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Exact Solutions of Nonlinear Time Fractional Schrödinger Equation
with Beta-Derivative

Volkan ALA ∗

Mersin University, Faculty of Science, Department of Mathematics
Mersin, Türkiye

Received: 06 March 2022 Accepted: 19 October 2022

Abstract: This article consists of Improved Bernoulli Sub-Equation Function Method (IBSEFM) to get

the new solutions of nonlinear fractional Schrödinger equation described by beta-derivative. Foremost, it

is dealt with derivative of Atangana. Secondly, basic properties of the IBSEFM are given. Finally, the

proposed method has been applicated to the considered equation to get its new solutions. Moreover, the

graphs of the obtained solutions are plotted via Mathematica. It is inferred from the results that IBSEFM

is effectual technique for new solutions of nonlinear equations containing conformable derivatives.

Keywords: Atangana derivative, IBSEFM, Schrödinger equation

1. Introduction
Fractional equations are useful tool to determine numerous nonlinear phenomena of physics

such as chaotic systems, heat transmission, diffusion, acoustic waves, viscoelasticity, plasma waves

[12–17]. Lots of fractional operators have been defined, for instance: Riemann-Liouville, Caputo

derivative [19], Caputo-Fabrizio [9], Jumarie’s modified Riemann-Liouville [13], Atangana-Baleanu

[4]. By the aid of these derivative operators, lots of techniques have been advanced which supply

analytical solutions of fractional equations such as generalized Kudryashov [11], extended direct

algebraic [20], IBSEFM [5, 6], modified trial equation method [18].

In [14] the definiton of conformable derivative is given and then using this derivative exact

solutions of the time-heat differential equation have been investigated in [10]. In addition to this,

a new definition of fractional derivative called beta-derivative is obtained in [4]. Several analytical

methods are improved to get the exact solutions of fractional equations with beta-conformable

time derivative [22–24].

The aim of this study is to get the exact solutions of nonlinear time fractional Schrödinger

∗Correspondence: volkanala@mersin.edu.tr
2020 AMS Mathematics Subject Classification: 35C08, 34K20, 32W50
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equation with beta-derivative using IBSEFM. Before the solution process we will give the basic

properties of Atangana’s conformable derivative and fundamental steps of proposed method in the

rest of the paper.

2. Beta Derivative and It’s Specifications

This section contains some essential concepts of beta derivative that have been utilized in this

work.

Let f(t) be a function defined for all non-negative t. Then, β -derivative of f(t) of order

β is given by in [1, 4] as

Dβ (f(t)) = dβf(t)
dtβ

= lim
ε→0

f (t + ε (t + 1
Γ(β))

1−β
) − f(t)

ε
,

where 0 < β ≤ 1 . In fractional calculus, the β -derivative is known as the generalization of classical

derivative and it’s characteristics properties have been given in [1, 4]. Suppose that u(t) and

v(t) are β -differentiable functions for all t > 0 and β ∈ (0,1] . Then

i) Dβ (af(t) + bg(t)) = aDβ (f(t)) + bDβ (g(t)) (∀ a, b ∈ R),

ii) Dβ (f(t)g(t)) = g(t)Dβ (f(t)) + f(t)Dβ (g(t)) ,

iii)Dβ ( f(t)
g(t)) =

g(t)Dβ(f(t))−f(t)Dβ(g(t))
(g(t))2 ,

iv)Dβ (f(t)) = (t + 1
Γ(β))

1−β
df(t)
dt

.

It should be noted that these properties provide us an easy way to convert a nonlinear

partial differential equation with β -derivative to a nonlinear ordinary differential equation of

integer-order. There are many works with β -derivative in literature [2, 3].

3. Description of The Proposed Method

In this part, the fundamental properties of IBSEFM is given ([6–8]). There are five main steps of

the IBSEFM below the following:

Step 1: Let us consider following equation with beta derivative for a function according to

the two variables space x and time t ;

P (uA
0 ,D

β
t u,ux, uxx, ...) = 0, (1)

here P involves u(x, t) and partial derivatives. The goal is to exchange (1) to nonlinear ordinary

differential equation with a suitable wave transformation as

u(x, t) = V (η), η =mx − γ

β
(t + 1

Γ (β)
)
β

, (2)

2
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m and γ are arbitrary constants. Using (2), (1) turns into the ordinary differential equation in

the form

N(V,V ′, V ′′, ...) = 0, (3)

where N is the function of V,V ′, V ′′, ... and its derivatives with respect to η . Integrating (3) term

to term, we acquire integration constants which may be determined then.

Step 2: We hypothesize that the solution of (3) may be presented below;

V (η) = ∑
n
i=0 aiQ

i(η)
∑m

j=0 bjQ
j(η)

= a0 + a1Q(η) + a2Q2(η) + ... + anQn(η)
b0 + b1Q(η) + b2Q2(η) + ... + bmQm(η)

, (4)

where a0, a1, ..., an and b0, b1, ..., bm are coefficients which will be determined later. m ≠ 0, n ≠ 0

are chosen arbitrary according to the balance principle and considering the form of Bernoulli

differential equation below the following;

Q′(η) = σQ(η) + dQM(η), d ≠ 0, σ ≠ 0, M ∈ R ∖ {0,1,2} , (5)

here Q(η) is a polynomial.

Step 3: The positive integer m,n,M (are different from zero) are found respect to the bal-

ance principle that is both nonlinear term and the highest order derivative term of (3). Substituting

(4) and (5) into (3) an equation of polynomial Ω(Q) of Q is acquired below the following;

Ω(Q(η)) = αsQ(η)s + ... + α1Q(η) + α0 = 0,

where αi are coefficients that will be determined later.

Step 4: The coefficients of Ω(Q(η)) which will give us an algebraic equations systems;

αi = 0, i = 0, ..., s.

Step 5: When we solve (5), we get the following two cases with respect to σ and d ,

Q(η) = [−de
σ(ϵ−1)η + ϵσ
σeσ(ϵ−1)η

]
1

1−ϵ

, d ≠ σ, (6)

Q(η) =
⎡⎢⎢⎢⎣

(ϵ − 1) + (ϵ + 1) tanh (σ(1 − ϵ)η
2
)

1 − tanh (σ(1 − ϵ)η
2
)

⎤⎥⎥⎥⎦
, d = σ, ϵ ∈ R. (7)

Using a complete discrimination system for polynomial of Q(η) , exact solutions of (1) are get via

Wolfram Mathematica and categorize the exact solutions of (1). To achieve better results, 2D and

3D graphs of exact solutions might be plotted taking proper values of parameters.

3
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4. Mathematical Analysis of The Model

Let us consider the nonlinear Schrödinger equation in β -derivative sense

iA0 D
β
t u + puxx + q ∣u∣2 u = 0, 0 < β ≤ 1 (8)

and apply the transformation

u(x, t) = eiθU(ξ), θ = τx + λ

β
(t + 1

Γ(β)
)
β

, ξ = x − 2rλ

β
(t + 1

Γ(β)
)
β

. (9)

Here τ, λ and r are constants, using the basic properties of β -derivative and substituting (9) into

(8), we get the following equation containing the real and imaginary part;

i [−2rλdU
dξ
+ 2pτ dU

dξ
] + pd

2U

dξ2
− (λ + pτ2)U + qU3 = 0. (10)

From the imaginary part of (10), r = pτ
λ
. Moreover, the real part of (10) is

pU ′′ − (λ + pτ2)U + qU3 = 0. (11)

When we reconsider (11) for balance principle between U ′′ and U3 , we get the relationship as

follow;

M = n −m + 1. (12)

(12) shows us the different cases of the solutions of (11) and we can obtain some analytical solutions.

According to the balance, we consider M = 3,m = 1, n = 3 for (12) and the following equations

hold:

U(ξ) = a0 + a1Q(ξ) + a2Q2(ξ) + a3Q3(ξ)
b0 + b1Q(ξ)

≡ Υ(ξ)
Ψ(ξ)

, (13)

U ′(ξ) = Υ′(ξ)Ψ (ξ) −Υ(ξ)Ψ′(ξ)
Ψ2(ξ)

(14)

and

U ′′(ξ) = Υ′(ξ)Ψ (ξ) −Υ(ξ)Ψ′(ξ)
Ψ2(ξ)

− [Υ(ξ)Ψ
′ (ξ)]′Ψ2(ξ) − 2Υ(ξ)[Ψ′(ξ)]2Ψ(ξ)

Ψ4(ξ)
, (15)

where Q′ = σQ+dQ3, a3 ≠ 0, b1 ≠ 0, σ ≠ 0, d ≠ 0. Using (13)-(15) in (11), we get from coefficients

of polynomial of Q as follow;

Q0 ∶ qa30 − λa0b20 − pτ2a0b20 = 0,

Q1 ∶ 3qa20a1 − λa1b20 + pσ2a1b
2
0 − pτ2a1b20 − 2λa0b0b1 − pσ2a0b0b1 − 2pτ2a0b0b1 = 0,

4
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⋮

Q7 ∶ 3qa3a22 + 3qa1a23 + 15d2pa3b20 + 9d2pa2b0b1 + 12dpσa3b21 = 0,

Q8 ∶ 3qa2a23 + 21d2pa3b0b1 + 3d2pa2b21 = 0,

Q9 ∶ qa33 + 8d2pa3b21 = 0.

Solving above the equation system of Q via Mathematica, the coefficients are obtained for

σ ≠ d :

Family1.

a0 = −
i
√
2
√
pσb0
√
q

, a1 = −
i
√
2
√
pσb1
√
q

, a2 = −
2i
√
2d
√
pb0

√
q

, a3 = −
2i
√
2d
√
pb1

√
q

, τ = −
√
−λ − 2pσ2

√
p

.

Substituting these coefficients along with (7) in (13), we obtain the following solution of (8)

as follows;

q1 (x, t) =
−1
2
exp

⎧⎪⎪⎨⎪⎪⎩
−
x
√
−λ − 2pσ2

√
p

+ λ

β
(t + 1

Γ(β)
)
β⎫⎪⎪⎬⎪⎪⎭

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−2xσ +
4rlσ (t + 1

Γ(β))
β

β
ϵ − d

σ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Figure 1: 3D-plots of q1(x, t) for the values β = 0.5 ; d = 0.4 ; r = 0.1 ; ϵ = 0.2 ; λ = 0.3 ; σ = 0.5 ;
p = 0.3 ; t = 0.4 ; −3 < x < 3 , 0 < t < 10 , 2D-plots and contoursurfaces

Family2. For σ ≠ d ,

a0 = −
i
√
−λ − pτ2b0√

q
, a1 = −

i
√
−λ − pτ2b1√

q
, a2 =

2i
√
2d
√
pb0

√
q

, a3 =
2i
√
2d
√
pb1

√
q

, σ =
√
−λ − pτ2
√
2
√
p

.

Substituting these coefficients along with (7) in (13), we obtain the following solution of (8)

5
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as follows;

q2 (x, t) =

exp{ixτ + iλ
β
(t + 1

Γ(β))
β
}(λ + pτ2)

⎛
⎜⎜⎜⎜
⎝

2d2 exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−
2
√

2
√
−λ−pτ2

⎛
⎜⎜
⎝
x−

2rλ(t+ 1
Γ(β) )

β

β

⎞
⎟⎟
⎠

√
p

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

p + ϵ2 (λ + pτ2)

⎞
⎟⎟⎟⎟
⎠

¿
ÁÁÁÀexp

⎧⎪⎪⎨⎪⎪⎩
−2xσ +

4rlσ(t+ 1
Γ(β) )

β

β
ϵ − d

σ

⎫⎪⎪⎬⎪⎪⎭

.

Figure 2: 3D- plots of q2(x, t) for the values β = 0.5 ; d = 0.4 ; r = 0.1 ; ϵ = 0.2 ; λ = 0.3 ; σ = 0.5 ;
p = 0.3 ; t = 0.4 ; −10 < x < 10 , −10 < t < 10 , 2D-plots and contoursurfaces

We can understand the characteristics of the solutions from the figures that for a few

parameter values, the displayed numerical analysis acknowledges that the solutions are periodic

wave shapes in exponential classes. According to the figures, one can see that the formats of exact

solutions in two and three dimensional surfaces are similar to the physical meaning of results.

5. Conclusion
In this paper, the IBSEFM is applied for fractional Schrödinger equation in β -derivative. Using

wave transformation the considered equation has been converted into the ordinary differential

equation which can be solved according to the IBSEFM. By means of this method, exact solutions

are obtained. Figures of all solutions according to the suitable parameters are plotted by showing

the main characteristic physical properties of the solutions with the help of Wolfram Mathematica.

It seems from the results that the more steps are developed and the better approximations are

obtained. It is inferred from the conclusions that IBSEFM is simple, effective and powerful. Thus,

in mathematical physics it is applicable to solve other nonlinear differential equations.
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Abstract: As it is known, there are many sufficient conditions for the classification complex functions of

one variable f(z) , which are analytic and univalent in the open unit disc U = {z ∈ C ∶ ∣z∣ < 1} , and are also

normalized with f(0) = 1 − f ′(0) = 0 which are also known as normalization conditions. In this sense, the

main goal of present article is to derive some special sufficient conditions for f(z) to be starlike of order

2−r and convex of order 2−r in U , with r is a positive integer.

Keywords: Analytic function, convex function, starlike function, univalent function.

1. Introduction
Let’s take A as the class of functions of the form

w = f(z) = z +
∞
∑
n=2

anz
n = z + a2z2 + . . . , (1)

which are analytic in the open unit disc U and additionally satisfy normalization conditions

f(0) = 1 − f ′(0) = 0 . If being univalent is imposed as an additional condition on the elements

of class A , class S , which is a subclass of class A , is obtained. The fact that a complex-valued

function f(z) is univalent in the unit disk U indicates that w = f(z) for distinct z elements in U

are also distinct [2]. In other words, the equation f(z) = w has at most one root in the unit disk U .

Under these conditions, the regions f(U) of the functions f(z) belonging to the class S exhibits

very interesting geometries. Moreover, these functions are classified using common geometries. We

denoted by S∗ the subclass of class S consisting of functions f(z) in class A , which exhibit a

starlike geometry with respect to the origin and also denote by C the subclass of class S consisting

of functions f(z) in class A , which exhibit a convex geometry. These two classes can be given

∗Correspondence: alaattinakyar28@gmail.com.tr
2020 AMS Mathematics Subject Classification: 30C45, 33A30

This Research Article is licensed under a Creative Commons Attribution 4.0 International License.
Also, it has been published considering the Research and Publication Ethics.
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analytically as

S∗ =
⎧⎪⎪⎨⎪⎪⎩
f(z) ∈ A ∶R(zf

′(z)
f(z)

) > 0, z ∈ U
⎫⎪⎪⎬⎪⎪⎭

(2)

and

C = {f ∈ A ∶R(1 + zf ′′(z)
f ′(z)

) > 0, z ∈ U}, (3)

respectively [2, 3, 6].

Furthermore, we denote by S∗(α) the subclass of S consisting of functions f(z) in class A , which

are satisfies the condition R(zf
′(z)

f(z)
) > α (0 ≤ α < 1) , and analytically this subclass is given as

S∗(α) = {f ∈ A ∶R(zf
′(z)

f(z)
) > α,α ∈ [0,1), z ∈ U}. (4)

Similarly, also we denote by C(α) the subclass of S consisting of functions f(z) in class A , which

are the satisfies the conditions R(1 + zf ′′(z)
f ′(z)

) > α (0 ≤ α < 1) . Analytically this subclass is given

as

C(α) = {f ∈ A ∶R(1 + zf ′′(z)
f ′(z)

) > α,α ∈ [0,1), z ∈ U}. (5)

Functions belonging to subclasses S∗(α) and C(α) , respectively, are called starlike of order α and

convex of order α functions in the open unit disc U . For proofs of analytical characterizations

given so far, we refer to [1, 9, 12]. Since it is very difficult to classify analytic functions with

different domains, it would be good to remember that the domain of definition is taken as the open

unit disc U in the studies carried out in this field in the light of the Riemann mapping theorem. In

this sense, the information given is only valid for the analytic f(z) functions defined in the open

unit disc U and satisfying the relevant conditions. Moreover, it is clear that the common geometric

characterization of analytic functions belonging to a subclass cannot be generalized to all elements

of the classes that cover this class. At this stage, it is clear from the subclass relationship that

C(α) ⊂ S∗(α) ⊂ S∗ ⊂ S ⊂ A and S∗(0) = S∗ and C(0) = C for α = 0 . When interpreting the

subclass relationship given above, it will be helpful to remember that any convex region is also a

starlike region with respect to every point. Since the functions belonging to the class A meet the

normalization conditions, functions that are starlike according to the origin are mainly used in the

studies in this field.

Theorem 1.1 The classes S∗(α) and C(α) satisfies Alexander duality relation

zf ′(z) ∈ S∗(α)⇔ f(z) ∈ C(α), 0 ≤ α < 1. (6)

10
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The basic argument provided by this theorem, also known as the Alexander’s theorem that f(z)

is univalent and convex if and only if zf ′(z) can be univalent and convex [2]. In this case, it can

be said immediately that f is convex, according to the argument of Alexander’s theorem. This

brilliant theorem, which is not difficult to prove, is used as a very useful mathematical tool in

obtaining many results set forth in univalent function theory.

Definition 1.2 Let’s take f(z) and g(z) be analytic in the open unit disc U . If there is an analytic

function w(z) in U that satisfies the conditions w(0) = 0 , ∣w(z)∣ < 1 and f(z) = g(w(z)) , then

the f(z) function is said to be subordinate to the g(z) function and denoted as g(z) ≺ f(z) [2].

Lemma 1.3 (Jack’s Lemma) Let the (none constant) function w(z) be analytic in the open unit

disc U with w(0) = 0 . If ∣w(z)∣ attains its maximum value on the circle ∣z∣ = r < 1 at a point

z0 ∈ U , then c = z0w
′(z0)

w(z0)
, where c is a real number and c ≥ 1 .

It is well known that Jack’s lemma is a very useful mathematical tool used in many applications

in the theory of geometric functions [2, 5]. In this sense, we start by reminding that it is also used

as a basic tool in the proof of our results.

2. Main Results

Theorem 2.1 Let f(z) be a function in class A . If f(z) satisfies

R(1 + zf ′′(z)
f ′(z)

) < 3 + 2−r

2 (1 + 2−r)
, ∣z∣ < 1 (7)

for some 2 + 2−r(r ∈ N) , then

zf ′(z)
f(z)

≺ (2 + 2
−r) (1 − z)

(2 + 2−r) − z
, ∣z∣ < 1 (8)

and
RRRRRRRRRRR

zf ′(z)
f(z)

− 2 + 2−r

3 + 2−r
RRRRRRRRRRR
< 2 + 2−r

3 + 2−r
, ∣z∣ < 1. (9)

This implies that f(z) ∈ S∗ (2−r) .

Proof As in many studies in this field, let’s define the function w(z) by

zf ′(z)
f(z)

= (2 + 2
−r) (1 −w(z))

(2 + 2−r) −w(z)
, w(z) ≠ 2 + 2−r (10)

11
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to prove the result of the theorem under the given conditions. It is clear that the function w(z) is

analytic in the open unit disc U and also w(0) = 0 . Thus, we need to prove that ∣w(z)∣ < 1 in U

according to the Jack’s Lemma Lemma 1.3. Since

1 + zf ′′(z)
f ′(z)

= (2 + 2
−r) (1 −w(z))

(2 + 2−r) −w(z)
− zw′(z)
1 −w(z)

+ zw′(z)
(2 + 2−r) −w(z)

, (11)

we have that

R(1 + zf ′′(z)
f ′(z)

) =R((2 + 2
−r) (1 −w(z))

(2 + 2−r) −w(z)
− zw′(z)
1 −w(z)

+ zw′(z)
(2 + 2−r) −w(z)

) ,

so R(1 + zf ′′(z)
f ′(z) ) =

3 + 2−r

2 (1 + 2−r)
, ∣z∣ < 1 for some 2+ 2−r(r ∈ N) . At this stage, using the exponential

form of the complex number provides ease of operation. Now, if there is a point z0 in U such that

max
∣z∣≤∣z0∣

= ∣w(z0)∣ = 1 , then w(z0) = eiθ and c = z0w
′(z0)

w(z0)
, c ≥ 1 by Jack’s Lemma 1.3. So, we have

1 + z0f
′′(z0)

f ′(z0)
= (2 + 2

−r) (1 −w(z0))
(2 + 2−r) −w(z0)

− zw′(z0)
1 −w(z0)

+ zw′(z0)
(2 + 2−r) −w(z0)

= (2 + 2−r) + (2 + 2−r) (1 − (2 + 2−r) + c) 1

(2 + 2−r) − eiθ
− c

1 − eiθ
.

Thus, if follows that

R( 1

(2 + 2−r) − eiθ
) = 1

2 (2 + 2−r)
+ (2 + 2−r)2 − 1
2 (2 + 2−r) (1 + (2 + 2−r)2 − 2cosθ)

and so R( 1

1 −w(z0)
) = 1

2
. This implies that, for 2 + 2−r1(r ∈ N) ,

R(1 + z0f
′′(z0)

f ′(z0)
) ≥ 3 + 2−r

2
+ (3 + 2

−r) (1 − (2 + 2−r) + c)
2 (1 + 2−r)

≥ 3 + 2−r

2
+ (3 + 2

−r) (−2−r)
2 (1 + 2−r)

= 3 + 2−r

2 (1 + 2−r)
.

This contradicts the hypothesis of our theorem. Therefore, there is no z0 ∈ U such that ∣w(z0)∣ = 1

for all z ∈ U , that is

zf ′(z)
f(z)

≺ (2 + 2
−r) (1 − z)

(2 + 2−r) − z
, ∣z∣ < 1.

12
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Furthermore, since

w(z) =
(2 + 2−r) ( zf

′(z)
f(z) − 1)

zf ′(z)
f(z) − (2 + 2−r)

and ∣w(z)∣ < 1 (∣z∣ < 1) , we conclude that

RRRRRRRRRRR

zf ′(z)
f(z)

− 2 + 2−r

3 + 2−r
RRRRRRRRRRR
< 2 + 2−r

3 + 2−r
, ∣z∣ < 1,

which implies that f(z) ∈ S∗ . ◻

While r →∞ in the theorem, the following corollary due to Singh R. and Singh S. is obtained

with a different calculation [11]. The proof is obtained directly from the proof of Theorem 2.1.

Corollary 2.2 Let f(z) be a function in class A . If f(z) satisfies

R(1 + zf ′′(z)
f ′(z)

) < 3

2
, ∣z∣ < 1,

then
zf ′(z)
f(z)

≺ 2(1 − z)
2 − z

, ∣z∣ < 1,

and
RRRRRRRRRRR

zf ′(z)
f(z)

− 2

3

RRRRRRRRRRR
< 3

2
, ∣z∣ < 1.

Theorem 2.3 Let f(z) be a function in class A . If f(z) satisfies

R(1 + zf ′′(z)
f ′(z)

) > 7 + 3.2−r

2 (2 + 2−r) (3 + 2−r)
, ∣z∣ < 1 (12)

for some 1 + 2−r(r ∈ N) , then f(z) ∈ C ( 3+2−r
2(2+2−r)) .

Proof We define the function in U by

f(z)
zf ′(z)

= (2 + 2
−r) (1 −w(z))

(2 + 2−r) −w(z)
, (w(z) ≠ 2 + 2−r, r ∈ N), (13)

so that w(z) is analytic in U and ∣w(z)∣ < 1 . In this case, if the logarithmically derivative of both

sides of equation (13) is taken and necessary simplifying are made,

1 + zf ′′(z)
f ′(z)

= (2 + 2−r) −w(z)
(2 + 2−r) (1 −w(z))

+ zw′(z)
1 −w(z)

+ zw′(z)
(2 + 2−r) −w(z)

13
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and hence

R(1 + zf ′′(z)
f ′(z)

) =R( (2 + 2
−r) −w(z)

(2 + 2−r) (1 −w(z))
+ zw′(z)
1 −w(z)

+ zw′(z)
(2 + 2−r) −w(z)

)

> 7 + 3.2−r

2 (2 + 2−r) (3 + 2−r)

for 1+ 2−r(r ∈ N) . Now, if there is a point z0 in U such that max
∣z∣≤∣z0∣

= ∣w(z0)∣ = 1 , then w(z0) = eiθ

and c = z0w
′(z0)

w(z0
, c ≥ 1 by Jack’s Lemma 1.3. So, we have

R(1 + z0f
′′(z0)

f ′(z0)
) = 1

2
+ 1

2 (2 + 2−r)
−

c ((2 + 2−r)2 + 1)

2(1 + (2 + 2−r)2 − 2 (2 + 2−r) cosθ)

and, for 1 + 2−r > 0 (r ∈ N) ,

R(1 + z0f
′′(z0)

f ′(z0)
) ≤ 1

2
+ 1

2 (2 + 2−r)
− 1 + 2−r

2 (3 + 2−r)

= 7 + 3.2−r

2 (2 + 2−r) (3 + 2−r)
.

This contradicts the hypothesis of our theorem. Therefore, there is no z0 ∈ U such that ∣w(z0)∣ = 1

for all z ∈ U , that is

f(z)
zf ′(z)

≺ (2 + 2
−r) (1 − z)

(2 + 2−r) − z
, ∣z∣ < 1.

Furthermore, since

w(z) =
(2 + 2−r) (1 − zf ′(z)

f(z) )

1 − (2 + 2−r) zf ′(z)
f(z)

and ∣w(z)∣ < 1 (∣z∣ < 1) , we conclude that f(z) ∈ C ( 3+2−r
2(2+2−r)) . ◻

Corollary 2.4 Letting r →∞ in Theorem 2.3, then f(z) ∈ C (3/4) .

3. Conclusion
As it is known, geometric functions basically aim to classify complex functions that are analytic

on the open unit disk, provided that they meet some additional conditions such as being univalent

and satisfying the normalization conditions. While doing this, a relationship is established between

the analytical properties of the functions in question and the geometric properties of their images,

as an interaction of analysis and geometry. If the function can be easily graphed, it will be fairly
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easy to classify the image set according to its geometric characterization. Unfortunately, that may

not always be the case. In this case, there are many analytical methods that can be used in the

literature. In this sense, we tried to give a different perspective to the conditions existing in the

literature.
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Süleyman Şenyurt 1, Kebire Hilal Ayvacı 1∗, Davut Canlı 1

11 Ordu University, Faculty of Arts and Sciences, Department of Mathematics, Ordu, Türkiye
1senyurtsuleyman52@gmail.com, davutcanli@odu.edu.tr

Received: 08 July 2022 Accepted: 26 December 2022

Abstract: The paper investigates some special Smarandache curves according to Flc-frame in Euclidean

3-space. The Frenet and Flc frame vectors, curvature and torsion of the new constructed curves are

expressed by means of the initial curve invariants. For the sake of comparison in view, an example for

Smarandache curves according to both Frenet and Flc frame is also presented at the end of paper.

Keywords: Flc-frame, natural curvatures, polynomial curves, Smarandache curves.

1. Introduction

Characterizations of curves in classical differential geometry are generally expressed with the help

of Frenet framework. However, the disadvantage of this frame is that the frame cannot be settled at

points where the second derivative of the curve is zero. In this case, an alternative frame is needed.

Bishop defined Bishop frame which we call alternative parallel frame in 1975 [5]. This frame is

formed by rotating the normal vectors at a certain angle by keeping the tangent vector in the

Frenet framework constant and can be defined including the points where the second derivative of

the curve is zero. Even if the Bishop frame is suitable for applications, it is not an analytical frame.

Recently, Dede has introduced a new framework called Flc (Frenet like curve) frame along a given

polynomial curve, and provided some insight into the geometric meaning for the n th derivative of

a given curve [8]. Calculations made according to this frame are easier than the Frenet frame and

Bishop frame. The most important advantage of the Flc Frame is that it has less singular points

compared to the Frenet frame. Thus, by hindering the sudden rotation of the tangent vector of

the curve, the deformation that may occur on the surface is prevented, and the problem of sudden

ruptures and bends on the surface are removed. The Smarandache curve is defined as the regular

curve with the place vector generated by the Frenet vectors of a regular curve.

In Euclidean space, the first studies for this subject were given by Ali in [2]. Turgut and

Yılmaz, described the Smarandache curves in Minkowski space [15]. Later, at either Euclidean
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or Minkowski space, some features of the Smarandache curves are investigated according to the

Darboux frame, Bishop frame, alternative frame, q frame and Sabban frame, [1, 3, 4, 6, 7, 9, 11–

14]. In this study, we introduce special Smarandache curves according to the new Flc frame in

Euclidean 3-space. The Flc apparatus of each new curve are calculated and the graphs of the

curves are also presented.

2. Preliminaries

In this section, we recall some basic concepts that we refer in the context of the paper. Let

α : I ⊂ R → R3 be a regular curve in E3 . The general forms of Frenet vectors and formulas are

given as

T (s) =
α′(s)

∥α′(s)∥
, N(s) = B(s) ∧ T (s), B(s) =

α′(s) ∧ α′′(s)

∥α′(s) ∧ α′′(s)∥
, (1)

κ(s) =
∥α′(s) ∧ α′′(s)∥

∥α′(s)∥3
, τ(s) =

⟨α′(s) ∧ α′′(s), α′′′(s)⟩
∥α′(s) ∧ α′′(s)∥2

, (2)

T ′(s) = νκ(s)N(s), N ′(s) = ν (−κ(s)T (s) + τ(s)B(s)) , B′(s) = −ντ(s)N(s), (3)

where ν = ∥α′(s)∥ , κ is the curvature and τ is the torsion of the curve [10].

Moreover, a point s0 ∈ I is said to be a singular point of order 0 of the curve α , if α′(s0)

vanishes. Another point s1 ∈ I is said to be a singular point of order 1 if α′′(s1) vanishes. If

α′(s2)∧α′′(s2) = 0 that is the curvature vanishes at a point s2 ∈ I , then s2 is called an inflection

point. Therefore as known to be the main disadvantage of the Frenet frame, it has inflection points

and two type of singular points. However, recently, Dede introduced a new frame moving along a

polynomial space curve of degree n and named it as Flc-frame. The vector elements of this new

frame is defined as following;

T (s) =
α′(s)

∥α′(s)∥
, D2(s) = D1(s) ∧ T (s), D1(s) =

α′(s) ∧ α(n)(s)∥∥α′(s) ∧ α(n)(s)
∥∥ , (4)

where the prime (n) stands for the nth derivative with respect to s [8]. The new vectors D1

and D2 are called as binormal-like and normal-like vectors, respectively. The curvatures of the

Flc-frame d1 , d2 and d3 are defined as

d1 =
⟨T ′, D2⟩

ν
, d2=

⟨T ′, D1⟩
ν

, d3 =

⟨
D2

′, D1

⟩
ν

. (5)
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The relationship between the Frenet and Frenet like frame (Flc) is given by

 T
D2

D1

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T
N
B

 (6)

and the relations between the curvatures of two frames are

d1 = κcosθ, d2 = −κsinθ, θ = arctan

(
−d2
d1

)
, d3 =

dθ

ν
+ τ, (7)

where θ = ^(N,D2). Therefore, the local rate of change for the Flc-frame or namely the Frenet-like

formulas can be expressed as in the following form

 T ′

D2
′

D1
′

 = ν

 0
−d1
−d2

d1
0

−d3

d2
d3
0

 T
D2

D1

 . (8)

3. Smarandache Curves According to Flc Frame

Let us consider the curve β(s) : I ⊂ R → R3 as a regular polynomial curve in Euclidean space

and denote {T (s), D2(s), D1(s)} as its moving Flc frame. We define and consider the following

Smarandache curves. Note that for simplicity we omit to denote the parameter s throughout the
paper.

3.1. TD2 Smarandache Curve

Definition 3.1 The curve β1 defined by the linear combination of two vectors T and D2 is called

the TD2 Smarandache curve and is defined as;

β1(s) =
1√
2
(T +D2) . (9)

We examine the Flc frame invariants of the TD2 Smarandache curve β1 by means of the

main curve β . To do so, we first differentiate (9) with respect to s and recall the relations given

at (8) to get

β′
1 =

ν√
2
(−d1T + d1D2 + (d2 + d3)D1) .

By taking the norm of above and considering the equations (1), we obtain the tangent vector

Tβ1 as;

Tβ1 =
−d1T + d1D2 + (d2 + d3)D1√

2d1
2 + (d2 + d3)

2
.
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Süleyman Şenyurt, Kebire Hilal Ayvacı and Davut Canlı / FCMS

On the other hand, by recalling (8) again, the second order derivative of (9) with respect to

s is given as

β′′
1 = η1T + η2D2 + η3D1,

where  η1
η2
η3

 =
−1√
2

 ν2
(
d1

2 + d2d3 + d2
2
)
+ (νd1)

′

ν2
(
d1

2 + d2d3 + d3
2
)
− (νd1)

′

ν2 (d1d2 − d1d3)− (νd2)
′
+ (νd3)

′

 .
Then, the cross product of first and second order derivatives is given

β′
1 ∧ β′′

1 = ζ1T + ζ2D2 + ζ3D1,

where  ζ1
ζ2
ζ3

 =
ν√
2

 (d1η3 − η2 (d2 + d3))
(d1η3 + η1 (d2 + d3))
−d1 (η1 + η2)

 .
Hence, we express the principal normal and the binormal vector field of β1 as in the following;

Nβ1 =
ν√
2

(ζ2 (d2 + d3)− ζ3d1)T − (ζ1 (d2 + d3) + ζ3d1)D2 + (ζ1d1 + ζ2d1)D1(√
2d1

2 + (d2 + d3)
2

)(√
ζ1

2 + ζ2
2 + ζ3

2
) ,

Bβ1 =
ζ1T + ζ2D2 + ζ3D1√

ζ1
2 + ζ2

2 + ζ3
2
.

The third derivative of β1 Smarandache curve is

β′′′
1 = ρ1T + ρ2D2 + ρ3D1,

where

ρ1 =
1√
2

(
νd1

2
(
ν2d1 − 3ν′

)
+ d1

(
ν3
(
d2

2 + d3
2
)
− 3ν2d1

′ − ν′′
)

−d2
(
3νν′ (d2 + d3) + ν2

(
3d2

′ + 2d3
′))− d2

′ν2d3 − 2ν′d1
′ − νd1

′′

)
,

ρ2 =
1√
2

(
−νd12

(
ν2d1 + 3ν′

)
− d1

(
ν3
(
d3

2 + d2
2
)
+ 3ν2d1

′ − ν′′
)

−νd2
(
νd3

′ − 3ν′d3
)
− 3ν′νd3

2 − ν2d3
(
2d2

′ + 3d3
′)+ νd1

′′ + 2ν′d1
′

)
,

ρ3 =
1√
2

(
−ν3d12 (d2 + d3)− νd1

(
ν
(
d2

′ − d3
′)+ 3ν′ (d2 − d3)

)
− ν3d2

2 (d2 + d3)− ν3d3
3

−d2
(
ν2
(
νd3

2 + 2d1
′)− ν′′

)
+
(
2ν2d1

′ + ν′′
)
d3 + ν

(
d2

′′ + d3
′′)+ 2ν′

(
d2

′ + d3
′) ) .

Hence, the Frenet curvatures κ and τ of β1 are given as

κβ1 =
2
√
2
√
ζ1

2 + ζ2
2 + ζ3

2

ν3
(
2d1

2 + (d2 + d3)
2
) 3

2

, τβ1 =
ζ1ρ1 + ζ2ρ2 + ζ3ρ3

ζ1
2 + ζ2

2 + ζ3
2 .
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Therefore, by using (6), the Flc apparatus of β1 can be given by means of the Flc components

of β as

Tβ1 =
−d1T + d1D2 + (d2 + d3)D1

µ/
√
2

,

D2β1
=

1

µζ

 (νcosθ1 (ζ2 (d2 + d3)− ζ3d1) + µsinθ1ζ1)T
− (νcosθ1 (ζ1 (d2 + d3) + ζ3d1)− µsinθ1ζ2)D2

+(νcosθ1 (ζ1d1 + ζ2d1) + µsinθ1ζ3)D1

 ,

D1β1
=

1

µζ

 − (νsinθ1 (ζ2 (d2 + d3)− ζ3d1)− µcosθ1ζ1)T
+(νsinθ1 (ζ1 (d2 + d3) + ζ3d1) + µcosθ1ζ2)D2

− (νsinθ1 (ζ1d1 + ζ2d1)− µcosθ1ζ3)D1

 ,

where µ =

√
4d1

2 + 2 (d2 + d3)
2
, ζ =

√
ζ1

2 + ζ2
2 + ζ3

2 , θ1 = ^
(
Nβ1 , D2β1

)
and

d1β1
=

 2
√
2
√
ζ1

2 + ζ2
2 + ζ3

2

ν3
(
2d1

2 + (d2 + d3)
2
) 3

2

 cosθ1,

d2β1
= −

 2
√
2
√
ζ1

2 + ζ2
2 + ζ3

2

ν3
(
2d1

2 + (d2 + d3)
2
) 3

2

 sinθ1,

d3β1
= −

d2
′
β1
d1β1

− d2β1
d1

′
β1

ν
(
d1

2
β1

+ d2
2
β1

) +
ζ1ρ1 + ζ2ρ2 + ζ3ρ3

ζ1
2 + ζ2

2 + ζ3
2 .

3.2. TD1 Smarandache Curve

Definition 3.2 The curve β2 defined by the linear combination of two vectors T and D1 is called

the TD1 Smarandache curve and is defined as:

β2(s) =
1√
2
(T +D1) . (10)

We examine the Flc frame invariants of the TD1 Smarandache curve β2 by means of the

main curve β . To do so, we first differentiate (10) with respect to s and recall the relations given

at (8) to get

β′
2 =

ν√
2
(−d2T + (d1 − d3)D2 + d2D1) .

By taking the norm of above and considering the equations (1), we obtain the tangent vector

Tβ2 as;

Tβ2 =
−d2T + (d1 − d3)D2 + d2D1√

2d2
2 + (d1 − d3)

2
.
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On the other hand, by recalling (8) again, the second order derivative of (10) with respect

to s is given as

β′′
2 = ξ1T + ξ2D2 + ξ3D1,

where  ξ1
ξ2
ξ3

 =
−1√
2

 ν2
(
d2

2 + d1
2 − d1d3

)
+ (νd2)

′

−ν2d2 (d1 + d3) + ν′ (d1 − d3) + ν
(
d1

′ − d3
′)

−ν2
(
d2

2 − d1d3 + d3
2
)
+ (νd2)

′

 .
Next, the cross product of first and second order derivatives is given

β′
2 ∧ β′′

2 = χ1T + χ2D2 + χ3D1,

where  χ1

χ2

χ3

 =
ν√
2

 ξ3 (d1 − d3)− d2ξ2
d2 (ξ1 + ξ3)
ξ1 (d1 + d3)− d2ξ2

 .
Hence, we express the principal normal and the binormal vector field of β2 as in the following;

Nβ2
=

ν√
2

(χ2d2 − χ3 (d1 − d3))T − d2 (χ1 + χ3)D2 + (χ1 (d1 − d3) + χ2d2)D1(√
2d2

2 + (d1 − d3)
2

)(√
χ1

2 + χ2
2 + χ3

2
) ,

Bβ2 =
χ1T + χ2D2 + χ3D1√

χ1
2 + χ2

2 + χ3
2
.

The third derivative of β2 Smarandache curve is

β′′′
2 = ω1T + ω2D2 + ω3D1,

where

ω1 =
1√
2

(
νd1

2
(
d2ν

2 − 3ν′
)
− νd1

(
3νd1 − 2νd3

′ − 3ν′d3
)
+ ν3d2

3 − 3νd2
2ν′

+
(
ν2
(
νd3

2 − 3d2
′)− ν′′

)
d2 + d1

′ν2d3 − 2ν′d2
′ − νd2

′′

)
,

ω2 =
1√
2

(
−ν3d12 (d1 − d3)− d1

(
ν3
(
d2

2 + d3
2
)
+ 2d2

′ν2 + 3νd2ν
′ − ν′′

)
+ ν3d2

2d3
−νd2

(
ν
(
d1

′ + d3
′)+ 3ν′d3

)
+ ν3d3

3 − d3
(
2ν2d2

′ + ν′′
)
+ ν

(
d1

′′ − d3
′′)+ 2ν′

(
d1

′ − d3
′) ) ,

ω3 =
1√
2

(
−ν3d2d12 + νd1

(
νd3

′ + 3ν′d3
)
− νd2

2
(
ν2d2 + 3ν′

)
− d2

(
ν2
(
νd3

2 + 3d2
′)− ν′′

)
−3ν′νd3

2 + d3
(
2ν2d1

′ − 3ν2d3
′)+ νd2

′′ + 2ν′d2
′

)
.

Hence, the Frenet invariants κ and τ of β2 can be expressed as

κβ2 =
2
√
2
√
χ1

2 + χ2
2 + χ3

2

ν3
(
2d2

2 + (d1 − d3)
2
) 3

2

, τβ2 =
χ1ω1 + χ2ω2 + χ3ω3

χ1
2 + χ2

2 + χ3
2

.
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By using again (6), the Flc apparatus of β2 can be given by means of the Flc components

of β as

Tβ2 =

√
2

ϑ

(
− d1T + d1D2 + (d2 + d3)D1

)
,

D2β2
=

1

ϑχ

 (νcosθ2 (χ2d2 − χ3 (d1 − d3)) + ϑsinθ2χ1)T
− (νcosθ2 (d2 (χ1 + χ3))− ϑsinθ2χ2)D2

+(νcosθ2 (χ1 (d1 − d3) + χ2d2) + ϑsinθ2χ3)D1

 ,

D1β2
=

1

ϑχ

 − (νsinθ2 (χ2d2 − χ3 (d1 − d3))− ϑcosθ2χ1)T
+(νsinθ2 (d2 (χ1 + χ3)) + ϑcosθ2χ2)D2

− (νsinθ2 (d2 (χ1 + χ3))− ϑcosθ2χ3)D1

 ,

where ϑ =

√
4d2

2 + 2 (d1 − d3)
2
, χ =

√
χ1

2 + χ2
2 + χ3

2 , θ2 = ^
(
Nβ2 , D2β2

)
and

d1β2
=

 2
√
2
√
χ1

2 + χ2
2 + χ3

2

ν3
(
2d2

2 + (d1 − d3)
2
) 3

2

 cosθ2,

d2β2
= −

 2
√
2
√
χ1

2 + χ2
2 + χ3

2

ν3
(
2d2

2 + (d1 − d3)
2
) 3

2

 sinθ2,

d3β2
= −

d2
′
β2
d1β2

− d2β2
d1

′
β2

ν
(
d1

2
β2

+ d2
2
β2

) +
χ1ω1 + χ2ω2 + χ3ω3

χ1
2 + χ2

2 + χ3
2

.

3.3. D2D1 Smarandache Curve

Definition 3.3 The curve β3 defined by the linear combination of two vectors D2 and D1 of Flc

frame is called the D2D1 Smarandache curve and is defined as;

β3(s) =
1√
2
(D2 +D1) . (11)

We examine the Flc frame invariants of the D2D1 Smarandache curve β3 by means of the

main curve β . By differentiating (11) with respect to s , first and referring the relations given at

(8) to get

β′
3 =

ν√
2
(−(d1 + d2)T − d3D2 + d3D1) .

By taking the norm of above and considering the equations (1), we obtain the tangent vector

Tβ2 as;

Tβ3 =
−(d1 + d2)T + d3D2 + d3D1√

2d3
2 + (d1 + d2)

2
.
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On the other hand, by recalling (8) again, the second order derivative of (11) with respect

to s is given as

β′′
3 = ϕ1T + ϕ2D2 + ϕ3D1,

where  ϕ1
ϕ2
ϕ3

 =
1√
2

 ν2d3 (d1 − d2)− (νd1)
′ − (νd2)

′

−ν2
(
d1

2 + d2 + d3
2
)
− (νd3)

′

−ν2
(
d1d2 + d2

2 + d3
2
)
+ (νd3)

′

 .
Next, the cross product of first and second order derivatives is given

β′
3 ∧ β′′

3 = υ1T + υ2D2 + υ3D1,

where  υ1
υ2
υ3

 =
ν√
2

 −d3 (ϕ2 + ϕ3)
ϕ3 (d1 + d2) + ϕ1d3
−ϕ2 (d1 + d2) + ϕ1d3

 .
Hence, we express the principal normal and the binormal vector field of β3 as in the following;

Nβ3 =
ν√
2

(d3 (υ2 + υ3))T − (υ1d3 + υ3(d1 + d2))D2 − (υ1d3 − υ2(d1 + d2))D1(√
2d3

2 + (d1 + d2)
2

)(√
υ12 + υ22 + υ32

) ,

Bβ3
=
υ1T + υ2D2 + υ3D1√

υ12 + υ22 + υ32
.

Moreover, the third derivative of β3 Smarandache curve is

β′′′
3 = ϵ1T + ϵ2D2 + ϵ3D1,

where

ϵ1 =
1√
2

(
d1

2ν3 (d1 + d2) + d1
(
ν3
(
d2

2 + d3
2
)
+ 3νd3ν

′ + 2ν2d3
′ − ν′′

)
+ ν2d3

(
d1

′ − d2
′)

+d2
3ν3 + d2

(
νd3

(
ν2d3 − 3ν′

)
− 2ν2d3

′ − ν′′
)
− 2ν′

(
d1

′ + d2
′)− ν

(
d1

′′ + d2
′′) ) ,

ϵ2 =
1√
2

(
νd1

2
(
ν2d3 − 3ν′

)
− νd1

(
3ν′d2 + ν

(
3d1

′ + 2d2
′))+ d2

2ν3d3
−ν
(
d1

′d2ν − ν2d3
3 + 3d3

2ν′ + d3
′′)− d3

(
−3ν2d3

′ + ν′′
)
− 2ν′d3

′

)
,

ϵ3 =
1√
2

(
−d12ν3d3 − νd1

(
3ν′d2 + d2

′ν
)
− νd2

2
(
ν2d3 + 3ν′

)
−ν2d2

(
2d1

′ + 3d2
′)− νd3

2
(
ν2d3 + 3ν′

)
− d3

(
3ν2d3

′ − ν′′
)
+ 2ν′d3

′ + νd3
′′

)
.

Therefore, the Frenet curvatures κ and τ of β3 can be expressed as

κβ3 =
2
√
2
√
υ12 + υ22 + υ32

ν3
(
2d3

2 + (d1 + d2)
2
) 3

2

, τβ3 =
υ1ϵ1 + υ2ϵ2 + υ3ϵ3
υ12 + υ22 + υ32

.
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By using again (6), the Flc apparatus of β3 can be given by means of the Flc components

of β as

Tβ3 =

√
2

δ

(
− (d1 + d2)T + d3D2 + d3D1

)
,

D2β3
=

1

δυ

 (νcosθ3 (d3 (υ2 + υ3)) + δsinθ3υ1)T
− (νcosθ3 (υ1d3 + υ3(d1 + d2))− δsinθ3υ2)D2

+(νcosθ3 (υ1d3 − υ2(d1 + d2)) + δsinθ3υ3)D1

 ,

D1β3
=

1

δυ

 − (νsinθ3 (d3 (υ2 + υ3))− δcosθ3υ1)T
+(νsinθ3 (υ1d3 + υ3(d1 + d2)) + δcosθ3υ2)D2

+(νsinθ3 (υ1d3 − υ2(d1 + d2)) + δcosθ3υ3)D1

 ,

where δ =

√
4d3

2 + 2 (d1 + d2)
2
, υ =

√
υ12 + υ22 + υ32 , θ3 = ^

(
Nβ3 , D2β3

)
and

d1β3
=

 2
√
2
√
υ12 + υ22 + υ32

ν3
(
2d3

2 + (d1 + d2)
2
) 3

2

 cosθ3,

d2β3
= −

 2
√
2
√
υ12 + υ22 + υ32

ν3
(
2d3

2 + (d1 + d2)
2
) 3

2

 sinθ3,

d3β3
= −

d2
′
β3
d1β3

− d2β3
d1

′
β3

ν
(
d1

2
β3

+ d2
2
β3

) +
υ1ϵ1 + υ2ϵ2 + υ3ϵ3
υ12 + υ22 + υ32

.

3.4. TD2D1 Smarandache Curve

Definition 3.4 The curve β4 defined by the linear combination of the vectors T , D2 and D1 of

Flc frame is called the TD2D1 Smarandache curve and is defined as;

β4(s) =
1√
3
(T +D2 +D1) . (12)

We examine the Flc frame invariants of the D2D1 Smarandache curve β4 by means of the

main curve β . By differentiating (12) with respect to s , first and referring the relations given at

(8) to get

β′
4 =

ν√
3
(−(d1 + d2)T + (d1 − d3)D2 + (d2 + d3)D1) .

By taking the norm of above and considering the equations (1), we obtain the tangent vector

Tβ2 as;

Tβ3
=

−(d1 + d2)T + (d1 − d3)D2 + (d2 + d3)D1√
(d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2

.
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On the other hand, by recalling (8) again, the second order derivative of (12) with respect

to s is given as

β′′
4 = γ1T + γ2D2 + γ3D1,

where

 γ1
γ2
γ3

 =
1√
3

 −ν2
(
d1

2 − d1d3 + d2
2 + d2d3

)
− ν′ (d1 + d2)− ν

(
d1

′ + d2
′)

−ν2
(
d1

2 + d1d2 + d2d3 + d3
2
)
+ ν

(
d1

′ − d3
′)+ ν′ (d1 − d3)

−ν2
(
d2

2 + d1d2 − d1d3 + d3
2
)
+ ν

(
d2

′ + d3
′)+ ν′ (d2 + d3)

 .
The cross product of first and second order derivatives is given

β′
4 ∧ β′′

4 = ψ1T + ψ2D2 + ψ3D1,

where  ψ1

ψ2

ψ3

 =
ν√
3

 γ3 (d1 − d3)− γ2 (d2 + d3)
γ3 (d1 + d2) + γ1 (d2 + d3)
γ1 (d3 − d1)− γ2 (d1 + d2)

 .
Hence, we express the principal normal and the binormal vector field of β4 as in the following;

Nβ4 =
ν√
3

(ψ2 (d2 + d3)− ψ3 (d1 − d3))T − (ψ1 (d2 + d3) + ψ3 (d1 + d2))D2

+(ψ1 (d1 − d3) + ψ2 (d1 + d2))D1(√
(d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2

)(√
ψ1

2 + ψ2
2 + ψ3

2
) ,

Bβ4 =
ψ1T + ψ2D2 + ψ3D1√

ψ1
2 + ψ2

2 + ψ3
2
.

Moreover, the third derivative of β4 Smarandache curve is

β′′′
4 = ι1T + ι2D2 + ι3D1,

where

ι1 =
1√
3

 d1
3ν3 + νd1

2
(
ν2d2 − 3ν′

)
+ d1

(
ν3
(
d2

2 + d3
2
)
+ 3ν′νd3 − ν′′ − ν2

(
3d1

′ − 2d3
′))

νd2
2
(
ν2d2 − 3ν′

)
+ d2

(
νd3

(
ν2d3 − 3ν′

)
− ν′′ − ν2

(
3d2

′ + 2d3
′))

ν2d3
(
d1

′ − d2
′)− 2ν′

(
d1

′ + d2
′)− ν

(
d1

′′ + d2
′′)

 ,

ι2 =
1√
3

 −d13ν3 + νd1
2
(
ν2d3 − 3ν′

)
− d1

(
ν3
(
d2

2 + d3
2
)
+ 3d2ν

′ν − ν′′ + ν2
(
3d1

′ + 2d2
′))

+ν3d2
2d3 − νd2

(
3ν′d3 + ν

(
d1

′ + d3
′))+ νd3

2
(
ν2d3 − 3ν′

)
−d3

(
ν′′ + ν2

(
3d3

′ + 2d2
′))+ 2ν′

(
d1

′ − d3
′)+ ν

(
d1

′′ − d3
′′)

 ,

ι3 =
1√
3

 −ν3d12 (d3 + d2)− d1
(
3νν′ (d2 + d3)− ν2

(
d3

′ − d2
′))− ν3d2

3

+d2
(
ν′′ − ν3d3

2 − ν2
(
2d1

′ + 3d2
′))− (νd22+νd32) (ν2d3 + 3ν′

)
+
(
ν′′ − ν2

(
3d3

′ − 2d1
′)) d3 + 2ν′

(
d3

′ + d2
′)+ (d2′′ + d3

′′) ν
 .
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Therefore, the Frenet curvatures κ and τ of β4 can be expressed as

κβ4 =
3
√
3
√
ψ1

2 + ψ2
2 + ψ3

2

ν3((d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2)
3
2

, τβ4 =
ψ1ι1 + ψ2ι2 + ψ3ι3

ψ1
2 + ψ2

2 + ψ3
2 .

By using again (6), the Flc apparatus of β4 can be given by means of the Flc components

of β as

Tβ4 =

√
3

∆

(
− (d1 + d2)T + d3D2 + d3D1

)
,

D2β4
=

1

∆ψ

 (νcosθ4 (ψ2 (d2 + d3)− ψ3 (d1 − d3)) + ∆sinθ4ψ1)T
− (νcosθ4 (ψ1 (d2 + d3) + ψ3 (d1 + d2))−∆sinθ4ψ2)D2

+(νcosθ4 (ψ1 (d1 − d3) + ψ2 (d1 + d2)) + ∆sinθ4ψ3)D1

 ,

D1β4
=

1

∆ψ

 − (νsinθ4 (ψ2 (d2 + d3)− ψ3 (d1 − d3))−∆cosθ4ψ1)T
+(νsinθ4 (ψ1 (d2 + d3) + ψ3 (d1 + d2)) + ∆cosθ4ψ2)D2

− (νsinθ4 (ψ1 (d1 − d3) + ψ2 (d1 + d2))−∆cosθ4ψ3)D1

 ,

where ∆ =
√
3 ((d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2), ψ =

√
ψ1

2 + ψ2
2 + ψ3

2 , θ4 = ^
(
Nβ4 , D2β4

)
and

d1β4
=

(
3
√
3
√
ψ1

2 + ψ2
2 + ψ3

2

ν3((d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2)
3
2

)
cosθ4,

d2β4
= −

(
3
√
3
√
ψ1

2 + ψ2
2 + ψ3

2

ν3((d1 + d2)2 + (d1 − d3)2 + (d2 + d3)2)
3
2

)
sinθ4,

d3β4
= −

d2
′
β4
d1β4

− d2β4
d1

′
β4

ν
(
d1

2
β4

+ d2
2
β4

) +
ψ1ι1 + ψ2ι2 + ψ3ι3

ψ1
2 + ψ2

2 + ψ3
2 .

Example 3.5 Let us consider α = α(t) be a 4th order polynomial curve parametrized by

α(t) =

(
t2,

2t3

3
,
t4

4

)
.

The corresponding Frenet apparatus of this curve are given as

T (t) =
(

2t
|t|(t2+2) ,

2|t|
t2+2 ,

|t|t
t2+2

)
, N(t) =

(
− 2|t|

t2+2 ,−
|t|t−2sign(t)

t2+2 , 2|t|
t2+2

)
,

B(t) =
(

t2

t2+2 ,−
2t

t2+2 ,
2t(|t|t+sign(t))

|t|(t2+2)

)
, κ = 2

|t|(t2+2)2
, τ = 2

t(t2+2)2
.
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On the other hand, as ∥α′∥ = |t| (t2 + 2) , the corresponding FLC apparatus of α are

T (t) =
(

2t
|t|(t2+2) ,

2|t|
t2+2 ,

|t|t
t2+2

)
,

D2(t) =
(
− t|t|

(t2+2)
√
t2+1

,− |t|3

(t2+2)
√
t2+1

, 2(t|t|+sign(t))

(t2+2)
√
t2+1

)
,

D1(t) =
(

t√
t2+1

,− 1√
t2+1

, 0
)
, d1 = t√

t2+1
, d2 = − sign(t)√

t2+1
, d3 = t|t|

2(t2+1) .

To compare the two frames namely the Frenet frame and the Frenet like frame, let us denote

α1 and β1 as the TN -Smarandache curve and TD2 -Smarandache curve, and define these as

α1(t) =
T (t) +N(t)√

2
, β1(t) =

T (t) +D2(t)√
2

.

The graph of these curves are given in Figure 1.

(a) α1 alone (b) β1 alone (c) α1 and β1 together

Figure 1: TN− vs TD2− Smarandache curves for t ∈ (−1, 1)

Next let us denote this time α2 and β2 as the TB and TD1 -Smarandache curves, respec-

tively, and define these as

α2(t) =
T (t) +B(t)√

2
, β2(t) =

T (t) +D1(t)√
2

.

The corresponding pictures for these curves are provided in Figure 2.
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(a) α2 alone (b) β2 alone (c) α2 and β2 together

Figure 2: TB− vs TD1− Smarandache curves for t ∈ (−1, 1)

If we define α3 and β3 as the NB− and D2D1− Smarandache curves, respectively, then

we have

α3(t) =
N(t) +B(t)√

2
, β3(t) =

D2(t) +D1(t)√
2

,

where these curves are presented in Figure 3.

(a) α3 alone (b) β3 alone (c) α3 and β3 together

Figure 3: NB− vs D2D1− Smarandache curves for t ∈ (−1, 1)

Finally, if we take α4 and β4 as the TNB− and TD2D1− Smarandache curves, respectively,

then we write

α4(t) =
T (t) +N(t) +B(t)√

3
, β4(t) =

T (t) +D2(t) +D1(t)√
3

.

The Figure 4 shows these curves.
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(a) α4 alone (b) β4 alone (c) α4 and β4 together

Figure 4: TNB− vs TD2D1− Smarandache curves for t ∈ (−1, 1)
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[3] Alıç Ş., Yılmaz B., Smarandache curves according to alternative frame in E3 , Journal of Universal

Mathematics, 4(2), 140-156, 2021.
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1. Introduction and Preliminaries

A regular curve in Minkowski space-time, whose position vector is composed of Frenet frame vectors

on another regular curve, is called a Smarandache curve [17]. Special Smarandache curves have

been studied by some authors. Turgut and Yılmaz’s article deals with interesting knowledge of

special Smarandache curves in the space E4
1 . For example, they obtained another orthonormal

frame [17]. In the light of the reference [17], Ali adapted Smarandache curve to regular curves in

the E3 [2]. Ergüt et al. defined the isotropic types of Smarandache curves. Then they examined

these kinds of isotropic Smarandache curves according to the Cartan frame in the complex 4-space

[6]. By using the Darboux frame, Bektaş and Yüce obtained the results about Smarandache curves

[4]. In another study, they studied the spatial quaternionic curve and the relationship between

Frenet frames of the involute curve of the spatial quaternionic curve which are expressed by using

the angle between the Darboux vector and binormal vector [15]. Şenyurt et al. used special curves

as a base to create Smarandache curves, and then studied their geometric properties [12–14]. Al-

Dayal and Solouma study some properties of spacelike Smarandache curves regarding Bishop frame

of a spacelike curve in Minkowski 3-space [1]. There are many studies about Smarandache curves

[9, 11, 16]

Huygens discovered an involute-evolute curve while trying to build a more accurate clock.

The involute of a curve is a well-known concept in the Euclidean space [7, 8, 10]. The involute-
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evolute curve has attracted mathematicians’ attention. In [5], authors found the relationships

between the Frenet frames of the timelike curve and the spacelike involute curve. In another study,

Bishop curvatures of the involute-evolute curve were examined and some important results were

found [3].

In this paper, the invariants of the Smarandache curves, which consist of Frenet vectors of

the involute curve, are calculated in terms of the evolute curve.

The inner product can be given by

⟨ , ⟩ = x2
1 + x3

2 + x2
3,

where (x1, x2, x3) ∈ E3 . Let α ∶ I → E3 be a unit speed curve with the moving Frenet frame

{V1(s), V2(s), V3(s)} the moving Frenet frame. For an arbitrary curve α ∈ E3 , with first and

second curvature k1 and k2 , respectively, the Frenet formulas are given by [7]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V1
′(s) = k1(s)V2(s),

V2
′(s) = −k1(s)V1(s) + k2(s)V3(s),

V3
′(s) = −k2(s)V2(s).

For any unit speed curve α ∶ I → E3 , the vector W is called Darboux vector defined by

W = k2V1 + k1V3.

If we consider the normalization of the Darboux vector C = 1
∥W ∥W , we have

sin∅ = k2
∥W ∥

, cos∅ = k1
∥W ∥

and
C = sin∅V1 + cos∅V3,

where ⟨W,V3⟩ = ∅ .

Theorem 1.1 [10] Let the Frenet frames of α and α∗ be {V1(s), V2(s), V3(s)} and

{V1
∗(s), V2

∗(s), V3
∗(s)} respectively. The relations between the Frenet frames are as follows;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V1
∗(s) = V2(s),

V2
∗(s) = − cos∅V1(s) + sin∅V3(s),

V3
∗(s) = sin∅V1(s) + cos∅V3(s).

(1)

Definition 1.2 [7] Let unit speed regular curve α ∶ I → E3 and α∗ ∶ I → E3 be given. For all s ∈ I ,

the curve α∗ is called the involute of the curve α if the tangent at the point α(s) to the curve α

passes through the tangent at the point α∗(s) to the curve α∗ and ⟨V1(s), V1
∗(s)⟩ = 0 . The curve

α is called the evolute curve.
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Theorem 1.3 [7] The distance between corresponding points of the evolute-involute curve in E3

is, for all s ∈ I

d(α(s), α∗(s)) = ∣c − s∣,

where c is a constant.

Theorem 1.4 [10] Let (α,α∗) be a evolute-involute curves in E3 . For the curvatures and the

torsions of the evolute-involute curve (α,α∗) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1
∗ =
√
k1

2 + k22

(c − s)k1
, λ = c − s,

k2
∗ = k1k2

′ − k1′k2
(c − s)k1(k12 + k22)

⋅

2. Smarandache Curves of Involute-Evolute Curve Couple According to Frenet Frame

In this subsection, special Smarandache curves belonging to involute curves such as V1
∗V2

∗,

V2
∗V3

∗, V1
∗V3

∗ and V1
∗V2

∗V3
∗ drawn by Frenet frame are defined. Curvatures and torsions of

involute curves are expressed depending upon the evolute curve and some related results are given.

Definition 2.1 Let (α,α∗) be a evolute-involute curves in E3 . V1
∗V2

∗ - Smarandache curve can

be defined by

β1(s) =
1√
2
(V1

∗ + V2
∗).

If equation (1) is taken into account, the above expression is

β1(s) =
− cos∅V1 + V2 + sin∅V3√

2
⋅ (2)

Theorem 2.2 Frenet vectors of Smarandache curve β1 are given as follows;

Tβ1 = (∅′ sin∅ − k1)V1 − ∥W ∥V2 + (∅′ cos∅ + k2)V3√
∅′2 + 2∥W ∥2

, (3)

Nβ1 = ω̄1V1 + ω̄2V2 + ω̄3V3√
ω̄1

2 + ω̄2
2 + ω̄3

2
,

Bβ1 = (−∥W ∥ω̄3 − (∅′ cos∅ + k2)ω̄2)V1 + (ω̄1(∅′ cos∅ + k2) − ω̄3(∅′ sin∅ − k1))V2√
(∅′2 + 2∥W ∥2)(ω̄1 + ω̄2 + ω̄3)

+ (ω̄2(∅′ sin∅ − k1) + ω̄1∥W ∥)V3√
(∅′2 + 2∥W ∥2)(ω̄1 + ω̄2 + ω̄3)

⋅
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Here, the coefficients are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̄1 = (∅′′ sin∅ +∅′
2
cos∅ − k1′ + k1∥W ∥)

√
∅′2 + 2∥W ∥2

−(∅′ sin∅ − k1) (
√
∅′2 + 2∥W ∥2)

′
,

ω̄2 = (−∥W ∥2 − ∥W ∥′)
√
∅′2 + 2∥W ∥2 + ∥W ∥ (

√
∅′2 + 2∥W ∥2)

′
,

ω̄3 = (∅′′ cos∅ −∅′
2
sin∅ + k2′ − k2∥W ∥)

√
∅′2 + 2∥W ∥2

−(∅′ cos∅ + k2) (
√
∅′2 + 2∥W ∥2)

′
.

Proof The derivative of the equation (2) is

β′1 = Tβ1

dsβ1

ds
= (∅

′ sin∅ − k1)V1 − ∥W ∥V2 + (∅′ cos∅ + k2)V3√
2

⋅

By taking the norm of the above equation, we can write

dsβ1

ds
=

√
∅′2 + 2∥W ∥2

2
⋅

If necessary operations are taken, the tangent vector is

Tβ1(s) =
(∅′ sin∅ − k1)V1 − ∥W ∥V2 + (∅′ cos∅ + k2)V3√

∅′2 + 2∥W ∥2
⋅ (4)

In the light of the pieces of information, the principal normal and the binormal vectors are

respectively given by

Nβ1 = ω̄1V1 + ω̄2V2 + ω̄3V3√
ω̄1

2 + ω̄2
2 + ω̄3

2
,

Bβ1 = (−∥W ∥ω̄3 − (∅′ cos∅ + k2)ω̄2)V1 + (ω̄1(∅′ cos∅ + k2) − ω̄3(∅′ sin∅ − k1))V2√
(∅′2 + 2∥W ∥2)(ω̄1 + ω̄2 + ω̄3)

+ (ω̄2(∅′ sin∅ − k1) + ω̄1∥W ∥)V3√
(∅′2 + 2∥W ∥2)(ω̄1 + ω̄2 + ω̄3)

⋅

◻

34
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Theorem 2.3 Curvature and torsion belonging to Smarandache curve β1 are, respectively

k1β1
=

√
2

(∅′2 + 2∥W ∥2) 3
2

⎛
⎝
((∅′′ sin∅ +∅′2 cos∅ − k1′ + k1∥W ∥)

√
∅′2 + 2∥W ∥2

−(∅′ sin∅ − k1) (
√
∅′2 + 2∥W ∥2)

′
)
2

+ ((−∥W ∥2 − ∥W ∥′)
√
∅′2 + 2∥W ∥2

+∥W ∥ (
√
∅′2 + 2∥W ∥2)

′
)
2

+ ((∅′′ cos∅ −∅′2 sin∅ + k2′ − k2∥W ∥)

√
∅′2 + 2∥W ∥2 − (∅′ cos∅ + k2).(

√
∅′2 + 2∥W ∥2)

′
)
2⎞
⎠

1
2

,

k2β1
=

√
2[ν̄1(∅′′′ sin∅ + 3∅′∅′′ cos∅ −∅′3 sin∅ − k1′′ + k1′∥W ∥ + 2k1∥W ∥′

+k1∥W ∥2) + ν̄2(∅′2∥W ∥ − k1k1′ − k2k2′ + ∥W ∥3 − 2∥W ∥∥W ∥′ + ∥W ∥′′)
+ν̄3(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅ + k2′′ − k2′∥W ∥ − 2k2∥W ∥′ − k2∥W ∥2)]

ν̄1
2 + ν̄22 + ν̄32

,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν̄1 = −∥W ∥(∅′′ cos∅ −∅′
2
sin∅ + k2′ − k2∥W ∥) + (∥W ∥2 + ∥W ∥′)(∅′ cos∅ + k2),

ν̄2 = (∅′ cos∅ + k2)(∅′′ sin∅ +∅′
2
cos∅ − k1′ + k1∥W ∥) − (∅′ sin∅ − k1)(∅′′ cos∅

−∅′2 sin∅ + k2′ − k2∥W ∥),

ν̄3 = (∅′ sin∅ − k1)(−∥W ∥2 − ∥W ∥′) + ∥W ∥(∅′′ sin∅ +∅′
2
cos∅ − k1′ + k1∥W ∥).

Proof The first curvature is

k1β1
= ∥T ′β1

∥⋅ (5)

Taking the derivative of the equation (4), we obtain

T ′β1
(s) =

√
2
ω̄1V1 + ω̄2V2 + ω̄3V3

(∅′2 + 2∥W ∥2) 3
2

⋅ (6)

If the expression (6) is written in (5), the first curvature is

k1β1
= ∥T ′β1

∥ =
√
2

√
ω̄1

2 + ω̄2
2 + ω̄3

2

(∅′2 + 2∥W ∥2) 3
2

⋅

If the coefficients are written instead, the desired result is obtained.

To calculate the torsion of the curve β1 , we differentiate
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β′′1 =
⎛
⎝
− cos∅

⎛
⎝
( ∥W ∥
(c − s)k1

)
′

− ∥W ∥2

(c − s)2k12
− (k1k2

′ − k1′k2)2

(c − s)2k12∥W ∥4
⎞
⎠

+ sin∅(∥W ∥(k1k2
′ − k1′k2)

(c − s)2k12∥W ∥4
+ ((k1k2

′ − k1′k2)
(c − s)k1∥W ∥2

)′)
⎞
⎠
V1 +

⎛
⎝
∥W ∥2

(c − s)2k12

+( ∥W ∥
(c − s)k1

)
′ ⎞
⎠
V2 +

⎛
⎝
sin∅

⎛
⎝
( ∥W ∥
(c − s)k1

)
′

− ∥W ∥2

(c − s)2k12
− (k1k2

′ − k1′k2)2

(c − s)2k12∥W ∥4
⎞
⎠

+ cos∅
⎛
⎝
∥W ∥(k1k2′ − k1′k2)
(c − s)2k12∥W ∥4

+ ((k1k2
′ − k1′k2)

(c − s)k1∥W ∥2
)
′ ⎞
⎠
⎞
⎠
V3

and thus

β′′′1 =
(−η̄2 cos∅ + η̄3 sin∅)V1 + η̄1V2 + (η̄2 sin∅ + η̄3 cos∅)V3√

2
,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̄1 = ∅′′′ sin∅ + 3∅′∅′′ cos∅ −∅′
3
sin∅ − k1′′ + k1′∥W ∥ + 2k1∥W ∥′ + k1∥W ∥2,

η̄2 = ∅′
2∥W ∥ − k1k1′ − k2k2′ + ∥W ∥3 − 2∥W ∥∥W ∥′ + ∥W ∥′′,

η̄3 = ∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′
3
cos∅ + k2′′ − k2′∥W ∥ − 2k2∥W ∥′ − k2∥W ∥2.

The torsion is then given by

k2β1
= det(β′1, β′′1 , β′′′1 )
∥β′1 ∧ β′′1 ∥2

,

k2β1
=

√
2[ν̄1(∅′′′ sin∅ + 3∅′∅′′ cos∅ −∅′3 sin∅ − k1′′ + k1′∥W ∥ + 2k1∥W ∥′

+k1∥W ∥2) + ν̄2(∅′2∥W ∥ − k1k1′ − k2k2′ + ∥W ∥3 − 2∥W ∥∥W ∥′

+∥W ∥′′) + ν̄3(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅ + k2′′ − k2′∥W ∥
−2k2∥W ∥′ − k2∥W ∥2)]

ν̄1
2 + ν̄22 + ν̄32

⋅

◻
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Definition 2.4 Let (α,α∗) be a evolute-involute curves in E3 . V2
∗V3

∗ - Smarandache curve can

be defined by

β2(s) =
1√
2
(V2

∗ + V3
∗).

If equation (1) is taken into account, the above expression is

β2(s) =
(sin∅ − cos∅)V1 + (sin∅ + cos∅)V3√

2
⋅

Theorem 2.5 The Frenet invariants of the β2 curve are given as follows;

Tβ2 = (∅′ cos∅ +∅′ sin∅)V1 − ∥W ∥V2 + (∅′ cos∅ −∅′ sin∅)V3√
2∅′2 + ∥W ∥2

,

Nβ2 = ς̄1V1 + ς̄2V2 + ς̄3V3√
ς̄12 + ς̄22 + ς̄32

,

Bβ2 = −∥W ∥ς̄3 − (∅′ cos∅ −∅′ sin∅)ς̄2√
2∅′2 + ∥W ∥2(ς̄12 + ς̄22 + ς̄32)

V1

+(∅
′ cos∅ −∅′ sin∅)ς̄1 − (∅′ cos∅ +∅′ sin∅)ς̄3√

2∅′2 + ∥W ∥2(ς̄12 + ς̄22 + ς̄32)
V2

+∥W ∥ς̄1 + (∅
′ cos∅ +∅′ sin∅)ς̄2√

2∅′2 + ∥W ∥2(ς̄12 + ς̄22 + ς̄32)
V3,

k1β2
=

√
2

(2∅′2 + ∥W ∥2) 3
2

⎛
⎝
((∅′′ cos∅ −∅′2 sin∅ +∅′′ sin∅ +∅′2 cos∅

+k1∥W ∥)
√

2∅′2 + ∥W ∥2 − (
√

2∅′2 + ∥W ∥2)
′
)
2

(∅′ cos∅

+∅′ sin∅) +
⎛
⎝
(∥W ∥∅′ − ∥W ∥′)

√
2∅′2 + ∥W ∥2 + ∥W ∥

.(
√

2∅′2 + ∥W ∥2)
′⎞
⎠

2

+ ((cos∅(∅′′ − ∅′2) − sin∅(∅′′ + ∅′2) − k2∥W ∥)

√
2∅′2 + ∥W ∥2 − (∅′ cos∅ −∅′ sin∅) (

√
2∅′2 + ∥W ∥2)

′
)
2⎞
⎠

1
2

,
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k2β2
=

√
2[h1(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅ +∅′′′ sin∅ + 3∅′∅′′ cos∅
−∅′3 sin∅ + k1′∥W ∥ + 2k1∥W ∥′ − k1∅′∥W ∥) + h2(2∅′′∥W ∥ + ∅′2∥W ∥
+∥W ∥3 + ∥W ∥′∅′ − ∥W ∥′′) + h3(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅
−∅′′′ sin∅ − 3∅′∅′′ cos∅ +∅′3 sin∅ − k2′∥W ∥ − 2k2∥W ∥′ + k2∅′∥W ∥)

h1
2 + h2

2 + h3
2

,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ς̄1 = (∅′′ cos∅ −∅′
2
sin∅ +∅′′ sin∅ +∅′2 cos∅ + k1∥W ∥)

√
2∅′2 + ∥W ∥2

−(∅′ cos∅ +∅′ sin∅) (
√
2∅′2 + ∥W ∥2)

′
,

ς̄2 = (∥W ∥∅′ − ∥W ∥′)
√

2∅′2 + ∥W ∥2 + ∥W ∥ (
√

2∅′2 + ∥W ∥2)
′
,

ς̄3 = (∅′′ cos∅ −∅′
2
sin∅ −∅′′ sin∅ −∅′2 cos∅ − k2∥W ∥)

√
2∅′2 + ∥W ∥2

−(∅′ cos∅ −∅′ sin∅) (
√
2∅′2 + ∥W ∥2)

′
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = −∥W ∥(∅′′ cos∅ −∅′
2
sin∅ −∅′′ sin∅ −∅′2 cos∅ − k2∥W ∥)

−(∅′ cos∅ −∅′ sin∅)(∥W ∥∅′ − ∥W ∥′),

h2 = (∅′ cos∅ −∅′ sin∅)(∅′′ cos∅ −∅′
2
sin∅ +∅′′ sin∅ +∅′2 cos∅ + k1∥W ∥),

−(∅′ cos∅ +∅′ sin∅)(∅′′ cos∅ −∅′2 sin∅ −∅′′ sin∅ −∅′2 cos∅ − k2∥W ∥)

h3 = ∥W ∥(∅′′ cos∅ −∅′
2
sin∅ +∅′′ sin∅ +∅′2 cos∅ + k1∥W ∥)

+(∅′ cos∅ +∅′ sin∅)(∥W ∥∅′ − ∥W ∥′)⋅

Proof The theorem is similar to Theorem 2.2 and Theorem 2.3, therefore we omit its proof. ◻

Definition 2.6 Let (α,α∗) be a evolute-involute curves in E3 . V1
∗V3

∗ - Smarandache curve can

be defined by

β3(s) =
1√
2
(V1

∗ + V3
∗).

If equation (1) is taken into account, the above expression is

β3(s) =
sin∅V1 + V2 + cos∅V3√

2
⋅
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Theorem 2.7 The Frenet invariants of the β3 curve are given as follows;

Tβ3 = (∅′ cos∅ − k1)V1 + (−∅′ sin∅ + k2)V3√
∅′2 − 2∅′∥W ∥ + ∥W ∥2

,

Nβ3 = ō1V1 + ō2V2 + ō3V3√
ō12 + ō12 + ō32

,

Bβ3 = [(∅′ sin∅ − k2)ō2]V1 + [(∅′ sin∅ − k2)ō1 − (∅′ cos∅ − k1)ō3]V2√
(ō12 + ō12 + ō32)(∅′2 − 2∅′∥W ∥ + ∥W ∥2)

+ [(∅′ cos∅ − k1)ō2]V3√
(ō12 + ō12 + ō32)(∅′2 − 2∅′∥W ∥ + ∥W ∥2)

,

k1β3
=

√
2

(∅′2 − 2∅′∥W ∥ + ∥W ∥2) 3
2

⎛
⎝
((∅′′ cos∅ −∅′2 sin∅ − k1′)

√
∅′2 − 2∅′∥W ∥ + ∥W ∥2

−(∅′ cos∅ − k1)(
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2)′)

2

+ (∅′∥W ∥ − ∥W ∥2)2

.(∅′2 − 2∅′∥W ∥ + ∥W ∥2) + ((−∅′′ sin∅ −∅′2 cos∅ + k2′)
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2

−(−∅′ sin∅ + k2)(
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2)′)

2⎞
⎠

1
2

,

k2β3
=

√
2[(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅ − k1′′ − k1∅′∥W ∥ + k1∥W ∥2)p̄1
+(∅′′∥W ∥ − k1k1′ − k2k2′ + ∅′′∥W ∥ + ∅′∥W ∥′ − 2∥W ∥∥W ∥′)p̄2
+( − ∅′′′ sin∅ − 3∅′∅′ cos∅ +∅′3 sin∅ + k2′′ + k2∅′∥W ∥ − k2∥W ∥2)p̄3

p̄1
2 + p̄22 + p̄32

,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ō1 = (∅′′ cos∅ −∅′
2
sin∅ − k1′)

√
∅′2 − 2∅′∥W ∥ + ∥W ∥2

−(∅′ cos∅ − k1)(
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2)′,

ō2 = (∅′∥W ∥ − ∥W ∥2)
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2,

ō3 = (−∅′′ sin∅ −∅′
2
cos∅ + k2′)

√
∅′2 − 2∅′∥W ∥ + ∥W ∥2

−(−∅′ sin∅ + k2)(
√
∅′2 − 2∅′∥W ∥ + ∥W ∥2)′;
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄1 = (∅′ sin∅ − k2)(∅′∥W ∥ − ∥W ∥2),

p̄2 = (∅′ sin∅ − k2)(∅′′ cos∅ −∅′2 sin∅ − k1′) − (∅′ cos∅ − k1)

.(−∅′′ sin∅ −∅′2 cos∅ + k2′),

p̄3 = (∅′ cos∅ − k1)(∅′∥W ∥ − ∥W ∥2).

Proof The theorem is similar to Theorem 2.2 and Theorem 2.3, therefore we omit its proof. ◻

Definition 2.8 Let (α,α∗) be a evolute-involute curves in E3 . V1
∗V2

∗V3
∗ - Smarandache curve

can be defined by

β4(s) =
1√
3
(V1

∗ + V2
∗ + V3

∗).

If equation (1) is taken into account, the above expression is

β4(s) =
(sin∅ − cos∅)V1 + V2 + (cos∅ + sin∅)V3√

3
⋅

Theorem 2.9 The Frenet invariants of the β4 curve are given as follows;

Tβ4 =
(∅′ cos∅ +∅′ sin∅ − k1)V1 − ∥W ∥V2 + (∅′ cos∅ −∅′ sin∅ + k2)V3√

2(∅′2 − ∅′∥W ∥ + ∥W ∥2)
,

Nβ4 = ḡ1V1 + ḡ2V2 + ḡ3V3√
ḡ12 + ḡ12 + ḡ32

,

Bβ4 =
⎛
⎝
−∥W ∥ḡ3 − (∅′ cos∅ −∅′ sin∅ + k2)ḡ2√
2(∅′2 − ∅′∥W ∥ + ∥W ∥2)(ḡ12 + ḡ22 + ḡ32)

⎞
⎠
V1

+
⎛
⎝
(∅′ cos∅ −∅′ sin∅ + k2)ḡ1 − (∅′ cos∅ +∅′ sin∅ − k1)ḡ3√

2(∅′2 − ∅′∥W ∥ + ∥W ∥2)(ḡ12 + ḡ22 + ḡ32)
⎞
⎠
V2

+
⎛
⎝

∥W ∥ḡ1 + (∅′ cos∅ +∅′ sin∅ − k1)ḡ2√
2(∅′2 − ∅′∥W ∥ + ∥W ∥2)(ḡ12 + ḡ22 + ḡ32)

⎞
⎠
V3 ,
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k1β4
=

√
3

2((∅′2 − 2∅′∥W ∥ + ∥W ∥2) 3
2 )
⎛
⎝
((∅′′ cos∅ −∅′2 sin∅ +∅′′ cos∅ +∅′2 cos∅ − k1′

+k1∥W ∥)
√
∅′2 − ∅′∥W ∥ + ∥W ∥2 − (

√
∅′2 − ∅′∥W ∥ + ∥W ∥2)

′
)
2

(∅′ cos∅

+∅′ sin∅ − k1) + ((∥W ∥∅′ − ∥W ∥2 − ∥W ∥′)
√
∅′2 − ∅′∥W ∥ + ∥W ∥2

+∥W ∥(
√
∅′2 − ∅′∥W ∥ + ∥W ∥2)

′
)
2

+ ((∅′′ cos∅ −∅′2 sin∅ −∅′′ sin∅ −∅′2 cos∅

+k2′ − k2∥W ∥)
√
∅′2 − ∅′∥W ∥ + ∥W ∥2 − (

√
∅′2 − ∅′∥W ∥ + ∥W ∥2)′)

2

.(∅′ cos∅ −∅′ sin∅ + k2)
⎞
⎠

1
2

,

k2β4
=

√
3[(∅′′′ cos∅ − 3∅′∅′′ sin∅ −∅′3 cos∅ +∅′′′ sin∅ + 3∅′∅′′ cos∅ −∅′′′ sin∅ − k1′′

+k1′∥W ∥ + 2k1∥W ∥′ − k1∅′∥W ∥ + k1∥W ∥2)f̄1 + (∅′′∥W ∥ + ∅′2∥W ∥∥W ∥3
−k1k1′ − k2k2′ + ∅′∥W ∥′ + ∅′′∥W ∥ − 2∥W ∥∥W ∥′ − ∥W ∥′′)f̄2 + (∅′′′ cos∅
−3∅′∅′′ sin∅ −∅′3 cos∅ −∅′′′ sin∅ − 3∅′∅′′ cos∅ −∅′3 sin∅ + k2′′ − k2′∥W ∥
−2k2∥W ∥′ + k2∅′∥W ∥ − k2∥W ∥2)f̄3]

f̄1
2 + f̄2

2 + f̄3
2

,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḡ1 = (∅′′ cos∅ −∅′2 sin∅ +∅′′ cos∅ +∅′2 cos∅ − k1′ + k1∥W ∥)

.
√
∅′2 − ∅′∥W ∥ + ∥W ∥2 − (∅′ cos∅ +∅′ sin∅ − k1)(

√
∅′2 − ∅′∥W ∥ + ∥W ∥2)

′
,

ḡ2 = (∥W ∥∅′ − ∥W ∥2 − ∥W ∥′)
√
∅′2 − ∅′∥W ∥ + ∥W ∥2

+∥W ∥(
√
∅′2 − ∅′∥W ∥ + ∥W ∥2)

′
,

ḡ3 = (∅′′ cos∅ −∅′2 sin∅ −∅′′ sin∅ −∅′2 cos∅ + k2′ − k2∥W ∥)

.
√
∅′2 − ∅′∥W ∥ + ∥W ∥2 − (∅′ cos∅ −∅′ sin∅ + k2)(

√
∅′2 − ∅′∥W ∥ + ∥W ∥2)′;

41
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̄1 = −∥W ∥(∅′′ cos∅ −∅′2 sin∅ −∅′′ sin∅ −∅′2 cos∅ + k2′ − k2∥W ∥) − (∅′′ cos∅

−∅′2 sin∅ −∅′′ sin∅ −∅′2 cos∅ + k2′ − k2∥W ∥)(∅′ cos∅ −∅′ sin∅ + k2),

f̄2 = (∅′(cos∅ − sin∅) + k2)(2∅′′ cos∅ −∅′2(sin∅ − cos∅) − k1′ + k1∥W ∥),

−(∅′(cos∅ + sin∅) − k1)(cos∅(∅′′ − ∅′2) − sin∅(∅′′ + ∅′2) + k2′ − k2∥W ∥)

f̄3 = (∅′ cos∅ +∅′ sin∅ − k1)(∥W ∥∅′ − ∥W ∥2 − ∥W ∥′)

+∥W ∥(∅′′ cos∅ −∅′2 sin∅ +∅′′ cos∅ +∅′2 cos∅ − k1′ + k1∥W ∥).

Proof The theorem is similar to Theorem 2.2 and Theorem 2.3, therefore we omit its proof. ◻

3. Examples

Example 3.1 Let us consider the unit speed helix curve and involute curve:

α(s) = (3 cos(s
5
) ,3 sin(s

5
) , 4s

5
) ,

α∗(s) = (−3
5
sin(s

5
) c + 3

5
sin(s

5
) s + 3 cos(s

5
) , 3

5
cos(s

5
) c − 3

5
cos(s

5
) s + 3 sin(s

5
) , 4c

5
) ⋅

The Smarandache curves, which consist of Frenet vectors of the involute curve, are, respectively,

given as follows;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(s) = (
√
2

2
sin(s

5
) −
√
2

2
cos(s

5
) ,−
√
2

2
cos(s

5
) −
√
2

2
sin(s

5
) , 24

√
2

25
) ,

β2(s) = (
√
2

2
sin(s

5
) ,−
√
2

2
cos(s

5
) , 109

√
2

50
) ,

β3(s) = (−
√
2

2
cos(s

5
) ,−
√
2

2
sin(s

5
) , 61

√
2

50
) ,

β4(s) = (
√
2

2
sin(s

5
) −
√
2

2
cos(s

5
) ,−
√
2

2
cos(s

5
) −
√
2

2
sin(s

5
) , 109

√
2

50
) .
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Figure 1: The black curve is the involute curve of the curve α (c=1). The blue, red, brown
and purple curves are Smarandache curves, which consist of Frenet vectors of the involute curve,
respectively

Example 3.2 Let us consider the unit speed curve and involute curve:

α(s) = ((1 + s)
3
2

3
,
(1 − s) 3

2

3
,
s
√
2

2
) ,

α∗(s) = (c
√
1 + s
2

− s
√
1 + s
2

+ (1 + s)
3
2

3
,−c
√
1 − s
2

+ s
√
1 − s
2

+ (1 − s)
3
2

3
,
c
√
2

2
) ⋅

The Smarandache curves, which consist of Frenet vectors of the involute curve, are, respectively,

given as follows;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(s) = (−
√
1+s
2
+
√
1−s
2

,
√
1−s
2
+
√
1+s
2

,0) ,
β2(s) = (−

√
1+s
2

,
√
1−s
2

,
√
2
2
) ,

β3(s) = (
√
1−s
2

,
√
1+s
2

,
√
2
2
) ,

β4(s) = (−
√
1+s
2
+
√
1−s
2

,
√
1−s
2
+
√
1+s
2

,
√
2
2
) .

Figure 2: The black curve is the involute curve of the curve α (c=1). The green, orange, turquoise
and purple curves are Smarandache curves, which consist of Frenet vectors of the involute curve,
respectively
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4. Conclusion

We examined the Smarandache curves formed by the Frenet vectors of the involute curve. Then

curvatures and torsions of Smarandache curves are calculated. These invariants (Frenet vectors

and curvatures) which depend on the evolute curve are explained. Besides, we illustrate the

Smarandache curves formed by taking the helix curve.
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Abstract: This paper presents some important classes of the continuous functions defined from the set of

real numbers to the space of complex intervals. These function spaces have an algebraic structure named

as a quasilinear space which is suggested by Aseev in 1986. In this work, we analysis the quasilinear

structure on the classes of the continuous and complex interval-valued functions. Further, we show that

these spaces are the normed Ω -spaces. Finally, we examine the dimension of these function spaces.
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1. Introduction

As is known the Fourier transform is the main building block of many application areas, especially

in the electrical engineering. This transform that is used for analyzing the signals in the frekans

domain has a wide range of applications in the digital signal processing.

Many real world problems may contain uncertainties due to environmental factors, especially

in signal processing [7–9, 14]. Such problems are modelled with intervals. For this reason there has

been increasing interest in interval-valued functions [1, 2, 4]. We need the space of the continuous

functions defined from R to the set of complex intervals to analyzes the signals with inexact data.

An interval x is the compact-convex subset of real numbers and x is denoted by x = [x, x]

where x and x are the left and right endpoints of x , respectively [13]. Further, if x = x , then

we say that x is a degenerate interval and it can be shown by {x} or [x, x] . The set of all real

intervals is denoted by IR .

To get a comprehensive and healthy interval-valued signal processing we need the notion of

the complex interval. Therefore, we defined the space IC which is the set of all complex intervals
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in [11]. A complex interval is defined by

u =
[
ur, ur

]
+ i

[
us, us

]
,

where
[
ur, ur

]
and

[
us, us

]
are real intervals and i =

√
−1 is the complex unit.

[
ur, ur

]
and[

us, us

]
are called real and imaginary part of u, respectively. Unfortunately, both IR and IC have

an algebraic structure which is not linear space which is called as a “quasilinear space”by Aseev

in 1986 (for details, see [3]). The most popular examples are Ω(E) and ΩC(E) which are defined

as the sets of all nonempty closed bounded and nonempty convex closed bounded subsets of any

normed linear space E, respectively. Both are a quasilinear space with the inclusion relation “⊆”,

the algebraic sum operation

A+B = {a+ b : a ∈ A, b ∈ B},

where the closure is taken on the norm topology of E . The real-scalar multiplication

λA = {λa : a ∈ A} .

Especially, IR is a quasilinear space with the Minkowski sum and scalar multiplication

operations are defined by

x+ y = [x, x] +
[
y, y

]
= [x+ y, x+ y]

and

λx =

{
[λx, λx]
[λx, λx]

,
,

λ ≥ 0
λ < 0,

x, y ∈ IR and λ ∈ R , respectively.

The Minkowski sum and scalar multiplication on IC are defined by

u+ v =
[
ur, ur

]
+ i

[
us, us

]
+

[
vr, vr

]
+ i

[
vs, vs

]
=

[
ur + vr, ur + vr

]
+ i

[
us + vs, us + vs

]
=

{
a+ ib : a ∈

[
ur + vr, ur + vr

]
, b ∈

[
us + vs, us + vs

]}
and

λu = λ
[
ur, ur

]
+ i

(
λ
[
us, us

])
=

{
λa+ iλb : a ∈

[
ur, ur

]
, b ∈

[
us, us

]}
on IC , where i =

√
−1 and λ ∈ C . Further, the relation

u ≼ v iff
[
ur, ur

]
⊆

[
vr, vr

]
and

[
us, us

]
⊆

[
vs, vs

]
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is a partial order relation on IC . Thus, IC is a quasilinear space.

This article is organized as follows: In Section 2, we present some definitions and theorems

with respect to the normed quasilinear spaces. In Section 3, we introduce some the classes of the

continuous complex interval-valued functions defined from R to IC . Further, we prove that these

function spaces are the consolidate spaces and we investigate the dimensions of these spaces.

2. Preliminaries
We will start by giving some main definitions and notions.

Suppose that X is a quasilinear space and Y ⊆ X . Then Y is called a subspace of X

whenever Y is a quasilinear space with the same partial order and the restriction to Y of the

operations on X . Y is subspace of a quasilinear space X if and only if for every x, y ∈ Y and

α, β ∈ K, αx+βy ∈ Y . Proof of this theorem is quite similar to its classical linear space analogue.

Let Y be a subspace of a quasilinear space X and suppose each element x in Y has an inverse in

Y. Then the partial order on Y is determined by the equality. In this case, Y is a linear subspace

of X [16].

An element x in a quasilinear space X is said to be symmetric if −x = x and Xsym denotes

the set of all symmetric elements. Also, Xr stands for the set of all regular elements of X while

Xs stands for the sets of all singular elements and zero in X . Further, it can be easily shown that

Xr, Xsym and Xs are subspaces of X. They are called regular, symmetric and singular subspaces

of X, respectively. Furthermore, it isn’t hard to prove that summation of a regular element with

a singular element is a singular element and the regular subspace of X is a linear space while the

singular one is nonlinear at all. Further, IC is a closed subspace of Ω(C) [6].

A real-valued function ∥.∥ on the quasilinear space X is called a norm if the following

conditions hold;

∥x∥ > 0 if x ̸= 0, (1)

∥x+ y∥ ≤ ∥x∥+ ∥y∥ , (2)

∥αx∥ = |α| ∥x∥ , (3)

if x ≼ y, then ∥x∥ ≤ ∥y∥ , (4)

if for any ε > 0 there exists an element xε ∈ X such that (5)

x ≼ y + xε and ∥xε∥ ≤ ε, then x ≼ y,

here x, y, xε are arbitrary element in X and α is any scalar. A quasilinear space X with a norm

defined on it, is called normed quasilinear space [3].
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For a normed linear space E, a norm on Ω(E) is defined by

∥A∥Ω = sup
a∈A

∥a∥E .

Hence ΩC(E) and Ω(E) are normed quasilinear spaces. A norm on IR is defined by

∥x∥ = ∥[x, x]∥ = sup
t∈[x,x]

|t| .

Moreover, IC is a normed quasilinear space with the norm

∥X∥IC = sup {|z| : z ∈ X}

= sup{|a+ ib| : a ∈
[
xr, xr

]
, b ∈

[
xs, xs

]
}

for X =
[
xr, xr

]
+ i

[
xs, xs

]
[15].

Now we will give the notion of consolidate quasilinear space defined in [15]. Thanks to this

definition, we were able to give a representation to every element in a quasilinear space and we

were able to define an inner-product quasilinear space.

Definition 2.1 [15] Let X be a quasilinear space and y ∈ X. The floor of y is the set of

all regular elements y of X such that x ≼ y . It is denoted by FX
y and FX

y ⊂ X. Hence

FX
y = {x ∈ Xr : x ≼ y}.

For example, [3, 7] is an element of (IR)s and hence of IR since (IR)s ⊂ IR. The floor of

[3, 7] in (IR)s is empty set, that is,

F
(IR)s
[3,7] = {x ∈ ((IR)s)r : x ⊆ [3, 7]} = {x ∈ {0} : x ⊆ [3, 7]} = ∅

since ((IR)s)r = {0} . But, the floor of [3, 7] in IR is

F IR
[3,7] = {x ∈ (IR)r : x ⊆ [3, 7]} ≡ [3, 7]

since (IR)r ≡ R .

Definition 2.2 [15] A quasilinear space X is called consolidate or Solid-Floored whenever

sup
≼

{x ∈ Xr : x ≼ y} = sup
≼

FX
y

exists and
y = sup

≼
{x ∈ Xr : x ≼ y}

for each y ∈ X. Otherwise, X is called a nonconsolidate QLS, or briefly, a nc-QLS.
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From above example immediately we can see that IR is consolidate while (IR)s is not.

Analogous results are also true for the spaces IC and (IC)s .

3. Main Results
In this section, we present some important class of the continuous functions defined from R to IC

and we show that these sets are the normed quasilinear spaces.

Definition 3.1 The support of the set-valued function F : R → IC is the smallest closed set

outside which the function is equal to zero:

suppF = {x ∈ R : F (x) ̸= {0}}.

If suppF is a bounded set, then we say that F has compact support.

Definition 3.2 (Classes of Continuous Set-Valued Functions) Consider a set-valued function

F : R → IC .

(i) The set Cc(R, IC) consists of all continuous set-valued functions having compact support:

Cc(R, IC) = {F : R → IC | F is continuous and has compact support }.

(ii) The set C0(R, IC) consists of all continuous set-valued functions that F (x) → {0} with respect

to Hausdorff metric on IC as x → ±∞ :

C0(R, IC) = {F : R → IC | F is continuous and F (x) → {0} as x → ±∞}.

Example 3.3 Consider the complex interval-valued functions F,G : R → IC given by

F (t) =

{
{i}
{0}

,
,

for t ∈ [0, 1];
otherwise

and

G(t) =

{
[0, 1]
{0}

,
,

for t ∈ [−1, 1);
otherwise,

respectively. Since F and G are continuous and suppF = [0, 1] , suppG = [−1, 1] we say that

F,G ∈ Cc(R, IC) . In fact, F is a regular element of Cc(R, IC) while G is a singular element of

Cc(R, IC) .

Theorem 3.4 C0(R, IC) is a quasilinear space with the operations of algebraic sum, multiplication

by complex numbers and partial order relation are defined as follows;

(F1 + F2)(x) = F1(x) + F2(x),
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(αF ) = αF (x)

and
F1 4 F2 ⇔ F1(x) ⊆ F2(x) for any x ∈ R.

Proof Verification of first five axioms to be a quasilinear space is to straighforward. Further,

the function F = {0} is the identity element of the addition. Obviously, 1.F = F and 0.F = 0 ,

for 1, 0 ∈ C and F ∈ C0(R, IC) , easily see that α(βF ) = (αβ)F and α(F + G) = αF + αG for

α, β ∈ C and F,G ∈ C0(R, IC) . For any x ∈ R ,

((α+ β)F )(x) = (α+ β)F (x) ⊆ αF (x) + βF (x) = (αF )(x) + (βF )(x)

and so (α + β)F 4 αF + βF . If F1 4 F2 and F3 4 F4 , then F1(x) ≼ F2(x) and F3(x) ≼ F4(x)

for any x ∈ R . Since F1(x), F2(x), F3(x), F4(x) ∈ IC , we write F1(x) + F3(x) ≼ F2(x) + F4(x) .

This means F1 + F3 4 F2 + F4 . Suppose that F1 4 F2 . Then αF1(x) ≼ αF2(x) for any x ∈ R ,

α ∈ C since IC is a quasilinear space. Thus, we have αF1 4 αF2. 2

Lemma 3.5 Cc(R, IC) is a subspace of the quasilinear space C0(R, IC) .

Proof It is not hard to see that Cc(R, IC) ⊂ C0(R, IC) . Suppose that λ1, λ2 ∈ C and

F,G ∈ Cc(R, IC) . Let us take an arbitrary y ∈ A = {x ∈ R : λ1F (x) + λ2G(x) ̸= 0} . Then

we say that λ1F (y) + λ2G(y) ̸= 0 . In this case it is either λ1F (y) ̸= 0 or λ2G(y) ̸= 0 . If

λ1F (y) ̸= 0 , then y ∈ B = {x ∈ R : F (x) ̸= 0} . This means A ⊆ B. Thus,

Ā = supp(λ1F + λ2G) ⊆ B̄ = suppF.

Further, there exists at least an interval [a, b] such that suppF ⊆ [a, b] since F ∈ Cc(R, IC) .

Consequently, we say that supp(λ1F+λ2G) ⊆ [a, b] and so λ1F+λ2G ∈ Cc(R, IC) . If λ2G(y) ̸= 0 ,

then the proof is similar. Now suppose that both λ1F (y) ̸= 0 and λ2G(y) ̸= 0 are satisfied. Then

we have that

{x ∈ R : λ1F (x) + λ2G(x) ̸= 0} ⊆ {x ∈ R : F (x) ̸= 0} ∩ {x ∈ R : G(x) ̸= 0}

since y ∈ {x ∈ R : λ1F (x) + λ2G(x) ̸= 0} . This implies A ⊆ B . Because of the fact that

Ā ⊂ B̄ we write Ā =supp(λ1F + λ2G) ⊆ B̄ =suppF . Thus, supp(λ1F + λ2G) is bounded and

λ1F + λ2G ∈ Cc(R, IC) . 2

Theorem 3.6 The expression

∥F∥∞ = max
x∈R

∥F (x)∥IC

defines a norm on C0(R, IC) and this space is a normed quasilinear space.
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Proof It is obvious that the above equality is well-defined. It can be shown similarly to the

classical analysis that the first three conditions of norm are satisfied. Let us only verify the last

two conditions. Let F1 and F2 be arbitrary elements of C0(R, IC) . If F1 4 F2 , then F1(x) ≼ F2(x)

for every x ∈ R . This implies ∥F1(x)∥IC ≤ ∥F2(x)∥IC and so ∥F1∥∞ = max
x∈R

∥F1(x)∥IC ≤

max
x∈R

∥F2(x)∥IC = ∥F2∥∞ . For the last condition of the norm, let ε > 0 be arbitrary and there

exists an element Fε ∈ C0(R, IC) such that F 4 G + Fε and ∥Fε∥∞ = max
x∈R

∥Fε(x)∥IC ≤ ε . By

the assumption, we write that F (x) ≼ G(x) + Fε(x) and ∥Fε(x)∥IC ≤ ε . By the last condition of

norm on IC we say that F (x) ≼ G(x) for every x ∈ R . Thus, we obtain that F 4 G. 2

Now we will show that Cc(R, IC) and C0(R, IC) are consolidate spaces. Thus, we can give

a representation to every element in these spaces.

Lemma 3.7 Cc(R, IC) and C0(R, IC) are the consolidate quasilinear spaces.

Proof We will give only the proof for the space Cc(R, IC) since a similar proof can be made for

C0(R, IC) . Let us take an arbitrary g ∈ Cc(R, IC) . Because of the fact that IC is consolidate, we

write for t ∈ R

sup
≼

{x ∈ (IC)r : x ≼ G(t)} = sup
≼

F IC
G(t) = G(t) = [Gr(t), Gr(t)] + i[Gs(t), Gs(t)].

Now let us choose an element {xGr(t)}+ i{xGs(t)} ∈ IC for each t ∈ R such that let be

{xGr(t)}+ i{xGs(t)} ≼ [Gr(t), Gr(t)] + i[Gs(t), Gs(t)]. (6)

Consider the function h : R → (IC)r given by

h(t) = {xGr(t)}+ i{xGs(t)}, (7)

where {xGr(t)} + i{xGs(t)} is the regular element of IC that satisfies the condition (6). Now we

will prove that supF
Cc(R,IC)
G = G , i.e.,

sup
≼

{h ∈ Cc(R, IC)r : h(t) ≼ G(t), ∀t ∈ R}.

First we have h 4 G since h(t) = {xGr(t)} + i{xGs(t)} ≼ G(t) . This means F
Cc(R,IC)
G ̸= ∅ .

Further, the set F
Cc(R,IC)
G is the upper bounded since h 4 G for h ∈ F

Cc(R,IC)
G . Suppose that

the function F is another upper bound of the set F
Cc(R,IC)
G . Now let us assume that G � F .

Then there exists an element t0 ∈ R such that G(t0) � F (t0) . This implies that it is either
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[Gr(t0), Gr(t0)] * [Fr(t0), Fr(t0)] or [Gs(t0), Gs(t0)] * [Fs(t0), Fs(t0)] . If [Gr(t0), Gr(t0)] *

[Fr(t0), Fr(t0)] , then there exists the singleton {xGr(t0)} such that {xGr(t0)} ⊆ [Gr(t0), Gr(t0)]

while {xGr(t0)} * [Fr(t0), Fr(t0)] . Further, we have that {xGr(t0)} + i{xGs(t0)} ≼ G(t0) and

{xGr(t0)} + i{xGs(t0)} � F (t0) . Thus, we write that h(t0) ≼ G(t0) while h(t0) � F (t0) for the

function h defined in (7). Therefore, h � F . This is a contradiction. If [Gs(t0), Gs(t0)] *

[Fs(t0), Fs(t0)] , then the proof is given in a similar way. Consequently, the proof is complete. 2

Now we will examine the dimension of the quasilinear spaces Cc(R, IC) and C0(R, IC) . For

this purpose, firstly let us give some algebraic definitions in a quasilinear space (for details, see

[5]). Let X be a quasilinear space and {xk}nk=1 be a subset of X , where n is a positive integer.

A (linear) combination of the set{xk}nk=1 is an element z of X in the form

α1x1 + α2x2 + ...+ αnxn = z,

where the coefficients α1, α2, ..., αn are real scalars. On the other hand, a quasilinear combination

of the set {xk}nk=1 is an element z ∈ X such that

α1x1 + α2x2 + ...+ αnxn ≼ z

for some real scalars α1, α2, ..., αn . Hence,the quasilinear combination, briefly ql-combination, is

defined by the partial order relation on X. Further, for any nonempty subset A of a quasilinear

space X, span of A is given by following known definition

SpA = {
n∑

k=1

αkxk : x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

However, QspA, the quasispan (q-span, for short) of A, is defined by the set of all possible

quasilinear combinations of A, that is,

QspA = {x ∈ X :

n∑
k=1

αkxk ≼ x, x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

A given set A = {x1, x2, ..., xn} in a quasilinear space X is called quasilinear independent

(ql-independent, briefly) whenever the inequality

θ ≼ λ1x1 + λ2x2 + ...+ λnxn (8)

holds if and only if λ1 = λ2 = ... = λn = 0 . Otherwise, A is called quasilinear dependent (ql-

dependent, briefly). A ql-independent subset A of a quasilinear space X which q-spans X is called

a basis (or Hamel basis) for X .
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Let S be a ql-independent subset of a quasilinear space X . S is called maximal ql-

independent subset of X whenever S is ql-independent, but any superset of S is ql-dependent.

Definition 3.8 [5] Regular (Singular) dimension of any quasilinear space X is the cardinality of

any maximal ql-independent subsets of Xr(Xs) . If this number is finite then X is said to be finite

regular (singular)-dimensional, otherwise; is said to be infinite regular (singular)-dimensional.

Regular dimension is denoted by r -dimX and singular dimension is denoted by s-dimX . If

r -dimX = a and s-dimX = b , then we say that X is an (ar, bs)-dimensional quasilinear space.

Using these information we can give the following theorem.

Theorem 3.9 The quasilinear spaces Cc(R, IC) and C0(R, IC) are the (∞r,∞s) -dimensional
spaces.

Proof Consider the functions xn : R → IC given by

xn(t) =

{
{tn}
{0}

,
,

for t ∈ [−1, 1];
otherwise

for n = 0, 1, ... and the set M = {x0, x1, ...} . It is obvious that M is a subset of the regular

subspace of Cc(R, IC) . Now we will prove that M is ql-independent. Let us take an arbitrary and

finite subset {xk1
, xk2

, ..., xkn
} of M . Suppose that

ck1
xk1

+ ck2
xk2

+ ...+ ckn
xkn

= 0

for ck1
, ck2

, ..., ckn
∈ C . Then we write

ck1
{tk1}+ ck2

{tk2}+ ...+ ckn
{tkn} = {0}

and so ck1
tk1 + ck2

tk2 + ... + ckn
tkn = 0 . This implies that ck1

= ck2
= ... = ckn

= 0 . Thus, we

say that r -dimCc(R, IC) = ∞ . Further, s -dimCc(R, IC) = ∞ since Cc(R, IC) is a consolidate

quasilinear space. Furthermore, we can say that r -dimC0(R, IC) = s − dimC0(R, IC) = 0 since

C0(R, IC) is a subspace of Cc(R, IC). 2
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