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Abstract — The conjugate gradient technique is one of the most effective methods for 
solving and minimizing unconstrained optimization problems, and it is widely util-

ized. In this research, we introduce a novel nonlinear conjugate gradient approach 

with excellent convergence for unconstrained minimization problems that is based on 
the nonlinear conjugate gradient method. The new algorithm has the property of de-

scent as well as global convergence. Results from the numerical evaluations demon-

strate that the new technique is very efficient in practical computing and outperforms 

previous comparable approaches in a wide range of conditions. 
Keywords: Unconstrained optimization, Nonlinear conjugate gradient method, 

Global convergence. 

Mathematics Subject Classification: 90C26, 65K10. 

1 Introduction 

Let us take the issue of unconstrained optimization of the n variables in the given 

description [1], [2]:  

 

min
x∈𝑅𝑛

𝑓(𝑥),   (1) 
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where 𝑓: 𝑅𝑛 → 𝑅   is continuous differentiable function , It is among the most effective 

optimization techniques for achieving a problem solution that the conjugate gradient 

algorithms are used (1) . The conjugate gradient method has the form [3], [4]  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘        , 𝑘 = 0,1,2,3, … (2) 

 

Where 𝑥0 is an initial point, 𝛼𝑘  is a step size , 𝑔𝑘 = ∇𝑓(𝑥) and 𝑑𝑘  can be taken as  [5], [6]: 

𝑑𝑘 =  
−𝑔𝑘                 ∶         𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1   ∶    𝑘 ≥ 1

  (3) 

In the case of the nonlinear conjugate gradient approach, the step size α_k is often 

calculated by employing both the exact and inexact line search techniques. As a result, the 

Wolfe inexact line search using the following formula was used in this investigation. The 

conventional Wolfe line search needs a value of 𝛼𝑘  in order to be satisfied [7]. 

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘  (4) 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇𝑑𝑘  (5) 

Where 0 < 𝛿 ≤ 𝜎 < 1 . Line search accuracy would generally be improved with a lower 

value of 𝜎; however, the processing time would be increased as a result. In order to make 

analysis easier, a stronger condition was developed (4)and [7]  

 gk+1
T dk ≥ −σgk

Tdk  (6) 

in which the search for the strong Wolfe line (SWP) is determined by the requirements 

provided by (4) and (6). Generally, dk  is required to satisfy [8], [9], [10]  

dk
Tgk < 0 (7) 

Insuring dk  is a descent direction of 𝑓(𝑥) at xk  . In order to keep the convergence property, 

dk  is often require to satisfy the sufficient descent condition [11] 

gk
Tdk ≤ −c gk 2 (8) 

Where the constant c > 0 . 

Different  βk  will determine different conjugate gradient methods. Some previous works in 

this field show that a proper choice of this parameter led us to a better numerical 

performance. Some famous classical choices of βk  can be found in Hestenes and Stiefel 

(HS) [12], Polak and Ribiere and Polyak (PRP)[13], Fletcher and Reeves (FR)[14], Fletcher 

(CD)[15], Dai and Yuan (DY)[8], and Liu and Storey (LS) [16] as shown below: 

 βk
HS =

gk+1
T yk

dk
Tyk

 ,   βk
LS =

gk+1
T yk

−dk
Tgk

 , βk
PRP =

gk+1
T yk

 gk 2
 

βk
CD =

 gk+1 2

dk
Tgk

  ,   βk
FR =

 gk+1 
2

 gk 2
 , βk

DY =
 gk+1 2

dk
Tyk

 

(9) 

where yk =  gk+1 − gk and  .   denotes the Euclidean norm. 

It is possible to categorize the formulae shown above into two categories. PRP, HS, and LS 

are included in the first category. When it comes to finding the solution to large-scale 

functions, these formulae are considered to be among the most efficient CG methods 
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available. They are able to do this because of an integrated automatic restart function that 

prevents them from being stuck during the computing process. This algorithmic 

convergence to a solution, on the other hand, may fail for certain problems, and the criteria 

for their convergence have not been shown under certain inexact line search conditions 

until recently. The FR, DY, and CD approaches are included in the other category. Despite 

the fact that these algorithms have excellent convergence qualities, their numerical 

performance is often suboptimal as a result of the jamming phenomenon. 

2 The Conjugacy Condition (General Review) 

The search direction dk  for many unconstrained optimization methods, including the 

Newton-like (QN), memoryless BFGS method, and the limited memory BFGS method, can 

be written as 

dk+1 = −Hk+1gk+1 (10) 

 

So, H is a positively defined symmetric matrix of the type that satisfies the equation (QN): 

 

Hk+1yk = sk  (11) 

 

where sk  represents the step. Using (2.1) and (2.2), we get : 

 

dk+1
T yk = −(Hk+1gk+1)Tyk = −gk+1

T  Hk+1yk = −gk+1
T sk  (12) 

 

Which is called Perry Conjugacy Condition . 

Since in this case, gk+1
T sk = 0, if the search is an exact line search (ELS), then the previous 

relationship leads to the conjugate condition. However, applied numerical algorithms 

usually adopt inexact line search (ILS) rather than exact line search (ELS). For this reason, 

it seems more appropriate to replace the conjugate condition 

 

𝑑𝑘+1
𝑇 𝑦𝑘 = 0. (13) 

 

Under the following conditions Dai and Liao (DL) generalized the Conjugacy condition 

defined in (2.3) to the following: 

 

dk+1
T yk = −tgk+1

T sk  (14) 

 

Since t ≥ 0 is a scalar quantity. 

And to make sure that the search direction dk  in (3) satisfies the conjugate condition (14) 

by multiplying (3) by yk  and using (14), we get : 

 

βk+1
DL =

gk+1
T (yk − tsk )

dk
Tyk

 (15) 

It is obvious that if t = 1 in the above eq. we get βPr  Perry method : 
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βk+1
DL = βk+1

HS − t
gk+1

T sk

dk
Tyk

 (16) 

 

From the point of view of the global convergence of general functions, Dai and Liao 

proposed a modification of formula (16) that restricts the first term to non-negative values. 

βk+1
DL + = max  

gk+1
T yk

dk
Tyk

, 0 − t
gk+1

T sk

dk
Tyk

 (17) 

 

The step length 𝛼𝑘  can be obtained by using any of the search line formulas. The strong 

Wolfe conditions (4) and (6) are often used in conjugate gradient methods  .Dai and Liao 

demonstrated global convergence, and for more information, see [11]. 

3 Modified Hestenes - Stiefel Conjugate Gradient (OKI1-CG) 

By using the Conjugacy condition to Dai and Liao from (12) and (14) we get: 

 

−yk
Tgk+1 + βyk

Tsk = −tsk
Tgk+1 (18) 

and assuming the value of t =
 sk

T gk+1 

sk
T yk

 we get: 

 

−yk
Tgk+1 + βyk

Tsk = −
 sk

Tgk+1 

sk
Tyk

sk
Tgk+1 (19) 

βyk
Tsk = yk

Tgk+1 −
 sk

Tgk+1 sk
Tgk+1

sk
Tyk

. (20) 

 

By dividing both sides of equation (20) by  yk
T sk  we get  our new β: 

 

βOKI 1 =
yk

T gk+1

yk
Tsk

−
 sk

T gk+1 
2

 sk
Tyk 2

. (21) 

 

We rate that if exact line search used the βOKI 1 reduces to the βHS  method format if line 

search is exact and objective function is quadratic then (2.12) reduces to the βFR  method. 

the our new 𝛽𝑘  which is known as 𝛽𝑘
𝑂𝐾𝐼1 where (OKI denotes Osama , Khalil and Ibra-

him) and the algorithm is given by : 

  

Algorithm 1 

Stage 1: Initialization. Given 𝑥0 ∈ 𝑅𝑛 , set 𝑘 = 0, compute 𝑓0 = 𝑓 𝑥0 , 𝑔0 = ∇𝑓 𝑥0  and 

𝑑0 = −𝑔0. 

Stage 2 : If  𝑔𝑘 = 0 ,then stop ; otherwise continue . 

Stage 3 : Compute 𝛼𝑘  on the basis of (4) and (6) . 

Stage 4 : Update  a new point on the basis of (2). 

Stage 5 : Compute 𝛽𝑘  on the basis of (21) 

Stage 6 : Compute 𝑑𝑘  on the basis of (3) .  

Stage 7:Convergent test and stopping criteria. 𝑔𝑘 ≤ 𝜖 then stop. Otherwise go to Stage 2 

with 𝑘 = 𝑘 + 1. 
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4 Descent property 

In this section we prove that our algorithm defined in equations (3) and (21) generates des-
cent direction for all iteration according to the following theorem . 

Assumption 1( [3],[6],[17]) Assume that : 

I. The level set  𝑆 =  𝑥 ∈ 𝑅𝑛 ∶ 𝑓(𝑥) ≤ 𝑓 𝑥1   is bounded  

II. In a neighborhood 𝑁 of 𝑆. The function 𝑓 is continuously differentiable and its gra-

dient is Lipschitz continuous. i.e. there exists a constant 𝐿 > 0 such that  
 𝛻𝑓 𝑥 − 𝛻𝑓(𝑦) ≤ 𝐿 𝑥 − 𝑦   (22) 

Under these assumptions on 𝑓 there exists a constant 𝛾 ≥ 0 such that  𝑔(𝑥) ≤ 𝛾 

for all 𝑥 ∈ 𝑆. 

 

Theorem 1 Suppose that assumption (1) hold and consider the algorithm 𝑥𝑘+1 = 𝑥𝑘 +
𝛼𝑘𝑑𝑘  where 𝑑𝑘  generated by (3) and (21), and 𝛼𝑘  satisfies the Strong Wolfe Conditions (4) 

and (6) with 𝜃 <
1

2
. Assume that  𝑠𝑘  tends to zero, also let there exists constants 𝛾1 , 𝛾2 ≥

0 such that  

 𝑔𝑘 2 ≥   𝛾1 𝑠𝑘 2, (23) 

 𝑔𝑘+1 2 ≥   𝛾2 𝑠𝑘 . (24) 

 

Then where 𝑑𝑘  generated by (3) and (21) satisfies the sufficient descent condition. 

 

Proof. The proof is by induction  

For k = 0 then d1 = −g1 and g1
Td1 ≤ −c g1 

2  , 0 < 𝑐 < 1. Let 

 

gk
Tdk ≤ −c gk 2 (25) 

 

Then for k + 1 we have    

 

dk+1 = −gk+1 +  
yk

Tgk+1

yk
T sk

−
 sk

Tgk+1 
2

 sk
Tyk 2

 sk . (26) 

 

Multiply both sides by gk+1
T  we have 

 

gk+1
T dk+1 = − gk+1 

2 +  
yk

T gk+1

yk
T sk

−
 sk

T gk+1 
2

 sk
T yk  

2  sk+1
T gk   (27) 

                   ≤ − gk+1 
2 +  

yk
T gk +1

yk
T sk

−
 sk

T gk+1 
2

 sk
T yk  

2   sk  gk   (28) 

                   ≤ − gk+1 
2 +

yk
T gk+1 sk   gk 

yk
T sk

  (29) 

 

∵ yk
Tsk ≥ −(1 − σ)gk

Tdk ≥ c gk  , with Lipschitz and using (23) and (24) we have  
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gk+1
T dk+1 ≤ − gk+1 

2 +  
L  sk 2 gk+1 2

c  gk 2
≤ − gk+1 2 +

L  sk 3γ2

c γ1 sk 2
 (30) 

gk+1
T dk+1 ≤ − gk+1 2 +

L γ2   sk 

c γ1
 (31) 

∵  sk → 0  ,   ∃ 0 < 𝛿 < 1 then 
L γ2  sk  

c γ1
≤ δ gk+1 

2 and by substituting in (31) we have 

  

gk+1
T dk+1 ≤ − gk+1 

2 + δ gk+1 
2 (32) 

gk+1
T dk+1 ≤ − 1 + δ  gk+1 2 = −c  gk+1 2 (33) 

5 Global convergence 

Next we will show that CG method with βk+1
OKI 1 converges globally. We need the following 

Lemma for the convergence of the proposed new algorithm . 

Lemma 1   [15] Suppose that assumption(1) hold. Consider any conjugate gradient method 

in from (2) and (3), where 𝑑𝑘  is a descent direction and 𝛼𝑘  is obtained by the strong Wolfe 

line search. If  

 
1

 𝑑𝑘+1 2

𝑘>1

= ∞, (34) 

then we have  

𝑙𝑖𝑚𝑘→∞ 𝑔𝑘 = 0. (35) 

 

Theorem 2 Suppose that Assumption (1) hold. Consider the algorithm 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  

where 𝑑𝑘  is descent direction and 𝛼𝑘  is obtained by the Strong Wolfe Conditions (4) and 

(6), and there exists the nonnegative constant 𝑤1 such that  

 

 𝑔𝑘+1 
2 ≤ 𝑤1 𝑠𝑘    (36) 

 

and the function 𝑓 is uniformly convex function i.e. ∃ a constant 𝜇 ≥ 0 such that for all 

𝑥, 𝑦 ∈ 𝑆 

𝑦𝑘
𝑇𝑠𝑘 ≥ 𝜇  𝑠𝑘   

2, (37) 

then  

𝑙𝑖𝑚𝑘→∞ 𝑔𝑘 = 0. (38) 

 

Proof. From (21) and (36) we have  

 

 βOKI 1 =  
yk

T gk+1

yk
T sk

−
 sk

T gk +1 
2

 sk
T yk  

2  ≤  
yk

T gk+1

yk
T sk

 +  
 sk

T gk+1 
2

 sk
T yk  

2    (39) 

               ≤
 yk   gk+1 

μ   sk  
2 +

 sk   
2  gk+1 2

μ2   sk   
4   (40) 

               ≤
L sk  γ

μ   sk  
2 +

 sk  
2   gk+1 2

μ2   sk  
4 ≤

Lγ

μ   sk  
+

w1 sk   
3  

μ2   sk  
4   (41) 

               ≤
Lγ

μ   sk 
+

w1  

μ2   sk 
  (42) 

 

then   βOKI 1 ≤
Lγ

μ   sk  
+

w1  

μ2   sk  
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 dk+1 ≤  gk+1 +  βOKI 1  sk ≤ γ +
Lγ

μ
+

w1 

μ2
=

γμ2 + Lγμ + w1

μ2
 (43) 

and 

 
1

 dk+1 
=   

μ2

γμ2 + Lγμ + w1
 = ∞ 

 

then limk→∞ gk = 0.  

 

For general non-linear functions the global convergence proof of the our algorithm is based 

on the Zoutendijk condition (see [18]) combined with sufficient descent condition hold and 
 dk  is bounded. Suppose that the level set S is bounded and function f is bounded from 

below. Additionally, assume that there exists γ ≥ 0 such that  gk ≥ γ . 

 

Theorem 3 Consider the algorithm 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  where 𝑑𝑘  generated by  

(3), (21) and 𝛼𝑘  computed by Strong Wolfe Conditions (4) and (6). also assume that as-

sumption (1) holds. Where level set 𝑆 is bonded and objective function bounded from be-

low. If  𝑔𝑘 2 ≥ 𝑤 𝑠𝑘 2 then either 𝑔𝑘 = 0 for some 𝑘 or 𝑙𝑖𝑚𝑘→∞ 𝑔𝑘 = 0. 

            

Proof. We have 

 

 βOKI 1 =  
yk

T gk+1

yk
T sk

−
 sk

T gk +1 
2

 sk
T yk  

2  ≤  
yk

T gk+1

yk
T sk

 +  
 sk

T gk+1 
2

 sk
T yk  

2    (44) 

               ≤
 yk   gk+1 

yk
T sk

+
 sk    gk+1 

yk
T sk

  (45) 

 

 ∵ yk
Tsk ≥ −(1 − σ)gk

Tsk   and gk
Tsk ≤ −c  gk 2 then  

yk
Tsk ≥ (1 − σ)c gk 2  that is  

 

 βOKI 1 ≤
 yk   gk+1 

(1−σ)c gk 2 +
 sk    gk+1 

(1−σ)c gk 2 ≤
L sk    gk+1 

(1−σ)c gk 2 +
 sk    gk+1 

(1−σ)c gk 2  (46) 

 

∵  gk 2 ≥ w sk 2 and  gk+1 ≤ γ  sk    

 

 βOKI 1 ≤
L sk  γ 

 1−σ cw  sk  2 +
 sk    γ 

 1−σ cw  sk  2 =   
L γ + γ 

 1−σ cw
  

1

 sk 
   (47) 

∴  dk+1 ≤  gk+1 +  βOKI 1  sk ≤ γ +
L γ + γ 

 1−σ cw
  (48) 

 

Since S is bounded and objective function is bounded from below with Wolfe Condition 

(fk+1 − fk ≤ ραkgk
Tdk) it follows that the Zoutendijk condition holds i.e.  

 

 
 gk

Tdk 
2

 dk 2
< ∞ (49) 

 

By descent property Theorem 1  
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c4

 sk 2

∞

i=1

≤  
 gk 4

 sk 2

∞

i=1

≤  
1

w2

gk
Tdk

 sk 2

∞

i=1

< ∞ (50) 

 

which contradicts with (43). Hence limk→∞ gk = 0. 

6 Numerical results 

Here, we will present the numerical results of the suggested new approach, which were 

achieved by the use of the new formula for the 𝛽𝑘
𝑂𝐾𝐼1 conjugation coefficients and the 

Wolfe (4) and (6) conditional set of test functions in the unconstrained optimization de-

rived from Andrei (2008)[19]. The practical side of unconstrained optimization algo-

rithms is always required since it is complimentary to the theoretical side in the computa-

tion of these algorithms. If we want to fully grasp the algorithm's potential, we must put it 

to practical use by testing it on a variety of non-linear unconstrained situations. Many test 

functions have been chosen to assess the performance of the proposed method, and they 

have been included in this article and are explained in detail in the Appendix to this 

study. The functions are chosen for dimensions n=100,...,1000, and by comparing the 

performance of the new suggested algorithms with the HS and FR algorithms, it is deter-

mined that the algorithms are superior[20]. The terminating condition is  𝑔𝑘 = 10−6 for 

the 𝑔𝑘  variable. All of the code is written in the FORTRAN language with double preci-

sion and the F77 default compiler parameters. In most cases, the test functions begin with 

a standard starting point and subsequently provide summary numerical findings, which 

are shown in Matlab's figures (1), (2), and (3). 

Figure (1) shows that the OKI1 algorithm requires the fewest function computations, fol-

lowed by the HS and FR algorithms. 

Regarding the number of iterations in Figure (2), we see that the curve is located at the 

top, indicating that it requires the fewest repetitions. 

Regarding time, Figure (3) shows that the OKI1 algorithm is clearly better to the HR and 

FR algorithms. 

 

Figure 1:  Performance based on function 
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Figure 2: Performance based on iteration 

 

 
Figure 3: Performance based on time 

7 Conclusions 

Using the (Hestenes-Stiefel HS) technique, we present a novel Conjugate Gradient Me-

thod in this study. We investigate the quality of these formulae from a scientific stand-

point, and we demonstrate the attribute of descent and convergence by using a number of 

assumptions to support our findings. We also looked into the features of the matrices and 

compared their performance to that of the (HS and FR) approaches, which yielded posi-

tive findings for us. 
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