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Abstract

In the presence of one auxiliary variable and two auxiliary variables, we analyze various exponential estimators. The ranks
of the auxiliary variables are also connected with the study variables, and there is a linkage between the study variables and
the auxiliary variables. These ranks can be used to improve an estimator’s accuracy. The Optional Randomized Response
Technique (ORRT) and the Quantitative Randomized Response Technique are two techniques we utilize to estimate the
sensitive variables from the populationmean (QRRT). We used the scrambled response technique and checked the proposed
estimators up to the first-order of approximation. The mean square error (MSE) equations are obtained for all the proposed
ratio exponential estimators and show that our proposed exponential type estimator is more efficient than ratio estimators.
The expression of mean square error is obtained up to the first degree of approximation. The empirical and theoretical
comparison of the proposed estimators with existing estimators is also be carried out. We have shown that the proposed
optional randomized response technique and quantitative randomized response model are always better than existing
estimators. The simulation study is also carried out to determine the performance of the estimators. Few real-life data
sets are also be applied in support of proposed estimators. It is observed that our suggested estimator is more efficient as
compared to an existing estimator.

Key words: Randomized response technique; simple random sampling; scrambling response; sensitive and non-sensitive
variables; exponential-type estimators

AMS 2020 Classification: 62D05; 62D10; 62E10; 62E17

1 Introduction

In the optional randomized response technique, while collecting data, sometimes the interviewer faces the problem of non-
response. The interviewee hesitates to respond to sensitive questions regarding their private life, abortion, drug addiction, HIV
infection status, duration of suffering from AIDS, sexual behavior, the incidence of domestic violence, and tax evasion, for example,

➤ Received: 25.05.2022 ➤ Revised: 18.07.2022 ➤ Accepted: 27.07.2022 ➤ Published: 10.08.2022

127

https://orcid.org/0000-0002-4701-6080
https://orcid.org/0000-0002-0284-6750
https://orcid.org/0000-0001-6041-1061
https://orcid.org/0000-0003-0463-0360


128 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 3, 127–146

any sensitive query. In general, people do not feel comfortable when asked about their past medication use status relative to med-
ical problems, sexual activity, premature births, etc. [1] proposed an optional randomized response model to manage those cases.
This model elaborates that one query can be delicate and may not be sensitive to another. In this technique, the interviewee can
choose whether to provide the answer or scramble the answer. Under this model, the mean and sensitivity level of parameters are
estimated. We cannot trace the reaction provided by the interviewee through investigation. The story of sensitivity of the question
is the proportion of individuals who give the scrambled answers. Ratio-type estimators are developed when a variable of concern
is sensitive and auxiliary variables are non-sensitive information. Additional information is used to increase the estimator’s pre-
cision at designing and at the estimation stages. We use ratio, product, and regression estimators more frequently when there is
a connection between the dependent and independent variables. In a similar expression, the variables of independent ranks are
also correlated with the relating upsides of the study variables [2]. Along these lines, the ranked auxiliary variable (that contains
the ranks of the auxiliary variable) can be treated as another additional variable. This data may help us expand the proficiency of
an estimator. In ORRT, most of the respondents assumed that the aspects of inquiry are sensitive, but some are more willing to
answer directly. In ORT, respondents are given an option either to supply RR using a specified randomized device or to respond
directly according to the extent to which the respondent feels that the question is sensitive or not. Most of the methods developed
for ORT are limited to SRSWR sampling only. A few of the ORT techniques are available for complex surveys.

We are investigating a multiplicative randomized response strategy for providing quantitative randomized responses (QRRT) to
sensitive queries. The respondent multiplies his sensitive response by a random number from a known distribution and gives the
product to the interviewer, who has no idea what the random number is valuable and consequently receives a scrambled response.
The respondent generates S using some specified method and multiplies his sensitive answer Y by S.

The interviewer receives the scrambled answer Z = YS. The particular values S are unknown to the interviewer, but its distribution
is known, Let Scrambling variable is denoted by S with E(S) = θ1 and their variance is V(S) = σ21 . Some specific distributions for
random scrambling numbers are proposed and investigated, as well as methods for creating scrambling numbers.

The application of the proposed Quantitative randomized response technique (QRRT) has also been discussed. A new composite
class of estimators is defined using scrambled response to estimate the population means of a sensitive variable. Methods for
studying sensitive behavior include randomized response techniques, which provide anonymity to interviewees who answer sensi-
tive questions. The quantitative randomized response technique (QRRT) variation on this approach allows researchers to estimate
the frequency or quantity of sensitive behaviors. The application of the proposed optional Randomized Response Technique has
been discussed. The randomized response technique in a survey reduces potential bias due to nonresponse and social desirability
when asking questions about sensitive behaviors and beliefs [3]. Use of randomization device (outcome unobserved by the inter-
viewer) conceals individual responses and protects respondent privacy Auxiliary variables are first used in a ratio-type estimator
by [4]. The use of more than one auxiliary characteristic improves the Estimation. To know about the variability present in a finite
population variance may be required, which is also essential for future predictions and studies. Therefore, we review different
estimators in the literature and propose a new class of estimators. We have some auxiliary information that is used in variance
estimation. We are interested in comparing the different variance estimators. We sought to recommend a variance estimator
for use in the analysis of the content evaluation survey. There are various ways and examples of the use of assisting (auxiliary)
variables like

• A hospital survey may identify insufficient quantity in a specific hospital.
• In Socioeconomic surveys, in advance, may well know the availability of food, educational status, and medical facilities of a
region.

• The entirely cultivated area in the agriculture production survey may well be known in advance.

In this paper, generalized two-stage optional randomized response technique (ORRT) and Quantitative randomized response tech-
nique are derived for a finite populationmean of a delicate variable based on Randomized Response technique using non-sensitivity
additional information.

2 Few existing estimators in simple random sampling

Now we discuss MSE estimators which exist in the literature. Firstly, note the simple sample MSE estimator.

i) The unbiased usual estimator of the population mean of Z is given

MSE(µ̂YS) =
(

1 – f
n

)

Z̄2[σ2y + σ
2
s ]. (1)

ii) [5] proposed a ratio estimator, which is given as

MSE(µ̂RS) =
(

1 – f
n

)

Z̄2[C2y +
σ2s

µ2y
+ C2x – 2CxCyρyx]. (2)

iii) [6] suggested a ratio estimator, which is given as

MSE(µ̂RG) = Z̄
2
(

1 – f
n

)

[C2y +
Wσ2s

µ2y
+ C2x – 2CxCyρyx]. (3)
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iv) [7] suggested a ratio estimator.

MSE (µ̂RN) = Z̄
2
(

1 – f
n

)

[C2y +
WK2σ2s

µ2y
+ C2x – 2CxCyρyx]. (4)

v) [8] proposed the exponential-type estimator created on generalized two-stage optional-scrambled reply method which is given
as

MSE(̂tGRR) = Z̄
2
(

1 – f
n

)

[C2y +
K2W(1 – T)2σ2s

µ2y
– C2yρ

2
yx]. (5)

3 Proposed model I

Mean estimator for generalized two-stage optional scramble response

Let the set proportion of the population is denoted by T(0 ≤ T ≤ 1), for which we can assume to give the true responses along with
W(0 ≤ W ≤ 1) to be the Sensitivity level related to that sensitive question. Here we have a scrambling variable S with zero (0) mean
and variance σ2s and let K(–1 ≤ K ≤ 1) is suitably chosen scalar. [8] proposed the ORRT for the estimation of population mean in
the case of sensitive study variables. Their suggested scenario states: Let the sensitive study variable be denoted by Y having the
population mean µy and unknown population variance σ2y . The ORRT can be written as

Z =

{

Y with probability T + (1 – W)(1 – T)
Y + KS with probability W(1 – T)

}

, (6)

E(Z) = [T + (1 –W)(1 – T)E(Y) + [W(1 – T)E(Y + KS)],

E(Z) = µYM.

Generalized exponential-ratio-type estimator using one-auxiliary variable for generalized two stages optional
scramble response

Let a simple random sample without replacement of size n be drawn from the population consisting of N units. Let Z, Y and X be
the optional randomized response variable, the study variable, and the auxiliary variable respectively. Let the population (sample)
means of Z, Y and X are µZ, µY and µX (z̄, ȳ and x̄) symbols, respectively, and notations to be used are:

E(Z) = µZ,µZ,µY and µX , E(U) = µU , E(X) = µX , E(S) = µS = 0,

E(e0) = E(e1) = E(e2) = E(e3) = 0, r̄x = R̄x(1 + e2) , x̄ = X̄(1 + e1), ȳ = Ȳ(1 + e0),

E(e23) = λC2z , E(e0e1) = λρyxCyCx, E(e0e2) = λρyrxCyCr, E(e0e3) = λρyzCyCz,

E(e0e3) = λρyzCyCz , E(e1e2) = λρxrxCxCr , ]E(e1e3) = λρxzCxCz , E(e3e2) = λρrxzCxCr,

C2z = C
2
y +

K2W(1 – T)σ2s
µ2y

, ρzx =
ρyx

√

1 +
K2W(1–T)σ2s

σ2y

, ρzrx =
cov(x, y)

CrxCy

√

1 +
K2W(1–T)σ2s

µ2yσ
2
y

, θ =
aX̄

aX̄ + b
.

Table 1. Special case for the proposed estimator

Estimator a b
^̄Z(1)pr 1 Cx
^̄Z(2)pr 1 β2(x)
^̄Z(3)pr β2(x) Cx
^̄Z(4)pr Cx β2(x)
^̄Z(5)pr 1 ρxy
^̄Z(6)pr Cx ρxy
^̄Z(7)pr ρxy Cx
^̄Z(8)pr β2(x) ρxy
^̄Z(9)pr ρxy β2(x)

Motivated by [9], [10], and [11] proposed a difference- ratio-type exponential an estimator ^̄Zpr that is given by

^̄Zpr = {ω1z̄ +ω2(X̄ – x̄) +ω3(R̄x – r̄x)} exp

(

a(X̄ – x̄)

a(X̄ – x̄) + 2b)

)

. (7)
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By taking expectation, we can find the bias ^̄Zpr under first approximation, which is given as

Bias(^̄Zpr) =
1
8

[

–8Z̄ + 4λθCx(X̄Cxω2 + R̄xρxrxCrω3ρxrx ) + Z̄ω1(8 + θλCx
(

3θCx – 4Cyρyx))
]

.
(8)

The MSE of ^̄Zprunder the first order of approximation are respectively given

MSE(^̄Zpr) = Z̄
2 + λX̄C2xω2(–Z̄ + X̄ω2) + λR̄2xC

2
rω

2
3
+ λR̄xCxCr(–Z̄ + 2X̄ω2)ω3ρxrx

+ Z̄2ω21
[

1 + λ
{

C2y + Cx – 2Cyρyx)
}]

+
1
4
Z̄ω1

[

–8Z̄ + λCx
{

Cx(–3Z̄θ + 8X̄ω2)+

8R̄xCrω3ρxrx +4Cy(Z̄ – 2X̄ω2)ρxy
}

–8R̄xλCyCrω3ρyrx
]

.

(9)

The optimum values of ω1, ω2, and ω3, obtained by minimizing equation (9) respectively, given by

ω1(opt)
=

8 – λθ22C2x
8
(

1 + λC2z
(

1 – Q2z.xrx
)) ,

ω2(opt)
=
Z̄
[

λθ3C3x

(

–1 + ρ2xrx

)

+
(

–8Cz + λθ22C2xCz
)

(ρzx – ρxrxρzrx ) + 4θCx
(

–1 + ρ2xrx

)(

–1 + λC2z

(

1 – Q2z.xrx

))]

8X̄Cx
(

–1 + ρ2xrx

)(

1 + λC2z

(

1 – Q2z.xrx

)) ,

and

ω3(opt) =
Z̄
(

8 – λθ2C2x

)

Cz (ρxrxρzx – ρzrx )

8R̄xCr
(

–1 + ρ2xrx

)(

1 + λC2z

(

1 – Q2z.xrx

)) ,

Q2z.xrx =
ρ2zx + ρ2zrx – 2ρzxρzrxρxrx

1 – ρ2xrx

.

Substitute the value of ω1,ω2, ω3 in equation (9), and we get the minimum MSE given by

MSEmin(
^̄Zpr) =

λZ̄2
{

64C2y(1 – Q
2
z.xrx ) – λθ4C4x C – 16λθ

2C2xC
2
y(1 – Q

2
z.xrx )

}

64
{

1 + λC2y(1 – Q
2
z.xrx )

} . (10)

Efficiency comparison

We present the mathematical comparison of the proposed estimator with existing estimators under Model-I as

i) By equations (5) and (10)

MSEmin(
^̄Zpr) ≤ MSE(̂tGRR).

ii) By equations (2) and (10)

MSEmin(
^̄Zpr) ≤ MSE(µ̂RS).

iii) By equations (4) and (10)

MSEmin(
^̄Zpr) ≤ MSE(µ̂RN).

iv) By equations (3) and (10)

MSEmin(
^̄Zpr) ≤ MSE(µ̂RG).

Real-life conifer tree data set 1

Real-life data set is used for numerical comparison. Detail is given as: Population Source: [12]. Let z be our study variable used
in our estimator and model. We study the total height of the conifer tree. x is our auxiliary variable which is non-sensitive. We
measure the circumference of the conifer tree at breast height. We assume three samples in our simulation study, n = 100, n = 200,
and n = 300.
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z: Total height of a conifer tree in feet;
x: Circumference of a conifer tree at breast height in cm
N=399, ρXY = 0.914981, ρzrx = 0.983609, ρxrx = 0.890219, µX = 285.125, µY = 5182.64, σX = 310.1403, σZ = 3250.5050, Cz =
0.354194, Cx = 0.948459, Cr = 0.573765

Table 2. The MSE and PRE values of estimators for real-life data set 1

n W T Estimator Theoretical PRE

50 0.3 0.3 µ̂YS 55.909 100.00

µ̂RS 54.303 102.95
µ̂RG 10.708 522.11
µ̂RN 55.258 101.17
t̂GRR 9.7486 573.51
^̄Z(1)pr 5.8744 951.74
^̄Z(2)pr 5.8344 958.275
^̄Z(3)pr 5.781 967.11
^̄Z(4)pr 5.8344 958.27
^̄Z(5)pr 5.8135 961.72
^̄Z(6)pr 5.8135 961.72
^̄Z(7)pr 5.7810 967.11
^̄Z(8)pr 5.8135 961.72
^̄Z(9)pr 5.8344 958.27

0.5 0.5 µ̂YS 56.033 100.00
µ̂RS 54.303 103.18
µ̂RG 10.718 522.75
µ̂RN 55.259 101.40
t̂GRR 9.7507 574.66
^̄Z(k)∗pr 5.8744 953.85

0.7 0.7 µ̂YS 55.909 100.00
µ̂RS 54.303 102.95
µ̂RG 10.729 521.08
µ̂RN 55.259 101.17
t̂GRR 9.7486 573.51
^̄Z(k)∗pr 5.8744 951.74

100 0.3 0.3 µ̂YS 23.404 100.00

µ̂RS 21.798 107.36
µ̂RG 24.409 95.88
µ̂RN 22.7538 102.86
t̂GRR 24.0141 97.459
^̄Z(1)pr 20.516 114.07
^̄Z(2)pr 21.841 107.15
^̄Z(3)pr 20.943 111.75
^̄Z(4)pr 21.811 107.15
^̄Z(5)pr 21.49 108.81
^̄Z(6)pr 21.48 108.91
^̄Z(7)pr 20.43 111.75
^̄Z(8)pr 21.89 108.91
^̄Z(9)pr 21.841 107.15

0.5 0.5 µ̂YS 23.528 100.00
µ̂RS 21.798 107.93
µ̂RG 22.754 103.41
µ̂RN 21.754 108.41
t̂GRR 25.015 94.072
^̄Z(k)∗pr 20.516 114.68

0.7 0.7 µ̂YS 23.528 100.00
µ̂RS 21.7984 107.93
µ̂RG 22.7540 103.41
µ̂RN 22.754 103.41
t̂GRR 24.015 97.972
^̄Z(k)∗pr 20.516 114.68

150 0.3 0.3 µ̂YS 13.853 100.00

µ̂RS 12.046 113.33
µ̂RG 2.5196 541.88
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µ̂RN 13.002 105.00
t̂GRR 13.779 99.082
^̄Z(1)pr 2.2938 595.22
^̄Z(2)pr 2.1938 631.22
^̄Z(3)pr 2.3938 578.70
^̄Z(4)pr 2.4938 555.22
^̄Z(5)pr 2.4938 595.22
^̄Z(6)pr 1.4938 595.22
^̄Z(7)pr 4.4938 312.22
^̄Z(8)pr 3.4938 396.22
^̄Z(9)pr 2.0938 595.22

0.5 0.5 µ̂YS 13.777 100.00
µ̂RS 12.046 114.36
µ̂RG 2.5220 546.26
µ̂RN 13.002 105.95
t̂GRR 13.778 99.98
^̄Z(k)∗pr 2.2942 600.50

0.7 0.7 µ̂YS 13.777 100.00
µ̂RS 13.046 105.60
µ̂RG 2.5220 546.26
µ̂RN 13.002 105.95
t̂GRR 13.278 103.75
^̄Z(k)∗pr 2.2942 600.50

Using Table 2, we find the percentage relative efficiency of existing and proposed estimators, shown in the graph. Black boxes
indicate the existing estimator, and red boxes indicate the proposed estimator. This graph shows our proposed estimator is more
efficient compared to the existing estimator.

Figure 1. PRE of Real-Life data set 1

Percentage relative efficiency

We have computed the percentage relative efficiency of proposed estimators at different combinations of existing estimators. We
used the following expression to obtain the percentage relative performance. Results are presented above tables.

PRE =
MSE(µ̂YS)

MSE(µ̂Q)
∗ 100, (11)

where Q = RS,RG,NR,GRR.

Simulation study

We consider a multivariate normal population with multiple covariance matrices to represent (Y, X) distribution. The normal
distribution is followed by scrambling variables. The standard deviation is equal to 100 percent of the standard deviation of X
when the mean is 0. We generate two populations. For population 1, N is 1000 and mean is 2. For population 2, N is 1000 and
mean is 3. Correlation is always positive for both populations. After Simulation, we standardize the study variable and auxiliary
variable and rank of the auxiliary variable. The Simulation is conducted to evaluate the performance of the proposed estimator. For
this study, we have generated the population size N=1000 from a standard normal distribution using the MVRNORM package in
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software R, where study and auxiliary variables are correlated with a correlation given below. The whole simulation process starting
from the drawing sample from variable Y and auxiliary variable X from the normal population and calculating the estimates, was
repeated 10000 times. The reported generalized response is calculated using the formula Z = Y + KS. The covariance matrices are
given by

Table 3. Data Summary I

Population 1 Population 2

N = 1000 N = 1000

µ= [2,2] µ= [3,3]

∑
=

(

2 1

1 4

)

∑
=

(

2 1

1 4

)

ρyx=0.37144 ρyx=0.388517

Table 4. The MSE and PRE values of estimators for Population 1&2

Population 1 Population 2

n W T Estimator Theoretical Empirical PRE Theoretical Empirical PRE

200 0.3 0.3 µ̂YS 0.01600 0.01697 100.00 0.03194 0.01425 100.00

µ̂RS 0.05133 0.01770 31.17 0.03160 0.01425 175.60
µ̂RG 0.01610 0.01679 101.28 0.02347 0.01527 136.07
µ̂RN 0.05065 0.01787 31.58 0.09302 0.01439 210.07
t̂GRR 0.00700 0.02390 233.44 0.01988 0.16697 160.68
^̄Z(1)pr 0.00470 0.00018 340.4 0.01815 0.01130 242.60
^̄Z(2)pr 0.00446 0.00058 366.78 0.0178 0.01190 179.07
^̄Z(3)pr 0.00400 0.00020 409.17 0.018 0.00720 190.02
^̄Z(4)pr 0.00447 0.00089 366.78 0.01425 0.00570 224.14
^̄Z(5)pr 0.00429 0.00039 381.63 0.01418 0.01000 225.24
^̄Z(6)pr 0.00429 0.00105 381.63 0.01425 0.00470 224.91
^̄Z(7)pr 0.00400 0.00110 409.17 0.01381 0.00023 231.04
^̄Z(8)pr 0.00429 0.00065 381.63 0.01417 0.01010 225.45
^̄Z(9)pr 0.00447 0.00066 366.78 0.01426 0.00070 223.91

0.5 0.5 µ̂YS 0.01700 0.01697 100.00 0.03346 0.01425 100.00
µ̂RS 0.05133 0.01770 31.49 0.01317 0.01425 107.98
µ̂RG 0.01610 0.01679 111.07 0.02112 0.01527 142.34
µ̂RN 0.05084 0.01787 31.53 0.02350 0.01439 200.88
t̂GRR 0.03240 0.02390 233.44 0.01988 0.16697 168.25
^̄Z(k)∗pr 0.00700 0.00067 255.44 0.01815 0.00980 242.60

0.7 0.7 µ̂YS 0.01600 0.01697 100.00 0.03194 0.01425 100.00
µ̂RS 0.05133 0.01770 31.91 0.01317 0.01425 107.98
µ̂RG 0.01620 0.01679 101.28 0.02354 0.01527 135.72
µ̂RN 0.05103 0.01787 31.23 0.02112 0.01439 142.34
t̂GRR 0.00700 0.02390 233.44 0.01988 0.16697 160.68
^̄Z(k)∗pr 0.00470 0.00046 340.4 0.01815 0.00136 242.60

500 0.3 0.3 µ̂YS 0.01030 0.00209 100.00 0.01395 0.00615 100.00

µ̂RS 0.50725 0.00419 2.036 0.00482 0.00378 289.56
µ̂RG 0.00404 0.00427 255.19 0.00586 0.00420 237.81
µ̂RN 0.05004 0.00406 20.64 0.00768 0.00377 181.61
t̂GRR 0.00175 0.02391 588.90 0.00497 0.16688 280.82
^̄Z(1)pr 0.00112 0.00021 925.80 0.00455 0.00029 306.99
^̄Z(2)pr 0.00117 0.00023 885.61 0.00427 0.00050 326.51
^̄Z(3)pr 0.00116 0.00014 885.61 0.00430 0.00094 324.41
^̄Z(4)pr 0.00115 0.00047 893.95 0.00427 0.00017 326.51
^̄Z(5)pr 0.00115 0.00011 893.95 0.00430 0.00650 324.41
^̄Z(6)pr 0.00114 0.00018 908.15 0.00430 0.00017 324.78
^̄Z(7)pr 0.00115 0.00047 893.95 0.00427 0.00371 326.51
^̄Z(8)pr 0.00114 0.00013 881.63 0.00430 0.00022 324.78
^̄Z(9)pr 0.00116 0.00016 885.61 0.00430 0.00530 324.41

0.5 0.5 µ̂YS 0.01191 0.00209 100.00 0.01547 0.00615 100.00
µ̂RS 0.05072 0.00419 20.30 0.00482 0.00378 321.03
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µ̂RG 0.00406 0.00427 293.74 0.00588 0.00420 263.30
µ̂RN 0.05024 0.00406 20.71 0.00687 0.00377 225.35
t̂GRR 0.00176 0.02391 678.57 0.00497 0.16688 311.23
^̄Z(k)∗pr 0.00112 0.00017 1067.7 0.00455 0.00047 340.35

0.7 0.7 µ̂YS 0.01033 0.00209 100.00 0.01395 0.00615 100.00
µ̂RS 0.50725 0.00419 2.0365 0.00482 0.00378 289.56
µ̂RG 0.00406 0.00427 254.20 0.00588 0.00420 237.19
µ̂RN 0.05043 0.00406 20.48 0.00604 0.00377 230.77
t̂GRR 0.00175 0.02391 588.90 0.00497 0.16688 280.82
^̄Z(k)∗pr 0.00112 0.00047 925.80 0.00454 0.00064 306.99

700 0.3 0.3 µ̂YS 0.00912 0.00086 100.00 0.01395 0.00239 100.00

µ̂RS 0.00206 0.00175 442.02 0.00842 0.00164 165.81
µ̂RG 0.00162 0.00178 563.27 0.00235 0.00170 594.52
µ̂RN 0.00499 0.00166 182.26 0.01128 0.00171 123.70
t̂GRR 0.00070 0.02388 1299.83 0.00298 0.16685 468.05
^̄Z(1)pr 0.00047 0.00013 1957.36 0.00181 0.00050 767.23
^̄Z(2)pr 0.00047 0.00017 1938.1 0.00178 0.00044 583.42
^̄Z(3)pr 0.00046 0.00010 1957.36 0.00178 0.00030 581.97
^̄Z(4)pr 0.00047 0.00060 1938.1 0.00178 0.00038 583.42
^̄Z(5)pr 0.00047 0.00014 1945.2 0.00178 0.00022 581.97
^̄Z(6)pr 0.00046 0.00067 1945.29 0.00178 0.00350 582.23
^̄Z(7)pr 0.00046 0.00021 1957.36 0.00177 0.00062 582.23
^̄Z(8)pr 0.00046 0.00031 1945.29 0.00178 0.00120 583.42
^̄Z(9)pr 0.00047 0.00032 1938.1 0.00178 0.00010 581.97

0.5 0.5 µ̂YS 0.01070 0.00086 100.00 0.01547 0.00239 100.00
µ̂RS 0.00506 0.00175 214.15 0.00842 0.00164 183.82
µ̂RG 0.00162 0.00178 659.78 0.00235 0.00170 658.27
µ̂RN 0.00501 0.00166 213.35 0.01046 0.00171 147.87
t̂GRR 0.00070 0.02388 1524.14 0.00199 0.16685 778.09
^̄Z(k)∗pr 0.00047 0.00016 2297.22 0.00182 0.00085 850.59

0.7 0.7 µ̂YS 0.00912 0.00086 100.00 0.01395 0.00239 100.00
µ̂RS 0.00506 0.00175 180.23 0.00841 0.00164 165.81
µ̂RG 0.00163 0.00178 561.07 0.00235 0.00170 592.99
µ̂RN 0.00503 0.00166 180.12 0.00964 0.00171 144.70
t̂GRR 0.00070 0.02388 1299.83 0.00199 0.16685 702.05
^̄Z(k)∗pr 0.00047 0.00022 1957.36 0.00182 0.00052 767.23

*where assumes the values from 1 to 9.

In Table 4, according to population 1 we make a graph of PRE in which red boxes show the proposed estimator, and black boxes
show the existing estimator. Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in
that graph which shows that our proposed estimator is efficient compared to another estimator. By using population 2 we make a
graph. Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in that graph which shows
that our proposed estimator is efficient compared to another estimator. N shows sample size. Black boxes show the existing
estimator, and Red boxes show the proposed estimator.

(a) Population 1 (b) Population 2

Figure 2. PRE of simulated data summary I
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Generalized exponential-type estimator using two auxiliary variables for generalized two-stages optional scram-
bled response

Motivated by [13], we suggest a generalized exponential-type estimator for population mean using Model I, as

t̂GRE = z̄ exp

[

α

(

X̄1/h – x̄1/h

X̄1/h + (a – 1)x̄1/h
+

Ū1/h – ū1/h

Ū1/h + (b – 1)ū1/h

)]

. (12)

According to a first-order approximation, the bias and mean square error (MSE) t̂GRE are given

Bias(̂tGRE) = λZ̄

[

αC2x
ah2

(1 –
1
a
) +

αC2u
bh2

(1 –
1
b
) –

α

h
(
Czx
a
+
Czx
b
) +

α2

2h2
(
C2u
b2
+
C2x
a2
+
2Cxu
ab

]

. (13)

By taking a square and applying expectation from equation (13), we obtained

MSE(̂tGRE) = λZ̄2
[

C2z +
αC2x
a2b2

+
αC2u
b2h2

–
2αCzx
ah

–
2αCzx
bh

+
2α2Cxu
abh2

]

. (14)

To obtain the minimum MSE, we need to estimate the value of a and b. By equation (14), we obtain â(opt) =
α
h

[ C2xu–C
2
uC
2
x

CxuCzu–C2uCzu

]

and

b̂(opt) =
α
h

[ C2xu–C
2
uC
2
x

CxuCzx–C2zuC
2
x

]

.

Using â(opt) and b̂(opt), we get a minimum MSE of (̂tGRE) as

MSE(̂tGRE) = λZ̄2
[

C2z +
C2xC

2
zu + C

2
uC
2
zu – 2C

2
xuC

2
zxC

2
zu

C2xu – C
2
uC
2
x

]

. (15)

Efficiency comparison

We present the mathematical comparison of the proposed estimator using two auxiliary variables with the existing estimators
under Model-I as

i) By equation (5) and (15)

MSEmin (̂tGRE) ≤ MSE(̂tGRR).

ii) By equation (2) and (15)

MSEmin (̂tGRE) ≤ MSE(µ̂RS).

iii) By equation (4) and (15)

MSEmin (̂tGRE) ≤ MSE(µ̂RN).

iv) By equation (3) and (15)

MSEmin (̂tGRE) ≤ MSE(µ̂RG).

Real-life apple tree data set 2

We used data from 204 villages in Turkey’s Black Sea Region, including apple production amount in 1999 (as the main variety),
number of apple trees in 1999 (as the first auxiliary variety), and apple income and sales in 1998, to estimate the standard and
new estimators (as the second auxiliary variety) (Source: Republic of Turkey’s National Bureau of statistics)]. The MSE and PRE
are calculated and simulated by the proposed model’s generalized exponential type ratio estimator compared to the RRT ratio
estimator for population 3.

We assume three samples in our simulation study, n= 50, 100, and 120.

N=204, ρXZ = 0.71, ρxu = 0.83, ρzu = 0.94, σzx = 77372777, σzu = 5684276, σxu = 94636084, µX = 26441, µZ = 966, µU = 1014,
σX = 45402.78, σZ = 2389.76 and σU = 2521.40.
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Table 5. The MSE and PRE values of estimators for Real-life dataset 2

n W T Estimator Theoretical PRE

50 0.3 0.3 µ̂YS 86278.68 100.00

µ̂RS 86234.28 100.05

µ̂RG 42787.88 201.64

µ̂RN 86234.28 100.05

t̂GRR 42765.76 201.74

t̂GRE 22350.49 386.02

0.5 0.5 µ̂YS 86286.93 100.00

µ̂RS 86234.28 100.06

µ̂RG 42788.51 201.65

µ̂RN 86234.28 100.06

t̂GRR 42765.89 201.76

t̂GRE 22350.49 386.06

0.7 0.7 µ̂YS 86278.68 100.00

µ̂RS 86234.28 100.05

µ̂RG 42789.13 201.63

µ̂RN 86234.28 100.05

t̂GRR 42765.76 201.74

t̂GRE 22350.49 386.02

100 0.3 µ̂YS 42875.44 100.00

µ̂RS 42830.05 100.10

µ̂RG 21252.26 201.74

µ̂RN 42830.05 100.10

t̂GRR 21241.27 201.84

t̂GRE 17351.62 247.09

0.5 0.5 µ̂YS 42883.68 100.00

µ̂RS 42830.05 100.12

µ̂RG 21252.57 201.78

µ̂RN 42830.05 100.12

t̂GRR 21241.33 201.88

t̂GRE 17351.62 247.14

0.7 0.7 µ̂YS 42875.44 100.00

µ̂RS 42830.05 100.10

µ̂RG 21252.88 201.73

µ̂RN 42830.05 100.10

t̂GRR 21241.27 201.84

t̂GRE 17351.62 247.097

120 0.3 0.3 µ̂YS 19460.53 100.00

µ̂RS 19414.6 100.23

µ̂RG 19634.35 100.81

µ̂RN 19414.6 100.23

t̂GRR 19629.37 116.93

t̂GRE 14654.87 132.79

0.5 0.5 µ̂YS 19468.78 100.00

µ̂RS 19414.6 100.27

µ̂RG 19634.49 102.07

µ̂RN 19414.6 100.27

t̂GRR 19629.40 102.18

t̂GRE 14654.87 132.84

0.7 0.7 µ̂YS 19460.53 100.00

µ̂RS 19414.6 100.23

µ̂RG 19634.63 100.12

µ̂RN 19414.6 100.23

t̂GRR 19629.37 102.09

t̂GRE 14654.87 132.79



Zahid et al. | 137

Figure 3. PRE of Real-life data set 2

Simulation study

We used R studio Version 1.3.1093 for the coding and simulation study. To describe the (Y,X) distribution, we assume a multivariate
normal populationwith distinct covariancematrices. We generate random variables by following amultivariate normal distribution.
The normal distribution is followed by scrambling variables. With a mean of 0 and an SD equal to 100% of the standard deviation
of variable X. The reported generalized response is calculated using the formula Z = Y+ KS. The covariance matrices are given as:

Table 6. Data summary II

Population 1 Population-2

N =1000 N =1000

µ= [2,2,2] µ= [3,3,3]

∑
=







8 1 2.5

1 2 1.5

2.5 1.5 2







∑
=







2 1 2.2

1 3 1.2

2.2 1.2 3







ρxy=0.27451

ρxy= 0.721011

ρxy=0.40759

ρxy= 0.39536

Table 7. The MSE and PRE values of estimators for Population 1&2

Population 1 Population 2

n W T Estimator Theoretical Empirical PRE Theoretical Empirical PRE

200 0.3 0.3 µ̂YS 0.03519 0.03140 100.00 0.01358 0.07440 100

µ̂RS 0.01755 0.00843 200.51 0.13800 0.02654 93.792
µ̂RG 0.03083 0.00866 114.13 9.79250 0.01910 112.69
µ̂RN 0.01438 0.00810 244.71 0.13640 0.01118 99.95
t̂GRR 0.02892 0.02628 121.66 0.06609 0.14720 20.52
t̂GRE 0.00523 0.00135 672.87 0.01135 0.01098 119.64

0.5 0.5 µ̂YS 0.03111 0.03140 100.00 0.01472 0.07440 100.00
µ̂RS 0.01754 0.00843 177.32 0.13870 0.02654 67.61
µ̂RG 0.03081 0.00866 101.00 0.01207 0.01910 121.89
µ̂RN 0.01302 0.00810 238.98 0.13706 0.01118 10.73
t̂GRR 0.02890 0.02628 107.65 0.06613 0.14720 20.32
t̂GRE 0.00523 0.00135 595.04 0.01135 0.01098 129.66

0.7 0.7 µ̂YS 0.03519 0.03140 100.00 0.01358 0.07440 100.00
µ̂RS 0.01754 0.00843 200.51 0.13870 0.02654 94.792
µ̂RG 0.03086 0.00866 114.01 0.01209 0.01910 112.27
µ̂RN 0.01619 0.00810 217.34 0.13772 0.01118 9.862
t̂GRR 0.02892 0.02628 121.66 0.06600 0.14720 20.57
t̂GRE 0.00523 0.00135 672.87 0.01135 0.01098 119.64

500 0.3 0.3 µ̂YS 0.01185 0.00788 100.00 0.00787 0.00175 100.00

µ̂RS 0.00579 0.00216 204.65 0.13300 0.00641 59.918
µ̂RG 0.00771 0.00204 153.73 0.00301 0.00273 261.24
µ̂RN 0.00895 0.02631 132.25 0.13069 0.00274 69.023
t̂GRR 0.00723 0.00213 163.88 0.01652 0.14720 43.75
t̂GRE 0.00131 0.00037 906.36 0.00284 0.00025 277.35

0.5 0.5 µ̂YS 0.01262 0.00788 100.00 0.00900 0.00175 100.00
µ̂RS 0.00579 0.00216 218.04 0.13300 0.00641 69.773
µ̂RG 0.00771 0.00204 163.70 0.00301 0.00273 298.40
µ̂RN 0.00805 0.02631 156.75 0.13135 0.00274 68.586
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t̂GRR 0.00723 0.00213 174.59 0.01653 0.14720 54.545
t̂GRE 0.00130 0.00037 965.66 0.00283 0.00025 317.41

0.7 0.7 µ̂YS 0.01185 0.00788 100.00 0.00787 0.00175 100.00
µ̂RS 0.00579 0.00216 204.65 0.13300 0.00641 59.188
µ̂RG 0.00771 0.00204 153.57 0.00302 0.00273 260.26
µ̂RN 0.00714 0.02631 165.76 0.13201 0.00274 59.63
t̂GRR 0.00723 0.00213 163.88 0.01652 0.14720 54.545
t̂GRE 0.00131 0.00037 906.36 0.00284 0.00025 277.35

700 0.3 0.3 µ̂YS 0.01185 0.00328 100.00 0.00673 0.00090 100.00

µ̂RS 0.00579 0.00088 204.65 0.13186 0.00277 51.037
µ̂RG 0.00771 0.00094 153.73 0.00120 0.00114 558.34
µ̂RN 0.00895 0.00083 132.25 0.12955 0.00121 51.947
t̂GRR 0.00723 0.02629 163.88 0.00661 0.14728 101.96
t̂GRE 0.00131 0.00010 906.36 0.00114 0.00014 592.78

0.5 0.5 µ̂YS 0.01262 0.00328 100.00 0.00786 0.00090 100.00
µ̂RS 0.00579 0.00088 218.04 0.13186 0.00277 59.65
µ̂RG 0.00771 0.00094 163.70 0.00120 0.00114 651.43
µ̂RN 0.00805 0.00083 156.75 0.13021 0.00121 60.41
t̂GRR 0.00723 0.02629 174.59 0.00661 0.14728 121.21
t̂GRE 0.00130 0.00010 965.66 0.00114 0.00014 692.91

0.7 0.7 µ̂YS 0.01185 0.00328 100.00 0.00673 0.00090 100.00
µ̂RS 0.00579 0.00088 204.65 0.13180 0.00277 51.03
µ̂RG 0.00772 0.00094 153.57 0.00120 0.00114 556.24
µ̂RN 0.00714 0.00083 165.76 0.13087 0.00121 51.423
t̂GRR 0.00723 0.02629 163.88 0.00660 0.14728 101.51
t̂GRE 0.00131 0.00010 906.36 0.00114 0.00014 592.78

The results are represented in Tables 2, 4, 5, and 7. Tables 2 and 5 are used for real-life data sets in which we find theoretical

values and percentage relative efficiency. It observed that the percentage relative efficiency of the proposed estimators (^̄Z(k)∗pr ,

t̂GRE ) according to the model I is better as compared to the existing estimator (µ̂YS,µ̂RS,µ̂RG,µ̂RN ,̂tGRR). Tables 4 and 8 are used
for artificial data. It also shows higher PRE as compared to other ratio estimators. Graphical representation also shows that
our proposed estimator’s percentage relative efficiency is greater than existing estimators. We used table 7 (population 1) for
PRE representations. Red boxes show the proposed estimator, and Black boxes show existing estimators. N shows sample size.
Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in that graph which shows that our
proposed estimator is efficient compared to another estimator. We follow population 2 and make a graph for percentage relative
efficiency. Red boxes show the proposed estimator, and Black boxes show existing estimators. N shows sample size. Percentage
Relative Efficiency of Proposed and Existing estimator through simulation is given in that graph which shows that our proposed
estimator PRE values are efficient compared to another estimator.

Population 1 Population 2

Figure 4. PRE of simulated data summary II

4 Proposed model II

Mean estimator for generalized quantitative randomized response

[14] proposed a quantitative randomized response model. In this study, the study variable Yi is represented by a mean µY and
unknown variance σ2y . We assumed that θ1 = E(S) variance is equal to σ21 = V(S) and their probability lies between 0 ≤ p ≤ 1.

Zαi =

{

Yi with probability p
YiS with probability (1 – p)

}

. (16)
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We get

µ̂
∗

y =
Z̄∗

p + (1 – p)θ1
,

where

Z̄α =
n∑

i=1

Zαi/n , V(µ̂
∗

x ) =
σ2Z

n(p + (1 – p)θ1)2
,

where

σ
2
Z∗ = µ

2
y(1 + C

2
x )(p + (1 – p)θ

2
1 (1 + C

2
1 )) – µ

2
x (p + (1 – P)θ1)

2,

with

Cx =
σy

µY
and C1 =

σ1
θ1
.

Generalized exponential ratio type estimator using one auxiliary variable for quantitative randomized response

Motivated by [9], [10], and [11], proposed a difference- ratio-type-exponential estimator ^̄Zαi that is given by

^̄Zαi = {ω1z̄ +ω2(X̄ – x̄) +ω3(R̄x – r̄x)} exp

(

a(X̄ – x̄)

a(X̄ – x̄) + 2b)

)

, (17)

^̄Zαi =ω1Z̄S1 –ω1Z̄S1e3 –ω2X̄e1 –ω3R̄xe2

{

1 –
e1
2
+
3e21
8
+ .....

}

. (18)

By expanding the equation (10) and keeping terms only up to order two e1s we can write

(^̄Zpr – Z̄) = – Z̄ + Z̄S1ω1 +ω1Z̄S1e0 – 1/2θZ̄e1S1ω1 – X̄ω2e1 – R̄xe2ω3 – 1/2θZ̄e1e0S1ω1

+ 3/8θ2Z̄S1e
2
1ω1 + 1/2X̄θe

2
1ω2 + 1/2R̄xe2e1ω3.

(19)

By taking expectation, we can find the bias ^̄Zαi under first approximation, which is given as

Bias(^̄Zαi) =
1
8

[

– 8Z̄ + 4λθCx(X̄Cxω2 + R̄xρxrxCrω3 + Z̄θ1ω1{(8 + λθCx

(3θCx – 4Cyρyx)}
]

.
(20)

The MSE of ^̄Zαi under the first order of approximation are respectively given by

MSE(^̄Zαi) = Z̄
2 + λX̄C2xω2(–Z̄θ1 + X̄ω2) + λR̄2xC

2
rω

2
3
+ λR̄xCxCr(–Z̄θ1 + 2X̄ω2)ω3ρxrx+

Z̄2θ1ω
2
1
[

1 + λ
{

C2y + Cx – 2Cyρyx)
}]

+
1
4
ω1θ1

[

– 8ω1αθ2 + λCx

{

Cx(–3ω1Z̄θ + 8X̄ω2) + 8R̄xCrω3ρxrx + 4Cy(Z̄θ1 – 2X̄ω2)ρxy
}

– 8R̄xλCyCrω3ρyrx
]

.

(21)

The optimum value of ω1 ω2 ω3, obtained by minimizing above equation respectively, given by ω1(opt)
=

8–λθ2C2x
8(1+λC2z (1–Q2z.xrx))

,

ω2(opt)
=

Z̄
[

λθ3C3x

(

–1 + ρ2xrx

)

+
(

–8Cz + λ2θ2C2xCz
)

(ρzx – ρxrxρzrx ) +

4Cx
(

–1 + ρ2xrx

)(

–1 + λC2z

(

1 – Q2z.xrx

))]

8X̄Cx
(

–1 + ρ2xrx

)(

1 + λC2z

(

1 – Q2z.xrx

)) ,

and

ω3(opt) =
Z̄
(

8 – λθ2C2x

)

Cz (ρxrxρzx – ρzrx )

8R̄xCr
(

–1 + ρ2xrx

)(

1 + λC2z

(

1 – Q2z.xrx

)) ,
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where

Q2z.xrx =
ρ2zx + ρ2zrx – 2ρzxρzrxρxrx

1 – ρ2xrx

.

Substitute the value ω1 ω2, ω3 in equation (21), and we get the minimum MSE x̄ = X̄(1 + e1)given by

MSEmin(
^̄Zαi) =

λZ̄θ1
[

64C2y(1 – Q
2
z.xrx ) – λθ4C4x C – 16λθ

2C2xC
2
y(1 – Q

2
z.xrx )

]

64
{

1 + λC2y(1 – Q
2
z.xrx )

} . (22)

Efficiency comparison

We present the mathematical comparison of the proposed estimator with existing estimators under Model-II

v) By equations (5) and (22)

MSEmin(
^̄Zαi) ≤ MSE(̂tGRR).

vi) By equations (2) and (22)

MSEmin(
^̄Zαi) ≤ MSE(µ̂RS).

vii) By equations (4) and (22)

MSEmin(
^̄Zαi) ≤ MSE(µ̂RN) .

viii) By equations (3) and (22)

MSEmin(
^̄Zαi) ≤ MSE(µ̂RG).

Simulation study

We generate the correlated scrambling variables S with parameters θ1 and σ1. The discrete uniform distribution is followed by
scrambling variable, where S = U(a1, b1). Scrambling variables followed uniform distribution. In other words, Stakes integer values
between a1 and b1. The reported generalized response is calculated using the formula Z = YS. Z is our auxiliary variable. And Y is
the study variable and S is the scramble variable.

Table 8. Data summary III

Population 1 Population 2

N = 1000 N = 1000

µ= [2,2] µ= [3,3]

∑
=

(

2 1

1 4

)

∑
=

(

6 2

2 4

)

ρyx=0.37144 ρyx=0.388517

Smin = 0, Smax = 3 Smin = 0, Smax = 5

Table 9. The MSE and PRE values of estimators for Population 1

Population 1 Population 2

n W T Estimator Theoretical Empirical PRE Theoretical Empirical PRE

200 0.3 0.3 µ̂YS 0.04768 0.00702 100.00 0.2981 0.0012 100.00

µ̂RS 0.57105 0.0085 115.01 0.2840 0.0096 104.97
µ̂RG 0.07370 0.0096 64.69 0.4047 0.0010 73.65
µ̂RN 0.05688 0.0078 83.82 0.2894 0.0095 103.06
t̂GRR 0.04509 0.0062 105.95 0.2618 0.0029 113.85
^̄Z(1)pr 0.0414 0.00042 115.74 0.1686 0.00028 176.81
^̄Z(2)pr 0.04016 0.00035 118.72 0.1647 0.00011 177.79
^̄Z(3)pr 0.03810 0.0002 125.10 0.1639 0.00039 178.51
^̄Z(4)pr 0.04016 0.00014 118.72 0.1668 0.00029 177.72
^̄Z(5)pr 0.03930 0.00024 121.08 0.1683 0.00022 178.13
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^̄Z(6)pr 0.03938 0.00041 121.08 0.1676 0.00041 178.33
^̄Z(7)pr 0.03811 0.00060 125.10 0.1659 0.00070 178.47
^̄Z(8)pr 0.03937 0.00132 121.08 0.1623 0.00034 178.53
^̄Z(9)pr 0.04016 0.0027 118.72 0.1616 0.00105 177.76

0.5 0.5 µ̂YS 0.04926 0.0010 100.00 0.2996 0.0029 100.00
µ̂RS 0.05710 0.0036 64.69 0.2894 0.0094 103.76
µ̂RG 0.07375 0.0031 66.799 0.2840 0.0098 105.49
µ̂RN 0.05694 0.0034 83.82 0.3718 0.0045 84.70
t̂GRR 0.04509 0.0062 109.23 0.2618 0.0032 114.43
^̄Z(k)∗pr 0.04145 0.00049 118.83 0.1686 0.00234 177.71

0.7 0.7 µ̂YS 0.04760 0.0010 100.00 0.2981 0.0028 100.00
µ̂RS 0.05710 0.0042 64.69 6.2890 0.0014 4.74
µ̂RG 0.07370 0.0035 64.62 0.2840 0.0098 104.95
µ̂RN 0.05701 0.0042 83.82 6.3388 0.0025 4.70
t̂GRR 0.04509 0.0063 105.74 0.2618 0.0032 113.85
^̄Z(k)∗pr 0.04145 0.00011 115.01 0.1686 0.00043 176.81

500 0.3 0.3 µ̂YS 0.01810 0.00090 100.00 0.0805 0.0038 100.00

µ̂RS 0.05354 0.00089 33.83 0.5070 0.0034 15.87
µ̂RG 0.01840 0.00072 98.53 0.0710 0.0098 113.38
µ̂RN 0.05332 0.00061 33.95 0.3224 0.0035 24.96
t̂GRR 0.01120 0.00051 161.08 0.0754 0.0032 120.97
^̄Z(1)pr 0.01038 0.000028 174.87 0.0665 0.000421 122.97
^̄Z(2)pr 0.01026 0.000035 176.41 0.1647 0.00017 107.79
^̄Z(3)pr 0.01010 0.00045 179.20 0.1639 0.00019 108.51
^̄Z(4)pr 0.01036 0.00009 174.71 0.1668 0.00032 107.72
^̄Z(5)pr 0.01030 0.00042 175.08 0.1683 0.00079 108.13
^̄Z(6)pr 0.03938 0.00029 141.08 0.1676 0.00017 108.33
^̄Z(7)pr 0.03811 0.000027 142.10 0.1659 0.00029 108.47
^̄Z(8)pr 0.03937 0.00036 132.08 0.1623 0.00053 108.53
^̄Z(9)pr 0.04016 0.00099 119.72 0.1616 0.00062 107.76

0.5 0.5 µ̂YS 0.01970 0.0010 100.00 0.0620 0.0048 132.26
µ̂RS 0.02354 0.00087 83.68 6.5070 0.0014 115.50
µ̂RG 0.01840 0.0089 107.08 0.0720 0.0098 113.88
µ̂RN 0.02339 0.00076 84.69 6.5894 0.0015 122.29
t̂GRR 0.01120 0.00063 175.11 0.0665 0.0032 123.25
^̄Z(k)∗pr 0.01038 0.00057 190.13 0.0805 0.0024 100.00

0.7 0.7 µ̂YS 0.01810 0.00010 100.00 0.5070 0.0022 15.87
µ̂RS 0.02354 0.00071 84.391 0.0710 0.0098 113.35
µ̂RG 0.01840 0.00091 98.44 0.5560 0.0035 14.22
µ̂RN 0.02345 0.00092 83.397 0.0654 0.0032 122.98
t̂GRR 0.01120 0.00063 161.08 0.0565 0.0018 143.75
^̄Z(k)∗pr 0.01030 0.00005 174.87 0.0620 0.0048 132.26

700 0.3 0.3 µ̂YS 0.01220 0.000201 100.00 0.0369 0.0034 100.00

µ̂RS 0.02283 0.0089 83.10 0.0550 0.0042 67.01
µ̂RG 0.00737 0.0086 166.24 0.0284 0.0018 130.17
µ̂RN 0.02260 0.0092 84.21 6.6000 0.0035 56.02
t̂GRR 0.00450 0.0063 271.78 0.0261 0.0071 141.22
^̄Z(1)pr 0.00415 0.00042 294.92 0.0201 0.000962 184.50
^̄Z(2)pr 0.00401 0.00086 218.72 0.1247 0.0001 177.79
^̄Z(3)pr 0.04810 0.00040 225.10 0.1339 0.00014 178.51
^̄Z(4)pr 0.04016 0.00021 218.72 0.1368 0.0011 177.72
^̄Z(5)pr 0.03930 0.00073 221.08 0.1483 0.00168 178.13
^̄Z(6)pr 0.03938 0.00081 221.08 0.1676 0.0012 178.33
^̄Z(7)pr 0.03811 0.00029 225.10 0.1559 0.0020 178.47
^̄Z(8)pr 0.03937 0.00059 221.08 0.1623 0.0011 178.53
^̄Z(9)pr 0.04016 0.00070 218.72 0.1616 0.0003 177.76

0.5 0.5 µ̂YS 0.01380 0.00102 100.00 6.5506 0.0014 100.00
µ̂RS 0.05283 0.0092 6.5506 6.5506 0.0014 58.78
µ̂RG 0.00737 0.0082 0.0284 0.0284 0.0042 135.5
µ̂RN 0.05260 0.0094 6.6329 6.6329 0.0028 58.0
t̂GRR 0.00450 0.0063 0.0301 0.0301 0.0035 127.88
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^̄Z(k)∗pr 0.00416 0.00038 0.0262 0.0262 0.0071 147.01

0.7 0.7 µ̂YS 0.01220 0.0010 100.00 6.6000 0.0034 100.00
µ̂RS 0.05283 0.0087 23.19 0.0262 0.0042 130.17
µ̂RG 0.00737 0.0088 166.09 0.0262 0.0018 130.17
µ̂RN 0.05274 0.0087 23.14 0.0201 0.0045 56.08
t̂GRR 0.00450 0.0049 271.78 0.0262 0.0061 122.84
^̄Z(k)∗pr 0.00416 0.00043 294.92 0.0201 0.00051 184.50

In Table 9 PRE for population 1 is given. Percentage Relative Efficiency of Proposed and Existing estimator through simulation
is given in that graph which shows that our proposed estimator is efficient compared to another estimator. Black boxes show
the existing estimator, and Red boxes show the proposed estimators. Using population I, we estimate PRE. In table 9 by using
population 2 we find the percentage relative efficiency of estimators. Red boxes show the proposed estimator, and Black boxes
show existing estimators. Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in that
graph which shows that our proposed estimator is efficient compared to another estimator.

Population 1 Population 2

Figure 5. PRE of simulated data summary III

5 Generalized exponential-type estimator using two auxiliary variables for generalized quan-
titative randomize response

Motivated by [13], we suggest a generalized exponential-type estimator for population mean using Model II, as

t̂GRE = z̄ exp

[

α

(

X̄1/h – x̄1/h

X̄1/h + (a – 1)x̄1/h
+

Ū1/h – ū1/h

Ū1/h + (b – 1)ū1/h

)]

(23)

(̂tGRE – Z̄) =Z̄S

[

δz –
αδzδx

ah
–

αδ2x
ah

–
αδzδu

bh
+

αδx

ah
+

αδ2x
ah2

–
αδ2x
a2h2

–
αδu

bh
+

αδ2u
bh2

–
αδ2u
b2h2

+
α2δ2x
2a2h2

+
α2δ2u
2b2h2

+
α2δxδu

abh2

]

.

(24)

By taking expectations on both sides

Bias(̂tGRE) = λZ̄θ1

[

αC2x
ah2

(1 –
1
a
) +

αC2u
bh2

(1 –
1
b
) –

α

h
(
Czx
a
+
Czx
b
) +

α2

2h2
(
C2u
b2
+
C2x
a2
+
2Cxu
ab

]

. (25)

By taking a square and applying expectation from equation (20), we obtained

MSE(̂tGRE) = λZ̄2θ1

[

C2z +
αC2x
a2b2

+
αC2u
b2h2

–
2αCzx
ah

–
2αCzx
bh

+
2α2Cxu
abh2

]

. (26)

To obtain the minimum MSE, we need to estimate the value of a and b. By equation (22), we obtain

â(opt) =
α

h

[

C2xu – C
2
uC
2
x

CxuCzu – C2uCzu
] and b̂(opt) =

α

h
[
C2xu – C

2
uC
2
x

CxuCzx – C2zuC
2
x

]

.
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Using â(opt) and b̂(opt), we get a minimum MSE of (̂tGRE) as

MSE(̂tGRE) = λZ̄2θ1

[

C2z +
C2xC

2
zu + C

2
uC
2
zu – 2C

2
xuC

2
zxC

2
zu

C2xu – C
2
uC
2
x

]

. (27)

Efficiency comparison

We present the mathematical comparison of the proposed estimator using two auxiliary variables with the existing estimators
under Model-II as

I By equation (5) and (27)

MSEmin (̂tGRE) ≤ MSE(̂tGRR).

II By equation (2) and (27)

MSEmin (̂tGRE) ≤ MSE(µ̂RS).

III By equation (4) and (27)

MSEmin (̂tGRE) ≤ MSE(µ̂RN).

IV By equation (3) and (27)

MSEmin (̂tGRE) ≤ MSE(µ̂RG).

Simulation study for proposed generalized exponential type estimator using two auxiliary variables by model-II

To describe the (Y, X) distribution, we assume a multivariate normal population with distinct covariance matrices. We can generate
the correlated scrambling variable S. With the chosen parameters, θ1 and σ1. The discrete uniform distribution is followed by
scrambling variables. Where S = U(a1, b1), in other words, S takes integer values between a1 and b1. The reported generalized
response is calculated using the formula Z = YS.

Table 10. Data summary IV

Population 1 Population 2

N =1000 N =1000

µ= [2,2,2] µ= [3,3,3]

∑
=







8 1 2.5

1 2 1.5

2.5 1.5 2







∑
=







2 1 2.2

1 3 1.2

2.2 1.2 3







ρxy=0.27451 ρxy=0.40759

ρxy= 0.721011 ρxy= 0.39536

Smin = 0, Smax = 3 Smin = 0, Smax = 5

Table 11. The MSE and PRE values of estimators for Population 1

Population 1 Population 2

n W T Estimator Theoretical Empirical PRE Theoretical Empirical PRE

200 0.3 0.3 µ̂YS 0.0153 0.11143 100.00 0.08297 1.81129 100.00

µ̂RS 1.2377 0.03221 81.24 0.02340 1.7110 52.45
µ̂RG 0.0426 0.02870 36.02 0.02630 0.0514 314.65
µ̂RN 1.2419 0.03008 91.23 0.02940 0.0493 44.45
t̂GRR 0.0410 0.05720 37.40 0.02630 0.9229 314.86
t̂GRE 0.0054 0.00716 283.43 0.01130 0.0171 733.54

0.5 0.5 µ̂YS 0.0182 0.11143 100.00 0.08376 1.81129 100.00
µ̂RS 1.2377 0.03221 41.47 0.0750 1.7110 111.68
µ̂RG 0.0427 0.02870 42.83 0.02630 0.0514 317.46
µ̂RN 1.2407 0.03008 51.47 0.0900 0.0493 93.066
t̂GRR 0.0411 0.05720 44.51 0.02630 0.9229 317.82
t̂GRE 0.0054 0.00716 337.41 0.01131 0.0171 740.51

0.7 0.7 µ̂YS 0.0153 0.11143 100.00 0.08290 1.81129 100.00
µ̂RS 1.2377 0.03221 31.237 0.0750 1.7110 110.53
µ̂RG 0.0427 0.02870 35.93 0.02640 0.0514 314.28
µ̂RN 1.2390 0.03008 102.0 0.02340 0.0493 354.27
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t̂GRR 0.0410 0.05720 37.40 0.02630 0.9229 314.86
t̂GRE 0.0054 0.00716 283.43 0.01131 0.0171 733.54

500 0.3 0.3 µ̂YS 0.0154 0.03042 100.00 0.08290 1.7778 100.00

µ̂RS 1.3189 0.01270 51.12 0.06600 1.6565 125.60
µ̂RG 0.0107 0.01281 144.09 0.0659 0.1408 125.79
µ̂RN 1.3231 0.01267 81.160 0.02140 0.1476 387.45
t̂GRR 0.0103 0.05715 149.58 0.00658 0.9229 1259.46
t̂GRE 0.0014 0.00384 1133.57 0.00280 0.0212 2934.16

0.5 0.5 µ̂YS 0.0182 0.03042 100.00 0.08370 1.7778 100.00
µ̂RS 1.3189 0.01270 138.5 0.06700 1.6565 124.60
µ̂RG 0.0107 0.01281 171.30 0.0659 0.1408 125.79
µ̂RN 1.3219 0.01267 138.2 0.02240 0.1476 388.45
t̂GRR 0.0103 0.05715 178.02 0.00650 0.9229 1271.28
t̂GRE 0.0014 0.00384 1349.48 0.00280 0.0212 2962.06

0.7 0.7 µ̂YS 0.0153 0.03042 100.00 0.08290 1.7778 100.00
µ̂RS 1.3189 0.01270 116.42 0.02640 1.6565 144.51
µ̂RG 0.0106 0.01281 143.70 0.0660 0.1408 125.13
µ̂RN 1.3207 0.01267 116.2 0.02840 0.1476 145.45
t̂GRR 0.0103 0.05715 149.58 0.00658 0.9229 1259.46
t̂GRE 0.0014 0.00384 1133.57 0.00282 0.0212 2934.1

700 0.3 0.3 µ̂YS 0.0153 0.01373 100.00 0.01202 1.76471 100.00

µ̂RS 1.3352 0.00966 115 .00 0.02640 1.6297 414.51
µ̂RG 0.0042 0.00961 360.23 0.00260 0.91076 456.00
µ̂RN 1.3394 0.01030 114.60 0.02840 0.92118 441.45
t̂GRR 0.0041 0.05715 373.94 0.00260 0.92313 456.30
t̂GRE 0.0005 0.00241 2833.85 0.00113 0.2073 1063.05

0.5 0.5 µ̂YS 0.0182 0.01373 100.00 0.01280 1.76471 100.00
µ̂RS 1.3352 0.00966 136.9 0.02740 1.6297 44.51
µ̂RG 0.0043 0.00961 428.26 0.00263 0.91076 485.63
µ̂RN 1.3382 0.01030 136.0 0.00294 0.92118 435.37
t̂GRR 0.0041 0.05715 445.04 0.00263 0.92313 486.18
t̂GRE 0.0005 0.00241 3373.6 0.00113 0.2073 1132.79

0.7 0.7 µ̂YS 0.0153 0.01373 100.00 0.01202 1.76471 100.00
µ̂RS 0.0567 0.00966 269.84 0.00274 1.6297 438.68
µ̂RG 1.3350 0.00961 21.15 0.00264 0.91076 455.46
µ̂RN 0.0043 0.01030 359.24 0.02940 0.92118 457.03
t̂GRR 1.3370 0.05715 71.14 0.00263 0.92313 456.30
t̂GRE 0.0005 0.00241 2833.85 0.00113 0.2073 1063.05

The results are represented in Tables 9, and 11. Tables 9 and 11 are used for artificial data. It observed that the percentage relative

efficiency of the proposed estimators (^̄Z(k)∗pr , t̂GRE) according to model II is better as compared to the existing estimator (µ̂YS, µ̂RS,

µ̂RG, µ̂RN, t̂GRR). It also shows higher PRE as compared to other ratio estimators. Graphical representation also shows that our
proposed estimator’s percentage relative efficiency is greater than existing estimators. By using table 11 (population 1) we make
a graph to represent the PRE of estimators. Red boxes show the proposed estimator, and Black boxes show existing estimators. n
shows sample size. Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in that graph
which shows that our proposed estimator PRE values are efficient compared to another estimator. By using table 11 (population 2)
we represent the PRE of estimators. Red boxes show the proposed estimator, and Black boxes show existing estimators. N shows
sample size. Percentage Relative Efficiency of Proposed and Existing estimator through simulation is given in that graph which
shows that our proposed estimator PRE values are efficient compared to another estimator.

Population 1 Population 2

Figure 6. PRE of simulated data summary IV
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6 Conclusion

For many scholars, figuring out the population means in a sample survey is important. However, more research on mean square
error estimates using auxiliary data is required. In this study, the population mean is calculated using single or dual auxiliary
variables and simple random sampling. For better results in the first estimator, we rank our auxiliary variable that is connected
with the research variables. In comparison to an existing estimator, they provide efficient or better outcomes. They are also
more efficient relative to the current estimator in terms of %.In the second proposed estimator; we use dual auxiliary variables
to improve results. We compare a dual auxiliary variable with one auxiliary variable. Dual auxiliary variables show better results
as compared to one auxiliary variable. The superiority of proposed MSE estimators over the usual MSE the expressions for least
mean square errors using first-order approximation and the various unknown constant values. Using auxiliary data allows us to
come up with more accurate population estimations. Using a single auxiliary variable, the performance of suggested estimators
is compared to MSE estimators. The efficiency comparison makes estimators crucial. Other estimators that don’t use auxiliary
features are less effective than MSE estimators. The relative efficiency of the new estimators, which outperform the old estimators,
is also calculated.
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Abstract

This work investigates the complex Ginzburg–Landau equation (CGLE) with Kerr law in nonlinear optics, which represents
soliton propagation in the presence of a detuning factor. The ϕ6-model expansion approach is used to find optical solitons
such as dark, bright, singular, and periodic as well as the combined soliton solutions to the model. The results presented in
this study are intended to improve the CGLE’s nonlinear dynamical characteristics, it might also assist in comprehending
some of the physical implications of various nonlinear physics models. The hyperbolic sine, for example, appears in the
calculation of the Roche limit and gravitational potential of a cylinder, while the hyperbolic cotangent appears in the
Langevin function for magnetic polarization. The current research is frequently used to report a variety of fascinating
physical phenomena, such as the Kerr law of non-linearity, which results from the fact that an external electric field
causes non-harmonic motion of electrons bound in molecules, which causes nonlinear responses in a light wave in an
optical fiber. The obtained solutions’ 2–dimensional, 3-dimensional, and contour plots are shown.

Key words: ϕ6-model expansion method; complex Ginzburg-Landau equation; traveling wave solution; Kerr law nonlin-
earity

AMS 2020 Classification: 35Qxx; 35C07; 35Q51

1 Introduction

Partial differential equations were first employed for the study of surfaces in geometry [1, 2, 3, 4, 5] and a vast range of mechanical
issues. Renowned mathematicians from throughout the world were keenly interested in studying a wide range of issues brought
on by partial differential equations in the late 19th century [6]. Since optical solitons which are the solutions of the NPDEs can
be used as information carriers for transmitting digital signals over long distances in optical fiber networks, the propagation of
optical solitons in nonlinear optical fibers has received a lot of attention [7, 8, 9, 10, 11]. Maintaining a moderate balance between
nonlinearity and group velocity dispersion is the fundamental concept for the presence of the optical solitons. The study of exact
solutions of the nonlinear partial differential equations NLPDEs, as scientific methods of the concepts, will help one to clarify these
phenomena. Many successful methods for obtaining exact solutions of NLPDEs, such as the Adomian’s decomposition method [12],

exponential rational function method [13], the F-expansion method [14], the
(

1
G′

)

-expansion method [15, 16], Jacobi elliptic func-

tion technique [17, 18], the modified sub-equation method [19], the
(

G
′

G

)

-expansion method [20], the auto-Bäcklund transfor-

mation method [21], extended direct algebraic method [22], the homoclinic technique [23], reduction perturbation method [24],
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the ϕ6-model expansion method [25, 26, 27, 28], the nonstandard finite difference [29]. The recent developments in the field of
mathematical modelling as well as its applications have been introduced in the last few decades [30, 31, 32].

Many researchers have recently solved the CGLE. Chu et al. [33] have solved this equation with the help of modified extended tanh
technique and received different forms of solitons, such as, hyperbolic and trigonometric functions. The modified simple equation
method is used to obtain some bright, dark and singular soliton solutions by Arnous and Ahmed [34]. Liu and Yu [35] used the

modified Hirota bilinear method and obtained Kink waves and period waves. In [36, 37], first integral method and
(

G
′

G

)

-expansion

method is used to secure the hyperbolic, trigonometric as well as rational function solution. Several integration techniques are
used to obtain multiple soliton solutions such as bright, dark and singular soliton by Mirzazadeh and Ekici [38]. The other methods
include GRE method [39], ansatz functions technique [40], and so on.

The main idea about this paper is to derive new solitons such as dark, bright, singular, rational, combined periodic, combined
singular and periodic solitary wave solutions to the CGLE model using Kerr law nonlinearity with the help of the newly developed
ϕ6–model expansion method [41] which has not been studied yet based on our knowledge. The nonlinear responses that an
external electric field-induced nonharmonic motion of electrons trapped in molecules causes to a light wave in an optical fiber
give rise to the Kerr law of nonlinearity. The authors achieve their aims by retrieving new solutions which are different from the
previous work.

The following is the outline for this paper: In Section 2, the mathematical analysis of the model is studied. The new ϕ6–model
expansion approach is described in Section 3. Section 4 consists of application of the proposed method on the complex Ginzburg-
Landau equation using Kerr law nonlinearity to retrieve solitons such as dark, bright, singular, periodic, combined singular and
combined periodic soliton solutions. Some of the traveling wave solution’s physical structures are graphically displayed in the
related 3D, 2D, and contour graphs. In Section 5, the result of the derived solutions is discussed, while the whole work is concluded
in Section 6.

2 Mathematical analysis of the model

Arnous, Ahmed H., et al. [34] gives the dimensionless shape of (GCLE) that will be investigated in this article.

iqt + aqxx + cF(|q|
2)q =

1

|q|2 q⋆

[

α |q|
2 (|q|

2)xx –β
{

(|q|
2)x

}2
]

+ γq, (1)

where q = q(x, t) is a complex function that describes the wave profile seen in a variety of phenomena such as nonlinear optics
and plasma physics, x is the non-dimensional distance along the fibers, t is time in dimensionless form, q⋆ is a conjugate of
q, a, c,α,β and γ are valued constants. The coefficients a and c are determined by the group velocity dispersion (GVD) and
nonlinearity, respectively. The terms with α,β and γ result from perturbation effects, specifically detuning.

In Eq. (1), F is a real-valued algebraic function that must be smooth. F(|q|2)q is continuously differentiable k times, implying that

F(|q|
2)q ∈ ∪∞

m,n=1C
k
(

(–n,n)× (–m,m) ;R2
)

. (2)

By setting up

α = 2β, (3)

Eq. (1) turns to

iqt + aqxx + cF(|q|
2)q =

β

|q|2 q⋆

[

2 |q|
2 (|q|

2)xx –
{

(|q|
2)x

}2
]

+ γq. (4)

To solve Eq. (1), the standard decomposition into phase-amplitude components yields:

q (x, t) = P(ζ)ei(–kx+wt+θ), (5)

and the wave variable ζ is given by

ζ = λ (x – vt) . (6)

The function P represents the pulse shape here, v is the soliton’s velocity. In the phase factor, k denotes the frequency of the soliton,
ω the soliton wave number and the phase constant θ. Substituting the phase-amplitude decomposition into Eq. (4) results in the
following couple of equations after breaking into real and imaginary parts [33, 34]:

–
(

ak2 + γ +ω
)

P + cF
(

P2
)

P + (a – 4β) P
′′

= 0, (7)

and

v = –2ka. (8)
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In the following part after the description of the method, Eq. (7) will be examined using Kerr’s nonlinearity law.

3 Description of the method

According to Zayed et al. [28] the following are the key steps of a recent ϕ6-model expansion method:

Step-1: Consider the following nonlinear evolution equation for q = q(x, t)

F(q, qx, qt, qxx, qxt, qtt, ...) = 0, (9)

there F is a polynomial of q(x, t) and its highest order partial derivatives, including its nonlinear terms.

Step-2: Making use of the wave transformation

q(x, t) = q(ζ), ζ = λ (x – vt) , (10)

where v represents wave speed, then, Eq. (9) can be converted into the nonlinear ordinary differential equation shown below

Ω(q, q
′

, qq
′

, q
′′

, ...) = 0, (11)

where the derivatives with respect to ζ are represented by prime.

Step-3: Suppose that the formal solution to Eq. (11) exists:

q (ζ) =
2N∑

i=0

αiU
i(ζ), (12)

where αi(i = 0, 1, 2, . . . ,N) are to be determined constants, N can be obtained using the balancing rule and U(ζ) satisfies the
auxiliary NLODE;

U′2(ζ) = h0 + h2U
2(ζ) + h4U

4(ζ) + h6U
6(ζ), (13)

U
′′

(ζ) = h2U(ζ) + 2h4U
3(ζ) + 3h6U

5(ζ),

where hi(i = 0, 2, 4, 6) are real constants that will be discovered later.

Step-4: It is well known that the answer to Eq. (13) is as follows;

U(ζ) =
P(ζ)

√

fP2(ζ) + g
, (14)

provided that 0 < fP2(ζ) + g and P(ζ) is the Jacobi elliptic equation solution

P′2(ζ) = l0 + l2P
2(ζ) + l4P

4(ζ), (15)

where li(i = 0, 2, 4) are unknown constants to be determined, f and g are given by

f =
h4(l2 – h2)

(l2 – h2)2 + 3l0l4 – 2l2(l2 – h2)
, (16)

g =
3l0h4

(l2 – h2)2 + 3l0l4 – 2l2(l2 – h2)
,

under the restriction condition

h24(l2 – h2)[9l0l4 – (l2 – h2)(2l2 + h2)] + 3h6[–l
2
2 + h

2
2 + 3l0l4]

2 = 0. (17)

Step-5: According to [28], it is well known that the Jacobi elliptic solutions of Eq. (15) can be calculated when 0 < m < 1. We can
have the exact solutions of Eq. (9) by substituting Eqs. (14) and (15) into Eq. (12).

Function m→ 1 m→ 0 Function m→ 1 m→ 0

sn(ζ,m) tanh(ζ) sin(ζ) ds(ζ,m) csch(ζ) csc(ζ)

cn(ζ,m) sech(ζ) cos(ζ) sc(ζ,m) sinh(ζ) tan(ζ)

dn(ζ,m) sech(ζ) 1 sd(ζ,m) sinh(ζ) sin(ζ)

ns(ζ,m) coth(ζ) csc(ζ) nc(ζ,m) cosh(ζ) sec(ζ)

cs(ζ,m) csch(ζ) cot(ζ) cd(ζ,m) 1 cos(ζ)
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4 Application of the ϕ
6-model expansion method

The Kerr law of nonlinearity is derived from the fact that a light wave in an optical fiber experiences nonlinear reactions due to
non-harmonic electron motion in the presence of an external electric field. Since F(u) = u for Kerr law nonlinearity, Eq. (4) is
reduced to [33]

iqt + aqxx + c(|q|
2)q =

β

|q|2 q⋆

[

2 |q|
2 (|q|

2)xx –
{

(|q|
2)x

}2
]

+ γq, (18)

and Eq. (7) is transformed

–
(

ak2 + γ +ω
)

P + cP3 + λ
2 (a – 4β) P

′′

= 0, (19)

from Eq. (19), we get N = 1 by balancing P
′′

with P3, we can obtain the following by substituting N = 1 in Eq. (12)

P(ζ) = α0 + α1U(ζ) + α2U
2(ζ), (20)

where α0,α1 and α2 are constants to be determined.

We obtain the following algebraic equations by substituting Eq. (20) along with Eq. (13) into Eq. (19) and setting the coefficients
of all powers of Ui(ζ), i = 0, 1, . . . , 6 to be equal to zero;

U0(ζ); – α0

(

ak2 + γ +ω – cα20
)

+ 2aλ2h0α2 – 8βλ
2h0α2 = 0,

U1(ζ); – α1

(

ak2 + γ +ω
)

+ aλ2h2α1 – 4βλ
2h2α1 + 3cα

2
0α1 = 0,

U2(ζ) : 3cα0α
2
1 – α2

(

ak2 + γ +ω
)

+ 4aλ2h2α2 – 16βλ
2h2α2 + 3cα

2
0α2 = 0,

U3(ζ) : 2aλ2h4α1 – 8βλ
2h4α1 + cα

3
1 + 6cα0α1α2 = 0,

U4(ζ) : 6aλ2h4α2 – 24βλ
2h4α2 + 3cα

2
1α2 + 3cα0α

2
2 = 0,

U5(ζ) : 3aλ2h6α1 – 12βλ
2h6α1 + 3cα1α

2
2 = 0,

U6(ζ) : 8aλ2h6α2 – 32βλ
2h6α2 + cα

3
2 = 0,

we get the following result after solving the resulting system:

α0 = 0, α1 =

√

2h4
√

–a + 4βλ
√
c

, α2 = 0, (21)

h2 =
ak2 + γ +ω

(a – 4β)λ2
, h6 = 0.

In view of Eqs. (14), (20) and (21) along with the Jacobi elliptic functions in the table above, we obtain the following exact solutions
of Eq. (18).

1. If l0 = 1, l2 = –(1 +m
2), l4 = m

2, 0 < m < 1, then P(ζ) = sn(ζ,m) or P(ζ) = cd(ζ,m), and we have

q1,1 (x, t) =

√

2h4
√

–a + 4βλ
√
c







sn(ζ,m)
√

f
(

sn(ζ,m)
)2 + g






ei(–kx+wt+θ), (22)

or

q1,2 (x, t) =

√

2h4
√

–a + 4βλ
√
c







cd(ζ,m)
√

f
(

cd(ζ,m)
)2 + g






ei(–kx+wt+θ), (23)

such that 0 < c, ζ = λ (x – vt) and f and g in Eqs. (16) are given by

f =
(1 +m2 + h2)h4
1 –m2 +m4 – h22

, (24)

g =
–3h4

1 –m2 +m4 – h22
,

under the restriction condition

–h24
(

–1 –m2 – h2
)(

–1 + 2m2 – h2
)(

–2 +m2 + h2
)

= 0. (25)
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If m→ 1, then the dark optical soliton is obtained

q1,3 (x, t) =

√

2h4
√

–a + 4βλ tanh(ζ)

√
c

√

(a–4β)λ2h4
(

–3(a–4β)λ2+(ak2+γ+ω+2(a–4β)λ2) tanh2(ζ)
)

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (26)

such that

–h24 (2 + h2)
[

–1 + h2
]2 = 0. (27)

Figure 1. The numerical simulations corresponding to
∣

∣q1,3
∣

∣ given by Eq. (26), for m = 1 ; (a) is the 3D graphic while (b) is the contour and (c) is the 2D graphic

If m→ 0, then the periodic solution is obtained

q1,4 (x, t) =

√

2h4
√

–a + 4βλ sin(ζ)

√
c

√

(a–4β)λ2h4
(

–3(a–4β)λ2+(ak2+γ+ω+(a–4β)λ2) sin2(ζ)
)

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (28)

such that

h24 (–1 – h2)
[

(–2 + h2) (1 + h2)
]

= 0. (29)

2. If l0 = 1 –m
2, l2 = 2m

2 – 1, l4 = –m
2, 0 < m < 1, then P(ζ) = cn(ζ,m), therefore

-10 -5 0 5 10

-10

-5

0

5

10

Re[q1,4(x,t)],Im[q1,4(x,t)]

-10 -5 5 10
x

-4

-2

2

4

Figure 2. The numerical simulations corresponding to
∣

∣q1,4
∣

∣ given by Eq. (28), for m = 0 ; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

q2 (x, t) =

√

2h4
√

–a + 4βλ
√
c







cn(ζ,m)
√

f
(

cn(ζ,m)
)2 + g






ei(–kx+wt+θ), (30)

where f and g are determined by
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f = –
(–1 + 2m2 – h2)h4
1 –m2 +m4 – h22

, (31)

g =
3
(

–1 +m2
)

h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

–1 + 2m2 – h2
) [(

–2 +m2 + h2
)(

1 +m2 + h2
)]

= 0. (32)

If m→ 1, then the bright optical soliton solution is retrieved

q2,1 (x, t) =

√

2h4
√

–a + 4βλsech(ζ)

√
c

√

(a–4β)λ2h4sech2(ζ)
ak2+γ+ω+(a–4β)λ2

ei(–kx+wt+θ), (33)

provided that

h24 (1 – h2)
[

h22 + h2 – 2
]

= 0. (34)

If m→ 0, then the periodic solution is obtained

Figure 3. The numerical simulations corresponding to
∣

∣q2,1
∣

∣ given by Eq. (33), for m = 1; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

q2,2 (x, t) =

√

2h4
√

–a + 4βλ sin(ζ)

√
c

√

(a–4β)λ2h4
(

–3(a–4β)λ2+(ak2+γ+ω+(a–4β)λ2) sin2(ζ)
)

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (35)

such that

h24 (–1 – h2)
[

(–2 + h2) (1 + h2)
]

= 0. (36)
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Figure 4. The numerical simulations corresponding to
∣

∣q2,2
∣

∣ given by Eq. (35), for m = 0 ; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

3. If l0 = m
2 – 1, l2 = 2 –m

2, l4 = –1, 0 < m < 1, then P(ζ) = dn(ζ,m) which gives

q3 (x, t) =

√

2h4
√

–a + 4βλ
√
c







dn(ζ,m)
√

f
(

dn(ζ,m)
)2 + g






ei(–kx+wt+θ), (37)

where f and g are determined by

f =
(–2 +m2 + h2)h4
1 –m2 +m4 – h22

, (38)

g =
–3

(

–1 +m2
)

h4

1 –m2 +m4 – h22
,

under the restriction condition

h24

(

2 –m2 – h2
) [

–
(

–1 + 2m2 + h2
)(

1 +m2 + h2
)]

= 0. (39)

If m→ 1, then the bright optical soliton solution is obtained

q3,1 (x, t) =

√

2h4
√

–a + 4βλsech(ζ)

√
c

√

–(a–4β)λ2h4sech2(ζ)
ak2+γ+ω+(a–4β)λ2

ei(–kx+wt+θ), (40)

provided that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (41)

If m→ 0, then the rational solution is obtained

q3,2 (x, t) =

√

2h4
√

–a + 4βλ

√
c

√

–(a–4β)λ2h4
4βλ2+γ+ω+a(k–λ)(k+λ)

ei(–kx+wt+θ), (42)

such that

h24 (2 – h2)
[

(1 + h2)
2
]

= 0. (43)

4. If l0 = m
2, l2 = –

(

1 +m2
)

, l4 = 1, 0 < m < 1, P(ζ) = ns(ζ,m) or P(ζ) = dc(ζ,m) then

q4,1 (x, t) =

√

2h4
√

–a + 4βλ
√
c







ns(ζ,m)
√

f
(

ns(ζ,m)
)2 + g






ei(–kx+wt+θ), (44)



154 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 3, 147–163

or

q4,2 (x, t) =

√

2h4
√

–a + 4βλ
√
c







dc(ζ,m)
√

f
(

dc(ζ,m)
)2 + g






ei(–kx+wt+θ), (45)

where f and g are given by

f =
(1 +m2 + h2)h4
1 –m2 +m4 – h22

, (46)

g =
–3m2h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

–1 –m2 – h2
) [

–
(

–1 + 2m2 – h2
)(

–2 +m2 + h2
)]

= 0. (47)

If m→ 1, then the dark singular soliton solution is obtained

q4,3 (x, t) =

√

2h4
√

–a + 4βλ coth(ζ)

√
c

√

(a–4β)λ2
(

–3(a–4β)λ2+(ak2+γ+ω+2(a–4β)λ2) coth2(ζ)
)

h4

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (48)

such that

h24 (–2 – h2)
[

(–1 + h2)
2
]

= 0. (49)

If m→ 0, then the periodic solution is obtained

q4,4 (x, t) =

√

2h4
√

–a + 4βλ csc(ζ)

√
c

√

–(a–4β)λ2h4 csc2(ζ)
4βλ2+γ+ω+a(k–λ)(k+λ)

ei(–kx+wt+θ), (50)

such that

h24 (–1 – h2)
[

(–2 + h2) (1 + h2)
]

= 0. (51)

5. If l0 = –m
2, l2 = 2m

2 – 1, l4 = 1 –m
2, 0 < m < 1, then P(ζ) = nc(ζ,m) and we have

q5 (x, t) =

√

2h4
√

–a + 4βλ
√
c







nc(ζ,m)
√

f
(

nc(ζ,m)
)2 + g






ei(–kx+wt+θ), (52)

where f and g are given by

f =
–(–1 + 2m2 – h2)h4
1 –m2 +m4 – h22

, (53)

g =
3m2h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

–1 + 2m2 – h2
) [(

–2 +m2 + h2
)(

1 +m2 + h2
)]

= 0. (54)
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If m→ 1, then the singular soliton solution is obtained

q5,1 (x, t) =

√

2h4
√

–a + 4βλ cosh(ζ)

√
c

√

–(a–4β)λ2
(

–3(a–4β)λ2–(4βλ2+γ+ω+a(k–λ)(k+λ)) cosh2(ζ)
)

h4

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (55)

such that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (56)

If m→ 0, then the periodic solution is obtained

q5,2 (x, t) =

√

2h4
√

–a + 4βλ sec(ζ)

√
c

√

–(a–4β)λ2 sec2(ζ)h4
4βλ2+γ+ω+a(k–λ)(k+λ)

ei(–kx+wt+θ), (57)

such that

h24 (–1 – h2)
[

(–2 + h2) (1 + h2)
]

= 0. (58)

6. If l0 = –1, l2 = 2 –m
2, l4 = –

(

1 –m2
)

, 0 < m < 1, then P(ζ) = nd(ζ,m) and we have

q
6 (x, t) =

√

2h4
√

–a + 4βλ
√
c







nd(ζ,m)
√

f
(

nd(ζ,m)
)2 + g






ei(–kx+wt+θ), (59)

where f and g are given by

f =
(–2 +m2 + h2)h4
1 –m2 +m4 – h22

, (60)

g =
3h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

2 –m2 – h2
) [

–
(

–1 + 2m2 – h2
)(

1 +m2 + h2
)]

= 0. (61)

7. If l0 = 1, l2 = 2 –m
2, l4 = 1 –m

2,0 < m < 1 P(ζ) = sc(ζ,m) then we have

q7 (x, t) =

√

2h4
√

–a + 4βλ
√
c







sc(ζ,m)
√

f
(

sc(ζ,m)
)2 + g






ei(–kx+wt+θ), (62)

where f and g are given by

f =
(–2 +m2 + h2)h4
1 –m2 +m4 – h22

, (63)

g =
–3h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

2 –m2 – h2
) [

–
(

–1 + 2m2 – h2
)(

1 +m2 + h2
)]

= 0. (64)

If m→ 1, then the singular soliton solution is obtained

q7,1 (x, t) =

√

2h4
√

–a + 4βλ sinh(ζ)

√
c

√

–(a–4β)λ2
(

3(a–4β)λ2–(4βλ2+γ+ω+a(k–λ)(k+λ)) sinh2(ζ)
)

h4

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (65)
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such that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (66)

If m→ 0, then the periodic solution is obtained

q7,2 (x, t) =

√

2h4
√

–a + 4βλ tan(ζ)

√
c

√

(a–4β)λ2(–3(a–4β)λ2+(ak2+γ+ω–2(a–4β)λ2) tan2(ζ))h4
–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (67)

such that

h24 (2 – h2)
[

(1 + h2)
2
]

= 0. (68)

8. If l0 = 1, l2 = 2m
2 – 1, l4 = –m

2
(

1 –m2
)

, 0 < m < 1, then P(ζ) = sd(ζ,m) and we have

q8 (x, t) =

√

2h4
√

–a + 4βλ
√
c







sd(ζ,m)
√

f
(

sd(ζ,m)
)2 + g






ei(–kx+wt+θ), (69)

where f and g are given by

f =
(–1 + 2m2 – h2)h4
1 –m2 +m4 – h22

, (70)

g =
–3h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

–1 + 2m2 – h2
) [(

–2 +m2 + h2
)(

1 +m2 + h2
)]

= 0. (71)

9. If l0 = 1 –m
2, l2 = 2 –m

2, l4 = 1, 0 < m < 1, then P(ζ) = cs(ζ,m) and we have

q9 (x, t) =

√

2h4
√

–a + 4βλ
√
c







cs(ζ,m)
√

f
(

cs(ζ,m)
)2 + g






ei(–kx+wt+θ), (72)

where f and g are given by

f =
(–2 +m2 + h2)h4
1 –m2 +m4 – h22

, (73)

g =
3(–1 +m2)h4

1 –m2 +m4 – h22
,

under the constraint condition

h24

(

2 –m2 – h2
) [

–
(

–1 + 2m2 – h2
)(

1 +m2 + h2
)]

= 0. (74)

If m→ 1, then the singular soliton solution is obtained

[q9,1 (x, t) =
λ
√

2h4
√

–a + 4βcsch(ζ)

√
c

√

–h4(a–4β)λ2csch2(ζ)
ak2+γ+ω+(a–4β)λ2

ei(–kx+wt+θ)], (75)
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such that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (76)

If m→ 0, then the periodic solution is obtained

q9,2 (x, t) =

√

2h4
√

–a + 4βλ cot(ζ)

√
c

√

–(a–4β)λ2(3(a–4β)λ2–(ak2+γ+ω–2(a–4β)λ2) cot2(ζ))h4
–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (77)

such that

h24 (2 – h2)
[

(1 + h2)
2
]

= 0. (78)

10. If l0 = –m
2
(

1 –m2
)

, l2 = 2m
2 – 1, l4 = 1, 0 < m < 1, then P(ζ) = ds(ζ,m) and we have

q10 (x, t) =

√

2h4
√

–a + 4βλ
√
c







ds(ζ,m)
√

f
(

ds(ζ,m)
)2 + g






ei(–kx+wt+θ), (79)

where f and g are given by

f =
–(–1 + 2m2 – h2)h4
1 –m2 +m4 – h22

, (80)

g =
–3m2(–1 +m2)h4
1 –m2 +m4 – h22

,

under the constraint condition

h24

(

–1 + 2m2 – h2
) [(

–2 +m2 + h2
)(

1 +m2 + h2
)]

= 0. (81)

11. If l0 = 1–m2
4 , l2 = 1+m2

2 , l4 =
1–m2
4 , 0 < m < 1, then P(ζ) = nc(ζ,m)± sc(ζ,m) or P(ζ) = cn(ζ,m)

1±sn(ζ,m) and we have

q11,1 (x, t) =

√

2h4
√

–a + 4βλ
√
c







nc(ζ,m)± sc(ζ,m)
√

f
(

nc(ζ,m)± sc(ζ,m)
)2 + g






ei(–kx+wt+θ), (82)

or

q11,2 (x, t) =

√

2h4
√

–a + 4βλ
√
c









cn(ζ,m)
1±sn(ζ,m)

√

f
(

cn(ζ,m)
1±sn(ζ,m)

)2
+ g









ei(–kx+wt+θ), (83)

where f and g are given by

f =
–8(1 +m2 – 2h2)h4
1 + 14m2 +m4 – 16h22

, (84)

g =
12(–1 +m2)h4

1 + 14m2 +m4 – 16h22
,

under the constraint condition

h24

(

1
2

(

1 +m2 – 2h2
)

)[

1
16
(1 + (–6 +m)m + 4h2) (1 +m (6 +m) + 4h2)

]

= 0. (85)
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If m→ 1, then the combined singular soliton solution

q11,3 (x, t) =

√

2h4
√

–a + 4βλ
(

sinh(ζ) + cosh(ζ)
)

√
c

√

–(a–4β)λ2(sinh(ζ)+cosh(ζ))2h4
ak2+γ+ω+(a–4β)λ2

ei(–kx+wt+θ), (86)

or dark-bright optical soliton solition is obtained

q11,4 (x, t) =
λ
√

2h4
√

–a + 4β
(

sech(ζ)
1+tanh(ζ)

)

√
c

√

–h4λ2
(

sech(ζ)
1+tanh(ζ)

)2
(a–4β)

ak2+γ+ω+(a–4β)λ2

ei(–kx+wt+θ), (87)

such that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (88)

If m→ 0, then the combined periodic solution is obtained

Figure 5. The numerical simulations corresponding to
∣

∣q11,4
∣

∣ given by Eq. (87), for m = 1; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

q11,5 (x, t) =

√

h4
√

–a + 4βλ
(

sec(ζ) + tan(ζ)
)

ei(–kx+wt+θ)

√
2c

√

(a–4β)λ2(4(ak2+γ+ω)–5(a–4β)λ2+(4(ak2+γ+ω)+(a–4β)λ2) sin(ζ))h4
(16(ak2+γ+ω)2–(a–4β)2λ4)(–1+sin(ζ))

, (89)

or

q
11,6 (x, t) =

√

h4
√
–a+4βλ

√
2c(1+sin(ζ))

cos(ζ)ei(–kx+wt+θ)

√

(a–4β)λ2(–4(ak2+γ+ω)+5(a–4β)λ2+(4(ak2+γ+ω)+(a–4β)λ2) sin(ζ))h4
(16(ak2+γ+ω)2–(a–4β)2λ4)(1+sin(ζ))

, (90)

such that

h24

(

1
2
– h2

)[

1
16
(1 + 4h2)

2
]

= 0. (91)
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Figure 6. The numerical simulations corresponding to
∣

∣q11,5
∣

∣ given by Eq. (89), for m = 0; (a), (b) and (c) are the 3D graphic, contour and 2D graphic, respectively

12. If l0 =
–
(

1–m2
)2

4 , l2 = 1+m2
2 , l4 =

–1
4 , 0 < m < 1, then P(ζ) = mcn(ζ,m)± dn(ζ,m) and we have

q12 (x, t) =

√

2h4
√

–a + 4βλ
√
c







mcn(ζ,m)± dn(ζ,m)
√

f
(

mcn(ζ,m)± dn(ζ,m)
)2 + g






ei(–kx+wt+θ), (92)

where f and g are given by

f =
–8(1 +m2 – 2h2)h4
1 + 14m2 +m4 – 16h22

, (93)

g =
12(–1 +m2)2h4

1 + 14m2 +m4 – 16h22
,

under the constraint condition

h24

(

1
2

(

1 +m2 – 2h2
)

)[

1
16
(1 + (–6 +m)m + 4h2) (1 +m (6 +m) + 4h2)

]

= 0. (94)

13. If l0 = 1
4 , l2 =

1–2m2
2 , l4 =

1
4 , 0 < m < 1, then P(ζ) =

sn(ζ,m)
1±cn(ζ,m) and we have

q13 (x, t) =

√

2h4
√

–a + 4βλ
√
c









sn(ζ,m)
1±cn(ζ,m)

√

f
(

sn(ζ,m)
1±cn(ζ,m)

)2
+ g









ei(–kx+wt+θ), (95)

where f and g are given by

f =
8(–1 + 2m2 + 2h2)h4
1 – 16m2 + 16m4 – 16h22

, (96)

g =
–12h4

1 – 16m2 + 16m4 – 16h22
,

under the constraint condition

h24

(

1
2
–m2 – h2

)[

1
16
+ 2m2 – 2m4 +

(

1
2
–m2

)

h2 + h
2
2

]

= 0. (97)

If m→ 1, then the combined soliton solution is obtained

q13,1 (x, t) =

√

h4
√
–a+4βλ

2
√
c

tanh(ζ)ei(–kx+wt+θ)
√

(a–4β)λ2cosh2(ζ2 )sech(ζ)(–4(ak2+γ+ω)+(a–4β)λ2+(4(ak2+γ+ω)+5(a–4β)λ2)sech(ζ))h4
(16(ak2+γ+ω)2–(a–4β)2λ4)

, (98)
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such that

h24

(

–1
2
– h2

)[

1
16
(1 – 4h2)

2
]

= 0. (99)

If m→ 0, then the combined periodic solution is obtained

q13,2 (x, t) =

√

h4
√
–a+4βλ

2
√
c

sin(ζ)ei(–kx+wt+θ)
√

(a–4β)λ2 cos2(ζ2 )(–4(ak2+γ+ω)+5(a–4β)λ2+(4(ak2+γ+ω)+(a–4β)λ2) cos(ζ))h4
(16(ak2+γ+ω)2–(a–4β)2λ4)

, (100)

such that

h24

(

1
2
– h2

)[

1
16
(1 + 4h2)

2
]

= 0. (101)

14. If l0 = 1
4 , l2 =

1+m2
2 , l4 =

(

1–m2
)2

4 , 0 < m < 1, then P(ζ) = sn(ζ,m)
cn(ζ,m)±dn(ζ,m) and we have

q14 (x, t) =

√

2h4
√

–a + 4βλ
√
c









sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

√

f
(

sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

)2
+ g









ei(–kx+wt+θ), (102)

where f and g are given by

f =
–8(1 +m2 – 2h2)h4
1 + 14m2 +m4 – 16h22

, (103)

g =
–12h4

1 + 14m2 +m4 – 16h22
,

under the constraint condition

h24

(

1
2

(

1 +m2 – 2h2
)

)[

1
16
(1 + (–6 +m)m + 4h2) (1 +m (6 +m) + 4h2)

]

= 0. (104)

If m→ 1, then the singular soliton solution is obtained

q14,1 (x, t) =

√

2h4
√
–a+4βλ

√
c

sinh(ζ)
√

–(a–4β)λ2
(

3(a–4β)λ2–(4βλ2+γ+ω+a(k–λ)(k+λ)) sinh2(ζ)
)

h4

–(ak2+γ+ω)2+(a–4β)2λ4

ei(–kx+wt+θ), (105)

such that

h24 (1 – h2)
[

–2 + h2 + h
2
2

]

= 0. (106)

If m→ 0, then the combined periodic solution is obtained

q14,2 (x, t) =

√

h4
√
–a+4βλ sin(ζ)

2
√
c

ei(–kx+wt+θ)

√

(a–4β)λ2 cos2(ζ2 )(–4(ak2+γ+ω)+5(a–4β)λ2+(4(ak2+γ+ω)+(a–4β)λ2) cos(ζ))h4
(16(ak2+γ+ω)2–(a–4β)2λ4)

, (107)

such that

h24

(

1
2
– h2

)[

1
16
(1 + 4h2)

2
]

= 0. (108)
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5 Result and discussion

This study used the newly created ϕ6—model expansion method to get dark, bright, singular, periodic and combined soliton
solutions to the complex Ginzburg-Landau equation (CGLE) with Kerr law in nonlinear optics. The Kerr law of nonlinearity is
a result of the nonlinear reactions that an external electric field-induced nonharmonic motion of trapped electrons in molecules
induces in a light wave in an optical fiber. The constraint conditions ensure the existence of these solutions.

The graphics in Figures 1, 3 and 5 show the behavior of dark, bright and dark-bright solitons together with periodic and com-
bined periodic wave solutions at any given time, which is important in the transmission of energy from one location to another.
Furthermore, to examine the physical implications of the parameters in the transformation, which is known as the classical wave
transformation represented by Eqs. (1) and (2). The physical meanings of the parameters in the solution of Eqs. (26), (28), (33),
(35), (87) and (89) traveling waves, which contain numerous mathematical constants. It is the internal dynamics of the traveling
wave for various parameter values. We may conclude that the traveling wave behavior alters for different values of each. The
simulation is performed for several values of the wave frequency in order to examine the changes in the dark and bright solitons
more clearly. Similarly, a similar discussion can be made for other physical parameters as well as various traveling wave solutions.

6 Conclcusion

This work investigates the complex Ginzburg–Landau equation (CGLE) with Kerr law in nonlinear optics, which represents soliton
propagation in the presence of a detuning factor. The scheme’s benefit is that the solutions are first recovered in terms of Jacobi’s
elliptic function. When a result, as the limiting values of themodulus of ellipticity approach 0 or unity, solitons or singular-periodic
solutions are produced. The ϕ6-model expansion approach is used to find dark, bright, dark-bright or combined, singular and
combined singular optical soliton solutions to the CGL model with Kerr law. The ϕ6-model expansion approach is found to be
efficient for constructing optical soliton solutions for most nonlinear physical phenomena. The results presented in this study are
intended to improve the CGLE’s nonlinear dynamical characteristics. The findings of this study might assist in comprehending
some of the physical implications of various nonlinear physics models. The hyperbolic sine, for example, appears in the calculation
of the Roche limit and gravitational potential of a cylinder, while the hyperbolic cotangent appears in the Langevin function for
magnetic polarization. In order to take into account slow-light pulses, the model will also be examined using fractional temporal
evolution.
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Abstract

This article deals with a Caputo fractional-order viral model that incorporates the non-cytolytic immune hypothesis and
the mechanism of viral replication inhibition. Firstly, we establish the existence, uniqueness, non-negativity and bound-
edness of the solutions of the proposed viral model. Then, we point out that our model has the following three equilibrium
points: equilibrium point without virus, equilibrium state without immune system, and equilibrium point activated by
immunity with humoral feedback. By presenting two critical quantities, the asymptotic stability of all said steady points
is examined. Finally, we examine the finesse of our results by highlighting the impact of fractional derivatives on the
stability of the corresponding steady points.

Key words: Viral model; non-cytolytic; immunity; fractional-order formulation; stability
AMS 2020 Classification: 26A33; 34A08; 45M10

1 Introduction

Mathematical modeling has become necessary to comprise our world and to study phenomena on time and space scales that are
difficult to scope empirically [1]. Mathematics applied in virology seeks to investigate the interactions of viruses with the biological
environment and their powerful influence on living organisms, both plants and animals. Viruses are scrutinized at different scales:
molecular, cellular, in the body and, in the case of an epidemic, in the ecosystem or society as a whole [2]. Virological modeling
also examines and models the spread of viruses at the population level. It starts from when they cross species barriers, until policy
measures are put in place to reduce and treat disease. At this scale, the humanities can be called in as reinforcements. Specifically,
it concentrates on structures, diffusion, dynamics, and immune capabilities of infections [3]. The blending of mathematical tools
with virology pursues to predict the long-run attitude of a virus under certain conditions in order to help eradicate or control the
infection. In terms of scientific research, the description of virus-cell interactions with different types of immune responses is a
rich subject of interest for many researchers [4]. Thus, a number of studies have been devoted to the analysis of viral systems with
a specific immune response combining humoral and cellular immunizations [5]. These two characteristics are types of adaptive
immune reactions that permit the human organism to safeguard itself from threatening agents such as bacterial microorganisms,
viruses and toxins, in a targeted way.
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Recovery from infected cells is an important hypothesis along with the immune response. For this reason, it is appropriate
to propose a viral model including the healing average of damaging cells employing the non-cytolytic immune feedback under
humoral resistance. On the other hand, the host immune response during viral infection can be usually splitted into lytic and non-
lytic elements [6], where the lytic elements kill the damaged cells, while the non-lytic elements prohibit viral replication through
soluble media produced by immune cells. For example, in the case of SARS-CoV-2 infection, some authors have considered target
cell models by proposing a framework with lytic and non-lytic immune responses to understand virus spread within the human
body [7]. The human immune system consists of both innate and adaptive immune responses. While the adaptive immune system
is quick and efficient in targeting invasions by previously encountered pathogens, its role in host defense in the early days of a
new infection is secondary to the innate immune system. Motivated by these facts, Dhar et al. [4] exhibited the following viral
system with non-cytolytic immune assumption:



































U′(t) = ϕ – h1U(t) – bU(t)Y(t)

Inhibition rate
︷ ︸︸ ︷
(

1 + qW(t)
)–1 +ξX(t),

X′(t) = bU(t)Y(t)
(

1 + qW(t)
)–1 – h2X(t) – ξX(t),

Y′(t) = kX(t) – h3Y(t) – pY(t)W(t),

W′(t) = cY(t)W(t) – h4W(t),

(1)

with positive started data. Here, U, X, Y and W indicate in that order, susceptible uninfected cells, infected cells, free virus and B
lymphocytes (cells used in the humoral immune process of the adaptive immune system). Regarding the positive parameters of
system (1), ϕ indicates the inflow of U cells, k designates the produce ratio of Y, c is the growth rate of B lymphocytes, h1, h2, h3
and h4 are the natural mortality rates of U, X, Y andW cells respectively, p is the neutralizing rate of antibodies produced by B cells,
ξ is the healing rate of infected cell due to the antiviral activity, and b is the contamination rate. The expression (1+qW) designates
the rate at which the non-lytic process prevents viral growth, where q is the non-lytic force. To facilitate the understanding of
the rest of this article, we summarize the transfer mechanisms of the model mentioned above by the diagram shown in Figure 1.
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Figure 1. Compartment diagram of the viral system (1).

In [4], the authors established the steady points of system (1) and studied their asymptotic stability. Specifically, they provided
the critical value between the disappearance and continuation of the infection. The results obtained in [4] are interesting and
help us to understand the long term of the infection under some local characteristics of the classical order derivative. This type
of mathematical formulation has certain limits, and the system (1) can be improved and updated by considering the fractional
framework.

Fractional derivatives is a generalization of the integer order derivative to an arbitrary order, which is originated from the L’Hospital
letter to Leibniz discussing the meaning of the derivative or what does the derivative of order 12 or

√
2 of a function mean in 1695.

Several definitions of fractional derivatives have been introduced. Among them, the Riemann–Liouville and Caputo’s derivative
are widely used in the literature. The fractional order derivative used in this paper is in the sense of Caputo definition, which is a
modification of the Riemann-Liouville integral definition, and has the advantage that the initial values for fractional differential
equations with Caputo derivatives take the same form as that for integer order differential equations [8, 9, 10]. Also, another
advantage of this definition is that the Caputo derivative of a constant is zero. Memory effect is an essential characteristic of
fractional-order derivatives which made fractional calculus and its applications widely used in many fields of science and engineer-
ing [11, 12, 13, 14, 15, 16, 17]. Obviously, this feature is very relevant for modeling the spread of infections [18, 19, 20, 21, 22, 23, 24].
For this reason, many researchers have adopted this analytical vision [25, 26, 27, 28, 29, 30, 31]. In [32], the authors derived a
non-integer order system for the co-infection mechanisms. They inferred that the fractional formulation matches real data of
certain viral problems. Analytically, they examined the stability property of the proposed viral model. To model the virological
memory effects, the authors in [33], presented a fractional order viral model. They analyzed the long-term dynamics of the con-
structed model. As a real-world application, the authors in [34], proposed a fractional feeding system to illustrate the complexity
of the spread of COVID-19. They presented an advanced analysis by discussing the attitude of viral propagation phenomena. In
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accordance with the above arguments and works, we improve system (1) by using the fractional formulation as follows:



























C
0F

σU(t) = ϕ – h1U(t) – bU(t)Y(t)
(

1 + qW(t)
)–1 + ξX(t),

C
0F

σX(t) = bU(t)Y(t)
(

1 + qW(t)
)–1 – h2X(t) – ξX(t),

C
0F

σY(t) = kX(t) – h3Y(t) – pY(t)W(t),
C
0F

σW(t) = cY(t)W(t) – h4W(t),

(2)

where C
0F

σ is the Caputo fractional derivative and σ ∈ (0, 1] is its related order. The Caputo fractional derivative of order σ ∈ (0, 1]
for a function f ∈ C(R+,R) is expressed as follows [35]:

C
0F

σ
f(t) =

1
Γ(1 – σ)

∫ t

0
(t – s)–σf′(s)ds,

where Γ is the Gamma function and Γ(σ) =
∫
∞

0 t
σ–1e–tdt.

Note that, the fractional order formulation (2) is converted to ordinary differential equations system when σ = 1. Therefore, the
model studied in [4] is a special case of system (1) when σ = 1.
The axial problematic of this research is to explore some long-run characteristics of the viral system (2) which adopts the non-
integer order derivative. It is well known that stability analysis is an important property of dynamical systems. It provides a good
overview of the long term of the studied phenomenon. Unlike classical investigations, in this survey, we concentrate on exploring
the influence of fractional derivative on said features; and this is the main part of our contribution.
The remaining of this article is structured as follows: we begin in Section 2 by proving the well-posedness of our enhanced model
in the sense that it has a unique nonnegative and bounded solution, defining the steady points S

◦, S⋆1 , S
⋆

2 of system (2) and their
related critical quantities T◦ and T1. These two threshold conditions make it possible to sort the dynamic behavior of our system. In
Section 3, we present our main theoretical findings on the stability of our dynamical system. In Section 4, we belay the exactitude
of our outcomes by discussing the impact of non-integer orders on the stability behavior of system (2).

2 Well-posedness and definition of possible steady points

The first concern in analyzing the dynamical properties of a mathematical population system is to know whether it is well-posed
or not, and we mean by well-posedness here that the system admits a unique, non-negative, and global-in-time solution. In this
section, we will provide a suitable hypothetical framework under which the well-posedness of system (2) is guaranteed. Moreover,
we will show that our model has three equilibrium points.

Existence, nonnegativity and boundedness of solutions

Before going the main result of this section, we first give the following useful lemma which will be involved in the sequel.

Lemma 1 [36]. Assume that f and C
0F

σf are continuous functions on the interval
[

a,b
]

, and σ ∈ (0, 1], then we have

(i) If C0F
σf(t) ≥ 0 for all t ∈

[

a,b
]

, then f is nondecreasing on
[

a,b
]

,

(ii) If C0F
σf(t) ≤ 0 for all t ∈

[

a,b
]

, then f is nonincreasing on
[

a,b
]

.

Theorem 1 The fractional model (2) with any nonnegative initial condition is well-posed in the sense that it has a unique nonnegative and
bounded solution.

Proof From Theorem 3.1 and Remark 3.2 in [37], we can prove the existence and uniqueness of the solution of system (2).
Now, we show the nonnegativity of this solution. From system (2), one can deduce that

C
0F

σU
∣

∣

∣

U=0
= ϕ + ξX > 0 for all X,Y,W ≥ 0,

C
0F

σX
∣

∣

∣

X=0
= bUY
1+qW ≥ 0 for all U,Y,W ≥ 0,

C
0F

σY
∣

∣

∣

Y=0
= kX ≥ 0 for all U,X,W ≥ 0,

C
0F

σW
∣

∣

∣

W=0
= 0 ≥ 0 for all U,X,Y ≥ 0.

By utilizing Lemma 1, we deduce that the solution of the fractional order system (2) is nonnegative. Now, we check the boundedness
of the solution. For this purpose, we define the following function

N (t) = U(t) + X(t) + h2
2k
Y(t) +

ph2
2kc

W(t).

Thus,

C
0F

σN (t) = ϕ – h1U(t) –
h2
2
X(t) –

h2h3
2k

Y(t) –
ph2h4
2kc

W(t) ≤ ϕ – dN (t),
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where d = min
{

h1,
h2
2 ,h3,h4

}

. Then, by Lemma 3 in [38], we obtain that

N (t) ≤
(

N (0) –
ϕ

d

)

Mσ
(

–dtσ
)

+
ϕ

d
,

whereMσ(z) =
∞∑

j=0

zj

Γ(σj+1)
is the Mittag-Leffler function of parameter σ [39]. Hence, lim sup

t→∞

N (t) ≤ ϕ
d
, Therefore, the solution of

system (2) is bounded. �

The steady states

Definition 1 [40]. O∗ is an equilibrium point of the system C
0F

σf(t) = P(t, f(t)), σ ∈ (0, 1], if P(t,O∗) = 0.

The model (2) admits three biological steady points. Effortlessly, one can first deduce that the system (2) always has a virus-clear
steady point

S
◦ = (U◦, 0, 0, 0) =

(

ϕ

h1
, 0, 0, 0

)

.

Then, we obtain the following basic reproduction number:

T◦ =
bkU◦

h3 (h2 + ξ)
.

Biologically, T◦ indicates the mean density of the newly contaminated cells generated from one tainted cell at the beginning of the
infection. If T◦ > 1, system (2) has the following immunity-free steady point:

S
⋆

1 = (U
⋆

1 ,X
⋆

1 ,Y
⋆

1 , 0) =
(

h3 (h2 + ξ)
bk

,
h1h3 (h2 + ξ)

bh2k
(T◦ – 1) ,

k

h3
X⋆

1 , 0
)

.

Now, we set

T1 =
c

h4
Y⋆1 =

ch1 (h2 + ξ)
bh2h4

(T◦ – 1) ,

which is the immune response critical value. Explicitly, T1 refers to the average density of new immune cells provided by an
immune cell over its natural mean lifespan [4]. If T1 > 1, system (2) has an immunity-activated steady point with humoral
response S

⋆

2 = (U
⋆

2,X
⋆

2,Y
⋆

2,W
⋆

2), where

U⋆

2 =
cϕ (h2 + ξ) (1 + qW∗

2)
bh2h4 + ch1 (h2 + ξ)

(

1 + qW⋆

2
) ,

X⋆

2 =
bϕh4

bh2h4 + ch1 (h2 + ξ)
(

1 + qW⋆

2
) ,

Y⋆2 =
h4
c
,

and W⋆

2 is the positive real root of the following equation

Ω1W
⋆2
2 +Ω2W

⋆

2 +Ω3 = 0,

where

Ω1 = cpqh1h4 (h2 + ξ) ,

Ω2 = bph2h
2
4 + ch1h4 (h2 + ξ)

(

p + h3q
)

,

Ω3 = bh2h3h
2
4 (1 – T1) .

The results of this subsection can be summarized in the following theorem.

Theorem 2 The fractional system (2) has three steady points. That is,

i. if T◦ ≤ 1, then model (2) has a unique virus-clear steady point S◦,
ii. if T1 ≤ 1 < T◦, then model (2) has a unique immunity-free steady point S⋆1 besides S◦,
iii. if T1 > 1, then model (2) has a unique immunity-activated steady point with humoral response S⋆2 besides S◦ and S⋆1 .

3 Stability characterization

This section is dedicated to examining the stability of S◦, S⋆1 and S
⋆

2. To analyze the local stability of the equilibria, we need the
following lemma.
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Lemma 2 [41]. Consider the fractional order system

C
0F

σx(t) = h(x(t)), x (0) = x0,

where σ ∈ (0, 1], x (t) ∈ R
n and h ∈ C1

(

R
n,Rn

)

. An equilibrium point is locally asymptotically stable if all the eigenvalues ηj (j = 1, 2, . . . ,n)

of the Jacobian matrix MJ = ∂h
∂x evaluated at the equilibrium satisfy

∣

∣

∣
arg(ηj)

∣

∣

∣
> σπ

2 , and unstable if there exist an eigenvalue ηj such that
∣

∣

∣
arg(ηj)

∣

∣

∣
< σπ

2 .

It should be noted that the Jacobian matrix of (2) at any steady point S = (U,X,Y,W) is given as follows:

M
J =















–h1 – bY
1+qW ξ – bU

1+qW
bqUY
(1+qW)2

bY
1+qW –h2 – ξ bU

1+qW – bqUY
(1+qW)2

0 k –h3 – pW –pY
0 0 cW –h4 + cY















. (3)

In order to prove the global stability, we need the two following lemmas.

Lemma 3 [42]. Let o(t) ∈ R+ be a continuous and differentiable function. Then, for any t ≥ 0, σ ∈ (0, 1], and o∗ > 0, we have

C
0F

σ
(

o(t) – o∗ – o∗ ln
o(t)
o∗

)

≤
(

1 –
o∗

o(t)

)

C
0F

σo(t).

Lemma 4 [43]. Let o(t) ∈ R+ be a continuous and differentiable function. Then, for any t ≥ 0 and σ ∈ (0, 1], we have

1
2

C
0F

σo2(t) ≤ o(t) C0F
σo(t).

We will also need the following fractional version of the well-known LaSalle’s invariance principle.

Lemma 5 [44]. Suppose E is a bounded closed set. Every solution of system C
0F

σx(t) = f(x(t)) starts from a point in E and remains in E for all
time. If ∃ L ∈ C1(E,R) such that C0FσL

(

x(t)
)

≤ 0. Let D =
{

x ∈ E : C
0F

σL = 0
}

andM be the largest invariant set of D. Then every solution

x(t) originating in E tends toM as t→ ∞. In particular, ifM = {0}, x(t)→ 0 as t→ ∞.

Stability of the virus-clear steady point S◦

Theorem 3 If T◦ < 1, then S◦ is locally asymptotically stable for all σ ∈ (0, 1]. S◦ is unstable if T◦ > 1.

Proof The characteristic equation of the Jacobian matrix (3) at S◦ is given by

(η + h1)
(

η + h4
)

[

η
2 +

(

h2 + h3 + ξ
)

η + h3 (h2 + ξ) – bkU◦
]

= 0. (4)

Plainly, equation (4) has two negative real roots η1 = –h1 and η2 = –h4, then
∣

∣arg(η1,2)
∣

∣ = π > σπ
2 for any σ ∈ (0, 1]. The other two

roots of (4) are governed by the following equation:

η
2 +

(

h2 + h3 + ξ
)

η + h3 (h2 + ξ) (1 – T◦) = 0, (5)

which has, by the Routh-Hurwitz criterion, two roots ηi (i = 3, 4) with negative real parts if T◦ < 1. Thus,
∣

∣arg(η3,4)
∣

∣ > π
2 ≥ σπ

2
for any σ ∈ (0, 1] when T◦ < 1. If T◦ > 1, then equation (5) admits a positive real root η∗, then

∣

∣arg(η∗)
∣

∣ = 0 < σπ
2 for all σ ∈ (0, 1].

Consequently, by Lemma 2, S◦ is unstable if T◦ > 1 and locally asymptotically stable if T◦ < 1. �

Theorem 4 If T◦ ≤ 1, then S◦ is globally asymptotically stable for all σ ∈ (0, 1].

Proof Let L⋆⋆ be the Lyapunov functional defined as

L⋆⋆(t) = U◦H

(

U(t)
U◦

)

+ X(t) +
bU◦

h3
Y(t) +

bpU◦

ch3
W(t) +

ξ

2(h1 + h2)U◦

(

U(t) – U◦ + X(t)
)2 ,
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where H (x) = x – 1 – ln x, x > 0. According to Lemma 3 and Lemma 4, we obtain

C
0F

σL⋆⋆ ≤
(

1 –
U◦

U

)

C
0F

σU +C0 F
σX +

bU◦

h3

C
0F

σY +
bpU◦

ch3

C
0F

σW

+
ξ

(h1 + h2)U◦

(

U – U◦ + X
)

(

C
0F

σU +C0 F
σX
)

=
(

1 –
U◦

U

)(

ϕ – h1U –
bUY
1 + qW

+ ξX
)

+
bUY
1 + qW

– (h2 + ξ)X

+
bU◦

h3

(

kX – h3Y – pYW
)

+
bpU◦

ch3

(

cYW – h4W
)

+
ξ

(h1 + h2)U◦
(U – U◦ + X) (ϕ – h1U – h2X)

= –h1
(U – U◦)2

U
+ ξX

(

1 –
U◦

U

)

+
bU◦Y
1 + qW

– (h2 + ξ)X – bU◦Y +
bkU◦

h3
X –

bph4U
◦

ch3
W

–
ξ

(h1 + h2)U◦
(U – U◦ + X)

(

h1
(

U – U◦) + h2X
)

= –
(

h1U
◦ + ξX +

ξh1U
h1 + h2

)

(U – U◦)2

UU◦
–

h2ξX
2

(h1 + h2)U◦
–

bqU◦YW
1 + qW

–
bph4U

◦W

ch3
+ (h2 + ξ) (T◦ – 1)X.

Therefore, T◦ ≤ 1 ensures that C0FσL⋆⋆ ≤ 0. Furthermore, it is easy to verify that the singleton
{

S
◦
}

is the largest compact invariant

set in
{

(U,X,Y,W) ∈ R
4
+ :

C
0F

σL⋆⋆ = 0
}

. By Lemma 5, we infer that S◦ is globally asymptotically stable if T◦ ≤ 1 for all σ ∈ (0, 1].
�

Stability of the immune-free steady point S⋆1

This subsection aims to analyze the stability of the immune-free steady point S⋆1 of the system (2). Obviously, we presume that
T◦ > 1.

Theorem 5 If T1 < 1 < T◦, then S⋆1 is locally asymptotically stable for all σ ∈ (0, 1]. S⋆1 is unstable if T1 > 1.

Proof At S⋆1 , the characteristic equation of the Jacobian matrix (3) is given by

(

η + h4 – cY
⋆

1
)

(

η
3 +Π2η

2 +Π1η +Π0

)

= 0, (6)

where

Π2 = h1 + h2 + h3 + ξ + bY⋆1 ,

Π1 = h1
(

h2 + h3 + ξ
)

+ bY⋆1
(

h2 + h3
)

,

Π0 = h2h3bY
⋆

1 .

One of the roots of equation (6) is η1 = cY⋆1 –h4 = h4 (T1 – 1). Hence,
∣

∣arg(η1)
∣

∣ = π > σπ
2 for all σ ∈ (0, 1] if T1 < 1 and

∣

∣arg(η1)
∣

∣ = 0 <
σπ
2 for all σ ∈ (0, 1] if T1 > 1. While the remaining roots are given by the solution to the following equation:

η
3 +Π2η

2 +Π1η +Π0 = 0. (7)

It is easy to remark that Π2 > 0, Π1 > 0 and Π0 > 0. Therefore,

Π2Π1 –Π0 =
(

h1 + h2 + ξ + bY⋆1
)

Π1 + h1h3
(

h2 + h3 + ξ
)

+ h
2
3bY

⋆

1 > 0.

Thus, by the Routh-Hurwitz criterion, all roots ηi (i = 2, 3, 4) of (7) have negative real part, so that
∣

∣arg(η2,3,4)
∣

∣ > π
2 ≥ σπ

2 for all
σ ∈ (0, 1] if T◦ > 1. In accordance with Lemma 1, S⋆1 is unstable if T1 > 1 and locally asymptotically stable if T1 < 1 < T◦. �

Next, we analyze the global stability of S⋆1 by assuming the following hypothesis

Y⋆1
Y
–

1
1 + qW

≤ 0. (H)

Theorem 6 If T1 ≤ 1 < T◦ ≤ 1 + h2
ξ
and (H) holds, then S⋆1 is globally asymptotically stable for any σ ∈ (0, 1].

Proof Let L† be the Lyapunov functional defined as

L†(t) = U⋆

1H

(

U(t)
U⋆

1

)

+ X⋆

1H

(

X(t)
X⋆

1

)

+
bU⋆

1 Y
⋆

1
kX⋆

1
Y⋆1 H

(

Y(t)
Y⋆1

)

+
bpU⋆

1 Y
⋆

1
ckX⋆

1
W(t)

+
ξ

2(h1 + h2)U⋆

1

(

U(t) – U⋆

1 + X(t) – X
⋆

1
)2 .
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Applying the Caputo fractional derivative on system (2), we obtain

C
0F

σL† ≤
(

1 –
U⋆

1
U

)

C
0F

σU +
(

1 –
X⋆

1
X

)

C
0F

σX +
bU⋆

1 Y
⋆

1
kX⋆

1

(

1 –
Y⋆1
Y

)

C
0F

σY +
bpU⋆

1 Y
⋆

1
ckX⋆

1

C
0F

σW

+
ξ

(h1 + h2)U⋆

1

(

U – U⋆

1 + X – X
⋆

1
)

(

C
0F

σU +C0 F
σX
)

=
(

1 –
U⋆

1
U

)(

ϕ – h1U –
bUY
1 + qW

+ ξX
)

+
(

1 –
X⋆

1
X

)(

bUY
1 + qW

– (h2 + ξ)X
)

+
bU⋆

1 Y
⋆

1
kX⋆

1

(

1 –
Y⋆1
Y

)

(

kX – h3Y – pYW
)

+
bpU⋆

1 Y
⋆

1
ckX⋆

1

(

cYW – h4W
)

+
ξ

(h1 + h2)U⋆

1
(U – U⋆

1 + X – X
⋆

1 ) (ϕ – h1U – h2X) .

Note that ϕ = h1U
⋆

1 + bU⋆

1 Y
⋆

1 – ξX⋆

1 , h2 + ξ = bU⋆

1 Y
⋆

1
X⋆

1
and h3 =

kX⋆

1
Y⋆1
. Therefore,

C
0F

σL† ≤ h1

(

1 –
U⋆

1
U

)

(

U⋆

1 – U
)

+ ξ
(

X – X⋆

1
)

(

1 –
U⋆

1
U

)

+ bU⋆

1 Y
⋆

1

(

3 –
U⋆

1
U
+
Y
Y⋆1

1
1 + qW

–
UX⋆

1 Y
U⋆

1XY
⋆

1

1
1 + qW

–
Y
Y⋆1
–
XY⋆1
X⋆

1 Y

)

+
bpU⋆

1 Y
⋆

1
kX⋆

1

(

Y⋆1 –
h4
c

)

W –
ξ

(h1 + h2)U⋆

1
(U – U⋆

1 + X – X
⋆

1 )
(

h1
(

U – U⋆

1
)

+ h2
(

X – X⋆

1
))

= –
(

h1U
⋆

1 + ξX – ξX⋆

1 +
ξh1U
h1 + h2

)

(U – U⋆

1 )
2

UU⋆

1
–

ξh2
(h1 + h2)U⋆

1

(

X – X⋆

1
)2

+ bU⋆

1 Y
⋆

1

(

4 –
U⋆

1
U
– (1 + qW) –

UX⋆

1 Y
U⋆

1XY
⋆

1

1
1 + qW

–
XY⋆1
X⋆

1 Y

)

+ bqU⋆

1 Y
⋆

1

(

1 –
Y
Y⋆1

1
1 + qW

)

W +
h4bpU

⋆

1 Y
⋆

1
ckX⋆

1
(T1 – 1)W.

Employing the arithmetic-geometric means inequality, we obtain

4 –
U⋆

1
U
– (1 + qW) –

UX⋆

1 Y
U⋆

1XY
⋆

1

1
1 + qW

–
XY⋆1
X⋆

1 Y
≤ 0.

From (H), we have

1 –
Y
Y⋆1

1
1 + qW

=
Y
Y⋆1

(

Y⋆1
Y
–

1
1 + qW

)

≤ 0.

Further, we have

h1U
⋆

1 – ξX⋆

1 =
h1h3 (h2 + ξ)

bk

(

1 –
ξ

h2
(T◦ – 1)

)

.

Thus, C
0F

σL† ≤ 0 if T1 ≤ 1 < T◦ ≤ 1 + h2
ξ
. Furthermore, the largest compact invariant set in

{

(U,X,Y,W) ∈ R
4
+ :

C
0F

σL† = 0
}

is

singleton
{

S
⋆

1
}

. By Lemma 5, S⋆1 is globally asymptotically stable if T1 ≤ 1 < T◦ ≤ 1 + h2
ξ
. �

Stability of immunity-activated steady point with humoral response S⋆2

In this subsection, we deal with the local stability of the steady point S⋆2. We begin our analysis by computing the characteristic
equation of the Jacobian matrix (3) at S⋆2, we find

η
4 +O3η3 +O2η2 +O1η +O0 = 0, (8)

where

O3 = h1 + h2 + h3 + ξ + pW⋆

2 +
bY⋆2

1 + qW⋆

2
> 0,

O2 = h4pW
⋆

2 + h1
(

h2 + h3 + ξ + pW⋆

2
)

+
bY⋆2

1 + qW⋆

2

(

h2 + h3 + pW
⋆

2
)

> 0,

O1 = h4pW
⋆

2 (h1 + h2 + ξ) +
bY⋆2

1 + qW⋆

2

(

h4pW
⋆

2 + h2
(

h3 + pW
⋆

2
))

+
kcqbU⋆

2Y
⋆

2W
⋆

2
(

1 + qW⋆

2
)2 > 0,

O0 = h1h4pW
⋆

2 (h2 + ξ) + h2h4pW
⋆

2
bY⋆2

1 + qW⋆

2
+ h1kc

bqU⋆

2Y
⋆

2W
⋆

2
(

1 + qW⋆

2
)2 > 0.
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Thus, by the Routh-Hurwitz criterion, all roots ηj (j = 1, 2, 3, 4) of (8) have negative real part if

O3O2 –O1 > 0 and O1
(

O3O2 –O1
)

–O23O0 > 0, (9)

so that
∣

∣

∣
arg(ηj)

∣

∣

∣
> π
2 ≥ σπ

2 for all σ ∈ (0, 1] if T1 > 1. Hence, according to Lemma 1, we have the following theorem.

Theorem 7 Assume that T1 > 1 and the condition (9) holds, then S⋆2 is locally asymptotically stable for all σ ∈ (0, 1].

Remark 1 Theorems 3, 4, 5, 6 and 7 indicate theoretically that the Caputo derivatives have no influence on the stability of the equilibria S◦, S⋆1
and S⋆2 .

4 Numerical results and discussions

In this section, and by utilizing the parameter values of the data listed in Table 1, we discuss the different results established
previously in this article. The pivotal purpose is to examine the influence of fractional derivatives on the long-run behavior of our
enhanced model (2). We will theoretically choose the parameters used in the simulations according to two criteria:
1. To verify and check appropriately the obtained analytical results in all cases.
2. To show numerically the sharpness of the obtained stability conditions. During the forthcoming numerical tests, the solution
of our viral system (2) is supposed to be starting from the initial condition U(0) = 300, X(0) = 7, Y(0) = 4, W(0) = 80. Also, we
deem from now on that the unity of time is one day.

Parameter Example 1 Example 2 Example 3 Source

ϕ 2 2 6 Assumed
h1 0.01 0.01 0.01 [4]
b 0.01 0.02 0.02 [4]
q 0.5 0.5 0.5 [4]
ξ 0.01 0.01 0.01 [4]
h2 1.001 1.001 1.001 Assumed
h3 2.0003 2.0003 2.0003 Assumed
h4 0.3 0.3 0.3 [4]
k 0.9 2.9 2.9 Assumed
p 0.006 0.006 0.006 Assumed
c 0.1 0.1 0.1 [4]

Table 1. Some numerical values of the deterministic parameters used in the simulations

Remark 2 In this section, we aim to numerically examine the impact of fractional derivatives on the long-term characteristics of the virus. For
this reason, we simulate its progression using the parameters listed in Table 1. We mention that the parameters ϕ, b and k are very sensitive

and a slight variation in their values results in a significant dynamical bifurcation. Thus, we present some simulated scenarios in order to cover

all cases of equilibrium stability.

Example 1: Virus-clear steady point S◦

To numerically probe the effect of fractional derivatives on the infection stability, we firstly assign to our system parameters
the numerical values appearing in Table 1 - Example 1. A simple calculation gives T◦ = 0.8911 which is strictly less than one.
From Theorem 2, there exists a virus-clear steady point S◦ = (200, 0, 0, 0) of system (2). By choosing some arbitrary values of σ:
0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76, we present the long-run behavior of the solutions in Figure 2. Specifically, in the case
of σ = 0.98, we remark that the density of susceptible cells U, after an initial slope, progressively rises and reaches the steady
value ϕ

h1
= 200. After a significant decrease followed by a gradual increase, the densities of X(t) and Y(t) return to decrease and

end up being disappeared over time, while the density of W(t) decreases and converges to zero.
Now, by decreasing the value of σ to 0.94, we show that the solution suddenly changes its behavior shape, but finally converges to
S
◦. To further exhibit this phenomenon, we choose various values between σ = 0.94 and σ = 0.76. We conclude that as the value
of σ decreases, the solution slowly reaches the equilibrium S

◦. That is, the rate of convergence increases as the integer-order σ is
closer to one. But, in all cases, solutions with different differentiation values reach the virus-clear state which actually confirms
the result of Theorem 3. Consequently, the infection will be eradicated from the host body.

Example 2: Immune-free steady point S⋆1

In this example, we select the parameter values from Table 1 - Example 2. Then, we obtain T◦ = 5.7426 > 1 and T1 = 0.7983 < 1. In
accordance with Theorem 2, the immune-free steady point S⋆1 exists since T1 < 1 < T◦. To depict the effect of fractional derivatives
on S

⋆

1 , we arbitrarily select certain values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76. In Figure 3, we see that after some
pseudo periodic fluctuations, the densities of U(t), X(t) and Y(t) reach the stable level U⋆

1 = 34.8276, X
⋆

1 = 1.6517 and Y
⋆

1 = 2.3950,
while the density ofW(t) ultimately extinct. Since T1 < 1 < T◦, the numerical outcome of this example confirms the stability result
of Theorem 5. Hence, the infection becomes chronic one in the absence of persistent humoral immune response.
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Figure 2. Stability of the virus-clear steady point S◦ = (200, 0, 0, 0) for different values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.
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Figure 3. Stability of the immune-free steady point S⋆1 = (34.8276, 1.6517, 2.3950, 0) for different values of σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.
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Example 3: Immunity-activated steady point with the humoral response S⋆2

Now, we choose the parameter values from Table 1 - Example 3. Then, we obtain T1 = 2.7317 > 1. In accordance with Theorem 2,
there is an immunity-activated steady point with the humoral response S

⋆

2. Furthermore, we get

O3O2 –O1 = 0.3648 > 0,

O1
(

O3O2 –O1
)

–O23O0 = 0.2903 > 0,

then S
⋆

2 is asymptotically stable for different values of σ due to Theorem 7. From Figure 4, we remark that all classes fluctuate
during a time phase then converge towards the steady values U⋆

2 = 381.4716, X
⋆

2 = 2.1853, Y
⋆

2 = 3.0000 and W
⋆

2 = 18.7403. By
selecting certain values of σ, we observe that the solutions always reach the steady point S⋆2 = (U

⋆

2,X
⋆

2,Y
⋆

2,W
⋆

2). Thus, the viral
infection becomes chronic with persistent humoral immune response.
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Figure 4. Stability of the immunity-activated steady point with the humoral response S⋆2 = (381.4716, 2.1853, 3.0000, 18.7403) for different values of
σ = 0.98; 0.94; 0.9; 0.88; 0.84; 0.8; 0.78; 0.76.

5 Conclusion

This article investigated an improved four-compartment viral system that takes into consideration the effects of fractional deriva-
tives. The central goal was to probe the long-term characteristics of the virus. For this reason, we have started by proved the
well-posedness of the model, including existence, uniqueness, nonnegativity and boundedness of solutions. We have defined the
steady points of the system and determining the associated critical thresholds, namely the basic reproduction number, T◦, and the
humoral immune response reproduction number, T1. Specifically, we have proved that our viral model admits three steady points,
and under certain conditions on the thresholds, the asymptotic stability of all these points was examined. The obtained results of
stability indicate that the infection level gets reduced to zero for T◦ ≤ 1 , whereas the infection persists in the host body for T1 > 1.
From the theoretical and numerical point of view, we concluded that Caputo derivatives have no influence on the stability of the
equilibria.

As a future study, we seek to extend our proposed model to the case of the fractal-fractional system with the use of Adams-
Bashforth numerical scheme [45, 46]. This special derivative is widely introduced in physics to explain various phenomena and
laws. Also, the proposed model in this study can be enhanced by considering the effect of randomness. By using the approaches
presented in [47, 48, 49, 50], we can simultaneously probe the effect of both memory and stochasticity on the viral dynamics. We
will deal with it in our next work.
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Abstract

The purpose of this paper is to find approximate solutions to the fractional telegraph differential equation (FTDE) using
Laplace transform collocation method (LTCM). The equation is defined by Caputo fractional derivative. A new form of the
trial function from the original equation is presented and unknown coefficients in the trial function are computed by using
LTCM. Two different initial-boundary value problems are considered as the test problems and approximate solutions are
compared with analytical solutions. Numerical results are presented by graphs and tables. From the obtained results, we
observe that the method is accurate, effective, and useful.

Key words: Caputo fractional derivative; collocation method; telegraph equation; approximation solution; error analysis
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1 Introduction

Differential equations are a powerful tool for modeling, analyzing, and considering many physical and engineering problems
and are an important branch of applied mathematics. In particular, they occur in network design, fluid dynamics, wave motion,
telecommunications, electromagnetic, wave distribution, and electronic dynamics (see [1], [2] and the references therein). They
are used not only in engineering and physical systems, but also in economics, risk theory, and many other social sciences. On the
other hand, telegraph equation, a special kind of hyperbolic equations, is a partial differential equation that frequently appears
in electrical engineering. In particular, power transmission lines are defined and designed using telegraph equations [3], [4], [5].
Many different problems in electric, electronics and communication engineering can be modeled by telegraph equations (see [4],
[6] and the references therein). Mathematical modelling of problems in communication systems and transmission lines and their
solvability (analytic or most of the time approximate) have great importance in today’s world in which technology and communi-
cation tools regarding them have developed and spread with and increasing velocity. Depending on whether the terminations are
short or open circuits and whether they are fed by current or voltage sources, there are many forms of this equation, including
local or nonlocal boundary conditions.

Many of physical systems exhibit intrinsic behavior of fractional order. Therefore, fractional calculus provides more accurate
models for such systems than classical calculus [7], [8], [9], [10], [11]. A significant advantage of fractional modeling is seen in
systems where inheritance and memory behavior play a role, since the fractional derivative also accounts for the past. Another
advantage arises in the analysis of porous and/or self-similar structures, where the theory of fractals plays a role. A great number
of papers has been studied on the numerical solution methods of different types of telegraph partial differential equations. Finite
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difference methods [1], [4], [12], [13], [14], [15] are used mostly in the literature. Less frequently, there variation methods using
differential quadrature algorithm [16], Radial basis function [17], Chebyshev cardinal function [18], interpolation scaling functions
[19], Chebyshev Tau method [20], Galerkin method [21].

In 2014, weighted residuals method was applied to numerical solutions of hyperbolic telegraph equations [22]. Then, LTCM was
firstly implemented for the same equation in [23] in 2017 and the results were compared by weighted residuals method. From the
numerical results published in the literature, it was observed that LTCM method is more convenient and effective comparing to
weighted residuals method. In [6], LTCM was successfully applied to some nonlinear fractional differential equations.

This paper examines numerical solutions of the following fractional differential equation:







































∂2αy(t,x)
∂t2α

+ ∂
αy(t,x)
∂tα + y(t, x) = ∂

2αy(t,x)
∂x2α

+ f(t, x),

where x ∈ (0, L), t ∈ (0, T), α ∈ (0, 1],

y(0, x) = φ(x), yt(0, x) = ψ(x), where x ∈ [0, L],

y(t, 0) = y(t, L) = 0, where t ∈ [0, T].

(1)

Here, φ, ψ, f and y are known and unknown continuous functions, respectively. The term C
0D
α
t y(t, x) =

∂αy(t,x)
∂tα is Caputo fractional

derivative. If α = 1, then, the main equation in (1) is called a telegraph partial differential equation. LTCM method is used for
finding numerical solutions of problem (1). Approximate solutions are compared to the exact solution found by LT method. Then,
numerical solutions are shown by both graph and table and errors in numerical solutions are analysed.

2 LTCM for fractional-order telegraph equation

To clarify the essential mathematical details of LTCM, we consider a FTDE using a similar method in [6].

Taking the LT of problem (1), we get

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –L
[

∂αy(t, x)
∂tα

]

+ L

[

∂2αy(t, x)
∂x2α

]

– L
[

y(t, x)
]

+ L
[

f(t, x)
]

. (2)

After simple algebraic simplification and using initial conditions in (2), we have

y(s, x) =
1
s2α

{

s2α–1φ(x) + s2α–2ψ(x) – L
[

∂αy(t, x)
∂tα

]

+ L

[

∂2αy(t, x)
∂x2α

]

– L
[

y(t, x)
]

+ L
[

f(t, x)
]

}

. (3)

The function y(t, x) and its derivative in (3) are replaced with a trial function of the form

y = y0 +
n∑

j=1

cjyj. (4)

In the above equation, cj is the constant coefficient and it is determined to satisfy initial conditions given in (1). Then, y(s, x) is
found as follows:

y(s, x) =
1
s2α







s2α–1



y0(0, x) +
n∑

j=1

cjyj(0, x)



 +
∂

∂t



s2α–2



y0(0, x) +
n∑

j=1

cjyj(0, x)







 (5)

–L





∂α

∂tα
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n∑

j=1

cjyj(t, x)







 + L





∂2α

∂x2α



y0(t, x) +
n∑

j=1

cjyj(t, x)







 – L
[

y(t, x)
]

+ L
[

f(t, x)
]

}

.

Taking the inverse LT of Eq. (5), we get

ynew(t, x) = L–1







1
s2α



s2α–1



y0(0, x) +
n∑

j=1

cjyj(0, x)





+
∂

∂t



s2α–2y0(0, x) +
n∑

j=1

cjyj(0, x)



 – L





∂α

∂tα



y0(t, x) +
n∑

j=1

cjyj(t, x)







 (6)

+L





∂2α

∂x2α



y0(t, x) +
n∑

j=1

cjyj(t, x)







 – L



y0(t, x) +
n∑

j=1

cjyj(t, x)



 + L
[

f(t, x)
]

]}

.

Substituting Eq. (6) into Eq. (1), we obtain new collocating at points x = xk as follows:

∂2αynew(t, xk)

∂t2α
+
∂αynew(t, xk)

∂tα
+ y(t, x) –

∂2αynew(t, xk)

∂x2α
= f(t, xk), where xk =

L – 0
n + 1

, k = 1, 2, · · · ,n. (7)
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Then, we can define the residual function by the following formula

Rn(t, x) = L[ynew(t, x)] – f(t, x), (8)

where yn(t, x) and y(t, x) demonstrate approximate and exact solutions, respectively and

L[yn(t, x)] =
∂2αynew(t, x)

∂t2α
+ y(t, x) +

∂αynew(t, x)
∂tα

–
∂2αynew(t, x)

∂x2α
. (9)

From the above formula, we can write

∂2αynew(t, x)
∂t2α

+
∂αynew(t, x)

∂tα
+ y(t, x) –

∂2αynew(t, x)
∂x2α

= f(t, x) + Rn(t, x). (10)

3 Numerical implementations

For the application of LTCM, we consider two different test problems in this section and compare approximate solutions with exact
solutions.

Example 1 As the first example, consider the following initial-boundary value problem for FTDE







































































∂2αy(t,x)
∂t2α

+ ∂
αy(t,x)
∂tα + y(t, x) – ∂

2αy(t,x)
∂x2α

= 6
[

t3–2α

Γ(4–2α)
+ t3–α

Γ(4–α)

]

x3 + t3
[

x2 – x3 + 6 x3–2α

Γ(4–2α)
– 2t3 x2–2α

Γ(3–2α)

]

,

where x, t ∈ (0, 1), α ∈ (0, 1],

y(0, x) = yt(0, x) = 0, where x ∈ [0, 1],

y(t, 0) = y(t, 1) = 0, where t ∈ [0, 1].

(11)

First, we calculate (11) by LTCM.

From the formula of the trial function (Eq. (4)), approximate solution can be written as:

yapp(t, x) = c1x
2(x – 1)t3 + c2x(x – 1)

2t3. (12)

Taking the LT of the main equation of (11) and using Eq. (5), we get

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –L
[

∂αy(t, x)
∂tα

]

– L
[

y(t, x)
]

+ L

[

∂2αy(t, x)
∂x2α

]

+L

{

6

[
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Γ(4 – 2α)
+

t3–α

Γ(4 –α)

]

x3 + t3(x2 – x3) +
6x3–2α

Γ(4 – 2α)
–

2x2–2α

Γ(3 – 2α)

}

. (13)

Then, using zero initial conditions, the above formula can be simplified and written as:

y(s, x) =
1
s2α

{

–L
[

∂αy(t, x)
∂tα

]

– L
[

y(t, x)
]

+ L

[
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]

+L

[[
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+
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]
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x2 – x3
)

+
6x3–2α

Γ(4 – 2α)
–
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Γ(3 – 2α)

]}

. (14)

From the formulas (12) and (14), we have

y(s, x) =
1
s2α
L

{[

–
6(x3 – x2)t3–α

Γ(4 –α)
+

(

–x3 + x2 +
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)

t3
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–6
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–
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+

x1–2α
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t3
]

c2 (15)

+ 6
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x3 + t3(x2 – x3) +
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}

.

From the formula (15), y(s, x) is found as follows:

y(s, x) =
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)
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+

6

s4+2α

[

–
(

x3 – x2
)

+
6x3–α

Γ(4 –α)
–
2x2–α

Γ(3 –α)

]







c1 (16)
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+







–
6
(

x3 – 2x2 + x
)

s4+α
+

6

s4+2α

[

–x3 + 2x2 – x +
6x3–2α

Γ(4 – 2α)
–

4x2–2α

Γ(3 – 2α)
+

x1–2α

Γ(2 – 2α)

]







c2

+
(

6

s4+α
+
6

s4

)

x3 +
6

s4+2α

[

x2 – x3 +
6x3–2α

Γ(4 – 2α)
–

2x2–2α

Γ(3 – 2α)

]

.

Taking the inverse LT of (16), we obtain the following trial solution:

ynew(t, x) =

{

–6

[

t3+α

Γ(4 +α)
+

t3+2α

Γ(4 + 2α)

]

(c1 + c2) + t
3 +

6t3+α

Γ(4 +α)
–

6t3+2α

Γ(4 + 2α)

}

x3

+

{

6

[

t3+α

Γ(4 +α)
+

t3+2α

Γ(4 + 2α)

]

(c1 + 2c2) +
t3+2α

Γ(4 + 2α)

}

x2 +

{

–6

[

t3+α

Γ(4 +α)
+

t3+2α

Γ(4 + 2α)

]

c2

}

x (17)

+6

[

x3–α

Γ(4 –α)
– 2

x2–α

Γ(3 –α)

]

c1 +
6t3+2α

Γ(4 + 2α)

[

6x3–2α

Γ(4 – 2α)
–

4x2–2α

Γ(3 – 2α)
+

x1–2α

Γ(2 – 2α)

]

c2

+
6t3+2α

Γ(4 + 2α)

[

x3–2α

Γ(4 – 2α)
–

2x2–2α

Γ(3 – 2α)

]

.

Substituting (17) into Eq. (11), we have the following residual formula:

R(t, x, c1, c2) =
∂2αynew(t, x)

∂t2α
+
∂αynew(t, x)

∂tα
+ y(t, x) –

∂2αynew(t, x)
∂x2α

–6

[

t3–2α

Γ(4 – 2α)
+

t3–α

Γ(4 –α)

]

x3 – t3
[

x2 – x3 +
6x3–2α

Γ(4 – 2α)
–

2x2–2α

Γ(3 – 2α)

]

. (18)

Taking the derivatives of Eq. (17) with respect to x and t, and writing in (18), we obtain

R(t, x, c1, c2) = (Ax3 – Ax2 + Bx3 – Bx2 + C + D)c1 +
(

Ax3 – 2Ax2 + Ax + Bx3 – 2Bx2 + Bx + E + F + C + G –
G

4x
+ R
)

c2

+K + L +M + N + S = 0, (19)

where

A = –t3 –
6

Γ(4 –α)
t3–α, B = –t3 –

6

Γ(4 +α)
t3+α,

C = 36
[

1

Γ(4 +α)
t3+α +

1

Γ(4 + 2α)
t3+2α

]

1

Γ(4 – 2α)
x3–2α, D = –

6

Γ(4 – 3α)
x3–3α –

2

Γ(3 – 2α)
x2–2α,

E = t3
[

6

Γ(4 – 3α)
x3–3α –

4

Γ(3 – 2α)
x2–2α +

1

Γ(2 – 2α)
x1–2α

]

,

F =
6

Γ(4 +α)
t3+α

[

6

Γ(4 – 2α)
x3–2α –

4

Γ(3 – 2α)
x2–2α +

1

Γ(2 – 2α)
x1–2α

]

,

G = –24
[

1

Γ(4 +α)
t3+α +

1

Γ(4 + 2α)
t3+2α

]

1

Γ(3 – 2α)
x2–2α,

R = –
6

Γ(4 + 2α)
t3+2α

[

6

Γ(4 – 4α)
x3–4α –

4

Γ(3 – 4α)
x2–4α +

1

Γ(2 – 4α)
x1–4α

]

,

K = x3
[

t3 +
12

Γ(4 – 2α)
t3–2α +

18

Γ(4 –α)
t3–α –

6

Γ(4 +α)
t3+α

]

,

L = x2
[

6

Γ(4 +α)
t3+α –

6

Γ(4 –α)
t3–α –

6

Γ(4 – 2α)
t3–2α

]

, M = –
6

Γ(3 – 2α)
x2–2αt3,

N =
6t3+α

Γ(4 +α)

[

–
2

Γ(3 – 2α)
x2–2α –

30

Γ(4 – 2α)
x3–2α

]

,
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S =
1

Γ(4 + 2α)
t3+2α

[

36

Γ(4 – 2α)
x3–2α –

12

Γ(3 – 2α)
x2–2α +

12

Γ(3 – 4α)
x2–4α –

36

Γ(4 – 4α)
x3–4α

]

.

Then, from (19), we obtain

c1 = –
K + L +M

Ax3 – Ax2 + Bx3 – Bx2 + C + D
,

c2 =
N + S

Ax3 – 2Ax2 + Ax + Bx3 – 2Bx2 + Bx + E + F + C + G – G
4x + R

.

Example 2 As the second example, we consider the following initial-boundary value problem for FTDE



















































∂2αy(t,x)
∂t2α

+ 6∂
αy(t,x)
∂tα + 2y(t, x) – ∂

2αy(t,x)
∂x2α

=
[

– t1–2α

Γ(2–2α)
– 6 t1–α

Γ(2–α)
+ 2e–t

]

sin x – e–t x
1–2α

Γ(2–2α)
,

where x ∈ (0,π), t ∈ (0, 1), α ∈ (0, 1],

y(0, x) = sin x, yt(0, x) = – sin x, where x ∈ [0,π],

y(t, 0) = y(t,π) = 0, where t ∈ [0, 1].

(20)

By following the similar manner of the previous example, we now calculate (20) by LTCM.

From Eq. (4), approximate solution can be written as:

yapp(t, x) = (1 – t) sin x + c1x
2(x – π)t2 + c2x(x – π)

2t2. (21)

Taking the LT of Eq. (20) and using the formula (5), we obtain

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –6L
[

∂αy(t, x)
∂tα

]

– 2L
[

y(t, x)
]

+ L

[

∂2αy(t, x)
∂x2α

]

+L

{[

–
t1–2α

Γ(2 – 2α)
– 6

t1–α

Γ(2 – α)
+ 2e–t

]

sin x – e–t
x1–2α

Γ(2 – 2α)

}

. (22)

Using initial condition of (20), y(s, x) is obtained as:

y(s, x) =
(

1
s
–
1
s2

)

sin x +
1
s2α

{

–6L
[

∂αy(t, x)
∂tα

]

– 2L
[

y(t, x)
]

+ L

[

∂2αy(t, x)
∂x2α

]

+L

{[

–
t1–2α

Γ(2 – 2α)
– 6

t1–α

Γ(2 – α)
+ 2e–t

]

sin x – e–t
x1–2α

Γ(2 – 2α)

}}

. (23)

From the formulas (20) and (23), we have

y(s, x) =
[

1
s
–
2
s2
–

2
s2α+1

+
2

s2+2α
+

2

s2α(s + 1)

]

sin x

+

{

(

–
12
s3+α

–
4

s3+2α

)

x2 (x – π) +
2

s3+2α

[

6x3–2α

Γ(4 – 2α)
–
2πx2–2α

Γ(3 – 2α)

]}

c1

+

{

(

–
12
s3+α

–
4
s3+α

)

x2 (x – π) +
2

s3+2α

[

6x3–2α

Γ(4 – 2α)
–
4πx2–2α

Γ(3 – 2α)
+
π2x1–2α

Γ(2 – 2α)

]}

c2 (24)

+
(

1
s2α+1

–
1

s2α+2
–

1

s2α(s + 1)

)

x1–2α

Γ(2 – 2α)
.

Taking the inverse LT of (24), the following new trial solution is obtained:

ynew(t, x) =

[

–
12t2+α

Γ(3 +α)
–

4t2+2α

Γ(3 + 2α)

]

(c1 + c2)x
3 +

[

π

(

12t2+α

Γ(3 +α)
+

4t2+2α

Γ(3 + 2α)

)

(c1 + 2c2)

]

x2

+

[

–π2
(

12t2+α

Γ(3 +α)
+

4t2+2α

Γ(3 + 2α)

)

c2

]

x +
t2+2α

Γ(3 + 2α)

[

12x3–2α

Γ(4 – 2α)
–
4πx2–2α

Γ(3 – 2α)

]

c1

+

[

1 – 2t –
2t2α

Γ(1 + 2α)
+

2t1+2α

Γ(2 + 2α)
+
2e–tt2α–1

Γ(2α)

]

sin x

+
t2+2α

Γ(3 + 2α)

[

12x3–2α

Γ(4 – 2α)
–
8πx2–2α

Γ(3 – 2α)
+
2π2x1–2α

Γ(2 – 2α)

]

c2 (25)
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+
x1–2α

Γ(2 – 2α)

[

t2α

Γ(1 + 2α)
–

t1+2α

Γ(2 + 2α)
–
e–tt2α–1

Γ(2α)

]

.

Substituting (25) into Eq. (20), we have the following residual formula:

R(t, x, c1, c2) =
∂2αy(t, x)
∂t2α

+ 6
∂αy(t, x)
∂tα

+ 2y(t, x) –
∂2αy(t, x)
∂x2α

(26)

–

[

–
t1–2α

Γ(2 – 2α)
–

6t1–α

Γ(2 – α)
+ 2e–t

]

sin x +
e–tx1–2α

Γ(2 – 2α)
.

Taking the derivatives of Eq. (25) with respect to x and t, and writing in Eq. (26), we obtain the formula of R(t, x, c1, c2) as

R(t, x, c1, c2) =

[

–9ax3 + 9aπx2 +
6ax3–2α

Γ(4 – 2α)
–
2aπx2–2α

Γ(3 – 2α)
–

dt2+2α

Γ(3 + 2α)
+ bk

]

c1

+

[

–9ax3 + 18aπx2 +
4aπx2–2α

Γ(3 – 2α)
+
6ax3–2α

Γ(4 – 2α)
–
4aπx2–2α

Γ(3 – 2α)
– 9aπ2x +

aπ2x1–2α

Γ(2 – 2α)
+ ck –

et2+2α

Γ(3 + 2α)

]

c2 (27)

+f sin x +
hx1–2α

Γ(2 – 2α)
–

gx1–4α

Γ(2 – 4α)
= 0,

where,

a = –
12
(

t2–α – 4t2
)

Γ(3 –α)
, b =

12x3–2α

Γ(4 – 2α)
–
4πx2–2α

Γ(3 – 2α)
, c =

12x3–2α

Γ(4 – 2α)
–
8πx2–2α

Γ(3 – 2α)
+
2π2x1–2α

Γ(2 – 2α)
,

d =
12x3–4α

Γ(4 – 4α)
–
4πx2–4α

Γ(3 – 4α)
, e =

12x3–4α

Γ(4 – 4α)
–
8πx2–4α

Γ(3 – 4α)
+
2π2x1–4α

Γ(2 – 4α)
,

f = –2t–
8t1–α

Γ(2 – α)
–

12tα

Γ(α + 1)
–

t1–2αt2α–1

Γ(2 – 2α)Γ(2α)
+
12tα+1

Γ(α + 2)
–

12t1–αt2α–1

Γ(2 – α)Γ(2α)
–

4t2α

Γ(2α + 1)
+

4t2α+1

Γ(2α + 2)
+ e–t

[

2
t
+
12tα–1

Γ(α)
+
4t2α–1

Γ(2α)
– 2

]

,

h = t +
t1–2αt2α–1

Γ(2 – 2α)Γ(2α)
+

6tα

Γ(α + 1)
–

6tα+1

Γ(α + 2)
+

6t1–αt2α–1

Γ(2 – α)Γ(2α)
+

4t2α

Γ(2α + 1)
–

4t2α+1

Γ(2α + 2)
+ e–t

[

–
1
t
–
6tα–1

Γ(α)
–
4t2α–1

Γ(2α)
– 2

]

,

g =
t2α

Γ(2α + 1)
–

t2α+1

Γ(2α + 2)
–
e–tt2α–1

Γ(2α)
, k = t2 +

6t2+α

Γ(3 +α)
+
2t2+2α

Γ2α + 3)
.

From (27), we obtain

c1 = –

[

f sin x +
hx1–2α

Γ(2 – 2α)

][

–9ax3 + 9aπx2 –
2aπx2–2α

Γ(3 – 2α)
+
6ax3–2α

Γ(4 – 2α)
+ bk –

dt2+2α

Γ(3 + 2α)

]–1

,

c2 =
gx1–4α

Γ(2 – 4α)

[

–9ax3 + 18aπx2 –
4aπx2–2α

Γ(3 – 2α)
+
6ax3–2α

Γ(4 – 2α)
+
aπ2x1–2α

Γ(2 – 2α)
– 9π2ax + ck –

et2+2α

Γ(3 + 2α)

]–1

.

4 Error analysis

Errors in numerical solutions are computed by the following error formula

Error = max
∣

∣yexact – yapp
∣

∣ ,

where yexact(t, x) represents the exact solution and yapp(t, x) represents the approximate solution obtained by using LTCM. Exact
solutions of the first and second examples are t3(x2 – x3) and e–t sin x respectively. Approximate solution for the first example is
c1x
2(x – 1)t3 + c2x(x – 1)

2t3. For Example 2, it is equal to (1 – t) sin x + c1x
2(x – π)t2 + c2x(x – π)

2t2.

As seen from the yellow and greenish region of Figs. 1 and 2, when t changes between 0.2 and 0.8, and x approaches to 1 for
α = 0.5, the difference between exact solution and approximate solution increases. For the other values, the difference between
exact and approximate solution is not obvious. Moreover, when t = 0.6 and x = 1, exact solution is almost 3 times greater than
approximate solution. When t changes between 0.2 and 0.8, and x approaches to 1 for 0.99, the difference between exact solution
and approximate solution increases as a similar result for α = 0.5, but when t = 0.6 and x = 1, exact solution is almost 10 times
greater than approximate solution as shown in Figs. 3 and 4. For the other values, the difference between exact and approximate
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Figure 1. Approximate solution of Example 1 for α = 0.5.
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Figure 2. Exact solution of Example 1 for α = 0.5.
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Figure 3. Approximate solution of Example 1 for α = 0.99.



184 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 3, 177–186

0

1

0.05

1

y
 a

x
is

0.1

0.8

x axis

0.5 0.6

t axis

0.15

0.4
0.2

0 0

Figure 4. Exact solution of Example 1 for α = 0.99.
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Figure 5. Exact solution of Example 2 for α = 1.

solution is not obvious.
For Example 2, when t changes between 0.2 and 0.8, there is a great difference between the exact solution and approximate solution
at the boundary point x = 3 as shown in Figs. 5 and 6. For the other values, the difference between exact and approximate solution
is not obvious. For the better comparison of exact solution and approximate solution, we need to present results by Tables. Errors
in the numerical solutions for different values of x, t,α for Examples 1 and 2 are presented in Tables 1 and 2, respectively.

Table 1. Error values for Example 1

x t α Errors

0.01 0.01 0.01 9.9000× 10–7

0.01 0.01 0.5 9.9000× 10–7

0.01 0.01 0.99 1.7161× 10–10

0.1 0.591 0.01 0.00125

0.1 0.591 0.5 0.00183

0.1 0.591 0.99 8.1658× 10–5

0.248 0.9 0.01 0.03256

0.248 0.9 0.5 9.1222× 10–6

0.248 0.9 0.99 0.10107

When x, t = 0.01 and α changes from 0.01 to 0.5 for Example 1 in Table 1, there is no difference in the error but when α changes
from 0.5 to 0.99, the error in the numerical solution decreases about 1000 times. When x = 0.1, t = 0.591 and α changes from 0.01
to 0.5, there is not much difference in the error but when α changes from 0.5 to 0.99, the error in the numerical solution decreases
about 22 times. Lastly, when x = 0.248, t = 0.9 and α changes from 0.01 to 0.5, the error in the numerical solution decreases about
3570 times, but α changes from 0.01 to 0.99, the error increases about 7 times.
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Figure 6. Approximate solution of Example 2 for α = 1.

Table 2. Error values for Example 2

x t α Errors

0 0.01 1 0

11/7 0.01 1 0.017

22/7 0.01 1 2.7494× 10–7

π 0.01 1 6.1029× 10–21

0.1 0.1 0.01 0.0043

0.1 0.1 0.5 0.0062

0.01 0.1 0.01 4.4652× 10–4

0.01 0.1 0.5 8.6324× 10–5

When t = 0.01 and α = 1, x changes from 0 to 11/7 for Example 2, the error increases to 0.017 from 0, but when x changes from 11/7
to π, the error decreases to 6.1029× 10–21 from 0.017. When x, t = 0.1 and α changes from 0.01 to 0.5, the error increases about 1.5
times, but when x = 0.01, t = 0.1 and α changes from 0.01 to 0.5, the error decreases about 5 times.

5 Conclusion

A combination of LTCM to develop approximate methods for fractional order telegraph partial differential equation has been
adopted in this paper. The exact solution has been compared with approximate solutions in two different test problems. Error
analysis has been done and it has been seen that the results were effective. However, due to the solutionmethod for the approximate
solution, when x → 1, the solution goes to zero, causing the simulations to look far from each other. This deficiency due to the
comparison of the simulations has been eliminated by giving the exact and approximate solutions in Table 1. As a future problem
for the further developments of the present work, higher dimensional FTDEs can be studied. Moreover, this method can be also
applied to nonlinear FTDEs by developing an algorithm due to the difficulty of processing.
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Abstract

The aim of the paper is to study a cancer model based on anti-angiogenic therapy and radiotherapy. A set-valued analysis
is carried out to control the tumor and carrying capacity of the vasculature, so in order to reverse tumor growth and
augment tumor repair. The viability technique is used on an augmented model to solve the control problem. Obtained
control is a selection of set-valued map of regulation and reduces tumor volume to around zero. A numerical simulation
scheme with graphical representations and biological interpretations are given.
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1 Introduction

Mathematical modelling of treatments is essential for diseases controlling. [1] Considers amathematical model of chemotherapy for
cancer treatment, in fractional order formwith Caputo sense, and discusses the local stability of the equilibrium point. [2] Analyses
the bifurcation of a fractional-order SEIR epidemic model of HIV and HBV diseases. [3] Studies the stability of a novel model of
COVID-19 epidemics, by considering the Lyapunov function. [4] Considers a fractional-order HIV epidemic model, and determines
the positivity and boundedness of the solution and the stability conditions of the model, and discusses the global dynamics of the
endemic equilibrium point, by using Lyapunov functional approach. [5] Employs the feedback control on a chaotic system with
fractional-order. [6] Proposes a Caputo HIV-1 model incorporating AIDS-infected cancer cells, and investigates the existence and
uniqueness of its solutions via fixed point theory, and performs the stability analysis of the model. [7] Investigates the bifurcation
of a two-dimensional discrete-time chemical model. [8] Develops a three-dimensional fractional-order cancer model, and details
analysis of the equilibrium points, and investigates the existence and uniqueness of the solution. [9] Models COVID-19 epidemics
with treatment in fractional derivatives using real data from Pakistan, and discusses the stability conditions of the equilibrium
points, and analysis the global dynamics equilibria by using the Lyapunov function. [10] Develops a Hilfer fractional model related
to Parkinson’s disease, and obtains a closed form solution in the terms of Wright function and Mittag-Leffler function, by using
Sumudu transform technique. [11] Uses the Laplace transform and exponential Fourier transform of Atangana-Baleanu-Caputo
(ABC) derivative, to obtain the approximate analytical solutions of a reaction-diffusion model for calcium dynamics in neurons,
in terms of generalized Mittag-Leffler function. [12] Presents a two-dimensional fractional-order reaction-diffusion model to
develop a control mechanism of Calcium in nerve cells, and uses the integral transform technique of arbitrary order to find the
solution of the model. [13] Analyses a mathematical model for cancer chemotherapy which includes anti-angiogenic effects of the
cytotoxic agent, to optimally control the tumor volume by administering the total dose in a single maximum dose session. [14]
Analyses a mathematical model for the combination of chemotherapy with anti-angiogenic treatment as a multi-input optimal
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control problem, and considers the problem to minimize a weighted average of tumor volume and the carrying capacity of the
tumor vasculature. [15] Considers a mathematical model for tumor radiotherapy and chemotherapy as an optimal solution for a
local tumor control.

The combinations of anti-angiogenics with each other or with other cancer therapies increase treatment efficacy [16, 17], notably
with radiotherapy [18, 19, 20, 21, 22] which is unable to completely eradicate some tumors alone [23]. Mathematical modelling
allows to develop methodologies of analysis and control for an appropriate polytherapy. We are interested in this paper to mathe-
matical modelling of anti-angiogenic therapy with radiotherapy. We propose to take advantage of the Set-Valued Analysis (SVA)
methodology applied in [24, 25] formodels involvingmono immunotherapy and chemotherapy, and in [26, 27] for combinedmodal-
ities of cancer therapy, including immunotherapy and anti-angiogenic therapy with chemotherapy, to combine anti-angiogenic
therapy and radiotherapy.

The rest of this paper is organized as follows : Section 2 describes amodel of anti-angiogenic therapy and radiotherapy combination.
Section 3 formulates the corresponding problem of control, and augments the considered model to translate the control problem
into a viability one. Section 4 solves the viability problem by a single-valued selection of the set-valued map of regulation. Section
5 approaches the problem by the numerical methods of Euler and Uzawa.

2 Model presentation

The following complementary coupled dynamics between the tumor volume p ∈ (0,∞), and the time-varying carrying capacity
q ∈ (0,∞), are considered from [28].

ṗ = –ξp ln
(

p

q

)

– (α +βr)pw, p(0) = p0 ∈ (0,∞); (1a)

q̇ = κ

(

bq
2
3 – dq

4
3

)

+ (1 – κ)
(

bp – dp
2
3 q

)

– γqu – (η + δr)qw, q(0) = q0 ∈ (0,∞); (1b)

where the third variable r was introduced by the ordinary differential equation

ṙ = –ρr +w, (1c)

and initiated by

r(0) = r0 = 0, (1d)

to model the temporal effects of tumor repair, and simplify the linear-quadratic damages quantification from Wein [29] on the
tumor : –(α+βr)pw, and on the carrying capacity : –(η+δr)qw, caused by the radiation control w, which takes values in [0,wmax].
The control u represents the dose of the anti-angiogenic medicine, and takes values in [0, umax], with carrying capacity elimination
: –γqu. The rest of uncontrolled expressions are summarized in the following table.

Expression Description

bq
2
3 and bp Carrying capacity stimulations

–dq
4
3 and –dp

2
3 q Carrying capacity inhibitions

–ξp ln
(

p

q

)

Tumor proliferation

The parameter κ takes values in [0, 1], and for the particular values κ = 0 and κ = 1, the meta-model (1) corresponds to Hahnfeldt
[30, 31, 32] and Ergun [33, 34, 35] models, respectively. The model presentation is completed by describing parameters in table 1.
Numerous studies related to the model (1) have been carried out :

• [31] Employs Pontryagin Minimum Principle (PMP), to minimize tumor volume subject to Hahnfeldt’s sub-model, for an
optimal cancer combination therapy from anti-angiogenic and radiation therapy.

• [32] Uses State-Dependent Riccati Equations (SDRE) as an optimal control methodology framework on Hahnfeldt’s sub-model,
and designs optimal rules to reduce the tumor growth by an appropriate administration of anti-angiogenic and radio-therapeutic
doses.

• [33] Applies (PMP) on Ergun’s sub-model, to determine the temporal scheduling of radiotherapy and angiogenic inhibitors that
maximizes the control of a primary tumor.

• [36] Considers Ergun’s sub-model as as optimal control problem with the objective of minimizing the tumor volume subject
to isoperimetric constraints, that limit the total radiation dose and the overall amount of anti-angiogenic agents to be given.

• [37] Optimally controls Hahnfeldt’s sub-model, by solving nonlinear programming problem via A Mathematical Programming
Language (AMPL) and the Interior Point OPTimizer (IPOPT) method.

• [38] Executes (PMP) on Ergun’s sub-model, to minimize tumor volume while limiting the total amount of administered anti-
angiogenic agents, and also the total damage caused by the radiation treatment to the healthy tissue, so expressed in terms of
its Biologically Equivalent Dose (BED).

• [39] Operates (PMP) to optimally control Hahnfeldt’s sub-model, with the objective function of minimizing the size of cancer.
• [28] Proposes of the model (1), a Sequential Quadratic Hamiltonian (SQH) method to choose the optimisation weights, in order
to obtain treatment functions that successfully reduce the tumor volume to zero.
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• [40] Formulates more generalized model than (1), and adopts optimal control methodology, to minimize multi-functional
objective.

3 Problem statement

We state the problem of control the tumor volume p by a coupled protocol (u,w) from Cartesian product constraint [0, umax] ×
[0,wmax]

∀t ∈ [0,∞), (u(t),w(t)) ∈ [0, umax]× [0,wmax], (2a)

so in order that p strictly decreases on [0,∞)

∀t ∈ [0,∞), ṗ(t) < 0, (2b)

and admits zero as limit at infinity

lim
t→∞

p(t) = 0, (2c)

subject to the model (1).

Before beginning any analysis, we augment the model (1) by the ordinary differential equation

ẇ = –w + v, w(0) = w0 ∈ [0,wmax], (3)

to turn on the control w into a variable state, and control tumor volume dynamics (1b) indirectly via the parameter control v ∈
[0,wmax], subject to the objectives (2b) and (2c), however, we can still have the explicit expression for w

w(t) = e–t
(

w0 +
∫ t

0
eτv(τ) dτ

)

. (4)

The resolution of problem (2), can be done by finding (u, v)

∀t ∈ [0,∞), (u(t), v(t)) ∈ [0, umax]× [0,wmax], (5a)

by which (p, q, r,w) is globally viable in Dθ

∀t ∈ [0,∞), (p(t), q(t), r(t),w(t)) ∈ Dθ, (5b)

where domain

Dθ = {(p, q, r,w) ∈ R
∗

+ × R
∗

+ × R+ × [0,wmax] | ψθ(p, q, r,w) ≤ 0}, (5c)

with function

ψθ(p, q, r,w) = –ξp ln
(

p

q

)

– (α +βr)pw + θp,

and parameter

θ ∈ R
∗

+.

Proposition 1 Assume that there exists θ ∈ R
∗
+ such that (p0, q0, r0,w0) ∈ Dθ, and (u, v) solution to the viability problem (5), then (u,w)

solves the control problem (2).

Proof Let t ≥ 0, and let (p, q, r,w) be the globally viable trajectory in Dθ, leading by the control (u, v).
According to (1a) and (5b) we have the differential inequality

ṗ(t) = –ξp ln
(

p

q

)

– (α +βr)pw ≤ –θp(t),

by integrating we get the exponential estimate

0 ≤ p(t) ≤ p0e–θt,

then in the limit ∞, the tumor is deleted lim
t→∞

p(t) = 0, with the average speed of therapy θ. �
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4 Set-valued resolution

On the viability constraint Dθ by (5c), we define the set-valued map of regulation Fθ in the following way

Fθ(p, q, r,w) =
{

(u, v) ∈ [0, umax]× [0,wmax] |
(

–ξp ln
(

p

q

)

– (α +βr)pw,

κ

(

bq
2
3 – dq

4
3

)

+ (1 – κ)
(

bp – dp
2
3 q

)

– γqu – (η + δr)qw, –ρr +w, –w + v

)

⊤

∈ TDθ (p, q, r,w)







, (6a)

where

TDθ (p, q, r,w) =

{

(p̂, q̂, r̂, ŵ) ∈ R
4
∣

∣

∣
lim inf
h↓0

d((p + hp̂, q + hq̂, r + hr̂,w + hŵ),Dθ)
h

= 0

}

, (6b)

stands for the tangent cone to Dθ at point (p, q, r,w).

Lemma 1 Let beθ ∈ R
∗
+ such that (p0, q0, r0,w0) ∈ Dθ. If for all (p, q, r,w) ∈ Dθ, we have Fθ(p, q, r,w) 6= ∅, then any single-valued selection

(u, v) of the set-valued map of regulation Fθ solves (5).

Proof The set-valuedmap of regulation Fθ admits a selection (u, v) : Dθ → [0, umax]×[0,wmax] by which the system (1)-(3) admits a
locally viable solution (p(·), q(·), r(·),w(·)) in Dθ, defined over a maximal interval

[

0, tmax
)

. We have to prove that tmax → ∞. Indeed,
assume that tmax is finite.

• The non-negative function p(·) decreases on
[

0, tmax
)

, then it admits a limit p̄, when t→ tmax.
• Thanks to (1b), we have the differential inequality

q̇ ≤ b(q
2
3 + p0),

and by integrating

3 2
√

p0

( 3√q
2√p0

– arctan
( 3√q

2√p0

))

≤ bt + 3 2
√

p0

( 3√q0
2√p0

– arctan
( 3√q0

2√p0

))

,

then by maximizing

q ≤
(

b

3
tmax + 2

√

p0

( 3√q0
2√p0

– arctan
( 3√q0

2√p0

))

+ 2
√

p0
π

2

)3
,

which proves that the function q(·) admits an upper limit q̄, when t→ tmax.

• According to (1c) the function r(·) admits a limit r̄ = e–ρt
max

∫ tmax

0
eρτw(τ) dτ, when t→ tmax.

• By (4) the function w(·) admits a limit w̄ = e–t
max

(

w0 +
∫ tmax

0
eτv(τ) dτ

)

, when t→ tmax.

Therefore (p(·), q(·), r(·),w(·)) → (p̄, q̄, r̄, w̄) when t → tmax, and (p̄, q̄, r̄, w̄) belongs to Dθ because it is closed. Now, by considering
(p̄, q̄, r̄, w̄) as an initial state it follows that (p(·), q(·), r(·),w(·)) may be prolonged to a viable solution (p̃(·), q̃(·), r̃(·), w̃(·)) in Dθ,
starting at (p̄, q̄, r̄, w̄) on some interval [tmax, tsup) where tsup > tmax, which is in contradiction with the maximality of tmax, then
the solution (p(·), q(·), r(·),w(·)) becomes globally viable in Dθ. �

Motivated by the preceding Lemma 1, we are interested in an explicit expression of the set-valued map of regulation Fθ, so for
that we give the following Lemma from [27], characterizing the tangent directions of the tangent cone TDθ by (6b).

Lemma 2 ([27]) For each (p, q, r,w) ∈ Dθ the tangent directions (p̂, q̂, r̂, ŵ) of TDθ (p, q, r,w) are characterized by



















r̂ ≥ 0 if r = 0,
ŵ ≥ 0 if w = 0,
ŵ ≤ 0 if w = wmax,

ψ̇θ(p, q, r,w)(p̂, q̂, r̂, ŵ) ≤ 0 if ψθ(p, q, r,w) = 0.

Proof See [27]. �

Lemma 3 ([27]) The set-valued map of regulation Fθ may be expressed explicitly on the viability constraint Dθ as

Fθ(p, q, r,w) =

{

[0, umax]× [0,wmax] if ψθ(p, q, r,w) < 0,
Cθ(p, q, r,w) if ψθ(p, q, r,w) = 0,

(7a)

where

Cθ(p, q, r,w) =
{

(u, v) ∈ [0, umax]× [0,wmax] | ℓθ(p, q, r,w) + 〈h(p, q, r,w), (u, v)〉 ≤ 0
}

, (7b)
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with

ℓθ(p, q, r,w) =
〈

∇ψθ(p, q, r,w),
(

–ξp ln
(

p

q

)

– (α +βr)pw,

κ

(

bq
2
3 – dq

4
3

)

+ (1 – κ)
(

bp – dp
2
3 q

)

– (η + δr)qw, –ρr +w, –w

)

⊤
〉

, (8a)

and

h(p, q, r,w) =
(

–γq
∂ψθ
∂q

(p, q, r,w),
∂ψθ
∂w

(p, q, r,w)
)

⊤

. (8b)

Proof Thanks to Eqs. (1c) and (3)

• If r = 0, then

–ρr +w = w ≥ 0.

• If w = 0, then

–w + v = v ≥ 0.

• If w = wmaxi , then

–w + v = –wmax + v ≤ –wmax +wmax ≤ 0.

• For all (p, q, r,w) ∈ Dθ, we have

ψ̇θ(p, q, r,w)

(

–ξp ln
(

p

q

)

– (α +βr)pw,κ

(

bq
2
3 – dq

4
3

)

+ (1 – κ)
(

bp – dp
2
3 q

)

– γqu – (η + δr)qw, –ρr +w, –w + v

)

⊤

=

〈

∇ψθ(p, q, r,w),
(

–ξp ln
(

p

q

)

– (α +βr)pw,κ

(

bq
2
3 – dq

4
3

)

+

(1 – κ)
(

bp – dp
2
3 q

)

– γqu – (η + δr)qw, –ρr +w, –w + v
)⊤
〉

=

〈

∇ψθ(p, q, r,w),
(

–ξp ln
(

p

q

)

– (α +βr)pw,κ

(

bq
2
3 – dq

4
3

)

+

(1 – κ)
(

bp – dp
2
3 q

)

– (η + δr)qw, –ρr +w, –w
)⊤
〉

+
〈

∇(q,w)ψθ(p, q, r,w), (–γqu, v)
⊤
〉

.

�

Lemma 4 A single-valued selection of the set-valued map of regulation Fθ may be given on the viability constraint Dθ by the expression

cθ(p, q, r,w) = πCθ(p,q,r,w)(0), (9)

where πCθ(p,q,r,w)
(0) denotes the projection of 0

R2 onto the closed convex set Cθ(p, q, r,w).

Proof See [27]. �

5 Numerical resolution

This section is devoted to numerically analysis the following model by combining the numerical methods of Euler by step h̄ and
Uzawa of parameter λ.

ṗ = –ξp ln
(

p

q

)

– (α +βr)pw, (10a)

q̇ = κ

(

bq
2
3 – dq

4
3

)

+ (1 – κ)
(

bp – dp
2
3 q

)

– γqu – (η + δr)qw, (10b)

ṙ = –ρr +w, (10c)

ẇ = –w + v, (10d)

u = c1θ(p, q, r,w), (10e)

v = c2θ(p, q, r,w). (10f)
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The used algorithm is as follows

i. Initialization

a) t0 ∈ R+,
b) (p0, q0, r0,w0) ∈ Dθ,
c) λ0 ∈ R

5
+,

ii. Iteration

a) tn+1 = tn + h̄,
b)































pn+1 = pn + h̄
(

–ξpn ln
(

pn
qn

)

– (α +βrn)pnwn
)

,

qn+1 = qn + h̄

(

κ

(

bq
2
3
n – dq

4
3
n

)

+ (1 – κ)
(

bpn – dp
2
3 qn

)

– γqnun – (η + δrn)qnwn

)

,

rn+1 = rn + h̄(–ρrn +wn),
wn+1 = wn + h̄(–wn + vn),

(11)

c)

{

un = –λn5h(pn, qn, rn,wn) + λ
n
3 – λ

n
1 ,

vn = –λn5h(pn, qn, rn,wn) + λ
n
4 – λ

n
2,

d)



































λn+11 = max(λn1 + σ(un – u
max), 0),

λn+12 = max(λn2 + σ(vn – v
max), 0),

λn+13 = max(λn3 – σun, 0),
λn+14 = max(λn4 – σvn, 0),

λn+15 = max(λn5 + σ(h1(pn, qn, rn,wn)un + h2(pn, qn, rn,wn)vn + ℓθ(pn, qn, rn,wn), 0), with 0 < σ <
2

∥

∥h(p, q, r,w)
∥

∥

.

• For the absence of therapy we choose (p0, q0, r0,w0) = (15000, 12000, 0, 0) as an initial state, the tumor volume p stimulates
the carrying capacity q to increase by the dynamics (10b), and to proliferate by the dynamics (10a), as we see in Figure 1.

• In the presence of therapy we choose (p0, q0, r0,w0) = (15000, 12000, 0, 2) as an initial state, with the parameter θ = ξ ln(
p0
q0
) +

αw0 ≃ 1.4, in order that (p0, q0, r0,w0) ∈ Dθ, the protocols u(t) = c1θ(p(t), q(t), r(t),w(t)) andw(t) = e
–t(w0+

∫t
0 e
τc2θ(p(τ), q(τ), r(τ),w(τ)) dτ)

limits the stimulation of the tumor volume p on the carrying capacity q in the dynamics (10b), and reverses the proliferation
of p in the dynamics (10a), as we see in Figure 2.

As in (1d) we have r0 = 0 for the initial value of the tumor repair r, and we consider v0 = 0 as the initial value of the parameter
control v, for the parameter κ of the dynamics (10b) we propose κ = 0.5, as in [28] to combine Hahnfeldt and Ergun dynamics,
while the following table 1 gives the numerical values of the model (10) parameters.

Table 1. Parameters description.

Parameter Description Value Unit

ξ Parameter for tumor growth 0.084
[

day–1
]

b Tumor-induced stimulation
parameter

5.85
[

day–1
]

d Tumor-induced inhibition
parameter

0.00873
[

mm–2 · day–1
]

γ Anti-angiogenic elimination
parameter

0.15
[

kg
mg(doses)

]

· day–1

α Radiosensitive parameter for
tumor

0.7
[

Gy–1
]

β Radiosensitive parameter for
tumor

0.14
[

Gy–2
]

η Radiosensitive parameter for
healthy tissue

0.136
[

Gy–1
]

δ Radiosensitive parameter for
healthy tissue

0.086
[

Gy–2
]

ρ Tumor repair rate
ln 2
0.02

[

day–1
]
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Figure 1. Tumor volume p begins to decrease from the initial value p0 = 15000, but p stimulates the carrying capacity q to increase from the initial value
q0 = 12000, until they have approximate values p = 14957 and q = 14912 (p ≃ q) , then p starts to increase.
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Figure 2. Tumor volume p begins from the same initial value p0 = 15000 as in Figure 1, but kept on decreasing state all over time therapy in accordance with (2b)
and (2c), caused by growth limitation of the carrying capacity q due to combined anti-angiogenic therapy and radiotherapy (u,w), and by direct effect of the

radiotherapy w(p, q) on the tumor volume p, while the tumor repair r is augmented.
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6 Conclusion

The problem control (2) to the class of mathematical models (1) is achieved by combining anti-angiogenic therapy with ra-
diotherapy. The set-valued analysis gives the feedback protocols u(t) = c1θ(f(t)), and w(t) = e

–t(w0 +
∫t
0 e
τc2θ(f(τ)) dτ), where

f(.) = (p(.), q(.), r(.),w(.)) to administrate the temporal doses of anti-angiogenic medicine and radiation, in order to dynamically
limit the stimulation of the tumor volume p(u,w)(t) on the time carrying capacity q(u,w)(t), and force p(u,w)(t) to decrease : ∀t ∈
[0,∞), ṗ(u,w)(t) < 0, under the exponential estimate : 0 ≤ p(u,w)(t) ≤ p0e

–θt, and converge to the null limit : limt→∞ p(u,w)(t) = 0.
The obtained protocols u and w, provide from the single-valued selection cθ by (9) to the set-valued map of regulation Fθ by (6a),
which should be strict on the subset Dθ by (5c) : ∀(p, q, r,w) ∈ Dθ, Fθ(p, q, r,w) 6= ∅, and they rend the model (1) globally viable
on the subset Dθ, as it is demonstrated in the Proof 4 of the Lemma 1. The linear dynamics (1c) and (3) of the tumor repair r
and the radiation control w respectively, allow to get the useful expression (7a) of the set-valued map of regulation Fθ, as it is
proved in the Proof 4 of the Lemma 3, and the single-valued selection cθ is a solution to the following problem of minimization :
min ||(u, v)|| such that (u, v) ∈ [0, umax]× [0,wmax] by (5a), and ℓθ(p, q, r,w) + 〈h(p, q, r,w), (u, v)〉 ≤ 0 by (8), which is numerically
approached by the method of Uzawa in the last Section 5, and implemented into the discretized model (11) by the method of Euler,
to get the numerical simulations of Figure 2, which are in perfect conformity with the theoretical results of the preceding Section
4.
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