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Gürbüz, Burcu
Johannes Gutenberg-University Mainz, Institute of

Mathematics, Germany

Hammouch, Zakia
ENS Moulay Ismail University Morocco;
Thu Dau Mot University Vietnam and China Medical
University, Taiwan

Hristov, Jordan
University of Chemical Technology and Metallurgy

Bulgaria

Ibadula, Denis
Ovidius University of Constanta
Romania

Jafari, Hossein
University of Mazandaran, Iran;

University of South Africa, South Africa

Jajarmi, Amin
University of Bojnord
Iran

Jain, Shilpi
Poornima College of Engineering, Jaipur

India

Kaabar, Mohammed K.A.
Washington State University
USA

Kumar, Devendra
University of Rajasthan

India

Kumar, Sunil
National Institute of Technology
India

Lupulescu, Vasile
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Abstract

The current paper investigates a newly developed model for Hepatitis-B infection in sense of the Atangana-Baleanu Caputo (ABC)
fractional-order derivative. The proposed technique classiőes the population into őve distinct categories, such as susceptible, acute
infections, chronic infections, vaccinated, and immunized. We obtain the Ulam-Hyers type stability and a qualitative study of the
corresponding solution by applying a well-known principle of őxed point theory. Furthermore, we establish the deterministic
stability of the proposedmodel. For the approximation of the ABC fractional derivative, we use a newly proposed numerical method.
The obtained results are numerically veriőed byMATLAB 2020a.

Key words: Fractional calculus; fractional-order model; hepatitis-B disease; ABC derivative; őxed-point theorem; numerical
simulation

AMS 2020 Classiőcation: 34A08; 34D20; 34K60; 92C50; 92D30

1 Introduction

Many pandemics and endemics around the world are őrst explored using amathematical model based on data from various hospitals. These
models explain the human disease origin, current development, and forecast. Mathematical formulations can then be used by researchers
and scholars to discover the treatment or cure. The treatmentmay come in the form of precaution or vaccination for affected individuals of a
certain population. Thus, vaccinations against several diseases such as pertussis, measles, polio, Hepatitis-B and inŕuenza have been given
and have led to healthy recovery, as mentioned in [1, 2, 3, 4, 5, 6]. Numerousmathematical models for various diseases have been developed
recently, including stochastic, deterministic, and difference equation systems with several vaccination parameters for diagnosed infections,
as seen in [5]. Among the most serious diseases is Hepatitis-B, which is transmitted by infected individuals. More than one million people
have died worldwide due to this outbreak. [7, 8] shows that around 200million individuals were infected by the pandemic and that three
and a half billion people were in a chronic condition. A combination of long-term planning and frequent vaccinations can reduce the spread
of the disease in the population in the case of a major epidemic [8]. Strong immunization and dose for the infected persons will rapidly
decrease the cases of HBV. To investigate the qualitative analysis Hepatitis-B disease, we consider [9] model as below:

➤ Received: 22.03.2022 ➤ Revised: 11.05.2022 ➤ Accepted: 24.05.2022 ➤ Published: 29.05.2022
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Ώ(σ) = ΠΛ ś
γΩ(σ)J a(σ)

N
+ λH(σ) ś (δ + µ)Ω(σ),

J́ a(σ) =
γΩ(σ)J a(σ)

N
ś (µ + α + κ)J a(σ),

J́ c(σ) = κJ
a(σ) ś (µ + ρ + η)J c(σ),

ℜ́(σ) = αJ
a(σ) + ηJ

c(σ) ś µℜ(σ),

H́(σ) = Λ(1 śΠ) + δΩ(σ) ś (λ + µ)H(σ),

(1)

where the parameters and variables in the above equation are listed below:

• vaccinated cases, susceptible population, acute infection cases, chronic carriers cases and immunized cases have been represented by
H(σ),Ω(σ), J a(σ), J c(σ) andℜ(σ) respectively.

• Λ: Recruitment/Birth rate.
• λ: Waning vaccine-induced immunity.
• µ: Natural death rate.
• ρ: The HBV death rate.
• γ: Contact rate among infected and non-infected individuals.
• α: The rate of recovery for infected individuals.
• η: The rate of recovery of individuals infected chronically.
• κ: The rate at which acute cases are transformed into chronic cases.
• Π: Ratio of new-borns who have not received proper immunization.
• δ: Hepatitis immunization rate.

Riemann-Liouville, Euler, and Fourier made signiőcant contributions to the development of ordinary calculus in the 18th century. At the
time,many authorsmade signiőcant contributions to the őeld of fractional calculus (FC), see [10, 11, 12]. This is due to the fact that ordinary
calculus lacks the applications of modern calculus in manymathematical modeling domains, such as the process of memory and hereditary
data. FC, as a general form of integer order calculus, has signiőcantly larger freedom in their derivative than is found in integer-order
derivative due to its local behavior. Several applications of FC are discussed in [13, 14, 15, 16, 17, 18, 19, 20, 21]. Researchers and scientists
have becomemore interested in analyzing non-integer order (FO) of differential and integral calculus because of its applications. Non-local
and non-singular concepts were introduced in FC articles, replacing singular and local kernels with these new concepts. The most useful
feature of this newly developed kernel is its memory property combined with the system’s hereditary. Atangana, Baleanu, and Caputo
(ABC) [13] proposed a novel FO operator, in 2016, depending on the general non-local and non-singular kernel of Mittag-Lefŕer (ML)
mapping. As seen in [22, 23, 24, 25, 26], the ABC order fractional order operator has been used in manymathematical schemes describing
different physical problems. More speciőcally, this generalized ML function is a precise tool to deal with real word problems.
Scientists and researchers across a wide range of őelds are working to stop or slow down the spread of these diseases, as evidenced by these
references [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Many authors have investigated various models for a number
of diseases; for a detailed study see [45, 46, 47, 48, 49, 50]. Epidemic models by the researcher are widely used nowadays to investigate
the dynamic spreading of disease and to follow the efőcient method for its controlling. Ordinary differential equation with integer-order
derivative could be generalized to the fractional-order larger degree freedom derivative of fractional order. Also FO differential equations
with 0 < ℘ ≤ 1 have been studied in [26]. Generally, biological models and FDEs are theoretically related to memory-based systems
[23, 25, 50]. Furthermore, the history factor is a major source of disease transmission. In the coming days, the development of totality and
historical effects on existing levels will be a source of transmission. Heterogeneity and historical effect show the spread of the previous
infections. Thus, the mentioned properties can be examined via fractional derivatives, as well as their effect on disease transmission
[39, 50].
The purpose of this work is to investigate the dynamic behavior of the fractional HBV epidemic model’s solutions (2). We established the
stability and equilibria analysis for the given system based on the diseases free equilibrium point. We additionally addressed some basic
principles and gave theoretical solutions. Furthermore, we simulate the unknown quantities to verify and explain the fractional order
mathematical model. We note from the existing research that limited study has been done on non-integer order epidemicmodels using ABC
derivatives. There has not been enough research done on the ML kernel-based arbitrary order HBV vaccinated model. Thus, the primary
motivation for this study is to develop a HBV FO-vaccinated system. Under the ABC derivative with℘ ∈ (0, 1] we reexamine the HBVmodel
(1) in the following fractional form























































ABCD℘Ω(σ) = ΠΛ ś
℘Ω(σ)J a(σ)

N
+ λH(σ) ś (δ + µ)Ω(σ),

ABCD℘J a(σ) =
℘Ω(σ)J a(σ)

N
ś (µ + α + κ)J a(σ),

ABCD℘J c(σ) = κJ
a(σ) ś (µ + ρ + η)J c(σ),

ABCD℘ℜ(σ) = αJ
a(σ) + ηJ

c(σ) ś µℜ(σ),

ABCD℘H(σ) = Λ (1 śΠ) + δΩ(σ) ś (λ + µ)H(σ).

(2)

with the initial conditions

S(0) ≥ 0, J
a(0) ≥ 0, J

c(0) ≥ 0, ℜ(0) ≥ 0, H(0) ≥ 0. (3)

Our remaining paper has the following arrangement as follows. In Section Fundamental we recall some basic results of fractional calculus.
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In this way, wemanage the remainder of the contents of the current examination as follows. During Section 2, essential deőnitions are
provided. The existence theory of model and stability is given in Section 3. Also, numerical methods to solve the considered problems are
given in Section 4. Indeed, numerical results of the proposed models under practising different values of fractional orders are supplied in
section Section 5. Finally, the conclusion of the current investigation can be observed in Section 6.

2 Preliminaries

In this section, we give some important deőnitions which we will use in the rest of the paper [23, 25, 26, 50].

Deőnition 1 Letξ(σ) be a function satisfyingξ(σ) ∈ ❍1[0,T] the❆❇❈ fractional derivative of order0 ≤ ℓ ≤ 1 and is deőned by

ABCD℘t (ξ(σ)) =
▼(℘)
1 ś ℘

∫ t

0
E℘

[

ś℘
1 ś ℘

(

t ś z
)℘] d

dz
ξ(z)dz, (4)

where▼(℘) = ℘
2ś℘ is the normalization constant,▼(0) =▼(1) = 1 andE℘ is theMittag-Lefŕer operator given by

E℘(y) =
∞∑

k=0

yk

Γ(℘k + 1)
.

Theorem 1 [51] The Atangana-Baleanu fractional differential equation

ABCD℘t ξ(σ) = f(σ)

has a unique solution in the form

ξ(σ) =
1 ś ℘

▼(℘)
f(σ) +

℘

▼(℘)Γ(℘)

∫σ

0
f(ϑ)(σ ś s)℘ś1dϑ. (5)

Deőnition 2 [52] Let

{ABCD℘0ξ(σ) = f(t,ξ(σ)),

ξ(0) = ξ0

is a non-linear fractional ordinary differential equation. The new formula for the numerical scheme of the ABC fractional derivative can bewritten

as

ξm+1 = ξ0 +
1 ś ℘

▼(℘)
f(ξ(tm), tm) +

℘

▼(℘)

m∑

n=0

{

h℘f(ξn, tn)
Γ(℘ + 2)

[(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)] ś
h℘f(ξs, ts)
Γ(℘ + 2)

[(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)] + E℘m

}

,

(6)

where E℘m is given by

E℘m =
℘

▼(℘)Γ(℘)

m∑

k=0

∫ tnś1

tn

(y ś tn)(y ś σnś1)
2

∂2

∂y2
[f(ξ(y), y)]y=λy (σm+1 ś y)

℘ś1dy. (7)

Theorem 2 Let B be a convex subset of Z and suppose that the two operatorsΥ1, Υ2 with

(1).Υ1u +Υ2u ∈ B for each u ∈ B.

(2).Υ1 is "contraction".

(3). A continuous and compact set isΥ2.

satisfying the operator equationΥ1u +Υ2u = u, has one ormore solution(s).

3 Existence theory of model (2)

In this part, we established the existence and uniqueness of the solution for the proposed system (2). We őnd the solution and stability of
the proposed model under ABC derivative with FO using Banach őxed point principles. We rearrange the proposedmodel in the following
way



















































ℵ1(σ,Ω,J
a,J c,H,ℜ) = ΠΛ ś

℘Ω(σ)J a(σ)
N

+ λH(σ) ś (δ + µ)Ω(σ),

ℵ2(σ,Ω,J
a,J c,H,ℜ) =

℘Ω(σ)J a(σ)
N

ś (µ + α + κ)J a(σ),

ℵ3(σ,Ω,J
a,J c,H,ℜ) = κJ

a(σ) ś (µ + ρ + η)J c(σ),

ℵ4(σ,Ω,J
a,J c,H,ℜ) = αJ

a(σ) + ηJ
c(σ) ś µℜ(σ),

ℵ5(σ,Ω,J
a,J c,H,ℜ) = Λ (1 śΠ) + δΩ(σ) ś (λ + µ)H(σ).

(8)
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For 0 < ℘ ≤ 1, using (8) we write the proposed model in the following form

ABCD℘+0H(σ) = ℵ(σ, v(σ)),

v(0) = v0.
(9)

By Theorem 1, the system (9) becomes

v(σ) = v0(σ) +
[

ℵ((σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v(ϑ))dϑ, (10)

where

v(σ) =







































Ω(σ)

J
a(σ)

J
c(σ)

ℜ(σ)

H(σ)

, v0(σ) =







































Ω0

J
a
0

J
c
0

ℜ0

H0

,ℵ(σ, v(σ)) =







































ℵ1(σ,Ω,J
a,J c,H,ℜ)

ℵ2(σ,Ω,J
a,J c,H,ℜ)

ℵ3(σ,Ω,J
a,J c,H,ℜ)

ℵ4(σ,Ω,J
a,J c,H,ℜ)

ℵ5(σ,Ω,J
a,J c,H,ℜ)

,ℵ0(σ)







































ℵ1(0,Ω0,J
a
0 ,J

c
0,H0,ℜ0)

ℵ2(0,Ω0,J
a
0 ,J

c
0,H0,ℜ0)

ℵ3(0,Ω0,J
a
0 ,J

c
0,H0,ℜ0)

ℵ4(0,Ω0,J
a
0 ,J

c
0,H0,ℜ0)

ℵ5(0,Ω0,J
a
0 ,J

c
0,H0,ℜ0)

. (11)

Using (10) and (11), deőne two operatorsΥ1 andΥ2, using (10)

Υ1u = v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
,

Υ2u =
℘

M(℘)Γ(℘)

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v(ϑ))dϑ.

(12)

Next, we have to determine the qualitative analysis for the proposed model by using őxed point principle.
(L1) there exist some constants ϵ1 and ϵ2,

|ℵ(σ, v(σ))| ≤ ϵ1|v(σ)| + ϵ2.

(L2) there exists a positive constant Kp, for each u, u1 ∈ X,

|ℵ(σ, v(σ)) śℵ(σ, v1(σ))| ≤ Kp∥u ś u1∥.

Theorem 3 The system (10) has at least one solution, if (L1) and (L2) hold, then the proposed system (2) also has a unique solution if

(1 ś ℘)Kp
M(℘)

< 1.

Proof First we have to show thatΥ1 is contraction by using Banach contraction principle. Let u1 ∈ B, : B = {u ∈ Z : ||u|| ≤ r, r > 0} be a
closed convex set. From the operatorΥ1 deőned in (12), we have

∥Υ1u śΥ1u1∥ =
(1 ś ℘)
M(℘)

max
σ∈[0,T]

∣

∣

∣

∣

ℵ(σ, v(σ)) śℵ(σ, v1(σ))
∣

∣

∣

∣

,

≤
(1 ś ℘)p
M(℘)

∥u ś u1∥.

(13)

Hence, the operatorΥ1 is closed and therefore contraction.
Next, we have to show that the operatorΥ2 is compact, continuous and bounded. Also, obviously the operatorΥ2 is deőned on all domains,
soℵ is continuous. Let u ∈ B, we have

|Υ2(u)| = max
σ∈[0,T]

℘

M(℘)Γ(℘)

∣

∣

∣

∣

∣

∣

∣

∣

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v(ϑ))dϑ

∣

∣

∣

∣

∣

∣

∣

∣

,

≤
℘

M(℘)Γ(℘)

∫σ

0
(σ ś s)℘ś1|ℵ(ϑ, v(ϑ))|dϑ,

≤
T℘

M(℘)Γ(℘)
[ϵ1r + ϵ2].

(14)

So by (14) the operatorΥ2 is bounded. For equi-continuous, σ1 > σ2 ∈ [0,T], such that

|Υ2v(σ1) śΥ2v(σ2)| =
℘

M(℘)℘(℘)

∣

∣

∣

∣

∫σ1

0
(σ1 ś s)

℘ś1
ℵ(y), v(y)dϑ ś

∫σ2

0
(σ2 ś s)

℘ś1
ℵ(ϑ, v(ϑ))dϑ

∣

∣

∣

∣

,

≤
[ϵ1r + ϵ2]
M(℘)Γ(℘)

[σ℘
1 ś σ

℘
2 ].

(15)
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As σ1 → σ2, R.H.S of (15) tends to 0. Also, by continuous operatorΥ2 we have

|Υ2v(σ1) śΥ2v(σ2)|→ 0, as σ1 → σ2.

Hence we proved thatΥ2 is continuous and bounded. SoΥ2 is also uniformly continuous. Using "Arzela
′

-Ascoli theorem", we have thatΥ2
is relatively compact and therefore completely continuous. By (3) and (10) it is easy to obtain that the system has at least one solution.

Uniqueness of the solution

Theorem 4 Assume (L2) and the integral form (10) has a unique solution. Then the system (2) has also a unique solution if

[

(1 ś ℘)Kp
M(℘)

+
T℘Kp

M(℘)Γ(℘)

]

< 1.

Proof Let the operator T : Z → Z be deőned by

T v(σ) = v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v(ϑ))dϑ, σ ∈ [0,T]. (16)

and u, u1 ∈ Z, then

||T u ś T u1|| ≤
(1 ś ℘)
M(℘)

max
σ∈[0,T]

∣

∣

∣

∣

ℵ(σ, v(σ)) śℵ(σ, v1(σ))
∣

∣

∣

∣

,

+
℘

M(℘)Γ(℘)
max

σ∈[0,T]

∣

∣

∣

∣

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v(ϑ))dϑ ś

∫σ

0
(σ ś s)℘ś1ℵ(ϑ, v1(ϑ))dϑ

∣

∣

∣

∣

,

≤

[

(1 ś ℘)Kp
M(℘)

+
℘T℘Kp
M(℘)Γ(℘)

]

||u ś u1||,

≤ Θ||u ś u1||,

(17)

where

Θ =
[

(1 ś ℘)Kp
M(℘)

+
T℘Kp

M(℘)Γ(℘)

]

. (18)

By (17), the operator T is contraction. Therefore, the equation (10) has a unique solution. Consequently, the proposed system (2) has also a
unique solution.

Ulam-Hyers stability

Next, we obtain the stability of the proposed system, consider small changeφ ∈ C[0,T] satisfying 0 = ℘(0) , we have
(1) |φ(σ)| ≤ ξ, for ξ > 0
(2) ABCD℘+0(v(σ)) = ℵ(σ, v(σ)) +φ(σ),for all σ ∈ [0,T].

Lemma 1 The solution to the changed problem can be expressed by

{ABC
0 D℘+0v(σ) = ℵ(σ, v(σ)) +φ(σ),

v(0) = v0,
(19)

satisfying

∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)∣

∣

∣

∣

≤ ℘T,℘ξ, (20)

where

℘T,℘ =
Γ(℘)(1 ś ℘) + T℘

M(℘)Γ(℘)
.

Proof The proof is obvious, therefore the details are omitted.

Theorem 5 Consider (L2) togetherwith equation (20), the solution of equation (10) is UH stable and hence, the analytical solution for the proposed
system is UH stable forΘ < 1.
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Proof Let u1 ∈ Z be a unique solution and u ∈ Z be any solution of equation (10), we have

|v(σ) ś v1(σ)| =
∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v1(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v1(ϑ))dϑ

)∣

∣

∣

∣

,

≤

∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)∣

∣

∣

∣

+
∣

∣

∣

∣

(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)

ś
(

v0(σ) +
[

ℵ(σ, v1(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v1(ϑ))dϑ

)∣

∣

∣

∣

,

≤ ξ℘T,℘ +
(1 ś ℘)Kp
M(℘)

||u ś u1|| +
℘T℘Kp
M(℘)Γ(℘)

||u ś u1||

≤ ξ℘T,℘ +Θ||u ś u1||.

(21)

From (21), we can write

||v ś v1|| ≤
ξ℘T,℘

1 śΘ
. (22)

From (22), we obtained that the solution of (10) is Ulam-Hyers stable and hence by consideringℵv(ξ) = ℘T,℘ξ,ℵv(0) = 0 the solution is
generalizedUlam-Hyers Stable. This proves that the solution of the consideredmodel is Ulam-Hyers stable and also generalizedUlam-Hyers
stable.

Nowwe postulate the assumptions given below
(1) |φ(σ)| ≤ ∇(σ)ξ, for ξ > 0
(2) ABCD℘+0(v(σ)) = ℵ(σ, v(σ)) +φ(σ), for all σ ∈ [0,T].

Lemma 2 The next equationwill satisfy (19)

∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)∣

∣

∣

∣

≤ ∇(σ)ξ℘T,℘.
(23)

Proof The proof is obvious, therefore the details are omitted.

Theorem 6 By Lemma (2), the solution to the considered system is Ulam-Hyers-Rassias (UHR) stable and hence, the generalized UHR stable.

Proof Let u1 ∈ Z be a unique solution and u ∈ Z be a solution of (10), we have

|v(σ) ś v1(σ)| =
∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v1(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v1(ϑ))dϑ

)
∣

∣

∣

∣

,

≤

∣

∣

∣

∣

v(σ) ś
(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)∣

∣

∣

∣

+
∣

∣

∣

∣

(

v0(σ) +
[

ℵ(σ, v(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v(ϑ))dϑ

)

ś
(

v0(σ) +
[

ℵ(σ, v1(σ)) śℵ0(σ)
]

1 ś ℘

M(℘)
+

℘

M(℘)Γ(℘)

∫σ

0
(σ ś ϑ)℘ś1ℵ(ϑ, v1(ϑ))dϑ

)∣

∣

∣

∣

,

≤ ∇(σ)ξ℘T,℘ +
(1 ś ℘)Kp
M(℘)

||u ś u1|| +
℘T℘Kp
M(℘)Γ(℘)

||u ś u1||,

≤ ∇(σ)ξ℘T,℘ +Θ∥u ś u1∥.

(24)

From (24), we get

∥v ś v1∥ ≤
∇(σ)ξ℘T,℘
1 śΘ

. (25)

Therefore, the solution of (10) is stable.

4 Numerical solution of the proposedmodel

Numerous numerical techniques have been suggested for the approximation of the fractional derivative of Atangana-Baleanu in the sense
of Caputo. In [53, 54] Atangana and Owolabi proposed a new form of the Adams-Bashforth approach based on the Mittag-Lefŕer kernel
for the ABC fractional derivative approximation. The purpose of this section of the article is to demonstrate how to apply the numerical
technique described in [52], which has recently been proven for accuracy and reliability [55, 56] to solve any fractional differential equation.
The numerical technique for approximating ABC is deőned in (2). To learn more about this numerical approach in detail, we suggest our
readers to [52].
To determine the approximate solution to the given model, we use theorem (1) for each ofΩ(σ), J a(σ), J c(σ), Rv(σ), Vv(σ) of the system
(2) and obtain the following result:
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Ω(σ) = S(0) +
1 ś ℘

▼(℘)

[

ΠΛ ś
γΩ(σ)J a(σ)

N
+ λV(σ) ś (δ + µ)Ω(σ)

]

+
℘

▼(℘)Γ(℘

∫σ

0
(σ ś y)℘ś1

[

ΠΛ ś
γΩ(σ)J a(σ)

N
+ λV(σ) ś (δ + µ)Ω(σ)

]

dy,

J
a(σ) = J

a(0) +
1 ś ℘

▼(℘)

[

γΩ(σ)J a(σ)
N

ś (µ + α + κ)J a(σ)
]

+
℘

▼(℘)Γ(℘

∫σ

0
(σ ś y)℘ś1

[

℘Ω(σ)J a(σ)
N

ś (µ + α + κ)J a(σ)
]

dy,

J
c(σ) = J

c(0) +
1 ś ℘

▼(℘)

[

κJ
a(σ) ś (µ + ρ + η)J c(σ)

]

+
℘

▼(℘)Γ(℘

∫σ

0
(σ ś y)℘ś1

[

κJ
a(σ) ś (µ + ρ + η)J c(σ)

]

dy,

ℜ(σ) = ℜ(0) +
1 ś ℘

▼(℘)

[

αJ
a(σ) + ηJ

c(σ) ś µℜ(σ)
]

+
℘

▼(℘)Γ(℘

∫σ

0
(σ ś y)℘ś1

[

αJ
a(σ) + ηJ

c(σ) ś µℜ(σ)
]

dy,

H(σ) = H(0) +
1 ś ℘

▼(℘)

[

Λ (1 śΠ) + δΩ(σ) ś (λ + µ)H(σ)
]

+
℘

▼(℘)Γ(℘

∫σ

0
(σ ś y)℘ś1

[

Λ (1 śΠ)

+ δΩ(σ) ś (λ + µ)H(σ)
]

dy.

(26)

At σ = σm+1 and by applying (6) on (26), we get the result as

Ωm+1 =Ω0 +
1 ś ℘

▼(℘)
∇1(S(σm),σm) +

℘

▼(℘)

m∑

n=0

{

h℘∇1(Ωn,σn)
Γ(℘ + 2)

[

(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)
]

ś
h℘∇1(Ωnś1,σnś1

Γ(℘ + 2)

[

(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)
]}

+ E℘1,m,

J
a
m+1 = J

a
0 +

1 ś ℘

▼(℘)
∇2(J

a(σm),σm) +
℘

▼(℘)

m∑

n=0

{

h℘∇2(J an ,σn)
Γ(℘ + 2)

[

(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)
]

ś
h℘∇2(J anś1,σnś1

Γ(℘ + 2)

[

(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)
]}

+ E℘2,m,

J
c
m+1 = J

c
0 +

1 ś ℘

▼(℘)
∇3(J

c(σm),σm) +
℘

▼(℘)

m∑

n=0

{

h℘∇3(J cn ,σn)
Γ(℘ + 2)

[

(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)
]

ś
h℘∇3(J cnś1,σnś1

Γ(℘ + 2)

[

(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)
]}

+ E℘3,m,

ℜm+1 = ℜ0 +
1 ś ℘

▼(℘)
∇4(ℜ(σm),σm) +

℘

▼(℘)

m∑

n=0

{

h℘∇4(ℜn,σn)

Γ(℘ + 2)

[

(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)
]

ś
h℘∇4(ℜnś1,σnś1

Γ(℘ + 2)

[

(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)
]}

+ E℘4,m,

Hm+1 = H0 +
1 ś ℘

▼(℘)
∇5(H(σm),σm) +

℘

▼(℘)

m∑

n=0

{

h℘∇5(Hn,σn)
Γ(℘ + 2)

[

(m + 1 ś n)℘(m ś n + 2 + ℘)

ś (m ś n)℘(m ś n + 2 + 2℘)
]

ś
h℘∇5(Hnś1,σnś1

Γ(℘ + 2)

[

(m + 1 ś n)℘+1 ś (m ś n)℘(m ś n + 1 + ℘)
]}

+ E℘5,m,

(27)

where

∇1 = ΠΛ ś
γΩ(σ)J a(σ)

N
+ λH(σ) ś (δ + µ)Ω(σ),

∇2 =
γΩ(σ)J a(σ)

N
ś (µ + α + κ)J a(σ),

∇3 = κJ
a(σ) ś (µ + ρ + η)J c(σ),

∇4 = αJ
a(σ) + ηJ

c(σ) ś µℜ(σ),

∇5 = Λ (1 śΠ) + δΩ(σ) ś (λ + µ)H(σ),

and E℘1,m, E
℘
2,m, E

℘
3,m, E

℘
4,m, E

℘
5,m are of the form of E

℘
m given in (7).
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5 Numerical simulations

In order to make our obtained results more understandable, we continue with some approximations, such as simulations of the system (2).
By the values of all of the parameters in a biologically possible manner given in table 1 and to perform simulations to study the qualitative
analysis of deterministic and fractional stability, it is necessary to assign values to all parameters of model (2).

Parameters Value Source

Λ 0.8 estimated
µ 0.03 estimated
ρ 0.005 estimated
γ 0.05 estimated
α 0.03 estimated
η 0.07 estimated
κ 0.009 estimated
λ 0.07 estimated
δ 0.07 estimated
Π 0.04 estimated
S(0) 100 estimated
J a(0) 10 estimated
J c(0) 70 estimated
ℜ(0) 60 estimated
H(0) 50 estimated

Table 1. Parameters values

Our simulation has been performed by applying a newly introduced numerical scheme for the approximation of ABC fractional derivative to
model (1). Further, the parameters from Table 1 can be used. Time ranges from [0 ś 20] and the initial population for the compartment
susceptible classΩ(σ), acutely infected class J a(σ), chronically carrier class J c(σ), recovery classℜ(σ), and immunized classH(σ) have
been chosen from Table 1 as well. Figures 1,2 and 3 illustrate the simulation of several compartments in the proposed model as a result of
applying the previously given data. Figures 2(a)ś2(e) represent the comparison of model (2) and (1), and Figures 1(a)ś1(e) represent the
comparison of the (2) and (1), when ℘ = 1.0. Secondly, we apply iterative approaches developed from (27) to simulate the model (2) under
the ABC non-integer order operator. All of the compartments (Ω(σ),J a(σ),J c(σ),ℜ(σ),H(σ)) of the said fractional order systemwere
plotted for the table 1 parameters for various arbitrary order values as℘ = 1.0, 0.95, 0.90, 0.85. Non-integer order operators of the ABC type
have been used. According to these őgures 2(a)ś2(e), we can see the dynamic behavior of several compartments of the system (2). At
őrst, the decay in the susceptible class is pretty rapid, but subsequently becomes stable with time. Similarly, infection cases decayed at
various fractional orders of℘. The recovery achieves their maximum at this point. The graphical őndings show that the proposed model
is dependent on the fractional order ℘ and provides more ŕexible data about the behavior of the model that cannot be achieved with the
classic integer-order model.
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Figure 1. Simulations of susceptible, acute infections, chronic carriers, recovered and vaccinated individuals ofmodel (1), when ℘ = 0.90.
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Figure 2. Simulations of susceptible, acute infections, chronic carriers, recovered and vaccinated individuals ofmodel (2), when ℘ = 1.
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Figure 3. Simulations of susceptible, acute infections, chronic carriers, recovered and vaccinated individuals ofmodel (2) when ℘ = (1.0, 0.95, 0.90, 0.85).
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6 Conclusions

In the end we concluded that the proposed fractional system describing the vaccinated Hepatitis-B behaviors has been studied qualitatively
using the contraction theorems of closed norm space. This investigation is taken under non-singular kernel related to the ABC fractional
order derivative. By disease free equilibrium points, the proposed system also has been studied for existence, uniqueness, and stability.
With the use of a newly deőned numerical technique, a numerical simulation has been made for the approximation of ABC fractional
derivative at different fractional orders. Such type of techniques can also can also be achieved by other different fractional operators like He’s
derivative. Taking the initial populations bigger than zero for t > 0 we have simulated the compartment of the proposed model. Moreover,
we can declare that the result properly satisfying the initial data when the proposed system’s right hand side approaches to zero under
certain conditions. We can also control the epidemic by taking the optimal control strategy and with suitable variable or a parameter to
minimised the infected class like unscreened blood, the reuse of dental and surgical instruments, etc. As seen in the graphs, the fractional
derivative gives a more accurate and ŕexible data for investigating the complexity of the dynamics of the HBVmodel, see Figures 1ś3.
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Abstract

A new concept in the transmutation of distribution applying variable transmuting function has been conceived. Test examples
with power function by quadratic and cubic transmutations have been demonstrated by the applications of the error-function
and standard logistic function variable transmuting functions. The efőciency and properties of the new approach by numerical
examples addressing the rate constants of the transmuting functions and the shape parameter of the test power function have been
demonstrated. An additional example with a quadratic transmutation of the exponential distribution through the error function as
a variable transmuting parameter has been developed.

Key words: Transmutation; variable transmuting parameter; transmuted distributions; power function
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1 Introduction

Distributions are widely implemented to őt experimental data dominantly in statistical applications. Applications of certain statistical
tools are strongly dependent on the used probabilistic models of considered data. The increase in the variety of statistical data that should
be őtted (modelled) revealed that many classical distributions are unsatisfactory in statistical data őtting. Hence, there are appeals to
create more generalized distributions allowingmodeling of more complicated phenomenamore ŕexibly. Motivated by the need to add
more parameters to distribution functions thus making themmore ŕexible in data analyzes [1]. In this context, there are several attempts
to consider compound distributions [2, 3, 4], exponentiated distributions [5], beta class of distributions [6, 7], generalized exponential
distribution [8], weighted distributions [9]. The weighted distributions, for instance, take into consideration the veriőcationmethod for
adjustment probability distributions by introducing weights [10] which to some extent is close to the transmutation method considered in
this work.
Here we address a class of weighted distributions developed by the so-called transmutationmethod [11] which results in a speciőc class
of mixture distributions. In the approach conceived by Shaw and Buckley [11] the generalization of the distributions is achieved by the
application of a transmutationmap. Precisely, the transmutationmap is a functional composition of the cumulative distribution function
(cdf) of a certain distribution with the inverse cumulative distribution (quantile) function of another [1]. In statistical publications, there are
numerous examples of transmutations of classical distributions such as Weibull distribution [12, 13, 14, 15, 16, 17], power distribution [18],
minimax distribution [19], linear exponential distribution [20, 21, 22], Frechet distribution [23], Gumbel distribution [20, 23], Gamma
distributions [20], etc.
This article introduces the idea to replace the transmutation parameter with a function (called here also activation function) dependent on
the probability variable and varying only in range , as in the case when the transmutation parameter is a discrete value and resulting in a

➤ Received: 29.04.2022 ➤ Revised: 15.06.2022 ➤ Accepted: 17.06.2022 ➤ Published: 19.06.2022

73

https://orcid.org/0000-0002-7957-8192


74 | MathematicalModelling andNumerical Simulationwith Applications, 2022, Vol. 2, No. 2, 73ś87

speciőc class of mixture distributions. For a better understanding of the main idea of the transmutations, the technique is explained in the
next section (Background) from a general point of view and with two simple examples further used in this work.

2 Background

The increasing number applications őtting real-world data, from life science, economics or advanced technologies, are raising problems
for more ŕexibility which some of statistical distributions cannot provide adequate answers. Particularly, to capture the skewness and
kurtosis (see the deőnitions in Appendix (Section 10) associate with such applications it was introduced a transmutationmapping [11]. This
map is a functional composition of a cumulative distribution function (cdf) of a particular distributionwith the inverse cumulative distribution
(quantile) of another distribution [1]. This approach increases the distribution ŕexibility to őt experimental data. The common approach is to
use discrete values of the transmuting parameters (commonly denoted by the symbol λ) [1, 11, 16, 21, 22, 24, 25, 26, 27, 28, 29]. This work
addresses transmutations of statistical distributions by variable transmuting parameters, precisely, transmuting parameters dependent on
random variables. For the sake of clarity, and creating the exposition gradually understandable, as well as to present the new approach we
will start with some basic deőnitions explained next.

Theory of distribution transmutations

If there are absolutely continuous cumulative distribution functions (cdfs) F1(x) and F2 (x) with the corresponding pdfs f1 (x) and f2 (x), on a
common sample space, then the general rank of transmutation, following Shaw and Buckley [11], is formulated as

GR12 (u) = F2
[

Fś11 (u)
]

, GR21 (u) = F1
[

Fś12 (u)
]

, (1)

where both functions GR12 (u) and GR21 (u) map the compact [0, 1] into itself as well as they are mutually inverse with GRij (
0) = 0 and

GRij (
1) = 1 when i = 1, 2.

In accordance with the deőnition of [11] a random variable x has a transmuted distribution of family of rank k if the cumulative distribution
function (cdf) is deőned in a general form as [11, 16, 24, 21]

F (x) = G (x) +
[

1 ś G (x)
]

k∑

i=1

λi
[

G (x)
]i, (2)

with λi ∈ [ś1, 1] for i = 1, 2, 3, . . . , k and śk ≤
k∑

i=1
λi < 1.

The general transmuted family reduces to the base function (base cumulative distribution) (cdf)G (x) forλi = 0. Two simple transmutations,
undoubtedly explaining the idea of this mapping, and used in this work, are brieŕy presented next.

Transmutations of quadratic and cubic ranks: Examples

Before demonstrating simple examples we have to stress the attention on two important issues in applications of the transmutation
approach, namely

• When the task is to demonstrate how the transmutation of certain rank transforms the base function (distribution) then the choice
of the transmuting parameter λ (can be termed also as activating parameter) is to some extent arbitrary, with discrete values, from
λ ∈ [ś1, 1], as it will be done in the following examples. This can be considered as a forward problem.That is, in the forward problem a
given value of λ activates (results in) a particular shifted distribution.

• When a certain transmuted version of base function (distribution) has to be applied in őtting procedure to a given set of statistical data,
then the determination of λ is a task related to an inverse problem. That is, in such a case the problem is to őnd particular value ofλ so
that the transmuted distribution to őt the statical data. This can be considered as a backward problem. This step is beyond the scope of
this work, because the primary task addressed here is to demonstrate how the new approach in generation of transmuted distributions
works.

It is worth noting that, in both cases, the tasks are performed with discrete values of the transmuting parameter λ as it follows from the
basic formulation of Shaw and Buckley [11].
Here, for the seek of the clarity of the method applied and its development conceived in this work, we give demonstrative examples of the
twomost popular transmutations [11] with particular sets of values of λ chosen arbitrarily from the range λ ∈ [ś1, 1] as it has been done in
all works cited above.

Quadratic transmutation

For k = 1, applying (2), we have a cdf

F1 (x) = (1 + λ)G (x) ś λG2 (x) , |λ| < 1, (3)

and a corresponding pdf f1 (x) = d
dx
F1 (x)

f1 (x) = (1 + λ) g (x) ś 2λg (x)G (x) , g (x) =
dG (x)
dx

. (4)
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It is obvious that forλ = 0 the transmuted functionF1 (x) reduces toG (x). To illustrate this, we present examples of quadratic transmutations
of the power function (distribution) (Eqs. (5) and (6)), with a shape parameterα and cumulative density function (cdf) [18]

G(x) = 1 ś (1 ś x)α, 0 < x < 1, α > 0, (5)

and corresponding probability density function (pdf)

g(x) = α(1 ś x)αś1, 0 < x < 1, α > 0. (6)

Applying (3) and (4) to (5), we get

F1 = (1 + λ)
[

1 ś (1 ś x)α
]

ś λ
[

1 ś (1 ś x)α
]2, (7)

f1 = (1 + λ)
[

α(1 ś α)αś1
]

ś 2α
[

1 ś (1 ś x)α
]

[

α(1 ś x)αś1
]

. (8)

This function is a special case of beta distribution describing random data conőned in the open interval (0, 1) [1, 18]. The numerical tests
shown in őgure 1 demonstrate the variations of the cumulative density function for various values of the transmuting parameter λ as well
as the effect of the shape parameter forα < 1 andα > 1 . The changes in both the skewness and kurtosis are obvious.

Figure 1. Two cases of quadratic transmuted power function (distribution): a) withα = 0.5; b) withα = 1.5

Cubic transmutation

For k = 2, applying (2), we have a cdf

F2 (x) = G (x) + λ1G (x)
[

1 ś G (x)
]

+ λ2G
2 (x)

[

1 ś G (x)
]

. (9)

This can be presented also as

F2 (x) = (1 + λ1)G (x) + (λ2 ś λ1)G
2 (x) ś λ2G

3 (x) , (10)

and a corresponding pdf

f2 (x) = (1 + λ1) g (x) + 2 (λ2 ś λ1) g (x)G (x) ś 3λ2g (x)G
2 (x) , (11)

where λ1 ∈ [ś1, 1] and λ2 ∈ [ś1, 1], and ś2 < λ1 + λ2 < 1. For this speciőc case, following Granzotto et al. [16], we have λ1 ∈ [0, 1] and
λ2 ∈ [ś1, 1].

If we try to minimize the number of transmuting parameters, it is possible to suggest that λ1 = λ and λ2 = śλwhere |λ| < 1. Then, from
(10) we get a simpler form of F2 (x), namely

F̄2 (x) = (1 + λ)G (x) ś 2λG2 (x) + λG3 (x) , (12)

f̄2 (x) = (1 + λ) g (x) ś 4λg (x)G (x) + 3λg (x)G2 (x) . (13)
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In the case with the power distribution (5), we have

F2 = (1 + λ)
[

1 ś (1 ś x)α
]

ś 2λ
[

1 ś (1 ś x)α
]2 + λ

[

1 ś (1 ś x)α
]3, (14)

f2 = (1 ś λ)
[

α(1 ś x)αś1
]

ś 4λ
[

1 ś (1 ś x)α
]

[

α(1 ś x)αś1
]

+ 3λ
[

1 ś (1 ś x)α
]2

[

α(1 ś x)αś1
]

. (15)

Examples of cubic transmutations of the power function (distribution), the same as used in the tests of the quadratic transmutation, are
shown in Figure 2. The effect of the transmutation on the distributions is more obvious since there is a strong effect of the shape parameter
α.

Figure 2. Two cases of cubic transmuted power function: Left- withα = 0.1; Right- withα = 2.5

There exist many examples of transmuted distributions [1] (see the detailed analysis in this article and references quoted therein) but
here we address a different approach rather than selecting values of λ (the case with k = 1 ) or pairs (λ1,λ2) when k = 2, as it was done in
most of the articles cited above. It is worth remarking that for the sake of clarity in the explanation of the idea developed in this article
the numerical examples with power function are provided withα = 0.5 andα = 1.5, but there are no restrictions to demonstrate similar
behaviours with different values of the shape parameterα; the effect of the shape parameter on the transmuted distribution in the light of
the new concept is beyond the scope of this work.

3 Aim

This article conceives a new approach in transmutation of distributions by applying variable transmuting parameters (activation functions)
instead of its particular (discrete) counterparts used in the original concept. To some extent, this leads to new distributions obeying all
desired properties of transmuted basic functions. The power function is used as a test distribution with two transmuting (activating)
functions: the Gaussian Error-function and the Standard Logistic Function. In fact, this is an experimental work, in sense of experimental
mathematics, on the forward transmutingproblem, when anew idea about transmutation of functions (distributions) is directlydemonstrated.

4 Further paper organization

In the sequel the concept of a variable transmuting parameter (Section 5) with two functions as examples: Error Function erf(x) (Section
5) and the Standard Logistic Function LogF(x) (Section 5) is presented. Further, two examples with the application of these continuous
transmuting functions (Section 6) to the power function distribution demonstrate all features and problems emerging in application of this
new approach.

5 Variable transmuting parameter: The concept

Now, we have to stress the attention on the fact that there is no rule for choice of the value of the transmuting parameter λ,when the forward
problem is at issue, despite the restriction λ ∈ [ś1, 1] as the references [11, 16, 21, 24] (and see the references therein) widely used to obtain
new distributions in statistics. Only, by selections of pairs λ1,λ2 it is possible to get a variety of transmuted functions [1, 11, 16, 20, 21, 22,
24, 25, 26, 27, 28, 29]. One attempt to resolve the problem is the simpliőcation of the cubic transmutation (12) avoiding the use of λ1 and
λ2. In what follows we conceive the idea that λ can be dependent on the argument of the transmuted function, but at the same time to
satisfy the condition λ ∈ [ś1, 1], that is

λ (x) = Λ (x) , Λ (x) ∈ [ś1, 1] , x ∈ (ś∞,∞) . (16)
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In this context, both the quadratic (17) and cubic (18) transmuted proőles are

Fλ1 (x) = G (x) +Λ (x)
[

G (x) ś G2 (x)
]

, (17)

Fλ2 (x) = G (x) +Λ (x)
[

G (x) ś 2G2 (x) + G3 (x)
]

. (18)

Therefore, we have a superposition of the basic function G (x) and a term (functional relationship) deforming the entire transmuted proőle
(distribution). In such a case the pdfs of these transmuted cdfs are

fλ1 (x) = f (x) + L (x)
[

G (x) ś G2 (x)
]

+Λ (x) g (x)
[

1 ś 2G (x)
]

, L (x) =
dΛ (x)
dx

, (19)

fλ2 (x) = g (x) + L (x)
[

G (x) ś 2G2 (x) + G3 (x)
]

+Λ (x) g (x)
[

1 ś 2G (x) + 3G2 (x)
]

. (20)

It is important to stress the attention on the requirement coming from the new formulation the functionΛ(x) to be smooth and differentiable
with respect to x.

The functional relationship ofΛ (x)

We realize that there exists a variety of such functions deőned by (16), but skipping a discussion on this problemwhich is beyond the scope
of the present study, we suggest the following functional relationships:

Error function

In this case, we suggest

Λ (x) = erf [p · x] =
2

√
π

x∫

0

eśp
2
·z2dz, p > 0, x (ś∞,∞) . (21)

This is an ad hoc selection ofΛ (x) where the derivative with respect to x is

L (x) =
dΛ (x)
dx

=
2p
√
π
eśp

2x2 . (22)

In addition, the integral ofΛ (x) is

∫

erf (px)dx =
(px) erf(px)

p
+
1
p

eśp
2x2

√
π

+ C. (23)

The parameter p controls the rate of growth ofΛ (x) as it is shown in Fig. 3 (left panel). It is obvious that for p = 1, we get the basic erf(x),
growing rapidly to 1.

Logistic function

Here we select only the standard logistic function along the axis x≫ 0, namely

V (x) =
1

1 + eśpx
, x≫ 0, p > 0, 0.5 ≤ V (x) ≤ 1, (24)

with the following basic properties

V (x) =
1

1 + eśpx
=

epx

1 + epx
,
dV (x)
dx

=
keśpx

(1 + eśpx)2
,

∫

V(x)dx =
1
p
ln

(

1 + epx
)

+ C. (25)

As in the case of the error function (21) the parameter p controls the rate of growth (see őgure 3 (right panel)) There are no restriction using
other versions of the logistic function but here the standard version was chosen for its simplicity allowing to demonstrate the main idea of
the variable transmuting parameter (function).

6 Distributions with variable transmuting parameter: Demonstrative examples

Example 1: Power distribution with Error-function as a variable activation function

Here, we consider again the power function (5), which allows comparing the new approach in the transmutation with the classical approach
(with discrete λ) demonstrated in Section 2.
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Figure 3. Two examples of variable functionsΛ(x). Left: Error function (ERF); Right: Standard Logistic function (SLF). The dotted lines show the lower (ś1) and the upper (1)

limits of variations of the functions (the same in all őgures in the sequel).

Quadratic transmutation

Plots of the quadratic transmuted cfds power function are shown in Figure 4. The behaviours of the transmuted functions reveal that in
general the character of the effect of the transmuting parameter on the skewness and kurtosis resembles the effects of the discrete values
of λ.

Figure 4. Two examples of variable functionsΛ(x) to the quadratic transmuted power function. Left: α = 0.5; Right: α = 1.5. See the plots in Fig. 1

The corresponding pdfs are shown in Figures 5a-5b.

Figure 5. Two examples of pdfs with variable functionsΛ(x) = erf(x) to the quadratic transmuted power function. Left: α = 0.5; Right: α = 1.5.
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Cubic transmutation

The cubic transmuted proőles (k = 2) in Figure 6 have almost the same behaviour as the quadratic counterparts (k = 1) but now they are
located too close and the effect on the skewness and kurtosis is not so distinguished as in the case with k = 1. Only in the central zone, we
can see some differences (see the inserts).

Figure 6. Two examples of variable functionsΛ(x) to the cubic transmuted power function. Left: α = 0.5; Right: α = 1.5

The corresponding pdfs are shown in Figures 7a-7b.

Figure 7. Two examples of pdfs with variable functionsΛ(x) to the cubic transmuted power function. Left: α = 0.5; Right: α = 1.5.

Reliability analysis: Survival and Hazard functions of transmuted distributions

The survival function Sk(x) of Fk(x) is the probability of an item not falling prior to a given x and is deőned as

Sk(x) = 1 ś Fk(x), (26)

and the Hazard function Hk(x) is given by

H(x) =
fk(x)

Sk(x)
. (27)

These functions, related to quadratic transmutation at issue, are shown in Fig. 8.

Example 2: Power function with standard logistic function as a variable transmuting parameter

Quadratic transmutation

The quadratic transmuted proőles of the power function, with different shape parameters, are shown in Figure 9. It is obvious that in both
cases, with respect to the values of the shape parameterα) there are sufőcient shifts in the distributions with respect to the basic version
when λ = 0. The shifts are towards the case with λ → 1. The corresponding pdfs, shown in Figure 10 reveal more distinguishable plots but
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Figure 8. Survival and Hazard function with erf(x) as transmutation parameter. Left column: Quadratic transmutation; Right column: Cubic transmutation

the shifts are again towards the case corresponding to λ → 1.

Figure 9. Two examples of distributions with variable function V(x) (Standard Logistic Function) to the quadratic transmuted power function. Left: α = 0.5; Right: α = 1.5

Cubic transmutation

The cubic transmuted proőles (k = 2) of the cumulative power distribution in őgure 11 have almost the same behaviour as the quadratic
counterparts (k = 1) but now they are located too close and the effect on the the skewness and kurtosis is not so distinguished as in the case
with k = 1. Only in the central zone, we can see some differences (see the insert).

Reliability analysis: Survival and Hazard functions of transmuted distributions

The survival function Sk(x) of Fk and Hazard function Hk(x) are shown in Figures 12 and 13.

We can see again that the effect of the cubic transmutation with the standard logistic function as transmuting function is practically
negligible in contrast to the case when the error function is used.
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Figure 10. Two examples of pdfs with variable function V(x) (Standard Logistic Function) to the quadratic transmuted power function. Left: α = 0.5; Right: α = 1.5

Figure 11. Two examples of pdfs with variable function V(x) (Standard Logistic Function) to the cubic transmuted power function. Left: α = 0.5; Right: α = 1.5

Some briefs on the examples demonstrating the new concept

The idea developed here results in a new type of distribution which to a greater extent are similar to themixed distribution [30, 31, 32],
where the constructions of the cumulative distributions C (x) as a combination of distribution functions Gi (x) follow the rule [32, 33]

C (x) =
N∑

i=1

ωiGi (x) , (28)

whereωi > 0 are mixture weights obeying the condition
N∑

i=1
ωi = 1. Moreover, it is not necessary that Gi (x) belong to one and the same

distribution family on have the same number of parameters [32, 33].
In the idea developed here, even though this aspect is not developed and draws future research. Moreover, this approach, to some extent,
resembles the idea of transmutation (2) but bears in mind the signiőcant differences between the two approaches. We have to stress the
attention on the fact that in the approach developed here the weighting coefőcients follow twomain conditions: λ ∈ [ś1, 1] coming from
the constructions of the transmutation theory, and they are dependent on the variable x , but their variations are within the range [ś1, 1].
The numerical experiments reveal two basic issues, based on the experiments performed with the power function as a test distribution,
namely:

• The quadratic transmutation providesmore distinguishable distributions with both the error function and the standard logistic function
as transmuting variable parameters.

• The increase in the transmutation rank, i.e. the application of the cubic transmutation, does not lead to signiőcant changes in either the
skewness or kurtosis of the new distributions. The shape parameter of the basic distribution has practically no effect on this.

• The error function is more suitable, as a variable transmuting parameter, than the standard logistic function, irrespective of the rank of
transmutation, since it is allowingmore distinguished new distributions to be generated.

These are comments relevant to the particular case of transmutations of the power functions. Some effects are strong and distinguishable,
others not, to some extent. This cannot be considered discouraging because the next example will show how the new approach can be
applied to another distribution.
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Figure 12. Survival and Hazard function with Standard Logistic Function as a variable transmutation parameter.Quadratic transmutations. Left column: α = 0.5; Right

column: α = 1.5

7 Distributions with variable transmuting parameter: Additional example with the exponential
distribution

Here we demonstrate how the quadratic transmutation, with error-function as transmuting parameter, can be applied to the exponential
distribution [20, 22, 34]

Ge1(x) = 1 ś exp
(

ś
x

β

)

, x ∈ [0,∞) , λ ∈ [0, 1] , (29)

with a quadratic transmuted cdf

Fe1 =
[

1 ś exp
(

ś
x

β

)][

1 + λ exp
(

ś
x

β

)]

. (30)

The effect of the rate parameterβ on the development of the exponential distribution is shown in Figure 14. The effect of the scale parameter
β, which may be termed as a rate constant of the exponential growth is stronger when β < 1 since we have 1/β ≫ 1 resulting in rapid
saturation of the distribution. In contrast, forβ > 1, the distributions are smoother. The following examples useβ = 0.5 andβ = 1.5, similar
to the values of the shape parameter α of the power function. Moreover, β = 1.5 is used in the study of Rahman et al. [20] that allows
comparing the results developed by the new approach.

Exponential distribution: Quadratic transmutation with őxed transmuting parameters

Examples of the classical transmutation approach with őxed values of λ are shown in Figure 15, thus demonstrating the effect the scale
(rate) parameterβ and the values of λ.

Exponential distribution: Quadratic transmutation with Error-function as a variable transmuting parameter

Now, applying the transmutation technology with the variable transmuting parameter we get ŕexible cdf and pdf shown in Figure 16.

The generated distribution through the quadratic transmutations demonstrated the effect of the transmutation function which, to a greater
extent, is similar to that of the discrete transmuting parameters. In contrast to the previous example with the power function, nowwe can
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Figure 13. Survival and Hazard function with Standard Logistic Function as a variable transmutation parameter. Cubic transmutations. Left column: α = 0.5; Right column:

α = 1.5

Figure 14. Two cases of basic exponential distribution: Left- withβ = 0.5; Right- withβ = 1.5

see that the transmuted proőles are well distinguished that could be attributed to both the rank of transmutation and the type of variable
transmuting function chosen. Moreover, this can be related to the type of the basic exponential distribution which has an important control
on its behaviour through the rate parameterβ.

The Survival and the Hazard functions of the transmuted (quadratic) exponential distribution are shown in Figure 17.

8 Final comments and some emerging problems

This work conceived and explored tough examples of transmutations of distributions through a variable transmuting parameter (function)
depending on the independent variable. The numerical experiments demonstrate the effect of the new approach is successful but at the
same time formulate new problems and raise questions that should be answered through new studies, among them:

• The inverse (backward) problems are related to the determination of the rate parameter p because actually, the use of a variable
transmuting function generates new basic distributions. This task is strongly dependent on the type of both the baseline distribution
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Figure 15. Two cases of quadratic transmutation of the exponential distribution (cdf) with őxed values of λ: Left- withβ = 0.5; Right-withβ = 1.5

Figure 16. Cumulative and probability density functions of quadratic transmuted exponential distribution. Error-Function as a variable transmutation parameter: Left

column: cdfs; Right column: pdfs

and the activation function andmight be solved either analytically or numerically.

• Development of moments, quantile functions, random number generations, andmany other related functions and parameters such
as the ones well known from the cases when discrete transmuting parameters are applied. These are directions towards new studies
beyond the scope of the present investigation.

• The new problems emerging in this study need the development of new analytical and numerical techniques for resolving the problem
mentioned above and this draws new challenging areas for investigation.
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Figure 17. Survival and Hazard function of the quadratic transmuted exponential distribution. Error-Function as a variable transmutation parameter: Left column: β = 0.5;

Right column: β = 1.5

9 Conclusions

A new concept in the transmutation of distributions applying variable transmuting (activation) functionwas conceived in this study. The
idea of a variable transmuting parameter, dependent on the independent variable, was tested with the power distribution applying quadratic
and cubic transmutations. This was performed through applications of two transmuting activation functions: the error-function and
standard logistic function, and obeying the conditions imposed on the transmuting parameters imposed on it in the original concept of
the transmutation mapping. Additional numerical experiments with the exponential distribution demonstrate the feasibility of the new
approach and elucidate the fact that the effect of the transmutation strongly depends on the type of the function (distribution) to which it is
applied. This is just the beginning and new tests with experimental data and available baseline distributions will allow elucidating the
position of the distributions generated by the new concept among the well-know families of transformed functions. It is word remarking
that the transmutation mapping can be applied not only to statistical distributions but to any other functions [35] thus allowing more
ŕexibility in modelling of and approximate solutions.
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10 Appendix

The kurtosis (Kurt) is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution and is given as

Kurt =
µ4

σ4
,

and the skewness (µ̃3) is a measure of the asymmetry of distribution and is given as

µ̃
3 =

N∑

i

(

Xi ś X̄
)3

(N ś 1)σ3
.
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Abstract

This study proposes a novel mathematical model of COVID-19 and its qualitative properties. Asymptotic behavior of the proposed
model with local and global stability analysis is investigated by considering the Lyapunov function. The mentioned model is
globally stable around the disease-endemic equilibrium point conditionally. For a better understanding of the disease propagation
with vaccination in the population, we split the population into őve compartments: susceptible, exposed, infected, vaccinated,
and recovered based on the fundamental Kermack-McKendrick model. He’s homotopy perturbation technique is used for the
semi-analytical solution of the suggested model. For the sake of justiőcation, we present the numerical simulation with graphical
results.

Keywords: Local asymptotic stability; global asymptotic stability; Routh-Hurwitz criterion; COVID-19; infectious diseasemodeling
AMS 2020 Classiőcation: 34L30; 92D30; 37N30; 37N25

1 Introduction

Most nations throughout the world have been afŕicted by the COVID-19 outbreak, and their economy has suffered as a result. There have
been several cases of infection, as well as the occurrence of subsequent infection waves that have resulted in a greater number of cases than
the prior wave. Although various preventative techniques and other control measures have been used to restrict the disease’s spread, it is
still unknown when this lethal sickness will be eradicated from the community. COVID-19 is currently infecting and killing people in the
majority of the world’s countries. The total number of infected cases recorded till September 4, 2021, was 220917130, including 4571624
deaths, and 197441726 [1] people recovered from COVID-19 infection. Researchers, biologists, andmedical professionals are constantly
attempting to develop efőcient vaccines, preventions, and treatmentmeasures for coronavirus infectionmanagement. Because there are so
many different strains of this sickness, researchers are working to develop a more effective vaccine for infection prevention. According to
the literature, several study publications on the virus’s infection reduction have been written and published from various perspectives. We
have a lot of models if we speak out that connected study on coronavirus usingmathematical models. Mathematical models are the only
means to determine the infection’s peak and the best strategy to manage it.

In [2], researchers studiedCOVID-19using amathematicalmodel that includedSusceptible S(t), ExposedE(t), Infected I(t),Quarantine
Q(t), and Recovered R(t). The goals were to examine the stability and optimal management of the concerned mathematical model for both
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local and global stability using a third additive compoundmatrix technique, as well as to produce threshold values using a next-generation
approach. The author created a graphic representation of the anticipated outcomes which also used the homotopy perturbation approach for
the solution and for each population of the underlyingmodel with control variables utilizing optimal control methods based on Pontryagin’s
maximal Principle to control the spread of COVID-19 infection in a population. In [3], researchers implemented fractional calculus on
a COVID-19 mathematical model and investigated local and global stability for the stabilization of the disease in a population with an
approximate solution using the Laplace-Adomian decomposition method. In [4], the authors examined the global view of the coronavirus
model to real data from Ghana, as well as its cost-effective analysis with environmental changes. In [5], the authors proposed a nonlinear
predictive control model and its management for coronavirus infection. In [6], the authors modeled and explored the use of medication
resistance in coronavirus infection. In [7], the authors investigated the spread of coronavirus infection in China, as well as its modeling
and prediction. In order to investigate the impact of lockdown in reducing coronavirus spread [8], the author examined a system of őve
nonlinear fractional-order equations in the Caputo sense. The hypothesised coronavirus model under lockdown’s solutions were shown to
exist and to be distinct using the őxed-point theorems of Schauder and Banach, respectively. Ulam-Hyers and generalised Ulam-Hyers
frames for stability analysis were established.

To simulate the transmission of disease, the authors [9] looked at the SIRmodel with a generic incidence rate function and a nonlinear
recovery rate. The inŕuence of the health system affects the nonlinear recovery rate. The authors also established themodel solution’s
existence, uniqueness and boundedness. They looked into the model’s many steady-state solutions, stability details, and reproductive
number. The research demonstrates that the free steady state is unstable otherwise and locally stable when the reproduction number is
smaller than unity. The backward bifurcation phenomenon is illustrated by the model. For the transmission dynamics of HIV epidemics,
the authors [10] have developed a nonlinear SEI1I2R fractional order epidemic model. The generalised mean value theorem is used to
determine the model’s non-negative solution. In order to determine the disease status, we obtained the fundamental reproductive number
R0, which serves as a threshold parameter. Using the fractional Routh-Hurwitz stability criterion, the asymptotically stable outcomes
of equilibria are explored. While this is going on, a suitable Lyapunov function is built to evaluate the global asymptotic stability of the
disease-free and endemic equilibrium point. In order to increase the concept of propagation delay, this research [11, 12] focuses on a delayed
epidemic model with information-dependent vaccination.

Researchers have delved deeply into the transmission of infectious diseases or concentrated on the differentialmodel, which solely
takes into account the traits of infectious diseases themselves. The dynamic study of infectious illnesses based on vaccination rates has
not received much attention. The authors [13] looked at a population model of the novel COVID-19 under ABC fractional order derivatives,
and they also demonstrated enough evidence for the solution’s existence and uniqueness for themodel under consideration. They also
demonstrated that themodel has at least one solutionwith a stable result. The author [14] showed in this work the potential ofmodelling the
dynamics of SARS-CoV-2 infection as a helpful support tool for measuring the population’s level of compliance with the GIM and projecting
the impact of corrective measures. This book [15] helps with the preliminary results and is valuable to study in the őeld of mathematical
modelling in public health biology or public health epidemiology. In [16], the author investigated COVID-19 epidemic has had a substantial
inŕuence on children and adolescents’ mental health, which should be of great concern to policymakers and practitioners around the world.
This [17, 18, 19, 20, 21, 22] work examines a newmathematical model for the dynamics of Hepatitis-B virus transmission in a fractional
environment in light of asymptomatic carriers and vaccination classes. Because the authors took into account both the vaccination and
asymptomatic caries, this newmodel is more advanced than the previous models proposed for the dynamics of the Hepatitis-B virus. In
this study [23, 24], the dynamics of the COVID-19 epidemic in Pakistan were examined, and a mathematical model was developed. Its
fundamental and essential mathematical aspects, such as the existence and positivity of the system and its solution, were then supplied.
Using fractional stability techniques, the detailed stability results for disease-free and disease-endemic equilibrium points are examined
on a local and global scale.

For the dynamics of the Zika virus [25, 26]with amutation that results in defects in newborns, amathematicalmodel has been devised.
The threshold quantity at risk-free equilibrium and the equilibrium for Zika infection were also computed by the authors. Both locally and
internationally, the stability analysis at disease-free and disease-endemic equilibrium are computed. The authors [27, 28] examined a
mathematical model with slow and quick exposed cases and its impact on the model dynamics to comprehend the TB infections in the KP
area of Pakistan. They also researched the fundamental math needed to model the fractional-order model. The model’s stability was then
examined, and it was demonstrated that the TBmodel is both locally and globally asymptotically stable. The examination and analysis
of the suggested drinking model must also be included by the authors, who also used stochastic system perturbation to determine the
solution’s existence and uniqueness as well as some drinking dynamics [29]. The authors have also come to some important conclusions on
how to control drinking habits at all stages, from risky tomoderate andmoderate to non-consumer. A discrete-time Bazykin-Berezovskaya
prey-predator model’s complex dynamics were described in detail by the authors [30]. Additionally, they showed that the model has a
single positive interior őxed point (FPP). They also concentrated on the analytical and numerical bifurcation analysis of the interior őxed
point FPP due to its biological signiőcance.

The scientists [31] looked at an SIRmodel for COVID-19 in Indonesia, taking into account parameters like immunisation, treatment,
application of health protocols, and coronavirus burden. Additionally, they discovered that immunisation and the application of health
practices signiőcantly limit or stop the spread of COVID-19 in Indonesia. Similar to vaccination [32] and the application of health protocols,
treatment can decrease or stop the pace of COVID-19 infection. However, its impact is not as great. This study [33] presents a novel
strategy for combating the COVID-19 epidemic. Using actual data from the United Kingdom, a fractional order pandemic model is created to
investigate the spread of COVID-19 with and without the Omicron form and its connection to heart attacks. In [34], an optimal control
model has been developed in light of the potential controls that are thought to be successful. The World Health Organization’s (WHO)
basic principles, such as immunisation of people, rapid testing, and early treatment of infected individuals by COVID-19, have been used
to consider the four control variables in the form of preventions. In [35], this study examines the mathematical modelling of COVID-19
transmission at the fractional-order level. Using nonlinear analysis, they demonstrate themodel’s existence and originality. The goal of this
work [36] is to thoroughly study a mathematical model for computing the nonsingular fractional order derivative-based transmissibility of
a novel coronavirus (COVID-19) disease. By using the Krasnoselskii and Banach őxed point theorems, the existence and uniqueness of the
proposed model have been ensured. Additionally, some stability outcomes of the Ulam-type have been developed.

In [37], the researchers studied that there was a substantial but statistically minor rise in mental health symptoms before to and
during the COVID-19 pandemic in 2020, according to a study that sampled mostly European and North American people. Depressive
symptoms showed bigger and longer-lasting increases, compared to anxiety disorder symptoms andmeasures of general mental health
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functioning, which showed lower changes. It will be critical to keep track of changes in mental health (especially depression) and ensure
that proper therapeutic therapy is accessible. The total rise in mental health symptoms was most evident in the őrst twomonths after the
WHO proclaimed a pandemic (March 2020), before declining and returning to pre-pandemic levels bymid-2020 for most symptom kinds.
In [38], the authors study COVIDś19 with quarantine, isolation, and environmental viral load. They őtted the COVIDś19model to real data
and calculated the parameters.

Share of people vaccinated against COVID-19, Jun 18, 2022
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Source: Official data collated by Our World in Data

Note: Alterna�ve defini�ons of a full vaccina�on, e.g. having been infected with SARS-CoV-2 and having 1 dose of a 2-dose protocol, are
ignored to maximize comparability between countries.

CC BY

Figure 1. [39], The bar chart represents the vaccinated population with complete initial protocol and partly vaccinated for different countries

Daily new conőrmed COVID-19 cases per million people, Jun 19, 2022

7-day rolling average. Due to limited testing, the number of conőrmed cases is lower than the true number oőnfections.
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Source: Johns Hopkins University CSSE COVID-19 Data CC BY

Figure 2. [39], The map of the world represents the conőrmed cases of COVIDś19
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Daily new conőrmed COVID-19 cases & deaths per million people

7-day rolling average. Limited testing and challenges in the attribution of cause of death means the cases anddeaths counts may not be accurate.
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Figure 3. [39], The plots of conőrmed and death cases per million people

Estimate of the effective reproduction rate (R) of COVID-19
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Figure 4. [39], The behaviour of basic reproduction number or reproductive rate R0 of COVIDś19 for different countries. The reproduction rate represents the average number
of new infections caused by a single infected individual. If the rate is greater than 1, the infection is able to spread in the population. If it is below 1, the number of cases
occurring in the population will gradually decrease to zero
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COVID-19 cases, tests, positive rate, and reproduction rate
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Figure 5. [39], Gallery of charts for new cases, new tests, positive test rate, and reproductive rate. 7-day rolling average. Due to limited testing, the number of conőrmed cases
is lower than the true number of infections. Comparisons across countries are affected by differences in testing policies and reporting methods
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Figure 6. [39], The case fatality rate (CFR) is the ratio between conőrmed deaths and conőrmed cases. Our rolling-average CFR is calculated as the ratio between the 7-day
average number of deaths and the 7-day average number of cases 10 days earlier.
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COVID-19 vaccine doses, ICU patients, and conőrmed deaths

Limited testing and challenges in the attribution of cause of death means the cases and deaths counts may not beaccurate.
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Figure 7. [39], Gallery of charts for vaccine doses, new cases, patients in ICU and New deaths

According to [40], immunization is a global success story in terms of health and development, saving millions of lives each year. Vaccines
interact with your body’s natural defenses to build protection, lowering your risk of contracting a disease. Your immune system reacts when
you receive a vaccine. Vaccines for more than 20 life-threatening diseases are now available, allowing individuals of all ages to enjoy longer,
healthier lives. Every year, vaccinations prevent 3.5-5 million fatalities from diseases such as diphtheria, tetanus, pertussis, inŕuenza,
andmeasles. Immunization is an indisputable human right and an important component of primary health care. It’s also one of the most
cost-effective health investments available. Vaccines are also essential for preventing and controlling outbreaks of infectious diseases. They
are essential in the őght against antimicrobial resistance and support global health security. Despite signiőcant advances, vaccine coverage
has plateaued in recent years, and in 2020, it may potentially decline for the őrst time in a decade. Over the last two years, the COVID-19
pandemic and its aftermath have put pressure on health services, with 23 million children skipping vaccinations in 2020, 3.7 million more
than in 2019, and the largest amount since 2009. Preliminary data from 2021 reveal continuous disruption, but on the plus side, nearly all
nations had implemented COVID-19 immunization by the end of 2021, and one billion doses of COVID-19 vaccine had been supplied via
COVAX by early 2022. In this paper, we investigate the asymptotic behaviour of the model locally and globally at diseaseśfree and endemic
equilibrium points. For the global stability, Lyapunov function is considered. We also use the homotopy perturbationmethod (HPM) to
solve the non-linear dynamical system of COVID-19 semi-analytically. HPM approach was initially suggested by [41] and has since been
used to solve differential and integral equations in both linear and nonlinear scenarios by [42]. In [43], the authors used the HPM to solve
the nonlinear Kawahara partial differential equation semiśanalytically. The HPMwas used by the authors [44] to solve a set of partial
differential equations. Without the use of linearization, transformation, discretization, or constrictive assumptions, the approach is used
directly. We can get the conclusion that the HPM is very effective and powerful in locating analytical solutions for a variety of boundary
value problems. In [45] to solve the system of rabies transmission dynamics, for resolving the generalised Zakharov equations, the HPM
is suggested by the authors [46]. With potential unknown constants that can be found by imposing the boundary and initial conditions,
the initial approximations can be freely chosen. For the mathematical study of obtaining the solution of a őrst-order in-homogeneous
partial differential equation ux(x, y) + a(x, y)uy(x, y) + b(x, y)g(u) = f(x, y), a new homotopy technique is proposed [47]. This newmethod is
developed by combining the decomposition of a source function and the HPM.

COVID-19mathematical model formulation

In this section, we modifying Susceptible, Infected, and Recovered (SIR) model [9, 31] for COVID-19 infection with the implementation of
the vaccination class/compartment such that:

dS(t)
dt

= śβS(t)I(t),

dI(t)
dt

= βS(t)I(t) ś γI(t),

dI(t)
dt

= γI(t).

(1)

For mathematical modelling of the model, we provide the compartmental diagram below:
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Figure 8. Compartmental diagram of COVIDś19model

Based on the compartmental diagram (8), the followingmodel is proposed:

dS(t)
dt

= µ ś qS(t)I(t) ś (ω + a)S(t) + νR(t),

dE(t)
dt

= qS(t)I(t) ś (c +ω + a)E(t),

dI(t)
dt

= cE(t) ś (a +ω + x + z)I(t),

dV(t)
dt

= aI(t) ś (ω + y)V(t) + aE(t) + aS(t),

dR(t)
dt

= xI(t) + yV(t) ś (ω + ν)R(t),
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(2)

with S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, V(0) ≥ 0, and R(0) ≥ 0. Also, here SEIVR represents Susceptible, Exposed, Infected, Vaccinated and
Recovered compartments, respectively. Also,µ is the rate of recruitment, q is the rate of transmission,ω is the rate of natural death, a is
the rate of vaccination, ν is the rate of loss of immunity, c is the rate of infection of Exposed population, x is the recovery rate of Infected
population, z is the death rate of Infected population due to the disease, y is the immunity of vaccinated population.

More assumptions

In order to build a newmodel, we must make assumptions in order to simplify reality. The KermackśMcKendrick model’s primary premise
is that diseased people are likewise contagious. The overall population size remains constant. There are only two types of death in the
population: natural death and death due to the disease. The population is open to accept new individuals fromoutside the existing population.
The infected individuals can be recovered with hospitalization. The parameters of are non-negative and N(t) = S(t) + E(t) + I(t) + V(t) + R(t)
where N(t) stands for the total population at the time t such that t ∈ Ω := [0,T] for T > 0.

2 Equilibrium points and their stability analysis

The diseaseśfree equilibrium point is computed as:

E0 =
(

S0, 0, 0,V0,R0
)

, (3)

where,

S0 =
µ
(

νω + νy +ωy +ω2
)

νω2 +ω2q +ω2y +ω3 ś aνy + νωq + νωy + νqy +ωqy
,

V0 =
aµ(ν +ω)

νω2 +ω2q +ω2y +ω3 ś aνy + νωq + νωy + νqy +ωqy
,

R0 =
aµy

νω2 +ω2q +ω2y +ω3 ś aνy + νωq + νωy + νqy +ωqy
.


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(4)
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The basic reproduction number at the disease-free equilibrium point for the model (2) is computed below:

R0 =
cqS0

(a + c +ω) (a +ω + x + z)
, (5)

where,

S0 =
µ
(

νω + νy +ωy +ω2
)

νω2 +ω2q +ω2y +ω3 ś aνy + νωq + νωy + νqy +ωqy
. (6)

Theorem 1 The COVID-19model at the disease-free equilibriumpoint E0 is locally asymptotically stable if R0 < 1, otherwise unstable.

Proof 1 The Jacobianmatrix of themodel (2) is computed as:

J(E0) =















śa śω 0 śqS0 0 ν

0 śa ś c śω qS0 0 0
0 c śa śω ś x ś z 0 0
a a a śω ś y 0
0 0 x y śν śω















. (7)

After a little simpliőcation using the row reduction process, then thematrix (7) takes the form:

J(E0) =











śaśω 0 śqS0 0 ν

0 śaścśω qS0 0 0
0 0 cqS0ś(a+ω+x+z)(a+c+ω) 0 0
0 0 [a(a+ω)śaqS0](a+c+ω)+qS0a(a+ω) ś(ω+y)(a+ω)(a+c+ω) 0
0 0 x y śνśω











. (8)

Clearly, we get all the eigenvalues such that λ1 = śa ś ω, λ2 = śa ś c ś ω, λ3 = śν ś ω, λ4 = ś(ω + y)(a + ω)(a + c + ω), and
λ5 = cqS0ś(a+ω+ x+ z)(a+ c+ω). Aswe see that the eigenvalues other thanλ5 are negativewhileλ5 < 0 if cqS0ś(a+ω+ x+ z)(a+ c+ω) < 0
implies that cqS0 < (a+ω+x+z)(a+ c+ω) furthermore cqS0/(a+ω+x+z)(a+ c+ω) < 1⇒ R0 < 1. Hence themodel (2) is locally asymptotically
stable around diseaseśfree equilibriumpoint E0 if R0 < 1. This completes the proof.

Theorem 2 The COVID-19model at the disease-endemic equilibriumpoint E∗ is locally asymptotically stable if R0 > 1, otherwise unstable.

Proof 2 The Jacobianmatrix of themodel (2) is computed as:

J(E∗) =















śa śω ś qI∗ 0 śqS∗ 0 ν

qI∗ śa ś c śω qS∗ 0 0
0 c śa śω ś x ś z 0 0
a a a śω ś y 0
0 0 x y śν śω















. (9)

Computing the characteristic equation of Jacobianmatrix (9), such that:

λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5, (10)
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where, the coefőcients are the following:

a1 =
(

3a + c + ν + 5ω + x + y + z + I∗q
)

,

a2 = (2ac + 3aν + 12aω + cν + 4cω + 2ax + 3ay + 2az + cx + cy + cz + 4νω + νx + 4ωx + νy + 4ωy

+ νz + 4ωz + xy + yz + 3a2 + 10ω2 + 2I∗aq + I∗cq ś Scq + I∗νq + 4I∗ωq + Iqx + Iqy + Iqz),

a3 = (a
2c + 3a2ν + 18aω2 + 9a2ω + 6cω2 + a2x + 3a2y + a2z + 6νω2 + 6ω2x

+ 6ω2y + 6ω2z + a3 + 10ω3 + 2acν + 6acω + acx + 2acy + acz + 9aνω + 3cνω + 2aνx

+ 6aωx + 2aνy + 9aωy + 2aνz + cνx + 6aωz + 3cωx + cνy + 3cωy + cνz + 3cωz

+ 2axy + 2ayz + cxy + 3νωx + cyz + 3νωy + 3νωz + νxy + 3ωxy + νyz + 3ωyz + I∗a2q

+ 6I∗ω2q + I∗νqx + 3I∗ωqx + I∗νqy + 3I∗ωqy + I∗νqz

+ 3I∗ωqz + I∗qxy + I∗qyz + I∗acq ś Sacq + 2I∗aνq + 6I∗aωq + I∗cνq

+ 3I∗cωq + I∗aqx + 2I∗aqy + I∗aqz + I∗cqx ś Scνq + I∗cqy ś 3Scωq + I∗cqz + 3I∗νωq ś Scqy),

a4 = (a
3
ν + 12aω3 + 2a3ω + 4cω3 + a3y + 4νω3 + 4ω3x + 4ω3y + 4ω3z + 5ω4

+ 9a2ω2 + a2νx + 6aω2x + 2a2ωx + a2νy + 9aω2y + 6a2ωy + a2νz + 6aω2z + 3cω2x

+ 2a2ωz + 3cω2y + 3cω2z + a2xy + a2yz + 3νω2x + 3νω2y + 3νω2z + 3ω2xy + 3ω2yz

+ 4I∗ω3q + a2cν + 6acω2 + 2a2cω + a2cy + 9aνω2 + 6a2νω + 3cνω2 + 4acνω

+ acνx + 2acωx + acνy + 4acωy + acνz + 2acωz + acxy + 4aνωx + acyz + 4aνωy + 4aνωz + 2cνωx

+ 2cνωy + 2cνωz + aνxy + 4aωxy + aνyz + cνxy + 4aωyz + 2cωxy + cνyz + 2cωyz + 2νωxy

+ 2νωyz + I∗a2νq + 6I∗aω2q + 2I∗a2ωq + 3I∗cω2q + I∗a2qy

ś 3Scω2q + 3I∗νω2q + 3I∗ω2qx + 3I∗ω2qy + 3I∗ω2qz + I∗acνq

+ 2I∗acωq ś Sacνq + I∗acqy ś 2Sacωq + 4I∗aνωq + 2I∗cνωq ś Sacqy + I∗aνqx

+ 2I∗aωqx + I∗aνqy + 4I∗aωqy + I∗aνqz + 2I∗aωqz + 2I∗cωqx + I∗cνqy

ś 2Scνωq + 2I∗cωqy + I∗cνqz + 2I∗cωqz + I∗aqxy + I∗aqyz + I∗cqxy ś Scνqy

ś 2Scωqy + 2I∗νωqx + I∗cqyz + 2I∗νωqy + 2I∗νωqz + I∗νqxy + 2I∗ωqxy + I∗νqyz + 2I∗ωqyz),

a5 = 3aω
4 + cω4 + νω

4 +ω
4x +ω

4y +ω
4z +ω

5 + 3a2ω3 + a3ω2 + 2aω3x + 3aω3y

+ a3ωy + 2aω3z + cω3x + cω3y + cω3z + νω
3x + νω

3y + νω
3z +ω

3xy +ω
3yz

+ a2cω2 + 3a2νω2 + a2ω2x + 3a2ω2y + a2ω2z + I∗ω4q + 2acω3 + 3aνω3 + a3νω + cνω3

+ 2I∗aω3q + I∗cω3q ś Scω3q + I∗νω3q + I∗ω3qx + 2acνω2 + a2cνω + I∗ω3qy

+ I∗ω3qz + acω2x + 2acω2y + a2cωy + acω2z + 2aνω2x + a2νωx + 2aνω2y + a2νωy

+ 2aνω2z + cνω2x + a2νωz + cνω2y + cνω2z + 2aω2xy + a2ωxy + 2aω2yz + cω2xy + a2ωyz

+ cω2yz + νω
2xy + νω

2yz + I∗a2ω2q + acνωx + acνωy + acνωz + acωxy + acωyz + aνωxy

+ aνωyz + cνωxy + cνωyz + I∗acω2q ś Sacω2q + 2I∗aνω2q + I∗a2νωq

+ I∗cνω2q + I∗aω2qx + 2I∗aω2qy + I∗a2ωqy + I∗aω2qz + I∗cω2qx ś Scνω2q

+ I∗cω2qy + I∗cω2qz ś Scω2qy + I∗νω2qx + I∗νω2qy + I∗νω2qz

+ I∗ω2qxy + I∗ω2qyz + I∗acνωq ś Sacνωq + I∗acωqy ś Sacωqy + I∗aνωqx

+ I∗aνωqy + I∗aνωqz + I∗cνωqy + I∗cνωqz + I∗aωqxy + I∗aωqyz

+ I∗cωqxy ś Scνωqy + I∗cνqyz + I∗cωqyz + I∗νωqxy + I∗νωqyz.
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(11)

Apparently, for positive endemic equilibrium point E∗ (S∗,E∗, I∗,V∗,R∗) is locally asymptotically stable [48] if the following inequalities are
satisőed

det1 = a5 > 0, det2 =

∣

∣

∣

∣

∣

∣

∣

a1 1

a3 a2

∣

∣

∣

∣

∣

∣

∣

> 0, det3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 0

a3 a2 a1

0 a4 a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, and det4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2
0 0 a5 a4

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0. (12)

Considering the coefőcients (11) of the characteristic equation (10), the RouthśHurwitz criterion [49] is satisőed because all of the coefőcients are
positive and inequalities (12) are satisőed. As a result, all the eigenvalues are negative or have negative real parts and R0 > 1. Hence, themodel is
locally asymptotically stable around the disease-endemic equilibriumpoint, E∗.

3 Global stability analysis

For the endemic Lyapunov function, {S,E, I,V,R}, L̇ < 0 is the endemic equilibrium E∗.

Theorem 3 [10, 11, 15] If R0 > 1 , the endemic equilibriumpoint E∗ of themodel (2) is globally asymptotically stable otherwise unstable.
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Proof 3 For proof, the Lyapunov function can bewritten as

L
(

S∗,E∗, I∗,V∗,R∗
)

=
(

S ś S∗ ś S∗ log
S∗

S

)

+
(

E ś E∗ ś E∗ log
E∗

E

)

+
(

V ś V∗ ś V∗ log
V∗

V

)

+
(

I ś I∗ ś I∗ log
I∗

I

)

+
(

R ś R∗ ś R∗ log
R∗

R

)

.
(13)

Therefore, applying the derivative respect to t on both sides yields

dL

dt
=
(

S ś S∗

S

)

Ṡ +
(

E ś E∗

E

)

Ė +
(

I ś I∗

I

)

İ +
(

V ś V∗

V

)

V̇ +
(

R ś R∗

R

)

Ṙ, (14)

which implies that

dL

dt
=
(

S ś S∗

S

)

(

µ ś qS(t)I(t) ś (ω + a)S(t) + νR(t)
)

+
(

E ś E∗

E

)

(

qS(t)I(t) ś (c +ω + a)E(t)
)

+
(

I ś I∗

I

)

(

cE(t) ś (a +ω + x + z)I(t)
)

+
(

V ś IV∗

V

)

(

aI(t) ś (ω + y)V(t) + aE(t) + aS(t)
)

+
(

R ś R∗

R

)

(

xI(t) + yV(t) ś (ω + ν)R(t)
)

.


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(15)

Furthermore,

dL

dt
= µ ś

µS∗

S
ś
qI

S
(S ś S∗)2 +

q

S
I∗(S ś S∗)2 ś

(ω + a)
S

(S ś S∗)2 + νR ś νR∗ ś
VS∗R

S
+
VS∗R∗

S

ś
qE∗I∗

E
+ qSI ś qS∗I ś

qE∗I∗S∗

E
ś
(c +ω + a)

E
(E ś E∗)2 +

cI∗E

I
ś
cE∗I∗

I

+ cE ś cE∗ ś (a +ω + x + z)
(I ś I∗)2

I
+ aI ś aI∗ ś

aVI∗

V
ś
aV∗I∗

V
ś (ω + y)

(V ś V∗)2

V

+ aE ś aE∗ ś
aV∗E

V
ś
aE∗V∗

V
.


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(16)

Now, Eq. (16) can bewritten in the form of:

dL

dt
= 𭟋 ś α, (17)

where,

𭟋 = µ +
q

S
I∗(S ś S∗)2 + νR +

VS∗R∗

S
+ qSI +

cI∗E

I
+ cE + aI + aE, (18)

and

α = ś
µS∗

S
ś
qI

S
(S ś S∗)2 ś

(ω + a)
S

(S ś S∗)2 ś νR∗ ś
VS∗R

S

ś
qE∗I∗

E
ś qS∗I ś

qE∗I∗S∗

E
ś
(c +ω + a)

E
(E ś E∗)2 ś

cE∗I∗

I

ś cE∗ ś (a +ω + x + z)
(I ś I∗)2

I
ś aI∗ ś

aVI∗

V
ś
aV∗I∗

V

ś (ω + y)
(V ś V∗)2

V
ś aE∗ ś

aV∗E

V
ś
aE∗V∗

V
.


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Eventually, if𭟋 < α then dL
dt
< 0while using S = S∗, E = E∗, I = I∗, V = V∗, and R = R∗,0 = 𭟋śα implies that dL

dt
= 0.Also, for the suggestedmodel

(2)we are looking the largest compact invariant set
{

(S∗,E∗, I∗,V∗,R∗) ∈ Ω : dL
dt
= 0

}

is the endemic equilibrium point E∗ = (S∗, E∗, I∗, V∗,R∗)

of the consideredmodel. Thus, themodel (2) is stable inΩ if R0 > 1 and𭟋 < α.

4 Homotopy perturbationmethod

Consider a general type problem given by

A(µ) ś f(r) = 0, r ∈ Ω, (20)
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with the boundary conditions as

β

(

µ,
∂µ

∂n

)

= 0, r ∈ Γ , (21)

where A is a general differential operator,β is a boundary operator, f(r) is a known analytic function, and Γ is the boundary of the domain
Ω. The operator A is divided into linear part L and nonlinear partN. Therefore, (20) can be written as

L(µ) + N(u) ś f(r) = 0. (22)

By HPM, we can construct a homotopy as

v(r, s) :Ω × [0, 1]→ R, (23)

satisfying

H(v, s) = (1 ś s)[L(v) ś L(µ)] + s[A(v ś f(r))] = 0, (24)

which is also equivalent to

H(v, s) = L(v) ś L (µ0) + sL (v0) + s[N(v) ś f(r)] = 0, (25)

where s ∈ [0; 1] is an embedding parameter, andµ0 is the initial approximation of the given equation that satisőes the boundary conditions;
we have

H(v, 0) = L(v) ś L (µ0) = 0,

H(v, 1) = A(v) ś f(r) = 0.
(26)

Keeping these points, we construct the required solution to equation (22) as

v = v0 + s
1v1 + s

2v2 + s
3v3 + · · · . (27)

Furthermore, by taking the limit as p→ 1 in the approximation equation (27), one has

lim
s→1

v = lim
s→1

v0 + s
1v1 + s

2v2 + s
3v3 + · · · , (28)

which yields

v = v0 + v1 + v2 + v3 + · · · . (29)

Equation (29) represents the semianalytic solution of the problem equation (20).

5 Approximate solution of the proposed COVID-19model

Applying homotopy on the model (2)

DS(t) śDS(0) = s[µ ś qS(t)I(t) ś (ω + a)S(t) + νR(t)],

DE(t) śDE(0) = s[qS(t)I(t) ś (c +ω + a)E(t)],

DI(t) śDI(0) = s[cE(t) ś (a +ω + x + z)I(t)],

DV(t) śDV(0) = s[aI(t) ś (ω + y)V(t) + aE(t) + aS(t)],

DR(t) śDR(0) = s[xI(t) + yV(t) ś (ω + ν)R(t)].
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(30)

Assume series solution to the model (2), such that

S(t) = S(0) + sS1(t) + s
2S2(t) + s

3S3(t) + · · · ,

E(t) = E(0) + sE1(t) + s
2E2(t) + s

3E3(t) + · · · ,

I(t) = I(0) + sI1(t) + s
2I2(t) + s

3I3(t) + · · · ,

V(t) = V(0) + sV1(t) + s
2V2(t) + s

3V3(t) + · · · ,

R(t) = R(0) + sR1(t) + s
2R2(t) + s

3R3(t) + · · · .
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Now by comparison we get s0, s1, s2, · · · by using system of equations (31) in (30), we have:
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Zeroth-order problem

s0 := DS(0) = DS0,

s0 := DE(0) = DE0,

s0 := DI(0) = DI0,

s0 := DV(0) = DV0,

s0 := DR(0) = DR0.
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First-order problem

s1 := DS1 = µ ś qS(0)I(0) ś (ω + a)S(0) + νR(0),

s1 := DE1 = qS(0)I(0) ś (c +ω + a)E(0),

s1 := DI1 = cE(0) ś (a +ω + x + z)I(0),

s1 := DV1 = aI(0) ś (ω + y)V(0) + aE(0) + aS(0),

s1 := DR1 = xI(0) + yV(0) ś (ω + ν)R(0).
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Second-order problem

s2 := DS2 = śqS1(t)I1(t) ś (ω + a)S1(t) + νR1(t),

s2 := DE2 = qS1(t)I1(t) ś (c +ω + a)E1(t),

s2 := DI2 = cE1(t) ś (a +ω + x + z)I1(t),

s2 := DV2 = aI1(t) ś (ω + y)V1(t) + aE1(t) + aS1(t),

s2 := DR2 = xI1(t) + yV1(t) ś (ω + ν)R1(t).











































(34)

Third-order problem

s3 := DS3 = śqS2(t)I2(t) ś (ω + a)S2(t) + νR2(t),

s3 := DE3 = qS2(t)I2(t) ś (c +ω + a)E2(t),

s3 := DI3 = cE2(t) ś (a +ω + x + z)I2(t),

s3 := DV3 = aI2(t) ś (ω + y)V2(t) + aE2(t) + aS2(t),

s3 := DR3 = xI2(t) + yV2(t) ś (ω + ν)R2(t).

...
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nth-order problem

s(n+1) := DS(n+1) = śqS(n)(t)I(n)(t) ś (ω + a)S(n)(t) + νR(n)(t),

s(n+1) := DE(n+1) = qS(n)(t)I(n)(t) ś (c +ω + a)E(n)(t),

s(n+1) := DI(n+1) = cE(n)(t) ś (a +ω + x + z)I(n)(t),

s(n+1) := DV(n+1) = aI(n)(t) ś (ω + y)V(n)(t) + aE(n)(t) + aS(n)(t),

s(n+1) := DR(n+1) = xI(n)(t) + yV(n)(t) ś (ω + ν)R(n)(t).
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











































(36)

Next, system of equations (33) becomes:

S1(t) = (µ ś qS0I0 ś (ω + a)S0 + νR0)t,

E1(t) = (qS0I0 ś (c +ω + a)E0)t,

I1(t) = (cE0 ś (a +ω + x + z)I0)t,

V1(t) = (aI0 ś (ω + y)V0 + aE0 + aS0)t,

R1(t) = (xI0 + yV0 ś (ω + ν)R0)t.







































(37)
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Next, system of equations (34) becomes:

S2(t) = (śq(E0c ś I0(a +ω + x + z))(µ + R0ν ś S0(a +ω) ś I0S0q))t
3

+ (ν(I0x + V0y ś R0(ν +ω)) ś (a +ω)(µ + R0ν ś S0(a +ω) ś I0S0q))t
2,

E2(t) = (q(E0c ś I0(a +ω + x + z))(µ + R0ν ś S0(a +ω) ś I0S0q))t
3

+ ((E0(a + c +ω) ś I0S0q)(a + c +ω))t2,

I2(t) = (ś(E0c ś I0(a +ω + x + z))(a +ω + x + z) ś c(E0(a + c +ω) ś I0S0q))t
2,

V2(t) = (a(E0c ś I0(a +ω + x + z)) ś a(E0(a + c +ω) ś I0S0q) ś (ω + y)(E0a

+ I0a + S0a ś V0(ω + y)) + a(µ + R0ν ś S0(a +ω) ś I0S0q))t
2,

R2(t) = (x(E0c ś I0(a +ω + x + z)) ś (ν +ω)(I0x + V0y ś R0(ν +ω))

+ y(E0a + I0a + S0a ś V0(ω + y)))t2.



























































































(38)

Next, system of equations (35) becomes:

S3(t) = (śq
2
α5α2α3)t

6 + (qα1α2)t
5 + (q(a +ω)α5α3)t

4 + (ν(xα5 ś (ν +ω)α4

+ y(E0a + I0a + S0a ś V0(ω + y))) ś (a +ω)α1)t
3,







(39)

where,

α1 = να4 ś (a +ω)α3,

α2 = α5(a +ω + x + z) + c(E0(a + c +ω) ś I0S0q),

α3 = µ + R0ν ś S0(a +ω) ś I0S0q,

α4 = I0x + V0y ś R0(ν +ω),

α5 = E0c ś I0(a +ω + x + z).







































(40)

E3(t) = (q
2
κ3κ2κ1)t

6 + (śq(ν(I0x + V0y ś R0(ν +ω)) ś (a +ω)κ1)κ2)t
5

+ (śqκ3(a + c +ω)κ1)t
4 + (śκ4(a + c +ω)2)t3,

(41)

where,

κ1 = µ + R0ν ś S0(a +ω) ś I0S0q,

κ2 = κ3(a +ω + x + z) + cκ4,

κ3 = E0c ś I0(a +ω + x + z),

κ4 = E0(a + c +ω) ś I0S0q.



























(42)

I3(t) = (cqτ2(µ + R0ν ś S0(a +ω) ś I0S0q))t
4 + ((τ2(a +ω + x + z) + cτ1)(a +ω + x + z) + cτ1(a + c +ω))t3, (43)

where,

τ1 = E0(a + c +ω) ś I0S0q,

τ2 = E0c ś I0(a +ω + x + z).
(44)

V3(t) = (a(ν(I0x + V0y ś R0(ν +ω)) ś (a +ω)φ2) ś a(φ3(a +ω + x + z) + cφ1)

+ (ω + y)((ω + y)(E0a + I0a + S0a ś V0(ω + y)) + aφ1 ś aφ3 ś aφ2) + aφ1(a + c +ω))t3,
(45)

where,

φ1 = E0(a + c +ω) ś I0S0q,

φ2 = µ + R0ν ś S0(a +ω) ś I0S0q,

φ3 = E0c ś I0(a +ω + x + z).















(46)

R3(t) = (śy((ω + y)σ2 + aσ3 ś aσ1 ś a(µ + R0ν ś S0(a +ω) ś I0S0q)) ś (ν +ω)(xσ1

ś (ν +ω)(I0x + V0y ś R0(ν +ω)) + yσ2) ś x(σ1(a +ω + x + z) + cσ3))t
3,

(47)
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where,

σ1 = E0c ś I0(a +ω + x + z),

σ2 = E0a + I0a + S0a ś V0(ω + y),

σ3 = E0(a + c +ω) ś I0S0q.















(48)

The resultant solution to model (2) is obtained as:

S(t) = (śq2α5α2α3)t
6 + (qα1α2)t

5 + (q(a +ω)α5α3)t
4 + (ν(xα5 ś (ν +ω)α4

+ y(E0a + I0a + S0a ś V0(ω + y))) ś (a +ω)α1 ś qα5α3)t
3 + α1t

2 + α3t + S0,

E(t) = (q2κ3κ2κ1)t
6 + (śq(ν(I0x + V0y ś R0(ν +ω)) ś (a +ω)κ1)κ2)t

5 + (śqκ3(a + c +ω)κ1)t
4

+ (qκ3κ1 ś κ4(a + c +ω)2)t3 + (κ4(a + c +ω))t2 + (I0S0q ś κ5)t + E0,

I(t) = (cqτ1(µ + R0ν ś S0(a +ω) ś I0S0q))t
4 + ((τ1(a +ω + x + z) + cτ2)(a +ω + x + z)

+ cτ2(a + c +ω))t3 + (śτ1(a +ω + x + z) ś cτ2)t
2 + τ1t + I0,

V(t) = (a(ν(I0x + V0y ś R0(ν +ω)) ś (a +ω)φ3) ś a(φ4(a +ω + x + z) + cφ1)

+ (ω + y)((ω + y)φ2 + aφ1 ś aφ4 ś aφ3) + aφ1(a + c +ω))t3 + (aφ4 ś aφ1

ś (ω + y)φ2 + aφ3)t
2 +φ2t + V0,

R(t) = (śy((ω + y)σ4 + aσ1 ś aσ3 ś a(µ + R0ν ś S0(a +ω) ś I0S0q)) ś (ν +ω)σ2

ś x(σ3(a +ω + x + z) + cσ1))t
3 + σ2t

2 + σ5t + R0.























































































































(49)

Furthermore, we present the following plots based on solution (49) in the graphical justiőcation such that:
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Figure 9. The plot shows the numerical simulation of susceptible human population, S(t).
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Figure 10. The plot shows the numerical simulation of exposed human population, E(t).
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Figure 11. The plot shows the numerical simulation of infected human population, I(t).
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Figure 12. The plot shows the numerical simulation of vaccinated human population, V(t).
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Figure 13. The plot shows the numerical simulation of recovered human population, R(t).
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Figure 14. The plot shows the numerical simulation of susceptible human population, R(t) with asymptotic stability graphically.
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Figure 15. The plot shows the numerical simulation of exposed human population, E(t) with asymptotic stability graphically.
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Figure 16. The plot shows the numerical simulation of infected human population, I(t) with asymptotic stability graphically.
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Figure 17. The plot shows the numerical simulation of vaccinated human population, V(t) with asymptotic stability graphically.
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Figure 18. The plot shows the numerical simulation of recovered human population, R(t) with asymptotic stability graphically.
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Table 1. Table of description and initial condition of compartment of population

Symbol of Compartment Description of Compartment Initial Condition

S(t) Susceptible Human Population N ś (E + I + V + R)
E(t) Exposed Human Population 10
I(t) Infected Human Population 20
V(t) Vaccinated Human Population 30
R(t) Recovered Human Population 0
N Total Population 200

Table 2. Table of description and values of parameters

Symbol Description of Parameter Unit Value

ω Natural Death Rate dayś1 1
67.7×365

µ Recruitment Rate dayś1 ω × N

q Transmission rate dayś1 0.2784
a Vaccination Rate dayś1 0.5
ν Lose of Immunity in Recovered Population dayś1 0.1
c Rate of Infection of Exposed Population dayś1 0.23
x Recovery Rate of Infected Population dayś1 0.05
y Recovery Rate of Vaccinated Population dayś1 0.15
z Death Rate of Infected Population due to COVIDś19 Infection dayś1 0.32

6 Results and discussion

We discuss the outcomes of the stability analysis of COVIDś19 at both disease-free and endemic equilibrium points, the spread of the
infection is asymptotically stable locally and globally under certain conditions such that𭟋 < α. For global stability analysis the Lyapunov
function is used at disease free and endemic equilibrium points. The Lyapunov function is negative is𭟋 < α so it means that the spread of
infection will be stable and will not be spread in the population so it cannot lead to a pandemic. After the recent invention of the vaccination,
we implemented the vaccinated individuals compartment V(t) also the Figure (12) which is the graphical behaviour. We discuss the
outcomes of the Homotopy Perturbation Method by applying it to the COVIDś19model, (2). In Figure (9), the dynamics of susceptible
human population ion has been shown in which the population decreases with time due to the large transmission b and vaccination a
rates. In Figure (10), the plot shows the dynamics of the Exposed Human population in which the population increased in the őrst week
while then decreased asymptotically. In Figure (11), in the őrst two weeks, the prevalence increased due to the higher rate of transmission
and infectivity, and then the disease disappeared from the population thus the prevalence decreasing to zero. In Figures (12) and (13),
the dynamics of the Vaccinated and Recovered populations have been shown. While the Figures (14), (15), (16), (17), and (18) give the
asymptotically stable behaviour of Susceptible, Exposed, Infected, Vaccinated, and Recovered Populations, respectively by varying the
initial conditions for each class of the model (2).

7 Conclusion

In this paper, we studied the stability of the COVIDś19model which is locally and globally asymptotically stable around the disease-free and
endemic equilibrium points by having negative eigenvalues at both disease-free and endemic equilibrium points satisfying RouthśHurwitz
criterion. Global stability is investigated with the help of Lyapunov function. The disease is locally asymptotically stable at diseaseśfree
equilibrium point if R0 < 1 while unstable if R0 > 1 likewise, at endemicśequilibrium point ifR0 > 1 while unstable if R0 < 1. Looking for the
behaviour of the vaccination in population, it has a positive impact on population and ability to protect the population from reśinfection and
future pandemics. Individual vaccination, rapid diagnosis, and possibly early treatment are the most effective ways to prevent coronavirus
infection in the community. As is generally known, the COVID-19 infection has caused signiőcant damage to human society, with many
developing countries experiencing signiőcant őnancial losses. As a result, adequate individual vaccines and infection control should be
a priority for less developed countries in order to sustain their populations and economies. On analyzing the semi-analytic solution of
the COVIDś19models using the homotopy perturbationmethod, we have obtained that the homotopy perturbationmethod is efőcient,
powerful, and more accurate and is capable of obtaining a semi-analytic solution that is both linear and nonślinear as well. This method
can be applied to ordinary differential equations in integer-order and fractional orders too, partial differential equations, and boundary
value problems. The said method can be applied to the system ofmany differential equations and higher-order problems. In all scenarios,
the solution can be obtained semi-analytically andmore accurately.
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Abstract

In this article, a mathematical model of the COVID-19 pandemic with control parameters is introduced. The main objective of this
study is to determine the most effective model for predicting the transmission dynamic of COVID-19 using a deterministic model
with control variables. For this purpose, we introduce three control variables to reduce the number of infected and asymptomatic
or undiagnosed populations in the considered model. Existence and necessary optimal conditions are also established. The
Grünwald-Letnikov non-standardweighted average őnite differencemethod (GL-NWAFDM) is developed for solving the proposed
optimal control system. Further, we prove the stability of the considered numerical method. Graphical representations and analysis
are presented to verify the theoretical results.

Key words: Caputo fractional derivative; optimal control strategy; Grünwald-Letnikov numerical method; stability analysis
AMS 2020 Classiőcation: 92B05; 49K10; 49J15; 65L03; 65L20

1 Introduction

COVID-19 pandemic can be considered as a dangerous infectious disease in the whole world, see [1]. It is transmitted to humans primarily
through tiny droplets, or contact with contaminated surfaces. Mathematical modelling of epidemic diseases is very helpful for control
strategies to a disease. Recently, a number of interesting papers have been developed regarding the modelling of the coronavirus, see for
example [2, 3, 4, 5, 6, 7, 8, 9].
It has recently come to light that Fractional Differential Equations (FDE) can be successfully applied in mathematical modelling in various
őelds, including epidemics [10]. Fractional Calculus (FC) is a branch of mathematical analysis that deals with the study of fractional-order
of derivatives and integral. A dynamical system using fractional-order derivative (FOD) in modeling helps deőne efőciency, usefulness,
andmemory as essential properties in many biological mechanisms [11, 12, 13, 14, 15, 16].
Optimal control (OC) theory is a branch of mathematical optimization. It involves investigating the control strategies for a dynamic
system in a short time, such as minimizing or maximizing an objective function. Recently, OC theory has been used successfully in many
őelds, including robotics, aerospace, economics, őnance, andmanagement sciences [17, 18, 19]. Especially, the study of epidemiological
models is closely related to the study of OC, as vaccination [20], resource allocation [21] and educational campaigns [22]. Caputo and
RiemannśLiouville fractional derivatives [23, 24, 25, 26, 27] are themost important deőnitions of FD. Al-Mekhlaő and Sweilam established
important numerical results for FOC [28, 29, 30].
An important contribution to this work is the development of numerical schemes providing approximate solutions for the fractional-order
control problems (FOCPs). We discuss the COVID-19 model in [31] with changed fractional operator and parameters. This model was
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modiőed with three controlsUl,Uq, andUs, to decrease the number of the infected, quarantine, and self-isolation. Finally, the numerical
simulation is represented in the proposed system.

2 Basic deőnitions

Deőnition 1 Wedeőne the Caputo fractional order derivative of the functionP(t) [32]:

c
0Dα
t [P(t)] =

1
Γ(K ś α)

∫ t

0
(t ś η)K śαś1P(t)(K )(η)dη, (1)

where,K = [α] + 1 and [α] represents the integral parts ofα.

Deőnition 2 The discretization of Fractional derivative by the GrünwaldśLetnikov approach [33]

c
0Dα
t [P(t)] |t=tK =

1
∆tα



PK +1 ś
K +1∑

i=1

UiPK +1śi ś YK +1P0



 , (2)

where,K = 1, 2, ...,NK , and the coordinate of eachmesh point is tK = K ∆t,∆t =
Tf

NK
,Ui = (ś1)

iś1
(

α

i

)

,U1 = α,Yi =
iα

Γ(1śα)
and

i = 1, 2, 3, ...,K + 1.

Additionally, Let us assume that 0 < Ui+1 < Ui < ... < U1 = α < 1, 0 < Yi+1 < Yi < ... < Y1 = 1
Γ(1śα)

.

Deőnition 3 Let a functionP : R+ → R, the fractional integral is deőned by

0Iα
t P(t) =

1
Γ(α)

∫ t

0
(t ś η)αś1P(η)dη,

where,K = [α] + 1 and [α] represents the integral parts ofα.

3 Mathematical model formulation

In this section, we discuss the mathematical model that consists of four compartments of the population which includes susceptible
individuals S, asymptomatic infectious I, unreported symptomatic infectious U, and reported symptomatic infectious R. This model was
developed in [31]. Wemodiőed the model with control variables and then represented it by a system of Caputo fractional derivative:



























c
0Dα
t [S] = ś

(

1 śUl
)

J (t)S(t)
[

I(t) + U(t)
]

śUqS +UsU,
c
0Dα
t [I] =

(

1 śUl
)

J (t)S(t)
[

I(t) + U(t)
]

śβI(t),
c
0Dα
t [R] = β1I(t) ś µR(t) +UqS,

c
0Dα
t [U] = β2I(t) ś µU(t) śUsU,

(3)

with the initial conditions S(t0) = S0, I(t0) = I0,R(t0) = 0,U(t0) ≥ 0, where the functionUs,Uq,Ul, are self isolation strategies, quarantine
and states lock down, respectively. Table 1 represents the variables and Table 2 shows the descriptions of the model parameters.

Table 1. The variables of system (3)

Variable Interpretation
S Susceptible individuals
I Asymptomatic Infection population
R Reported symptomatic infected population
U Unreported symptomatic infected population

Table 2. The parameters of system (3)

Parameter Biological interpretations
t0 The time when the epidemic began
S0 Number of susceptible individuals at time t0
I0 Number of infected individuals at time t0
U0 Number of unreported individuates at time t0
R0 Number of reported individuates at time t0
J Rate of transmission at time t0
1
β

Represents the average time during which asymptomatic infectious become asymptomatic

β1 Rate at which asymptomatic infectious become reported symptomatic
β2 Rate at which asymptomatic infectious become unreported symptomatic
1
µ

Average time symptomatic infectious have symptoms
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We follow the basic reproduction number (R0) of the model (3) is given in [31].

R0 =
(

J0S0
β1 +β2

)(

1 +
β2
µ

)

=
J0S0(µ +β2)
µ(β1 +β2)

. (4)

The disease will decrease ifR0 < 1. The disease will spread ifR0 > 1 because every infection causes more than one new infection, see [31].
In this study, we considerR0 > 1.

4 Existence of the optimal control problem

In this section, we apply the optimal control theory to maximise the number of recovering people while lowering the number of infected
individuals at the lowest possible cost and with the fewest possible unreported symptomatic infected population. Finally, we compute the
numerical solution of the system and discuss the best control techniques using GL-NWAFDM.

Theorem 1 We consider the optimal control system (3). There exists an OC
(

U ∗
l
,U ∗
q ,U

∗
s

)

∈ U such as

J
(

U ∗
l ,U

∗
q ,U

∗
s

)

= min
Ul,Uq,Us

∈U
J
(

Ul,Uq,Us
)

. (5)

Proof 1 The existence of the OC can be investigated by using a result in [34]. The existence of the optimal control problem can be accomplished by

checking the following steps:

i. The corresponding state variables and the set of controls are nonempty. For this, we use a derived result of an existence in [35] to
prove that the state variables and set of controls are nonempty. LetY

′

j = FXi
(t,Y1,Y2,Y3,Y4), where (Y1,Y2,Y3,Y4) = (S, I,U,R). Let

Ul,Uq and Us for some constants and Y1,Y2,Y3 and Y4 are continuous, thenFS,FI,FU and FR are also continuous. Therefore, the state
variables and set of controls are nonempty.
ii. Next, the control space U =

{

(Ul,Uq,Us)/(Ul,Uq,Us) is measurable, 0 ≤ Umin ≤ Ul ≤ Umax ≤ 1, 0 ≤ Umin ≤ Uq ≤ Umax ≤ 1,and

0 ≤ Umin ≤ Us ≤ Umax ≤ 1, t ∈ [0,Tf ś 1]
}

is closed and convex.

iii. The right hand sides of the problem equations are bounded above by a sum of bounded state and controls and can be written as a
linear function ofUl,Uq andUs.

iv. The integrand in the objective functional, I(t) + U(t) +
η1U

2
l
(t)

2 +
η2U

2
q (t)
2 + η3U

2
s (t)
2 is convex on U .

v. Finally, we show that there exists constantsγ1,γ2,γ3,γ4 andγ such that I(t)+U(t)+
η1U

2
l
(t)

2 +
η2U

2
q (t)
2 + η3U

2
s (t)
2 satisőes I(t)+U(t)+

η1U
2
l
(t)

2 +
η2U

2
q (t)
2 + η3U

2
s (t)
2 ≥ γ1 + γ2

∣

∣Ul

∣

∣

γ + γ3
∣

∣Uq
∣

∣

γ + γ4 |Us|
γ. The state variables bounded, letγ1 = inft∈[0,Tf ]

(

I(t) + U(t)
)

,γ2 =

η1
2 ,γ3 =

η2
2 ,γ4 =

η3
2 and γ = 2 then it follows I(t) + U(t) +

η1U
2
l
(t)

2 +
η2U

2
q (t)
2 + η3U

2
s (t)
2 ≥ γ1 + γ2

∣

∣Ul

∣

∣

γ + γ3
∣

∣Uq
∣

∣

γ + γ4 |Us|
γ .

Hence, from Fleming et al. [34], the results indicate that there is an optimal control. Now, let system (3) inR
6

U =
{

(Ul(.),Uq(.),Us(.)), 0 ≤ Ul(.),Uq(.),Us(.) ≤ 1, ∀t ∈ [0,Tf ]
}

,

whereUl,Uq,Us are Lebesgue measurable on [0, 1]. We deőne the objective functional as:

J (Ul,Uq,Us) =

Tf∫

0

(

I(t) + U(t) +
η1U

2
l
(t)

2
+

η2U
2
q (t)

2
+

η3U
2
s (t)
2

)

dt. (6)

The next step is to evaluateUl,Uq,Us as:

J (Ul,Uq,Us) =

Tf∫

0

F(S, I,R,U,Ul,Uq,Us, t)dt (7)

is minimum, subject to restrictions

c
0D

α
t Wj = χi, (8)

where

χi = χi(S, I,R,U,Ul,Uq,Us, t), i = 1, ..., 4,

Wj = {S, I,R,U, j = 1, ..., 4},

and the initial conditions satisfying

W1(t0) = S0, W2(t0) = I0, W3(t0) = R0, W4(t0) = U0.
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We use the fractional order case of the Pontryaginmaximum principle, this fractional form is given by Agrawal in [26]. Functional modiőed
as:

ś
J =

Tf∫

0

[

H
(

S, I,R,U,Ul,Uq,Us, t
)

ś
4∑

i=1

Biχi
(

S, I,R,U,Ul,Uq,Us, t
)



 dt. (9)

We deőne the Hamiltonian as:

H
(

S, I,R,U,Ul,Uq,Us, t
)

= F
(

S, I,R,U,Ul,Uq,Us,Bi, t
)

+
4∑

i=1

Biχi
(

S, I,R,U,Ul,Uq,Us, t
)

. (10)

We have got the necessary conditions from (9) and (10):

c
0D

α
t Bi =

∂H

∂Mi
, i = 1, ..., 4, (11)

whereMi = {S, I,R,U,Ul,Uq,Us,Bi, t, i = 1, ..., 4},

0 =
∂H

∂UK

, K = l, q, s, (12)

c
0D

α
t Mi =

∂H

∂Bi
, i = 1, ..., 4, (13)

with

Bi(Tf ) = 0, i = 1, ..., 4. (14)

For more information, see [36].

Theorem 2 The optimal control variablesUl,Uq,Us, with the corresponding solutions S
∗, I∗,R∗,U∗ thatminimizeJ (Ul,Uq,Us).There are

also adjacent variablesBi, i = 1, ..., 4 satisfying the following:

• Adjoint equations:

c
0Dα
t [B1] = ś

((

1 śU ∗
l

)

J
[

I
∗ + U

∗]) (B1 +B2) śB1U
∗
q śB3U

∗
q , (15)

c
0Dα
t ]B2] = ś1 +

(

1 śU ∗
l

)

J S
∗ (B1 śB2) +B2β śB3β1 śB4β2, (16)

c
0Dα
t [B3] = B3µ, (17)

c
0Dα
t [B4] = ś1 +

(

1 śU ∗
l

)

J S
∗ (B1 śB2) śU ∗

s B1 +B4
(

µ śU ∗
s
)

. (18)

• The transversality conditions:

Bi(Tf ) = 0, i = 1, ..., 4. (19)

• Optimality conditions:

H
(

S, I,R,U,Ul,Uq,Us,Bi, t
)

= min
0≤Up,Uap,Ucp≤1

H
(

S, I,R,U,Ul,Uq,Us,Bi, t
)

. (20)

Further,

Ul = min

{

1,max

{

0,
J S

∗
[

I
∗ + U

∗
]

(B1 śB2)
η1

}}

, (21)

Uq = min

{

1,max

{

0,
S
∗
(

B1 śB3
)

η2

}}

, (22)

Us = min

{

1,max

{

0,
U
∗
(

B4 śB2
)

η3

}}

. (23)
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Proof 2 Eq. (15) to Eq. (19) can be obtained from (11), where

H
∗ = B1

c
0Dα
t S

∗ +B2
c
0Dα
t I

∗ +B3
c
0Dα
t R

∗ +B4
c
0Dα
t U

∗ + I
∗ + R

∗ + U
∗ +

η1U
2
l
(t)

2
+

η2U
2
q (t)

2
+

η3U
2
s (t)
2

is the Hamiltonian. The conditionsBi(Tf ) = 0, i = 1, ..., 4, hold. Now, using Eq. (20), we claim Eq. (21) to Eq. (23). Now, the state equations derived:

c
0Dα
t [S] = ś

(

1 śU ∗
l

)

J (t)S∗(t)
[

I
∗(t) + U

∗(t)
]

śU ∗
q S

∗ +U ∗
s U

∗, (24)
c
0Dα
t [I] =

(

1 śU ∗
l

)

J (t)S(t)∗
[

I
∗(t) + U

∗(t)
]

śβI
∗(t), (25)

c
0Dα
t [R] =β1I

∗(t) ś µR
∗(t) +U ∗

q S
∗, (26)

c
0Dα
t [U] =β2I

∗(t) ś µU
∗(t) śU ∗

s U
∗. (27)

5 Procedure for solving control system

In this part of the paper, we develop a numerical scheme called GL-NWAFDM. Several results about this numerical scheme were discussed
in [37, 38, 39]. The stability and efőciency of this method depend on the weight factor 0 ≤ Ω ≤ 1. Before, applying the GL-NWAFDM to the
consider model, we őrst discrete the Caputo fractional derivative (2) by replacing△t byΨ(t), where

Ψ(△t) = △(t) + O(△(t)2), 0 < Ψ(△t) < 1, △(t)→ 0.

Then, the discretization for equations (24) to (27), whereK = 0, 1, 2, ...,N , using GL-NWAFDM can be written as

S
K +1∗ ś

K +1∑

i=1

µiS
K +1śi∗ ś YK +1S

0∗ = ΩΨ(△t)α
(

ś
(

1 śU ∗
l

)

J S
K +1∗

[

I
K +1∗ + U

K +1∗
]

śU K +1∗
q S

K +1∗ +U K +1∗
s U

K +1∗
)

+ (1 śΩ)Ψ(△t)α
(

ś
(

1 śU K ∗
l

)

J S
K ∗

[

I
K ∗ + U

K ∗
]

+
(

śU K ∗
q S

K ∗ +U K ∗
s U

K ∗
))

,

I
K +1∗ ś

K +1∗∑

i=1

uiI
K +1śi∗ ś YK +1I

0∗ = ΩΨ(△t)α
((

1 śU K +1∗
l

)

J S
K +1∗

[

I
K +1∗ + U

K +1∗
]

śβI
K +1∗

)

+ (1 śΩ)Ψ(△t)α
((

1 śU K ∗
l

)

J S
K ∗

[

I
K ∗ + U

K ∗
]

śβI
K ∗

)

,

R
K +1∗ ś

K +1∑

i=1

uiR
K +1śi∗ ś YK +11R

0∗ = ΩΨ(△t)α
(

β1I
K +1∗ ś µR

K +1∗ +U K +1∗
q S

K +1∗
)

+ (1 śΩ)Ψ(△t)α
(

β1I
K ∗ ś µR

K ∗ +U K ∗
q S

K ∗
)

,

U
K +1∗ ś

K +1∑

i=1

uiU
K +1śi∗ ś YK +1U

0∗ = ΩΨ(△t)α
(

β2I
K +1∗ ś µU

K +1∗ śU K +1∗
s U

K +1∗
)

+ (1 śΩ)Ψ(△t)α
(

β2I
K ∗ ś µU

K ∗ śU K ∗
s U

K ∗
)

.

We observe that this method is partially implicit forΩ ∈ [0, 1] and fully implicit forΩ = 1 and explicit whenΩ = 0.

6 Stability of the developed numerical scheme

This section is devoted to describe that the GL-NWAFDM is unconditionally stable in implicit cases (0 < Ω < 1). The stability of the
numerical scheme is checked when (Ω ̸= 0), for this need, we take the test problem of the linear fractional differential equation:

c
0Dα
t X (t) = PX (t)t > 0, 0 < α ≤ 1,P < 0. (28)

Let the approximate solution of this equation isX (tK ) = XK = ZK , then applying the GL-NWAFDM, we rewrite Eq. (28) as

Z K +1 ś
K +1∑

i=1

µiZ
K +1śi ś YK +1Z

0 = Ψ(△t)α
(

ΩPZ K +1 + (1 śΨ) PZ K
)

.

Then, we have

Z K +1 =
1

(

1 śΨ(△t)αΩP
)





K +1∑

i=1

µiZ
K +1śi + YK +1Z

0 + (1 śΨ)Ω(△t)αPZ K



 , K ≥ 1,

we have 1
(1śΨ(△t)αΩP)

< 1, therefore,Z 1 ≤ Z 0, Z K +1 ≤ Z K ≤ Z K ś1 ≤ ... ≤ Z 0. Hence, the proposed numerical method is stable.
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7 Graphical representation and discussion

In this part of the paper, we have presented the graphical representation of the system (3) with and without control variables. Gl-NWAFDM
is used in the previous section to get the approximate solution of the modiőed model with the given initial conditions and parameters
values: S(0) = 100, I(0) = 900, R(0) = 100, U(0) = 900 and different values of fractional parameter withβ1 = 0.98,β2 = 0.87, µ = 0.432,
F = 0.218 andβ = 0.098.
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Figure 1. Simulations of I,R,and U atα = 0.85 with and without controls
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Figure 2. Numerical simulations of optimal control systemwithΩ = 10.23 forα = 0.90, 0.80, 0.70 and 0.60.
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Figure 3. Numerical simulations of optimal control systemwithΩ = 11.32 forα = 0.90, 0.80, 0.70 and 0.60.

These őgures show the efőciency and effectiveness of three control variables for the COVID-19 model. We have noted that the results
obtained ifΩ = 11.32 were fully implicit. Moreover, for the control case best result is given atα = 0.6. The dynamic of the solutions in the
control case is shown in Figs. 2 and 3 by using various values ofα and Th. These őgures show that the approximate solutions of S, I, R, U are
unconditionally stable atΩ = 11.32. Fig. 3 shows that the peak values of each infected category of the population decreases signiőcantly
when fractional order decreases. U (Un-reported infected) starts with a decreasing slope and later changes the peak butwith a small number
of infected individuals. This describes that these classes can have a huge impact on the development of the reported infected graph.
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Figure 4. Numerical simulations of Iwith respect to S, R, and Uwith three controls variables forα = 0.90, 0.80, 0.70 and 0.60.



Haq et al. | 115

8 Conclusion

In this work, we have presented a novel coronavirus model with the combination of optimal control and fractional-order derivatives to
increase the model complexity and to improve the model dynamics. We have added three control variables to health care such as,Uq,Us,
Ul, (Quarantine, Self isolation, Lockdown). These OC variables have been used to decrease the number of the asymptotically infected and
unreported infected as we can see in Figs. 2 and 3. For this need, we have derived the necessary optimality conditions. GL-NWAFDM has
been developed to obtain the approximate solution of the proposed model. This numerical method depends on the values of the factor
ω. Further, we have also proved the stability of the Gl-NWAFDM. Finally, graphical representations have been presented to support our
theoretical results. We have concluded that the fractional optimality systems can be solved effectively by using the Gl-NWAFDM.
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Abstract

Themain objective of this work is to introduce and deőne the concept of sśtypemśpreinvex function and derive the new sort of
HermiteśHadamard inequality via the newly discussed idea. Furthermore, to enhance the quality of paper, we prove two new
lemmas and we attain some extensions of HermiteśHadamard-type inequality in the manner of newly explored deőnition for
these lemmas. The concepts and tools of this paper may invigorate and revitalize for additional research in this mesmerizing and
absorbing őeld of mathematics.

Key words: Preinvex function; sśtype preinvexity; sśtypemśpreinvexity; HermiteśHadamard inequality
AMS 2020 Classiőcation: 26A51; 26A33; 26D07; 26D10; 26D15

1 Introduction

The theory of convexity has assumed a key part and has gotten exceptional consideration by numerous scientists in the improvement
of different őelds of pure and applied sciences. It all started with the book by Hardy, Littlewood and Pólya [1], where the term convexity
was used. This theory presents us with a characteristic and general system to examine a wide class of irrelevant issues. Because of its
importance, the ideas of convex sets and convex functions have been generalized in various ways utilizing novel and creative ideas. The
convex function is a class of signiőcant functions popularly accepted in mathematical analysis. This class represents prominent parts of the
theory of inequality. Moreover, convex functions have been widely utilized in many research őelds such as optimization, engineering,
physics, őnancial activities, etc. In optimization, the concept of generalized convexity along with inequality theory is often used. The
Hermite-Hadamard integral inequalities containing convex functions are an intense research topic for manymathematicians because
of their relevance and efőciency in use. Convex functions have a very strong association with integral inequalities. As of late, several
mathematicians have explored the close relationship and correlated work on symmetry and convexity. It is also explained that while
working on any one of the concepts, it tends to be applied to the other one too. Many familiar and relevant inequalities are modiőcations of
convex functions. In literature, there are some well-known inequalities such as Hermite-Hadamard inequality and Jensen inequality that
interpret the geometrical meaning of convex functions (see [2, 3, 4, 5, 6, 7, 8, 9, 10]) and the references cited therein.
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In [11], G. Toader introduced the class ofmśconvex functions. Soon after this manymathematicians like Latif [12] and Kalsoom [13] worked
on the investigation ofmśpreinvexity.
Hanson [14] presented another new class of convex functions called invex functions, with the plan to generalize the legitimacy of the
sufőciency of the Kuhn-Tucker conditions in nonlinear programming. Weir andMond [15] introduced the preinvex function, which is an
important extension of the convex function and it helped in handling numerous critical problems. It is realized that every convex function
is a preinvex function but the converse is not true.

2 Preliminaries

Here, we remember several known deőnitions.

Deőnition 1 (see [16]) LetΨ : A × A ̸= ∅ → R, thenA is an invexw.r.tζ(., .) ifν + δζ(µ,ν) ∈ A, for everyµ,ν ∈ A and δ ∈ [0, 1].

Note that, A is also called ζśconnected set.
The above deőnition collapses to classical convexity if ζ(µ,ν) = µ ś ν. Therefore, every convex set is an invex but the converse is not true
in general, (see [16] and [17]).

Deőnition 2 (see [15]) The functionΨ : A ̸= ∅ → R on an invex set is called preinvexw.r.tζ if

Ψ (ν + δζ (µ,ν)) ≤ δΨ (µ) + (1 ś δ)Ψ (ν) , ∀µ , ν ∈ A , δ ∈ [0, 1] .

Deőnition 3 (see [18]) A setA ⊆ R
n is said to bemśinvexw.r.tζ : A × A × (0, 1]→ R

n for someőxedm ∈ (0, 1], if

mν + δζ(µ,ν,m) ∈ A,

holds for everyµ,ν ∈ A, m ∈ (0, 1] and δ ∈ [0, 1].

Deőnition 4 [13] AΨ : A → R is called generalizedmśpreinvexw.r.tζ : A × A × (0, 1]→ R
n for őxedm ∈ (0, 1], if

Ψ(mν + δζ(µ,ν,m)) ≤ δΨ (µ) +m (1 ś δ)Ψ (ν) , (1)

holds for everyµ,ν ∈ A, δ ∈ [0, 1].

Deőnition 5 (see [19]) Anonnegative functionΨ : A → R is called sśtype convex function ifµ,ν ∈ A, s ∈ [0, 1] and δ ∈ [0, 1], if

Ψ (δµ + (1 ś δ)ν) ≤
[

1 ś (s(1 ś δ))
]

Ψ (µ) + [1 ś sδ]Ψ (ν) . (2)

We also want the following hypothesis regarding the function ζwhich is due to Mohan and Neogy [20].
Condition-C: Let A ⊂ R

n be an open invex subset w.r.t ζ : A × A → R. For anyµ,ν ∈ A and δ ∈ [0, 1]

ζ (ν,ν + δ ζ (µ,ν)) = śδ ζ (µ,ν)

ζ (µ,ν + δ ζ (µ,ν)) = (1 ś δ) ζ (µ,ν) . (3)

For anyµ,ν ∈ A and δ1,δ2 ∈ [0, 1] from condition C, we have

ζ (ν + δ2 ζ (µ,ν) , ν + δ1 ζ (µ,ν)) = (δ2 ś δ1)ζ (µ,ν) .

Extended condition-C ([21]): For anyµ,ν ∈ A, δ ∈ [0, 1] and A ⊂ R
n be an openmśinvex subset with respect to ζ : A× X× (0, 1]→ R.

Then we have

ζ (ν,mν + δ ζ (µ,ν,m) ,m) = śδ ζ (µ,ν,m)

ζ (µ,mν + δ ζ (µ,ν,m) ,m) = (1 ś δ) ζ (µ,ν,m)

ζ (µ,ν,m) = śζ (ν,µ,m) .

3 Generalized preinvex function

In this part, we are to deőne and explore a new class of preinvex functions namely sśtypemśpreinvex function.

Deőnition 6 LetA ⊂ R be a nonemptymśinvex set w.r.tζ : A × A × (0, 1]→ R. Then the functionΨ : A → R is called sśtypemśpreinvex, if

Ψ(mν + δζ(µ,ν,m)) ≤
[

1 ś (s(1 ś δ))
]

Ψ (µ) +m [1 ś sδ]Ψ (ν) , (4)

holds ∀µ,ν ∈ A, s ∈ [0, 1], m ∈ (0, 1] and δ ∈ [0, 1].

Remark 1 (i) If s = m = 1, then the above deőnition collapses to preinvex function [15].
(ii) If m = 1 andζ(µ,ν,m) = µ śmν, then the above deőnition collapses to sśtype convex function [19].

(iii) If s = m = 1 andζ(µ,ν,m) = µ śmν, then the above deőnition collapses to convex function [3].
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4 HermiteśHadamard type inequality via generalized preinvex function

Here, we are to explore the new sort of H-H inequality via sśtypem-preinvex function.

Theorem 1 Let A◦ ⊆ R be an open invex subset w.r.t ζ : A
◦ × A

◦ → R and µ,ν ∈ A
◦ with mν + ζ(µ,ν,m) ≤ ν. Suppose Ψ : [mν +

ζ(µ,ν,m),ν]→ (0,∞) is sśtypem-preinvex function,Ψ ∈ L[mν + ζ(µ,ν,m),ν] for allm ∈ (0, 1] and satisőes ConditionśC then

2
2 ś s

Ψ(mν +
1
2
ζ(µ,ν,m)) ≤

1
ζ(µ,ν,m)

[ ∫mν+ζ(µ,ν,m)

mν

Ψ(x)dx +m
∫ν

mν+ζ(µ,ν,m)
m

Ψ(x)dx
]

≤ (2 ś s)
[

Ψ(µ) +mΨ(ν)
]

.

Proof Since µ,ν ∈ A
◦ and A◦ is an invex set with respect to ζ, for everym ∈ (0, 1] and δ ∈ [0, 1], we havemν + δζ(µ,ν,m) ∈ A

◦. For the
left side, using the Deőnition 6, put δ = 1

2 ,

Ψ(my + δζ(x, y,m)) ≤ [1 ś (s(1 ś δ))]Ψ(x) +m[1 ś (sδ)]Ψ(y)

Ψ(my +
1
2
ζ(x, y,m)) ≤

[

1 ś (
s

2
)
][

Ψ(x) +mΨ(y)
]

,

put x = mν + δζ(µ,ν,m) andmy = mν + (1 ś δ)ζ(µ,ν,m) in the above inequality So we obtain

Ψ(my +
1
2
ζ(x, y,m)) = Ψ(mν + (1 ś δ)ζ(µ,ν,m) +

1
2
ζ(mν + δζ(µ,ν,m),mν + (1 ś δ)ζ(µ,ν,m),m)). (5)

Now by using Condition C, we have

ζ(mν + δζ(µ,ν,m),mν + (1 ś δ)ζ(µ,ν,m)) = (δ ś 1 + δ)ζ(µ,ν,m)

ζ(mν + δζ(µ,ν,m),mν + (1 ś δ)ζ(µ,ν,m)) = (2δ ś 1)ζ(µ,ν,m).

Nowwe put the value of ζ in (5), then as a result, we get

Ψ(my +
1
2
ζ(x, y,m)) = Ψ(mν + (1 ś δ)ζ(µ,ν,m) +

1
2
(2δ ś 1)ζ(µ,ν,m))

Ψ(my +
1
2
ζ(x, y,m)) = Ψ(mν + (1 ś δ + δ ś

1
2
)ζ(µ,ν,m))

Ψ(my +
1
2
ζ(x, y,m)) = Ψ(mν +

1
2
ζ(µ,ν,m)).

Thus,

Ψ(mν +
1
2
ζ(µ,ν,m))

≤

[

1 ś (
s

2
)
][ ∫ 1

0
Ψ(mν + δζ(µ,ν,m))dδ +m

∫ 1

0
Ψ(ν +

(1 ś δ)
m

ζ(µ,ν,m))dδ
]

≤

[

1 ś (
s

2
)
]

1
ζ(µ,ν,m)

[ ∫mν+ζ(µ,ν,m)

mν

Ψ(x)dx +m
∫ν

mν+ζ(µ,ν,m)
m

Ψ(x)dx
]

.

For the right side of the inequality and from the property of sśtypemśpreinvexity, we have

1
ζ(µ,ν,m)

[ ∫mν+ζ(µ,ν,m)

mν

Ψ(x)dx +m
∫ν

mν+ζ(µ,ν,m)
m

Ψ(x)dx
]

≤

[ ∫ 1

0
Ψ(mν + δζ(µ,ν,m))dδ +m

∫ 1

0
Ψ(ν +

(1 ś δ)
m

ζ(µ,ν,m))dδ
]

≤

∫ 1

0
[1 ś (s(1 ś δ))]Ψ(µ)dδ +m

∫ 1

0
[1 ś (sδ)]Ψ(ν)dδ

+
∫ 1

0
[1 ś sδ]Ψ(µ)dδ +m

∫ 1

0
[1 ś (s(1 ś δ))]Ψ(ν)dδ

≤
(2 ś s)
2

[

Ψ(µ) +Ψ(µ) +m
(

Ψ(ν) +Ψ(ν))
)]

≤ (2 ś s)
[

Ψ(µ) +m
(

Ψ(ν)
)]

.

This is the required proof. ■

Corollary 1 If s = m = 1 andζ(µ,ν,m) = µ śmν, thenwe get Hermite-Hadamard inequality in [22].
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Remark 2 If m = 1, thenwe attain the inequality

2
2 ś s

Ψ(ν +
1
2
ζ(µ,ν)) ≤

1
ζ(µ,ν)

[ ∫ν+ζ(µ,ν)

ν

Ψ(x)dx +
∫ν

ν+ζ(µ,ν)
Ψ(x)dx

]

≤ (2 ś s)
[

Ψ(µ) +Ψ(ν)
]

.

Remark 3 If s = 1, thenwe get the inequality

2Ψ(mν +
1
2
ζ(µ,ν,m)) ≤

1
ζ(µ,ν,m)

[ ∫mν+ζ(µ,ν,m)

mν

Ψ(x)dx +m
∫ν

mν+ζ(µ,ν,m)
m

Ψ(x)dx
]

≤
[

Ψ(µ) +mΨ(ν)
]

.

Remark 4 If s = m = 1, thenwe get the inequality

2Ψ(ν +
1
2
ζ(µ,ν)) ≤

1
ζ(µ,ν)

[ ∫ν+ζ(µ,ν)

ν

Ψ(x)dx +
∫ν

ν+ζ(µ,ν)
Ψ(x)dx

]

≤
[

Ψ(µ) +Ψ(ν)
]

.

5 Reőnements of HermiteśHadamard type inequality

Themain aim of this section is to examine the reőnements of HermiteśHadamard inequality via sśtype preinvex functions.

Lemma 1 LetΨ :
[

µ,mµ + ζ(νc ,µ,m)
]

→ R be adifferentiablemapping on
(

µ,mµ + ζ(νc ,µ,m)
)

with0 < c ≤ 1andmµ+ζ(ν,µ,m) > µ > 0.
IfΨ′ ∈ L

(

µ,mµ + ζ(νc ,µ,m)
)

and for allm ∈ (0, 1], then

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx =
ζ(ν, cµ,m)

2c

∫ 1

0
(1 ś 2δ)Ψ′

(

m
ν

c
+ δζ(µ,

ν

c
,m)

)

dδ. (6)

Proof

ζ(ν, cµ,m)
2c

∫ 1

0
(1 ś 2δ)Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ =
ζ(ν, cµ,m)

2c

[

(1 ś 2δ)Ψ(mν
c + δζ(µ, νc ))

ζ(µ, νc ,m)

∣

∣

∣

∣

1

0
+ 2

∫ 1

0

Ψ(mν
c + δζ(µ, νc ,m))
ζ(µ, νc ,m)

dδ

]

=
ζ(ν, cµ,m)

2c

[

c(Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
ζ(ν, cµ)

ś
2c

ζ(ν, cµ)

∫ 1

0
Ψ(
mν

c
+ δζ(µ,

ν

c
,m))dδ

]

=
Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))

2
ś

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx,

which gives the proof. ■

Lemma 2 LetΨ :
[

µ,mµ + ζ(νc ,µ,m)
]

→ Rbeadifferentiablemappingon
(

µ,mµ + ζ(νc ,µ,m)
)

with0 < c ≤ 1andmµ+ζ(ν,µ,m) > µ > 0.
IfΨ′ ∈ L

(

µ,mµ + ζ(νc ,µ,m)
)

and for allm ∈ (0, 1], then

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

=
ζ(ν, cµ,m)

c

{∫ 1

0
δΨ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ ś
∫ 1

1/2
Ψ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ

}

. (7)

Proof

ζ(ν, cµ,m)
c

{∫ 1

0
δΨ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ ś
∫ 1

1/2
Ψ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ

}

=
ζ(ν, cµ,m)

c
×

[

δΨ(mν
c + δζ(µ, νc ,m))
ζ(µ, νc ,m)

∣

∣

∣

∣

1

0
ś

∫ 1

0

Ψ(mν
c + δζ(µ, νc ,m))
ζ(µ, νc ,m)

dδ ś
Ψ(mν

c + δζ(µ, νc ,m))
ζ(µ, νc ,m)

dδ

∣

∣

∣

∣

1

1
2

]

=
ζ(ν, cµ,m)

c

[

cΨ(µ)
ζ(cµ,ν,m)

ś
c

ζ(cµ,ν,m)

∫ 1

0
Ψ(
mν

c
+ δζ(µ,

ν

c
,m))dδ ś

c

ζ(cµ,ν,m)

(

Ψ(µ) śΨ

(

(2mµ + ζ(ν,µ,m))
2c

))]

=
c

ζ(ν, cµ,m)

∫mµ+ζ(mν
c ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

,

which gives the proof. ■

Theorem 2 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiable function onX◦ . If |Ψ′| is sśtypemśpreinvex function on (µ,mµ + ζ(ν,µ,m)) form ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

{

2 ś s
4

[

|Ψ′(µ)| +m|Ψ′

(ν

c

)

|
]

}

. (8)
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Proof According to Lemma 1, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

=
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|dδ.

Since |Ψ′| is sśtypemśpreinvex on (µ,µ + ζ(ν,µ)), we have

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ|

[

(1 ś s(1 ś δ))Ψ′(µ)| +m(1 ś sδ)|Ψ′

(ν

c

)

|
]

dδ

≤
ζ(ν, cµ,m)

2c

{

|Ψ′(µ)|
∫ 1

0
|1 ś 2δ|1 ś s(1 ś δ)dδ +m|Ψ′

(ν

c

)

|
∫ 1

0
|1 ś 2δ|(1 ś sδ)dδ

}

. (9)

Since,

∫ 1

0
(1 ś s (1 ś δ)) |1 ś 2δ|dδ =

∫ 1

0
(1 ś sδ) |1 ś 2δ|dδ = ś

s ś 2
4
.

Putting the value of the above computation in (9), then we obtain the required proof. ■

Theorem 3 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for p, q > 1, 1q +

1
p = 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫µ+ζ(νc ,µ)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

1
p + 1

]1/p {2 ś s
2

[

|Ψ′(µ)|q +m|Ψ′

(ν

c

)

|q
]

}1/q
. (10)

Proof According to Lemma 1 and applying Hölder’s inequality, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

=
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|dδ

≤
ζ(ν, cµ,m)

2c

(∫ 1

0
|1 ś 2δ|pdδ

)1/p (∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q

. (11)

Since |Ψ′|q is s-typemśpreinvex on (µ,mµ + ζ(ν,µ,m)), we have

∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ = |Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ.

Now, equation (11) becomes

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

1
p + 1

]1/p (

|Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ

)1/q
. (12)

Since,

∫ 1

0
(1 ś s (1 ś δ)) dδ =

∫ 1

0
(1 ś sδ) dδ = ś

s ś 2
2

∫ 1

0
|1 ś 2δ|pdδ =

[

1
p + 1

]

.

Putting the value of the above computation in (12), then we obtain the required proof. ■

Theorem 4 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for p, q > 1, 1q +

1
p = 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

c





1

2
(

p+1
p

)





{

2 ś s
4

[

|Ψ′(µ)|q +m|Ψ′

(ν

c

)

|q
]

}1/q
.

(13)

Proof According to Lemma 1 and applying Hölder’s inequality, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫µ+ζ(νc ,µ)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|dδ

=
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ|1/p|1 ś 2δ|1/q|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|dδ

≤
ζ(ν, cµ,m)

2c

(∫ 1

0
|1 ś 2δ|dδ

)1/p (∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q

. (14)
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Since |Ψ′|q is s-typemśpreinvex on (µ,mµ + ζ(ν,µ,m)), we have

∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ = |Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ.

Now, equation (14) becomes

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

(∫ 1

0
|1 ś 2δ|dδ

)1/p (

|Ψ′(µ)|q
∫ 1

0
|1 ś 2δ|(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
|1 ś 2δ|(1 ś sk)dδ

)1/q
. (15)

Since,

∫ 1

0
|1 ś 2δ| (1 ś s (1 ś δ)) dδ =

∫ 1

0
|1 ś 2δ| (1 ś sδ) dδ = ś

s ś 2
4

∫ 1

0
|1 ś 2δ|dδ =

1
2
.

Putting the values of the above computations in (15), then we obtain the required proof. ■

Theorem 5 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for p, q > 1, 1q +

1
p = 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

1
2(p + 1)

]1/p
[

{

3 ś 2s
6

|Ψ′(µ)|q +
3 ś s
6
m|Ψ′

(ν

c

)

|q
}1/q

+
{

3 ś s
6
|Ψ′(µ)|q +

3 ś 2s
6

m|Ψ′

(ν

c

)

|q
}1/q

]

. (16)

Proof According to Lemma 1 and applying Hölder-Íscan inequality, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

×

[

(∫ 1

0
(1 ś δ)|1 ś 2δ|pdδ

)1/p (∫ 1

0
(1 ś δ)|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q

+
(∫ 1

0
δ|1 ś 2δ|pdδ

)1/p (∫ 1

0
δ|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q]

.

(17)

Since |Ψ′|q is s-typemśpreinvex on (µ,mµ + ζ(ν,µ,m)), we have

∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ = |Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ.

Now, equation (17) becomes

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

(∫ 1

0
(1 ś δ)|1 ś 2δ|pdδ

)1/p (

|Ψ′(µ)|q
∫ 1

0
(1 ś δ)(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś δ)(1 ś sδ)dδ

)1/q

+
(∫ 1

0
δ|1 ś 2δ|pdδ

)1/p (

|Ψ′(µ)|q
∫ 1

0
δ(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
δ(1 ś sδ)dδ

)1/q]

. (18)

Since,

∫ 1

0
(1 ś δ) (1 ś s (1 ś δ)) dδ =

∫ 1

0
δ (1 ś sδ) dδ = ś

2s ś 3
6

∫ 1

0
δ (1 ś s (1 ś δ)) dδ =

∫ 1

0
(1 ś δ) (1 ś sδ) dδ = ś

s ś 3
6

∫ 1

0
δ|1 ś 2δ|pdδ =

∫ 1

0
(1 ś δ)|1 ś 2δ|pdδ =

[

1
2(p + 1)

]

.

Putting the values of the above computations in (18), then we obtain the required result. ■
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Theorem 6 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for q ≥ 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

1
4

]1ś1/q

×

[

{

4ś 3s
16

|Ψ′(µ)|q +
4ś s
16

m|Ψ′

(ν

c

)

|q
}1/q

+
{

4ś s
16

|Ψ′(µ)|q +
4ś 3s
16

m|Ψ′

(ν

c

)

|q
}1/q

]

. (19)

Proof According to Lemma 1 and applying Improved power-mean inequality, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

(∫ 1

0
(1 ś δ)|1 ś 2δ|dδ

)1ś1/q (∫ 1

0
(1 ś δ)|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q

+
(∫ 1

0
δ|1 ś 2δ|dδ

)1ś1/q (∫ 1

0
δ|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q]

. (20)

Since |Ψ′|q is s-typemśpreinvex on (µ,mµ + ζ(ν,µ,m)), we have

∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ = |Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ.

Now, equation (20) becomes

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

(∫ 1

0
(1 ś δ)|1 ś 2δ|dδ

)1ś1/q (

|Ψ′(µ)|q
∫ 1

0
(1 ś δ)|1 ś 2δ|(1 ś s(1 ś δ))dδ

+m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś δ)|1 ś 2δ|(1 ś sδ)dδ

)1/q

+
(∫ 1

0
δ|1 ś 2δ|dδ

)1ś1/q (

|Ψ′(µ)|q
∫ 1

0
δ|1 ś 2δ|(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
δ|1 ś 2δ|(1 ś sδ)dδ

)1/q]

. (21)

Since,

∫ 1

0
(1 ś δ)|1 ś 2δ| (1 ś s (1 ś δ)) dδ =

∫ 1

0
δ|1 ś 2δ| (1 ś sδ) dδ = ś

3s ś 4
16

∫ 1

0
δ|1 ś 2δ| (1 ś s (1 ś δ)) dδ =

∫ 1

0
(1 ś δ)|1 ś 2δ| (1 ś sδ) dδ = ś

s ś 4
16

∫ 1

0
δ|1 ś 2δ|dδ =

∫ 1

0
(1 ś δ)|1 ś 2δ|dδ =

[

1
4

]

Putting the values of the above computations in (21), then we obtain the required proof. ■

Theorem 7 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×A
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for q ≥ 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

[

1
2

]1ś 1q
{

2 ś s
4

[

|Ψ′(µ)|q +m|Ψ′

(ν

c

)

|q
]

}1/q
. (22)

Proof According to Lemma 1 and applying Power-mean inequality, one has

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|dδ

≤
ζ(ν, cµ,m)

2c

(∫ 1

0
|1 ś 2δ|dδ

)1ś1/q (∫ 1

0
|1 ś 2δ||Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
)1/q

. (23)

Since |Ψ′|q is s-typemśpreinvex on (µ,mµ + ζ(ν,µ,m)), we have

∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ = |Ψ′(µ)|q
∫ 1

0
(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
(1 ś sδ)dδ.
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Now, equation (23) becomes

∣

∣

∣

∣

∣

Ψ(µ) +Ψ(mµ + ζ(νc ,µ,m))
2

ś
c

ζ(ν, cµ,m)

∫µ+ζ(mν
c ,µ,m)

µ

Ψ(x)dx

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

2c

(∫ 1

0
|1 ś 2δ|dδ

)1ś1/q (

|Ψ′(µ)|q
∫ 1

0
|1 ś 2δ|(1 ś s(1 ś δ))dδ +m|Ψ′

(ν

c

)

|q
∫ 1

0
|1 ś 2δ|(1 ś sδ)dδ

)1/q
. (24)

Since,

∫ 1

0
|1 ś 2δ| (1 ś s (1 ś δ)) dδ =

∫ 1

0
|1 ś 2δ| (1 ś sδ) dδ = ś

s ś 2
4

∫ 1

0
|1 ś 2δ|dδ =

1
2
.

Putting the values of the above computations in (24), then we obtain the required proof. ■

Theorem 8 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×X
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for p, q > 1, 1q +

1
p = 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

c

[

(

1
p + 1

)1/p {2 ś s
2
[|Ψ′(µ)|q +m|Ψ′(

ν

c
)|q]

}1/q
+
{

4ś 3s
8

[|Ψ′(µ)|q +m|Ψ′(
ν

c
)|q]

}1/q
]

. (25)

Proof According to Lemma 2 and applying Hölder’s inequality, one has

∣

∣

∣

∣

∣

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

∣

∣

∣

∣

∣

=
ζ(ν, cµ,m)

c

{∫ 1

0
δΨ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ ś
∫ 1

1/2
Ψ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ

}

≤
ζ(ν, cµ,m)

c

[

(∫ 1

0
δ
pdδ

)1/p {∫ 1

0
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
}1/q

+
{∫ 1

1/2
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
}1/q]

≤
ζ(ν, cµ,m)

c

[

(

1
p + 1

)1/p {∫ 1

0
[1 ś s(1 ś δ)]|Ψ′ (µ) |qdδ +m

∫ 1

0
[1 ś sδ]|Ψ′

(ν

c

)

|qdδ
}1/q

+
{∫ 1

1/2
[1 ś s(1 ś δ)]|Ψ′ (µ) |qdδ +m

∫ 1

1/2
[1 ś sδ]|Ψ′

(ν

c

)

|qdδ
}1/q]

=
ζ(ν, cµ,m)

c

[

(

1
p + 1

)1/p {2 ś s
2
[|Ψ′(µ)|q +m|Ψ′(

ν

c
)|q]

}1/q
+
{

4ś 3s
8

[|Ψ′(µ)|q +m|Ψ′(
ν

c
)|q]

}1/q
]

,

which gives the proof. ■

Theorem 9 LetX◦ ⊆ Rbeanopen invex subsetw.r.tζ : X◦×A
◦ → Randµ,ν ∈ X

◦withmν+ζ(µ,ν,m) ≤ ν. SupposeΨ : [mν+ζ(µ,ν,m),ν]
be a differentiablemapping onX◦ . If |Ψ′|q is sśtypemśpreinvex on (µ,mµ + ζ(ν,µ,m)) for q ≥ 1, m ∈ (0, 1] and s ∈ [0, 1], then

∣

∣

∣

∣

∣

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

∣

∣

∣

∣

∣

≤
ζ(ν, cµ,m)

c

[

(

1
2

)1ś1/q { 3 ś s
6
|Ψ′(µ)|q +

3 ś 2s
6

m|Ψ′(
ν

c
)|q

}1/q
+
{

4ś 3s
8

[|Ψ′(µ)|q +m|Ψ′(
ν

c
)|q]

}1/q
]

. (26)

Proof From Lemma 2 and applying power-mean inequality, one has

∣

∣

∣

∣

∣

c

ζ(ν, cµ,m)

∫mµ+ζ(νc ,µ,m)

µ

Ψ(x)dx śΨ

(

2mµ + ζ(ν,µ,m)
2c

)

∣

∣

∣

∣

∣

=
ζ(ν, cµ,m)

c

{∫ 1

0
δΨ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ ś
∫ 1

1/2
Ψ

′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

dδ

}

≤
ζ(ν, cµ,m)

c

[

(∫ 1

0
δdδ

)1ś1/q {∫ 1

0
δ|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
}1/q

+
{∫ 1

1/2
|Ψ′

(

mν

c
+ δζ(µ,

ν

c
,m)

)

|qdδ
}1/q]
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≤
ζ(ν, cµ,m)

c
×

[

(

1
2

)1ś1/q {∫ 1

0
δ[1 ś s(1 ś δ)]|Ψ′ (µ) |qdδ +m

∫ 1

0
δ[1 ś sδ]|Ψ′

(ν

c

)

|qdδ
}1/q]

+
ζ(ν, cµ,m)

c
×

{∫ 1

1/2
[1 ś s(1 ś δ)]|Ψ′ (µ) |qdδ +m

∫ 1

1/2
[1 ś sδ]|Ψ′

(ν

c

)

|qdδ
}1/q

=
ζ(ν, cµ,m)

c

[

(

1
2

)1ś1/q { 3 ś s
6
|Ψ′(µ)|q +

3 ś 2s
6

m|Ψ′(
ν

c
)|q

}1/q
+
{

4ś 3s
8

[|Ψ′(µ)|q +m|Ψ′(
ν

c
)|q]

}1/q
]

,

which gives the required proof.
■

6 Conclusion

In this work, we showed and investigated a novel idea of preinvex function namely sśtype mśpreinvex function and the new sort of
HermiteśHadamard type inequality via newly introduced deőnition are examined. Further, our attaining results in the order of lemma can
be considered as reőnements and remarkable extensions to the new family of preinvex functions. In the future, we hope the results of this
paper and the new idea can be extended in different directions like fractional calculus, quantum calculus, time scale calculus, etc. We hope
the consequences and techniques of this article will energize and inspire the researcher to explore a more interesting sequel in this area.
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