
4

 2

2022



VOLUME: 2 ISSUE: 4 December 2022
ISSN ONLINE: 2791-8564 https://www.mmnsa.org

m
a
t
h
e
m

a
t
ıc
a
l

 m
o
d
ellıng an

d
 n

u
m
e
r
ıc

a
l
 
s
ım

u
l
a
t
ıo

n
 wıth applıc

a
t
ıo

n
s

MATHEMATICAL MODELLING

AND NUMERICAL SIMULATION

WITH APPLICATIONS



Editor-in-Chief and Publisher

Mehmet Yavuz
Department of Mathematics and Computer Sciences,
Faculty of Science, Necmettin Erbakan University,
Meram Yeniyol, 42090 Meram, Konya / TÜRKİYE
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Abstract

We propose a new epidemic model to study the coinfection dynamics of COVID-19 and bacterial pneumonia, which is the
first model in the literature used to describe mathematically the interaction of these two diseases while considering two
infection ways for pneumonia: community-acquired and hospital-acquired transmission. We show that the existence and
local stability of equilibria depend on three different parameters, which are interpreted as the basic reproduction numbers
of COVID-19, bacterial pneumonia, and bacterial population in the hospital. Numerical simulations are performed to
complement our theoretical analysis, and we show that both diseases can persist if the basic reproduction number of
COVID-19 is greater than one.

Key words: Coronavirus; bacterial pneumonia; coinfection
AMS 2020 Classification: 34C60; 34D20; 92D30

1 Introduction

The virulent nature of Coronavirus Disease 2019 (COVID-19) has continued to be significant as a public health concern since the
WHO declared it a global pandemic in the early part of 2020. Trend analysis has shown that one of the main causes of death re-
sulting from Coronavirus has been attributed to secondary causes due to bacterial and viral infections. As the Coronavirus Disease
continues to attract attention from various stakeholders in health and governance, who work relentlessly to unravel its dynam-
ics and curtail its spread through pharmaceutical and non-pharmaceutical methods, studies have shown that Respiratory Tract
Infections (RTIs) can predispose patients to coinfections [1, 2]. RTIs are infections of body parts involved in breathing, such as
sinuses, throat, airways or lungs, which can be caused by several bacteria and viruses such as influenza [3]. The most significant
of these RTIs, which affect the upper respiratory tract include tonsillitis, pharyngitis, sinusitis and certain types of influenza (such
as H1N1) [4] with symptoms such as cough, sore throat, nasal congestion, headache, among others.

Historically, according to [5], a large part of the death toll recorded in the 1918 influenza pandemic was due to bacterial infection
caused by Streptococcus pneumoniae. Evidence from the study in [6] revealed that poor outcomes in the influenza (H1N1) pandemic
were associated with coinfections. Aside from H1N1, MERS and SARS-CoV have been identified as major respiratory tract infec-
tions in the last decade. These have so far been detected by highly sensitive techniques such as MALDI-TOF and Multiplex PCR.
Therefore, the study of coinfections in a pandemic situation such as COVID-19 has become an essential need due to the clinical,
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diagnostic and therapeutic challenges it raises [7]. To further buttress the aforestated, Lansbury et al. [8] highlighted some im-
portant aspects of bacterial and viral infections in COVID-19 and antimicrobial prescription.

Despite the proven epidemiological significance of coinfections in the severity of respiratory diseases, they are largely understud-
ied during a large outbreak of respiratory infections such as SARS-CoV-2 [9]. According to Zhou et al. [10], it was shown that
50% of the fatalities due to COVID-19 result from secondary bacterial infections. Also, Chen et al. [11] attribute these deaths to
bacterial and fungal infections. Furthermore, in [9], clinical evidence has revealed the complexity in the diagnoses of coinfections
when the causative virus is resident in the host before the viral infection or has been contacted nosocomially. The authors in [12]
reported that patients presenting SARS-CoV-2 infection have a clinical phenotype that is very close to that of bacterial pneumonia.

Mathematical modelling of epidemics has become a crucial tool to forecast the future course of an outbreak, as well as to evaluate
possible strategies to control the spread of diseases. The analysis of these models is useful to decide the best course of action
to eradicate a disease since it is often less costly to perform numerical simulations than experimental studies. Also, it is easier
to determine the different possible outcomes of an epidemic by studying the equilibrium states and the threshold dynamics of a
model than to test it in real life. The history of epidemic modelling has developed in relatively recent times. Although an early
model was created by Bernoulli in 1760 to evaluate the effectiveness of inoculating healthy people against the smallpox virus [13],
deterministic epidemic models became increasingly popular in the early 20th century, starting with Ross’s differential equation
model on the control of malaria [14]. The susceptible-infectious-recovered model was inspired by the papers by Ross [15] in 1916
and Ross and Hudson [16, 17] in 1917, who studied a priori pathometry, followed by Kermack and McKendrick’s integro-differential
age-structured model [18] in 1927. In subsequent decades, a plethora of epidemic models was studied in the literature, many based
on ordinary differential equations (ODEs). Recent works have employed a range of different methods, such as fractional order dif-
ferential equations, partial differential equations, fuzzy logic, network-based and stochastic models, with the aim to describe the
complexities of pathogen transmission. However, the complexity of these methods often precludes an intuitive understanding of
the interactions between its variables and parameters [19], and simple models that can be adequately fitted to some epidemic data
can be more useful than more complex models that also provide an adequate fit to the same data [20]. Deterministic ODE models
have the advantage of having an extensive theory for their theoretical and numerical study [21], they have also been successfully
fitted to real-world epidemic data and their prediction accuracy can be improved by methods such as segmentation of epidemic
event sequences [22].

During the course of the COVID-19 pandemic, many different works have emerged to model mathematically the spread of SARS-
CoV-2. Several recent papers have focused on analyzing the effects of vaccination campaigns [23, 24, 25, 26], as well as the
relationship of COVID-19 with conditions such as diabetes [27] and heart attacks [28]. Some authors have incorporated the dy-
namics of new strains of SARS-CoV-2, such as the Omicron variant [28], while others have developed coinfection models. As
a background to our present work, recent studies have established clinical evidence of coinfections of SARS-CoV-2 (COVID-19)
with other diseases such as tuberculosis [7, 29, 30, 31, 32, 33], influenza A (H1N1) [34, 35, 36, 37, 38] and Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) [39], as well as bacterial coinfections [40]. In response to the foregoing, researchers have de-
veloped mathematical models to study the coinfection dynamics of COVID-19. Soni and Singh [41] used a systems biology approach
to study a cellular-level model for SARS-CoV-2–influenza coinfection, they performed simulations with the Matlab SimBiology
toolbox to suggest therapeutic intervention points. Tchoumi et al. [42] proposed a compartmental population model for coinfec-
tion with malaria. They determined conditions for the stability of equilibria, showed that the model may undergo a backward
bifurcation and derived conditions for optimal control to mitigate the spread of both diseases. Tuberculosis–COVID-19 coinfection
has been modelled by Bandedar and Ghosh [43], who considered a model with waning immunity and performed a bifurcation
and stability analysis, as well as simulations using data from India. A different model for tuberculosis coinfection was studied
by Rwezaura et al. [44], who investigated the effects of COVID-19 vaccination and treatment control and performed parameter
fitting with data from Indonesia. Optimal control for a COVID-19–dengue model was studied by Omame et al. [45] using five
controls; furthermore, the authors fitted their model to the cumulative COVID-19 cases and deaths in Brazil. In [46], Omame et al.
analyzed a fractional coinfection model for diabetes and COVID-19 using the Atangana-Baleanu derivative. The authors studied
the Hyers-Ulams stability and global asymptotic stability and fitted the model to COVID-19 data from Indonesia.

Despite the above-mentioned developments in the literature, no model has been proposed to study the coinfection dynamics of
COVID-19 with bacterial pneumonia. Bacterial pneumonia is an inflammation of the lungs caused by infection with certain bacteria.
Depending on the location where a person acquires the infection, it can be classified as either community-acquired pneumonia or
hospital-acquired pneumonia. Community-acquired pneumonia is by far the most common type [47]. On the other hand, hospital-
acquired pneumonia is usually more severe because the infecting organisms tend to be more aggressive, less likely to respond to
antibiotics and harder to treat [48]. In this vein, we see from [49, 50, 51] that clinical studies have shown that critically ill COVID-19
patients admitted to the hospital suffer more frequent bacterial or fungal nosocomial infections, and patients with underlying risk
factors such as advanced age, mechanical ventilation or prolonged hospital stay are more prone to these complications. Moreover,
patients with mild COVID-19 infection are less likely to develop a more severe disease as a result of confection upon admission to
medical facilities compared to those with high-risk factors due to bacterial and fungal infections.

In view of the above evidence, we think that there is a need to mathematically study the coinfection dynamics of COVID-19 with
bacterial pneumonia. However, none of the models mentioned above has the structure necessary to be applied to this disease,
considering that bacterial infections can be acquired both in the community and in the hospital. Hence, we aim to study here a
new ODE model tailored specially to these needs. In contrast to the work by Giannella et al. [40], who developed a predictive
model to stratify the risk of bacterial coinfection based on an observational study of hospitalised COVID-19 patients, we intend
to use a theoretical approach of compartmental ODE models, which allows us to make simulations not only for the hospitalised
subpopulation but in the community at large.
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This paper is structured as follows: in Section 2, we introduce three models: a sub-model for COVID-19 infection, a sub-model for
bacterial pneumonia, and a coinfection model that includes the dynamics of both diseases. In Section 3, we determine some basic
properties for the two sub-models. In Section 4, we provide an analysis of the coinfection model. In Section 5, we perform some
numerical simulations to illustrate the dynamics of the coinfection model. Finally, we provide a summary and discussion of our
results in Section 6 and some concluding remarks in Section 7.

2 Description of the models

COVID-19 infection model

The COVID-19 infection model subdivides the human population into four compartments: susceptible (S), infected but not hospi-
talised (I), hospitalised (H), and recovered (R). This model can be described by the following system of equations:

S′ = Λ + σR – µS – αSI,

I′ = αSI – (γ + η + µ)I,

H′ = ηI – (θ + δ + µ)H,

R′ = γI + θH – µR – σR.

(1)

The interpretation of parameters is as follows:

• Λ: recruitment rate of susceptible population.
• µ: natural death rate.
• α: transmission rate of COVID-19.
• γ: recovery rate of people infected with COVID-19 but not hospitalised.
• θ: recovery rate of hospitalised people.
• η: hospitalisation rate.
• δ: COVID-19-induced death rate of hospitalised people.
• σ: rate of loss of immunity against COVID-19 infection.

For model (1), we assume that COVID-19 is transmitted by contact between susceptible and infected (but not hospitalised) people
at a bilinear rate αSI. A portion of the infected population is admitted to hospitals at a rate η. The average recovery time is
1/γ for non-hospitalised people and 1/θ for hospitalised people. Further, we assume that only hospitalised patients may have a
COVID-19-induced death. Lastly, people recovered from infection lose their natural immunity after an average time 1/σ.

Bacterial pneumonia infection model

The model for bacterial pneumonia subdivides the human population into three compartments: susceptible (S), infected (I), and
recovered (R). We also consider a compartment B representing the population of bacteria in the environment. The model is given
by the following system:

S′ = Λ – µS – bSI – b1SB,

I′ = bSI + b1SB –φI – µI – δI,

R′ = φI – µR,

B′ = pI + rB
(

1 –
B

κ

)

–mB.

(2)

The parameters of this model can be interpreted as follows:

• Λ: recruitment rate of susceptible population.
• µ: natural death rate.
• b: transmission rate of community-acquired bacterial pneumonia.
• b1: transmission rate of hospital-acquired bacterial pneumonia.
• δ: disease-induced death rate of infected population.
• φ: recovery rate of people with bacterial infection.
• p: rate of excretion of bacteria in the environment by infected people.
• r: maximal per capita growth rate of bacteria in the environment.
• κ: carrying capacity of bacterial population.
• m: clearance rate of bacterial population.

For model (2), we assume that susceptible people get community-acquired pneumonia at a rate bSI and hospital-acquired pneu-
monia at a rate b1SB. Infected people have a pneumonia-induced death rate δ and may recover at a rate φ. The population of
bacteria in the environment follows a logistic growth rate and may additionally increase at a rate proportional to the number of
infected people.
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Coinfection model

Based on models (1) and (2), we propose a combined COVID-19–bacterial pneumonia coinfection model. We will consider three
stages for COVID-19 infection and four for bacterial infection, which gives twelve mutually exclusive compartments: bacterial
pneumonia susceptible and COVID-19 susceptible (XSS); bacterial pneumonia susceptible and COVID-19 mildly infected (XSI); bac-
terial pneumonia susceptible and COVID-19 hospitalised (XSH); bacterial pneumonia susceptible and COVID-19 recovered (XSR);
bacterial pneumonia infected and COVID-19 susceptible (XIS); bacterial pneumonia infected and COVID-19 mildly infected (XII);
bacterial pneumonia infected and COVID-19 hospitalised (XIH); bacterial pneumonia infected and COVID-19 recovered (XIR); bac-
terial pneumonia recovered and COVID-19 susceptible (XRS); bacterial pneumonia recovered and COVID-19 mildly infected (XRI);
bacterial pneumonia recovered and COVID-19 hospitalised (XRH); and bacterial pneumonia recovered and COVID-19 recovered
(XRR). Additionally, we consider a compartment B representing concentration of bacteria in the hospital environment. We make
the following assumptions:

i. COVID-19 is transmitted by contact with people in the XSI, XII and XRI compartments.
ii. The population susceptible to COVID-19 are infected by this disease at a rate α1 if they have bacterial pneumonia, and at a
rate α otherwise.
iii. The hospitalisation rate for people coinfected with COVID-19 and community-acquired pneumonia increases by an amount
η1 with respect to people with only COVID-19.
iv. The COVID-19 recovery rate for hospitalised people is θ1 if they are coinfected, and θ otherwise.
v. Non-hospitalised people get community-acquired pneumonia by contact with people in the XIS, XII and XIR compartments.
vi. Non-hospitalised people are infected with pneumonia at a rate b1 if they have COVID-19, and at a rate b otherwise.
vii. People hospitalised due to COVID-19 get hospital-acquired pneumonia at a rate proportional to the concentration of bacteria
in the environment.

viii. The disease-induced death rate for coinfected hospitalised patients is increased by an amount δ2 with respect to those with
only COVID-19.
ix. The pneumonia-induced death rate for non-hospitalised people is δ0 if they have COVID-19, and δ otherwise.
x. The pneumonia recovery rate is φ1 for people in the XII compartment, φ2 for the XIH compartment, and φ for the XIS and
XIR compartments.

The schematic diagram of model (3) can be seen in Figure 1. All parameters are assumed to be positive.

XSS XSI XSH XSR 

XIS XII XIH XIR 

XRS XRI XRH XRR 

Λ 𝛼𝑋𝑆𝑆𝑋∗𝐼 𝜂𝑋𝑆𝐼  𝛾𝑋𝑆𝐼 𝜇𝑋𝑆𝑆 𝜇𝑋𝑆𝐼 (𝜇 + 𝛿1)𝑋𝑆𝐻 𝜇𝑋𝑆𝑅 𝑏𝑋𝑆𝑆𝑋𝐼∗ 𝑏1𝑋𝑆𝐼𝑋𝐼∗ 𝑏2𝑋𝑆𝐻𝐵 
𝑏𝑋𝑆𝑅𝑋𝐼∗ 𝛾1𝑋𝐼𝐼  𝛼1𝑋𝐼𝑆𝑋∗𝐼 (𝜇 + 𝛿)𝑋𝐼𝑆 (𝜇 + 𝛿0)𝑋𝐼𝐼 (𝜇 + 𝛿1 + 𝛿2)𝑋𝐼𝐻 (𝜇 + 𝛿)𝑋𝐼𝑅 𝜙𝑋𝐼𝑆 𝜙1𝑋𝐼𝐼  𝜙2𝑋𝐼𝐻 𝜙𝑋𝐼𝑅  𝛼𝑋𝑅𝑆𝑋∗𝐼 𝜂𝑋𝑅𝐼  

𝜇𝑋𝑅𝑆 𝜇𝑋𝑅𝐼 (𝜇 + 𝛿1)𝑋𝑅𝐻 𝜇𝑋𝑅𝑅 

𝛾𝑋𝑅𝐼 

𝜃𝑋𝑆𝐻 

(𝜂 + 𝜂1)𝑋𝐼𝐼 𝜃1𝑋𝐼𝐻 

𝜃𝑋𝑅𝐻 

XSS 

XIS 

XRS 

𝜎𝑋𝑆𝑅 

𝜎𝑋𝐼𝑅  

𝜎𝑋𝑅𝑅 

COVID-19 infection 
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m
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𝑝𝑋𝐼𝐻  

Figure 1. Schematic diagram of the coinfection model. Solid lines represent the transition between compartments. Dashed lines represent the proliferation of
bacteria. X

∗I denotes XSI + XII + XRI and XI∗ denotes XIS + XII + XIR.
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The above assumptions yield a coinfection model given by the following system of 13 differential equations:

X′SS = Λ + σXSR – µXSS – αXSS (XSI + XII + XRI) – bXSS (XIS + XII + XIR) ,

X′SI = αXSS (XSI + XII + XRI) – (γ + η + µ)XSI – b1XSI (XIS + XII + XIR) ,

X′SH = ηXSI – θXSH – (µ + δ1)XSH – b2XSHB,

X′SR = γXSI + θXSH – µXSR – σXSR – bXSR (XIS + XII + XIR) ,

X′IS = σXIR + bXSS (XIS + XII + XIR) – α1XIS (XSI + XII + XRI) – (µ + δ)XIS –φXIS,

X′II = b1XSI (XIS + XII + XIR) + α1XIS (XSI + XII + XRI) – (γ1 + η + η1 + µ + δ0 +φ1)XII,

X′IH = (η + η1)XII + b2XSHB – θ1XIH – (µ + δ1 + δ2)XIH –φ2XIH,

X′IR = bXSR (XIS + XII + XIR) + γ1XII + θ1XIH – (µ + δ)XIR –φXIR – σXIR,

X′RS = σXRR +φXIS – µXRS – αXRS (XSI + XII + XRI) ,

X′RI = φ1XII + αXRS (XSI + XII + XRI) – (γ + η + µ)XRI,

X′RH = ηXRI +φ2XIH – θXRH – (µ + δ1)XRH,

X′RR = φXIR + γXRI + θXRH – µXRR – σXRR,

B′ = pXIH + rB
(

1 –
B

κ

)

–mB.

(3)

3 Analysis of sub-models

Before studying the dynamics of the coinfection model (3), we will analyze the two sub-models (COVID-19 only and bacterial
pneumonia only).

Analysis of the COVID-19 infection model

The COVID-19-only model (1) has a disease-free equilibrium (DFE) given by

EC0 = (S, I,H,R) =
(

Λ

µ
, 0, 0, 0

)

.

The stability of EC0 depends on the basic reproduction number of model (1).

Theorem 1 Let

RC =
αΛ

µ(γ + η + µ)
. (4)

Then, the disease-free equilibrium EC0 of model (1) is locally asymptotically stable ifRC < 1, but unstable ifRC > 1.

Proof 1 Using the notation in [52], we define the matrix of new infections F and the transition matrix V = V
– – V

+ by

F =

[

αSI

0

]

, V
– =

[

(γ + η + µ)I
(θ + δ + µ)H

]

, V
+ =

[

0
ηI

]

.

Then, we compute the matrices F = DF (EC0) and V = DV (EC0), as follows:

F =

[

αΛ
µ 0
0 0

]

, V =

[

γ + η + µ 0
–η θ + δ + µ

]

.

The basic reproduction numberRC of the COVID-19-only model is given by the spectral radius of FV
–1. From this, we obtain thatRC is given by

(4).
By an application of [52, Theorem 2], we conclude that EC0 is locally asymptotically stable ifRC < 1 and unstable ifRC > 1.

Analysis of the bacterial pneumonia infection model

The bacterial pneumonia model (2) has a DFE given by

EP0 = (S, I,R,B) =
(

Λ

µ
, 0, 0, 0

)

.

The stability of EP0 will depend on a parameter RP, as detailed in the following result.

Theorem 2 Let

RP =
bΛ

µ(φ + µ + δ)
. (5)
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Then, the disease-free equilibrium EP0 of model (2) is locally asymptotically stable ifRP < 1, but unstable ifRP > 1.

Proof 2 Using the notation in [52], we define the matrix of new infections F and the transition matrix V = V
– – V

+ by

F =
[

bSI + b1SB
]

, V
– =

[

(φ + µ + δ)I
]

, V
+ =

[

0
]

.

To apply the next-generation matrix method, we compute F = DF (EC0) and V = DV (EC0), which are given by

F =
[

bΛ
µ

]

, V =
[

φ + µ + δ

]

.

Using the samemethod as before, we obtain the basic reproduction numberRP of the bacterial pneumonia-only model as the spectral radius of

FV–1, which gives the expression (5).

Finally, by [52, Theorem 2], we conclude that EP0 is locally asymptotically stable ifRP < 1 and unstable ifRP > 1.

4 Analysis of the COVID-19–bacterial pneumonia coinfection model

Next, we consider the dynamics of the coinfection model (3). The existence and stability of equilibria for model (3) will depend on
three parameters, which are defined as follows:

RC :=
αΛ

µ(γ + η + µ)
, RP :=

bΛ

µ(φ + µ + δ)
, RB :=

r

m
.

As we saw in the previous section, the parameters RC and RP represent the basic reproduction numbers of COVID-19 and bacterial
pneumonia, respectively. On the other hand, RB can be interpreted as the reproduction number of bacterial population in the
hospital.

Equilibria of the model

By direct computation, we obtain the following result about the equilibria of model (3).

Theorem 3 The coinfection model (3) has the following steady states:

i. The disease-free, bacterial population-free equilibrium:

E0 =
(

X(0)
SS
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

,

where

X(0)
SS
=

Λ

µ
.

ii. The disease-free, bacterial population-present equilibrium:

E1 =
(

X(1)
SS
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,B(1)

)

,

where

X(1)
SS
=

Λ

µ
, B(1) =

κ

r
(r –m).

This equilibrium exists if and only ifRB > 1.
iii. The COVID-19-free, pneumonia-present, bacterial population-free equilibrium:

E2 =
(

X(2)
SS
, 0, 0, 0,X(2)

IS
, 0, 0, 0,X(2)

RS
, 0, 0, 0, 0

)

,

where

X(2)
SS
=

µ + δ +φ

b
, X(2)

IS
=

Λ

µ + δ +φ
–

µ

b
, X(2)

RS
=

φ

µ
X(2)
IS
.

This equilibrium exists if and only ifRP > 1.
iv. The COVID-19-free, pneumonia-present, bacterial population-present equilibrium:

E3 =
(

X(3)
SS
, 0, 0, 0,X(3)

IS
, 0, 0, 0,X(3)

RS
, 0, 0, 0,B(3)

)

,
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where

X(3)
SS
=

µ + δ +φ

b
, X(3)

IS
=

Λ

µ + δ +φ
–

µ

b
, X(3)

RS
=

φ

µ
X(3)
IS
,

B(3) =
κ

r
(r –m).

This equilibrium exists if and only if

RB > 1 and RP > 1.

v. The COVID-19-present, pneumonia-free, bacterial population-free equilibrium:

E4 =
(

X(4)
SS
,X(4)
SI
,X(4)
SH
,X(4)
SR
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

,

where

X(4)
SS
=

γ + η + µ

α
, X(4)

SI
=

(µ + σ)(θ + µ + δ1)
[

αΛ – µ(γ + η + µ)
]

α
[

µ(θ + µ + δ1)(γ + η + µ + σ) + ησ(µ + δ1)
] ,

X(4)
SH
=

η

θ + µ + δ1
X(4)
SI
, X(4)

SR
=
(

γ

µ + σ
+

ηθ

(µ + σ)(θ + µ + δ1)

)

X(4)
SI
.

This equilibrium exists if and only if

RC > 1.

Proof 3 Equilibria E0, E1, E2 and E3 are obtained by assuming that XSI = 0 in the system at equilibrium and solving the resulting algebraic
equations. This yields four different cases: one for each equilibrium.

On the other hand, assuming XSI > 0 and XIS = 0 results in only one case, corresponding to the equilibrium E4.

The case when XSI > 0 and XIS > 0will be discussed below.

Theorem 3 shows that, under certain conditions, the coinfection model has five different steady states. Moreover, we conjecture
that a sixth equilibrium, with positive values for all variables, may exist. We will denote this interior equilibrium by E5. Since the
theoretical analysis becomes too cumbersome in this case, we will resort to numerical simulations to investigate the dynamics of
equilibrium E5 (see Section 5).

Stability analysis

We will now analyze the local stability for the equilibria of system (3) by means of the linearisation method and the Hartman–
Grobman theorem. Our results will focus only on the disease-free equilibria E0 and E1.

Theorem 4

(i) The disease-free, bacterial population-free equilibrium E0 is locally asymptotically stable if

RC < 1, RP < 1 and RB < 1, (6)

and it is unstable if one ofRC > 1,RP > 1 orRB > 1 holds.
(ii) The disease-free, bacterial population-present equilibrium E1 is locally asymptotically stable if

RC < 1, RP < 1 and RB > 1, (7)

and it is unstable if one ofRC > 1,RP > 1 orRB < 1 holds.

Proof 4 The Jacobian of system (3) evaluated at E0 is given by

J0 =





















































–µ –αΛ
µ 0 σ – bΛµ – (α+b)Λµ 0 – bΛµ 0 –αΛ

µ 0 0 0
0 αΛ

µ – k1 0 0 0 αΛ
µ 0 0 0 αΛ

µ 0 0 0
0 η –k2 0 0 0 0 0 0 0 0 0 0
0 γ θ –k3 0 0 0 0 0 0 0 0 0
0 0 0 0 bΛ

µ – k4 bΛ
µ 0 bΛ

µ + σ 0 0 0 0 0
0 0 0 0 0 –k5 0 0 0 0 0 0 0
0 0 0 0 0 η + η1 –θ1 – k6 0 0 0 0 0 0
0 0 0 0 0 γ1 θ1 –k7 0 0 0 0 0
0 0 0 0 φ 0 0 0 –µ 0 0 σ 0
0 0 0 0 0 φ1 0 0 0 –k1 0 0 0
0 0 0 0 0 0 φ2 0 0 η –k2 0 0
0 0 0 0 0 0 0 φ 0 γ θ –k3 0
0 0 0 0 0 0 p 0 0 0 0 0 r –m






























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
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













,
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where

k1 = γ + η + µ, k2 = θ + µ + δ1, k3 = µ + σ, k4 = µ + δ +φ,

k5 = γ1 + η + η1 + µ + δ0 +φ1, k6 = µ + δ1 + δ2 +φ2, k7 = µ + δ +φ + σ.

From this, we obtain the characteristic polynomial

(λ + µ)2 (λ + k1) (λ + k2)
2 (

λ + k3
)2 (

λ + k5
) (

λ + θ1 + k6
) (

λ + k7
)

×

(

λ + k1 –
αΛ

µ

)(

λ + k4 –
bΛ

µ

)

(λ +m – r) = 0.

By the Hartman–Grobman theorem [53, p. 311], we know that the solutions of (3) and its linearisation are qualitatively equivalent near E0
provided that E0 is a hyperbolic equilibrium. Due to positivity of parameters, it is clear that all eigenvalues have negative real part if and only if

γ + η + µ –
αΛ

µ
> 0, µ + δ +φ –

bΛ

µ
> 0 and m – r > 0,

which is equivalent to the condition (6). On the other hand, the opposite inequalities guarantee that there is at least one eigenvaluewith positive
real part and no eigenvalues with zero real part. Hence, we can conclude part (i) of the theorem.

Next, we compute the Jacobian at E1, which is given by

J1 =





















































–µ –αΛ
µ 0 σ – bΛµ – (α+b)Λµ 0 – bΛµ 0 –αΛ

µ 0 0 0
0 αΛ

µ – k1 0 0 0 αΛ
µ 0 0 0 αΛ

µ 0 0 0
0 η –k0 – k2 0 0 0 0 0 0 0 0 0 0
0 γ θ –k3 0 0 0 0 0 0 0 0 0
0 0 0 0 bΛ

µ – k4 bΛ
µ 0 bΛ

µ + σ 0 0 0 0 0
0 0 0 0 0 –k5 0 0 0 0 0 0 0
0 0 k0 0 0 η + η1 –θ1 – k6 0 0 0 0 0 0
0 0 0 0 0 γ1 θ1 –k7 0 0 0 0 0
0 0 0 0 φ 0 0 0 –µ 0 0 σ 0
0 0 0 0 0 φ1 0 0 0 –k1 0 0 0
0 0 0 0 0 0 φ2 0 0 η –k2 0 0
0 0 0 0 0 0 0 φ 0 γ θ –k3 0
0 0 0 0 0 0 p 0 0 0 0 0 m – r














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





,

where k0 = b2κ
(

1 – mr
)

, and k1, . . . , k7 are as defined above. Notice that k0 > 0 if and only ifRB > 1.
The characteristic polynomial at E1 is

(λ + µ)2 (λ + k1) (λ + k2)
(

λ + k3
)2 (

λ + k5
) (

λ + θ1 + k6
) (

λ + k7
)

× (λ + k0 + k2)
(

λ + k1 –
αΛ

µ

)(

λ + k4 –
bΛ

µ

)

(λ + r –m) = 0.

It follows that all eigenvalues have negative real part if and only if

k0 + k2 > 0, γ + η + µ –
αΛ

µ
> 0, µ + δ +φ –

bΛ

µ
> 0 and r –m > 0.

The first of these inequalities holds automatically whenRB > 1. Hence, we can see that all eigenvalues have negative real part if and only if the
last three inequalities hold, and this is equivalent to condition (7). Otherwise, ifRC > 1,RP > 1 orRB < 1, there will be at least one eigenvalue
with positive real part and no eigenvalues with zero real part. Applying the Hartman–Grobman theorem as before, the proof of (ii) is complete.

5 Numerical analysis

In this section, we perform some simulations for system (3) to illustrate the dynamics of the coinfection model in some cases that
are not covered by the analysis in Section 4. We will consider the initial conditions

XSS(0) = 8.33× 107, XSI(0) = 10
5, XSH(0) = 10

3, XSR(0) = 10
5, XIS(0) = 10

3,

B(0) = 0.8, XII(0) = XIH(0) = XIR(0) = XRS(0) = XRI(0) = XRH(0) = XRR(0) = 0,

which represent a case when a fraction of the population is infected with either COVID-19 or bacterial pneumonia, but there are
initially no people coinfected with both diseases.
Throughout this section, we will use the parameter values shown in Table 1. The parameters related to demography (Λ and µ) and
COVID-19 dynamics (σ, α and α1) are based on the values used in [54]. Since the literature regarding the modelling of bacterial
pneumonia dynamics is scarce, the rest of the parameter values are not based on specific models or real data sets. Instead, we use
generic values to show the different dynamics of our model.
Thus, we obtain a fixed value for RC, which is greater than one (RC = 1.2294), while RP and RB will vary as the parameters b and
r take different values.



Pérez and Oluyori | 205

Table 1. Parameter values used for the coinfection model.

Parameter Value Unit
Λ 2000 people/day
µ 2.4× 10–5 (people · day)–1

σ 1/100 day–1

γ 1/12 day–1

γ1 1/20 day–1

θ 1/14 day–1

θ1 1/24 day–1

b1 2× 10–9 (people · day)–1

b2 0.1 day–1

δ 0.001 day–1

δ0 0.005 day–1

δ1 0.01 day–1

δ2 0.2 day–1

η 0.12 day–1

η1 0.1 day–1

φ 1/14 day–1

φ1 1/30 day–1

φ2 1/40 day–1

p 10–5 (people · day)–1

κ 1
m 0.01 day–1

α 3× 10–9 (people · day)–1

α1 10–8 (people · day)–1

b variable (people · day)–1

r variable day–1

Case 1. When b = 10–10 and r = 0.004, we have RP = 0.1150 < 1 and RB = 0.4 < 1. The time plots of the solutions for this case are
shown in Figure 2. The solutions converge to a positive equilibrium

E5 ≈
(

6.3418× 107, 5684, 3153, 69716, 191.8, 0.0735, 1537, 776.8, 4.368× 106, 391.5, 1048, 16263, 1.3487
)

.

As we can see in Figure 2, the population infected with pneumonia presents a peak during the first 200 days, after which it oscillates
until settling down to the equilibrium value. The majority of the coinfected population consists of hospitalised individuals (XIH),
which reach a peak of 760000, while the coinfected non-hospitalised population (XII) grows to less than 10000 individuals. For
people recovered from bacterial pneumonia, a similar relationship is seen: there are more hospitalised than non-hospitalised
individuals; however, for individuals susceptible to pneumonia, the opposite occurs.
Case 2. When b = 9 × 10–10 and r = 0.004, we have RP = 1.0352 > 1 and RB = 0.4 < 1. The time plots of the solutions are depicted
in Figure 3; we can see that they converge to a positive equilibrium

E5 ≈
(

5.711× 107, 5602, 3130, 6.89× 104, 2229, 0.59, 1509, 765, 1.066× 107, 1046, 2005, 2.85× 104, 1.33
)

.

As seen in Figure 3, the dynamics, in this case, are mostly similar to those of Case 1. The largest difference is the increase in
the population infected with pneumonia only (XIS), which reaches a peak about 10 times larger than in Case 1. Also notable is
the increase in the population recovered from pneumonia and infected by COVID-19 (XRI), whose peak and equilibrium values are
about 3 times larger than in Case 1.
Case 3. When b = 10–10 and r = 0.08, we have RP = 0.1150 < 1 and RB = 8 > 1. The time plots of the solutions are depicted in Figure
4. We can see that they converge to the positive equilibrium

E5 ≈
(

6.353× 107, 6206, 3984, 8.0× 104, 189.8, 0.0793, 1519, 768, 4.251× 106, 415.3, 1078, 16605, 1.055
)

.

If we compare these simulations with the case when bothRP andRB are less than one, we can see that there is a slight increment in
all the pneumonia-susceptible compartments and a slight decrease in the pneumonia-infected compartments. The concentration
of bacteria also reaches a lower value at the peak and at equilibrium.
Case 4. When b = 9 × 10–10 and r = 0.08, we have RP = 1.0352 > 1 and RB = 8 > 1. The time plots of the solutions are shown in
Figure 5. We can see that the solutions converge to the positive equilibrium

E5 ≈
(

5.728× 107, 6007, 3867, 7.747× 104, 2186, 0.618, 1467, 744.4, 1.050× 107, 1102, 2074, 2.92× 104, 1.0497
)

.

In this case, the number of hospitalised coinfected people becomes lower than in all other cases, while the non-hospitalised
coinfected population reaches its highest value (although it still remains less than one individual at equilibrium). The concentration
of bacteria in environment approaches a lower value at equilibrium in comparison to Cases 1–3.
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Figure 2. Dynamics of the coinfection model when RC > 1, RP < 1 and RB < 1.
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Figure 3. Dynamics of the coinfection model when RC > 1, RP > 1 and RB < 1.
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Figure 4. Dynamics of the coinfection model when RC > 1, RP < 1 and RB > 1.
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Figure 5. Dynamics of the coinfection model when RC > 1, RP > 1 and RB > 1.
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6 Results and discussion

In this work, we proposed a novel mathematical model to study the coinfection dynamics of COVID-19 and bacterial pneumonia.
We established some basic properties of the sub-models (COVID-19 only and bacterial pneumonia only) and computed their basic
reproduction numbers. We obtained some analytical results for the coinfection model and showed that its dynamics depend on
three parameters: RC, RP and RB.

We established in Theorem 4 that a necessary and sufficient condition to ensure that both diseases are eradicated from the popu-
lation is to decrease RC and RP below unity. Biologically, this can be achieved by encouraging social distancing and wearing face
masks. Moreover, part (ii) of Theorem 4 shows that a high reproduction number for the bacterial population in hospitals (RB) is
not enough for bacterial pneumonia to persist in the population.

Furthermore, we determined the conditions for the existence of five equilibrium points. By means of numerical simulations, we
showed that a sixth equilibrium may exist. Based on the simulations in Section 5, we conjecture that the COVID-19-present,
pneumonia-present, bacterial population-present equilibrium E5 exists and is locally stable whenever RC > 1. This implies that
both diseases can coexist in the population even if reproduction numbers of bacterial pneumonia (RP) and bacterial population
(RB) are reduced below unity. Hence, epidemic policies should focus on reducing the basic reproduction number of COVID-19 in
order to control the pandemic.

The simulations obtained in Section 5 show qualitatively similar dynamics for all four cases depicted in Figures 2–5: all subpopu-
lations converge to a positive value. However, we must remark that the number of coinfected, non-hospitalised individuals (XII)
remains very low (less than one individual at equilibrium) in all cases; in contrast, most of the coinfection cases occur in the
hospitalised compartment (XIH). This is in line with the increased susceptibility of hospitalised COVID-19 patients to bacterial or
fungal infections that has been observed in clinical trials [49, 50, 51].

Although many models have been proposed recently to study the coinfection dynamics of COVID-19 and other diseases [41, 42, 43,
44, 45, 46], our work is the first that takes into account the distinctive features of bacterial pneumonia, in particular, the inclusion
of two infection ways (community and hospital transmission).

7 Conclusions

We proposed and analyzed an ODE model which, to the best of our knowledge, is the first epidemic model used to describe the
coinfection of bacterial pneumonia and COVID-19. The highlights of our work include determining the stability conditions for the
disease-free equilibria, as well as the existence conditions for five different equilibria. Due to the complexity of our model, we did
not include a stability analysis for all equilibrium points. This is an area of research that could be elaborated on in future works.
Other approaches that could be tackled in further research include expanding our coinfection model using vaccination against
COVID-19 or multiple SARS-CoV-2 variants, as well as performing parameter fitting using real data.
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Abstract

In this paper, we use an effective method which is the rational sine-Gordon expansion method to present new wave
simulations of a governing model. We consider the (1+1)-dimensional conformable Fisher equation which is used to
describe the interactive relation between diffusion and reaction. Various types of solutions such as multi-soliton, kink,
and anti-kink wave soliton solutions are obtained. Finally, the physical behaviours of the obtained solutions are shown
by 3D, 2D, and contour surfaces.

Key words: Rational sine-Gordon expansion method; (1+1)-dimensional Fisher equation; conformable derivative; travel-
ling wave solutions

AMS 2020 Classification: 35A25; 35C07; 35R11

1 Introduction

Mathematical modelling of physical systems leads to linear and nonlinear differential equations in physics, engineering, and
other fields. Understanding physical processes described by nonlinear equations necessitates finding exact solutions. Aside from
that, exact solutions can be used to calculate specific critical physical quantities analytically and for simulation [1]. There are
some methods to calculate analytically including the Hirotas’ direct method [2], the tanh method [3], the extended tanh-function
method [4], the multiple exp-function method [5], the transformed rational function method [6], the first integral method [7],
the modified simplest equation method [8], the improved Bernoulli sub-ODE method [9], the Sine-Gordon expansion method
[10, 11, 12], the modified exponential method [13]. Besides these analytical methods, there are many efficient numerical techniques
have been submitted to the literature by mathematicians. For example, the q-homotopy analysis transform technique [14], the
trapezoidal base homotopy perturbation method [15], and others [16, 17, 18]. The paper aims to find exact soliton solutions of the
conformable (1+1)-dimensional Fisher equation [19] by using the rational sine-Gordon expansion method. The (1+1)-dimensional
Fisher equation

ut = α
2uxx + pu –βu3, (1)

describes the process of diffusion and reaction interacting. Fisher presented this equation as a model for mutant gene propagation,
with u(x, t) denoting the density of favourable mutations, α2 as diffusion factor [20]. This equation is used in chemical kinetics
and population dynamics and is also used to solve problems like the nonlinear evolution of a population in one-dimensional ha-
bitual space or the neutron population in a nuclear reaction [21]. Zhou et al. have applied the improved tan(ϕ(ξ)/2)-expansion
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method, the generalized Kudryashov method and the extended (G′/G)-expansion method, and gained the bright-like, dark-like
and singular-like solitary wave solutions [19]. Triki and Wazwaz have used the trial equation method to a generalized Fisher
equation, and gained some new wave solutions [22]. As a different approach, Matinfar et al. [23] focused on the numerical so-
lution. In this context, they obtained solutions compatible with the exact solution by applying the generalized two-dimensional
differential transform method. In this article, we will apply the rational sine-Gordon expansion method to the (1+1)-dimensional
Fisher equation with conformable derivative to construct wave solutions. The conformable derivative operator overcomes some
limitations of other fractional operators (Caputo, Riemann–Liouville, Caputo–Fabrizio and etc.) and provides basic properties of
classical calculus such as the quotient rule, the chain rule, the product of two functions, Rolle’s and mean value theorems. The
application of the conformable derivative is simpler and very effective.

The rest of the paper is organized as follows: In Section 2, we describe the conformable derivative and its fundamental properties.
In Section 3, the basic steps of the rational sine-Gordon expansion method, which is the novelty of the paper are presented. In
Section 4, we apply the proposed method to the (1+1)-dimensional Fisher equation. Several conclusions are given in the last
section.

2 Preliminary remarks on the conformable derivative

Definition 1 Given a function h : [0,∞)→ R. Then the conformable derivative of h order γ is defined by

Lγ(h)(t) = lim
ε→0

h
(

t + εt1–γ
)

– h(t)

ε
,

for all t > 0, γ ∈ (0, 1] [24].

Theorem 1 Let Lγ be the derivative operator with order γ ∈ (0, 1] and h, k be γ- differentiable at a point t > 0. Then we have the following
properties [24, 25]:

i. Lγ(ah + bk) = aLγ(h) + bLγ(k), ∀a, b ∈ R.

ii. Lγ(tp) = ptp–γ, ∀p ∈ R.

iii. Lγ(hk) = hLγ(k) + kLγ(h).

iv. Lγ( hk ) =
kLγ(h)–hLγ(k)

k2
.

v. Lγ(λ) = 0, for all constant functions h(t) = λ.

vi. If h is differentiable, then Lγ(h)(t) = t1–γ dhdt (t).

�

3 Fundamental structure of the RSGEM

Before giving the rational sine-Gordon expansionmethod (RSGEM) [26, 27, 28], we will explain the sine-Gordon expansionmethod
(SGEM). Let us suppose the sine-Gordon equation

ϕxx –ϕtt = m
2 sin(ϕ), (2)

where ϕ = ϕ(x, t),m is a real constant. Considering the wave transform ϕ = ϕ(x, t) = Φ(ξ), ξ = µ(x – ct) into Eq. (2), gives the
nonlinear ordinary differential equation (NODE) as,

Φ
′′ =

m2

µ2(1 – c)
sin(Φ), (3)

where Φ = Φ(ξ),µ is the amplitude and c is the velocity of the travelling wave, respectively.
We find as follows after full simplification of Eq. (3);

[(

Φ

2

)′]2

=
m2

µ2 (1 – c2)
sin2

(

Φ

2

)

+ C, (4)

where C is the constant of integration. Replacing C = 0,ω(ξ) = Φ
2 and A

2 = m2

µ2(1–c2)
in Eq. (4), gives;

ω
′ = A sin(ω). (5)

Setting A = 1 in Eq. (5), gives

ω
′ = sin(ω). (6)
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Solving Eq. (6) by variables separable, we get the two significant properties of trigonometric functions as follows;

sin(w) = sin[w(ξ)] =
2peξ

p2e2ξ + 1

∥

∥

∥

p=1
= sech(ξ), (7)

cos(w) = cos[w(ξ)] =
p2e2ξ – 1

p2e2ξ + 1

∥

∥

∥

p=1
= tanh(ξ), (8)

where p 6= 0 is the integration constant. Let’s consider the nonlinear partial differential equation (NPDE) of the form below, for
which the solution is searched;

P
(

ϕ,ϕx,ϕt,ϕxx,ϕtt,ϕxt,ϕxxx,ϕxxt,ϕ
2, . . .

)

= 0. (9)

We apply the wave transformation, ϕ = ϕ(x, t) = Φ(ξ),ξ = kx +w t
γ

γ into Eq. (9), it gives the following equation,

N

(

Φ,
dΦ

dξ
,
d2Φ

dξ2
, . . .

)

= 0, (10)

where N is a nonlinear ordinary equation (NODE) that has partial derivatives of Φ depending on ξ. The SGEM, the solution of Eq.
(9) is considered in the following form

Φ(ξ) =
n∑

i=1

tanhi–1(ξ)
[

bi sech(ξ) + ai tanh(ξ)
]

+ a0. (11)

Eq. (11) can be rearranged considering Eqs. (7) and (8) as follows;

Φ(ω) =
n∑

i=1

cosi–1(ω)
[

bi sin(ω) + ai cos(ω)
]

+ a0. (12)

As we know, rational functions are more general functions than polynomial functions. We can obtain significantly general forms
of wave solutions which are including polynomial function solutions by this way. The different point of the method is the solution
functions have two auxiliary functions, viz. sech(ξ), tanh(ξ) We consider the following solution form

Φ(ξ) =

∑M
i=1 tanh

i–1(ξ)
[

ai sech(ξ) + ci tanh(ξ)
]

+ a0
∑M
i=1 tanh

i–1(ξ)
[

bi sech(ξ) + di tanh(ξ)
]

+ b0
, (13)

which is also written as

Φ(ω) =

∑M
i=1 cos

i–1(ω)
[

ai sin(ω) + ci cos(ω)
]

+ a0
∑M
i=1 cos

i–1(ω)
[

bi sin(ω) + di cos(ω)
]

+ b0
, (14)

where ai, bi, ci, di, a0, b0 are constants that will be determined later. ai, bi, ci, di values are not all zero at the same time. The value
of M is determined using the balance principle between the highest power nonlinear term and the highest derivative in NODE.

After equating the coefficients of sini(ω) cosj(ω) to zero, we find a set of algebraic equations. ai, bi, ci, di, a0, b0 values are found
in solving the set of algebraic equations by Wolfram Mathematica 12. At the end, we substitute these values into Eq. (13) and get
the new travelling wave solutions of Eq. (9).

4 Application of RSGEM

The (1+1)-dimensional conformable Fisher equation is given as

uγt = α
2uxx + pu –βu3, (15)

where γ is the order of the conformable derivative between 0 < γ ≤ 1.
We use the wave transformation as given below,

u(x, t) = U(ξ),ξ = kx +w
tγ

γ
, (16)

where k,w are constants that will be determined. Getting partial derivatives of U(ξ) the function with respect to x, t, we find a
non-linear ordinary differential equation as

wU′ – α
2k2U′′ – pU +βU3 = 0. (17)
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According to the homogeneous balance principle, we obtain a relationship between U′′ and U3 in Eq. (17), M = 1. For M = 1, Eq. (13)
turns to the below form.

U(ξ) =
a0 + a1 sech(ξ) + c1 tanh(ξ)

b0 + b1 sech(ξ) + d1 tanh(ξ)
. (18)

We put Eq. (18) and its first and second-order derivatives into Eq. (17) and can obtain a system of algebraic equations. By using
Wolfram Mathematica 12, a0, a1, b0, b1, c1, d1 and the other parameters can be found. Finally, we put these coefficients into Eq. (13)
and obtain new travelling wave solutions of Eq. (1).

Case-1

a1 =
ib1
√

wβ –
√

β
(

6βa20 –wb
2
1
)

β
√
6

, d1 =
ia0
√

6β
√
w

, c1 = –a0, p = –
2w
3
, k =

i
√
w

α
√
3
, b0 = 0.

Putting the above coefficients into Eq. (13), yields

u1(x, t) = –











Sec
[√
wx√
3α
– it

γw
γ

] (

–i
√

wβb1 +
√

β
(

6βa20 –wb
2
1
)

)

√
6β

– a0

(

–1 + iTan
[√
wx

√
3α

–
itγw

γ

])











/ Sec
[√
wx

√
3α

–
itγw

γ

]

b1 –

√

6β
w
a0 Tan

[√
wx

√
3α

–
itγw

γ

]

.

(19)

where i2 =
√
–1 . Considering the suitable values of parameters, we can find wave simulations for Eq. (19) as following Figures 1

and 2:
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Figure 1. The 3D and 2D surfaces of the wave solution (19) by considering the values γ = 0.9, a0 = 2.1, b1 = 1.2,α = 2.5,w = 1.6,β = 2, t = 0.1.

Case-2

a1 =
a0b1
b0

–

√

√

√

√a20

(

–1 +
b21
b20

)

, c1 = –a0,w = –
6βa20
b20

,α =

√

2βa0
kb0

, p =
4βa20
b20

, d1 = 0.
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Figure 2. The contour plot surfaces of the wave solution Eq. (19) by considering the values γ = 0.9, a0 = 2.1, b1 = 1.2,α = 2.5,w = 1.6,β = 2, t = 0.1.

Putting the above coefficients into Eq. (13), yields

u2(x, t) =

–Sech
[

kx –
6tγβa20
γb20

]

√

a20

(

–1 +
b21
b20

)

+ a0






1 +

Sech
[

kx–
6tγβa20

γb20

]

b1

b0
– Tanh

[

kx –
6tγβa20
γb20

]







b0 + Sech
[

kx –
6tγβa20
γb20

]

b1

.
(20)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (20) as following figures:
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Figure 3. The 3D and 2D surfaces of the wave solution Eq. (20) by considering the values γ = 0.9, a0 = 0.2, b1 = 2.5, b0 = 1, k = 2,β = 0.2, t = 0.1.
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Figure 4. The contour plot surfaces of the wave solution (20) by considering the values γ = 0.9, a0 = 0.2, b1 = 2.5, b0 = 1, k = 2,β = 0.2, t = 0.1.
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Case-3

a1 = –

√

√

√

√

βa20 + k
2α2b21 –

√

2k2α2βa20b
2
1 + k

4α4b41
β

, d1 = –

√

2βa0
kα

, b0 = 0, c1 = –
a1

(

k2α2b21 +
√

2k2α2βa20b
2
1 + k

4α4b41

)

√

2βkαa0b1
,

p = 2k2α2, w =
3c1
a0
.

Putting these coefficients into Eq. (13), yields

u3(x, t) =
kα
(

a0 + a1 Sech
[

kx + 3c1t
γ

a0γ

]

+ c1 Tanh
[

kx + 3c1t
γ

a0γ

])

kαb1 Sech
[

kx + 3c1t
γ

a0γ

]

–
√

2βa0 Tanh
[

kx + 3c1t
γ

a0γ

] . (21)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (21) as following figures:
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Figure 5. The 3D and 2D surfaces of the wave solution (21) by considering the values γ = 0.9, a0 = 2.5, b1 = 1.5,α = 2.5, k = 0.2,β = 0.2, t = 0.1
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Figure 6. The contour plot surfaces of the wave solution (21) by considering the values γ = 0.9, a0 = 2.5, b1 = 1.5,α = 2.5, k = 0.2,β = 0.2, t = 0.1.
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Putting these values into Eq. (13), yields

u4(x, t) = –

a0

(

b1 – e
–kx+ 3pt

γ

2γ d1

)

+
√

a20
(

b21 + d
2
1
)

d1
(

b1 + Sinh
[

kx – 3ptγ
2γ

]

d1
) . (22)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (22) as following figures:
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Figure 7. The 3D and 2D surfaces of the wave solution (22) by considering the values γ = 0.9, a0 = 2.5, b1 = 3.1, d1 = 1, p = 1.2, k = 2.5, t = 0.1.
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Figure 8. The contour plot surfaces of the wave solution (22) by considering the values γ = 0.9, a0 = 2.5, b1 = 3.1, d1 = 1, p = 1.2, k = 2.5, t = 0.1.
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Putting these values into Eq. (13), yields

u5(x, t) =

2

(

a1

(

e
kx– 3k

2α2tγ
γ b0 + b1

)

–
√

a21
(

–b20 + b
2
1
)

)

(

1 + e
2
(

kx– 3k
2α2tγ
γ

)

)

b0
(

b0 + Sech
[

kx – 3k2α2tγ
γ

]

b1
)

. (23)

When we consider the suitable values of parameters, we can find wave simulations for Eq. (23) as following figures:
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Figure 9. The 3D and 2D surfaces of the wave solution (23) by considering the valuesθ = 0.9, a1 = 1.5, b1 = 2, b0 = 0.5,α = 0.5, k = 2.9, t = 0.1.
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Figure 10. The contour plot surfaces of the wave solution (23) by considering the valuesθ = 0.9, a1 = 1.5, b1 = 2, b0 = 0.5,α = 0.5, k = 2.9, t = 0.1.

5 Conclusion

In this paper, the rational sine-Gordon expansion method has been applied to the (1+1)-dimensional conformable Fisher equation.
We have obtained some new wave solutions including hyperbolic and trigonometric functions. Figure 1 shows multi-soliton
solution surfaces both imaginary and real parts of Eq. (19). Figure 3, Figure 5, and Figure 9 show the anti-kink soliton surfaces
for Eq. (20), Eq. (21) and Eq. (23), respectively. Figure 7 shows the kink soliton surface for Eq. (22). Kink-type solitons are
travelling wave solutions that climb up or climb down from one phase to another, and kink soliton reaches a constant at infinity.
The mentioned model is used for modelling the relationship between the rate of inflation and both real and nominal interest rates,
population dynamics in nonlinear media, and logistic population growth models, as well [20, 29, 30]. Fisher’s model has been
investigated by a numerical technique which is the q-homotopy analysis transformmethod (q-HATM) in [31]. They considered the
time-fractional Fisher’s model in Caputo’s sense. Besides, they assumed special values of the coefficients in the model. The main
advantage of the proposed method is the derived solutions include many other analytical techniques. According to new results
and all figures, it has been observed that this method is a powerful tool for obtaining analytical solutions of nonlinear partial
differential equations such as governing models. We hope that the provided solutions may be useful for scientists in mathematical
biology, neurophysiology, chemical reactions, and economy.
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Abstract

In this article, we consider a class of systems of differential equations with multiple delays. We define a transform that
reformulates the system with delays into a singular linear system of differential equations whose coefficients are non-
square constant matrices, and the number of their columns is greater than the number of their rows. By studying only
the singular system, we provide a form of solutions for both systems.
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1 Introduction

In this article, we consider a class of systems of differential equations withmultiple delays and define a transform that reformulates
the system with delays into an underdetermined singular linear system of differential equations. The importance of this article is
to develop a new idea and method that can bring new insight to researchers between systems with delays and singular systems of
differential equations.

We are interested in the following system of differential equations with delays:

An+1x
′(t) = A0x(t) + A1x(t + τ1) + A2x(t + τ2) + ... + Anx(t + τn) + V(t), (1)

where τi > 0 is constant time delay, V ∈ C
r×1, Ai ∈ C

r×r, and x : [0, +∞)→ C
r×1.

Systems of differential equations with delays have become more and more important nowadays. In the past few years, there have
been lots of papers concerned with delays, see [18, 25, 26, 30], and their applications in macroeconomics, engineering, etc, see
[4, 19, 27, 22, 23, 24, 31, 35].

We now consider the following singular system of differential equations:

EY ′(t) = AY(t) + V(t), (2)

where E,A ∈ C
r×m, r < m, V ∈ C

r×1, and Y : [0, +∞)→∈ C
m×1.

Singular systems of differential equations, see [2, 3, 5, 7, 12, 17, 20], and difference equations, see [8, 21] have attracted the interest
of several researchers in the last few decades. Some interesting results have also been obtained for singular systems of equations
evolving fractional operators, see [1, 6, 9, 11, 13, 15, 29, 34]. This type of systems appear in control theory, see [3, 10, 33], and in
several applications in electrical engineering such as the modeling of electrical circuits, see [20], electricity markets, see [14], and
power system dynamics, see [28, 32].
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The article provides mainly two results. For the first result we consider the system with delays (1) and construct an equivalent
singular system with a singular pencil without delays in the form of (2). This result can also be seen as a transform that connects
these two systems. In the second result we consider the singular system (2) and by using matrix theory we provide a form of its
solutions. Then, by using this formula and by taking into account that (2) is equivalent to (1), without any further computations
we obtain a form of solutions also for the system with delays (1). Through this method we aim to connect two systems of different
nature and have an alternative way to discuss and study the system with delays (1).

2 Main results

We, firstly, state the following theorem:

Theorem 1 Consider a system with delays in the form of (1). Then there exists a singular system of differential equations in the form of (2)
that is equivalent to (1).

Proof 1 System (1) has the form

An+1x
′(t) = A0x(t) + A1x(t + τ1) + A2x(t + τ2) + ... + Anx(t + τn) + V(t).

We adopt the following notation:

y1(t) = x(t),
y2(t) = x(t – τ1),
y3(t) = x(t – τ2),

...

yn(t) = x(t – τn).

Furthermore

y′1(t) = x
′(t),

y′2(t) = x
′(t – τ1),

y′3(t) = x
′(t – τ2),
...

y′n(t) = x
′(t – τn).

Equivalently, we get:

[

An+1 0r,r 0r,r . . . 0r,r
]



















y′1(t)
y′2(t)
y′3(t)
...

y′n(t)



















=
[

A0 A1 A2 . . . An
]



















y1(t)
y2(t)
y3(t)
...

yn(t)



















+ V(t),

or, equivalently, in matrix form

EY ′(t) = AY(t) + V(t),

where m = r · n, Y =



















y1(t)
y2(t)
y3(t)
...

yn(t)



















, and E =
[

An+1 0r,r 0r,r . . . 0r,r
]

, A =
[

An+1 0r,r 0r,r . . . 0r,r
]

.

The proof is completed.

�

The importance of Theorem 1 is that we may study a system in the form of (1) which has delays through a system that may
be singular and underdetermined, but it is linear and without delays. This system has a pencil that is singular because the matrix
coefficients are non-square with r < m.
Despite several studies, most articles in the literature deal with singular systems that have regular pencils. The regularity of the
pencil means that the matrices are square r = m, while the pencil formed has a determinant not identically equal to zero. Focus is
then given in studying the solutions and stability of such a system through the eigenvalues of this pencil.

Singular systems with singular pencils are usually avoided. There are two types of singular pencils. A first case is the matrix
coefficients of the system to be square but with a pencil that has a determinant identically zero. Meaning that the pencil is not
invertible, something that is crucial for the existence of solutions of the system that appears in the frequency domain after the
Laplace transform is applied to the system in the time domain. The other type of singular pencil is the matrix coefficients to be
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non-square. In this case, the determinant of the pencil cannot be defined.

In this article, as already mentioned, we study the system with delays (1) through the system (2) which is a singular underdeter-
mined system of linear differential equations. The pencil of this type of system is singular. Unlike the regular pencil which may
have finite eigenvalues & an infinite eigenvalue, a singular pencil has additional invariants the minimal column and row minimal
indices. This type of invariant for such a pencil is not always easy to be obtained. It becomes even more complicated when dealing
with large-scale systems. Another important characteristic of this case considered is that the existence of solutions for a system
with a singular pencil is not automatically satisfied. This is very important for many applications for which the model is significant
only for a certain range of its parameters. In these cases, a careful interpretation of results or even a redesign of the system may
be needed.

In general, the pencil of (2) is characterized by a uniquely defined element, known as the complex Kronecker canonical form, see
[3], [16], specified by the complete set of invariants of the singular pencil sE – A. This is the set of the finite–infinite eigenvalues
and the minimal column–row indices. In the case of r < m there exist only column minimal indices. Let Nr be the right null space
of a matrix respectively. Then the equations (sE – A)U(s) = 0r,1, have solutions in V(s), which are vectors in the rational vector
spaces Nr(sE – A). The binary vectors U(s) express dependence relationships among the rows of sE – A. Note that U(s) ∈ C

r×1 are
polynomial vectors. Let d=dimNr(sE–A). It is known, that Nr(sE–A) as rational vector spaces, are spanned by minimal polynomial
bases of minimal degrees

ǫ1 = ǫ2 = ... = ǫg = 0 < ǫg+1 ≤ ... ≤ ǫg+h,

which is the set of columnminimal indices of sE– A. This means there are g + h = d column minimal indices. We are interested only
in the h non-zero minimal indices. To sum up the invariants of a singular pencil with r < m is the finite – infinite eigenvalues
of the pencil and the minimal column indices as described above. Following the above given analysis, there exist non-singular
matrices P, Q with P ∈ C

r×r, Q ∈ C
m×m, such that

PEQ = EK = Ip ⊕ Hq ⊕ Eǫ,

PAQ = AK = Jp ⊕ Iq ⊕ Aǫ,

(3)

where Jp is the Jordan matrix for the finite eigenvalues, Hq is a nilpotent matrix with index q∗ which is actually the Jordan matrix
of the zero eigenvalues of the pencil sA – E. The matrices Eǫ, Aǫ are defined as

Eǫ = blockdiag
{

Lǫg+1 , Lǫg+2 , ..., Lǫd

}

, (4)

where Lǫ =
[

Iǫ
... 0ǫ,1

]

, for ǫ = ǫg+1, ...,ǫd

Aǫ = blockdiag
{

L̄ǫg+1 , L̄ǫg+2 , ..., L̄ǫd

}

,

where L̄ǫ =
[

0ǫ,1
... Iǫ

]

, for ǫ = ǫg+1, ...,ǫd. Finally, the matrices P, Q can be written as

P =







P1
P2
P3






, Q =

[

Qp Qq Qǫ
]

, (5)

and by substituting the transformation Y(t) = QZ(t) into (2) we obtain

EY ′(t)QZ(t) = AQZ(t) + V(t),

whereby, multiplying by P, using (3)–(5) and setting Z(t) =







Zp(t)
Zq(t)
Zǫ(t)






, we arrive at at the subsystems

Z′p(t) = JpZp(t) + P1V(t), (6)

HqZ
′

q(t) = Zq(t) + P2V(t), (7)

and

EǫZ
′

ǫ(t) = AǫZǫ(t) + P3V(t). (8)
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The subsystems (6), (7) have the following solutions, respectively:

Zp(t) = e
Jptc +

∫
∞

0
eJp(t–u)P1V(u)du ,

and

Zq(t) = –
q∗–1∑

i=0

HiqP2
di

dti
V(t) .

The third subsystem has infinite solutions which can be taken arbitrarily as Zǫ = C(t). This can be proved as follows:

Let P3V =















Vǫg+1
Vǫg+2
...
Vǫd















. If we set Zǫ =















Zǫg+1
Zǫg+2
...
Zǫd















, then we get

[Lǫg+1 ⊕ ...⊕ Lǫd ]















Z′ǫg+1

Z′ǫg+2
...
Z′ǫd















= [L̄ǫg+1 ⊕ ...⊕ L̄ǫd ]















Zǫg+1
Zǫg+2
...
Zǫd















+















Vǫg+1
Vǫg+2
...
Vǫd















.

For the non-zero blocks, an arbitrary equation can be written as

LǫiZ
′

ǫi
= L̄ǫiZǫi + Vǫi , i = g + 1, g + 2, ..., d ,

or, equivalently,

[

Iǫi

... 0ǫi,1

]

Z′ǫi
=
[

0ǫi,1
... Iǫi

]

Zǫi + Vǫi ,

or, equivalently,













1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .

...
...

0 0 . . . 1 0

































z′
ǫi,1

z′
ǫi,2

...
z′ǫi,ǫi
z′
ǫi,ǫi+1





















=













0 1 . . . 0 0
0 0 . . . 0 0
...

... . . .

...
...

0 0 . . . 0 1































zǫi,1
zǫi,2
...

zǫi,ǫi
zǫi,ǫi+1



















+



















vǫi,1
vǫi,2
...

vǫi,ǫi
vǫi,ǫi+1



















,

or, equivalently,

z′
ǫi,1

= zǫi,2 + vǫi,1,

z′
ǫi,2

= zǫi,3 + vǫi,2,

...
z′ǫi,ǫi

= z′
ǫi,ǫi+1

+ vǫi,ǫi .

It is clear from the above analysis that there is the number of unknown functions is ǫi + 1 while the number of equations is ǫi.
Hence by setting C := C(t), the solutions of Zǫ can only be taken arbitrary as:

Zǫ = C.

To conclude, in the case of a singular pencil with r < m, system (2) has the solution

Y(t) = QZ(t) =
[

Qp Qq Qǫ
]







Zp(t)Φ0(t)C +
∫
∞

0 Φ(t – τ)V(τ)dτ

–
∑q∗–1
i=0

HiqP2V
(i)(t)

Zǫ






,

or, equivalently,

Y(t) = Qp

[

Φ0(t)C +
∫
∞

0
Φ(t – τ)V(τ)dτ

]

– Qq

q∗–1∑

i=0

HiqP2V
(i)(t) + QǫZǫ. (9)
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To sum up, the solution of (2) can be written in the form:

Y(t) = QZ(t),

or, equivalently,

Y =
[

Qp Qq Qǫ
]







Zp(t)
Zq(t)
Zǫ(t)






,

or, equivalently,

Y = Qp[e
Jptc +

∫
∞

0
eJp(t–u)P1V(u)du] – Qq[

q∗–1∑

i=0

HiqP2
di

dti
V(t)] + QǫC(t),

or, equivalently,

Y = Qpe
Jptc + QK(t),

where

K(t) =









∫
∞

0 e
Jp(t–u)P1V(u)du

–Qq[
∑q∗–1
i=0

HiqP2
di

dti
V(t)

QǫC(t)









,

and Qp ∈ C
m×p, and Q ∈ C

m×m. Hence by setting

Qp =

[

Q1p
Q2p

]

, Q =

[

Q1

Q2

]

,

where Q1p ∈ C
r×p, and Q1 ∈ C

r×m, we arrive at the solution of the system with delays (1):

x(t) = Q1pe
Jptc + Q1K(t).

3 Conclusions

In this article, we considered a class of systems with delays in the form of (1). We proved that the system with delays can be
studied through an equivalent singular system of differential equations whose coefficients are non-square constant matrices and
the number of their columns is greater than the number of their rows. By taking into consideration that the relevant pencil is
singular, we provided a formula for solutions. The importance of this result is that we may study system (1) which has delays
through system (2), which may be singular and underdetermined, but it is linear and without delays.

As a future direction, we aim to further extend these theoretical results and examine promising relevant applications where delays
appear, i.e. dynamics of electrical power systems, macroeconomic models, electricity market models, etc. In addition, we aim to
extend our results to other types of systems where the memory effect appears such as systems of fractional differential equations,
and systems of fractional nabla difference equations. For all this, there is already some research in progress.
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Abstract

For the sake of human health, it is crucial to investigate infectious diseases including HIV/AIDS, hepatitis, and others.
Worldwide, the recently discovered new coronavirus (COVID-19) poses a serious threat. The experimental vaccination
and different COVID-19 strains found around the world make the virus’ spread unavoidable. In the current research,
fractional order is used to study the dynamics of a nonlinear modified COVID-19 SEIR model in the framework of the
Caputo-Fabrizio fractional operator with order b. Fixed point theory has been used to investigate the qualitative analysis
of the solution respectively. The well-known Laplace transform method is used to determine the approximate solution
of the proposed model. Using the COVID-19 data that is currently available, numerical simulations are run to validate
the necessary scheme and examine the dynamic behavior of the various compartments of the model. In order to stop
the pandemic from spreading, our findings highlight the significance of taking preventative steps and changing one’s
lifestyle.

Key words: COVID-19 model; theoretical analysis; Laplace transform; Caputo-Fabrizio fractional operator; numerical
simulations
AMS 2020 Classification: 37N25; 34A25; 44A10

1 Introduction

Since December 2019, the whole globe has been facing the dangerous and contagious new infection COVID-19. The infection has
caused a lot of health, mental, economic, and unemployment problems throughout the globe. According to recent reports, over
fifty million individuals are infected, and nearly four and a half million people have died from the said infection [1]. Pakistan
has also been severely affected by COVID-19, with approximately 23,000 citizens dying and 1.5 million contracting the infection.
Due to these circumstances, each and every country develops its own policy for controlling the pandemic. For this reason, they
ban overcrowding in air transportation services, bus services, and various educational institutions. Different immigration services
among the countries are also banned by the policymakers of each country. The big cause of this infection is the meeting of
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infectious people with an uninfected population. Therefore keeping masks is also the cry of the day for reducing the transmission
of COVID-19. Beyond this, some other precautionary measures are also taken by different countries [2].

The said pandemic is a cause of fear for humanity throughout the world, as most people are aware of past pandemics from
which a considerable number of the population faced death. Technology advances over time, allowing for the cure and treatment
of various epidemics. To overcome an epidemic, vaccines are prepared in the laboratory. Each related field of science plays
a role in the establishment of control strategies, and among them is mathematical modeling. Mathematical modeling gives
a prediction of various diseases by using past and future data. For the first time, a real-world problem had been studied via
mathematical expressions in the eighteenth century. Following that, mathematical modelling has made significant contributions
to the investigation of a wide range of real-world problems [3, 4, 5, 6].

Recently, the pandemic of COVID-19 has attracted the focus of many researchers in various fields as can be seen in [7, 8, 9,
10]. Mathematicians also played a role in the investigation of the said pandemic. The said disease has been transformed into
mathematical expressions, and future predictions have been reported. Useful information about the past and present of the
disease has been reported, which is advantageous in establishing control strategies for its eradication from society. In this regard,
valuable work can be found in [11, 12, 13, 14, 15, 16]. The formation of a mathematical formula consists of conditions regarding
the parameters involved in the problem under consideration. Various mathematical models exist in the literature that are helpful
in understanding the spread of COVID-19 and suggest the adoption of policies necessary to control (optimize) the spread of the
infection in an effective way. One of such remarkable models has been reported by [17]. The authors classified the total population
into six categories. These includes the susceptible class S̃, the latently infected compartment Ẽ, the infected class Ĩ, the class of
recovered population R̃, the demised class D̃ and M̃ is the COVID-19 filthy materials or surfaces in the atmosphere. The model
reported in [17] has been expressed in the form of the following system of autonomous differential equations:

dS̃

dt
= Π – (τ + α1 +βq)S̃,

dẼ

dt
= βqS̃ – (ϑ + (1 – κ)τ + α1)Ẽ,

dĨ

dt
= τS̃ + (1 – κ)τẼ – (ρ + α1 + υ)Ĩ,

dR̃

dt
= ϑẼ + υĨ – α1R̃,

dD̃

dt
= ρĨ – α2D̃,

dM̃

dt
= σẼ + ζĨ –ϕM̃,

(1)

In model (1), the parameter description has been given in Table 1.

Parameters values

Π The rate of recruitment of susceptible class
α1 Natural death rate except for dead population
α2 Burning the carcass of dead population
ρ The demise rate due to virus
ϑ The rate of recovery from the infection
κ The rate of average effectiveness of prevailing self-precautionary measures
ϕ The rate of decay of M̃
ζ The transfer rate from Ĩ to environment
τ The rate of force of infection
β The dissemination rate of susceptible class
q The rate of change of behavior function
υ The rate of recovered persons fro exposed class
σ The shedding rate from Ẽ to environment

Table 1. Description of the given parameters

Fractional calculus (FC), which has a wide range of applications in the modelling of physical processes, has grown in popularity
among scholars over the past few decades. The ideas of classical calculus are made more universal by FC. Riemann-Liouville and
Caputo conducted the initial investigation into the generalization of the ordinary integral and differential operators into fractional
derivatives (FD) [18, 19]. After that, the fractional operator has been used by several researchers in a variety of sectors of science,
engineering, and real-world issues [20, 21, 22]. In order to explore real-world issues including viscoelasticity systems, signal
processing, diffusion processes, and control processing, fractional order differential equations provided a suitable framework,
interested readers are directed to [23, 24, 25, 26]. Recently, in 2015 Caputo and Fabrizio introduced a new concept of fractional
order derivative which has a non-singular kernel [27]. Several researchers have published many articles on this new concept of
fractional derivatives; for instance, see [28, 29, 30]. The subject has been handled from a variety of angles, including quantitative
analysis that considers existence, uniqueness, and regularity, as well as a numerical, analytical method, and the Laplace transform
method to evaluate and interpret the data [31, 32, 33].

FC operators have more widespread advantages than the integer order operator since their nonlocal kernels are defined. The
memory and history of any physical process are preserved by the fractional operators (FOs). The convolution of the kernels is a



230 | Mathematical Modelling and Numerical Simulation with Applications, 2022, Vol. 2, No. 4, 228–243

topic of interest to many FOs. Numerous research publications have demonstrated the advantages of FOs over traditional operators.
We go over some uses of FOs for the mathematical modelling of actual physical issues. According to the authors in [34], research
was done on the COVID-19 pandemic disease’s fractional-order mathematical model, which was based on actual data. Authors in
[35], based on actual clinical data, examined the human liver in fractional order. The authors in [36], examined three different
fractional operators on the blood ethanol model. For modelling bacterial infections, specifically, researchers also employ FOs.
The authors in [37] assessed the Salmonella bacterial infection using fractional operators. The authors in [38] using nonsingular
fractional operators, the risky bacterial infection (Dengue fever) was studied. A significant amount of work has been done by
researchers in the applications of FC and applied sciences [39, 40, 41, 42].

The motivation and novelty of our work are inspired by the above literature, we study a system of COVID-19 using Caputo-Fabrizio
fractional derivative with the exponential kernel. We develop the theoretical results of the considered system. To observe the
dissimilarity among the results of the fractional-order and classical models, we compare the concerning results. The obtained
results reveal that the analysis obtained from the innovative fractional derivative is more conclusive compared with the analysis
of classical derivatives.

The structure of this manuscript is as follows. In Section 2 we recall basic results and notations from FC. In Section 3, we develop
the qualitative results for the system under investigation. In section 4, using the well-known Laplace transform together with
the integral of Laplace, we find the numerical solution of the model under study. Taking into account the data available in the
literature, we carry out numerical simulations in Section 5 and represent simulations graphically. At the end, we conclude our
findings in Section 6.

2 Preliminaries

Here, we present some basic definitions from the literature.

Definition 1 [27] Let a function be g ∈ H1[0, T], where T > 0, and b ∈ (0, 1), then the fractional Caputo-Fabrizio CF derivative is given by

CFDbt [g(ß)] =
N (b)
1 – b

∫ t

0
g′(ß) exp

[

– b
t – ρ

1 – b

]

dß,

whereN (0) = N (1) = 1 is known as normalization function. Also for g ∈ H1[0, T], the the CF can be described by

CFDbt [g(ß)] =
N (b)
1 – b

∫ t

0

(

g(ß) – g(ρ)
)

exp
[

– b
t – ρ

1 – b

]

dρ,

Definition 2 Let g be a function, then the fractional integral of CF with order b ∈ (0, 1) is given as

CFIbt [g(ß)] =
1 – b
N (b)

+
b

N (b)

∫ t

0
g(ß)dß, t ≥ 0.

Definition 3 [43] The Laplace transform for the CF derivative can be defined as

[CFDbt g(ß)] =
σ[g(ß)] – g(0)
σ + b(1 – σ)

, σ ≥ 0.

3 Theoretical results

In this part, we will convert the considered model (1) into fractional form. By using the fractional operator in the framework of
CF by including order b such that 0 < b ≤ 1 is given as:



























































CFDbt S̃(t) = Π + α1 – (τ +βq)S̃,

CFDbt Ẽ(t) = βqS̃ – (α1 + ϑ + (1 – κ)τ)Ẽ,

CFDbt Ĩ(t) = τS̃ + τ(1 – κ)Ẽ – (υ + α1 + ρ)Ĩ,

CFDbt R̃(t) = ϑẼ – α1R̃ + υĨ,

CFDbt D̃(t) = ρĨ – α2D̃,

CFDbt M̃(t) = σẼ + ζĨ –ϕM̃,

(2)

with initial conditions

S̃0 = S̃(0), Ẽ0 = Ẽ(0), Ĩ0 = Ĩ(0), R̃0 = R̃(0), D̃0 = D̃(0), M̃0 = M̃(0).

In this part of the manuscript, we first determine whether the solution to the problem under investigation really exists or not.
We exploit the approach of fixed point theory to determine the existence along with the uniqueness of the model. To develop the
existence theory we will apply Picard’s operator technique. In order to make mathematical analysis more efficient, we assume
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that α1 = α2 = α. To do this, we re-write the suggested model as

CFDbt S̃(t) = V1(t, S̃) = Π – (τ + α +βq)S̃,

CFDbt Ẽ(t) = V2(t, Ẽ) = βqS̃ – (ϑ + (1 – κ)τ + α)Ẽ,

CFDbt Ĩ(t) = V3(t, Ĩ) = τS̃ + τ(1 – κ)Ẽ – (α + υ + ρ)Ĩ,

CFDbt R̃(t) = V4(t, R̃) = ϑẼ – αR̃ + υĨ,

CFDbt D̃(t) = V5(t, D̃) = ρĨ – αD̃,

CFDbt M̃(t) = V6(t, M̃) = σẼ + ζĨ –ϕM̃.

(3)

In the following we set

Fi = sup
C[d,bi]

‖V1(t, S̃)‖, for 1 ≤ j ≤ 6, (4)

where

C[w, hi] = [t –w, t +w]× [u – ci, u + ci] = W ×Wi, for j = 1, 2, ..., 6. (5)

Further, to demonstrate the existence as well as uniqueness of the concerned solution we define the norm on C[w, hi] where
1 ≤ j ≤ 6 as follows

‖℧‖∞ = sup
t∈[t–w,t+h]

|Φ(t)|. (6)

The Picard operator is described by the expression

A : C(W ,W1,W2,W3,W4,W5,W6)→ C(W ,W1,W2,W3,W4,W5,W6). (7)

Applying CFIb to all Eqns. of the considered system (2) and using (3), we obtain



























































S̃(t) = S̃(0) +CF Ib
[

V1(t, S̃)
]

,

Ẽ(t) = Ẽ(0) +CF Ib
[

V2(t, Ẽ)
]

,

Ĩ(t) = Ĩ(0) +CF Ib
[

V3(t, Ĩ)
]

,

R̃(t) = R̃(0) +CF Ib
[

V4(t, R̃)
]

,

D̃(t) = D̃(0) +CF Ib
[

V5(t, D̃)
]

,

M̃(t) = M̃(0) +CF Ib
[

V6(t, M̃)
]

.

(8)

Simplifying the RHS of the above equation we have

Ω(t) =Ω0(t) + [Υ(t,Ω(t)) –Υ0(t)]
1 – b
N (b)

+
b

N (b)

∫ t

0
Υ(x,Ω(x))dx, (9)

where



















Ω(t) =
(

S̃, Ẽ, Ĩ, R̃, D̃, M̃,
)T,

Ω0(t) =
(

S̃0, Ẽ0, Ĩ0, R̃0, D̃0M̃0
)T,

Υ(t,Ω(t)) =
(

Vi(t, S̃, Ẽ, Ĩ, R̃, D̃, M̃
)T, 1 ≤ i ≤ 6.

(10)

Using Eq. (9) and Eq. (10), the operator defined in (7) can be expressed in the form

AΩ(t) =Ω0(t) + [Υ(t,Ω(t)) –Υ0(t)]
1 – b
N (b)

+
b

N (b)

∫ t

0
Υ(ß,Ω(ß))dß. (11)

In the next step, we will assume that the considered system satisfies the following

‖Ω‖ ≤ max{w1,w2,w3,w4,w5,w6}. (12)
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In this scenario, one may write

‖AΩ –Ω0(t)‖ = sup
t∈D

∣

∣

∣

∣

Υ(t,Ω(t))
1 – b
N (b)

+
b

N (b)

∫ t

0
Υ(ß,Ω(ß))dß

∣

∣

∣

∣

,

≤
1 – b
N (b)

sup
t∈D

|Υ(t,Ω(t))| +
b

N (b)
sup
t∈D

∫ t

0
|Υ(ß,Ω(ß))|dß,

≤
1 + t0
N (b)

K, K = max{Kj} for i = 1, 2, ..., 6

< Kw ≤ max{w1,w2,w3,w4,w5,w6} = w, t0 = sup{|t| : t ∈ W}. (13)

In the above Eq. (13), let us define w = 1+t0
N (b)

, we obtain

w <
w

K
.

Next, the given equality can be evaluated as

‖AΩ1 – AΩ2‖ = sup
t∈W

|Ω1 –Ω2|, (14)

we make the use of (9) and write

‖AΩ1 – AΩ2‖ = sup
t∈W

∣

∣

∣

∣

1 – b
N (b)

(Υ(t,Ω1(t))) –Υ(t,Ω2(t))

+
b

N (b)

∫ t

0
(Υ(ß,Ω1(ß))) –Υ(ß,Ω2(ß))dß

∣

∣

∣

∣

≤
1 – b
N (b)

k sup
t∈W

|Ω1(t) –Ω2(t)| +
bk

N (b)
sup
t∈W

∫ t

0
|Ω1(ß) –Ω2(ß)|dß, where k < 1

≤

[

1 + t0
N (b)

]

k‖Ω1 –Ω2‖

≤ wk‖Ω1 –Ω2‖. (15)

Since Υ is a contraction, it follows that wk < 1. This reflects that the operator A is a contraction as well. Consequently one may
conclude the uniqueness of the solution of the system under study.

4 Analytical algorithm for the proposed model

In the following, we focus our attention on finding the general series solution of the model. With the help of Laplace transform,
the given system may be transformed into the form

[S̃(t)] =
S̃(0)
σ

+
σ + b(1 – σ)

σ
[Π + α – (τ +βq)S̃],

[Ẽ(t)] =
Ẽ(0)
σ

+
σ + b(1 – σ)

σ
[βqS̃ – (ϑ + (1 – κ)τ + α)Ẽ],

[Ĩ(t)] =
Ĩ(0)
σ
+

σ + b(1 – σ)
σ

[τS̃ + τ(1 – κ)Ẽ – (α + υ + ρ)Ĩ],

[R̃(t)] =
R̃(0)
σ

+
σ + b(1 – σ)

σ
[ϑẼ – αR̃ + υĨ],

[D̃(t)] =
D̃(0)
σ

+
σ + b(1 – σ)

σ
[ρĨ – αD̃],

[M̃(t)] =
M̃(0)
σ

+
σ + b(1 – σ)

σ
[σẼ + ζI –ϕM̃].

(16)

Using the following series solution as

S̃(t) =
∞∑

z=0
S̃z(t), Ẽ(t) =

∞∑

z=0
Ẽz(t), Ĩ(t) =

∞∑

z=0
Ĩz(t), R̃(t) =

∞∑

z=0
R̃z(t),

D̃(t) =
∞∑

z=0
D̃z(t), M̃(t) =

∞∑

z=0
M̃z(t). (17)
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Using equations (17), the system (16) has the following form:

[ ∞∑

z=0
S̃z(t)

]

=
S̃(0)
σ

+
σ + b(1 – σ)

σ

[

Π – (τ +βq + α)
∞∑

z=0
S̃z

]

,

[ ∞∑

z=0
Ẽz(t)

]

=
Ẽ(0)
σ

+
σ + b(1 – σ)

σ

[

βq
∞∑

z=0
S̃z – (ϑ + α + (1 – κ)τ)

∞∑

z=0
Ẽz

]

,

[ ∞∑

z=0
Ĩz(t)

]

=
Ĩ(0)
σ
+
s + b(1 – σ)

σ

[

τ

∞∑

z=0
S̃z + (1 – κ)τ

∞∑

z=0
Ẽz – (α + ρ + υ)

∞∑

z=0
Ĩz

]

,

[ ∞∑

z=0
R̃z(t)

]

=
R̃(0)
σ

+
σ + b(1 – σ)

σ

[

ϑ

∞∑

z=0
Ẽz + υ

∞∑

z=0
Ĩz – α

∞∑

z=0
R̃z

]

,

[ ∞∑

z=0
D̃z(t)

]

=
D̃(0)
σ

+
σ + b(1 – σ)

σ

[

ρ

∞∑

z=0
Ĩz – α

∞∑

z=0
D̃z

]

,

[ ∞∑

z=0
M̃z(t)

]

=
M̃(0)
σ

+
σ + b(1 – σ)

σ

[

σ

∞∑

z=0
Ẽz + ζ

∞∑

z=0
Ĩz –ϕ

∞∑

z=0
M̃z

]

.

(18)

Comparing similar terms on both sides of (18), we may arrive at

[S̃0(t)] =
S̃0
σ
, [Ẽ0(t)] =

Ẽ0
σ
, [Ĩ0(t)] =

Ĩ0
σ
, [R̃0(t)] =

R̃0
σ
,

[D̃0(t)] =
D̃0
σ
, [M̃0(t)] =

M̃0
σ
,

[S̃1(t)] =
σ + b(1 – σ)

σ

[

Π – (τ +βq + α)S̃0

]

,

[Ẽ1(t)] =
σ + b(1 – σ)

σ

[

βqS̃0 – (ϑ + α + (1 – κ)τ)Ẽ0

]

,

[Ĩ1(t)] =
σ + b(1 – σ)

σ

[

τS̃0 + (1 – κ)τẼ0 – (α + ρ + υ)Ĩ0

]

,

[R̃1(t)] =
σ + b(1 – σ)

σ

[

ϑẼ0 + υĨ0 – αR̃0

]

,

[D̃1(t)] =
σ + b(1 – σ)

σ

[

ρĨ0 – αD̃0

]

,

[M̃1(t)] =
σ + b(1 – σ)

σ

[

σẼ0 + ζĨ0 –ϕM̃0

]

,

[S̃2(t)] =
σ + b(1 – σ)

σ

[

Π – (τ +βq + α)S̃1

]

,

[Ẽ2(t)] =
σ + b(1 – σ)

σ

[

βqS̃1 – (ϑ + α + (1 – κ)τ)Ẽ1

]

,

[Ĩ2(t)] =
σ + b(1 – σ)

σ

[

τS̃1 + (1 – κ)τẼ1 – (α + ρ + υ)Ĩ1

]

,

[R̃2(t)] =
σ + b(1 – σ)

σ

[

ϑẼ1 + υĨ1 – αR̃1

]

,

[D̃2(t)] =
σ + b(1 – σ)

σ

[

ρĨ1 – αD̃1

]

,

[M̃2(t)] =
σ + b(1 – σ)

σ

[

σẼ1 + ζĨ1 –ϕM̃1

]

,

...

[S̃q+1(t)] =
σ + b(1 – σ)

σ

[

Π – (τ +βq + α)S̃z
]

,

[Ẽq+1(t)] =
σ + b(1 – σ)

σ

[

βqS̃z – (ϑ + α + (1 – κ)τ)Ẽz
]

,

[Ĩq+1(t)] =
σ + b(1 – σ)

σ

[

τS̃z + (1 – κ)τẼz – (α + ρ + υ)Ĩz
]

,

[R̃q+1(t)] =
σ + b(1 – σ)

σ

[

ϑẼz + υĨz – αR̃z

]

,

[D̃q+1(t)] =
σ + b(1 – σ)

σ

[

ρĨz – αD̃z

]

,

[M̃q+1(t)] =
σ + b(1 – σ)

σ

[

σẼz + ζĨz –ϕM̃z

]

.

(19)
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On computing the Laplace transform of Eq. (19), we have

S̃0(t) = N1, Ẽ0(t) = N2, Ĩ0(t) = N3, R̃0(t) = N4, D̃0(t) = N5, M̃0(t) = N6,

S̃1(t) =
[

Π – (τ +βq + α)N1

]

(1 + b(t – 1)),

Ẽ1(t) =
[

βqN1 – (α + ϑ + (1 – κ)τ)N2

]

(1 + b(t – 1)),

Ĩ1(t) =
[

τN1 + τ(1 – κ)N2 – (ρ + α + υ)N3

]

(1 + b(t – 1)),

R̃1(t) =
[

ϑN2 + υN3 – αN4

]

(1 + b(t – 1)),

D̃1(t) =
[

ρN3 – αN5

]

(

1 + b(t – 1)
)

,

M̃1(t) =
[

σN2 + ζN3 –ϕN6

]

(

1 + b(t – 1)
)

,

S̃2(t) = Π
(

1 + b(t – 1)
)

[

– (τ +βq + α)s11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

,

Ẽ2(t) =
[

βqs11 – (ϑ + α + (1 – κ)τ)e11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

,

Ĩ2(t) =
[

τs11 + τ(1 – κ)e11 – (ρ + α + υ)u11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

,

R̃2(t) =
[

ϑe11 + υu11 – αr11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

,

D̃2(t) =
[

ρu11 – αd11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

,

M̃2(t) =
[

σe11 + ζu11 –ϕm11

](

1
2
b2t2 – 2b2t + 2bt + (b – 1)2

)

.

(20)

Correspondingly, the series solution for the next terms may be computed. Further, the unknown terms in the above equation (20)
are as

s11 = Π – (τ +βq + α)N1,

e11 = βqN1 – (α + ϑ + τ(1 – κ))N2,

u11 = τN1 + τ(1 – κ)N2 – (ρ + α + υ)N3,

r11 = ϑN2 + υN3 – αN4,

d11 = ρN3 – αN5,

m11 = σN2 + ζN3 –ϕN6.

(21)

5 Results and discussion

This particular section of the manuscript is devoted to the numerical simulations of the proposed model. Parameters of the model
are assigned values given in Table 2 which are taken from [17]. The description of initial population of the compartments for the
proposed model is S̃ = 220.89857, Ẽ = 220.812, Ĩ = 0.0008555, R̃ = 0.00003208, D̃ = 0.0007777, M̃ = 80.000706 million.

Parameters values Parameters values

Π 0.80 β 0.000761
α 0.0080 τ 0.00073
ρ 0.00039 q 1
ϑ 0.00064 σ 0.0075
κ 0.5998 ζ 0.0023
ϕ 0.07862 υ 0.000236

Table 2. Parameter values used in numerical simulation

We simulate the six classes of the model under consideration for available data described in Table 2 using the series solution
technique of Laplace transform. Figure 1 is the representation of the susceptible class showing sudden decay with the passing of
time. This is due to the fact that various contaminated constituents of COVID-19 are absorbed by the said class and jump to the
other classes of the system. At the early stage, they decrease and afterward the class becomes stable for distinct fractional-order
b. Fractional order behavior is compared with integer order. In Figure 2 one can see the representation of exposed cases for
different fractional-order b along with a comparison with integer-order. Like susceptible the exposed population also decreases
as they transfer to other compartments. Figure 3 shows that the infection class reaches the maximum value. This class then slowly
and gradually decreases and attains stability at various fractional orders. Due to the robust immunity and self-defense, there are
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Figure 1. Dynamical behavior of S̃ at various order b.
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Figure 2. Dynamical behavior of Ẽ at various order b.

reductions and stability in the infection. Once more, we have provided an integer-order comparison. The recovery rate increases
over time as the infection class increases. The maximum attained value for the recovered class is 1.5. After that, the recovery class
also becomes stable as shown in Figure 4. We have observed in all the graphical representations that by increasing the values of
fractional order, the dynamics will converge to the integer-order value 1. The stability was attained rapidly at low fractional-order
and vice versa. Figure 5 represents the dynamics of demised class caused due to COVID-19. We note that the maximum value of
this compartment is attained at 0.01. The class then declines and approaches the stability in distinct fractional orders. The decline
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Figure 3. Dynamical behavior of Ĩ at various order b.
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Figure 4. Dynamical behavior of Ĩ at various order b.

and stability gained in the demised class are due to the decrease in infection and the adoption of some precautionary measures for
cleaning society. This obviously decreases the contaminated constituents M̃(t) as depicted in Figure 6. In Figures 7-12, we take
another set of initial data as S̃ = 220, Ẽ = 150.892, Ĩ = 0.4555, R̃ = 0.013208, D̃ = 0.7777, M̃ = 80.000706 million. The behavior of
all six compartments is slightly changed and converging on different fractional orders. In this case, we also compare the dynamics
of fractional orders with integer orders.
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Figure 6. Dynamical behavior of M̃ at various order b.
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Figure 9. Dynamical behavior of Ĩ at various order b.
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Figure 10. Dynamical behavior of R̃ at various order b.
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Figure 11. Dynamical behavior of D̃ at various order b.
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6 Conclusion

In this paper, we have examined the dynamics of a fractionally-order modified non-linear SEIR type system using the Caputo-
Fabrizio derivative operator of the non-singular kernel. Our study suggested a strategy to overcome the spread of COVID-19 and
how to stabilize it. We have carried out the qualitative analysis with the help of the findings from the nonlinear functional analysis.
The numerical solutions have been obtained with the aid of the Laplace transform of series solutions. All the small quantities are
then added together to obtain an approximate solution for each quantity. The said technique has been simulated for the first few
terms on different fractional orders along with a comparison with integer orders to validate the required scheme. This dynamic
is caused by viruses or microorganisms present in the human body and throat, therefore, the nano-technical dynamics of the
pandemic model are very effective in the sense of fractional derivative. Therefore, our study has strongly recommended that an
individual strictly follow the SOPs of the WHO in order to control the spread of the infection. It is also essential to raise awareness
and disseminate information in society in order to keep the populace safe from the virus and possibly prevent the infection from
spreading to a pandemic level. Our research predicts the future spread and controls of the COVID-19 dynamics in the form of a
fractional Caputo-Fabrizio derivative for dynamics ranging from 0 to 1.
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Abstract

In this paper, we focus on modelling the glucose-insulin system for the purpose of estimating glucagon, insulin, and
glucose in the liver in the internal organs of the human body. A three-compartmental mathematical model is proposed.
The model parameters are estimated using a nonlinear inverse optimization problem and data collected in Chad. In order
to identify insulin and glucose in the liver for type 2 diabetic patients, the Sampling Importance Resampling (SIR) particle
filtering algorithm is used and implemented through discretization of the developed mathematical model. The proposed
mathematical model allows further investigation of the dynamic behavior of hepatic glucose, insulin, and glucagon in
internal organs for type 2 diabetic patients. During periods of hyperglycemia (i.e., after meal ingestion), whereas insulin
secretion is increased, glucagon secretion is reduced. The results are in agreement with empirical and clinical data and
they are clinically consistent with physiological responses.

Key words: Mathematical model; Type 2 diabetes patients; glucose; insulin; estimation; internal organs
AMS 2020 Classification: 92B05; 37N25; 34A45; 65L05

1 Introduction

Diabetes is a disease that cannot be cured (chronic) but can be treated. It is due to an abnormal increase in glucose [1]. This disease
has become a major world health problem, particularly in Chad. Like all developing countries, Chad is paying heavy consequences
due to this disease. Chad, the second largest country and the third most overcrowded country in Central Africa, is in the midst of
a transition from this disease [2]. According to the report of the International Diabetes Federation, 425 million people worldwide
were living with the disease in 2015 and this number may increase to an estimated 622 million in 2040 [3]. In 2013, 231290
Chadians had diabetes [4], this number may be significant in the future. All these results make diabetes a real public health
problem. There are two main types of diabetes: type 1 diabetes, which affects 10 percent of the affected population and type 2
diabetes, which affects the remaining percent [5, 6]. Type 2 diabetes is therefore important in terms of severity. Consequently,
many researchers are trying to find methods to diagnose and treat this disease. Generally, disease dynamics is investigated
throughout the application of the mathematical models [7, 8, 9]. One approach is to find a mathematical model that can describe
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the dynamics of the glucose-insulin system in order to analyze, interpret and predict the results. One of the approaches used is
to find a mathematical model capable of describing the dynamics of the glucose-insulin system in order to predict, analyze and
interpret the results. In literature, much effort has been made recently to analyze [10] and to develop mathematical models of type
2 diabetes [11, 12, 13, 14]. The objective of this paper is to propose a mathematical model of the glucose-insulin system suitable
for type 2 diabetic patients in Chad. The glucagon, insulin, and hepatic glucose in internal human organs are estimated using
Sampling Importance Resampling (SIR) algorithm. The mathematical model parameters are estimated using a nonlinear inverse
optimization problem and data collected in Chad.
This paper is structured as follows: Materials and methods are presented in Section 2. It deals with data sources and mathematical
model equations. Section 3 focuses on the estimation of the parameters of the model. The numerical tests are given in Section 4
while concluding remarks are presented in Section 5.

2 Materials and methods

Data set

The data are collected in the laboratory of the hematology department at regional Abéché hospital in Chad for a period of one month
from 23, January 2019 to end 23, February 2019. Moreover, 900 exams should be done, but we faced some challenge including lack
of material such as glucose meter, lower number of enumerators and financial means to organize the transport of participants
who live so far from the hospital to come early morning in a fasting state. Consequently, the data have been collected only for 96
participants and 75 among them have type 2 diabetes.

Model equations

More multiple pancreatic hormones are involved in glucose homeostasis [15], but the potent hormone regulators of both glucose
appearance and disappearance in the circulation are insulin and glucagon. Indeed, insulin is the key regulatory hormone of glucose
disappearance, and glucagon is a major regulator of glucose appearance. Consequently, the deficiency of these hormones is the
main cause of type 2 diabetes. During the fed state, the rate of gastric emptying is the major determinant source of circulating
glucose and other sources of how glucose appears in the circulation are derived from hepatic processes. Glucagon plays a major
role in sustaining plasma glucose during fasting conditions by stimulating hepatic glucose production. During the first 8-12 hours
of fasting, glucagon facilitates this process and thus promotes glucose appearance in the circulation throughout the glycogenolysis
mechanism [16]. Over longer periods of fasting, glucose, produced by gluconeogenesis, glucose is released from the liver which
is the sole source of endogenous glucose production. Most tissues have the ability to hydrolyze glycogen and glucose removal
into skeletal muscle and adipose tissue is driven mainly by insulin in the immediate post-feeding state [16]. In addition, insulin
contributes to augmenting glucose uptake in peripheral tissues and in the liver by affecting the activity of different enzymes.
The peripheral insulin resistance and relative insulin deficiency in type 2 diabetic patients have resulted in low glucose uptake
rates by muscle cells and adipose tissue cells [17]. The studies show that insulin-induced stimulation effects on hepatic glucose
uptake and hepatic glucose production rate are impaired in type 2 diabetic patients. This leads to reduced hepatic glucose uptake
[18]. A type 2 diabetic patient is experienced with postprandial β-cell action that becomes abnormal due to the loss of immediate
insulin response to a meal [19]. Therefore, hyperglycemia in type 2 diabetic patients is caused by the resistance of peripheral
insulin resistance coupled with progressive β-cell failure and decreased availability of insulin and other hormones that is amylin
(a neuroendocrine hormone coexpressed and consecrated with insulin by pancreatic β-cells in response to nutrient stimuli, and
GLP-1 (more potent incretin hormone secreted in greater concentrations and is more physiologically relevant in humans) [20].
Due to high glucose level that can induce vascular endothelial cell dysfunction and affect blood viscosity and arterial wall tension,
type 2 diabetes patients are at higher risk for the development of vascular complications than non-diabetic persons [21].
Due to such a high demand for understanding the blood flow characteristics in type 2 diabetic patients, in this study, we develop
the mathematical model of type 2 diabetes patients.
We propose a three-compartmental mathematical model where the compartments are the vascular and tissues compartment, liver
compartment and pancreas compartment. The state variables are are glucagon (Γ), insulin (Ip), hepatic glucose (GL), glucose (G).
Taking into consideration the diagram model illustrated in Figure 1.
The model equations are as follows:











































VΓ
dΓ(t)
dt

= nΓG
αIp – p1Γ ,

VIp
dIp(t)
dt

= nIpG
δ – p2Ip,

VGL
dGL(t)
dt

= nGLΓ
β – p3GL + p4G + RPGL,

VG
dG(t)
dt

= p3GL + nGI
γ
p – p5G + Rmeal ,

(1)

where ni denotes the rate of blood coming indirectly in compartment i (i = Γ , Ip, GL G) from vascular circulation. α, β, γ and δ

are the constants to be estimated and refer to the non-linearity of the corresponding determinant variable. The parameters and
variables are described in Table 1.
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Figure 1. Diagram of the mathematical model. The dash lines notify that a certain quantity of mass flows non-linearly from one compartment/sub-compartment
to another. The dashed dot line between the heart-tissues compartment means that a small quantity of glucose is transmitted to the liver compartment.

Parameter/Variable Description Unit

Variables

Γ Number of glucagon secreted by the α-cells pg/ml
to release glucose stored in the liver

IP Concentration of the insulin secreted by the beta (β)-cells
and poured into blood to make penetrate and store in µU/dl
the liver the surplus of the glucose level found in the blood

G Glucose concentration in the heart and tissues mg/dl
GL Glucose concentration in the liver mg/dl

Parameter to be estimated (Rate)

nΓ Rate of blood coming to glucagon sub-compartment in the pancreas (dl)2 /µU.min
nIp Rate of blood coming to insulin sub-compartment in the pancreas dl.µU/mg.min

nGL Rate of blood coming to in the liver dl/min
nG Rate of blood in heart and tissues µU.mg/dl.min
p1 Rate of glucagon from the pancreas to the blood dl/min
p2 Rate of insulin from the pancreas to the blood dl/min
p3 Rate of glucose from the liver to the heart and tissues dl/min
p4 Rate of glucose from the blood to liver (Few quantity) dl/min
p5 Rate of glucose from the blood to pancreas dl/min
Rmeal Rate of glucose in human body after meal mg/min
RPGL Rate of insulin from pancreas to the blood through the liver mg/min

Parameter from literature

VΓ Volume of glucagon in glucagon sub-compartment dl

VIp Volume of insulin in insulin sub-compartment dl

VGL Volume of glucose in the liver compartment dl

VG Volume of glucose in the heart and tissues dl

Table 1. Description of variables and parameters of the mathematical model

3 Estimation of parameters

We consider that the volumes are obtained from literature and they are presented in Table 2 [14].

Parameter Value Parameter Value
VG 11.6 VΓ 113.1
VGL 25.1 VIp 67.4

Table 2. Parameters used from the literature [14]

To estimate other parameters, let

µ =
(

nΓ ,nIp ,nGL ,nG, p1, p2, p3, p4, p5,Rmeal,α,β,γ,δ,RPGL
)

′

be a vector of parameters to be estimated. We fix a positive parameter and we consider the following discretisation of the interval
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[

0, Tmax
]

,

tk =
kTmax
N

,

where Tmax denotes a positive time parameter. For a positive integer parameter N and Gσ(tk) corresponding data measurement of
real values G(tk) at time tk we take

Gσ = (Gσ(t1), ...,G
σ(tN))

′. (2)

The superscript σ is the perturbation parameter due to some imprecision on measured data [22]. The identification of parameters
can be done by formulating nonlinear inverse problem which is solved using regularization techniques [23]. Let G be vector
solutions in R

N at time grid points of the system (1) depending of the parameter vector u. We want to solve the coefficient
identification problem

J(µ) =
∥

∥G – Gσ
∥

∥

2 ,

where Gσ is given by (2).

This inverse problem can be formulated as follows. Find µ∗ =
(

n∗Γ ,n
∗

Ip
,n∗GL

,n∗G, p
∗

1 , p
∗

2, p
∗

3 , p
∗

4, p
∗

5,R
∗

meal,α
∗,β∗,γ∗,δ∗,R∗PGL

)

′

such

that

µ
∗ = argmin

µ
J(µ), (3)

subject to (1). We should notify that the (3) is not linear inverse problem and it is ill-posed. This means that little perturbation on
data produces a solution that is very different of the original ones. Furthermore, the solution µ does not depend continuously on
the data. To find the regularization of the problem (3), we use Tikhonov techniques (See [23] for details). Therefore, this problem

becomes Taking ω =
(

nΓ ,nIp ,nGL ,nG, p1, p2, p3, p4, p5,Rmeal,α,β,γ,δ,RPGL
)

′

, find µ̄θ solution of

J(µ̄θ) = min
ω
Jθ(ω), (4)

subject to (1) where we have set

Jθ(ω) =
∥

∥G – Gσ
∥

∥

2 + θ ‖Lω‖2 , (5)

for good θ such that µθ converges to the solution µ as θ → 0. Here L is an operator used for stabilization (i.e., L is the identity, a
differentiation operator, etc.). The solution of (4) subject to (1) is obtained using the Least square method and the data collected
in Chad. The numerical simulations are carried out using Matlab built-in function fmincon which allows solving constrained
optimization problems. The parameters estimated are shown in Table 3.

Estimated parameter Value
nΓ 0.6005
nIp 1.1938

nGL 1.3845
nG 0.5479
p1 1.0343
p2 1.5477
p3 1.3693
p4 0.7866
p5 1.9521
Rmeal 101.4078
α 0.0506
β 0.5151
γ 0.0545
δ 0.0505
RPGL 0.5539

Table 3. Estimated model parameters

4 Numerical tests

The measurement of glucose and insulin from different parts of the body needs to take blood samples to determine their concen-
tration. However, to take blood samples from many internal body organs for instance heart and the liver is clinically impossible.
We solve this problem, we can estimate concentrations of these parameters using measurements from peripheral tissues along
with a mathematical model and a filtering algorithm. Sampling Importance Resampling (SIR) algorithm is one of the methods
that can give the estimated solution. For more details about the SIR algorithm, we refer the readers to [24, 25]. The data collected
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in Chad is the glucose measured in the tissues of patients. In our simulation we estimate glucose in the liver, insulin and glucagon
in the pancreas by taking this measured glucose as measurements. We assume that noisy measurements of glucose in tissues and
the heart are available measured data. To apply the SIR algorithm, we consider a fixed-step backward difference approximation
by

dX

dt
≈
Xk – Xk–1

∆t
, 0 ≤ t ≤ Tmax, (6)

where

Xk =
(

Γk, Ip,k,GL,k,Gk
)t
, (7)

and

Xk = X(tk).

If M denotes the total number of discretization intervals we have

Xk = Xk–1 +∆t,

where ∆t =
Tmax
M

is step.

Let set

Fk–1(Xk–1) =
(

F1(Xk–1), F2(Xk–1), F3(Xk–1), F4(Xk–1)
)t ,

which refers to the dynamic equations with

F1(Xk–1) =
(

1 –
∆t

VΓ
p1

)

Γk–1 +
∆t

VΓ
nΓG

α
k–1Ip,k–1,

F2(Xk–1) =
(

1 –
∆t

VIp
p1

)

Ip,k–1 +
∆t

VIp
nIpG

δ
k–1,

F3(Xk–1 =
(

1 –
∆t

VGL
p3

)

GL,k–1 +
∆t

VGL

(

nGL
Γ
β

k–1 + p4Gk–1 + RPGL
)

,

F4(Xk–1 =
(

1 –
∆t

VG
p5

)

Gk–1 +
∆t

VG

(

p3GL,k–1 +nGI
γ

p,k–1 + Rmeal
)

.

(8)

Using (8) our state dynamic model (1) is estimated recursively by the following compact form

{

Xk = Fk–1(Xk–1) + vk–1,
Yk = PXk + ek–1,

(9)

where we set Yk = Gk that is measurement of glucose in tissues, vk–1 and ek–1 are the stochastic process and measurement noise,
respectively and they are independent and identically distributed (i.i.d.). P denotes the matrix from the equations modelling the
sensors referred to as the measurement model given as

P = (0, 0, 0, 1)t.

In numerical simulation, we consider M = 100, Tmax = 300 minutes, N = 1000 particles and we assume that the state X0 and state
measurement noises have a Gaussian probability density function that is X0 ∼ N (0, 5), vk ∼ N (0, 20) and ek ∼ N (0, 1) where N

means normal distribution. The numerical results are illustrated in the Figure 2, 3 and 4.
Figure 2 shows the concentration of glucagon in the pancreas using SIR implemented on the mathematical model. There is not a
significant variation of this parameter that plays a crucial role in the regulation of blood glucose. This means that blood glucose
is not regulated for a type 2 diabetic patient. The pancreatic insulin decreases as shown in the Figure 3. Therefore, there is no
role of both insulin and glucagon as regulators of blood glucose. During periods of hyperglycemia (i.e., after meal ingestion),
whereas insulin secretion is increased, glucagon secretion is reduced. All those results are justified by the increase of glucose in
the liver (See Figure 4). Hence, the liver affects insulin concentrations, since about 50% of insulin is extracted at first passage, and
this fraction may be reduced in the insulin-resistant liver, leading to hyperinsulinemia [26]. The elevated rate of hepatic glucose
production (HGP) is a major cause of fasting hyperglycemia and a lack of suppression of HGP may contribute to postprandial
hyperglycemia. Through an increased secretion of triglyceride, the liver may also contribute to peripheral insulin resistance and
thereby further increase postprandial hyperglycemia [26].

5 Concluding remarks

The mechanical behaviour of the glucose-insulin system depends on the type of mathematical model that describes its dynamics.
The simple mathematical model should describe accurately this system vis-a-vis the diseases that affect it. In this work, we
have proposed a three-compartmental mathematical model for type 2 diabetic patients that describes the variation of glucose and
insulin in Chad context based on data collected at Abéché hospital. To estimate the dynamics of glucagon, insulin and hepatic
glucose in internal organs of the human body, the Sampling Importance Resampling (SIR) particle filtering algorithm is used
and implemented using the developed mathematical model. Numerical results show that the new glucose-insulin system model
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Figure 2. Variation of glucagon in the pancreas

Figure 3. Variation of insulin in the pancreas

Figure 4. Variation of glucose in the liver

introduced fits with the clinical data and they are clinically consistent with physiological responses. Indeed, insulin secretion
increases while glucagon secretion reduces due to periods of hyperglycemia. The proposed mathematical model can also be used
by physiologists and other experts in medicine for monitoring the glucose-insulin system.
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