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epidemic model with Mittag-Leffler kernels
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Abstract

The current paper investigates a newly developed model for Hepatitis-B infection in sense of the Atangana-Baleanu Caputo (ABC)
fractional-order derivative. The proposed technique classifies the population into five distinct categories, such as susceptible, acute
infections, chronic infections, vaccinated, and immunized. We obtain the Ulam-Hyers type stability and a qualitative study of the
corresponding solution by applying a well-known principle of fixed point theory. Furthermore, we establish the deterministic
stability of the proposed model. For the approximation of the ABC fractional derivative, we use a newly proposed numerical method.
The obtained results are numerically verified by MATLAB 2020a.

Key words: Fractional calculus; fractional-order model; hepatitis-B disease; ABC derivative; fixed-point theorem; numerical
simulation

AMS 2020 Classification: 34A08; 34D20;34K60; 92C50; 92D30

1 Introduction

Many pandemics and endemics around the world are first explored using a mathematical model based on data from various hospitals. These
models explain the human disease origin, current development, and forecast. Mathematical formulations can then be used by researchers
and scholars to discover the treatment or cure. The treatment may come in the form of precaution or vaccination for affected individuals of a
certain population. Thus, vaccinations against several diseases such as pertussis, measles, polio, Hepatitis-B and influenza have been given
and have led to healthy recovery, as mentioned in [1, 2, 3, 4, 5, 6]. Numerous mathematical models for various diseases have been developed
recently, including stochastic, deterministic, and difference equation systems with several vaccination parameters for diagnosed infections,
as seen in [5]. Among the most serious diseases is Hepatitis-B, which is transmitted by infected individuals. More than one million people
have died worldwide due to this outbreak. [7, 8] shows that around 200 million individuals were infected by the pandemic and that three
and a half billion people were in a chronic condition. A combination of long-term planning and frequent vaccinations can reduce the spread
of the disease in the population in the case of a major epidemic [8]. Strong immunization and dose for the infected persons will rapidly
decrease the cases of HBV. To investigate the qualitative analysis Hepatitis-B disease, we consider [9] model as below:
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A(0) = A - YAOITHD | 53(0) — (5 + w(o),
(o) = YAITND) _ (14 v 9. 7%),

, 1
T(0) = k7o) = (1 + p + )T (o), @
R(0) = ag% o) +nT (o) — uR(o),

#(0) = A(L—T1) +5Q(0) — (A + WH(o),

where the parameters and variables in the above equation are listed below:

- vaccinated cases, susceptible population, acute infection cases, chronic carriers cases and immunized cases have been represented by
#(0), Q(0), 7% o), 7°(c) and R (o) respectively.
+ A: Recruitment/Birth rate.
: Waning vaccine-induced immunity.
+ w: Natural death rate.
+ p: The HBV death rate.
v: Contact rate among infected and non-infected individuals.
o The rate of recovery for infected individuals.
+ m: The rate of recovery of individuals infected chronically.
- «: The rate at which acute cases are transformed into chronic cases.
- TI: Ratio of new-borns who have not received proper immunization.
- &: Hepatitis immunization rate.

>

Riemann-Liouville, Euler, and Fourier made significant contributions to the development of ordinary calculus in the 18th century. At the
time, many authors made significant contributions to the field of fractional calculus (FC), see [10, 11, 12]. This is due to the fact that ordinary
calculus lacks the applications of modern calculus in many mathematical modeling domains, such as the process of memory and hereditary
data. FC, as a general form of integer order calculus, has significantly larger freedom in their derivative than is found in integer-order
derivative due to its local behavior. Several applications of FC are discussed in [13, 14, 15, 16, 17, 18, 19, 20, 21]. Researchers and scientists
have become more interested in analyzing non-integer order (FO) of differential and integral calculus because of its applications. Non-local
and non-singular concepts were introduced in FC articles, replacing singular and local kernels with these new concepts. The most useful
feature of this newly developed kernel is its memory property combined with the system’s hereditary. Atangana, Baleanu, and Caputo
(ABC) [13] proposed a novel FO operator, in 2016, depending on the general non-local and non-singular kernel of Mittag-Leffler (IML)
mapping. As seen in [22, 23, 24, 25, 26], the ABC order fractional order operator has been used in many mathematical schemes describing
different physical problems. More specifically, this generalized ML function is a precise tool to deal with real word problems.

Scientists and researchers across a wide range of fields are working to stop or slow down the spread of these diseases, as evidenced by these
references [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]). Many authors have investigated various models for a number
of diseases; for a detailed study see [45, 46, 47, 48, 49, 50]. Epidemic models by the researcher are widely used nowadays to investigate
the dynamic spreading of disease and to follow the efficient method for its controlling. Ordinary differential equation with integer-order
derivative could be generalized to the fractional-order larger degree freedom derivative of fractional order. Also FO differential equations
with 0 < p < 1have been studied in [26]. Generally, biological models and FDEs are theoretically related to memory-based systems
[23, 25, 50]. Furthermore, the history factor is a major source of disease transmission. In the coming days, the development of totality and
historical effects on existing levels will be a source of transmission. Heterogeneity and historical effect show the spread of the previous
infections. Thus, the mentioned properties can be examined via fractional derivatives, as well as their effect on disease transmission
(39, 50].

The purpose of this work is to investigate the dynamic behavior of the fractional HBV epidemic model’s solutions (2). We established the
stability and equilibria analysis for the given system based on the diseases free equilibrium point. We additionally addressed some basic
principles and gave theoretical solutions. Furthermore, we simulate the unknown quantities to verify and explain the fractional order
mathematical model. We note from the existing research that limited study has been done on non-integer order epidemic models using ABC
derivatives. There has not been enough research done on the ML kernel-based arbitrary order HBV vaccinated model. Thus, the primary
motivation for this study is to develop a HBV FO-vaccinated system. Under the ABC derivative with p < (0, 1] we reexamine the HBV model
(1) in the following fractional form

©Q(0)T% o)
N

ABCDY 3 () = TTA — +AH(0) = (5 + 1) Q(o),

ABCpo 79(0) = EUDTHD _ (14 o4 1) %),

ABCDP 7¢(0) = kg% o) = (n + p + 1) T (0), @)
ABCDP 9 (0) = 7o) + nT(0) — uR(o0),
ABCDP31(0) = A (1= TT) + 6Q(c) — (A + ) H(o).
with the initial conditions
S(0) >0, 7%0) >0, 7°(0) >0, %(0) >0, #(0)>o0. (3)

Our remaining paper has the following arrangement as follows. In Section Fundamental we recall some basic results of fractional calculus.
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In this way, we manage the remainder of the contents of the current examination as follows. During Section 2, essential definitions are
provided. The existence theory of model and stability is given in Section 3. Also, numerical methods to solve the considered problems are
given in Section 4. Indeed, numerical results of the proposed models under practising different values of fractional orders are supplied in
section Section 5. Finally, the conclusion of the current investigation can be observed in Section 6.

2 Preliminaries

In this section, we give some important definitions which we will use in the rest of the paper [23, 25, 26, 50].

Definition 1 Let (o) be a function satisfying £(c) € H[0, T]the ABC fractional derivative of order 0 < ¢ < 1and is defined by

tpson= 2] 2 (-5 s

where M(p) = 525 is the normalization constant, M(0) = M(1) = 1and Ey, is the Mittag-Leffler operator given by

Eo)=y —
oY) = ;;, ks D)
Theorem 1 [51] The Atangana-Baleanu fractional differential equation
ABCpP (o) = f(o)

has a unique solution in the form

£(0) = — B f(o) + f(@) o —5)*71dy. (5)

M(e )F( )J

IM( )
Definition 2 [52] Let

{ABCDgi(G) = f(t, &(0)),
£(0)=¢&o

is a non-linear fractional ordinary differential equation. The new formula for the numerical scheme of the ABC fractional derivative can be written
as

Em+1= &0 + ]M( )f(é(tm) tm) + v )Z{h f(in,tn)[(m+1 nP(m-n+2+p)

r(p+2) (6)
—(Mm-n)P(m=-n+2+2p)] - h{(&j’;;)[(m+1 )‘9+1—(m—n)p(m—n+1+p)]+Eﬁ1},
where E§, is given by
© 2 (=1 (y — ta)(y — op—y) 0> 1
B Sioe) 2 j L e S Wy (omea =)y, @)

Theorem 2 Let B be a convex subset of Z and suppose that the two operators Y1, Y, with
(1). Yqu + You € Bforeachu € B.

(2). Yy is "contraction".

(3). A continuous and compact set is Y.

satisfying the operator equation Y u + Y,u = u, has one or more solution(s).

3 Existence theory of model (2)

In this part, we established the existence and uniqueness of the solution for the proposed system (2). We find the solution and stability of
the proposed model under ABC derivative with FO using Banach fixed point principles. We rearrange the proposed model in the following
way

a
%,(0, Q, 7%, 7, 1, 3) = 1A - £2ADTH)

M_(u+o¢+ K)Ja(c)y

N
(8)
w30, Q, 79, 7M1, R) = kT o) = (n+p +1) T(0),

NA(O', Qyjay jC)HIm) = “ja(o—) +ﬂJC(U) - um(ﬁ);
Ns5(o, Q, 7% T H,9%) = AL —TT) + 6Q(0) — (A + ) H(o).

£ AH(0) = (5 + 1) O(0),

NZ(G)Qyjayjc;H)m) =
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For 0 < p < 1, using (8) we write the proposed model in the following form

ABCDE 14(0) = K (0, V(0)),

(9)
v(0) = vg.
By Theorem 1, the system (9) becomes
v(0) = vo(0) + |X((0,¥(0)) = Ro(0) 1‘—"’+Lj“(c—sw—1x<s,v<a»ds, (10)
M(p) M(o)T(9) Jo
where
Q(U) QO xl(C)_)QvJarJCvam) z{1(07£)07t7(()17\75!?'LO;SRO)
ja(o-) \7(31 NZ(O',Q,JG,JC,’H,ER) Z{Z(Ov-O-Ov~7(()1)~7(gy7'[0)9{0)
V(o) = ¢ 7o) ,vo(0) =< 7§, X(0,v(0)) = { R3(0,Q,T%, T H, %) , No(0) § ¥3(0,Q0, T§, T, Ho, Ro) - (11)
R(0) Ro N[,(O_rﬂyjayjcr?'bm) NA(O,Q(),J(‘)],JS,H(),,‘.R())
’H(O_) Ho NS(G)QvJavJC>Hv%) N5(0>Qoﬂ73:u7(§v7'lo,9%)
Using (10) and (11), define two operators Y; and Y',, using (10)
1-p
Y1 = vo(o) + [x(a,vw))— Ko (0)| 122,
M(p) (12)
L ° -1
You = 7J (o — )" 1R (, v(9))do.
27 M(p)T(p) Jo

Next, we have to determine the qualitative analysis for the proposed model by using fixed point principle.
(L;) there exist some constants e, and e,,

[%(o, V(o)) < e1lv(o)l + €.
(L,) there exists a positive constant Kp, for each u, u; € X,

% (o, V(o)) = X(0,v1(0))| < Kpllu — uy].

Theorem 3 The system (10) has at least one solution, if (L;) and (L, ) hold, then the proposed system (2) also has a unique solution if

1— p)K
G-9kp 1.

M(p)
Proof First we have to show that Y is contraction by using Banach contraction principle. Letu; € B,: B={u e 3 : ||lull <r,r>0}bea
closed convex set. From the operator Y; defined in (12), we have

= o = G max [x5(o,v(@) - (o)), "
-9k,
< M(e) llu—uyll.

Hence, the operator Y is closed and therefore contraction.

Next, we have to show that the operator Y, is compact, continuous and bounded. Also, obviously the operator Y, is defined on all domains,
S0 X is continuous. Let u € B, we have

Vo)l = max —8

oclo,T] M(p)T(p)

1 o _ -1
Smi(p)r(p)fo(" P71 (9, v(9))do, (14)

)

JG(G - 5)P7IR(9,v(9))do
0

o
< M(pyr(e) SV * e2)

So by (14) the operator Y, is bounded. For equi-continuous, o; > o, € [0, T], such that

|Y2V(Ul) - YzV(Gz)l =

# 01 el _ (5} 1
oyt Jo (71~ RV = [ (o2 =97 (0, v,

< [eir+es]
~ M(p)T(p)

(15)

[of — ¥
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As oy — 05, RH.S of (15) tends to 0. Also, by continuous operator Y, we have
|Y2V(Gl) - YzV(Gz)l — 0, as o1 — 03.

Hence we proved that Y, is continuous and bounded. So Y, is also uniformly continuous. Using "Arzela’ -Ascoli theorem", we have that v,
is relatively compact and therefore completely continuous. By (3) and (10) it is easy to obtain that the system has at least one solution.

Uniqueness of the solution

Theorem 4 Assume (L,) and the integral form (10) has a unique solution. Then the system (2) has also a unique solution if

|:(1 - [Q)Kp . T‘pr :| <
M(p) M(o)T(p) '

Proof Let the operator 7 : 3 — 3 be defined by

V(o) = vo(o) + [Z{(cr,v(cr)) - NO(U)} ;ﬁ + m f:(“ —§)P7IR(9, v(9))d9, o € [0, T]. (16)

and u,u; € 3, then

(1 _ (Q) max

7u-Tull <
Y= "M(p) oclo,1)

®(o,v(0)) - X(0,vi(0))

)

j"(c — $)P7IR(D, v(9))dd — j"(o — $)PIR(9, v1(9))do|,

©
+ ————— MaXx
M(p)T(9) oelo,T1]Jo 0

(17)
1-9Kp »T®Kp _

[ M(p) +M(p)r(p>]”” tall,
<Ollu-uyll,

where

(1 - [Q)Kp + Tpr

% "My Mr(e)

(18)

By (17), the operator 7 is contraction. Therefore, the equation (10) has a unique solution. Consequently, the proposed system (2) has also a
unique solution.

Ulam-Hyers stability

Next, we obtain the stability of the proposed system, consider small change ¢ < C[0, T] satisfying 0 = p(0) , we have
@) lp(a)l < &,for £>0
(2)4BCDE, (V(0)) = R (o, v(0)) + @(o),forall o € [0, T).

Lemma1 The solution to the changed problem can be expressed by

{;‘}BCDEOV(G) = X(0,v(0)) + ¢(0), (19)
v(0) = vo,
satisfying

o) = (Vo) + (o) = %000 e + ey [ o= 9070 w00 ) < o e
where

o = H©)A—p) + T°
Te M(9)T ()

Proof The proof is obvious, therefore the details are omitted.

Theorem 5 Consider (L,) together with equation (20), the solution of equation (10) is UH stable and hence, the analytical solution for the proposed
system is UH stable for © < 1.
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Proof Let u; € 3 beaunique solution and u € 3 be any solution of equation (10), we have

[v(o) = vi(o)l =

J (0= 9)°71R (o, vl(a))d{))‘

W(@) = (Vo(o) + [35(0,va(0)) = 350(e)]| 115 m

< |v(or - (vo(a)+ [xw,v(o)) xo(o)] j (o = 9)P IR (®, v(e))da)]

M(p) M(p)r(p)

. <v0(6)+ [x(o,v(c)) O(G)} J (o= 9)P1R(9, v(s))dﬁ)

M(zp) M(p)r(p) (21)
= (Vo) + [(oyva(0)) = 0(@) | 15+ 18 (o = )0, D0 ),
< &Eprp * (M(p))Kpllu—ulll MB()T)]F(’J) u—ull
< &pr,p + Ollu—ull.
From (21), we can write
v —wll < S5Te, (22)

From (22), we obtained that the solution of (10) is Ulam-Hyers stable and hence by considering Xy (&) = o7, & Xv(0) = 0 the solution is
generalized Ulam-Hyers Stable. This proves that the solution of the considered model is Ulam-Hyers stable and also generalized Ulam-Hyers
stable.

Now we postulate the assumptions given below
1) lo(a)l < V(0)¢E, for & >0
(2)4BCDE, (v(0)) = R (o, V(o)) + @(0), forall o € [0, T).

Lemma 2 The next equation will satisfy (19)

W(o) - (vo(c) s {X(G W(0)) = Ko(o) J (o= 9)*1R(9, v(s))d{))‘

M(p) M(zp)r(zo) (23)

< V(G)apT,p-

Proof The proof is obvious, therefore the details are omitted.
Theorem 6 By Lemma (2), the solution to the considered system is Ulam-Hyers-Rassias (UHR) stable and hence, the generalized UHR stable.

Proof Let u; € 3 be aunique solution and u € 3 be a solution of (10), we have

V(o) = vi(o)l =

V(o) - (vo(a)+ [x(o,vl(a» xo(c)] S mj (o - 9)P IR (9, vlw))da)‘

< ‘v(cr)— (vo(c)+ [x(c,vw)) xo(c)] o +M(p§’r(p)j (0= 9)* IR (o, v(a))da)]

. (v0(0)+ [x(c,v(c)) O(U)} ® J (o= 9)P71R(9, v(ﬁ))dﬂ)

M(zp) M(p)r(p) (24)
= (voto) + [ (@) - o) 125 mj (o= )70, ui(0))do )|,
(1-9p)Kp, T Kp
SV(G)EPT,p W”U U1||+M( o ) = ull,
< V(0)épr, + Oflu—1uy.
From (24), we get
V(o)&
v = val| < %. (25)

Therefore, the solution of (10) is stable.

4 Numerical solution of the proposed model

Numerous numerical techniques have been suggested for the approximation of the fractional derivative of Atangana-Baleanu in the sense
of Caputo. In [53, 54] Atangana and Owolabi proposed a new form of the Adams-Bashforth approach based on the Mittag-Leffler kernel
for the ABC fractional derivative approximation. The purpose of this section of the article is to demonstrate how to apply the numerical
technique described in [52], which has recently been proven for accuracy and reliability [55, 56] to solve any fractional differential equation.
The numerical technique for approximating ABC is defined in (2). To learn more about this numerical approach in detail, we suggest our
readers to [52].

To determine the approximate solution to the given model, we use theorem (1) for each of QO (o), 7%(c), 7°(o), R’(0), V¥(0o) of the system
(2) and obtain the following result:
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0(o) = S(0) + * e [n/\— %ja(“) FAV(0) - (5 + W) Q(U)}
+mj (o —y)¥F~ 1{IT/\ %‘70(6)+}\V(6)—(6+H)Q(U)}dy,
vQ(0)7% o) _ g T e[ 9Q(0)T%0)
7°(@) = 7°(0) + 375 [ Y2 (1t o0 0) 70|+ i [ o —ypom | BT
—(L+a+Kk)T (0‘):|dy,
7o) = ¢ (o)+M( 8 [xa@) = s o) 7@ ¢ B o= k@) = ko ) (@),
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At o = o4 and by applying (6) on (26), we get the result as
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andEfp, ESm, E§m, Ef n, EEp, are of the form of Ef, given in (7).
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5 Numerical simulations

In order to make our obtained results more understandable, we continue with some approximations, such as simulations of the system (2).
By the values of all of the parameters in a biologically possible manner given in table 1 and to perform simulations to study the qualitative
analysis of deterministic and fractional stability, it is necessary to assign values to all parameters of model (2).

| Parameters | Value | Source |
A 0.8 estimated
n 0.03 estimated
p 0.005 | estimated
v 0.05 estimated
o 0.03 estimated
n 0.07 estimated
K 0.009 | estimated
A 0.07 estimated
5 0.07 estimated
T 0.04 estimated
S(0) 100 estimated
J%0) 10 estimated
J(0) 70 estimated
R(0) 60 estimated
#H(0) 50 estimated

Table 1. Parameters values

Our simulation has been performed by applying a newly introduced numerical scheme for the approximation of ABC fractional derivative to
model (1). Further, the parameters from Table 1 can be used. Time ranges from [0 — 20] and the initial population for the compartment
susceptible class Q(¢), acutely infected class 79( ), chronically carrier class 7¢( o), recovery class 91 (o), and immunized class # (o) have
been chosen from Table 1 as well. Figures 1,2 and 3 illustrate the simulation of several compartments in the proposed model as a result of
applying the previously given data. Figures 2(a)—2(e) represent the comparison of model (2) and (1), and Figures 1(a)—1(e) represent the
comparison of the (2) and (1), when g = 1.0. Secondly, we apply iterative approaches developed from (27) to simulate the model (2) under
the ABC non-integer order operator. All of the compartments (Q(c), 7%(c), 7(0), %:(o), #(0c)) of the said fractional order system were
plotted for the table 1 parameters for various arbitrary order values as p = 1.0, 0.95, 0.90, 0.85. Non-integer order operators of the ABC type
have been used. According to these figures 2(a)—2(e), we can see the dynamic behavior of several compartments of the system (2). At
first, the decay in the susceptible class is pretty rapid, but subsequently becomes stable with time. Similarly, infection cases decayed at
various fractional orders of p. The recovery achieves their maximum at this point. The graphical findings show that the proposed model
is dependent on the fractional order o and provides more flexible data about the behavior of the model that cannot be achieved with the
classic integer-order model.
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Figure 1. Simulations of susceptible, acute infections, chronic carriers, recovered and vaccinated individuals of model (1), when o = 0.90.
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6 Conclusions

In the end we concluded that the proposed fractional system describing the vaccinated Hepatitis-B behaviors has been studied qualitatively
using the contraction theorems of closed norm space. This investigation is taken under non-singular kernel related to the ABC fractional
order derivative. By disease free equilibrium points, the proposed system also has been studied for existence, uniqueness, and stability.
With the use of a newly defined numerical technique, a numerical simulation has been made for the approximation of ABC fractional
derivative at different fractional orders. Such type of techniques can also can also be achieved by other different fractional operators like He’s
derivative. Taking the initial populations bigger than zero for t > 0 we have simulated the compartment of the proposed model. Moreover,
we can declare that the result properly satisfying the initial data when the proposed system’s right hand side approaches to zero under
certain conditions. We can also control the epidemic by taking the optimal control strategy and with suitable variable or a parameter to
minimised the infected class like unscreened blood, the reuse of dental and surgical instruments, etc. As seen in the graphs, the fractional
derivative gives a more accurate and flexible data for investigating the complexity of the dynamics of the HBV model, see Figures 1-3.
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Abstract

A new concept in the transmutation of distribution applying variable transmuting function has been conceived. Test examples
with power function by quadratic and cubic transmutations have been demonstrated by the applications of the error-function
and standard logistic function variable transmuting functions. The efficiency and properties of the new approach by numerical
examples addressing the rate constants of the transmuting functions and the shape parameter of the test power function have been
demonstrated. An additional example with a quadratic transmutation of the exponential distribution through the error function as
a variable transmuting parameter has been developed.

Key words: Transmutation; variable transmuting parameter; transmuted distributions; power function
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1 Introduction

Distributions are widely implemented to fit experimental data dominantly in statistical applications. Applications of certain statistical
tools are strongly dependent on the used probabilistic models of considered data. The increase in the variety of statistical data that should
be fitted (modelled) revealed that many classical distributions are unsatisfactory in statistical data fitting. Hence, there are appeals to
create more generalized distributions allowing modeling of more complicated phenomena more flexibly. Motivated by the need to add
more parameters to distribution functions thus making them more flexible in data analyzes [1]. In this context, there are several attempts
to consider compound distributions [2, 3, 4], exponentiated distributions [5], beta class of distributions [6, 7], generalized exponential
distribution [8], weighted distributions [9]. The weighted distributions, for instance, take into consideration the verification method for
adjustment probability distributions by introducing weights [10] which to some extent is close to the transmutation method considered in
this work.

Here we address a class of weighted distributions developed by the so-called transmutation method [11] which results in a specific class
of mixture distributions. In the approach conceived by Shaw and Buckley [11] the generalization of the distributions is achieved by the
application of a transmutation map. Precisely, the transmutation map is a functional composition of the cumulative distribution function
(cdf) of a certain distribution with the inverse cumulative distribution (quantile) function of another [1]. In statistical publications, there are
numerous examples of transmutations of classical distributions such as Weibull distribution [12, 13, 14, 15, 16, 17], power distribution [18],
minimax distribution [19], linear exponential distribution [20, 21, 22], Frechet distribution [23], Gumbel distribution [20, 23], Gamma
distributions [20], etc.

This article introduces the idea to replace the transmutation parameter with a function (called here also activation function) dependent on
the probability variable and varying only in range , as in the case when the transmutation parameter is a discrete value and resulting in a
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specific class of mixture distributions. For a better understanding of the main idea of the transmutations, the technique is explained in the
next section (Background) from a general point of view and with two simple examples further used in this work.

2 Background

The increasing number applications fitting real-world data, from life science, economics or advanced technologies, are raising problems
for more flexibility which some of statistical distributions cannot provide adequate answers. Particularly, to capture the skewness and
kurtosis (see the definitions in Appendix (Section 10) associate with such applications it was introduced a transmutation mapping [11]. This
map is a functional composition of a cumulative distribution function (cdf) of a particular distribution with the inverse cumulative distribution
(quantile) of another distribution [1]. This approach increases the distribution flexibility to fit experimental data. The common approach is to
use discrete values of the transmuting parameters (commonly denoted by the symbol A) [1, 11, 16, 21, 22, 24, 25, 26, 27, 28, 29]. This work
addresses transmutations of statistical distributions by variable transmuting parameters, precisely, transmuting parameters dependent on
random variables. For the sake of clarity, and creating the exposition gradually understandable, as well as to present the new approach we
will start with some basic definitions explained next.

Theory of distribution transmutations

If there are absolutely continuous cumulative distribution functions (cdfs) F1(x) and F, (x) with the corresponding pdfs f; (x) and f, (x), ona
common sample space, then the general rank of transmutation, following Shaw and Buckley [11], is formulated as

Gr,, (W) = F [FT' (W], Gg,, () =F [F3" )], (1)

where both functions G , (u) and Gg,, (u) map the compact [0,1] into itself as well as they are mutually inverse with GRii (0) = oand
GRU‘ (1) =1wheni=1,2.

In accordance with the definition of [11] a random variable x has a transmuted distribution of family of rank k if the cumulative distribution
function (cdf) is defined in a general form as [11, 16, 24, 21]

k .
FoO=Gx)+[1-GX)] Y _AN[GM)]', )

i=1

k
with A; € [-1,1]fori=1,2,3,...,kand =k < 3 A; < 1.
i=1
The general transmuted family reduces to the base function (base cumulative distribution) (cdf) G (x) for A; = 0. Two simple transmutations,
undoubtedly explaining the idea of this mapping, and used in this work, are briefly presented next.

Transmutations of quadratic and cubic ranks: Examples

Before demonstrating simple examples we have to stress the attention on two important issues in applications of the transmutation
approach, namely

- When the task is to demonstrate how the transmutation of certain rank transforms the base function (distribution) then the choice
of the transmuting parameter A (can be termed also as activating parameter) is to some extent arbitrary, with discrete values, from
A € [—1,1], as it will be done in the following examples. This can be considered as a forward problem.That is, in the forward problem a
given value of A activates (results in) a particular shifted distribution.

- When a certain transmuted version of base function (distribution) has to be applied in fitting procedure to a given set of statistical data,
then the determination of A is a task related to an inverse problem. That is, in such a case the problem is to find particular value of A so
that the transmuted distribution to fit the statical data. This can be considered as a backward problem. This step is beyond the scope of
this work, because the primary task addressed here is to demonstrate how the new approach in generation of transmuted distributions
works.

It is worth noting that, in both cases, the tasks are performed with discrete values of the transmuting parameter A as it follows from the
basic formulation of Shaw and Buckley [11].

Here, for the seek of the clarity of the method applied and its development conceived in this work, we give demonstrative examples of the
two most popular transmutations [11] with particular sets of values of A chosen arbitrarily from the range A € [—1, 1] as it has been done in
all works cited above.

Quadratic transmutation
For k = 1, applying (2), we have a cdf

Fi(0=(1+0)Gx) - AG* (), [Al<1, 3)
and a corresponding pdf f; (x) = %Fl (%)

L1000 =+ NG -9 (060, g0 = CX. “)
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Itis obvious that for A = 0 the transmuted function F; (x) reduces to G (x). To illustrate this, we present examples of quadratic transmutations
of the power function (distribution) (Egs. (5) and (6)), with a shape parameter « and cumulative density function (cdf) [18]

GX)=1-(1-%% 0<x<1, «>O0, (5)

and corresponding probability density function (pdf)

g(x) = x(1 —x)"‘_l, 0<x<1, o«o>0. (6)

Applying (3) and (4) to (5), we get
Fi=(1+A)[1-(1=0)%] = A[L-(1-%)%]?, @)
fi=(1+2) [oc(l - a)“‘l] —2a[1- (1-x)%] [cx(l - x)“‘l] . (8)

This function is a special case of beta distribution describing random data confined in the open interval (0, 1) [1, 18]. The numerical tests
shown in figure 1 demonstrate the variations of the cumulative density function for various values of the transmuting parameter A as well
as the effect of the shape parameter for « < 1and « > 1. The changes in both the skewness and kurtosis are obvious.

10

09
08 = 08

07 =
05

06 I 02
05 =
04 =
03 =

02 =

Power function { Quadratic transmutation )
Power function { Quadratic transmutation )

01 =

0 ] A 'l L A L L L ] L
0 01 02 03 04 05 06 07 08 09 10 b) x
a) X

Figure 1. Two cases of quadratic transmuted power function (distribution): a) with « = 0.5;b) with « = 1.5

Cubic transmutation
For k = 2, applying (2), we have a cdf

F2(X) = G(x) + MG (X) [1 = G ()] + A26% (x) [1 = G ()] - (9)
This can be presented also as
F5(x) = (1+ M) G (X) + (A2 = A1) G* (x) = A26 (x) (10)
and a corresponding pdf
(0= (@+A1)g(0) +2(A2 = M) g (x) G (X) = 3729 (¥) G* (), (11)

where A\; € [-1,1]and A, € [—1,1],and —2 < A; + A, < 1. For this specific case, following Granzotto et al. [16], we have A; € [0,1] and
Ay € [—1,1].

If we try to minimize the number of transmuting parameters, it is possible to suggest that A; = A and A, = —A where |A| < 1. Then, from
(10) we get a simpler form of F, (x), namely

Fy (x) = (1+ A) G (X) — 2AG2 (x) + AG3 (x), (12)

fo(0) = (1+A)g(x) = 4Ag (X) G (x) + 3Ag (x) G (x). (13)
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In the case with the power distribution (5), we have

Fo=(1+A)[1-Q-%)% —2A[1— (1 - x)%]* + A1 — (1 - x)*]3, (14)

f,=(1-2) [oc(l - x)“‘l} —IA[1= (1= %)% [oc(l - x)"“l] #3A[1- (1-%)%]? [(x(l - x)"“l] . (15)

Examples of cubic transmutations of the power function (distribution), the same as used in the tests of the quadratic transmutation, are
shown in Figure 2. The effect of the transmutation on the distributions is more obvious since there is a strong effect of the shape parameter
X.

Power function ( Cubic transmutation )
Power function ( Cubic transmutation )

a) b)

Figure 2. Two cases of cubic transmuted power function: Left- with « = 0.1; Right- with « = 2.5

There exist many examples of transmuted distributions [1] (see the detailed analysis in this article and references quoted therein) but
here we address a different approach rather than selecting values of A (the case with k = 1) or pairs (A1, A,) when k = 2, as it was done in
most of the articles cited above. It is worth remarking that for the sake of clarity in the explanation of the idea developed in this article
the numerical examples with power function are provided with « = 0.5and « = 1.5, but there are no restrictions to demonstrate similar
behaviours with different values of the shape parameter «; the effect of the shape parameter on the transmuted distribution in the light of
the new concept is beyond the scope of this work.

3 Aim

This article conceives a new approach in transmutation of distributions by applying variable transmuting parameters (activation functions)
instead of its particular (discrete) counterparts used in the original concept. To some extent, this leads to new distributions obeying all
desired properties of transmuted basic functions. The power function is used as a test distribution with two transmuting (activating)
functions: the Gaussian Error-function and the Standard Logistic Function. In fact, this is an experimental work, in sense of experimental
mathematics, on the forward transmuting problem, when a new idea about transmutation of functions (distributions) is directly demonstrated.

4 Further paper organization

In the sequel the concept of a variable transmuting parameter (Section 5) with two functions as examples: Error Function erf(x) (Section
5) and the Standard Logistic Function LogF(x) (Section 5) is presented. Further, two examples with the application of these continuous
transmuting functions (Section 6) to the power function distribution demonstrate all features and problems emerging in application of this
new approach.

5 Variable transmuting parameter: The concept

Now, we have to stress the attention on the fact that there is no rule for choice of the value of the transmuting parameter A, when the forward
problem is at issue, despite the restriction A € [—1,1] as the references [11, 16, 21, 24] (and see the references therein) widely used to obtain
new distributions in statistics. Only, by selections of pairs A, it is possible to get a variety of transmuted functions [1, 11, 16, 20, 21, 22,
24, 25, 26, 27, 28, 29]. One attempt to resolve the problem is the simplification of the cubic transmutation (12) avoiding the use of A; and
A,. In what follows we conceive the idea that A can be dependent on the argument of the transmuted function, but at the same time to
satisfy the condition A € [—1,1], thatis

A =AM, A el[-1L1], Xxe(-00,00). (16)
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In this context, both the quadratic (17) and cubic (18) transmuted profiles are

B () =6(0)+ A [60) -6 (), (a7

F}(x)=G(x)+ A (X) [G (x) — 2G> (x) + G3 (x)] ) (18)

Therefore, we have a superposition of the basic function G (x) and a term (functional relationship) deforming the entire transmuted profile
(distribution). In such a case the pdfs of these transmuted cdfs are

R0 =F00+ L [600 -6 00] + A9 1-26(0)], Lo = A8, (19)
£ ®0=9g0+L() [6(0) 26>+ 6> (0] + A g(x) [1-26(x) +36> (x)] . (20)

It is important to stress the attention on the requirement coming from the new formulation the function A(x) to be smooth and differentiable
with respect to x.

The functional relationship of A (x)

We realize that there exists a variety of such functions defined by (16), but skipping a discussion on this problem which is beyond the scope
of the present study, we suggest the following functional relationships:

Error function
In this case, we suggest

X
A)=erf[p-x]= % Je_pz‘zzdz, p>0, X(—00,00). (21)
0

This is an ad hoc selection of A (x) where the derivative with respect to x is

L(x) = d/:ng) = %e‘i’z"z. (22)
In addition, the integral of A (x) is
_(px)erf(px) 1 e P*¥
_[erf (px)dx = P + P VR +C (23)

The parameter p controls the rate of growth of A (x) as it is shown in Fig. 3 (left panel). It is obvious that for p = 1, we get the basic erf(x),
growing rapidly to 1.

Logistic function
Here we select only the standard logistic function along the axis x >> 0, namely

_ 1
V(X)_W’ x>0, p>0, 05<V(x)<1, (24)
with the following basic properties
1 ex dv(x) _ ke PX 1 px
V) = 1+e PX "~ 1+ ePX’ dx (1+e-Pxy?’ JV(X)dX “p n (1 e ) +C 25)

As in the case of the error function (21) the parameter p controls the rate of growth (see figure 3 (right panel)) There are no restriction using
other versions of the logistic function but here the standard version was chosen for its simplicity allowing to demonstrate the main idea of
the variable transmuting parameter (function).

6 Distributions with variable transmuting parameter: Demonstrative examples

Example 1: Power distribution with Error-function as a variable activation function

Here, we consider again the power function (5), which allows comparing the new approach in the transmutation with the classical approach
(with discrete A) demonstrated in Section 2.
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0.5

p =0.001

Figure 3. Two examples of variable functions A(x). Left: Error function (ERF); Right: Standard Logistic function (SLF). The dotted lines show the lower (—1) and the upper (1)

Standard Logistic function

b)

limits of variations of the functions (the same in all figures in the sequel).

Quadratic transmutation

Plots of the quadratic transmuted cfds power function are shown in Figure 4. The behaviours of the transmuted functions reveal that in
general the character of the effect of the transmuting parameter on the skewness and kurtosis resembles the effects of the discrete values

of A.

Power function ( Quadratic transmutation )

a)

L R R 40 R - e e e e el
09 k =05 S o9 a=15 ) )
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= 3
08 08 E 08 [F o Z p=0
— 2 <
07 | § 07
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B
05 = 041 8 05
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03 | E 03
02 | g o2
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X b) x

Figure 4. Two examples of variable functions A(x) to the quadratic transmuted power function. Left: « = 0.5; Right: « = 1.5. See the plots in Fig. 1

The corresponding pdfs are shown in Figures 5a-5b.

pdf of Power function { Quadratic transmutation )

a=05
erf (x) as transmuting function

20 a=15

erf (x) as transmuting function

.5

pdf of Power function { Quadratic transmutation )

=

Figure 5. Two examples of pdfs with variable functions A(x) = erf(x) to the quadratic transmuted power function. Left: « = 0.5; Right: « = 1.5.
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The cubic transmuted profiles (k = 2) in Figure 6 have almost the same behaviour as the quadratic counterparts (k = 1) but now they are
located too close and the effect on the skewness and kurtosis is not so distinguished as in the case with k = 1. Only in the central zone, we

can see some differences (see the inserts).

O o
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Figure 6. Two examples of variable functions A(x) to the cubic transmuted power function. Left: « = 0.5;Right: o = 1.5

The corresponding pdfs are shown in Figures 7a-7b.
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Figure 7. Two examples of pdfs with variable functions A(x) to the cubic transmuted power function. Left: « = 0.5; Right: « = 1.5.
Reliability analysis: Survival and Hazard functions of transmuted distributions
The survival function S (x) of F;(x) is the probability of an item not falling prior to a given x and is defined as
Sp(x) =1 - F(0), (26)
and the Hazard function Hy (x) is given by
()
H = 59 (27)
Sk(X)

These functions, related to quadratic transmutation at issue, are shown in Fig. 8.

Example 2: Power function with standard logistic function as a variable transmuting parameter

Quadratic transmutation

The quadratic transmuted profiles of the power function, with different shape parameters, are shown in Figure 9. It is obvious that in both
cases, with respect to the values of the shape parameter «) there are sufficient shifts in the distributions with respect to the basic version
when A = 0. The shifts are towards the case with A — 1. The corresponding pdfs, shown in Figure 10 reveal more distinguishable plots but
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Figure 8. Survival and Hazard function with erf(x) as transmutation parameter. Left column: Quadratic transmutation; Right column: Cubic transmutation

the shifts are again towards the case corresponding to A — 1.
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Figure 9. Two examples of distributions with variable function V(x) (Standard Logistic Function) to the quadratic transmuted power function. Left: « = 0.5;Right: « = 1.5

Cubic transmutation

The cubic transmuted profiles (k = 2) of the cumulative power distribution in figure 11 have almost the same behaviour as the quadratic
counterparts (k = 1) but now they are located too close and the effect on the the skewness and kurtosis is not so distinguished as in the case
with k = 1. Only in the central zone, we can see some differences (see the insert).

Reliability analysis: Survival and Hazard functions of transmuted distributions
The survival function S, (x) of F}, and Hazard function H (x) are shown in Figures 12 and 13.

We can see again that the effect of the cubic transmutation with the standard logistic function as transmuting function is practically
negligible in contrast to the case when the error function is used.
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Figure 11. Two examples of pdfs with variable function V(x) (Standard Logistic Function) to the cubic transmuted power function. Left: « = 0.5;Right: « = 1.5

Some briefs on the examples demonstrating the new concept

The idea developed here results in a new type of distribution which to a greater extent are similar to the mixed distribution (30, 31, 321,
where the constructions of the cumulative distributions C (x) as a combination of distribution functions G; (x) follow the rule [32, 33]

N
C) =) wiGi(x), (28)

i=1

where w; > 0 are mixture weights obeying the condition g w; = 1. Moreover, it is not necessary that G; (x) belong to one and the same
i=1

distribution family on have the same number of parameters [32, 33].

In the idea developed here, even though this aspect is not developed and draws future research. Moreover, this approach, to some extent,
resembles the idea of transmutation (2) but bears in mind the significant differences between the two approaches. We have to stress the
attention on the fact that in the approach developed here the weighting coefficients follow two main conditions: A € [—1,1] coming from
the constructions of the transmutation theory, and they are dependent on the variable x , but their variations are within the range [-1, 1].
The numerical experiments reveal two basic issues, based on the experiments performed with the power function as a test distribution,
namely:

- The quadratic transmutation provides more distinguishable distributions with both the error function and the standard logistic function
as transmuting variable parameters.

- The increase in the transmutation rank, i.e. the application of the cubic transmutation, does not lead to significant changes in either the
skewness or kurtosis of the new distributions. The shape parameter of the basic distribution has practically no effect on this.

- The error function is more suitable, as a variable transmuting parameter, than the standard logistic function, irrespective of the rank of
transmutation, since it is allowing more distinguished new distributions to be generated.

These are comments relevant to the particular case of transmutations of the power functions. Some effects are strong and distinguishable,
others not, to some extent. This cannot be considered discouraging because the next example will show how the new approach can be
applied to another distribution.
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Figure 12. Survival and Hazard function with Standard Logistic Function as a variable transmutation parameter.Quadratic transmutations. Left column: « = 0.5; Right
column: « = 1.5

7 Distributions with variable transmuting parameter: Additional example with the exponential
distribution

Here we demonstrate how the quadratic transmutation, with error-function as transmuting parameter, can be applied to the exponential
distribution [20, 22, 34]

Gel(x) =1- eXP <_%> ) Xe [Ov 00)) A € [O; l]y (29)

with a quadratic transmuted cdf

o om(-5)] perem (-3)]

The effect of the rate parameter 3 on the development of the exponential distribution is shown in Figure 14. The effect of the scale parameter
B, which may be termed as a rate constant of the exponential growth is stronger when < 1 since we have 1/ > 1 resulting in rapid
saturation of the distribution. In contrast, for B > 1, the distributions are smoother. The following examples use 3 = 0.5and p = 1.5, similar
to the values of the shape parameter « of the power function. Moreover, g = 1.5 is used in the study of Rahman et al. [20] that allows
comparing the results developed by the new approach.

Exponential distribution: Quadratic transmutation with fixed transmuting parameters

Examples of the classical transmutation approach with fixed values of A are shown in Figure 15, thus demonstrating the effect the scale
(rate) parameter 3 and the values of A.

Exponential distribution: Quadratic transmutation with Error-function as a variable transmuting parameter

Now, applying the transmutation technology with the variable transmuting parameter we get flexible cdf and pdf shown in Figure 16.
The generated distribution through the quadratic transmutations demonstrated the effect of the transmutation function which, to a greater
extent, is similar to that of the discrete transmuting parameters. In contrast to the previous example with the power function, now we can
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Figure 14. Two cases of basic exponential distribution: Left- with g = 0.5; Right- with g = 1.5

see that the transmuted profiles are well distinguished that could be attributed to both the rank of transmutation and the type of variable
transmuting function chosen. Moreover, this can be related to the type of the basic exponential distribution which has an important control
on its behaviour through the rate parameter 3.

The Survival and the Hazard functions of the transmuted (quadratic) exponential distribution are shown in Figure 17.

8 Final comments and some emerging problems

This work conceived and explored tough examples of transmutations of distributions through a variable transmuting parameter (function)
depending on the independent variable. The numerical experiments demonstrate the effect of the new approach is successful but at the

same time formulate new problems and raise questions that should be answered through new studies, among them:

+ The inverse (backward) problems are related to the determination of the rate parameter p because actually, the use of a variable
transmuting function generates new basic distributions. This task is strongly dependent on the type of both the baseline distribution
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Figure 16. Cumulative and probability density functions of quadratic transmuted exponential distribution. Error-Function as a variable transmutation parameter: Left
column: cdfs; Right column: pdfs

and the activation function and might be solved either analytically or numerically.

- Development of moments, quantile functions, random number generations, and many other related functions and parameters such
as the ones well known from the cases when discrete transmuting parameters are applied. These are directions towards new studies
beyond the scope of the present investigation.

+ The new problems emerging in this study need the development of new analytical and numerical techniques for resolving the problem
mentioned above and this draws new challenging areas for investigation.
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9 Conclusions

A new concept in the transmutation of distributions applying variable transmuting (activation) function was conceived in this study. The
idea of a variable transmuting parameter, dependent on the independent variable, was tested with the power distribution applying quadratic
and cubic transmutations. This was performed through applications of two transmuting activation functions: the error-function and
standard logistic function, and obeying the conditions imposed on the transmuting parameters imposed on it in the original concept of
the transmutation mapping. Additional numerical experiments with the exponential distribution demonstrate the feasibility of the new
approach and elucidate the fact that the effect of the transmutation strongly depends on the type of the function (distribution) to which it is
applied. This is just the beginning and new tests with experimental data and available baseline distributions will allow elucidating the
position of the distributions generated by the new concept among the well-know families of transformed functions. It is word remarking
that the transmutation mapping can be applied not only to statistical distributions but to any other functions [35] thus allowing more
flexibility in modelling of and approximate solutions.
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10 Appendix

The kurtosis (Kurt) is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution and is given as
A
Kurt = o

and the skewness ({:3) is a measure of the asymmetry of distribution and is given as
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Abstract

This study proposes a novel mathematical model of COVID-19 and its qualitative properties. Asymptotic behavior of the proposed
model with local and global stability analysis is investigated by considering the Lyapunov function. The mentioned model is
globally stable around the disease-endemic equilibrium point conditionally. For a better understanding of the disease propagation
with vaccination in the population, we split the population into five compartments: susceptible, exposed, infected, vaccinated,
and recovered based on the fundamental Kermack-McKendrick model. He’s homotopy perturbation technique is used for the
semi-analytical solution of the suggested model. For the sake of justification, we present the numerical simulation with graphical
results.

Key words: Local asymptotic stability; global asymptotic stability; Routh-Hurwitz criterion; COVID-19; infectious disease modeling
AMS 2020 Classification: 341.30; 92D30; 37N30; 37N25

1 Introduction

Most nations throughout the world have been afflicted by the COVID-19 outbreak, and their economy has suffered as a result. There have
been several cases of infection, as well as the occurrence of subsequent infection waves that have resulted in a greater number of cases than
the prior wave. Although various preventative techniques and other control measures have been used to restrict the disease’s spread, it is
still unknown when this lethal sickness will be eradicated from the community. COVID-19 is currently infecting and killing people in the
majority of the world’s countries. The total number of infected cases recorded till September 4, 2021, was 220917130, including 4571624
deaths, and 197441726 [1] people recovered from COVID-19 infection. Researchers, biologists, and medical professionals are constantly
attempting to develop efficient vaccines, preventions, and treatment measures for coronavirus infection management. Because there are so
many different strains of this sickness, researchers are working to develop a more effective vaccine for infection prevention. According to
the literature, several study publications on the virus’s infection reduction have been written and published from various perspectives. We
have a lot of models if we speak out that connected study on coronavirus using mathematical models. Mathematical models are the only
means to determine the infection’s peak and the best strategy to manage it.

In[2], researchers studied COVID-19 using a mathematical model that included Susceptible S(t), Exposed E(t), Infected I(t), Quarantine
Q(t), and Recovered R(t). The goals were to examine the stability and optimal management of the concerned mathematical model for both
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local and global stability using a third additive compound matrix technique, as well as to produce threshold values using a next-generation
approach. The author created a graphic representation of the anticipated outcomes which also used the homotopy perturbation approach for
the solution and for each population of the underlying model with control variables utilizing optimal control methods based on Pontryagin’s
maximal Principle to control the spread of COVID-19 infection in a population. In [3], researchers implemented fractional calculus on
a COVID-19 mathematical model and investigated local and global stability for the stabilization of the disease in a population with an
approximate solution using the Laplace-Adomian decomposition method. In (4], the authors examined the global view of the coronavirus
model to real data from Ghana, as well as its cost-effective analysis with environmental changes. In [5], the authors proposed a nonlinear
predictive control model and its management for coronavirus infection. In [6], the authors modeled and explored the use of medication
resistance in coronavirus infection. In [7], the authors investigated the spread of coronavirus infection in China, as well as its modeling
and prediction. In order to investigate the impact of lockdown in reducing coronavirus spread [8], the author examined a system of five
nonlinear fractional-order equations in the Caputo sense. The hypothesised coronavirus model under lockdown’s solutions were shown to
exist and to be distinct using the fixed-point theorems of Schauder and Banach, respectively. Ulam-Hyers and generalised Ulam-Hyers
frames for stability analysis were established.

To simulate the transmission of disease, the authors [9] looked at the SIR model with a generic incidence rate function and a nonlinear
recovery rate. The influence of the health system affects the nonlinear recovery rate. The authors also established the model solution’s
existence, uniqueness and boundedness. They looked into the model’s many steady-state solutions, stability details, and reproductive
number. The research demonstrates that the free steady state is unstable otherwise and locally stable when the reproduction number is
smaller than unity. The backward bifurcation phenomenon is illustrated by the model. For the transmission dynamics of HIV epidemics,
the authors [10] have developed a nonlinear SEI1I2R fractional order epidemic model. The generalised mean value theorem is used to
determine the model’s non-negative solution. In order to determine the disease status, we obtained the fundamental reproductive number
Ry, which serves as a threshold parameter. Using the fractional Routh-Hurwitz stability criterion, the asymptotically stable outcomes
of equilibria are explored. While this is going on, a suitable Lyapunov function is built to evaluate the global asymptotic stability of the
disease-free and endemic equilibrium point. In order to increase the concept of propagation delay, this research [11, 12] focuses on a delayed
epidemic model with information-dependent vaccination.

Researchers have delved deeply into the transmission of infectious diseases or concentrated on the differential model, which solely
takes into account the traits of infectious diseases themselves. The dynamic study of infectious illnesses based on vaccination rates has
not received much attention. The authors [13] looked at a population model of the novel COVID-19 under ABC fractional order derivatives,
and they also demonstrated enough evidence for the solution’s existence and uniqueness for the model under consideration. They also
demonstrated that the model has at least one solution with a stable result. The author [14] showed in this work the potential of modelling the
dynamics of SARS-CoV-2 infection as a helpful support tool for measuring the population’s level of compliance with the GIM and projecting
the impact of corrective measures. This book [15] helps with the preliminary results and is valuable to study in the field of mathematical
modelling in public health biology or public health epidemiology. In [16], the author investigated COVID-19 epidemic has had a substantial
influence on children and adolescents’ mental health, which should be of great concern to policymakers and practitioners around the world.
This [17, 18, 19, 20, 21, 22] work examines a new mathematical model for the dynamics of Hepatitis-B virus transmission in a fractional
environment in light of asymptomatic carriers and vaccination classes. Because the authors took into account both the vaccination and
asymptomatic caries, this new model is more advanced than the previous models proposed for the dynamics of the Hepatitis-B virus. In
this study [23, 24], the dynamics of the COVID-19 epidemic in Pakistan were examined, and a mathematical model was developed. Its
fundamental and essential mathematical aspects, such as the existence and positivity of the system and its solution, were then supplied.
Using fractional stability techniques, the detailed stability results for disease-free and disease-endemic equilibrium points are examined
on alocal and global scale.

For the dynamics of the Zika virus [25, 26] with a mutation that results in defects in newborns, a mathematical model has been devised.
The threshold quantity at risk-free equilibrium and the equilibrium for Zika infection were also computed by the authors. Both locally and
internationally, the stability analysis at disease-free and disease-endemic equilibrium are computed. The authors [27, 28] examined a
mathematical model with slow and quick exposed cases and its impact on the model dynamics to comprehend the TB infections in the KP
area of Pakistan. They also researched the fundamental math needed to model the fractional-order model. The model’s stability was then
examined, and it was demonstrated that the TB model is both locally and globally asymptotically stable. The examination and analysis
of the suggested drinking model must also be included by the authors, who also used stochastic system perturbation to determine the
solution’s existence and uniqueness as well as some drinking dynamics [29]. The authors have also come to some important conclusions on
how to control drinking habits at all stages, from risky to moderate and moderate to non-consumer. A discrete-time Bazykin-Berezovskaya
prey-predator model’s complex dynamics were described in detail by the authors [30]. Additionally, they showed that the model has a
single positive interior fixed point (FPP). They also concentrated on the analytical and numerical bifurcation analysis of the interior fixed
point FPP due to its biological significance.

The scientists [31] looked at an SIR model for COVID-19 in Indonesia, taking into account parameters like immunisation, treatment,
application of health protocols, and coronavirus burden. Additionally, they discovered that immunisation and the application of health
practices significantly limit or stop the spread of COVID-19 in Indonesia. Similar to vaccination [32] and the application of health protocols,
treatment can decrease or stop the pace of COVID-19 infection. However, its impact is not as great. This study [33] presents a novel
strategy for combating the COVID-19 epidemic. Using actual data from the United Kingdom, a fractional order pandemic model is created to
investigate the spread of COVID-19 with and without the Omicron form and its connection to heart attacks. In [34], an optimal control
model has been developed in light of the potential controls that are thought to be successful. The World Health Organization’s (WHO)
basic principles, such as immunisation of people, rapid testing, and early treatment of infected individuals by COVID-19, have been used
to consider the four control variables in the form of preventions. In [35], this study examines the mathematical modelling of COVID-19
transmission at the fractional-order level. Using nonlinear analysis, they demonstrate the model’s existence and originality. The goal of this
work [36] is to thoroughly study a mathematical model for computing the nonsingular fractional order derivative-based transmissibility of
a novel coronavirus (COVID-19) disease. By using the Krasnoselskii and Banach fixed point theorems, the existence and uniqueness of the
proposed model have been ensured. Additionally, some stability outcomes of the Ulam-type have been developed.

In [37], the researchers studied that there was a substantial but statistically minor rise in mental health symptoms before to and
during the COVID-19 pandemic in 2020, according to a study that sampled mostly European and North American people. Depressive
symptoms showed bigger and longer-lasting increases, compared to anxiety disorder symptoms and measures of general mental health
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functioning, which showed lower changes. It will be critical to keep track of changes in mental health (especially depression) and ensure
that proper therapeutic therapy is accessible. The total rise in mental health symptoms was most evident in the first two months after the
WHO proclaimed a pandemic (March 2020), before declining and returning to pre-pandemic levels by mid-2020 for most symptom kinds.
In [38], the authors study COVID—19 with quarantine, isolation, and environmental viral load. They fitted the COVID—19 model to real data
and calculated the parameters.

Share of people vaccinated against COVID-19, Jun 18, 2022

Il Share of people with a complete initial protocol [l Share of people only partly vaccinated

United Arab Emirates 99%

8YP'
Ethiopia |EEEG— 217
Nigeria IEESS—— 13%

0% 20% 40% 60% 80%
Source: Official data collated by Our World in Data CCBY

Note: Alternative definitions of a full vaccination, e.g. having been infected with SARS-CoV-2 and having 1 dose of a 2-dose protocol, are
ignored to maximize comparability between countries.

Figure 1. [39], The bar chart represents the vaccinated population with complete initial protocol and partly vaccinated for different countries

Daily new confirmed COVID-19 cases per million people, Jun 19, 2022 Our \D/V?r\d
in Data
7-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number ofinfections.
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Source: Johns Hopkins University CSSE COVID-19 Data CCBY

Figure 2. [39], The map of the world represents the confirmed cases of COVID—-19
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Daily new confirmed COVID-19 cases & deaths per million people

7-day rolling average. Limited testing and challenges in the attribution of cause of death means the cases anddeaths counts may not be accurate.
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Figure 3. [39], The plots of confirmed and death cases per million people
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Source: Arroyo-Marioli F, Bullano F, Kucinskas S, Rondén-Moreno C (2021) Tracking R of COVID-19: A new real-time estimation using theKalman filter. CCBY

Figure 4. [39], The behaviour of basic reproduction number or reproductive rate Ry of COVID—19 for different countries. The reproduction rate represents the average number
of new infections caused by a single infected individual. If the rate is greater than 1, the infection is able to spread in the population. If it is below 1, the number of cases
occurring in the population will gradually decrease to zero
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Figure 5. [39], Gallery of charts for new cases, new tests, positive test rate, and reproductive rate. 7-day rolling average. Due to limited testing, the number of confirmed cases
is lower than the true number of infections. Comparisons across countries are affected by differences in testing policies and reporting methods
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Figure 6. [39], The case fatality rate (CFR) is the ratio between confirmed deaths and confirmed cases. Our rolling-average CFR is calculated as the ratio between the 7-day
average number of deaths and the 7-day average number of cases 10 days earlier.
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COVID-19 vaccine doses, ICU patients, and confirmed deaths 0;:] rg\;(t);\d

Limited testing and challenges in the attribution of cause of death means the cases and deaths counts may not beaccurate.
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Figure 7. [39], Gallery of charts for vaccine doses, new cases, patients in ICU and New deaths

According to [40], immunization is a global success story in terms of health and development, saving millions of lives each year. Vaccines
interact with your body’s natural defenses to build protection, lowering your risk of contracting a disease. Your immune system reacts when
you receive a vaccine. Vaccines for more than 20 life-threatening diseases are now available, allowing individuals of all ages to enjoy longer,
healthier lives. Every year, vaccinations prevent 3.5-5 million fatalities from diseases such as diphtheria, tetanus, pertussis, influenza,
and measles. Immunization is an indisputable human right and an important component of primary health care. It’s also one of the most
cost-effective health investments available. Vaccines are also essential for preventing and controlling outbreaks of infectious diseases. They
are essential in the fight against antimicrobial resistance and support global health security. Despite significant advances, vaccine coverage
has plateaued in recent years, and in 2020, it may potentially decline for the first time in a decade. Over the last two years, the COVID-19
pandemic and its aftermath have put pressure on health services, with 23 million children skipping vaccinations in 2020, 3.7 million more
than in 2019, and the largest amount since 2009. Preliminary data from 2021 reveal continuous disruption, but on the plus side, nearly all
nations had implemented COVID-19 immunization by the end of 2021, and one billion doses of COVID-19 vaccine had been supplied via
COVAX by early 2022. In this paper, we investigate the asymptotic behaviour of the model locally and globally at disease—free and endemic
equilibrium points. For the global stability, Lyapunov function is considered. We also use the homotopy perturbation method (HPM) to
solve the non-linear dynamical system of COVID-19 semi-analytically. HPM approach was initially suggested by [41] and has since been
used to solve differential and integral equations in both linear and nonlinear scenarios by [42]. In [43], the authors used the HPM to solve
the nonlinear Kawahara partial differential equation semi—analytically. The HPM was used by the authors [44] to solve a set of partial
differential equations. Without the use of linearization, transformation, discretization, or constrictive assumptions, the approach is used
directly. We can get the conclusion that the HPM is very effective and powerful in locating analytical solutions for a variety of boundary
value problems. In [45] to solve the system of rabies transmission dynamics, for resolving the generalised Zakharov equations, the HPM
is suggested by the authors [46]. With potential unknown constants that can be found by imposing the boundary and initial conditions,
the initial approximations can be freely chosen. For the mathematical study of obtaining the solution of a first-order in-homogeneous
partial differential equation ux(x, y) + a(x, y)uy(x,y) + b(x, y)g(u) = f(x,y), a new homotopy technique is proposed [47]. This new method is
developed by combining the decomposition of a source function and the HPM.

COVID-19 mathematical model formulation

In this section, we modifying Susceptible, Infected, and Recovered (SIR) model [9, 31] for COVID-19 infection with the implementation of
the vaccination class/compartment such that:

ds(t) _

0 - s,
IO < s - i, (0
di(e)

ar = yI(t).

For mathematical modelling of the model, we provide the compartmental diagram below:
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Figure 8. Compartmental diagram of COVID—19 model

Based on the compartmental diagram (8), the following model is proposed:

% = 1 — qS(OI(t) — (w + a)S(t) + vR(t),
di(tt) = gS(OI(E) — (c + w + aQ)E(L),
% = cE(t) — (a+ w +x + 2)I(t),
dx;(tt) = al(t) — (w + Y)V(t) + aE(t) + aS(t),
9RO 5100+ Y90~ (o + IR,

(2)

with S(o) > o0, E(0) > 0,1(0) > 0, V(0) > 0,and R(0) > 0. Also, here SEIVR represents Susceptible, Exposed, Infected, Vaccinated and
Recovered compartments, respectively. Also, u is the rate of recruitment, q is the rate of transmission, w is the rate of natural death, a is
the rate of vaccination, v is the rate of loss of immunity, c is the rate of infection of Exposed population, x is the recovery rate of Infected

population, z is the death rate of Infected population due to the disease, y is the immunity of vaccinated population.

More assumptions

In order to build a new model, we must make assumptions in order to simplify reality. The Kermack—McKendrick model’s primary premise
is that diseased people are likewise contagious. The overall population size remains constant. There are only two types of death in the
population: natural death and death due to the disease. The population is open to accept new individuals from outside the existing population.
The infected individuals can be recovered with hospitalization. The parameters of are non-negative and N(t) = S(t) + E(t) + I(t) + V(t) + R(t)

where N(t) stands for the total population at the time t such thatt ¢ Q := [0, T] for T > 0.

2 Equilibrium points and their stability analysis
The disease—free equilibrium point is computed as:

E° = (so,o, 0, VO,RO) ,
where,

u(vw + VY + wy + wz)

0 _
5= vw? + w2q+ w2y + w3 —avy + vwq + vy + vqy + wqy’
VO = au(v + w)
Vw2 + w2q+ w2y + w3 —avy + vwq+ vy + vay + wqy’
RO = auy

vw2 + w2q+ w2y + w3 —avy+ vwqg+ vwy + vqy + wqy’

(3

(4)
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The basic reproduction number at the disease-free equilibrium point for the model (2) is computed below:

- cqs®
RO_(a+c+w)(a+w+x+z)’ 5)
where,
p(vw + vy + wy + w?
s = ( ) . (6)
Vw2 + w2q+ w2y + w3 —avy + vwqg + vwy + vqy + wqy
Theorem 1 The COVID-19 model at the disease-free equilibrium point E° is locally asymptotically stable if Ro < 1, otherwise unstable.
Proof 1 The Jacobian matrix of the model (2) is computed as:
-a-w (0] —qs° 0 v
0 —-a-c-w qs® 0 0
JE®) = 0 ¢ —-a-w-x-z2 0 0 7)
a a a -—w-y 0
0 (0] X y -vV—-w
After alittle simplification using the row reduction process, then the matrix (7) takes the form:
—-a-w 0 —qs° 0 v
o 0 -a—c-w qs° 0 0
J(E") = 0 0 cqS°—(a+w+x+z)(a+c+w) 0 0 (8)
o 0 [a(a+w)—agSl(a+c+w)+qSPa(a+w) —(w+y)(a+w)(a+c+w) 0O
(0] o X y —-vV—w
Clearly, we get all the eigenvalues such thatA; = —a — w, A3 = —a—Cc— w,A\3 = =v —w, A, = —(w +y)a+ w)(a+c+ w) and

Ag = cqS® — (a+ w +x+z)(a+c+ w). As we see that the eigenvalues other than A5 are negative while A5 < 0 ifcgS® — (a+ w +x+z)(a+c+w) <0
impliesthat cqS° < (a+ w +x+z)(a+c+w) furthermorecqS®/(a+ w +x+z)(a+c+w) < 1 = Ry < 1. Hence the model (2) is locally asymptotically
stable around disease—free equilibrium point Eg if Ry < 1. This completes the proof.

Theorem 2 The COVID-19 model at the disease-endemic equilibrium point E* is locally asymptotically stable if Ry > 1, otherwise unstable.

Proof 2 The Jacobian matrix of the model (2) is computed as:

-a—-w —ql* 0] —qSs* 0 v
ql* -a-c—w qs* 0 0
JEEY) = 0 c —a-w-x-z 0 0 9)
a a a —w -y 0
(o] [¢] X y -vV-w

Computing the characteristic equation of Jacobian matrix (9), such that:

A5+ @ A* + a3 A3 + azA? + auA + as, (10)
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where, the coefficients are the following:

a4 =(Ba+c+v+s5w+x+y+z+I7q),
Ay = (2aC +3aV + 120w + CV + 4CW +2aX +3QY + 20Z + CX + CY + CZ + 4y + VX + LwX + VY + Lwy
+VZ+ 4wz + XY +Yz +3a% +10w? + 2I*aq + I*cq — Scq + I*vq + 41" wq + Iqx + Iqy + Iqz),
az = (a®c +3a*v + 18aw? + 9a® w + 6cw? + a®x + 3a%y + A®z + 6vw? + 6wx
+6w2Y + 6wz + a3 +10w3 +2acv + 6dCw + ACX + 24CY + ACZ + 9Avw + 3CVw + 2avX
+6aWX + 2aVY + 9AWY + 2aVZ + CVX + 6aWZ + 3CWX + CVY + 3CWY + CVZ + 3cwzZ
+2aXY + 2aYZ + CXY + 3VWX + CYZ + 3vwy + 3vwz + VXY + 3wXY + vz + 3wyz + [*a%q
+6I* w2q + I vax + 3" wax + I*vqy + 31" wqy + I* vqz
+3["wqz +I"qxy + I"qyz + [*acq — Sacq + 2I*avq + 61" awq + I*cvq
+3["cwq + I"aqx + 2I"aqy + I"aqz + I" cqx — Scvq + I*cqy — 3Scwq + I*cqz + 31" vwq — Scqy),
a, = (Bv +12aw3 + 203w + 4ew? + By + hvw3 + 4w3x + 4wy + 4wz + 5w
+9a2w? + A®vx + 6aw?x + 2a% wx + A2 vy + 9aw?y + 6a% wy + a®vz + 6aw?3z + 3cw?x
+20% Wz + 3cw?y + 3cw?z + a®xy + A%yz + 3vaw?x + 3vw?y + 3vw?z + 303Xy + 30%yz
+ 41" w3q + a®cv + 6acw? + 2a%cw + a>cy + 9avw? + 6a*vw +3cvw? + Lacvw
+ACVX + 2aCX + ACVY + 4ACWY + ACVZ + 2ACwZ + ACXY + LAV WX + ACYZ + 4AV WY + 44V WZ + 20V WX
+20VWY + 20VWZ + AVXY + 4AWXY + AVYZ + CVXY + 4AWYZ + 2CXY + CVYZ + 2CWYZ + 2V WXY
+2vwyz + I*a®vq + 6" aw?q + 2I*a® wq + 3[* cw?q + [*a>qy
—3Scw?q + 31" vaw?2q + 31" w?qx + 31" w2qy + 3I* w?qz + I*acvq (11)
+2["acwq — Sacvq + I*acqy — 2Sacwq + 4I*avwq + 2I" cvwq — Sacqy + " avqx
+2["awqx + I"avqy + 4I"awqy + I"avqz + 2" awqz + 2I* cwqx + [*cvqy
—2Scvawq + 2I"cwqy + I"cvqz + 2I" cwqz + I*aqxy + [*aqyz + I*cqxy — Scvqy
—2Scwqy + 2" vwax + I*cqyz + 2I* vwqy + 2" vwqz + [* vaxy + 2" waxy + I vqyz + 2" wqyz),
a5 = 3awh + cawt + vat + whi + why + whz + W’ + 3¢ w3 + Bw? +2aw3x + 3aw3y
+Bwy +2aw3z + cawdx + cawdy + cawdz + vadx + vady + vadz + wixy + w3yz
+a?cw? +3a2vaw? + 2 w?x + 32 w3y + A2 w2z + I whq + 2acw3 + 3avw3 + Bvw + cvw3
+2I*aw3q + I*cw3q — Scw3q + I*vaw3q + I* w3qx + 2acvaw? + a®cvw + I* w3qy
+I*w3qz + acw?x + 2acw?y + A®cwy + acw?z + 2avw?x + A®vwx + 2avw?y + a>vwy
+20vw2Z + Cvaw?X + Bvwz + cvw?y + cvw?z + 2awxy + a2 wxy + 2aw?yz + cw?xy + aZwyz
+cw?yz + vaxy + vlyz + I*a? w?q + acvwX + acvwy + Acv wz + ACwXY + ACWYZ + AV wXY
+avwyz + cvwxy + cvwyz + I*acw?q — Sacw?q + 2I*avw?q + I*a®>vwq
+IFevw?q + IMaw?qx + 2" aw?qy + I*a® wqy + I"aw?qz + I* cw?qx — Scvaw?q
+I*cw?qy + I"cw?qz — Scw?qy + I'vaw?qx + IFvaw?qy + I*vw?2qz
+I*w?qxy + I* w2qyz + I"acvwq — Sacvwq + I*acwqy — Sacwqy + I* avwax
+Iavwqy + I"avwqz + I"cvwqy + I"cvwqz + IMawgxy + [Fawqyz

+I"cwqxy — Scvawqy + I"cvqyz + I"cwqyz + I*vwagxy + I* vwqyz.

Apparently, for positive endemic equilibrium point E* (S*, E*, I*,V*, R*) is locally asymptotically stable [48] if the following inequalities are
satisfied

a; 1 (0]

(¢} 1 (o]
@1 a a, a 1
det; = a5 >0, det, = >0, dety=laz ay ap|>0, and det,=|3 "2 "1 > 0. (12)
a a a5 a, a4z ay
3 2 0 0 (15 (14
(0} (14 a3

Considering the coefficients (11) of the characteristic equation (10), the Routh—Hurwitz criterion [49] is satisfied because all of the coefficients are
positive and inequalities (12) are satisfied. As a result, all the eigenvalues are negative or have negative real parts and Ry > 1. Hence, the model is
locally asymptotically stable around the disease-endemic equilibrium point, E*.

3 Global stability analysis

For the endemic Lyapunov function, {S, E, I, V, R}, L < 0 is the endemic equilibrium E*.

Theorem 3 [10,11,15] IfRy > 1,the endemic equilibrium point E* of the model (2) is globally asymptotically stable otherwise unstable.



Sinanetal. | 97

Proof 3 For proof, the Lyapunov function can be written as
L(S*E*I",V*,R*)=(S—S*-S"lo s +|E—-E*—E*lo E V-V*-V*lo v
( ) 't ) ) - g? gf g VvV
+ <I—I*—I*logIT> + <R—R*—R*log%).

Therefore, applying the derivative respect to t on both sides yields

dL _ (S=S"N\ . (E—E*\ . (I="\:_ (V-V*\. (R—R\
a5 ) )e () (5 (5 )% )

(13)

which implies that

) (1t = gSOI(E) — (w + a)S(t) + vR(D))

E-E ) (GS(OID) — (c + w + DE(D))

) (al(t) = (w + Y)V(E) + aE(t) + aS(t))

(
(
N (I -r > (CE(t) = (a+ w +x + 2)I(1)) (15)
(
(

) (K1) + YV(E) — (w + VIR(D)).

Furthermore,

dL_ _LLS*_QI _oy2 , Dpepo_ ox\2 _
Gen- - Te-sredrs-s
_ QEI*
E

VS*R . VS*R*
S S

(‘”S* D (S—5*) + vR— vR*
qE'I*S*  (c+w +a)
E E
(I- I*)2

cI"E _ cE'I"

oV AV V-V
v v V—y

+qSI— qS*I — (E-E*)? +

+CE—CcE*—(a+w+x+2) —al

av*E _ aE*V*
1% v

+aE — aE* —

Now, Eq. (16) can be written in the form of:
- = F - (17)

where,

F = u+71*(5 S$*)2 + VR + VSR +qSI+CIE+cE+aI+aE, (18)

and

_%_%I(S—S*)Z (w+a)(s S*)Z R* — VSSR
_qE*T* qE*I'S*  (crw+a) . .o CET
E E E (E-E7) I
(I- I*)2 . avl* _ avrrr
—al v v
_ (V-v*»? . aV'E _aE*V*
Wy —a" = 5= - =

—qS*I -
(19)

—CE*—(a+w+x+2)

Eventually,if F < «cthen dL < owhileusingS = S*,E =E*,I =I*,V = V* andR = R*,0 = F — «implies that dL = 0.Also, for the suggested model
(2) we are looking the largestcompactmvarlantset (S*,E*,I*,V*,R*) c Q: dL = 0} is the endemic equzlzbrlum pointE* = (S*,E*,I*,V* ,R*)
of the considered model. Thus, the model (2) is stable in Q if Ry > 1and F < «.

4 Homotopy perturbation method

Consider a general type problem given by

A(H) _f(r) = 0) re Qy (20)
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with the boundary conditions as

o _
B <p, ﬁ) =o,rer, (21)

where A is a general differential operator, 3 is a boundary operator, f(r) is a known analytic function, and I" is the boundary of the domain
Q. The operator A is divided into linear part L and nonlinear part N. Therefore, (20) can be written as

L(w) + N(u) - f(r) = 0. (22)
By HPM, we can construct a homotopy as
v(r,s): Q x [0,1] - R, (23)
satisfying
H(v,s) = (1= s)[L(v) = L(n)] + s[A(v = f(r)] = o, (24)
which is also equivalent to
H(v,s) = L(v) = L (110) +SL (Vo) + s[N(v) = f(r)] = o, (25)

where s € [0;1] is an embedding parameter, and o is the initial approximation of the given equation that satisfies the boundary conditions;
we have

H(v,0) = L(v) ~ L (o) = 0,

(26)
H(v,1) = A(v) —f(r) = 0.
Keeping these points, we construct the required solution to equation (22) as
v=vg+styy + 8%V, + Bz 4. 27)
Furthermore, by taking the limit as p — 1in the approximation equation (27), one has
éiﬁn}v = éer%vo +stv +8%v, +SPvg H (28)
which yields
V=Vo+Vp+Vy +V3+- -, (29)

Equation (29) represents the semianalytic solution of the problem equation (20).

5 Approximate solution of the proposed COVID-19 model

Applying homotopy on the model (2)

DS(t) — DS(0) = s[p — gS(OI(t) — (w + a)S(t) + vR()],
DE(t) — DE(0) = s[gS(8)I(t) — (¢ + w + a)E(1)],
DI(t) — DI(0) = s[cE(t) — (a + w +x + 2)I(t)], (30)
DV(t) — DV(0) = s[al(t) — (w + y)V(t) + akE(t) + aS(t)],
DR(t) — DR(0) = s[xI(t) + yV(t) — (w + v)R()].

Assume series solution to the model (2), such that
S(t) = S(0) +$S(t) + 87S,(1) + $3S3(D) + - - -,
E(t) = E(0) + SEy(t) + S?E5(t) + SPE5(D) + - - -,
I(t) = I(0) + sIy(t) + $*Iy(t) + 3 (E) + - - -, (31)
V(1) = V(0) + sVy(t) + s>V, (1) + V3(8) + - -,

R(t) = R(0) + SRy (t) + $*Ry(t) + $3R3(£) + - - - .

Now by comparison we get s®, s!,s2, . .. by using system of equations (31) in (30), we have:



Zeroth-order problem

First-order problem

Second-order problem

Third-order problem

nth-order problem
s(n+1)
s(n+1)
s(n+1)
S(n+1)

sl

1

(7]

S1

Sl

sl

= DS(TH‘I) = —q.S(n)(t)I(n)(t) - (w + G)S(n)(t) + ‘\/R(n)(t),

s® := DS(0) = DS,
s® := DE(0) = DE,,
s® := DI(0) = DIy,

s® := DV(0) = DV,
s® := DR(0) = DRo.

:= DS = 1 — qS(0)I(0) — (w + a)S(0) + vR(0),
:= DE; = qS(0)I(0) — (c + w + a)E(0),

:= DI = cE(0) — (a + w + x + 2)I(0),

:= DV; = al(0) — (w + y)V(0) + akE(0) + aS(0),
:= DRy = xI(0) + yV(0) — (w + v)R(0).

:= DSy = —qS1 (DI (t) — (w + @)S1(t) + VRy(1),
:= DE; = qS1(D)(t) — (¢ + w + a)Eq(t),

:= DI, = cE1(t) — (a + w + x + 2)[1(1),

:= DV, = aly(t) — (w + Y)Vy(t) + aE(t) + aSy(t),
:= DRy, = X[y (t) + YVi(t) — (w + v)Ry(t).

:= DS3 = —qS2 (DL (1) — (w + a)Sy(t) + vR,(8),
:= DE3 = @S2 (DL (1) — (¢ + w + a)Ex (1),

1= DIz = cE5(t) — (a + w +x + 2)[(1),

= DV3 = ala(t) — (w +y)Va(t) + aEx(t) + aSy(t),
:= DRy = xI,(t) + YV, (t) — (w + v)Ry(1).

= DE(H+1) = qS(n)(t)I(l‘l)(t) - (C +w + a)E(n)(t),

= DI(I’H—I) = CE(n)(t) - (a +w+X+ Z)I(n)(t),

= DV(”+1) = aI(n)(t) - ((,U + y)V(n)(t) + aE(n)(t) + aS(n)(t),

s .o DR 147 = Xy (1) + YV (£) = (@ + VIR (8).

Next, system of equations (33) becomes:

S1(t) = (= gSolp — (w + a)So + VRo)t,
E1(t) = (qSolo — (¢ + w + @)Ep)t,

Ii(t) = (cEg — (a + w +x + 2)Ip)t,

Vi(t) = (alp — (w +y)Vo + aEg + aSo)t,
Ry(t) = (xIp +yVo — (w + v)Ro)t.
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(32)

(33)

(34)

(35)

(36)

(37)
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Next, system of equations (34) becomes:

S2(t) = (—q(Eoc — Io(a + w + X +2))(1 + Rov = So(a + w) — IoSoq))t?
+(v(Iox + Voy = Ro(v + w)) = (a+ w)(k + Rov = So(a + w) — IoSoq))t?,
E»(t) = (q(Eoc — Ip(a + w + X +2))( + Rgv — So(a + w) — IoSpq))t3
+((Eo(a+c+ w) = IoSoq)(a + ¢ + w))t?,
L(t) = (—(Eoc = Ip(a+ w + X + 2))(@+ w +x +2) — ¢(Eg(a + ¢ + w) — IoSoq))t, (38)
Va(t) = (a(Eoc — Ip(a + w +x+2)) —a(Eg(a + ¢ + w) —IpSoq) — (w +y)(Epa
+Ioa+Spa—Vo(w +y)) +a(i + Rov — So(a + w) — [oSoq))%,
Ry(t) = (x(Eoc — Ip(a + w +x + 2)) = (v + w)(Iox + VoY — Ro(v + w))

+Y(Eoa +Ina + Soa — Vo(w + y))t.

Next, system of equations (35) becomes:

S3(t) = (—qzcxs cxzcx3)t6 + (qoclocz)t5 +(q(a+ w)as o@,)l‘4 +(v(xog — (v + w)ocA (39)
+Y(Eoa +Ina + Soa — Vo(w +V))) — (a+ w)ey)3,
where,
® = vy, —(a+ w)ag,
0z = 5(@+ w + X +2) + C(Eo(a+ € + w) — IoSoq),
X3 = p+ Rov — So(a + (,U) - IQSOq, (40)
oy, = Iox + VoY — Ro(v + w),
a5 = Egc—Ip(a+ w +XxX+2).
E3(1) = (¢ k3xak0)t® + (=q(v(Upx + Voy = Ro(v + @) = (a + w)ky)k)t> )
+(—qr3(@+c+ w)k)th + (= (a+c+ w))B,
where,
Ky = u+ R()V - So(a + w) - Iosoq,
Ky = Ka(a+ w +X+2)+Cky,
2T ‘ (42)
k3 = Egc —Ip(a+ w +x +2),
Kk, = Eola+c+ w) —1pS0q.
I(t) = (cqra(pn +Rov — Spla + w) — IOSOQ))H’ +((ta(a+w+x+z)+cm)(a+ w+x+z)+cry(a+c+ w))t3, (43)
where,
T1 = Eg(a+ ¢+ w) —[pSo0q, 44)
T5 = Eogc—Ip(a+ w +x + 2).
V3(t) = (a(v(Iox + Voy — Ro(v + w)) — (@ + w)dy) —a(dsz(a+ w +x+2z) + cdby) 45)
+(w + Y)((w +Y)(Eoa +Ioa + Soa — Vo(w +y)) + adby — ads — ady) + ads(a+c+ w))B3,
where,
b1 = Eg(a+c+ w) —IpSoq,
b2 = n+Rov —Sola+ w) —1pSeq, (46)
b3 = Egc —Ip(a+ w +x +2).
R3(t) = (=y((w +y)oy + ao3 —aoy —a(p + Rov — Sp(a + w) —1pS0q)) — (v + w)(xoy w7

—(v+w)Ipx+Voy —Ro(v + w)) +yo,) —x(oy(@a+ w +x+2) + Ccr3))t3,
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where,

o1 =Egc—Ip(a+ w+x+2),
05 = Ega + Ipa + Soa — Vo(w +y), (48)
o3 = Eg(a+c+ w)—1pSoq.

The resultant solution to model (2) is obtained as:

S() = (—q* a5 0203t + (g o) + (qa + w)arsag)th + (v(xas = (v + w)ay,
+Y(Epa +Ioa + Soa — Vo(w +¥))) — (a+ w)ay — qagoz) + ot + ot + So,

E(t) = (¢® k3 k) + (=q(v(IoX + Voy = Ro(v + w)) — (@ + w)ky)k )t + (—qrz(a+c+ w)ky)th
+(qr3rg — ky(a+c+ w))B + (ky(a+c+ w))* + (IpSoq — x5)t + Eo,

I(t) = (cqri (1 + Rov — So(a + w) = IpSo@))t* + ((t1(a+ w + X +2) + cTo)(a+ w + X + 2)
+ery(a+c+r w)B + (—t(a+ w +x +2) — cty) + 1yt + I, (49)

V(1) = (a(v(Iox + Voy — Ro(v + w)) — (a + w)d3) —a(d,a+ w +x +2) + cdby)
+(w+Y)((w +Y) by + ady — ady, — ad3) + adi(a+c+ w))3 + (ad, — ad,
= (W +y)da +ad3)t® + byt + Vo,

R(t) = (-y((w +y)o, + acy —aoc3 —a(pn + Rov — So(a+ w) —IoSoq)) — (v + w)o,

—x(o3(a+ w +x+2)+c01))B + 051> + o5t + Ry.

Furthermore, we present the following plots based on solution (49) in the graphical justification such that:

140
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Figure 9. The plot shows the numerical simulation of susceptible human population, S(t).
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Figure 10. The plot shows the numerical simulation of exposed human population, E(t).

Infected Human Population

Figure 11. The plot shows the numerical simulation of infected human population, I(t).
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Figure 12. The plot shows the numerical simulation of vaccinated human population, V(t).
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Figure 13. The plot shows the numerical simulation of recovered human population, R(t).

Susceptible Human Population

Figure 14. The plot shows the numerical simulation of susceptible human population, R(t) with asymptotic stability graphically.

Exposed Human Population

Figure 15. The plot shows the numerical simulation of exposed human population, E(t) with asymptotic stability graphically.
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Infected Human Population

10 12 14 16 18 20

Figure 16. The plot shows the numerical simulation of infected human population, I(t) with asymptotic stability graphically.
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Figure 17. The plot shows the numerical simulation of vaccinated human population, V(t) with asymptotic stability graphically.

60
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Figure 18. The plot shows the numerical simulation of recovered human population, R(t) with asymptotic stability graphically.
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Table 1. Table of description and initial condition of compartment of population

Symbol of Compartment  Description of Compartment Initial Condition
S(t) Susceptible Human Population N-(E+I+V+R)
E(t) Exposed Human Population 10

I(t) Infected Human Population 20

V(t) Vaccinated Human Population 30

R(t) Recovered Human Population 0

N Total Population 200

Table 2. Table of description and values of parameters

Symbol  Description of Parameter Unit Value
w Natural Death Rate day™ el
n Recruitment Rate day? wxN
q Transmission rate day™* 0.2784
a Vaccination Rate day™? 0.5

v Lose of Immunity in Recovered Population day™* 0.1

c Rate of Infection of Exposed Population day™? 0.23
X Recovery Rate of Infected Population day™ 0.05
y Recovery Rate of Vaccinated Population day™? 0.15
z Death Rate of Infected Population due to COVID—19 Infection day™* 032

6 Results and discussion

We discuss the outcomes of the stability analysis of COVID—19 at both disease-free and endemic equilibrium points, the spread of the
infection is asymptotically stable locally and globally under certain conditions such that f < «. For global stability analysis the Lyapunov
function is used at disease free and endemic equilibrium points. The Lyapunov function is negative is f < « so it means that the spread of
infection will be stable and will not be spread in the population so it cannot lead to a pandemic. After the recent invention of the vaccination,
we implemented the vaccinated individuals compartment V(t) also the Figure (12) which is the graphical behaviour. We discuss the
outcomes of the Homotopy Perturbation Method by applying it to the COVID—19 model, (2). In Figure (9), the dynamics of susceptible
human population ion has been shown in which the population decreases with time due to the large transmission b and vaccination a
rates. In Figure (10), the plot shows the dynamics of the Exposed Human population in which the population increased in the first week
while then decreased asymptotically. In Figure (11), in the first two weeks, the prevalence increased due to the higher rate of transmission
and infectivity, and then the disease disappeared from the population thus the prevalence decreasing to zero. In Figures (12) and (13),
the dynamics of the Vaccinated and Recovered populations have been shown. While the Figures (14), (15), (16), (17), and (18) give the
asymptotically stable behaviour of Susceptible, Exposed, Infected, Vaccinated, and Recovered Populations, respectively by varying the
initial conditions for each class of the model (2).

7 Conclusion

In this paper, we studied the stability of the COVID—19 model which is locally and globally asymptotically stable around the disease-free and
endemic equilibrium points by having negative eigenvalues at both disease-free and endemic equilibrium points satisfying Routh—Hurwitz
criterion. Global stability is investigated with the help of Lyapunov function. The disease is locally asymptotically stable at disease—free
equilibrium point if Ry < 1while unstable if Ry > 1likewise, at endemic—equilibrium point if Ry > 1 while unstable if Ry < 1. Looking for the
behaviour of the vaccination in population, it has a positive impact on population and ability to protect the population from re—infection and
future pandemics. Individual vaccination, rapid diagnosis, and possibly early treatment are the most effective ways to prevent coronavirus
infection in the community. As is generally known, the COVID-19 infection has caused significant damage to human society, with many
developing countries experiencing significant financial losses. As a result, adequate individual vaccines and infection control should be
a priority for less developed countries in order to sustain their populations and economies. On analyzing the semi-analytic solution of
the COVID—-19 models using the homotopy perturbation method, we have obtained that the homotopy perturbation method is efficient,
powerful, and more accurate and is capable of obtaining a semi-analytic solution that is both linear and non-linear as well. This method
can be applied to ordinary differential equations in integer-order and fractional orders too, partial differential equations, and boundary
value problems. The said method can be applied to the system of many differential equations and higher-order problems. In all scenarios,
the solution can be obtained semi-analytically and more accurately.
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Abstract

In this article, a mathematical model of the COVID-19 pandemic with control parameters is introduced. The main objective of this
study is to determine the most effective model for predicting the transmission dynamic of COVID-19 using a deterministic model
with control variables. For this purpose, we introduce three control variables to reduce the number of infected and asymptomatic
or undiagnosed populations in the considered model. Existence and necessary optimal conditions are also established. The
Griinwald-Letnikov non-standard weighted average finite difference method (GL-NWAFDM) is developed for solving the proposed
optimal control system. Further, we prove the stability of the considered numerical method. Graphical representations and analysis
are presented to verify the theoretical results.

Key words: Caputo fractional derivative; optimal control strategy; Griinwald-Letnikov numerical method; stability analysis
AMS 2020 Classification: 92B05; 49K10; 49]15; 65L03; 65120

1 Introduction

COVID-19 pandemic can be considered as a dangerous infectious disease in the whole world, see [1]. It is transmitted to humans primarily
through tiny droplets, or contact with contaminated surfaces. Mathematical modelling of epidemic diseases is very helpful for control
strategies to a disease. Recently, a number of interesting papers have been developed regarding the modelling of the coronavirus, see for
example (2, 3, 4,5, 6,7, 8, 9].

It has recently come to light that Fractional Differential Equations (FDE) can be successfully applied in mathematical modelling in various
fields, including epidemics [10]. Fractional Calculus (FC) is a branch of mathematical analysis that deals with the study of fractional-order
of derivatives and integral. A dynamical system using fractional-order derivative (FOD) in modeling helps define efficiency, usefulness,
and memory as essential properties in many biological mechanisms [11, 12, 13, 14, 15, 16].

Optimal control (OC) theory is a branch of mathematical optimization. It involves investigating the control strategies for a dynamic
system in a short time, such as minimizing or maximizing an objective function. Recently, OC theory has been used successfully in many
fields, including robotics, aerospace, economics, finance, and management sciences [17, 18, 19]. Especially, the study of epidemiological
models is closely related to the study of OC, as vaccination [20], resource allocation [21] and educational campaigns [22]. Caputo and
Riemann-—Liouville fractional derivatives [23, 24, 25, 26, 27] are the most important definitions of FD. Al-Mekhlafi and Sweilam established
important numerical results for FOC [28, 29, 30].

An important contribution to this work is the development of numerical schemes providing approximate solutions for the fractional-order
control problems (FOCPs). We discuss the COVID-19 model in [31] with changed fractional operator and parameters. This model was
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modified with three controls %4,%q, and %s, to decrease the number of the infected, quarantine, and self-isolation. Finally, the numerical
simulation is represented in the proposed system.

2 Basic definitions

Definition 1 We define the Caputo fractional order derivative of the function 2(t) [32]:

1] = — Jt(t—n)x_"‘_lg’(t)(x)(n)dn, W

F(,%/— (X) 0

where, # = [«] + 1and [ «] represents the integral parts of c.

Definition 2 The discretization of Fractional derivative by the Griinwald—Letnikov approach [33]

A+

1

602812 (O) | popr = AL <9’9€+1 =Y UP gari— @/XHL@O) ) (2)
i=1

. Lo Ty i—
where, & = 1,2, ..., /5, and the coordinate of each mesh point is t* = ¢ At, At = T;,OZ/I- = (-1 <

i=1,2,3,.., 4 +1.

Additionally, Let us assume that 0 < %,y < % < . < 24 = x <1,0< %, < % < ... < P = ﬁ
Definition 3 Let a function & : %* — %, the fractional integral is defined by

t
07X (1) = ﬁ L (t=m)*"* 2(n)dn,

where, # = [«] + 1and [ o] represents the integral parts of c.
3 Mathematical model formulation

In this section, we discuss the mathematical model that consists of four compartments of the population which includes susceptible
individuals S, asymptomatic infectious I, unreported symptomatic infectious U, and reported symptomatic infectious R. This model was
developed in [31]. We modified the model with control variables and then represented it by a system of Caputo fractional derivative:

§28181 = = (1= 24) 7 (OS(b) [I(t) + U(t)] — %S + %sU,
02¢Mm = (1= 24) 7 (0)s() [1(t) + U(D)] - BI(D),
SZEIR] = Bal(t) — wR(D) + %S,

02{[U] = B2I(t) — nU(t) - %U,

(3

with the initial conditions S(to) = So, I(to) = Io, R(to) = 0, U(to) > 0, where the function %, %4, %, are self isolation strategies, quarantine
and states lock down, respectively. Table 1 represents the variables and Table 2 shows the descriptions of the model parameters.

Table 1. The variables of system (3)

Variable Interpretation

S Susceptible individuals

I Asymptomatic Infection population

R Reported symptomatic infected population

U Unreported symptomatic infected population

Table 2. The parameters of system (3)

Parameter  Biological interpretations

to The time when the epidemic began

So Number of susceptible individuals at time t,

To Number of infected individuals at time t,

Uo Number of unreported individuates at time t,

Ro Number of reported individuates at time t,

7 Rate of transmission at time t,

+ Represents the average time during which asymptomatic infectious become asymptomatic
B1 Rate at which asymptomatic infectious become reported symptomatic

Ba Rate at which asymptomatic infectious become unreported symptomatic

I Average time symptomatic infectious have symptoms
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We follow the basic reproduction number (%, ) of the model (3) is given in [31].

_ ( _FoSo B2 _ FoSolk+B2)
%O_<B1+f32> <1+ H) w(Br+Ba) @)

The disease will decrease if %, < 1. The disease will spread if #, > 1 because every infection causes more than one new infection, see [31].
In this study, we consider % > 1.

4 Existence of the optimal control problem

In this section, we apply the optimal control theory to maximise the number of recovering people while lowering the number of infected
individuals at the lowest possible cost and with the fewest possible unreported symptomatic infected population. Finally, we compute the
numerical solution of the system and discuss the best control techniques using GL-NWAFDM.

Theorem 1 We consider the optimal control system (3). There exists an OC (Jz‘/l* VUG %5*) € Usuchas

T 2", %, %) = min 7 (%, %, Us) . (5)
( 1 %> S) g s €U (%, %, %)

Proof 1 The existence of the OC can be investigated by using a result in [34]. The existence of the optimal control problem can be accomplished by
checking the following steps:

i. The corresponding state variables and the set of controls are nonempty. For this, we use a derived result of an existence in [35] to
. ’
prove that the state variables and set of controls are nonempty. Let Y = Fx (t, V1, Y2, ¥3,¥,), where (V1, 5,33, ¥,) = (5,1, U, R). Let

%, %q and Us for some constants and )1, Y5, ¥3 and Y, are continuous, then Fg, 7y, Fiy and Fy are also continuous. Therefore, the state
variables and set of controls are nonempty.

ii. Next, the control space t/ = {(%, %q, %s)[(%,, %q, %s) is measurable, 0 < % i, < % < %max < 1,0 < Ui < %q < %max < 1,and
0 < Upin < %s < Umax < 1,t € [0, 7} —1] ; is closed and convex.

iii. The right hand sides of the problem equations are bounded above by a sum of bounded state and controls and can be written as a
linear function of %}, %4 and .

2 2(t a2
iv. The integrand in the objective functional, I(t) + U(t) + nﬂ;, ® + nﬂ;‘l ® + 13 225 ® is convex on .

. . wR(t Ut 2 e

v. Finally, we show that there exists constants v;, v, v3, v, and y such that I(t) + U(t) + m L ® + 12 51 ® + “36’25 ® satisfies I(t) + U(t) +

m2P() | %) |yl
> t——2 t——>

>vi+v2 | %Y +v3

)" + v, |%s|Y . The state variables bounded, let v = infte[O'Tf] (I(t) + V(D)) ,v2 =

=

: UR(t wE(t 2
¥z = 2,v, = B and vy = 2 then it follows I(t) + U(t) + i 3 ® , n2 2‘1() + “3@25 (U Y1+ Y2 |?%|Y +v3|%|Y + v, %)Y

Hence, from Fleming et al. [34], the results indicate that there is an optimal control. Now, let system (3) in R
u = {(#%(), %), %()),0 < %(), %(), %() <1, vt € [0, T},

where %), %q, %s are Lebesgue measurable on [0, 1]. We define the objective functional as:

T
f 2 2
22 () ma%g(t) 22(t
T, %, %) = | (H(t) cu+ WA, 12O 3200 g (©6)
(4]
The next step is to evaluate %}, %q, %s as:
Ui
T, uq, Us) = Jﬂ(s,ﬂ,k,w,%,%,%,t)dt )
(o]
is minimum, subject to restrictions
oDEW; = x;, (8)
where
Xi :Xi(S,H,R,U,%I,%q,%s,t), i:1, ...,4,

W} = {S: HyRyUy ] =1, '"74}7

and the initial conditions satisfying

Wi(to) = So, Wi(to) = Io, Wi(to) =Ro, W,(to) = Up.
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We use the fractional order case of the Pontryagin maximum principle, this fractional form is given by Agrawal in [26]. Functional modified
as:

-
! 4
T= J |:H (S, 1, R, U, %, Uq, %s,t) = 3_ Bixi (5,1, R, U, %), Uq, Us, ) | dt. (9)
0 i=1
We define the Hamiltonian as:
4
H (S, I, R, U, %, %, Us,t) = F (S,1,R, U, %), Uq, Us, By, t) + >_ Zixi (S,1, R, U, %, Uq, %s, 1) . (10)
i=1
We have got the necessary conditions from (9) and (10):
oH .
C o
Df®B; = —, i=1,..,4 (11)
olt
i a.//fi’ y ey Gy
where ‘/ﬂ' = {S,H,R,U, 62/1, dzlq, Us, ‘%i' t,l =1, ...,4},
oH
02@; 2 =1,q,5s, (12)
oH .
Cnx
D¥ ;= ——, i=1,..,4 (13)
olt
i a.@i’ y ey iy
with
%1(7}) =0, i= 1, 14 (14)

For more information, see [36].

Theorem 2 The optimal control variables %, %q, %s, with the corresponding solutions S*,1*, R*, U* that minimize 7 (%, %q, %s). There are
also adjacent variables %;,i = 1, ..., 4 satisfying the following:

- Adjoint equations:

02( (@1 = = ((1— ") 7 [I" +U*]) (B1 + B2) — BrUg — B3y (15)
02{1%,] = -1+ (1—2") 7S™ (B — B2) + B2 — B3B1— By B2, (16)
28 (23] = B3, (17)
07 (B,) = =1+ (1= ") FS* (B1— B) — U By + B, (L — U - (18)
+ The transversality conditions:
33,-(7}) =0, i=1,..,4 (19)

- Optimality conditions:

H (S, IR, T, 02/1, @/q, Us, '%i’ t) = og%p,r@gig%cpglﬂ (S, IR, T, %’ %q, Us, ‘%i! t) . (20)
Further,
. S* [I* + U*] (B, — B

% = min { 1, max o, S5 1 (%1 2) , (21)

N1

. S* (%1 — %

U :mln{l,max{O,%}}, (22)

2

Us :min{l,max{o,w}}. (23)

n3
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Proof 2 Eq. (15) to Eq. (19) can be obtained from (11), where

w2 (t w3 (t 2
+n1 1()+n2 q()+n3?/s(t)

H* = Big D S* + Bog T + B3o 2 R* + B,62{U* +1" +R* + U* 3 S >

is the Hamiltonian. The conditions %,{7}) =0,i =1,...,, 4, hold. Now, using Eq. (20), we claim Eq. (21) to Eq. (23). Now, the state equations derived:

§Z8S) = — (1= 24") (D)™ () [I*(t) + U*(1)] — 2%5'S™ + 2" U”, (24)
02 M = (1= 24") #(OS)" [I*(t) + U*(1)] - BI* (1), (25)
0Z¢ [R] =B1I" (£) — WR™(t) + %4’ S", (26)
62{ (U] =Bl (t) — wU™(t) — %" U*. (27)

5 Procedure for solving control system

In this part of the paper, we develop a numerical scheme called GL-NWAFDM. Several results about this numerical scheme were discussed
in [37, 38, 39]. The stability and efficiency of this method depend on the weight factor 0 < Q < 1. Before, applying the GL-NWAFDM to the
consider model, we first discrete the Caputo fractional derivative (2) by replacing At by W(t), where

YAt = Alt) +0(A()?), 0<W(at)<1, A(t)—o.
Then, the discretization for equations (24) to (27), where ¢ = 0,1, 2, ..., N, using GL-NWAFDM can be written as
H+1 .
SJ{/+1* _ Z uiS%*‘l_l* _ ﬂyx+180* - QW(At)“ (_ (1 _ ﬂyl*) /S%+1* [HJL/+1* + U<%+l*i| _ %qx+l*8%+1* + ﬂ&s%+1*U<}£/+l*)

i=1

+(1—Q)W(At)(x (_ (1_%)(*) /SX* [H%* +UJ£’*} + (_%q%*g.)ﬁ’* +%SX*UJ£/*)),

K +1x

[ 1 _ Z uiﬂxﬂ—i* _ @,}{//HHO* = owW(AD™ ((1 _ %l%ﬂ*) /S‘%H* [HJKH* . U.}ﬂ/ﬂ*] _ ﬁﬂ‘)gﬂ*)
i=1
+(1- Q) WA ((1-27") g7 [ v U] - pr7),
ot H i H v
R+ _ Z R +1—i* _ @/XﬂlRO* = ow(ab)® (Bl]IJKﬂ* —uR +lx W/q‘%/ﬂ*S +1*)
i=1
+(1- Q)‘P(At)“ <BIHJK* _ HRJ{,’* " %qji’*s%,’*> ’
A +1 .
UJﬁ’ﬂ* _ Z uiUJ{ﬂ—z* _ @XHUO* - Q\P(At)‘x (BZHXH* _ MU‘%/H* _ %Sx+1*Ux+1*>

i=1

+(1-Q)W(An® (ﬁzﬂx* R %"’*U%’*) )
We observe that this method is partially implicit for Q € [0, 1] and fully implicit for O = 1and explicit when Q = 0.
6 Stability of the developed numerical scheme

This section is devoted to describe that the GL-NWAFDM is unconditionally stable in implicit cases (0 < Q < 1). The stability of the
numerical scheme is checked when (Q 7 0), for this need, we take the test problem of the linear fractional differential equation:

982 () = P2 (D)t >0,0 < x <1,P < 0. (28)

Let the approximate solution of this equationis 2 (t ) = 2 » = Z.¢, then applying the GL-NWAFDM, we rewrite Eq. (28) as
A +1 .
ZH N e g 20 = w(an™ (prx’“l +(1- W) pfxf) .
i=1

Then, we have

A+
A1 _ 1 H 11 0 XD o
% = ‘¥ + Y '+ (1 -v)O(A) Pz H>1

(1-¥(at=*QP) ( §i_1 Hi K +1 ( )Q(AL) ) ) 21

we have m <1, therefore, ! < 20, X+l < g# < o#~1 < < #° Hence, the proposed numerical method is stable.
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7 Graphical representation and discussion

In this part of the paper, we have presented the graphical representation of the system (3) with and without control variables. GI-NWAFDM
is used in the previous section to get the approximate solution of the modified model with the given initial conditions and parameters
values: S(0) = 100, I(0) = 900, R(0) = 100, U(0) = 900 and different values of fractional parameter with 3, = 0.98, 3, = 0.87, u = 0.432,

Z =0.218and 3 = 0.098.
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~ /5
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Figure 1. Simulations of I,R,and U at « = 0.85 with and without controls
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Figure 2. Numerical simulations of optimal control system with Q = 10.23 for « = 0.90, 0.80, 0.70 and 0.60.
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Figure 3. Numerical simulations of optimal control system with Q = 11.32 for « = 0.90, 0.80, 0.70 and 0.60.

These figures show the efficiency and effectiveness of three control variables for the COVID-19 model. We have noted that the results
obtained if Q = 11.32 were fully implicit. Moreover, for the control case best result is given at « = 0.6. The dynamic of the solutions in the
control case is shown in Figs. 2 and 3 by using various values of « and 7;,. These figures show that the approximate solutions of §, I, R, U are
unconditionally stable at O = 11.32. Fig. 3 shows that the peak values of each infected category of the population decreases significantly
when fractional order decreases. U (Un-reported infected) starts with a decreasing slope and later changes the peak but with a small number
of infected individuals. This describes that these classes can have a huge impact on the development of the reported infected graph.
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Figure 4. Numerical simulations of I with respect to S, R, and U with three controls variables for « = 0.90, 0.80, 0.70 and 0.60.
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8 Conclusion

In this work, we have presented a novel coronavirus model with the combination of optimal control and fractional-order derivatives to
increase the model complexity and to improve the model dynamics. We have added three control variables to health care such as, %q, %,
%, (Quarantine, Self isolation, Lockdown). These OC variables have been used to decrease the number of the asymptotically infected and
unreported infected as we can see in Figs. 2 and 3. For this need, we have derived the necessary optimality conditions. GL-NWAFDM has
been developed to obtain the approximate solution of the proposed model. This numerical method depends on the values of the factor
w. Further, we have also proved the stability of the GI-NWAFDM. Finally, graphical representations have been presented to support our
theoretical results. We have concluded that the fractional optimality systems can be solved effectively by using the GI-NWAFDM.
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Abstract

The main objective of this work is to introduce and define the concept of s—type m—preinvex function and derive the new sort of
Hermite—Hadamard inequality via the newly discussed idea. Furthermore, to enhance the quality of paper, we prove two new
lemmas and we attain some extensions of Hermite—Hadamard-type inequality in the manner of newly explored definition for
these lemmas. The concepts and tools of this paper may invigorate and revitalize for additional research in this mesmerizing and
absorbing field of mathematics.

Key words: Preinvex function; s—type preinvexity; s—type m—preinvexity; Hermite—Hadamard inequality
AMS 2020 Classification: 26A51; 26A33;26D07; 26D10; 26D15

1 Introduction

The theory of convexity has assumed a key part and has gotten exceptional consideration by numerous scientists in the improvement
of different fields of pure and applied sciences. It all started with the book by Hardy, Littlewood and Pélya [1], where the term convexity
was used. This theory presents us with a characteristic and general system to examine a wide class of irrelevant issues. Because of its
importance, the ideas of convex sets and convex functions have been generalized in various ways utilizing novel and creative ideas. The
convex function is a class of significant functions popularly accepted in mathematical analysis. This class represents prominent parts of the
theory of inequality. Moreover, convex functions have been widely utilized in many research fields such as optimization, engineering,
physics, financial activities, etc. In optimization, the concept of generalized convexity along with inequality theory is often used. The
Hermite-Hadamard integral inequalities containing convex functions are an intense research topic for many mathematicians because
of their relevance and efficiency in use. Convex functions have a very strong association with integral inequalities. As of late, several
mathematicians have explored the close relationship and correlated work on symmetry and convexity. It is also explained that while
working on any one of the concepts, it tends to be applied to the other one too. Many familiar and relevant inequalities are modifications of
convex functions. In literature, there are some well-known inequalities such as Hermite-Hadamard inequality and Jensen inequality that
interpret the geometrical meaning of convex functions (see (2, 3, 4, 5, 6, 7, 8, 9, 10]) and the references cited therein.
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In [11], G. Toader introduced the class of m—convex functions. Soon after this many mathematicians like Latif [12] and Kalsoom [13] worked
on the investigation of m—preinvexity.

Hanson [14] presented another new class of convex functions called invex functions, with the plan to generalize the legitimacy of the
sufficiency of the Kuhn-Tucker conditions in nonlinear programming. Weir and Mond [15] introduced the preinvex function, which is an
important extension of the convex function and it helped in handling numerous critical problems. It is realized that every convex function
is a preinvex function but the converse is not true.

2 Preliminaries
Here, we remember several known definitions.
Definition 1 (see [16]) LetW : A x A 7 ) — R then Aisaninvexw.r.t ¢(.,.)if v + 5C(n, v) € A, forevery u,v € Aand s < [0,1].

Note that, A is also called ¢—connected set.

The above definition collapses to classical convexity if ¢(i, v) = u — v. Therefore, every convex set is an invex but the converse is not true
in general, (see [16] and [17]).

Definition 2 (see [15]) The function¥ : A 7 ® — Ronaninvex set is called preinvex w.r.t C if

W (v 80 (1,v) < SW (M) + 1-8)W(V), Vu,vEA, se[01].

Definition 3 (see [18]) Aset A C R"issaidtobe m—invexw.r.t ¢ : A x A x (0,1] — R" for some fixedm e (0, 1], if
mv +8¢(k, v,m) € A,
holds for every u,v € A;m € (0,1]and & < [0,1].
Definition 4 [13]AW : A — Ris called generalized m—preinvexw.r.t ¢ : A x A x (0,1] — R" for fixedm € (0, 1], if
w(mv +8¢(p,v,m)) < S¥(n)+m(1-8)¥(v), 1

holds forevery u,v € A, 5 € [0,1].
Definition 5 (see [19]) A nonnegative function¥ : A — Ris called s—type convex functionif u,v € A,s € [0,1]and s € [0,1], if

W (ot (1= 8)v) < [1-(s(1— 8))] W (r) + [1— 8] W (v). (2)

We also want the following hypothesis regarding the function ¢ which is due to Mohan and Neogy [20].
Condition-C: Let A ¢ R" be an open invex subsetw.rt ¢ : A x A — R. Forany y, v € Aand 5 € [0,1]

C(v,v+8L(1,Vv))= —8C(1,V)
v+ C(myv))= (1-98) ¢(1yv). 3)

Forany u, v € Aand 6,4, 6, € [0, 1] from condition C, we have
C(v+03 C(1y V), v+o1 (1, V)= (82 —01)C(1,V).

Extended condition-C ([21]): Forany y,v € A, & € [0,1]and A c R" be an open m—invex subset with respectto ¢ : A x X x (0,1] — R.
Then we have

C(vymv +58C(wyv,m),m)y= —=5C(u,v,m)
C(uymv+56C(u,v,my,m)y= (1-23) ¢(u,v,m)
C(myvym) == (v, n,m).

3 Generalized preinvex function

In this part, we are to define and explore a new class of preinvex functions namely s—type m—preinvex function.

Definition 6 Let A C R be anonempty m—invexsetw.r.t ¢ : A x A x (0,1] — R. Thenthe function ¥ : A — R s called s—type m—preinvex, if
W(my +5¢(p, v,m)) < [1—(s(1 = 8))] W () + m[1 - s8] ¥ (v), (4)

holds v, v € A,s € [0,1],m € (0,1]and § € [0,1].

Remark 1 (i) Ifs = m = 1, then the above definition collapses to preinvex function [15].

(ii) If m = 1and ¢(w, v, m) = u — mv, then the above definition collapses to s—type convex function [19].
(iii) If s = m = 1and ¢(n, v, m) = p — mv, then the above definition collapses to convex function [3].
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4 Hermite—Hadamard type inequality via generalized preinvex function

Here, we are to explore the new sort of H-H inequality via s—type m-preinvex function.

Theorem1 Let A° C R be an open invex subset w.r.t ¢ : A° x A° — Rand u,v € A° withmv + ¢(n,v,m) < v. Suppose ¥ : [mv +
¢(u, v,m), v] — (0, co0) is s—type m-preinvex function, ¥ € L[mv + ¢(w, v, m), v]forallm ¢ (0, 1] and satisfies Condition—C then

2 v

1 mv+(p,v,m)
s I

v(mv + %C(H;V;m)) < T

m WY(x)dx + mJ

mv w w(x)dx| < (2= $s)[W(w) + m¥(v)].

Proof Since p, v € A° and A° is an invex set with respect to ¢, for everym € (0,1] and 6 ¢ [0, 1], we have mv + §¢(p, v, m) € A°. For the
left side, using the Definition 6, put 5 = 1,

w(my + 5¢(x,y,m)) < [1-(s(1—8)]I¥(x) + m[1 - (s8)]¥(y)

wmy+ S0y, m) < [1- ()] [#60 + me)],
putx = mv + 5¢(w,v,m)and my = mv + (1 — §)¢(w, v, m) in the above inequality So we obtain
W(my + %a(x,y, m)) = ¥(mv + (1 - 8)¢(p, v,m) + %c(mv + 8¢, v,m),mv + (1 - 8)c(w, v,m),m)). (5)
Now by using Condition C, we have

c(my +8¢(p, v,m),mv + (1= 8)c(w, v,m)) = (5 =1+ 8)¢(u, v, m)

C(m\/ + ‘SC(H) V, m)y mv + (1 - 8)&(H) v, m)) = (25 - l)C(uy v, m)'

Now we put the value of ¢ in (5), then as a result, we get

W(my + %C(x,y, m)) = W(mv + (1= 8)¢(w, v, m) + %(26 = el v, m))
w(my + %C(x,y, m))=¥(mv+@1-5+5- %)C(“»"»m))

\y(my + %C(Xv.‘hm)) =¥Y(mv + %C(H, v, m)).
Thus,

w(mv + 2 ¢, v,m)

< {1 - (%)} H:)‘P(mv +80(p,v,m))ds + le)W(v + %C(u,v,m))dé}
<[ Glammml M ] Y000,

For the right side of the inequality and from the property of s—type m—preinvexity, we have

v

1 mv+¢(p,v,m)
U W(x)dx + mJ

v, m) vt

mv+¢(,v,m)
mv —m

(1-38)
m

< H: W(my + 5¢(u, v, m))ds + mE Y(v + (v, m))dé]

1 1
< j (1= (s(1 = 8))1¥(p)ds + m [ [1— (s8)1W(v)d5
0 0
1 1
. J (1 - s8]W(p)ds + mf [1— (s(1 - 8))1W(v)ds
0 (0]
< @ (W) + W) + m(W(v) + ¥(v)))]
< (2=8)[W(p) + m(¥(v))].

This is the required proof. u

Corollary1 If s =m =1and ¢(u, v, m) = u — mv, then we get Hermite-Hadamard inequality in [22].
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Remark 2 If m = 1, then we attain the inequality

v

2

v+, v)
2—5 J

Y(x)dx + J

v+, v)

s Jan ) < ot V(0 < (2= 9)[¥(0) + ).

v

Remark 3 If s = 1, then we get the inequality

v

1 Hm\/+é(u,v,m)

1
2¥(mv + EC(H,V,m)) < m

woodx+m | W(x)dx} < [W() + my(v)].

mv+(w,v,m)
mv —_—m

Remark 4 If s = m = 1,then we get the inequality

(v + L)« =2 [ woodx [ wx)dx| < [W(u) + w(v)
v Sy ‘C(u,v)Hv x)dx L%(W) x X}_[ M v)].

5 Refinements of Hermite—Hadamard type inequality
The main aim of this section is to examine the refinements of Hermite—Hadamard inequality via s—type preinvex functions.

Lemma1 LetV : [u, mu + (¥, u,m)] — Rbeadifferentiable mappingon (u, mu + ¢(¥, u, m)) witho < ¢ < 1andmu + ¢(v, u,m) > u > 0.
IfV e £ (u,mu+ (¥, n,m)) andforallm € (0,1], then

W) +Wmu+ Fmm) - c mei(%:ur'n) W0odx = S m) r

_ " (mY v
S e = 0(1 28)W (mc +50(u, C,m)) ds. (6)

n

Proof

1
+2
0

(v, cu,m) (1 , (mv v _ vy epym) [ (1=28)W(TY +5¢(w, ¥))
Tfo(l—zé)‘y (?+5C(p,?,m)> ds = = [ C(H,c%’m) Y

[} MO Em)
o C(H;%;m)

_ v, ep,m) {C(‘P(u)+‘l’(mu+ o(¥F,mym))  2c

1 mv v
2 v, e o Jo PE o2t £ mds|

)
W(x)dx,

_ W)+ wimp+ o mm) c Jmu%(%yu:m

2 ¢(v,cn,m) n

which gives the proof. [
Lemma2 LetV : [u,mu + (¥, 1u, m)] — Rbeadifferentiable mappingon (w, mp + ¢(¥, u, m)) witho < ¢ < 1andmp+ (v, p,m) > p > 0.

IfV € £ (u,mu+ (¥, n,m)) andforallm € (0,1], then

c mel(%,u,m)
(v, cu, m) n

- dvemm) {Jl sy’ (? +8¢(p, %,m)) ds - Lllzw’ (? +50(u, %,m)> d5}~ @

¢ 0

W(x)dx — w (—zm” v ””)

2C

Proof

1 1
M{J sy’ (mﬁsc(uyz,m)) dé—J Y/ <m+él(u,l,m)> dS}
c o c c 12 c ¢

WM 4 5e(y, ¥, m))

_ovyepym) [ 8w +85(w, F,m) M WIR + 5(k, ¥,m)) !

- x —J ds ds
c C(H,%,m) 0 0 C(H;%)m) C(}l)%vm) %

_vyepm) [ocW(p) ¢ 1 e my v B c o [(mp+ (v, 1, m))

= e ey Jo Y sl Gomds = (- v 2 )]

_ c Jm“"‘?(%'”r’”) W(x)dx — ¥ <2mu + (v, H,m)> ,

(v,cu,m) Jy, 2C
which gives the proof. [

Theorem 2 LetX° C Rbeanopeninvexsubsetw.r.t ¢ : X° xX° — Rand ., v € X° withmv +¢(n, v,m) < v.SupposeV¥ : [mv+(w, v, m),v]
be a differentiable function on X° . If |W’| is s—type m—preinvex function on (i, mp + ¢(v, u,m)) form € (0,1] ands < [0, 1), then

W(p) + Wmp + o(¥,1,m)) c Mt (3 51m)
‘ 2 e | Hlodx

u Lo (22 oo (1)
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Proof According to Lemma 1, one has

W(H) +W(mp + C(%y H, m)) _ C mH*C(%,M,m) _ C(V)CH) m)
‘ 5 Goanm L W(x)dx| = TL —25]v’ ( +5C(p_,f m)) |ds.

Since |W’| is s—type m—preinvex on (w, u + (v, 1)), we have

llj(“-) + ‘V(mu + C(%) H, m)) _ C ml»H‘i(%,l—l,m) C(Vycuy m) - _ / _ el
’ 3 o L WOdx| < == 2 J 1= 28] [0~ s~ DY (W) + m@~so)w’ (T) 1] ds
1 1
< vamm) {Iw’(u)l J 1= 25011 -s(1-8)ds +mlw' (2 ) | J l1-251(1— 56)d6} : (9
2C 0 c o
Since,
1 1 s—2
J (1-s(@-3))l1—25lds :J 1-ss8)l1—25lds = —=—=.
0 0 4
Putting the value of the above computation in (9), then we obtain the required proof. |

Theorem 3 LetX° C Rbeanopeninvexsubsetw.r.t ¢ : X° xX° — Rand u, v € X° withmv +¢(u, v,m) < v.SupposeV¥ : [mv+(w,v,m),v]

be a differentiable mapping on X° . If |V’ |4 is s—type m—preinvex on (i, my + {(v, u, m)) forp, q > 1, 1 + ;1, =1,m € (0,1]ands € [0, 1], then

< M |:i:|1/p{ [lly (H)Iq +m|v’ (%) |q]}1/q. (10)

2C p+1

W) + Wimp + o(¥,1,m) ¢ JMC(%M)W(X)dx
2 (v, cu,m) )y,

Proof According to Lemma 1 and applying Holder’s inequality, one has

(‘P(u)+\1’(mu2+ (¥, my,m)) C(V,é:u, - Jmmc(%vu,m) \y(x)dX‘ - WL —258|1W < =+ 6C(u, , )) |ds
< Enanm) (EIl—zél%é)llP (J % ( sl m)) |qd5)llq. (1)

Since |W’|4 is s-type m—preinvex on (u, mp + (v, w, m)), we have
1 v 1
J |y’ ( + 52, ¥, m)> l9ds = "”/(“)'QJ (1-5(1 - 8))ds +mlv’ (¥) |4J (1 - s5)ds.
0 ¢ 0 c )

Now, equation (11) becomes

W)+ Wmp+ (F,mm) med%ruym)\y(x)dx
2 o(v,epn,m) Jy
C(Vy CH; m) 1 q _ _ q ! _ 1/q

< aum [p ! 1} <|w Wl J (st - o)ds +mlw’ (Y) | Jo(l s&)dé) . (12)

Since,
1 1 s—2 (! 1
1-s1-5 dézJ. 1- 55 déz——J |1_26|”d6=[ }
| a-sa-snds= | a-so) = i

Putting the value of the above computation in (12), then we obtain the required proof. |

Theorem 4 LetX° C Rbeanopeninvexsubsetw.rt( : X° xX° — Rand p, v € X°withmv+¢(u, v, m) < v.SupposeV¥ : [mv+(u,v,m),v

be a differentiable mapping on X° . If | W' |4 is s—type m—preinvex on (i, my + ¢(v, u, m)) forp, q > 1, 1 + p =1,m e (0,1]ands € [0,1], then

(V ) ) - / e
< Sl L(Spﬂ)} {225 vt emiw (¥) 1]}

1/q

W) + W(mp + 4(¥,1,m)) c mu+C(5mm)
‘ 2 - v, cn, m)f Ylxjdx

(13)

Proof According to Lemma 1 and applying Holder’s inequality, one has

'\y(u) +W(mp + (¥, 1,m)) ¢ JWC(%’”) W(x)dx >

2 (v, cp,m)

SML' sl ( Y 5o, v,m )) Ids

MJ — 25]P|1 — 2514 ]y’ ( + 520, 7, m)) \ds
2C o c

< tnaum) (Eu_zm(ia)l/p (J - asli (M scu, ¥, m)) qué)llq. (14)
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Since |W’|4 is s-type m—preinvex on (u, mu + (v, w, m)), we have

E I/ (? +5e(y, %,m)) |9ds = I‘P/(u)qu:(l—s(l— s)ds +mlv' () IqE(l—sé)dé.

Now, equation (14) becomes

v mu+ (3, p,m)
W)+ W(mp s o, mm) ¢ [y
2 ¢(v, e, m) n
1 1/p 1 1 1/q
< Lvanm) (J I1-25Id6> <|w’(u)|qj I1-2511 - s(1 - 5))ds +mlw’ () |‘1J I1—25I(1—sk)d5) . (15)
2¢ o o c o
Since,
1 1 s—2
J [1-28l(1—s(1—-5))ds :J [1—25l(1—s8)ds = —2—=
o 0 4
1 1
J [1—-25lds = =.
o 2
Putting the values of the above computations in (15), then we obtain the required proof. ]

Theorem 5 LetX° C Rbeanopeninvexsubsetw.r.tl : X° xX° — Rand pu, v € X°withmv+¢(u,v,m) < v.SupposeV¥ : [mv+(w,v,m),v]

be a differentiable mapping on X° . If |W’|4 is s—type m—preinvex on (i, muw + ¢(v, u,m)) forp,q > 1,  + % =1,m e (0,1]ands € [0, 1], then

W(x)dx

2 (v, e, m)

"P(u)+‘1’(mu+é(%,u,m))_ c mea%,u»m)
V8

< dnanm) [2(p1+ I)T/p {{3‘625|w/(u)|q Sy (Y) |Q}1/q +{%|w/(u)lq 3 By () |Q}1/q]. (16)

Proof According to Lemma 1 and applying Holder-{scan inequality, one has

W(p) + Wmp + o(¥,1,m)) c J’"“*C(%'”"") wx)dx| < (v, cp, m)
2 (v, cu,m) i 2c
1 ip 1 1/q 1 ip 1 1/q
x {(J 1- 5)|1—25|pd6> (J 1-8)vy (m +80(u, X,m)) qu5> + (J 5I1—25|Pd6) <J 5y’ (m +5¢(u, 1,m)> qué) } .
0 0 C C 0 0 C C
@a7)
Since |W’|4 is s-type m—preinvex on (u, mp + (v, w, m)), we have
1 1 1
J [y’ (m +5¢(n, l,m)) 9ds = |qﬂ(u)|4J (1= s(1 - 8)ds +mlv’ () |QJ (1 - s5)ds.
0 ¢ c 0 c 0
Now, equation (17) becomes
W) +W(mu+ C(F,mm) mei(%’wm) w(odx
2 (v, e, m) Jy
1 1/p 1 1 1/q
< vanm m a-oh-2sPds) - (1WG01 | =) -sa-o)ds smv (¥)19] (1-8)a-s5)ds )
2C 0 0 c 0
1 1/p 1 v 1 1/q
. (J 6|1—26|pd5> (|\y’(u)|ﬂ 5(1-s(1- 8))ds + mlw’ (¥) |"J 5(1—55)(15) } . (18)
0 0 c 0
Since,
1 1 25 -3
J 1-8)1-s@-25))ds :J 5(1—s8)ds = — 3
0 (o)

ré(l—s(l—é))dé :f(1—5)(1—ss)ds --5-3
(o] 0 6

1 1
J 511 —25|Pds :J (1-6)l1—25IPds = [;]
0 0 2(p+1)

Putting the values of the above computations in (18), then we obtain the required result. ]
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Theorem 6 LetX° C Rbeanopeninvexsubsetw.r.t( :X°xX° — Rand u, v € X° withmv +Z(u, v,m) < v.SupposeV¥ : [mv+(w, v, m),v]
be a differentiable mapping on X° . If |’ |4 is s—type m—preinvex on (1, my + ¢(v, u,m)) forq > 1,m € (0,1] ands < [0, 1), then

(v, cu,m) F}H/q

W) + Wmp + ¢(F, w,m)) c mec(%'u'm)\y(x)dx <
2 (v, cuym) Jy 2¢ A
% 4_35|\y/( )|q+4_sm|‘1// (X) | 1/q . EN’/( )|q+ﬂm|‘y, (1) |4 1/q (19)
16 H 6 c 16 H 16 c ’

Proof According to Lemma 1 and applying Improved power-mean inequality, one has

mu+C( ¥, 1,m)
¢ j R dx

o(vycpu,m) Ju

"P(u) +W(mp + (¥, 1,m))
2

_ dv,am) m:(l ~8)l- 26Id6>1_1/q ([a-sm=zsiv ("« setu, ¥,m) qué)llq

2c
1 1-1/q , 1 mv v 1/q
+ (J 5I1—25Id6> (J 51— 28] |v <? +8¢(u, ?,m)> qué) } . (20)
0 0

Since |W’|4 is s-type m—preinvex on (i, mp + (v, w, m)), we have

f % (? +5e(n, %,m)) 9ds = |W/(u)|qJ:(1—S(1— s)ds +mlv' () IQE(l—sé)dé.

Now, equation (20) becomes

w(u)"'w(mu"' C(%)H) m)) _ C JmH+C(%yH:m) q’(X)dX
2 (v, cu, m) n
1-1/
< w [(Jl(l— 6)I1—25|d5) ! (I‘P’(u)lqr(l— 8)1—281(1—s(1—5))ds
o) (o)
1/
+m|w’ (%) IqE(l— 5)|1—26|(1—56)d6) !
1 1-1/q 1 1 1/q
_ i — —§(1— (YY) 4 — _
+<Lé|1 25|d6> (Iw(u)l J05I1 25](1—s(1—6))ds + m|ly <C>| Léll 25](1 sé)dé) ] (21)
Since,
Jl(l—6)|1_26|(1—s(1—6))d6=J16|1_26|(1—56)d6=—3s_4
1 1 5_4
J 8|1—26|(1—s(1—6))d8:J 1-8)1-28l(1-s8)ds = ———=
0 0 16
1

" sl 2slds = [[(1— 8)1—251d
Sl11—2581d6 = -5 —268lds = | =

Putting the values of the above computations in (21), then we obtain the required proof.

Theorem 7 LetX° C Rbeanopeninvexsubsetw.r.t ¢ : X° x A° — Rand pu, v € X°withmv+¢(u, v,m) < v.SupposeV¥ : [mv+(w,v,m),v]

be a differentiable mapping on X° . If | W’ |4 is s—type m—preinvex on (w1, my + ¢(v, u,m)) forq > 1,m € (0,1] ands € [0, 1], then

'W(p)+‘1’(mp2+ (¥, m,m) C(V’Ccu’ - -[lec(%vu,m)w(x)dx < C(V,ZCEL, m) BT‘% {? [l\yl(u)lq +mly <%) |q]}1/q. (22)

Proof According to Lemma 1 and applying Power-mean inequality, one has
(v, cu,m) (1 , (mv v
s Ln 2810 (MY 4 5¢(u, ¥, m)) Ids

IN

mu+C(F,1,m)
_[ W(x)dx

“P(u)+‘i’(mu+6(%,u,m)) <
w

2 ¢(v, cu,m)

1 1-1/q , 1 1

< vemm) (Jm-astds) ([ rm-asti (B seqn, ¥ m) 19as )
2¢ o 0 c [3

Since |W’|4 is s-type m—preinvex on (i, mp + (v, 1, m)), we have

f [y’ (ﬂ +52(n, %,m)) 19ds = |W'(u)|qJ:(1—s(1 — s)ds +mlw’ (Y) |‘1J;(1 — s5)ds.

(23)
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Now, equation (23) becomes

Y(p) + W(mp + (¥, n,m)) B c JMC("’T",HJ") Wx)dx
2 (v, cpym) Jy
1 1-1/q 1 1 1/q
< vemm) (] l=2slds) (1wl [ =250 -sa-snds +miw’ (Y)19] i-2sla-soyds) . ()
2C o o c o
Since,
1 1 s—2
J [1-28l(1—s@-23))ds :J [1-28l(1—s8)ds = -
0 0
1
J l1-25lds = 2.
o 2
Putting the values of the above computations in (24), then we obtain the required proof. |

Theorem 8 LetX° C Rbeanopeninvexsubsetw.r.t( : X° xX° — Rand u, v € X°withmv+¢(p,v,m) < v.Suppose¥ : [mv+Z(uw,v,m),v
be a differentiable mapping on X° . If |V’ |4 is s—type m—preinvex on (i, my + Z(v, i, m)) forp, q > 1, 1 +1=1me(0,1]ands € [0,1], then

P
c mu+¢ (3, p,m) 2mp + ¢(v, p, m)
il vt (B
1/p -
. M [(pil) {%[l\y’(u)lq+m|‘l’/(%)|q]} {4 3s Y (w19 + mly' (= )|Q]} :| (25)

Proof According to Lemma 2 and applying Holder’s inequality, one has

mu+C(¥,n,m)
c J nrcloom w(x)dx—ly<2m“+dv’”’m)>
(v, cu, m) i 2¢

:M{Jl sy’ ( c +5C(u,f m)) dé—Jl v’ (?HBC(M,%,T")) d5}

(0] 1/2

<o) {f (7 o o)) [ (st ) )]
L e m) [(pil)”p {E[l—s(l— $)IW (1) 19s +mj:[1-ss]|w' (%) 19s} "

+{J [1-s(1- )y (u)lqd5+mJ. [1-s3]lW (%) qua}llq}

v Yp (o v 1 lq
M{(ﬁ) {%[lw’(unhmw%?)m} +{‘* A= 35y (19 + miw'(Y )l‘H} ]

which gives the proof. |

IN

Theorem 9 LetX° C Rbeanopeninvexsubsetw.r.t : X°xA° — Rand u,v € X°withmv+¢(pw,v,m) < v.Suppose¥ : [mv+¢(w,v,m),v
be a differentiable mapping on X° . If | W’ |9 is s—type m—preinvex on (w1, my + ¢(v, u,m)) forq > 1, m € (0,1] ands € [0, 1], then

mu+C(E,1,m)
c J " H W) dx — W <2mu+ (v, u,m)>
(v, e, m) 2c

1-1/q (5 _ _ 1/q
< Lvenm) {( ) B e 2 Zsmw'(l)w} AU a1 mivi )] ] (26)
c 2 6 6 c
Proof From Lemma 2 and applying power-mean inequality, one has

mu+C (¥, 1,m)
¢ J " [l W(X)dx_w<2mu+(?(\/,u,m)>
(v, cu,m) i 2c

= M {JO sy’ ( + 50w, 2 m)) ds — Ll/zw, (? +8¢(u, %,m)> d5}

£ [([ )™ ([ (st 2 e} o v (5t ) )]

IN
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c

L vanm) {(2)1 1"*{[ sl = s(1= $))1W' (1) s + m | s{a=ssv’ () qué}uq}

M{J [1—s<1—s>1|w’<u)IQd5+mJ [-selv' () 'qdé}llq
1

C

M[(%)l 1"’{ Sl ()19 4 22 Iw’(%)lq} Ao miv o) q},

C

which gives the required proof.

6 Conclusion

In this work, we showed and investigated a novel idea of preinvex function namely s—type m—preinvex function and the new sort of
Hermite—Hadamard type inequality via newly introduced definition are examined. Further, our attaining results in the order of lemma can
be considered as refinements and remarkable extensions to the new family of preinvex functions. In the future, we hope the results of this
paper and the new idea can be extended in different directions like fractional calculus, quantum calculus, time scale calculus, etc. We hope
the consequences and techniques of this article will energize and inspire the researcher to explore a more interesting sequel in this area.
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