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CONACyT- National Center for Technological Research
and Development
Mexico

Ahmad, Hijaz
International Telematic University Uninettuno

Italy

Arqub, Omar Abu
Al-Balqa Applied University
Jordan

Asjad, Muhammad Imran
University of Management and Technology

Pakistan

Atangana, Abdon
University of the Free State
South Africa

Baleanu, Dumitru
Cankaya University, Türkiye;

Institute of Space Sciences, Bucharest, Romania
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Gürbüz, Burcu
Johannes Gutenberg-University Mainz, Institute of

Mathematics, Germany

Hammouch, Zakia
ENS Moulay Ismail University Morocco;
Thu Dau Mot University Vietnam and China Medical
University, Taiwan

Hristov, Jordan
University of Chemical Technology and Metallurgy

Bulgaria

Ibadula, Denis
Ovidius University of Constanta
Romania

Jafari, Hossein
University of Mazandaran, Iran;

University of South Africa, South Africa

Jajarmi, Amin
University of Bojnord
Iran

Jain, Shilpi
Poornima College of Engineering, Jaipur

India

Kaabar, Mohammed K.A.
Washington State University
USA

Kumar, Devendra
University of Rajasthan

India

Kumar, Sunil
National Institute of Technology
India

Lupulescu, Vasile
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Abstract
This paper presents a three-component model consisting of one prey and two predator species using
imprecise biological parameters as interval numbers and applied functional parametric form in the
proposed prey-predator system. The positivity and boundedness of the model are checked, and a
stability analysis of the five equilibrium points is performed. Numerical simulations are performed to
study the effect of the interval number and to illustrate analytical studies.

Keywords: Prey-predator; interval number; stability; competition; uncertainty

AMS 2020 Classification: 34D20; 34D23; 37C25; 37D45; 39A28

1 Introduction

The dynamics of predator-prey relationships [1–5] relationships is an essential aspect of any
ecosystem where plants, animals, and other living organisms coexist in a delicate balance. Prey-
predator model dynamics [6–10] are influenced by a variety of factors, including environmental
conditions, competition from the predator population, and mortality rates. Mathematical ecology
is an area of study that investigates the dynamic relationships between prey and predators. In this
research, we analyze a three-species prey-predator model [11–15] with competition in predator
populations to study dynamics with imprecise parameters.
Most previous research on prey-predator models has been based on the assumption of exact
biological parameters [1–15]. However, in reality, biological parameters may not be fixed and
can change due to various reasons, making the exact estimation of these parameters difficult.
To address this issue, we consider interval number biological parameters in our study. Interval
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numbers allow us to incorporate uncertainty into our models and make more realistic predictions
about the behavior of the system.
Furthermore, using interval numbers for parameters can capture the complex dynamics of
predator-prey systems, such as boom-bust cycles, where the populations of both species os-
cillate over time. Interval numbers can also provide greater flexibility in modeling a prey-predator
system, enabling us to simulate the effect of different environmental factors on the system and
explore different scenarios.
In this paper, we focus on studying the advantages of using interval number biological parameters
for prey-predator systems and the effect of certain model parameters on the system. Although
some studies have explored the use of interval parameters in prey-predator models [16–22], our
research offers new insights into the potential benefits of this approach. Ultimately, our findings
can contribute to a better understanding and management of these vital ecosystems.

2 Prey-predator imprecise model with interval number

In this proposed model, we consider one prey species and two predator species. Let X (t) denote
the prey density, Y (t) the 1st predator and Z (t) the 2nd predator density at any time t.
The biological environment of populations is not completely predictable, so the biological pa-
rameters of modeling the prey-predator system should be considered imprecise. The proposed
prey-predator system is developed on the following assumptions:
Assumption 1. The prey population grows according to the logistic curve with carrying capacity
k(kϵR+) and with an intrinsic growth rate r(rϵR+), in the absence of both predator species. The
logistic equation is a mathematical model that describes the growth of a population over time. It
is represented by the following differential equation:

dN
dt

= rN
(

1 −
N
K

)
,

where N is the population size, t is time, r is the intrinsic growth rate of the population, and K
is the carrying capacity, which is the maximum number of individuals that the environment can
support.
The logistic equation incorporates the concept of density dependence, which means that the
growth rate of the population decreases as it approaches the carrying capacity. This results
in an S-shaped growth curve, where the population initially grows rapidly, slows down as it
approaches the carrying capacity, and eventually stabilizes at the carrying capacity. In the presence
of predators, Y and Z, the population of prey X will decrease due to the attack of predators. The
first and second predators attack the prey with an interval-valued rate β̂1 (> 0) and β̂2 (> 0)
respectively and the Holling type I functional response manner. Holling type function, also known
as the functional response curve, is a mathematical model that describes the rate at which a
predator consumes prey as a function of prey density. It is named after Canadian ecologist C.S.
Holling, who first proposed the idea in the 1950s.
The Holling type function is typically represented by one of three functional forms:
Type I: f (x) = ax, where a is a constant that represents the attack rate of the predator.
Type II: f (x) = ax

1+ ax
h

, where h is a constant that represents the handling time, or the time it takes
for the predator to consume a single prey item.
Type III: f (x) = ax2

1+bx+ x2
k

, where b and k are constants that determine the shape of the curve.

In general, the Holling type function predicts that the rate of predation increases with prey density
up to a certain point, after which the rate of predation begins to level off as the predator becomes
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saturated with prey. The precise shape of the curve depends on the specific functional form of the
model. Then the mathematical form of the above assumption is as follows.

dX
dt

= rX
(

1 −
X
k

)
− β̂1XY − β̂2XZ. (1)

Assumption 2. Prey X are food for predators (Y and Z), so in the presence of food, the population
density of predators (Y and Z) will increase in the Holling type I functional response manner. We
introduced the natural death of predators. Here we also consider the competition between the
predators, and for this reason, the population density of both predators will decrease. We consider
the competition parameters δ̂1 and δ̂2 to be imprecise. Hence, from the above assumption, we have

dY
dt

= β̂1XY − d1Y − δ̂1YZ, (2)

dZ
dt

= β̂2XZ − d2Z − δ̂2YZ. (3)

Therefore, our final mathematical model with four interval-valued parameters is as follows.

dX
dt

= rX
(

1 −
X
k

)
− β̂1XY − β̂2XZ,

dY
dt

= β̂1XY − d1Y − δ̂1YZ, (4)

dZ
dt

= β̂2XZ − d2Z − δ̂2YZ,

where β̂1 ∈ [β1l , β1u], β̂2 ∈ [β2l , β2u], δ̂1 ∈ [δ1l , δ1u] , δ̂2 ∈ [δ2l , δ2u], for β1l > 0, β2l > 0, δ1l > 0
and δ2l > 0, with initial conditions

X(0) > 0, Y(0) > 0, and Z(0) > 0. (5)

Using the parametric form of interval-valued parameters, the equations (4) can be written in the
parametric prey-predator model [16, 17] for p ∈ [0,1] is as follows:

dX
dt

= rX
(

1 −
X
k

)
− β

1−p
1l β

p
1uXY − β

1−p
2l β

p
2uXZ,

dY
dt

= β
1−p
1l β

p
1uXY − d1Y − δ

1−p
1l δ

p
1uYZ, (6)

dZ
dt

= β
1−p
2l β

p
2uXZ − d2Z − δ

1−p
2l δ

p
2uYZ,

subject to the initial conditions

X(0) > 0, Y(0) > 0 and Z(0) > 0. (7)

The biological descriptions of each parameter have been discussed in Table 1.
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Table 1. Biological meaning of the model parameters

Parameter Biological meaning
X Prey species
Y 1st predator species
Z 2nd predator species
r Intrinsic growth rate
k Carrying capacity

β1 Consumption rate of 1st predator
β2 Consumption rate of 2nd predator
δ1 Competition rate between the 1st predator (Y) to 2nd predator (Z)
δ2 Competition rate between the 2nd predator (Z) to 1st predator (Y)
d1 Natural death rate of 1st predator
d2 Natural death rate of 2nd predator

3 Dynamical behavior

In this section, we describe the rigorous dynamical behavior of the proposed model system. To do
so, we first check the positivity of the solutions of the interval model and the uniform boundedness
of the solution of the same model.

Positivity

Theorem 1 Every solution of system (6) with initial conditions (7) exists in the interval [0,∞) and
X(0) > 0, Y(0) > 0 and Z(0) > 0 for all t ≥ 0.

Proof Since the right-hand side of the system (6) is completely continuous and locally Lipschitzian
on C, the solution (X(t), Y(t), Z(t)) of (6) with initial conditions (7) exists and is unique on [0, ξ),
where 0 < ξ < ∞.
From system (6) with initial conditions (7), we have

X(t) = X(0)exp
[∫ t

0
{r(1 − (X(θ))/k)− β

1−p
1l β

p
1uY(θ)− β

1−p
2l β

p
2uZ(θ)}dθ

]
> 0,

Y(t) = Y(0)exp
[∫ t

0
{β

1−p
1l β

p
1uX(θ)− d1 − δ

1−p
1l δ

p
1uZ(θ)}dθ

]
> 0,

Z(t) = Z(0)exp
[∫ t

0
{β

1−p
2l β

p
2uX(θ)− d2 − δ

1−p
2l δ

p
2uY(θ)}dθ

]
> 0,

which completes the proof. ■

Uniform boundedness

Theorem 2 The solutions of the model system (6) are completely bounded.

Proof We construct a function such as Λ(t) = X(t) + Y(t) + Z(t).
Differentiating both sides with respect to t, we have

dΛ(t)
dt

=
dX(t)

dt
+

dY(t)
dt

+
dZ(t)

dt
.
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Therefore,

dΛ
dt

= rX(1 −
X
k
)− β

1−p
1l β

p
1uXY − β

1−p
2l β

p
2uXZ

+β
1−p
1l β

p
1uXY − d1Y − δ

1−p
1l δ

p
1uYZ + β

1−p
2l β

p
2uXZ − d2Z − δ

1−p
2l δ

p
2uYZ

= rX(1 −
X
k
)−

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ − d1Y − d2Z.

Now,

dΛ
dt

+ γΛ == rX(1 −
X
k
)−

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ − d1Y − d2Z + γ (X + Y + Z) .

dΛ
dt

+ γΛ =

(
rX −

rX2

k
+ γX

)
− (d1 − γ) X − (d2 − γ)Y −

(
δ

1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ.

Since
(

δ
1−p
1l δ

p
1u + δ

1−p
2l δ

p
2u

)
YZ > 0 and assuming γ < min (d1, d2) , then from the above equation,

we have

dΛ
dt

+ γΛ ≤
(

rX −
rX2

k
+ γX

)
≤ k

(r + γ)2

4r
= A (say) .

Applying the result of differential inequality, we obtain,
0 ≤ Λ (X(t), Y(t), Z(t)) ≤ A

γ

(
1 − e−γt)+ Λ (X(0), Y(0), Z(0)) e−γt,

which implies that 0 ≤ Λ ≤ A
γ as t → ∞ .

Hence all the solutions of (6) is uniformly bounded. ■

4 Equilibrium points and their existence and stability

In this section, we study the existence and stability behavior of the system (6) at equilibrium points
of the model system (6) are:

(I) Trivial equilibrium E0 (0, 0, 0), (II) Axial equilibrium E1 (k, 0, 0), (III) Planar equilibrium

(a) E2 (X2, Y2, 0) where X2 = d1

β
1−p
1l β

p
1u

and Y2 = r
β

1−p
1l β

p
1u

(
1 − d1

β
1−p
1l β

p
1uk

)
, (b) E3 (X3, 0, Z3) ,

where X3 = d2

β
1−p
2l β

p
2u

and Z3 = r
β

1−p
2l β

p
2u

(
1 − d2

β
1−p
2l β

p
2uk

)
. (IV) Interior equilibrium E∗ (X∗, Y∗, Z∗) ,

where X∗ =
k
(

β
1−p
1l β

p
1uδ

1−p
1l δ

p
1ud2+rd1δ

1−p
2l δ

p
2u+β

1−p
2l β

p
2ud1δ

1−p
2l δ

p
2u

)
rδ

1−p
1l δ

p
1uδ

1−p
2l δ

p
2u+kβ

1−p
1l β

p
1uβ

1−p
2l β

p
2u

(
δ

1−p
1l δ

p
1u+δ

1−p
2l δ

p
2u

) > 0, Y∗ =
β

1−p
2l β

p
2uX∗−d2

δ
1−p
2l δ

p
2u

,

and Z∗ =
β

1−p
1l β

p
1uX∗−d1

δ
1−p
1l δ

p
1u

.

Now Y∗ > 0 if β
1−p
2l β

p
2uX∗ > d2, and Z∗ > 0 if β

1−p
1l β

p
1uX∗ > d1.

Local stability analysis

In this section, we study the local stability of the system (6) at various equilibrium points.

Theorem 3 The equilibrium point E0 is always unstable.
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Proof Variational matrix of system (6) at E0(0, 0, 0) is given by

V(E0) =

 r 0 0
0 −d1 0
0 0 −d2

 .

Therefore, eigenvalues of the characteristic equation of V(E0) are λ1 = r > 0, λ2 = −d1 < 0,
λ3 = −d2 < 0. Here, one of the eigenvalues is positive and the other two are negative, so E0 is
always unstable. ■

Theorem 4 The equilibrium point E1 is stable if β
1−p
1l β

p
1uk < d1 and β

1−p
2l β

p
2uk < d2.

Proof Variational matrix of system (6) at E1(k, 0, 0) is given by

V(E1) =

 −r −β
1−p
1l β

p
1uk −β

1−p
2l β

p
2uk

0 β
1−p
1l β

p
1uk − d1 0

0 0 β
1−p
2l β

p
2uk − d2

 .

The eigenvalues of the characteristic equation of V(E1) are λ1 = −r < 0, λ2 = β
1−p
1l β

p
1uk − d1,

λ3 = β
1−p
2l β

p
2uk − d2. Therefore, E1 is stable if β

1−p
1l β

p
1uk < d1 and β

1−p
2l β

p
2uk < d2. ■

Theorem 5 The equilibrium point E2 is locally asymptotically stable if d2 > β
1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2,

A1 > 0 and A2 > 0.

Proof The variational matrix of system (6) at E2 (X2, Y2, 0) is given by

V(E2) =

 m11 m12 m13
m21 m22 m23

0 0 m33

 ,

where m11 = r − 2rX2
k − β

1−p
1l β

p
1uY2, m12 = −β

1−p
1l β

p
1uX2, m13 = −β

1−p
2l β

p
2uX2, m21 = β

1−p
1l β

p
1uY2,

m22 = β
1−p
1l β

p
1uX2 − d1, m23 = −δ

1−p
1l δ

p
1uY2, m33 = β

1−p
2l β

p
2uX2 − d2 − δ

1−p
2l δ

p
2uY2.

Now the characteristic equation for V(E2) is (m33 − λ)
{

λ2 + A1λ + A2
}
= 0, where

A1 = − (m11 + m22) and A2 = m11m22 − m12m21.
Therefore, one eigenvalue of the characteristic equation above is m33, which is negative as
d2 > β

1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2 and the other two eigenvalues are negative if A1 > 0 and A2 > 0.

Therefore, the second predator-free equilibrium point E2 (X2, Y2, 0) is locally asymptotically stable
if d2 > β

1−p
2l β

p
2uX2 − δ

1−p
2l δ

p
2uY2, A1 > 0, and A2 > 0, otherwise the system (6) will be unstable. ■

Theorem 6 The equilibrium point E3 is locally asymptotically stable if d1 > β
1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3,

B1 > 0 and B2 > 0.

Proof The variational matrix of system (6) at E3 (X3, 0, Z3) is given by

V(E3) =

 p11 p12 p13
0 p22 0

p31 p32 p33

 ,
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where p11 = r − 2rX3
k − β

1−p
2l β

p
2uZ3, p12 = −β

1−p
1l β

p
1uX3, p13 = −β

1−p
2l β

p
2uX3, p22 = β

1−p
1l β

p
1uX3 −

d1 − δ
1−p
1l δ

p
1uZ3, p31 = β

1−p
2l β

p
2uZ3, p32 = −δ

1−p
2l δ

p
2uZ3, p33 = β

1−p
2l β

p
2uX3 − d2.

The characteristic equation for V(E3) is (p22 − λ)
(
λ2 + B1λ + B2

)
= 0, where B1 = − (p11 + p33)

and B2 = p11 p33 − p13 p31.
Therefore, the eigenvalue of the characteristic equation above is p22, which is negative as
d1 > β

1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3, and the other two eigenvalues are negative if B1 > 0 and B2 > 0.

The first predator-free equilibrium point E3 (X3, 0, Z3) is locally asymptotically stable if
d1 > β

1−p
1l β

p
1uX3 − δ

1−p
1l δ

p
1uZ3, B1 > 0 and B2 > 0, otherwise the system (6) will be unstable. ■

Theorem 7 The equilibrium point E∗ is locally asymptotically stable if the inequalities A > 0, C > 0,
AB − C > 0 are satisfied.

Proof Variational matrix of system (6) at E∗(X∗, Y∗, Z∗) is given by,

V(E∗) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where a11 = r − 2rX
k

∗
− β

1−p
1l β

p
1uY∗ − β

1−p
2l β

p
2uZ∗, a12 = −β

1−p
1l β

p
1uX∗, a13 = −β

1−p
2l β

p
2uX∗,

a21 = β
1−p
1l β

p
1uY∗, a22 = β

1−p
1l β

p
1uX∗ − δ

1−p
1l δ

p
1uZ∗ − d1, a23 = −δ

1−p
1l δ

p
1uY∗, a31 = β

1−p
2l β

p
2uZ∗,

a32 = −δ
1−p
2l δ

p
2uZ∗, a33 = β

1−p
2l β

p
2uX∗ − δ

1−p
2l δ

p
2uY∗ − d2.

Therefore, the characteristic equation of V(E∗) is

λ3 + Aλ2 + Bλ + C = 0, (8)

where, A = −(a11 + a22 + a33), B = − (a12a21 + a13a31 + a23a32 − a11a22 − a11a33 − a22a33),
C = −(a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32).

According to the Routh-Hurwitz criterion, all eigenvalues of the characteristic equation (8) have
negative real parts, which means that the system (6) shows local asymptotic stability at E∗ if and
only if A > 0, C > 0, AB − C > 0. ■

Remark 1 When analyzing the stability of a model with exact biological parameters, the results are typically
the same as those for the model with the corresponding imprecise biological parameters. The key difference
between the two lies in the nature of the parameters used. While exact parameter models use precise
numerical values, imprecise biological parameter models employ uncertain parameters that are often in the
form of probability distributions or ranges of values. Despite this difference, the stability analysis techniques
used for both types of models are essentially the same.

Global stability analysis

In this section, we discuss the global stability behavior of the system (6) at interior equilibrium
point E∗(X∗, Y∗, Z∗). Studying the global stability of the equilibrium points using Lyapunov’s
direct method has gained popularity in recent years, but constructing suitable Lyapunov functions
can be challenging. In general, there are no systematic methods for constructing Lyapunov
functions for prey-predator models. However, the most commonly used types of Lyapunov
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functions are quadratic and Volterra-type functions. In this study, the global stability of the
equilibrium states was demonstrated using a Volterra-type Lyapunov function [23–28]. This
function was carefully chosen because of its effectiveness in analyzing the stability of dynamical
systems with more complex behavior.

Theorem 8 If E∗ is locally asymptotically stable, then E∗ is globally asymptotically stable in

G = {(X, Y, Z) : X > X∗, Y > Y∗ and Z > Z∗or X < X∗, Y < Y∗ and Z < Z∗} . (9)

Proof Let

L (X, Y, Z) = α1

(
X − X∗ − X∗ ln

X
X∗

)
+ α2

(
Y −Y∗ −Y∗ ln

Y
Y∗

)
+α3

(
Z − Z∗ − Z∗ ln

Z
Z∗

)
,

where α1, α2 and α3 are positive constants that will be chosen later.
Define L1 (X) =

(
X − X∗ − X∗ ln

(
X
X∗

))
, L2 (Y) =

(
Y −Y∗ −Y∗ ln

(
Y
Y∗

))
,

and L3 (Z) =
(

Z − Z∗ − Z∗ ln
(

Z
Z∗

))
, therefore, L (X, Y, Z) = α1L1 (X) + α2L2 (Y) + α3L3 (Z) .

Differentiating L(X, Y, Z) along the solution of the system (6) with respect to t, we get

dL
dt

= α1

(
1 −

X∗

X

)
dX
dt

+ α2

(
1 −

Y∗

Y

)
dY
dt

+ α3

(
1 −

Z∗

Z

)
dZ
dt

. (10)

Linear approximations X − X∗ ∼= X, Y −Y∗ ∼= Y and Z − Z∗ ∼= Z are used to compute dL1(X(t))
dt ,

dL2(Y(t))
dt and dL3(Z(t))

dt as follows:

dL1

dt
=

(
1 −

X∗

X

) [
r
(

1 −
X
k

)
− β

1−p
1l β

p
1uY − β

1−p
2l β

p
2uZ

]
X

= −
r
k
(X − X∗)2 − β

1−p
1l β

p
1u (X − X∗) (Y −Y∗)− β

1−p
2l β

p
2u (Z − Z∗) (X − X∗) ,

dL2

dt
=

(
1 −

Y∗

Y

) [
β

1−p
1l β

p
1uX − d1 − δ

1−p
1l δ

p
1uZ

]
Y

= β
1−p
1l β

p
1u (X − X∗) (Y −Y∗)− δ

1−p
1l δ

p
1u (Z − Z∗) (X − X∗) ,

and

dL3

dt
=

(
1 −

Z∗

Z

) [
β

1−p
2l β

p
2uX − d2 − δ2Y

]
Z

= β
1−p
2l β

p
2u (Z − Z∗) (X − X∗)− δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .
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Now,

dL
dt

= −α1
r
k
(X − X∗)2 −

[
α1β

1−p
2l β

p
2u + α2δ

1−p
1l δ

p
1u − α3β

1−p
2l β

p
2u

]
(Z − Z∗) (X − X∗)

+ (α2 − α1) β
1−p
1l β

p
1u (X − X∗) (Y −Y∗)− α3δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .

Let α2 = 1 and α3 = 1, then α1 = α2 = 1. Hence,

dL
dt

= −
r
k
(X − X∗)2 − δ

1−p
1l δ

p
1u (Z − Z∗) (X − X∗)− δ

1−p
2l δ

p
2u (Y −Y∗) (Z − Z∗) .

Now, we see that dL
dt is negative definite in the region:

G = {(X, Y, Z) : X > X∗, Y > Y∗ and Z > Z∗or X < X∗, Y < Y∗ and Z < Z∗} .

Therefore, the theorem follows. ■

5 Numerical simulation

To validate our analytical studies, we performed numerical simulations using hypothetical pa-
rameter data. Obtaining real data for this purpose can be complex, and therefore, we chose to use
hypothetical parameters for our simulations. This approach allows us to assess the precision of
our analytical studies and provides us with a reliable means of testing the effectiveness of our
models. In this study, we meticulously examine the influence of four significant parameters on the

Table 2. Value of the parameters for various simulations.

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4
r 0.8 0.8 0.8 0.8
k 5.0 5.0 5.0 5.0

β̂1 [0.3, 0.5] [0.4, 0.6] [0.3, 0.5] [0.3, 0.5]
β̂2 [0.3, 0.5] [0.3, 0.5] [0.3, 0.5] [0.3, 0.5]
δ̂1 [0.04, 0.06] [0.04, 0.06] [0.05, 0.07] [0.04, 0.06]
δ̂2 [0.04, 0.06] [0.04, 0.06] [0.04, 0.06] [0.04, 0.06]
d1 0.1 0.1 0.1 0.1
d2 0.1 0.1 0.1 0.1
p 0.5 0.5 0.5 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

model system by using the four-parameter state approach, while simultaneously exploring the
potential benefits of incorporating interval numbers into our analysis. In doing so, our objective is
to expand our understanding of the model system and to provide valuable insight into its behavior
under varying conditions.
For the parameter set of simulation 1, we find that equilibrium points of the model are E0 (0, 0, 0),
E1 (5, 0, 0), E2 (0.2582, 1.9589, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3789, 0.9545, 0.9545) .
And corresponding eigenvalues are −0.1000,−0.1000, 0.8000; −0.8000, 1.8365, 1.8365; −0.0207 ±
0.2747i,
− 0.0960; −0.0207± 0.2747i,−0.0960 and −0.0297± 0.3313i,−0.0012. Among these points, E2, E3
and E∗ are stable. Fig. 1 supports our results.
To study the effect of the transmission coefficient (β̂1 and β̂2) on the model, we change the value of
the parameter β̂1 in simulation 2 compared to simulation 1. For the parameter set of simulation 2,
E0 (0, 0, 0), E1 (5, 0, 0), E2 (0.2041, 1.5663, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3277, 0.5492, 1.2355)
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Figure 1. Dynamical behaviour for the equilibrium points.
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Figure 2. Effect of consumption parameter on the system.

are equilibrium points of our model system. The corresponding eigenvalues are −0.1000,−0.1000,
0.8000; −0.8000, 2.3495, 1.8365; −0.0163 ± 0.2765i,−0.0977; −0.0205 ± 0.2746i,−0.0694 and
−0.0258 ± 0.3238i,−0.0008. Out of these points E2, E3 and E∗ are stable. Fig. 2 and Fig. 3 are
the graphical representation of our analysis based on the set of parameters of simulation 2. We
found that the initial value and the transmission coefficient (β̂1, and β̂2) are sensitive issues in this
system. Due to the change in β̂1, Fig. 2 shows a change compared to Fig. 1 for the same initial
condition. We notice another change in Fig. 3 compared to Fig. 2 for different initial conditions
and the same parameter values.

To study the effect of the competition coefficient (δ̂1 and δ̂2) on the model, we change the value of
the parameter δ̂1 in simulation 3 compared to simulation 1. For the parameter set of simulation 3
E0 (0, 0, 0), E1 (5, 0, 0), E2 (0.2582, 1.9589, 0), E3 (0.2582, 0, 1.9589) and E∗ (0.3899, 1.0418, 0.8627)
are the equilibrium points of our model.
And the corresponding eigenvalues are −0.1000,−0.1000, 0.8000; −0.8000, 1.8365, 1.8365; −0.0207±



Ghosh et al. | 11

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

X

(0.8,0.2,0.55589)

(0.26,0,1.96)

(0.2,0.2,0.8)

(0.33,0.55,1.24)

(0.2,0.8,0.2)

Y

(0.20,1.57,0)Z
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Figure 4. Effect of the competition parameter on the model.

0.2747i,−0.0960; −0.0207 ± 0.2747i,−0.1159 and −0.0281 ± 0.3360i, −0.0061.

Among these points, we identify three equilibrium points, namely E2, E3, and E∗, with stable
dynamics. The graphical representation of our findings based on the set of parameters used
in simulation 3 is presented in Figs. 4 and 5. Our analysis reveals that the initial values of
the competition coefficients (δ̂1 and δ̂2) are critical determinants of the behavior of the system.
Specifically, even slight changes in δ̂1 can significantly alter the system’s dynamics, as evident from
the comparison between Figs. 1 and 4 for the same initial conditions. Furthermore, we observe
another significant change in Fig. 5 compared to Fig. 4 when there is a change in the initial state.
These findings highlight the importance of carefully selecting and monitoring initial conditions and
competition coefficients in ecological systems to ensure their long-term sustainability. Here, we
explore the impact of varying the values of the parameter p on the equilibrium points of the model
system. The interior equilibrium points, the corresponding eigenvalues, and the equilibrium
characteristics for different values of p are presented in Table 3, based on the parameters used in
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Figure 6. Time history for different value of p.

simulation 4. The results reveal that as p increases, the equilibrium population levels of both the
prey and predator species exhibit a gradual decline. This finding suggests that changes in the
parameter p have a significant impact on the stability and behavior of the model system.
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Table 3. Equilibrium points, eigenvalues, and their nature for different p values.

p Equilibrium Eigenvalue Nature
0 (0.49356, 1.2017, 1.20172) −0.0386 ± 0.3278i,−0.0017 Stable

0.2 (0.44416, 1.09690, 1.09690) −0.0348 ± 0.3294i,−0.0015 Stable
0.4 (0.39957, 1.00006, 1.00006) −0.0313 ± 0.3307i,−0.0013 Stable
0.6 (0.35934, 0.91083, 0.91083) −0.0282 ± 0.3317i,−0.0011 Stable
0.8 (0.32309, 0.82880, 0.82880) −0.0254 ± 0.3325i,−0.0010 Stable
1 (0.29042, 0.75353, 0.75353) −0.0228 ± 0.3330i,−0.0009 Stable

In this study, we analyze the population dynamics of prey and predator species over time,
starting with initial population values of X = 0.8 (prey), Y = 0.6 (first predator), and Z = 0.6
(second predator), for various values of p ∈ [0, 1]. The results are presented in Fig. 6, while the
corresponding phase portrait is depicted in Fig. 7. From these figures, it is evident that an increase
in the value of p is associated with a gradual decrease in population density. These findings
provide valuable information on the sensitivity of the model system to changes in parameter
values and highlight the importance of understanding the underlying mechanisms that govern
predator-prey interactions.

6 Conclusion

In this article, we have presented a three-species prey-predator model that incorporates imprecise
biological parameters using the concept of interval numbers. Through the analysis of the model,
we have demonstrated that the interval number method is a simple and effective tool for examining
the impact of imprecise parameters on the behavior of the system.
Our analysis included checking the positivity and boundedness of the model, as well as performing
a stability analysis of the five equilibrium points. The results of our analysis provide valuable
insights into the dynamics of the prey-predator system and the effects of imprecision in the
parameters.
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In conclusion, our work highlights the importance of considering imprecision in biological pa-
rameters when modeling ecological systems. The interval number method provides a powerful
approach to this challenge, enabling researchers to better capture the complexity of ecological sys-
tems and make more accurate predictions about their behavior. We believe that our findings will
be of significant value to researchers working in the field of ecological modeling and contribute to
the development of more accurate and reliable models of complex ecological systems.
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Abstract

Cholangiocytes are the cells of the liver having a major role in the conditioning of bile used in
digestion. Other functions of cholangiocytes are in apoptosis and bicarbonate secretion. The Calcium
in the intracellular environment of various cells including cholangiocytes regulates a large number of
functions. This regulating mechanism in cholangiocytes has been poorly understood to date. In order
to analyze the calcium regulation in cholangiocyte cells, a mathematical model for a one-dimensional
steady-state case is constructed in this study. This involves a non-linear reaction-diffusion equation
with appropriate boundary conditions. The influx from IP3 receptor, ryanodine receptor (RYR), and
plasma membrane as well as the efflux of calcium from SERCA pump and plasma membrane have
been employed in the model. The finite volume method and Newton-Raphson method have been
used to solve the problem. Numerical findings have been used to examine the effects of parameters
like diffusion coefficient, rate of SERCA pump efflux, buffer, and influx from plasma membrane on
calcium concentration in cholangiocyte cells. The information generated from the model can be useful
for understanding the mechanism of cholestatic disorders which can be further useful in the diagnosis
and treatment of these disorders.

Keywords: Liver; reaction-diffusion equation; calcium; finite volume method; Newton-Raphson
method

AMS 2020 Classification: 65N08; 92-10; 35-04; 92C37

1 Introduction

The largest organ in the body is the liver. The liver is located just above the stomach and below
the diaphragm in the upper right abdomen. Liver weighs about 838 to 2584 grams, is reddish
brown in colour and is slightly conical shaped. This organ is extra soft and fleshy. It is the only
organ that can completely regenerate from a small part of itself [1, 2]. Liver cells are classified into
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two categories viz Parenchymal cells and Non-Parenchymal cells. The Parenchymal cells of the
liver are hepatocytes. Hepatocyte cells are cubical epithelial cells. This cell lines the sinusoids and
makes up to 70% of cells in the liver. Cells within the liver that are not hepatocytes are collectively
called as Non- Parenchymal cells. These cells serve a wide variety of metabolic, immune, and
structural functions [3]. The Non-Parenchymal cells line up the normal liver sinusoid consisting
of four different types of cells which are kuffer, endothelial/cholangiocyte, pit and stallete/ito
cells. These cells differ in origin, population kinetics, phenotypic and functional characteristics
[4]. A network of bile ducts or cholangiocytes lines the biliary tree. These are a diverse and
highly active group of epithelial cells. Cholangiocytes collect bile from bile canaliculi from the
hearing canals of hepatocytes. Primitive bile is generated in hepatocytes. Bile reaches to the
gallbladder, choledochal, and extrahepatic duct using a network of channels. Only 3-5 percent of
the overall number of liver cells are cholangiocyte cells [5]. The ability of a cell to accept, process,
and disseminate signals to its surrounding and with itself is known as ‘cellular communication’ or
‘signaling’ [6]. Ca2+ in the intracellular environment regulates a large number of functions like
cell proliferation, apoptosis and secretion. The secretion of bile juice is one of the liver’s most
critical activities, it is the end consequence of hepatocytes producing bile whereas cholangiocytes
condition it [6, 7]. When calcium is released from the endoplasmic reticulum (ER) through IP3
receptors, inositol 1,4,5 triphosphate (IP3) regulates calcium signaling in the cholangiocytes [8, 9].
Calcium signaling has been studied in various cells like neurons, oocytes, myocytes, astrocytes,
pancreatic acinar cells, hepatocytes, etc. by various researchers [10–12, 15–25, 27]. Kotwani et al.
constructed and simulated a one-dimensional unsteady state case mathematical model of calcium
concentration in fibroblast cells using the finite difference approach [10]. Panday et al. constructed
a model involving reaction-diffusion equations to study Ca2+ distribution in oocyte cells involving
Na+/Ca2+ exchanger and advection of calcium [11]. Naik et al. studied the calcium distribution
involving voltage-gated calcium channels (VGCC), ryanodine receptors, and buffers in one, two
and three dimensions for oocyte and T lymphocyte cells. They concluded that the increase of
Ca2+ concentration due to RYR was higher than that of VGCC [12–14, 60, 62]. Introducing a
two-dimensional discrete-time chemical model and the existence of its fixed points, the one and
two-parameter bifurcations of the model were also investigated by them [61]. Jha et al. studied
calcium distribution using the finite element approach in astrocytes [15]. An attempt was also
made by them to consider a one-dimensional fractional diffusion equation to study the effects of
buffers and endoplasmic reticulum on the calcium distribution profile in nerve cells [63].
Amrita et al. observed the effects of Na+/Ca2+ exchanger, source geometry, leak, SERCA pump,
etc. on Ca2+ oscillations in dendritic spines & neuron cells employing finite element approach
[16–18]. Pathak et al. devised a mathematical model for calcium distribution in cardiac myocytes
involving a pump, excess buffer and leaks [19]. Manhas et al. observed calcium variation in
pancreatic acinar cells describing the effect of mitochondria on Ca2+ signaling [20–22]. Tewari
et al. have constructed a model for neuron cells expressing the impact of sodium pump on Ca2+

oscillation and calcium diffusion with excess buffer [23, 24]. Jagtap et al. solved interdependent
calcium and IP3 dynamics involving calcium flux, calcium diffusion coefficient, and protein con-
tent in the cytoplasm [25]. They also solved the problem for calcium concentration fluctuation in
two dimensions using the finite volume method for the unsteady state situation [26]. Hemant et al.
formulated an unsteady state mathematical model in one dimension to explore the distribution of
intracellular calcium in T lymphocyte cells. The model takes into account factors including buffers,
ryanodine receptors (RyRs), source influx and diffusion coefficient [27]. Kothiya et al. provided
a mathematical model to analyze the Ca2+ signaling to affect the synthesis of ATP and IP3 in
fibroblast cells [28, 29]. Bhardwaj et al. used a radial basis function-based differential quadrature
method to examine the nonlinear spatiotemporal dynamics of Ca2+ in T cells while accounting for
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the SERCA pump, ryanodine receptor, source amplitude, and buffers [30]. Pawar et al. studied
interdependent calcium and IP3 dynamics and their effects on nitric oxide production and β-
amyloid production and degradation in neuron cells. They also simulated the interdependent
dynamics of calcium with dopamine, nitric oxide and β- amyloid in neuron cells [49–53]. Joshi
et al. presented a calcium dynamics model that firmly orchestrates exchanges of calcium flux
through intracellular/extracellular sources of calcium to investigate cellular activities and calcium
homeostasis using a generalized two-dimensional space-time reaction-diffusion model [56].
Protein and voltage-dependent calcium channels were also used to obtain an approximate Ca2+

profile by the fractional integral transform method [55]. A mathematical model of calcium was
developed in the form of the Hilfer fractional reaction-diffusion equation to examine the calcium
diffusion in the neuron cells. The effects of calcium-dependent protein and flux through the
sodium-calcium exchanger were incorporated in the model [59]. Pankratova et al. employed
bifurcation theory analysis and examined steady-state solutions, bistability, simple and compli-
cated periodic limit cycles and also chaotic attractors for calcium variation in astrocytes [54].
Tarifa et al. demonstrated that preferential calcium release near the sarcolemma is key to a higher
spatiotemporal distribution of sparks and amplitude of post-depolarizations in atrial myocytes
from patients with atrial fibrillation using mathematical model [57]. Chang et al. developed a
mathematical model of intracellular calcium dynamics for evaluating the combined anticancer
effects of Afatinib and RP4010 in esophageal cancer [58].
Minagawa et al. have discussed that in almost every kind of cell, cytosolic Ca2+ is an essential
second messenger. Furthermore, Ca2+ controls a variety of actions in individual cells. They
looked at the cellular level machinery in cholangiocytes which is responsible for Ca2+ signaling.
Two Ca2+ -mediated events have also been found in cholangiocytes which are apoptosis and
bicarbonate secretion. They concluded that calcium signaling is responsible for therapeutically
treating cholestatic disorders [31]. Nathanson et al. addressed the control of intracellular Ca2+

channel expression in cholangiocytes [32]. Woo et al. formulated a model of the human biliary
system and found that the release of ATP is closely co-related with shear which is dependent on
intracellular Ca2+ and becomes desensitized with repeated exposure to flow. Additionally, they
found that activating membrane P2Y (Purinergic) receptors and ATP release both contribute to
the increase in fluid flow’s effect on Ca2+ [33]. Weerachayaphorn et al. explained that cholan-
giocyte abnormalities are the primary cause of the majority of cholestatic diseases. The inositol
1,4,5-triphosphate receptor (IP3R), an intracellular calcium release channel, is most frequently
seen in cholangiocytes as its type 3 isoform. In individuals with cholestatic diseases, IP3R expres-
sion is decreased in the intrahepatic bile ducts, which are necessary for the bile ducts to secrete
bicarbonate. It was also examined how the oxidative stress-sensitive nuclear factor erythroid
2-like 2 (NFE2L2 or NRF2) controls the expression of IP3R [34]. Ueasilamongkol et al. examined
cholangiocarcinoma (the second most common kind of liver cancer) using the type 3 variant of
the inositol 1,4,5-triphosphate receptor [35]. Shibao et al. examined the effects of the inositol
1,4,5-triphosphate receptor (IP3R) (Ca2+ release channel) in cholestasis-related animal models and
patients on ductular secretion and Ca2+ signaling [36]. Rodrigues et al. analyzed the mechanisms
underlying Ca2+ signals in cholangiocyte cells and used the experimental approaches to find
cholangiocyte Ca2+ signaling. The role of Ca2+ in the regular and abnormal control of secretion
and apoptosis in cholangiocytes was also explored [37]. Masyuk et al. explored the idea that the
sensory organelles known as cholangiocyte cilia gather up and transmit information from luminal
bile flow into intracellular Ca2+ and adenosine 3

′
, 5

′
cAMP (cyclic adenosine monophosphate)

signaling [38]. Marzioni et al. examined to see if glucagon-like peptide-1 modifies the biological
response of cholangiocytes to cholestasis [39]. Martin et al. suggested that the loss of IP3Rs may
be the most widely used cause of cholestasis. It seems crucial for healthy bile secretion in the liver
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that IP3R-mediated Ca2+ signaling occurs in bile duct epithelia [40]. Maroni et al. determined that
cholangiocytes react to injury by secreting a number of peptides, acquiring a neuroendocrine-like
character. These substances alter cholangiocyte biology and control the progression of biliary
injury through an autocrine/paracrine mechanism.
Cholangiopathies, a class of illnesses that targets biliary cells exclusively, are thought to progress
more slowly as a result of the failure of such mechanisms [41]. Lazaridis et al. discussed the
various diseases occurring in cholangiocytes such as inflammation, cholestasis, apoptotic death,
and ductopenia, etc. due to dysregulation in calcium signaling [42]. Jung et al. explained the
cAMP-induced processes in epithelial cells work in conjunction with calcium signaling to control
membrane transport proteins and play a role in bicarbonate secretion [43]. Guerra et al. dis-
cussed the molecular processes that control cholangiocytes’ bile production. Furthermore, there
is evidence that certain cholestatic disorders of the bile ducts modify several aspects of the Ca2+

signaling system, including the cholangiocytes’s regulation of the expression of intracellular Ca2+

channels [44]. Amaya et al. investigated the evidence indicating cholangiocyte Ca2+ signaling
defects are a major factor in the development of cholestatic diseases characterized by decreased
hepatic bile secretion [45]. Shin et al. found that anion channels can equally fulfill a variety of
physiological functions including regulation of neuronal excitability and secretion of epithelial
fluid [46]. Alpini et al. suggested that a special absorption mechanism must exist in cholangiocytes
for bile acid activity. Simultaneously cholangiocytes express a bile acid transporter [47]. A good
number of investigations is reported on calcium distribution in various cells like neurons, oocytes,
pancreatic acinar cells, hepatocytes, etc mostly using linear reaction-diffusion equations. Most
of the investigations of calcium distribution in cells of the liver are reported for hepatocyte cells.
But very little attention has been paid to understanding the calcium distribution patterns in
cholangiocyte cells and that too is mostly experimental.
None of the theoretical studies on calcium distribution patterns in cholangiocyte cells have ex-
plored the role of buffers, SERCA pump, efflux, influxes, etc. Therefore the mechanisms of calcium
signaling regulating the functions of cholangiocyte cells are not well understood to date. The
insights of these mechanisms will be useful in understanding the processes leading to cholestasis
diseases. In view of the above, the present study is focused on developing a mathematical model
of calcium distribution in cholangiocyte cells. A nonlinear steady-state reaction-diffusion model
of calcium ions in cholangiocyte cells is proposed by incorporating parameters like buffer, SERCA
pump, influxes, efflux, etc. The numerical simulation is performed using the Finite Volume method
and Newton Raphson method to analyze the effects of these parameters on calcium signaling in
cholangiocyte cells.

2 Mathematical formulation of the problem

Mathematical modelling plays a key role in finding solutions to many real-world problems. The
experimental approaches are very tedious and time-consuming therefore scientists prefer to make
use of computational approaches for solving the problems. The computational approaches are
congenial and hence adaptable. In the present study, the mathematical model and the solution of
Ca2+ signaling in cholangiocyte cell is presented.
The reaction-diffusion equation for Ca2+ distribution in steady state for cholangiocyte is given by
[48].

DCa
∂2[Ca2+]

∂x2 + JIP3R + JRYR − JSERCA + JIN − Jout − k+[B]∞([Ca2+]− C∞) = 0. (1)

DCa represents diffusion coefficient, k+ represents buffer association rate, [B]∞ represents buffer
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concentration at equilibrium, [Ca2+]∞ represents calcium concentration at equilibrium, JIPR repre-
sents influx from IP3 receptor, JRYR represents influx from ryanodine receptor, JSERCA represents
efflux into ER, JIN represent influx from plasma membrane, Jout represent outflux from plasma
membrane.
The fluxes are modelled as,

JIP3R + JRYR = k1(T + T0)(Ce − [Ca2+]), (2)

where T indicates the basal fractional activity of the channels in the store, T0 represents the calcium
release rate from the store and k1 denotes the rate of calcium release from the store.

JIN = k5(T + T0)(Cout − [Ca2+]), (3)

k5 represents external medium calcium influx and Cout represents extracellular calcium concentra-
tion.

Jout =
V6[Ca2+]2

k2
7 + [Ca2+]2

, (4)

The plasma membrane pump’s maximal rate is represented by V6 and its dissociation constant is
represented by k7.

JSERCA =
Vserca[Ca2+]2

k2
4 + [Ca2+]2

, (5)

Vserca represents the maximum rate of calcium pumping into the store and k4 represents the
storage calcium pump’s dissociation constant.
Calcium concentration in ER can be replaced by,

Ce =
(CT − Vc)[Ca2+]

Ve
, (6)

CT represents calcium concentration in cell and Ce represent the calcium in ER.

Boundary condition: It is assumed that the influx source channel is present at x = 0. Therefore,
the following flux condition is enforced:

limx→0

(
−DCa

(
∂[Ca2+]

∂x

))
= σCa, (7)

σCa represents source influx [25]. The other end of the cell (x = 10) is assumed to be at rest.
Therefore, a constant resting calcium concentration is assumed as given below:

limx→10([Ca2+]) = C∞ = 0.1µM, (8)

Solution: The cytosol of the cholangiocyte cell is split into 20 nodes. By putting all the various
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fluxes in Eq. (1), it can be rewritten as

DCa
∂2[Ca2+]

∂x2 − k+[B]∞([Ca2+]− C∞) + k1(T + T0)

(
(CT − Vc)[Ca2+]

Ve
− [Ca2+]

)
+k5(T + T0)(Cout − [Ca2+])−

Vserca[Ca2+]2

k2
4 + [Ca2+]2

−
V6[Ca2+]2

k2
7 + [Ca2+]2

= 0. (9)

Representing calcium concentration in the cytosol of the cell ([Ca2+]) by u, Eq. (9) can be written
as,

DCa
∂2u
∂x2 + k1(T + T0)(

(CT − Vc)u
Ve

− u) + k5(T + T0)(Cout − u)

−
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

− k+[B]∞(u − C∞) = 0,
(10)

In general, Eq. (10) can be written as,

∂2u
∂x2 − au + c −

Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0, (11)

a and c are given as,

a =
k+[B]∞ + k1(T+T0)(Vc+Ve)

Ve
+ k5(T + T0)Cout

DCa
, (12)

c =
k+[B]∞C∞ + k1(T+T0)CT

Ve
+ k5(T + T0)

DCa
. (13)

To solve Eq. (11) finite volume method is employed. For the first term in Eq. (11), a linear profile
assumption is taken for calcium concentration, and for the rest of the term, a constant profile
assumption is taken. On integrating from w to e over control volumes,(

∂u
∂x

)
e
−

(
∂u
∂x

)
w
− auGδx + cδx −

Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0, (14)

where uG represents calcium concentration at the centroid point for any element.
For first control volume (n=1) Eq. (11) can be written as,(

∂u
∂x

)
e
+

σCa
DCa

− auGδx + cδx −
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0. (15)

Since linear profile assumption is taken for calcium concentration for the first term in Eq. (8),
Eq. (12) can be rewritten as

uE − uG
δx

+
σCa
DCa

− auGδx + cδx −
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0. (16)
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After rearranging the terms,(
1

δx
+ aδx

)
uG =

1
δx

uE +
σCa
DCa

+ cδx −
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

. (17)

For last control volume (n=20), uE is 0.1 µM (C∞)

uE − uG
δx

−
uG − uw

δx
− auGδx + cδx −

Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0, (18)

(
2

δx
+ aδx

)
uG =

1
δx

uw + cδx +
C∞
δx

−
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

. (19)

For intermediate control volumes (n=2 to 19),

uE − uG
δx

−
uG − uw

δx
− auGδx + cδx −

Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

= 0, (20)

it is rewritten as,(
2

δx
+ aδx

)
uG =

1
δx

uE +
1

δx
uw + cδx +

C∞
δx

−
Vsercau2

k2
4 + u2

−
V6u2

k2
7 + u2

. (21)

The resulting system of nonlinear equations is resolved using Newton Raphson’s method.

3 Results and discussion

The following physiological parameters are used for solving the formulated problem in Eq. (11).

Table 1. Parameters of physiology affecting calcium variation [16, 26]

Symbol Parameter Value
DCa Calcium’s diffusion coefficient 50 µ m2sec−1

k1 Rate of calcium release from store 7.5 sec−1

K2 Buffer association rate 300 µ−1M−1sec−1

Vserca Store pump dissociation constant 0.65 µMsec−1

k4 The storage calcium pump’s dissociation constant 0.1 µM
k5 Calcium influx rate from the external medium 0.000158 sec−1

V6 Plasma membrane pump’s maximum rate 2 µM/s µMsec−1

k7 Plasma membrane pump’s dissociation constant 0.6 µM
Cout Calcium concentration of extracellular medium 2 µM
T0 The store’s channel’s baseline fractional activity 0.2
T Activity on the store’s channels in fractions 0.8
CT Total [Ca2+] relative to cell volume 2 µM
k+ Association rate of buffer 1.5 µM−1sec−1

Vc Volume of the cytosol to the total cell volume ratio 0.83
Ve Ratio of Volume of ER to total volume of cell 0.3
C∞ Calcium concentration at Equilibrium 0.1 µM
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Figure 1. Calcium variation in cholangiocyte cell with respect to space

Figure 1 shows the calcium variation in a cholangiocyte cell with respect to space for diffusion
coefficient 50 µm2sec−1, source influx 1 pA and buffer 5 µM. By carefully studying the above
graph, it shows that near the source, there was the highest concentration of calcium ≈ 0.53 µM. The
calcium concentration continuously decreases until it reaches to its equilibrium value i.e. 0.1 µM,
away from the source. The graph shows the non-linear behaviour of the calcium concentration
pattern between x= 7 to 9 µm. This may be due to major imbalances among biophysical processes
like diffusion, buffering, efflux, and influxes which is clear from the major difference in calcium
concentration at x=7 µm and x=9 µm. The sharp fall from x=9 to x= 10 µm indicates the major
role of buffering and calcium-reducing mechanisms in this area.
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Figure 2. Cholangiocyte cell calcium change for various diffusion coefficient values with regard to space
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Figure 2 shows the calcium variation with respect to space for source influx 1 pA, buffer 5 µM and
diffusion coefficient 50 µm2sec−1, 75 µm2sec−1 and 100 µm2sec−1. It can be observed from the
figure that as the diffusion coefficient increases calcium concentration starts decreasing. This fall
in calcium concentration with the increase in diffusion coefficient from x = 0 to x = 9 µm implies
that the higher quantity of calcium is diffusing from the source towards the other end of the cell
for higher rates of diffusion which further activates and increases the role of calcium reducing
mechanisms like buffering etc. in the whole cell. The maximum value for calcium concentration is
around 0.55 µM and the minimum value is 0.25 µM. Non-linear behaviour is the same as Figure 1.
Moving away from the source calcium concentration starts decreasing gradually and it attains its
equilibrium concentration 0.1 µM.
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Figure 3. Calcium variation in cholangiocyte cell with respect to space for different value of buffer

Figure 3 shows the calcium concentration variation with respect to space for source influx 1 pA,
buffer 5 µM, 20 µM and 50 µM and diffusion coefficient 50 µm2sec−1. It can be observed from the
figure as the buffer value increases calcium concentration starts decreasing. Free buffer binds with
free calcium and forms calcium-bound buffer which decreases free calcium concentration. The
maximum value for calcium concentration is around 0.55 µM and the minimum value is 0.38 µM.
Non-linear behaviour is the same as Figure 1. Moving away from the source calcium concentration
starts decreasing gradually and it attains its equilibrium concentration 0.1 µM.

Figure 4 shows the calcium variation with respect to space for source influx 1 pA , buffer 5 µM
and diffusion coefficient 50 µm2sec−1. A comparative study has been done for the rate of calcium
influx from plasma membrane k1 = 5.5 sec−1, 7.5 sec−1 and 15 sec−1. It is evident from the graph
that the concentration of calcium starts to increase as k1 rises due to an increased influx of calcium
from the plasma membrane. The maximum value for calcium concentration is around 0.95 µM
and the minimum value is 0.38 µM. Non-linear behaviour is the same as Figure 1. Moving away
from the source calcium concentration starts decreasing gradually and it attains its equilibrium
concentration 0.1 µM.

Figure 5 shows the calcium concentration variation with respect to space for source influx 1 pA,
buffer 5 µM and diffusion coefficient 50 µm2sec−1. A comparative study has been done for the rate
of calcium efflux to SERCA pump Vserca 0.5 µMsec−1, 0.65 µMsec−1 and 1 µMsec−1. It is evident
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Figure 4. Calcium variation in cholangiocyte cell with respect to space for different value of k1
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Figure 5. Calcium variation in cholangiocyte cell with respect to space for different values of Vserca

from the graph that the concentration of calcium starts to decrease as Vserca rises due to SERCA
pump which takes calcium out of the cytosol. The maximum value for calcium concentration is
around 0.58 µM and the minimum value is 0.4 µM. Non-linear behaviour is the same as Figure 1.
Moving away from the source calcium concentration starts decreasing gradually and it attains its
equilibrium concentration 0.1 µM.

4 Conclusion

A reaction-diffusion model of calcium distribution patterns in cholangiocyte cells in constructed
for a one-dimensional steady-state case and successfully simulated to analyze the impacts of
various parameters incorporated in the model. The finite volume method can be used on arbi-
trary geometries, using structured or unstructured meshes and it leads to robust schemes. It
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is locally conservative because it is based on ’balance’ approach. The combination of the finite
volume method and Newton’s method has been successfully employed for solving the non-linear
reaction-diffusion of calcium in the cell. The proposed numerical strategy for the simulation
of the proposed nonlinear model provides novel insights into calcium distribution patterns in
cholangiocyte cells. The following novel conclusions have been made on the basis of numerical
results:

1. The calcium concentration variation shows nonlinear behaviour mostly near the boundary
the cell maintained at resting calcium concentration along space. Most of the parts of cells are
dominated by the effect of source influx. This is necessary due to the requirement of a high
concentration of calcium for initiation, sustenance, and termination of the activity of the cell. The
nonlinear behaviour observed in the region near the resting condition of calcium at the boundary
is due to the role of calcium-reducing mechanisms like buffering and various efflux like SERCA
pump.
2. The combined effect of calcium-reducing mechanisms like buffering and efflux like SERCA
pump play the role depending on the requirement of the cell which is visible from Figure 1 and 2.
This role is limited to a small region in Figure 1 but this role is more and in the whole region of the
cell in response to increasing in diffusion coefficient in Figure 2.
3. The buffers have a crucial role in reducing the calcium concentration in the cell when efflux like
SERCA pump is fixed or constant or limited or absent.
4. The role of Vserca is crucial in reducing the calcium concentration in the cell when buffer quantity
is fixed or constant or limited or absent.
5. The relation between calcium concentration and diffusion coefficient is inversely proportional
that is the calcium concentration decreases with an increase in the diffusion coefficient.
6. The rise in calcium concentration is directly proportional to the rate of calcium release by storing
the plasma membrane.

These novel insights obtained from the proposed model can be useful in understanding the
mechanisms of the cells during health and disease. The present study was focused on calcium
signaling in normal cholangiocyte cells. This model can be extended to the cells involving
cholangiocyte disorders leading to various diseases like biliary cirrhosis etc. The present study
provides the base for the development of models to evaluate abnormalities in mechanisms that
can cause cholestatic disorders. The fractional processes of diffusion and Brownian motion can
be incorporated in the future to develop a model of calcium distribution in cholangiocyte cells
under various conditions. Various numerical and mathematical approaches like finite element
method, cubic spline and iterated functional spaces can be explored in the future under various
conditions. In the future, calcium signaling can be combined with other signaling systems to
develop a systems biology model for cholangiocyte cells.
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Abstract
This paper presents malaria and cholera co–dynamics under Caputo–Fabrizio derivative of order
α ∈ (0, 1) varied with some notable parameters in the fractional system. The fractional order system
comprises ten compartments divided into human and vector classes. The human population is exposed
to obnoxious diseases such as malaria and cholera which can lead to an untimely death if proper
care is not taken. As a result, we present the qualitative analysis of the fractional order system where
the existence and uniqueness of the solution using the well-known Banach and Schauder fixed point
theorems. The numerical solution of the system is achieved through the famous iterative Atangana–
Baleanu fractional order Adams–Bashforth scheme. The numerical algorithm obtained from the
scheme is used for graphic simulation for different fractional orders α ∈ (0, 1). The figures produced
using various fractional orders show total convergence and stability as time increases. It is also evident
that stability and convergence are achieved as the fractional orders tend to 1. The actual behavior of
the fractional co–dynamical system of the diseases is established also in the numerical simulation.

Keywords: Malaria disease; cholera disease; fractional derivative; stability; co-infection

AMS 2020 Classification: 34C60; 92C42; 92D30; 92D25

1 Introduction

The disease malaria caused by harmful parasites and transmitted from infected female anopheles
mosquitoes to humans through contagious bites is a serious life-threatening disease and one of
the most common deadly diseases in the world. This disease has caused millions of life all over
the world, especially in tropical and sub-Saharan Africa [1], where the parasites can survive freely
in the host. The world malaria report of 2021, shows that in the year 2020, an estimated 627,000
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deaths occurred out of estimated 241 million cases of malaria reported worldwide. Among these
number of reported cases of malaria, there were 95 percent recorded cases in Africa with 94 percent
deaths which include 80 percent of children under the age of five [2]. Most of the deaths recorded
occurred during a latent period of 10–15 days with symptoms of severe fever, headaches, and
loss of appetite for food or drinks. Suspected cases of malaria symptoms are confirmed through
parasite–based diagnosis testing. The WHO recommends the use of insecticide-treated nets (ITNs),
indoor residual spraying (IRS) and draining of stagnant waters to prevent transmission of malaria.
On the other hand, the disease cholera is an acute diarrhoeal infection caused by ingestion of food
and water contaminated with the bacterium Vibrio cholera [3, 4]. An estimated 1.3 to 4 million
cases of cholera are reported globally each year and 21,000 to 143,000 deaths are recorded annually
to cholera. Inadequate access to clean water and properly sanitized water are normally linked to
the transmission of cholera.
The number of reported cases of cholera has continued to grow in recent years. In 2020, 323,369
cases were recorded with 857 deaths from 24 countries amidst limitations in surveillance systems
and the fear of trade and tourism. The co-infection of these diseases is prevalent in the sense
that the parasite which transmits these diseases are associated with contaminated water and the
environment. It is widely known that mosquitoes are the real agents of malaria which breed
from stagnant and contaminated water. In another hand, the contaminated water where these
mosquitoes breed is the main source of cholera transmission. Both these diseases are treatable
through clinical means but can be harmful to vital organs if proper care and diagnosis are found
wanting.
Mathematical models have been used extensively over the years as relevant tools in understanding
the dynamics of disease transmission and policy-making with regard control mechanism of
diseases. For instance, Ross [5] first formulated the malaria transmission models. In his paper, he
focused on malaria prevention and showed that the mosquito population should decrease to a
certain threshold for malaria to be eradicated. Okosun et al. [6] formulated a mathematical model
for malaria–cholera co-infection for the purpose of investigating the synergy between malaria
and cholera in the face of treatment. Other important contribution includes Egeonu et al. [7]
who proposed a co-infection model for two–strains of malaria and cholera with optimal control.
Mandal et al. [8] proposed a hierarchical structure of a range of deterministic models of different
levels of complexity and the evolution of modelling strategies to describe malaria incidence by
including the critical features of host–vector–parasite interactions.
Oke et al. [9] proposed a mathematical model of malaria disease with a control strategy where
prevention through bed nets, treatment, and insecticide were considered. In their paper, it was
demonstrated that the use of treatments and treated bed nets should be taken into account when
scarce resources arise while combining the two gives maximum results to malaria control. Osman
and Adu [10] analyzed two sections in their mathematical model; the SEIR and the SEIR-SEI
models. They showed that malaria may be controlled through the use of active malaria drugs,
insecticides, and mosquito-treated nets. Tilahun et al. [11] proposed a stochastic and deterministic
mathematical model of cholera disease dynamics with direct transmission. Hintsa and Kahsay [12]
proposed the analysis of cholera epidemic control using mathematical models. In their findings,
they showed that the introduction of preventive measures for contracting the disease reduces the
basic reproduction number to below one as against the opposite where the reproduction number
is greater than one. This suggests that cholera disease can be controlled and eliminated from
the community if susceptible and recovered individuals comply with the preventive measures.
However, a few studies have been carried out on the formulation and application of fractional
order differential equations of malaria models. To the best of our knowledge, no work has been
carried out on the analysis of co–dynamic model of malaria and cholera via Caputo–Fabrizio
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fractional order differential equation. Only recently, the authors in [13] used Caputo–Fabrizio
fractional order derivative to model HPV and Syphilis diseases. Omame et al. [14] proposed a
fractional order model for dual variants of COVID-19 and HIV co-infection via another derivative
that has a non–singular kernel, Atangana–Baleanu fractional order derivative. Nwajeri et al. [15]
proposed the analysis of HPV and CT co-infection model using a fractional order derivative.
Fractional order derivatives have made a tremendous contribution to the field of epidemiological
modelling and have huge developments [16–25]. It is evident nowadays that fractional differential
equations are efficient tools and very useful and effective in numerous fields of science and
engineering such as biology, finance, rheology, electro–chemistry, chemical physics, etc. These
wonderful applications of fractional differential equations to physical problems are due to their
natural relation to the system with memory which is a common feature of many phenomena
[26–31].
The aim of this work is to analyze vividly the co–dynamism of malaria and cholera via fractional
order derivative. In particular, we formulate a fractional order model of ten compartments which
depicts the two diseases’ interaction within a population. The model is based on the paper of
Omame et al. [32] where Atangana–Baleanu fractional order derivative to model the impact of
SARS-CoV-2 infection on the dynamics of dengue and HIV. Moreover, we describe and analyze
the results using Caputo–Fabrizio fractional derivative and Caputo fractional derivative.
The rest of the paper is arranged as follows; the fractional order model is formulated in Section 2
via Caputo–Fabrizio fractional derivative. In Section 3, we present in nutshell, some definitions
of fractional order differential equations. Qualitative analysis of the fractional system takes the
centre stage in Section 4 where the positive invariant region of the system, and basic reproduction
number are presented. We also present the existence and uniqueness of the solution using the
fixed point theorem. In Section 5, we developed the numerical solution of the fractional system
with the aid of the Atangana-Baleanu technique. In Section 6, graphical figures and their biological
discussions and results were presented after rigorous MATLAB simulations. Finally, we draw the
necessary conclusion of our manuscript in Section 7.

2 Model formulation

The model consists of different compartments of human and vector populations. The human
population is divided into the following compartments: susceptible humans SHB, infected individ-
uals with malaria IMAL, recovered individuals from malaria disease RMAL, individuals infected
with cholera ICHO, recovered individuals from cholera disease RCHO, individuals co-infected
with malaria and cholera IMAC and recovered individuals from malaria and cholera RMAC. On
another note, we have bacterial population denoted by BCHO and the vector population which
is divided into two compartments, namely, the susceptible vectors SVEC(t) and infected vec-
tors IVEC(t). The total population of humans and vectors at the time t are given by NHB(t)
= SHB(t) + IMAL(t) + RMAL(t) + ICHO(t) + RCHO(t) + IMAC(t) + RMAC(t) and NVEC(t) =
SVEC(t) + IVEC(t), respectively. The parameter βMAL denotes the probability of humans infected
with malaria while µHB denotes the natural mortality rate from the human population. The
quantity βMALbIVEC

NHB
represents the rate SHB are exposed to the infected vectors and moved to IMAL

and and IMAC compartments while the quantity BCHOqCHO
κ+BCHO

SHB denotes the rate SHB contracts
cholera through bacteria and moved to ICHO and IMAC classes. The remaining parameters are
properly defined in Table 1.
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Table 1. Description of parameters in model (1)

Parameter Description Value References
ΛHB Recruitment rate of humans 100day−1 [33]
βMAL Human probability of infection with malaria 0.181 (dimensionless) [34]
qCHO Bacterial contact rate for human 0.05day−1 [6]
βCHO Human probability of infection with cholera 0.005 Assumed
µHB Natural death rate for humans 1

(70×360)day−1 [7]
r Per capita bacteria reproduction rate 0.5 Assumed
b Average vectors bitting rate 0.5day−1 [35]
ωMAL Waning rate of malaria 1

(60×360)day−1 [33]
ωCHO Waning rate of cholera 0.001day−1 [34]
ωmc Malaria-Cholera co-infection waning rate 0.001 − 0.02day−1 [6]
δMAL Malaria induced death rate 0.05 − 0.1day−1 [6, 36]
γMAL Recovery rate from malaria 0.25 [37]
δCHO cholera induced death rate 0.0002day−1 Assumed
γCHO Recovery rate from cholera 0.07day−1 [34]
βVEC Vector probability of infection with malaria 0.181 (dimensionless) [34]
δMAC Death caused by malaria-cholera co-infection 0.05day−1 Assumed
γMAC Recovery rate for malaria and cholera 0.4day−1 Assumed
ξMP1, ξMP2 Modification parameters 0.6 (dimensionless) Assumed
µDBR Natural death rate for bacterial 0.123 [38]
µVEC Natural death rate for vectors 1

15 , 0.143day−1 [33]
ΛVEC Recruitment rate for vectors 1000day−1 [33]

Motivated by the numerous advantages of fractional order operators as already stated, we hereby
state the fractional order co–dynamic model under the Caputo–Fabrizio derivative as

CFDα
t SHB(t) = ΛHB −

βMALbIVEC
NHB

SHB −
BCHOqCHO
κ + BCHO

SHB − µHBSHB + ωMALRMAL

+ωCHORCHO + ωmcRMAC,
CFDα

t IMAL(t) = βMALb
IVEC
NHB

(SHB +RCHO) +
BCHOqCHO
κ + BCHO

IMAL − (µHB + δMAL + γMAL)IMAL,

CFDα
t RMAL(t) = γMALIMAL − (µMAL + ωMAL)RMAL −

BCHOqCHO
κ + BCHO

RMAL,

CFDα
t ICHO(t) =

βCHOqCHO
κ + BCHO

(SHB +RMAL)− (δCHO + µHB + γCHO)ICHO −
βVECbIVEC

NHB
ICHO,

CFDα
t RCHO(t) = γCHOICHO − (µHB + ωCHO)RCHO −

βMALbIVEC
NHB

RCHO, (1)

CFDα
t IMAC(t) =

BCHOqCHO
κ + BCHO

IMAL +
βMALbIVEC

NHB
ICHO − (µHB + δMAC + γMAC)IMAC,

CFDα
t RMAC(t) = γMACICHO − (µHB + ωmc)RMAC,

CFDα
t BCHO(t) = rBCHO

(
1 −

BCHO
κ

)
+ ξMP1ICHO + ξMP2IMAC − µDBRBCHO,

CFDα
t SVEC(t) = ΛVEC −

βVECb(IMAL + IMAC)

NHB
SVEC − µVECSVEC,

CFDα
t IVEC(t) =

βVECb(IMAL + IMAC)

NHB
SVEC − µVECIVEC,
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which corresponds to the following initial conditions
SHB(0) = SHB(0) ≥ 0, IMAL(0) = IMAL(0) ≥ 0, RMAL(0) = RMAL(0) ≥ 0,

ICHO(0) = ICHO(0) ≥ 0, RCHO(0) = RCHO(0) ≥ 0, IMAC(0) = IMAC(0) ≥ 0,

RMAC(0) = RMAC(0) ≥ 0, BCHO(0) = BCHO(0) ≥ 0, SVEC(0) = SVEC(0) ≥ 0,

IVEC(0) = IVEC(0) ≥ 0.

(2)

3 Preliminaries

This section presents several important properties and definitions of Caputo-Fabrizio derivative
in the Caputo sense which will aid the analysis of the manuscript.

Definition 1 ([39]) The Caputo–Fabrizio fractional derivative of order α for the function K ∈ H1([0, b], R+)

where b > 0 is given by

CFDα
t K(t) =

(2 − α)U (α)
2(1 − α)

∫ t

0
exp

(
−α(t − ξ)

1 − α

)
K ′(ζ)dζ, 0 < α ≤ 1, t ≥ 0. (3)

Definition 2 ([40]) The Caputo–Fabrizio fractional integral order α for the function K ∈ H1([0, b], R+)

where b > 0 is given by

CF Iα
t K(t) =

2(1 − α)

(2 − α)U (α)K(t) +
2α

(2 − α)U (α)

∫ t

0
K(ζ)dζ, 0 < α ≤ 1, t ≥ 0. (4)

Definition 3 ([22]) The Atangana–Baleanu fractional derivative in the Caputo sense of order α for the
function K ∈ H1([0, b], R+), where b > 0, is given by

ABCDα
t K(t) =

U (α)
(1 − α)

∫ t

0
Eα

(
−α(t − ζ)

1 − α

)
K ′(ζ)dζ, 0 < α ≤ 1, t ≥ 0.

Definition 4 ([39]) The Atangana–Baleanu fractional integral of order α for the function K ∈ H1([0, b], R+),
where b > 0, is given by

AB Iα
t K(t) =

(1 − α)

U (α) K(t) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1K(ζ)dζ, 0 < α ≤ 1, t ≥ 0, (5)

where U (α) denotes the normalization function and

Eα(d) =
∞∑

k=0

dk

Γ(αk + 1)
, ℜ(α) > 0.

Lemma 1 ([39]) The solution for the following problem with α ∈ (0, 1] is given as:

CFDα
t W(t) = V(t),
W(0) = W0,

(6)
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that is assumed to be equivalent to the following fractional Volterra integral equation

W(t) = W0 +
2(1 − α)

(2 − α)U (α) (V(t)− V(0)) + 2α

(2 − α)U (α)

∫ t

0
W(ζ)dζ, t ≥ 0. (7)

Lemma 2 ([40]) The Laplace transform of Caputo-Fabrizio fractional derivative in the Caputo sense of
order α ∈ (0, 1] for the function K(t) is given by

L {Dα
t K(t), s} =

(2 − α)U (α)
2

sL{K(t)}−K(0)
s + α(1 − s)

, s ≥ 0.

4 Qualitative analysis of the constructed model

In this section, we present carefully the analysis of the fractional order co–dynamic model of
malaria and cholera (1) where the positivity of the solution, basic reproduction number via
next-generation matrix method, existence and uniqueness of the solution are presented.

Positivity

Lemma 3 The region D = Dh ∪Db ∪Dv ⊂ R7
+ ×R+ ×R2

+ is non-negatively invariant for the model
(1) with initial conditions in R10

+ , where

Dh =
{
(SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC) : SHB + IMAL

+RMAL + ICHO +RCHO + IMAC +RMAC <
ΛHB
µHB

}
,

Db =

{
BCHO : BCHO ≤ (ρ1 + ρ2)ΛHB

µHBµDBR

}
,

Dv =

{
(SVEC, IVEC) : SVEC + IVEC ≤ ΛVEC

µVEC

}
.

Proof Adding all the equations corresponding to the human components of the system (1) gives

CFDα
t NHB(t) = ΛHB − µHBNHB(t)− [δMALIMAL + δCHOICHO + δMACIMAC] , (8)

so that from (8), we have

CFDα
t NHB(t) ≤ ΛHB − µHBNHB(t).

Applying the Laplace transform of the Caputo-Fabrizio derivative on the above inequality, and
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simplifying, we obtain

NHB(t) ≤ ΛHB
µHB

−
ΛHB(2α − ϱ1)

[1 + µHB(1 − α)]ϱ1
e−ϱ1t −

NHB(0)
(1 − α)[1 + µHB(1 − α)](ϱ1 − ϱ2)

e−ϱ1t

+
NHB(0)

(1 − α)[1 + µHB(1 − α)](ϱ1 − ϱ2)
e−ϱ2t,

where ϱ1 = µHBα
1+µHB(1−α)

, ϱ2 = α
(1−α)

. Thus, the total population of humans, NHB(t) ≤ ΛHB
µHB

as

t → ∞. Similarly, the total population of vectors NVEC(t) ≤ ΛVEC
µVEC

and total bacteria population

BCHO(t) ≤ K(r−µDBR)
µDBR

. This shows that malaria and cholera fractional order model (1) is bounded
and has a solution in Dh, Db and Dv, respectively. Hence, for fractional malaria and cholera
co–dynamic model, Dh, Db and Dv are positively invariant regions and thus the proof. ■

Basic reproduction number

The disease-free equilibrium (DFE) of the fractional order malaria and cholera co–dynamic model
(1) achieved by setting the right-hand side of the equations of the model to zero is given by

T0 = (S∗
HB, I∗

MAL,R∗
MAL, I∗

CHO,R∗
CHO, I∗

MAC,R∗
MAC,B∗

CHO,S∗
VEC, I∗

VEC)

=

(
ΛHB
µHB

, 0, 0, 0, 0, 0, 0, 0,
ΛVEC
µVEC

, 0
)

.
(9)

Using the similar approach in [41], we obtain the basic reproduction number as follows

F =


0 0 0 0 βMALb
0 0 0 qCHOS∗

HB
κ 0

0 0 0 0 0
0 0 0 0 0

βVECS∗
VEC

N ∗
HB

0 βVECS∗
VEC

N ∗
HB

0 0

 ,

V =


A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0
0 −ρ1 −ρ2 µ 0
0 0 0 0 µ

 ,

where

A1 = µHB + δMAL + γMAL, A2 = δCHO + µHB + γCHO, A3 = µHB + δMAC + γMAC.

After elementary algebra, we obtain the basic reproduction number R0 = max{R0P,R0T}, where

R0P =

√
bβMALβVECbSVEC

N∗
hA1µVEC

, R0T =
ρ1qCHOS∗

h
κµA2

.

Theorem 1 The DFE, T0, of the fractional Malaria and Cholera model (1) is locally asymptotically stable
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(LAS) if R0 < 1, and unstable if R0 > 1.

Proof The Jacobian matrix of the malaria and cholera fractional order model (1) evaluated at the

disease-free equilibrium, T0 is given by:

J (T0) =



−µHB 0 ωMAL 0 ωCHO 0 ωmc −
qCHOS∗

HB
N ∗

HB
0 −βMALb

0 −A1 0 0 0 0 0 0 0 βMALb

0 γMAL −Q1 0 0 0 0 0 0 0

0 0 0 −A2 0 0 0 qCHOS∗
HB

κ 0 0

0 0 0 γCHO −Q2 0 0 0 0 0

0 0 0 0 0 −A3 0 0 0 0

0 0 0 0 0 γMAC −Q3 0 0 0

0 0 0 ρ1 0 ρ2 0 −µDBR 0 0

0 −θ 0 0 0 −θ 0 0 −µVEC 0

0 θ 0 0 0 θ 0 0 0 −µVEC



,

where

A1 = µHB + δMAL + γMAL, A2 = δCHO + µHB + γCHO, A3 = µHB + δMAC + γMAC,

Q1 = µ + ωMAL, Q2 = µ + ωCHO, Q3 = µ + ωmc, θ =
βVECbS∗

v
N∗

h
.

Thus the eigenvalues are as follows λ1 = −Q1, λ2 = −Q2, λ3 = −Q3, λ4 = −A3, λ5 = −µHB,
λ6 = −µVEC and the following characteristic equations given below

(−bθβMAL (λ +A1) (λ + µVEC)) (1 −R0P) = 0,

and (
(λ +A2) (λ + µDBR)

ρ1qCHOS∗
h

κ

)
(1 −R0T) = 0.

By the Routh-Hurwitz criterion, the above equations will possess negative real roots if and only
if R0P < 1 and R0T < 1, respectively. Hence, the DFE, T0 is locally asymptotically stable if
R0 = max{R0P,R0T} < 1. ■

Existence and uniqueness of solution

Here, we present the existence and uniqueness of the formulated fractional order system (1) using
fixed point theorems. For this purpose, we rewrite malaria and cholera fractional co–dynamic
model as

CFDαSHB(t) = Q1 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIMAL(t) = Q2 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
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CFDαRMAL(t) = Q3 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαICHO(t) = Q4 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

CFDαRCHO(t) = Q5 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIMAC(t) = Q6 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

CFDαRMAC(t) = Q7 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαBCHO(t) = Q8 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαSVEC(t) = Q9 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIVEC(t) = Q10 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

(10)

where Qj = Qj (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
for j = 1, 2, . . . , 10 is given by

Q1 = ΛHB −
βMALbIVEC

Nh
SHB − BCHOα

κ+BCHO
SHB − µHBSHB + ωMALRMAL + ωCHORCHO + ωmcRMAC,

Q2 = βMALbIVEC
NHB

(SHB +RCHO)− (µHB + δMAL + γMAL)IMAL +
BCHOqCHO

κ+BCHO
IMAL,

Q3 = γMALIMAL − (µ + ωMAL)RMAL −
BCHOα

κ+BCHO
RMAL,

Q4 = βcα
κ+BCHO

(SHB +RMAL)− (δCHO + µHB + γCHO)ICHO −
βVECbIVEC

NHB
ICHO,

Q5 = γCHOICHO − (µHB + ωCHO)RCHO −
βMALbIVEC

NHB
RCHO,

Q6 = BCHOα
κ+BCHO

IMAL +
βMALbIVEC

NHB
ICHO − (µHB + δMAC + γMAC)IMAC,

Q7 = γMACICHO − (µHB + ωmc)RMAC,

Q8 = rBCHO

(
1 − BCHO

K

)
+ ξMP1ICHO + ξMP2IMAC − µDBRBCHO,

Q9 = ΛVEC −
βVECb(IMAL+IMAC)

NHB
SVEC − µVECSVEC,

Q10 = βVECb(IMAL+IMAC)
NHB

SVEC − µVECIVEC.

(11)

Using the above illustration, malaria and cholera fractional order co–dynamic model (1) can be
written as {

CFDα
t ΩMC(t) = K(t, ΩMC(t)), 0 < α ≤ 1, t ∈ J = [0, T],

ΩMC(0) = ΩMC0 ≥ 0,
(12)

where K : J × R → R is continuous and
ΩMC(t) = (SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC)

T ,

ΩMC0 = (Sh0, Im0, Rm0, Ic0, Rc0, IMC0, RMC0, Bc0, Sv0, Iv0)
T ,

K(t, ΩMC(t)) = Qj (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC)
T ,

(13)

where j = 1, 2, 3, . . . 10, and (.)T denotes the transpose of the vector. Using Lemma (1), the initial
value problem (12) is equivalent to the following fractional order Volterra integral equation

ΩMC(t) = ΩMC0 +
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K0) +
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ, (14)
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where t ≥ 0.
Furthermore, let us define C(J , R) as the Banach space of continuous functions from J = [0, T]
into R endowed with the Chebyshev norm

∥ΩMC∥∞ := sup
t∈J

{|ΩMC(t)|} , J = [0, T].

Theorem 2 Assume that (B1): There exists a Lipschitz constant LMC > 0, such that

|K(t, ΩMC1(t))−K(t, ΩMC2(t))| ≤ LMC |ΩMC1(t)− ΩMC2(t)| , t ∈ J = [0, T], ΩMC1, ΩMC2 ∈ R,

then if

LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
< 1, (15)

the initial value problem (1) has a unique solution on J = [0, T].

Proof Consider the transformed initial value problem (12) plugged into a fixed point quantity
under the operation

Φ : Cm(J , R) → Cm(J , R),

with the corresponding definition as follows,

ΦΩMC(t) = ΩMC0 +
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K(0, ΩMC(0)))

+
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ. (16)

Next, we apply the Banach contraction principle to prove that the quantity Φ has a unique fixed
point. In that case, we let the two solutions ΩMC1(t), ΩMC2(t) ∈ Cm(J , R), where J = [0, T],
then we have:

|ΦΩMC1(t)− ΦΩMC2(t)| ≤ 2(1 − α)

(2 − α)U (α) |K(t, ΩMC1(t))−K(t, ΩMC2(t))|

+
2α

(2 − α)U (α)

∫ t

0
|K(ζ, ΩMC1(ζ))−K(ζ, ΩMC2(ζ))| dζ

≤ LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
|ΩMC1(t)− ΩMC2(t)|∞ .

Thus,

∥ΦΩMC1(t)− ΦΩMC2(t)∥∞ ≤ LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
|ΩMC1(t)− ΩMC2(t)|∞ .

Applying (15), we see that the operator Φ is a contraction and hence possesses a fixed point, and
hence, (1) has a unique solution. ■
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Theorem 3 Assume that
(B2): The function K : J × R → R is totally continuous.
(B3): There exists a constant GMC > 0 such that

|K(t, ΩMC(t))| ≤ GMC, for all t ∈ J = [0, T], ΩMC ∈ R,

then the malaria and cholera fractional order system (1) with its corresponding initial condition (2) has at
least one solution on J = [0, T].

Proof Following a similar process in [15], we apply Schauder’s fixed point theorem to illustrate
that Φ, defined by (16) possesses a fixed point. Thus consider the following steps;
STEP (1): The operator Φ : Cm(J , R) → Cm(J , R) is totally continuous. Define the function ΩMC

as a sequence
{

ΩMC(m)

}
such that ΩMC(m) → ΩMC in C(J , R). Thus, for each t ∈ J = [0, T], we

have ∣∣∣ΦΩMC(m)(t)− ΦΩMC(t)
∣∣∣

=

∣∣∣∣ 2(1 − α)

(2 − α)U (α)

(
K(t, ΩMC(m)(t))−K(0, ΩMC(0))

)
+

2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(m)(ζ))dζ

−

(
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K(0, ΩMC(0))) +
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ

)∣∣∣∣
≤ 2(1 − α)

(2 − α)U (α)

∣∣∣K(t, ΩMC(m)(t))−K(t, ΩMC(t))
∣∣∣

+
2α

(2 − α)U (α)

∫ t

0

∣∣∣K(ζ, ΩMC(m)(ζ))−K(ζ, ΩMC(ζ))
∣∣∣ dζ

≤ 2(1 − α)

(2 − α)U (α) sup
t∈J

∣∣∣K(ζ, ΩMC(m)(ζ))−K(t, ΩMC(t))
∣∣∣+ 2α

(2 − α)U (α)

×
∫ t

0
sup
t∈J

∣∣∣K(ζ, ΩMC(m)(ζ))−K(ζ, ΩMC(ζ))
∣∣∣ dζ,

such that∣∣∣ΦΩMC(m)(t)− ΦΩMC(t)
∣∣∣ ≤ ∥∥∥K(., ΩMC(m)(.))−K(., ΩMC(.))

∥∥∥∞
(

2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Since K is continuous, clearly,

∥∥∥ΦΩMC(m)(t)− ΦΩMC(t)
∥∥∥∞ ≤

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)∥∥∥K(., ΩMC(m)(.))−K(., ΩMC(.))
∥∥∥∞ .

Hence,
∥∥∥ΦΩMC(m)(t)− ΦΩMC(t)

∥∥∥∞ → 0 as p → ∞.

STEP (2): Φ maps a "bounded set into another bounded" set in C(J , R).
Therefore, for every real number k̄ > 0, it can be shown that there exists an associated real number
χ > o such that

Bk̄ =
{

ΩMC ∈ C(J .R) : ∥ΩMC∥∞ ≤ k̄
}

, ∥ΦΩMC∥∞ ≤ χ, ∀ΩMC ∈ Bk̄.



44 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 1, 33–57

Thus ∀t ∈ J = [0, T], from (16) and (B3) that

|ΦΩMC(t)| ≤ 2(1 − α)

(2 − α)U (α) |K(t, ΩMC(t))|+
2α

(2 − α)U (α)

∫ t

0
|K(ζ, ΩMC(ζ))| dζ

≤ GMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Thus ∥ΦΩMC∥∞ ≤ χ, where

χ = GMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

STEP (3): The operator Φ : Cm(J , R) → Cm(J , R) maps a bounded set into equi-continuous set
in C(J , R). Let t1, t2 ∈ J = [0, T] and t2 > t1 and let Bk̄ be bounded set of C(J , R) as defined
above and ΩMC ∈ Bk̄, then using (16), (B3) and triangle inequality, we have

|ΦΩMC(t2)− ΦΩMC(t1)| =

∣∣∣∣ 2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))) +
2α

(2 − α)U (α)

∫ t2

0
K(ζ, ΩMC(ζ))dζ

−

(
2(1 − α)

(2 − α)U (α) (K(t1, ΩMC(t1))) +
2α

(2 − α)U (α)

∫ t1

0
K(ζ, ΩMC(ζ))dζ

)∣∣∣∣
=

∣∣∣∣ 2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))−K(t1, ΩMC(t1))) +
2α

(2 − α)U (α)

×
(∫ t2

0
K(ζ, ΩMC(m)(ζ))−

∫ t2

0
K(ζ, ΩMC(ζ))

)
dζ

∣∣∣∣
≤ 2(1 − α)

(2 − α)U (α) (|K(t2, ΩMC(t2))−K(t1, ΩMC(t1))|)

+
2α

(2 − α)U (α)

∫ t2

t1

|K(ζ, ΩMC(ζ))| dζ

≤ 2(1 − α)(2GMC)

(2 − α)U (α) +
2αGMC

(2 − α)U (α)

∫ t2

t1

dζ

= GMC

(
4(1 − α)

(2 − α)U (α) +
2α(t2 − t1)

(2 − α)U (α)

)
.

The right-hand side of the above inequality tends to zero as t1 → t2. Thus, from STEPS (1) to (2)
and also recalling the Arzela-Ascoli’s theorem, the operator Φ : Cm(J , R) → Cm(J , R) is totally
continuous.
STEP (4): The boundedness of priori: Let

ξ = {ΩMC ∈ C(J , R) : ΩMC = ΛΦΩMC} ,

for some Λ ∈ (0, 1). We show that set ξ is bounded. Let ΩMC ∈ ξ, then ΩMC = ΛΦΩMC for some
Λ ∈ (0, 1). Thus for all t ∈ J , we have that

ΩMC = ΛΦΩMC

= Λ
(

2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))) +
2α

(2 − α)U (α)

∫ t2

0
K(ζ, ΩMC(ζ))dζ

)
.
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Using (B3) and STEP (2) we get

|ΩMC| = Λ
(

2(1 − α)

(2 − α)U (α) |K(t2, ΩMC(t2))|+
2α

(2 − α)U (α)

∫ t2

0
|K(ζ, ΩMC(ζ))| dζ

)
≤ G

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Thus, for every t ∈ J = [0, T],

∥ΩMC∥∞ ≤ G
(

2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
:= χ, χ ∈ R,

which is the boundedness of set ξ. Applying Schauder’s fixed point theorem, the operator Φ
possesses a unique fixed point which is the solution of the IVP (12). Thus malaria and cholera
co–dynamic fractional order system (1) solution exists. ■

5 Numerical scheme

In this section, we apply a numerical algorithm to the proposed malaria and cholera fractional
order system to obtain the numerical solution of the proposed system. The numerical scheme
proposed and proved by Toufik and Atangana [42] which has a tremendous convergence property
is applied to approximate the fractional order malaria and cholera system. Using the initial
condition (2) and the Atangana–Baleanu integral (5), we obtain the following Atangana–Baleanu
fractional Volterra equation of the system (1) as;

SHB(t)− SHB(0) =
(1 − α)

U (α) Q1 (t,SHB(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q1 (ζ,SHB(ζ)) dζ,

IMAL(t)− IMAL(0) =
(1 − α)

U (α) Q2 (t, IMAL(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q2 (ζ, IMAL(ζ)) dζ,

RMAL(t)−RMAL(0) =
(1 − α)

U (α) Q3 (t,RMAL(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q3 (ζ,RMAL(ζ)) dζ,

ICHO(t)− ICHO(0) =
(1 − α)

U (α) Q4 (t, ICHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q4 (ζ, ICHO(ζ)) dζ,

RCHO(t)−RCHO(0) =
(1 − α)

U (α) Q5 (t,RCHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q5 (ζ,RCHO(ζ)) dζ,

IMAC(t)− IMAC(0) =
(1 − α)

U (α) Q6 (t, IMAC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q6 (ζ, IMAC(ζ)) dζ,

RMAC(t)−RMAC(0) =
(1 − α)

U (α) Q7 (t,RMAC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q7 (ζ,RMAC(ζ)) dζ,

BCHO(t)− BCHO(0) =
(1 − α)

U (α) Q8 (t,BCHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q8 (ζ,BCHO(ζ)) dζ,

SVEC(t)− SVEC(0) =
(1 − α)

U (α) Q9 (t,SVEC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q9 (ζ,SVEC(ζ)) dζ,

IVEC(t)− IVEC(0) =
(1 − α)

U (α) Q10 (t, IVEC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q10 (ζ, IVEC(ζ)) dζ.

(17)
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Next, setting t = tm+1 for m = 0, 1, 2, . . . into the above equation (17), we get

SHB(tm+1)− SHB(0) =
(1 − α)

U (α) Q1 (tm,SHB(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q1 (ζ,SHB(ζ)) dζ,

IMAL(tm+1)− IMAL(0) =
(1 − α)

U (α) Q2 (tm, IMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q2 (ζ, IMAL(ζ)) dζ,

RMAL(tm+1)−RMAL(0) =
(1 − α)

U (α) Q3 (tm,RMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q3 (ζ,RMAL(ζ)) dζ,

ICHO(tm+1)− ICHO(0) =
(1 − α)

U (α) Q4 (tm, ICHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q4 (ζ, ICHO(ζ)) dζ,

RCHO(tm+1)−RCHO(0) =
(1 − α)

U (α) Q5 (tm,RCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(V − ζ)α−1Q5 (ζ,RCHO(ζ)) dζ,

IMAC(tm+1)− IMAC(0) =
(1 − α)

U (α) Q6 (tm, IMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q6 (ζ, IMAC(ζ)) dζ,

RMAC(tm+1)−RMAC(0) =
(1 − α)

U (α) Q7 (tm,RMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q7 (ζ,RMAC(ζ)) dζ,

BCHO(tm+1)− BCHO(0) =
(1 − α)

U (α) Q8 (tm,BCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q8 (ζ,BCHO(ζ)) dζ,

SVEC(tm+1)− SVEC(0) =
(1 − α)

U (α) Q9 (tm,SVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q9 (ζ,SVEC(ζ)) dζ,

IVEC(tm+1)− IVEC(0) =
(1 − α)

U (α) Q10 (tm, IVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q10 (ζ, IVEC(ζ)) dζ.
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By two–point Lagrange interpolation polynomial, we approximate Q1 (ζ,SHB(ζ)), Q2 (ζ, IMAL(ζ)),
Q3 (ζ,RMAL(ζ)), Q4 (ζ, ICHO(ζ)), Q5 (ζ,RCHO(ζ)), Q6 (ζ, IMAC(ζ)), Q7 (ζ,RMAC(ζ)),
Q8 (ζ,BCHO(ζ)), Q9 (ζ,SVEC(ζ)), Q10 (ζ, IVEC(ζ)) in (18) on the interval [tk, tk+1] and get

Q1 (ζ,SHB(ζ)) ≈
Q1 (tk,SHB(tk))

h
(
t − tk−1

)
+

Q1 (tk−1,SHB(tk−1))

h
(
t − tk

)
,

Q2 (ζ, IMAL(ζ)) ≈
Q2 (tk, IMAL(tk))

h
(
t − tk−1

)
+

Q2 (tk−1, IMAL(tk−1))

h
(
t − tk

)
,

Q3 (ζ,RMAL(ζ)) ≈
Q3 (tk,RMAL(tk))

h
(
t − tk−1

)
+

Q3 (tk−1,RMAL(tk−1))

h
(
t − tk

)
,

Q4 (ζ, ICHO(ζ)) ≈
Q4 (tk, ICHO(tk))

h
(
t − tk−1

)
+

Q4 (tk−1, ICHO(tk−1))

h
(
t − tk

)
,

Q5 (ζ,RCHO(ζ)) ≈
Q5 (tk,RCHO(tk))

h
(
t − tk−1

)
+

Q5 (tk−1,RCHO(tk−1))

h
(
t − tk

)
,

Q6 (ζ, IMAC(ζ)) ≈
Q6 (tk, IMAC(tk))

h
(
t − tk−1

)
+

Q6 (tk−1, IMAC(tk−1))

h
(
t − tk

)
,

Q7 (ζ,RMAC(ζ)) ≈
Q7 (tk,RMAC(tk))

h
(
t − tk−1

)
+

Q7 (tk−1,RMAC(tk−1))

h
(
t − tk

)
,

Q8 (ζ,BCHO(ζ)) ≈
Q8 (tk,BCHO(tk))

h
(
t − tk−1

)
+

Q8 (tk−1,BCHO(tk−1))

h
(
t − tk

)
,

Q9 (ζ,SVEC(ζ)) ≈
Q9 (tk,SVEC(tk))

h
(
t − tk−1

)
+

Q9 (tk−1,SVEC(tk−1))

h
(
t − tk

)
,

Q10 (ζ, IVEC(ζ)) ≈
Q10 (tk, IVEC(tk))

h
(
t − tk−1

)
+

Q10 (tk−1, IVEC(tk−1))

h
(
t − tk

)
,

(18)

so that system (18) becomes

SHB(tm+1)− SHB(0) =
(1 − α)

U (α) Q1 (tm,SHB(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q1 (tk,SHB(tk))

h
Pk−1,α +

Q1 (tk−1,SHB(tk−1))

h
Pk,α

)
,

IMAL(tm+1)− IMAL(0) =
(1 − α)

U (α) Q2 (tm, IMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q2 (tk, IMAL(tk))

h
Pk−1,α +

Q2 (tk−1, IMAL(tk−1))

h
Pk,α

)
,

RMAL(tm+1)−RMAL(0) =
(1 − α)

U (α) Q3 (tm,RMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q3 (tk,RMAL(tk))

h
Pk−1,α +

Q3 (tk−1,RMAL(tk−1))

h
Pk,α

)
,

ICHO(tm+1)− ICHO(0) =
(1 − α)

U (α) Q4 (tm, ICHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q4 (tk, ICHO(tk))

h
Pk−1,α +

Q4 (tk−1, ICHO(tk−1))

h
Pk,α

)
,
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RCHO(tm+1)−RCHO(0) =
(1 − α)

U (α) Q5 (tm,RCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q5 (tk,RCHO(tk))

h
Pk−1,α +

Q5 (tk−1,RCHO(tk−1))

h
Pk,α

)
,

IMAC(tm+1)− IMAC(0) =
(1 − α)

U (α) Q6 (tm, IMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q6 (tk, IMAC(tk))

h
Pk−1,α +

Q6 (tk−1, IMAC(tk−1))

h
Pk,α

)
,

RMAC(tm+1)−RMAC(0) =
(1 − α)

U (α) Q7 (tm,RMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q1 (tk,RMAC(tk))

h
Pk−1,α +

Q7 (tk−1,RMAC(tk−1))

h
Pk,α

)
,

BCHO(tm+1)− BCHO(0) =
(1 − α)

U (α) Q8 (tm,BCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q8 (tk,BCHO(tk))

h
Pk−1,α +

Q8 (tk−1,BCHO(tk−1))

h
Pk,α

)
,

SVEC(tm+1)− SVEC(0) =
(1 − α)

U (α) Q9 (tm,SVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q9 (tk,SVEC(tk))

h
Pk−1,α +

Q9 (tk−1,SVEC(tk−1))

h
Pk,α

)
,

IVEC(tm+1)− IVEC(0) =
(1 − α)

U (α) Q10 (tm, IVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q10 (tk, IVEC(tk))

h
Pk−1,α +

Q10 (tk−1, IVEC(tk−1))

h
Pk,α

)
,

(19)

where and using tk = kh, we obtain

Pk−1,α =

∫ tk+1

tk

(
t − tk−1

)(
tm+1 − t

)α−1dt

=
hα+1

α(α + 1)

[
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

]
,

Pk,α =

∫ tk+1

tk

(
t − tk

)(
tm+1 − t

)α−1dt =
hα+1

α(α + 1)

[
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

]
.

(20)

Substituting (20) into (19) gives

SHB(tm+1) = SHB(0) +
(1 − α)

U (α) Q1 (tm,SHB(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q1 (tk,SHB(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q1 (tk−1,SHB(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.
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IMAL(tm+1) = IMAL(0) +
(1 − α)

U (α) Q2 (tm, IMAL(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q2 (tk, IMAL(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q2 (tk−1, IMAL(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RMAL(tm+1) = RMAL(0) +
(1 − α)

U (α) Q3 (tm,RMAL(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q3 (tk,RMAL(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q3 (tk−1,RMAL(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

ICHO(tm+1) = ICHO(0) +
(1 − α)

U (α) Q4 (tm, ICHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q4 (tk, ICHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q4 (tk−1, ICHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RCHO(tm+1) = RCHO(0) +
(1 − α)

U (α) Q5 (tm,RCHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q5 (tk,RCHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q5 (tk−1,RCHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

IMAC(tm+1) = IMAC(0) +
(1 − α)

U (α) Q6 (tm, IMAC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q6 (tk, IMAC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q6 (tk−1, IMAC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RMAC(tm+1) = RMAC(0) +
(1 − α)

U (α) Q7 (tm,RMAC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q7 (tk,RMAC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q7 (tk−1,RMAC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

BCHO(tm+1) = BCHO(0) +
(1 − α)

U (α) Q8 (tm,BCHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q8 (tk,BCHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q8 (tk−1,BCHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.
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SVEC(tm+1) = SVEC(0) +
(1 − α)

U (α) Q9 (tm,SVEC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q9 (tk,SVEC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q9 (tk−1,SVEC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

IVEC(tm+1) = IVEC(0) +
(1 − α)

U (α) Q10 (tm, IVEC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q10 (tk, IVEC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q10 (tk−1, IVEC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

6 Results and discussion

We present the results of the subject matter with the aid of the above numerical scheme for the
numerical solution of the proposed malaria and cholera system. For this purpose, we will adopt the
data in Table 1 and support it with the following initial conditions for each compartment SHB(0) =
10000, IMAL(0) = 2000, RMAL(0) = 300, ICHO(0) = 400, RCHO(0) = 300, IMAC(0) = 200,
RMAC(0) = 100, BCHO(0) = 2000, SVEC(0) = 2000, IVEC(0) = 2000 and the fractional orders
0.50, 0.60, 0.70, 0.80, 0.90 to plot all the ten classes in malaria and cholera dynamic system. The
dynamic behavior of all the compartments is shown in Figs. 1–10. The susceptible populations to
these diseases represented in Fig. 1 increase mildly until infected by the diseases and transfer to
other compartments within the system (1).
The mild increase of susceptible populations without interaction with the diseases occurs as the
fractional order tends to one. Fig. 2 shows the infection with malaria caused a transitional increase
with time in the population, then decreases and stabilizes after precautionary measures were
applied. A considerable response within the infected class as individuals respond to treatment
and necessary malaria control measures can be seen in Fig. 3.
As individuals recover from malaria and are infected by cholera, it can be seen from Fig. 4 that a
sharp decrease occurs as the fractional order increases. As individuals recover from cholera after
being infected through the necessary, an increase is recorded as depicted in Fig. 5. It can be seen in
Figs. 6 and 8 that there is a decrease within the population as co-infection of malaria and cholera
occurs.
The presence of the bacteria compartment facilitates this decrease as fractional order decreases
and converges to a certain point as time increases. The increase is seen in Fig. 7. The numerous
numbers of susceptible vectors show a correlation with the fractional order in Fig. 9. An increase
in the fractional order increases the number of susceptible vectors. After a stable population of
about a hundred individuals for the first three days, a decrease in the population of infectious
vectors is noticed when the fractional order increases as shown in Fig. 10. This explains the level
of infection in the vector population. Also, infection with cholera reduces more population of
individuals compared to infection with malaria within the same time interval.
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Figure 1. Simulations of the total number of SHB(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 2. Simulations of the total number of IMAL(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 3. Simulations of the total number of RMAL(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 4. Simulations of the total number of ICHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 5. Simulations of the total number of RCHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 6. Simulations of the total number of IMAC(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 7. Simulations of the total number of RMAC(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 8. Simulations of the total number of BCHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 9. Simulations of the total number of SVEC(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 10. Simulations of the total number of IVEC(t) at different values of α

on the interval of (0, 1) with the stated initial data.

7 Conclusion

In this paper, we investigated the fractional co-infection model of malaria and cholera in detail.
We also established the existence and uniqueness of the solution using Banach and Schauder’s
fixed point theorems. The positivity and boundedness of the fractional system solution are stated
and proved by using Mittag–Leffler function. The basic reproduction number R0 is computed
using the next-generation matrix method and it reveals that malaria–cholera model is locally
asymptotically stable when R0 < 1. Several simulations on the model were performed numerically
and we obtained various graphical results that align with the theoretical result obtained. Further
results revealed that infection with cholera reduces more population of individuals compared
to infection with malaria during the same time interval. For the future research interests of this
work, we recommend consideration of control measures and other fractional derivatives for this
purpose.

Declarations

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

Not applicable.

Author’s contributions

L.L.I.: Conceptualization, Software, Formal Analysis, Writing - Original draft, U.K.N.: Method-
ology, Supervision, Writing - Review and Editing, A.O.A.: Formal Analysis, Validation, A.B.P.:
Formal Analysis, Validation, K.U.E.: Visualization, Data Curation, All authors discussed the
results and contributed to the final manuscript.



Iwa et al. | 55

Acknowledgements

Not applicable.

References

[1] Birhanie, M., Tessema, B., Ferede, G., Endris, M., & Enawgaw, B. Malaria, typhoid fever, and
their coinfection among febrile patients at a rural health center in Northwest Ethiopia: a
cross-sectional study. Advances in Medicine, 531074, (2014). [CrossRef]

[2] World malaria report 2019. https://www.who.int/malaria/publications/world-malaria-
report-2019/en/.(2019), Meeting Report, Access date: 25th November 2022.

[3] World Health Organization, www.who.int/news-room, Access date: 30th March 2022.

[4] Centres for Disease Control and Prevention (CDC). Cholera - Vibrio cholera infection, (2020).
https://www.cdc.gov/cholera/general/index.html. Access date: 12th August 2022.

[5] Ross, S. The Prevention of Malaria Dutton: New York, NY, USA, (1911).

[6] Okosun, K.O. & Makinde O.D. A co-infection model of malaria and cholera diseases with
optimal control. Mathematical Biosciences, 258, 19-32, (2014). [CrossRef]

[7] Egeonu, K.U., Omame, A., & Inyama, S.C. A co-infection model for two-strain malaria and
cholera with optimal control. International Journal of Dynamics and Control, 9, 1612–1632, (2021).
[CrossRef]

[8] Mandal, S., Sarkar, R.R., & Sinha, S. Mathematical models of malaria-a review. Malaria Journal,
10, 202, (2011). [CrossRef]

[9] Oke, S.I., Ojo, M.M., Adeniyi, M.O., & Matadi, M.B. Mathematical modeling of malaria
disease with control strategy. Communication in Mathematical Biology and Neuroscience, (2020).
[CrossRef]

[10] Osman, M.A.E., Adu, I.K., Simple mathematical model for malaria transmission. Journal of
Advances in Mathematics and Computer Science, 25(6), 1-24, (2017). [CrossRef]

[11] Tilahun, G.T., Woldegerima, W.A., & Wondifraw, A. Stochastic and deterministic mathe-
matical model of cholera disease dynamics with direct transmission. Advances in Difference
Equation, 2020, (2020). [CrossRef]

[12] Hntsa, K.H., & Kahsay, B.N. Analysis of cholera epidemic controlling using mathematical
modeling. International Journal of Mathematics and Mathematical Sciences, 2020, 1-13, (2020).
[CrossRef]

[13] Nwajeri, U.K., Panle, A.B., Omame, A., Obi M.C., & Onyenegecha, C.P. On the fractional
order model for HPV and Syphilis using non-singular kernel. Results in Physics, 37, 105463,
(2022). [CrossRef]

[14] Omame, A., Isah, M.E., Abbas, M., Abdel-Aty, A.H, & Onyenegecha, C.P. A fractional order
model for Dual Variants of COVID-19 and HIV co-infection via Atangana-Baleanu derivative.
Alexandria Engineering Journal, 61(12), 9715-9731, (2022). [CrossRef]

[15] Nwajeri, U.K., Omame, A., & Onyenegecha, C.P. Analysis of a fractional order model for
HPV and CT co-infection. Results in Physics, 28, 104643, (2021). [CrossRef]

[16] Ogunrinde, R.B., Nwajeri, U.K., Fadugba, S.E., Ogunrinde, R.R., & Oshinubi, K.I. Dynamic
model of COVID-19 and citizens reaction using fractional derivative. Alexandria Engineering
Journal, 60(2), 2001-2012, (2021). [CrossRef]

[17] Ahmed, I., Baba, I.A., Yusuf, A., Kumam, P., & Kumam, W. Analysis of Caputo fractional-

http://doi.org/10.1155/2014/531074
https://doi.org/10.1016/j.mbs.2014.09.008
https://doi.org/10.1007/s40435-020-00748-2
https://doi.org/10.1186/1475-2875-10-202
https://doi.org/10.28919/cmbn/4513
https://doi.org/10.9734/JAMCS/2017/37843
https://doi.org/10.1186/s13662-020-03130-w
https://doi.org/10.1155/2020/7369204
https://doi.org/10.1016/j.rinp.2022.105463
https://doi.org/10.1016/j.aej.2022.03.013
https://doi.org/10.1016/j.rinp.2021.104643
https://doi.org/10.1016/j.aej.2020.09.016


56 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 1, 33–57

order model for COVID-19 with lockdown. Advances in Difference Equations, 394, (2020).
[CrossRef]

[18] Almeida, R., Cruz, A.M.C.B., Martins, N., & Monteiro, M.T.T. An epidemiological MSEIR
model described by the Caputo fractional derivative. International Journal of Dynamics and
Control, 7, 776-784, (2019). [CrossRef]

[19] Karaji, P.T., & Nyamoradi, N. Analysis of a fractional SIR model with general incidence
function. Applied Mathematics Letters, 108, 106499, (2020). [CrossRef]

[20] Lin, W. Global existence theory and chaos control of fractional differential equations. Journal
of Mathematical Analysis and Applications, 332(1), 709-726, (2007). [CrossRef]

[21] Tuan, N.H., Mohammadi, H., & Rezapour, S. A mathematical model for COVID-19 transmis-
sion by using the Caputo fractional derivative. Chaos, Solitons & Fractals, 140, 110107, (2020).
[CrossRef]

[22] Alrabaiah, H., Ur-Rahman, M., Mahariq, I., Bushnaq, S., & Arfan, M. Fractional order anal-
ysis of HBV and HCV co-infection under ABC derivative. Fractals, 30(01), 2240036, (2022).
[CrossRef]

[23] Wei-Yun, S., Yu-Ming, C., Ur-Rahman, M., Mahariq, I., & Zeb, A. Mathematical analysis of
HBV and HCV co-infection model nonsingular fractional order derivative. Results in Physics,
28, 104582, (2021). [CrossRef]

[24] Arafa, A.A.M., Rida, S.Z, & Khalil, M. A fractional-order model of HIV infection with drug
therapy effect. Journal of the Egyptian Mathematical Society,22(3), 538-543, (2014). [CrossRef]

[25] Baleanu, D., Jajarmi, A., Sajjadi, S.S., & Mozyrska, D. A new fractional model and optimal
control of a tumor-immune surveillance with non-singular derivative operator. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 29(8), 083127, (2019). [CrossRef]

[26] Liu, X., Arfan, M., Ur Rahman, M., & Fatima, B. Analysis of SIQR type mathematical model
under Atangana-Baleanu fractional differential operator. Computer Methods in Biomechanics
and Biomedical Engineering, 26(1), 98-112, (2022). [CrossRef]

[27] Losada, J., & Nieto, J.J. Properties of a new fractional derivative without singular kernel.
Progress in Fractional Differentiation and Application, 1(2), 87-92, (2015). [CrossRef]
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Abstract

The objective of this manuscript is to present a novel approach to modeling influenza A disease
dynamics by incorporating the Caputo-Fabrizio (CF) fractional derivative operator into the model.
Particularly distinct contact rates between exposed and infected individuals are taken into account in
the model under study, and the fractional derivative concept is explored with respect to this component.
We demonstrate the existence and uniqueness of the solution and obtain the series solution for all
compartments using the Laplace transform method. The reproduction number of the Influenza A
model, which was created to show the effectiveness of different contact rates, was obtained and
examined in detail in this sense. To validate our approach, we applied the predictor-corrector method
in the sense of the Caputo-Fabrizio fractional derivative and demonstrate the effectiveness of the
fractional derivative in accurately predicting disease dynamics. Our findings suggest that the use of the
Caputo-Fabrizio fractional derivative can provide valuable insights into the mechanisms underlying
influenza A disease and enhance the accuracy of disease models.

Keywords: Fractional differential equations; fixed point theory; Caputo-Fabrizio derivative; influenza

AMS 2020 Classification: 34A08; 34A34; 93A30

1 Introduction

Influenza is an infectious respiratory disease caused by a single-stranded and segmented RNA
virus in the Orthomyxoviridae family. Influenza is commonly known as "the flu". It has 3 different
types, namely A, B, and C, and the type of virus responsible for large epidemics with high mortality
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is often Influenza A. Influenza A viruses infect a range of mammalian (e.g. pigs and horses) and
avian species, whereas type B and C infections are largely restricted to humans. Within this group
of types, only types A and B are capable of causing severe illnesses in humans. Two glycoproteins,
hemagglutinin (H) and neuraminidase (N), located on the outside of the viral particle, are used
in the classification of influenza viruses. All 18 H and 11 R subtypes of influenza A viruses have
been isolated from nature and described in the literature [1]. H1N1, H1N2, H2N2, H3N1, and
others can be given as examples of this nomenclature. Like humans, every living thing has its
own influenza virus. Influenza viruses in animals can be transmitted to humans and cause a
pandemic that affects the whole world. The most important of these is the H1N1 subtype of
influenza A, which caused the Spanish flu pandemic in 1918, the Russian flu pandemic in 1977,
and the swine flu pandemic in 2009 [2]. These viruses lose their ability to cause an epidemic that
will affect the whole world within a few years and take their place among seasonal influenza
agents in the following years. Influenza viruses can easily be transmitted from sick people to
other people, and the disease reaches its peak during the winter months when people spend more
time indoors. Influenza is usually transmitted by the behavior of people who are sick, such as
talking, coughing, and sneezing. More rarely, it can be transmitted by touching surfaces, tools,
and equipment contaminated with virus-containing droplets. The flu is mild in many people
and these people recover completely within a few days. However, it has a severe course in the
elderly, young children, immune-deficient persons, and those with chronic diseases, and may
cause hospitalizations and even death. This disease can cause a wide range of symptoms, ranging
from mild to severe, including fever, sore throat, runny nose, headache, muscle pain, coughing,
and fatigue, among others. Although drugs are used in the treatment of influenza, scientific
studies have shown that the most effective way to prevent the disease is vaccination. However,
the continuous mutation of the influenza virus requires that the vaccine be updated every year in
order to be protected from the disease.
The course and effects of the disease can also be examined theoretically with mathematical models
that will be created in the presence of up-to-date data. In addition, the fractional derivative concept
has been adapted to add the memory effect to the mathematical models. Thereby, the instantaneous
behavior of the dynamic system can be depicted with the effect of past accumulations. In this
regard, many mathematical models, including integer and fractional order, have been created in
the literature for the detailed analysis of various diseases such as cancer cells [3–5], varicella zoster
virus [6], COVID-19 [7–9], plant disease [10], diabetes [11], prey-predator model [12], Nipah virus
[13], childhood diseases [14], and hepatitis B [15]. Additionally, several studies have also been
conducted regarding fractional derivative applications in various fields, such as optimal control
[16, 17], fixed point theory [18–20], chaotic systems [21], and heat flow [22]. In the same way, a
number of mathematical models developed in regard to influenza have attempted to contribute to
the literature in this area. In 2004 Alexander et al. [23] created an SVIRS model and determined
the threshold limit for vaccination, in order to reduce the spread of influenza in the community.
Casagrandi et al. [24] adapted cross-immune individuals to the classical SIR model and examined
its effects on the course of the disease. The transmission of the influenza virus between bird and
human populations has been discussed in detail by the proposed model in [25]. With the model
created in 2010 [26], the effects of wearing N95 and surgical masks on influenza were revealed
with quantitative analyzes. To explain and understand the outbreaks of influenza A (H1N1),
a nonlinear fractional order model is constructed in the Caputo sense [27], and the results are
compared with the real data from 2009. A new model describing the transmission of the influenza
virus by disease resistance in humans has been introduced in [28] and disease equilibrium points
have been determined and stability analyses have been carried out. Furthermore, Jia and Xiao
[29] discussed this model with nonlinear incidence rates. Partial differential equations have been
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used in the study [30] to assess the impact of diffusion and advection on influenza A virus kinetics
and localization in the human respiratory tract. Srivastava et al. [31] investigated the effect of the
influenza virus on a cellular basis on a fractional order model, taking into account the components
of the human immune system as antibodies, plasma cells, effector cells, and interferon. In [32]
the authors, the influenza mathematical model is handled by considering two strains with two
different incidence rates. The effects of COVID-19 and influenza diseases on each other were
examined on a deterministic co-infection model created by Ojo et al. [33]. In addition, various
control strategies have been developed with 3 control parameters added to the model. The course
and quantitative analysis of the influenza A virus under the newly defined fractal-fractional
operator is discussed in [34]. Derradji et al. [35] presented a fractional SEIRS model in the sense of
Caputo-Fabrizio with disease resistance and a nonlinear generalized incidence rate. An influenza
disease model with a cross-immune population was remodeled under the effect of the fractional
order derivative and solved by the stochastic Levenberg-Marquardt backpropagation neural
networks [36].
This study was motivated by the need to better understand the spread of influenza A, leading to
the creation of an integer-order model. The model incorporates a novel approach whereby the
contact rate for each exposed and infected individual is treated separately. Additionally, the model
incorporates the use of the Caputo-Fabrizio fractional derivative operator.
This paper is organized in the following manner. In Section 2, some basic definitions of fractional
calculus, which form the basis of the study, are reminded. In Section 3, the components of the
proposed integer and fractional models and their biological meanings are described. The existence
and uniqueness of the solution of the model under the CF derivative are detailed in Section 4.
In Section 5, it is theoretically proven that the model components have a series solution using
the Laplace transformed method. The effectiveness of contact rates corresponding to exposed
and infected individuals on the reproduction number is discussed in Section 6. The effect of
fractional derivatives of different order on the course of influenza disease is illustrated in Section
7. Moreover, in these simulations, the behavior of some model parameters under the fractional
derivative was also examined in detail. Finally, the results are expressed in the conclusion section.

2 Some preliminaries

Here, we recall some fundamental notions.

Definition 1 [37] Let a < b, g ∈ H1 (a, b) and σ ∈ (0, 1), the Caputo-Fabrizio (CF) derivative is

CFDσ
t [g (t)] =

F (σ)

1 − σ

t∫
a

g′ (x) exp
[
−σ

(t − x)
1 − σ

]
dx,

where F (σ) is a normalization function and F (0) = F (1) = 1.

Definition 2 [38] Let σ ∈ (0, 1). The fractional integral related to the CF derivative is defined by:

CF Iσ
t [g (t)] =

1 − σ

F (σ)
g (t) +

σ

F (σ)

t∫
a

g (λ) dλ.

Definition 3 [38] The Laplace transform of CF derivative can be given

L
[

CFDσ
t [g (t)]

]
=

sL [g (t)]
s + σ (1 − s)

−
g (0)

s + σ (1 − s)
.
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3 Mathematical model of Influenza A

In this section, an SEIRS model was developed by taking into account separate contact rates
for exposed and infected individuals, as inspired by previous research [28, 29, 35]. The model
compartments and the biological meanings of the parameters can be seen as follows:

dS (t)
dt

= Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t) ,

dE (t)
dt

= γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t) ,

dI (t)
dt

= εE (t)− (β + b + µ) I (t) ,

dR (t)
dt

= βI (t)− (α + µ) R (t) , (1)

where S (t) represents the number of susceptible individuals, E (t) represents the number of
exposed individuals, I (t) represents the number of infected individuals, R (t) represents the
number of recovered individuals, Λ is a constant recruitment ratio of susceptible humans, γ1 is
the transmission rate of viruses by contact between susceptible and exposed individuals, γ2 is the
transmission rate of viruses by contact between susceptible and infected individuals, the rate at
which an exposed person develops susceptibility without therapy is c, b is the rate at which an
infected person develops into a susceptible person in the absence of therapy, ε = 1

I IP where I IP
stands for the virus’s intrinsic incubation period, the rate at which a recovered person becomes
a vulnerable person once more is denoted by the symbol α, β is the rate at which the infectious
person becomes to be the recovered person, and the population’s natural death rate is expressed
by the symbol µ.

The use of fractional derivatives in mathematical modeling has become increasingly popular
in recent years. One of these fractional derivative definitions is the Caputo-Fabrizio fractional
derivative which is a modification of the classical Caputo derivative by using an additional
parameter to account for the non-locality of the fractional derivative. This additional parameter
can help to better capture the complex behavior of real-world systems, such as in the spread of
infectious diseases, where the contact rate between infected and susceptible individuals may vary
over time and make more accurate predictions about their future behavior. Now, by replacing
the time derivative with the CF fractional derivative operator, we moderate the system. As a
result of this change, the dimensions on the right-hand side and the left-hand side of the page will
differ. In order to resolve this issue, we adjust the fractional operator so that the sides are of the
same dimension using an auxiliary parameter called κ [39]. Based on these explanations and CF
fractional derivative, the model (1) take the following form:

κσ−1CFDσ
t S (t) = Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t) ,

κσ−1CFDσ
t E (t) = γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t) ,

κσ−1CFDσ
t I (t) = εE (t)− (β + b + µ) I (t) ,

κσ−1CFDσ
t R (t) = βI (t)− (α + µ) R (t) , (2)

with the initial conditions S (0) = S0 ≥ 0, E (0) = E0 ≥ 0, I (0) = I0 ≥ 0 and R (0) = R0 ≥ 0.
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4 Existence of solution

A natural question one might ask is whether the model we construct in order to describe a physical
phenomenon appears accurate enough. In order to guarantee this, we can apply the theory of
fixed points to our problem. We therefore use the aforementioned theory to demonstrate the
existence of the solution for the relevant model (2).

Ψ1 (t, S, E, I, R) = κ1−σ (Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t)) ,

Ψ2 (t, S, E, I, R) = κ1−σ (γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t)) ,

Ψ3 (t, S, E, I, R) = κ1−σ (εE (t)− (β + b + µ) I (t)) ,

Ψ4 (t, S, E, I, R) = κ1−σ (βI (t)− (α + µ) R (t)) . (3)

Applying the operator CF Iσ
t to the model (2) on both sides, we have

S (t) = S (0) +CF Iσ
t [Ψ1 (t, S, E, I, R)] ,

E (t) = E (0) +CF Iσ
t [Ψ2 (t, S, E, I, R)] ,

I (t) = I (0) +CF Iσ
t [Ψ3 (t, S, E, I, R)] ,

R (t) = R (0) +CF Iσ
t [Ψ4 (t, S, E, I, R)] . (4)

Considering the right-hand side of the Eq. (4), we achieve

U (t) = U0 (t) +
1 − σ

M (σ)
[Ψ (t, U (t))− Ψ0 (t)] +

σ

M (σ)

t∫
0

Ψ (θ, U (θ)) dθ, (5)

where

U (t) =


S (t)
E (t)
I (t)
R (t)

, U0 (t) =


S (0)
E (0)
I (0)
R (0)

, Ψ (t, U (t)) =


Ψ1 (t, S, E, I, R)
Ψ2 (t, S, E, I, R)
Ψ3 (t, S, E, I, R)
Ψ4 (t, S, E, I, R)

. (6)

Let

Bi = sup
t∈[t−d,t+d]

∥Ψi (t, S, E, I, R)∥ , for i = 1, 2, 3, 4

and

C [d, bi] = [t − d, t + d]× [u − ci, u + ci] = D × Di for i = 1, 2, 3, 4.

Suppose that a norm on C [d, bi] for i = 1, 2, 3, 4 as follows:

∥U (t)∥∞ = sup
t∈[t−d,t+d]

|U (t)| . (7)

Consider the Picard operator
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θ : C (D, D1, D2, D3, D4) → C (D, D1, D2, D3, D4) ,

given as

θU (t) = U0 (t) +
1 − σ

M (σ)
Ψ (t, U (t)) +

σ

M (σ)

t∫
0

Ψ (s, U (s)) ds. (8)

Suppose that the solutions of the model Eq. (2) are bounded within a time period, that is

∥U∥ ≤ max {d1, d2, d3, d4} . (9)

Supposing that d = 1+σt0
M(σ)

, B = max {Bi} for i = 1, 2, 3, 4 and t0 = max {t ∈ D}

∥θU (t)− U0 (t)∥ = sup
t∈D

∣∣∣∣∣∣ 1 − σ

M (σ)
Ψ (t, U (t)) +

σ

M (σ)

t∫
0

Ψ (s, U (s)) ds

∣∣∣∣∣∣
≤ 1 − σ

M (σ)
sup
t∈D

|Ψ (t, U (t))|+
σ

M (σ)
sup
t∈D

∣∣∣∣∣∣
t∫
0

Ψ (s, U (s)) ds

∣∣∣∣∣∣
≤
(

1 − σ

M (σ)
+

σ

M (σ)

)
B

≤
(

1 + σ (t0 − 1)
M (σ)

)
B

< dB

≤ d, (10)

which satisfies d < d
B . Now, we consider the following inequality:

∥θU1 − θU2∥ = sup
t∈D

|U1 − U2| . (11)

∥θU1 − θU2∥ = sup
t∈D

∣∣∣∣ 1 − σ

M (σ)
(Ψ (s, U1 (t))− Ψ (s, U2 (t)))

+
σ

M (σ)

t∫
0

(Ψ (s, U1 (s))− Ψ (s, U2 (s))) ds

∣∣∣∣∣∣
≤ 1 − σ

M (σ)
k1 |U1 (t)− U2 (t)|+

σ

M (σ)
k1

t∫
0

|U1 (s)− U2 (s)| ds

≤
(

1 − σ

M (σ)
k1 +

σk1

M (σ)
t0

)
|U1 − U2|

≤ dk1 |U1 − U2| ,
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where k1 < 1. Since Ψ is a contraction, then we have k1d < 1. Thus, the operator θ is contraction.
So the model (2) has a unique solution.

5 General algorithm for the fractional model

In this section, we give a series solution for our fractional model. Applying Laplace transform to
the model (2), we find

L [S (t)]− S (0) =
s + σ (1 − s)

s
L

[
κ1−σ (Λ − γ1S (t) E (t)− γ2S (t) I (t)
+cE (t) + bI (t) + αR (t)− µS (t))

]
,

L [E (t)]− E (0) =
s + σ (1 − s)

s
L
[
κ1−σ (γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t))

]
,

L [I (t)]− I (0) =
s + σ (1 − s)

s
L
[
κ1−σ (εE (t)− (β + b + µ) I (t))

]
,

L [R (t)]− R (0) =
s + σ (1 − s)

s
L
[
κ1−σ (βI (t)− (α + µ) R (t))

]
. (12)

Take into account the series solution in the shape of:

S (t) =
∞∑

p=0

Sp (t) , E (t) =
∞∑

p=0

Ep (t) ,

I (t) =
∞∑

p=0

Ip (t) , R (t) =
∞∑

p=0

Rp (t) . (13)

Moreover, the nonlinear terms E (t) S (t) and I (t) S (t) are decomposed in form of polynomials:

E (t) S (t) =
∞∑

p=0

Ap (E, S) , I (t) S (t) =
∞∑

p=0

Bp (I, S) ,

where the "Adomian polynomial" Ap (E, S) may be defined as:

Ap (E, S) =
1
p!

dp

dλp

[ p∑
i=0

λiEi (t)
p∑

i=0

λiSi (t)

]∣∣∣∣∣
λ=0

.

In a similar way, the polynomial Bp can be given. The system (12) can be converted to

L

[ ∞∑
p=0

Sp (t)

]
= S(0)

s + s+σ(1−s)
s L

κ1−σ


Λ − γ1

∞∑
p=0

Ap (E, S)− γ2
∞∑

p=0
Bp (I, S) + c

∞∑
p=0

Ep (t)

+b
∞∑

p=0
Ip (t) + α

∞∑
p=0

Rp (t)− µ
∞∑

p=0
Sp (t)


 ,

L

[ ∞∑
p=0

Ep (t)

]
= E(0)

s + s+σ(1−s)
s L

κ1−σ


γ1

∞∑
p=0

Ap (E, S) + γ2
∞∑

p=0
Bp (I, S)

− (c + ε + µ)
∞∑

p=0
Ep (t)


 ,
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L

[ ∞∑
k=0

Ip (t)

]
=

I (0)
s

+
s + σ (1 − s)

s
L

κ1−σ

ε
∞∑

p=0

Ep (t)− (β + b + µ)
∞∑

p=0

Ip (t)

 ,

L

 ∞∑
p=0

Rp (t)

 =
R (0)

s
+

s + σ (1 − s)
s

L

κ1−σ

β
∞∑

p=0

Ip (t)− (α + µ)
∞∑

p=0

Rp (t)

 . (14)

Now comparing both sides (14) term by term, we have

L [S0 (t)] =
S0

s
,L [E0 (t)] =

E0

s
,L [I0 (t)] =

I0

s
,L [R0 (t)] =

R0

s
.

L [S1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (λ − γ1 A0 (E, S)− γ2B0 (I, S)− cE0 + bI0 + αR0 − µS0)

]
,

L [E1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (γ1 A0 (E, S) + γ2B0 (I, S)− (c + ε + µ) E0)

]
,

L [I1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (εE0 − (β + b + µ) I0)

]
,

L [R1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (βI0 − (α + µ) R0)

]
,

L [S2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (Λ − γ1 A1 (E, S)− γ2B1 (I, S)− cE1 + bI1 + αR1 − µS1)

]
,

L [E2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (γ1 A1 (E, S) + γ2B1 (I, S)− (c + ε + µ) E1)

]
,

L [I2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (εE1 − (β + b + µ) I1)

]
,

L [R2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (βI1 − (α + µ) R1)

]
,

...

L
[
Sp+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
γ1 Ap (E, S)− γ2Bp (I, S)− cEp + bIp + αRp − µSp

)]
,

L
[
Ep+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
Λ − γ1 Ap (E, S) + γ2Bp (I, S)− (c + ε + µ) Ep

)]
,

L
[
Ip+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
εEp − (β + b + µ) Ip

)]
,

L
[
Rp+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
βIp − (α + µ) Rp

)]
, p ≥ 0. (15)

Implementing the inverse Laplace transform to Eq. (15), we obtain

S0 (t) = S0, E0 (t) = E0, I0 (t) = I0, R0 (t) = R0.

S1 (t) =
[
κ1−σ (Λ − γ1 A0 (E, S)− γ2B0 (I, S)− cE0 + bI0 + αR0 − µS0)

]
(1 + σ(t − 1)) ,

E1 (t) =
[
κ1−σ (γ1 A0 (E, S) + γ2B0 (I, S)− (c + ε + µ) E0)

]
(1 + σ(t − 1)) ,

I1 (t) =
[
κ1−σ (εE0 − (β + b + µ) I0)

]
(1 + σ(t − 1)) ,

R1 (t) =
[
κ1−σ (βI0 − (α + µ) R0)

]
(1 + σ(t − 1)) , (16)

...
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Continuing in the same direction, we acquire the other terms. The desired outcome can be stated
as:

S (t) =
∞∑

p=0

Sp (t) , E (t) =
∞∑

p=0

Ep (t) ,

I (t) =
∞∑

p=0

Ip (t) , R (t) =
∞∑

p=0

Rp (t) . (17)

6 Reproduction number

The reproduction number, denoted as R0, is a mathematical term that is commonly used in
epidemiology to represent the average number of people that one infected person will transmit
a disease to in a population where everyone is susceptible to the disease, in the absence of any
interventions like vaccines or treatment. The R0 is determined by using the Next Generation
Matrix Method (NGMM) [40, 41]. Firstly, the right side of the model (2) is considered as F -V ,
where F and V demonstrate the transmission part and the transition part, as follow respectively

F = κ1−σ

(
E S γ1 + I S γ2

0

)
and V = κ1−σ

(
E (c + ε + µ)

I (b + β + µ)− E ε

)
.

Then, if the Jacobian matrices of the F and V are calculated according to the E and I compartments
and written instead of the disease-free equilibrium point E0 = (S, E, I, R) =

(
Λ
µ , 0, 0, 0

)
of the

model, we get

F = κ1−σ

(
Λ γ1

µ
Λ γ2

µ

0 0

)
and V = κ1−σ

(
c + ε + µ 0

−ε b + β + µ

)
.

Thus, the next generation matrix
(

FV−1
)

of the model (2) is obtained and its spectral radius gives
the reproduction number R0 as follow:

FV−1 =

(
0

Λ (b γ1+β γ1+ε γ2+γ1 µ)
µ (b+β+µ) (c+ε+µ)

) → R0 =
Λ (b γ1 + β γ1 + ε γ2 + γ1 µ)

µ (b + β + µ) (c + ε + µ)
.

The critical value of contact rate refers to the threshold value of the average number of people that
an infected individual comes into contact with per day, below which the reproduction number
remains below 1. In other words, if the contact rate is lower than the critical value, then the disease
will not spread widely in the population. In Figure 1 (a)-(b), the critical value of the contact rates is
calculated as γ1 = 0.4637 and γ2 = 0.72 for the model (2). If the average number of contacts per
exposed individual is less than 0.4637 and the average number of contacts per infected individual
is less than 0.72, then the disease will not spread widely and the outbreak will be contained.
However, if the contact rates γ1 and γ2 exceed the critical values, then the reproduction number
will be greater than 1, and the disease will continue to spread in the population. This highlights
the importance of public health measures such as social distancing, mask-wearing, and limiting
large gatherings, which can reduce the contact rate and help bring the reproduction number below
1, leading to a decline in the number of new infections. In addition, the change in R0 can also be
observed in Figure 2 depending on the value of γ1 and γ2 that have been fixed in the range of 0 to
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2. According to this simulation, γ1 appears to spread the disease more effectively than γ2, and
considering the levels that R0 can reach, it seems that influenza disease may have the potential to
cause a pandemic again in the world in the future.
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(a) γ2 fixed as 0.15. (b)γ1 fixed as 0.25.

Figure 1. The critical values of the contact rate γ1 and γ2 for the threshold value of R0 = 1.
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Figure 2. Visualization of the variation in the reproduction number R0 according to contact rates γ1 and γ2 with
(a) Contour and (b) Surface plot.

7 Numerical results

In order to provide empirical evidence to support the theoretical findings obtained in this study,
several numerical simulations were conducted. To approximate the solution to the differential
equations in the model, we applied the predictor-corrector method in the sense of the Caputo-
Fabrizio fractional derivative, which was introduced by Toh et al. [42]. To conduct these sim-
ulations, the initial conditions for the model components were set at S(0) = 0.15, E(0) = 0.15,
I(0) = 0.10, and R(0) = 0.
Additionally, the values of the model parameters were assigned as Λ = 0.25, µ = 0.2, γ1 = 0.25,
γ2 = 0.15, c = 0.15, b = 0.10, α = 0.30, ϵ = 0.30, and β = 0.5. By utilizing these initial conditions
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and parameter values, the simulations were able to provide insights into the behavior and charac-
teristics of the model under distinct values of the fractional derivative. Through these simulations,
it was possible to observe the impact of changes in the parameters and initial conditions on the
model’s predictions, thus allowing for a more comprehensive analysis of the model’s dynamics.
The impact of the fractional derivative of Caputo-Fabrizio sensitivity on the components of the
influenza model is observed for arbitrarily selected orders, as shown in Figure 3-4. In addition
to this, in Figure 5, a detailed explanation of the behavioral responses of exposed and infected
individuals at various values of γ1 and γ2 contact rates is provided. There is a tendency for the
number of exposed and infected individuals to increase when the threshold values for γ1 and γ2
contact rates are exceeded. When comparing the simulations in Figure 5 (a) and Figure 5 (b), it can
be seen that the γ1 contact rate is more dominant in the spread of the influenza virus compared to
γ2.
Moreover, this high transmission rate is achieved at lower values of γ1 than γ2. This result is also
supported by the fact that γ1 has a lower threshold value than γ2, as seen in Figure 1 (a)-(b). This
finding implies that the interaction with exposed individuals plays a more significant role in the
spread of the influenza virus than the interaction with infected individuals.
There could be several reasons for this. One possible explanation is that exposed individuals may
be more likely to transmit the virus to others due to their higher viral load or greater suscepti-
bility to infection. Another possible explanation is that the timing of interactions with exposed
individuals may be more critical for transmission than interactions with infected individuals. If
individuals are more likely to interact with others during the early stages of the disease when they
are exposed but not yet showing symptoms, this could contribute to the higher transmission rate
among exposed individuals.
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Figure 3. The behavior of the model (2) compartments (a) Susceptible and (b) Exposed according to the different
fractional orders σ = 0.95, 0.85, 0.75, 0.65.
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Figure 4. The behavior of the model (2) compartments (a) Infected and (b) Recovered according to the different
fractional orders σ = 0.95, 0.85, 0.75, 0.65.
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Figure 5. The changes in the (a) Exposed E(t) and (b) Infected I(t) populations depending on the contact rates of
virus transmission γ1 and γ2.

8 Conclusion

This manuscript presents a novel approach to modeling influenza A disease dynamics by incorpo-
rating the Caputo-Fabrizio fractional derivatives into the model. By considering distinct contact
rates for exposed and infected individuals, the study explores the fractional derivative concept
and demonstrates its effectiveness in predicting disease dynamics. The reproduction number of
the influenza model was obtained and examined to show the effectiveness of different contact
rates. In simulations, the γ1 contact rate with exposed individuals played a more active role in
disease spread. It can be thought that the reason for this was still at the beginning of the outbreak.
Because, during the early stages of an outbreak, the contact rate with exposed individuals may be
more important, as these individuals have not yet developed symptoms or been diagnosed with
the disease, and therefore may not be aware that they are contagious. This makes them potentially
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more dangerous to the population, as they may be spreading the disease unknowingly. Modeling
the contact rate with exposed individuals can help to identify the potential spread of the disease
before it is detected by traditional disease surveillance methods. The numerical simulations
conducted in this study validate the proposed approach and suggest that the Caputo-Fabrizio
fractional derivative can provide valuable insights into the mechanisms underlying influenza A
disease. The findings of this study have important implications for improving the accuracy of
disease models and developing more effective strategies for controlling the spread of influenza
A. In future work, the model will be expanded to consider different incidence rates and further
investigations will be conducted to examine the spread of Influenza A disease from different
perspectives.
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Abstract

The study considers the case of the unequal diffusion coefficients of reactant A (bulk fluid) and reactant
B (catalyst at the wall) with the dispersion of both nanoparticles and gyrotactic microorganisms
of Erying-Powell fluid flow over a surface with non-uniform thickness in the presence of variable
fluid properties and stratification. The numerical solution of the transformed governing equations
is obtained by using the Runge-Kutta method and shooting techniques. The outcome of this study
is that the increasing values of temperature-dependent thermal conductivity parameter lead to the
augmentation of the kinetic energy which thereafter causes a significant enhancement of the fluid
temperature.

Keywords: Darcy-Forchheimer; bioconvection; Erying-Powell fluid; stratification; nanofluids; auto-
catalysis; paraboloid of revolution
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1 Introduction

Stratification is an important component of heat and mass transfer which is referred to as the
scientific or natural process that describes the production of layers of fluids as a result of the
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mixing of various fluids with varied densities, temperature variances, and concentration differ-
ences. The idea behind this stratification phenomenon is useful in both natural and industrial
processes such as the occurrence of flows in lakes, oceans, rivers, groundwater reservoirs, thermal
energy storage systems, and heat release into the atmosphere. Recently, the effect of stratifica-
tion on the hydromagnetic nanofluid flow along an exponentially stretching sensor plate was
presented by Shamshuddin et al. [1]. Tamilzharasan et al. [2] discussed the mixed convention
flow of Williamson fluid in a stratified porous medium. The impact of triple stratification on
hydromagnetic flow with Soret and Dufour over a stretching cylinder was analyzed by Jagan
et al. [3] Rehman et al. [4] studied thermally stratified Eyring-Powel fluid with melting heat
phenomenon.
Oreyeni et al. [5] demonstrated the importance of triple stratifications in the dynamics of a mi-
cropolar fluid with nanoparticles and exponential heat production. They observed that increased
stratification minimizes the temperature difference between the surface and the free stream, result-
ing in declination of fluid velocity and temperature. Olanrewaju et al. [6] analyzed the impact
of double stratification and variable fluid properties on a chemically reacting upper-convected
Maxwell fluid utilizing an analytic approach. The effect of stratification phenomena on a Sutterby
nanofluid was discussed by Khan et al. [7]. Chen et al. [8] investigated thermophoretic Casson
fluid flow with a magnetic dipole in a stratified environment. The bioconvective flow of Casson
over a stratified cylinder was addressed by Dawar et al. [9]. Verma et al. [10] presented the
existence of mixed convection and double stratification in Darcy-Forchheimer porous medium.
The magnetohydrodynamic mixed convective flow of nanofluid with thermal stratification was
considered by Mahmood et al. [11].
Nanofluid is defined as fluid with nanometer-sized particles suspended in conventional heat
transfer fluids characterized by low thermal conductivity in order to improve the fluid’s heat
transfer efficiency. Researchers are interested in the flow of fluid when nanometer-sized par-
ticles are annotated in the flow field because of its vast variety of applications in biomedical
and technical disciplines such as microelectronics, polymer extrusion, cancer treatment, safer
surgery procedures, and microfluidics. Owing to a wide range of applications, nanofluid flow over
various geometries has emerged as a fascinating and significant research area among academics.
Koriko et al. [12] investigated the bioconvection flow of shear-thinning fluid employing active
and passive controls of nanoparticles. It was observed that the presence of Brownian motion
encourages the warming of particle molecules and increases thermal conductivity, resulting in an
increase in fluid temperature. Shah et al. [13] analyzed the significance of Brownian motion and
thermophoretic diffusion effects as major mechanisms for heat transfer in their study. Nadeem
et al. [14] considered the numerical analysis for elastico-viscous fluid with the suspension of
nanoparticles. Boundary layer flow of a nanofluid in the presence of variable suction and viscous
dissipation over an exponentially stretched wall was discussed by Rao et al. [15]. Rasheed et al.
[16] presented the significance of Joule heating on the hydromagnetic flow of Jeffery nanofluid
flow over a stretching cylinder. Abbas et al. [17] studied the heat transfer of nanofluid along a
vertical sheet with a magnetic effect. Other studies relating to the dynamics of nanofluid can be
seen in [18–21].
The process by which one or more substances are changed into one or more new substances
is known as a chemical reaction. During the course of a chemical reaction catalysis is known
to be the process of accelerating the rate of the reaction by introducing a chemical component
known as a catalyst which is frequently used to accelerate a chemical reaction. It is therefore
believed that catalyzed reactions are classified into two types: homogeneously catalyzed reactions
and heterogeneously catalyzed reactions. Both the reactant and the catalyst are present in the
same phase in a homogeneously catalyzed reaction. This has a wide range of applications in
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industry as it allows an increase in reaction rate without an increase in temperature. An example
of homogeneous catalysis is the decomposition of ozone when Nitric oxide (NO) acts as a catalyst
that affects the rate of the decomposition reaction. That is, NO+O3→NO2+O2. When the reactant
and catalyst are in separate stages the reaction is called heterogeneous catalyzed. The catalyst
stays solid in this type of reaction whereas the reactants are gaseous or liquid. Example is the
preparation of Ammonia (NH3) when iron (Fe) is used as catalyst, i.e. N2+3H2→2NH3.
Researchers have looked into the analysis of boundary layer flow with homogeneous-heterogeneous
reaction because of its importance in the industry. Sravanthi et al. [22] recently examined the
flow of a magnetite-water nanofluid in the presence of homogeneous and heterogeneous ef-
fects. Alzahrani et al. [23] investigated the influence of thermosolutal Marangoni convection and
nanoparticle aggregation on Oldyroyd-B fluid with homogeneous and heterogeneous catalytic
reactions. Sarojamma et al. [24] investigated the Cattaneo-Christov model in the homogeneous-
heterogeneous autocatalytic chemical reaction of micropolar fluid. They observed that with
diffusion ratios, the concentration of homogenous bulk fluid with microstructures drops, and the
concentration of catalyst at the surface augments. Animasaun et al. [25] described a boundary
layer generated on the surface with a changeable thickness of Erying-Powel liquid subject to equal
diffusivity. Hayat et al. [26] considered the impacts of homogeneous and heterogeneous reactions
on nanofluid flow over a surface with non-uniform thickness. Zhao et al. [27] utilized Buon-
giorno’s model in the analysis of nanofluid flow characteristics in the presence of homogeneous
and heterogeneous reactions.
Bioconvection is a pattern generation process that happens in the suspension of motile microor-
ganisms when they swim in a given direction in response to certain stimuli Platt [28]. Because of
density stratification, motile gyrotactic bacteria swim in large numbers to the upper layer of the
fluid causing instability. Unlike motile gyrotactic microorganisms, the flow of nanoparticles im-
mersed in the base fluid is induced by both thermophoresis and the Brownian motion mechanisms
in the nanofluid Ramzan et al. [29]. The fact that the dispersion of nanoparticles in the base fluid
can maintain the stability of the suspension in light of the instability caused by the motile microbes
must also be emphasized. Bioconvection phenomena are essential in meteorological and medicinal
applications such as pharmaceutical formulation, biopolymer synthesis, and microbial-enhanced
oil recovery. Zhang et al. [30] examined the relevance of bioconvection flow with nanoparticles
in the presence of Lorentz force. Rao et al. [31] investigated the bioconvection flow of nanofluid
across an isothermal vertical cone with a chemical reaction. Sankad et al. [32] demonstrated
boundary layer bioconvective flow with variable wall temperatures and thermal radiation effects.
Parveen [33] investigated the effect of Brownian and thermophoresis motion on the peristaltic
mechanism of conductive nanofluid flow via an asymmetric channel. Naganthran et al. [34]
investigated scaling group analysis of bioconvective micropolar fluid in a porous regime.
To the best of the authors’ knowledge, the hydromagnetic flow of nanofluid bioconvection with
stratifications has been examined. However, researchers have not studied the impact of bioconvec-
tion flow of an electrically conducting Erying-Powel fluid containing nanoparticles in the presence
of variable fluid characteristics and a quartic autocatalytic type of chemical reaction subjected to
stratification over a surface with non-uniform thickness. Furthermore, the work addresses the
role of thermophoresis and Brownian motion effects in nanofluid bioconvection flow. Two unique
forms of stratification, thermal and motile microorganisms are integrated into the model which
has a wide variety of applications in thermal energy storage systems, lakes, reservoirs, and the
removal of residual pollutants. During the course of the inquiry, the current communication gives
answers to the following questions:

• What effect does Darcy-Forchheirmer have on velocity and temperature distributions?
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• What impact does the Brownian motion parameter have on the homogeneous bulk fluid and
heterogeneous catalyst surface concentration distributions?

• What impact does space-based internal heat generation parameter pose on the temperature
distribution and concentration distribution of heterogeneous catalysts at the surface?

• What effect do the temperature-dependent viscous and thermal conductivity parameters have
on velocity and temperature distributions, respectively?

2 Mathematical formulation of governing equation

The paper delves into the two-dimensional steady flow of bioconvective Erying-Powell fluid
containing nanoparticles along the upper horizontal surface of a paraboloid of revolution. The
Cauchy stress tensor in an Eyring-Powell fluid model studied by Ramzan et al. [35] is regulated
by the relation

τij = µ
∂ui
∂xj

+
1
β

sinh−1

(
1
g

∂ui
∂xj

)
, (1)

The first term depicts the viscosity effect while the second term depicts the elastic part. Here µ is
viscosity and β and g are the Eyring-Powell and rheological fluid parameters. Following Hayat et
al. [36], Using Maclaurin series expansion of the hyperbolic sine is sufficient to describe the fluid,

sinh−1

(
1
g

∂ui
∂xj

)
∼=

1
g

∂ui
∂xj

−
1
6

(
1
g

∂ui
∂xj

)3

,

∣∣∣∣∣1g ∂ui
∂xj

∣∣∣∣∣≪ 1, (2)
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Figure 1. Geometry of Erying-Powell fluid flow over upper horizontal surface of a paraboloid of revolution
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As the fluid flows along the upper horizontal surface of a paraboloid of revolution in a stratified
domain, it is assumed that a quartic autocatalysis chemical reaction occurs between the reactant
(bulk fluid) and concentrated catalyst on the wall. The chemical process is explained by Koriko
and Animasaun [37] as a kind in which the homogeneous reaction is assumed to be by isothermal
quartic autocatalytic kinetics and the heterogeneous reaction is considered to be by first-order
kinetics. The concentrations of chemical species homogeneous bulk fluid (Eyring-Powell) A and
heterogeneous catalyst B at the wall are denoted by λ and r, respectively. It is important to
note that the Erying-Powell fluid flow over the surface with non-uniform thickness is assumed

to occupy the domain A(x + b)
1−m

2 ≤ y < ∞, where A ≥ 0. A and b are arbitrary constants
associated with the thickness of the surface, m is velocity power index (see Fig. 1). In this study,
m is less than 1. However, it is necessary to note that the flow of fluid along an upper horizontal
surface of a paraboloid of revolution corresponds to m < 1(i.e= 0.75), Koriko et al. [25]. The
upper horizontal surface of the paraboloid of revolution can be likened to the pointed upper
surface of an aircraft, or the bonnet of a car. The fluid layers on an upper horizontal surface
of the paraboloid of revolution are stretched with the velocity of Uw = Uo(x + b)m, where Uo
is the reference velocity. However, the velocities along x, y − directions are u(x, y) and v(x, y),
temperature is T(x, y), concentrations of reactant A and reactant B are λ(x, y) and r(x, y) density
of motile microorganisms is N(x, y). To allow the microbes to live, water is assumed to be the base
fluid. It is assumed that the suspension of nanoparticles inside the base fluid containing motile
microorganisms will reduce bioconvection instability. Following Kuznetsov and Nield [38] and
Rees et al. [39], microorganisms flux can be expressed as

∇.j = 0, (3)

Following the idea of the homogeneous-heterogeneous reaction model proposed by Chaudhary
and Merkin [40], Koriko et al. [41], Animasaun et al. [25], an isothermal quartic autocatalytic
reaction in the homogeneous case is expressed as

A + 3B → 4B, (4)

where the chemical reaction rate = khλr3 while the chemical reaction on the surface of the catalyst
is expressed as

A → B, (5)

where the chemical reaction rate = ksλ. The concentrations of chemical reactants A and B are λ and
r. Coefficient of chemical reaction rate are kh and ks. Following Kuznetsov [42], microorganisms
flux j relating to the concentration of the homogeneous chemical reactant A is expressed as

j = Nv + Nṽ − Dm∇N, ṽ =

(
bWc

∆λ

)
∇λ , (6)

in which v is the velocity vector of the flow, ṽ is the average swimming velocity vector of
oxytactic microorganism, b is the chemotaxis contant, Wc is the maximum cell swimming speed
and Dm is the diffusivity of microorganisms. With all the aforementioned assumptions, the
governing equation that is suitable to analyze the bioconvective flow of Erying-Powell fluid
with nanoparticles following the formulations of Refs. [25, 31, 36, 41] is presented as continuity
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equation:

∂u
∂x

+
∂v
∂y

= 0. (7)

The momentum equation with the non-Newtonian fluid term and the magnetic field term takes
the form

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ f

∂

∂y

[(
µ f (T) +

1
β jC

)
∂u
∂y

]

−
1

2β jC3ρ

∂u
∂y

∂u
∂y

∂2u
∂y2 −

σf Bo
2 u

ρ f
−

µ (T)
ρ

1
k

u −
b∗

k
u2. (8)

The energy equation in which the exponential space-based heat generation, stratification, ther-
mophoresis, and Brownian motion are incorporated and take the form

u
∂T
∂x

+ v
∂T
∂y

=
1(

ρCp
)

f

∂

∂y

(
κ f (T)

∂T
∂y

)
+ τ

[
DB

∂T
∂y

∂λ

∂y
+

DT
T∞
(

∂T
∂y

)2
]

+
Qo (Tw−T0)(

ρCp
)

f
Exp−ny

√
c(m+1)

2ϑ (x+b)
m−1

2 . (9)

The effect of thermophoresis and the homogeneous-heterogeneous reaction model on reactant A
and B concentrations is given as

u
∂λ

∂x
+ v

∂λ

∂y
= DA

∂2λ

∂y2 −
DT
T∞

∂2T
∂y2 − khλr3, (10)

u
∂r
∂x

+ v
∂r
∂y

= DB
∂2r
∂y2 +

DT
T∞

∂2T
∂y2 + khλr3. (11)

Density of gyrotactic microorganisms equation in the homogeneous bulk fluid is presented as

u
∂N
∂x

+ v
∂N
∂y

+
bWc

∆λ

[
∂

∂y

(
N

∂λ

∂y

)]
= Dn

∂2N
∂y2 . (12)

The associated boundary conditions that connect chemical changes of the reactants A and B at the
surface, the thermal and motile microorganisms stratifications are expressed as

u = Uo(x + b)m, v = 0, T = Tw,
1
λ

∂λ

∂y
=

ks

DA
,

1
−λ

∂r
∂y

=
ks

DB
, N = Nw at y = A(x + b)

1−m
2 , (13)

u → 0, T → T∞, λ → δ, r → 0 N → N∞ as y → ∞, (14)

where β j is the Erying-Powell fluid parameter κ is thermal conductivity, σ is the fluid electrical
conductivity, ρ is the fluid density, Bo is the magnetic field strength, T is the fluid temperature, Qo
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is the heat generation/absorption, ρCp is the heat capacity of the fluid.
The temperature-dependent viscosity mathematical model was developed using Batchelor’s
experimental data [43], as well as the mathematical model of temperature-dependent thermal
conductivity of Charraudeau [44] and Yook et al. [45] as;

µ f (T) = µ∗
f [1 + b (Tw − T)] and κ f (T) = κ∗f [1 + δ (T − T∞)] . (15)

Following [46–48], it is essential to indicate how stratification is incorporated into the energy
and concentration equations as we express the thermal stratification at the wall (Tw) and solutal
stratification at the wall (Cw) and the free stream temperature and concentration (T∞, C∞) as

Tw − T0 = m1(x + b)
1−m

2 and T∞ − T0 = m2(x + b)
1−m

2 ,

Nw − N0 = m3(x + b)
1−m

2 and N∞ − N0 = m4(x + b)
1−m

2 , (16)

where T0 is the reference temperature, it is worth noting that stratification occurs for all points of

x on the wall at y = A(x + b)
1−m

2 and also for all points of x at the ambient as y → ∞.

The essential physical quantities of engineering in the Erying-Powell are expressed as in Ani-
masaun et al. [25]

C f =

[(
µ f (T)

ρ f
+

1
β jC

)
∂u
∂y

−
2

m + 1
1

β jC3

(
∂u
∂y

)3
]

y=A(x+b)
1−m

2

,

Nux =
(x + b) qw

κ (Tw (x)− T0)
(

m+1
2

) 1
2 ,

where qw = −κ
∂T
∂y

∣∣∣∣
y=A(x+b)

1−m
2

. (17)

For the sake of transformation, the following similar transformations can be expressed as

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, η = y

(
Uo (m + 1)

2ϑ

)1/2

(x + b)
m−1

2 , ψ =

(
2ϑUo

m + 1

)1/2

(x + b)
m+1

2 f (η) ,

θ (η) =
T − T∞
Tw − T0

,
λ

δ
= q (η) ,

r
δ
= s(η), ω (η) =

N − N∞
Nw − N0

. (18)

Using the similar transformation, stream function ψ(x, y) satisfies the continuity equation, the
governing partial differential equations (8)-(12) together with the boundary conditions (13)-(14)
are converted to the system of nonlinear differential equations expressed as(

[1 + (1 − θ(η)) ξ] + ς − ςH (m + 1)
2

d2 f
dη2

d2 f
dη2

)
d3 f
dη3 − ξ

d2 f
dη2

dθ

dη
−

2m
m + 1

d f
dη

d f
dη

+ f (η)
d2 f
dη2 −

2
m + 1

M
d f
dη

−
2

m + 1
[1 + ( 1 − θ) ξ] Ps

d f
dη

−
2

m + 1
FsD−1

a
d f
dη

d f
dη

= 0, (19)
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[1 + θ(η)ε]
d2θ

dη2 −
2

m + 1
Prθ(η)

d f
dη

−
2

m + 1
StPr

d f
dη

+ Pr f (η)
dθ

dη
+ ε

dθ

dη

dθ

dη
+ PrNb

dθ

dη

dq
dη

+PrNt
dθ

dη

dθ

dη
+

2
m + 1

ζPre−nη = 0, (20)

d2q
dη2 + ScA f (η)

dq
dη

−
Nt

Nb

d2θ

dη2 −
2

m + 1
ScARq (η) s3 (η) = 0, (21)

γ
d2s
dη2 + ScB f (η)

ds
dη

+
Nt

Nb

d2θ

dη2 +
2

m + 1
ScBRq (η) s3 (η) = 0, (22)

d2ω

dη2 −
2

m + 1
Scmω (η)

d f
dη

−
2

m + 1
ScmSg

d f
dη

+ Scm f (η)
dω

dη
− Peω

d2q
dη2 − Pe

dq
dη

dω

dη

−Peג
d2q
dη2 − PeSg

d2q
dη2 = 0. (23)

It is important to note that at the surface y = A(x + b)
1−m

2 , the minimum value of y which
corresponds to minimum value of the similarity variable

η =

√
Uo (m + 1)

2ϑ
= I. (24)

Then the boundary conditions become

f (I) = I
1 − m
1 + m

,
d f
dI

= 1, θ (I) = 1 − St,
1
J

dq
dI

= q (I) ,

γ

J
ds
dI

= −q (I ) , ω (I) = 1 − Sg at I = η, (25)

d f
dI

→ 0, θ (I) → 0, q (I) → 1, s (I) → 0, ω (I) → 0 as η → I. (26)

The transformed governing equations (19)-(23) are dependent on η while the boundary conditions
are dependent on I. It is therefore, necessary to change the domain from [I,∞] to [0,∞] which is
done by defining F (ℵ) = F (η −I) = f (η) , Θ (ℵ) = Θ (η −I) = θ (η), Q (ℵ) = Q (η −I) =

q (η), S (ℵ) = S (η −I) = s (η) and W (ℵ) = W (η −I) = w (η). The dimensionless governing
equations (19)-(23) take a new form(

[1 + (1 − Θ(ℵ)) ξ] + ς − ςH (m + 1)
2

d2F
dℵ2

d2F
dℵ2

)
d3F
dℵ3 − ξ

d2F
dℵ2

dΘ
dℵ

−
2m

m + 1
dF
dℵ

dF
dℵ

+ F (ℵ)
d2F
dℵ2 −

2
m + 1

M
dF
dℵ

−
2

m + 1
[1 + ( 1 − Θ) ξ] Ps

dF
dℵ

(27)

−
2

m + 1
FsD−1

a
dF
dℵ

dF
dℵ

= 0,
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[1 + Θ(ℵ)ε]
d2Θ
dℵ2 −

2
m + 1

PrΘ(ℵ)
d f
dℵ

−
2

m + 1
StPr

dF
dℵ

+ PrF (ℵ)
dΘ
dℵ

+ε
dΘ
dℵ

dΘ
dℵ

+ PrNb
dΘ
dℵ

dQ
dℵ

+ PrNt
dΘ
dℵ

dΘ
dℵ

+
2

m + 1
ζPre−nη = 0, (28)

d2Q
dℵ2 + ScAF(ℵ)

dQ
dℵ

−
Nt

Nb

d2Θ
dℵ2 −

2
m + 1

ScARQ (ℵ) S3 (ℵ) = 0, (29)

γ
d2S
dℵ2 + ScBF (ℵ)

dS
dℵ

+
Nt

Nb

d2Θ
dℵ2 +

2
m + 1

ScBRq (ℵ) S3 (ℵ) = 0, (30)

d2W
dη2 −

2
m + 1

ScmW (ℵ)
dF
dℵ

−
2

m + 1
ScmSg

dF
dℵ

+ ScmF (ℵ)
dW
dℵ

− PeW
d2Q
dℵ2

−Pe
dQ
dℵ

dW
dℵ

− Peג
d2Q
dℵ2 − PeSg

d2Q
dℵ2 = 0, (31)

The boundary conditions become

F (ℵ) = I
1 − m
1 + m

,
dF
dℵ

= 1, Θ (ℵ) = 1 − St,
1
J

dQ
dℵ

= Q (ℵ)

γ

J
dS
dℵ

= − Q (ℵ ) , W (ℵ) = 1 − Sg at ℵ = 0, (32)

dF
dℵ

→ 0, Θ (ℵ) → 0, Q (ℵ) → 1, S (ℵ) → 0, W (ℵ) → 0 as ℵ → ∞. (33)

Through the usage of the similarity variables in Eqs. (17), Eqs. (18) can be non-dimensionalized to
obtain

Re
1
2
x C f=

[
[(1 + (ξ − ξΘ)) + ς]

d2F
dℵ2 − ξ

dF
dℵ

dΘ
dℵ

− ςH d2F
dℵ2

d2F
dℵ2

d2F
dℵ2

]
ℵ=0

,

Re−
1
2

x Nux = −
dΘ
dℵ

∣∣∣∣
ℵ=0

, (34)

where Rex is the local Reynolds number.

Erying-Powell fluid parameters are ς = 1
β jCµ , H =

U3
0 (x+b)3m−1

2C2ϑ
, temperature-dependent vis-

cous parameter ξ = ϖ(Tw − T0), magnetic parameter σBo
2

ρU0
(x + b)−m+1, temperature-dependent

thermal conductivity parameter ε = δ(Tw − T0), thermophoresis parameter Nt =
τ(Tw−T0)

α
DT
T∞ ,

Brownian motion parameter Nb =
τDAδ

α , thermal stratification St =
m2
m1

, space-dependent internal

heat source parameter ζ = Qo
ρCpc(x+b)m−1 , n is the intensity of internal heat generation parameter,

Schmidt number for reactant A ScA=
ϑ

DA
, Schmidt number for reactant B ScB = ϑ

DB
, homogeneous

reaction parameter R = khδ3

U0(x+b)m−1 , Porosity parameter Ps =
ϑ

kUo
(x + b)1−m, local Forchheimer pa-
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rameter Fs =
b∗

(x+b) , local Darcy parameter Da =
k

(x+b)2 , Gyrotactic microorganisms concentration

difference parameter ג = No
Nw−N0

, Schmidt number for diffusing motile microorganisms Scm = ϑ
Dn

,

Peclet number Pe = bWc
Dn´λ , gyrotactic microorganisms density stratification parameter Sg = m4

m3
,

heterogeneous reaction parameter J = ks

DA

√
U0(m+1)

2ϑ (x+b)
m−1

2
, ratio of diffusion coefficient γ = DA

DB
.
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Figure 2. Flow chart of the problem

3 Numerical solution: procedure of the shooting technique

The procedure for obtaining the numerical solutions with the aid of RK− 4 alongside with shooting
technique is expressed in Fig. 2. To be able to carry out the operation of the shooting technique, the
system of dimensionless Eqs. (27)-(31) is reduced to the following system of first-order ordinary
differential equations;

F = y1,

dF
dℵ

= y2,
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d2F
dℵ2 = y3,

d3 f
dℵ3 = y ′

3 =
ξy3y5 +

2m
m+1 y2y2 − y1y3 +

2
m+1 My2 +

2
m+1 Ps [1 + ( 1 − y4) ξ] y2 +

2
m+1 FsD−1

a y2y2(
[1 + (1 − y4) ξ] + ς − ςH (m+1)

2 y3y3

) ,

Θ = y4,

dΘ
dℵ

= y5,

d2Θ
dℵ2 = y ′

5 =

(
2

m+1 Pry4y2 +
2

m+1 StPry2 − Pry1y5 − εy5y5 − PrNby5y7 − PrNty5y5 −
2

m+1 ζPre−nℵ
)

[1 + y4ε]

Q = y6,

dQ
dℵ

= y7,

d2Q
dℵ

= y ′
7

=
Nt

Nb


(

2
m+1 Pry4y2 +

2
m+1 StPry2 − Pry1y5 − εy5y5 − PrNby5y7 − PrNty5y5 −

2
m+1 ζPre−nℵ

)
[1 + y4ε]


−ScAy1y7 +

2
m + 1

ScARy6y8y8y8,

S = y8,

dS
dℵ

= y9,

d2S
dℵ

= y ′
9 =

(
Nt
Nb

dy5
dη − ScBy1y9 −

2
m+1 ScBRy6y8y8y8

)
γ

W = y10,
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dW
dℵ

= y11,

d2W
dℵ2 = y ′

11 =
2

m + 1
Scmy10y2 +

2
m + 1

ScmSgy2 − Scmy1y11

+
dy7

dη

(
Pey10 + PeSg + Peג

)
+ Pey7y11, (35)

Subject to boundary conditions:

y1 (0) = I
1 − m
1 + m

, y2 (0) = 1, y4 (0) = 1 − St,

1
J y7 (0) = y6 (0) ,

γ

J y9 (0) = − y6 (0) , y10 (0) = 1 − Sg at ℵ = 0, (36)

y2 (0) → 0, y4(0) → 0, y6(0) → 1, y8(0) → 0, y10(0) → 0 as ℵ → ∞.

Initial approximations were selected and Eqs. (35) and (36) are integrated numerically as an
initial value problem with the tolerance level of 10−6 and the boundary condition at a finite point
considered as ℵ = 6.

4 Analysis of results and discussion

The values of pertinent parameters have been carefully selected during the process of computations
as ς = H = 0.1, m = 0.75, I = 0.25, St = Sg = 0.1, Ps = Fs = Da = 0.3, Pr = 1.0, Pe = 1.0 so as
to be able to properly observe the impacts on fluid flow within the boundary layer. Table 1 depicts
the numerical values of physical quantities of engineering interest expressed in Eq. (34). Likewise,
Table 2 shows the validation of results with two different techniques. It is noticed that there is
reasonable agreement with both shooting technique and Bvp4c. The effect of Darcy-Forchheimer

Table 1. Variation in local skin friction coefficients, local heat transfer rate with various parameters when
m = 0.25, ς = H = 0.1, I = 0.25, St = Sg = 0.1, Pe = 1.0, ζ = 0.4, Le = 0.1, γ = 1.0, R = 0.2,J = 0.1

Fs Da ξ ε M Pr Nt Nb C f Re1/2
x Nux Re−

1
2

x

0.1 0.1 0.3 0.4 0.5 1.0 0.1 0.1 −3.68398 −0.335823
0.3 −4.89971 −0.060089

0.4 −3.501747 −0.382399
0.6 −3.30933 −0.433187

0.4 −3.30171 −0.438490
0.7 −3.280692 −0.454088

0.5 −3.279882 −0.430422
0.8 −3.278111 −0.374863

0.6 −3.385541 −0.321764
1.0 −3.785906 −0.143243

1.2 −3.778422 −0.146725
2.0 −3.754425 −0.187570

0.3 −3.733414 −0.067809
0.6 −3.686839 0.214499

0.2 −3.714673 0.051744
0.5 −3.778341 −0.298297
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Table 2. Validation of results and variations in Nux Re−
1
2

x when
m = 0.25, ς = H = 0.1,I = 0.25, St = Sg = 0.1, Pr = 2.0, Pe = 1.0, Nt = 0.1,
ξ = ε = 0.3, ζ = 0.4, Le = 0.1, γ = 1.0, R = 0.2,J = 0.1, Ps = Fs = Da = 0.3

M Nux Re−
1
2

x
(Shooting Technique)

Nux Re−
1
2

x
(Bvp4c)

0.1 −1.097833 −1.097831
0.4 −0.732341 −0.732340
0.5 −0.399743 −0.399742
0.7 −0.102830 −0.102829

parameter (Fs, Da) is revealed in Figs. 3(a) and 3(b), it is revealed in Fig. 3(a) that incremental
values of Fs, Da cause a slight decline in the velocity distribution while an enhancement is noticed
in the temperature distribution in Fig. 3(b).
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Figure 3. The changes in the (a) contribution of Fs, Da on velocity distribution and (b) contribution of Fs, Da on
temperature distribution
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Figure 4. The changes in the (a) contribution of I on concentration distribution of homogeneous bulk fluid and
(b) contribution of I on concentration distribution of heterogeneous catalysts at the surface
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It is observed in Fig. 4(a) that there is a diminution in the concentration distribution of homoge-
neous bulk fluid with increased thickness parameter I, while in Fig. 4(b) augmentation in the
concentration distribution of heterogeneous catalyst at the surface is noticed as thickness param-
eter increases. In Figs. 5(a) and 5(b) incremental values of space-based internal heat generation
parameter ζ correspond to augmentation of both the temperature distribution and concentration
distribution of heterogeneous catalyst at the surface, respectively. Physically, this observation is
due to the fact that there is a provision of sufficient heat energy required to break down the strong
intermolecular bond binding the molecules of the particles of the fluid together which permits the
free flow of the fluid over the upper horizontal surface of a paraboloid of revolution.
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Figure 5. The changes in the (a) contribution of ζ on temperature distribution and (b) contribution of ζ on
concentration distribution of heterogeneous catalysts at the surface

The impact of the thermal stratification parameter St is observed in Figs. 6(a),6(b),7(a). In Fig. 6(a),
it is observed that incremental values of St lead to a diminution of the temperature distribution,
while an enhancement in the concentration of reactant is noticed in Fig. 6(b).
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Figure 6. The changes in the (a) contribution of St on temperature distribution and (b) contribution of St on
concentration distribution of homogeneous bulk fluid
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It is visualized in Fig. 7(a) that increasing St corresponds to a decline in the bioconvection dis-
tribution, while a different behaviour is noticed in Fig. 7(b) in the sense that, as Sg is raised,
the bioconvection distribution diminishes within the domain 0 ≤ ℵ ≤ 2.4 and thereafter, an
augmentation is noticed within the domain 2.4≤ ℵ ≤ 6.0.
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Figure 7. The changes in the (a) contribution of St bioconvection distribution and (b) contribution of Sg
bioconvection distribution

The influence of material parameter ς is reflected in Figs. 8-10 when St = Sg = 0.1 (that is, at
the hypolimnion layer of stratification). It is observed in Fig. 8(a) that the velocity of the fluid
is enhanced as it flows over the upper horizontal surface of the paraboloid of revolution. The
observed trend is due to the fact that ς = 1

β jCµ means if ς increases, automatically the viscosity
of the Erying-Powell fluid is subsided, thereby boosting the motion of the fluid across the upper
horizontal surface of the paraboloid of revolution. An opposite effect is noticed in temperature
distribution in Fig. 8(b) as ς increases.
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Figure 8. The changes in the (a) contribution of ς on velocity distribution and (b) contribution of ς on
temperature distribution
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Fig. 9(a) unravels the contribution of ς on the concentration of reactant A that is also known as the
homogeneous bulk fluid. It is deduced that the magnitude of ς leads to a significant enhancement
of the concentration of reactant A at the initial stage of the stratification, meanwhile, with the same
magnitude of ς large diminution is noticed in the concentration of reactant B and bioconvection
distribution.
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Figure 9. The changes in the (a) contribution of ς on concentration distribution of homogeneous bulk fluid and
(b) contribution of ς on concentration distribution of heterogeneous catalyst at the surface
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Figure 10. Contribution of ς on bioconvection distribution

The variations in profiles of concentration of reactant A and concentration of reactant B with
increasing values of homogeneous reaction material R are computed in Figs. 11(a) and 11(b) when
St = Sg = 0.1. It is discovered that an increase in the magnitude of R produces a significant
increase in the concentration of reactant A and a slight elevation is deduced in the concentration
of reactant B at the hypolimnion stratified layer of the upper horizontal surface of the paraboloid
of revolution.
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Figure 11. The changes in the (a) Contribution of R on concentration distribution of homogeneous bulk fluid
and (b) contribution of R on concentration distribution of heterogeneous catalysts at the surface

Figs. 12(a) and 12(b) delineates impact of heterogeneous reaction parameter J on profiles of
concentration of reactant A and concentration of reactant B when St = Sg = 0.1 and R = 1.0. It is
seen from the Fig. 12(a) that concentration of reactant A is an increasing function of J while in
Fig. 12(b) it is noticed that the concentration of reactant B is a decreasing function of J .
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Figure 12. The changes in the (a) contribution of J on concentration distribution of homogeneous bulk fluid and
(b) contribution of J on concentration distribution of heterogeneous catalysts at the surface

The impact of the bioconvection Schmidt number Scm is plotted in Fig. 13 when St = Sg = 0.1 and
ג = 2.0. It is seen that the bioconvection distribution exhibits decelerating characteristics within
the domain 0 ≤ ℵ ≤ 2.4 and further shows a diminution within the domain 2.8 ≤ ℵ ≤ 6.0 of the
upper horizontal surface of a paraboloid of revolution when Scm is raised. Physically, the observed
development is attributable to the fact that the bioconvection Schmidt number Scm corresponds to
the ratio of momentum diffusivity to the diffusivity of microorganisms. It is worth noting that,
raising Scm correlates to a decrease in microorganisms’ diffusion, which reduces both the density
and the thickness of the boundary layer for motile microorganisms.
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Figure 13. Contribution of Scm on bioconvection distribution
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Figure 14. The changes in the (a) contribution of m on velocity distribution and (b) contribution of m on
temperature distribution
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Figure 15. The changes in the (a) contribution of m on concentration distribution of homogeneous bulk fluid and
(b) contribution of m on concentration distribution of heterogeneous catalysts at the surface
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The effect of the velocity index parameter m is revealed in Figs. 14-15 when St = Sg = 0.5.
It is noticed in Fig. 14(a) that incremental values of m lead to augmentation of the velocity
distribution while a decline in the temperature distribution is noticed in Fig. 14(b). In Fig. 15(a)-
15(b) it is obvious that the concentration of homogeneous (bulk fluid) and concentration of
heterogeneous (catalyst at the surface) are increasing and decreasing functions of m respectively.
Figs. 16(a)-17(a) are plotted to view the variations in the concentration of homogeneous (bulk
fluid), concentration of heterogeneous (catalyst at the surface), and bioconvection distribution
with rising values of thermophoretic parameter Nt(Nt = 0.1, 0.2, 0.3, 0.4). In Fig. 16(a), it is
envisioned that within the domain 0 ≤ ℵ ≤ 2.7 a diminution is noticed in the concentration
of homogeneous (bulk fluid) for larger values of Nt and thereafter an enhancement is observed
for 2.8 ≤ ℵ ≤ 6.0. While in Fig. 16(b) a quite different behaviour is envisioned in the aspect of
concentration of homogenous catalyst at the surface in the sense that, as Nt is raised, there is a
substantial enhancement within the domain 0 ≤ ℵ ≤ 2.7 of the concentration of heterogeneous
catalyst at the surface and decline is later noticed when 2.8 ≤ ℵ ≤ 6.0. Physically, the apparent
trend results from the abrupt movement of heated particles from a location of high heat energy to
a region of low heat energy in thermophoresis. In reality, thermophoresis may be witnessed in a
heated fluorescent bulb, where heated particles tend to move to a location with a lower temperature
gradient. In Fig. 17(a) it is observed that incremental values of Nt lead to an enhancement of the
bioconvection distribution. Figs. 17(b)-18 present the influence of Brownian motion parameter
Nb on the concentration of homogeneous bulk fluid and concentration of heterogeneous catalyst
at the surface, respectively. In Fig. 17(b) it is observed that there is an obvious augmentation in
the concentration of homogeneous bulk fluid with an increment in Nb(Nb = 0.1, 0.2, 0.3, 0.4).
Physically, these characteristics result from the collision of particles caused by the random motion
of nanoparticles within the wall of the upper horizontal surface of the paraboloid of rotation. As a
result of this development, kinetic energy is converted into thermal energy, resulting in improved
behavior of homogenous concentrations (bulk fluid). In Fig. 18, a decline effect is noticed in the
concentration of heterogeneous catalyst at the surface when Nb is raised, thereafter within the
domain 3.4 ≤ ℵ ≤ 6.0 a slight augmentation is noticed towards the freestream.
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Figure 16. The changes in the (a) contribution of Nt on concentration distribution of homogeneous bulk fluid
and (b) contribution of Nt on concentration distribution of heterogeneous catalysts at the surface



Shah et al. | 93

0 1 2 3 4 5 6
-0.5

0

0.5

1

����

�

�� � �� � 0.�
�� � 0.1, 0.2, 0.3, 04

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1
����

�

�� � �� � 0.�

	� � 0.1, 0.2, 0.3, 04

(a) (b)

Figure 17. The changes in the (a) contribution of Nt on bioconvection distribution and (b) contribution of Nb on
concentration distribution of homogeneous bulk fluid
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Figure 18. The changes in the contribution of Nb on concentration distribution of heterogeneous catalysts at the
surface

Figs. 19-20 are prepared to demonstrate the significance of Prandtl number Pr when St = Sg = 0.1.
In Fig. 19(a), increasing values of Pr(Pr = 0.1, 0.7, 1.5, 2.0) cause the diminution of temperature
distribution. It is physically justifiable since the Prandtl number represents the connection between
a fluid’s momentum transfer and thermal transport capacity.
In other words, Prandtl number Pr =

ϑ
α = µ

ρ
k

ρCp

reveals the relationship between kinematic viscosity

and thermal diffusivity of the fluid. Therefore as Pr increases the viscosity of the Erying-Powel
fluid magnifies leading to declining in the temperature of the fluid as it flows along the upper
horizontal surface of a paraboloid of revolution. The impact of Pr on Q(ℵ) is manifested in
Fig. 19(b). It is observed that an increment in Pr corresponds to the decline in the concentration
of homogeneous bulk fluid. In Fig. 20(a), an increase in Pr leads to the enhancement of the
concentration of heterogeneous catalyst at the surface. Likewise, from Fig. 20(b) it is observed that
the concentration of bioconvection lifts up as Pr is raised.
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Figure 19. The changes in the (a) contribution of Pr on temperature distribution and (b) contribution of Pr on
concentration distribution of homogeneous bulk fluid
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Figure 20. The changes in the (a) contribution of Pr on concentration distribution of heterogeneous catalysts at
the surface and (b) contribution of Pr on bioconvection distribution

Figs. 21(a)-21(b) demonstrate the behavior of temperature-dependent viscous parameter ξ and
temperature-dependent thermal conductivity parameter on velocity and temperature distributions,
respectively. In Fig. 21(a), it revealed that the velocity distribution is enhanced with higher ξ,
likewise with elevation in ε as seen in Fig. 21(b), there is a well-pronounced augmentation in
the temperature distribution. Physically, this observation is a result of the fact that increasing
thermal conductivity causes the kinetic energy of the fluid particles to increase, thus enhancing
the temperature of the fluid. Figs. 22(a) and 22(b) present the effect of Prandtl number Pr on skin

friction coefficient C fx(Rex)
1
2 and Nusselt number Nux(Rex)

− 1
2 , respectively. It is envisioned

that both C fx(Rex)
1
2 and Nux(Rex)

− 1
2 encumber with increasing Pr.
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Figure 21. (a) Contribution of ξ on velocity distribution and (b) contribution of ε on temperature distribution
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Figure 22. The changes in the (a) contribution of Pr on on coefficient of skin friction and (b) contribution of Pr on
Nusselt number

5 Conclusions

The use of catalytic reactions in industry and real-life applications offers numerous economic
advantages which include improved process efficiency, reduced energy consumption, and reduced
waste production making it a critical tool for achieving sustainable and cost-effective chemical
production. The motion of air across the pointed surface of an aircraft or over the bonnet of
a car is highly important to scientists. Geometrically, the motion of fluid over this particular
domain is termed the upper horizontal surface of a paraboloid of revolution. Simulation has
been carried out for the boundary layer flow of Erying-Powell fluid transporting nanoparticles
in the presence of stratifications and varying fluid characteristics across a surface with variable
thickness. Thermal stratification, microorganisms stratification, and variable fluid properties
have been appropriately modeled. When material parameters are increased, it is concluded that
the viscosity of fluid subsides at the lowest layer of stratification, and the motion of Erying-
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Powel increases across the upper horizontal surface of the paraboloid of revolution. Increasing
the magnitude of Darcy-Forchheimer parameters corresponds to the diminution of velocity
distribution and augmentation of temperature distribution. An improvement in bioconvection
distribution is shown as the thermophoretic parameter is elevated. With increasing Brownian
motion parameters, the homogeneous bulk fluid displays substantial augmentation. When the
temperature-dependent viscosity parameter and temperature-dependent thermal conductivity
parameter are raised, the fluid’s velocity and temperature are increased. Significant enhancement
is noticed in both temperature distribution and concentration distribution of heterogeneous
catalysts at the surface when heat generation is increased. It is therefore significant to state that
the major influence of these germane parameters would go a long way towards assisting scientists
in reaching efficiency in the course of production in industries.
The present work can be extended to hybrid nanofluids. The combined effect of nonlinear thermal
radiation and stratification can be properly incorporated which has many applications in the
industry.
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