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Certain Curvature Conditions on (k,µ)-Paracontact

Metric Spaces
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Abstract
The aim of this paper is to classify (k,µ)-paracontact metric spaces satisfying certain curvature conditions.

We present the curvature tensors of (k,µ)-Paracontact manifold satisfying the conditions R ·W6 = 0, R ·W7 = 0,

R ·W8 = 0 and R ·W9 = 0. According these cases, (k,µ)-Paracontact manifolds have been characterized. Also,

several results are obtained.

Keywords: (k,µ)-Paracontact Manifold, η-Einstein manifold, Riemannian curvature tensor

2010 AMS: 53C15, 53C25

1Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0001-8226-4269
2Department of Mathematics, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey, ORCID: 0000-0001-9093-1607
3Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0002-1242-4359
4Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140, Sivas, Turkey, ORCID: 0000-0001-8258-8298

*Corresponding author: pakizeuygun@hotmail.com

Received: 6 September 2022, Accepted: 15 November 2022, Available online: 30 December 2022

1. Introduction

Paracontact manifolds are smooth manifolds of dimension (2n+1) equipped with a 1-form η , a vector field ξ and a field of

endomorphisms of tangent spaces φ such that η(ξ ) = 1, φ 2 = I −η ⊗ξ and φ induces an almost paracomplex structure by

kernel of η [1]. On the other hand, if the manifold is equipped with a pseudo-Riemannian metric g of signature (n+ 1,n)
satisfying

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), dη(X ,Y ) = g(X ,φY ),

(M,η) becomes a contact manifold and (φ ,ξ ,η ,g) is said to be a paracontact metric structure on M. In 1985, Kaneyuki and

Williams initiated the perspective of paracontact geometry [5]. Zamkovoy performed a thorough study of paracontact metric

Manifolds. [15]. Recently, B. Cappeletti-Montano, I. Küpeli Erken and C. Murathan introduced a new type of paracontact

geometry so-called paracontact metric (k,µ)−space, where k and µ are constant [4].

M. M. Tripathi and P. Gupta studied T -curvature tensors in semi-Riemannian manifolds. They defined T -conservative

semi-Riemannian manifolds and give necessary and sufficient tensor on a Riemannian manifolds to be T -conservative. They

proved that every T -flat semi-Riemannian manifold is Einstein. They also gave the conditions for semi-Riemannian manifold to

be T -flat [8]. Since then several geometers studied curvature conditions and obtain various important properties [2, 6], [9]-[13].

The object of this paper is to study properties of the some certain curvature tensor in a (k,µ)−paracontact metric manifold.

In the present paper we survey R ·W6 = 0, R ·W7 = 0, R ·W8 = 0 and R ·W9 = 0, where W6, W7, W8 and W9 denote curvature

tensors of manifold, respectively.
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2. Preliminaries

An (2n+1)-dimensional manifold M is called to have an paracontact structure if it admits a (1,1)−tensor field φ , a vector field

ξ and a 1-form η satisfying the following conditions [5]:

(i) φ 2X = X −η(X)ξ , for any vector field X ∈ χ(M), the set of all differential vector fields on M,

(ii) η(ξ ) = 1, η ◦φ = 0, φξ = 0.

An almost paracontact structure is called to be normal if and only if the (1,2)−type torsion tensor Nφ = [φ ,φ ]−2dη ⊗ξ
vanishes identically, where [φ ,φ ](X ,Y )= φ 2[X ,Y ]+[φX ,φY ]−φ [φX ,Y ]−φ [X ,φY ]. An almost paracontact manifold equipped

with a pseudo-Riemannian metric g so that

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), g(X ,ξ ) = η(X) (2.1)

for all vector fields X ,Y ∈ χ(M) is said almost paracontact metric manifold, where signature of g is (n+ 1,n). An almost

paracontact structure is called to be a paracontact structure if g(X ,φY ) = dη(X ,Y ) with the associated metric g [15]. We now

define a (1,1) tensor field h by h = 1
2
Lξ φ , where L denotes the Lie derivative. Then h is symmetric and satisfies the conditions

hφ =−φh, hξ = 0, Trh = Tr.φh = 0. (2.2)

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

∇̃X ξ =−φX +φhX (2.3)

for any X ∈ χ(M)[15]. For a paracontact metric manifold M2n+1(φ ,ξ ,η ,g), if ξ is a killing vector field or equivalently, h = 0,

then it is called a K-paracontact manifold.

An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds [15].

(∇̃X φ)Y =−g(X ,Y )ξ +η(Y )X

for all X ,Y ∈ χ(M) [15]. A normal paracontact metric manifold is para-Sasakian and satisfies

R(X ,Y )ξ =−(η(Y )X −η(X)Y ) (2.4)

for all X ,Y ∈ χ(M), but this is not a sufficient condition for a para-contact manifold to be para-Sasakian. It is clear that every

para-Sasakian manifold is K-paracontact. But the converse is not always true[3].

A paracontact manifold M is said to be η-Einstein if its Ricci tensor S of type (0,2) is of the from S(X ,Y ) = ag(X ,Y )+
bη(X)η(Y ),where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein and if a = 0, then it is

called special type of η-Einstein manifolds [14].

A paracontact metric manifold is said to be a (k,µ)−paracontact manifold if the curvature tensor R̃ satisfies

R̃(X ,Y )ξ = k [η(Y )X −η(X)Y ]+µ [η(Y )hX −η(X)hY ] (2.5)

for all X ,Y ∈ χ(M), where k and µ are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying

R(X ,Y )ξ = 0 [16].

In particular, if µ = 0, then the paracontact metric (k,µ)−manifold is called paracontact metric N(k)-manifold . Thus for a

paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

R(X ,Y )ξ = kη(Y )X − kη(X)Y (2.6)

for all X ,Y ∈ χ(M). Though the geometric behavior of paracontact metric (k,µ)−spaces is different according as k <−1, or

k >−1, but there are some common results for k <−1 and k >−1[4].

Lemma 2.1. There does not exist any paracontact (k,µ)−manifold of dimension greater than 3 with k >−1 which is Einstein

whereas there exits such manifolds for k <−1 [4].
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In a paracontact metric (k,µ)−manifold M2n+1(φ ,ξ ,η ,g), n > 1, the following relation hold :

h2 = (k+1)φ 2
, for k 6=−1, (2.7)

(∇̃X φ)Y =−g(X −hX ,Y )ξ +η(Y )(X −hX), (2.8)

S(X ,Y ) = [2(1−n)+nµ]g(X ,Y )+ [2(n−1)+µ]g(hX ,Y )+ [2(n−1)+n(2k−µ)]η(X)η(Y ), (2.9)

S(X ,ξ ) = 2nkη(X), (2.10)

QY = [2(1−n)+nµ]Y +[2(n−1)+µ]hY +[2(n−1)+n(2k−µ)]η(Y )ξ , (2.11)

Qξ = 2nkξ , (2.12)

Qφ −φQ = 2[2(n−1)+µ]hφ (2.13)

for any vector fields X ,Y on M2n+1 , where Q and S denotes the Ricci operator and Ricci tensor of (M2n+1,g), respectively[4].

The concept of W6-curvature tensor was defined by [7]. W6-curvature tensor, W7-curvature tensor, W8-curvature tensor and

W9-curvature tensor, of a (2n+1)-dimensional Riemannian manifold are, respectively, defined as

W6(X ,Y )Z = R(X ,Y )Z −
1

2n
[S(Y,Z)X −g(X ,Y )QZ], (2.14)

W7(X ,Y )Z = R(X ,Y )Z −
1

2n
[S(Y,Z)QX −g(Y,Z)QX ], (2.15)

W8(X ,Y )Z = R(X ,Y )Z −
1

2n
[S(Y,Z)X −S(X ,Y )Z], (2.16)

W9(X ,Y )Z = R(X ,Y )Z +
1

2n
[S(X ,Y )Z −g(Y,Z)QX ], (2.17)

for all X ,Y,Z ∈ χ(M) where, χ(M) is set of all vector spaces [7].

3. Certain Curvature Conditions on (k,µ)-Paracontact metric spaces

We will provide the significant themes of this work in this part.

Let M be (2n+1)−dimensional (k,µ)−paracontact metric manifold and we explain W6 curvature tensor from (2.14), we

have

W6(X ,Y )ξ = k(g(X ,Y )ξ −η(X)Y )+µ(η(Y )hX −η(X)hY ). (3.1)

Putting X = ξ , in (3.1), we get

W6(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.2)
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In (2.15) choosing Z = ξ and using (2.5), we obtain

W7(X ,Y )ξ = kη(X)Y +
1

2n
η(Y )QX +µ(η(Y )hX −η(X)hY ). (3.3)

It follows

W7(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.4)

In the same way, putting Z = ξ in (2.16) and using (2.5), we have

W8(X ,Y )ξ =
1

2n
S(X ,Y )ξ − kη(X)Y +µ(η(Y )hX −η(X)hY ). (3.5)

In (2.16), choosing X = ξ , we get

W8(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.6)

In (2.17), choosing Z = ξ , we obtain

W9(X ,Y )ξ = k(η(Y )X −η(X)Y )+µ(η(Y )hX −η(X)hY )+
1

2n
(S(X ,Y )ξ −η(Y )QX). (3.7)

In(3.7) it follows

W9(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.8)

In (2.5), we arrive

R(ξ ,Y )Z = k(g(Y,Z)ξ −η(Z)Y )+µ(g(hY,Z)ξ −η(Z)hY ), (3.9)

choosing Z = ξ , in (3.9)

R(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.10)

Theorem 3.1. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W6 semi-symmetric if and only if M is an

Einstein manifold.

Proof. Suppose that M is a W6 semi-symmetric. This implies that

(R(X ,Y )W6)(U,W )Z = R(X ,Y )W6(U,W )Z −W6(R(X ,Y )U,W )Z

−W6(U,R(X ,Y )W )Z −W6(U,W )R(X ,Y )Z = 0, (3.11)

for any X ,Y,U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.11), making use of (3.1) and (3.9), for A = 1
2n
, we have

(R(ξ ,Y )W6)(U,W )ξ = R(ξ ,Y )(k(g(Y,W )ξ −η(U)W )+µ(η(W )hU

−η(U)hW ))−W6(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W6(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY )ξ

−W6(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.12)

Taking into account (3.1) and (3.2) in (3.12), we have

kW6(U,W )Y +µW6(U,W )hY + kµ(η(W )g(Y,hU)ξ

−g(Y,W )hU)+µ2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )+ kµ(g(hY,U)W −g(hY,W )hU)

+µk(g(hY,U)hW −g(hY,W )U)+µ2(g(hY,U)hW

−g(hY,W )hU)+ k2(g(Y,W )η(U)ξ −g(Y,W )U)

+kµ(g(Y,U)hW +g(U,W )hY )+ k2(g(Y,U)W

−g(U,W )Y ) = 0. (3.13)
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Putting (2.10), (2.14), choosing U = ξ and taking inner product with ξ ∈ χ(M) in (3.13), we arrive

AkS(W,Y )+AµS(W,hY )+ k2g(W,Y )+ kµg(W,hY ) = 0. (3.14)

Using (2.7) and replacing hY of Y in (3.14), we get

AkS(W,hY )+Aµ(1+ k)S(W,Y )−2nkA(1+ k)g(W,hY )+ kµ(1+ k)g(W,Y ) = 0. (3.15)

From (3.14) and (3.15), we have

S(W,Y ) = 2nkg(W,Y ).

So, M is an Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an Einstein manifold, i.e. S(W,Y ) = 2nkg(W,Y ), then from

equations (3.15), (3.14), (3.13), (3.12) and (3.11) we obtain M is a W6 semi-symmetric. Which verifies our assertion.

Theorem 3.2. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W7 semi-symmetric if and only if M is an

η−Einstein manifold.

Proof. Assume that M is a W7 semi-symmetric. This yields to

(R(X ,Y )W7)(U,W )Z = R(X ,Y )W7(U,W )Z −W7(R(X ,Y )U,W )Z

−W7(U,R(X ,Y )W )Z −W7(U,W )R(X ,Y )Z = 0, (3.16)

for any X ,Y,U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.16) and using (3.3), (3.9), (3.10), for A =− 1
2n
, we obtain

(R(ξ ,Y )W7)(U,W )ξ = R(ξ ,Y )(kη(U)W −Aη(W )QU +µ(η(W )hU

−η(U)hW ))−W7(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W7(U,kg(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY )ξ

−W7(U,W )k(η(Y )ξ −Y )−µhY ) = 0. (3.17)

Taking into account that (3.4) and (3.9) in (3.17), we get

kW7(U,W )Y +µW7(U,W )hY + kµ(η(U)g(hY,W )ξ

−g(Y,W )hU)+µ2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )−Ak(S(Y,U)η(W )ξ +η(W )η(U)QY )

+Aµ(2nkη(W )η(U)hY −S(hY,U)η(W )ξ )

+k2(η(U)g(Y,W )ξ −η(W )g(Y,U)ξ )+ kµ(g(Y,U)hW

−g(hY,W )U)+µ2(g(hY,U)hW −g(hY,W )hU)

+µ(kg(hY,U)W −Aη(U)η(W )QhY )+ k2(g(Y,W )η(U)ξ

+2nAη(U)η(W )Y )+ k2(g(Y,U)W −g(Y,W )U) = 0. (3.18)

Putting U = ξ and using (3.3) in (3.18), we get

AS(Y,W )+µS(W,hY )+2kg(Y,W )−2nkAg(Y,W )+µg(W,hY ) = 0. (3.19)

Replacing hY of Y in (3.19) and making use of (2.7), we have

AS(Y,hW )+µ(1+ k)S(Y,W )−2nkµ(1+ k)η(Y )η(W )

−2nkAg(Y,hW )+µ(1+ k)g(Y,hW )−µ(1+ k)η(Y )η(W ) = 0. (3.20)

From (3.19), (3.20) and by using (2.9), for the sake of brevity, we set

p1 = (2nkA2 −2kA+µ2(1+ k))[2(n−1)+µ]+ (Aµ +2nkAµ −2kµ)[2(1−n)+nµ],

p2 = (A2 −µ2(1+ k))[2(n−1)+µ]+ (2kµ −2nkAµ −Aµ),

p3 = (Aµ +2nkAµ −2kµ)[2(n−1)+n(2k−µ)]−

(µ2(1+ k)(2n+1))[2(n−1)+µ]
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we conclude

p2S(Y,W ) = p1g(Y,W )+ p3η(Y )η(W ).

Thus, M is an η−Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an η−Einstein manifold, i.e. p2S(Y,W ) =
p1g(Y,W )+ p3η(Y )η(W ), then from equations (3.20), (3.19), (3.18), (3.17) and (3.16) we obtain M is a W7 semi-symmetric.

Theorem 3.3. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W8 semi-symmetric if and only if M is an

η−Einstein manifold..

Proof. Suppose that M is a W8 semi-symmetric. This implies that

(R(X ,Y )W8)(U,W )Z = R(X ,Y )W8(U,W )Z −W8(R(X ,Y )U,W )Z

−W8(U,R(X ,Y )W )Z −W8(U,W )R(X ,Y )Z = 0, (3.21)

for any X ,Y,U,W,Z ∈ χ(M). Setting X = Z = ξ in (3.21) and making use of (3.5), (3.9), (3.10), for A =− 1
2n
, we obtain

(R(ξ ,Y )W8)(U,W )ξ = R(ξ ,Y )(−kη(U)W −AS(U,W )ξ +µ(η(W )hU

−η(U)hW ))−W8(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W8(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY ))ξ

−W8(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.22)

Inner product both sides of (3.22) by Z ∈ χ(M) and using of (3.5), (3.6) and (3.9), we get

kg(W8(U,W )Y,Z)+µg(W8(U,W )hY,Z)+µ2(1+ k)(η(W )η(Z)g(Y,U)

−η(U)η(Z)g(Y,W ))+Ak(η(Y )η(Z)S(U,W )−η(Z)η(W )S(U,Y ))

+Aµ(g(hY,Z)S(U,W )−η(W )η(Z)S(hY,U))+Ak(S(U,W )g(Y,Z)

−S(U,W )η(Y )η(Z))+ k2(g(Y,U)g(W,Z)+g(Y,W )g(U,Z))

+µ2(g(hY,U)g(hW,Z)−g(hY,W )g(hU,Z))+ kµ(g(hY,U)g(W,Z)

−g(hY,W )g(U,Z))−A(µS(hY,W )η(U)η(Z)+ kS(Y,W )η(U)η(Z))

+kµ(g(Y,U)g(hW,Z)−g(Y,W )g(hU,Z))− k(η(W )η(Z)g(Y,U)

+η(U)η(Z)g(Y,hW )) = 0. (3.23)

Making use of (2.7), (2.16) and choosing W = Y = ei, ξ , 1 ≤ i ≤ n, for orthonormal basis of χ(M) in (3.23), we have

kS(U,Z)+µS(U,hZ)+(kAr+2nAµ(1+ k)[2(n−1)+µ]

−2nk2 +µ2(1+ k))g(U,Z)+ kµ(1−2n)g(U,hZ)

−(2nk2A+µ2(1+ k)(2n+1)+ k2 +Akr

+2nAµ(1+ k)[2(n−1)+µ]+2nkAµ)η(U)η(Z) = 0. (3.24)

In (3.24), hZ of Z, we arrive

kS(U,hZ)+µ(1+ k)S(U,Z)−2nkµ(1+ k)η(U)η(Z)

+(kAr+2nAµ(1+ k)[2(n−1)+µ]−2nk2

+µ2(1+ k))g(U,hZ)+ kµ(1−2n)(1+ k)g(U,Z)

−kµ(1−2n)(1+ k)η(U)η(Z) = 0. (3.25)

From (3.24), (3.25) and by using (2.9), for the sake of brevity, we set

p1 = (kAr+2nAµ(1+ k)[2(n−1)+µ]−2nk2 +µ2(1+ k)),

p2 = kµ(1−2n),

p3 = −(2nk2A+µ2(1+ k)(2n+1)+ k2 +Akr+2nAµ(1+ k)[2(n−1)+µ]+2nkAµ),
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we conclude

q1 = (p2µ(1+ k)− kp1)[2(n−1)+µ ]+ (kp2 − p1µ)[2(1−n)+nµ],

q2 = (k2 −µ2(1+ k))[2(n−1)+µ]+ (p1µ − kp2),

q3 = (kp2 − p1µ)[2(n−1)+n(2k−µ)]− (p3k+2nkµ2(1+ k)+ p2µ(1+ k))[2(n−1)+µ],

q2S(U,Z) = q1g(U,Z)+q3η(U)η(Z),

So, M is an η−Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an η−Einstein manifold, i.e. q2S(U,Z) = q1g(U,Z)+
q3η(U)η(Z), then from equations (3.25), (3.24), (3.23), (3.22) and (3.21) we get M is a W8 semi-symmetric.

Theorem 3.4. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W9 semi-symmetric if and only if M is an

Einstein manifold.

Proof. Assume that M is a W9 semi-symmetric. This means that

(R(X ,Y )W9)(U,W,Z) = R(X ,Y )W9(U,W )Z −W9(R(X ,Y )U,W )Z

−W9(U,R(X ,Y )W )Z −W9(U,W )R(X ,Y )Z = 0, (3.26)

for any X ,Y,U,W,Z ∈ χ(M). Setting X = Z = ξ in (3.26) and making use of (3.9), (3.7), for A = 1
2n

, we obtain

(R(ξ ,Y )W9)(U,W )ξ = R(ξ ,Y )(k(η(W )U −η(U)W )+µ(η(W )hU

−η(U)hW )+A(S(U,W )ξ −η(W )QU))

−W9(k(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ

−η(U)hY,W )ξ −W9(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY ))ξ

−W9(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.27)

Using (3.7), (3.8), (3.9) in (3.27), we get

kW9(U,W )Y +µW9(U,W )hY + kµ(η(W )g(Y,hU)ξ

−η(U)g(Y,hW )ξ )+µ2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )+ k2(g(Y,U)W −g(Y,W )U)

+kA(η(U)S(Y,W )ξ −η(W )η(U)QY )

+Aµ(η(U)S(hY,W )ξ +2nkη(U)η(W )hY )

+kµ(g(Y,U)hW −g(Y,W )hU)+ kµ(g(hY,U)W

−g(hY,W )U)+Aµ(S(U,hY )η(W )ξ −η(W )η(U)QhY )

+µ2(g(hY,U)hW +g(hY,W )hU)−Aµ(S(U,W )hY

+S(hY,U)η(W )ξ )+Ak(2nkη(W )η(U)Y −S(U,W )Y ) = 0. (3.28)

Making use of (2.17), (2.1) and choosing U = ξ , in (3.28), we have

kS(Y,W )+µS(hY,W )−2nk2g(Y,W )−2nkµg(hY,W ) = 0. (3.29)

Replacing hY of Y in (3.29) and taking into account (2.7), we arrive

kS(Y,hW )+µ(1+ k)S(Y,W )−2nkµ(1+ k)η(Y )η(W )

−2nk2g(W,hY )−2nkµ(1+ k)g(Y,W )

+2nkµ(1+ k)η(W )η(Y ) = 0. (3.30)

From (3.29), (3.30) and by using (2.7), we have

S(Y,W ) = 2nkg(Y,W ).

This tell us, M is an Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an Einstein manifold, i.e. S(Y,W ) = 2nkg(Y,W ),
then from equations (3.26), (3.27), (3.28) and (3.30), we obtain M is a W9 semi-symmetric. Which verifies our assertion.
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Example 3.5. We consider the 3-dimensional manifold M = {(x,y,z) ∈ R
3, z 6= 0}, where (x,y,z) are standart coordinates of R

3. The

vector fields

e1 =
∂

∂x
, e2 = 4z2 ∂

∂x
+

∂

∂y
, e3 =

∂

∂ z
.

Let g be the Riemannian metric defined by

g(e1,e2) = g(e1,e3) = g(e2,e3) = 0,

g(e1,e1) = g(e2,e2) = 1, g(e3,e3) =−1

Let η be the 1-form defined by η(X) = g(X ,e1) for any X ∈ χ(M). Let φ be the (1,1) tensor field defined by

φ(e1) = 0, φ(e3) =−e2, φ(e2) =−e3.

Let ∇ be the Levi-Civita connection with respect to the metric tensor g. Then we get

[e3,e1] = 0, [e1,e2] = 0, [e2,e3] =−8ze1.

Then we have

η(e1) = g(e1,e1) = 1, φ 2X = X −η(X)e1, g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ),

for any X ,Y ∈ χ(M). Hence, (φ ,ξ ,η ,g) defines a paracontact metric structure on M for e1 = ξ .
The Levi-Civita connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )

−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

Using the above formula, we obtain.

∇e1
e1 = 0, ∇e2

e1 =−4ze3, ∇e3
e1 =−4ze2,

∇e1
e2 = −4ze3, ∇e2

e2 = 0, ∇e3
e2 = 4ze1,

∇e1
e3 = −4ze2, ∇e2

e3 =−4ze1, ∇e3
e3 = 0.

Comparing the above relations with ∇X e1 =−φX +φhX , we get

he2 =−(4z+1)e2, he3 =−(4z+1)e3, he1 = 0.

Using the formula R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z, we calculate the following:

R(e2,e1)e1 =

[
1

(4z−1)2
−1

]
{η(e1)e2 −η(e2)e1}+

[
1

(4z−1)3
−

16z2 +1

4z+1

]
{η(e1)he2 −η(e2)he1}

= −16z2e2

R(e3,e1)e1 =

[
1

(4z−1)2
−1

]
{η(e1)e3 −η(e3)e1}+

[
1

(4z−1)3
−

16z2 +1

4z+1

]
{η(e1)he3 −η(e3)he1}

= −16z2e3

R(e2,e3)e1 =

[
1

(4z−1)2
−1

]
{η(e3)e2 −η(e2)e3}+

[
1

(4z−1)3
−

16z2 +1

4z+1

]
{η(e3)he2 −η(e2)he3}

= 0.

By the above expressions of the curvature tensor and using (2.9), we conclude that M is a generalized (k,µ)−paracontact metric manifold

with k =
[

1
(4z−1)2 −1

]
and µ =

[
1

(4z−1)3 −
16z2+1
4z+1

]
.

4. Conclusion

The aim of this paper is to classify (k,µ)-paracontact metric spaces satisfying certain curvature conditions. We present the

curvature tensors of (k,µ)-Paracontact manifold satisfying the conditions R ·W6 = 0, R ·W7 = 0, R ·W8 = 0 and R ·W9 = 0.

According these cases, (k,µ)-Paracontact manifolds have been characterized. Also, several results are obtained.
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0000-0003-4269-498X
2Department of Mathematics and Computer Science, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey, ORCID:
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1. Introduction

A crossed module [20] A = (∂ : C −→ R) of commutative algebras is given by an algebra morphism ∂ : C −→ R together with

an action · of R on C such that the relations below hold for each r ∈ R and each c,c
′
∈C,

∂ (r · c) = r∂ (c)

∂ (c) · c
′

= cc
′
.

Group crossed modules were firstly introduced by Whitehead in [21],[22]. They are algebraic models for homotopy 2-types,

in the sense that [5],[15] the homotopy category of the model category [6],[9] of group crossed modules is equivalent to the

homotopy category of the model category [11] of pointed 2-types: pointed connected spaces whose homotopy groups πi vanish,

if i ≥ 3. The homotopy relation between crossed module maps A −→ A
′

was given by Whitehead in [22], in the contex of

“homotopy systems” called free crossed complexes.

In [2] it is addressed the homotopy theory of maps between crossed modules of commutative algebras. It is proven that if

A and A
′

are crossed modules of algebras without any restriction on A and A
′

then the crossed module maps A −→ A
′

and

their homotopies give a groupoid.

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras

is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy

for 2-algebras. This definition is essentially a special case of 2-natural transformation due to Gray in [12]. And we explore

the relations between the crossed module homotopies and 2-algebra homotopies. Similar results are given [13] by İçen for

2-groupoids.
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2. Preliminaries

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is

equivalent to the category of crossed modules in commutative algebras.

2.1 2-algebras

Definition 2.1. A weak 2-algebra consists of

· a 2-module A equipped with a functor • : A×A −→ A, which is defined by (x,y) 7→ x • y and bilinear on objects and

defined by ( f ,g) 7→ f •g on morphisms satisfying interchange law, i.e.,

( f1 •g1)◦ ( f2 •g2) = ( f1 ◦ f2)• (g1 ◦g2)

· k−bilinear natural isomorphisms

αx,y,z : (x• y)• z −→ x• (y• z)

lx : 1• x −→ x

rx : x•1 −→ x

such that the following diagrams commute for all objects w,x,y,z ∈ A0.

((w• x)• y)• z

αw,x,y•1z

��

αw•x,y,z // (w• x)• (y• z)
αw,x,y•z

((
(w• (x• y))• z

αw,x•y,z

// w• ((x• y)• z)
1w•αx,y,z

// w• (x• (y• z))

(x•1)• y

rx•1y &&

αx,1,y // x• (1• y)

1x•ly

��
x• y

A strict 2-algebra is the special case where αx,y,z, lx, rx are all identity morphisms. In this case we have

(x• y)• z = x• (y• z)

1• x = x,x•1 = x

Strict 2-algebra is called commutative strict 2-algebra if x•y = y•x for all objects x,y ∈ A0 and f •g = g• f for all morphisms

f ,g ∈ A1.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomorphism between

2-algebras should preserve both the 2-module structure and the • functor.

Definition 2.2. Given 2-algebras A and A′, a homomorphism

F : A −→ A′

consists of

· a linear functor F from the underlying 2-module of A to that of A′, and

· a bilinear natural transformation

F2(x,y) : F0(x)•F0(y)−→ F0(x• y)

· an isomorphism F : 1′ −→ F0(1) where 1 is the identity object of A and 1′ is the identity object of A′,

such that the following diagrams commute for x,y,z ∈ A0,
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(F(x)•F(y))•F(z)

αF(x),F(y),F(z)

��

F2•1 // F(x• y)•F(z)
F2 // F((x• y)• z)

F(αx,y,z)

��
F(x)• (F(y)•F(z))

1•F2

// F(x)•F(y• z)
F2

// F(x• (y• z)).

1′ •F(x)

F0•1

��

l′F(x) // F(x)

F(1)•F(x)
F2

// F(1• x).

F(lx)

OO

F(x)•1′

1•F0

��

r′F(x) // F(x)

F(x)•F(1)
F2

// F(x•1).

F(rx)

OO

Definition 2.3. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by 2Alg .

Therefore if A = (A0,A1,s, t,e,◦,•) is a 2-algebra, A0 and A1 are algebras with this • bilinear functor. Thus we can take that

2-algebra is a 2-category with a single object say ∗, and A0 collections of its 1-morphisms and A1 collections of its 2-morphisms

are algebras with identity.

2.2 Crossed modules

Crossed modules have been used widely and in various contexts since their definition by Whitehead [23] in his investigations of

the algebraic structure of relative homotopy groups. We recalled the definition of crossed modules of commutative algebras

given by Porter [20].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together with a

commutative action of R on C and a morphism

∂ : C −→ R

such that for all c ∈C, r ∈ R

CM1) ∂ (r ◮ c) = r∂c.

This is a crossed R-module if in addition for all c,c′ ∈C

CM2) ∂c ◮ c′ = cc′.

The last condition is called the Peiffer identity. We denote such a crossed module by (C,R,∂ ).
A morphism of crossed modules from (C,R,∂ ) to (C′,R′,∂ ′) is a pair of k-algebra morphisms φ : C −→C′,ψ : R −→ R′

such that

∂ ′φ = ψ∂ and φ(r ◮ c) = ψ(r)◮ φ(c).

Thus we get a category XModk of crossed modules (for fixed k).

Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, inc : I −→ R which is a crossed module. Conversely given an arbitrary R-module

∂ : C −→ R one easily sees that the Peiffer identity implies that ∂C is an ideal in R.
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2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero morphism 0 : M → R

sending everything in M to the zero element of R is a crossed module. Conversely: If (C,R,∂ ) is a crossed module, ∂ (C) acts

trivially on ker∂ , hence ker∂ has a natural R/∂ (C)-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules. Both aspects

are important.

3. Let be M (C) multiplication algebra. Then (C,M (C) ,µ) is multiplication crossed module. µ : C → M (C) is defined

by µ (r) = δr with δr (r
′) = rr′ for all r,r′ ∈C, where δ is multiplier δ : C →C such that for all r,r′ ∈C, δ (rr′) = δ (r)r′. Also

M (C) acts on C by δ ◮ r = δ (r) .(See [3] for details).

In [20] Porter states that there is an equivalence of categories between the category of internal categories in the category of

k-algebras and the category of crossed modules of commutative k-algebras. In the following theorem, it is given a categorical

presentation of this equivalence.

Theorem 2.4. [1] The category of crossed modules XModk is equivalent to that of 2-algebras, 2Alg.

Proof. Let A = (A0,A1,s, t,e,◦,•) be a 2-algebra consisting of a single object say ∗ and an algebra A0 of 1-morphisms and

an algebra A1 of 2-morphisms and ∂ = t|Kers algebra homomorphism by ∂ : Kers −→ A0,∂ (h) = t(h). Then (Kers,A0,∂ ) is a

crossed module.

Let A = (A0,A1,s, t,e,◦,•) and A
′
= (A

′

0,A
′

1,s
′
, t

′
,e

′
,◦

′
,•

′
) be 2-algebras and F = (F0,F1) : A −→ A

′
be a 2-algebra

morphism. Then F0 : A0 −→ A
′

0 and F1 : A1 −→ A
′

1 are the k-algebra morphisms. For f1 = F1|Kers : Kers −→ Kers
′

and

f0 = F0 : A0 −→ A
′

0, ( f1, f0) map is a crossed module morphism (Kers,A0,∂ )−→ (Kers
′
,A

′

0,∂
′
). So it is got a functor

Γ : 2Alg −→ XModk.

Conversely, let (G,C,∂ ) be a crossed module of algebras. For s, t : G⋊C →C and e : C → G⋊C by s(g,c) = c, t(g,c) =
∂ (g)+ c,e(c) = (0,c) and

the compositions

(g,c)• (h,d) = (c ◮ h+d ◮ g+gh,cd)

(g,c)◦ (g′,∂ (g)+ c) = (g+g′,c)

such that t(g,c) = s(g′,∂ (g)+ c) = ∂ (g)+ c, it is constructed a 2-algebra A = (C,G⋊C,s, t,e,◦,•) consists of the single

object say ∗ and the k-algebra C of 1-morphisms and the k-algebra G⋊C of 2-morphisms. Let (G,C,∂ ) and (G
′
,C

′
,∂

′
) be

crossed modules and f = ( f1, f0) : (G,C,∂ ) −→ (G
′
,C

′
,∂

′
) be a crossed module morphism. For

F1 : G⋊C −→ G
′
⋊C

′

(g,c) 7−→ F1(g,c) = ( f1(g), f0(c))

and

F0 : C −→ C
′

c 7−→ F0(c) = f0(c).

F = (F1,F0) is a 2-algebra morphism from (C,G⋊C,s, t,e,◦,•) to (C
′
,G

′
⋊C

′
,s

′
, t

′
,e

′
,◦

′
,•

′
). Thus it is got a functor

Ψ : XModk −→ 2Alg.

3. Homotopies of Crossed Modules and 2-Algebras

The notion of homotopy for morphisms of crossed modules over commutative algebras is given in [2]. In this section, we

explain the relation between homotopies for crossed modules over commutative algebras and homotopies for 2-algebras. The

formulae given below are playing important role in our study.

Definition 3.1. [2] Let A = (E,R,∂ ) and A
′
= (E

′
,R

′
,∂

′
) be crossed modules and f0 : R −→ R

′
be an algebra morphism.

An f0-derivation s : R −→ E
′

is a k-linear map satisfying for all r,r
′
∈ R,

s(rr
′
) = f0(r)◮ s(r

′
)+ f0(r

′
)◮ s(r)+ s(r)s(r

′
).
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Let f = ( f1, f0) be a crossed module morphism A −→ A
′

and s be an f0-derivation. If g = (g1,g2) is defined as (where e ∈ E

and r ∈ R)

g0(r) = f0(r)+(∂
′
s)(r)

g1(e) = f1(e)+(s∂ )(e),

then g is also crossed module morphism A −→ A
′
. In such a case we write f

( f0,s)
−→ g, and say that ( f0,s) is a homotopy

connecting f to g.

If ( f0,s) and (g0,s
′
) are homotopies connecting f to g and g to u respectively, then ( f0,s+ s

′
) is a homotopy connecting f

to u, where s+ s
′
: R −→ E

′
is an f0-derivation defined by (s+ s

′
)(r) = s(r)+ s

′
(r).

The notion of homotopy for 2-algebras is essentially a special case of 2-natural transformation due to Gray in [12].

Definition 3.2. Let A = (A0,A1,s, t,e,◦,•) and A
′
= (A

′

0,A
′

1,s
′
, t

′
,e

′
,◦

′
,•

′
) be 2-algebras and let F =(F1,F0) and G=(G1,G0)

be 2-algebra morphisms A−→A
′
. A k-algebra morphism µ : A0 −→ A

′

1 satisfying the following conditions is called a homotopy

connecting F to G :

1) s
′
µ = F0

2) t
′
µ = G0

3) F1 ◦
′
µt = µs◦

′
G1. In such a case we write F

µ
−→ G.

Theorem 3.3. Let A = (A0,A1,s, t,e,◦,•) , A
′
= (A

′

0,A
′

1,s
′
, t

′
,e

′
,◦

′
,•

′
) be 2-algebras, F = (F1,F0), G = (G1,G0) and

U = (U1,U0) be 2-algebra morphisms A −→ A
′
and µ be a homotopy connecting F to G, µ

′
be a homotopy connecting G to

U. Then the map µ ∗µ
′
: A0 −→ A1 defined by (µ ∗µ

′
)(x) = µ(x)+µ

′
(x)− e

′
(t

′
µ)(x) is a homotopy connecting F to U.

Proof. We first show that µ ∗µ
′

is an algebra morphism. Since µ and µ
′

are algebra morphisms, µ(x• x
′
) = µ(x)•

′
µ(x

′
) and

µ
′
(x• x

′
) = µ

′
(x)•

′
µ

′
(x

′
) for all x,x

′
∈ A0. Then we get

(µ ∗µ
′
)(x• x

′
) = µ(x• x

′
)+µ

′
(x• x

′
)− e

′
(t

′
µ)(x• x

′
)

= µ(x• x
′
)+µ

′
(x• x

′
)− e

′
(G0)(x• x

′
)

= µ(x• x
′
)◦

′
µ

′
(x• x

′
)

= (µ(x)•
′
µ(x

′
))◦

′
(µ

′
(x)•

′
µ

′
(x

′
))

= (µ(x)◦
′
µ

′
(x))•

′
(µ(x

′
)◦

′
µ

′
(x

′
)) (interchange law)

= (µ(x)+µ
′
(x)− e

′
(G0)(x))•

′
(µ(x

′
)+µ

′
(x

′
)− e

′
(G0)(x

′
))

= (µ ∗µ
′
)(x)•

′
(µ ∗µ

′
)(x

′
).

For all x ∈ A0

s
′
(µ ∗µ

′
)(x) = s

′
(µ(x)+µ

′
(x)− e

′
G0(x))

= s
′
µ(x)+ s

′
µ

′
(x)− s

′
e
′
G0(x)

= F0(x)+G0(x)−G0(x)
= F0(x),

t
′
(µ ∗µ

′
)(x) = t

′
(µ(x)+µ

′
(x)− e

′
G0(x))

= t
′
µ(x)+ t

′
µ

′
(x)− t

′
e
′
G0(x)

= G0(x)+U0(x)−G0(x)
= U0(x),

and since F1 ◦
′
µt = µs◦

′
G1 and G1 ◦

′
µ

′
t = µ

′
s◦

′
U1, we get

F1 ◦
′
µt ◦

′
µ

′
t = µs◦

′
G1 ◦

′
µ

′
t

= µs◦
′
µ

′
s◦

′
U1.

Thus, we get

F1 ◦
′
(µ ∗µ

′
)t = F1 ◦

′
(µt ◦

′
µ

′
t)

= (µs◦
′
µ

′
s)◦

′
U1

= (µ ∗µ
′
)s◦

′
U1.

Therefore µ ∗µ
′
: A0 −→ A1 is a homotopy connecting F to U.
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Theorem 3.4. Let Γ :: 2Alg −→: XModk be the functor as mentioned in Teorem 1.4 and µ be homotopy connecting F to G.

Then

Γ(µ) = h : A0 −→ Kers
′

x 7−→ h(x) = µ(x)− e
′
(s

′
µ)(x)

is a homotopy of corresponding crossed module morphisms.

Proof. We first show that h is an f0−derivation where f0 : A0 −→ A
′

0 defined by f0(x) = F0(x). For x,x
′
∈ A0,

f0(x)◮ h(x
′
)

+ f0(x
′
)◮ h(x)+h(x)•

′
h(x

′
) = F0(x)◮ (µ(x

′
)− e

′
(s

′
µ)(x

′
))

+F0(x
′
)◮ (µ(x)− e

′
(s

′
µ)(x))

+(µ(x)− e
′
(s

′
µ)(x))•

′
(µ(x

′
)− e

′
(s

′
µ)(x

′
))

= e
′
(F0(x))•

′
(µ(x

′
)− e

′
F0(x

′
))

+e
′
(F0(x

′
))•

′
(µ(x)− e

′
F0(x))+µ(x)•

′
µ(x

′
)

−µ(x)•
′
e
′
F0(x

′
)− e

′
F0(x)•

′
µ(x

′
)+ e

′
F0(x)•

′
e
′
F0(x

′
)

= µ(x• x
′
)− e

′
(s

′
µ)(x• x

′
)

= h(x• x
′
).

Therefore h is an f0−derivation.

Now we show that

g0(x) = f0(x)+∂
′
h(x)

g1(n) = f1(n)+h∂ (n)

for x ∈ A0 and n ∈ Kers.

∂
′
h(x) = ∂

′
(µ(x)− e

′
f0(x))

= ∂
′
(µ(x))−∂

′
(e

′
f0(x))

= (t
′
µ)(x)− (t

′
e
′
) f0(x)

= g0(x)− f0(x)

and we get g0(x) = f0(x)+∂
′
h(x).

Since A1 ≃ Kers⋊A0, we take a = (n,x) for a ∈ A1 where n = a− es(a) ∈ Kers and x = s(a) ∈ A0. We define µ∗ : A0 −→

Kers
′
⋊A

′

0, as µ∗(x) = (µ(x)− e
′
s
′
(µ(x)),s

′
µ(x)) and h∗ : A0 −→ Kers

′
⋊A

′

0, as h∗(x) = (h(x),F0(x)). Therefore

A1
∼= Ker(s)⋊A0

s //

t
//

(F1,F0)

��

(G1,G0)

��

A0

µ∗

zz

F0

��

G0

��

e

xx

A′
1
∼= Ker(s′)⋊A′

0

s′ //

t ′
// A′

0

e′

ff

for (F1,F0)(n,x),(µ
∗t)(n,x) ∈ A1 ≃ Kers

′
⋊ A

′

0 such that t(F1,F0)(n,x) = s(µ∗t)(n,x), we have (F1,F0)(n,x) ◦
′
µ∗t(n,x)

= (F1(n)+µt(n),F0(x)) and −(F1,F0)(n,x) = (−F1(n), t
′
F1(n)+F0(x)) and then, since

(F1,F0)(n,x)◦
′
µ∗t(n,x) = µ∗s(n,x)◦

′
(G1,G0)(n,x)

we have

µ∗t(n,x) = −(F1,F0)(n,x)◦
′
µ∗s(n,x)◦

′
(G1,G0)(n,x)

= (−F1(n)+h(x)+G1(n), t
′
F1(n)+F0(x))
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and

−e
′
F0t(n,x) = (0, t

′
f1(n)+ f0(x)).

Hence we get

µ∗t(n,x)− e
′
F0t(n,x) = (I

t
′
F1(n)+F0(x)

◦µt)(n,x)

= µ∗t(n,x).

Then

h∗(t(n,x)) = µ∗(t(n,x))− e
′
(s

′
µ∗)(t(n,x))

= µ∗t(n,x)− e
′
F0t∗(n,x)

= µ∗t(n,x)

= (−F1(n)+h(x)+G1(n), t
′
F1(n)+F0(x)) (1)

and

h∗(t(n,x)) = h∗(∂ (n)+ x))
= (h(∂ (n)+ x)), f0(∂ (n)+ x))
= (h(∂ (n))+h(x), f0(∂ (n))+ f0(x))

= (h(∂ (n))+h(x), t
′
F1(n)+F0(x)). (2)

Therefore from (1) and (2) we have

h(∂ (n))+h(x) =−F1(n)+h(x)+G1(n)

and

h(∂ (n)) =−F1(n)+G1(n).

Then

g1(n) = f1(n)+h∂ (n).

Hence

h : A0 −→ Kers
′

x 7−→ h(x) = µ(x)− e
′
F0(x)

is a homotopy connecting f = ( f1, f0) : (Kers
∂

−→ A0)−→ (Kers
′ ∂

′

−→ A
′

0) to g = (g1,g0) : (Kers
∂

−→ A0)−→ (Kers
′ ∂

′

−→ A
′

0).

Let F
µ

−→ G and G
µ
′

−→ H. Then we have

Γ(µ ∗µ
′
)(x) = (µ ∗µ

′
)(x)− e

′
(s

′
µ ∗µ

′
)(x)

= µ(x)+µ
′
(x)− e

′
(t

′
µ)(x)− e

′
(s

′
µ)(x)

= µ(x)+µ
′
(x)− e

′
(s

′
µ

′
)(x)− e

′
(s

′
µ)(x)

= (µ(x)− e
′
(s

′
µ)(x))+(µ

′
(x)− e

′
(s

′
µ

′
)(x))

= Γ(µ)(x)+Γ(µ
′
)(x)

for all x ∈ A0.

Theorem 3.5. Let Ψ : XModk −→ 2Alg be the functor as mentioned in Theorem 1.4 and h be homotopy connecting f :

(G,C,∂ )−→ (G
′
,C

′
,∂

′
) to g : (G,C,∂ )−→ (G

′
,C

′
,∂

′
). Then

Ψ(h) = µ : C −→ G
′
⋊C

′

x 7−→ µ(x) = (h(x), f0(x))

is a homotopy of corresponding 2-algebra morphisms.
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Proof. We first show that µ is an algebra morphism. For x,x
′
∈C

µ(xx
′
) = (h(xx

′
), f0(xx

′
))

= ( f0(x)◮ h(x
′
)+ f0(x

′
)◮ h(x)+h(x)h(x

′
), f0(x) f0(x

′
))

= (h(x), f0(x))(h(x
′
), f0(x

′
))

= µ(x)µ(x
′
).

Now we show that

1) s
′
µ = F0 2) t

′
µ = G0 3) ( f1, f0)◦

′ µt = µs◦′ (g1,g0)
1)For all x ∈C,

s
′
µ(x) = s

′
(h(x), f0(x))

= f0(x) = F0(x),

2)For all x ∈C,

t
′
µ(x) = t

′
(h(x), f0(x))

= t
′
(h(x))+ f0(x)

= ∂
′
h(x)+ f0(x)

= g0(x) = G0(x),

3)For all x ∈C,a ∈ G, since t
′
( f1(a), f0(x)) = ∂

′
f1(a)+ f0(x),

s
′
(µt(a,x)) = s

′
(µ(∂ (a)+ x))

= s
′
(h(∂ (a)+ x), f0(∂ (a)+ x))

= f0(∂ (a)+ x)
= f0(∂ (a))+ f0(x)

= ∂
′
f1(a)+ f0(x)

then t
′
( f1(a), f0(x)) = s

′
(µt(a,x)) and ( f1, f0) , µt are composable pairs. Also since

t
′
(µs(a,x)) = t

′
(µ(x)) = t

′
(h(x), f0(x))

= ∂
′
(h(x))+ f0(x)

= g0(x)

and s
′
(g1(a),g0(x)) = g0(x) then t

′
(µs) = s

′
(g1,g0) and µs,(g1,g0) are composable pairs.

Therefore we get

( f1(a), f0(x))◦
′
µt(a,x) = ( f1(a)+h(∂ (a)+ x), f0(x))

and

µs(a,x)◦
′
(g1(a),g0(x)) = ( f1(a)+h(∂ (a)+ x), f0(x)).

Then ( f1, f0)◦
′
µt = µs◦

′
(g1,g0). So

µ : C −→ G
′
⋊C

′

c 7−→ µ(x) = (h(x), f0(x))

is a homotopy connecting F = (( f1, f0), f0) to G = ((g1,g0),g0).

Let f
h

−→ g and g
h
′

−→ u. Then we have

Ψ(h+h
′
)(x) = ((h+h

′
)(x), f0(x))

= (h(x)+h
′
(x), f0(x))

= (h(x), f0(x))+(h
′
(x),g0(x))− (0,g0(x))

= Ψ(h)(x)+Ψ(h
′
)(x)− e

′
(t

′
(Ψ)(h))(x)

= (Ψ(h)∗Ψ(h))(x).
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1. Introduction

In many real life situations, it is very difficult to deal with a process with reliable information about the properties of the

expected variations. This has naturally led to an increased interest in intervals. Because the most ideal way to represent the loss

of information is to use intervals.

An interval x is the compact-convex subset of real numbers and x is denoted by x = [x,x] where x and x are the left and right

endpoints of x, respectively [1]. Further, if x = x then we say that x is a degenerate interval and it can be shown by {x} or [x,x].
The set of all real intervals is denoted by IR.

The idea of using intervals has been highly preferred by many researchers recently [1]-[4]. The interval sequence spaces

have been studied by many authors [5, 6]. Also, we presented the notion of a complex interval which is significant for

interval-valued data and interval-based signal processing in [7]. A complex interval is defined by

X =
[

xr,xr

]

+ i
[

xs,xs

]

where
[

xr,xr

]

and
[

xs,xs

]

are real intervals and i =
√
−1 is the complex unit.

[

xr,xr

]

and
[

xs,xs

]

are called real and imaginary

part of X , respectively. Further,
[

xr,xr

]

and
[

xs,xs

]

are called real and imaginary part of X , respectively.

In this work, we introduce the notion of complex interval sequence and we analyze some sequence spaces of the complex

intervals, e.g., I(w) and I(lp), 1 ≤ p < ∞. However, each element of these sequence spaces does not have an inverse according

to the addition operation. These sequence spaces are not a linear space and the algebraic structure on these spaces is called as

”quasilinear space”. In 1986, Aseev defined the concept of quasilinear space [8]. Further, he present an approach for analysis of
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set-valued functions. This work has motivated a lot of authors the introduce new results on set-valued analysis [9]-[12]. Let us

give the definition:

A set X is called a quasilinear space on field K if a partial order relation ”�”, an algebraic sum operation, and an operation

of multiplication by real or complex numbers are defined in it in such a way that the following conditions hold for any elements

x,y,z,v ∈ X and any α,β ∈K:

x � x,

x � z if x � y and y � z,

x = y if x � y and y � x,

x+ y = y+ x,

x+(y+ z) = (x+ y)+ z,

there exists an element (zero) θ ∈ X such that x+θ = x,

α(βx) = (αβ )x,

α(x+ y) = αx+αy,

1x = x,

0x = θ ,

(α +β )x � αx+βx,

x+ z � y+ v if x � y and z � v,

αx � αy if x � y.

The most popular examples are Ω(E) and ΩC(E) which are defined as the sets of all non-empty closed bounded and

non-empty convex closed bounded subsets of any normed linear space E, respectively. Both are a quasilinear space with the

inclusion relation“⊆”, the algebraic sum operation

A+B = {a+b : a ∈ A, b ∈ B}
where the closure is taken on the norm topology of E and the real-scalar multiplication

λA = {λa : a ∈ A} .
Actually, ΩC(R) is the set IR and for x,y ∈ IR and λ ∈ R, the Minkowski sum and scalar multiplication operations are defined

by

x+ y = [x,x]+
[

y,y
]

= [x+ y,x+ y]

and

λx =

{

[λx,λx]
[λx,λx]

,
,

λ ≥ 0

λ < 0,

respectively. Further, the product of two intervals x = [x,x] and y =
[

y,y
]

is given by

x · y = [x,x]
[

y,y
]

= [minS,maxS] (1.1)

where S = {xy,xy,xy,xy}, [1].

The Minkowski sum and scalar multiplication on IC are defined by

X +Y =
[

xr,xr

]

+ i
[

xs,xs

]

+
[

yr,yr

]

+ i
[

ys,ys

]

=
[

xr + yr,xr + yr

]

+ i
[

xs + ys,xs + ys

]

=
{

a+ ib : a ∈
[

xr + yr,xr + yr

]

, b ∈
[

xs + ys,xs + ys

]}

and

λX = λ
[

xr,xr

]

+ i
(

λ
[

xs,xs

])

=
{

λa+ iλb : a ∈
[

xr,xr

]

, b ∈
[

xs,xs

]}

on IC where i =
√
−1 and λ ∈ C. Further, the relation

X � Y iff
[

xr,xr

]

⊆
[

yr,yr

]

and
[

xs,xs

]

⊆
[

ys,ys

]

is a partial order relation on IC. Thus, IC is a quasilinear space [7].
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2. Preliminaries

Let us start with some main definitions, notions and theorems.

Suppose that X is a quasilinear space and Y ⊆ X . Then Y is called a subspace of X whenever Y is a quasilinear

space with the same partial order and the restriction to Y of the operations on X . Y is subspace of a quasilinear space X if

and only if for every x,y ∈ Y and α,β ∈K, αx+βy ∈ Y . Proof of this theorem is quite similar to its classical linear space

analogue. Let Y be a subspace of a quasilinear space X and suppose each element x in Y has an inverse in Y . Then the

partial order on Y is determined by the equality. In this case Y is a linear subspace of X , [14].

An element x in a quasilinear space X is said to be symmetric if −x = x and Xsym denotes the set of all symmetric elements.

Also, Xr stands for the set of all regular elements of X while Xs stands for the sets of all singular elements and zero in X .

Further, it can be easily shown that Xr, Xsym andXs are subspaces of X . They are called regular, symmetric and singular

subspaces of X , respectively. Furthermore, it isn’t hard to prove that summation of a regular element with a singular element

is a singular element and the regular subspace of X is a linear space while the singular one is nonlinear at all. Further, IC is a

closed subspace of Ω(C), [13].

A real-valued function ‖.‖ on the quasilinear space X is called a norm if the following conditions hold:

‖x‖> 0 if x 6= 0, (2.1)

‖x+ y‖ ≤ ‖x‖+‖y‖ , (2.2)

‖αx‖= |α|‖x‖ , (2.3)

if x � y, then ‖x‖ ≤ ‖y‖ , (2.4)

if for any ε > 0 there exists an element xε ∈ X such that (2.5)

x � y+ xε and ‖xε‖ ≤ ε then x � y,

here x,y,xε are arbitrary element in X and α is any scalar. A quasilinear space X with a norm defined on it, is called normed

quasilinear space, [8].

For a normed linear space E, a norm on Ω(E) is defined by

‖A‖Ω = sup
a∈E

‖a‖E .

Hence ΩC(E) and Ω(E) are normed quasilinear spaces. A norm on IR is defined by

‖x‖= ‖[x,x]‖= sup
t∈[x,x]

|t| .

Moreover, IC is a normed quasilinear space with the norm

‖X‖
IC

= sup{|z| : z ∈ X}
= sup{|a+ ib| : a ∈

[

xr,xr

]

,b ∈
[

xs,xs

]

},

for X =
[

xr,xr

]

+ i
[

xs,xs

]

, [12].

Now we will give the notion of consolidate quasilinear space defined in [12]. Thanks to this definition, we were able to give

a representation to every element in a quasilinear space and we were able to define an inner-product quasilinear space.

Definition 2.1. [12] Let X be a quasilinear space and y ∈ X . The floor of y is the set of all regular elements y of X such

that x � y. It is denoted by FX
y and FX

y ⊂ X . Hence FX
y = {x ∈ Xr : x � y}.
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Definition 2.2. [12] A quasilinear space X is called consolidate or Solid-Floored whenever

sup
�
{x ∈ Xr : x � y}= sup

�
FX

y

exists and

y = sup
�
{x ∈ Xr : x � y}

for each y ∈ X . Otherwise, X is called a non-consolidate quasilinear space.

From above example immediately we can see that IR is consolidate while (IR)s is not. Analogous results are also true for

the spaces IC and (IC)s .

Definition 2.3. [13] Let X be a consolidate quasilinear space. A mapping 〈 , 〉 : X ×X → Ω(K) is called an inner product

on X if for any x,y,z ∈ X and α ∈K the following conditions are satisfied :

If x,y ∈ Xr then 〈x,y〉 ∈ ΩC(K)r ≡K,

〈x+ y,z〉 ⊆ 〈x,z〉+ 〈y,z〉 ,

〈αx,y〉= α 〈x,y〉 ,

〈x,y〉= 〈y,x〉 ,

〈x,x〉 ≥ 0 for x ∈ Xr and 〈x,x〉= 0 ⇔ x = 0,

‖〈x,y〉‖Ω = sup
{

‖〈a,b〉‖Ω : a ∈ FX
x ,b ∈ FX

y

}

,

if x � y and u � v then 〈x,u〉 ⊆ 〈y,v〉 ,

if for any ε > 0 there exists an element xε ∈ X such that

x � y+ xε and 〈xε ,xε〉 ⊆ Sε (θ) then x � y.

A quasilinear space with an inner product is called as an inner-product quasilinear space.

X is a linear Hilbert space, then the space Ω(X ) is a Hilbert quasilinear space with the inner product defined by

〈A,B〉Ω = {〈a,b〉
X

: a ∈ A,b ∈ B}

for A,B ∈ Ω(X ). Especially, the inner product on Ω(C) given by

〈A,B〉Ω = {〈a,b〉
C

: a ∈ A,b ∈ B} . (2.6)

If A,B ∈ IC then the inner-product (2.6) is equivalent to the following:

〈A,B〉=
[

a1,a1

][

b1,b1

]

+
[

a2,a2

][

b2,b2

]

+ i(
[

a2,a2

][

b1,b1

]

−
[

a1,a1

][

b2,b2

]

)

where A =
[

a1,a1

]

+ i
[

a2,a2

]

, B =
[

b1,b1

]

+ i
[

b2,b2

]

and the product of two intervals is given in (1.1). Namely, the above

equality is the reduction of the inner-product on Ω(C) to the inner-product on IC.



On the Inner-Product Spaces of Complex Interval Sequences — 184/188

3. Complex Interval Sequence Spaces

In this section, firstly we present the complex interval sequence spaces I(w) and I(lp), 1 ≤ p < ∞ and we show that these

spaces are the normed quasilinear spaces. Later, we construct a set-valued inner-product on I(l2).
The sequence X = (Xi)

∞
i=1 is called as complex interval sequence if Xi ∈ IC, i = 1,2, .... The set I(lw) denotes the set of all

complex interval sequences X = (Xi)
∞
i=1. The addition and multiplication operations I(w) are defined by

X +Y = (X1,X2, ...)+(Y1,Y2, ...)

= (X1 +Y1,X2 +Y2, ...)

and

αX = α(X1,X2, ...) = (αX1,αX2, ...),

respectively where Xi +Yi is the sum of two complex intervals and αXi is the multiplication of a complex interval with the

scalar α . Further, the partial order relation on I(w) is that

X ≪ Y iff Xi � Yi, i = 1,2, ...

where the relation ”�” is the partial order relation on IC. Thus, I(lw) is a quasilinear space with the above operations and the

partial order relation.

For 1 ≤ p < ∞, I(lp) is the set of all complex interval sequences X = (Xi)
∞
i=1 such that

∞

∑
i=1

‖Xi‖p
IC

< ∞.

The space I(lp) is a quasilinear space with the operations and the partial order relation on I(lw). Really, for X ,Y ∈ I(lp) we

write that by the Minkowski inequality

∞

∑
i=1

(‖Xi +Yi‖p
IC
)1/p ≤

∞

∑
i=1

(‖Xi‖p
IC
+‖Yi‖p

IC
)1/p

≤
∞

(∑
i=1

‖Xi‖p
IC
)1/p +

∞

(∑
i=1

‖Yi‖p
IC
)1/p < ∞.

Further,

∞

∑
i=1

‖λXi‖p
IC

= |λ |p (
∞

∑
i=1

‖Xi‖p
IC
)< ∞

for X ∈ I(lp) and λ ∈ C.

Proposition 3.1. I(lp), 1 ≤ p < ∞ is a normed quasilinear space with the norm defined by

‖X‖=
∞

(∑
i=1

‖Xi‖p
IC
)1/p.

Proof. It is obvious that ‖X‖ ≥ 0 for any X ∈ I(lp). Further, for any X ,Y ∈ I(lp) and λ ∈ C by the triangle inequality and

Minkowski inequality we write that

‖X +Y‖=
∞

∑
i=1

(‖Xi +Yi‖p
IC
)1/p ≤

∞

(∑
i=1

‖Xi‖p
IC
)1/p +

∞

(∑
i=1

‖Yi‖p
IC
)1/p = ‖X‖+‖Y‖

and

‖λX‖=
∞

(∑
i=1

‖λXi‖p
IC
)1/p = |λ |

∞

(∑
i=1

‖Xi‖p
IC
)1/p = |λ |‖X‖ .

Let us assume that X ≪ Y for any X ,Y ∈ I(lp). Then ‖Xi‖IC ≤ ‖Yi‖IC for i = 1,2, ... since Xi � Yi , i = 1,2, ... and IC is a

normed quasilinear space. This implies that

‖X‖=
∞

(∑
i=1

‖Xi‖p
IC
)1/p ≤

∞

(∑
i=1

‖Yi‖p
IC
)1/p = ‖Y‖ .
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Now suppose that there exists an element Xε ∈ I(lp) such that X ≪ Y +Xε and ‖Xε‖ ≤ ε for any ε > 0. Then we have that

Xi ⊆ Yi +Xε
i and for i = 1,2, ... and

‖Xε‖=
∞

(∑
i=1

‖Xε
i ‖p

IC
)1/p ≤ ε .

Hence, we obtain that ‖Xi‖IC < ε for i = 1,2, .... By the fourth condition of norm on IC we write that Xi � Yi for i = 1,2, ...
and so X ≪ Y .

Example 3.2. Let us take the complex interval sequence X = (Xk)
∞
k=1 given as follows:

(Xk)
∞
k=1 = (

1

2k
+ i[0,

1

2k
])∞

k=1 = (
1

2
+ i[0,

1

2
],

1

22
+ i[0,

1

22
], ...).

We can say that X = (Xk)
∞
k=1 ∈ I(l2) since

‖X‖2 =
∞

∑
k=1

∥

∥

∥

∥

1

2k
+ i[0,

1

2k
]

∥

∥

∥

∥

2

IC

=
∞

∑
k=1

(sup{|a+ ib| : a =
1

2k
,b ∈ [0,

1

2k
]})2

=
∞

∑
k=1

(
1

22k
+

1

22k
) = 2

∞

∑
k=1

1

4k
=

1

2

1

1−1/4
= 2/3.

Hence, the norm of the sequence X = (Xk)
∞
k=1 is that

‖X‖=
∞

(∑
k=1

‖Xk‖2
IC
)1/2 =

√

2

3
.

Among the I(lp) spaces, I(l2) has an important place. Because I(l2) is an inner-product quasilinear space. Before we

construct an inner-product on I(l2), we must show that it is a consolidate space.

Lemma 3.3. The space I(lp), 1 ≤ p < ∞ is a consolidate quasilinear space.

Proof. To complete the proof we will show that

X = sup
”≪”

{Y ∈ (I(lp))r : Y ≪ X}.

If Y ≪ X for Y ∈ (I(lp))r then we write that Yi � Xi for i = 1,2, ... and Xi ∈ IC. Since IC is a consolidate quasilinear space, we

obtain that

Xi = supFXi
= sup{Yi ∈ IC : Yi � Xi}

for each i = 1,2, .... This means that supFX = X for X = (Xi)
∞
i=1 ∈ I(lp).

Theorem 3.4. The quasilinear space I(l2) with the inner-product

〈X ,Y 〉=
∞

∑
i=1

〈Xi,Yi〉IC (3.1)

is an inner-product quasilinear space where

〈Xi,Yi〉IC =
〈[

xr
i ,x

r
i

]

+ i
[

xi
s,xs

i

]

,
[

yr
i ,y

r
i

]

+ i
[

yi
s,ys

i

]

〉

=
[

xr
i ,x

r
i

]

+
[

yi
s,ys

i

]

+ i(
[

xi
s,xs

i

]

[

yr
i ,y

r
i

]

−
[

xr
i ,x

r
i

]

[

yi
s,ys

i

]

).
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Proof. Firstly, we will show that the equality (3.1) is well-defined, i.e., 〈X ,Y 〉 ∈ Ω(C):

By the Hölder and Schwartz inequalities we observe that

‖〈X ,Y 〉‖=
∥

∥

∥

∥

∥

∞

∑
i=1

〈Xi,Yi〉IC

∥

∥

∥

∥

∥

≤
∞

∑
i=1

∥

∥

∥
〈Xi,Yi〉IC

∥

∥

∥

Ω

≤
∞

∑
i=1

(‖Xi‖IC ‖Yi‖IC)≤
∞

(∑
i=1

‖Xi‖2
IC
)1/2

∞

(∑
i=1

‖Yi‖2
IC
)1/2

= ‖X‖‖Y‖

for X ,Y ∈ I(l2). This means that the set 〈X ,Y 〉 is bounded. Now let us take a sequence (Xn)
∞
n=1 in the set 〈X ,Y 〉 such

that Xn → X0. Then {Xn} → {X0} for n = 1,2, ... in Ω(C) since Xn ∈ 〈X ,Y 〉 for n = 1,2, .... Further, we can say that

〈Xn,Yn〉 → 〈X ,Y 〉. The Lemma 4-a in [8] implies {X0} ⊆ 〈X ,Y 〉. Consequently, we obtain that X0 ∈ 〈X ,Y 〉.

1. If X ,Y ∈ (I(l2))r then

〈X ,Y 〉=
∞

∑
i=1

〈Xi,Yi〉IC ∈ (Ω(C))r ≡ C

since Xi,Yi ∈ C for i = 1,2, ....

2. By the second condition of inner-product on IC we write that

〈X +Y,Z〉=
∞

∑
i=1

〈Xi +Yi,Zi〉IC

⊆
∞

∑
i=1

(〈Xi,Zi〉IC + 〈Yi,Zi〉IC)

=
∞

∑
i=1

〈Xi,Zi〉IC +
∞

∑
i=1

〈Yi,Zi〉IC

= 〈X ,Z〉+ 〈Y,Z〉 .

3. By the third condition of inner-product on IC we obtain that

〈αX ,Y 〉=
∞

∑
i=1

〈αXi,Yi〉IC =
∞

∑
i=1

α 〈Xi,Yi〉IC = α
∞

∑
i=1

〈Xi,Yi〉IC = α 〈X ,Y 〉 .

Further, it can be easily shown that 〈X ,αY 〉= ᾱ 〈X ,Y 〉.

4. By the fourth condition of inner-product on IC,

〈X ,Y 〉=
∞

∑
i=1

〈Xi,Yi〉IC = 〈X ,Y 〉=
∞

∑
i=1

〈Yi,Xi〉IC = 〈Y,X〉 .

5.

〈X ,X〉= {0}⇔
∞

∑
i=1

〈Xi,Xi〉IC = {0}⇔ Xi = θ , i = 1,2, ...⇔ X = θ .

and for any X ∈ (I(l2))r we write that

〈X ,X〉=
∞

∑
i=1

〈Xi,Xi〉IC =
∞

∑
i=1

|Xi|2 ≥ 0.
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6.

‖〈X ,Y 〉‖Ω =

∥

∥

∥

∥

∥

∞

∑
i=1

〈Xi,Yi〉IC

∥

∥

∥

∥

∥

Ω

= sup{|z| : z ∈
∞

∑
i=1

〈Xi,Yi〉IC}

= sup{|z| : z ∈
∞

∑
i=1

(
[

xr
i ,x

r
i

]

+
[

yi
s,ys

i

]

+ i(
[

xi
s,xs

i

]

[

yr
i ,y

r
i

]

−
[

xr
i ,x

r
i

]

[

yi
s,ys

i

]

)

= sup{|〈x,y〉| : x ∈ FX ,y ∈ FY}.

7. If X ≪ Y and Z ≪ T then Xi � Yi and Zi � Ti for i = 1,2, .... By the seventh condition of inner-product on IC we write

that 〈Xi,Zi〉IC ⊆ 〈Yi,Ti〉IC for i = 1,2, ... and so 〈X ,Z〉 ⊆ 〈Y,T 〉.

8. Suppose that for any ε > 0 there exists an element Xε ∈ I(l2) such that X ≪ Y +Xε and 〈Xε ,Xε〉 ⊆ Sε(θ). Then we say

that Xi ⊆ Yi +Xε
i for i = 1,2, .... By the hypotesis we write that

∞

∑
i=1

〈Xε
i ,X

ε
i 〉IC ⊆ Sε(θ).

Since IC is an inner-product quasilinear space, if Xi ⊆ Yi +Xε
i for i = 1,2, ... and ‖Xε

i ‖Ω
≤ ε then Xi ⊆ Yi for i = 1,2, ...

This implies X ≪ Y.

4. Conclusion

In this paper, we have presented the notion of complex interval sequence and some important complex interval sequence spaces.

In this way, we brought a new perspective to sequence spaces with the help of interval analysis and quasilinear functional

analysis. We also have defined the inner product function on the complex interval sequence space I(l2) , which is one of the

most important sequence spaces. Thus, by using quasilinear functional analysis techniques, we have introduced a new type of

space to the literature.
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1. Introduction

The study of the solution of nonlinear rational sequence of high order is quite challenging and rewarding. Every dynamical

system bn+1 = f (bn) determines DE and vice versa. An interesting class of nonlinear DE is the class of solvable DEs, and

one of the interesting problems is to find equations that belong to this class and to solve them in closed form or in explicit

form [1]-[14], [16]-[26]. Note that most of these Eq. often show increasingly complex behavior such as the existence of a

bounded. The qualitative study of difference equations is a fertile research area and increasingly attracts many mathematicians.

This topic draws its importance from the fact that many real life phenomena are modeled using difference equations. The

applications of these difference equations can be found on the economy, biology and so on. It is known that nonlinear difference

equations are capable of producing a complicated behavior regardless its order. The aim of this paper is to investigate some

qualitative behavior of the solutions of the nonlinear DE

xn+1 =
αxn−m +ηxn−k+δxn

β + γxn−kxn−l (xn−k + xn−l)
, n = 0,1,2, ... (1.1)

where the parameters α, β , γ, δ , η ∈ (0,∞), while m, k, l, are positive integers, such that m < k < l and the initial

conditions x−m, ...,x−k, ...,x−l , ...,x−1, ...,x0 are arbitrary positive real numbers. Equation (1.1) has been discussed in [15],

when m = 1, k = 2 and l = 4, and in [28], when δ = 0, where some global behavior of the more general nonlinear rational Eq.

(1.1), we need the following well-known definitions and results [29]-[34].
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Definition 1.1. A difference equation of order (k+1) is of the form

xn+1 = F(xn,xn−1, ...,x−k), n = 0,1,2, ..... (1.2)

where F is a continuous function which maps some set Jk+1 into J and J is a set of real numbers. An equilibrium point

x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, ...., x̃) . That is, the constant sequence {xn}
∞
n=−k with

xn = x̃ f or all n ≥−k is a solution of that equation.

Definition 1.2. Let x̃∈ (0,∞) be an equilibrium point of the difference equation (1.2). Then

(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable if for every ε > 0 there exists δ > 0 such that,

if x−k, ..., x−1,x0 ∈ (0,∞) with |x−k − x̃|+ ...+ |x−1 − x̃|+ |x0 − x̃|< δ , then |xn − x̃|< ε for all n ≥−k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally asymptotically stable if it is locally stable

and there exists γ > 0 such that, if x−k, ..., x−1, x0 ∈ (0,∞) with |x−k − x̃|+ ...+ |x−1 − x̃|+ |x0 − x̃|< γ , then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global attractor if for every x−k, ..., x−1, x0 ∈ (0,∞) we

have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global

attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence {xn}
∞
n=−k is said to be periodic with period p if xn+p = xn for all n ≥−k. A sequence {xn}

∞
n=−k

is said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. We say that a sequence {xn}
∞
n=−l is bounded and persisting if , there exists positive constants m and M such

that

m ≤ xn ≤ M, f or all n ≥−k.

Definition 1.5. A positive semicycle of {xn}
∞
n=−k consists of ”a string” of terms xl ,xl+1, ...,xm all greater than or equal to x̃,

with l ≥−k and m ≤ ∞ such that

either l =−k or l >−k and xl−1 < x̃,

and

either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semicycle of {xn}
∞
n=−k consists of ”a string” of terms xl ,xl+1, ...,xm all less than x̃, with l ≥−k and m ≤ ∞ such

that

either l =−k or l >−k and xl−1 ≥ x̃,

and

either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 1.6. The linearized Eq. of Eq. (1.2) about the equilibrium point x̃ is the linear Eq.

yn+1 =
k

∑
i=0

∂F (x̃, x̃, ..., x̃)

∂xn−i

yn−i. (1.3)

Now, assume that the characteristic Eq. associated with Eq. (1.3) is

p(λ ) = p0λ k + p1λ k−1 + ...+ pk−1λ + pk = 0, (1.4)

where

pi = ∂F (x̃, x̃, ..., x̃)/∂xn−i.
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Theorem 1.7. Let pi ∈ R, i = 1,2, ..., and k ∈ {0,1,2, ...}, then

k

∑
i=1

|pi|< 1,

is sufficient condition for asymptotic stability of difference equation

xn+k + p1xn+k−1 + .....+ pkxn = 0, n = 0,1,2, ...

Theorem 1.8 (The Linearized Stability Theorem).

Suppose that F is a continuously differentiable function defined on an open neighbourhood of the equilibrium x̃. Then the

following statements are true.

(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then the

equilibrium point x̃ is locally asymptotically stable.

(ii) If at least one root of Eq.(1.4) has an absolute value greater than one, then the equilibrium point x̃ is unstable.

2. Change of Variables

By using the change of variables xn =
(

β
γ

) 1
3
yn, the equation (1.1) reduces to the following difference equation

yn+1 =
ryn−m+tyn−k+syn

1+yn−kyn−l (yn−k + yn−l)
, n = 0,1,2, ... (2.1)

where r = α
β
> 0, s = δ

β
> 0, t = η

β
> 0, and the initial conditions y−l , ...,y−k, ...,y−m, ...,y−l ,y0 ∈ (0,∞). In the next section,

we shall study the global behavior of Eq. (2.1).

3. The Dynamics of Eq. (2.1)

The equilibrium points ỹ of Eq. (2.1) are the positive solutions of equation

ỹ =
[r+s+t]ỹ

1+2ỹ3
. (3.1)

Thus ỹ1 = 0, is always an equilibrium point of the equation (2.5). If (r+s+t)> 1, then the only positive equilibrium point ỹ2

of equation (2.1) is given by

ỹ2 =

(
[r+s+t]−1

2

) 1
3

. (3.2)

Let us introduce a continuous function F : (0,∞)4 → (0,∞), which is defined by

F(v0,v1,v2,v3) =
rv0+sv1+tv2

1+ v2
2v3 + v2v2

3

. (3.3)

Consequently, we get

∂F(v0,v1,v2,v3)

∂v0
=

r

1+ v2
2v3 + v2v2

3

,

∂F(v0,v1,v2,v3)

∂v1
=

s

1+ v2
2v3 + v2v2

3

,

∂F(v0,v1,v2,v3)

∂v2
=

t(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2)(2v2v3 + v2
3)

(1+ v2
2v3 + v2v2

3)
2

,
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∂F(v0,v1,v2,v3)

∂v3
=

−(rv0+sv1+tv2)(v
2
2 +2v2v3)

(1+ v2
2v3 + v2v2

3)
2

.

At ỹ1 = 0, we have
∂F(0,0,0,0)

∂v0
= r, ∂F(0,0,0,0)

∂v1
= s, ∂F(0,0,0,0)

∂v2
= t, ∂F(0,0,0,0)

∂v3
= 0, and the linearized equation of Eq. (2.1) about

ỹ1 = 0, is the equation

zn+1 −ρ0zn −ρ1zn−m −ρ2zn−k = 0, (3.4)

where ρ0 = s, ρ1 = r, ρ2 = t. At ỹ2 =
(
[r+s+t]−1

2

) 1
3
, we have

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v0
=

r

1+2ỹ3
2

=
r

1+([r+s+t]−1)
=

r

[r+s+t]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v1
=

s

1+2ỹ3
2

=
s

1+([r+s+t]−1)
=

s

[r+s+t]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v2
=

2t −3([r+s+t]−1)

2 [r+s+t]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v3
=

−3([r+s+t]−1)

2 [r+s+t]
.

And the linearized equation of Eq. (2.1) about ỹ2 =
(
[r+s+t]−1

2

) 1
3

is the equation

zn+1 −ρ0zn −ρ1zn−m −ρ2zn−k −ρ3zn−l = 0, (3.5)

where ρ0 =
s

[r+s+t] , ρ1 =
r

[r+s+t] , ρ2 =
2t−3([r+s+t]−1)

2[r+s+t] , ρ3 =
−3([r+s+t]−1)

2[r+s+t] .

Theorem 3.1. (i) If [r+s+t]< 1, then the equilibrium point ỹ1 = 0 is locally asymptotically stable.

(ii) If [r+s+t]> 1, then the equilibrium point ỹ1 = 0 is unstable.

(iii) If [r+s+t]> 1, 2t > 3([r+s+t]−1) , then the equilibrium point ỹ2 =
(
[r+s+t]−1

2

) 1
3

is unstable.

Proof. With reference to Theorem 1.1, we deduce from Eq. (3.4) that |ρ0|+ |ρ1|+ |ρ2|= [r+s+t]< 1, and then the proof of

parts (i), (ii) follow. Also, from Eq. (3.5) we deduce for [r+s+t]> 1 that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|= 1+ 3([r+s+t]−1)
[r+s+t] > 1, and

hence the proof of part (iii) follows.

Theorem 3.2. Assume that [r+s+t]> 1, and let {yn}
∞
n=−l be a solution of Eq. (2.1) such that

y−l ,y−l+2, ...,y−l+2n, ...,y−k,y−k+2, ...,y−k+2n, ...,

y−m+1,y−m+3, ...,y−m+2n+1, ...,y0 ≥ ỹ2

and

y−l+1,y−l+3, ...,y−l+2n+1, ...,y−k+1,y−k+3, ...,

y−k+2n+1, ...,y−m,y−m+2, ...,y−m+2n, ...,y−1 < ỹ2.

(3.6)

Then {yn}
∞
n=−l oscillates about ỹ2 =

(
[r+s+t]−1

2

) 1
3

with a semicycle of length one.

Proof. Assume that (3.6) holds. Then

y1 =
ry−m+sy0+ty−k

1+ y−ky−l(y−k + y−l)
<

ry−m+sy0+ty−k

1+2ỹ3
2

<
[r+s+t] ỹ2

1+([r+s+t]−1)
= ỹ2,

and

y2 =
ry−m+1+sy1+ty−k+1

1+ y−k+1y−l+1(y−k+1 + y−l+1)
≥

ry−m+1+sy1+ty−k+1

1+2ỹ3
2

≥
[r+s+t] ỹ2

1+([r+s+t]−1)
= ỹ2,

and hence the proof follows by induction.
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Theorem 3.3. Assume that [r+s+t]< 1, then the equilibrium point ỹ1 = 0 of Eq. (2.1) is globally asymptotically stable.

Proof. We have shown in Theorem 3 that if [r+s+t]< 1 then the equilibrium point ỹ1 = 0 is locally asymptotically stable. It

remains to show that ỹ1 = 0 is a global attractor. To this end, let {yn}
∞
n=−l be a solution of Eq. (2.1). It suffics to show that

lim
n→∞

yn = 0. Since

0 ≤ yn+1 =
ryn−m+syn+tyn−k

1+ yn−kyn−l(yn−k + yn−l)
≤ ryn−m+syn+tyn−k < yn−k.

Then we have lim
n→∞

yn = 0. This completes the proof.

Theorem 3.4. Assume that [r+s+t]> 1, then Eq. (2.1) possesses an unbounded solution.

Proof. With the aid of Theorem 3.3, we have

y2n+2 =
ry−m+2n+1+sy2n+1+ty−k+2n+1

1+ y−k+2n+1 y−l+2n+1(y−k+2n+1 + y−l+2n+1)
>

ry−m+2n+1+sy2n+1+ty−k+2n+1

1+2ỹ3
2

>
ry−m+2n+1+sy2n+1+ty−k+2n+1

1+([r+s+t]−1)
=

ry−m+2n+1+sy2n+1+ty−k+2n+1

[r+s+t]
,

and

y2n+3 =
ry−m+2n+2+sy2n+2+ty−k+2n+2

1+ y−k+2n+2 y−l+2n+2(y−k+2n+2 + y−l+2n+2)
≤

ry−m+2n+2+sy2n+2+ty−k+2n+2

1+2ỹ3
2

≤
ry−m+2n+2+sy2n+2+ty−k+2n+2

1+([r+s+t]−1)
=

ry−m+2n+2+sy2n+2+ty−k+2n+2

[r+s+t]
.

From which it follows that

lim
n→∞

y2n = ∞ and lim
n→∞

y2n+1 = 0.

Hence, the proof of Theorem 3.4 is now completed.

Theorem 3.5. (1) If m is odd, and k, l are even, Eq. (2.1) has prime period two solution if (r− [s+t])< 1 and has not prime

period two solution if (r− [s+t])≥ 1.
(2) If m is even and k, l are odd, Eq. (2.1) has not prime period two solution.

(3) If all m,k, l are even, Eq. (2.1) has prime period two solution.

(4) If all m,k, l are odd, Eq. (2.1) has prime period two solution if (r− [s+t])> 1, and has not prime period two solution if

(r− [s+t])≤ 1.

(5) If m,k are even and l is odd, Eq. (2.1) has not prime period two solution.

(6) If m,k are odd and l is even, Eq. (2.1) has prime period two solution if (r− [s+t]) > 1, and has not prime period two

solution if (r− [s+t])≤ 1.
(7) If m, l are odd and k is even, Eq. (2.1) has prime period two solution if (r− [s+t]) > 1, and has not prime period two

solution if (r− [s+t])≤ 1.
(8) If m, l are even and k is odd, Eq. (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

...,φ ,ψ ,φ ,ψ, ...

of prime period two of Eq. (2.1).

(1) If m is odd, and k, l are even, then yn+1 = yn−m and yn = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
rφ +[s+t]ψ

1+2ψ3
, ψ =

rψ +[s+t]φ

1+2φ 3
.

Consequently, we have

0 < 2φψ(φ +ψ) = 1− (r− [s+t]) . (3.7)
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We deduce that (3.7) is always true if (r− [s+t])< 1 and hence Eq. (2.1) has prime period two solution. If (r− [s+t])≥ 1, we

have a contradiction, and hence Eq. (2.1) has not prime period two solution.

(2) If m is even, and k, l are odd, then yn = yn−m,and yn+1 = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ

1+2φ 3
, ψ =

[r+s+t]φ

1+2ψ3
.

Consequently, we have

0 < 2(φ +ψ)(φ 2 +ψ2) =−([r+s+t]+1) . (3.8)

Since [r+s+t]> 0, we have a contradiction. Hence Eq. (2.1) has not prime period two solution.

(3) If all m,k, l are even, then yn = yn−m = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ

1+2ψ3
, ψ =

[r+s+t]φ

1+2φ 3
.

Consequently, we get

0 < 2φψ(φ +ψ) = [r+s+t]+1. (3.9)

Since [r+s+t]> 0, the formula (3.14) is always true. Hence Eq. (2.1) has prime period two solution.

(4) If all m,k, l are odd, then yn+1 = yn−m = yn−k = yn−l . It follows from Eq. (2.1) that

φ =
rφ + sψ

1+2φ 3
, ψ =

rψ + sφ

1+2ψ3
.

Consequently, we get

0 < 2(φ +ψ)(φ 2 +ψ2) = (r− [s+t])−1. (3.10)

If (r− [s+t])> 1, the formula (15) is always true, and hence Eq. (2.1) has prime period two solution. If (r− [s+t])≤ 1, we

have a contradiction and hence Eq. (2.1) has not prime period two solution.

(5) If m,k are even, and l is odd, then yn = yn−k = yn−m, and yn+1 = yn−l . It follows from Eq. (2.1) that

φ =
[r+s+t]ψ

1+ψ2φ +ψφ 2
, ψ =

[r+s+t]φ

1+φ 2ψ +φψ2
.

Consequently, we have

0 < φψ(φ +ψ) =−([r+s+t]+1). (3.11)

Since [r+s+t]> 0, we have a contradiction. Hence Eq. (2.1) has not a prime period two solution.

(6) If m,k are odd, and l is even, then yn+1 = yn−m = yn−k, and yn = yn−l . It follows from Eq. (2.1) that

φ =
[r+t]φ + sψ

1+φ 2ψ +φψ2
, ψ =

[r+t]ψ + sφ

1+ψ2φ +ψφ 2
.

Consequently, we have

0 < φψ(φ +ψ) = ([r+t]− s)−1. (3.12)

If ([r+t]− s)> 1,the formula (3.17) is always true, and hence Eq. (2.1) has prime period two solution. If ([r+t]− s)≤ 1, we

have a contradiction. Hence Eq.(2.5) has not a prime period two solution.

(7) If m, l are odd, and k is even, then yn+1 = yn−m = yn−l , and yn = yn−k. It follows from Eq. (2.1) that

φ =
rφ +[s+t]ψ

1+ψ2φ +ψφ 2
, ψ =

rψ +[s+t]φ

1+φ 2ψ +φψ2
,

which give the same results of case (6).

(8) If m, l are even, and k is odd, then yn = yn−m = yn−l , and yn+1 = yn−k. It follows from Eq. (2.1) that

φ =
[r+ s]ψ + tφ

1+ψ2φ +ψφ 2
, ψ =

[r+ s]φ + tψ

1+φ 2ψ +φψ2
,

which give the same results of case (5). Hence the proof of Theorem 3.5 is now completed.
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4. Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical

examples in this section. These examples represent different types of qualitative behavior of solutions of Eq. (2.1).

Example 4.1. Figure 4.1, shows that the solution of Eq. (2.1) is bounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1, k =
2, l = 3, r = 0.1, s = 0.2, t = 0.3, i.e [r+s+t]< 1.

Figure 4.1. The solution of Eq. (2.1) is bounded.

Example 4.2. Figure 4.2, shows that the solution of Eq. (2.1) is unbounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1, k =
2, l = 3, r = 1, s = 2, t = 3, i.e [r+s+t]> 1.

Figure 4.2. The solution of Eq. (2.1) is unbounded.

Example 4.3. Figure 4.3, shows that Eq. (2.1) is globally asymptotically stable if x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4, x0 = 5,
m = 2, k = 3, l = 4, r = 0.1, s = 0.5, t = 0.2, i.e [r+s+t]< 1.
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Figure 4.3. The solution of Eq. (2.1) is globally asymptotically stable.

Example 4.4. Figure 4.4, shows that Eq. (2.1) has no positive prime period two solutions if x−3 = 1, x−2 = 2, x−1 = 3, x0 =
4, m = 2, k = 1, l = 3, r = 100, s = 300, t = 400.

Figure 4.4. The solution of Eq. (2.1) is globally asymptotically stable.



On the Global of the Difference Equation xn+1 =
αxn−m+ηxn−k+δxn

β+γxn−kxn−l(xn−k+xn−l)
— 197/198

5. Conclusions

In this article, we have shown that Eq. (2.1) has two equilibrium points ỹ1 = 0 and ỹ2 =
(
[r+s+t]−1

2

) 1
3
. If [r+s+t] < 1, we

have proved that ỹ1 = 0 is globally asymptotically stable, while if [r+s+t]> 1, the solution of Eq. (2.1) oscillates about the

point ỹ2 =
(
[r+s+t]−1

2

) 1
3

with a semicycle of length one. When [r+s+t]> 1, we have proved that the solution of Eq. (2.1) is

unbounded. The periodicity of the solution of Eq. (2.1) has been discussed in details in Theorem 3.5.
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1. Introduction

The algebraic structure of semirings, that are considered as a generalization of rings, plays an important role in different

branches of mathematics, especially in applied sciences and computer engineering. For general references on semiring theory

one may refer to [1],[4],[13] and [16].

The first formal definition of semirings was introduced by H.S Vandiver in 1934 [20] ”Note on a simple type of algebra in

which cancelation law of addition does not holds”.

In this paper we need a special kind of ideals that was defined by Henriksen [14] in 1958 which is called k-ideal or subtractive

ideals. A subtractive ideal I of a semiring R is an ideal such that if x,x+ y ∈ I, then y ∈ I.

Since prime and primary ideals have key roles in commutative semiring theory, many authors have studied generalizations

of prime and primary ideals. One of the generalization of that concept is 2-absorbing ideals.

In 2012, Darani [12] introduced the connotation of a 2-absorbing ideal of a commutative semiring. A proper ideal I of a

semiring R is said to be a 2-absorbing primary ideal if whenever a,b,c ∈ R and abc ∈ I, then ab ∈ I, or bc ∈ I, or ac ∈ I.

In [8], the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal was introduced. A proper

ideal I of a ring R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a,b,c ∈ R and 0 6= abc ∈ I, then

ab ∈ I, or c ∈
√

I and studied n number of results concerning weakly 1-absorbing primary ideals and examples of weakly
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1-absorbing primary ideals .

We assume throughout this paper that all semirings are commutative with unity 1 6= 0. We start by recalling some background

material. By a proper ideal I of R, we mean an ideal I of R with I 6= R. Let I be a proper ideal of R. Before we state some

results, let us introduce some notation and terminology. By
√

I, we mean the radical of R, that is, {a ∈ R | an ∈ I} for some

positive integer n}. In particular,
√

0 denotes the set of all nilpotent elements of R. We define ZI(R) = {r ∈ R | rs ∈ I for some

s ∈ R\ I}. A semiring R is called a reduced semiring if it has no non-zero nilpotent elements; i.e.,
√

0 = 0. For two ideals

I and J of R, the residual division of I and J is defined to be the ideal (I : J) = {a ∈ R | aJ ⊆ I}. Let R be a commutative

semiring with identity and M a unitary R-semimodule. Then R(+)M = R
⊕

M(direct sum) with coordinate-wise addition and

multiplication (a,m)(b,n) = (ab,an+bm) is a commutative semiring with identity called the idealization of M. A semiring R

is called a quasilocal semiring if R has exactly one maximal ideal. As usual we denote Z and Zn by the semiring of integers and

the semiring of integers modulo n.

In this paper, we introduce the concept of (weakly) 1-absorbing ideal of a semiring R. A proper ideal I of a semiring R is

called a weakly 1-absorbing primary ideal of R if whenever nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I, then ab ∈ I, or

c ∈
√

I. A proper ideal I of a semiring R is called 1-absorbing primary ideal of R if whenever nonunit elements a,b,c ∈ R, and

abc ∈ I, then ab ∈ I, or c ∈
√

I. It is clear that a 1-absorbing primary ideal of R is a weakly 1-absorbing primary ideal of R.

However, since 0 is always weakly 1-absorbing primary, a weakly 1-absorbing primary ideal of R needs not be a 1-absorbing

primary ideal of R. Among many results, we show (Theorem 2.5) that if a proper ideal I of R is a weakly 1-absorbing ideal

of R such that
√

I is a maximal ideal of R, then I is a primary ideal of R, and hence I is 1-absorbing primary ideal of R. We

show (Theorem 2.6 ) that if R is a reduced semiring, and I is a weakly 1-absorbing primary ideal of R, then
√

I is a prime ideal

of R. If I is a proper nonzero ideal of a von-Neumann regular semiring R, then we show (Theorem 2.7 ) that I is a weakly 1-

absorbing primary ideal of R if and only if I is a 1-absorbing primary ideal of R if and only if I is a primary ideal of R. We

show (Theorem 2.8) that if R is a nonquasilocal semiring, and I be a proper ideal of R such that ann(i) = {r ∈ R | ri = 0} is not

a maximal ideal of R for every element i ∈ I, then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly

primary ideal of R. If I is a proper ideal of a reduced divided semiring R, then we show (Theorem 2.11) that I is a weakly

1-absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a weakly 1-absorbing primary of a semiring

R that is not a 1-absorbing primary ideal of R, then we give (Theorem 3.4) sufficient conditions so that I3 = 0 (i.e., I ⊆
√

I). In

Theorem 3.2, we obtain some equivalent conditions for weakly 1-absorbing primary ideals of u-semirings. In (Theorem4.1

), a characterization of weakly 1-absorbing primary ideals in R = R1×R2, where R1 and R2 are commutative semirings with

identity that are not semifields is given. If R1,R2, ...,Rn are commutative semirings with identity for some 2≤ n < ∞, and let

R = R1× .....×Rn, then it is shown in (Theorem 4.2 ) that every proper ideal of R is a weakly 1-absorbing primary ideal of R if

and only if n = 2 and R1,R2 are semifields. For a weakly 1-absorbing primary ideal of a semiring R, we show (Theorem 4.8)

that S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R for every multiplicatively closed subset S of R that is disjoint from

I, and we show that the converse holds if S∩Z(R) = φ and S∩ZI(R) = φ .

2. Properties of Weakly 1 -absorbing Primary Ideals

In this section, we will define some basic properties of weakly 1-absorbing primary ideals in a commutative semi-ring R.

Definition 2.1. Let R be a commutative semiring, and I a proper ideal of R. We call I a weakly 1-absorbing primary ideal of R

if whenever nonunit elements a,b,c ∈ R and 0 6= abc ∈ I, then ab ∈ I, or c ∈
√

I.

Definition 2.2. Let R be a commutative semiring, and I a proper ideal of R. We call I a 1-absorbing primary ideal of R if

whenever nonunit elements a,b,c ∈ R and abc ∈ I, then ab ∈ I, or c ∈
√

I.

It is clear that every 1-absorbing primary ideal of a semiring R is a weakly 1-absorbing primary ideal of R.

The following example shows that the converse is not true.

Example 2.3. 1. I = {0} is a weakly 1-absorbing primary ideal of R = Z6 that is not a 1-absorbing primary of R. Indeed,

2.2.3 ∈ I, but neither 2.2 ∈ I nor 3 ∈
√

I.

2. Let J = {0,6} as an ideal of Z12, and let R = Z12(+)J. Then an ideal I = {(0,0),(0,6)} is a weakly 1-absorbing primary

ideal of R. Observe that abc ∈ I for some a,b,c ∈ R | I if and only if abc = (0,0). However, it is not a 1-absorbing

primary ideal of R. Indeed; (2,0)(2,0)(3,0) ∈ I, but neither (2,0)(2,0) ∈ I nor (3,0) ∈
√

I.

We begin with the following trivial result:

Theorem 2.4. Let be a proper ideal of a commutative semiring R. Then the following statements hold.

1. If I is a weakly prime ideal, then I is a weakly 1-absorbing primary ideal.



On Weakly 1-Absorbing Primary Ideals of Commutative Semirings — 201/208

2. If I is a weakly primary ideal, then I is a weakly 1-absorbing primary ideal.

3. If I is a 1-absorbing primary ideal, then I is a weakly 1-absorbing primary ideal.

4. If I is a weakly 1-absorbing primary ideal, then I is a weakly 2-absorbing primary ideal.

5. If R/I is an semi-integral domain, then I is a weakly 1-absorbing primary ideal if and only if I is a 1-absorbing primary

ideal of R.

6. Let R be a quasilocal semiring with maximal ideal
√

0. Then every proper ideal of R is a weakly 1-absorbing primary

ideal of R.

Theorem 2.5. Let R be a semiring and I be a weakly 1-absorbing primary ideal of R. If
√

I is a maximal ideal of R, then I is a

primary ideal of R, and hence I is a 1-absorbing ideal primary of R.
In particular, If I a weakly 1-absorbing primary ideal of R that is not a 1-absorbing ideal primary of R, then is not a maximal

ideal of R.

Proof. Suppose that
√

I is a maximal ideal of R. Then I is a semiprimary ideal of R. by [21] since I. Now, assume nonunit

elements a,b,c ∈ R and abc ∈ I. Assume ab not belong I . Since I is primary ideal, we have for some positive integer m, we

have c ∈
√

I. Hence, I is 1-absorbing primary ideal.

Theorem 2.6. Let R be a reduced semiring. If I is a nonzero weakly 1-absorbing primary ideal of R, then
√

I is a prime ideal of

R. In particular, if
√

Ii is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R.

Proof. Proof: Suppose that 0 6= ab ∈
√

I f , for some a,b ∈ R. We may assume that a,b are nonunit. Then there exists an

even positive integer n = 2m(m≥ 1) such that (ab)n ∈ I. Since
√

0 = {0}, we have (ab)n 6= 0. Hence, 0 6= amambn ∈ I. Thus,

amam = an ∈ I or bn ∈
√

I, and therefore
√

I is a weakly prime ideal of R. Since R is reduced and I 6= {0}, we conclude that
√

I

is a prime ideal of R by [2] . The proof of the ”in particular” statement : by Theorem 2,
√

I is a maximal ideal of R, then I is a

primary ideal of R, and hence I is a 1-absorbing ideal primary of R.

Recall that a commutative semiring R is called a von-Neumann regular semiring if and only if for every x ∈ R, there is a

Y ∈ y such that x2y = x. It is known that a commutative semiring R is a von-Neumann regular semiring if and only if for each

x ∈ R, there is an idempotent e ∈ R and a unit u ∈ R such that x = eu. We have the following result.

Theorem 2.7. Let R be a von-Neumann regular semiring and I be a nonzero ideal of R. Then the following statements are

equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. I is a primary ideal of R.

3. I is a 1-absorbing ideal primary of R.

Proof. (1)⇒ (2). R is a von-Neumann regular semiring, we know that R is reduced. Hence
√

I is a prime ideal of R by

Theorem 2.6. Since every prime ideal of a von-Neumann regular semiring is maximal, we conclude that
√

I is a maximal ideal

of R. Hence I is a primary ideal of R by Theorem 2.5.

(2)⇒ (3). Let nonunit elements a,b,c ∈ R, and abc ∈ I. Assume ab not belong I. Since I is a primary ideal, we have cm ∈ I

for some positive integer m, so c ∈
√

I. Thus, I is a 1-absorbing primary ideal.

(3)⇒ (1). Let nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I. Since I is a 1-absorbing primary ideal, we have ab ∈ I, or c ∈
√

I.

Now, if a,b and c 6= 0, then 0 6= abc ∈ I. As a result I is a weakly 1-absorbing primary ideal.

Theorem 2.8. Let R be a non-quasilocal semiring and I be a k-ideal of R such that ann(i) = {r ∈ R | ri = 0} is not a maximal

ideal of R for every element i ∈ I. Then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of

R.

Proof. If I is a weakly primary ideal of R, then I is a weakly 1-absorbing primary ideal of R by Theorem 2.4. Now, suppose

that I is a weakly 1-absorbing primary k-ideal of R and suppose that 0 6= ab ∈ I for some elements a,b ∈ R. We show that a ∈ I

or b ∈
√

I. We may assume that a,b are nonunit elements of R. Let ann(ab) = {c ∈ R | cab = 0}. Since ab 6= 0, ann(ab) is

a proper ideal of R. Let L be a maximal ideal of R such that ann(ab) ⊆ L. Since R is a non-quasilocal semiring, there is a

maximal ideal M of R such that M 6= L. Let m ∈M \L. Hence m not belong to ann(ab), and 0 6= mab ∈ I. Since I is a weakly

1-absorbing primary ideal of R, we have ma ∈ I or b ∈
√

I. If b ∈
√

I, then we are done. Hence assume that b not belong to
√

I.
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Hence ma ∈ I. Since m not belong to L and L is a maximal ideal of R, we conclude that m not belong to J(R). Hence there exists

an r ∈ R such that 1+ rm is a nonunit element of R. Suppose that 1+ rm not belong to ann(ab). Hence 0 6= (1+ rm)ab ∈ I.

Since I is a weakly 1-absorbing primary k-ideal of R and b not belong to
√

I, we conclude that (1+ rm)a = a+ rma ∈ I. Since

rma ∈ I, we have a ∈ I and we are done. Suppose that 1+ rm ∈ ann(ab). Since ann(ab) is not a maximal ideal of R and

ann(ab)⊆ L, there is a w ∈ L\ann(ab). Hence 0 6= wab ∈ I. Since I is a weakly 1-absorbing primary k-ideal of R and b not

belong to
√

I, we conclude that wa ∈ I. Since 1+ rm ∈ ann(ab)⊆ L and w ∈ L\ann(ab), we have 1+ rm+w is a nonzero

nonunit element of L. Hence 0 6= (1+ rm+w)ab ∈ I. Since I is a weakly 1-absorbing primary k-ideal of R and b not belong√
I, we conclude that (1+ rm+w)a = a+ rma+wa ∈ I. Since rma,wa ∈ I, we conclude that a ∈ I.

In light of the proof of Theorem 2.8, we have the following result.

Theorem 2.9. Let I be a weakly 1-absorbing primary k-ideal of R such that for every nonzero element i ∈ I, there exists a

nonunit w ∈ R such that wi 6= 0, and w+u is a nonunit element of R for some unit u ∈ R. Then I is a weakly primary k-ideal of

R.

Proof. Suppose that 0 6= ab ∈ I and b not belong to
√

I for some a,b ∈ R. We may assume that a,b are nonunit elements of R.

Hence there is a nonunit w ∈ R such that wab 6= 0 and w+u is a nonunit element of R for some unit u ∈ R. Since 0 6= wab ∈ I

and b not belong to
√

I and I is a weakly 1-absorbing primary k-ideal of R, we conclude that wa ∈ I.

Since (w+u)ab ∈ I and I is a weakly 1-absorbing primary k-ideal of R and b not belong
√

I, we conclude that (w+u)a =
wa+ua ∈ I. Since wa ∈ I and wa+ua ∈ I, we conclude that ua ∈ I. Since u is a unit, we have a ∈ I.

Corollary 2.10. Let R be a semiring and A = R[x]. Suppose that I is a weakly 1-absorbing primary k-ideal of A. Then I is a

weakly primary k-ideal of A.

Proof. Since xi 6= 0 for every nonzero i ∈ I and x+1 is a nonunit element of A, we are done by Theorem 2.9.

Recall that a semiring R is called divided if for every prime ideal P of R and for every x ∈ R\P, we have x | p for every

p ∈ P. We have the following result.

Theorem 2.11. Let R be a reduced divided semiring and I be a proper ideal of R. Then the following statements are equivalent:

1. I is a weakly 1-absorbing primary ideal of R.

2. I is a weakly primary ideal of R.

Proof. (1)⇒ (2). Suppose that 0 6= ab ∈ I for some a,b ∈ R and b not belong to
√

I. We may assume that a,b are nonunit

elements of R. Since
√

I is a prime ideal of R by Theorem 2.6, we conclude that a ∈
√

I. Since R is divided, we conclude

that b | a. Thus a = bc for some c ∈ R. Observe that c is a nonunit element of R as b not belong to
√

I and a ∈
√

I. Since

0 6= ab = bcb ∈ I and I is weakly 1-absorbing primary, and b not belong to
√

I, we conclude that bc = a ∈ I. Thus I is a weakly

primary ideal of R.

(2)⇒ (1). It is clear by Theorem 2.4.

Recall that a semiring R is called a chained semiring if for every x,y ∈ R, we have x | y or y | x. Every chained semiring is

divided. So, if R is a reduced chained semiring, then a proper ideal I of R is a weakly 1-absorbing primary ideal if and only if it

is a weakly primary ideal of R.

Theorem 2.12. Let R be a semiDedekind domain and I be a nonzero proper ideal of R. Then I is a weakly 1-absorbing primary

ideal of R if and only if
√

I is a prime ideal of R.

Proof. (→). Suppose that I is a weakly 1-absorbing primary ideal of R. Then
√

I is a prime ideal of R by Theorem 2.6.

(←). Suppose
√

I is a prime ideal of R. Since R is a semiDedekind domain, it is well known that every nonzero prime

ideal of R is a maximal ideal of R. Thus
√

I is a maximal ideal of R. Hence I is a primary ideal of R, and thus I is 1-absorbing

primary ideal of R.
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3. Characterizations of Weakly 1-absorbing Primary Ideals in u-semirings

In this section, we will study some characterizations of weakly 1-absorbing primary ideals in u-semirings

Definition 3.1. If an ideal of R contained in a finite union of ideals must be contained in one of those ideals, then R is said to

be a u-semiring.

Theorem 3.2. Let R be a commutative u-semiring, and I a proper ideal of R. Then the following statements are equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. For every nonunit elements a,b ∈ R with ab not belong to I, (I : ab) = (0 : ab), or (I : ab)⊆
√

I.

3. For every nonunit element a ∈ R, and every ideal I1 of R with I1 *
√

I. If (I : aI1) is a proper ideal of R, then

(I : aI1) = (0 : aI1), or (I : aI1)⊆ (I : a).

4. For every ideals I1, I2 of R with I1 *
√

I. If (I : I1I2) is a proper ideal of R, then (I : I1I2) = (0 : I1I2), or (I : I1I2)⊆ (I : I2).

5. For every ideals I1, I2, I3 of R with 0 6= I1I2I3 ⊆ II1I2 ⊆ I or I3 ⊆
√

I.

Proof. (1)⇒ (2). Suppose that I is a weakly 1-absorbing primary ideal of R, ab not belong to I for some nonunit elements

a,b ∈ R and c ∈ (I : ab). Then abc ∈ I. Since ab not belong to I, c is nonunit. If abc = 0, then c ∈ (0 : ab). Assume that

0 6= abc ∈ I. Since I is weakly 1-absorbing primary, we have c ∈
√

I. Hence we conclude that (I : ab)⊆ (0 : ab)∪
√

I. Since R

is a u-semiring, we obtain that (I : ab) = (0 : ab) or (I : ab)⊆
√

I.

(2)⇒ (3). If aI1 ⊆ I, then we are done. Suppose that aI1 * I for some nonunit element a ∈ R and c ∈ (I : aI1). It is clear that c

is nonunit. Then acI1 ⊆ I. Now I1 ⊆ (I : ac). If ac ∈ I, then c ∈ (I : a). Suppose that ac not belong to I. Hence (I : ac) = (0 : ac)
or (I : ac)⊆

√
I by 2. Thus I1 ⊆ (0 : ac) or I1 ⊆

√
I. Since I1 * I by hypothesis, we conclude I1 ⊆ (0 : ac); i.e. c ∈ (0 : aI1).

Thus (I : aI1)⊆ (0 : aI1)∪ (I : a). Since R is a u-semiring, we have (I : aI1) = (0 : aI1) or (I : aI1)⊆ (I : a).
(3)⇒ (4). If I1 ⊆

√
I, then we are done. Suppose that I1 *

√
I and c ∈ (I : I1I2). Then I2 ⊆ (I : cI1). Since (I : I1I2) is

proper, c is nonunit. Hence I2 ⊆ (0 : cI1) or I2 ⊆ (I : c) by 2.6. If I2 ⊆ (0 : cI1), then c ∈ (I : I1I2). If I2 ⊆ (I : c), then c ∈ (I : I2).
So, (I : I1I2)⊆ (0 : I1I2)∪ (I : I2) which implies that (I : I1I2) = (0 : I1I2), or (I : I1I2)⊆ (I : I2), as needed.

(4)⇒ (5). It is clear.

(5)⇒ (1). Let a,b,c ∈ R be nonunit elements and 0 6= abc ∈ I. Put I1 = aR, I2 = bR, and I3 = cR. Then 1 is now clear by

5

Definition 3.3. Let I be a weakly 1-absorbing primary ideal of R and a,b,c be nonunit elements of R. We call (a,b,c) a

1-triple-zero of I if abc = 0, ab not belong to I, and c not belong to
√

I.

Observe that if I is a weakly 1-absorbing primary ideal of R that is not 1- absorbing primary, then there exists a 1-triple-zero

(a,b,c) of I for some nonunit elements a,b,c ∈ R.

Theorem 3.4. Let I be a weakly 1-absorbing primary k-ideal of R, and (a,b,c) be a 1-triple-zero of I. Then

1. abI = 0.

2. If a,b not belong to (I : c), then bcI = acI = aI2 = bI2 = cI2 = 0.

3. If a,b not belong to (I : c), then I3 = 0.

Proof. 1. Suppose that abI 6= 0. Then abx 6= 0 for some nonunit x ∈ I. Hence 0 6= ab(c+ x) ∈ I. Since ab not belong to I,

(c+x) is nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and ab not belong to I, we conclude

that (c+ x) ∈
√

I. Since x ∈ I, we have c ∈
√

I, a contradiction. Thus abI = 0.

2. Suppose that bcI 6= 0. Then bcy 6= 0 for some nonunit element y ∈ I. Hence 0 6= bcy = b(a+ y)c ∈ I. Since b not belong

to (I : c), we conclude that a+ y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal of R and

ab ∈ I and by ∈ I, we conclude that b(a+ y) not belong to I, and hence c ∈
√

I, a contradiction. Thus bcI = 0. We show

that acI = 0. Suppose that acI 6= 0. Then acy 6= 0 for some nonunit element y ∈ I. Hence 0 6= acy = a(b+ y)c ∈ I. Since

a not belong to (I : c), we conclude that b+ y is a nonunit element of R. Since I is a weakly 1-absorbing primary k-ideal

of R and ab not belong to I and ay ∈ I, we conclude that a(b+ y) not belong to I, and hence c ∈
√

I, a contradiction.

Thus bcI = 0. We show that acI = 0. Suppose that acI 6= 0. Then acy 6= 0 for some nonunit element y ∈ I. Hence

0 6= acy = a(b+ y)c ∈ I. Since a not belong to (I : c), we conclude that b+ y is a nonunit element of R. Since I is a
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weakly 1-absorbing primary k-ideal of R and ab not belong to I and ay ∈ I, we conclude that a(b+ y) not belong to I,

and hence c ∈
√

I, a contradiction.

Thus acI = 0. Now we prove that aI2 = 0. Suppose that axy 6= 0 for some x,y ∈ I. Since abI = 0 by (1) and acI = 0 by

(2), 0 6= axy = a(b+ x)(c+ y) ∈ I.

Since ab not belong to I, we conclude that c+ y is a nonunit element of R. Since a not belong to (I : c), we conclude

that b+ x is a nonunit element of R. Since I is a weakly 1-absorbing Primary k-ideal of R, we have a(b+ x) ∈ I or

(c+y) ∈
√

I. Since x,y ∈ I, we conclude that ab ∈ I or c ∈
√

I, a contradiction. Thus aI2 = 0. We show bI2 = 0. Suppose

that bxy 6= 0 for some x,y ∈ I. Since abI = 0 by (1) and bcI = 0 by (2), bxy = b(a+ x)(c+ y) ∈ I. Since ab not belong

to I, we conclude that c+ y is a nonunit element of R. Since b not belong to (I : c), we conclude that a+ xis a nonunit

element of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have b(a+ x) ∈ I or (c+ y) ∈
√

I. Since x,y ∈ I,

we conclude that ab ∈ I or c ∈
√

I, a contradiction.Thus bI2 = 0. We show cI2 = 0.

Suppose that cxy 6= 0 for some x,y ∈ I . Since acI = bcI = 0 by (2), 0 6= cxy = (a+ x)(b+ y)c ∈ I. Since a,b not belong

to (I : c), we conclude that a+ x and b+ y are nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of

R, we have (a+ x)(b+ y) ∈ I or c ∈
√

I. Since x,y ∈ I, we conclude that ab ∈ I or c ∈
√

I, a contradiction. Thus cI2 = 0.

3. Assume that xyz 6= 0 for some x,y,z ∈ I. Then 0 6= xyz = (a+ x)(b+ y)(c+ z) ∈ I by (1) and (2). Since ab not belong

to I, we conclude c+ z is a nonunit element of R. Since a,b not belong to (I : c), we conclude that a+ x and b+ y are

nonunit elements of R. Since I is a weakly 1-absorbing primary k-ideal of R, we have (a+ x)(b+ y) ∈ I or c+ z ∈
√

I.

Since x,y,z ∈ I, we conclude that ab ∈ I or c ∈
√

I, a contradiction. Thus I3 = 0.

Theorem 3.5. 1. Let I be a weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing

ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I such that a,b not belong to (I : c). Then I = 0.

2. Let I be a nonzero weakly 1-absorbing primary k-ideal of a reduced semiring R. Suppose that I is not a 1-absorbing

ideal primary ideal of R and (a,b,c) is a 1-triple-zero of I. Then ac ∈ I or bc ∈ I.

Proof. 1. Since a,b not belong to (I : c), then I3 = 0 by Theorem 3.4. Since R is reduced, we conclude that I = 0.

2. Suppose that neither ac ∈ I nor bc = 0. Then I = 0 by (1), a contradiction, since I is a nonzero ideal of R by hypothesis.

Hence if (a,b,c) is a 1-triple-zero of I, then ac ∈ I or bc ∈ I.

Theorem 3.6. Let I be a weakly 1-absorbing primary ideal of R. If I is not a weakly primary ideal of R, then there exist an

irreducible element x ∈ R and a nonunit element y ∈ R such that xy ∈ I, but neither x ∈ I nor y ∈
√

I. Furthermore, if ab ∈ I for

some nonunit elements a,b ∈ R such that neither a ∈ I nor b ∈
√

I, then a is an irreducible element of R.

Proof. Suppose that I is not a weakly primary ideal of R. Then there exist nonunit elements x,y ∈ R such that 0 6= xy ∈ I with x

not belong to I, y not belong to
√

I. Suppose that x is not an irreducible element of R. Then x = cd for some nonunit elements

c,d ∈ R. Since 0 6= xy = cdy ∈ I and I is weakly 1-absorbing primary and y not belong to
√

I, we conclude that cd = x ∈ I, a

contradiction. Hence x is an irreducible element of R.

In general, the intersection of a family of weakly 1-absorbing primary ideals need not be a weakly 1-absorbing primary

ideal.

Example 3.7. consider the semiring R = Z6. Then I = (2) and J = (3) are clearly weakly 1-absorbing primary ideals of Z6

but I∩ J = 0 is not a weakly 1-absorbing primary ideal of R.

However, we have the following result.

Proposition 3.8. Let {Ii : i ∈ ∧} be a collection of weakly 1-absorbing primary ideals of R such that Q =
√

Ii =
√

I j for every

distinct i, j ∈ ∧. Then I = ∩i∈∧Ii is a weakly 1-absorbing primary ideal of R.

Proof. Suppose that 0 6= abc ∈ I = ∩i∈∧Ii for nonunit elements a,b,c ∈ R and ab not belong to I. Then for some k ∈ ∧,

0 6= abc ∈ Ik and ab not belong to Ik. It implies that c ∈
√

Ik = Q =
√

I.

Proposition 3.9. Let I be a weakly 1-absorbing primary ideal of R and c be a nonunit element of R\ I. Then (I : c) is a weakly

primary ideal of R.
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Proof. Suppose that 0 6= ab ∈ (I : c) for some nonunit c ∈ R\ I and assume that a not belong to (I : c). Hence b is a nonunit

element of R. If a is unit, then b ∈ (I : c) ⊆
√

(I : c), and we are done. So assume that a is a nonunit element of R. Since

0 6= abc = acb ∈ I and ac not belong to I and I is a weakly 1-absorbing primary ideal of R, we conclude that b ∈
√

I ⊆
√

(I : c).
Thus, (I : c) is a weakly primary ideal of R.

4. Characterization for Weakly 1-absorbing Primary Ideal of R = R1×R2

The next theorem gives a characterization for weakly 1-absorbing primary ideals of R = R1 × R2 where R1 and R2 are

commutative semirings with identity that are not semifields

Theorem 4.1. Let R1 and R2 be commutative semirings with identity that are not semifields, and let R = R1×R2 and I be a a

nonzero proper ideal of R. Then the following statements are equivalent.

1. I is a weakly 1-absorbing primary ideal of R.

2. I = I1×R2 for some primary ideal I1 of R1 or I = R1× I2 for some primary ideal I2 of R2.

3. I is a 1-absorbing primary ideal of R.

4. I is a primary ideal of R1.

Proof. (1)⇒ (2). Suppose that I is a weakly 1-absorbing primary ideal of R. Then I is of the form I1× I2 for some ideals

I1 and I2 of R1 and R2, respectively. Assume that both I1 and I2 are proper. Since I is a nonzero ideal of R, we conclude

that I1 6= 0 or I2 6= 0. We may assume that I1 6= 0. Let 0 6= c ∈ I1 Then 0 6= (1,0)(1,0)(c,1) = (c,0) ∈ I1× I2. It implies that

(1,0)(1,0) ∈ I1× I2 or (c,1) ∈
√

(I1× I2) =
√

I1×
√

I2, that is I1 = R1 or I2 = R2, a contradiction. Thus either I1 or I2 is a

proper ideal. Without loss of generality, assume that I = I1×R2 for some proper ideal I1 of R1. We show that I1 is a primary

ideal of R1. Let ab ∈ I1 for some a,b ∈ R1. We can assume that a and b are nonunit elements of R1. Since R2 is not a semifield,

there exists a nonunit nonzero element x ∈ R2. Then 0 6= (a,1)(1,x)(b,1) I1×R2 which implies that either (a,1)(1,x) ∈ I1×R2

or (b,1)in
√

I1×R2 =
√

I1×R2; i.e., a ∈ I1 or b ∈
√

I1.

(2)⇒ (3). Since I is a primary ideal of R, I is a 1-absorbing primary ideal of R by [ [9], Theorem (1)].

(3)⇒ (4) Since I a 1-absorbing primary ideal of R and R is not a quasilocal semring, we conclude that I is a primary ideal of R

by [9, Theorem(3)].

(4)⇒ (1) Let nonunit elements a,b,c ∈ R, and 0 6= abc ∈ I. Assume ab not belong to I. Since I is primary ideal, we have

cm ∈ I for some positive integer m, so c ∈
√

I. So I is a weakly 1-absorbing primary ideal.

Theorem 4.2. Let R1, ...,Rn be commutative semirings with 1 6= 0 for some 2≤ n < ∞, and let R = R1× ......×Rn. Then the

following statements are equivalent.

1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.

2. n = 2 and R1,R2 are semifields.

Proof. (1)⇒ (2). Suppose that every proper ideal of R is a weakly 1-absorbing primary ideal. Without loss of generality, we

may assume that n = 3. Then I = R1×{0}×{0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero a ∈ R1,

we have(0,0,0) 6= (1,0,1)(1,0,1)(a,1,0) = (a,0,0) ∈ I, but neither (1,0,1)(1,0,1) ∈ I nor (a,1,0) ∈
√

I, a contradiction.

Thus n = 2. Assume that R1 is not a semifield. Then there exists a nonzero proper ideal A of R1. Hence I = A×{0} is a

weakly 1-absorbing primary ideal of R. However, for a nonzero a ∈ A, we have (0,0) 6= (1,0)(1,0)(a,1) = (a,0) ∈ I, but

neither(1,0)(1,0) ∈ I nor (a,1) ∈
√

I, a contradiction. And, assume that R2 is not a semifield. Then there exists a nonzero

proper ideal B of R2. Hence I = B×{0} is a weakly 1-absorbing primary ideal of R. However, for a nonzero b ∈ B, we have

(0,0) 6= (1,0)(1,0)(b,1) = (a,0) ∈ I, but neither (1,0)(1,0) ∈ I nor (a,1) ∈
√

I, a contradiction. Hence n = 2 and R1,R2 are

semifields.

(2)⇒ (1). Suppose that n = 2 and R1,R2 are semifields. Then R has exactly three proper ideals, i.e., {(0,0)},{0}×R2 and

R1×{0} are the only proper ideals of R. Hence it is clear that each proper ideal of R is a weakly 1-absorbing primary ideal of

R.

Since every semiring that is a product of a finite number of fields is a von-Neumann regular semiring, in light of Theorem 4

and Theorem 14 we have the following result.

Corollary 4.3. Let R1, ...,Rn be commutative semirings with 1 6= 0 for some 2≤ n < ∞, and let R = R1× .....×Rn. Then the

following statements are equivalent.



On Weakly 1-Absorbing Primary Ideals of Commutative Semirings — 206/208

1. Every proper ideal of R is a weakly 1-absorbing primary ideal of R.

2. Every proper ideal of R is a weakly primary ideal of R.

3. n = 2 and R1,R2 are semifields, and hence R = R1×R2 is a von-Neumann regular semiring.

Theorem 4.4. Let R1 and R2 be commutative semirings and f : R1→ R2 be a semiring homomorphism with f (1) = 1. Then

the following statements hold:

1. Suppose that f is a monomorphism and f (a) is a nonunit element of R2 for every nonunit element a ∈ R1 and J is a

weakly 1-absorbing primary ideal of R2. Then f (−1)(J) is a weakly 1-absorbing primary ideal of R1.

2. If f is an epimorphism and I is a weakly 1-absorbing primary ideal of R1 such that Ker( f )⊆ I, then f (I) is a weakly

1-absorbing primary ideal of R2.

Proof. . (1) Let 0 6= abc ∈ f (−1)(J) for some nonunit elements a,b,c ∈ R. Since Ker( f ) = 0, we have 0 6= f (abc) =
f (a) f (b) f (c) ∈ J, where f (a), f (b), f (c) are nonunit elements of R2 by hypothesis. Hence f (a) f (b) ∈ J or f (c) ∈

√
J. Hence

ab ∈ f (−1)(J) or c ∈
√

( f (−1)(J)) = f (−1)(
√

J). Thus f (−1)(J) is a weakly 1-absorbing primary ideal of R1.

Let 0 6= xyz ∈ f (I) for some nonunit elements x,y,z ∈ R. Since f is onto, there exists nonunit elements a,b,c ∈ I such that

x = f (a),y = f (b),z = f (c). Then f (abc) = f (a) f (b) f (c) = xyz ∈ f (I). Since Ker( f )⊆ I, we have 0 6= abc ∈ I. It follows

ab ∈ I or c ∈
√

I. Thus xy ∈ f (I) or z ∈ f (
√

I). Since f is onto and Ker( f )⊆ I, we have f (
√

I) =
√

( f (I)). Thus we are done.

Example 4.5. LetA = K[x,y], where K is a semifield, M = (x,y)A, and B = AM . Note that B is a quasilocal semiring with

maximal ideal MM . Then I = xMM = (x2,xy)B is a 1-absorbing primary ideal of B and
√

I = xB. However xy ∈ I, but

neither x ∈ I nor y ∈
√

I. Thus I is not a primary ideal of B. Let f : B×B→ B such that f (x,y) = x. Then f is a semiring

homomorphism from B×B onto B such that f (1,1) = 1. However, (1,0) is a nonunit element of B×B and f (1,0) = 1 is a unit

of B. Thus f does not satisfy the hypothesis of 4.4. Now f (−1)(I) = I×B is not a weakly 1-absorbing ideal of B×B by 4.1.

Theorem 4.6. Let I be a proper ideal of R. Then the following statements hold.

1. If J is a proper ideal of a semiring R with J ⊆ I and I is a weakly 1-absorbing primary ideal of R, then I/J is a weakly

1-absorbing primary ideal of R/J.

2. If J is a proper ideal of a semiring R with J ⊆ I such that U(R/J) = {a+ J | a ∈U(R)}. If J is a 1-absorbing primary

ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a 1-absorbing primary ideal of R.

3. If {0} is a 1-absorbing primary ideal of R and I is a weakly 1-absorbing primary ideal of R, then I is a 1-absorbing

primary ideal of R.

4. If J is a proper ideal of a ring R with J ⊆ I such that U(R/J) = {a+J | a ∈U(R)}. If J is a weakly 1-absorbing primary

ideal of R and I/J is a weakly 1-absorbing primary ideal of R/J, then I is a weakly 1-absorbing primary ideal of R.

Proof. 1. Consider the natural epimorphism π : R→ R/J. Then π(I) = I/J. So we are done by Theorem 1.

2. Suppose that abc ∈ I for some nonunit elements a,b,c ∈ R. If abc ∈ J, then ab ∈ J ⊆ I or c ∈
√

J ⊆
√

I as J is a

1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J 6= (a+ J)(b+ J)(c+ J) ∈ I/J, where

a+ J,b+ J,c+ J are nonunit elements of R/J by hypothesis. Thus (a+ J)(b+ J) ∈ I/J or (c+ J) ∈
√

(I/J). Hence

ab ∈ I or c ∈
√

I.

3. The proof follows from (2).

4. Suppose that 0 6= abc ∈ I for some nonunit elements a,b,c ∈ R. If abc ∈ J, then ab ∈ J ⊆ I or c ∈
√

J ⊆
√

I as J is a

weakly 1-absorbing primary ideal of R. Now assume that abc not belong to J. Then J 6= (a+ J)(b+ J)(c+ J) ∈ I/J,

where a+ J,b+ J,c+ J are nonunit elements of R/J by hypothesis. Thus (a+ J)(b+ J) ∈ I/J or (c+ J) ∈
√

(I/J).

Hence ab ∈ I or c ∈
√

I.

Proposition 4.7. 1. Let R1 and R2 be commutative semirings and f : R1→ R2 be a ring homomorphism with f (1) = 1

such that R2 is not a quasilocal semiring, then f (a) is a nonunit element of R2 for every nonunit element a ∈ R1 and J is

a 1-absorbing primary ideal of R2. Then f (−1)(J) is a 1-absorbing primary ideal of R1.
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2. Let I and J be proper ideals of a semiring R with I ⊆ J. If J is a 1-absorbing primary ideal of R, then J/I is a 1-absorbing

primary ideal of R/I. Furthermore, assume that if R/I is a quasilocal semiring, then U(R/I) = a+ I | a ∈U(R). If J/I

is a 1-absorbing primary ideal of R/I, then J is a 1-absorbing primary ideal of R.

3. Let R be a semiring and A = R[x]. Then a proper ideal I of R is a 1-absorbing primary ideal of R if and only if

(I[x]+ xA)/xA is a 1-absorbing primary ideal of A/xA, since R is semiring-isomorphic to A/xA.

Theorem 4.8. Let S be a multiplicatively closed subset of R, and I a proper ideal of R. Then the following statements hold.

1. If I is a weakly 1-absorbing primary ideal of R such that I∩S = φ , then S(−1)I is a weakly 1-absorbing primary ideal of

S(−1)R.

2. If S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R such that S∩Z(R) = φ and S∩ZI(R) = φ , then I is a weakly

1-absorbing primary ideal of R.

Proof. 1. Suppose that 0 6= a
s1

b
s2

c
s3
∈ S(−1)I for some nonunit a,b,c ∈ R \ S, s1,s2,s3 ∈ S and a

s1

b
s2

not belong to S(−1)I.

Then 0 6= uabc ∈ I for some u ∈ S. Since I is weakly 1-absorbing primary and uab not belong to I, we conclude c ∈
√

I.

Thus c
s3
∈ S(−1)

√
I =

√

(S(−1)I). Thus S(−1)I is a weakly 1-absorbing primary ideal of S(−1)R.

2. Suppose that 0 6= abc ∈ I for some nonunit elements a,b,c ∈ R. Hence 0 6= abc
1

= a
1

b
1

c
1
∈ S(−1)I as S∩Z(R) = φ . Since

S(−1)I is weakly 1-absorbing primary, we have either a
1

b
1
∈ S(−1)I, or c

1
∈
√

S(−1)I = S−1
√

I. If a
1

b
1
∈ S(−1)I, then uab∈ I

for some u ∈ S. Since S∩ZI(R) = φ , we conclude that ab ∈ I. If c
1
∈ S−1

√
I, then (tc)n ∈ I for some positive integer

n≥ 1 and t ∈ S. Since tn not belong to ZI(R), we have cn ∈ I, i.e., c ∈
√

I. Thus I is a weakly 1-absorbing primary ideal

of R.

Definition 4.9. Let I be a weakly 1-absorbing primary ideal of R and I1I2I3 ⊆ I for some proper ideals I1, I2, I3 of R. If (a,b,c)
is not 1-triple zero of I for every a ∈ I1, b ∈ I2,c ∈ I3, then we call I a free 1-triple zero with respect to I1I2I3.

Theorem 4.10. Let I be a weakly 1-absorbing primary ideal of R and J be a proper ideal of R with abJ ⊆ I for some a,b ∈ R.

If (a,b, j) is not a 1-triple zero of I for all j ∈ Jand ab not belong to I, then J ⊆
√

I.

Proof. Suppose that J *
√

I. Then there exists c ∈ J \
√

I. Then abc ∈ abJ ⊆ I. If abc 6= 0, then it contradicts our assumption

that ab not belong to I and c not belong to
√

I. Thus abc = 0. Since (a,b,c) is not a 1-triple zero of I and ab not belong to I,

we conclude c ∈
√

I, a contradiction. Thus J ⊆
√

I.

Theorem 4.11. Let I be a weakly 1-absorbing primary ideal of R and 0 6= I1I2I3 ⊆ I for some proper ideals I1, I2, I3 of R. If I is

free 1-triple zero with respect to I1I2I3, then I1I2 ⊆ I or I3 ⊆
√

I.

Proof. Suppose that I is free 1-triple zero with respect to I1I2I3, and 0 6= I1I2I3 ⊆ I. Assume that I1I2 * I. Then there exist

a ∈ I1,b ∈ I2 such that ab not belong to I. Since I is a free 1-triple zero with respect to I1I2I3, we conclude that (a,b,c) is not a

1-triple zero of I for all c ∈ I3. Thus I3 ⊆
√

I by Theorem 4.10.
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