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Abstract − This paper introduces a categorification of k-algebras called 2-algebras, where k is a

commutative ring. We define the 2-algebras as a 2-category with single object in which collections

of all 1-morphisms and all 2-morphisms are k-algebras. It is shown that the category of 2-algebras

is equivalent to the category of crossed modules in commutative k-algebras.

Subject Classification (2020): 18F99, 18G30, 18G55, 13C60.

1. Introduction

The term “categorification” coined by Louis Crane refers to the process of replacing set theoretic concepts

by category-theoretic analogues in mathematics. A categorified version of a group is a 2-group. Internal

categories in the category of groups are exactly the same as 2-groups. The Brown-Spencer theorem [3] thus

constructs the associated 2-group of a crossed module given by Whitehead [11] to define an algebraic model

for a “(connected) homotopy 2-type”. The fact that the composition in the internal category must be a group

homomorphism implies that the “interchange law” must hold. This equation is in fact equivalent via the

Brown-Spencer result to the Peiffer identity.

We will concerne in this paper exclusively with categorification of algebras. We will obtain analogous re-

sults in (commutative) algebras with regard to Porter’s work [9]. He states that there is an equivalence of

categories between the category of internal categories in the category of k-algebras and the category of

crossed modules of commutative k-algebras. Since the internal category in the category of k-algebras is a

categorification of k-algebras, this internal category will be called as “strict 2-algebra” in this work. We de-

fine the strict 2-algebra by means of 2-module being a category in the category of modules as a 2-category

with single object in which collections of 1-morphisms and 2-morphisms are k-algebras and we denote the

category of strict 2-algebras by 2Alg . Given a group G , it is known that automorphisms of G yield a 2-group.

Analogous result in commutative algebras can be given that multiplications of C yield a strict 2-algebra

where C is a commutative R-algebra and R is a commutative k-algebra.

A crossed module A = (∂ : C −→ R) of commutative algebras is given by an algebra morphism ∂ : C −→ R
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together with an action · of R on C such that the relations below hold for each r ∈ R and each c,c
′ ∈C ,

∂(r · c) = r∂(c)

∂(c) · c
′ = cc

′
.

In this paper we show that the category of strict 2-algebras is equivalent to the category of crossed modules

in commutative algebras.

2. Internal Categories and 2-categories

We begin by recalling internal categories as well as 2-categories. Ehresmann defined internal categories in

[5], and by now they are an important part of category theory [4].

2.1. Internal categories

Definition 2.1. Let C be any category. An internal category in C, say A, consists of:

• an object of objects A0 ∈ C

• an object of morphisms A1 ∈ C,

together with

• source and target morphisms s, t : A1 −→ A0,

• an identity-assigning morphism e : A0 −→ A1,

• a composition morphism ◦ : A1 ×A0 A1 −→ A1 such that the following diagrams commute, expressing the

usual category laws:

• laws specifying the source and target of identity morphisms:

A0

1A0 &&NN
NNN

NNN
NNN

NN
e // A1

s
��

A0

A0

1A0 &&NN
NNN

NNN
NNN

NN
e // A1

t
��

A0

• laws specifying the source and target of composite morphisms:

A1 ×A0 A1

ρ1

��

◦ // A1

s

��
A1 s

// A0

A1 ×A0 A1

ρ2

��

◦ // A1

t

��
A1 t

// A0
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• the associative law for composition of morphisms:

A1 ×A0 A1 ×A0 A1

ρ2

��

◦ // A1 ×A0 A1

t

��
A1 ×A0 A1 t

// A0

• the left and right unit laws for composition of morphisms:

A0 ×A0 A1
e×A0 1A1//

ρ2
&&NN

NNN
NNN

NNN
A1 ×A0 A1

◦
��

A1 ×A0 A0
1A1×A0 e
oo

ρ1
xxppp

ppp
ppp

pp

A1

Here, the pullback A1 ×A0 A1 is defined via the square:

A1 ×A0 A1
ρ2 //

ρ1

��

A1

s
��

A1 t
// A0.

We denote this internal category with A = (A0, A1, s, t ,e,◦).

Definition 2.2. Let C be a category. Given internal categories A and A′ in C, an internal functor between

them, say F : A −→ A′, consists of

• a morphism F0 : A0 −→ A′
0,

• a morphism F1 : A1 −→ A′
1

such that the following diagrams commute, corresponding to the usual laws satisfied by a functor:

• preservation of source and target:

A1

F1

��

s // A0

F0

��
A′

1 s′
// A′

0

A1

F1

��

t // A0

F0

��
A′

1 t ′
// A′

0

• preservation of identity morphisms:

A0

F0

��

e // A1

F1

��
A′

0 e ′
// A′

1
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• preservation of composite morphisms:

A1 ×A0 A1

◦

��

F1×A0 F1 // A′
1 ×A′

0
A′

1

◦′

��
A1 F1

// A′
1

Given two internal functors F : A −→ A′ and G : A′ −→ A′′ in some category C, we define their composite

FG : A −→ A′′ by taking (FG)0 = F0G0 and (FG)1 = F1G1. Similarly, we define the identity internal functor in

C, 1A : A −→ A by taking (1A)0 = 1A0 and (1A)1 = 1A1 .

Definition 2.3. Let C be a category. Given two internal functors F,G : A −→ A′ in C, an internal natural

transformation in C between them, say θ : F =⇒ G , is a morphism θ : A0 −→ A′
1 for which the following

diagrams commute, expressing the usual laws satisfied by a natural transformation:

• laws specifying the source and target of a natural transformation:

A0

F0
&&LL

LLL
LLL

LLL
LL

θ // A′
1

s′
��

A′
0

A′
0

G0
&&MM

MMM
MMM

MMM
MM

θ // A′
1

t ′

��
A0

• the commutative square law:

A1

△(F×tθ)

��

△(sθ×G) // A′
1 ×A′

0
A′

1

◦′

��
A′

1 ×A′
0

A′
1 ◦′

// A′
1

Given an internal functor F : A −→ A′ in C, the identity internal natural transformation 1F : F =⇒ F in C is

given by 1F = F0e.

2.2. 2-categories

Definition 2.4. A 2-category G consists of a class of objects G0 and for any pair of objects (A,B) a small

category of morphisms G (A,B)-with objects G1(A,B) and morphisms G2(A,B)-, along with composition

functors

• : G (A,B)×G (B ,C ) −→ G (A,C )

for every triple (A,B ,C ) of objects and identity functors from the terminal category to G (A, A)

i A : 1 −→G (A, A)
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for all objects A such that • is associative and

F • iB = F = i A •F as well as ϑ• IiB =ϑ= Ii A •ϑ

hold for all F ∈G1(A,B) and ϑ ∈G2(A,B) where source and target morphisms are defined by

A
F−→ B

s : G1(A,B) −→ G0

F 7−→ s(F ) = A

t : G1(A,B) −→ G0

F 7−→ t (F ) = B

for F ∈G1(A,B) and

A

F

��

G

BBBϑ

��

s : G2(A,B) −→ G1

ϑ 7−→ s(ϑ) = F

t : G2(A,B) −→ G0

ϑ 7−→ t (ϑ) =G

for ϑ : F −→ G ∈ G2(A,B). For all pairs of objects (A,B) elements of G1(A,B) are called 1-morphisms or 1-

cells of G and elements of G2(A,B) are called 2-morphisms or 2-cells of G . We write G1 and G2 for the classes

of all 1-morphisms and 2-morphisms respectively.

There are two ways of composing 2-morphisms: using the composition ◦ inside the categories G (A,B),

called vertical composition, and using the morphism level of the functor •, called horizontal composition.

These compositions must be satisfy the following equation: for α,α′ ∈G2(A,B) with t (α) = s(α′) and γ,γ′ ∈
G2(B ,C ) with t (γ) = s(γ′)

A
$$
77 FFB

α
��

α′
��

$$
77 FF

γ
��

γ′
��

C

(
α◦α′)• (

γ◦γ′)= (
α•γ)◦ (

α′ •γ′)
which is called “interchange law”.

3. Constructions of Two-Algebras

In this section we will construct 2-algebras by categorification. We can categorify the notion of an algebra

by replacing the equational laws by isomorphisms satisfying extra structure and properties we expect. In [2]
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Baez and Crans introduce the Lie 2-algebra by means of the concept of 2-vector space defined as an internal

category in the category of vector spaces by them. Obviously we get a new notion of “2-module”which can

be considered as an internal category in the category of modules and we categorify the notion of an algebra.

3.1. 2-Modules

A categorified module or “2-module”should be a category with structure analogous to that of a k−module,

with functors replacing the usual k−module operations. Here we instead define a 2-module to be an in-

ternal category in a category of k−modules Mod . Since the main component part of a k−algebra is a

k−module, a 2-algebra will have an underlying 2-module of this sort. In this section we thus first define

a category of these 2-modules.

In the rest of this paper, the terms a module and an algebra will always refer to a k−module and a k−algebra.

Definition 3.1. A 2-module is an internal category in Mod .

Thus, a 2-module M is a category with a module of objects M 0 and a module of morphisms M1, such that

the source and target maps s, t : M1 −→ M0, the identity assigning map e : M0 −→ M1, and the composition

map ◦ : M1×M0 M1 −→ M1 are all module morphisms. We write a morphism as a : x −→ y when s(a) = x and

t (a) = y , and sometimes we write e(x) as 1x .

The following proposition is given for the Vect vector space category in [2]. But we rewrite this proposition

for Mod .

Proposition 3.2. It is defined a 2-module by specifying the modules M0 and M1 along with the source, target

and identity module morphisms and the composition morphism ◦, satisfying the conditions of Definition

2.1. The composition map is uniquely determined by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b − (es)(b).

Proof.

First given modules M0, M1 and module morphisms s, t : M1 −→ M0 and e : M0 −→ M1, we will define a

composition operation that satisfies the laws in the definition of internal category, obtaining a 2-module.

Given a, b ∈ M1 such that t (a) = s(b) , i.e.

a : x −→ y and b : y −→ z

we define their composite ◦ by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b − (es)(b).

We will show that with this composition ◦ the diagrams of the definition of internal category commute. The

triangles specifying the source and target of the identity-assigning morphism do not involve composition.
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The second pair of diagrams commute since

s(a ◦b) = s(a +b − (es)(b))

= s(a)+ s(b)− (se)(s(b))

= s(a)+ s(b)− s(b)

= s(a) = x

and since t (a) = s(b),
t (a ◦b) = t (a +b − (es)(b))

= t (a)+ t (b)− (te)(s(b))

= t (a)+ t (b)− s(b)

= t (b) = z.

The associative law holds for composition because module addition is associative. Finally the left and right

unit laws are satisfied since given a : x −→ y,

e(x)◦a = e(x)+a − (es)(a)

= e(x)+a −e(x)

= a

and
a ◦e(y) = a +e(y)− (es)(e(y))

= a +e(y)−e(y)

= a.

We thus have a 2-module.

Given a 2-module M , we shall show that its composition must be defined by the formula given above. Sup-

pose that (a, g ) and (a′, g ′) are composable pairs of morphisms in M1, i.e.

a : x −→ y and b : y −→ z

and

a′ : x ′ −→ y ′ and b′ : y ′ −→ z ′.

Since the source and target maps are module morphisms, (a +a′,b +b′) also forms a composable pair, and

since that the composition is module morphism

(a +a′)◦ (b +b′) = a ◦b +a′ ◦b′.
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Then if (a,b) is a composable pair, i.e, t (a) = s(b), we have

a ◦b = (a +1M1 )◦ (1M1 +b)

= (a +e(s(b)− s(b)))◦ (e(s(b)− s(b))+b)

= (a −e(s(b))+e(s(b)))◦ (e(s(b))−e(s(b))+b)

= (a ◦e(s(b)))+ (−e(s(b))+e(s(b)))◦ (−e(s(b))+b)

= a ◦e(s(b))+ (−e(s(b))◦ (−e(s(b))))+ (e(s(b))◦b)

= a −e(s(b))+b

= a +b −e(s(b)).

This show that we can define ◦ by

◦ : M1 ×M0 M1 −→ M1

(a,b) 7−→ ◦(a,b) = a ◦b = a +b −e(s(b)).

Corollary 3.3. For b ∈ ker s, we have

a ◦b = a +b − (es)(b)

= a +b.

Definition 3.4. Let M and N be 2-modules, a 2-module functor F : M −→ N is an internal functor in Mod

from M to N . 2-modules and 2-module functors between them is called the category of 2-modules denoted

by 2Mod.

After we get the definition of a 2-module, we define the definition of a categorified algebra which is main

concept of this paper.

3.2. Two-algebras

Definition 3.5. A weak 2-algebra consists of

· a 2-module A equipped with a functor • : A × A −→ A, which is defined by (x, y) 7→ x • y and bilinear on

objects and defined by ( f , g ) 7→ f • g on morphisms satisfying interchange law, i.e.,

( f1 • g1)◦ ( f2 • g2) = ( f1 ◦ f2)• (g1 ◦ g2)

· k−bilinear natural isomorphisms

αx,y,z : (x • y)• z −→ x • (y • z)

lx : 1•x −→ x

rx : x •1 −→ x

such that the following diagrams commute for all objects w, x, y, z ∈ A0.

((w •x)• y)• z

αw,x,y•1z

��

αw•x,y,z// (w •x)• (y • z)
αw,x,y•z

((RR
RRR

RRR
RRR

RR

(w • (x • y))• z
αw,x•y,z

// w • ((x • y)• z)
1w•αx,y,z

// w • (x • (y • z))
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(x •1)• y

rx•1y &&MM
MMM

MMM
MMM

αx,1,y // x • (1• y)

1x•ly

��
x • y

A strict 2-algebra is the special case where αx,y,z , lx , rx are all identity morphisms. In this case we have

(x • y)• z = x • (y • z)

1•x = x, x •1 = x

Strict 2-algebra is called commutative strict 2-algebra if x • y = y • x for all objects x, y ∈ A0 and f • g = g • f

for all morphisms f , g ∈ A1.

In the rest of this paper, the term 2-algebra will always refer to a commutative strict 2-algebra. A homomor-

phism between 2-algebras should preserve both the 2-module structure and the • functor.

Definition 3.6. Given 2-algebras A and A′, a homomorphism

F : A −→ A′

consists of

· a linear functor F from the underlying 2-module of A to that of A′, and

· a bilinear natural transformation

F2(x, y) : F0(x)•F0(y) −→ F0(x • y)

· an isomorphism F : 1′ −→ F0(1) where 1 is the identity object of A and 1′ is the identity object of A′,

such that the following diagrams commute for x, y, z ∈ A0,

(F (x)•F (y))•F (z)

αF (x),F (y),F (z)

��

F2•1 // F (x • y)•F (z)
F2 // F ((x • y)• z)

F (αx,y,z )

��
F (x)• (F (y)•F (z))

1•F2

// F (x)•F (y • z)
F2

// F (x • (y • z)).

1′ •F (x)

F0•1
��

l ′F (x) // F (x)

F (1)•F (x)
F2

// F (1•x).

F (lx )

OO

F (x)•1′

1•F0

��

r ′
F (x) // F (x)

F (x)•F (1)
F2

// F (x •1).

F (rx )

OO

Definition 3.7. 2-algebras and homomorphisms between them give the category of 2-algebras denoted by
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2Alg .

Therefore if A = (A0, A1, s, t ,e,◦,•) is a 2-algebra, A0 and A1 are algebras with this • bilinear functor. Thus we

can take that 2-algebra is a 2-category with a single object say ∗, and A0 collections of its 1-morphisms and

A1 collections of its 2-morphisms are algebras with identity.

3.3. Multiplication Algebras yield a 2-algebra

In [8] Norrie developed Lue’s work [6] and introduced the notion of an actor of crossed modules of groups

where it is shown to be the analogue of the automorphism group of a group. In the category of commutative

algebras the appropriate replacement for automorphism groups is the multiplication algebra M (C ) of an

algebra C which is defined by MacLane [7].

Let C be an associative (not necessarily unitary or commutative) R-algebra. We recall Mac Lane’s construc-

tion of the R-algebra Bim(C ) of bimultipliers of C [7].

An element of Bim(C ) is a pair (γ,δ) of R-linear mappings from C to C such that

γ(cc ′) = γ(c)c ′

δ(cc ′) = cδ
(
c ′

)
and

cγ
(
c ′

)= δ(c)c ′.

Bim(C ) has an obvious R-module structure and a product

(γ,δ)(γ′,δ′) = (γγ′,δ′δ),

the value of which is still in Bim(C ).

Suppose that Ann(C ) = 0 or C 2 =C . Then Bim(C ) acts on C by

Bim(C )×C → C ; ((γ,δ),c) 7→ γ(c),

C ×Bim(C ) → C ; (c, (γ,δ)) 7→ δ(c)

and there is a
µ : C −→ Bim(C )

c 7−→ (γc ,δc )

with

γc (x) = cx and δc (x) = xc.

Commutative case: we still assume Ann(C ) = 0 or C 2 = C . If C is a commutative R-algebra and (γ,δ) ∈
Bim(C ), then γ= δ. This is because for every x ∈C :

xδ(c) = δ(c)x = cγ(x) = γ(x)c

= γ(xc) = γ(cx) = γ(c)x = xγ(c).

Thus Bim(C ) may be identified with the R-algebra M (C ) of multipliers of C . Recall that a multiplier of C is
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a linear mapping λ : C −→C such that for all c,c ′ ∈C

λ(cc ′) =λ(c)c ′.

Also M (C ) is commutative as

λ′λ(xc) =λ′(λ(x)c) =λ(x)λ′(c) =λ′(c)λ(x) =λλ′(cx) =λλ′(xc)

for any x ∈C . Thus M (C ) is the set of all multipliers λ such that λγ= γλ for every multiplier γ.

In [10] Porter states that automorphisms of a group G yield a 2-group. The appropriate analogue of this

result in algebra case can be given. We claim that multiplications of an R-algebra C give a 2-algebra which

is called a multiplication 2-algebra.

Let k be a commutative ring, R be a k-algebra with identity and C be a commutative R-algebra with Ann(C ) =
0 or C 2 =C . Take A0 =M (C ) and say 1-morphisms to the elements of A0. We define the action of M (C ) on

C as follows:
M (C )×C −→ C

( f , x) 7−→ f ▶ x = f (x).

Using the action of M (C ) on C , we can form the semidirect product

C ⋊M (C ) = {(x, f )|x ∈C , f ∈M (C )}

with multiplication

(x, f )(x ′, f ′) = ( f ▶ x ′+ f ′ ▶ x +x ′x, f ′ f ).

Take A1 = C ⋊M (C ) and say 2-morphisms to the elements of A1. Therefore we get the following diagram

for (x, f ) ∈C ⋊M (C ),

C

f

��

g

BBC(x, f )

��

and we define the source, target and identity assigning maps as follows;

s : C ⋊M (C ) −→ M (C ) t : C ⋊M (C ) −→ M (C )

(x, f ) 7−→ s(x, f ) = f (x, f ) 7−→ t (x, f ) = Mx · f

and

e : M (C ) −→ C ⋊M (C )

f 7−→ e( f ) = (0, f )

where Mx · f is defined by (Mx · f )(u) = xu + f (u) for u ∈C .

There are two ways of composing 2-morphisms: vertical and horizontal composition. Now we define this

compositions.
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For (x, f ), (y, f ′) ∈C ⋊M (C )

C

f

��

Mx · f

BBC(x, f )

��

f ′

��

My · f ′

BB(y, f ′)

��

C

the horizontal composition is defined by

(x, f )• (y, f ′) = ( f ′(x)+ f (y)+x y, f ′ f ),

thus we have

C

f ′ f

$$

(My · f ′)(Mx · f )

:: C(y, f ′)•(x, f )

��

and
t ( f ′(x)+ f (y)+x y, f ′ f ) = M f ′(x)+ f (y)+x y · f ′ f

= (My · f ′)(Mx · f )

The vertical composition is defined by

C

f

$$

Mx · f

77

M(x′+x)· f

FFC
(x, f )

��

(x ′,Mx · f )
��

(x, f )◦ (x ′, Mx · f ) = (x ′+x, f )

for (x, f ), (x ′, Mx · f ) ∈C ⋊M (C ) with t (x, f ) = s(x ′, Mx · f ) = Mx · f .

It remains to satisfy the interchange law, i.e.

C

f

$$

Mx · f

77

M(x′+x)· f

FFC
(x, f )

��

(x ′,Mx · f )
��

f ′

$$

My · f ′

77

M(y ′+y)· f ′

FF
(y, f ′)
��

(y ′,My · f ′)
��

C

[(x, f )◦ (x ′, Mx · f )]• [(y, f ′)◦ (y ′, My · f ′)] = [(x, f )• (y, f ′)]

◦[(x ′, Mx · f )• (y ′, My · f ′)].
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Evaluating the two sides separately, we get

LHS = (x ′+x, f )• (y ′+ y, f ′)
= ( f ′(x ′+x)+ f (y ′+ y)+ (x ′+x)(y ′+ y), f ′ f )

= ( f ′(x ′)+ f ′(x)+ f (y ′)+ f (y)+x ′y ′+x ′y +x y ′+x y, f ′ f )

and

RHS = ( f ′(x)+ f (y)+x y, f ′ f )◦ ((My · f ′)(x ′)
+(Mx · f )(y ′)+x ′y ′, (My · f ′)(Mx · f ))

= ( f ′(x)+ f (y)+x y + (My · f ′)(x ′)+ (Mx · f )(y ′)+x ′y ′, f ′ f )

= ( f ′(x)+ f (y)+x y + y x ′+ f ′(x ′)+x y ′+ f (y ′)+x ′y ′, f ′ f )

LHS and RHS are equal, thus interchange law is satisfied. Therefore we get a 2-algebra consists of the R-

algebra C as single object and the R-algebra A0 of 1-morphisms and the R-algebra A1 of 2-morphisms.

4. Crossed modules and 2-algebras

Crossed modules have been used widely and in various contexts since their definition by Whitehead [11]

in his investigations of the algebraic structure of relative homotopy groups. We recalled the definition of

crossed modules of commutative algebras given by Porter [10].

Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is an R-algebra C together

with a commutative action of R on C and a morphism

∂ : C −→ R

such that for all c ∈C , r ∈ R

CM1) ∂(r ▶ c) = r∂c.

This is a crossed R-module if in addition for all c,c ′ ∈C

CM2) ∂c ▶ c ′ = cc ′.

The last condition is called the Peiffer identity. We denote such a crossed module by (C ,R,∂).

A morphism of crossed modules from (C ,R,∂) to (C ′,R ′,∂′) is a pair of k-algebra morphisms φ : C −→C ′,ψ :

R −→ R ′ such that

∂′φ=ψ∂ and φ(r ▶ c) =ψ(r )▶φ(c).

Thus we get a category XModk of crossed modules (for fixed k).

Examples of Crossed Modules

1. Any ideal I in R gives an inclusion map, i nc : I −→ R which is a crossed module. Conversely given an

arbitrary R-module ∂ : C −→ R one easily sees that the Peiffer identity implies that ∂C is an ideal in R.

2. Any R-module M can be considered as an R-algebra with zero multiplication and hence the zero mor-
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phism 0 : M → R sending everything in M to the zero element of R is a crossed module. Conversely: If

(C ,R,∂) is a crossed module, ∂(C ) acts trivially on ker∂, hence ker∂ has a natural R/∂(C )-module structure.

As these two examples suggest, general crossed modules lie between the two extremes of ideal and modules.

Both aspects are important.

3. Let be M (C ) multiplication algebra. Then
(
C ,M (C ) ,µ

)
is multiplication crossed module. µ : C →M (C )

is defined by µ (r ) = δr with δr
(
r ′) = r r ′ for all r,r ′ ∈ C , where δ is multiplier δ : C → C such that for all

r,r ′ ∈C , δ
(
r r ′)= δ (r )r ′. Also M (C ) acts on C by δ▶ r = δ (r ) .(See [1] for details).

In [10] Porter states that there is an equivalence of categories between the category of internal categories in

the category of k-algebras and the category of crossed modules of commutative k-algebras. In the following

theorem, we will give a categorical presentation of this equivalence.

Theorem 4.1. The category of crossed modules XModk is equivalent to that of 2-algebras, 2Alg.

Proof.

Let A = (A0, A1, s, t ,e,◦,•) be a 2-algebra consisting of a single object say∗ and an algebra A0 of 1-morphisms

and an algebra A1 of 2-morphisms. For x, y ∈ A0 and f : x → y ∈ A1, we get the following diagram

∗

x

  

y

== ∗f

��

We define s, t morphisms s : A1 −→ A0, s( f ) = x, t : A1 −→ A0, t ( f ) = y and e morphism e : A0 −→ A1 for

x ∈ A0, e(x) : x −→ x ∈ A1.

The s, t and e morphisms are algebra morphisms and we have

se(x) = s(e(x)) = x = I dA0 (x)

te(x) = t (e(x)) = x = I dA0 (x)

We define

Ker s = H = { f ∈ A1 | s( f ) = I dA0 } ⊆ A1

and ∂= t |H algebra homomorphism by ∂ : H −→ A0,∂(h) = t (h). We have semidirect product Ker s ⋊ A0 =
{(h, x) | h ∈Kers, x ∈ A0} with multiplication (h, x)• (h′, x ′) = (x ▶ h′+x ′ ▶ h+h′ •h, x •x ′) where action of A0

on Kers is defined by x ▶ h = e(x)•h. For each f ∈ A1, we can write f = n + e(x) where n = f − es( f ) ∈Kers

and x = s( f ). Suppose f ′ = n′+e(x ′). Then

f • f ′ = (n +e(x))• (n′+e(x ′))

= n •n′+n •e(x ′)+e(x)•n′+e(x)•e(x ′)
= e(x ′)•n +e(x)•n′+n •n′+e(x •x ′)
= x ′ ▶ n +x ▶ n′+n •n′+e(x •x ′).

There is a map

φ : A1 −→ Kers ⋊ A0

n +e(x) 7−→ φ(n +e(x)) = (n, x).
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Now
φ( f • f ′) = φ(x ′ ▶ n +x ▶ n′+n •n′+e(x •x ′))

= (x ′ ▶ n +x ▶ n′+n •n′, x •x ′)
= (n, x)• (n′, x ′)
= φ( f )•φ( f ′)

so φ is a homomorphism. Also, there is an obvious inverse

φ−1 : Kers ⋊ A0 −→ A1

(n, x) 7−→ φ−1(n, x) = n +e(x)

which is also a homomorphism. Hence φ is an isomorphism and we have established that Ker s ⋊ A0 ≃ A1.

Since A is a 2-algebra and Ker s ⋊ A0 ≃ A1, we can define algebra morphisms

s : Kers ⋊ A0 −→ A0

(h, x) 7−→ s(h, x) = x

t : Kers ⋊ A0 −→ A0

(h, x) 7−→ t (h, x) = ∂(h)+x

and
e : A0 −→ Kers ⋊ A0

x 7−→ e(x) = (0, x)

and for t (h, x) = s(h′,∂(h)+x) = ∂(h)+x we define

◦ : Kers ⋊ A0 t × s Kers ⋊ A0 −→ Kers ⋊ A0(
(h, x), (h′,∂(h)+x)

) 7−→ (h′+h, x)

∗

x

$$

∂(h)+x

77

∂(h′+h)+x

FF∗(h,x)

��

(h′,∂(h)+x)
��

= ∗

x

''

∂(h′+h)+x

77 ∗(h′+h,x)

��

which is vertical composition;

(h, x)◦ (h′,∂(h)+x) = (h′+h, x).

For (h, x), (g , y) ∈Kers ⋊ A0, horizontal composition is defined by

∗

x

��

∂(h)+x

BB∗(h,x)

��

y

��

∂(g )+y

BB(g ,h)

��

∗ = ∗

x•y

))

(∂(h)+x)•(∂(g )+y)

55 ∗(x▶g+y▶h+g•h,x•y)

��

(h, x)• (g , y) = (x ▶ g + y ▶ h + g •h, x • y)

= (e(x)• g +e(y)•h + g •h, x • y).

Thus we have
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CM1)

∂(x ▶ h) = ∂(e(x)•h)

= ∂(e(x))•∂(h)

= (te) (x)•∂(h)

= x •∂(h).

Also by interchange law we have

[
(h, x)• (g , y)

]◦ [
(h′,∂(h)+x)• (g ′,∂(g )+ y)

] = [
(h, x)◦ (h′,∂(h)+x)

]
•[

(g , y)◦ (g ′,∂(g )+ y)
]

.

Therefore, evaluating the two sides of this equation gives:

LHS = (x ▶ g + y ▶ h + g •h, x • y)

◦((∂(h)+x)▶ g ′+ (
∂(g )+ y

)
▶ h′+ g ′ •h′, (∂(h)+x)• (

∂(g )+ y
)
)

= ((∂(h)+x)▶ g ′+ (
∂(g )+ y

)
▶ h′+ g ′ •h′+x ▶ g + y ▶ h + g •h, x • y)

= (∂(h)▶ g ′+e(x)• g ′+∂(g )▶ h′

+e(y)•h′+ g ′ •h′+e(x)• g +e(y)•h + g •h, x • y)

RHS = (h′+h, x)• (g ′+ g , y)

= (x ▶
(
g ′+ g

)+ y ▶ (h′+h)+ (
g ′+ g

)• (h′+h), x • y)

= (
e(x)• g ′+e(x)• g +e(y)•h′+e(y)•h + g ′ •h′+ g ′ •h + g •h′+ g •h, x • y

)
.

Since the two sides are equal, we know that their first components must be equal, so we have

∂(h)▶ g ′+∂(g )▶ h′ = h • g ′+ g •h′

and
h • g ′+ g •h′ = ∂(h)▶ g ′+∂(g )▶ h′

= ∂(h + g )▶ (g ′+h′)−∂(h)▶ h′−∂(g )▶ g ′

= ∂(h + g )▶ (g ′+h′)− (
h •h′+ g • g ′) ,

thus
∂(h + g )▶ (g ′+h′) = h • g ′+ g •h′+ (

h •h′+ g • g ′)
= (

h + g
)• (

h′+ g ′)
and writing (h + g ) = l ,

(
h′+ g ′)= l ′ ∈ K er s, we get

∂ (l )▶ l ′ = l • l ′

which is the Peiffer identity as required. Hence (K er s, A0,∂) is a crossed module.

Let A = (A0, A1, s, t ,e,◦,•) and A
′ = (A

′
0, A

′
1, s

′
, t

′
,e

′
,◦′

,•′
) be 2-algebras and F = (F0,F1) : A −→A

′
be a 2-

algebra morphism. Then F0 : A0 −→ A
′
0 and F1 : A1 −→ A

′
1 are the k-algebra morphisms. We define f1 =
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F1|K er s : K er s −→ K er s
′

and f0 = F0 : A0 −→ A
′
0. For all a ∈ K er s and x ∈ A0,

f0∂(a) = F0t (a)

= t
′
F1(a)

= ∂
′
f1(a)

and
f1(x ▶ a) = F1(e(x)a)

= F1(e(x))F1(a)

= e
′
F0(x)F1(a)

= e
′
f0(x) f1(a)

= f0(x)▶ f1(a).

Thus ( f1, f0) map is a crossed module morphism (K er s, A0,∂) −→ (K er s
′
, A

′
0,∂

′
). So we have a functor

Γ : 2Alg −→ XModk .

Conversely, let (G ,C ,∂) be a crossed module of algebras. Therefore there is an algebra morphism ∂ : G →C

and an action of C on G such that

CM1) ∂(x ▶ g ) = x∂(g ),

CM2) ∂(g )▶ g ′ = g g ′.

Since C acts on G , we can form the semidirect product G ⋊C as defined by

G ⋊C = {
(
g ,c

) | g ∈G ,c ∈C }

with multiplication (
g ,c

)(
g ′,c ′

)= (
c ▶ g ′+ c ′ ▶ g + g ′g ,cc ′

)
and define maps s, t : G ⋊C → C and e : C → G ⋊C by s(g ,c) = c, t (g ,c) = ∂(g )+ c and e(c) = (0,c). These

maps are clearly algebra morphisms.

∗

c

&&

∂(g )+c

66

∂(g+g ′)+c

DD∗(g ,c)

��

(g ′,∂(g )+c)
��

For t (g ,c) = s(g ′,∂(g )+ c) = ∂(g )+ c, we define composition

◦ : (G ⋊C )t × s (G ⋊C ) −→ (G ⋊C )(
(g ,c), (g ′,∂(g )+ c)

) 7−→ (g + g ′,c),

for (g ,c), (h,d) ∈G⋊C and (g ,c), (g ′,∂(g )+c) ∈G⋊C , following equations give horizontal and vertical com-

position respectively.

(g ,c)• (h,d) = (c ▶ h +d ▶ g + g h,cd)
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(g ,c)◦ (g ′,∂(g )+ c) = (g + g ′,c)

Finally, since it must be that ◦ is an algebra morphism and by the crossed module conditions, interchange

law is satisfied. Therefore we have constructed a 2-algebra A = (C ,G ⋊C , s, t ,e,◦,•) consists of the single

object say ∗ and the k-algebra C of 1-morphisms and the k-algebra G ⋊C of 2-morphisms. Let (G ,C ,∂) and

(G
′
,C

′
,∂

′
) be crossed modules and f = ( f1, f0) : (G ,C ,∂) −→ (G

′
,C

′
,∂

′
) be a crossed module morphism. We

define
F1 : G ⋊C −→ G

′ ⋊C
′

(g ,c) 7−→ F1(g ,c) = ( f1(g ), f0(c))

and
F0 : C −→ C

′

c 7−→ F0(c) = f0(c).

Then
s
′
F1(g ,c) = s

′
( f1(g ), f0(c))

= f0(c)

= F0(c)

= F0s(g ,c),

t
′
F1(g ,c) = t

′
( f1(g ), f0(c))

= ∂
′
f1(g )+ f0(c)

= f0∂(g )+ f0(c)

= F0(∂(g )+ c)

= F0t (g ,c),

e
′
F0(c) = (0, f0(c))

= F1(0,c)

= F1e(c),

F1((g ,c)◦ (g
′
,c

′
)) = F1(g + g

′
,c)

= ( f1(g + g
′
), f0(c))

= ( f1(g )+ f1(g
′
), f0(c))

= ( f1(g ), f0(c))◦ ( f1(g
′
), f0(c

′
))

= F1(g ,c)◦F1(g
′
,c

′
),

F1((g ,c)• (h,d)) = F1(c ▶ h +d ▶ g + g h,cd)

= ( f1(c ▶ h)+ f1(d ▶ g )+ f1(g h), f0(cd))

= ( f0(c)▶ f1(h)+ f0(d)▶ f1(g )+ f1(g ) f1(h), f0(c) f0(d))

= ( f1(g ), f0(c))• ( f1(h), f0(d))

= F1(g ,c)•F1(h,d)

for all (g ,c) ∈ G ⋊C and c ∈ C . Therefore F = (F1,F0) is a 2-algebra morphism from (C ,G ⋊C , s, t ,e,◦,•) to

(C
′
,G

′ ⋊C
′
, s

′
, t

′
,e

′
,◦′

,•′
). Thus we get a functor

Ψ : XModk −→ 2Alg.
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Abstract − In this paper, we studied about a detailed analysis of fuzzy ellipse. In the previously 

studies, some methods for fuzzy parabola are discussed (Ghosh and Chakraborty, 2019). To 

define the fuzzy ellipse, it is necessary to modify the method applied for the fuzzy parabola. First, 

need to get five same points with the same membership grade to create crisp ellipse and the 

union of crisp ellipses passing through these points will form the fuzzy ellipse. Although it is 

difficult to determine the points with this property, it is important for constructing the fuzzy 

ellipse equation. In this study, we determine the points that satisfy this condition and prove the 

properties required to obtain the fuzzy ellipse to be formed by using these points. We have drawn 

a graph of a fuzzy ellipse and depicted the geometric location of fuzzy points with different 

membership grades on graph. We have also shown some geometric application on examples. In 

the third part of this study, it has been shown that the determinants defined in the calculation of 

the coefficients of the fuzzy ellipse can be calculated for different points and angles with the 

examples given, thus different fuzzy ellipses can be obtained. 

Subject Classification (2020): 51H25, 51M05, 51M15, 53C80, 58A40, 58A05. 

1. Introduction 

In the case of crisp sets, a given object 𝑥 may belong to a set 𝐴 or not belong to this set and these two 

options are denoted by 𝑥 ∈ 𝐴 or 𝑥 ∉ 𝐴, 𝐴 classic set may be described by the characteristic function 

(𝜒𝐴) that takes two values: 

𝜒𝐴(𝑥) = {
1,     𝑥 ∈ 𝐴 

 
0,    𝑥 ∉ 𝐴

 

Fuzzy sets are introduced and described using membership functions by Zadeh in 1965 [10]. As opposed 

to crisp set, if �̅� is a fuzzy set, we write its membership function as 𝜇(𝑥|�̅�), 𝜇(𝑥|�̅�) is in [0,1] for all 𝑥.  

 

                                                      
1 secilozizmirli@gmail.com (Corresponding Author); 2 aycancansel17@gmail.com 
1,2 Department of Mathematics, Pamukkale University, Denizli, Turkey 
  Article History: Received: 08.11.2022 — Accepted: 08.02.2023 — Published: 27.02.2023 

 

Ikonion Journal of Mathematics 

https://dergipark.org.tr/tr/pub/ikjm  

Research Article 

Open Access 

https://doi.org/10.54286/ikjm.1200814 

 

ISSN: 2687-6531   

https://orcid.org/0000-0003-4586-0138
https://orcid.org/0000-0002-9893-5642
https://dergipark.org.tr/tr/pub/ikjm


21 

 

Seçil Özekinci et al. / IKJM/ 5(1) (2023) 20-38 

Many studies are available to understand fuzzy logic [10 − 12]. Likewise, certain ideas in fuzzy plane 

geometry have been introduced and studied by Buckley and Eslami in the study [1] may be the first to 

analyze fuzzy sets. Fuzzy points and the fuzzy distance between fuzzy points was defined by Buckley an 

Eslami in [8]. And they showed it is a (weak) fuzzy metric and fuzzy point, fuzzy line segment, fuzzy 

distance and the angle between two fuzzy segments and same and inverse points are defined by Ghosh 

and Chakraborty [3]. Buckley and Eslami studied fuzzy points and fuzzy lines and gave the theorems 

about them in [1] and studied fuzzy circles, fuzzy rectangles, fuzzy triangles and fuzzy polygons and 

showed that the area and perimeter of a fuzzy circle and a fuzzy polygon are a fuzzy number in [2]. A 

fuzzy line passing through several fuzzy points whose cores are collinear and introduced four different 

forms of fuzzy lines were introduced by Ghosh and Chakraborty in the study [4]. Ghosh and Chakraborty 

constructed a fuzzy circle in a fuzzy geometrical plane and showed that the center of a fuzzy circle may 

not be a fuzzy point in [5]. Rosenfeld presented fuzzy geometry and fuzzy topology of image subsets [9]. 

The fuzzy triangle as the intersection of three fuzzy half-planes and computed area and perimeter of the 

fuzzy triangle were discussed by Rosenfeld in the study [8]. Zimmermann dealt with types of fuzzy sets, 

fuzzy measures, fuzzy functions, applications of fuzzy set theory and gave basic definitions and theorems 

about fuzzy sets [12]. A fuzzy parabola that passes through five fuzzy points are constructed by Ghosh 

and Chakraborty in the study [6]. Then Özekinci and Aycan introduced a method to construct a fuzzy 

hyperbola and made applications about fuzzy hyperbola [7]. 

 

Fuzzy set theory provides a convenient method that is easy to implement in real-time applications, and 

also enables designers and operators to transfer their knowledge to the dynamic control systems. Fuzzy 

logic is also used in different fields such as artificial intelligence, computers, face recognition systems, 

cybernetic internet technologies, space vehicles, robot and war technologies, the formation of the 

universe, etc. Fuzzy logic has been the subject of many studies since it is an approach that is not only 

theoretical but also practical. When all these studies are examined geometrically, it is seen that only 

fuzzy circle, fuzzy parabola and fuzzy hyperbola curves are studied from the conics. No study has got 

been to construct a fuzzy ellipse. Fuzzy systems are used in the planning of technological structures 

developing in the field of engineering nowadays. Then fuzzy ellipse can be use kidney stones crushing 

machines, billiard games, aerospace engineering and lazer technology etc. Therefore, in this study, we 

studied how to construct a fuzzy ellipse and to obtain the equation for the geometric location of a fuzzy 

ellipse by using the properties of conics. While we aimed to analyze how the fuzzy ellipse could be 

defined, calculated and graphed mathematically, we thought that it would be useful to work on 

combining the applications mentioned above. We examine and prove these calculations with the 

evaluation of previous studies.  
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2. Preliminaries  

In this section, we will mention the basic fuzzy definitions that will be used in this paper. 

 

We will draw “a bar” over capital letters to denote a fuzzy subset of 𝑅𝑛, 𝑖. 𝑒 �̅�, �̅�, �̅�, �̅�, …  and we will write 

membership of fuzzy set �̅� as 𝜇(𝑥| �̅� ), 𝑥 ∈ 𝑅𝑛 and 𝜇(𝑅𝑛) is in [0,1]. 

 

Definition 2.1: (Fuzzy Set) The set of ordered pairs �̅� = {(𝑥, 𝜇(𝑥|�̅� )): 𝑥 ∈ 𝑋}, where 𝜇: 𝑋 → [0,1] is called 

a fuzzy set in 𝑋. The function 𝜇: 𝑋 → [0,1] evaluates membership degree of 𝑥 in the fuzzy set �̅� [2]. 

 

Definition 2.2: For a fuzzy set �̅� of 𝑅𝑛, its  𝛼 − 𝑐𝑢𝑡 is denoted by �̅�(𝛼) and it is defined by:  

�̅�(𝛼) = { 
{𝑥, 𝜇(𝑥|�̅� ) ≥ 𝛼  } 𝑖𝑓 0 < 𝛼 ≤ 1

    
Clouse {𝑥, 𝜇(𝑥|�̅� ) > 0} 𝑖𝑓 𝛼 = 0

 

The set {𝑥, 𝜇(𝑥|�̅� ) > 0 } is called as support of the fuzzy set �̅�. The set �̅�(0) ise often said as base of 

�̅� and the set �̅�(1) = {𝑥, 𝜇(𝑥|�̅� ) = 1} is said to be core of the fuzzy set �̅�. If the core is non-empty, the 

fuzzy set is called as a normal fuzzy set. A fuzzy set is said to be convex if all of its 𝛼-cuts are convex [3]. 

 

Definition 2.3 (Fuzzy Points): 𝐴 fuzzy point at (𝑎, 𝑏) in 𝑅2, written as �̅�(𝑎, 𝑏) is defined by its membership 

function:  

(i)  𝜇((𝑥, 𝑦)| �̅�(𝑎, 𝑏)) is upper semi-continuous, 

(ii) 𝜇((𝑥, 𝑦)| �̅�(𝑎, 𝑏)) = 1 if and only if (𝑥, 𝑦) = (𝑎, 𝑏), 

(iii) �̅�(𝑎, 𝑏)(𝛼) is a compact, convex subset of 𝑅2 of all 𝛼 in [0,1].  

 

The notations �̅�1(𝑎, 𝑏), �̅�2(𝑎, 𝑏), �̅�3(𝑎, 𝑏),…  or �̅�1, �̅�2, �̅�3, … are used to represent fuzzy points [2]. 

 

Definition 2.4 (Same points with respect to fuzzy points): Let take two points (𝑥1, 𝑦1)  and (𝑥2, 𝑦2). Such 

that (𝑥1, 𝑦1)  is support of fuzzy point �̅�(𝑎, 𝑏) and similarly (𝑥2, 𝑦2) is support of fuzzy point �̅�(𝑐, 𝑑). Let 

𝐿1 is a line joining (𝑥1, 𝑦1) and (𝑎, 𝑏). As �̅�(𝑎, 𝑏) is a fuzzy point, along 𝐿1, a fuzzy number, �̅�1 say, is 

situated on the support of �̅�(𝑎, 𝑏). The membership function of this fuzzy number �̅�1 can be written as 

𝜇((𝑥, 𝑦)|�̅�1) = 𝜇((𝑥, 𝑦)| �̅�(𝑎, 𝑏)) for (𝑥, 𝑦) in 𝐿1 , and 0 otherwise. Similarly, along a line, 𝐿2 say, joining 

(𝑥2, 𝑦2) and (𝑐, 𝑑), the exists a fuzzy number, �̅�2 say, on the support of �̅�(𝑐, 𝑑). The points (𝑥1, 𝑦1)  and 

(𝑥2, 𝑦2) are said to be same points with respect to �̅�(𝑎, 𝑏) and �̅�(𝑐, 𝑑) if :  

(i) (𝑥1, 𝑦1)  and (𝑥2, 𝑦2) are same -points with respect to �̅�1 and �̅�2, 

(ii) 𝐿1, 𝐿2 have equal angle with line joining (𝑎, 𝑏) and (𝑐, 𝑑) [3]. 
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3. Fuzzy Ellipse 

In this section we will develop a method for obtaining a fuzzy ellipse. As its known the general conic 

equation has the form: 

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0 

If we divide both sides of this equation by 𝑎 (𝑎 ≠ 0) , this equation takes the form:  

𝑥2 + 𝑏′𝑥𝑦 + 𝑐′𝑦2 + 𝑑′𝑥 + 𝑒′𝑦 + 𝑓′ = 0 

Thus, the number of unknown coefficients, in the equation containing six terms, becomes five. Then the 

common solution of the five equations, will be obtained by substituting five different pairs for 𝑥 and 𝑦, 

will be sufficient to find these unknowns. So, five points in the plane is enough to write a conic equation. 

Namely five points on the plane will denote a single conic. 

 

In this study, since we will define an ellipse in fuzzy plane geometry, first of all, these five points must 

be points in the fuzzy space that ensure the necessary properties. It will also be seen that the ellipse in 

fuzzy space is formed by different crisp elliptic curves. Their combination will form the fuzzy ellipse. 

The curve of ellipse passing through the core of five fuzzy points will be called a crisp ellipse and be 

denoted by 𝐶𝐸 . However, since these points are fuzzy points, their membership degrees may change. 

Differences in membership degrees affect the drawing of the resulting ellipse curves. Therefore, 

calculating five different coefficients for five same-points in the conic equation. Calculation of these 

coefficients is possible with five by determinants. For this reason, five different curves emerge for the 

fuzzy ellipse that we want to reach in our study. Therefore, in terms of the importance of the fuzzy 

membership degree, the definite ellipse 𝐶𝐸 with membership degree one is taken. The other four curves 

are ellipse and the combination of all of them gives the fuzzy ellipse and is denoted by 𝐹E. The system 

formed by these curves can also be considered as a curvilinear system or distribution in mathematical 

applications. 

 

Now, we will denote a method to create a fuzzy ellipse in a fuzzy plane by taking five fuzzy points. These 

points will be the same-points which we gave in Definition 2.4 in preliminaries section. 

 

Necessary explanations and proofs are presented below.  

 

Let �̅�𝑖(𝑎𝑖, 𝑏𝑖), 𝑖 = 1,2,… ,5 be given five fuzzy points whose cores lie on a crisp ellipse 𝐶𝐸 . We will 

construct a fuzzy ellipse that passes through these five fuzzy points �̅�1, �̅�2, … , �̅�5. We will denote fuzzy 

ellipse as 𝐹𝐸̅̅ ̅̅  , briefly. Below are the steps of the method we used to create the fuzzy ellipse. 
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3.1.  Construction of Fuzzy Ellipse 𝑭𝑬̅̅ ̅̅   

In this section we construct the segment 𝐹𝐸̅̅ ̅̅   1…5 for the fuzzy ellipse. This segment defined as, 

𝐹𝐸̅̅ ̅̅  = ⋁ {

𝐹𝐸𝛼:𝑊ℎ𝑒𝑟𝑒 𝐹𝐸𝛼  𝑖𝑠 𝑎 𝑐𝑟𝑖𝑠𝑝 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑓𝑖𝑣𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑛 �̅�𝑖(𝑎𝑖 , 𝑏𝑖),
 𝑖 = 1,2,… ,5 𝑤𝑖𝑡ℎ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒 𝛼

}

𝛼∈[0,1]

 

The ellipse 𝐹𝐸̅̅ ̅̅   can be defined by membership function below:  

𝜇((𝑥, 𝑦)|𝐹𝐸̅̅ ̅̅  ) = 𝑠𝑢𝑝{

𝛼:𝑊ℎ𝑒𝑟𝑒 (𝑥, 𝑦) 𝑙𝑖𝑒𝑠 𝑜𝑛 𝐹𝐸𝛼  𝑡ℎ𝑎𝑡 
𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑓𝑖𝑣𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛

 �̅�𝑖 , 𝑖 = 1,2, … ,5 𝑤𝑖𝑡ℎ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒 𝛼

} 

As this definition show that the fuzzy elliptic-segment  𝐹𝐸̅̅ ̅̅   1…5  is a collection of crisp points with various 

membership degrees. However, the definition of membership function 𝜇 ((𝑥, 𝑦)|𝐹𝐸̅̅ ̅̅   1…5 ) shows that a 

fuzzy ellipse is the union of all crisp ellipses that pass through five same-points on the supports of �̅�𝑖 , 𝑖 =

1,2,… ,5. 

 

 

 

Figure.3.1. Construction of Fuzzy Ellipse in the Method 
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In Figure 3.1, we depict the fuzzy ellipse with membership degrees of given fuzzy points in detail. 

�̅�1, �̅�2, �̅�3, �̅�4 and �̅�5 are five fuzzy points. The regions under the circle centered at 𝐴1, ellipse centered at 

𝐴2, square centered 𝐴3, ellipse centered at 𝐴4 and square centered at 𝐴5 are the supports of the points 

�̅�1, �̅�2, �̅�3, �̅�4 and �̅�5, respectively. The grey -shaded regions inside the supports of the fuzzy points 

represent different 𝛼-cuts. The variation of the membership grades for fuzzy points is indicated by the 

intensity of the grey levels. The regions that, depicted in dark grey in the graph are formed by points 

with a high membership grade. Light grey regions on the graph are obtained as the membership grades 

approach 0. So, the membership grades of the centers of circle, squares and ellipses are one and it 

decreases gradually to zero on the periphery of the support of �̅�𝑖  for each 𝑖 = 1,2,3,4,5. 

 

In the Figure 3.1, 𝐿𝑖𝜃 ‘s are five lines that passes through 𝐴𝑖 , for each 𝑖 = 1,2,3,4,5. These five lines have 

an angle 𝜃 with the positive 𝑥-axis. Because  𝐸�̅�(𝐴𝑖)(𝛼), being 𝛼 −cut of a fuzzy point, is convex and 𝐴𝑖  is 

an interior point of 𝐸�̅�(𝐴𝑖)(𝛼) , the line 𝐿𝑖𝜃 must intersect with the boundary of �̅�𝑖(𝐴𝑖)(𝛼) at exactly two 

points. Let these two intersecting points be 𝑄𝑖𝜃
𝛼  and 𝑅𝑖𝜃

𝛼 . Thus, 𝑄1𝜃
𝛼 , 𝑄2𝜃

𝛼 , 𝑄3𝜃
𝛼 , 𝑄4𝜃

𝛼  and 𝑄5𝜃
𝛼  constitute a set 

of five same-points with membership degree 𝛼. And similarly, the collection of 𝑅𝑖𝜃
𝛼  ‘s are also represent 

the set of five same-points with membership degree 𝛼. 

 

Let 𝐹𝐸𝜃𝑈
𝛼  is the ellipse that passes through the points 𝑄𝑖𝜃

𝛼  and 𝐹𝐸𝜃𝐿
𝛼  is the ellipse that passes through the 

points 𝑅𝑖𝜃
𝛼  ‘s in Figure 3.1 Since membership degree of all the points 𝑄𝑖𝜃

𝛼  and 𝑅𝑖𝜃
𝛼  is 𝛼, we put a 

membership degree of 𝛼 to the ellipse 𝐹𝐸𝜃𝑈
𝛼  and 𝐹𝐸𝜃𝐿

𝛼  on the fuzzy ellipse 𝐹𝐸̅̅ ̅̅ , 𝑖 = 1,2,3,4,5. 

Trough varying 𝜃 in [0,2𝜋] and 𝛼 in [0,1], several ellipses such as 𝐹𝐸𝜃𝑈
𝛼  and 𝐹𝐸𝜃𝐿

𝛼  will be obtained. 

According to the definition, the fuzzy ellipse 𝐹𝐸̅̅ ̅̅  is the collection of all the ellipses 𝐹𝐸𝜃𝑈
𝛼  and 𝐹𝐸𝜃𝐿

𝛼  with 

membership degree 𝛼. 

 

Namely, we say 

𝐹𝐸̅̅ ̅̅  = ⋁ {𝐹𝐸𝜃𝑈
𝛼 , 𝐹𝐸𝜃𝐿

𝛼 }

𝜃∈[0,2𝜋]

𝛼∈[0,1]

 

Let 𝐹𝐸 be any ellipse in the support of the fuzzy ellipse 𝐹𝐸̅̅ ̅̅ . We define the membership degree of on 

ellipse 𝐹𝐸 in  𝐹𝐸̅̅ ̅̅  by  

𝜇(𝐹𝐸| 𝐹𝐸̅̅ ̅̅ ) = min  
(𝑥,𝑦)∈𝐹𝐸

𝜇((𝑥, 𝑦)|𝐹𝐸̅̅ ̅̅ ). 

The underlying theorem shows how to obtain the membership degree ellipse 𝐹𝐸 in  𝐹𝐸̅̅ ̅̅  using the same 

-points in �̅�𝑖  ′𝑠, 𝑖 = 1,2,3,4,5. 
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Theorem 3.1. Suppose that 𝐹𝐸 is an ellipse in 𝐹𝐸̅̅ ̅̅  and same -points (𝑥𝑖 , 𝑦𝑖) ∈ �̅�𝑖(0) with 

𝜇((𝑥𝑖, 𝑦𝑖)| 𝐹𝐸̅̅ ̅̅ ) = 𝛼  for all 𝑖 = 1,2,3,4,5 such that 𝐹𝐸 is the ellipse that passes through the five (𝑥𝑖, 𝑦𝑖)  ‘s 

and 𝜇(𝐹𝐸| 𝐹𝐸̅̅ ̅̅ ) = 𝛼. 

Proof . 

We examine the proof in two different cases that (i) 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) ≮ 𝛼 and (ii) 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) ≯ 𝛼. 

(i) By contrast, let assume that 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) < 𝛼. In that case, by the definition of 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ), there exist 

(𝑥0, 𝑦0) in 𝐹𝐸̅̅ ̅̅  such that (𝑥0, 𝑦0) ∈ 𝐹𝐸 and 

 𝜇((𝑥0, 𝑦0)|𝐹𝐸̅̅ ̅̅ ) < 𝛼. Let say 𝜇((𝑥0, 𝑦0)|𝐹𝐸̅̅ ̅̅ ) = 𝛽. Since (𝑥0, 𝑦0) ∈ 𝐹𝐸 and 𝐹𝐸 is an ellipse that joins the 

five same-points with membership degree 𝛼,  

𝜇((𝑥0, 𝑦0)|𝐹𝐸̅̅ ̅̅ ) = 𝑠𝑢𝑝 {

𝜓:𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 
𝑡ℎ𝑎𝑡 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑓𝑖𝑣𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 
𝑤𝑖𝑡ℎ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑑𝑒𝑔𝑟𝑒𝑒 𝜓

} ≥ 𝛼. 

But this contradicts our acceptance 𝛽 < 𝛼. So, 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) ≮ 𝛼. 

 

(ii) It is clear that 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) ≯ 𝛼. Since 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) = min {
α:where (𝑥, 𝑦) lies on 

𝐹𝐸 and 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) = 𝛼
}, and all the points 

(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,3,4,5 lie on 𝐹𝐸.  

Therefore 𝜇(𝐹𝐸|𝐹𝐸̅̅ ̅̅ ) = 𝛼 is obtained. 

 

 

Figure 3.2 Fuzzy Ellipse (towards completing the fuzzy ellipse in the Figure 3.1) 
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The complete fuzzy ellipse 𝐹𝐸̅̅ ̅̅  is depicted in Figure 3.2. The region between the curves 𝑓0𝐿 and 𝑓0𝑈 is 

the support of the 𝐹𝐸̅̅ ̅̅ . The core ellipse is the curve 𝐶𝐸 on which the five core points 𝐴𝑖  of the fuzzy points 

𝐸�̅� lies.  

 

Let mention the line perpendicular to 𝐶𝐸 ≡ 𝐹𝐸̅̅ ̅̅ (1) that we take as the 𝐶𝐷  line in Figure 3.2. Along the 

𝐶𝐷, there exist a 𝐿𝑅 type fuzzy number that we denoted by (𝐹/𝐺/𝐻)𝐿𝑅. If we explain 𝐿𝑅 type fuzzy 

number like this, 𝐿 and 𝑅 are reference functions 𝐿 𝑎𝑛𝑑 𝑅: [0, +∞) → [0,1] that doesn’t decrease and 

satisfies two conditions 𝐿(𝑥) = 𝐿(−𝑥) and 𝐿(0) = 1. Where 𝛼 and 𝛽 are positive and �̅� is a fuzzy number, 

𝜇(𝑥|�̅� ) can be written as:  

𝜇(𝑥|�̅� ) =

{
 

 

  

𝐿 (
𝑚 − 𝑥

𝛼
)     𝑖𝑓 𝑥 ≤ 𝑚
  

𝑅 (
𝑥 − 𝑚

𝛽
)    𝑖𝑓 𝑥 ≥ 𝑚

 

The notation (𝑚 − 𝛼/ 𝑚/𝑚 + 𝛽)𝐿𝑅  is used to represent an 𝐿𝑅-type fuzzy number. That is, all fuzzy 

ellipses can be visualized as a three-dimensional figure. (a subset of (𝑥, 𝑦) × [0,1] ) whose cross-section 

across 𝐹𝐸̅̅ ̅̅  is a fuzzy number such as (𝐹/𝐺/𝐻)𝐿𝑅. 

 

Let (𝐹/𝐺/𝐻)𝐿𝑅 is a fuzzy number on fuzzy ellipse 𝐹𝐸̅̅ ̅̅   and take a convex region on 𝐹𝐸̅̅ ̅̅ (0)  such that, 

except 𝐹 and 𝐻, all points on the line segment [𝐹𝐻] are inner of convex region. When we take a fuzzy 

point �̅� such that the membership function is 𝜇((𝑥, 𝑦)| �̅�) = 𝜇((𝑥, 𝑦)|(𝐹/𝐺/𝐻)𝐿𝑅), if (𝑥, 𝑦) ∈ [𝐹𝐻] , 

𝜇((𝑥, 𝑦)| �̅�) ≤ 𝜇((𝑥, 𝑦)| 𝐹𝐸̅̅ ̅̅ ). Only at 𝐺, 𝜇((𝑥, 𝑦)| �̅�) = 1. Membership degree decreases gradually to ‘0’ 

that approach F or H.   

 

3.2.  Construction of Membership Function  

The membership degree 𝜇((𝑥, 𝑦)| 𝐹𝐸̅̅ ̅̅  ) might not always be simple to evaluate. Furthermore, it is really 

a difficult task to obtain the closed form of the membership function of 𝐹𝐸̅̅ ̅̅ . Because, the membership 

degree at a particular point is the supremum of a set of real numbers that is obtained by solving a set of 

nonlinear equations. First, we get the closed form of membership function of 𝐹𝐸̅̅ ̅̅  . 

 

We note that the definition of fuzzy ellipse implies 

𝜇((𝑥, 𝑦)| 𝐹𝐸̅̅ ̅̅  ) = 𝑠𝑢𝑝 {

𝛼:𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) 𝑙𝑖𝑒𝑠 𝑖𝑛 𝑎𝑛 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑡ℎ𝑎𝑡

 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑓𝑖𝑣𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 �̅�𝑖 ,
 𝑖 = 1,2,3,4,5 𝑤𝑖𝑡ℎ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 degree 𝛼

}. 

For obtaining 𝜇((𝑥, 𝑦)| 𝐹𝐸̅̅ ̅̅ ), first we must find five same-points with membership degree 𝛼 ∈ [0,1]. 

Then, all possible values of 𝛼 are identified for which (𝑥, 𝑦) lies on the ellipse that joins five same-points 

with membership degrees. The evaluation of 𝛼 may require to solving a nonlinear equation. From the 
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solution of the equation, there may be real values between 0 and 1. The supremum of all these real 𝛼 

values is the membership degree of 𝜇((𝑥, 𝑦)| 𝐹𝐸̅̅ ̅̅  ). We refer the ellipse for which the supremum is 

attained as the adjoining ellipse of the points (𝑥, 𝑦).  

 

Now, we obtain a systematic procedure to identify the membership degree of a point (𝑥0, 𝑦0) in a fuzzy 

ellipse 𝐹𝐸̅̅ ̅̅  which passes through five fuzzy points �̅�𝑖 ,  𝑖 = 1,2,3,4,5  We show the expansion of the same-

points on �̅�𝑖 ’s as (𝑥𝑖𝜃
𝛼 , 𝑦𝑖𝜃

𝛼 ), 𝑖 = 1,2,3,4,5 (0 ≤ 𝜃 ≤ 2𝜋 , 𝛼 ∈ [0,1]) 

 

As a result, we will have to examine the existence of solution of non-linear equations by giving various 

values to 𝜃 and determining the 𝛼 membership degrees according to the angle 𝜃. 

 

Let the angle 𝜃 = 𝜃0 ( 0 ≤ 𝜃 ≤ 2𝜋) and 𝑆𝜃0 ’s are the sets of membership degrees that can be compatible 

with respect to the various angle 𝜃0. 

 

We assume that the supremum of the set 𝑆𝜃0  as 𝑠𝜃0 . It can be seen from the given examples that non-

linear equation systems may not have a solution for some 𝜃0. Fuzzy ellipse 𝐹𝐸̅̅ ̅̅  are obtained by 

determining and giving appropriate values. Then the membership degree of (𝑥0, 𝑦0) in the 𝐹𝐸̅̅ ̅̅  fuzzy 

ellipse is given by  

𝜇((𝑥0, 𝑦0)|𝐹𝐸̅̅ ̅̅ ) = sup
θ
𝑠𝜃0 . 

The explanation of this part is given also in this section where the membership function is explained. 

Let give the application of the procedure with following examples. 

 

The following examples illustrate the procedure numerically. 

Example 3.1: Let 𝐸1̅̅ ̅(0,1), 𝐸2̅̅ ̅ (
1

5
,
4√6

5
) , 𝐸3̅̅ ̅ (−

1

4
,
√15

2
) , 𝐸4̅̅ ̅ (−

1

2
, −√3) and 𝐸5̅̅ ̅ (

1

3
,
4√2

3
) be five fuzzy points. 

Let’s get the fuzzy ellipse that passes through these points.  The equation of the core ellipse through the 

points is  

{(𝑥, 𝑦): 𝑥2 +
𝑦2

4
= 1} 

In this example we take core of that the points are in different regions on the curve. 

The membership function of these five fuzzy points are circular and elliptical cones with bases, 

respectively. 

{(𝑥, 𝑦): (𝑥 − 1)2 + 𝑦2 ≤ 1} (circular) 

{(𝑥, 𝑦): (𝑥 −
1

5
)
2

+ 4(𝑦 −
4√6

5
)

2

≤ 1} (eliptical) 
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{(𝑥, 𝑦): (𝑥 +
1

4
)
2

+ (𝑦 −
√15

2
)

2

≤ 1} (circular) 

{(𝑥, 𝑦): (𝑥 +
1

2
)
2

+ (𝑦 + √3)
2
≤ 1} (eliptical) 

{(𝑥, 𝑦): (𝑥 −
1

3
)
2

+ (𝑦 −
4√2

3
)

2

≤ 1} (circular) 

The vertices of the membership functions are (1,0), (
1

5
,
4√6

5
) , (−

1

4
,
√15

2
),  (−

1

2
, −√3) and (

1

3
,
4√2

3
) 

respectively.  

 

Now, for 𝛼 ∈ [0,1], we may find the same-points with membership degree 𝛼 on �̅�1, �̅�2, �̅�3, �̅�4 and �̅�5 as 

below;  

𝑄1𝜃
𝛼 : (𝑥1𝜃

𝛼 , 𝑦1𝜃
𝛼 ) = (1 + (1 − 𝛼) cos 𝜃 , (1 − 𝛼) sin𝜃) 

𝑄2𝜃
𝛼 : (𝑥2𝜃

𝛼 , 𝑦2𝜃
𝛼 ) = (

1

5
+ (1 − 𝛼)

cos 𝜃

√1 + 3 sin2 𝜃
,
4√6

5
+ (1 − 𝛼)

sin 𝜃

√1 + 3 sin2 𝜃
) 

𝑄3𝜃
𝛼 : (𝑥3𝜃

𝛼 , 𝑦3𝜃
𝛼 ) = (−

1

4
+ (1 − 𝛼) cos 𝜃 ,

√15

2
+ (1 − 𝛼) sin 𝜃) 

𝑄4𝜃
𝛼 : (𝑥4𝜃

𝛼 , 𝑦4𝜃
𝛼 ) = (−

1

2
+ (1 − 𝛼)

cos 𝜃

√1 + 3 sin2 𝜃
,−√3 + (1 − 𝛼)

sin 𝜃

√1 + 3 sin2 𝜃
) 

                      𝑄5𝜃
𝛼 : (𝑥5𝜃

𝛼 , 𝑦5𝜃
𝛼 ) = (

1

3
+ (1 − 𝛼) cos 𝜃 ,

4√2

3
+ (1 − 𝛼) sin 𝜃)                       (1) 

The ellipse 𝐸𝜃
𝛼 that passes through 𝑄1𝜃

𝛼 , 𝑄2𝜃
𝛼 , 𝑄3𝜃

𝛼 , 𝑄4𝜃
𝛼  and 𝑄5𝜃

𝛼  can be determinant by the equation  

                      𝑎𝜃
𝛼𝑥2 + 2ℎ𝜃

𝛼𝑥𝑦 + 𝑏𝜃
𝛼𝑦2 + 2𝑔𝜃

𝛼𝑥 + 2𝑓𝜃
𝛼𝑦 + 𝑐𝜃

𝛼 = 0                                     (2) 

with  ℎ𝜃
𝛼2 < 𝑎𝜃

𝛼 . 𝑏𝜃
𝛼 where 

𝑎𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼

|

|

−𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 𝑦1𝜃
𝛼 2

𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 1

−𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 𝑦2𝜃
𝛼 2

𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 1

−𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 𝑦3𝜃
𝛼 2

𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 1

−𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 𝑦4𝜃
𝛼 2

𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 1

−𝑥5𝜃
𝛼 𝑦1𝜃

𝛼 𝑦5𝜃
𝛼 2

𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 1

|

|

 

𝑏𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼

|

|

𝑥1𝜃
𝛼 2

−𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 1

𝑥2𝜃
𝛼 2

−𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 1

𝑥3𝜃
𝛼 2

−𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 1

𝑥4𝜃
𝛼 2

−𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 1

𝑥5𝜃
𝛼 2

−𝑥5𝜃
𝛼 𝑦1𝜃

𝛼 𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 1

|

|
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𝑔𝜃
𝛼 =

ℎ𝜃
𝛼

𝑘𝜃
𝛼

|

|

𝑥1𝜃
𝛼 2

𝑦1𝜃
𝛼 2

−𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 𝑦1𝜃
𝛼 1

𝑥2𝜃
𝛼 2

𝑦2𝜃
𝛼 2

−𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 𝑦2𝜃
𝛼 1

𝑥3𝜃
𝛼 2

𝑦3𝜃
𝛼 2

−𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 𝑦3𝜃
𝛼 1

𝑥4𝜃
𝛼 2

𝑦4𝜃
𝛼 2

−𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 𝑦4𝜃
𝛼 1

𝑥5𝜃
𝛼 2

𝑦5𝜃
𝛼 2

−𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 𝑦5𝜃
𝛼 1

|

|

 

𝑓𝜃
𝛼 =

ℎ𝜃
𝛼

𝑘𝜃
𝛼

|

|

𝑥1𝜃
𝛼 2

𝑦1𝜃
𝛼 2

𝑥1𝜃
𝛼 −𝑥1𝜃

𝛼 𝑦1𝜃
𝛼 1

𝑥2𝜃
𝛼 2

𝑦2𝜃
𝛼 2

𝑥2𝜃
𝛼 −𝑥2𝜃

𝛼 𝑦2𝜃
𝛼 1

𝑥3𝜃
𝛼 2

𝑦3𝜃
𝛼 2

𝑥3𝜃
𝛼 −𝑥3𝜃

𝛼 𝑦3𝜃
𝛼 1

𝑥4𝜃
𝛼 2

𝑦4𝜃
𝛼 2

𝑥4𝜃
𝛼 −𝑥4𝜃

𝛼 𝑦4𝜃
𝛼 1

𝑥5𝜃
𝛼 2

𝑦5𝜃
𝛼 2

𝑥5𝜃
𝛼 −𝑥5𝜃

𝛼 𝑦5𝜃
𝛼 1

|

|

 

𝑐𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼

|

|

𝑥1𝜃
𝛼 2

𝑦1𝜃
𝛼 2

𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 −𝑥1𝜃
𝛼 𝑦1𝜃

𝛼

𝑥2𝜃
𝛼 2

𝑦2𝜃
𝛼 2

𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 −𝑥2𝜃
𝛼 𝑦2𝜃

𝛼

𝑥3𝜃
𝛼 2

𝑦3𝜃
𝛼 2

𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 −𝑥3𝜃
𝛼 𝑦3𝜃

𝛼

𝑥4𝜃
𝛼 2

𝑦4𝜃
𝛼 2

𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 −𝑥4𝜃
𝛼 𝑦4𝜃

𝛼

𝑥5𝜃
𝛼 2

𝑦5𝜃
𝛼 2

𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 −𝑥5𝜃
𝛼 𝑦5𝜃

𝛼

|

|

 

and 

𝑘𝜃
𝛼 =

|

|

𝑥1𝜃
𝛼 2

𝑦1𝜃
𝛼 2

𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 1

𝑥2𝜃
𝛼 2

𝑦2𝜃
𝛼 2

𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 1

𝑥3𝜃
𝛼 2

𝑦3𝜃
𝛼 2

𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 1

𝑥4𝜃
𝛼 2

𝑦4𝜃
𝛼 2

𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 1

𝑥5𝜃
𝛼 2

𝑦5𝜃
𝛼 2

𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 1

|

|

. 

These determinants are composed by writing column 

[
 
 
 
 
 
−𝑥1𝜃

𝛼 𝑦1𝜃
𝛼

−𝑥2𝜃
𝛼 𝑦2𝜃

𝛼

−𝑥3𝜃
𝛼

−𝑥4𝜃
𝛼

−𝑥5𝜃
𝛼

𝑦3𝜃
𝛼

𝑦4𝜃
𝛼

𝑦5𝜃
𝛼 ]
 
 
 
 
 

 

instead of columns in determinant  

|

|

𝑥1𝜃
𝛼 2

𝑦1𝜃
𝛼 2

𝑥1𝜃
𝛼 𝑦1𝜃

𝛼 1

𝑥2𝜃
𝛼 2

𝑦2𝜃
𝛼 2

𝑥2𝜃
𝛼 𝑦2𝜃

𝛼 1

𝑥3𝜃
𝛼 2

𝑦3𝜃
𝛼 2

𝑥3𝜃
𝛼 𝑦3𝜃

𝛼 1

𝑥4𝜃
𝛼 2

𝑦4𝜃
𝛼 2

𝑥4𝜃
𝛼 𝑦4𝜃

𝛼 1

𝑥5𝜃
𝛼 2

𝑦5𝜃
𝛼 2

𝑥5𝜃
𝛼 𝑦5𝜃

𝛼 1

|

|

 

Let 𝐴, 𝐵, 𝐶, 𝐹, 𝐺 and 𝐾 be the determinant values used to find the values of 𝑎𝜃
𝛼 , 𝑏𝜃

𝛼 , 𝑐𝜃
𝛼 , 𝑓𝜃

𝛼, 𝑔𝜃
𝛼  and 𝑘𝜃

𝛼 

respectively. So, 
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𝑎𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼 . 𝐴 

𝑏𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼 . 𝐵 

𝑐𝜃
𝛼 =

2ℎ𝜃
𝛼

𝑘𝜃
𝛼 . 𝐶 

𝑓𝜃
𝛼 =

ℎ𝜃
𝛼

𝑘𝜃
𝛼 . 𝐹 

𝑔𝜃
𝛼 =

ℎ𝜃
𝛼

𝑘𝜃
𝛼 . 𝐺 

𝑘𝜃
𝛼 = 𝐾                                                                                          (3) 

are obtained. 

 

The fuzzy ellipse 𝐹𝐸̅̅ ̅̅   that passes through �̅�𝑖  ‘s, 𝑖 = 1,2,3,4,5 is the union of all possible ellipse 𝐸𝜃
𝛼  ‘s that 

lies between 𝑄1𝜃
𝛼  and 𝑄5𝜃

𝛼  ‘s.   

 

That 

𝐹𝐸̅̅ ̅̅  = ⋁ ⋃ {
(𝑥, 𝑦) = 𝑎𝜃

𝛼𝑥2 + 2ℎ𝜃
𝛼𝑥𝑦 + 𝑏𝜃

𝛼𝑦2

 
+2𝑔𝜃

𝛼𝑥 + 2𝑓𝜃
𝛼𝑦 + 𝑐𝜃

𝛼 = 0 
}

𝜃∈[0,2𝜋]𝛼∈[0,1]

  

Now we find the membership degree of the point (1,0.5) on the fuzzy ellipse 𝐹𝐸̅̅ ̅̅ . First, we adjust the set 

of ellipses 𝐸𝜃
𝛼 ‘s which the point (1,0.5) lies. 

 

Let replace point (1,0.5) in Equation (2). We need to identify the passible values of 𝛼. Then, we get the 

equation below; 

𝑎𝜃
𝛼 . (1)2 + 2. ℎ𝜃

𝛼 . (1). (0.5) + 𝑏𝜃
𝛼. (0.5)2 + 2. 𝑔𝜃

𝛼 . (1) + 2. 𝑓𝜃
𝛼. (0.5) + 𝑐𝜃

𝛼 = 0 

which simplifies to  

                                𝑎𝜃
𝛼 + ℎ𝜃

𝛼 + 0.25 𝑏𝜃
𝛼 + 2𝑔𝜃

𝛼 + 𝑓𝜃
𝛼 + 𝑐𝜃

𝛼 = 0                                         (4) 

Now let’s examine the angular values that 𝐿 lines make with the 𝑥-axis. 

 

First, we admit that 𝜃0 = 45°. We calculate above determinant values for this angle and will find 𝑘𝜃
𝛼 

using the Maple program. 

𝑘𝜃
𝛼
 
= 𝐾 
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𝐾 =

|

|

|

|

[1 + (1 − 𝛼) cos 45°]2

[
1

5
+
(1 − 𝛼) cos 45°

√1 + 3 sin2 45°
]

2

[−
1

4
+ (1 − 𝛼) cos 45°]

2

[−
1

2
+
(1 − 𝛼) cos 45°

√1 + 3 sin2 45°
]

2

[
1

3
+ (1 − 𝛼) cos 45°]

2

[(1 − 𝛼) sin 45°]2

[
(1 − 𝛼) sin 45°

√1 + 3 sin2 45°
]

2

[
√15

2
+ (1 − 𝛼) sin 45°]

2

[−√3 +
(1 − 𝛼) sin 45°

√1 + 3 sin2 45°
]
2

[
4√2

3
+ (1 − 𝛼) sin 45°]

2

1 + (1 − 𝛼) cos 45°
1

5
+
(1 − 𝛼) cos 45°

√1 + 3 sin2 45°

−
1

4
+ (1 − 𝛼) cos 45°

−
1

2
+
(1 − 𝛼) cos 45°

√1 + 3 sin2 45°

[
1

3
+ (1 − 𝛼) cos 45°]

(1 − 𝛼) sin 45°
(1 − 𝛼) sin 45°

√1 + 3 sin2 45°

√15

2
+ (1 − 𝛼) sin 45°

−√3 +
(1 − 𝛼) sin 45°

√1 + 3 sin2 45°

4√2

3
+ (1 − 𝛼) sin 45°

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 
|

|

|

|

= 0 

 

But this angle is not suitable for calculating 𝑎𝜃
𝛼 ,  𝑏𝜃

𝛼, 𝑐𝜃
𝛼, 𝑓𝜃

𝛼 and 𝑔𝜃
𝛼. Because, it makes equations (3) 

undefined. 

 

Then we put 𝜃0 = 30°  in  (3.3) and we calculate 𝑎𝜃
𝛼 ,  𝑏𝜃

𝛼, 𝑔𝜃
𝛼, 𝑓𝜃

𝛼 , 𝑐𝜃
𝛼 and 𝑘𝜃

𝛼. 

𝑘𝜃
𝛼 = 𝐾 

                         𝐾 =

|

|

|
[1 + (1 − 𝛼) cos 30°]2

[
1

5
+

(1−𝛼) cos 30°

√1+3 sin2 30°
]
2

[−
1

4
+ (1 − 𝛼) cos 30°]

2

[−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
]
2

[
1

3
+ (1 − 𝛼) cos 30°]

2

[(1 − 𝛼) sin 30°]2

[
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
√15

2
+ (1 − 𝛼) sin 30°]

2

[−√3 +
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
4√2

3
+ (1 − 𝛼) sin 30°]

2

1 + (1 − 𝛼) cos 30°
1

5
+

(1−𝛼) cos 30°

√1+3sin2 30°

−
1

4
+ (1 − 𝛼) cos 30°

−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
1

3
+ (1 − 𝛼) cos 30°

(1 − 𝛼) sin 30°
(1−𝛼) sin 30°

√1+3 sin2 30°

√15

2
+ (1 − 𝛼) sin 30°

−√3 +
(1−𝛼) sin 30°

√1+3sin2 30°

4√2

3
+ (1 − 𝛼) sin 30°

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 

|

|

|

         

and        

𝐾 = −0,02𝛼3 + 0,37𝛼2 + 0,69𝛼 − 1,02 

We continue to find the other determinant values. 

 

For the value of 𝐴, 

|

|

|
−[1 + (1 − 𝛼) cos 30°][(1 − 𝛼) cos 30°] 

−[
1

5
+

(1−𝛼) cos 30°

√1+3sin2 30°
] [
(1−𝛼) cos 30°

√1+3sin2 30°
]
 

−[−
1

4
+ (1 − 𝛼) cos 30°] [

√15

2
+ (1 − 𝛼) sin 30°]

 

− [−
1

2
+
(1−𝛼) cos 30°

√1+3sin2 30°
] [−√3 +

(1−𝛼) sin 30°

√1+3 sin2 30°
]
 

− [
1

3
+ (1 − 𝛼) cos 30°] [

4√2

3
+ (1 − 𝛼) sin 30°]

 

[(1 − 𝛼) sin 30°]2

[
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
√15

2
+ (1 − 𝛼) sin 30°]

2

[−√3 +
(1−𝛼) sin 30°

√1+3 sin2 30°
]
2

[
4√2

3
+ (1 − 𝛼) sin 30°]

2

1 + (1 − 𝛼) cos 30°
1

5
+

(1−𝛼) cos 30°

√1+3 sin2 30°

−
1

4
+ (1 − 𝛼) cos 30°

−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
1

3
+ (1 − 𝛼) cos 30°

(1 − 𝛼) sin 30°
(1−𝛼) sin 30°

√1+3sin2 30°

√15

2
+ (1 − 𝛼) sin 30°

−√3 +
(1−𝛼) sin 30°

√1+3sin2 30°

4√2

3
+ (1 − 𝛼) sin 30°

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 

|

|

|

   

=0.011𝛼3 − 0.477𝛼2 + 3.221𝛼 − 1.696 

For the value of 𝐵, 
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|

|

|

   [1 + (1 − 𝛼) cos 30°]2

   [
1

5
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
]

2

  

   [−
1

4
+ (1 − 𝛼) cos 30°]

2

[−
1

2
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
]

2

[
1

3
+ (1 − 𝛼) cos 30°]

2

−[1 + (1 − 𝛼) cos 30°][(1 − 𝛼) cos 30°]

− [
1

5
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
] [
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
]

 

−[−
1

4
+ (1 − 𝛼) cos 30°] [

√15

2
+ (1 − 𝛼) sin 30°]

 

−[−
1

2
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
] [−√3 +

(1 − 𝛼) sin 30°

√1 + 3 sin2 30°
]

 

− [
1

3
+ (1 − 𝛼) cos 30°] [

4√2

3
+ (1 − 𝛼) sin 30°]

 

1 + (1 − 𝛼) cos 30°
1

5
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°

−
1

4
+ (1 − 𝛼) cos 30°

−
1

2
+
(1 − 𝛼) cos 30°

√1 + 3 sin2 30°
1

3
+ (1 − 𝛼) cos 30°

(1 − 𝛼) sin 30°
(1 − 𝛼) sin 30°

√1 + 3 sin2 30°

√15

2
+ (1 − 𝛼) sin 30°

−√3 +
(1 − 𝛼) sin 30°

√1 + 3 sin2 30°

4√2

3
+ (1 − 𝛼) sin 30°

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 

|

|

|

 

=0.033𝛼3 − 0.255𝛼2 + 0.230𝛼 + 0.717 

For the value of 𝐺, 

|

|

|
[1 + (1 − 𝛼) cos 30°]2

[
1

5
+

(1−𝛼) cos 30°

√1+3sin2 30°
]
2

[−
1

4
+ (1 − 𝛼) cos 30°]

2

[−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
]
2

[
1

3
+ (1 − 𝛼) cos 30°]

2

[(1 − 𝛼) sin 30°]2

[
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
√15

2
+ (1 − 𝛼) sin 30°]

2

[−√3 +
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
4√2

3
+ (1 − 𝛼) sin 30°]

2

−[1 + (1 − 𝛼) cos 30°][(1 − 𝛼) cos 30°]

− [
1

5
+

(1−𝛼) cos 30°

√1+3 sin2 30°
] [
(1−𝛼) cos 30°

√1+3 sin2 30°
]
 

−[−
1

4
+ (1 − 𝛼) cos 30°] [

√15

2
+ (1 − 𝛼) sin 30°]

 

− [−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
] [−√3 +

(1−𝛼) sin 30°

√1+3sin2 30°
]
 

−[
1

3
+ (1 − 𝛼) cos 30°] [

4√2

3
+ (1 − 𝛼) sin 30°]

 

(1 − 𝛼) sin 30°
(1−𝛼) sin 30°

√1+3 sin2 30°

√15

2
+ (1 − 𝛼) sin 30°

−√3 +
(1−𝛼) sin 30°

√1+3 sin2 30°

4√2

3
+ (1 − 𝛼) sin 30°

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 

|

|

|

        

=−0.555𝛼3 + 5.777𝛼2 − 10.915𝛼 + 5.693 

For the value of 𝐹, 

|

|

|
[1 + (1 − 𝛼) cos 30°]2

[
1

5
+

(1−𝛼) cos 30°

√1+3sin2 30°
]
2

[−
1

4
+ (1 − 𝛼) cos 30°]

2

[−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
]
2

[
1

3
+ (1 − 𝛼) cos 30°]

2

[(1 − 𝛼) sin 30°]2

[
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
√15

2
+ (1 − 𝛼) sin 30°]

2

[−√3 +
(1−𝛼) sin 30°

√1+3sin2 30°
]
2

[
4√2

3
+ (1 − 𝛼) sin 30°]

2

1 + (1 − 𝛼) cos 30°
1

5
+

(1−𝛼) cos 30°

√1+3sin2 30°

−
1

4
+ (1 − 𝛼) cos 30°

−
1

2
+

(1−𝛼) cos 30°

√1+3sin2 30°
1

3
+ (1 − 𝛼) cos 30°

−[1 + (1 − 𝛼) cos 30°][(1 − 𝛼) cos 30°]

− [
1

5
+

(1−𝛼) cos 30°

√1+3 sin2 30°
] [
(1−𝛼) cos 30°

√1+3 sin2 30°
]
 

− [−
1

4
+ (1 − 𝛼) cos 30°] [

√15

2
+ (1 − 𝛼) sin 30°]

 

− [−
1

2
+

(1−𝛼) cos 30°

√1+3 sin2 30°
] [−√3 +

(1−𝛼) sin 30°

√1+3sin2 30°
]
 

−[
1

3
+ (1 − 𝛼) cos 30°] [

4√2

3
+ (1 − 𝛼) sin 30°]

 

1 
  

1
 
 
  

1
  
  
 
 
1
    
 1
 

|

|

|

     

  =0.057𝛼3 + 0.141𝛼2 + 0.649𝛼 − 0.848 

For the value of 𝐶, 

|

|

|

[1 + (1 − 𝛼) cos30°]2

 

[
1

5
+

(1−𝛼)cos30°

√1+3sin2 30°
]
2

[−
1

4
+ (1 − 𝛼) cos30°]

2

[−
1

2
+

(1−𝛼) cos30°

√1+3sin2 30°
]
2

[
1

3
+ (1 − 𝛼) cos30°]

2

[(1 − 𝛼) sin 30°]2

[
(1−𝛼) sin30°

√1+3sin2 30°
]
2

[
√15

2
+ (1 − 𝛼) sin30°]

2

[−√3 +
(1−𝛼) sin30°

√1+3sin2 30°
]
2

[
4√2

3
+ (1 − 𝛼) sin30°]

2

1 + (1 − 𝛼) cos30°
 

1

5
+

(1−𝛼)cos30°

√1+3sin2 30°

−
1

4
+ (1 − 𝛼) cos30°

−
1

2
+

(1−𝛼)cos30°

√1+3sin2 30°
1

3
+ (1 − 𝛼) cos30°

(1 − 𝛼) sin30°
 

(1−𝛼)sin 30°

√1+3sin2 30°

√15

2
+ (1 − 𝛼) sin 30°

−√3 +
(1−𝛼)sin 30°

√1+3sin2 30°

4√2

3
+ (1 − 𝛼) sin 30°

−[1 + (1 − 𝛼) cos30°][(1 − 𝛼) cos30°]

− [
1

5
+

(1−𝛼)cos30°

√1+3sin2 30°
] [
(1−𝛼)cos30°

√1+3sin2 30°
]
 

−[−
1

4
+ (1 − 𝛼) cos30°] [

√15

2
+ (1 − 𝛼) sin30°]

 

−[−
1

2
+

(1−𝛼) cos30°

√1+3sin2 30°
] [−√3 +

(1−𝛼) sin 30°

√1+3sin2 30°
]
 

−[
1

3
+ (1 − 𝛼) cos30°] [

4√2

3
+ (1 − 𝛼) sin 30°]

 |

|

|

     

                    = −0.194𝛼4 + 2.264𝛼3 − 5.842𝛼2 + 6.232𝛼 − 3.518 

 

Let substitute these values in the equation (3) and we obtain the coefficients 𝑎𝜃
𝛼 , 𝑏𝜃

𝛼, 𝑐𝜃
𝛼 , 𝑓𝜃

𝛼, 𝑔𝜃
𝛼 and 𝑐𝜃

𝛼 .  

If we substitude these coefficients in the conic equation (4) and simplify the equation with ℎ𝜃
𝛼  (ℎ𝜃

𝛼 ≠ 0), 

we obtain the following equation;  

                   −0,389𝛼4 + 3,475𝛼3 − 0,692𝛼2 − 1,706𝛼 − 0,555 = 0                            (5) 

By solving the equation (5), the real values of 𝛼;  



34 

 

Seçil Özekinci et al. / IKJM/ 5(1) (2023) 20-38 

0.98, 0.85 

As alpha represents the grade of membership, it must be [0,1].  

 

So the appropriate alpha real number is 𝜃 = 0.98 as it is supremum. Thus for 𝜃0 = 30°, the set 𝑆𝜃0  of all 

passible value of 𝛼 is the set {0.98}.  

 

We vary 𝜃0 across [0,2𝜋] and keep an identifying the value of 𝑆𝜃0 . Finally, we get supremum of all 𝑆𝜃0 ’s. 

One can easily verify that the supremum value for the considered point is 0,98 which is attained for the 

value of 𝜃0 = 30°. Eventually, we note that the conic passing through to the same points for 𝜃0 = 30° 

and 𝛼 = 0,98. As a result, we find that the conic which passing through to the same-points are;  

(1.01,0.01) ∈ 𝐸1, (0.21,1.96) ∈ 𝐸2, (−0.23,1.94) ∈ 𝐸3, (−0.48,−1.72) ∈ 𝐸4, and (0.35,1.89) ∈ 𝐸5  

Then we obtain the conic equation (6) which passing through to the same -points: 

                          0.96𝑥2 − 0.04𝑥𝑦 + 0.27𝑦2 + 0.05𝑥 − 0.03𝑦 − 1.03 = 0                           (6) 

This conic equation contains the point (1, 0.5). And, we have 

𝜇((1, 0.5)|𝐹𝐸̅̅ ̅̅ ) = 0.98 

alpha cut of fuzzy ellipse.  

 

Now we give an example of a fuzzy ellipse whose core ellipse is decentralized.  

Example 3.2. Let 𝐸1 = (1,4), 𝐸2 = (0,
2√35

3
) , 𝐸3 = (−2,2√3), 𝐸4 = (−3,−

4√5

3
) and 𝐸5 = (4,−2√3) are 

fuzzy poinys. We get the fuzzy ellipse that passes through these points.  

 

The core ellipse equation is that passes through these points;  

{(𝑥, 𝑦):
(𝑥 − 1)2

36
+
𝑦2

16
= 1} 

Now let take the membership functions of these five ellipses as circle, ellipse, circle, circle and ellipse 

respectively; 

{(𝑥, 𝑦): (𝑥 − 1)2 + (𝑦 − 4)2 ≤ 1}  

{(𝑥, 𝑦): 𝑥2 + 9(𝑦 −
2√35

3
)

2

≤ 1}  

{(𝑥, 𝑦): (𝑥 + 2)2 + (𝑦 + 2√3)
2
≤ 1} 

{(𝑥, 𝑦): (𝑥 + 3)2 + (𝑦 +
4√5

3
)

2

≤ 1} 
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{(𝑥, 𝑦): 9(𝑥 − 4)2 + (𝑦 + 2√3)
2
≤ 1} 

The vertices of the membership function are (1,4), (0,
2√35

3
) , (−2,2√3), (−3,−

4√5

3
) and  (4, −2√3) 

respectively. Now let write five same-points on �̅�1, �̅�2, �̅�3, �̅�4 and �̅�5 whose membership degrees are 

alpha 

𝑄1𝜃
𝛼 : (𝑥1𝜃

𝛼 , 𝑦1𝜃
𝛼 ) = (1 + (1 − 𝛼). cos 𝜃 , 4 + (1 − 𝛼). sin 𝜃) 

𝑄2𝜃
𝛼 : (𝑥2𝜃

𝛼 , 𝑦2𝜃
𝛼 ) = ((1 − 𝛼).

cos 𝜃

√1 + 8 sin2 𝜃
,
2√35

3
+ (1 − 𝛼).

sin𝜃

√1 + 8 sin2 𝜃
) 

𝑄3𝜃
𝛼 : (𝑥3𝜃

𝛼 , 𝑦3𝜃
𝛼 ) = (−2 + (1 − 𝛼). cos 𝜃 , 2√3 + (1 − 𝛼). sin 𝜃) 

𝑄4𝜃
𝛼 : (𝑥4𝜃

𝛼 , 𝑦4𝜃
𝛼 ) = (−3 + (1 − 𝛼). cos 𝜃 ,−

4√5

3
+ (1 − 𝛼). sin 𝜃) 

𝑄5𝜃
𝛼 : (𝑥5𝜃

𝛼 , 𝑦5𝜃
𝛼 ) = (4 + (1 − 𝛼).

cos 𝜃

√1 + 8 cos2 𝜃
,−2√3 + (1 − 𝛼).

sin 𝜃

√1 + 8 cos2 𝜃
) 

The ellipse 𝐸𝜃
𝛼 that passes through 𝑄1𝜃

𝛼 , 𝑄2𝜃
𝛼 , 𝑄3𝜃

𝛼 , 𝑄4𝜃
𝛼  and 𝑄5𝜃

𝛼  can be determinant by the equation below 

again as in the previous example; 

𝑎𝜃
𝛼𝑥2 + 2ℎ𝜃

𝛼𝑥𝑦 + 𝑏𝜃
𝛼𝑦2 + 2𝑔𝜃

𝛼𝑥 + 2 𝑓𝜃
𝛼𝑦 + 𝑐𝜃

𝛼 = 0 

with ℎ𝜃
𝛼2 < 𝑎𝜃

𝛼 . 𝑏𝜃
𝛼. 

 

We gave on the previous example how to find 𝑎𝜃
𝛼 ,  𝑏𝜃

𝛼 ,  𝑔𝜃
𝛼 ,  𝑓𝜃

𝛼 and  𝑐𝜃
𝛼. In this example we apply the same. 

The fuzzy ellipse 𝐹𝐸̅̅ ̅̅ 1…5 that passes through �̅�𝑖  ‘s 𝑖 = 1,2,3,4,5 is the union of all possible ellipse 𝐸𝜃
𝛼 ‘s 

that lies between 𝑄1𝜃
𝛼  and 𝑄5𝜃

𝛼  ‘s. That is,  

𝐹𝐸̅̅ ̅̅ 1…5 = ⋁ ⋃ {
(𝑥, 𝑦) = 𝑎𝜃

𝛼𝑥2 + 2ℎ𝜃
𝛼𝑥𝑦 + 𝑏𝜃

𝛼𝑦2

 
+2𝑔𝜃

𝛼𝑥 + 2𝑓𝜃
𝛼𝑦 + 𝑐𝜃

𝛼 = 0 
}

𝜃∈[0,2𝜋]𝛼∈[0,1]

 

Now we find the membership degree of the point (1,4.1) on the fuzzy ellipse 𝐹𝐸̅̅ ̅̅ . We adjust the set of 

ellipses 𝐸𝜃
𝛼 ‘s on which the point (1,4.1) lies. 

 

Let replace point (1, 4.1) in equation (2) we need to identify the possible values of 𝛼. Then, we get the 

equation below:  

𝑎𝜃
𝛼(1)2 + 2ℎ𝜃

𝛼(1). (4.1) + 𝑏𝜃
𝛼(4.1)2 + 2𝑔𝜃

𝛼(1) + 2𝑓𝜃
𝛼(0.5) + 𝑐𝜃

𝛼 = 0 

which simplifies to  

                           𝑎𝜃
𝛼 +  8. 2ℎ𝜃

𝛼 +  16.81𝑏𝜃
𝛼 + 2𝑔𝜃

𝛼 + 8.2𝑓𝜃
𝛼 + 𝑐𝜃

𝛼 = 0                                          (7) 
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Then we put 𝜃0 = 45° in (7) and we calculate 𝑎𝜃
𝛼 , 𝑏𝜃

𝛼, 𝑔𝜃
𝛼 , 𝑓𝜃

𝛼 and 𝑐𝜃
𝛼.  

 

We find them and replace in (7) then we obtain the following non-linear equation which determinants 

are found:  

−31.18𝛼4 − 1303.24𝛼3 − 5634.93𝛼2 − 6568.61𝛼 + 10404.88 = 0 

By solving this equation, real alpha values are found;  

𝛼 = 0.85,−2.78 

But we get 0.85 from 0 to 1 from these real two values. 

 

Thus, for 𝜃0 = 45°, the set 𝑆𝜃0  of all passible value of 𝛼 is the set {0.85}. 

 

We vary 𝜃0 across [0,2𝜋] and keep an identifying the value of 𝑠𝜃0 . Finaly, we get supremum of all 𝑠𝜃0 ’s. 

One can easily verify that the supremum value fort he considered point is 0,85 which is attained for the 

value of 𝜃0 = 45°. Eventually, we note that the conic passing through to the same points, for 𝜃0 = 45° 

and 𝛼 = 0,85.  

 

As a result, we find that the conic which passing through to the same-points are;  

(1.31, 4.31) ∈ �̅�1, (0.13,4.08) ∈ �̅�2, (−1.68,3.77) ∈ �̅�3, 

 (−2.68,−2.67) ∈ �̅�4, (4.13,−3.32) ∈ �̅�5 

Then we obtain the following conic equation (8) which passing through to the same-points:  

−524.84𝑥2 + 74.07𝑥𝑦 − 2027.74𝑦2 + 1902.47𝑥 + 907.46𝑦 + 28574.06 = 0                       (8) 

This conic equation contains the point (1,4.1). And, we have 

𝜇((1,4.1)|𝐹𝐸̅̅ ̅̅ ) = 0.85 

alpha cut of fuzzy ellipse and membership degree of a core ellipse in a fuzzy ellipse. 

4. Conclusion  

The concept of fuzzy ellipse has been initiated and basic properties of fuzzy ellipse have been explained 

in this study in details. The membership degrees of fuzzy points have a specific role for the graph of 

ellipse. The needed explanations based on these roles were made on the drawn graphics. Equations of 

conics such as hyperbola and ellipse can be obtained by determining five points. Starting from these, we 

developed a method for obtaining the fuzzy ellipse equation in the study. But we can’t do this with five 

random points. We used the points which called the same-points. In the study, we have presented a 

method by determining the necessary properties for selecting points. As seen in the figures, the fuzzy 
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ellipses can be depicted with different curves. Depending on the degree of membership Fuzzy ellipse 

can be use kidney stones crushing machines, billiard games, aerospace engineering and laser technology 

etc.  We have shown the applicability of the method in the examples. When we create the fuzzy ellipse 

equations in the 3rd section, it is seen that the necessary coefficients for the calculation of these 

equations will be made with high-dimensional determinants. In the examples given, the maple program 

was used to calculate the membership of the coefficients using the selected points and angles. Thus, it 

will be possible to find fuzzy ellipses at different point and angle selections. The determinants we 

presented in section 3 can be easily calculated with mathematical programs. 

 

Fuzzy ellipse can be use kidney stones crushing machines, billiard games, aerospace engineering and 

laser technology etc. The method and applications we have shown in this study will be a guide for studies 

in these areas.  
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1. Introduction

One of the most important scientific topics is difference equations, often known as discrete dynamical sys-

tems. The study of the qualitative properties of rational difference equations has sparked a lot of attention

recently.

Many researchers have opted to utilize difference equations in mathematical models to explain the prob-

lems in various sciences, including allowing scientists to introduce their study’s predictions and producing

more precise results.

It is particularly fascinating to look into the behavior of the solutions to a system of nonlinear differential

equations and examine the local asymptotic stability of their equilibrium points. Numerous studies have

been conducted on the technique of identifying the general form of the solution for some special cases of

the problem. The systems and behavior of rational difference equations have been the subject of numerous

works (can be obtained in the references).
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Alayachi et al. [3] studied the qualitative properties of:

yn+1 = Ayn−1 + B yn−1 yn−3

C yn−3 +D yn−5
.

Almatrafi et al. [6] studied the global behavior of:

χn+1 =αχn + βχ2
n +γχnχn−1 +δχ2

n−1

λχ2
n +µχnχn−1 +σχ2

n−1

.

Alzubaidi and Elsayed [8] examined the dynamics behavior and gave the general form of:

ϕn+1 =αϕn−2 ± βϕn−1ϕn−2

γϕn−2 ±δϕn−4
.

Ibrahim et al. [26] investigated the global stability and boundedness of solutions for:

Υn+1 =α+
k∑

i=0
aiΥn−i + ΥnΥn−k

β+
k∑

j=0
b jΥn− j

.

Kara and Yazlik [27] found the exact formulas for the solutions of the system:

xn = xn−2zn−3

zn−1(an +bn xn−2zn−3)
,

yn = yn−2xn−3

xn−1(αn +βn yn−2xn−3)
,

zn = zn−2 yn−3

yn−1(An +Bn zn−2 yn−3)
.

Karatas et al. [28] investigated the solutions of:

Un+1 = Un−5

1+bUn−2Un−5
.

Abdul Khaliq et al. [30] investigated the asymptotic behavior of the solutions of:

ωn+1 =ωn−p

(
α+ βωn

γωn +δωn−r

)
.

In [35] Muna and Mohammad deal with:

Vn+1 = (α+βVn)

(A+BVn +CVn−k )
.

The goal of this paper is to find a general solution to some special cases of the fractional recursive equation

Ψn+1 =αΨn−2 + βΨn−2Ψn−3

γΨn−3 +δΨn−6
, n = 0,1,2, ..., (1)

where α,β,γ and δ are arbitrary positive real numbers.
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2. Local Stability of the Critical Point

The critical point of Eq.(1), is given by

Ψ̄=αΨ̄+ βΨ̄2

γΨ̄+δΨ̄ ,

(1−α)Ψ̄= βΨ̄2

(γ+δ)Ψ̄
⇒ (1−α)(γ+δ)Ψ̄2 =βΨ̄2.

Thus, [
(1−α)(γ+δ)−β]

Ψ̄2 = 0.

If (1−α)(γ+δ) ̸=β then the unique critical point is Ψ̄= 0.

AssumeΦ : (0,∞)3 → (0,∞) be a C 1 function defined by

Φ(w1, w2, w3) =αw1 + βw1w2

γw2 +δw3
. (2)

In consequence,

∂Φ

∂w1
=α+ βw2

γw2 +δw3
,
∂Φ

∂w2
= βδw1w3

(γw2 +δw3)2 ,
∂Φ

∂w3
= −βδw1w2

(γw2 +δw3)2 . (3)

At Ψ̄= 0, we see that

∂Φ

∂w1
(
−
Ψ,

−
Ψ,

−
Ψ) =α+ β

γ+δ = γ1,

∂Φ

∂w2
(
−
Ψ,

−
Ψ,

−
Ψ) = βδ

(γ+δ)2 = γ2, (4)

∂Φ

∂w3
(
−
Ψ,

−
Ψ,

−
Ψ) = −βδ

(γ+δ)2 = γ3.

Hence,

Zn+1 −
(
α+ β

γ+δ
)

Zn−2 −
(

βδ

(γ+δ)2

)
Zn−3 +

(
βδ

(γ+δ)2

)
Zn−6 = 0.

Theorem 2.1. The critical point
−
Ψ= 0 is locally asymptotically stable if

β(γ+3δ) < (1−α)(γ+δ)2.

Proof.

By using the values in the Eq.(4) and by Lemma 1 in [30], ensures that Eq.(1) is asymptotically stable if

∣∣γ1
∣∣+ ∣∣γ2

∣∣+ ∣∣γ3
∣∣< 1,∣∣∣∣α+ β

γ+δ
∣∣∣∣+ ∣∣∣∣ βδ

(γ+δ)2

∣∣∣∣+ ∣∣∣∣ −βδ
(γ+δ)2

∣∣∣∣< 1,

or

α+ β(γ+δ)

(γ+δ)2 + βδ

(γ+δ)2 + βδ

(γ+δ)2 < 1,



Elsayed Mohammed Elsayed et al. / IKJM / 5(1) (2023) 39-61 42

βγ+3βδ

(γ+δ)2 < (1−α),

therefore,

β(γ+3δ) < (1−α)(γ+δ)2.

3. Global Attractive of the Critical Point

In this section, we aim to investigate the global asymptotic stability of the positive solutions of Eq.(1).

Theorem 3.1. The critical point
−
Ψ= 0 of Eq.(1) is a global attracting if

γ(1−α) ̸=β.

Proof.

From Eq.(3), we note that, the function Φ(w1, w2, w3) is increasing in w1 and w2 and is decreasing in w3.

Assume that whenever (H ,h) is a solution of the system

H =Φ(H , H ,h),

h =Φ(h,h, H),

then, we have

H =αH + βH 2

γH +δh
, ⇒ (1−α)H = βH 2

γH +δh
,

γ(1−α)H 2 +δ(1−α)hH =βH 2. (5)

h =αh + βh2

γh +δH
, =⇒ (1−α)h = βh2

γh +δH
.

γ(1−α)h2 +δ(1−α)hH =βh2. (6)

By substrate Eq.(5) from Eq.(6) we obtain

[
γ(1−α)−β](

H 2 −h2)= 0.

In consequence, H = h if γ(1−α) ̸= β. It follows by Theorem 1 in [30] the equilibrium point
−
Ψ= 0 of Eq.(1)

is a global attractor.

4. Boundedness of solutions

Here, we demonstrate how the positive solutions to Eq.(1) have boundedness.

Theorem 4.1. Every solution of Eq.(1) is bounded if(
α+ β

γ

)
< 1.
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Proof.

Assume that {Ψn}∞n=−6 be a solution of Eq.(1), then

Ψn+1 =αΨn−2 + βΨn−2Ψn−3

γΨn−3 +δΨn−6

≤αΨn−2 + βΨn−2Ψn−3

γΨn−3

=
(
α+ β

γ

)
Ψn−2.

Hence,

Ψn+1 ≤Ψn−2, f or al l n ≥ 0.

This implies that the subsequences are bounded from above by

Ψmax = max{Ψ−6,Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1,Ψ0}.

5. General Solution for Special Cases

In this section, we will find expressions of solution for some special cases of Eq.(1)

5.1. First Equation

In this subsection, we will find the solution of Eq.(1) when α=β= δ= γ= 1, so the Eq.(1) become as

Ψn+1 =Ψn−2 + Ψn−2Ψn−3

Ψn−3 +Ψn−6
, n = 0,1,2, ..., (7)

where the initial conditionsΨ−6,Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1 andΨ0 are arbitrary positive real numbers.

Theorem 5.1. Assume {Ψn}∞n=−6 be a solution of Eq.(7). Thus for n=0,1,2,...,

Ψ12n−2 =σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+7σ+F6i+6τ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6i+6σ+F6i+5τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n−1 =λ
n−1∏
i=0

(F6i+5η+F6i+4ζ)(F6i+7λ+F6i+6µ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i+4η+F6i+3ζ)(F6i+6λ+F6i+5µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n = η
n−1∏
i=0

(F6i+7η+F6i+6ζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+7ζ+F6i+6κ)

(F6i+6η+F6i+5ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i+6ζ+F6i+5κ)
,

Ψ12n+1 =σ
n∏

i=0

(F6i−3η+F6i−4ζ)(F6i−1λ+F6i−2µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i−4η+F6i−5ζ)(F6i−2λ+F6i−3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n+2 =λ
n∏

i=0

(F6i−1η+F6i−2ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i−1ζ+F6i−2κ)

(F6i−2η+F6i−3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i−2ζ+F6i−3κ)
,

Ψ12n+3 = η
n∏

i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i−1σ+F6i−2τ)(F6i+1ζ+F6iκ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i−2σ+F6i−3τ)(F6iζ+F6i−1κ)
,
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Ψ12n+4 =σ
n∏

i=0

(F6i+3η+F6i+2ζ)(F6i−1λ+F6i−2µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i−2λ+F6i−3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n+5 =λ
n∏

i=0

(F6i−1η+F6i−2ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i−2η+F6i−3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n+6 = η
n∏

i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+1ζ+F6iκ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6iζ+F6i−1κ)
,

Ψ12n+7 =σ
n∏

i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n+8 =λ
n∏

i=0

(F6i+5η+F6i+4ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i+4η+F6i+3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n+9 = η
n∏

i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+7ζ+F6i+6κ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i+6ζ+F6i+5κ)
,

whereΨ−6 = κ,Ψ−5 = τ,Ψ−4 =µ,Ψ−3 = ζ,Ψ−2 =σ,Ψ−1 =λ,Ψ0 = η and {Fi }∞i=−5 = {1,1,1,1,1,1,1,1,2,

3,5,8,13,21, ..., }.

Proof.

For n = 0 the result holds. Now suppose that n > 0 and our assumption holds for n −1, that is

Ψ12n−14 =σ
n−2∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+7σ+F6i+6τ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6i+6σ+F6i+5τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n−13 =λ
n−2∏
i=0

(F6i+5η+F6i+4ζ)(F6i+7λ+F6i+6µ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i+4η+F6i+3ζ)(F6i+6λ+F6i+5µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n−12 = η
n−2∏
i=0

(F6i+7η+F6i+6ζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+7ζ+F6i+6κ)

(F6i+6η+F6i+5ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i+6ζ+F6i+5κ)
,

Ψ12n−11 =σ
n−1∏
i=0

(F6i−3η+F6i−4ζ)(F6i−1λ+F6i−2µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i−4η+F6i−5ζ)(F6i−2λ+F6i−3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n−10 =λ
n−1∏
i=0

(F6i−1η+F6i−2ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i−1ζ+F6i−2κ)

(F6i−2η+F6i−3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i−2ζ+F6i−3κ)
,

Ψ12n−9 = η
n−1∏
i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i−1σ+F6i−2τ)(F6i+1ζ+F6iκ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i−2σ+F6i−3τ)(F6iζ+F6i−1κ)
,

Ψ12n−8 =σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i−1λ+F6i−2µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i−2λ+F6i−3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,

Ψ12n−7 =λ
n−1∏
i=0

(F6i−1η+F6i−2ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i−2η+F6i−3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n−6 = η
n−1∏
i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+1ζ+F6iκ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6iζ+F6i−1κ)
,

Ψ12n−5 =σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
,
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Ψ12n−4 =λ
n−1∏
i=0

(F6i+5η+F6i+4ζ)(F6i+1λ+F6iµ)(F6i+3σ+F6i+2τ)(F6i+5ζ+F6i+4κ)

(F6i+4η+F6i+3ζ)(F6iλ+F6i−1µ)(F6i+2σ+F6i+1τ)(F6i+4ζ+F6i+3κ)
,

Ψ12n−3 = η
n−1∏
i=0

(F6i+1η+F6iζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+7ζ+F6i+6κ)

(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i+6ζ+F6i+5κ)
.

Now, we prove that the results are holds for n. From Eq.(7), it follows that

Ψ12n−2 =Ψ12n−5 + Ψ12n−5Ψ12n−6

Ψ12n−6 +Ψ12n−9

=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)
1+

η
n−1∏
i=0

(F6i+1η+F6i ζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+1ζ+F6iκ)
(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i ζ+F6i−1κ)

η
n−1∏
i=0

(F6i+1η+F6i ζ)(F6i+3λ+F6i+2µ)(F6i+5σ+F6i+4τ)(F6i+1ζ+F6iκ)
(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i+4σ+F6i+3τ)(F6i ζ+F6i−1κ)+

η
n−1∏
i=0

(F6i+1η+F6i ζ)(F6i+3λ+F6i+2µ)(F6i−1σ+F6i−2τ)(F6i+1ζ+F6iκ)
(F6iη+F6i−1ζ)(F6i+2λ+F6i+1µ)(F6i−2σ+F6i−3τ)(F6i ζ+F6i−1κ)



=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)1+

n−1∏
i=0

(F6i+5σ+F6i+4τ)
(F6i+4σ+F6i+3τ)

n−1∏
i=0

(F6i+5σ+F6i+4τ)
(F6i+4σ+F6i+3τ) +

n−1∏
i=0

(F6i−1σ+F6i−2τ)
(F6i−2σ+F6i−3τ)



=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)1+
(F6n−1σ+F6n−2τ)
(F6n−2σ+F6n−3τ)

(F6n−1σ+F6n−2τ)
(F6n−2σ+F6n−3τ) +1



=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)[
1+ (F6n−1σ+F6n−2τ)

(F6n−1σ+F6n−2τ)+ (F6n−2σ+F6n−3τ)

]

=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)[
1+ (F6n−1σ+F6n−2τ)

(F6nσ+F6n−1τ)

]



Elsayed Mohammed Elsayed et al. / IKJM / 5(1) (2023) 39-61 46

=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)[
(F6nσ+F6n−1τ)+ (F6n−1σ+F6n−2τ)

(F6nσ+F6n−1τ)

]

=σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+1σ+F6iτ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6iσ+F6i−1τ)(F6i+2ζ+F6i+1κ)

[
(F6n+1σ+F6nτ))

(F6nσ+F6n−1τ)

]
.

Hence, we get

Ψ12n−2 =σ
n−1∏
i=0

(F6i+3η+F6i+2ζ)(F6i+5λ+F6i+4µ)(F6i+7σ+F6i+6τ)(F6i+3ζ+F6i+2κ)

(F6i+2η+F6i+1ζ)(F6i+4λ+F6i+3µ)(F6i+6σ+F6i+5τ)(F6i+2ζ+F6i+1κ)
.

Other expressions can be investigated in the same way. The proof has been completed.

5.2. Second Equation

In this subsection, we will find the solution of Eq.(1) when α = γ = β = 1 and δ = −1, so the Eq.(1) become

as

Ψn+1 =Ψn−2 + Ψn−2Ψn−3

Ψn−3 −Ψn−6
, n = 0,1,2, ..., (8)

where the initial conditionsΨ−6,Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1 andΨ0 are arbitrary positive real numbers.

Theorem 5.2. Assume {Ψn}∞n=−6 be a solution of Eq.(8). Thus for n=0,1,2,...,

Ψ12n−2 =σ
n−1∏
i=0

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

(F3i+1η−F3i−1ζ)(F3i+2λ−F3iµ)(F3i+3σ−F3i+1τ)(F3i+1ζ−F3i−1κ)
,

Ψ12n−1 =λ
n−1∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)(F3i+1σ−F3i−1τ)(F3i+2ζ−F3iκ)
,

Ψ12n = η
n−1∏
i=0

(F3i+5η−F3i+3ζ)(F3i+3λ−F3i+1µ)(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+1λ−F3−1µ)(F3i+2σ−F3iτ)(F3i+3ζ−F3i+1κ)
,

Ψ12n+1 = σ(2ζ−κ)

(ζ−κ)

n−1∏
i=0

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+1η−F3i−1ζ)(F3i+2λ−F3iµ)(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)
,

Ψ12n+2 = λ(2σ−τ)

(σ−τ)

n−1∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)(F3i+6σ−F3i+4τ)(F3i+4ζ−F3i+2κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)(F3i+4σ−F3i+2τ)(F3i+2ζ−F3iκ)
,

Ψ12n+3 = η(2λ−µ)

(λ−µ)

n−1∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+2σ−F3iτ)(F3i+3ζ−F3i+1κ)
,

Ψ12n+4 = σ(2η−ζ)(2ζ−κ)

(η−ζ)(ζ−κ)

n−1∏
i=0

(F3i+6η−F3i+4ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+2λ−F3iµ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

,
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Ψ12n+5 = λ(2σ−τ)(3ζ−κ)

ζ(σ−τ)

n−1∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+6σ−F3i+4τ)(F3i+7ζ−F3i+5κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)

(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

,

Ψ12n+6 = η(2λ−µ)(3σ−τ)

σ(λ−µ)

n−1∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)

(F3i+7σ−F3i+5τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

,

Ψ12n+7 = σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−1∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

,

Ψ12n+8 = λ(3η−ζ)(2σ−τ)(3ζ−κ)

ηζ(σ−τ)

n−1∏
i=0

(F3i+7η−F3i+5ζ)(F3i+5λ−F3i+3µ)

(F3i+6σ−F3i+4τ)(F3i+7ζ−F3i+5κ)

(F3i+5η−F3i+3ζ)(F3i+3λ−F3i+1µ)

(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

,

Ψ12n+9 = η(2λ−µ)(3σ−τ)(5ζ−2κ)

σ(λ−µ)(2ζ−κ)

n−1∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)

(F3i+7σ−F3i+5τ)(F3i+8ζ−F3i+6κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

,

whereΨ−6 = κ,Ψ−5 = τ,Ψ−4 =µ,Ψ−3 = ζ,Ψ−2 =σ,Ψ−1 =λ,Ψ0 = η and {Fi }∞i=−1 = {1,0,1,1,2,3,5,8,13,

21, ...}.

Proof.

For n = 0 the result holds. Now suppose that n > 0 and our assumption holds for n −1, that is

Ψ12n−14 =σ
n−2∏
i=0

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

(F3i+1η−F3i−1ζ)(F3i+2λ−F3iµ)(F3i+3σ−F3i+1τ)(F3i+1ζ−F3i−1κ)
,

Ψ12n−13 =λ
n−2∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)(F3i+1σ−F3i−1τ)(F3i+2ζ−F3iκ)
,

Ψ12n−12 = η
n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+3λ−F3i+1µ)(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+1λ−F3−1µ)(F3i+2σ−F3iτ)(F3i+3ζ−F3i+1κ)
,

Ψ12n−11 = σ(2ζ−κ)

(ζ−κ)

n−2∏
i=0

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+1η−F3i−1ζ)(F3i+2λ−F3iµ)(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)
,

Ψ12n−10 = λ(2σ−τ)

(σ−τ)

n−2∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)(F3i+6σ−F3i+4τ)(F3i+4ζ−F3i+2κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)(F3i+4σ−F3i+2τ)(F3i+2ζ−F3iκ)
,
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Ψ12n−9 = η(2λ−µ)

(λ−µ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+2σ−F3iτ)(F3i+3ζ−F3i+1κ)
,

Ψ12n−8 = σ(2η−ζ)(2ζ−κ)

(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+2λ−F3iµ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

,

Ψ12n−7 = λ(2σ−τ)(3ζ−κ)

ζ(σ−τ)

n−2∏
i=0

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+6σ−F3i+4τ)(F3i+7ζ−F3i+5κ)

(F3i+2η−F3iζ)(F3i+3λ−F3i+1µ)

(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

,

Ψ12n−6 = η(2λ−µ)(3σ−τ)

σ(λ−µ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)

(F3i+7σ−F3i+5τ)(F3i+5ζ−F3i+3κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

,

Ψ12n−5 = σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)

,

Ψ12n−4 = λ(3η−ζ)(2σ−τ)(3ζ−κ)

ηζ(σ−τ)

n−2∏
i=0

(F3i+7η−F3i+5ζ)(F3i+5λ−F3i+3µ)

(F3i+6σ−F3i+4τ)(F3i+7ζ−F3i+5κ)

(F3i+5η−F3i+3ζ)(F3i+3λ−F3i+1µ)

(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)

,

Ψ12n−3 = η(2λ−µ)(3σ−τ)(5ζ−2κ)

σ(λ−µ)(2ζ−κ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)

(F3i+7σ−F3i+5τ)(F3i+8ζ−F3i+6κ)

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

.
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Now, we prove that the results are holds for n. From Eq.(8), it follows that

Ψ12n−2 =Ψ12n−5 + Ψ12n−5Ψ12n−6

Ψ12n−6 −Ψ12n−9

= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)
1+

η(2λ−µ)(3σ−τ)
σ(λ−µ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)(F3i+7σ−F3i+5τ)(F3i+5ζ−F3i+3κ)
(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

η(2λ−µ)(3σ−τ)
σ(λ−µ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)(F3i+7σ−F3i+5τ)(F3i+5ζ−F3i+3κ)
(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)−

η(2λ−µ)
(λ−µ)

n−2∏
i=0

(F3i+5η−F3i+3ζ)(F3i+6λ−F3i+4µ)(F3i+4σ−F3i+2τ)(F3i+5ζ−F3i+3κ)
(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+2σ−F3iτ)(F3i+3ζ−F3i+1κ)



= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)1+

n−2∏
i=0

(F3i+7σ−F3i+5τ)
(F3i+5σ−F3i+3τ)

n−2∏
i=0

(F3i+7σ−F3i+5τ)
(F3i+5σ−F3i+3τ) −

n−2∏
i=1

(F3i+4σ−F3i+2τ)
(F3i+2σ−F3iτ)



= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)1+
(F3n+1σ−F3n−1τ)
(F3n−1σ−F3n−3τ)

(F3n+1σ−F3n−1τ)
(F3n−1σ−F3n−3τ) −1



= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)[
1+ (F3n+1σ−F3n−1τ)

(F3n+1σ−F3n−1τ)− (F3n−1σ−F3n−3τ)

]
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= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)[
1+ (F3n+1σ−F3n−1τ)

(F3nσ−F3n−2τ)

]

= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)[
(F3nσ−F3n−2τ)+ (F3n+1σ−F3n−1τ)

(F3nσ−F3n−2τ)

]

= σ(2η−ζ)(3λ−µ)(2ζ−κ)

λ(η−ζ)(ζ−κ)

n−2∏
i=0

(F3i+6η−F3i+4ζ)(F3i+7λ−F3i+5µ)

(F3i+5σ−F3i+3τ)(F3i+6ζ−F3i+4κ)

(F3i+4η−F3i+2ζ)(F3i+5λ−F3i+3µ)

(F3i+3σ−F3i+1τ)(F3i+4ζ−F3i+2κ)[
(F3n+2σ−F3nτ)

(F3nσ−F3n−2τ)

]
.

Therefore,

Ψ12n−2 =σ
n−1∏
i=0

(F3i+3η−F3i+1ζ)(F3i+4λ−F3i+2µ)(F3i+5σ−F3i+3τ)(F3i+3ζ−F3i+1κ)

(F3i+1η−F3i−1ζ)(F3i+2λ−F3iµ)(F3i+3σ−F3i+1τ)(F3i+1ζ−F3i−1κ)
.

The following cases can be proved using a similar technique.

5.3. Third Equation

In this subsection, we will find the solution of Eq.(1) when α = γ = δ = 1 and β = −1, so the Eq.(1) become

as

Ψn+1 =Ψn−2 − Ψn−2Ψn−3

Ψn−3 +Ψn−6
, n = 0,1,2, ..., (9)

where the initial conditionsΨ−6,Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1 andΨ0 are arbitrary positive real numbers.

Theorem 5.3. Assume {Ψn}∞n=−6 be a solution of Eq.(9). Thus for n=0,1,2,...,

Ψ12n−2 =σ
n−1∏
i=0

(F3iη+F3i+1ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3iζ+F3i+1κ)

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+1ζ+F3i+2κ)
,

Ψ12n−1 =λ
n−1∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3iσ+F3i+1τ)(F3i+1ζ+F3i+2κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)
,
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Ψ12n = η
n−1∏
i=0

(F3i+2η+F3i+3ζ)(F3iλ+F3i+1µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)
,

Ψ12n+1 = σκ

(ζ+κ)

n−1∏
i=0

(F3iη+F3i+1ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)
,

Ψ12n+2 = λτ

(σ+τ)

n−1∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+1ζ+F3i+2κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)
,

Ψ12n+3 = ηµ

(λ+µ)

n−1∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)
,

Ψ12n+4 = σζκ

(η+ζ)(ζ+κ)

n−1∏
i=0

(F3i+3η+F3i+4ζ)(F3i+1λ+F3i+2µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

,

Ψ12n+5 = λτ(ζ+κ)

(σ+τ)(ζ+2κ)

n−1∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

,

Ψ12n+6 = ηµ(σ+τ)

(λ+µ)(σ+2τ)

n−1∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+5σ+F3i+6τ)(F3i+3ζ+F3i+4κ)

,

Ψ12n+7 = σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−1∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

,

Ψ12n+8 = λτ(η+ζ)(ζ+κ)

(η+2ζ)(σ+τ)(ζ+2κ)

n−1∏
i=0

(F3i+4η+F3i+5ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

(F3i+5η+F3i+6ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

,

Ψ12n+9 = ηµ(σ+τ)(ζ+2κ)

(λ+µ)(σ+2τ)(2ζ+3κ)

n−1∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+5σ+F3i+6τ)(F3i+6ζ+F3i+7κ)

,

whereΨ−6 = κ,Ψ−5 = τ,Ψ−4 =µ,Ψ−3 = ζ,Ψ−2 =σ,Ψ−1 =λ,Ψ0 = η and {Fi }∞i=0 = {0,1,1,2,3,5,8,13,21, ..., }.
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Proof.

For n = 0 the result holds. Now suppose that n > 0 and our assumption holds for n −1, that is

Ψ12n−14 =σ
n−2∏
i=0

(F3iη+F3i+1ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3iζ+F3i+1κ)

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+1ζ+F3i+2κ)
,

Ψ12n−13 =λ
n−2∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3iσ+F3i+1τ)(F3i+1ζ+F3i+2κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)
,

Ψ12n−12 = η
n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3iλ+F3i+1µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)
,

Ψ12n−11 = σκ

(ζ+κ)

n−2∏
i=0

(F3iη+F3i+1ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)
,

Ψ12n−10 = λτ

(σ+τ)

n−2∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+1ζ+F3i+2κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)
,

Ψ12n−9 = ηµ

(λ+µ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)
,

Ψ12n−8 = σζκ

(η+ζ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+1λ+F3i+2µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

,

Ψ12n−7 = λτ(ζ+κ)

(σ+τ)(ζ+2κ)

n−2∏
i=0

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

,

Ψ12n−6 = ηµ(σ+τ)

(λ+µ)(σ+2τ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+5σ+F3i+6τ)(F3i+3ζ+F3i+4κ)

,

Ψ12n−5 = σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

,
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Ψ12n−4 = λτ(η+ζ)(ζ+κ)

(η+2ζ)(σ+τ)(ζ+2κ)

n−2∏
i=0

(F3i+4η+F3i+5ζ)(F3i+2λ+F3i+3µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)

(F3i+5η+F3i+6ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

,

Ψ12n−3 = ηµ(σ+τ)(ζ+2κ)

(λ+µ)(σ+2τ)(2ζ+3κ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)

(F3i+4σ+F3i+5τ)(F3i+5ζ+F3i+6κ)

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+5σ+F3i+6τ)(F3i+6ζ+F3i+7κ)

.

Now, we prove that the results are holds for n. From Eq.(9), it follows that

Ψ12n−2 =Ψ12n−5 − Ψ12n−5Ψ12n−6

Ψ12n−6 +Ψ12n−9

= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)
1−

ηµ(σ+τ)
(λ+µ)(σ+2τ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)
(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)(F3i+5σ+F3i+6τ)(F3i+3ζ+F3i+4κ)

ηµ(σ+τ)
(λ+µ)(σ+2τ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+4σ+F3i+5τ)(F3i+2ζ+F3i+3κ)
(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)(F3i+5σ+F3i+6τ)(F3i+3ζ+F3i+4κ)+

ηµ
(λ+µ)

n−2∏
i=0

(F3i+2η+F3i+3ζ)(F3i+3λ+F3i+4µ)(F3i+1σ+F3i+2τ)(F3i+2ζ+F3i+3κ)
(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)



= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)1−

n−2∏
i=0

(F3i+4σ+F3i+5τ)
(F3i+5σ+F3i+6τ)

n−2∏
i=0

(F3i+4σ+F3i+5τ)
(F3i+5σ+F3i+6τ) +

n−2∏
i=1

(F3i+1σ+F3i+2τ)
(F3i+2σ+F3i+3τ)


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= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)1−
(F3n−2σ+F3n−1τ)

(F3n−1σ+F3nτ)

(F3n−2σ+F3n−1τ)
(F3n−1σ+F3nτ) +1



= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)[
1− (F3n−2σ+F3n−1τ)

(F3n−2σ+F3n−1τ)+ (F3n−1σ+F3nτ)

]

= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)[
(F3nσ+F3n+1τ)− (F3n−2σ+F3n−1τ)

(F3nσ+F3n+1τ)

]

= σζκ(λ+µ)

(η+ζ)(λ+2µ)(ζ+κ)

n−2∏
i=0

(F3i+3η+F3i+4ζ)(F3i+4λ+F3i+5µ)

(F3i+2σ+F3i+3τ)(F3i+3ζ+F3i+4κ)

(F3i+4η+F3i+5ζ)(F3i+5λ+F3i+6µ)

(F3i+3σ+F3i+4τ)(F3i+4ζ+F3i+5κ)[
(F3n−1σ+F3nτ)

(F3nσ+F3n+1τ)

]
.

Thus,

Ψ12n−2 =σ
n−1∏
i=0

(F3iη+F3i+1ζ)(F3i+1λ+F3i+2µ)(F3i+2σ+F3i+3τ)(F3iζ+F3i+1κ)

(F3i+1η+F3i+2ζ)(F3i+2λ+F3i+3µ)(F3i+3σ+F3i+4τ)(F3i+1ζ+F3i+2κ)
.

Other relations can be proved in the same way.
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5.4. Fourth Equation

In this subsection, we will find the solution of Eq.(1) when α= γ= 1, and β= δ=−1, so the Eq.(1) become

as

Ψn+1 =Ψn−2 − Ψn−2Ψn−3

Ψn−3 −Ψn−6
, n = 0,1,2, ..., (10)

where the initial conditionsΨ−6,Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1 andΨ0 are arbitrary positive real numbers.

Theorem 5.4. Assume {Ψn}∞n=−6 be a solution of Eq.(10). Thus for n=0,1,2,...,

Ψ12n−6 = (−1)nηnµn(σ−τ)n

σnκn−1(λ−µ)n ,

Ψ12n−5 = σnζnκn(λ−µ)n

λnτn−1(η−ζ)n(ζ−κ)n ,

Ψ12n−4 = (−1)nλnτn(η−ζ)n(ζ−κ)n

ηnζnµn−1(σ−τ)n ,

Ψ12n−3 = (−1)nηnζµn(σ−τ)n

σnκn(λ−µ)n ,

Ψ12n−2 = σn+1ζnκn(λ−µ)n

λnτn(η−ζ)n(ζ−κ)n ,

Ψ12n−1 = (−1)nλn+1τn(η−ζ)n(ζ−κ)n

ηnζnµn(σ−τ)n ,

Ψ12n = (−1)nηn+1µn(σ−τ)n

σnκn(λ−µ)n ,

Ψ12n+1 =− σn+1ζnκn+1(λ−µ)n

λnτn(η−ζ)n(ζ−κ)n+1 ,

Ψ12n+2 = (−1)n+1λn+1τn+1(η−ζ)n(ζ−κ)n

ηnζnµn(σ−τ)n+1 ,

Ψ12n+3 = (−1)n+1ηn+1µn+1(σ−τ)n

σnκn(λ−µ)n+1 ,

Ψ12n+4 = σn+1ζn+1κn+1(λ−µ)n

λnτn(η−ζ)n+1(ζ−κ)n+1 ,

Ψ12n+5 = (−1)n+1λn+1τn+1(η−ζ)n(ζ−κ)n+1

ηnζn+1µn(σ−τ)n+1 ,

whereΨ−6 = κ,Ψ−5 = τ,Ψ−4 =µ,Ψ−3 = ζ,Ψ−2 =σ,Ψ−1 =λ,Ψ0 = η.

Proof.

For n = 0 the result holds. Now suppose that n > 0 and our assumption holds for n −1, that is
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Ψ12n−18 = (−1)n−1ηn−1µn−1(σ−τ)n−1

σn−1κn−2(λ−µ)n−1 ,

Ψ12n−17 = σn−1ζn−1κn−1(λ−µ)n−1

λn−1τn−2(η−ζ)n−1(ζ−κ)n−1 ,

Ψ12n−16 = (−1)n−1λn−1τn−1(η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−2(σ−τ)n−1 ,

Ψ12n−15 = (−1)n−1ηn−1ζµn−1(σ−τ)n−1

σn−1κn−1(λ−µ)n−1 ,

Ψ12n−14 = σnζn−1κn−1(λ−µ)n−1

λn−1τn−1(η−ζ)n−1(ζ−κ)n−1 ,

Ψ12n−13 = (−1)n−1λnτn−1(η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n−1 ,

Ψ12n−12 = (−1)n−1ηnµn−1(σ−τ)n−1

σn−1κn−1(λ−µ)n−1 ,

Ψ12n−11 =− σnζn−1κn(λ−µ)n−1

λn−1τn−1(η−ζ)n−1(ζ−κ)n ,

Ψ12n−10 = (−1)nλnτn(η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n ,

Ψ12n−9 = (−1)nηnµn(σ−τ)n−1

σn−1κn−1(λ−µ)n ,

Ψ12n−8 = σnζnκn(λ−µ)n−1

λn−1τn−1(η−ζ)n(ζ−κ)n ,

Ψ12n−7 = (−1)nλnτn(η−ζ)n−1(ζ−κ)n

ηn−1ζnµn−1(σ−τ)n .

Now, we prove that the results are holds for n. From Eq.(10), it follows that

Ψ12n−6 =Ψ12n−9 − Ψ12n−9Ψ12n−10

Ψ12n−10 −Ψ12n−13

= (−1)nηnµn(σ−τ)n−1

σn−1κn−1(λ−µ)n −
(−1)nηnµn (σ−τ)n−1

σn−1κn−1(λ−µ)n
(−1)nλnτn (η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n

(−1)nλnτn (η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n − (−1)n−1λnτn−1(η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n−1

= (−1)nηnµn(σ−τ)n−1

σn−1κn−1(λ−µ)n −
(−1)nηnµn (σ−τ)n−1

σn−1κn−1(λ−µ)n
(−1)nλnτn (η−ζ)n−1(ζ−κ)n−1

ηn−1ζn−1µn−1(σ−τ)n

(−1)n−1λnτn−1(η−ζ)n−1(ζ−κ)n−1[−τ−σ+τ]
ηn−1ζn−1µn−1(σ−τ)n

= (−1)nηnµn(σ−τ)n−1

σn−1κn−1(λ−µ)n − (−1)nηnµnτ(σ−τ)n−1

σnκn−1(λ−µ)n

= (−1)nηnµn(σ−τ)n−1[σ−τ]

σnκn−1(λ−µ)n .

So we have

Ψ12n−6 = (−1)nηnµn(σ−τ)n

σnκn−1(λ−µ)n .
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Similarly,

Ψ12n−5 =Ψ12n−8 − Ψ12n−8Ψ12n−9

Ψ12n−9 −Ψ12n−12

= σnζnκn(λ−µ)n−1

λn−1τn−1(η−ζ)n(ζ−κ)n −
σnζnκn (λ−µ)n−1

λn−1τn−1(η−ζ)n (ζ−κ)n
(−1)nηnµn (σ−τ)n−1

σn−1κn−1(λ−µ)n

(−1)nηnµn (σ−τ)n−1

σn−1κn−1(λ−µ)n − (−1)n−1ηnµn−1(σ−τ)n−1

σn−1κn−1(λ−µ)n−1

= σnζnκn(λ−µ)n−1

λn−1τn−1(η−ζ)n(ζ−κ)n −
σnζnκn (λ−µ)n−1

λn−1τn−1(η−ζ)n (ζ−κ)n
(−1)nηnµn (σ−τ)n−1

σn−1κn−1(λ−µ)n

(−1)n−1ηnµn−1(σ−τ)n−1[−µ−λ+µ]
σn−1κn−1(λ−µ)n

= σnζnκn(λ−µ)n−1

λn−1τn−1(η−ζ)n(ζ−κ)n − σnζnµκn(λ−µ)n−1

λnτn−1(η−ζ)n(ζ−κ)n

= σnζnκn(λ−µ)n−1[λ−µ]

λnτn−1(η−ζ)n(ζ−κ)n .

Hence, we obtain

Ψ12n−5 = σnζnκn(λ−µ)n

λnτn−1(η−ζ)n(ζ−κ)n .

Similarly, by using the same method, we can investigate other relations.

6. Numerical Examples

For our prior results, we present some numerical examples to explain the solution behavior of Eq.(1).

Example 1. In numerical simulation they assumed that for Eq.(7) the initial value are Ψ−6 = 0.3,Ψ−5 =
0.6,Ψ−4 = 0.9,Ψ−3 = 1.2,Ψ−2 = 1.5,Ψ−1 = 1.8 andΨ0 = 2.1. Then the solution appear in Figure 1.
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Figure 1. Plotting the solution ofΨn+1 =Ψn−2 + Ψn−2Ψn−3
Ψn−3+Ψn−6

.

Example 2. Numerically when the initial value areΨ−6 = 4.6,Ψ−5 = 2.5,Ψ−4 = 1.4,Ψ−3 = 3,Ψ−2 = 4.5,Ψ−1 =
6.3 andΨ0 = 3.5. Figure 2 shows the results of Eq.(8).
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Figure 2. Plotting the solution ofΨn+1 =Ψn−2 + Ψn−2Ψn−3
Ψn−3−Ψn−6

.

Example 3. Figures 3 depict the behavior of Eq.(9), with initial conditions are Ψ−6 = 2.8,Ψ−5 = 5.9,Ψ−4 =
8.5,Ψ−3 = 4.2,Ψ−2 = 7.4,Ψ−1 = 3.2 andΨ0 = 6.7.
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Figure 3. Plotting the solution ofΨn+1 =Ψn−2 − Ψn−2Ψn−3
Ψn−3+Ψn−6

.

Example 4. For Eq.(10) the initial conditions are set as follows: Ψ−6 = 2.2,Ψ−5 = 3.9,Ψ−4 = 7.5,Ψ−3 =
4.2,Ψ−2 = 4.8,Ψ−1 = 3.2 andΨ0 = 6.7, results shows in Figure 4.
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Figure 4. Plotting the solution ofΨn+1 =Ψn−2 − Ψn−2Ψn−3
Ψn−3−Ψn−6

.

7. Conclusions

Studying the dynamics of such equations is a very significant mathematical topic since these equations are

strongly related to models in population dynamics and biological sciences. The basic goal of equations

dynamics is to predict the global behavior of a equation based on the information of its current state. In this

article, we have found general form of the solutions of rational difference equations and we investigated

the dynamics of equilibrium point. In sections 2 and 3, we have investigated the existence and uniqueness

of equilibrium point and the solutions qualitative behavior is explored, such as local and global stability.

Also, we have proven that the solution is bounded in section 4. In section 5, we have obtained expressions

of solutions of four special cases of the studied equations 7,8,9 and 10, as applications of Eq.(1). Finally, to

support our theoretical discussion some illustrative examples are provided in section 6.
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Abstract − To investigate the instantaneous properties of a planar motion, Roth and Bottema [1]

obtain the instantaneous invariants of a planar motion using Veldkamp’s canonical frame [7]. We

investigate the derivatives of time-independent planar motions with respect to the fixed frame up

to thrid order and their instantaneous invariants are obtained by using the Lie algebra to the planar

motion group near identity element.
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1. Introduction

Lie theory connects almost every branch of mathematics. It has a wide range of applications from harmonic

analysis to quantum groups. In this work, our interest is Lie algebra in plane kinematics [4]. The group of

rigid body motions are all related to Lie groups. Planar motion group, Spherical motion group and Spatial

motion group are represented by SE(2), SO(3) and SE(3) respectively.

Rigid body motions in R2 has a 3×3 homogeneous matrix representation. Any element of planar motion

group is given by,

G =
(

R t⃗

0 1

)
(1.1)

where R is the (2× 2) rotation matrix and the vector t⃗ is a (2× 1) translation vector. Well known Mozzi-

Chasles’s theorem says that each spatial motion is a screw motion. That is, any spatial displacement can

be seen as a rotation about a line, the screw axis, and followed by a translation parallel to that line. In the

planar case, there is a fixed point instead of a line. Any planar motion is a rotation about this fixed point.

To study planar motion, we attach a coordinate frame, M , to the moving body and a coordinate frame, F to

the ground (reference frame). In plane kinematics, except pure translations, there is a single point whose

coordinates are the same both in the fixed frame and in the moving frame before and after the displacement.
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This point is called the pole point of the planar displacement. The rotation angle θ and the pole points are

the geometric invariants of planar kinematics.

Any rigid transformation is the combination of a rotation followed by a translation, given by,

X⃗ = Rx⃗ + t⃗ (1.2)

where x⃗ is the coordinates of a point in the moving frame M and X⃗ is the coordinates of the point in the

fixed frame F . In 1.2 the rotation matrix R and the translation vector t⃗ are given by,

R =
(

cosθ −sinθ

sinθ cosθ

)
t⃗ =

(
a

b

)
. (1.3)

Then the fundamental equations of the plane kinematics can be written as;

X = x cosθ− y sinθ+a, (1.4)

Y = x sinθ+ y cosθ+b.

If θ, a and b are functions of a time parameter µ, one can determine a continuous motion of a point with

its positions, velocity, accelaration etc. The parameters depending on µ are the concerns of time-dependent

kinematics of the motion. But some other properties are independent of time; such as curves, tangents,

poles etc. which are called the geometric kinematics of the motion. In this case

X = x cosθ− y sinθ+a(θ), (1.5)

Y = x sinθ+ y cosθ+b(θ)

where θ is the only parameter for the planar motion, and a,b are the functions of θ [1, 3]. In the equation

1.5 the planar motion is completely defined by the functions a(θ) and b(θ). The equation 1.5 is called time-

independent motion.

2. Veldkamp’s Canonical Frame

To discuss the instantaneous geometric invariants of a planar motion, we introduce Veldkamp’s canonical

frame. In his dissertation [7], for a given time-independent motion a(θ) and b(θ) are the power series of θ;

a(θ) =
∞∑

n=0
an(

θn

n!
), b(θ) =

∞∑
n=0

bn(
θn

n!
) (2.1)

and the following are satisfield:

i) The moving and fixed frame are chosen such that they coincide in the "zero-position", so we have from

2.1 and 1.5

a0 = b0 = 0. (2.2)

ii) At the moment θ = 0 we place common origin of the frames at the pole, which implies

a1 = b1 = 0. (2.3)
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iii) The axes OX and Ox are chosen along the common tangent of the pole curves (at the pole), which yields

a2 = 0. (2.4)

iv) Assuming b2 ̸= 0, we can take the possitive direction of the X axis as to set b2 > 0. The coinciding frames

OX Y and Ox y defined by i)-iv) are called canonical. Here OX Y and Ox y denote the fixed frame and the

moving frame respectively. These canonical frames can be used to study instantaneous kinematics, for

details see [1, 7].

Roth and Bottema [1] obtained the geometry of the planar motion by differentiating the coordinate axes

given in equation 1.5.

X = x Ẋ =−y Ẍ =−x
...
X = y +a3 . . .

Y = y Ẏ = x Ÿ =−y +b2
...
Y =−x +b3 . . .

(2.5)

at θ = 0, where dot over an alphabet denotes the derivative with respect to θ. Hence instantaneous prop-

erties of the motion depend on the constants a3, a4, . . . , an , . . . and b2,b3,b4, . . . ,bn , . . . . which are called the

instantaneous invariants of the kinematics.

2.1. The Group Planar Motions and Its Lie Algebra

The (3×3) matrix G in equation 1.1 represents the planar motion group, it is the element of the Lie group

SE(2). The time independent motion in equation 1.5 defines a one parameter subgroup of SE(2). Let D(θ)

denotes the planar displacement defined in equation 1.5 in the homogeneous matrix representation,

D(θ) =


cosθ −sinθ a(θ)

sinθ cosθ b(θ)

0 0 1

 .

If we consider an initial point P (0), then the transfomed point P (θ) is written by,

(
P (θ)

1

)
= D(θ)

(
P (0)

1

)
. (2.6)

Differentiating the equation 2.6 gives,

(
Ṗ (θ)

0

)
= DF (θ)

(
P (θ)

1

)
, (2.7)

where DF (θ) is the derivative with respect to the fixed frame. The geometric velocity matrix DF (θ) of the

group element D(θ) can be found as,

DF (θ) = Ḋ(θ)D(θ)−1 =


0 −1 ȧ(θ)+b(θ)

1 0 −a(θ)+ ḃ(θ)

0 0 0

 . (2.8)
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Let (X ,Y ,1)t and (x, y,1)t be the homogeneous coordinates of P (θ) in the fixed frame and the moving frame

respectively. Then the equation 2.7 at θ = 0 gives,
Ẋ

Ẏ

0

= DF (0)


X

Y

1

=


0 −1 a1

1 0 b1

0 0 0




X

Y

1

 . (2.9)

Since the moving frame and the fixed frame are coincident at θ = 0, we get

Ẋ =−y +a1 Ẏ = x +b1.

In equation 2.3 a1 and b1 are equal to zero. Hence,

Ẋ =−y Ẏ = x.

The second derivatives can be obtained by differentiating the equation 2.7 ,

(
P̈ (θ)

0

)
= DF2 (θ)

(
P (θ)

1

)
, (2.10)

where DF2 (θ) denotes the second derivative matrix with respect to the fixed frame. The matrix DF2 (θ) can

be written as follows,

DF2 (θ) = ḊF (θ)+D2
F (θ) =


−1 0 a(θ)+ ä(θ)

0 −1 b(θ)+ b̈(θ)

0 0 0

 . (2.11)

Then the equation 2.10 at θ = 0 is,
Ẍ

Ÿ

0

= DF2 (0)


X

Y

1

=


−1 0 a2

0 −1 b2

0 0 0




X

Y

1

 . (2.12)

Since a2 = 0 in 2.4 and the frames are coincident at θ = 0,

Ẍ =−x Ÿ =−y +b2.

Finally, the third derivative of the equation 2.6 can be found as,

( ...
P (θ)

0

)
= DF3 (θ)

(
P (θ)

1

)
, (2.13)
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where DF3 (θ) denotes the third derivative with respect to the fixed frame. The third order derivative matrix

DF3 (θ) can be found as follows,

DF3 (θ) = D̈F (θ)+2ḊF (θ)DF (θ)+DF (θ)ḊF (θ)+D3
F (θ)

=


0 1

...
a (θ)−b(θ)

−1 0 a(θ)+ ...
b (θ)

0 0 0

 .
(2.14)

Then the equation 2.13 at θ = 0 is,
...
X
...
Y

0

= DF3 (0)


X

Y

1

=


0 1 a3

−1 0 b3

0 0 0




X

Y

1

 . (2.15)

That is,
...
X = y +a3

...
Y =−x +b3.

Hence the kinematic invariants of time-independent planar motion are obtained by using the elements of

Lie algebra, se(2) to the planar motion group, SE(2). Similarly, higher order terms in the equation 2.5 can

be obtained by using the higher order derivatives of equation 2.6.

3. Conclusion

Instantaneous properties of a planar motion are obtained by Bottema and Roth [1] using canonical frame

which was introduced by Veldkamp [7]. In this study, the derivatives of time-independent planar motions

with respect to the fixed frame are given and the instantaneous invariants of planar motions are obtained

by using the Lie algebra to SE(2).
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İlhan Karakılıç et al. / IKJM / 5(1) (2023) 62-67 67

[6] Selig, J. M. (2007) Centrodes and Lie algebra. In 2th IFT oMM World Congress (p. 6). London South

Bank University.

[7] Veldkamp, G. R. (1963) Curvature theory in plane kinematics. JB Wolters.


	Introduction
	Internal Categories and 2-categories
	Internal categories
	2-categories

	Constructions of Two-Algebras
	2-Modules
	Two-algebras
	Multiplication Algebras yield a 2-algebra

	Crossed modules and 2-algebras
	Constructing The Ellipse and Its Application in Analytical Fuzzy Plane Geometry
	1. Introduction
	2. Preliminaries
	3. Fuzzy Ellipse
	4. Conclusion
	Author Contributions
	Conflicts of Interest
	Acknowledgement
	References

	Introduction
	Local Stability of the Critical Point
	Global Attractive of the Critical Point
	Boundedness of solutions
	General Solution for Special Cases
	First Equation
	Second Equation
	Third Equation
	Fourth Equation

	Numerical Examples
	Conclusions
	Introduction
	Veldkamp's Canonical Frame
	The Group Planar Motions and Its Lie Algebra

	Conclusion

