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Zehra İşbilir

Department of Mathematics,

Faculty of Arts and Sciences,
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Abstract

We give a useful and practicable solution method for the general Riccati differential equation

of the form w′ (x) = p(x)+ q(x)w(x)+ r (x)w2 (x). In order to get the general solution

many authors have been interested this type equation. They show that if there exists some

relation about the coefficients p(x) , q(x) , and r (x) then the general solution of this equation

can be given in a closed form. We also determine some relations between these coefficients

and find the general solutions to the given equation. Finally, we give some examples to

illustrate the importance of the presented method.

1. Introduction

The general Riccati differential equation (GRDE) is a well-known first-order nonlinear type of differential equation that arises not only a

whole range of mathematics but also physics and have many applications in different areas of science. Riccati differential equation was

named after the Italian mathematician Jacopo Francesco Riccati [1]. In particular, the GRDE is given by

w′ (x) = p(x)+q(x)w(x)+ r (x)w2 (x) , (1.1)

where we assume that w, p, q, r ∈ C (R,R) are real functions and the integral
∫

q(x)dx exists. In case r (x) = 0, the GRDE reduces a

first-order linear ordinary differential equation of the form

w′ (x) = p(x)+q(x)w(x)

and its general solution can be expressed in closed form as

w(x) = exp

(

∫

q(x)dx

)[

∫

p(x)exp

(

−
∫

q(x)dx

)

dx+ constant

]

.

Similarly in case p(x) = 0, the GRDE reduces a first-order ordinary differential equation and called Bernoulli differential equation of the

form

w′ (x) = q(x)w(x)+ r (x)w2 (x) ,

and general solution can be expressed in closed form as

w(x) = exp

(

−
∫

q(x)dx

)[

−
∫

r (x)exp

(

∫

q(x)dx

)

dx+ constant

]−1

.

Thus, in this paper, we consider the case p(x)r (x) 6= 0 for all x. Because the GRDE has many application areas in fields of applied science,

the solutions of the GRDE play a significant role see [2]. For instance, optimal control, random processes, diffusion problems, stochastic
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realization theory, robust stabilization, network synthesis, and more recently, financial mathematics [3–5], Kalman filtering systems such as

orbiting satellites [3, 6]. Additionally, it is well known that the GRDE of the form

w′ (x)+ p(x)+w2 (x) = 0 (1.2)

plays an important role in studying qualitative analysis of the second order linear differential equation of the form

φ ′′ (x)+ p(x)φ (x) = 0. (1.3)

In fact, if Eq. (1.3) has a positive solution φ(x) on an interval I, then the function w(x) = φ ′ (x)/φ (x) is a solution of Eq. (1.2). The

substitution w(x) = φ ′ (x)/φ (x) for the Eq. (1.3) is embedded in the Picone identity and it can be considered a link between the so-called

Riccati technique and variational technique in the oscillation theory of Eq. (1.3) [7–9].

It is well known that there is not a general method for solving method for the GRDE, but recently, there have been several papers which have

presented methods for solving of the GRDE under certain conditions [10–14].

Let w0 = w0(x) be a particular solution of the GRDE, then the general solution of the Eq. (1.1) can be written as:

w(x) = w0(x)+Φ(x)

[

C−
∫

r (x)Φ(x)dx

]−1

,

where

Φ(x) = exp

(

∫

[2r (x)w0(x)+q(x)]dx

)

,

and C is an arbitrary constant, see [12].

The aim of this paper is to find a general solution to the GRDE by using the relations between the coefficients p(x) , q(x) , and r (x) for

which the Eq. (1.1) can be solved in closed form.

It is well known that if r (x) 6= 0 for all x, the substitution

w(x) =− y′ (x)
r (x)y(x)

(1.4)

into the GRDE, Eq. (1.1) can always be reduced to the second-order linear ordinary differential equation of the form

y′′ (x)−
(

r′ (x)
r (x)

+q(x)

)

y′ (x)+ p(x)r (x)y(x) = 0. (1.5)

As we mentioned above, in general, for any real functions p(x) , q(x) , and r (x) the Eq. (1.1) cannot be solved in closed form. However, if

there exist some specified relations between these coefficient functions, then Eq. (1.1) can be transformed into a second order linear ordinary

differential equation, which can be easily solved, for example see [15–17].

In this paper, we treat a special case of the GRDE Eq. (1.1) where the functions p(x) and r (x) are not identically zero for all x. More

precisely, we consider the case where the functions have the following relations for all x ≥ x0

r (x)exp

(

∫

q(x)dx

)

= α, − p(x)exp

(

−
∫

q(x)dx

)

= β ,

where α and β are some real constants. We shall also use the obtained results to provide the solution of the linear second order ordinary

differential equation corresponding to the considered GRDE. As far as the author is aware, the explicit solution of the class of ordinary

differential equations considered here does not exist in the literature.

2. Solution Method

In order to be able to solve the GRDE there are some concepts which need to be introduced as given in [18].

In this section, we give the general solution of a class of GRDE. The following theorem gives a relationship between the GRDE and the

homogeneous systems of first order differential equations.

Theorem 2.1. Assume that p, q, and r are real functions and the integral
∫

q(x)dx exists. Then the GRDE Eq. (1.1) has a solution u(x),
without zeros for x ≥ x0 iff the homogeneous system of first order differential equations

z′ (x) = A(x) · z(x) (2.1)

has a solution z(x). Where z(x) =

(

y(x)
ξ (x)

)

and

A(x) =

(

0 r (x)exp(
∫

q(x)dx)
−p(x)exp(−

∫

q(x)dx) 0

)

. (2.2)
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Proof. Let w(x) be a solution of Eq. (1.1) and let w(x) =− y′(x)
r(x)y(x)

. Then y(x) satisfies the second order linear differential equation Eq. (1.5)

y′′ (x)−
(

r′ (x)
r (x)

+q(x)

)

y′ (x)+ p(x)r (x)y(x) = 0.

Multiplying Eq. (1.5) by the integrating factor (r (x))−1 exp(−
∫

q(x)dx) for the first two term, we obtain

[

(r (x))−1 exp

(

−
∫

q(x)dx

)

y′ (x)

]′
+ p(x)exp

(

−
∫

q(x)dx

)

y(x) = 0.

Hence, if we let (r (x))−1 exp(−
∫

q(x)dx)y′ (x) = ξ (x) and z(x) =

(

y(x)
ξ (x)

)

, then z(x) is a solution of the homogeneous system of first

order differential equations, Eq. (2.1) with A(x) is given (2.2).

The following theorem summarizes the present study:

Theorem 2.2. Assume that p(x) , q(x) , and r (x) hold the relations

r (x)exp

(

∫

q(x)dx

)

= α, − p(x)exp

(

−
∫

q(x)dx

)

= β . (2.3)

Then the general solution of Eq. (1.1) is given

w(x) =



































√

αβ

r (x)





1−C exp
(

2
√

αβx
)

1+C exp
(

2
√

αβx
)



 ; i f αβ > 0,

√

−αβ

r (x)





sin
(

√

−αβx−C cos
(

√

−αβx
))

cos
(

√

−αβx
)

+C sin
(

√

−αβx
)



 ; i f αβ < 0,

where C is any real constant.

Proof. If the conditions of (2.3) are fulfilled, the homogeneous system of first order differential equations Eq. (2.1) becomes a first order

homogeneous system with constant coefficients

z′ (x) =

(

0 α
β 0

)

· z(x) . (2.4)

Then, the eigenvalues of the coefficient matrix A=

(

0 α
β 0

)

are r1 =−
√

αβ and r2 =
√

αβ . If αβ > 0 the eigenvalues of the coefficient

matrix A are real constants such as r1 = −
√

αβ and r2 =
√

αβ . Similarly if αβ < 0 the eigenvalues of the coefficient matrix A are

complex constants such as r1 =−i
√

−αβ and r2 = i
√

−αβ . In case, αβ > 0, Φ(x) =





exp
(

−
√

αβx
)

exp
(

√

αβx
)

−
√

β
α exp

(

−
√

αβx
)

√

β
α exp

(

√

αβx
)





is a fundamental matrix of Eq. (2.4). Then general solution of Eq. (2.4)

z(x) = Φ(x) ·C =





exp
(

−
√

αβx
)

exp
(

√

αβx
)

−
√

β
α exp

(

−
√

αβx
)

√

β
α exp

(

√

αβx
)



 ·
(

c1

c2

)

,

where c1 and c2 are real constants. Thus the general solution of Eq. (1.5) is

y(x) = c1 exp
(

−
√

αβx
)

+ c2 exp
(

√

αβx
)

.

Therefore,

w(x) =− y′ (x)
r (x)y(x)

=

√

αβ

r (x)





c1 exp
(

−
√

αβx
)

− c2 exp
(

√

αβx
)

c1 exp
(

−
√

αβx
)

+ c2 exp
(

√

αβx
)



 .

When c1 = 0, the function w(x) = −
√

αβ

r(x)
is a solution of the Eq. (1.1). When c1 6= 0 we can divide the numerator and denominator by

c1e−
√

αβx to get that

w(x) =

√

αβ

r (x)





1−C exp
(

2
√

αβx
)

1+C exp
(

2
√

αβx
)



 ,

is general solution of the Eq. (1.1), where C =
c2

c1
is any real constant. Thus the proof of the first part is complete. Similarly if αβ < 0

Φ(x) =







cos
(

√

−αβx
)

sin
(

√

−αβx
)

−
√

−αβ

β
sin
(

√

−αβx
)

√

−αβ

α
cos
(

√

−αβx
)






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is a fundamental matrix of Eq. (2.4). Then general solution of Eq. (2.4)

z(x) = Φ(x) ·C =







cos
(

√

−αβx
)

sin
(

√

−αβx
)

−
√

−αβ

β
sin
(

√

−αβx
)

√

−αβ

α
cos
(

√

−αβx
)






·
(

c1

c2

)

,

where c1 and c2 are real constants. Thus the general solution of Eq. (1.5) is

y(x) = c1 cos
(

√

−αβx
)

+ c2 sin
(

√

−αβx
)

.

Therefore,

w(x) =− y′ (x)
r (x)y(x)

=

√

−αβ

r (x)





c1 sin
(

√

−αβx
)

− c2 cos
(

√

−αβx
)

c1 cos
(

√

−αβx
)

+ c2 sin
(

√

−αβx
)



 .

When c1 = 0, the function w(x) =−
√

−αβ

r (x)
tan
(

√

−αβx
)

is a solution of the Eq. (1.1). When c1 6= 0

w(x) =

√

αβ

r (x)





sin
(

√

−αβx
)

−C cos
(

√

−αβx
)

cos
(

√

−αβx
)

+C sin
(

√

−αβx
)



 ,

is general solution of the Eq. (1.1), where C is any real constant. Thus the proof is complete.

Remark 2.3. If the functions p(x) , q(x) , and r (x) are constants such as p(x) = a, q(x) = b, and r (x) = c. Then, the conditions of (2.3)

are fulfilled as α = c and β = −a for b = 0 and we can use the Theorem 2.2 for the general solution of Eq. (1.1). But when b 6= 0, the

conditions of (2.3) not satisfied. In general case a,b,c ∈ R and ac 6= 0, the Eq. (1.1) becomes a first-order separable ordinary differential

equation which is defined by

dw

a+bw+ cw2
= dx.

Based on the integral involving the rational algebraic functions of the form

∫

dw

a+bw+ cw2
=































2√
4ac−b2

arctan

(

2cw+b√
4ac−b2

)

; i f 4ac−b2 > 0,

2√
b2 −4ac

ln

∣

∣

∣

∣

∣

2cw+b−
√

b2 −4ac

2cw+b+
√

b2 −4ac

∣

∣

∣

∣

∣

; i f 4ac−b2 < 0,

− 2

2cw+b
; i f 4ac−b2 = 0,

in view of this, the general solution of Eq. (1.1) is given in a closed form by

w(x) =







































1
2c

[

−b+
√

4ac−b2 tan

(

1

2

√
4ac−b2x+C

)]

; i f 4ac−b2 > 0,

√
b2 −4ac

2c





1+C exp
(√

b2−4ac
2 x

)

1−C exp
(√

b2−4ac
2 x

)



 ; i f 4ac−b2 < 0,

− 1
2c

(

b+
2

x+C

)

; i f 4ac−b2 = 0,

where C is an arbitrary constant.

3. Some Examples

Here, we illustrate some examples to consider some special cases. In these examples, we assume that the above conditions are satisfied and

the general solutions of the GRDE are obtained easily.

Example 3.1. Consider the first-order nonlinear differential equation for x ≥ x0 > 0

w′ (x) =
4

x2
− 2

x
w(x)+ x2w2 (x) . (3.1)

For this equation the conditions of (2.3) are satisfied with p(x) =
4

x2
, q(x) =−2

x
, and r (x) =−x2. Thus, by Theorem 2.2 αβ =−4 < 0

and the general solution of Eq. (3.1) is obtained as

w(x) =
2

x2

(

sin2x−C cos2x

cos2x+C sin2x

)

,

where C is an arbitrary constant.
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Example 3.2. Consider the first-order nonlinear differential equation

w′ (x) =
9exarctanx

√
x2 +1

+(arctanx)w(x)+
(

4e−xarctanx
√

x2 +1
)

w2 (x) . (3.2)

For this equation the conditions of (2.3) are satisfied with p(x) =
9exarctanx

√
x2 +1

,q(x) = arctanx, and r (x) = 4e−xarctanx
√

x2 +1. Thus, by

Theorem 2.2 αβ =−36 < 0 and the general solution of Eq. (3.2) is obtained as

w(x) =
3exarctanx

2
√

x2 +1

(

sin6x−C cos6x

cos6x+C sin6x

)

,

where C is an arbitrary constant.

Example 3.3. Consider the first-order nonlinear differential equation for x ≥ x0 > 0

w′ (x) = xxe−x +(lnx)w(x)−
(

x−xex
)

w2 (x) . (3.3)

Note that the conditions of (2.3) are satisfied with α = β = −1, p(x) = xxe−x, q(x) = lnx, and r (x) = −x−xex. Thus, by Theorem 2.2

αβ = 1 > 0 and general solution of Eq. (3.3) is

w(x) =−xxe−x

(

1−Ce2x

1+Ce2x

)

,

where C is any constant.

Example 3.4. Consider the first-order nonlinear differential equation

w′ (x) = 1+5w(x)+9w2 (x) . (3.4)

For this equation p(x) = 1, q(x) = 5, and r (x) = 9 are constant functions and conditions of (2.3) not satisfied. Thus, we can not use the

Theorem 2.2 for the general solution of the Eq. (3.4). But we can use the Remark 2.3 for the general solution of equation, Eq. (3.4) and the

general solution obtained as

w(x) =
1

6

(

1+C exp
(

3
2 x
)

1−C exp
(

3
2 x
)

)

,

where 4ac−b2 =−9 < 0 and C is any real constant.

Example 3.5. Consider the first-order nonlinear differential equation

w′ (x) = 1+4w(x)+4w2 (x) . (3.5)

If we use the Remark 2.3 for the equation Eq. (3.5) we get the general solution as

w(x) =−1

4

(

2+
1

x+C

)

,

where 4ac−b2 = 0 and C is any real constant.

4. Conclusion

In this paper, we have obtained the general solution of a class of first-order nonlinear ordinary differential equation, which called GRDE.

We have converted the GRDE into a homogeneous system of first-order differential equations. In order to do this we use two well-known

transformations as explained above. The first transformation converts the nonlinear first-order ordinary differential equation Eq. (1.1) to

a linear second-order ordinary differential equation Eq. (1.5). The second one converts Eq. (1.5) to a homogeneous system of first order

differential equations Eq. (2.1). Then, by using the fact of the Section 2, we give general solution of a particular class of GRDE. Examples

were given here for each case demonstrate the present method.
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Abstract

The scope of this paper is to look at some aspects of the differential geometry of Bézier

curves in Minkowski space. For that purpose, we firstly introduce Frenet Bézier curve

in Minkowski 3-space. Especially, we investigate the Serret-Frenet frame, curvature and

torsion of the Frenet Bézier curves at all points. Moreover, we give the Frenet apparatus of

these curves at the end points.

1. Introduction and Background

Let E3
1 be the three dimensional Minkowski space with the metric < dx,dx >= dx2

1 + dx2
2 − dx2

3 where x1,x2,x3 denotes the canonical

coordinates in E3. An arbitrary vector x is said to be spacelike if < x,x >> 0 or x = 0, timelike if < x,x >< 0 and lightlike or null if

< x,x >= 0. The norm is defined by ‖x‖=
√

|< x,x >| for x ∈ E3
1 . A regular curve in E3

1 is called locally spacelike, timelike or null, if all

its velocity vectors are spacelike, timelike or null, respectively [1]. For any two vectors x = (x1,x2,x3) and y = (y1,y2,y3) in E3
1 , the inner

product is the real number < x,y >= x1y1+x2y2−x3y3 and the vector product is defined by x∧IL y = (x3y2−x2y3,x1y3−x3y1,x1y2−x2y1).
See for more information on Minkowski space in [1, 2].

Bézier curves are represented by Pierre Bézier in 1968. Bézier curves are essential among the curves since they are applicable to computer

graphics and related areas. See for more detailed information in [3, 4]. Recently, the geometry of Bézier curves have been investigated by

many researechers due to the fact that they have several important properties. Incesu and GÃ¼rsoy studied the curvatures and principal form

of the Bézier curve in [5]. Georgiev worked on the shapes of planar and cubic Bézier curve in [6, 7].

In the theory of curves in the Minkowski space, one of the interesting problem is the characterization of a regular curve. In [8], Georgiev

studied on the geometry of the spacelike Bézier curve. He also examined the spacelike Bézier surfaces in Minkowski 3−space in [9].

Chalmoviansky, Pokorna studied quadratic and planar cubic spacelike Bézier curves in Minkowski 3−space in [10, 11]. In [12], Ugail,

Marquaez and Yılmaz handled the conditions of timelike and spacelike Bézier surfaces. The Serret-Frenet frames, curvatures and torsion of

the timelike and spacelike Bézier curves were calculated at the end points in [13–16]. Our aim in this paper is to investigate the timelike and

spacelike Bézier curve of degree m at all points.

A classical Bézier curve of degree m with control points p j is defined as

b(t) =
m

∑
j=0

p jB
m
j (t), t ∈ [0,1] (1.1)

where

B j,m(t) =

{

m!
(m− j)! j!

(1− t)m− jt j, if 0 ≤ j ≤ m

0, otherwise

are called the Bernstein basis functions of degree m. The polygon formed by joining the control points p0, p1, ..., pm in the specified order is

called the Bézier control polygon.

If a curve is differentiable at its each point in an open interval, in this case a set of orthogonal unit vectors can be obtained. And these unit

vectors are called Frenet frame. The rates of these frame vectors along the curve define curvatures of the curves. The set of these vectors and

curvatures of a curve, is called Frenet apparatus of the curve.

Email address and ORCID number: ayilmazceylan@akdeniz.edu.tr, 0000-0002-8051-2879 (A. Yılmaz Ceylan)
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Theorem 1.1 ( [14]). Let~u,~v and ~w vectors in E3
1 . Then

(i) < u∧IL v,w >=−det(u,v,w),
(ii) (u∧IL v)∧IL w =−< u,w > v+< v,w > u,

(iii) < u∧IL v,u >= 0 and < u∧IL v,v >= 0,

(iv) < u∧IL v,u∧IL v >=−< u,u >< v,v >+(< u,v >)2 .

Let β be a curve in E3
1 . Then β is called timelike (resp. spacelike, null) at t, if the tangent vector β ′(t) is a timelike (resp.cspacelike, null)

vector.

Theorem 1.2 ( [17]). For a regular curve β with speed v = ds
dt , and curvature κ > 0,

(i) β is spacelike non-unit speed curve, then the derivative formula of Frenet frame is as follows:

T ′ =vκN,

N′ =v(−δκT + τB),

B′ =vτN.

(ii) β is timelike non-unit speed curve, then the derivative formula of Frenet frame is as follows:

T ′ =vκN,

N′ =v(κT + τB),

B′ =vτN.

Theorem 1.3. Let~u and~v be vectors in Minkowski 3−space.

(i) If~u and~v are future pointing (or past pointing) timelike vectors, then~u∧IL~v is a spacelike vector, <~u,~v >=−‖~u‖IL‖~v‖IL coshθ and

‖~u∧IL~v‖= ‖~u‖IL‖~v‖IL sinhθ where θ is the hyperbolic angle between~u and~v.

(ii) If ~u and ~v are spacelike vectors satisfying the inequality |< ~u,~v >| < ‖~u‖IL‖~v‖IL, then ~u ∧IL ~v is timelike vector,

<~u,~v >= ‖~u‖IL‖~v‖IL cosθ and ‖~u∧IL~v‖= ‖~u‖IL‖~v‖IL sinθ where θ is the angle between~u and~v.

(iii) If ~u and ~v are spacelike vectors satisfying the inequality |< ~u,~v >| > ‖~u‖IL‖~v‖IL, then ~u ∧IL ~v is timelike vector,

<~u,~v >=−‖~u‖IL‖~v‖IL coshθ and ‖~u∧IL~v‖= ‖~u‖IL‖~v‖IL sinhθ where θ is the hyperbolic angle between~u and~v.

(iv) If~u and~v are spacelike vectors satisfying the inequality |<~u,~v >|= ‖~u‖IL‖~v‖IL, then~u∧IL~v is lightlike.

See more [1, 2, 18, 19].

Theorem 1.4 ( [8, 14]). Let b(t) be a Bézier curve. If all the vectors of the Bézier control polygon is spacelike (timelike), then b(t) is

spacelike (timelike) curve.

Definition 1.5. Timelike Bézier curves and spacelike Bézier curves with spacelike or timelike normal vectors are called Frenet Bézier curves.

2. Main Results

2.1. Timelike Bézier curves

In this section, we give Serret-Frenet frame, curvature and torsion of timelike Bézier curves.

Theorem 2.1. Let b(t) be a timelike Bézier curve and p j are control points. The Serret-Frenet frame T,N,B, curvature κ and torsion τ of

b(t) is given by

T (t) =

m−1

∑
j=0

Bm−1
j (t)△p j

(−
m−1

∑
j,i=0

Bm−1
j (t)Bm−1

i (t)<△p j,△pi >)
1
2

, (2.1)

N(t) =−

m−1

∑
j=0

m−2

∑
i=0

m−1

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−1
k

(t)(△p j ∧IL △2 pi)∧IL △pk

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL‖
m−1

∑
k=0

Bm−1
k

(t)△pk‖IL

, (2.2)

B(t) =

m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

, (2.3)

κ(t) =
m−1

m

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖3

IL

, (2.4)
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τ(t) =− m−2

m

m−1

∑
j=0

m−2

∑
i=0

m−3

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−3
k

(t)det(△p j,△2 pi,△3 pk)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖2
IL

, (2.5)

where △p j are in the same cone, △p j = p j+1 − p j, △2 p j =△p j+1 −△p j and △3 p j =△2 p j+1 −△2 p j.

Proof. Since all the vectors △p j are timelike vectors, the norm of △p j is

‖△p j‖IL =
√

−<△p j,△p j > (2.6)

for t ∈ [0,1]. The tangent vector is calculated as:

T (t) =
b′(t)

‖b′(t)‖IL

=

m−1

∑
j=0

Bm−1
j (t)△p j

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖IL

.

(2.7)

From the equation (2.6) and (2.7), the equation (2.1) is handled.

The binormal vector is obtained by

B(t) =
b′(t)∧IL b′′(t)

‖b′(t)∧IL b′′(t)‖IL

=

(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
i=0

Bm−2
i (t)△2 pi)

‖(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
i=0

Bm−2
i (t)△2 pi)‖IL

.

Since the tangent T of the timelike Bézier curve is timelike, N and B are spacelike vectors, the principal normal vector N is provided by

N(t) =−B(t)∧IL T (t)

=−
(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
i=0

Bm−2
i (t)△2 pi)

‖(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
i=0

Bm−2
i (t)△2 pi)‖IL

∧IL

m−1

∑
j=0

Bm−1
j (t)△p j

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖IL

.

The curvature of timelike Bézier curve is

κ(t) =
‖b′(t)∧IL b′′(t)‖IL

‖b′(t)‖3
IL

=
m−1

m

(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
i=0

Bm−2
i (t)△2 pi)

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖3

IL

.

and the torsion of timelike Bézier curve is

τ(t) =
< b′(t)∧IL b′′(t),b′′′(t)>

‖b′(t)∧IL b′′(t)‖IL

=
m−2

m

<
m−1

∑
j=0

Bm−1
j (t)△p j ∧IL

m−2

∑
i=0

Bm−2
i (t)△2 p j,

m−3

∑
k=0

Bm−3
k

(t)△3 pk >

‖(
m−1

∑
j=0

Bm−1
j (t)△p j)∧IL (

m−2

∑
j=0

Bm−2
j (t)△2 pi)‖IL

.

From the Theorem 1.3 and Theorem 2.1, the following results can be handled.
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Corollary 2.2 ( [16]). Let b(t) be a timelike Bézier curve and p j are control points. The Serret-Frenet frame T,N,B, curvature κ and torsion

τ of b(t) at t = 0 is given by

T (0) =
△p0√

−<△p0,△p0 >
,

N(0) =
△p0

‖△p0‖IL
cothθ − △p1

‖△p1‖IL
cschθ ,

B(0) =
△p0 ∧IL △p1

‖△p0‖IL‖△p1‖IL sinhθ
,

κ(0) =
m−1

m

‖△p1‖IL sinhθ

‖△p0‖2
IL

,

τ(0) =− m−2

m

det(△p0,△p1,△p2)

‖△p0 ∧IL △p1‖2
IL

,

where θ is the angle between △p0 and △p1.

Corollary 2.3 ( [16]). Let b(t) be a timelike Bézier curve and p j are control points. The Serret-Frenet frame T,N,B, curvature κ and torsion

τ of b(t) at t = 1 is given by

T (1) =
△pm−1

√

−<△pm−1,△pm−1 >
,

N(1) =
△pm−2

‖△pm−2‖IL
cschθ − △pm−1

‖△pm−1‖IL
cothθ ,

B(1) =− △pm−1 ∧IL △pm−2

‖△pm−1‖IL‖△pm−2‖IL sinhθ
,

κ(1) =
m−1

m

‖△pm−2‖IL sinhθ

‖△pm−1‖2
IL

,

τ(1) =
m−2

m

det(△pm−1,△pm−2,△pm−3)

‖△pm−1 ∧IL △pm−2‖2
IL

,

where θ is the angle between △pm−2 and △pm−1.

2.2. Spacelike Bézier Curves

In this section, we calculate Serret-Frenet frame, curvature and torsion of spacelike Bézier curves with spacelike and timelike normals.

2.2.1. Spacelike Bézier Curves with Spacelike normal

In this subsection, we calculate Frenet apparatus of a spacelike Bézier curve with spacelike normal.

Theorem 2.4. Let b(t) be a spacelike Bézier curve with spacelike normal and p j are control points. The Serret-Frenet frame T,N,B,

curvature κ and torsion τ of b(t) is given by

T (t) =

m−1

∑
j=0

Bm−1
j (t)△p j

(
m−1

∑
j,i=0

Bm−1
j (t)Bm−1

i (t)<△p j,△pi >)
1
2

, (2.8)

N(t) =−

m−1

∑
j=0

m−2

∑
i=0

m−1

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−1
k

(t)(△p j ∧IL △2 pi)∧IL △pk

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL‖
m−1

∑
k=0

Bm−1
k

(t)△pk‖IL

, (2.9)

B(t) =

m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

, (2.10)

κ(t) =
m−1

m

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖3

IL

, (2.11)
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τ(t) =−m−2

m

m−1

∑
j=0

m−2

∑
i=0

m−3

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−3
k

(t)det(△p j,△2 pi,△3 pk)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖2
IL

, (2.12)

where △p j are in the same cone.

Proof. Since all the vectors △p j are spacelike vectors, the norm of △p j is

‖△p j‖IL =
√

<△p j,△p j >. (2.13)

for t ∈ [0,1]. The tangent vector is calculated as:

T (t) =
b′(t)

‖b′(t)‖IL

=

m−1

∑
j=0

Bm−1
j (t)△p j

(
m−1

∑
j,i=0

Bm−1
j (t)Bm−1

i (t)<△p j,△pi >)
1
2

.

(2.14)

From the equation (2.13) and (2.14), the equation (2.8) is handled.

Since the tangent T, N spacelike and B is timelike, N is given by the equation

N = B∧IL T.

The rest of the proof is similar to Theorem 2.1.

From the Theorem 1.3 and Theorem 2.4, the following results can be seen easily.

Corollary 2.5 ( [13]). Let b(t) be a spacelike Bézier curve with spacelike normal and p j are control points. The tangent vector T of b(t) at

t = 0 is given by

T (0) =
△p0√

<△p0,△p0 >
,

If the inequality |<△p0,△p1 >|IL < ‖△p0‖IL‖△p1‖IL holds for △p0 and △p1, N,B, κ and τ of b(t) at t = 0 is given by

N(0) =
△p1

‖△p1‖IL
cscθ − △p0

‖△p0‖IL
cotθ ,

B(0) =
△p0 ∧IL △p1

‖△p0‖IL‖△p1‖IL sinθ
,

κ(0) =
m−1

m

‖△p1‖IL sinθ

‖△p0‖2
IL

,

τ(0) =− m−2

m

det(△p0,△p1,△p2)

‖△p0 ∧IL △p1‖2
IL

,

and if the inequality |<△p0,△p1 >|IL > ‖△p0‖IL‖△p1‖IL holds for △p0 and △p1, N,B, κ and τ of b(t) at t = 0 is given by

N(0) =
△p1

‖△p1‖IL
cschθ +

△p0

‖△p0‖IL
cothθ ,

B(0) =
△p0 ∧IL △p1

‖△p0‖IL‖△p1‖IL sinhθ
,

κ(0) =
m−1

m

‖△p1‖IL sinhθ

‖△p0‖2
IL

,

τ(0) =− m−2

m

det(△p0,△p1,△p2)

‖△p0 ∧IL △p1‖2
IL

,

where θ is the angle between △p0 and △p1.

Corollary 2.6 ( [13]). Let b(t) be a spacelike Bézier curve with spacelike normal and p j are control points. The tangent vector T of b(t) at

t = 1 is given by

T (1) =
△pm−1

√

<△pm−1,△pm−1 >
.
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If the inequality |<△pm−2,△pm−1 >|IL < ‖△pm−2‖IL‖△pm−1‖IL holds for △pm−2 and △pm−1, N,B, κ and τ of b(t) at t = 1 is given by

N(1) =− △pm−2

‖△pm−2‖IL
cscθ +

△pm−1

‖△pm−1‖IL
cotθ ,

B(1) =− △pm−1 ∧IL △pm−2

‖△pm−1‖IL‖△pm−2‖IL sinθ
,

κ(1) =
m−1

m

‖△pm−2‖IL sinθ

‖△pm−1‖2
IL

,

τ(1) =
m−2

m

det(△pm−1,△pm−2,△pm−3)

‖△pm−1 ∧IL △pm−2‖2
IL

,

and if the inequality |<△pm−2,△pm−1 >|IL > ‖△pm−2‖IL‖△pm−1‖IL holds for △pm−2 and △pm−1, N,B, κ and τ of b(t) at t = 1 is

given by

N(1) =− △pm−2

‖△pm−2‖IL
cschθ − △pm−1

‖△pm−1‖IL
cothθ ,

B(1) =− △pm−1 ∧IL △pm−2

‖△pm−1‖IL‖△pm−2‖IL sinhθ
,

κ(1) =
m−1

m

‖△pm−2‖IL sinhθ

‖△pm−1‖2
IL

,

τ(1) =
m−2

m

det(△pm−1,△pm−2,△pm−3)

‖△pm−1 ∧IL △pm−2‖2
IL

,

where θ is the angle between △pm−2 and △pm−1.

2.2.2. Spacelike Bézier curves with timelike normal

In this subsection, we calculate Frenet apparatus of a spacelike Bézier curve with timelike normal.

Theorem 2.7. Let b(t) be a spacelike Bézier curve with timelike normal and p j are control points. The Serret-Frenet frame T,N,B, curvature

κ and torsion τ of b(t) is given by

T (t) =

m−1

∑
j=0

Bm−1
j (t)△p j

(
m−1

∑
j,i=0

Bm−1
j (t)Bm−1

i (t)<△p j,△pi >)
1
2

, (2.15)

N(t) =

m−1

∑
j=0

m−2

∑
i=0

m−1

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−1
k

(t)(△p j ∧IL △2 pi)∧IL △pk

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL‖
m−1

∑
k=0

Bm−1
k

(t)△pk‖IL

, (2.16)

B(t) =

m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

, (2.17)

κ(t) =
m−1

m

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖IL

‖
m−1

∑
j=0

Bm−1
j (t)△p j‖3

IL

, (2.18)

τ(t) =−m−2

m

m−1

∑
j=0

m−2

∑
i=0

m−3

∑
k=0

Bm−1
j (t)Bm−2

i (t)Bm−3
k

(t)det(△p j,△2 pi,△3 pk)

‖
m−1

∑
j=0

m−2

∑
i=0

Bm−1
j (t)Bm−2

i (t)(△p j ∧IL △2 pi)‖2
IL

, (2.19)

where △pi and △p j are in the same cone.

Proof. Since the tangent T, B spacelike and N is timelike, N is given by the equation

N = B∧IL T.

The rest of the proof is similar to Theorem 2.4.
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From the Theorem 1.3 and Theorem 2.7, the following results can be obtained.

Corollary 2.8 ( [15]). Let b(t) be a spacelike Bézier curve with timelike normal and p j are control points. The tangent vector T of b(t) at

t = 0 is given by

T (0) =
△p0√

<△p0,△p0 >
.

If the inequality |<△p0,△p1 >|IL < ‖△p0‖IL‖△p1‖IL holds for △p0 and △p1, N,B, κ and τ of b(t) at t = 0 is given by

N(0) =− △p1

‖△p1‖IL
cscθ +

△p0

‖△p0‖IL
cotθ ,

B(0) =
△p0 ∧IL △p1

‖△p0‖IL‖△p1‖IL sinθ
,

κ(0) =
m−1

m

‖△p1‖IL sinθ

‖△p0‖2
IL

,

τ(0) =−m−2

m

det(△p0,△p1,△p2)

‖△p0 ∧IL △p1‖2
IL

,

and if the inequality |<△p0,△p1 >|IL > ‖△p0‖IL‖△p1‖IL holds for △p0 and △p1, N,B, κ and τ of b(t) at t = 0 is given by

N(0) =− △p1

‖△p1‖IL
cschθ − △p0

‖△p0‖IL
cothθ ,

B(0) =
△p0 ∧IL △p1

‖△p0‖IL‖△p1‖IL sinhθ
,

κ(0) =
m−1

m

‖△p1‖IL sinhθ

‖△p0‖2
IL

,

τ(0) =−m−2

m

det(△p0,△p1,△p2)

‖△p0 ∧IL △p1‖2
IL

,

where θ is the angle between △p0 and △p1.

Corollary 2.9 ( [15]). Let b(t) be a spacelike Bézier curve with timelike normal and p j are control points. The tangent vector T of b(t) at

t = 1 is given by

T (1) =
△pm−1

√

<△pm−1,△pm−1 >
.

If the inequality |<△pm−2,△pm−1 >|IL < ‖△pm−2‖IL‖△pm−1‖IL holds for △pm−2 and △pm−1, N,B, κ and τ of b(t) at t = 1 is given by

N(1) =
△pm−2

‖△pm−2‖IL
cscθ − △pm−1

‖△pm−1‖IL
cotθ ,

B(1) =− △pm−1 ∧IL △pm−2

‖△pm−1‖IL‖△pm−2‖IL sinθ
,

κ(1) =
m−1

m

‖△pm−2‖IL sinθ

‖△pm−1‖2
IL

,

τ(1) =
m−2

m

det(△pm−1,△pm−2,△pm−3)

‖△pm−1 ∧IL △pm−2‖2
IL

,

and if the inequality |<△pm−2,△pm−1 >|IL > ‖△pm−2‖IL‖△pm−1‖IL holds for △pm−2 and △pm−1, N,B, κ and τ of b(t) at t = 1 is

given by

N(1) =
△pm−2

‖△pm−2‖IL
cschθ +

△pm−1

‖△pm−1‖IL
cothθ ,

B(1) =− △pm−1 ∧IL △pm−2

‖△pm−1‖IL‖△pm−2‖IL sinhθ
,

κ(1) =
m−1

m

‖△pm−2‖IL sinhθ

‖△pm−1‖2
IL

,

τ(1) =
m−2

m

det(△pm−1,△pm−2,△pm−3)

‖△pm−1 ∧IL △pm−2‖2
IL

,

where θ is the angle between △pm−2 and △pm−1.
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[6] G. H. Geoergiev, Shapes of Plane Bézier Curves in Curve and Surface Design, Avignon, edited by P. Chenin, T. Lyche and L. L Schumaker, Nashboro
Prees, Brentwood, TN, (2006) 143-152.
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Abstract

This article is a continuation of our previous works. We mainly investigate a Korovkin

type theorem for double sequences of positive linear operators defined in the space of all

2π-periodic and real valued continuous functions on the real two-dimensional space with

help of the concept of triangular A-statistical convergence, which is a kind of statistical

convergence for double real sequences. Also, we analyze the rate of convergence of double

operators in this via modulus of continuity.

1. Introduction

Fast [?] (independently, Steinhaus [?]) introduced the concept of statistical convergence, which is an advantageous approach. This concept

is studied in various fields and its generalization and properties are investigated. Bardaro et al. [?], introduced the concept of triangular

A-statistical convergence which is a variant of statistical convergence in 2015. This new convergence offers another perspective as it is not

comparable to statistical convergence. In addition, there are other studies in the literature [?, ?, ?, ?].

The Korovkin type theorem has an important place in approximation theory as it enables us to check convergence with minimum

calculations [?]. This theorem has been studied by many mathematicians in different spaces and with various types of convergence,

with the aim of obtaining more general results [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

Let C∗ (R2
)

stands for the space of all 2π-periodic and continuous functions on R2.

Our main aim in this study is to present a theorem of Korovkin type on C∗ (R2
)

in the light of the triangular A-statistical convergence given

by Bardaro et al.

Before proceeding we recall some notation on the paper.

A double sequence x = (xm,n) is said to be convergent in Pringsheim’s sense if, for every ε > 0, there exists N = N(ε) ∈ N, the set of

all natural numbers, such that |xm,n − ı|< ε whenever m,n > N, where ı is called the Pringsheim limit of x and denoted by P− limx = ı

(see [?]). We shall call such an x, as P-convergent. By a bounded double sequence we mean there exists a H > 0 such that |xm,n| ≤ H

for all (m,n) ∈ N2 = N×N. It is worthy of note that unlike the single sequences, the double sequence does not have to be bounded.

Let A = (ak,l,m,n) be a four-dimensional summability matrix. For a given double sequence x = (xm,n), the A-transform of x, denoted by

Ax := ((Ax)k,l), is given by

(Ax)k,l = ∑
(m,n)∈N2

ak,l,m,nxm,n

provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N2.

If two dimensional matrix transformation of a given x=(xm,n) sequence preserve (Ax)k,l limit, that is P− limx= ı whenever P− lim(Ax)k,l = ı

then the matrix A = (ak,l,m,n) is called a regular matrix.

Let’s remember a four dimensional matrix A = (ak,l,m,n) is said to be RH-regular if it maps every bounded P-convergent sequence into a

P-convergent sequence with the same P-limit. The well establish characterization of regularity for four-dimensional matrices is known as

Robison-Hamilton conditions or RH-regularity (see, [?, ?]) state that a four dimensional matrix A = (ak,l,m,n) is RH-regular iff

Email address and ORCID number: scinar@sinop.edu.tr, 0000-0002-6244-6214 (S. Çınar)

Cite as ”S. Çınar, Theorems of Second Korovkin Type with respect to Triangular A-Statistical Convergence, Univ. J. Math. Appl., 6(1) (2023),

15-22”

https://orcid.org/0000-0002-6244-6214
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(i) P− lim
k,l

ak,l,m,n = 0 for each (m,n) ∈ N2,

(ii) P− lim
k,l

∑(m,n)∈N2 ak,l,m,n = 1,

(iii) P− lim
k,l

∑
m∈N

∣

∣ak,l,m,n

∣

∣= 0 for each n ∈ N,

(iv) P− lim
k,l

∑
n∈N

∣

∣ak,l,m,n

∣

∣= 0 for each m ∈ N,

(v) ∑
(m,n)∈N2

∣

∣ak,l,m,n

∣

∣ is P-convergent for each (k, l) ∈ N2,

(vi) there exist finite A,B > 0 such that ∑
m,n>B

∣

∣ak,l,m,n

∣

∣< A holds for every (k, l) ∈ N2.

Firstly let A = (ak,l,m,n) be a non-negative RH-regular summability matrix, and let K ⊂ N2. Then A-density of K is given as below

δ 2
A (K) := P− lim

k,l
∑

(m,n)∈K

ak,l,m,n

provided that the limit on the right-hand side exists in Pringsheim’s sense. Now recall the definiton of A-statistical convergence by considering

the concept of A-density. A real double sequence x = (xm,n) is said to be A-statistically convergent to a number L if, for every ε > 0,

δ 2
A

(

{(m,n) ∈ N2 : |xm,n − ı| ≥ ε}
)

= 0.

At this state, we can show it as st2
A − limx = ı. Also, while P− limx = ı, st2

A − limx = ı is true but when st2
A − limx = ı is not always

P− limx = ı. Furhermore, the double sequence does not require to be bounded when st2
A − limx = ı is exist.

It is worth noting that now with the special choices of the A matrix in concept of A-statistical convergence for double sequences, the following

relations are obtained. If one replaces the matrices A the double Cesáro matrix, then A-statistical convergence coincides to the statistical

convergence i.e., st2
C(1,1)− limx = st2 − limx [?].

2. Triangular Statistical Convergence

Let x = (xm,n) be a double sequence and suppose that x = (xm,n) is neither A-statistical convergent nor convergent in the Pringsheim’s sense.

On the question of whether a different convergence is considered in such a case, Bardaro et al. introduced the notion of triangular A-statistical

convergence in [?]. First, consider the regular matrix for double sequences [?].

The Silverman-Toeplitz conditions, which have an important place in the literature for the regular characterization of the two-dimensional

matrix transformation, are as follows (see, for instance, [?]).

(i) ‖A‖= sup
m

∞

∑
n=1

|am,n|< ∞,

(ii) lim
m

am,n = 0 for each n ∈ N,

(iii) lim
m

∞

∑
n=1

am,n = 1.

Let A = (am,n) be a nonnegative regular summability matrix, K denotes the set
{

(m,n) ∈ N2 : n ≤ m
}

and Km is the m-section of K, i.e., the

set of all n ∈ N such that (m,n) ∈ K, then we define triangular A-density of K by

δ T
A (K) := lim

m
∑

n∈Km

am,n

provided that the limit on the right-hand side exists [?].

Also,

(i) δ T
A (N2) = 1,

(ii) if K ⊂ L then δ T
A (K)≤ δ T

A (L),
(iii) if K has triangular A-density then δ T

A (N2/K) = 1−δ T
A (K),

triangular A-density has the above properties.

Definition 2.1 ( [?]). Let A = (am,n) be a nonnegative regular summability matrix. The number sequence x = (xm,n) is triangular

A-statistically convergent to ı provided that for every ε > 0

lim
m

∑
n∈Km(ε)

am,n = 0,

where Km (ε) = { n ∈ N : n ≤ m, |xm,n − ı| ≥ ε} also written as stT
A − lim

m
xm,n = ı.

The case in which A =C1 the Cesaro matrix of order one reduces to the triangular statistical convergence i.e., stT
A − limx = stT

C1
− limx.

Triangular density δ T (K) is given by

δ T (K) = lim
m

1

m
|Km|
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or equivalently

δ T (K) = lim
m

(C1χKm
(n))m = lim

m

∞

∑
n=1

cm,nχKm
(n)

if it exists. The number sequence x = (xm,n) is triangular statistically convergent to ı provided that for every ε > 0, the set K := Km (ε) :=
{n ∈ N : n ≤ m, |xm,n − ı| ≥ ε} if δ T (Km (ε)) = 0; then we can write stT − lim

m
xm,n = ı.

Let stT
A be the set of all triangular A-statistically convergent sequences. As we mentioned before, triangular A-statistical convergence is a

variant of statistical convergence. Here we give examples showing that these two convergences cannot be compared.

Example 2.2. Let A =C1 and

xm,n =



















2, m = n = j2

j
3( j+1)

, m = 2 j, n = 2 j+1
2 j

3( j+2)
, m = 2 j−1, n = 2( j+1)

0, otherwise

, j ∈ N.

x = (xm,n) be given as above. For every ε > 0,

1

m
|{n ∈ N : n ≤ m, |xm,n −0| ≥ ε}|=

{

1
j2 , m = j2

0, otherwise
, j ∈ N

clearly,

lim
m

1

m
|{ n ∈ N : n ≤ m, |xm,n −0| ≥ ε}|= 0.

So, we obtain stT
C1

− lim
m

xm,n = 0. Nevertheless, x = (xm,n) is not Pringsheim’s and C (1,1)-statistically convergent.

Example 2.3. Take A =C(1,1) and

xm,n =

{ √
mn, m = n = j2

3
mn , otherwise

, j ∈ N.

x = (xm,n) be given as above. Obviously, st2
C(1,1)− lim

m,n
xm,n = 0 but x is not Pringsheim’s and triangular statistically convergent.

Example 2.4. Let A =C1 and

xm,n =

{

−2, m = n = j2

0, otherwise
, j ∈ N.

x = (xm,n) be given as above. Similarly, stT
C1

− lim
m

xm,n = 0 and st2
C(1,1)− lim

m,n
xm,n = 0.

Example 2.5. Let A =C1 and

xm,n =



























1, m = n = j2

j
2 j+1 , m = 2 j+1, n = 2 j−1

j
4 j+2 , m = 2 j, n = 2( j+1)

k, m = j2, n = j2 +1

0, otherwise

, j ∈ N.

x = (xm,n) be given as above. So, we can easily see that stT
C1

− lim
m

xm,n = 0. Neither x = (xm,n) is Pringsheim’s and C (1,1)-statistically

convergent nor bounded.

Remark 2.6. (i) Triangular statistical convergence and statistical convergence are incompatible; i.e., stT
A * st2

A and st2
A * stT

A .
(ii) A P-convergent double sequence is A-statistically convergent and triangular A-statistically convergent to the same value but the inverse

implications are not true, i.e., st2
A * c2 and stT

A * c2.

3. A Korovkin-Type Approximation Theorem

In this section using the concept of triangular A-statistical convergence for double sequence and test function 1,sins,coss,sint,cost, we

provide a Korovkin type theorem for positive linear operators on the space C∗ (R2
)

.

If a function f on R2 has a 2π-period, then, for all (s, t) ∈ R2,

f (s, t) = f (s+2kπ, t) = f (s, t +2kπ)

holds for k = 0,±1,±2, .... This space is equipped with the supremum norm

‖ f‖C∗(R2) = sup
(s,t)∈R2

| f (s, t)| ,
(

f ∈C∗
(

R2
))

.
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Theorem 3.1 ( [?]). Let A = (ak,l,m,n) be a non-negative RH-regular summability matrix and let (Lm,n) be a double sequence of positive

linear operators acting from C∗ (R2
)

into C∗ (R2
)

. Then, for all f ∈C∗ (R2
)

st2
A − lim‖Lm,n ( f )− f‖C∗(R2) = 0

iff the following statements hold:

st2
A − lim‖Lm,n ( fr)− fr‖C∗(R2) = 0, r = 0,1,2,3,4,

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t.

Theorem 3.2. Let A = (am,n) be a nonnegative regular summability matrix and (Lm,n) be a double sequence of positive linear operators

from C∗ (R2
)

into C∗ (R2
)

. Then, for all f ∈C∗ (R2
)

stT
A − lim

m
‖Lm,n ( f )− f‖C∗(R2) = 0 (3.1)

iff the following statements hold:

stT
A − lim

m
‖Lm,n ( fr)− fr‖C∗(R2) = 0, for every r = 0,1,2,3,4 (3.2)

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t.

Proof. Under the hypotheses, since 1, sins, coss, sint and cost belong to C∗ (R2
)

, the necessity is clear. Suppose that (??) hold and let

f ∈C∗ (R2
)

and D, F be closed subinterval of length 2π of R. Fix (s, t) ∈ D×F. As in the proof of Theorem 2.1 in [?], it follows from the

continuity of f that

| f (u,v)− f (s, t)|< ε +
2M f

sin2 δ
2

ϕ (u,v)

which gives,

|Lm,n ( f ;s, t)− f (s, t)| ≤Lm,n (| f (u,v)− f (s, t)| ;s, t)+ | f (s, t)| |Lm,n ( f0;s)− f0(s, t)|

≤
∣

∣

∣

∣

∣

Lm,n

(

ε +
2M f

sin2 δ
2

ϕ (u,v) ;s, t

)∣

∣

∣

∣

∣

+M f |Lm,n ( f0;s)− f0(s, t)|

≤
(

ε +M f

)

|Lm,n ( f0;s)− f0(s, t)|+
M f

sin2 δ
2

{2 |Lm,n ( f0;s)− f0(s, t)|

+ |sinx| |Lm,n ( f1;s, t)− f1(s, t)|+ |siny| |Lm,n ( f2;s, t)− f2(s, t)|
+ |cosx| |Lm,n ( f3;s, t)− f3(s, t)|++ |cos t| |Lm,n ( f4;s, t)− f4(s, t)|}+ ε

<ε +N
4

∑
r=0

|Lm,n ( fr;s)− fr(s, t)|

where M f = ‖ f‖C∗(R2) , ϕ (u,v) = sin2 u−s
2 + sin2 v−t

2 and N := ε +M f +
2M f

sin2 δ
2

. Then, taking supremum over (s, t) ∈ R2, we obtain

‖Lm,n ( f )− f‖C∗(R2) < ε +N
4

∑
r=0

‖Lm,n ( fr)− fr‖C∗(R2) . (3.3)

Now given ε
′
> 0, choose ε > 0 such that ε < ε

′
, and define

Dm :=
{

n ∈ N : n ≤ m, ‖Lm,n ( f )− f‖C∗(R2) ≥ ε
′}

,

Dr
m :=

{

n ∈ N : n ≤ m, ‖Lm,n ( fr)− fr‖C∗(R2) ≥
ε
′ − ε

5N

}

, r = 0,1,2,3,4.

It is easy see that from (??)

Dm ⊆
4
⋃

r=0

Dr
m.

Hence, we may write

∑
n∈Dm

am,n ≤
4

∑
m=0

∑
n∈Dr

m

am,n.

Now taking the limit m → ∞, (??) yield the result.
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Example 3.3. We consider the following the double sequence of Fejer operators on C∗ (R2
)

σm,n ( f ;s, t) =
1

(mπ)(nπ)

π
∫

−π

π
∫

−π

f (u,v)Fm (u)Fn (v)dudv (3.4)

where Fm (u) =
sin2 m(u−s)

2

2sin2 u−s
2

and 1
π

π
∫

−π
Fm (u)du = 1. Analyze this

σm,n ( f0;s, t) = f0(s, t), σm,n ( f1;s, t) =
m−1

m
f1(s, t),

σm,n ( f2;s, t) =
n−1

n
f2(s, t), σm,n ( f3;s, t) =

m−1

m
f3(s, t),

σm,n ( f4;s, t) =
n−1

n
f4(s, t). (3.5)

Let A =C1 and define a double sequence (um,n) by

um,n =



















1, m = n = k2

k
3(k+1)

, m = 2k+1, n = 2k−1
k

2(k+1)
, m = 2k, n = 2(k+1)

0, otherwise

, k ∈ N. (3.6)

In this case, observe that

stT
C1

− lim
m

um,n = 0. (3.7)

Nevertheless, the sequence (um,n) is not statistically convergent. Also using (??) and (??), we define the following double positive linear

operators on C∗ (R2
)

as follows:

Lm,n ( f ;s, t) = (1+um,n)σm,n ( f ;s, t) . (3.8)

Then, observe that the double sequence of positive linear operators (Lm,n) defined by (??) satisfy all hypotheses of Theorem ??. Therefore,

by (??) and (??), we have, for all f ∈C∗ (R2
)

,

stT
A − lim

m
‖Lm,n ( f )− f‖C∗(R2) = 0.

Since (um,n) is not statistically convergent, the Theorem ?? does not work for our operators (Lm,n) defined by (??).

Example 3.4. Fejer operators be the same in Example ??. Now let A =C (1,1) and define a double sequence (βm,n) by

βm,n =

{ √
mn, m = n = k2,

1
mn otherwise.

(3.9)

Obviously

st2
C(1,1)− lim

m,n
βm,n = 0. (3.10)

Combing (??) and (??), we define the following positive linear operators on C
(

R2
)

as follows:

Lm,n( f ;s, t) = (1+βm,n)σm,n ( f ;s, t) . (3.11)

So, by the Theorem ?? and (??), we are seeing this

st2
A − lim

m,n
‖Lm,n ( f )− f ‖C∗(R2) = 0.

Also, since (βm,n) is not triangular statistical convergent, here we can explain that the Korovkin theorem in triangular statistical sense does

not work for operators defined by (??).

4. Rate of Triangular A-Statistical Convergence

Definition 4.1 ( [?]). Let A = (am,n) be a nonnegative regular summability matrix and let (αm) be a positive non-increasing sequence. A

double sequence x = (xm,n) is triangular A-statistically convergent to a number ı with the rate of o(αm) if for every ε > 0,

lim
m

1

αm
∑

n∈Km(ε)

am,n = 0,

where

Km(ε) := { n ∈ N : n ≤ m, |xm,n − ı| ≥ ε} .

We may write

xm,n − ı = stT
A −o(αm) as m → ∞.
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Definition 4.2 ( [?]). Let A = (am,n) and (αm) be the same as in Definition ??. Then, a double sequence x = (xm,n) is triangular

A-statistically bounded with the rate of O(αm) if for every ε > 0,

sup
m

1

αm
∑

n∈Lm(ε)

am,n < ∞,

where

Lm(ε) := { n ∈ N : n ≤ m, |xm,n| ≥ ε } .

In this case, we write xm,n = stT
A −O(αm) as m → ∞.

We now use the modulus of continuity ω( f ;δ ), expressed as below:

ω ( f ;δ ) := sup

{

| f (u,v)− f (s, t)| : (u,v) ,(s, t) ∈ R2,

√

(u− s)2 +(v− t)2 ≤ δ

}

where f ∈C∗ (R2
)

and δ > 0. We will use the fundamental inequality to obtain our main result, for all f ∈C∗ (R2
)

and for λ ,δ > 0,

ω ( f ;λδ )≤ (1+[λ ])ω ( f ;δ ) (4.1)

where [λ ] is defined to be the greatest integer less than or equal to λ .
To obtain our main result we require the following theorem.

Theorem 4.3. Let (Lm,n) be a double sequence of positive linear operators acting from C∗ (R2
)

into itself and let A= (am,n) be a nonnegative

regular summability matrix, and let (αm) and (βm) be positive non-increasing sequences. Then, for all f ∈C∗ (R2
)

,

‖Lm,n( f )− f‖C∗(R2) = stT
A −o( γm), as m → ∞, with γm := max{αm,βm} for each m ∈ N

provided that the following conditions hold:

(i) ‖Lm,n ( f0)− f0‖C∗(R2) = stT
A −o(αm) as m → ∞, with f0(u,v) = 1,

(ii) ω ( f ;δm,n) = stT
A −o(βm) as m → ∞, where δm,n :=

√

‖Lm,n(Ψ)‖C∗(R2) with Ψ(u,v) = sin2 u−s
2 + sin2 v−t

2 for each (s, t) , (u,v) ∈ R2.

Also, analogue results holds when the symbol “o” is replaced by “O”.

Proof. To express it, we first assume that (s, t) ∈ [−π,π]× [−π,π] and f ∈C∗ (R2
)

be fixed, and that (i) and (ii) hold. Let δ > 0. Also, it

is as in the the proof Theorem 9 in [?]. Using the definition of modulus of continuity and the linearity and the positivity of the operators Lm,n

for all (m,n) ∈ N2, we get

|Lm,n( f ;s, t)− f (s, t)| ≤Lm,n (| f (u,v)− f (s, t)| ;s, t)+ | f (s, t)| |Lm,n ( f0;s, t)− f0(s, t)|

≤ω ( f ;δ )Lm,n ( f0,s, t)+π2 ω ( f ;δ )

δ 2
Lm,n (Ψ;s, t)+ | f (s, t)| |Lm,n ( f0,s, t)− f0 (s, t)| .

Taking supremum over (s, t) on the both-sides of the above inequality and δ := δm,n :=
√

‖Lm,n(Ψ)‖C∗(R2), then we get

‖Lm,n ( f )− f‖C∗(R2) ≤ ω ( f ;δ )‖Lm,n ( f0)− f0‖C∗(R2)+
(

1+π2
)

ω ( f ;δ )+M ‖Lm,n ( f0)− f0‖C∗(R2) (4.2)

where the quantity M := ‖ f‖C∗(R2) is a finite number since f ∈C∗ (R2
)

. Then, given ε > 0, define the following sets:

Dm : =
{

n ∈ N : n ≤ m, ‖Lm,n ( f )− f‖C∗(R2) ≥ ε
}

,

D1
m : =

{

n ∈ N : n ≤ m, ω ( f ;δ )‖Lm,n ( f0)− f0‖C∗(R2) ≥
ε

3

}

,

D2
m : =

{

n ∈ N : n ≤ m, ω ( f ;δ )≥ ε

3
(

1+π2
)

}

,

D3
m : =

{

n ∈ N : n ≤ m, ‖Lm,n ( f0)− f0‖C∗(R2) ≥
ε

3M

}

.

Then, thanks to (??) that Dm ⊂ D1
m ∪D2

m ∪D3
m. Also, defining

D4
m : =

{

n ∈ N : n ≤ m, ω ( f ;δ )≥
√

ε

3

}

,

D5
m : =

{

n ∈ N : n ≤ m, ‖Lm,n ( f0)− f0‖C∗(R2) ≥
√

ε

3

}

,

we have D1
m ⊂ D4

m ∪D5
m, which yields

Dm ⊆
5
⋃

r=2

Dr
m.
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Therefore, since γm := max{αm,βm} , we get the result for all m ∈ N,

1

γm
∑

n∈Dm

am,n ≤
1

βm
∑

n∈D2
m

am,n +
1

αm
∑

n∈D3
m

am,n +
1

βm
∑

n∈D4
m

am,n +
1

αm
∑

n∈D5
m

am,n. (4.3)

Letting m → ∞ on both sides of (??), we get

lim
m→∞

1

γm
∑

n∈Dm

am,n = 0.

Thus ends the proof.

Now, having experienced from Theorem ??, we can introduce the ordinary rates of convergence of a sequence of positive linear operators

defined on the space C∗ (R2
)

. Firstly, we should point out if we choose αm = βm = 1 for all m ∈ N, then Theorem ?? is get from Theorem

?? at once. So our theorem gives us the rate of triangular A-statistical convergence in Theorem ??.

5. An Application to Theorem ??

Let A = (am,n) be a nonnegative regular summability matrix. Then, we consider the following operators defined by (??) on C∗ (R2
)

:

Lm,n( f ;s, t) = (1+um,n)σm,n( f ;s, t). (5.1)

Then, we take A =C1 := (cm,n) , the Cesáro matrix. Then, setting (αm) =
(

1√
m

)

, we get, for any ε > 0,

1

αm
∑

n:|ui, j |≥ε

cm,n =
√

m ∑
n:|um,n|≥ε

1

m
≤ 2

√
m

m
=

2√
m
. (5.2)

Taking the limit as m → ∞ in (??), we get, for any ε > 0,

lim
m

1

αm
∑

n:|um,n|≥ε

cm,n = 0

which gives,

um,n = stT
A −o(

1√
m
) as m → ∞. (5.3)

Also, observe that

Lm,n ( f0;s, t) =(1+um,n) ,

Lm,n ( f1;s, t) =(1+um,n)
m−1

m
f1 (s, t) ,

Lm,n ( f2;s, t) =(1+um,n)
n−1

n
f2 (s, t) ,

Lm,n ( f3;s, t) =(1+um,n)
m−1

m
f3 (s, t) ,

Lm,n ( f4;s, t) =(1+um,n)
n−1

n
f4 (s, t) ,

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t. Since ‖Lm,n ( f0)− f0‖C∗(R2) = um,n, we obtain from

(??)

‖Lm,n ( f0)− f0‖C(R2) = stT
A −o(αm) as m → ∞. (5.4)

Now, we calculate the quantity Lm,n(Ψ;s, t), where Ψ(u,v) = sin2 u−s
2 + sin2 v−t

2 . After some calculations, we have

Lm,n(Ψ;s, t) =
1+um,n

2

(

1

m
+

1

n

)

.

So, we get δm,n :=
√

‖Lm,n(Ψ)‖C∗(R2) =

√

1+um,n

2

(

1
m + 1

n

)

. In this case, setting (βm) =
(

1
4
√

m

)

, we have, for any ε > 0,

1

βm
∑

n:|δm,n|≥ε

ck,l,m,n =
4
√

m ∑
n:|δm,n|≥ε

1

m
≤ 2 4

√
m

m
=

2
4
√

m3

which gives that

lim
m

1

βm
∑

n:|δm,n|≥ε

ck,l,m,n = 0.
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Hence, we obtain δm,n = stT
C1

−o( 1
4
√

m
) as m → ∞. By the uniform continuity of f on R2, we can write as follows:

ω ( f ;δm,n) = stT
C1

−o(
1

4
√

m
) as m → ∞. (5.5)

Then, the sequence of positive linear operators (Lm,n) satisfy all hypotheses of Theorem ?? from (??) and (??). So, we have, for all

f ∈C∗ (R2
)

,

‖Lm,n( f )− f‖C∗(R2) = stT
C1

−o(
1

4
√

m
) as m → ∞.
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Abstract

In this paper, we shall study the spectral properties of the non-selfadjoint operator in the

space L2
ρ (R+) generated by the Sturm-Liouville differential equation

−y
′′

+q(x)y = ω2ρ (x)y, x ∈ R+

with the integral type boundary condition

∞
∫

0

G(x)y(x)dx+ γy′ (0)−θy(0) = 0

and the non-standard weight function

ρ (x) =−1

where |γ|+ |θ | 6= 0. There are an enormous number of papers considering the positive

values of ρ (x) for both continuous and discontinuous cases. The structure of the weight

function affects the analytical properties and representations of the solutions of the equation.

Differently from the classical literature, we used the hyperbolic type representations of the

fundamental solutions of the equation to obtain the spectrum of the operator. Moreover, the

conditions for the finiteness of the eigenvalues and spectral singularities were presented.

Hence, besides generalizing the recent results, Naimark’s and Pavlov’s conditions were

adopted for the negative weight function case.

1. Introduction

Differential equations, particularly the ones with integral boundary conditions, have been inevitable tools in modeling natural phenomena

such as thermodynamics, liquid flow, and demographics, see [1]. Modeling the vibration of a loaded string, equations of gas dynamics, and

the theory of shock waves are a few quite interesting examples of a vast research area in mathematical physics that makes use of boundary

value problems with a boundary condition involving spectral parameters in it [2]. Therefore in this paper we will focus on Sturm-Liouville

operator generated by well-known one dimensional Schrödinger equation

−y
′′

+q(x)y = ω2ρ (x)y, x ∈ R+ (1.1)

where ω is a spectral parameter and ρ is the weight function under the integral boundary condition.

The utility stemmed from the interconnection of studies on direct and inverse problems with the methods of solving many problems in

mathematical analysis, keeps this research area vigorous [3–7]. This productive and efficient subject area, originated by the pioneer work of

Email addresses and ORCID numbers: cannimet@kmu.edu.tr, 0000-0001-9753-0101 (N. Çoşkun), mervegorgulu@kmu.edu.tr, 0000-0002-0565-
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Naimark dealing with the singular non-self-adjoint problem for ρ(x) = 1, finds itself specialized sub-areas governing different but connected

techniques, for example, cases considering positive weight [8–13], non-continuous weight [14–17], sign-changing weight [18–20] as well as

discrete cases [21–28]. Especially, the spectral singularities of the non-selfadjoint problem under the integral boundary condition has been

investigated in [9, 10].

At first, Gasymov’s approach in considering the sign-changing weight function for the inverse problem of the Sturm-Liouville type operator

yielded different results from the previous literature [18]. Besides the fact that the appearance of these weight functions enriched the study

area with applications in physics, the analytical difficulties arising from the negative sign made the problem even more attractive.

In the Sturm-Liouville problem, hyperbolic-type solutions obtained depending on the negative weight function cause some analytical

difficulties, as well as the necessity of re-evaluation of conventional techniques. In this paper, the spectral properties of the non-selfadjoint

singular Sturm-Liouville type operator, under the integral boundary condition and the non-standard weight function ρ (x) =−1 shall be

analyzed. We engage with this problem owing to the deficiency in the studies investigating the requirements of the analytical solutions of

Sturm-Liouville equation in distinct regions.

Let us also remark that, while the transformation chosen for the eigenparameter determines the analytical properties of the Jost solutions in

discrete problems; the structure of the weight function affects the Jost solution in differential case. Hence, based on this idea, this paper may

also lay the groundwork for new research topics in both inverse and direct problems. This paper has also a crucial importance since this is

the first study which considers the negative value of a weight function for singular non-selfadjoint operators under the integral boundary

condition. Therefore, we adopt the recent results to the negative weight function case and obtain new results which might give rise to the new

research topics.

This article is structured as follows: Section 2 presents the general solution to (1.1) subject to the integral boundary condition in terms of the

fundamental solutions to the boundary value problem (1.1) with negative weight function. Later in the same section, we obtain resolvent set

in terms of these solutions. In Section 3, more general theorems for eigenvalues and spectral singularities concerning some additional and

more strict conditions on the potential function are provided.

Notation. Let ω be a complex parameter. In this paper, for the complex left half-plane, we set the notation Cle f t := {ω ∈ C : Reω < 0}. As

usual topological relatives, we use Cle f t for its completion, and ∂Cle f t for its boundary set. We denote number of elements in a set A with

#A and the linear Lebesgue measure of a Lebesgue measurable set A with µ(A).

2. Solutions of the problem

In this part, we present some preliminary results for the negative weight function case which can be deduced similar to the theorems and

techniques in [4–6, 8, 9].

Let T be the operator in L2
ρ (R+) generated by the differential equation

−y
′′

+q(x)y = ω2ρ (x)y, x ∈ R+ (2.1)

with the integral boundary condition

∞
∫

0

G(x)y(x)dx+ γy′ (0)−θy(0) = 0 (2.2)

and the non-standard weight function

ρ (x) =−1, x ∈ R+ (2.3)

where γ,θ are complex numbers with |γ|+ |θ | 6= 0, and ω is spectral parameter. Note that q and G are complex valued functions, such that

G ∈ L1
ρ (R+)∩L2

ρ (R+), and q satisfies the following condition:

∞
∫

0

s |q(s)|ds < ∞. (2.4)

Let us denote by S (x,ω) and C (x,ω), the solutions of (2.1) subject to the initial conditions

S (0,ω) = 0,

C (0,ω) = 1,

∂

∂x
S(x,ω)

∣

∣

∣

∣

x=0

= 1,

∂

∂x
C(x,ω)

∣

∣

∣

∣

x=0

= 0.

Consider the case q(x)≡ 0. Then, (2.1) takes the form

y
′′

= ω2y, x ∈ R+.

Thus, S (x,ω) and C (x,ω) can be represented by the hyperbolic type functions

S (x,ω) =
sinhωx

ω
,

C (x,ω) = coshωx.
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Using the results of [4] and constant coefficients method, one can easily show that the fundamental solutions S (x,ω) and C (x,ω) have the

Volterra type integral representations as

S (x,ω) =
sinhωx

ω
+

x
∫

0

sinhω (x− t)

ω
q(t)S (t,ω)dt,

and

C (x,ω) = coshωx+

x
∫

0

sinhω (x− t)

ω
q(t)S (t,ω)dt.

Moreover, both functions S (·,ω) and C (·,ω) are entire in ω . They are also analytic on Cle f t . Existence and uniqueness results of the

solutions S (x,ω) and C (x,ω) can also be proven analogous to [4]. Also, Wronskian of the solutions S (x,ω) and C (x,ω) can be written as

W [S (x,ω) ,C (x,ω)] =−1, ω ∈ C.

Now, let us denote the Jost solution of the operator T by e(x,ω) which is the solution of (2.1) satisfying the asymptotic condition

lim
x→∞

e(x,ω)e−ωx = 1, ω ∈ Cle f t . (2.5)

Under the condition (2.4), this solution can be found as

e(x,ω) = eωx +

∞
∫

x

K (x,s)eωsds, (2.6)

where the kernel K is uniquely determined by the potential function q such that K (x, .) ∈ L1 (0,∞) and it is continuously differentiable with

respect to its arguments.

On the same manner with [4], we deduce that the Jost solution e(·,ω) is analytic in Cle f t and continuous on Cle f t from the validity of the

inequality

|K (x,s)| ≤ c

∞
∫

x+s
2

|q(τ)|dτ, x ≤ s < ∞, (2.7)

for any constant c > 0 independent of the variables x and s.

Denote by g(x,ω), another solution of (2.1) satisfying the asymptotic conditions

lim
x→∞

g(x,ω)eωx = 1, ω ∈ Cle f t ,

lim
x→∞

gx (x,ω)eωx =−ω, ω ∈ Cle f t .
(2.8)

By the help of the asymptotic identities (2.5) and (2.8), the Wronskian of e and g can be found as

W [e(x,ω) ,g(x,ω)] =−2ω, ω ∈ Cle f t , (2.9)

which concludes that e and g form the fundamental system of solutions for (2.1) on ∂Cle f t .

For the complex parameter ω , define the functions

N (ω) =

∞
∫

0

G(s)e(s,ω)ds+ γex (0,ω)−θe(0,ω) ,

M (ω) =

∞
∫

0

G(s)g(s,ω)ds+ γgx (0,ω)−θg(0,ω) ,

and for t ∈ R+,

u(t,ω) =
−1

2ω







g(t,ω)

∞
∫

t

G(s)e(s,ω)ds− e(t,ω)

∞
∫

t

G(s)g(s,ω)ds+M (ω)e(t,ω)







.

Clearly, resolvent operator of T can be obtained as

Rω (T )φ =

∞
∫

0

G (x, t;ω)φ (t)dt, φ ∈ L2
ρ (R+) .

Here we set the notation G (x, t;ω) for the Green’s function of T defined as

G (x, t;ω) = G
(1) (x, t;ω)+G

(2) (x, t;ω) ,
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with the functions

G
(1) (x, t;ω) :=

−e(x,ω)u(t,ω)

N (ω)
,

G
(2) (x, t;ω) :=−

{

e(x,ω)u(t,ω)
2ω , 0 ≤ t < x,

e(t,ω)u(x,ω)
2ω , x ≤ t < ∞.

Hence, the resolvent set Rω (T ) is given by

Rω (T ) =
{

η : η = ω2
,Reω < 0,N (ω) 6= 0

}

.

3. Spectrum of T

In this section in order to deal with the quantitative structure of the spectrum of T , we will investigate the sets of zeros of the function N on

left half plane and on its boundary, respectively. Let us denote these sets by

Z1 :=
{

ω : ω ∈ Cle f t , N (ω) = 0
}

,

Z2 :=
{

ω : ω ∈ ∂Cle f t , N(ω) = 0
}

.

Recall that the multiplicity of a zero in the region Cle f t is called the multiplicity of the corresponding eigenvalue and spectral singularity of

the operator [7, 8]. According to this definition, Z3 denotes the set of all the accumulation points of Z1 and Z4 denotes the set of all zeros of

N in Cle f t with infinite multiplicity.

Notice that the set of eigenvalues of T is related to the set of zeros Z1

σd (T ) =
{

--z : --z = ω2
,ω ∈ Z1

}

, (3.1)

and the set of spectral singularities T is related to the set of zeros Z2

σss (T ) =
{

--z : --z = ω2
,ω ∈ Z2

}

\{0} . (3.2)

Within the same circle of ideas in the proofs of the theorems from [4,8,9], by the classical definition of spectrum of a differential operator we

obtain that the set σc (T ) defined as

σc (T ) = {--z : --z = iτ,τ ≥ 0}

is the continuous spectrum of T .

Lemma 3.1. Suppose G ∈ L1
ρ (R+)∩L2

ρ (R+) and (2.4) holds, then

(i) Z1 is bounded, #Z1 is at most countable, and Z3 is a subset of a bounded interval of ∂Cle f t ,

(ii) Z2 is a compact set with µ(Z2) = 0.

Proof. Using the inequality (2.6) and the expression of N (ω), it can be easily seen that N (ω) is analytic with respect to ω in Cle f t and

continuous on the imaginary axis. Also, it yields the asymptotic

N (ω) = γω +θ +o(1) , ω ∈ Cle f t , |ω| → ∞, (3.3)

for |γ|+ |θ | 6= 0. The boundedness of the sets Z1 and Z2 follows from (3.3). Hence, the proof of part (a) results from analicity of N (ω) in

Cle f t and continuity on the imaginary axis. For the part (b), we shall consider the boundary uniqueness theorems of analytic functions [29].

Using these theorems, we get that Z2 is a closed set and µ (Z2) = 0.

The following theorem can be stated easily using (3.1), (3.2) and Lemma 3.1 :

Theorem 3.2. Suppose G ∈ L1
ρ (R+)∩L2

ρ (R+) and (2.4) holds. Then,

(i) σd (T ) is bounded, #σd (T ) is at most countable, and the set of its limit points is contained in a bounded interval of ∂Cle f t .

(ii) σss (T ) is a bounded set with zero measure.

From now on, we will consider the spectral properties of T under more strict conditions on the potential. Firstly we consider the Naimark’s

condition

∞
∫

0

eετ (|q(τ)|+ |G(τ)|)dτ < ∞, (3.4)

for any ε > 0, which enables us to use analytic continuation properties of the Jost function for the proof.

Theorem 3.3. Suppose the condition (3.4) holds true. Then T possesses finitely many eigenvalues and spectral singularities and each one

has finite multiplicity.
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Proof. (2.7) and (3.4) make it clear that

|K (x,s)| ≤ Ae−
ε(x+s)

2 , (3.5)

for arbitrary positive constant A. Considering the expression of N (ω) and (3.5), it is clear that N (ω) continues analytically from Cle f t to the

right half-plane {ω : Reω <
ε
4}. As a consequence, the limit points of the zeros of N (ω) in Cle f t cannot lie in the imaginary axis. From the

results of Lemma 3.1, we can see that the sets Z1 and Z2 are bounded and both have a finite number of elements. Also taking into account the

analicity of N (ω) for {ω : Reω <
ε
4}, we deduce that the zeros of N (ω) in Cle f t are of finite number and they are of finite multiplicity,

which concludes the assertion of theorem.

However, there is more strict condition for the potential called Pavlov’s condition which pushes us to use new methods to prove the finiteness

of the sets σd (T ) and σss (T ). Let the following integral condition holds true:

∞
∫

0

exp(ετδ )(|q(τ)|+ |G(τ)|)dτ < ∞,
1

2
≤ δ < 1 (3.6)

for any ε > 0. Clearly, N (ω) is analytic in the complex left-half plane Cle f t and continuous on the imaginary axis. Nevertheless, analytic

continuation property does not hold from the left-half plane to the right-half plane. We will also benefit from the subsequent relations

between the sets Z1, Z2, Z3 and Z4 in order to verify the following theorem which can be inferred directly from the boundary uniqueness

theorems of analytic functions [29]:

Z1 ∩Z4 = /0, Z3 ⊂ Z4 ⊂ Z2, (3.7)

and

µ (Z3) = µ (Z4) = 0.

Theorem 3.4. If the condition for the potential (3.6) holds to be true, then Z4 = /0.

Proof. Using Lemma 3.1., we obtain that
∣

∣

∣

∣

∣

∣

−T
∫

−∞

ln |N (ω)|

1+ω2
dω

∣

∣

∣

∣

∣

∣

< ∞,

∣

∣

∣

∣

∣

∣

∞
∫

T

ln |N (ω)|

1+ω2
dω

∣

∣

∣

∣

∣

∣

< ∞, (3.8)

for sufficiently large values of T > 0. Moreover, N (ω) is analytic in Cle f t , all its derivatives are continuous up to the imaginary axis and
∣

∣

∣
N(r) (ω)

∣

∣

∣
≤Cr, ω ∈ Cle f t , r = 1,2, ..., |ω|< 2T, (3.9)

where

Cr := c

∞
∫

0

sr |K (0,s)|ds. (3.10)

If we make use of (3.8), (3.9) and Pavlov’s theorem, we get

ω
∫

0

ln t(s)dµ(Z4,s)>−∞, (3.11)

where t(s) := inf
r

Crsr

r! for s ≥ 0, and µ(Z4,s) is the linear Lebesgue measure of the s−neighborhood of Z4 [8, 9]. We can also estimate Cr

from above

Cr = c

∞
∫

0

sr |K (0,s)|ds ≤ c

∞
∫

0

sre−
ε
4

s ds ≤ Bbrrrr!, (3.12)

for constants B and b depending on c and δ . When estimate (3.12) is substituted in the definition of t implies that

t(s) = inf
r

Crsr

r!
≤ B inf

r
{brsrrr} ≤ Be−s−1e−1b−1

. (3.13)

It follows from (3.12) and (3.13) that

ω
∫

0

s−
δ

1−δ dµ(Z4,s)< ∞. (3.14)

Then the inequality δ
1−δ

≥ 1, together with (3.14) ensures that, for arbitrary s, µ(Z4,s) = 0 or Z4 = /0.

Theorem 3.5. Suppose that the condition (3.6) holds true. Then T possesses finitely many eigenvalues and spectral singularities and each

one is of finite multiplicity..

Proof. It would clearly have been necessary to show that N (ω) acquires finitely many zeros with finite multiplicities in Cle f t . When we

applied the previous theorem, the relation (3.7) just amounts to saying that Z3 = /0. That is to say, the bounded sets Z1 and Z2 cannot possess

accumulation points. Therefore, the zeros of N (ω) in Cle f t are finitely many. The fact Z4 = /0 concludes that these zeros are of finite

multiplicity.
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4. Conclusion

In this paper, we investigated the spectrum of the operator constructed by the help of differential Sturm-Liouville type operator and negative

valued weight function. The specific feature of this study is that we obtain the spectrum using the hyperbolic type fundamental solutions. We

also impose an integral boundary condition and this also effects the structure of the Naimark’s and Pavlov’s conditions. There are so many

papers considering the trigonometric type fundamental solutions. Also, this paper is the differential analog of the hyperbolic type problems

in discrete operators. Therefore, we bring a novel viewpoint to the recent papers and this paper may lay the goundwork for future studies.
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[16] K. R. Mamedov, F. A. Çetinkaya, Boundary value problem for a Sturm-Liouville operator with piecewise continuous coefficient, Hacettepe Journal Of
Mathematics and Statistics 44(4) (2015), 867-874.

[17] A. A. Nabiev, K. R. Mamedov, On the Jost solutions for a class of Schrödinger equations with piecewise constant coefficients, Journal of Mathematical
Physics, Analysis, Geometry 11(3) (2015), 279-296.

[18] M. G. Gasymov, Z. F. Rekheem, On the theory of inverse Sturm-Liouville problems with discontinuous sign-alternating weight, Dokl. Akad. Nauk
Azerb 48(50) (1993), 1-12.

[19] Z. F. El-Raheem, A. H. Nasser, On the spectral investigation of the scattering problem for some version of one-dimensional Schrödinger equation with
turning point, Boundary Value Problems 2014(1) (2014), 1-12.

[20] Z. F. El-Raheem, F. A. Salama, The inverse scattering problem of some Schrödinger type equation with turning point, Boundary Value Problems 2015
(1) (2015), 1-15.
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Abstract

We studied a host-parasite model qualitatively. The host-parasitoid model is obtained by

modifying the Nicholson-Bailey model so that the number of hosts that parasitoids cannot

attack is fixed. We investigate the effect of the presence of a refuge on the local stability

and bifurcation of models. Topological classification of equilibria is achieved with the

implementation of linearization. Furthermore, Neimark-Sacker bifurcation is explored

using the bifurcation theory of normal forms at interior steady-state. The bifurcation in

the model is controlled by implementing two control strategies. The theoretical studies are

backed up by numerical simulations, which show the conclusions and their importance. A

low rate of escaping of a host may lead to instability.

1. Introduction

The Nicholson-Bailey model [1] was proposed by Nicholson and Bailey in 1935 to model and study a biological system involving two insects:

a host and a parasitoid. The parasitoid is a free-living adult parasite that lays eggs on the host larvae, and these eggs may survive to give birth

to the next generation. The parasitoid hosts die, and the non-parasitoid hosts produce their offspring. There are some unnatural suppositions

in the Nicholson-Bailey model, for instance, a homogeneous environment, a constant searching efficiency, and the reproductive rate of the

host. These assumptions produce unstable positive fixed points for all the parametric values and lead to oscillations in the Nicholson-Bailey

model at low parasitoid densities. By relaxing the homogeneous environment assumption and assuming a patchy environment, a proportion

of the host population could hide away or refuge and be secure from the attack of parasitoids. Therefore, a modified Nicholson-Bailey model

has been proposed by MP Hassell [2] and is given as

{

Ht+1 = r(1− γ)Ht + rγHt exp(−aPt),

Pt+1 = eγHt(1− exp(−aPt)),
(1.1)

where Ht is the population size of the host in generation t and Pt is the parasitoid population size in generation t, r refers to the reproductive

rate of the host, a to the efficiency with which the parasitoid searches for a host, and e represents the average number of viable eggs laid by a

parasitoid on a single host, γ is the percentage of hosts that are vulnerable to parasitoids, and 1− γ shows how many are safe from parasities

when they are in a refuge. It is evident to see that if we take γ = 1 in the system (1.1), then we retrieve the classical Nicholson-Bailey model

{

Ht+1 = rHt exp(−aPt),

Pt+1 = eHt(1− exp(−aPt)),
(1.2)

where r,a, and e are positive constants. The parameters r,a, and e have the same biological interpretations as those in the previous model

(1.2). Unfortunately, this classical model failed to produce a stable equilibrium. Several authors attempted to modify the model in order to

achieve a more realistic and stable system.
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Another way to model the effect of a refugee can be achieved by sheltering a certain quantity of hosts denoted as H0, which are immune to

being attacked by parasitoids, and another modification [3] in the Nicholson-Bailey model is given by

{

Ht+1 = rH0 + r(Ht −H0)exp(−aPt),

Pt+1 = e(Ht −H0)(1− exp(−aPt)).
(1.3)

The mathematical modeling of population dynamics has been developed as a significant area of research within the last decade. The

mathematical models described by exponential difference equations are extensively used to study population dynamics [16]. Nonlinear

difference equations appear naturally in mathematical modeling as they provide a more flexible framework to model different biological

systems’ dynamics [4, 5]. These equations are the discrete-time counterparts of differential equations, which are used extensively in

engineering and the biological sciences [6, 7]. The study of the consequences of the hiding behavior of host on the dynamics of host-

parasitoid systems can be recognized as a major issue in applied mathematics and theoretical ecology. Some of the empirical and theoretical

work have investigated the effect of host refuges and drawn a conclusion that the refuges used by host have a stabilizing effect on the

considered interactions and host extinction can be prevented by the addition of refuges.

A complete examination of the qualitative behavior of models given by nonlinear difference equations, including local and global stability,

bifurcation analysis, and chaos control, may be found in [8–15]. Q. Din [16] examined the qualitative behavior of the model (1.3). Specifically,

the author examined the boundedness and persistence, the presence and uniqueness of steady-state, the local and global stability of the

unique positive fixed point, and the rate of convergence of all solutions that converge to the fixed point for the model (1.3).

The motivation of our work is to study the impact of the refuge effect on the host population in the modified Nicholson-Bailey model. In this

research, we investigate the qualitative behavior of the model (1.1) by identifying the unique positive fixed point, the parametric conditions

for the local stability of the unique positive fixed point, and the presence of the Neimark-Sacker bifurcation at the positive fixed point, and by

implementing the control strategies to control the Neimark-Sacker bifurcation in the model (1.1). In the end, some numerical examples are

provided, followed by a necessary discussion on the qualitative behavior of the model (1.1).

The following describes the structure of the paper:

The derivation of a necessary and sufficient condition for the local asymptotic stability of the fixed point of the model (1.1) is given in

Section 2. The Neimark-Sacker bifurcation at the unique positive fixed point is the subject of Section 3. In Section 4, two control techniques

are employed to control the bifurcation in the model. The dependence of the model on the parameters γ and r is illustrated in Section 5.

Section 6 has some final observations.

2. Local Stability of Positive Fixed Point

It is simple that (0,0) and (H∗,P∗) =

(

r ln
(

rγ
1−r(1−γ)

)

ae(r−1)
, 1

a ln
(

rγ
1−r(1−γ)

)

)

are the fixed points of the system (1.1). Also, for r > 1 and γ > r−1
r ,

(H∗,P∗) is the unique positive fixed point of system (1.1). The system will have to be linearized for stability analysis using the variational

matrix at the fixed point (H∗,P∗). For the fixed point, (H∗,P∗) =

(

r ln
(

rγ
1−r(1−γ)

)

ae(r−1)
, 1

a ln
(

rγ
1−r(1−γ)

)

)

, the variational matrix is

J(H∗,P∗) =





1 − r(1−r(1−γ))
e(r−1)

ln
(

rγ
1−r(1−γ)

)

e(r−1)
r

(1−r(1−γ))
(r−1)

ln
(

rγ
1−r(1−γ)

)



 .

The characteristic polynomial of the variational matrix is given by

C(z) = z2 −
(

1+
(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

z+
r(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

)

. (2.1)

The following lemma is very important for both the topological categorization of the fixed points and the determination of the criteria that are

necessary as well as sufficient for the local stability of the fixed points.

Theorem 2.1 ( [17]). Let C(z) = z2 −Aλ +B, and C(1)> 0 with z1,z2 be the roots of C(z) = 0. Then the following results hold:

(i) |z1|< 1 and |z2|< 1 iff C(−1)> 0 and C(0)< 1.

(ii) |z|< 1 and |z|> 1, or |z|> 1 and |z|< 1 iff C(−1)< 0.

(iii) |z1|> 1 and |z2|> 1 iff C(−1)> 0 and C(0)> 1.

(iv) z1 =−1 and z2 6= 1 iff C(−1) = 0 and C(0) 6=±1.

(v) z1 and z2 are complex and |z1|= 1 and |z2|= 1 iff A2 −4B < 0 and C(0) = 1.

By using simple computations, we have

C(1) =

(

ln(
rγ

1− r(1− γ)
)

)

(1− r(1− γ)),

C(−1) = 2+

(

ln( rγ
1−r(1−γ)

)
)

(1− r(1− γ))(r+1)

(r−1)
,

C(0) =
r
(

ln( rγ
1−r(1−γ)

)
)

(1− r(1− γ))

(r−1)
.
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Notice that for all r > 1 and γ > r−1
r , we have C(1)> 0 and C(−1)> 0. Therefore, cases (ii) and (iv) of Theorem 2.1 are not possible. It

means that (H∗,P∗) in the system (1.1) is not a saddle point because case (ii) of Theorem 2.1 is not true and period-doubling bifurcation is

not possible because case (iv) of Theorem 2.1 is not true.

Theorem 2.2. Suppose that r > 1, and γ > r−1
r . The unique fixed point (H∗,P∗) of the system (1.1) is

(i) stable iff

r

(

ln

(

rγ

1− r(1− γ)

))

(1− r(1− γ))< r−1,

(ii) unstable iff

r

(

ln

(

rγ

1− r(1− γ)

))

(1− r(1− γ))> r−1,

(iii) non-hyperbolic iff

r

(

ln

(

rγ

1− r(1− γ)

))

(1− r(1− γ)) = r−1, (2.2)

and



1+





ln
(

rγ
1−r(1−γ)

)

r−1



(1− r(1− γ))





2

−4





r ln
(

rγ
1−r(1−γ)

)(1− r(1− γ)
)

(r−1)



< 0. (2.3)

3. Bifurcation Analysis

In this section, we use bifurcation theory to investigate the Neimark-Sacker bifurcation at (H∗,P∗), using γ as the bifurcation parameter in

the system (1.1). The existence of the Neimark-Sacker bifurcation ensures that dynamically invariant closed curves are produced. We refer

to [18–23] for the relevant literature concerning the bifurcation analysis of such types of discrete dynamical systems.

We are looking for conditions on the system (1.1) that will allow us to have a non-hyperbolic point (H∗,P∗) with a pair of complex conjugate

eigenvalues that have modulus values that are equal to one for J(H∗,P∗). The characteristic polynomial (2.1) has complex roots z1,2 with

|z1,2|= 1 in the following region

Θ =

{

(r,γ) : r > 1,γ >
r−1

r
, (2.2) and (2.3) are satisfied

}

.

We select γ as a bifurcation parameter. When parameters vary in a local region of Θ, the system’s unique positive fixed point (1.1) undergoes

Neimark-Sacker bifurcation. We consider the following perturbation of the system (1.1):

[

Ht+1

Pt+1

]

=

[

r(1− γ −δ )Ht + r(γ +δ )Htexp(−aPt)
e(γ +δ )Ht(1− exp(−aPt))

]

, (3.1)

where |δ | ≪ 1 is used as a small perturbation parameter.

We now consider the transformation ut+1 = Ht+1 −H∗, vt+1 = Pt+1 −P∗ to transfer the fixed point (H∗,P∗) of the system (1.1) to origin:

[

ut+1

vt+1

]

=







1 − r(1−r(1−γ−δ ))
e(r−1)

ln
(

r(γ+δ )
1−r(1−γ−δ )

)

e(r−1)
r

(1−r(1−γ−δ )) ln
(

r(γ+δ )
1−r(1−γ−δ )

)

(r−1)







[

ut

vt

]

+

[

f1(ut ,vt)
f2(ut ,vt)

]

, (3.2)

where

f1(ut ,vt) =− (a(1− r(1− γ −δ )))utvt +





ar(1− r(1− γ −δ )) ln
(

r(γ+δ )
1−r(1−γ−δ )

)

2e(r−1)



v2
t

+
1

2
(a2(1− r(1− γ −δ )))utv

2
t −





a2r(1− r(1− γ −δ )) ln
(

r(γ+δ )
1−r(1−γ−δ )

)

6e(r−1)



v3
t ,

and

f2(ut ,vt) =

(

ae(1− r(1− γ −δ ))

r

)

utvt −





a(1− r(1− γ −δ )) ln
(

r(γ+δ )
1−r(1−γ−δ )

)

2(r−1)



v2
t

−
(

a2e(1− r(1− γ −δ ))

2r

)

utv
2
t +





a2(1− r(1− γ −δ )) ln
(

r(γ+δ )
1−r(1−γ−δ )

)

6(r−1)



v3
t .

The characteristic polynomial of the linearized part of (3.2) evaluated at the fixed point (0,0) of (3.1) is given by

z2 − p(δ )z+q(δ ) = 0, (3.3)
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where

p(δ ) =1+
(1− r(1− γ −δ ))

(r−1)
ln

(

r(γ +δ )

1− r(1− γ −δ )

)

,

q(δ ) =
r(1− r(1− γ −δ ))

(r−1)
ln

(

r(γ +δ )

1− r(1− γ −δ )

)

.

The roots of (3.3) are

z1,2 =
p(δ )

2
± i

2

√

4q(δ )− p2(δ )

satisfying

|z1,2|=
√

q(δ ),

and

(

d|z1,2|
dδ

)

γ̃=0

=

√
r
(

1− r+ rγ ln
(

rγ
1−r(1−γ)

))

2γ

√

(r−1)(1− r(1− γ)) ln
(

rγ
1−r(1−γ)

)

> 0.

We also have p(0) =

(

1+

(

ln
(

rγ
1−r(1−γ)

)

r−1

)

(1− r(1− γ))

)

and (r,γ) ∈ Θ which means p(0) 6=±2,0,1. So zn
1,z

n
2 6= 1 for all n = 1,2,3,4 at

δ = 0. Thus the roots of equation (3.3) do not lie in the unit circle intersection with the coordinate axes when δ = 0. We use the following

transformation to get the canonical form of the linearized part of (3.2) at δ = 0.

[

ut+1

vt+1

]

=





− 1
e 0

1−r
2r −

√

4−(1+ 1
r
)2

2





[

xt+1

yt+1

]

. (3.4)

Under the transformation (3.4), the system (3.2) becomes

[

xt+1

yt+1

]

=







1+r
2r −

√

4−(1+ 1
r
)2

2
√

4−(1+ 1
r
)2

2
1+r
2r







[

xt

yt

]

+

[

F(xt ,yt)
G(xt ,yt)

]

, (3.5)

where

F(x,y) =
a(r−1)(1+3r+4r2(−1+ γ))

8r2
x2 − a(4− (1+ 1

r )
2)

8
y2

+
a(1+ r+2r2(−1+ γ))

√
−1−2r+3r2

4r2
xy+

a2(−1+ r)2(1+5r+6r2(−1+ γ))

48r3
x3

− a2

48
(4− (1+

1

r
)2)3/2y3 +

a2(−1−2r+3r2)(1+ r+2r2(−1+ γ)))

16r3
xy2

+
a2(−1+ r)(1+3r+4r2(−1+ γ))

√
−1−2r+3r2

16r3
x2y+O((|x|+ |y|)4),

and

G(x,y) =− a(−1+ r)(1+ r)(1+3r+4r2(−1+ γ))

8r2
√
−1−2r+3r2

x2 +
a(1+ r)

√
−1−2r+3r2

8r2
y2

− a(1+ r)(1+ r+2r2(−1+ γ))

4r2
xy− a2(−1+ r)2(1+ r)(1+5r+6r2(−1+ γ))

48r3
√
−1−2r+3r2

x3

+
a2(−1−3r+ r2 +3r3)

48r3
y3 − a2(−1−3r+ r2 +3r3)(1+ r+2r2(−1+ γ))

16r3
√
−1−2r+3r2

xy2

− a2(−1+ r)(1+ r)(1+3r+4r2(−1+ γ))

16r3
x2y+O((|x|+ |y|)4).

We define the real number L, which analyzes the direction of the closed invariant curve in a system undergoing Neimark-Sacker bifurcation

[24].

L =

([

−Re

(

(1−2z1)z
2
2

1− z1
η20η11

)

− 1

2
|η11|2 −|η02|2 +Re(z2η21)

])

δ=0

,
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where

η20 =
1

8

[

Fxx −Fyy +2Gxy + i(Gxx −Gyy −2Fxy)
]

,

η11 =
1

4

[

Fxx +Fyy + i(Gxx +Gyy)
]

,

η02 =
1

8

[

Fxx −Fyy −2Gxy + i(Gxx −Gyy +2Fxy)
]

,

η21 =
1

16

[

Fxxx +Fxyy +Gxxy +Gyyy + i(Gxxx +Gxyy −Fxxy −Fyyy)
]

,

and

Fxx =
a(−1+ r)(1+3r+4r2(−1+ γ))

4r2
, Fyy =−1

4
a

(

4−
(

1+
1

r

)2
)

,

Fxy =
a(1+ r+2r2(−1+ γ))

√
−1−2r+3r2

4r2
, Fxxx =

a2(−1+ r)2(1+5r+6r2(−1+ γ))

8r3
,

Fyyy =−1

8
a2

(

4−
(

1+
1

r

)2
) 3

2

, Fxyy =
a2(−1−2r+3r2)(1+ r+2r2(−1+ γ))

8r3
,

Fxxy =
a2(−1+ r)(1+3r+4r2(−1+ γ))

√
−1−2r+3r2

8r3
, Gxx =−a(−1+ r)(1+ r)(1+3r+4r2(−1+ γ))

4r2
√
−1−2r+3r2

,

Gyy =
a(1+ r)

√
−1−2r+3r2

4r2
, Gxy =−a(1+ r)(1+ r+2r2(−1+ γ))

4r2
,

Gxxx =−a2(−1+ r)2(1+ r)(1+5r+6r2(−1+ γ))

8r3
√
−1−2r+3r2

, Gyyy =
a2(−1−3r+ r2 +3r3)

8r3
,

Gxyy =−a2(−1−3r+ r2 +3r3)(1+ r+2r2(−1+ γ))

8r3
√
−1−2r+3r2

, Gxxy =−a2(−1+ r)(1+ r)(1+3r+4r2(−1+ γ))

8r3
.

Due to the above calculations, we have the following theorem for the existence and direction of Neimark-Sacker bifurcation.

Theorem 3.1. Assume that (r,γ) ∈ Θ. If L 6= 0, then the system (1.1) experiences Neimark-Sacker bifurcation at the unique positive fixed

point (H∗,P∗) when the parameter γ differs in a small neighborhood of Θ. Moreover, if L < 0, then an attracting closed invariant curve

bifurcates from the fixed point (H∗,P∗), and if L > 0, then a repelling closed invariant curve bifurcates from the fixed point (H∗,P∗).

4. Chaos Control

Controlling bifurcation in discrete models has recently fascinated the interest of many researchers, and practical approaches are being

used in a variety of fields, including cardiology, physics laboratories, laser and plasma systems, biochemistry, turbulence, communications,

mechanical and chemical engineering [25, 26].

We use the state feedback control technique [7, 19, 27–29] to stabilize the unstable fixed point of the system (1.1). We consider the controlled

system in compliance with (1.1) as follows:

{

Ht+1 = r(1− γ)Ht + rγHt exp(−aPt)−Ut ,

Pt+1 = eγHt(1− exp(−aPt)),
(4.1)

where Ut = h(Ht −H∗)+ p(Pt −P∗) is the feedback control and p, h are feedback gains. The variational matrix of the system (4.1) evaluated

at (H∗,P∗) is given by

JC(H∗,P∗) =





1−h −p− r(1−r(1−γ))
e(r−1)

ln
(

rγ
1−r(1−γ)

)

e(r−1)
r

(1−r(1−γ))
(r−1)

ln
(

rγ
1−r(1−γ)

)



 .

The characteristic equation corresponding to JC(H∗,P∗) is given by

z2 −
(

1−h+
(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

z+
pe(r−1)

r
−
(

(h− r)(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

= 0. (4.2)

If z1 and z2 are roots of the system (4.2), then we have

z1 + z2 = 1−h+
(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

)

, (4.3)

and

z1z2 =
pe(r−1)

r
−
(

(h− r)(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

. (4.4)
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To get marginal lines of stability, we assume z1 =±1 and z1z2 = 1 which implies |z1,2| ≤ 1. If we assume that z1z2 = 1 then (4.4) gives

L1 :

(

(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

h−
(

e(r−1)

r

)

p =
r(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

)

−1. (4.5)

Next, if we assume that z1 = 1 then (4.3) and (4.4) implies

L2 :

(

1− (1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

h+

(

e(r−1)

r

)

p =−(1− r(1− γ)) ln

(

rγ

1− r(1− γ)

)

. (4.6)

If we assume that z1 =−1 then (4.3) and (4.4) yields

L3 :

(

1+
(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

))

h−
(

e(r−1)

r

)

p = 2+
(r+1)(1− r(1− γ))

(r−1)
ln

(

rγ

1− r(1− γ)

)

. (4.7)

It is easy to see that the triangular area bounded by the straight lines L1,L2, and L3 have stable eigenvalues.

Next, we use a hybrid control technique [22, 30–33] to control the chaotic behavior of (1.1) at fixed point (H∗,P∗) due to Neimark-Sacker

bifurcation. We consider the following controlled system associated with the system (1.1):

{

Ht+1 = α(r(1− γ)Ht + rγHt exp(−aPt))+(1−α)Ht ,

Pt+1 = αeγHt(1− exp(−aPt))+(1−α)Pt ,
(4.8)

where 0 < α ≤ 1. The fixed points of the controlled system (4.8) and the original system (1.1) are the same.

By using theorem (2.1), we have the following result for local asymptotic stability of fixed point (H∗,P∗) of the controlled system (4.8).

Theorem 4.1. Let r > 1 and γ > r−1
r . The unique positive fixed point (H∗,P∗) of the controlled system (4.8) is locally asymptotically stable

iff

(1−α)(r−1)+α(1+α(r−1))(1− r(1− γ)) ln
(

rγ
1−r(1−γ)

)

(r−1)
< 1.

Proof. The variational matrix of the system (4.8) at the fixed point (H∗,P∗) is

JC(H∗,P∗) =
[

1 J12

J21 J22

]

where

J12 =−
αr(1− r(1− γ)) ln

(

rγ
1−r(1−γ)

)

e(r−1)
,

J21 =
αe(r−1)

r
,

J22 =
r−1+α(1− r)+(α +αr(γ −1)) ln

(

rγ
1−r(1−γ)

)

r−1
.

The characteristic polynomial of JC(H∗,P∗) is

FC(z) = z2 −



2−α +
(α +αr(γ −1)) ln

(

rγ
1−r(1−γ)

)

r−1



z+K,

where

K =
r−1+α(1− r)+α(1+α(r−1))(1− r(1− γ)) ln

(

rγ
1−r(1−γ)

)

r−1
.

By simple computations,

FC(1) = α2(1− r(1− γ)) ln

(

rγ

1− r(1− γ)

)

> 0,

FC(−1) = 4−2α +
α(2+α(r−1))(1− r(1− γ)) ln

(

rγ
1−r(1−γ)

)

r−1
> 0,

and

FC(0) =
(1−α)(r−1)+α(1+α(r−1))(1− r(1− γ)) ln

(

rγ
1−r(1−γ)

)

(r−1)
.
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5. Numerical Examples

Some interesting numerical examples are provided in this section to strengthen our theoretical findings on different qualitative characteristics

of the model (1.1).

5.1. Neimark-Sacker bifurcation by using γ as bifurcation parameter

Setting the parameters r = 2,a = 4,e = 1 and initial condition H0 = 0.5,P0 = 0.2 for the system (1.1), the bifurcation value is γ ≈ 0.698976

and the fixed point is (H∗,P∗) ≈ (0.628216,0.314108). The eigenvalues of J(H∗,P∗) are z1,2 = .75± 0.661438i having |z1,2| = 1 which

confirms that the system (1.1) undergoes Neimark-Sacker bifurcation at (H∗,P∗). It is observed that the fixed point is locally asymptotically

stable for γ < 0.698976, and the fixed point is unstable for γ ≥ 0.698976 due to the Neimark-Sacker bifurcation as shown in Figure 5.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Bifurcation diagrams for system (1.1) and their amplifications.
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The closed invariant curves and periodic orbits are observed for γ ≥ 0.698976 as shown in Figure 5.2.

 

Figure 5.2: Phase portraits for system (1.1) for different values of γ .

Figure 5.3 displays the maximum Lyapunov exponent which affirms the stability and bifurcation regions obtained for the system (1.1).

Figure 5.3: Maximum Lyapunov exponent for system (1.1).
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5.2. Feedback control method

Setting the parameters r = 2,a = 4,e = 1,γ = 0.7 and initial condition H0 = 0.5,P0 = 0.2 for the system (4.1), the unique positive fixed

point of the system (1.1) is unstable and the marginal stability lines for the controlled system (4.1) are

L1 : h = 0.9977945005p−0.9955890011,

L2 : h =−1.002215271p−1.004430524,

and

L3 : h = 0.3330879170p+2.333824167.

Figure 5.4 depicts the stable triangular area bounded by the marginal lines L1,L2, and L3 for the controlled system (4.1).

Figure 5.4: Stability region for controlled system (4.1).

5.3. Hybrid control method

Setting the parameters r = 2,a = 4,e = 1 and initial condition H0 = 0.5,P0 = 0.2 for the system (4.8), the bifurcation diagrams for Ht are

displayed against the bifurcation parameter α in Figure 5.5, for different values of γ . These graphs show that the fixed point (H∗,P∗) of the

controlled system (4.8) is locally asymptotically stable for a wide range of the control parameter α .
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Figure 5.5: Bifurcation diagrams for controlled system (4.8) for different values of γ .

Furthermore, bifurcation diagrams for Ht are displayed against the bifurcation parameter γ in Figure 5.6 for different values of α . These

graphs confirm that the bifurcation is delayed in the controlled system (4.8) compared to the original system (1.1).
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Figure 5.6: Bifurcation diagrams for controlled system (4.8) for different values of α .

5.4. Sensitive dependence on the initial conditions

Figure 5.7 shows two perturbed trajectories in blue and red colors to highlight the sensitivity of the system (1.1) to initial conditions. The

two trajectories are initially overlapping and indistinguishable, but after a few iterations, the difference between them grows fast. With initial

values (H0,P0) = (0.5,0.2) and (H0,P0) = (0.50001,0.20001), Figure 5.7 illustrates a sensitive dependence on the initial conditions for the

system (1.1).
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Figure 5.7: Sensitivity to initial conditions of the system (1.1).

6. Conclusion

The qualitative analysis of a host-parasitoid system (1.1) is carried out. The system (1.1) is a modification in the classical Nicholson-Bailey

model, which is achieved by relaxing the uniform environment assumption with the patchy environment in which the number of hosts safe

from attack by the parasitoid is fixed. The unique positive steady state of the system (1.1) is found to be

(H∗,P∗) =





r ln
(

rγ
1−r(1−γ)

)

ae(r−1)
,

1

a
ln

(

rγ

1− r(1− γ)

)



 .

The unique positive steady-state (H∗,P∗) is topologically classified by linearization. The local stability of the steady-state (H∗,P∗) is

characterized by the following set of inequalities;

r

(

ln

(

rγ

1− r(1− γ)

))

(1− r(1− γ))< r−1, r > 1, γ >
r−1

r
.

The necessary and sufficient parametric conditions are derived for the local stability of the steady-state (H∗,P∗). In addition, sufficient

conditions (2.2), (2.3) and r > 1, γ > r−1
r are derived for the steady-state (H∗,P∗) to be non-hyperbolic. The Neimark-Sacker bifurcation is

carried out using the theory of normal forms by taking γ as a bifurcation parameter. The state feedback control and hybrid control strategies

are used to stabilize the unstable steady state of the system. Finally, numerous numerical examples have been presented to illustrate the

significance of the bifurcation parameter γ and the reproductive rate r of the host in the model (1.1). We show that the presence of a safe

refuge, where a portion of the host is in a safe refuge from predation, has a stabilizing effect on the model. It is clear, therefore, that γ , the

percentage of hosts that are vulnerable to parasitoids, can have a crucial impact on the stability of a host-parasitoid interaction. A small rate

of escaping of a host, 1− γ , may lead to instability.
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[31] O. A. Gümüş, A. G. M. Selvam, R. Janagaraj, Neimark-Sacker bifurcation and control of chaotic behavior in a discrete-time plant-herbivore system,

Journal of Science and Arts, 22(3) (2022), 549-562.
[32] A. Q. Khan, T. Khalique, Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model, Mathematical Methods in the Applied

Sciences, 43(9) (2020), 5887-5904.
[33] Q. Zhou, F. Chen, S. Lin, Complex Dynamics Analysis of a Discrete Amensalism System with a Cover for the First Species, Axioms, 11(8)(2022), 365.


	Introduction
	Solution Method
	Some Examples
	Conclusion
	Introduction and Background
	Main Results
	Timelike Bézier curves
	Spacelike Bézier Curves
	Spacelike Bézier Curves with Spacelike normal
	Spacelike Bézier curves with timelike normal


	Introduction
	Triangular Statistical Convergence
	A Korovkin-Type Approximation Theorem
	Rate of Triangular A-Statistical Convergence
	An Application to Theorem 4.3
	Introduction
	Solutions of the problem
	Spectrum of T
	Conclusion
	Introduction
	Local Stability of Positive Fixed Point
	Bifurcation Analysis
	Chaos Control
	Numerical Examples
	Neimark-Sacker bifurcation by using  as bifurcation parameter
	Feedback control method
	Hybrid control method
	Sensitive dependence on the initial conditions

	Conclusion

