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Abstract 

 

The dissociation constant is a quantitative measure of the strength of an acid in solution. This study examines 

dissociation constant for the series substituted acids like Ortho-alkoxy-4-formylbenzoic acid. The use of (2-methoxy 

ethanol) as a solvent contributed to the study expected to form free ions or solvent separated ion pair which has been 

studied with the use conductometric method at different temperatures ranged from 293.15 to 318.15K. The study aims 

at figuring out dissociation constant, equivalent conductance at infinity dilution, and Walden product by minimization 

technique using Fuoss-Hsia for both (Modified and Complete) equations. It has been found in the results that the 

calculated values based on statistical sum square (different between practical and theoretical values) is equivalent 

conductance at infinity dilution and dissociation constant. It has also been observed that increase the temperature leads 

to the increase of the molar conductance at infinity dilution, and the increase in association. Moreover, the substituted 

alkoxy group also affected dissociation of compounds. In this study, the thermodynamic parameters (Ho, Go and 

So) have also been evaluated and discussed. Finally, the effect of substituent groups on rate of dissociation was 

studied and explained with agreement to the principles of mesomeric(M) and Inductive effect(I) of substituent groups 

on dissociation constant. 

 

Keywords: Conductometric; dissociation constant; fuoss-Hsia theories; minimization technique; thermodynamic 

parameters. 

  

1. Introduction  

Many studies on thermodynamics and dissociation 

constant have been conducted in connection with 

conductometry with the use of many equations [1-6]. 

Friedrich Kohlrausch (1840–1910), a German chemist, 

initially proposed the Kohlrausch equation as the outcome of 

extensive experimental effort.  

 

Λ = Λ0 – ΚC             (1)  

 

where Λ is the molar conductance, Λ0  is molar conductance 

in the limit of zero concentration when the ions do not 

interact with each other, Κ is a coefficient related to the 

stoichiometry of the electrolyte, and C is the concentration 

of the electrolyte [7]. The inductive effect of the substituent 

is transmitted to the carboxyl group in two rather different 

ways. Most frequently, the substituent is regarded as causing 

shifts in the average distributions of the bonding electrons 

along the chain of atoms in the carboxyl proton. This 

produces a succession of electron shifts along the chain of 

atoms which leads to electron-attracting substituent that 

increases the acid strength by making it more energetically 

feasible for the –OH [8].  The equations: 

  

=0-SC + E’ clnc + Jc-KA0c         (2) 

 

Can be used to calculate dissociation constant  

(Kd=1/KA)      .        (3) 

 

where , 0 are equivalent conductance, equivalent 

conductance at infinity dilutions respectively, E’ is constant 

factor, Jc is a term from long-range interaction and KA0c 

term from pair formation near in concentration (c)[9].    

According to Arrhenius's original definition, an acid is a 

substance that dissociates in aqueous solution, releasing the 

hydrogen ion H+ (a proton): 

 
[HA ⇌ A− + H+]            (4)  

 

The equilibrium constant for this dissociation reaction is 

known as dissociation constant [10-12]. The stability of 

substitution in 4- position of benzoic acid, and stability of the 

mentioned compound at different solvent was estimated [13, 

14]. The conductometric study of benzoic acid has been 

studied with the use of many equations for finding 

dissociation constant, thermodynamic parameters and 

equivalent conductance at infinity dilution [15, 16]. The 

other studies show that the temperature, type of electrolytes, 

solvents and conductometric equations play an important 

role in shaping conductometric curve at different solvents 

[17, 18]. The study of dissociation constant with 

thermodynamic parameters in a mixture solvent illustrates 

that the increase of pK values causes solvation stabilization 

of a proton greater than others [19]. The molar conductance 

mailto:rebaz.anwar@koyauniversity.org
https://orcid.org/0000-0002-6379-9775
https://orcid.org/0000-0001-9583-3432
https://orcid.org/0000-0002-5529-2026
https://orcid.org/0000-0002-3774-6071
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at infinity dilution(o), dissociation constants (Kd) were 

determined with using theoretical conductance equations of 

the complete and modified forms of Fuoss-Hsia [20-22]. 

 

2. Materials and Methods  

The measurements are made at a range of temperature 

between 283.15-318.15K with the instrument named 

OKATON conductometer type CON 510 BENCHTOP 

METER audio frequency, and all the stock solutions are 

prepared by weight and measurements with the manipulation 

of the weight dilution technique. The Table 1 shows the 

experimental conductance for compounds 1, 2, 3 and 4 

(Aladdin). The instrument accuracy for conductivity 

measurements is about ±0.05%. The cell constant (as 

determined by standard solutions of purified potassium 

chloride (Sigma-Aldrich)) is 0.9993. The method used for 

measuring cell constant and conductance has been described 

in [23]. The compounds 1, 2, 3 and 4 in (Figure 1) that is 

used in this study is prepared by Sigma-Aldrich Company. 

This study aims at finding dissociation constant of weak 

electrolytes 1, 2 and 3 compared with compound number 4.  

Then it extends to estimate thermodynamics parameters to 

prove the interaction between the ion and solvent to produce 

ion pair or solvent separate ion pair consequently 

conductometric study results in finding Walden product 

depending on the increase of temperature and viscosity, and 

this attributes to the dielectric friction constant for the 

compounds with viscosity, the high viscosity showed the low 

value of conductivity. 

 

2.1 Computational Study 

Example of minimization program (Figure 2). In the present 

work, all program was written in Fortran power station 4, 

worked under windows 10, used to minimize the measure 

conductance data which is fed in as N pair of Ci/i values, 

the best fitted values of the two parameters KA (KA=1/Kd) 

and o which are usually obtained as follows: KA runs from 

an initial value of KA to KMAX in steps of DKA and o runs 

from an initial value of L0 to L0MAX in steps of DL0, with 

respect to complete Fuoss-Hsia (Fuoss and Hsia, 1967) given 

as an example here, and the input is needed in the following 

order: ETA (Viscosity of solvent), D (Dielectrical constant 

of solvent), T (absolute temperature) Z (valency of 

electrolyte), L0 (Initial o value), KA (Initial KA value), N (Ci/i 

pair numbers) and C(I, J)  (N pairs of C and  data). The 

output consists of the sum square S2 , between calculated and 

measured conductances and the corresponding values of KA, 

o. 

 

3. Results and Discussion 

This work aims at examining the dissociation Constant of 

Some Ortho Substituted 4-Formylbenzoic Acid (where 

substituted are: -OCH3, OCH2CH3, -OCH2CH2CH3, -OH) 

Compounds based on Conductometric Parameters which is 

calculated with the use of Fuoss-Hsia Theories of both  

modified and complete at different temperatures. Molar 

conductance was measured, and it has been foundthat 

corresponding concentration in mol.dm-3 that the 

temperature ranges between 283.15-318.15K, as it is given 

in Table 1. The interpretation of the characteristic parameters 

of a weak  electrolyte solution from conductance data using 

minimization technique is adopted to find dissociation 

constant (Kd), Molar conductance at infinity dilution (o).  

 For the data analysis, this study draws on Ci 

(Concentration), i (equivalent conductance) (i=1, 2,..,N) 

with the use of a Fortran power station-4X- computer 

program. The output results of minimization technique for 

the best fit values of the three parameters: Kd, o depending 

on sum square (S2),  standard deviation () and Walden 

product as they are listed in Tables (2, 3, 4 and 5). In Figures 

(3, 4, 5 and 6), are curves of molar conductance versus square 

root of concentration at different temperature ranges between 

283.15-318.15 K for these electrolytes. The  measured 0, 

Kd was obtained from Minimization technique,  the 

temperature effect on the solvent solute interaction is shown 

in Table 1, as the temperature increased the   molar 

conductance increased of at interval. 

 

 

 

 

    

Figure 1. Structure of compounds under study. 
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Figure 2. Fuoss Hsia program for finding Kd. 

 

Table 1. Experimental conductance data for compounds. 

conc.  M Temp. K 
Molar Conductance () mol-1 cm2 ohm-1 

Compound 1 Compound 2 Compound 3 Compound 4 

0.0030 

283.15 0.917 0.577 0.517 0.280 

288.15 1.012 0.677 0.593 0.347 

293.15 1.230 0.787 0.627 0.447 
298.15 1.250 0.833 0.680 0.503 

303.15 1.400 1.030 0.713 0.663 

308.15 1.483 1.123 0.807 0.720 
313.15 1.850 1.167 1.033 0.817 

318.15 1.917 1.477 1.117 0.980 

0.0015 

283.15 1.220 0.620 0.553 0.287 
288.15 1.282 0.787 0.720 0.387 

293.15 1.353 0.933 0.893 0.473 

298.15 1.467 1.000 0.920 0.527 
303.15 1.613 1.160 0.947 0.793 

308.15 1.700 1.380 0.990 0.947 

313.15 2.000 1.533 1.100 1.067 
318.15 2.212 1.730 1.167 1.103 

0.0008 

283.15 1.270 0.667 0.587 0.467 

288.15 1.372 0.840 0.760 0.607 
293.15 1.470 1.067 0.960 0.693 

298.15 1.747 1.333 1.147 0.800 

303.15 1.920 1.520 1.213 1.120 
308.15 2.227 1.693 1.333 1.293 

313.15 2.400 2.133 1.467 1.403 

318.15 2.520 2.200 1.667 1.633 

0.0004 

283.15 1.523 0.880 0.683 0.587 

288.15 2.347 1.013 0.880 0.720 

293.15 2.573 1.173 1.073 0.800 
298.15 3.013 1.600 1.280 0.960 

303.15 3.467 1.840 1.340 1.307 

308.15 3.653 2.133 1.547 1.407 
313.15 3.733 2.533 1.680 1.593 

318.15 3.920 2.720 1.973 1.867 

0.0002 

283.15 1.607 0.963 0.695 0.607 
288.15 2.667 1.027 0.963 0.767 

293.15 2.855 1.235 1.103 0.833 
298.15 3.497 1.865 1.390 0.997 

303.15 3.849 1.998 1.497 1.333 

308.15 4.016 2.303 1.711 1.633 
313.15 4.230 2.763 1.925 1.700 

318.15 4.385 2.941 2.096 2.000 

Continued…

… 
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Table 2. Best fit results for compound-1. 
 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temp. 

K 

Kd 

/10-4 

o S2  

Walden 

Product 

Kd 

/10-4 

o S2  

Walden 

Product 

283.15 2.222 1.0 0.05 0.014142 2.182 2.381 1.23 0.45 0.304056 2.68386 

288.15 1.587 1.3 0.04 0.021213 2.5467 1.923 1.40 0.32 0.39598 2.7426 

293.15 1.190 1.9 0.03 0.028284 3.3611 1.408 2.0 0.27 0.431335 3.538 

298.15 0.909 2.0 0.02 0.035355 3.214 1.111 2.3 0.07 0.572756 3.6961 

303.15 0.714 2.7 0.01 0.042426 3.9663 0.909 3.3 0.17 0.502046 4.8477 

308.15 0.606 3.0 0.05 0.014142 4.023 0.800 4.0 0.88 0 5.364 

313.15 0.508 4.7 0.02 0.035355 5.7904 0.667 4.5 0.33 0.388909 6.0368 

318.15 0.357 6.0 0.07 0 6.822 0.556 7.0 0.07 0.572756 7.959 

 

Table 3. Best fit results for compound-2. 

 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temp. 

K 

Kd 

/10-5 

o S2  

Walden 

Product 

Kd 

/10-5 

o S2  

Walden 

Product 

283.15 0.649 1.1000 0.24 0.141421 2.4002 2.273 1.3000 0.22 0.438406 2.8366 

288.15 0.556 1.3000 0.16 0.19799 2.5467 2.128 1.4000 0.17 0.473762 2.7426 

293.15 0.417 1.4000 0.08 0.254558 2.4766 1.961 1.7000 0.84 0 3.0073 

298.15 0.333 1.7000 0.44 0 2.7319 1.802 1.9000 0.57 0.190919 3.0533 

303.15 0.286 1.8000 0.21 0.162635 2.6442 1.695 2.0000 0.38 0.325269 2.938 

308.15 0.250 4.0000 0.24 0.141421 5.364 1.613 4.2000 0.75 0.06364 5.6322 

313.15 0.218 5.0000 0.17 0.190919 6.16 1.538 5.3000 0.16 0.480833 6.5296 

318.15 0.185 7.0000 0.04 0.282843 7.959 1.449 8.8000 0.26 0.410122 10.0056 

 

Table 4. Best fit results for compound-3. 

 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temp. 

K 

Kd 

/10-6 

o S2  

Walden 

Product 

Kd 

/10-6 

o S2  

Walden 

Product 

283.15 0.385 1.3000 0.1300 0.537401 2.8366 0.508 1.5000 0.1100 0.360624 3.273 

288.15 0.370 2.0000 0.5400 0.247487 3.918 0.485 2.4000 0.6200 0 4.7016 

293.15 0.351 2.6000 0.0100 0.622254 4.5994 0.452 3.2000 0.4000 0.155563 5.6608 

298.15 0.333 3.0000 0.2000 0.487904 4.821 0.432 3.6000 0.3000 0.226274 5.7852 

303.15 0.318 3.5000 0.8900 0 5.1415 0.419 4.4000 0.2100 0.289914 6.4636 

308.15 0.305 4.0000 0.1400 0.53033 5.364 0.403 5.0000 0.4800 0.098995 6.705 
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313. 15 0.294 6.6000 0.1200 0.544472 8.1312 0.390 7.2000 0.1100 0.360624 8.8704 

318.15 0.286 9.7000 0.1100 0.551543 11.0289 0.378 10.2000 0.3000 0.226274 11.5974 

 

Table 5.  Best fit results for compound-4. 

 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temp. 

K 

Kd 

/10-3 

o S2  

Walden 

Product 

Kd 

/10-3 

o S2  

Walden 

Product 

283.15 0.244 1.5000 0.0200 0.388909 1.09 1.670 1.8000 0.0030 0.358503 2.18 

288.15 0.200 2.2000 0.1000 0.33234 1.18 1.250 2.7000 0.1000 0.289914 7.84 

293.15 0.161 3.0000 0.0500 0.367696 1.42 0.950 3.8000 0.0400 0.33234 8.85 

298.15 0.122 3.5000 0.5000 0.049497 1.61 0.769 4.5000 0.0900 0.296985 11.20 

303.15 0.099 4.1000 0.1800 0.275772 1.62 0.625 5.0000 0.1100 0.282843 11.80 

308.15 0.070 6.8000 0.2900 0.19799 1.88 0.500 7.8000 0.2600 0.176777 12.10 

313.15 0.050 7.2000 0.5700 0 2.3 0.400 8.5000 0.5100 0 12.30 

318.15 0.043 9.8000 0.1000 0.33234 11.0 0.333 11.1000 0.1000 0.289914 14.80 
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Figure 3.  Molar conductance vs square root of 

concentration for compound 1 at different temperature.  
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Figure 4. Molar conductance vs square root of 

concentration for compound 2 at different temperature.  
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Figure 5. Molar conductance vs square root of 

concentration for compound 3 at different temperature. 
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Figure 6. Molar conductance vs square root of 

concentration for compound 4 at different temperature. 
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The thermodynamic parameters for the dissociation 

reaction are obtained from temperature dependence of 

dissociation constant (Kd). The standard enthalpy (Ho) is 

determined from slope of the logarithm (Kd) vs 1/T with 

(Go and So). The slope is equal to (-H/R) to find 

Enthalpy, the intercept equal to (S/R) for finding entropy 

and then to calculate Gibbs free energy used [24, 25].  

 

G=H-TS              (5) 

 

Walden product (previously known the product of 

viscosity () and conductivity at infinite dilution of a 

solution (o) it provides a measurement of the solvent-

structuring activity of the solute) estimate as a function of 

temperature by: 

 

o(T) (T) = constant.           (6) 

 

where (T) is a viscosity depends on temperature. The 

minimization of o and Kd values of complete and modified 

Fuoss-Hsia equations is estimated for compounds (1-3) then 

compared with compound 4 in 2-methoxy ethanol as a 

solvent. The results show that the increase of alkyl group 

chain leads to the decrease of the conductivity. The kinetics 

(osmotic) terms contributed to the increase in velocity of the 

ion. It is obvious from the minimization technique that the 

parameter o is expected to have the greatest effect on the 

values of S2 during the variation of the two parameters Kd 

and o.  Thus, o is the leading term in all the conductance 

equations. However, o is relatively insensitive to the values 

of Kd at the corresponding of minimum of S2. Dissociation 

constants that are given in Tables (2, 3, 4 and 5) at different 

temperatures can therefore anticipate that these compounds 

do not behave as strong electrolyte and that their 

dissociations are far from complete. It can observe ion-pair 

(IP) or solvent separate ion pair (SSIP) formation according 

to the quantitative conductance data.For understanding the 

thermodynamic of the dissociation reactions it is useful to 

consider the enthalpic and entropic contribution to these 

dissociation and Gibbs free energy.  This proves that 

dissociation for compound is true for compared (as showed 

in appendix). The standard enthalpy, free energy and entropy 

changes are determined by using [23] at different 

temperatures. The summary at this point gives the 

conductometric dissociation constant Kd to determine the 

standard free energy change for the postulated equilibrium. 

This opens the way to search for correlation between Go, 

Ho and So on the one hand , and to solutes and solvents on 

the other hand.  According to minimization technique used 

here, the best Kd and o show an expected trend with 

temperature. Tables 2, 3, 4 and 5 clearly shows the 

temperature dependence of the o value. The increase of 

temperature leads to the increase of o and decrease of Kd, 

as a consequence the association of the compounds 

increases. As it is mentioned above, there is no literature 

value of Kohlrausch’s law (independent migration of ions) 

for compounds 1, 2, 3 and 4 compared with the practical 

finding of o, therefore the formed results calculated based 

on statistical S2. The above Figures from 7, 8, 9 and 10 show 

the good agreement for the thermodynamic parameters.  

 

 

 

 

Table 6. Thermodynamic data for compound 1 using both 

equations. 

 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temperature 

K 

-Ho 
kJ 

mol-1 

Go 
kJ 

mol-1 

-So 
J K-1 

mol-1 

-Ho 
kJ 

mol-1 

Go 
kJ 

mol-1 

-So 
J K-1 

mol-1 

283.15 

4.661 

52.57 

201.4 3.378 

47.06 

179.4 

288.15 53.57 47.96 

293.15 54.58 48.85 

298.15 55.59 49.75 

303.15 56.59 50.65 

308.15 57.60 51.54 

313.15 58.61 52.44 

318.15 59.61 53.34 

 

Table 7. Thermodynamic data for compound 2 using both 

equations. 
 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temperature 

K 

-Ho 
kJ 

mol-1 

Go 
kJ 

mol-1 

-So 
J K-1 

mol-1 

-Ho 
kJ 

mol-1 

Go 
kJ 

mol-1 

-So 
J K-1 

mol-1 

283.15 

3.260 

52.01 

195.2 1.166 

33.72 

123.2 

288.15 52.99 34.33 

293.15 53.96 34.95 

298.15 54.94 35.57 

303.15 55.91 36.18 

8.15 56.89 36.80 

313.15 57.87 37.41 

318.15 58.84 38.03 

 

Table 8. Thermodynamic data for compound 3 using both 

equations. 
 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temperature 

K 

-Ho 

kJ 

mol-1 

Go 

kJ 

mol-1 

-So 

J K-1 

mol-1 

-Ho 

kJ 

mol-1 

Go 

kJ 

mol-1 

-So 

J K-1 

mol-1 

283.15 

0.750 

40.39 

145.3 0.748 

39.72 

142.9 

288.15 41.12 40.44 

293.15 41.84 41.15 

298.15 42.57 41.86 

303.15 43.30 42.58 

308.15 44.02 43.29 

313.15 44.75 44.01 

318.15 45.48 44.72 

 

Generally, the thermodynamic functions (H give 

information about energy,  S give information about 

disorder in given system and (G give information about 

spontaneous in the forward and backward directions and 

equilibrium in this case may be positive or negative 

depending on temperature). The good agreement for the 

Walden product is the interpretation of the high viscosity of 

the medium [17, 26] while the Kd and o are showing the 

direct proportional sign minimization technique depending 

on the sum squire (S2) or standard deviation () which is a 

different between theoretical and practical values. However, 

the thermodynamic parameters are given good results about 

the interpretation between solute and solvent in non-aqueous 
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solvent. Concerning the H, it is determined from the slope 

of lnKd versus 1/T as shown in Figures (7, 8, 9 and 10) in 

which the negative values of enthalpy reflects weak 

interaction between cation and anion for all compounds. 

Therefore, the solvation is weak. 

 

Table 9. Thermodynamic data for compound 4 using both 

equations. 
 Fuoss-Hsia Modified Fuoss-Hsia Complete 

Temperature 

K 

-Ho 

kJ 

mol-1 

Go 

kJ 

mol-1 

-So 

J K-1 

mol-1 

-Ho 

kJ 

mol-1 

Go 

kJ 

mol-1 

-So 

J K-1 

mol-1 

283.15 

4.670 

53.49 

205.4 4.107 

45.16 

199.0 

288.15 54.52 46.03 

293.15 55.55 46.90 

298.15 56.57 47.77 

303.15 57.60 48.64 

308.15 58.63 49.51 

313.15 59.66 50.38 

318.15 60.68 51.25 

 

The existence of intermolecular hydrogen bonding 

between –OH group with oxygen atom of –COOH group in 

compound-1 restricts the ionization of hydroxyl group, 

which leads to the decrease in conductivity. 

The S decreases by the increase of temperature due to 

different changes between solute and solvent, or may be the 

consequence of attribution to formation of ion-pair or solvent 

separated ion pair interactions. The negative value of entropy 

is never spontaneous and the effect is produced by the charge 

species (ion and ion-pair) on the neighbored solvent 

molecules and its usefulness in investigating the media 

properties. However, H and S values proves the useful 

structural information of solute species and solute-solvent 

interaction [17]; therefore the entropy asserts that the 

investigating of media, and the negative value of entropy is 

important for the opposite effect produced by charge species 

(ion, IP, SSIP) on the neighbor solvent molecule. For the 

Gibbs, free energy values are never shown spontaneous 

reaction as they are observed in the solute and solvent 

interaction for the all compound compared with compound 

4, i.e. the reaction needs temperature, stirring or pressure for 

the complex reaction to happen. The Walden product 

depends on temperature showed that the information could 

be obtained on ion solvent interactions as they are stated in 

Tables (2, 3, 4 and 5). The dissociation constant sequences 

of the compounds (1, 2, 3, and 4) are illustrated below: 

 

 
 

Figure 7. logarithm dissociation constant vs inverse temperature for compound 1. 

 

 
 

Figure 8. logarithm dissociation constant vs inverse temperature for compound 2. 

 

y = 4461.2x - 24.221
R² = 0.9929

y = 3738.1x - 21.579
R² = 0.992

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

0.0031 0.00315 0.0032 0.00325 0.0033 0.00335 0.0034 0.00345 0.0035 0.00355 0.0036

L
n

 K
d

1/T

Fuoss-Hsia Modified for compound-1 Fuoss-Hsia Complete for compound-1

Linear (Fuoss-Hsia Modified for compound-1) Linear (Fuoss-Hsia Complete for compound-1)



 
008 / Vol. 26 (No. 1)   Int. Centre for Applied Thermodynamics (ICAT) 

 
 

Figure 9. logarithm dissociation constant vs inverse temperature for compound 3 

 

 
 

Figure 10. logarithm dissociation constant vs inverse temperature for compound 4. 

 

 

Figure 11. Kd scal for all compounds. 

 

Both -OCH3 and -OH groups have exhibited two effects 

on the aromatic ring: (1) Electron donates resonance or 

mesomeric effect (+M), and (2) Electron withdraws 

inductive effect (-I). For both acids, the electron withdrawing 

inductive effect (-I) is almost the same since both -OCH3 and 

-OH groups are 4 carbons away from the acid center. 

However, when -OH group is attached to ortho-position, it 

has a more tendency to delocalize its lone pair electrons 

towards the aromatic ring than that of -OCH3 group (Order 

of activating: -O−> -OH> -OCH3). As a result, the electron 

density on the carbon ortho to –OH substitution group 

increases more than that on the carbon ortho to -OCH3 

substitution group. Another explanation, due to steric 

reasons, the C(benzene)−O−C(alkyl group) bond angle of 
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OCH3 is going to be more than the C(benzene)−O−H bond 

angle of the -OH. Hence, the percent s-character is going to 

go up for the central oxygen atom in OCH3 relatively (to 

rationalize this, think of the bond angles associated with sp3, 

sp2 and sp hybridization and their respective s-characters). 

Due to increased s-character on both sides of the OCH3 

oxygen, it can achieve an overall more electronegative 

substituent for the ring compared to OH, as the electrons 

displaced towards the oxygen from the methyl in OCH3 in 

which it would still experience a lowering in the energy of 

the σ(O−CH3) bond. Hence, as compared to OH, the ring will 

be activated less by OCH3. The steric effect also plays a role 

within the different chain length alkoxy compounds, as a 

result thee dissociation order is (-OCH3> - OCH2-CH3> -

OCH2-CH2-CH3) see Figure 11. 

 

4. Conclusion 

In conclusion, compounds of 1, 2, 3 are analyzed and 

compared with compound 4 with the use of conductometric 

methods in 2-methoxy ethanol as a solvent at different 

temperatures ranged between 283.15K-318.15K, evaluated 

by audio frequency conductance using both Fuoss-Hsia 

equations (modified and complete). A minimization 

technique is used here to estimate dissociation constant and 

molar conductance at infinity dilution with different 

temperatures. When the 0 increases, the dissociation 

decreases at increased temperature,  due to more ions 

formation in a solution, and greater conductance is reached. 

In addition of that, it was clearly observed that (CIP and 

SSIP) have their impact on conductivity. The Walden 

product also substantially increases with temperature. 

Finally, the standard thermodynamic parameters have been 

calculated deriving from mentioned temperature depending 

on dissociation constant, the thermodynamic functions (Go, 

Ho and So ) showed a good indication on solute-solvent 

interaction.  It was also concluded that mesomeric effect and 

the inductive effect also have their role on this study.  
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Nomenclature 

-OCH3     Methoxy group,  

-OCH2-CH3   Methoxymethane 

 -OCH2-CH2-CH3  Methoxyethane 

 -OH     Hydroxyl group  

-COOH    Carboxyl acid group) 

Λ       Molar conductance (S m2 mol−1) 

Λ0  Molar conductance in the limit of zero 

concentration  

Κ Coefficient related to the stoichiometry 

of the electrolyte 

C Concentration of the electrolyte 

(mEq/L) 

E      Constant factor,  

Jc      Long-range interaction 

KA0c      Pair formation near in concentration 

H+      Proton 

Kd      Dissociation constants (M) 

KA     KMAX in steps of DKA  

L0      L0MAX in steps of DL0 

      Viscosity of solvent (kg·m−1·s−1) 

D      Dielectrically constant of solvent 

T       Absolute temperature (K) 

Z      Valence of electrolyte 

KA      Initial KA value 

N      Ci/i pair numbers 

C      (I, J)  (N pairs of C and  data) 

Ho      Standard enthalpy (kJ mol−1) 

Go  Gibbs free energy (J or KL) 

So     Standard entropy (J/K⋅mol) 
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Abstract  
 

The solubility data of Active Pharmaceutical Ingredients in organic solvents is an essential for pharmaceutical 

crystallization and drug formulation. In this work, two semi-empirical correlations- the Yaws model and λ-h model- 

and two thermodynamic models – Wilson Model and the Non-random two-liquid model- are used to estimate the 

solubility of lornoxicam in ethanol and water. The model parameters and correlations coefficients are calculated by 

optimizing the average relative deviation. The values of these parameters will be helpful to estimate the solubility of 

lornoxicam at different temperatures where the experimental solubility data is not available. The predicted solubility 

data of lornoxicam can be further utilized in the pharmaceutical crystallization and drug formulation.  

 

Keywords: Solubility; crystallization; lornoxicam; thermodynamic model; mixing property.  

 

1. Introduction  

     Lornoxicam is a non-steroidal anti-inflammatory drug 

(NSAID) having low aqueous solubility and high 

permeability through biological membranes leading to low 

bioavailability [1]. Several approaches such as complexation 

with cyclodextrins, solid dispersion, emulsion and co-

crystallization are employed to enhance the solubility and 

subsequently bioavailability of active pharmaceutical 

ingredients (APIs). The low aqueous solubility of 

lornoxicam leads to a slow dissolution rate as evident by 

Noyes –Whitney equation [2].  Nanoparticles exhibited 

higher saturation solubility as compared to bulk particles 

which can be described by the Ostwald-Freundlich equation 

[3]. Several particle engineering based approaches such as 

solid-lipid particles, nanocrystals and nano-emulsion have 

been explored recently to enhance the dissolution rate of 

lornoxicam [4–7]. 

  

Noyes-Whitney’s equation:   

( )SDA C CdW

dt L


         (1) 

 

where 
𝑑𝑊

𝑑𝑡
 is the dissolution rate, 𝐴 is the surface area of the 

particles, 𝐶𝑠 is the drug’s saturation solubility, 𝐶 is the drug’s 

concentration in the dissolution medium, 𝐷 is the diffusion 

coefficient, and 𝐿 is the thickness of the diffusion layer. 

 

Ostwald-Freundlich’s equation:  

 log
𝐶𝑠

𝐶∞

=  
2𝜎𝑉

2.303𝑅𝑇𝜌𝑟
                                                            (2) 

 

where Cs is the saturation solubility, C∞ is the solubility of 

the large particles of the drug, V is the molar volume, σ is the 

interfacial tension, R is the universal gas constant, T is the 

absolute temperature, r is the radius of the drug particle and 

ρ is the density of the drug. 

     Liquid antisolvent crystallization (LASC) is emerging as 

a promising approach to prepare the nanoparticles of APIs 

having poor aqueous solubility. In the liquid antisolvent 

process, a drug is first dissolved in a suitable solvent 

followed by its mixing with the antisolvent. To carry out 

LASC, the solubility of a drug must be known in different 

solvents. The solubility is measured experimentally at 

different temperatures which is time-consuming and 

expensive. Therefore, the prediction of solubility via semi-

correlations and thermodynamic models is desirable at 

different temperatures. Yarraguntla et al.  prepared the 

nanocrystals of lornoxicam via the antisolvent precipitation 

method [8].  The dissolution rate of the nano-sized drug is 

substantially increased, from 30.62 % for the raw drug to 

60.44 % for the processed drug in 60 minutes. They reported    

that the average particle size reduced from 3.04 µm to 149 

nm. 

     In this work, the solubility of lornoxicam in different pure 

solvents using semi-empirical correlations and 

thermodynamic models has been carried out. The 

experimental values have been compared with the model 

predictions. This study will be helpful for the drug 

formulation techniques to improve the dissolution rate and 

bioavailability of lornoxicam. 
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2. Semi-empirical Correlations and Thermodynamic 

Models  

    The equilibrium solubility data of lornoxicam is correlated 

with the Yaws model, Buchowski-Ksiazaczak (𝜆ℎ) model, 

Wilson model and NRTL model. The description of these 

models is given in this section.  

 

2.1 Yaws Model 

     The solubility data of API can be fitted as a function of 

temperature by the following semi-empirical correlation also 

known as the Yaws model [9].  

 

   ln 𝑥1 = 𝐶1 +
𝐶2

𝑇 
+

𝐶3

𝑇2
                                                            (3) 

 

where C1, C2 and C3 are the model parameters which are 

estimated by fitting the solubility data with temperature. T is 

the temperature in Kelvin. 

 

2.2 Buchowski-Ksiazaczak (𝝀𝒉) Model 

     The solubility of a drug is calculated by two parameters 

(𝜆 𝑎𝑛𝑑 ℎ) model described by the following semi-empirical 

correlation [10]. This model requires the melting 

temperature (𝑇𝑚) of the drug which can be calculated by 

differential scanning calorimetry (DSC) analysis.  

 

1

1

1 1 1
ln 1

m

x
h

x T T
 

    
      

    

                            (4)                             

 

2.3 NRTL Model 

     The solubility of solute can be written as the following 

form by the NRTL thermodynamic model [11].  

 

1 1

1 1
ln ln

fus

m

H
x

R T T


  
   

 
                                  (5)                                    

 

where, 𝛾1  is the activity coefficient for lornoxicam in the 

mixture which can be computed by the NRTL model 
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                                (6)                                                                                         

 

where, 𝛼12 represent the non-randomness of the mixture and 

the value of this lies between 0.2 to 0.47. ∆𝑔12 and ∆𝑔21  are 

adjustable energy interaction energy parameters. 

 

2.4 Wilson Model 

     The Wilson equation is also widely used to describe the 

behavior of the solid-liquid phase equilibrium. The activity 

coefficient by the Wilson thermodynamic model is 

calculated by the following expression [12]. 

  12 21

1 1 12 2 2

1 12 2 2 21 1

ln ln x x x
x x x x


  

      
    

                (7)                                                                            

     

2 12
12

1

exp
v

v RT

 
   

 
                                               (8)                                                                   

   

1 21
21

2

exp
v

v RT

 
   

 
                                               (9)                            

                      

𝑣1 and 𝑣2 are the mole volume of lornoxicam and solvent 

respectively. 

     The model parameters are estimated using the non-linear 

regression method. To examine the applicability and 

accuracy of these models, the average relative deviation 

(ARD%) as shown by equation (10) has been optimized and 

calculated. 

                              
exp

exp
1

100
%

calN
i i

i i

x x
ARD

N x


                                                (10)                        

 

where 
exp

ix and 
cal

ix represent the experimental and 

calculated solubility of lornoxicam respectively. N stands for 

the number of experimental points. Shakeel et al. reported 

the experimental data of the solubility of lornoxicam in 

ethanol and water [13].  

 

2.5 Thermodynamic Function of Mixing  

     The mixing properties such as mixing enthalpy, mixing 

entropy and mixing Gibbs free energy for ideal binary 

solutions can be estimated by the given equations [14] : 

                                 

∆𝑚𝑖𝑥𝐺𝑖𝑑 = 𝑅𝑇 ∑ 𝑥𝑖
𝑁
𝑖 ln 𝑥𝑖                              (11)                                                        

 

∆𝑚𝑖𝑥𝐻𝑖𝑑 = 0                                                            (12)                                

 

∆𝑚𝑖𝑥𝑆𝑖𝑑 = −𝑅 ∑ 𝑥𝑖
𝑁
𝑖 ln 𝑥𝑖                                        (13) 

                                                 

where 𝑥𝑖 is the mole fraction of component 𝑖. 
     In the real binary system, the mixing properties can be 

calculated from the ideal ones given the known excess 

properties 

 

∆𝑚𝑖𝑥𝐺 =  ∆𝑚𝑖𝑥𝐺𝑖𝑑 + 𝐺𝐸                                                        (14) 

             

∆𝑚𝑖𝑥𝐻 =  ∆𝑚𝑖𝑥𝐻𝑖𝑑 + 𝐻𝐸                                                  (15) 

                                     

∆𝑚𝑖𝑥𝑆 =  ∆𝑚𝑖𝑥𝑆𝑖𝑑 + 𝑆𝐸                                                   (16)                                    

  

where 𝐺𝐸 , 𝐻𝐸 , and 𝑆𝐸 refers to the excess properties, which 

can be computed by the following equations: 

 

𝐺𝐸 = 𝑅𝑇 ∑ 𝑥𝑖 ln 𝛾𝑖  
𝑁
𝑖                                                    (17)

                        

𝐺𝐸 = 𝑅𝑇( 𝑥1 ln 𝛾1 + 𝑥2 ln 𝛾2)                                         (18) 

                                                 

𝐺𝐸 = −𝑅𝑇[𝑥1 ln(𝑥1 + 𝑥2Λ12) + 𝑥2 ln(𝑥2 + 𝑥1Λ21)]     (19)                                                       

                   

𝐻𝐸 =  −𝑇2 [𝜕(𝐺𝐸 𝑇⁄ )
𝜕𝑇

⁄ ]                                              (20) 

                                                        

𝐻𝐸 =  𝑥1𝑥2 [
∆𝜆12Λ12

(𝑥1+Λ12𝑥2)
+

∆𝜆21Λ21

(𝑥2+Λ21𝑥1)
]                               (21) 

                                         

𝑆𝐸 =  
𝐻𝐸−𝐺𝐸

𝑇
                                                                      (22)                                     
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3. Results and Discussions 

     In this work, the solubility of lornoxicam is predicted by 

different semi-empirical correlations and thermodynamics 

models. In table 1, the experimental data and model 

predictions are reported. Table 2 shows that coefficient of 

correlation (R2) of these models. It is evident from Figure 1 

that the Yaws model can accurately predict the solubility of 

lornoxicam in ethanol and water. The average relative error 

of Yaws models is found to be 1.67 % and 2.24 % for ethanol 

and water respectively. The values of A, B and C are found 

5.5944, -5152.7, 1190.15 and 5.4293, -5427.08, 5074.63 for 

ethanol and water respectively. With these values of 

parameters, the solubility at any temperature can be 

calculated.  

 

 
Figure 1: Solubility estimation by Yaws model for ethanol 

and water and comparison with experiments [13]. 

 

Table 1: A comparison between experimental data and 

model values. 

T Shakeel 

et al.  

Yaws  

 
(𝜆 − ℎ)  

 

NRT

L  

Wilson  

 Solubility of lornoxicam in water, 𝑥 × 106 

298.15 2.91 3.002 1.53 2.59 2.47 

303.15 4.12 4.05 2.61 3.72 3.62 

308.15 5.52 5.4 4.37 5.28 5.22 

313.15 7.27 7.14 7.22 7.41 7.45 

323.15 11.9 12.17 18.8 12.46 14.69 

Solubility of lornoxicam in ethanol, 𝑥 × 106 

298.15 8.43 8.51 5.73 7.41 6.72 

303.15 11.6 11.3 8.95 10.46 9.85 

308.15 14.5 14.9 13.8 14.60 14.27 

313.15 19.8 19.4 20.88 20.17 20.42 

323.15 32.2 32.3 46.24 33.37 40.47 

 

Table 2: Coefficient of correlation value for different models. 

API-solvent 

system 

Coefficient of Correlation (R2 value) 

Yaws 

model 
(𝜆 − ℎ) 

model 

 

NRTL 

model 

Wilson 

model 

Lornoxicam-

water 

0.9469 0.2526 0.8104 0.5230 

Lornoxicam-

ethanol 

0.9972 0.3314 0.8301 0.4849 

 

     Buchowski-Ksiazaczak (𝝀𝒉) model is found to predict 

the solubility of lornoxicam in ethanol and water with the 

highest average relative error. To correlate the solubility data 

with this model, the fusion temperature (𝑇𝑚) is required. 

Kharwade et al. reported the fusion temperature of 

lornoxicam 479.8 K measured by differential scanning 

calorimetry [15].  Figure 2 shows the solubility of 

lornoxicam in ethanol and water. The average relative 

deviation of the predicted value from the experimental value 

is found to be 21.8 % and 32.66 % for ethanol and water 

respectively. The parameters value, 𝜆 𝑎𝑛𝑑 ℎ  to minimize the 

average relative deviation are found 0.1565, 51389 and 

0.3262, 29629,55 for ethanol and water respectively. 

 

 
Figure 2: Solubility estimation by Buchowski-Ksiazaczak 

(𝝀𝒉) model for ethanol and water and comparison with 

experiments [13].  

 

     Wilson model is a thermodynamic model based upon 

activity coefficient to estimate the solid-liquid equilibria. 

The model parameters ∆𝜆12  𝑎𝑛𝑑 ∆𝜆21 are estimated to 

predict the solubility of lornoxicam at different temperatures. 

The Δ𝐻𝑓 value is required to estimate the solubility which is 

reported to be 54.3 kJ/mol [15]. The molar volume of 

lornoxicam is calculated by dividing the molar mass by the 

density at room temperature. The density of lornoxicam is 

estimated by the following expression 

 

𝜌 =  
𝑧𝑀

𝑉𝑁𝐴
                                                                             (23) 

 

where z is the number of formula of lornoxicam in the crystal 

unit cell, M is the molar mass, V is the volume of the unit 

cell and 𝑁𝐴 is Avogadro number. Nijhawan et al. reported the 

crystallographic parameters of lornoxicam [16] 

The values of model parameters (∆𝜆12  𝑎𝑛𝑑 ∆𝜆21) are 

150.5255, 45333.59 for ethanol and 2767 .707, 47771.45 for 

water respectively. The average relative deviation is found 

10.27 % and 11.73 % for ethanol and water respectively.  

     The NRTL model is derived from the concept of local 

composition and is commonly used to describe solid-liquid 

equilibria. As evident from figure 4, the NRTL model gives 

good fitting of the experimental solubility data of 

lornoxicam. The average relative deviation is found 8.11 %  

for ethanol and 9.23 % for water. The Δ𝑔12 and Δ𝑔21 , 
adjustable energy interaction parameters, are found 3374.12 

and 43081.98 for ethanol and 5997.511 and 43209.33 for 

water. Figure 5 and Figure 6 show the comparison of 

experimental data with predicted values by each model for 

ethanol and water respectively.   

     Kui and Yajun [17] measured the solubility of 2-

chlorobenzenesulfonamide in different solvents ad found 

that NRTL model gave the best fitting performance as 
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compared to (𝜆 − ℎ) model and Wilson model. The authors 

did not correlate the solubility data with the Yaws model In 

our work also, NRTL model also gave better results as 

compared with (𝜆 − ℎ) model and Wilson model. However, 

Yaws model, as it is a semicorrelation rather than based on 

the complete theoretical principle, gave best result. 

 

 
Figure 3: Solubility estimation by Wilson model for ethanol 

and for water and comparison with experiments [13]. 

 

 
Figure 4: Solubility estimation by NRTL model and for 

ethanol and for water water and comparison with 

experiments [13]. 

 

 
Figure 5:  A comparison of experimental solubility data [13] 

of lornoxicam in ethanol with the predicted values from Yaws 

model, 𝜆 − ℎ 𝑚𝑜𝑑𝑒𝑙, Wilson and NRTL model. 

 
Figure 6: A comparison of experimental solubility data [13] 

of lornoxicam in water with the predicted values from Yaws 

model, 𝜆 − ℎ 𝑚𝑜𝑑𝑒𝑙, Wilson and NRTL model. 

 

     The enthalpy of mixing, entropy of mixing and Gibbs free 

energy of mixing in ethanol and water are estimated and 

shown in Table 3. The Gibbs free energy of mixing in all 

mono-solvents is negative indicating a spontaneous and 

favorable mixing process of lornoxicam in ethanol and 

water. The enthalpy of mixing of lornoxicam is positive 

which means that dissolution is an endothermic process.  

 

Table 3: The thermodynamic properties of lornoxicam in 

ethanol and water. 

T/K ∆𝑚𝑖𝑥𝐺  

(𝑘𝐽/𝑚𝑜𝑙) 

∆𝑚𝑖𝑥𝐻  

(𝑘𝐽/𝑚𝑜𝑙) 

∆𝑚𝑖𝑥𝑆 

(𝑘𝐽/𝑚𝑜𝑙. 𝐾) 

    Ethanol    

298.15 -0.1637 0.0011 5.528 × 10−4 

303.15 -0.2299 0.0015 7.6348 × 10−4 

308.15 -0.3189 0.0022 10.42 × 10−4 

313.15 -0.4371 0.0031 14.06 × 10−4 
323.15 -0.7945 0.0059 24.77 × 10−4 

Water    

298.15 -0.0570 0.0068 2.1403 × 10−4 

303.15 -0.0814 0.0100 3.0150 × 10−4 
308.15 -0.1148 0.0144 4.1945 × 10−4 

313.15 -0.1599 0.0206 5.7644 × 10−4 

323.15 -0.2999 0.0406 1.54 × 10−4 

 

4. Conclusion 

     In this work, the solubility of lornoxicam in ethanol and 

water has been modeled using two semi-empirical 

correlations- Yaws model, Buchowski-Ksiazaczak (𝝀𝒉) 

model - and two thermodynamic models – NRTL model and 

Wilson Model. The solubility data is required for antisolvent 

crystallization and different formulation techniques. Each 

model predicted the solubility increased monotonously with 

increasing temperature. The best prediction was given by the 

Yaws model followed by the NRTL model. Based upon the 

thermodynamic mixing properties, it can be concluded that 

dissolution of lornoxicam in ethanol and water is 

spontaneous, endothermic and entropy-driven.   
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Nomenclature: 

A Surface area of the particle (m2) 

C Concentration of solute (-) 

C1, C2, C3 Constants in Yaws model (-) 

Cs saturation solubility (mol/m3) 

D diffusion coefficient (m2/s) 

L thickness of the diffusion layer (m) 

C∞ 
Solubility of large particles of drug 

(mol/m3) 

V Molar volume (m3) 

T Temperature (K) 

R Universal gas constant (J/mol K) 

ρ Density of drug (kg/m3) 

σ Interfacial tension (N/m) 

𝜆, ℎ 
Constants in Buchowski-Ksiazaczak 

model (-) 

x1 Drug mole fraction (-) 

Tm Melting temperature of drug (K) 

𝛾1 Activity coefficients (-) 

∆𝑓𝑢𝑠𝐻 Fusion enthalpy (J/m) 

x2 Mole fraction of solvent (-) 

∆𝑔12, ∆𝑔21 
adjustable energy interaction energy 

parameters in NRTL model (-) 

𝛼12 non-randomness of the mixture (-) 

∆𝜆12, Δ𝜆21 adjustable energy interaction energy 

parameters in Wilson model (-)  

 ∆𝑚𝑖𝑥𝐺𝑖𝑑 Gibbs free energy for ideal solution 

(J/mol) 

∆𝑚𝑖𝑥𝐻𝑖𝑑 Enthalpy of mixing for ideal solution 

(J/mol)  

   ∆𝑚𝑖𝑥𝑆𝑖𝑑 Entropy of mixing for ideal solution 

(J/mol K) 

𝑆𝐸 , 𝐺𝐸  , 𝐻𝐸                                                                                                      Excess Entropy, Gibbs Free Energy and 

Enthalpy 
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Abstract 

 

The SrO–Nb2O5 system, especially Sr5Nb4O15 compound is of interest for their use as an electroceramics. In this work, 

Sr5Nb4O15 compound was synthesized by solid-state reaction and characterised by XRD. Thermodynamic properties 

like heat capacity, enthalpy of formation and Gibbs energy of formation of Sr5Nb4O15 have been measured. The 

standard molar enthalpy of formation of Sr5Nb4O15(s) was determined using an oxide melt solution high temperature 

calorimeter. Based on these experimental data, a self-consistent thermodynamic function of this compound was also 

generated. This thermodynamic data is essential for the optimization of synthesis conditions for materials and for the 

evaluation of their stability under appropriate technological operating conditions. 

 

Keywords: Heat capacity; dsc; high temperature calorimeter; enthalpy of formation; niobates. 

 

1. Introduction 

Strontium niobates in the binary system SrO–Nb2O5 are 

potential multifunctional materials with cation-deficient 

perovskite structure. They have high dielectric constant, less 

dielectric loss, and low temperature dependence of dielectric 

constant. They are promising materials for microwave 

ceramics [1-3]. They are also investigated as valuable crystal 

host for luminescent lanthanide ions [4]. Sr5Nb4O15 is mainly 

interesting for their promising photocatalytic activity [5]. 

Furthermore, in the nuclear industry, ternary oxides of 

strontium and niobium may form as fission product 

compounds in an operating nuclear reactor with oxide fuels 

under certain oxygen potential. Evaluations of 

thermodynamic stability of these ternary oxides are therefore 

important for assessment of fission product interactions. 

Sr5Nb4O15(s) is highest melting compound in the SrO-Nb2O5 

system. Whiston and Smith have first reported the existence 

of Sr5Nb4O15 compound which is a iso-structural with the 

tantalum analogue [6]. Earlier, crystal structure analysis of 

the Sr5Nb4O15 compound was performed by Weiden et al. [7]. 

Recently, in-depth crystal structure analysis on Sr5Nb4O15 

point to that it crystallizes in the trigonal P-3c1 space group, 

which is considered to be a subsection of hexagonal structure 

[8]. The structure contents three inequivalent Sr2+ sites, two 

inequivalent Nb5+ sites and three inequivalent O2- sites [8]. 

Phase relations in the binary system SrO–Nb2O5 were 

investigated by Carruthers and Grasso [9] and more recently 

by [10]. A thermodynamic assessment of the SrO–Nb2O5 

system was accomplished by Yang et al. [11]. 

Thermodynamic functions of oxides reported in SrO–Nb2O5 

system were assessed using Calphad technique. Leitner et al 

[12] measured heat capacities (20-350 K) and enthalpy 

increments (670-1370 K) of strontium niobates. The 

standard molar entropies at 298 K have been reported from 

low temperature heat capacity data. There is no 

experimentally determined heat capacity of this compound 

from 350-670 K. The Gibbs energy of formation and 

enthalpy of formation of the compound is not available in 

literature. Moreover, thermodynamic data of these oxides are 

also of relevance to compute phase diagram and phase 

stability of multicomponent systems. Hence, in the present 

study, Sr5Nb4O15(s) was prepared and characterized first. 

Then heat capacity, Gibbs energy of formation and enthalpy 

of formation of the compound was determined employing 

differential scanning calorimetry, Knudsen effusion 

technique and high temperature oxide melt solution 

calorimeter, respectively. The thermodynamic table of this 

compound was also evaluated using heat capacity data. 

 

2. Experimental Procedure  

2.1. Synthesis of Compounds and Characterization 

Sr5Nb4O15(s) powder sample was prepared using 

conventional solid state reaction route using SrCO3 (Alfa 

Aesar, mass fraction 0.9995) and Nb2O5 (Alfa Aesar, mass 

fraction 0.999). Prior to mixing, SrCO3(s) and Nb2O5(s) were 

first dried under the flow of high purity Ar(g) at 873 K for 8 

h and then cooled overnight under continuous flow of Ar(g). 

Stoichiometric amount of dried carbonate and Nb2O5 were 

properly mixed using an agate mortar and pestle and made 

into pellets. The pellet was then heated at 1000 K in a 

platinum boat for a period of 120 h with three intermediate 

grindings. Finally, the pellets were powdered and stored 

inside desiccator. Phase formation and lattice parameters of 

Sr5Nb4O15(s) were determined using a Miniflex 600 X-ray 

diffractometer (Model: Rigaku, Japan) with graphite 

monochromatized Cu Kα1 radiation (λ = 0.15406 nm).  
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2.2 Knudsen Effusion Quadruples Mass Spectrometry 

(KEQMS) 

In this study, an indigenously developed Residual Gas 

Analyzer (RGA) (Model: Hiden HAL/3F 501, UK) based on 

quadruple mass spectrometer connected to a Knudsen 

effusion system was used for measurement of equilibrium 

partial pressures of permanent gases. The details of the 

experimental setup have been described by Rakshit et al. 

[13]. For the sake of clarity, schematic of KEQMS has been 

presented in Figure 1. The temperature near the Knudsen cell 

was measured using a pre-calibrated (ITS-90) chromel–

alumel thermocouple. The Knudsen cell used was made of 

boron nitride (BN) with a knife edged orifice of diameter 0.8 

mm at the centre of the upper lid. A Faraday cup detector is 

used to collect the ions generated which is proportional to 

ion intensity. The ion intensity of the ith ion is related to 

partial pressure and is represented as: 

 

( ) /( )i inst i i ip K I T a                                                        (1) 

 

Where,  Kinst  is the instrumental constant, 


iI  is the 

measured ion current in ampere, T is the absolute 

temperature, σi is the electron impact cross-section and ia  is 

the isotopic abundance of the specific ion. Taking natural 

logarithm on both sides, the Eq. (1) can be written as: 

 

iiiinsti aTIKp lnln)ln(lnln                              (2)  

 

For permanent gaseous species such as CO2
+ (m/e =44), 

the value of lnσi is - 45.52 at 30 eV [14]. The isotopic 

abundance of CO2 is taken as 100% (lnai = 0). Thus, Eq. (2) 

becomes 

 

ln{p(CO2 / atm)} = lnKinst  +  ln(I+T)  + 45.52                            (3) 

 

For Knudsen effusion quadruple mass spectrometry 

(KEQMS) experiment, a phase mixture of {Sr5Nb4O15 (s) + 

Nb2O5(s) + SrCO3(s)} was prepared by homogenously 

mixing the individual compounds in their stoichiometric 

proportions under moisture free condition and made into 

pellet. The pellet was heated at 700 K and stored inside 

desiccators.  

 

 
Figure 1. Schematic diagram of KEQMS setup. 

 

2.3 Measurement of Heat Capacity using Differential 

Scanning Calorimeter 

A standard three step method [15], blank-blank, blank-

reference and blank-sample was followed for the 

measurement of the heat flow rate signal of base line, 

reference and sample, respectively. Heat capacity 

measurements of known amount of Sr5Nb4O15(s) were 

carried out in a platinum crucible with lids using Labsys 

Evo1600 simultaneous thermal analyzer system (Setaram 

Instrumentation, France). The flow rate of 30 mL∙min–1 of 

dry argon (purity, 99.9999%) and a heating rate of 5 K∙min−1 

with continuous scanning mode was maintained during all 

measurements. The phase transition temperature of standard 

reference materials e.g. In, Sn, Pb, Al and Ag under the 

scanning rate of 2, 5 and 10 K·min-1 was measured for the 

temperature calibration of the DSC. A temperature 

correction factor as a function of heating rate was plotted and 

the value corresponding to zero heating rate was obtained. 

The corrected temperature was used for the heat capacity 

measurement of the compound. NIST synthetic sapphire 

(SRM-720, mass fraction purity 0.9999) was used as 

reference material with known heat capacity values obtained 

from the literature [16]. The values of heat capacity of 

Zirconia (Alfa Aesar, USA, mass fraction 0.99978) were 

measured in the same temperature range to check the 

accuracy of the calorimeter which was found to be within 

±2% compared to the literature values [16]. 

 

2.4 High Temperature Solution Calorimetry 

Standard molar enthalpy of formation of Sr5Nb4O15(s) 

was determined by measuring the enthalpy change for the 

dissolution of Sr5Nb4O15(s) and its starting materials such 

as SrCO3(s) and Nb2O5(s) in liquid {PbO + B2O3} solvent (in 

2:1 molar ratio) at 966 K using Alexsys high temperature 

calorimeter (Setaram, France). The details of experimental 

set up and its working formulae has been reported in our 

earlier publication [17]. ~10g of {PbO + B2O3} solvent (in 

2:1 molar ratio) is taken inside a platinum crucible for each 

experiment. Three consecutive addition of solute in the 

solvent were carried out to check the reliability of the 

experimental data. Calibration of the calorimeter was 

performed by adding small pieces of synthetic sapphire 

[NIST SRM-720] [18] from 298 K into platinum crucible, 

maintained at 966 K. The weight of the sample and synthetic 

sapphire [NIST SRM-720] was in the range 20-50 mg, 

respectively. The accuracy of the instrument obtained using 

enthalpy increment values of molybdenum (99.997% purity) 

and NBS standard synthetic sapphire (SRM 720) was found 

to be better than ±2%. 

 

3. Result and discussion 

3.1 Characterization 

The purity of Sr5Nb4O15(s) powder was established by 

using X-ray diffraction (XRD) analysis. The XRD pattern of 

the sample is shown in Figure 2 and are compared with that 

of diffraction line of compound given in the reference 

(JCPDS XRD file No. 00-048-0421) [19]. The compound 

crystallizes in the distorted hexagonal unit cell (P3m) with 

the cell parameters a = b = 5.6552(5) Å and c = 11.4557(8) 

Å. They are in good agreement with that of reported cell 

parameters such as a = b = 5.6576(6) Å and c = 11.4536(4) 

Å [20]. No diffraction line corresponding to starting material 

phases and other unwanted phases were found in the XRD 

pattern indicating pure form of compound. 

 

3.2 Gibbs Energy of Formation of Sr5Nb4O15(S) using 

KEQMS 

The calibration of the mass spectrometer with Knudsen 

cell setup was carried out by measuring the ion intensities of 

CO2
+ using the phase mixture of {SrCO3(s) + SrO(s)} at 30 

eV ionization energy and keeping the other ion optic 

parameters constant for all sets of measurements. These ion 
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intensities and the partial pressure values of the CO2 from the 

literature were used for the calculation of Kinst. The following 

equilibrium reaction was established inside the Knudsen cell. 

 

SrCO3(s) = SrO(s) + CO2(g)                                                        (4) 

 

 

Figure 2. Powder XRD pattern of Sr5Nb4O15(s). 

The individual ion intensities of CO2
+ peak over the 

equilibrium phase mixture were recorded at different 

temperatures. The ion intensities of several runs are least 

square fitted as a function of temperature and is expressed 

as: 

 

ln{I+(CO2).T} = −29426 (±494) / (T / K) + 13.5 (±0.54)         

(840 ≤ T / K ≤ 950)                                                               (5) 

 

Values of instrument constant was determined by using 

Eq. (3) and values of partial pressure of CO2(g) from 

literature [16] and experimentally determined ion intensity 

of CO2(g) over the phase mixture {SrCO3(s)+SrO(s)}. The 

calculated instrumental constant (Kinst) as a function of 

temperature is represented as: 

 

lnKinst (±0.04) = -39.2 + 633/(T/K)    (840 < T /K < 950)       (6) 

 

Ion intensity of CO2
+ over the phase mixture of 

{CaCO3(s) + CaO(s)} was also measured to check the 

accuracy of the measurements using the same experimental 

setup (Figure 1) after determining the partial pressures as a 

function of temperature. The corresponding equilibrium 

reaction was: 

 

CaCO3(s) = CaO(s) + CO2(g)                                               (7) 

 

The values of ln{p(CO2 / atm)} for Eq.(7) was calculated 

from Eq.(3) and using instrumental constant, Eq.(6) and 

other values for CO2
+ ion. The corresponding expression is 

given as: 

 

ln{p(CO2 / atm)} =−21576 (±597) / (T/K) + 19.35 (±0.74)    

(690 ≤ T / K ≤ 865)                                                              (8) 

 

The enthalpy change related to reaction (7) at the average 

experimental temperature (Tav = 775 K) was calculated using 

Eq. (8) and found to be rH◦
m (775 K) = (179±5) kJ·mol-1, 

which is in good agreement with that of literature (178.5 

kJ·mol-1) [16]. 

Prior to the actual experiment, the background signals 

were also monitored by heating the Knudsen chamber with 

empty Knudsen cell at different temperatures from ambient 

to 1160 K at a pressure level of 1×10−5 Pa. The background 

signals as a function of temperature are shown in Figure 3. It 

is evident from Figure 3 that the background signals 

corresponding to H2
+, N2

+, CO+ and CO2
+ do not change 

appreciably with change in temperature. 

 

 
Figure 3: Background signal of KEQMS as a function of 

temperature. 

 

During experiments, the actual signals were obtained by 

subtracting the ion intensities due to background. The ion 

intensities of CO2
+ for {Sr5Nb4O15(s) + 5SrCO3(s) + 

2Nb2O5(s)} phase mixture was measured at 30 eV ionization 

energy in the temperature range 870–1055 K. The values of 

ion intensity of CO2 over the phase mixture were tabulated 

in Table 1. 

 

Table 1. Ion intensities of CO2 peak over equilibrium phase 

mixture of {Sr5Nb4O15(s) + 5SrCO3(s) + 2Nb2O5(s)} as a 

function of temperature. 

T/K I (CO2
+)/A T/K I+(CO2

+)/A 

871.6 4.00E-09 963.7 3.27E-08 

887.6 5.49E-09 973.6 4.07E-08 

903.2 7.92E-09 980.8 4.76E-08 

919.0 1.22E-08 993.6 6.24E-08 

934.2 1.66E-08 1013.6 9.73E-08 

949.5 2.38E-08 1033.6 1.52E-07 

951.6 2.58E-08 1054.7 2.34E-07 

 

Partial pressures of CO2, p(CO2), at different 

temperatures for three different runs were calculated using 

the measured ion intensities and the calibration constant 

from Eq. (6). Variation of lnp(CO2) as a function of 

temperature is shown in Figure 4 which shows a linear trend 

and can be expressed as:  

 

ln{p(CO2 / atm)} =−20887 (±260) / (T/K) + 18.5 (±0.3)     

 (870 < T(K) < 1055)                                                           (9) 

  

The following equilibrium reaction was established 

inside the Knudsen cell under experimental conditions, 

 

5SrCO3(s) + 2Nb2O5(s) = Sr5Nb4O15 (s) + 5CO2(g)             (10) 

 

The enthalpy change associated with the above reaction 

at the average temperature of the measurement was 
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estimated to be ΔrH0
m (962 K) = 868 kJ mol-1. The standard 

molar Gibbs energy of reaction, ΔrG0
m(T), was calculated 

from Eq. (6) using the relation  

 

ΔrG0
m(T) (kJ·mol-1)(±7)= (-RT ln pCO2)×0.001 

= 868 + 0.8×T /K (870< T/K < 1055)                                           (11) 

 

 
Figure 4: Variation of partial pressure of CO2(g) as a 

function of temperature over ternary phase mixture 

{Sr5Nb4O15 (s)+5SrCO3(s)+2Nb2O5(s)}. 

 

The standard molar Gibbs energies of formation of 

Sr5Nb4O15 from the elements were calculated from Eq.(8) 

and the values of ΔfG0
m (T) for CO2(g), SrCO3(s) and 

Nb2O5(s) given in Table 2. 

 

Table 2. Standard molar Gibbs energy of formation, 

ΔfG0
m(T) of different compounds [16,18]. 

Compound ΔfG0
m(T)(kJ.mol-1) 

CO2(g) -394-0.0016×T 

SrCO3(s) -1223+0.263×T 

Nb2O5(s) -1899+0.180×T 
 

The corresponding expression  

 

ΔfG0
m(Sr5Nb4O15, s, T) (kJ.mol-1)(±8) 

= -7075 + 1.3×T /K      (870< T(K) < 1055)                               (12) 

 

The enthalpy of formation of Sr5Nb4O15(s) from their 

element at average temperature, 962 K, was -7075(±8) 

kJ·mol-1.  

 

3.3 Measurement of Heat Capacity 

The molar heat capacities of Sr5Nb4O15(s) were measured 

as a function of temperature from 300 K–1000 K and the 

values are presented in Table 3.  

Variation of heat capacities of Sr5Nb4O15(s) was plotted as a 

function of temperature and is shown in Figure 5. Low 

temperature heat capacity for this compound has been 

reported in literature [12] along with heat content of the 

compound from 670 K-1370 K. Authors have also assessed 

variation of Cp, m function above room temperature by 

combining the data of heat capacity from DSC and the 

enthalpy increment from drop calorimetry. There is no direct 

measurement of high temperature heat capacity data reported 

in literature. The measured heat capacity data are compared 

with assessed Cp values in Figure 5. 

Table 3. Variation of heat capacity of Sr5Nb4O15(s) with 

Temperature. ( T in K and Cp,m in J·mol-1· K-1). 

T Cp,m T Cp,m 

300.0 482.5 665.2 583.6 

308.5 485.4 673.1 585.1 

317.0 488.8 680.8 586.6 

325.5 491.9 688.4 588.0 

334.0 496.3 696.2 589.5 

342.5 499.7 703.9 591.0 

350.9 503.6 711.6 592.4 

359.4 506.6 719.3 593.8 

367.9 509.4 727.1 595.3 

375.9 512.6 734.7 596.7 

384.4 515.2 742.3 598.1 

392.1 518.0 750.0 599.5 

400.4 521.0 757.7 600.8 

408.7 523.9 765.3 602.2 

417.2 526.7 773.1 603.6 

425.2 528.6 788.4 606.3 

433.7 530.5 796.1 607.7 

442.0 533.0 803.7 609.0 

450.3 535.5 811.4 610.3 

458.7 537.9 819.0 611.7 

466.6 540.1 826.6 613.0 

474.8 542.4 834.2 614.3 

483.0 544.6 841.9 615.6 

491.1 546.7 849.5 616.9 

499.3 548.8 857.0 618.2 

507.3 550.8 864.7 619.5 

515.4 552.8 872.1 620.8 

523.4 554.8 879.7 622.1 

531.4 556.7 887.2 622.6 

539.5 558.6 894.8 623.1 

547.4 560.4 902.2 624.4 

555.5 562.3 909.7 625.6 

563.5 563.3 917.4 626.1 

571.3 565.0 924.8 627.4 

579.1 566.7 932.4 627.9 

587.0 568.4 939.9 629.7 

594.9 569.4 947.3 630.9 

602.8 571.8 955.0 632.1 

610.6 573.4 962.4 633.3 

618.5 575.0 969.9 635.3 

626.3 576.6 977.3 636.3 

634.1 578.2 984.9 636.9 

642.1 579.1 992.3 638.1 

649.6 580.6 999.8 638.6 

657.4 582.1 1007.3 639.1 
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Figure 5: Variation of heat capacity with Temperature of 

Sr5Nb4O15 (s) compound 

The heat capacity data obtained in this study using DSC, 

is in good agreement with that of estimated one from 

Neumann Kopp’s rule (NKR). The individual values of heat 

capacities were least square fitted as a function of 

temperature and the best fit is represented as 

 

Co
p, m (Jmol-1K-1) = (501.3±1.3)+(0.1438±0.0014)×(T/K)-

(5928082±116602)/(T/K)2 (300 ≤ T / K ≤ 1000)            (13) 

 

The heat capacity values of SrO and Nb2O5 for Neumann 

Kopp’s rule (NKR) estimation are taken from the literature 

[16]. The estimated values of heat capacity using NKR are 

plotted in Figure 5. It can be seen that the heat capacity 

values obtained from DSC is slightly lower than the values 

calculated using NKR up to 900 K. Beyond 900 K, the DSC 

values is slightly higher than NKR values. According to 

Dulong Petit Law, the 3NR values for Sr5Nb4O15(s) is 

calculated to be 600 Jmol-1K-1. The interception of 

experimental heat capacity values with 3NR values indicate 

the Debye temperature of the compound. The Debye 

temperature is calculated to be 750 K for Sr5Nb4O15(s). The 

Cp,m of Sr5Nb4O15(s) at 298 K is compared in the Table 4. 

Table 4 indicates that all values are in good agreement with 

each other. 

 

Table 4. Heat capacity of Sr5Nb4O15(s) at 298 K. 

Compound Cp,m (Jmol-1K-1) at 298 K 

 Own data Ref.[10] NKR 

Sr5Nb4O15 477.8 478.5 491.1 

 

3.4. Enthalpy of Formation using High Temperature 

Oxide Melt Solution Calorimetry 

Standard molar enthalpy of formation of Sr5Nb4O15(s) 

sample was derived from the enthalpy of dissolution data of 

the compound and its component oxides viz., SrO(s) and 

Nb2O5(s) in molten PbO+B2O3 (2:1 molar ratio) solvent 

maintained at 966 K.  

The molar enthalpy of dissolution of SrO(s) was obtained 

indirectly using a separate thermochemical cycle employing 

enthalpy of dissolution of its carbonates SrCO3(s). 

The details of the experimental measurements have been 

described elsewhere [13]. For sake of clarity, a schematics of 

the calorimeter is given in the Figure 6.  

Table 5 gives the thermochemical cycle for derivation of 

standard molar enthalpies of dissolution of SrO(s, 298 K). 

The enthalpies of decomposition of ΔdecomH(SrCO3) are -

234.3 kJ·mol-1. The value of enthalpy increment of CO2(g) 

was taken from literature and is equal to 32 kJ·mol-1[16]. 

 

 
Figure 6. Schematic of high-temperature Calvet-type 

solution calorimeter (Alexsys-1000, make SETARAM, 

France). 

Table 5. Standard molar enthalpies of dissolution of SrO(s, 

298K); sol= molten PbO + B2O3 (2:1) solvent at 966 K; 

dsHo
298(MO)= H1 + H2 +H3. 

Reactions Hi Ref. 

SrCO3(s, 298 K)+sol(T K)= 

(SrO)sol(T K) + CO2(g,T K) 
H1 This 

Work 

SrO(s, 298 K) + CO2(g, 298 

K)= SrCO3 (s, 298 K)   
H2  Ref. [16] 

CO2(g, T K)= CO2(s, 298 K) H3  Ref.[16] 

SrO(s, 298 K)+sol(T K) = 

(SrO)sol(T K) 
dsHo

298 This 

Work 

 

Enthalpy increments for carbonates are measured at the 

same experimental temperature and are used for the 

calculation. The enthalpy of solution of SrO, when added 

from 298.15 K, ΔdsH(SrO), also known as enthalpy of drop 

solution, is calculated to be -59.5 kJ·mol-1. The enthalpy of 

solution of the Sr5Nb4O15(s) in liquid PbO + B2O3 (2:1) 

solvent at 966 K at infinite dilution was measured for few 

successive additions and presented in Table 6. In our earlier 

publication, we have reported the enthalpy of solution of 

Nb2O5 in lead borate solvent for the first time and details is 

given in ref [17]. During each dissolution experiment, the 

solvent to solute ratio was maintained so that infinite dilution 

condition is sustained. The values of enthalpies of drop 

solution of Sr5Nb4O15(s) from 298 K cited in Table 6, are 

random in nature which indicates the absence of composition 

dependence and significant dilution effect. 

The enthalpies of drop solution of SrO and Nb2O5, 

obtained in present experiment and other literature data using 

lead borate solvent are compared in Table 7. 

Thermodynamic cycles were constructed to calculate the 

enthalpy of formation of Sr5Nb4O15 from the elements and 

are presented in Table 8.  
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Table 6: The molar enthalpy of dissolution of Sr5Nb4O15(s) 

in molten PbO+B2O3 (2:1 molar ratio) solvent maintained at 

966.1 ± 0.1 K and P =0.1 MPa; dsHm = molar enthalpy of 

drop solution.  

Solute Mass 

/mg 
dsH 

/kJ·mol-1 

Sr5Nb4O15 (s) 

Mol. Mass 

 =1049.72 g·mol-1 

13.03 323.0 

13.06 326.1 

13.22 324.3 

14.95 321.9 

17.24 329.8 

14.50 325.5 

 
Mean: 324.8 ± 

3.5 

 

Table 7. Comparison of enthalpy of drop-solution (dsH) of 

SrO and Nb2O5 in lead borate solvent. The error is twice the 

standard deviation of the mean. 
 ΔdsH/kJ·mol–1 in (2PbO+B2O3) solvent  

This study Literature 

SrO -59.5 ± 1.7 at 966 K -60.5 ± 2.0 at 975 K [21] 

 

Nb2O5 66.6± 1.9 at 966 K  - 

 

Table 8. Thermodynamic cycles for the standard molar 

enthalpy of formation (ΔfHo
m at 298 K) of Sr5Nb4O15 (s) from 

elements. 

 Reactions ΔH (kJ·mol-1) 
Sr5Nb4O15 (s, 298 K) → 5SrO (dis, 966 K) + 

2Nb2O5 (dis, 966 K)  

ΔH1=324(±5) 

SrO (s, 298 K) → SrO (dis, 966 K)  ΔH2 = -58(±2) 

Nb2O5 (s, 298 K) → Nb2O5 (dis, 966 K) ΔH3= 68(±2) 

Sr (s, 298 K) + 0.5O2 (g, 298 K) → SrO (s, 298 

K) 

ΔH4= -592(±1)a 

2Nb (s, 298 K) + 2.5O2 (g, 298 K) → Nb2O5 

(s, 298 K) 

ΔH5= -1899(±2)a 

5Sr (298 K) + 4Nb (298 K) + 7.5O2 (298 K) → 
Sr5Nb4O15 (s,298 K) 

ΔfH
0

m(298 K) 

Hence, ΔfH
0

m(298 K) = – ΔH1 + 5 ΔH2 + 2ΔH3 

+ 5ΔH4 + 2ΔH5  

-7236(±7) 

 

The fH0
m(298.15 K) of the compound from the elements 

is -7236±7 kJmol-1. Enthalpy of formation of the component 

oxides, SrO(s) and Nb2O5(s) are taken from ref. [16]. The 

Gibbs energy of formation was calculated using our enthalpy 

of formation and entropy of formation at 298 K. 

 

fG0
298(Sr5Nb4O15(s)) = fH0

298 - 298×0.001×fS0
298 

= - 6808.4 kJ·mol-1                                                                (14) 

 

The standard molar enthalpy of formation of 

Sr5Nb4O15(s) with respect to the constituent oxides (i.e., 

SrO and Nb2O5) at 298 K is found to -478 kJ·mol-1. This 

indicates that Sr5Nb4O15 (s) is relatively more stable 

compared to its binary oxides. 

 

4. Thermal Function of the Sr5Nb4O15 Compound 

The basic function such as Co
p,m(T ), {Ho

m(T )- 

Ho
m(298.15 K)} and {So

m(T)- So
m(298.15 K)} as a function 

of temperature are incorporated in the thermodynamic table 

as shown in Table 9. The smoothed values of measured heat 

capacity at regular interval of temperature were used to 

estimate the standard molar entropy and enthalpy for 

Sr5Nb4O15(s). The standard molar entropy and enthalpy for 

Sr5Nb4O15 (s) are related to heat capacity as per the relation 

(15) and (16) respectively. 

 

S0
TK (Sr5Nb4O15)- S0

298 K (Sr5Nb4O15) 

= ∫TK
298K (Cp

0(Sr5Nb4O15)/T) dT                                            (15) 

 

ΔH0
TK (Sr5Nb4O15) - ΔH 0

298 K (Sr5Nb4O15)  

= ∫TK
298K Cp

0(Sr5Nb4O15) dT                                                  (16) 

 

The calculated values of these thermodynamic functions 

have been presented in Table 9 and have an uncertainty of 

within ±2–3%. The gradual increase of values of the entropy 

and enthalpy with temperature, indicate the absence of any 

magnetic and phase transition of the compound. The 

standard molar entropy of Sr5Nb4O15(s) was taken from the 

literature [16]. Free energy function (Fef) for compound can 

be derived using the following Eq. (16): 

 

Fef= -[( H 0
T -H 0

298 ) /T]+ S 0
T                                          (17) 

 

The Free energy function (Fef) of the compound also 

listed in Table 9 as a function of temperature. Uncertainties 

for thermodynamic functions were calculated as twice the 

standard deviation (±2σ) of the experimental values. 

 

Table 9. Thermodynamic functions for the compound 
Sr5Nb4O15(s). 

T/K Fitted 

Co
p 

/J·K-

1·mol-1 

(Ho
T – 

Ho
298.15) 

/kJ·mol-1 

(So
T – 

So
298.15) 

/J·K-1·mol-1 

Fef 

/J·K-1·mol-

1 

298 477.7 0 0 524.50 

300 478.9 1.0 3.19 524.22 

400 521.9 56.3 147.45 531.15 

500 549.6 116.4 267.06 558.67 

600 571.2 180.4 369.23 593.02 

700 589.9 247.8 458.71 629.15 

800 607.1 318.5 538.62 665.01 

900 623.4 392.3 611.08 699.75 

1000 639.2 469.1 677.58 733.04 

 

5. Conclusions 

Standard enthalpy of formation of Sr5Nb4O15(s) is 

determined employing oxide melt solution calorimeter for 

the first time and is found to be -7236 ± 8 kJmol-1. The 

enthalpy of formation calculated at 965 K from mass 

spectrometric is found to be -7075 kJmol-1. Both the values 

are in good agreement with each other. The molar heat 

capacity of the Sr5Nb4O15(s) is measured using DSC. The 

standard molar heat capacity of Sr5Nb4O15(s) derived from 

the DSC experiment are compared with the values reported 

by ref.[12]. Smoothed heat capacities values are used for the 

calculation of the thermodynamic table. The values of 

standard thermodynamic functions for Sr5Nb4O15  at T = 298 

K are: Co
p,m(298 K) = 477.7 J·K-1·mol-1; ΔfHo

m(298 K) = -

7236 kJ·mol-1; ΔfGo
m (298 K) = - 6808 kJ·mol-1; fef (298 K) 

= 524.5 J·K-1·mol-1. Therefore, this data are important for 

assessment of fission product interactions and for modeling 

of fuel thermodynamics which plays an important role in 

predicting long term stability of these materials under 

different reactive conditions. Enthalpy of formation and 

Gibbs energy formation data for this compound would be 
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useful for predicting the stability of the compound in 

different physico-chemical conditions. 

 

Nomenclature 

ΔfGo
m Molar Gibbs Energy of formation (kJ·mol-

1) 

fH0
m Molar Enthalpy of formation (kJ·mol-1) 

ΔdsH Molar Enthalpy of dissolution (kJ·mol-1) 

{Ho
m(T )- 

Ho
m(298 

K)} 

Enthalpy Increment (kJ·mol-1) 

Fef Free energy function (J·K-1·mol-1) 

Co
p,m Molar heat capacity at constant pressure 

(J·K-1·mol-1) 

M Molar mass (g·mol-1) 

T Temperature (K) 

S Entropy (J·K-1·mol-1) 

P Pressure (Pa) 

ΔrH◦ Enthalpy of reaction (kJ·mol-1) 

Kinst Instrumental Constant 


iI  Ion current in ampere 

σi Electron impact ionization cross-section 

ia  Isotopic abundance of the specific ion. 

pi Partial pressure 
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      Abstract 

  

For the conventional superconductors it will be shown that not only the superconducting energy gap, Egap(T=0), and 

the critical field, Bc(T=0), but also the London penetration depth, λL(T=0), scale in a reasonable approximation with 

the superconducting transition temperature, TSC, as ~TSC, ~TSC
2 and ~T-1/2, respectively. From these scaling relations 

the conclusion obtained earlier, using a completely different method, is confirmed that the London penetration depth 

corresponds to the diameter of the Cooper-pairs. As a consequence, only one layer of Cooper pairs is sufficient to 

shield an external magnetic field completely. The large diamagnetism of the superconductors is caused by the large 

orbital area of the Cooper-pairs. From the fact that, in the zero-field ground state, the temperature dependence of the 

superconducting heat capacity is given above and below TSC by power functions of absolute temperature it follows 

that the only critical point is T=0. The superconducting transitions of the element superconductors, therefore, are all 

within the critical range at T=0. As a consequence, above and below TSC there is short-range order only. As we know 

from Renormalization Group (RG) theory, in the critical range the dynamics is the dynamics of a boson field, 

exclusively. Evidently, the Cooper-pairs have to be considered as the short-range ordered units created by this boson 

field. It is reasonable to assume that the relevant bosons in the superconducting state are identical with the bosons 

giving rise to the universal linear-in-T electronic heat capacity above TSC. Plausibility arguments will be given that 

these bosons must be electric quadrupole radiation generated by the non-spherical charge distributions in the soft 

zones between the metal atoms. The radiation field emitted by an electric quadrupole can be assumed to be essentially 

curled or circular. In the ordered state below TSC, the bosons are condensed in resonating spherical modes which 

encapsulate the two Cooper-pair electrons and shield their charge perfectly. 

 

Keywords: Cooper-pairs; ordered boson fields; stimulated emission.  
 

1. Introduction 
     The postulation of Cooper pairs [1] marks a historical 

breakthrough in our understanding of the phenomenon of 

superconductivity. However, the detailed nature of the 

coupling mechanism between the two Cooper-pair electrons 

is still unclear [2-8]. Further experimental information on the 

properties of the Cooper-pairs, such as the temperature 

dependence of their size and their density, therefore, is of 

vital importance. The present study aims to contribute in a 

rather phenomenological way to the solution of these 

problems. A final confirmation of the here advanced ideas 

must come from field-theoretical studies. 

     It is evident that at the superconducting transition 

temperature, TSC, Cooper-pairs get formed and are 

responsible for the two prominent superconducting 

properties: a vanishing electrical resistivity and the 

emergence of a huge diamagnetism (Meissner-effect) [1]. 

Formation of Cooper-pairs at TSC reminds on the formation 

of domains at the magnetic ordering temperature. In fact, 

Cooper-pairs and domains have to be considered as the 

characteristic ordered units with linear dimensions of much 

larger than the inter-atomic distance. As a consequence, 

domains and Cooper-pairs cannot result from atomistic 

short-range interactions. In order to illustrate the similarities 

and differences between the magnetic domains and the 

Cooper-pairs, it is useful to discuss first the better understood 

magnetic domains.  

     Quite generally, at virtually all order-disorder phase 

transitions a boson field orders [9,10]. The visible atomic or 

magnetic order results from a coupling of the atoms or spins 

to the ordered boson field. Essential for a long-range and 

coherent order of a boson field is that the emission 

characteristics of the individual boson source is axial and that 

the bosons get generated by stimulated emission. These 

conditions hold for the bosons that order at the magnetic 

ordering transition [9]. It could be shown that these bosons 

are magnetic dipole radiation generated by the precessing 

spins [11]. We have called these bosons, in honor of J. 

Goldstone, Goldstone-bosons [12,13]. Due to stimulated 

emission the bosons get collimated along those 

crystallographic directions with a high density of the boson 

sources and, eventually, condense in a single quantum state. 

In the ordered state of the Goldstone-boson field, all bosons 

are in a one-dimensional, perfectly coherent and long-range 
ordered state. This is realized in each magnetic domain. The 

reduction from a spatially isotropic propagation of the 

bosons to a few propagation directions is an example of 

broken symmetry. In fact, stimulated emission seems to be 

an important origin of the phenomenon of broken symmetry 

[12]. 
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     The ordered boson field has a well-defined, self-

organized, spatially limited contour. In the magnetic case this 

are the well-known domains. The domains result from a self-

constriction mechanism of the ordered boson field and define 

the limits of a region with homogenously ordered spins. They 

are self-contained units. The ordered spins are, so to say, 

enclosed in the domain. Moreover, the domains have the 

functionality of a resonator. Within each domain, bosons and 

magnons are standing plane waves. The dynamics in the 

individual domain, therefore, is perfectly one-dimensional. 

The one-dimensionally ordered structure is a consequence of 

the axial radiation characteristics of the individual boson 

source, i.e., the precessing spin. As a result, for many 

magnets, the observed magnon dispersions are as for the 

linear spin chain, independent of the assumed locally 

anisotropic exchange interactions that are not relevant in the 

critical range above the ordering temperature and for all 

lower temperatures as well [14,15]. A three-dimensional 

dynamic symmetry results by a coupling of the one-

dimensional boson fields of the domains along x-, y-, and z-

axis. The observed critical exponents are defined by the 

dimensionality of the global boson field [15].   

     The superconducting transition is particular in that it is a 

transition into a state with a short range ordered boson field. 

The ordered units generated by these bosons are the Cooper-

pairs. In contrast to the magnetic domains that are weakly 

fixed to the crystal lattice, the Cooper-pairs can move 

without any resistance across the metal [16]. The fact that 

there is no correlation between the positions of the Cooper-

pairs conforms to the short-range order in the 

superconducting state. While the surface of the magnetic 

domains consists of planes, the shape of the Cooper-pairs 

must be rather spherical. A resistivity-free propagation mode 

of the Cooper-pairs is surprising in view of the two-fold 

electric charge of the Cooper-pair. Evidently, the boson 

resonator surrounding the two Cooper-pair electrons shields 

the charge of the two electrons perfectly against all other 

charges of the metal. There are good reasons to assume that 

the condensed bosons in the superconducting state are 

identical with the bosons giving rise to the universal linear-

in-T electronic heat capacity above TSC. We will call the 

bosons of the continuous metallic solid CMS-bosons [17]. At 

TSC, these bosons change the type of short-range order and 

assume a definite shape below TSC. It is suggestive to identify 

the CMS-bosons with electric quadrupole radiation 

generated by the anisotropic charge distributions in the rather 

soft zones between the metal atoms. One experimental 

observation supporting this idea is the strong dependence of 

TSC upon application of an external pressure [18]. It is 

evident that application of pressure leads to deformations of 

the mechanically soft zones between the metal atoms and 

therefore to changes of the quadrupole moments. This has a 

direct effect on the generation process of the CMS-bosons, 

and, as a consequence, on TSC. Note that the ordering 

transition of a boson field occurs for a sufficiently high 

density of identical bosons [9].  

     The Cooper-pairs behave as a dense gas of neutral 

particles [16]. Possibly, the mobility of the Cooper-pairs is 

by tunnel effect. In recently performed new analyses of 

published superconducting heat capacity data of the 

conventional superconductors, low-temperature crossover 

events were identified that could be interpreted as Bose-

Einstein (B-E) condensation of the Cooper-pairs [16]. From 

the observed B-E condensation temperature, TBE, it is 

possible to obtain the density, n, of the Cooper-pairs at TBE 

according to TBE~n2/3 [19]. The observed TBE temperatures 

turned out to scale, to a good approximation, with the 

superconducting transition temperature, TSC, as 

TBE=0.135‧ TSC [16]. As a consequence, the density of the 

Cooper-pairs at TBE scales with the superconducting 

transition temperature, TSC, as n(T~0)~TSC
3/2 [16]. Since TBE 

is much lower than TSC, the density of the Cooper-pairs at 

TBE can be taken as representative of the density at T=0. 

Assuming that at all temperatures the Cooper-pairs form a 

dense-packed gas of bosons with a spin of S=0, their 

diameter at T~0, λ(T~0) is given by λ(T~0)~n-1/3~TSC
-1/2.  

     Interestingly, the same scaling relation as for the diameter 

of the individual Cooper-pair, λ(T~0)~TSC
-1/2, holds for the 

London penetration depth, λL(T~0)~TSC
-1/2 (see Figure 2 

below). The diameter of the Cooper-pair, therefore, 

corresponds to the London penetration depth. In other words, 

only one layer of Cooper-pairs, next to the inner surface of 

the superconductor, is sufficient to shield an applied 

magnetic field completely. As a consequence, the 

diamagnetic moment of the individual Cooper-pair, i.e., its 
cross-section area, is given by the square of the London 

penetration depth. As the experimental data show, the 

London penetration depth, λL, is divergent at TSC and 

decreases strongly with decreasing temperature towards a 

finite value for T→0 (see Figures 5-7 below) [20]. We can 

assume that the proportionality λL~λ holds for all 

temperatures. As a consequence, the diameter of the 

individual Cooper-pair decreases with decreasing 

temperature, in proportionality to the London penetration 

depth. This allows one to obtain the temperature dependence 

of the Cooper-pair diameter from measurements of the 

temperature dependence of the London penetration depth. 

The decreasing diameter of the Cooper-pairs is indicative of 

an increasing binding energy between the two Cooper-pair 

electrons. This is certainly a dynamic, i.e., temperature-

dependent effect and has to be ascribed to a constricting 

force, inherent to the condensed boson shield that surrounds 

the two Cooper-pair electrons. In fact, there is a reasonable 

proportionality between the Cooper pair coupling energy, 

given by the gap energy Egap(T), and the reciprocal London 

penetration depth λL
-1(T) (compare Figure 4 and Figure 5 

below). In other words, the larger the coupling energy, 

Egap(T), is, the lower is the diameter of the Cooper-pair. The 

condensed boson shell surrounding the two Cooper-pair 

electrons has the functionality of a cage that exerts the 

necessary force, needed to counteract the electrostatic 

repulsion between the two electronic charges. Due to an 

increasing constricting force of the boson cage with 

decreasing temperature, the size of the Cooper pairs 

decreases with decreasing temperature, in parallel to the 

London penetration depth [16]. This “electrostriction” has 

some similarity with the spontaneous magnetostriction in the 

ordered magnets [21]. In both cases the constricting forces 

are a dynamic property of the ordered boson field. However, 

magnetostriction acts on the collective of a nearly constant 

configuration of dense packed domains and lets the lattice 

parameter decrease with decreasing temperature [21]. The 

corresponding electrostriction acts on each of the increasing 

number of Cooper-pairs and has little effect on the 

temperature dependence of the lattice parameter [22]. 

    The decreasing size of the Cooper-pairs with decreasing 

temperature gets compensated by a corresponding increase 

of their density such that the volume of the superconductor 

is always completely filled with Cooper-pairs, similar to the 

volume of the ordered magnets that is completely filled with 
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domains. A complete filling seems to be specific to a 

homogeneous phase. The increasing number of electrons, 

needed for the increasing number of Cooper-pairs, can be 

assumed to be delivered by the conduction band. The 

superconducting system thereby gains an increasing mass 

which is certainly of importance on the superconducting 

dynamics, i.e., on the temperature dependence of the 

superconducting heat capacity [10,16]. At the same time, the 

conduction band gets depleted and the lattice parameter 

increases [22]. As a consequence, the superconductors 

resemble a two-phase system with the Cooper-pairs as the 

condensed phase and the conduction electrons as the vapor 

phase. The Cooper-pairs correspond, so to say, to the 

droplets in a vapor-liquid mixture.  

     Even in the limit T→0 where the London penetration 

depth and the diameter of the Cooper-pairs have a minimum, 

the orbital diamagnetism of the Cooper-pairs is sufficiently 

large such that, in the superconductors of the first kind, only 

one layer of Cooper-pairs at the inner surface of the 

superconductor shields a magnetic field completely. For the 

superconductors of the second kind, the low-temperature 

diameter of the Cooper-pairs, and therefore the orbital 

diamagnetism seems not to be sufficient to shield an applied 

magnetic field completely. The applied magnetic field then 

penetrates the superconductor as vortices.  

     Very peculiar is that the zero-field heat capacities of the 

conventional superconductors exhibit no critical behavior at 

TSC but the Cooper-pair binding energy, Egap(T), and the 

London penetration depth, λL(T), show critical behavior at 

T=TSC (see Figures 4-7 below), as it is familiar for the 

spontaneous magnetization  [21,23] and for the magnon gap 

in the ordered magnets [21,24]. The typical critical power 

functions of the argument |TSC-T| are absent in the zero-field 

heat capacity of the conventional superconductors. Note that 

Egap(T) and λL(T) are quantities that are not specific to the 

dynamics of the ground state of the unperturbed 

superconductor. Observation of these quantities requires 

special excitation conditions. As the finite critical range at 

TSC and at T=0 shows, the temperature dependence of Egap(T) 

and λL(T) is controlled by a long-range ordered boson-field 

that, apparently, has a higher dispersion energy than the 

bosons that are responsible for the dynamics of the 

superconducting ground state. As a consequence, there seem 

to exist two boson types in the superconductor. Only one of 

them can be relevant. The excited state bosons are, evidently, 

not relevant for the dynamics of the superconducting ground 

state and appear to be completely absent in zero-field 

measurements. For the ground state bosons T=0 is the only 

critical point. These bosons are in a short-range ordered state. 

The complicated temperature dependence of the 

superconducting zero-field heat capacity is another 

indication of a complicated excitation spectrum of the 

superconducting elements [10,16]. Note that there can be an 

interaction between thermally not occupied excited states 

and the thermally occupied ground state. This interaction can 

modify the dynamics of the ground state.  

     A possible explanation of the existence of two boson 

types could be that the radiation field emitted by an electric 

quadrupole is rather complicated. It is possible that this 

radiation field includes a linear and a curled component. In 

the superconducting state, the linear component is long-

range ordered but not relevant for the dynamics of the 

ground-state. The heat capacity of this boson field is 

responsible for the temperature dependence of Egap(T) and 

λL(T), in particular for the critical behavior of the two 

quantities at TSC in addition to T=0. In the ordered state, the 

curled component gives the Cooper-pairs their spherical 

shape. Due to the exclusion principle of relevance, the 

binding mechanism of the two Cooper-pair electrons seems 

to be decoupled from the dynamics of the Cooper-pairs in the 

zero-field ground state. The Cooper-pairs are rather stable 

objects. No critical behavior at TSC is observed not only in 

the zero-field heat capacity but also for the critical field, Bc 

[25].      

     In the first part of this communication, we discuss the 

relation between the zero-temperature values of the Cooper-

pair gap energy, Egap(T=0), of the London penetration depth, 

λL(T=0), and of the critical field, Bc(T=0) of the 

superconducting elements [26]. As is well-known, the 

Cooper-pair gap energy, Egap(T=0) and the critical field 

Bc(T=0) scale to a good approximation with the 

superconducting transition temperature, TSC, as 

Egap(T=0)~TSC [1] and Bc(T=0)~TSC
2 [25]. For the London 

penetration-depth the scaling relation will be shown to be 

λL(T=0)~TSC
-1/2 [16]. From these scaling relations it follows 

conclusively that the diamagnetic moment of the Cooper 

pair, μ(T=0), is proportional to the square of the London 

penetration depth, i.e., μ(T=0)~λL
2(T=0)~TSC

-1. In other 

words, the Cooper-pairs are closed objects with a diameter 

that corresponds to the London penetration depth. The strong 

superconducting diamagnetism results from the large orbital 

area of the Cooper-pair wave function. The two Cooper-pair 

electrons are evidently in a spherical symmetric s-state. The 

antiparallel coupling of the spins of the two Cooper-pair 

electrons seems to be by the rather weak dipole-dipole 

interaction. The Cooper-pairs, therefore, receive a net 

magnetic moment in a rather low applied magnetic field and 

superconductivity breaks down at the moderate critical field, 

Bc [25]. 

     In the second part of this work, representative data of the 

temperature dependence of the Cooper-pair gap energy, 

Egap(T), and of the reciprocal London penetration depth, 

λL(T)-1, are analyzed. Typical of the long-range order of the 

boson field that controls the dynamics of the two quantities 

is that the complete temperature dependence of Egap(T) and 

of λL(T)-1 is given by the two critical power functions at T=0 

and at T=TSC. This is as for the spontaneous magnetization 

of the ordered magnets [21,23]. As the identical critical 

exponents of Egap(T) and of λL(T)-1 show, the two quantities 

are proportional to each other. In conformity with the 

increasing binding energy between the two Cooper-pair 

electrons as a function of a decreasing temperature, given by 

Egap(T), the diameter of the Cooper-pair orbital, i.e., λL(T) 

shrinks.  

 

2. Properties at T=0 
     As done by the BCS-theory [1], we make use of the 

empirical fact that the superconducting elements have 
similar electronic properties and differ essentially by their 

transition temperatures, TSC, only. In this way it could 

plausibly be proven that the gap energy at T=0, Egap(T=0) is 

proportional to TSC [1] and that the critical field Bc(T=0) is 

proportional to TSC
2 [25]. For the London penetration depth, 

it turns out that λL(T=0) is proportional to TSC
-1/2 (Figure 2) 

[16]. As a consequence, for a high TSC, the Cooper-pairs are 

strongly bound and, as a consequence, are small objects with 

a small diameter given by λL. 
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Figure 1. Experimental Cooper-pair gap energies at T~0, 

Egap(T=0), converted to temperatures for some 

superconducting elements as a function of the transition 

temperature, TSC [26]. A linear fit of these data results 

reasonably into a slope of four, which deviates only slightly 

from the prediction of the BCS-theory of ~3.528 (see text) 

[20]. 

 
Figure 2.  Experimental data of the London penetration 

depth at T~0, λL(T=0), of some superconducting elements 

versus the reciprocal root of the superconducting transition 

temperature [26]. 

 

     Figure 1 reproduces the famous proportionality between 

the gap energy at T=0 and TSC. In Figure 1 the gap energies 

are converted to temperatures [26]. It can be seen, that 

Egap(T=0)/kB is to a good approximation proportional to TSC, 

as predicted by the BCS-theory [1]. A linear fit of the data in 

Figure 1 results in a proportionality constant of 3.931±0.258 

which is somewhat larger than ~3.528 predicted by the BCS-

theory [1,20]. It seems justified to consider the fit result for 

the proportionally constant as consistent with four, although 

3.5 cannot be excluded. 

     Considering the gap energy as the thermodynamic 

stability limit of the Cooper-pairs and that TSC defines the 

temperature scale, one can, formally, consider Egap(T=0) as a 

multiple of 1/2‧ kBTSC. Note, however, that this 

proportionality does not mean a thermal equilibrium. In other 

words, the individual Cooper-pair has between 7 and 8 

degrees of freedom. Since there are certainly three 

translational degrees of freedom, the Cooper-pair has 

between 4 and 5 additional energy degrees of freedom. This 

could mean that the Cooper-pairs are not perfectly spherical 

in shape and/or have a number of internal degrees of freedom 

such as breathing or pump modes. According to the generally 

low superconducting transition temperatures it is clear that 

the two electrons of the Cooper pair are not rigidly bound to 

each other. In fact, as the temperature dependence of Egap(T) 

shows, the coupling of the two Cooper-pair electrons is a 

dynamic process.       
    Another characteristic quantity of the superconductors is 

the low-temperature minimum of the London penetration 

depth, λL(T=0), that gives the distance from the surface of 

the sample over which an external magnetic field can 

penetrate into the superconductor. Note that the penetration 

depth is divergent at TSC and assumes a finite minimum for 

T→0 (see Figures 5-7 below) [20]. For T=0, the volume of 

the superconductor (of the first kind) is field-free, except for 

a thin layer at the surface with a thickness of λL(T=0). It is 

evident that this phenomenon, known as Meissner-

Ochsenfeld effect [27], is a direct consequence of the strong 

diamagnetism of the Cooper-pairs owing to their large orbital 

area. The strong diamagnetism is consistent with the view 

that the two electrons of the Cooper-pair can move on closed 

loops. They circulate the stronger, the larger the applied 

magnetic field is. The diamagnetic moment can be expected 

to be proportional to the applied magnetic field. Note that in 

the normal-conducting state there are no Cooper-pairs. Most 

conventional superconductors are paramagnetic in the 

normal state. Figure 2 shows experimental data of the 

London penetration depth at T~0 as a function of the square 

root of the reciprocal transition temperature, TSC
-1/2 [26]. 

From this data representation it follows that, the lower the 

transition temperature is, the larger is the penetration depth 

for a magnetic field. Eventually, for TSC→0, the penetration 

depth, λL(T=0), diverges and the superconductor does no 

longer shield the magnetic field. This proves consistently 

that the strong diamagnetism is restricted to the 

superconducting state. It is evident that for a low TSC, the two 

electrons of the Cooper-pair are weakly coupled only and the 

size of the Cooper-pair orbital is correspondingly large. The 

London penetration depth then is correspondingly large as 

well. In other words, the T=0 values of the London 

penetration depth and of the size of the Cooper pairs increase 

with decreasing TSC. 

     Another characteristic quantity of the conventional 

superconductors is the critical field at T=0, Bc(T=0). As is 

well-known, Bc(T=0) scales with the square of the transition 

temperature (Figure 3) [25]. The relation Bc(T=0)~TSC
2 is 

satisfactorily confirmed by the data representation of Figure 

3 [26].        

     The three quantities Egap(T=0), λL(T=0) and Bc(T=0) are 

certainly not independent of each other. In order to find out 

a correlation between them we make use of the formal energy 

equation 

 

μ(T=0)‧ Bc(T=0)=Egap(T=0)                                                  (1)  

                                                      

with μ(T=0) as diamagnetic moment of the Cooper-pair 

orbital at T=0 for an applied magnetic field of Bc(T=0). 

Inserting into equation (1) the two relations: 

 

Bc(T=0)~TSC
2    (Figure3)  and 

Egap(T=0)~TSC   (Figure 1)                                                   (2) 

 

0 2 4 6 8 10
0

10

20

30

40
E

g
a
p
(T

=
0

)/
k

B
  

  
(K

)

TSC   (K)

Nb

Pb

Hg

Ta

Sn
In

Tl

Egap= 4*kBTSC

fitted slope:

3.931 ± 0.258

0

50

100

150

L
o

n
d

o
n

 p
e
n

e
tr

a
ti
o
n
 d

e
p
th

  
l

L
(T

~
0

) 
 (

n
m

)

TSC
-1/2    (K-1/2)

Cd
Ga

Al
In

Sn
Ta

V
Nb

Pb

lL= 90*TSC
-1/2

0.0 0.5 1.0 1.5



 
Int. J. of Thermodynamics (IJoT) Vol. 26 (No. 1) / 030 

it results that μ(T=0)~TSC
-1. Considering that the London 

penetration depth is λL(T=0)~TSC
-1/2 (Figure 2) it follows that 

 

μ(T=0)~λL(T=0)2                                                                        (3)                                                                                                                                                                                 

 
Figure 3. The critical field at T~0, Bc(T=0), as a function of 

the superconducting transition temperature squared for a 

selection of superconducting elements [25,26]. 

                                                                             
     As a consequence, the diamagnetic moment μ of the 

Cooper-pair is proportional to the square of the London 

penetration depth. In other words, λL
2 gives the cross-section 

area of the Cooper-pair, and the diameter of the Cooper-pair 

is proportional to the London penetration depth, λL. This 

result provides a plausible microscopic explanation of the 

London penetration depth λL and supports the real-space, or 

particle picture of the Cooper-pair. As a consequence, only 

one layer of diamagnetic Cooper-pairs next to the inner 

surface of the superconductor is sufficient to shield the 

external magnetic field completely. The London penetration 

depth deceases as a function of a decreasing temperature 

because the Cooper-pair orbital area decreases as a function 

of a decreasing temperature. For the type I superconductors 

the minimum of the orbital area of the Cooper-pairs for T→0 

and, as a consequence, the associated small diamagnetic 

moment is still sufficient to shield the applied magnetic field 

completely. On the other hand, a complete shielding of a 

magnetic field for all temperatures by only one layer of 

Cooper-pairs requires that the decreasing size of the Cooper-

pairs, with decreasing temperature, gets compensated by a 

corresponding increase of their density such that the volume 

of the sample is always nearly completely filled with 
Cooper-pairs [16]. For the type II superconductors, either the 

orbital area or the density of the Cooper-pairs seems not to 

be sufficiently large to shield the magnetic field completely. 

The magnetic field then penetrates the superconductor as 

vortices.  

     The result expressed by the proportionality (3) agrees 

with a recent experimental study of the Bose-Einstein (B-E) 

condensation temperatures, TBE, of the Cooper-pairs of the 

superconducting elements [16]. Note that Cooper-pairs are 

bosons with an integer spin of S=0 [2]. In spite of their two-

fold charge, the Cooper-pairs can move completely freely 

across the metallic matrix, which is a condition for an 

electrical resistivity of zero of the superconducting current. 

This shows that the charges of the two Cooper-pair electrons 

get completely shielded by the surrounding CMS-boson 

cage. As an empirical fact, the thermodynamics of the 

Cooper-pair gas can be described by the same algorithm as it 

applies to the dilute alkali-metal atom gases [19]. From the 

observation of the B-E condensation temperature, TBE, it is 

possible to evaluate the density of the Cooper-pairs, n, at TBE. 

For the uniform Bose gas, confined to a three-dimensional 

box, the dependence of TBE on the density of the gas 

particles, n, is given by 

                                     

 kB‧ TBE≈3.31(ħ2n2/3/m)                                                             (4)                                                              

 

with ħ=h/2π as Planck constant and m=2me as the mass of 

the Cooper-pair (me is the mass of the electron) [19]. Because 

of the low mass of the electron, the B-E condensation 

temperatures of the Cooper pairs are five to six orders of 

magnitude higher than for the alkali-atom condensates. 

However, in contrast to the dilute alkali-atom condensates 

the density of the Cooper-pairs is temperature dependent. As 

we have already argued, the density of the Cooper-pairs 

increases as a function of a decreasing temperature according 

to their decreasing size such that for all temperatures the 

volume of the superconductor is nearly completely filled 

with Cooper-pairs. In other words, the observed 

condensation temperature, TBE, corresponds to the Cooper-

pair density at TBE. Since the TBE values turned out to be 

proportional to TSC as TBE~0.135‧ TSC [16] the density of the 

Cooper-pairs at TBE can be taken as representative for the 

density at T=0.  

     The B-E condensation of the Cooper-pairs gives rise to a 

crossover event in the heat capacity of the superconductor 

[10,16]. Inserting the experimental scaling relation 

TBE=0.135‧ TSC into formula (4), the density of the Cooper 

pairs at TBE, i.e., at T~0, follows as  

 

n(T=0)=0.88‧ 1015‧ TSC
3/2                                                      (5)                                                            

 

with n in units of cm-3 [16].  

     Another, completely independent estimate of the Cooper-

pair density at T=0 is possible from the London penetration 

depth data in Figure 2, assuming that the Cooper pairs form 

a dense gas of particles with no significant distance between 

them. Under this condition, the distance between the Cooper-

pairs corresponds to their diameter λL(T~0). The density of 

the Cooper pairs therefore is given by n~λL
-3. Using 

λL(T=0)~TSC
-1/2 from Figure 2 it follows that n(T=0)~TSC

3/2. 

As a consequence, the same relation n(T=0)~TSC
3/2 results 

from two completely different experimental methods. 

Inserting λL=90‧ TSC
-1/2 (in nm) from Figure 2 into n~λL

-3 it 

follows that 

                                                     
n(T=0)=1.37‧ 1015‧ TSC

3/2                                                         (6)                                                                      

 

with n in units of cm-3. The pre-factor in equation (6) is larger 

by a factor of ~1.5 compared to the pre-factor in equation (5). 

This indicates that the assumption of no space at all between 

the Cooper-pairs is not perfectly correct and that the density 

of the Cooper-pairs is over-estimated, assuming that their 

distance corresponds to their diameter. Nevertheless, it 

seems to be a reasonable approximation that for all 

temperatures the available space in the superconductor is 

nearly completely filled with Cooper-pairs.   

     Using the fitted slopes in Figure 1 and Figure 3, an 

estimate of the diamagnetic moment of the Cooper pairs at 

T=0 for an applied magnetic field of B=Bc(T=0) can be 

obtained. According to formula (1) the diamagnetic moment 
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of the Cooper pairs results as μ(T=0)=-2.8‧ 103μB/TSC, with 

μB as Bohr magneton. This surprisingly large diamagnetic 

moment is consistent with the view that for an applied field 

of Bc(T=0) the two electrons of the Cooper-pair circulate 

with a high frequency on a closed loop. However, in view of 

the enormous diamagnetic moment obtained in this way, we 

cannot exclude that formula (1) is correct except for an 

unknown proportionality constant.   

     We should recall that in 1935 when F. and H. London 

proposed a theoretical explanation of the Meissner-

Ochsenfeld effect [27,28,29], Cooper-pairs were unknown 

[1-8]. Using the free electron model of the metals, the 

strongly increasing diamagnetism of the superconductors 

with decreasing temperature had to be explained by a strong 

increase of the electron density, ne, with decreasing 

temperature. In other words, no specific assumption on the 

superconducting electronic state was made. There is, 

however, neither a physical reason, nor some experimental 

evidence for such a strong temperature dependence of the 

electron density. It is clear that because of the large orbital 

diamagnetism of the Cooper-pairs, the shielding of an 

external magnetic field is much more efficient by Cooper 

pairs than by a gas of free electrons. According to the London 

theory, the relation between the density of the free electron 

gas, ne, and the London penetration depth λL is given by 

[28,29]: 

 

 λL
2=me/μ0e2ne                                                                       (7)                                                                                              

 
     In formula (7), me is the mass of the electron, μ0 is the 

vacuum permeability and e is the charge of the electron. 

Inserting λL(T=0)=90‧ TSC
-1/2 (in nm) according to Figure 2 

into formula (7), results for the electron density at T=0: 

 

ne(T=0)=3.48‧ 1021‧ TSC                                                         (8)                                                                                    

 

with ne in cm-3. Note that in contrast to the Cooper-pair 

density at T=0 that is proportional to TSC
3/2, according to 

formula (6), the electron density at T=0 of the London theory 

is proportional to TSC, according to formula (8). As a 

conclusion, the historical London theory explains the low 

penetration depth of a magnetic field for T→0 by an electron 

density of the assumed free-electron gas that is larger by a 

factor of ~106 compared to a Cooper-pair density that results 

into the same shielding effect (formula (5)).  

    In 1935, the importance of bosons for the dynamics of 

solids was unknown. This new chapter of solid-state physics 

began only in 1974 when the Renormalization-Group theory 
appeared [30]. Although RG-theory has restricted to the 

magnetic degrees of freedom, it became more and more clear 

that bosons are essential for the dynamics of all other degrees 

of freedom as well. In particular ordered boson fields are 

responsible for the generation of Cooper-pairs and magnetic 

domains. 

 

3. Temperature Dependence of Egap and λL 

     As we have already mentioned, in contrast to the critical 

field and the zero-field heat capacity which exhibit critical 

behavior at T=0 only, the Cooper-pair gap energy, Egap(T), 

and the reciprocal London penetration depth, λL(T)-1, exhibit 

critical behavior additionally at T=TSC, as it is known for the 

spontaneous magnetization and for the magnon gap of the 

ordered magnets [23,24,31]. Since we know that the 

temperature dependence of the two magnetic quantities is 

controlled by the heat capacity of the long-range ordered 

Goldstone-boson field (magnetic dipole radiation), it can be 

concluded that the temperature dependence of Egap(T) and of 

λL(T)-1 is controlled also by the heat capacity of a long-range 

ordered boson field. This boson field is evidently different 

from the boson field that is responsible for the temperature 

dependence of the zero-field heat capacity. For these low-

energy bosons, T=0 is the only critical point, i.e., these 

bosons do not order into a long-range ordered state. The 

bosons that control the temperature dependence of Egap(T) 

and λL(T)-1 become apparent only under the special 

excitation conditions necessary for the observation of the two 

quantities, and, evidently, have high dispersion energies. 

This shows that the excitation spectra of the superconductors 

are very complicated [10]. Relevance of excited-state bosons 

requires a thermal population of the dispersion relation of 

these bosons. Population of the dispersion relation of excited 

state-bosons is, however, not a continuous process, 

according to the Boltzmann-factor, but occurs in the discrete 

manner of a crossover event. At this crossover, the excited 

state bosons suddenly become relevant and TSC appears as a 

second critical temperature. Below this crossover 

temperature, the excited state bosons seem to be completely 

absent and T=TSC is not a critical point. Due to the symmetry 

selection principle of relevance, only one boson type can be 

relevant [30]. On the other hand, thermal population of the 

dispersion relation of the excited state bosons that control the 

temperature dependence of Egap(T) and λL(T)-1 is certainly 

never given considering that the Egap(T=0)/kB values are 

about four times larger than TSC (Figure 1).   

 
Figure 4. Normalized Cooper-pair gap energy of tantalum 

as a function of the reduced temperature to a power of four 

[32]. As for all here investigated superconducting elements, 

thermal decrease of the gap energy with respect to saturation 

at T=0 is given by a T4 power function, followed by a 

crossover to the critical power function of the argument 

(TSC-T) with mean field exponent of β=1/2 [21]. 

 

     As far as Egap(T) data are available, the same type of 

universal temperature dependence as in Figure 4 [32] is 

observed for all superconducting elements [21]. Universality 

holds in the vicinity of the two critical points T=0 and T=TSC. 

At the critical point T=0 the critical power function is a 

power function of absolute temperature and exhibits the 

critical exponent of ε=4. The critical power function at 

T=TSC is a power function of the argument (TSC-T) and 

exhibits mean field exponent of β=1/2. Formally, this critical 
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exponent agrees with the BCS-theory [1,20]. However, in 

contrast to the atomistic BCS-theory, the observed, boson-

defined critical power function holds over a finite distance 

from the critical point [31]. The finite width of the critical 

range provides clear evidence of boson dynamics. The 

critical range at TSC is limited by the crossover to the critical 

power function at T=0. Crossover events are analytical 

changes of the temperature function and are clearly beyond 

the atomistic models. 

     As for the spontaneous magnetization of the ordered 

magnets [21,23], the two critical power functions at T=TSC 

and at T=0 intersect and give a complete description of the 

temperature dependence of Egap(T). For niobium, the same 

universal exponents as in the temperature dependence of 

Egap(T) occur in the temperature dependence of the reciprocal 

London penetration depth, λL
-1 (Figure 5) [33]. This one can 

reasonably expect since the temperature dependence of the 

two quantities is controlled by the same boson type. 

Observation of the same critical exponents does, however, 

not mean that the two quantities are perfectly proportional to 

each other. In fact, as we have seen, for T→0 Egap(T=0)~TSC 

(Figure 1) but λL
-1(T=0)~TSC

1/2 (Figure 2). Moreover, the 

pre-factors of the two universal power functions at T=0 and 

at T=TSC, i.e., the critical amplitudes, can be different for the 

two quantities. The similar temperature dependence of Egap 

and λL
-1 proves that the larger the gap energy is, i.e., the 

stronger the two Cooper-pair electrons are coupled, the lower 

is the diameter of the Cooper-pair orbital and the London 

penetration depth. Figure 5 shows, as an example, the 

normalized reciprocal London penetration depth of niobium 

as a function of the reduced temperature [33]. In other words, 

λL diverges at TSC with a critical exponent of β=1/2.   

     For chemically and structurally more complicated 

superconducting compounds, the critical exponent at TSC 

seems to remain β=1/2. This exponent is typical of an 

isotropic behavior as it can be expected for cubic, or weakly 

non-cubic materials. In structurally strongly anisotropic 

systems, the symmetry, i.e., the dimensionality of the excited 

state boson field can be lower at the critical point T=0. The 

exponent ε of the Tε function then can assume a rational 

value different from ε=4. In this case, a symmetry crossover 

coincides with the common crossover between the two 

critical power functions at T=0 and at T=TSC. The observed 

exponent of ε≠4 is characteristic of the specific low-

temperature symmetry of the excited state boson field. As we 

know from magnetism, a crossover to a lower symmetry 

class at T=0 compared to TSC can be caused by a sufficiently 

strong spontaneous lattice distortion as a function of a 

decreasing temperature [21]. The material then cannot be 

classified by only one symmetry class alone. In other words, 

each critical point, either T=0 or T=Tc can have its own 

dynamic symmetry. Although spontaneous lattice distortions 

increase continuously with decreasing temperature, the 

boson-defined dynamics reacts in the discrete manner of a 

crossover event when the distortion has increased beyond the 

threshold to become relevant. Finite distortions that remain 

below this threshold are not relevant and have no effect on 

the boson-controlled thermodynamic observables, i.e., on the 

critical exponents. As an example of a low symmetry class 

at T=0, Figure 6 shows the normalized reciprocal London 

penetration depth of the two-dimensional organic salt κ-

(BEDT-TTF)2Cu(NCS)2 as a function of the reduced 

temperature [34]. The meaning of the exponent of ε=5/2 is 

difficult to specify as long as this exponent is not reproduced 

by many other similar materials. 

 
Figure 5. Normalized reciprocal London penetration depth 

of niobium as a function of the reduced temperature [33]. 

The same critical exponents as for Egap(T) in Figure 4 are 

observed at T=0 and at T=TSC. 

 
Figure 6. Normalized reciprocal London penetration depth 

of the strongly anisotropic organic salt κ-(BEDT-

TTF)2Cu(NCS)2 as a function of the reduced temperature 

[34]. The exponent of ε=5/2 of the critical power function at 

T=0, Tε, is indicative of a low-symmetry class. 

 

     For hexagonal MgB2, investigated in [35], a critical 

exponent of ε=2 can be identified in the reciprocal London 

penetration depth (Figure 7). According to the unusual 

intersection of the two critical power functions in Figure 7, 

compared to Figure 5 and Figure 6, the symmetry of the 

excited state boson field must be considerably lower at T=0 

compared to the symmetry at T=TSC. Quite generally, when 

the symmetry at the critical point T=0 is much lower than the 

symmetry at T=TSC, the crossover between the critical power 

function at T=TSC and at T=0, can assume a rather anomalous 

appearance. It is evident that more systematic investigations 

are necessary for an understanding of the different observed 

exponents ε.  
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Figure 7. Normalized reciprocal London penetration depth 

of a MgB2 thin film sample as a function of the reduced 

temperature [35]. 

 

4. Concluding Remarks 
     It seems to be now clear that at phase-transitions into a 

long-range and coherently ordered state, a boson field orders 

[9]. The visible atomic or magnetic order results from a 

coupling of atoms or spins to the ordered boson field. As we 

have mentioned, the superconducting transition is 

exceptional, in that the relevant bosons enter a short-range 

ordered state only. Nevertheless, comparison with the better 

understood long-range ordered boson field in the magnetic 

systems, is most revealing [9]. Characteristic of a transition 

into a long-range ordered boson field is the finite width of 

the critical range and the observed rational critical exponents 

[36,37,38]. The observed perfect collinear order of the spins 

results from a surprisingly strong coupling of the spins to the 

perfectly ordered boson field. The locally anisotropic near-

neighbor interactions would never result into a perfect 

coherent, long-range order. If the anisotropic local exchange 

interactions would be the relevant excitations, a spin-glass 

like order would result. This is realized in Ising magnets only 

[11]. Note that in Ising magnets, Goldstone-bosons get not 

generated because Ising spins do not precess. The dynamics 

therefore is atomistic, i.e., due to the local exchange 

interactions. In other words, the order realized by ordered 

boson fields is the highest possible one and provides an 

entropy argument for the dominance of the bosons. The long-

range ordered objects generated by the ordered Goldstone-

boson field are the domains. Domains are typical of the 

ordered magnets [39] and of the ordered ferroelectrics [40]. 
The mosaic blocks, occurring in practically all single 

crystals, have also to be viewed as domains, generated by the 

bosons that order at the melting transition [38]. These bosons 

are, however, completely unexplored. The bosons that order 

at the magnetic ordering temperature, i.e., the Goldstone-

bosons, are magnetic dipole radiation, generated by the 

precessing spins [11]. The bosons of the ferroelectric 

materials are evidently electric dipole radiation [40]. 

Although the individual domain is a stable unit, the domain 

configurations are not very stable and can easily be 

manipulated by suitable external means. As is well known, 

upon ferromagnetic saturation the whole sample gets 

transformed into the mono-domain state. The dynamic 

symmetry then is one-dimensional [41]. In other words, a 

dimensionality crossover occurs upon ferromagnetic 

saturation [41]. Since the linear dimensions of the domains 

are much larger than the inter-atomic distance, it is evident 

that the domains do not result from atomistic near-neighbor 

interactions. The domain is, so to say, a universal, self-

contained geometrical unit. The size and shape of the 

individual domain, therefore, must result from the 

ballistically propagating bosons. The finite dimension of 

each domain is indicative of a self-constriction mechanism 

of the ordered boson field. Self-constriction has to be 

considered as a dynamic particularity of the ordered boson 

fields and seems to be one origin of the spontaneous 

magnetostriction [21]. The domains are resonators, self-

organized by the ordered boson field. In each domain, bosons 

and magnons are standing one-dimensional waves. As a 

consequence, in many magnets the magnon dispersions are 

as for the linear spin chain, irrespective of the locally 

anisotropic exchange interactions that are not relevant in the 

sense of the RG-theory [15,23]. Condition for a one-

dimensional long-range order of the boson field is that the 

emission characteristics of the individual boson source is 

axial and that the dominant generation process of the bosons 

is by stimulated emission. This holds for the magnetic and 

for the electric dipole radiation. Due to stimulated emission, 

the number of bosons propagating along those 

crystallographic directions with a high density of the boson 

sources gets enhanced [42,43]. This can be viewed as a self-

collimation mechanism of the bosons. Eventually, for a 

sufficiently sharp collimation, the critical boson density for 

the spontaneous onset of stimulated will be reached and the 

boson field orders perfectly one-dimensional [9,42,43]. Now 

all bosons are condensed in the same quantum state. This is 

realized in each domain. The ordered boson field resembles 

the beam of a LASER. A three-dimensional global boson 

field results by a coupling between the one-dimensional 

boson fields of the domains along x-, y- and z-axis. In other 

words, the dimensionality of the global boson field is given 

by the number of inequivalently oriented domains. The 

observed critical exponents are defined by the global boson 

field.     

     The superconducting transition is particular in that the 

relevant bosons undergo a transition into a short-range 

ordered state. In contrast to the long-range ordered magnets, 

there are no domains observed in the superconducting state. 

Moreover, the typical critical power functions of the 

argument |TSC-T|, as they occur at the magnetic ordering 

transition, are absent in the zero-field heat capacity of the 

superconductors [10,13]. Instead, universal power functions 

of absolute temperature are observed above and below TSC 

[10,16]. As a consequence, the superconducting transitions 

are all within the critical range of the critical point T=0. As 
we know from RG-theory [30], the dynamics in the critical 

range is exclusively due to bosons. Characteristic of a critical 

range is short-range order. This means, at TSC the type of 

short-range order of the relevant bosons changes. Evidently, 

the short-range ordered units of the superconducting state are 

the Cooper-pairs. The radiation field emitted by the sources 

of the relevant bosons, therefore, cannot be axial. It is quite 

clear, that the bosons that order at TSC are the same as the 

bosons above TSC [18]. We have called the bosons of the 

continuous metallic solid that give rise to the universal 

linear-in-T heat capacity above TSC, CMS-bosons [17]. It is 

suggestive to identify these bosons with electric quadrupole 

radiation generated by the inhomogeneous charge 

distributions in the soft zones between the metal atoms. 

Although the radiation field generated by an electric 
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quadrupole is theoretically unexplained, it evidently contains 

a component that is essentially circular or spherical in shape. 

Due to stimulated emission many identical quanta of the 

spherical waves can superimpose whereby a sharp spherical 

shell is generated that encapsulates the two Cooper-pair 

electrons. This is as for the magnetic domains that 

encapsulate a region with coherently ordered spins. The 

shape and volume of the magnetic domains (Cooper-pairs) is 

defined by the ordered Goldstone-boson field (ordered CMS-

boson field). The short-range ordered Cooper-pairs 

correspond, so to say, to the domains in the long-range 

ordered magnets. The CMS-boson shell, surrounding the two 

Cooper-pair electrons, shields the charge of the two Cooper-

pair electrons perfectly and allows for a free mobility of the 

Cooper-pairs. This is a condition for a resistivity of zero of 

the superconducting current. In contrast to the magnetic 

domains that are fixed to each other and to the crystal lattice, 

the spherical Cooper-pairs can move freely across the metal. 

They behave as a dense gas of neutral particles [16]. 

Consistent with the short-range order in the superconducting 

state is that there is no correlation between the positions of 

the Cooper-pairs. In contrast to the ordered magnets, for 

which the dynamic dimensionality is defined by the number 

of inequivalently oriented domains, the conventional (cubic) 

superconductors are isotropic system. The CMS-boson shell 

exerts the necessary constricting force to counteract the 

repulsion between the charges of the two Cooper-pair 

electrons. This constriction is an inherent dynamic, i.e., 

temperature dependent property of the ordered boson field, 

and is similar to the spontaneous magnetostriction in the 

ordered magnets [21]. Since the constriction gets stronger 

with decreasing temperature, the diameter of the Cooper- 

pairs shrinks with decreasing temperature. The 

corresponding binding energy between the two Cooper-pair 

electrons is given by the gap energy Egap(T) that increases 

with decreasing temperature. Egap(T) has much similarity 

with the magnon gap in the ordered magnets that is a measure 

of the stability of the spin order due to the interaction with 

the ordered Goldstone-boson field (magnetic dipole 

radiation) [44]. The decreasing diameter of the Cooper-pairs 

with increasing Egap(T) agrees with the temperature 

dependence of the London penetration depth for an applied 

magnetic field. This allows one to obtain the temperature 
dependence of the diameter of the Cooper-pairs from 

measurements of the temperature dependence of the London 

penetration depth. The strong superconducting 

diamagnetism results from the large orbital cross section of 

the Cooper-pairs. Since the London penetration depth agrees 

with the diameter of the individual Cooper-pair, it results that 

only one layer of Cooper-pairs next to the inner surface of 
the superconductor is sufficient to shield an applied magnetic 

field completely.  The fact that, for all temperatures, a 

magnetic field is expelled out of the superconductor shows 

that the decreasing size of the Cooper-pairs gets 

compensated by a corresponding increase of their density 

such that the volume of the superconductor is always nearly 

completely filled with Cooper pairs [16]. This is as for the 

volume of the ordered magnets that is completely filled with 

domains. It can be assumed that the increasing number of 

electrons needed for the increasing number of Cooper-pairs 

is delivered by the conduction band. The superconductor, 

therefore, resembles a two-phase system with the Cooper-

pairs as the condensed phase and the conduction-band 

electrons as the vapor phase. With the increasing number of 

Cooper-pairs with decreasing temperature the 

superconducting systems receives an increasing mass which 

is certainly of influence on the dynamics, i.e., on the 

temperature dependence of the heat capacity of the zero-field 

ground state.     

     Concluding it has to be remarked that the just sketched 

scenarios need more detailed investigations, in particular 

field-theoretical studies, for a final approval. Many of the 

statements and ideas advanced in this rather 

phenomenological work are heuristic guides only, intended 

to stimulate further research activities. It cannot be excluded 

that with the continuing progress of our understanding of the 

dynamics in solids, one or the other of the here presented 

ideas will need a considerable correction. Nevertheless, the 

dominant role of bosons for the dynamics of solids is now a 

firmly established experimental fact. Essential for this 

dominance seems to be that the bosons get generated by 

stimulated emission. Due to stimulated emission the bosons 

can order, i.e., they condense all in the same or a few 

quantum states, whereby extremely high, local 

electromagnetic fields get generated. These high fields affect 

the microscopic near-neighbor interactions and determine 

the dynamics in the ordered state, instead of the non-relevant 

near-neighbor interactions. 

 

Nomenclature  
λL, London penetration depth (nm) 

Egap, Cooper-pair energy gap (meV) 

TSC, superconducting transition temperature (K)  

λ, diameter of the Cooper-pair 

TBE, Bose-Einstein condensation temperature 

μB, Bohr-magneton (Vsm) 

μ, diamagnetic moment of the Cooper-pair (Vsm) 

Bc, critical magnetic field (Gauss) 

n, spatial density of the Cooper-pairs (cm-3) 

ne, conduction-band electron density (cm-3) 

me, mass of the electron (Kgr) 

β, critical exponent at TSC 

ε, critical exponent at T=0 

e, charge of the electron (C) 

μ0, vacuum permeability (Vs/Am)  
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Abstract 
 

The paper discusses the solution of an interior-boundary value problem of one-dimensional time-fractional Cattaneo-

type heat conduction and its stress fields for a rigid ball. The interior value problem describes the dependence of the 

boundary conditions within the ball's inner plane at any instant with a prescribed temperature state, in contrast to the 

exterior value problem, which relates the known surface temperature to boundary conditions. A single-phase-lag 

equation with Caputo fractional derivatives is proposed to model the heat equation in a medium subjected to time-

dependent physical boundary conditions. The application of the finite spherical Hankel and Laplace transform 

technique to heat conduction is discussed. The influence of the fractional-order parameter and the relaxation time is 

examined on the temperature fields and their related stresses. The findings show that the slower the thermal wave, the 

bigger the fractional-order setting, and the higher the period of relaxation, the slower the heat flux propagates. 

  

Keywords: Fractional Cattaneo-type equation; fractional calculus; non-Fourier heat conduction; ball; thermal 

stress; integral transform. 

 

1. Introduction 

Many papers deal with the temperature and thermal stress 

fields due to body heating in the theory of thermal stress. The 

determination of either heat flux or temperature at interior 

points is deduced from the known temperature at the surface. 

In contrast, there is a subset of cases in which the temperature 

distribution at some interior points is known. It is required to 

determine either temperature or heat flux on the surface, 

commonly named interior value problems (or so-called 

inverse temperature field problems). In order to find the 

unknown functions that characterize the boundary 

conditions, one assumes that (i) a kind of the boundary 

conditions are known, (ii) initial conditions are known, (iii) 

other boundary conditions - if any exist - are known, (iv) 

specific mechanical or thermal internal responses inside the 

object are known. When it comes to determining the transient 

temperature or heat flux distribution at a surface where 

temperature or heat flux measurements are impossible or 

problematic, then inverse temperature field problems will 

have a practical and useful application. Such situations have 

been documented several times in literature; therefore, few 

of them are quoted here. 

Stolz [1] suggested the first solutions for the inverse heat 

problems with integral equations and numerical methods. 

Necsulescu [2], Woodbury [3], Özışık [4] and Beck [5] have 

developed several methods of interior-boundary value heat 

conduction problems for various forms of boundary 

conditions. Torsten et al. [6] solved the linear inverse heat 

conduction problem to reconstruct unknown heat flux at the 

boundary for two- and three-dimensional problems. Lu and 

Tervola [7] developed an empirical approach to heat 

conduction in a composite slab when subjected to periodic 

temperature changes. Khobragade et al. [8] investigated an 

inverse transient thermoelastic problem in which we need to 

determine the unknown temperature, displacement and stress 

function on the outer curved surface of a thin annular disc 

when the interior heat flux is known using integral transform 

techniques. Woodfield et al. [8] solved the inverse heat 

conduction problems analytically using the Laplace 

transform when it has a given far-field boundary state. 

Pourgholi and Rostamian [9] used the Tikhonov 

regularization approach to provide a numerical solution to 

the one-dimensional inverse heat conduction problems. 

Danaila and Chira [10] proposed a solution to the inverse 

one-dimensional heat conduction problem; they intend to 

estimate the unsteady boundary state on the right side using 

two techniques: first, to combine the gradient approach with 

an adjunct issue for the estimate of gradient function, and 

second, to regularize Tikhonov for hyperbolization of the 

equation of heat conduction. Ivanchov and Kinash [11] 

found the inverse problem in a rectangle, the heat conduction 

equation with an unknown coefficient, as a function of time 

and space variables using the Green function. Chen et al. [12] 

used the one-dimensional problem of inverse heat 

conduction to measure the surface temperature; they used a 

nonlinear form of calculation with an integral equation. 

Chang et al. [13] split them into two main solving groups in 

their study paper on the computing approaches used for 

inverse heat conduction problems: mesh techniques and 

meshless algorithms. 

Recently, the fractional-order concept has been put in use 

to obtain better performance of the system. The Laplace 
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transform was used by Kukla and Siedlecka [14] to solve 

fractional heat conduction in a two-layer slab. Meanwhile, 

technological development and innovation in research 

helped bring about a revolution by applying heat relaxation 

time to the non-equilibrium heat conduction system [15-18]. 

Cattaneo [19] and Vernotte [20] have summed the heat 

relaxation time to a partial heat flux time derivative. In the 

meantime, Compte and Metzler [21] focused on four 

different generalizations of the Cattaneo telegraph equations, 

each of which was accompanied by a different scheme: 

continuous-time random walks, nonlocal transport theory, 

and delayed flux-force relation. According to Povstenko 

[22], the time-fractional Cattaneo heat conduction equation 

derived from the Fourier law's time-non-local generalization 

using multiple kernels is a function Mittag-Leffler form's 

related thermal stress theory. Mishra and Rai [23] obtained 

the fractional single-phase heat conductivity function by 

applying the Taylor series's fractional formula to the single-

phase heat conductivity function. The mathematical 

solutions of the fractional Cattaneo-Vernotte heat 

conduction problem with Neumann boundary conditions 

have recently been obtained in a semi-infinite medium by a 

few researchers [24-29]. Nevertheless, the interior-boundary 

value problem of time-fractional Cattaneo-type heat 

conduction with the physical Robin-type boundary state was 

less studied, based on the fractional model Cattaneo-

Vernotte. Hence, this paper investigates the analytical 

solution for Cattaneo's time-fractional heat conduction in a 

finite one-dimensional ball under Robin-type conditions and 

analyzes the heat conduction mechanism, which differs from 

the fractional-order parameters. 

The outline of the paper consists of five parts. In part 2, 

the basic set of equations for the mathematical modelling of 

the single-phase-lag heat conduction equation of the 

fractional Cattaneo-type model is stated. Then, a way of 

obtaining the exact solutions of time-fractional Cattaneo heat 

conduction analysis for such a problem is briefly presented. 

The final parts contain an analysis of the outcomes and a 

discussion concerning the particular case. Conclusive 

findings are summed up in the last detail. 

 

2. Mathematical Model 

2.1 Formulation Of Fractional Cattaneo Equation 

The classical Fourier's law of heat conduction [30] 

 

( ) ( )  q t k T t                                                                  (1) 

 

in which ( )q t  is the heat flux vector represents heat flow 

per unit time per unit area of the isothermal surface, t is the 

time, and k is the thermal conductivity of the material,  is 

the spatial gradient operator, and T is the temperature 

gradient, and it is a vector normal to the surface, respectively. 

Since the heat flux points to decreasing temperature, the 

minus sign is involved in making the heat flow a positive 

quantity. When the heat flux is in W/m3, and the temperature 

gradient is in oC/m, the thermal conductivity has W/(moC). 

Introduction of single-phase-lag to evade discrepancy 

between the mathematical model [19,20] and the 

experimental observations [31], and this extension turns the 

parabolic into a hyperbolic equation 

 

( )
( ) ( )


   



q t
q t k T t

t
                                                  (2) 

 

Here the flux relaxes with some given characteristic time 

constant   is the phase lag of the heat flux or so-called 

relaxation time. Consequently, the propagation velocity is 

finite. As a limiting case 0 , one recovers Fourier's law 

with an infinitely fast propagation. The Laplace transform 

allows us to rewrite Eq. (2) as a time-non-local constitutive 

equation with the exponential kernel [22] as 

 

0
( ) exp ( )

 
    

 


tk t
q t T d


 

 
                                 (3) 

 

Combining Eq. (1) with the conservation law of energy 

[32], leads to 

 

( )
( )


  


v

T t
q t Q C

t
                                                    (4) 

 

leads to the single-phase-lag heat conduction equation as 

 
2

2

( ) ( )1
( )

   
    

  

T t T t Q
T t

t kt



 
                                     (5) 

 

where thermal diffusivity is / vk C  , k  being the 

conductivity of the material,   is the density of the material,

vC  is the specific heat capacity, Q
 
represents the uniform 

heat generation inside the material, and the square root of the 

ratio /   defines the finite speed within the medium, 

respectively. 

 Recently, a kind of generalization of Eq. (2) and (4) 

consisting of replacing the classical integer-order derivative 

with fractional order can be referred to in literature [21,22] 

and the reference therein. Next, we consider the 

generalization of Eq. (2) in the form 
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1
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

 
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t t




                                (6) 

 

in which the fractional Caputo derivative of order   with a 

lower limit zero 
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 (7) 

 

whereas the Riemann-Liouville fractional derivative is taken 

as 

 

1

0

1
( ) ( ) ( ) ,

( )

1

m
t

m

RL m
D f t t f d

mt

m m
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



  
  

   
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           (8) 

 

The law of heat conduction proposed by Gurtin and 

Pipkin [33], which leads to general time-nonlocal 

dependence, was later modified by Povstenko [22] as 

 

0
( ) ( ) ( )   

t

q t k K t T d                                              (9) 
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where a general heat flux history model depends on the 

relaxation kernel ( )K t . 

By simple calculations, Compte and Metzler [4] have 

shown that the generalized Cattaneo law, obtained from the 

following relationship 

 
1 1

1 1 0

( ) ( )
( ) ( )

tq t q t
k K t T d

t tt t

 

 
    

 

 

    
      

   
 (10) 

 

By using Leibniz's formula for the differentiation of an 

integral, one obtains 

 
1

1

1
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     

  
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(11) 

 

Now compared with Eq. (6), it appears clear that we 

must have (0) K k  and  

 
1

1
( ) ( ) 0





 
 

 
K t K t

t t




                                               (12) 

 

By solving Eq. (12), one can obtain the relaxation 

function in the Laplace domain as  

 
1

2
( )

1/






 
  

 

k s
K s

s 
                                                 (13) 

 

The expression in (14) can be inverted in terms of a 

generalized Mittag-Leffler function (see [34]) to yield 

 

4 2

2, 1

1
( )  

 

 
  

 

k
K t t E t 

 
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Multiplying with vector   to Eq. (6), and then using Eq. 

(4), results in the generalized Cattaneo equation [22] 

 
2

2

( , ) ( , )1
( , )

   
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T r t T r t Q
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

 
                        (15) 

 

It was also observed that only a few authors had paid 

attention to the fourth equation. Here, the authors believe that 

this gap could lead to generalization, taking into account the 

generation of internal heat sources within the body. 

 

2.2 Solution Time-Fractional Cattaneo Heat Conduction 

Figure 1 shows a schematic sketch for a ball in the 

spherical coordinate axes r, θ, z is used to describe a time-

fractional thermoelastic analysis. The temperature profile is 

assumed to be a radial coordinate's transient function 

independent of the tangential and azimuthal coordinates. 

 

 
Figure 1. Profile of a spherical metal ball. 

 

We assume that the temperature at every instant is given 

by 

 

0
( , ) ( ) ( , ) 

t

T r t f t r d                                                (16) 

 

where ( , )r t  is the basic solution to the following problem: 

 
2

2

2 2

1 1
,
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Q
r
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


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                       (17) 

 

subjected to zero initial and ambient conditions 

 

( , 0) 0, ( , 0) 0, 0 ,0 1r t r t r a
t

  


       


          (18) 

 

under the physical Robin boundary condition [36-38], which 

is a linear combination of temperature and its normal 

derivative along the radial direction 

 

1( , ) ( , ) ( ),0 , 0 1RL sr t D r t q t a
r

 
      

       


(19) 

 

and the assumed bounded condition at the origin as 

 

0
lim ( , ) 



r

r t                                                                  (20) 

 

with the fact that the temperature at the ball surface, say 

( , ) ( )  r a t t , is unknown. Here the notation 

represents the far-field temperature, 1

RLD   is the Riemann 

Liouville fractional derivative of the fractional-order 1 , 
1( ) ( 0, ) ( ) ( )    s t RLq t q r t D f t , 0( ) ( )f t q t  is the 

sectional prescribed heat supply, ( )
 
is the Dirac delta 

function and 0q
 
is a constant associated with delta term, 

respectively. 

 We present the function ( , )r t  in the first phase of solving 

this problem in the superposition of steady-state and 

transient solution 

 

( , ) ( ) ( , ) s tr t r r t                                                         (21) 

 

The function ( )s r
 
satisfies the steady-state differential 

equation  
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2

2

1
0

  
  

  

s Q
r

r r kr

 


                                               (22) 

 

subjected to non-homogeneous boundary conditions as given 

in Eq. (19). Solving Eq. (22) leads 

 

2

220 0

1
( )

 
   

 
 

r r

s

Q
r r dr dr C

k r





                             (23) 

 

in which the constant 2C
 
is obtained within the Laplace 

domain as 

 

2

2 0( )
6 3

 
    

 

Q Q
C t q

k k
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                                (24) 

 

where 

 

, 0 1,
( ) (1 )

( ), 1
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t

t

t






 

 

 

Similarly, the function ( , )t r t  satisfies the non-

homogeneous differential equation 

 
2

2

2 2

1 1      
    
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t t tr
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



  

 
                                (25) 

 

subjected to homogenous boundary conditions given as 

 

( , 0) 0, ( , 0) 0


   


t

t r t r t
t


                                        (26) 

 

1( , ) ( , ) 0 
   



t

t RLr t D r t
r

 
                                      (27) 

 

Applying the Laplace transform with respect to variable 

t leads to 

 

2 2

2
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                             (28) 

 

1( , ) ( , ) 0 
   



t

t r t s r t
r

 
                                      (29) 

 

Multiplying 2

0 ( )iJ r k r  to Eq. (28) and integrating with 

regards to r from 0  to a. Now on account of the operational 

property (refer to Appendix A) and inserting the boundary 

condition (29), one obtains 

 

2 2

1
( , )

(1/ )


 
t i

i

k s
s s k




                                              (30) 

 

Taking the Laplace inversion integral [39] of Eq. (30), 

one obtains 

 

2 2

exp( )1
( , )

2 (1/ )

 

 


 


c i

t i
c i

i

st
k t ds

i s s k


 
                       (31) 

where c is greater than the real part of the integrand's 

singularities. 

 The integration path for 0t  inside the principal branch 

of ( arg )  s s    is depicted in Figure 2.  

 

 
Figure 2 Integration path 

 

Let 0  and R . Since cos(.) 0  if / 2 .    

and 2exp( ) / ( ) (1/ )st g s o R  if R  the integral vanishes 

on the circular arcs with (1/ )o R . Then 

2 2( ) (1/ )   ig s s s k  has exactly two zeros /   A Bs i   

on the principal branch, which are simple, conjugate 

complex and placed in the open left half-plane. To solve Eq. 

(30), using the residue theorem lead to 
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                    (32) 

 

Firstly consider 
1 ( )t as the sum of the first two terms of 

Eq. (32) and taking ˆ Re[ ( )] Aa g s and ˆ Im[ ( )], Ab g s one 

gets 
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Now consider 
2 ( )t  as the last terms of Eq. (32), along 

/ : exp( ) ,  A Bl s p i i  [0, ] p . If 0  then 
2 2 ,s p exp( ) s p i   
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and, one obtains 
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Removing the imaginary number in the denominator by 

its conjugate, one gets 
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Taking the sum of residues as 
1 2( ) ( ) ( ) s t t t   , one 

obtains 
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Applying the inversion theorem (refer to Appendix A), 

one obtains 
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Taking the temperature as ( , ) ( ) ( , ) s tr t r r t   , one 

obtains 
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and unknown temperature function on the outer curved 

surface is given by 
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                       (40) 

 

Substituting Eq. (40) into ( , ) ( )  r a t t , one can get 

the unknown temperature 
0

( , ) ( ) ( )   
t

T r a t f t d   at 

the ball surface.  

 

2.3 Displacement And Stress Field Solution 

Let ( , )r ru u r t be a component of displacement and 

expressed [40] as 
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that satisfies the displacement equation 
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in which [(1 ) /(1 )]   tK    is the restraint coefficient, 
t  

and  denote the coefficient of linear thermal expansion and 

Poisson's ratio, respectively.  

Let , ,rr     be the components of stress and 

expressed [40] as 
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      (43) 

 

in which traction-free boundary conditions are

( , ) 0 rr r a t .  

Substituting ( , )T r a t  into Eqs. (41) and (43), one can 

obtain the ball surface's unknown displacement and thermal 

stresses. 

 

3. Numerical Results, Discussion And Remarks 

For the sake of simplicity of numerical computations, we 

introduce the following nondimensional parameters as 
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with physical parameters for the solid ball as  
a = 2m and the surrounding temperature as  

T0 = 150°C.
 
Substituting the value of Eq. (44) in Eqs. (39), 

(41) and (43), one obtains the expressions for the 

temperature, displacement and thermal stresses for our 

numerical discussion. 

 

Table 1. Thermo-mechanical properties: Aluminum. 

Dimension Value 

Modulus of Elasticity, E 70 GPa 

Poisson's ratio 0.35 

Thermal Expansion Coefficient, t 2310-6/0C 

Thermal diffusivity, κ 84.1810-6 m2s−1 

Thermal conductivity, λ 204.2Wm−1K−1 

 
The numerical computations have been carried out for the 

Aluminum (pure) material with the thermo-mechanical 

properties as given in Table 1. The / i ik a 2.61736, 

5.51894, 8.65373, 11.7915, 14.9309, 18.0711, 21.2116, 

24.3525, 27.4935, 30.6346, 33.7758, 36.9171, 40.0584, 

43.1998, 46.3412, 49.4826are the positive and real roots of 

the transcendental equation ( ) ( )  i n i n ik J ak h J ak

( / ) ( ) ( ) 0  i n i n ia J hJ   .  

 

 
Figure 3. Temperature distribution along  for different 

values of r ( 1 , 0.6t  ). 
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Figure 4. Temperature profile along   for different 

values of ( 0.8r , 0.6t ). 

 

 
Figure 5. Temperature along r for different values of 

  ( 0.75 , 1t  ). 

 

 
Figure 6. Temperature variation along r for various 

values of ( 0.8 , 1t ). 

 

 
Figure 7. Temperature distribution along t for 

different values of   ( 1 , 0.6t ). 

 

 

Figure 8. Temperature profile along t for different 

values of  ( 0.8 , 1r ). 
 

Figures 3-14 illustrate the numerical results in the 

graphical form for temperature distribution, displacement 

profile and variation in stress distribution in a spherical ball 

under the physical Robin boundary condition. Figures 3-4 

denote the temperature distribution against the fractional 

order  for the various values of  r  and ,  both with and 

without an internal heat source. It can be noticed in both the 

figures that under the absence of a heat source, the 

temperature is zero at the initial stages, starts gradually 

increasing, attains maxima at a different value of r  and  , 

and it finally decreases asymptotically. On the other hand, 

the temperature has a specific value at the initial stages under 

a heat source and behaves the same as it did without a heat 

source. The gradual increase in the temperature for both, 

with or without a heat source, for a particular value   may 

be due to the body's geometry's ability to hold the heat.  

 

Figures 5-6 represent the temperature value along 

dimensionless radial direction for different values of  and 

, for both with and without a heat source. The hike in the 

sinusoid pattern may be due to the internal heat generation 

accumulation, but it gets flattened at the ball's outer core. 

Figures 7-8 depict the variation in the temperature 

distribution over time t  for different values of   and , with 

and without an internal heat source. From the figure, it is 

clearly understood that the temperature value increases 

linearly with the increase in time in the absence of an internal 

heat source and surrounding temperature, which defines the 

close correlation between time and temperature. In contrast, 

the presence of heat generation as well as surrounding heat 

generates a gradual increase curve for the value of 

temperature and attains uniformity after some time. Figure 9 

gives a variation of dimensionless displacement ru  along the 

radial direction for different values   with and without a 

heat source. The effect of the temperature distribution in the 

presence of internal heat generation causes a dramatic 

change in displacement compared to the change observed in 

the absence of a heat source. It can be easily seen that no 

displacement is observed initially, but along the radial 

direction, it increases and then becomes stagnant at a 

particular value of r  due to the effect of temperature 

distribution on the ball.  
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Figure 9. Variation of displacement ru   along the r

direction for different  . 

 

 
Figure 10. Displacement distribution ru  along the   

direction for different r . 

 

 
Figure 11. rr  along r for different values of    

( 1 , 1t ). 

 

 
Figure 12. rr

 
profile along for various values of 

  ( 0.4r , 0.6t ). 

 

 
Figure 13.     along r for different values 

of   ( 0.75 , 1t ). 

 

 
Figure 14.     along  for various values of 

  ( 0.6r , 0.8t ). 

 

Figure 10 shows the variation in the displacement 

distribution ru   along the   direction for different values of  

r  both availability or absence of an internal heat source. 

One can observe the change taking place in the displacement 

with an increase in the relaxation time. Initially, the 

displacement is none and slowly increases asymptotically 

due to the effect of the temperature distribution. Figure 11 

depicts the relation between the radial stresses along the 

radial direction for the different values of  when 1 t   
in both when internal heat sources are present or absent. In 

both cases, the difference in the stresses can be readily 

noticeable. The nature of the stresses is such that it starts 

accumulating stability at the ball's outer end with a gradual 

increase that can be seen from low initiation. Figure 12 gives 

variation in radial stresses along relaxation time for various 

values of   for both, with and without a heat source. The 

gradual decreasing nature in the plot can be observed at zero 

relaxation time no, or a negligible amount of stresses are 

found, which decreases as the relaxation time increases, 

ultimately defining the importance of relation time. Figures 

13-14 show the relation between     along r and 

for different values of  . The graph's nature is the same in 

both figures, with and without a heat source. The stresses' 

values are very low initially and increase slowly at the outer 

end due to the accumulation of the surrounding temperature. 

 

4. Deduction And Validation Of The Results 

This section corresponds to the deduction of results 

obtained above regarding the classical uncoupled 

thermoelasticity model and classical Cattaneo-Vernotte 

thermoelasticity theory for a homogeneous sphere.  
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(i) Taking 0  and 1  in Eq. (7), the equation 

reduces to the classical Fourier heat conduction 

model [30]. 

 

(ii) Taking 1   in Eq. (7), the equation results in the 

classical Cattaneo-Vernotte heat conduction model 

[19,20]. 

 

The present deduced thermoelastic solutions agree with 

the key derived by Ghonge and Ghadle [41] for an isotropic, 

homogeneous, elastic sphere. This work combines a 

fractional-order constitutive model with the standard 

continuity equation. However, recent investigations [47,48] 

show the coexistence of the non-Fourier constitutive model 

and non-trivial continuity equation based on the Boltzmann 

transport theory. The results illustrate that the constitutive 

model and continuity equation are not independent of each 

other, which is not considered in this work. 

 

4. Conclusion 

In this problem, the fractional Cattaneo model is derived 

for studying the thermoelastic response of a rigid ball that is 

internally impacted by an assigned temperature. At the same 

time, heat supply is a source in the energy equation. The 

theory of integral transformation is used to obtain the 

analytical solution for the fractional Cattaneo and classical 

Fourier models. The temperature distribution dependence 

and its thermoelastic response on the fractional-order 

parameter and relaxation time are studied for different times 

and positions. It is observed that the fractional Cattaneo 

model gives continuous temperature and thermal stress 

variation irrespective of the fractional-order parameter. It is 

also detected that the heat flux flows from higher 

temperatures to lower for the fractional Cattaneo and 

classical Fourier models. 
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Nomenclature 

t linear coefficient of thermal expansion (/0C) 

κ thermal diffusivity (m2s-1) 

λ thermal conductivity (W/m.K) 

Greek symbols 

μ Lame's constants (GPa) 

ν Poisson's ratio 

ρ density (kg/m3) 

uij displacement potential function 

σij components of stress tensor 

σrr radial stress (Pa) 

σθθ circumferential stress (Pa) 
 

Appendix 

The Transformation And Its Essential Property 

Here, the Fourier-Bessel series and Hankel transform [42] to 

spherical coordinates [43] are extended, which is more 

suitable to third-kind boundary conditions. Assuming a finite 

interval 0  r a  in the spherical coordinate led to the 

spherical-Bessel series representation of a function ( )f r , 

which can be stated as 
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 i n i

i

f r c J r k                                                      (A.1) 

 

where 
ic  are the coefficients to be determined and ( )n iJ r k  

is a spherical Bessel function of order n. The eigenvalues 

/i ik a  are defined by the solutions of 

 

( ) ( ) ( / ) ( ) ( ) 0    i n i n i i n i n ik J ak hJ ak a J hJ                   (A.2) 

 

in which
i  is an ith root of the spherical Bessel function, and 

the prime denotes the differentiation of the Bessel function. 

Multiplying Eq. (A.1) by ( )n jJ r k , integrating both sides of 

the result from 0 to a, and using the orthogonal property of 

Bessel functions, then taking n = 0, one obtains 
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Following the procedure of Chen [43], one obtains the series 

coefficients as 
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Substituting the value of 
ic  into Eq. (1) gives 
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Thus, the zero-order finite Hankel transform and its inverse 

are defined as 
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and the only property which will be made use 
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Abstract 
 

Experimental densities, viscosities, refractive indices, and sound speeds at temperature 298.15 K and atmospheric 

pressure are reported for the binary liquid mixtures of ethanol + benzene, ethanol + pyridine, and benzene + pyridine. 

From these experimental data, various thermodynamic excess and deviation properties were calculated and fitted by 

the Redlich-Kister polynomial to determine the adjustable coefficients and the standard deviations. The number of 

Redlich-Kister coefficients for significantly representing each thermodynamic property was optimized by applying 

the F-test. The variation of thermodynamic excess and deviation properties with composition has been interpreted in 

terms of molecular interactions between components of the mixture and structural effects. Furthermore, several 

theoretical and semi-empirical models were used to predict the refractive indices and sound speeds of the investigated 

mixtures. The predicting ability of each model was ascertained in terms of mean absolute percentage deviation 

between experimental and calculated data. 

 

Keywords: Redlich-Kister polynomials; thermodynamic properties; binary mixtures; refractive index; sound speed; 

F-test. 

 

1. Introduction 

The work described in this paper belongs to a systematic 

study program concerning the measurement and 

mathematical description of various thermodynamic 

properties of binary and ternary liquid mixtures containing 

important compounds [1-3]. The study of thermodynamic 

properties of binary mixtures of alkanols with aromatics is of 

great importance both from a practical and theoretical point 

of view. For example, an increase in the conversion of 

refined coal and oil yield is observed when raw mined coal 

is thermally pretreated with a mixture of benzene and ethanol 

[4]. A mixture of benzene with ethanol is also widely used to 

extract volatiles in the pulp and paper industry and diesel 

exhaust particulates [5]. On the other hand, applying pyridine 

as a fuel additive has improved the coking resistance of 

SOFCs with Ni cermet anode operating on ethanol fuels [6]. 

Thorough knowledge of liquid mixtures' thermodynamic 

properties is also essential for the design and setup of 

separation processes and process equipment. It will 

contribute to the fundamental understanding of complex 

molecular interactions between mixtures’ components and, 

thus, a better understanding of liquid state theory [7-10]. 

Here we report experimental densities, sound speeds, 

viscosities, and refractive indices of binary mixtures ethanol 

+ pyridine, ethanol + benzene, and pyridine + benzene at 

298.15 K and under atmospheric pressure of 950 hPa. The 

related thermodynamic properties – excess molar volume, 

excess Gibbs free energy of activation for viscous flow, 

isentropic compressibility deviations, and refractive index 

deviations – have been calculated from the experimental data 

and interpreted in terms of molecular interactions between 

components of the mixture and structural effects.  

The studied thermodynamic properties were fitted by 

Redlich-Kister polynomials [11], which is one of the most 

popular expressions for the mathematical representation of 

excess thermodynamic properties of binary liquid mixtures. 

Additionally, various theoretical and semi-empirical models 

were used to predict the refractive indices [12-17] and sound 

speeds [18-22] of the investigated liquids mixtures. The 

predicting ability of each model was ascertained in terms of 

mean absolute percentage deviation between experimental 

and calculated data. 

A review of literature revealed that some thermodynamic 

properties of the investigated mixtures had been reported [ 5, 

8, 9, 23-25]. However, this work is the first to report a 

combined study of density, sound speed, viscosity, and 

refractive index (and their derived thermodynamic excess 

and deviation properties) for three organic liquids and their 

binary mixtures of practical importance in various chemical 

and industrial processes. 
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2. Materials and Methods  

2.1 Materials 

Ethanol (Carlo Erba) was supplied with purity ≥99.8%, 

benzene (Lach-Ner) with ≥99.8%, and pyridine (Sigma-

Aldrich) with ≥99.5%. Densities (kg‧ m-3), sound speeds 

(m‧ s-1), viscosities (mPa‧ s), and refractive indices of pure 

liquids are within 0.05%, 0.08%, 0.8%, and 0.008%, 

respectively, with the corresponding literature values [8, 10, 

26-32]. Since the agreement with the literature is very good, 

all the chemicals were used without further purification. 

 

2.2 Methods 

Mixtures were prepared by syringing known masses of 

the pure liquids into airtight stoppered amber glass bottles. 

Preferential evaporation during the preparation of mixtures 

was minimized by always charging the higher-boiling 

component first. Precautions were also taken to avoid losses 

by evaporation during manipulation. A KERN & Sohn 

ABS220-4N type electronic balance with a precision of ±0.1 

mg was used for mass measurements. Conversion from mass 

to molar quantities was based on IUPAC's relative atomic 

mass Table of 2011 [33]. The uncertainty in the mole fraction 

of the studied mixtures was estimated to be better than 

±0.0001. All mixtures were prepared just before use for 

measurements of density (), speed of sound (c), viscosity 

(), and refractive index (n) at temperature 298.15 K and 

ambient pressure of ~95.0 kPa. 

This work used a pycnometer made of borosilicate glass 

to determine the densities of pure liquids and liquid mixtures. 

The pycnometer volume was calibrated at 298.15 K with in-

house triple distilled and bubble-free water. Utmost care was 

taken while filling the pycnometer with sample liquid such 

that no air bubbles were trapped in the bulb or capillary of 

the pycnometer. The pycnometer with sample liquid was 

immersed for 30 minutes in a water bath maintained at 

298.15 ± 0.04 K to minimize temperature fluctuations. After 

temperature equilibration, the pycnometer was dried with 

filter paper before recording its mass in an electronic 

balance. The density of the sample liquid was then calculated 

using the values of its mass and volume. The reported 

densities represent averages over three measurements. 

A variable path single-crystal ultrasonic interferometer 

operating at 2 MHz (Mittal model SE-02) was used to 

measure sound speed (c). In-house triple-distilled and 

bubble-free water was used to check the performance of the 

interferometer. The speed of sound for water at 298.15 K was 

1497 ± 1 m·s-1, which agrees very well with values reported 

in the literature [30, 32]. Thermal control of the sample 

liquids was performed by circulating water from a bath 

maintained at 298.15 ± 0.04 K through the inner walls of the 

measuring cell of the interferometer. The reported sound 

speeds are average values taken over ten measurements. 

The dynamic viscosities were determined with calibrated 

Cannon-Fenske capillary viscometer. Much effort was put 

into ensuring that the capillary was vertical while mounting 

the viscometer in a water bath controlled at 298.15 ± 0.04 K. 

The viscometer with the sample liquid was kept for 30 

minutes in the water bath before making the flow-time 

measurements. A digital stopwatch with a readability of 0.01 

s was used for flow-time measurements. Measurements were 

repeated at least five times, and average values were 

considered in all calculations. 

Refractive indices of pure liquids and binary mixtures 

were measured with an Abbe refractometer operated with a 

low-pressure sodium vapor lamp (λ = 589 nm). The 

refractometer was thermostatically controlled at 298.15 ± 

0.04 K. Regular calibration checks were performed with in-

house triple distilled water to ensure the accuracy of the 

measurements. At least three independent measurements 

were performed for each sample, and the average value was 

considered in all calculations. 

The combined expanded uncertainties at a 95% 

confidence level for ρ, c, η, and n measurements are 0.2 

kg·m-3, 2 m·s-1, 0.003 mPa·s, and 0.0002, respectively. The 

corresponding uncertainties were calculated following the 

NIST guidelines for evaluating and expressing uncertainties 

of measurement results [34]. 

 

3. Results and Discussion 

The measured physical properties (ρ, c, η, and n) at 

temperature 298.15 K and ambient pressure ~95.0 kPa of the 

studied mixtures appear in Tables 1 to 3. The experimental 

results reveal that in the mixtures of pyridine or benzene with 

ethanol, the density, sound speed, and refractive index 

decrease with the mole fraction of ethanol (x1). A second-

order degree polynomial on x1 can satisfactorily represent 

these properties. On contrary, dynamic viscosity data show a 

minimum around x1 = 0.35 and 0.10 for ethanol (1) + 

pyridine (2) and ethanol (1) + benzene (2) mixtures, 

respectively. For the pyridine (1) + benzene (2) system, the 

, c, and  data exhibit a nearly linear relationship with 

composition, while the n data show a second-order degree 

variation. 

The excess molar volumes, VE, excess Gibbs free 

energies of activation for viscous flow, G*E, refractive index 

deviations, n, and isentropic compressibility deviations, 

ΔκS, were derived from ρ, c, η, and n values by using the 

following equations [2 ,9, 10, 35]: 

 

𝑉𝐸 = ∑ 𝑥𝑖𝑀𝑖(𝜌
−1 − 𝜌𝑖

−1)2
𝑖=1 , (1) 

 

𝐺∗𝐸 = 𝑅𝑇[ln⁡(𝜂𝑉𝑚) − ∑ 𝑥𝑖ln⁡(𝜂𝑖𝑉𝑚,𝑖)
2
𝑖=1 ], (2) 

 

𝛥𝜅𝑆 = ⁡𝜅𝑆 − ∑ 𝜑𝑖𝜅𝑆,𝑖
2
𝑖=1 , (3) 

 

∆𝑛 = ⁡𝑛 − ∑ 𝜑𝑖𝑛𝑖
2
𝑖=1 , (4) 

 

𝜑𝑖 = (
𝑥𝑖𝑀𝑖𝜌𝑖

−1

∑ 𝑥𝑗𝑀𝑗𝜌𝑗
−1

𝑗
). (5) 

 

where κS = -1c-2 is the isentropic compressibility of the 

mixture; xi, Mi, ρi, ηi, κS,i = i
-1ci

-2, ni, and φi, are the mole 

fraction, molar mass, density, dynamic viscosity, isentropic 

compressibility, refractive index, and volume fraction of 

pure component i, respectively. R is the universal gas 

constant. Other symbols have the usual meaning. The 

combined expanded uncertainties at a 95% confidence level 

are Uc(VE) = 0.006 cm3·mol-1, Uc(G*E) = 11 J·mol-1, Uc(Δκs) 

= 1.6 TPa-1, and Uc(Δn) = 0.0002. The VE, GE*, Δn, and ΔκS 

results of the studied mixtures are graphically shown in 

Figures 1, 2, 3, and 4, respectively. The literature values are 

also shown [5, 8, 23-25, 36, 37] for comparison purposes. 

We can observe that the VE results of this work for 

ethanol + benzene agree well with those reported by Han et 

al. [8] and Šerbanović et al. [5] over the entire composition 

range. A small discrepancy is observed between the VE of 

Garrett and Pollock [23] and the results of this work for 

pyridine + benzene at the middle mole fraction region. The 

data of Findlay and Copp [25] present good agreement for 
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ethanol + pyridine over the entire composition range. 

However, the results of Singh et al. [36] are lower in the 

middle fraction region, probably because of the higher 

measurement temperature. From Figure 2 it can be seen that 

for ethanol + benzene the G*E of this work agrees well with 

those reported by Kouris and Panayiotou [37] over the whole 

composition range. We can observe from Figure 3 that our 

ΔκS data for ethanol + benzene show good agreement up to 

~0.7 mole fraction of ethanol but deviate with those of 

Gonzales-Olmos et al. [24] at higher compositions. 

Because of the different natures of benzene, pyridine, and 

ethanol—in terms of polarity and geometrical shape—the 

resulting values of thermodynamic properties of their 

mixtures will reflect the opposite contributions that are 

dominant in certain regions of the concentrations. When 

these compounds are mixed, then the observed changes in 

thermodynamic properties are clearly due to: (i) stretching 

and breaking of H bonded structures in pure ethanol, (ii) 

N•••HO interactions between the lone pair of electrons of N 

in pyridine and the OH group of ethanol, (iii) π•••HO 

interactions between the π electrons of the aromatic rings (of 

pyridine and benzene) and the OH group of ethanol, (iv) 

π•••H interactions between the partial positive charge of H – 

in the position para with N - of pyridine with π electrons of 

aromatic rings, (v) geometrical interstitial accommodation of 

molecules into each other's structure due to differences in 

size and shape of the component molecules of the mixtures; 

(vi) in all cases weak London dispersion interactions are also 

present [5, 9, 38]. 

When considering VE and ΔκS, then it is known that 

contributions (i) and (vi) give positive values, while (ii) - (v) 

contribute negatively to the values of VE and ΔκS [35, 38, 39]. 

Having in mind the various contributions operating in the 

studied systems, then the positive values of ΔκS and VE in the 

benzene-rich region of the ethanol + benzene system 

(Figures 1 and 3) can be attributed mainly to the disruption 

of the H-bonded ethanol structures as the ethanol molecules 

are added to a large amount of benzene. The negative ΔκS 

and VE values in the ethanol-rich region indicate that 

complex formation occurred through π···HO bonding 

between the π-electron cloud of the aromatic ring of benzene 

and the hydroxyl group of ethanol. A further negative 

contribution may occur from the interstitial accommodation 

of benzene molecules into the remaining H-bonded ethanol 

structure [35]. The negative VE and ΔκS values for the ethanol 

+ pyridine system can be attributed mainly to the formation 

of complexes by strong cross-associated N···HO 

interactions. Contributions (iii) and (v) may also play a role. 

Similar results are also obtained by Anwar et al. [38] for 

binary mixtures of pyridine with alkanols (C6-C10) and by 

Kijevčanin et al. [39] for mixtures of pyridine with 1-

propanol and 1,2-propanediol. 

Figure 2 shows that excess Gibbs free energy of 

activation for viscous flow G*E is negative for mixtures 

involving ethanol but is positive for the system pyridine + 

benzene. Positive G*E is generally observed in systems with 

strong specific interactions between mixture components. In 

contrast, negative values can be seen in binary mixtures 

where weak dispersion forces are primarily responsible for 

interaction but may also occur where components are known 

to interact more strongly [40, 41], as in our case of the 

ethanol + pyridine system. Similar results are observed for 

binary mixtures of alkanols with pyridine [35, 38] and N-

methyl pyrrolidine [42].  

 

Table 1. Densities ρ, speeds of sound c, dynamic viscosities 

η, and refractive indices n of ethanol (1) + pyridine (2) 

mixtures at 298.15 K and ~95.0 kPa. 
x1 ρ (kg∙m-3) c (ms-1) η (mPas) n 

0.0000 978.3 1417 0.879 1.5071 

0.0229 975.2 1414 0.873 1.5047 

0.0498 971.6 1410 0.866 1.5019 
0.1000 964.7 1402 0.856 1.4966 

0.1493 957.8 1394 0.850 1.4911 

0.2000 950.6 1385 0.846 1.4854 
0.2488 943.5 1376 0.843 1.4797 

0.2999 935.7 1366 0.842 1.4735 

0.3552 926.9 1355 0.841 1.4666 
0.4000 919.4 1345 0.841 1.4608 

0.5000 901.7 1321 0.848 1.4471 

0.6000 882.5 1294 0.866 1.4324 
0.7000 861.6 1264 0.897 1.4165 

0.7454 851.5 1249 0.915 1.4089 

0.8000 838.7 1229 0.940 1.3993 
0.8349 830.0 1216 0.956 1.3929 

0.9000 813.1 1190 0.992 1.3804 

0.9258 806.2 1179 1.012 1.3753 
0.9500 799.6 1168 1.032 1.3703 

0.9778 791.7 1155 1.059 1.3644 

1.0000 785.1 1145 1.082 1.3594 

 

Table 2. Densities ρ, speeds of sound c, dynamic viscosities 

η, and refractive indices n of pyridine (1) + benzene (2) 

mixtures at 298.15 K and ~95.0 kPa. 
x1 ρ (kg∙m-3) c (ms-1) η (mPas) n 

0.0522 972.6 1411 0.865 1.5067 

0.1000 967.4 1406 0.852 1.5063 

0.1439 962.7 1402 0.841 1.5060 
0.1999 956.8 1395 0.827 1.5056 

0.2601 950.5 1389 0.810 1.5052 

0.3001 946.3 1385 0.800 1.5049 

0.3504 941.1 1379 0.786 1.5045 

0.4001 935.9 1374 0.772 1.5042 

0.4492 930.8 1368 0.759 1.5038 
0.5001 925.5 1363 0.745 1.5034 

0.5502 920.3 1357 0.731 1.5030 

0.6000 915.1 1351 0.717 1.5025 
0.6439 910.6 1346 0.705 1.5021 

0.7000 904.8 1339 0.689 1.5015 

0.7691 897.6 1330 0.669 1.5007 
0.8000 894.4 1326 0.660 1.5004 

0.8495 889.3 1319 0.646 1.4998 

0.9000 884.0 1313 0.630 1.4991 
0.9601 877.7 1305 0.613 1.4982 

1.0000 873.4 1299 0.602 1.4976 

 

Table 3. Densities ρ, speeds of sound c, dynamic viscosities 

η, and refractive indices n of ethanol (1) + benzene (2) 

mixtures at 298.15 K and ~95.0 kPa. 
x1 ρ (kg∙m-3) c (ms-1) η (mPas) n 

0.0227 871.8 1292 0.592 1.4954 
0.0500 869.9 1285 0.584 1.4928 

0.1000 866.6 1275 0.577 1.4878 

0.1557 863.0 1265 0.581 1.4821 
0.1999 860.0 1258 0.587 1.4774 

0.2508 856.6 1251 0.594 1.4719 

0.2998 853.2 1244 0.602 1.4664 
0.3451 850.0 1238 0.614 1.4612 

0.3998 846.0 1232 0.632 1.4546 

0.4561 841.7 1225 0.651 1.4475 
0.4998 838.2 1220 0.669 1.4418 

0.5509 834.0 1214 0.694 1.4349 

0.5998 829.7 1208 0.722 1.4280 
0.6404 826.1 1203 0.746 1.4221 

0.7000 820.4 1196 0.785 1.4130 

0.7511 815.2 1189 0.825 1.4049 
0.8000 810.0 1182 0.866 1.3968 

0.8599 803.2 1173 0.920 1.3863 

0.9000 798.4 1166 0.962 1.3790 
0.9500 792.0 1156 1.025 1.3694 

0.9778 788.2 1150 1.059 1.3639 
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Figure 1. Excess molar volumes, VE, for the 🟥 ethanol (1) + 

benzene (2), 🟥 pyridine (1) + benzene (2), and 🔹 ethanol (1) 

+ pyridine (2) binary mixtures. Solid lines are the results 

calculated from the Redlich-Kister polynomial [11]. (Figure 

is in color in the online version of the paper). 

 

 
Figure 2. Excess Gibbs free energy of activation for viscous 

flow, G*E, for the 🟥 ethanol (1) + benzene (2), 🟥 pyridine (1) 

+ benzene (2), and 🔹 ethanol (1) + pyridine (2) binary 

mixtures. Solid lines are the results calculated from the 

Redlich-Kister polynomial [11]. (Figure is in color in the 

online version of the paper). 

 

The variations of Δn with the volume fraction of the first 

component in the mixture are shown in Figure 4. The Δn 

shows negative dependence for the system ethanol (1) + 

benzene (2) but is positive for ethanol (1) + pyridine (2) and 

pyridine (1) + benzene (2). The data seem to support the 

finding that Δn tends to increase as the strength of interaction 

 
Figure 3. Isentropic compressibility deviation, ΔκS, for the 🟥 

ethanol (1) + benzene (2), 🟥 pyridine (1) + benzene (2), and 

🔹 ethanol (1) + pyridine (2) binary mixtures. Solid lines are 

the results calculated from the Redlich-Kister polynomial 

[11]. (Figure is in color in the online version of the paper). 

 

 
Figure 4. Refractive index deviation, Δn, for the 🟥 ethanol (1) 

+ benzene (2), 🟥 pyridine (1) + benzene (2), and 🔹 ethanol 

(1) + pyridine (2) binary mixtures. Solid lines are the results 

calculated from the Redlich-Kister polynomial [11]. (Figure 

is in color in the online version of the paper). 

 

between the components of the mixture increases, thereby 

showing an opposite trend to that of VE values. This negative 

correlation of Δn with VE is a widely valid rule [3, 7, 38, 43], 

and it may be used as a quick check on the consistency of the 

data pertaining to VE [43]. 

 

Table 4. Adjustable coefficients Bj and standard deviations 

of the fitting σ for mathematical representation with Redlich-
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Kister polynomial, Eqn. (6), of excess molar volumes VE 

(cm3mol-1), isentropic compressibility deviations κS (TPa-

1), deviations in refractive indices n, and excess Gibbs free 

energy of activation for viscous flow G*E (Jmol-1) at 298.15 

K. 
Property Y  B1 B2 B3 B4 B5 σ (Y) 

ethanol + pyridine 

VE -1.456 0.723    0.008 
Δκs

 -292.0 80.4 -17.6   0.2 

Δn 0.0091 -0.0021 0.0017 -0.0028  0.00003 

G*E -1276 297 -218   6 

ethanol + benzene 

VE 0.073 0.592 0.226 0.342  0.003 

Δκs 7.6 98.4 8.5 64.4 73.5 0.4 

Δn -0.0044 -0.0016    0.00003 
G*E -1607 -339 -386 -577  8 

pyridine + benzene 

VE -0.847 -0.306    0.004 

Δκs -64.1 -19.4    0.3 

Δn 0.0050 0.0028    0.00004 

G*E 219 28    1 

 

3.1 Correlation of VE, ΔκS, G*E and Δn 

The thermodynamic excess and deviation properties (VE, 

ΔκS, G*E, and Δn) of the studied mixtures were correlated by 

polynomials due to Redlich and Kister [11]:  

 

𝑌 = ⁡𝑋1𝑋2∑ 𝐵𝑗
𝑘
𝑗=0 (𝑋2 − 𝑋1)

𝑗, (6) 

 

where k is the polynomial order optimized by applying the 

F-test [44] at a 0.01 significance level. The polynomial 

coefficients Bj were fitted by the unweighted least squares 

method and are recorded in Table 4 along with the standard 

deviations. X = x (mole fraction) when fitting Y = VE and G*E; 

X = ϕ (volume fraction) for Y = ΔκS and Δn. The subscripts 

1 and 2 refer to the first and second components in the 

corresponding binary mixture. 

The solid lines in Figures 1 to 4 refer to the values 

calculated with Eq. (6) using the corresponding coefficients 

Bj in Table 4. We can observe a good agreement between the 

experimental data and the solid lines generated with an 

optimal number of coefficients. Generally, the number of 

fitting coefficients depends on the shape of data across the 

graph, the number of data points, the experimental data 

quality, and the significance level [35]. E.g., more 

parameters were needed to significantly fit the ΔκS and VE 

data of the ethanol + benzene system as they exhibited sine-

like behavior. When data show a parabolic-like dependence, 

fewer parameters are needed to fit them significantly. 

 

3.2 Predictive Models for n and c 

Information on refractive index and speed of sound is 

essential for designing and optimizing multi-component 

liquid mixtures. The invaluable information provided by 

these properties has considerably increased the interest in 

applying different models for predicting them. In this work, 

Lorentz and Lorenz (L-L) [12], Eykman (EYK) [13], Oster 

(OST) [14], Dale and Gladstone (D-G) [13, 15, 17], and 

Newton (NEW) [16] mixing rules were used to predict the 

refractive indices of the studied systems:  

 

Lorentz-Lorenz (L-L): 

𝑛2−1

𝑛2+2
= ∑ ϕ𝑖

𝑛𝑖
2−1

𝑛𝑖
2+2

2
𝑖=1  (7) 

Eykman (EYK): 
𝑛2−1

𝑛+0.4
= ∑ ϕ𝑖

𝑛𝑖
2−1

𝑛𝑖+0.4

2
𝑖=1  (8) 

 

Oster (OST): 
(𝑛2−1)(2𝑛2+1)

𝑛2
= ∑ ϕ𝑖

(𝑛𝑖
2−1)(2𝑛𝑖

2+1)

𝑛𝑖
2

2
𝑖=1  (9) 

 

Dale-Gladstone (D-G): 

𝑛 − 1 = ∑ ϕ𝑖(𝑛 − 1)2
𝑖=1  (10) 

 

Newton (NEW): 

𝑛2 − 1 = ∑ ϕ𝑖(𝑛𝑖
2 − 1)2

𝑖=1  (11) 

 

In Eqs. (7)-(11), n and ni are the refractive indices of the 

liquid mixture and pure component i, respectively; i is the 

volume fraction of component i in the mixture.  

For predicting sound speeds, the relations of Nomoto 

(NOM) [18], van Dael (VAN) [19], Ernst et al. (ERN) [20], 

Junjie (JUN) [21], and Rao [22] were used. The formulae 

pertaining to these relations, which were subjected to proper 

rearrangement, are given in the following: 

 

Nomoto's relation: 

𝑉𝑖𝑑𝑐
1
3⁄ =  ∑ 𝑥𝑖𝑉𝑖𝑐𝑖

1
3⁄2

𝑖=1     ∴    c =

  [(𝑉𝑖𝑑)−1∑ 𝑥𝑖𝑉𝑖𝑐𝑖
1
3⁄2

𝑖=1 ]
3

       (12) 

 

where c is the speed of sound in the mixture, 𝑉𝑖𝑑 =
∑ 𝑥𝑖𝑉𝑖
2
𝑖=1 ; xi, Vi, and ci, are the mole fractions, molar 

volumes, and sound speeds of component i in the mixture. 

 

van Dael's ideal mixing relation: 

(𝑀𝑐2)−1 = ∑ 𝑥𝑖(𝑀𝑖𝑐𝑖
2)−12

𝑖=1     ∴    c =

[𝑀∑ 𝑥𝑖(𝑀𝑖𝑐𝑖
2)−12

𝑖=1 ]
−1

2⁄        (13) 

 

where c and M are the speed of sound and molar mass, 

respectively, of liquid mixture; xi, Mi, and ci, are the mole 

fractions, molar masses, and sound speeds of component i in 

the mixture. 

 

Ernst et al. relation: 

(𝑐)−1 = ∑ ϕ𝑖(𝑐𝑖)
−12

𝑖=1     ∴    c = [∑ ϕ𝑖(𝑐𝑖)
−12

𝑖=1 ]−1    (14) 

 

where c is the speed of sound of liquid mixture; ϕi, and ci, are 

the volume fractions and speeds of sound, respectively, of 

component i in the mixture. 

 

Junjie's relation: 

(𝑉𝑖𝑑𝑀
−1

2⁄ 𝑐−1)
2

= ∑ 𝑥𝑖 (𝑉𝑖𝑀𝑖

−1
2⁄ 𝑐𝑖

−1)
2

2
𝑖=1     ∴    c =

[(𝑉𝑖𝑑)−2𝑀∑ 𝑥𝑖 (𝑉𝑖𝑀𝑖

−1
2⁄ 𝑐𝑖

−1)
2

2
𝑖=1 ]

−1
2⁄

     (15) 

 

where c and M are the speed of sound and molar mass, 

respectively, of the liquid mixture, and 𝑉𝑖𝑑 = ∑ 𝑥𝑖𝑉𝑖
2
𝑖=1 ; xi, 

Mi, Vi, and ci, are the mole fractions, molar masses, molar 

volumes, and sound speeds of component i in the mixture. 
Rao's relation: 

ρ−1𝑐
1
3⁄ =  ∑ 𝑥𝑖ρ𝑖

−1𝑐
𝑖

1
3⁄2

𝑖=1     ∴    c =   [ρ∑ 𝑥𝑖ρ𝑖
−1𝑐

𝑖

1
3⁄2

𝑖=1 ]
3

         (16) 
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where c and ρ are the speed of sound and density, 

respectively, of liquid mixture; xi, ρi, and ci, are the mole 

fractions, density, and sound speeds, respectively, of 

components i in the mixture. 

The ability of the models to predict refractive indices and 

sound speeds of investigated systems was tested by 

calculating the mean absolute percentage deviation (MAPD) 

[45] between experimental and predicted values. The MAPD 

results are summarized in Tables 5 and 6 for refractive 

indices and speeds of sound, respectively. 

 

Table 5. Mean absolute percentage deviation (MAPD) for 

the Lorentz–Lorenz (L–L), Eykman (EYK), Newton (NEW), 

Oster (OST), and Dale–Gladstone (D–G) mixing rules for 

ethanol + pyridine, pyridine + benzene, and ethanol + 

benzene mixtures at 298.15 K 
System L-L EYK NEW D-G OST 

ethanol + pyridine 0.172 0.118 0.019 0.094 0.051 

pyridine + benzene 0.059 0.059 0.058 0.058 0.058 
ethanol + benzene 0.026 0.026 0.123 0.049 0.091 

 

Table 6. Mean absolute percentage deviation (MAPD) for 

the Nomoto (NOM), Van Dael (VAN), Ernst et al. (ERN), 

Rao, and Junjie (JUN) relations for ethanol + pyridine, 

pyridine + benzene, and ethanol + benzene mixtures at 

298.15 K 
System NOM VAN ERN Rao JUN 

ethanol + pyridine 1.05 6.26 2.43 3.39 2.78 

pyridine + benzene 0.43 0.45 0.36 0.15 0.86 
ethanol + benzene 0.90 3.45 0.45 2.50 0.49 

 

Table 5 shows that all the mixing rules performed well 

for the systems under study. The NEW mixing rule shows 

the best agreement with experimental values for the ethanol 

+ pyridine system but the worst agreement for ethanol + 

benzene. The observed deviations are expected and can be 

accounted for, to some degree, if the excess volume is taken 

into consideration in the various mixing rules [7, 46]. Based 

on MAPD data, the predicting ability of the mixing rules 

follows this sequence: EYK  L-L > D-G > OST > NEW for 

ethanol + benzene; NEW > OST > D-G > EYK > L-L for 

ethanol + pyridine. All the mixing rules obviously performed 

equally well for the pyridine + benzene system. 

From a perusal of Table 6, it is obvious that some 

relations did not present good agreement with experimental 

data. The VAN relation resulted in the highest disagreement 

with experimental data for ethanol + pyridine, whereas the 

Rao relation showed the best performance for pyridine + 

benzene. Based on the results of Table 6, the predicting 

ability of the speed of sound relations follows the sequence: 

NOM > ERN > JUN > Rao > VAN for ethanol + pyridine; 

Rao > ERN > NOM > VAN > JUN for pyridine + benzene; 

ERN > JUN > NOM > Rao > VAN for ethanol + benzene. 

 

4. Conclusions 

This paper reports a combined experimental study of 

density, sound speed, viscosity, and refractive index (and 

their derived thermodynamic excess and deviation properties 

VE, GE*, Δn, and ΔκS) for pure liquids - ethanol, benzene, and 

pyridine - and their binary mixtures essential for various 

chemical and industrial processes. 

Redlich-Kister polynomial provided a statistically 

significant mathematical representation of VE, GE*, Δn, and 

ΔκS data with an optimal number of coefficients and standard 

deviations comparable to or better than experimental 

uncertainties.  

The composition dependence of thermodynamic excess 

and deviation properties has been successfully interpreted in 

terms of molecular interactions between components of the 

mixture and structural effects. 

The application of various models for predicting the 

refractive indices and sound speeds showed that the 

considered refractive index models worked well for all 

investigated systems. In contrast, some speed of sound 

models did not present good agreement with experimental 

data. 

 

Nomenclature 

 – density of the mixture (kgm-3) 

c – sound speed of the mixture (ms-1) 

n – refractive index of the mixture 

 - dynamic viscosity of the mixture (10-3 Pas) 

j – density of the component i (gcm-3) 

ci – sound speed of the component i (ms-1) 

ni – refractive index of the component i 

i –  dynamic viscosity of the component i (10-3 Pas) 

xi – mole fraction of component i 

φi – volume fraction of component i 

VE – excess molar volume (cm3mol-1) 

G*E – excess Gibbs free energy of activation for viscous flow 

(Jmol-1) 

κS – deviation i isentropic compressibility (1012 Pa-1) 

n – deviation in refractive index 

ERN – Ernst et al. speed of sound predictive relation 

EYK – Eykman refractive index mixing rule 

D-G – Dale and Gladstone refractive index mixing rule 

JUN – Junjie speed of sound predictive model 

L-L – Lorentz-Lorenz refractive index mixing rule 

MAPD – Mean Absolute Percentage Deviation 

NEW – Newton refractive index mixing rule 

NOM – Nomoto speed of sound predictive relation 

OST – Oster refractive index mixing rule 

VAN – Van Dael speed of sound predictive relation 
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