} are the only proper ideals of R. Hence it is clear that each proper ideal of R is a weakly 1-absorbing primary ideal of
R. O

Since every semiring that is a product of a finite number of fields is a von-Neumann regular semiring, in light of Theorem 4
and Theorem 14 we have the following result.

Corollary 4.3. Let Ry, ...,R, be commutative semirings with 1 # 0 for some 2 < n < o, and let R=R; X ..... X Ry,. Then the
Jfollowing statements are equivalent.
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1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.
2. Every proper ideal of R is a weakly primary ideal of R.

3. n=2 and Ry, R, are semifields, and hence R = R X R; is a von-Neumann regular semiring.

Theorem 4.4. Let Ry and Ry be commutative semirings and f : Ry — Ry be a semiring homomorphism with f(1) = 1. Then
the following statements hold:

1. Suppose that f is a monomorphism and f(a) is a nonunit element of R, for every nonunit element a € Ry and J is a
weakly 1-absorbing primary ideal of Ry. Then f(-1) (J) is a weakly 1-absorbing primary ideal of R).

2. If f is an epimorphism and I is a weakly 1-absorbing primary ideal of R\ such that Ker(f) C I, then f(I) is a weakly
1-absorbing primary ideal of R».

Proof. . (1) Let 0 # abc € -V (J) for some nonunit elements a,b,c € R. Since Ker(f) =0, we have 0 # f(abc) =
fla)f(b)f(c) € J, where f(a), f(b), f(c) are nonunit elements of R, by hypothesis. Hence f(a)f(b) € J or f(c) € v/J. Hence
abe fEV(I)orce/(f(=1))) = fEU(/T). Thus f1(J) is a weakly 1-absorbing primary ideal of R).

Let 0 # xyz € f(I) for some nonunit elements x,y,z € R. Since f is onto, there exists nonunit elements a, b, c € I such that
x= f(a),y= f(b),z= f(c). Then f(abc) = f(a)f(b)f(c) =xyz € f(I). Since Ker(f) C I, we have 0 £ abc € I. Tt follows
ab€lorce /I Thusxy € f(I)orz € f(\/1). Since f is onto and Ker(f) C I, we have f(/I) = \/(f(I)). Thus we are done.

O

Example 4.5. LetA = K[x,y], where K is a semifield, M = (x,y)A, and B = Ay. Note that B is a quasilocal semiring with
maximal ideal My.. Then I = xMy; = (x>,xy)B is a 1-absorbing primary ideal of B and \/I = xB. However xy € I, but
neither x € I nor'y € /1. Thus I is not a primary ideal of B. Let f : B x B — B such that f(x,y) = x. Then f is a semiring
homomorphism from B x B onto B such that f(1,1) = 1. However, (1,0) is a nonunit element of B x B and f(1,0) = 1 is a unit
of B. Thus f does not satisfy the hypothesis of 4.4. Now (=1 (I) =1 x B is not a weakly I-absorbing ideal of B x B by 4.1.

Theorem 4.6. Let I be a proper ideal of R. Then the following statements hold.

1. If J is a proper ideal of a semiring R with J C I and I is a weakly 1-absorbing primary ideal of R, then I/J is a weakly
1-absorbing primary ideal of R/J.

2. If J is a proper ideal of a semiring R with J C I such that U(R/J) = {a+J |a € U(R)}. If J is a 1-absorbing primary
ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a 1-absorbing primary ideal of R.

3. If {0} is a 1-absorbing primary ideal of R and I is a weakly 1-absorbing primary ideal of R, then I is a 1-absorbing
primary ideal of R.

4. If J is a proper ideal of a ring R with J C I such that U(R/J) ={a+J |a € U(R)}. If J is a weakly I-absorbing primary
ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a weakly 1-absorbing primary ideal of R.

Proof. 1. Consider the natural epimorphism 7 : R — R/J. Then n(I) =I/J. So we are done by Theorem 1.

2. Suppose that abc € I for some nonunit elements a,b,c € R. If abc € J, thenabe J C 1l orc € VICWVIasJisa
1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J # (a+J)(b+J)(c+J) € I/J, where
a+J,b+J,c+J are nonunit elements of R/J by hypothesis. Thus (a+J)(b+J) € I/J or (c+J) € \/(I/J). Hence
abelorce I

3. The proof follows from (2).

4. Suppose that 0 # abc € I for some nonunit elements a,b,c € R. If abc € J,thenabeJ Clorc € VICTasJisa
weakly 1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J # (a+J)(b+J)(c+J) € I/J,
where a+J,b+J,c+J are nonunit elements of R/J by hypothesis. Thus (a+J)(b+J) € I/J or (c+J) € \/(I/J]).
Hence ab €1 orc e V1.

O

Proposition 4.7. 1. Let Ry and Ry be commutative semirings and f : Ry — Ry be a ring homomorphism with f(1) =1
such that Ry is not a quasilocal semiring, then f(a) is a nonunit element of R, for every nonunit element a € Ry and J is
a I-absorbing primary ideal of Ry. Then (-1 (J) is a I-absorbing primary ideal of R).
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2. Let I and J be proper ideals of a semiring R with I C J. If J is a I-absorbing primary ideal of R, then J /1 is a 1-absorbing
primary ideal of R/I. Furthermore, assume that if R/I is a quasilocal semiring, then U(R/I) =a+1|a € U(R). IfJ/I
is a 1-absorbing primary ideal of R/I, then J is a 1-absorbing primary ideal of R.

3. Let R be a semiring and A = R[x|. Then a proper ideal I of R is a 1-absorbing primary ideal of R if and only if
(I[x] +xA) /xA is a 1-absorbing primary ideal of A/xA, since R is semiring-isomorphic to A /xA.

Theorem 4.8. Let S be a multiplicatively closed subset of R, and I a proper ideal of R. Then the following statements hold.

1. If I is a weakly 1-absorbing primary ideal of R such that INS = @, then Sisa weakly 1-absorbing primary ideal of
SEDR.

2. 1fSCV1 is a weakly 1-absorbing primary ideal of S VR such that SN Z(R) = ¢ and SNZ;(R) = ¢, then I is a weakly
1-absorbing primary ideal of R.

Proof. 1. Suppose that 0 # <2 < ¢ §(=DJ for some nonunit a,b,c € R\S, s1,82,53 € Sand &+ > not belong to S(-V1.

S1 82 83
Then 0 # uabc € I for some u 6 S. Since I 1s weakly 1-absorbing primary and uab not belong to I , we conclude ¢ € /1.
Thusé DAVIES V(S ). Thus S(=DJ is a weakly 1-absorbing primary ideal of S(-1R

2. Suppose that 0 # abc € I for some nonunit elements a,b,c € R. Hence 0 ;é abe _ %?% e SCDras SNZ(R) = ¢. Since
S(=DT is weakly 1-absorbing primary, we have either %% es-hy, or{ €VS =S 1f 4 1 b € SV, then uab € I
for some u € S. Since SNZ;(R) = ¢, we conclude that ab € I. If § E S- l\f, then (te)" el for some positive integer

n>1andt € S. Since t" not belong to Z;(R), we have ¢" € I, i.e., ¢ 6 /1. Thus [ is a weakly 1-absorbing primary ideal
of R.
O

Definition 4.9. Let I be a weakly I-absorbing primary ideal of R and Iy b1z C I for some proper ideals I I, I5 of R. If (a,b,¢)
is not 1-triple zero of I for every a € I1, b € I, c € Iz, then we call I a free I-triple zero with respect to I L 13.

Theorem 4.10. Let I be a weakly 1-absorbing primary ideal of R and J be a proper ideal of R with abJ C I for some a,b € R.
If (a,b, ) is not a I-triple zero of I for all j € Jand ab not belong to I, then J C /1.

Proof. Suppose that J 57:‘ V/I. Then there exists ¢ € J \ V1. Then abc € abJ C 1. If abe = 0, then it contradicts our assumption
that ab not belong to I and ¢ not belong to v/I. Thus abc = 0. Since (a,b,c) is not a 1-triple zero of I and ab not belong to I,
we conclude ¢ € v/, a contradiction. Thus J C /1.

O

Theorem 4.11. Let I be a weakly 1-absorbing primary ideal of R and 0 # I1 b 15 C I for some proper ideals I, I, Iz of R. If I is
free I-triple zero with respect to I1 113, then I1 1, C 1 or I3 C V1.

Proof. Suppose that [ is free 1-triple zero with respect to I1 13, and 0 # I1 113 C I. Assume that 1] $Z 1. Then there exist
a € I1,b € I such that ab not belong to . Since I is a free 1-triple zero with respect to I I,13, we conclude that (a,b,¢) is not a
1-triple zero of I for all ¢ € I5. Thus I3 C Vi by Theorem 4.10. O
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