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Global Stability and Bifurcation Analysis in a

Discrete-Time Two Predator-One Prey Model with

Michaelis-Menten Type Prey Harvesting

Debasis Mukherjee1*

Abstract
This article studies a discrete-time Leslie-Gower two predator-one prey system with Michaelis-Menten type prey

harvesting. Positivity and boundedness of the model solution are investigated. Existence and stability of fixed

points are examined. Using an iteration scheme and the comparison principle of difference equations, we find

out the sufficient condition for global stability of the positive fixed point. It is shown that the sufficient criterion for

Neimark-Sacker bifurcation can be developed. It is observed that the system behaves in a chaotic manner when

a specific set of system parameters is chosen, which are regulated by a hybrid control method. Examples are

provided to illustrate our conclusions.
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1. Introduction

In the real world, the interaction between prey and their predator create a major interest to the researchers to explore the

dynamics of the system. Most of the existing predator-prey models come from the Lotka-Volterra system. The Lotka-Volterra

models cannot justify all the predator-prey interaction. For example, when the size of the prey decreases, then the predator will

search for other prey. This fact motivated Leslie to form an appropriate model known as Leslie-Gower predator-prey system to

investigate the behaviour of the system. Several studies have been done on modified Leslie-Gower model with various aspects

[1]-[3].

In spite of the vast research over the last few years, the knowledge about the effect of non-linear Michaelis-Menten type of

harvest on one prey-two predator models is insufficient. We observe that the ecological system is often perturbed by the growing

human needs for more food and more energy. For example, the fish population has decreased due to the rapid progress of fishing

technology and substantial growth in human populations. Therefore, the exploitation of renewable resources, which associates

immediately to sustainable development. Clark [4, 5] introduced harvesting of species through mathematical models. There are

three types of harvesting namely constant rate, proportionate and Michaelis-Menten type found in the literatures [6]-[9]. Out of

these, non-linear harvesting is more realistic and exhibits saturation effects with respect to both the stock abundance and effort
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level. Das et al. [10] analysed a prey-predator model considering Michaeli-Menten type harvesting on both the populations.

They discussed boundedness, local and global stability of the proposed system. Gupta and Chandra [8] followed the similar

type of harvesting in prey and derived different bifurcations such as transcritical, saddle-node, Hopf and Bogdanov-Takens

in the Leslie-Gower prey-predator model. Hu and Cao [11] discussed stability and bifurcation for a predator-prey system

with Michaelis-Menten type predator harvesting. Ang and Safuan [12] investigated the dynamical behaviour of an intraguild

prey-predator fishery model with the non-linear harvesting of prey species.

Mathematical models followed by differential equations are reasonable for the species in which populations are overlapped. In

case of non-overlapping generations, discrete-time models governed by difference equations are more appropriate than the

differential equations. In real ecosystem, a discrete time system can be seen, for example, fish populations reproduce at specific

timed moments or for insect populations, for which non-overlapping generations are occurring. Moreover, discrete-time models

also allow more efficient computational results for numerical simulations and exhibit a rich dynamics as compared to the

continuous ones [13]-[16]. Even discrete time models can admit chaotic dynamics [13, 14]. More interesting and significant

results on discrete prey-predator models can be seen in [17]-[21]. Ajaz et al. [22] investigated the dynamical behaviour of

a modified Leslie-Gower prey-predator model with harvesting in prey population and showed the existence and directions

of period doubling and Neimark-Sacker at positive fixed point and also indicated chaos control when chaos emerge through

bifurcation. Khan et al. [23] discussed a discrete-time Michaelis-Menten type prey harvesting in the modified Leslie-Gower

predator-prey model and obtained the conditions for the existence of flip and Neimark-Sacker bifurcations. Chen et al. [24]

studied a discrete Leslie-Gower predator-prey model with Michaelis-Menten prey harvesting and observed that the system can

exhibit fold, flip and Neimark-Sacker bifurcations by the application of center manifold theorem and bifurcation theory.

The above studies are mainly confined into two species models. However, it is a common fact that several predators compete

for a prey in the real world. To our knowledge, there is limited works that highlight discrete-time non-linear harvesting in the

modified Leslie-Gower Holling type II two-predator one-prey model.

Now we first present a model which is a modified Leslie-Gower two predator- one prey system with Michaelis-Menten type

prey harvesting:

dx

dt
= x(r1 −ax− c1y

h1 + x
− c2z

h2 + x
− qE

d1E +d2x
),

dy

dt
= y(r2 −

f1y

h1 + x
),

dz

dt
= z(r3 −

f2z

h2 + x
),

(1.1)

where x, y and z denote the densities of prey, the first predator and the second predator respectively. r1,r2,r3 stands for the

intrinsic growth rate of the prey and two predators respectively. a represents the intra-specific competition among the the prey

species. c1 and c2 denote the per-capita reduction of prey x. f1 and f2 carry the same meaning as of c1 and c2. h1 and h2

signifies the environmental protection for predator y and z respectively. In the prey harvesting term
qEx

d1E+d2x
, q is the catchability

coefficient, d1 and d2 are the degree of competition in the harvesting business and handling time respectively. E describes the

harvesting effort.

For qualitative analysis, including global stability, bifurcation analysis and chaos control for a discrete analogue of system (1.1),

a piecewise constant argument is introduced to describe the following exponential form of nonlinear difference equations:

xn+1 = xnexp{r1 −axn −
c1yn

h1 + xn

− c2zn

h2 + xn

− qE

d1E +d2xn

},

yn+1 = ynexp{r2 −
f1yn

h1 + xn

},

zn+1 = znexp{r3 −
f2zn

h2 + xn

}

(1.2)

where xn, yn and zn represent the densities of prey and both the predator at generation n ∈ N respectively.

The rest of the paper is formatted as follows. Positivity and boundedness of solutions are presented in Section 2. The

existence and stability of the interior fixed point are discussed in Section 3. Global stability criterion is derived in Section 4.

Neimark-Sacker bifurcation and flip bifurcation are described in Section 5. Chaos control mechanism is presented in Section 6.

Numerical examples are given in Section 7. Section 8 concludes the paper.

2. Positivity and Boundedness of Solutions

In this section, we discuss positivity and boundedness of solutions of system (1.2). The first lemma follows immediately from

the system structure and its proof is omitted.
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Lemma 2.1. Solutions of system (1.2) with positive initial conditions remain positive.

To prove the boundedness of solutions of system (1.2), we require the following lemma:

Lemma 2.2. (see [25]) Suppose that xm satisfies x0 > 0 and xm+1 ≤ xmexp[α(1−βxm)] for m ∈ [m1,∞) where β is a positive

constant. Then limsupn→∞xm ≤ 1
αβ

exp(α −1).

We now state the theorem which ensures that every positive solution of system (1.2) is uniformly bounded.

Theorem 2.3. Every positive solution {(xn,yn,zn)} of system (1.2) is uniformly bounded.

Proof. Assume that {(xn,yn,zn)} be an arbitrary positive solution of system (1.2). From the first equation of system (1.2), we

get

xn+1 ≤ xnexp(r1 −axn),n = 0,1,2, ....

Assume that x0 > 0, then following Lemma 2.2, we get limsupn→∞xn ≤ 1
a
exp(r1 − 1) := M1. From the second equation of

system (1.2),

yn+1 ≤ ynexp(r2 −
f1

h1 +M1
yn),n = 0,1,2, ....

It follows from Lemma 2.2 that limsupn→∞yn ≤ h1+M1
f1

exp(r2 −1) := M2 whenever y0 > 0. Assume that z0 > 0. From the third

equation of system (1.2), we get

zn+1 ≤ znexp(r3 −
f2

h2 +M1
zn).

Applying again Lemma 2.2, we get

limsupn→∞zn ≤
h2 +M1

f2
exp(r3 −1) := M3.

Then it follows that limsupn→∞(xn,yn,zn)≤ M, where M = max{M1,M2,M3}.
This completes the proof.

3. Existence of Fixed Points

In this section, we determine the fixed points and their dynamics. Evidently, system (1.1) has at most twelve non-negative fixed

points E0 = (0,0,0). If q < r1d1 then the fixed point E1 = (x̄,0,0) exists uniquely where

x̄ =
r1d2 −ad1E +

√

(r1d2 −ad1E)2 −4ad2E(q− r1d1)

2ad2
.

If q > r1d1,r1d2 > ad1E and (r1d2 −ad1E)2 −4ad2E(q− r1d1)> 0 then multiple fixed points exist E1± = (x̄±,0,0) where

x̄± =
r1d2 −ad1E ±

√

(r1d2 −ad1E)2 −4ad2E(q− r1d1)

2ad2
.

There always exists E2 = (0, r2h1
f1

,0) and E3 = (0,0, r3h2
f2

). If q f1 + d1c1r2 < d1r1 f1 then there exists a unique fixed point

E12 = (x̂, ŷ,0) where

x̂ =
d2(r1 f1 − c1r2)−a f1d1E +

√

(d2(r1 f1 − c1r2)−a f1d1E)2 −4a f1d2E(q f1 +d1c1r2 −d1r1 f1)

2a f1d2

and

ŷ =
r2(h1 + x̂)

f1
.

If q f1 +d1c1r2 > d1r1 f1,r1 f1d2 > c1r2d2 +a f1d1E and {d2(r1 f1 − c1r2)−a f1d1E}2 > 4a f1d2E(q f1 +d1c1r2 −d1r1 f1) then

there exists multiple fixed points E12± = (x̂±, ŷ±,0) where

x̂± =
d2(r1 f1 − c1r2)−a f1d1E ±

√

(d2(r1 f1 − c1r2)−a f1d1E)2 −4a f1d2E(q f1 +d1c1r2 − r1 f1d1)

2a f1d2
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and

ŷ± =
r2(h1 + x̂±)

f1
.

If q f2 +d1c2r3 < d1r1 f2 then there exists a unique fixed point E13 = (x̃,0, z̃) where

x̃ =
d2(r1 f2 − c2r3)−a f2d1E +

√

(d2(r1 f2 − c2r3)−a f2d1E)2 −4a f2d2E(q f2 +d1c2r3 −d1r1 f2)

2a f2d2

and

ỹ =
r3(h2 + x̃)

f2
.

If q f2 +d1c2r3 > d1r1 f2,r1 f2d2 > c2r3d2 +a f2d1E and {d2(r1 f2 − c2r3)−a f2d1E}2 > 4a f2d2E(q f2 +d1c2r3 −d1r1 f2) then

there exists multiple fixed points E13± = (x̃±,0, z̃±) where

x̃± =
d2(r1 f2 − c2r3)−a f2d1E ±

√

(d2(r1 f2 − c2r3)−a f2d1E)2 −4a f2d2E(q f2 +d1c2r3 − r1 f2d1)

2a f2d2

and

z̃± =
r3(h2 + x̃±)

f2
.

There exists a unique fixed point E23 = (0, r2h1
f1

, r3h2
f2

). To determine the positive fixed point E∗ = (x∗,y∗,z∗) , we have to solve

the following system of equations:

x = x(r1 −ax− c1y

h1 + x
− c2z

h2 + x
− qE

d1E +d2x
), (3.1)

y = y(r2 −
f1y

h1 + x
), (3.2)

z = z(r3 −
f2z

h2 + x
). (3.3)

where x∗,y∗ and z∗ are the positive solutions of equations (3.1), (3.2) and (3.3). Solving (3.2) and (3.3) we get y = r2(h1+x)
f1

and

z = r3(h2+x)
f2

and substituting the value of y and z in (3.1), we obtain the following equation:

Ax2 +Bx+C = 0 (3.4)

where

A = f1 f2ad2,B = f1 f2ad2E −d2(r1 f1 f2 − c1r2 f2 − c2r3 f1),C = E{ f1 f2q+d1(c1r2 f2 + c2r3 f1)−d1r1 f1 f2}

If C < 0 then there exists a unique positive root x∗ of equation (3.4). In that case there exists a unique fixed point E∗ = (x∗,y∗,z∗)
where

x∗ =
−B+

√
B2 −4AC

2A
,y∗ =

r2(h1 + x∗)
f1

and

z∗ =
r3(h2 + x∗)

f2
.

If B < 0,C > 0 and B2 > 4AC then there exists multiple fixed points E∗
± = (x∗±,y

∗
±,z

∗
±) where

x∗± =
−B±

√
B2 −4AC

2A
,y∗± =

r2(h1 + x∗±)
f1

and

z∗± =
r3(h2 + x∗±)

f2
.
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3.1 Stability of fixed points

To investigate the local stability of the fixed points of system (1.2), we require the following lemma.

Lemma 3.1. ([26]) Consider the cubic equation

λ 3 + p1λ 2 + p2λ + p3 = 0 (3.5)

where p1, p2 and p3 are real numbers. Then necessary and sufficient conditions that all the roots of equation (3.5) lie in an

open disk |λ |< 1 are |p1 + p3|< 1+ p2, |p1 −3p3|< 3− p2 and p2
3 + p2 − p3 p1 < 1.

The Jacobian matrix J(E0) for system (1.2) is given by

J(E0) =





exp(r1 − q
d1
) 0 0

0 expr2 0

0 0 expr3



 .

Then it follows from J(E0) that E0 is an unstable fixed point for system (1.2). Again

J(E1) =





1−ax̄+ qEd2 x̄

(d1E+d2 x̄)2 − c1 x̄
h1+x̄

− c2 x̄
h2+x̄

0 expr2 0

0 0 expr3



 .

From J(E1), we conclude that that E1 is an unstable fixed point for system (1.2). Similarly, it can be shown that E1± are also

unstable. Now

J(E2) =







exp(r1 − c1r2
f1

− q
d1
) 0 0

r2
1

f1
1− r2 0

0 0 expr3






.

It is obvious from J(E2) that E2 is an unstable fixed point for system (1.2). For E3,

J(E3) =







exp(r1 − c2r3
f2

− q
d1
) 0 0

0 expr2 0
r2
3

f2
0 1− r3






.

Again we see that from J(E3) that E3 is an unstable fixed point for system (1.2). For E12,

J(E12) =







1− x̂(a− c1 ŷ

(h1+x̂)2 − qEd2

(d1E+d2 x̂)2 ) − c1 x̂
h1+x̂

− c2 x̂
h2+x̂

f1 ŷ2

(h1+x̂)2 1− ŷ f1
h1+x̂

0

0 0 expr3






.

Again we see that from J(E12) that E12 is an unstable fixed point for system (1.2). Similarly, it can be shown that E12± are also

unstable. For E13,

J(E13) =







1− x̃(a− c2 z̃

(h2+x̃)2 − qEd2

(d1E+d2 x̃)2 ) − c1 x̃
h1+x̃

− c2 x̃
h2+x̃

0 expr2 0
z̃2 f2

(h2+x̃)2 0 1− f2 z̃
h2+x̃






.

It is clear from J(E13) that E13 is an unstable fixed point for system (1.2). Similarly, it can be shown that E13± are also unstable.

Now

J(E23) =









exp(r1 − c1r2
f1

− c2r3
f2

− q
d1
) 0 0

r2
2

f1
1− r2 0

r2
3

f2
0 1− r3









.

If r1 <
c1r2 f2d1+c2r2 f1d1+q f1 f2

f1 f2d1
,r2 < 2 and r3 < 2 then it follows from J(E23) that E23 is locally asymptotically stable fixed point

for system (1.2). Let E∗ = (x∗,y∗,z∗) be the unique interior fixed point of system (1.2). The Jacobian matrix for (1.2) at E∗ is

given by

J(x∗,y∗,z∗) =









a11 − c1x∗
h1+x∗ − c2x∗

h2+x∗
f1y∗2

(h1+x∗)2 1− r2 0

f2z∗2

(h2+x∗)2 0 1− r3











Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten

Type Prey Harvesting — 6/18

where

a11 = 1−ax∗+
qEd2x∗

(d1E +d2x∗)2
+

c2x∗z∗

(h2 + x∗)2
+

c1x∗y∗

(h1 + x∗)2
.

The characteristic polynomial of J(E∗) is given by

P(λ ) = λ 3 + p1λ 2 + p2λ + p3 (3.6)

where

p1 = r2 + r3 −2−a11,

p2 = a11(2− r2 − r3)+(1− r2)(1− r3)+
c1 f1x∗y∗2

(h1 + x∗)3
+

c2 f2x∗z∗2

(h2 + x∗)3
,

p3 = a11(1− r2)(r3 −1)+
c1 f1x∗y∗2(r3 −1)

(h1 + x∗)3
+

c2 f2x∗z∗2(r2 −1)

(h2 + x∗)3
. (3.7)

We now use Lemma 3.1 to investigate stability of E∗.

Lemma 3.2. Assume that C < 0 holds. Then, the fixed point E∗ is locally asymptotically stable if and only if the following

conditions are satisfied:

|p1 + p3|< 1+ p2, |p1 −3p3|< 3− p2

and p2
3 + p2 − p3 p1 < 1 where p1, p2 and p3 are defined in (3.7).

Remark 3.3. In case of multiple fixed points E∗
± = (x∗±,y

∗
±,z

∗
±) , we can find similar type of conditions as in Lemma 3.2.

4. Global Stability

In this section, we will utilize the process of iteration scheme and the comparison principle of difference equations to investigate

the global stability of the positive fixed point of system (1.2). To establish global stability result, we require the following

lemmas:

Lemma 4.1. ([27]) Let f (u) = uexp(δ −ηu), where δ and η are positive constants. Then f (u) is nondecreasing for u ∈ (0, 1
η ].

Lemma 4.2. ([27]) Assume that the sequence un satisfies

un+1 = unexp(δ −ηun),n = 1,2,3, ...

where δ and η are positive constants and u0 > 0. Then, (i) If δ < 2, then limn→∞un =
δ
η .

(ii) If δ ≤ 1, then un ≤ 1
η ,n = 2,3, ....

Lemma 4.3. [28] Suppose that functions f ,g : Z+× [0,∞) satisfy f (n,x)≤ g(n,x) ( f (n,x)≥ g(n,x)) for n ∈ Z+ and g(n,x)
is nondecreasing with respect to x. If un are the nonnegative solutions of the difference equations

xn+1 = f (n,xn),un+1 = g(n,un)

respectively, and x0 ≤ u0 (x0 ≥ u0) then xn ≤ un (xn ≥ un) for all n ≥ 0.

Theorem 4.4. Assume that C < 0, c1r2h2 f2d1(ah1+r1)+c2r3h1 f1d1(ah2+r1)+qh1h2 f1 f2
d1

< r1 < 1, f1
h1

< r2 < 1 and
f2
h2

< r3 < 1 hold.

Then, the fixed point E∗(x∗,y∗,z∗) of system (1.2) is globally asymptotically stable.

Proof. Assume that (xn,yn,zn) is any solution of system (1.2) with initial values x0 > 0,y0 > 0,z0 > 0. Let

U1 = limsupn→∞xn, V1 = liminfn→∞xn,

U2 = limsupn→∞yn, V2 = liminfn→∞yn,

U3 = limsupn→∞zn, V3 = liminfn→∞zn.
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In the following, we will prove that U1 =V1 = x∗,U2 =V2 = y∗,U3 =V3 = z∗.
First we show that U1 ≤ Mx

1,U2 ≤ M
y
1,U3 ≤ Mz

1. From the first equation of system (1.2), we get

xn+1 ≤ xnexp(r1 −axn),n = 0,1,2, ...

Considering the auxiliary equation

un+1 = unexp(r1 −aun) (4.1)

by Lemma 4.2 (ii), because of r1 ≤ 1, we get un ≤ 1
a

for all n ≥ 2. By Lemma 4.1, we obtain f (u) = uexp(r1 − au) is

nondecreasing for u ∈ (0, 1
a
]. Thus from Lemma 4.3, we get xn ≤ un for all n ≥ 2, where un is the solution of equation (4.1)

with initial value u2 = x2. By Lemma 4.2 (i), we get

U1 = limsupn→∞xn ≤ limn→∞un =
r1

a
, Mx

1.

Hence, for any sufficiently small ε > 0, there exists a n1 > 2 such that if n ≥ n1, then xn ≤ Mx
1 + ε. From the second equation

of system (1.2), we obtain,

yn+1 ≤ ynexp(r2 −
f1

h1 +Mx
1 + ε

yn),n = 0,1,2, ...

Again considering the auxiliary equation

un+1 = unexp(r2 −
f1

h1 +Mx
1 + ε

un) (4.2)

by Lemma 4.2 (ii), because of r2 ≤ 1, we get un ≤ h1+Mx
1+ε

f1
for all n≥ 2. By Lemma 4.1, we obtain f (u) = uexp(r2− f1

h1+Mx
1+ε u)

is nondecreasing for u ∈ (0,
h1+Mx

1+ε

f1
]. Thus from Lemma 4.3, we get xn ≤ un for all n ≥ 2, where un is the solution of Eq. (4.2)

with initial value u2 = x2. By Lemma 4.2 (i), we get

U2 = limsupn→∞xn ≤ limn→∞un =
r2(h1 +Mx

1 + ε)

f1
, M

y
1.

Hence, for any sufficiently small ε > 0, there exists a n2 > n1 such that if n ≥ n2, then yn ≤ M
y
1 + ε. Similarly, from the third

equation of system (1.2) for r3 < 1, we obtain

U3 = limsupn→∞zn ≤ limn→∞un =
r3(h2 +Mx

1 + ε)

f2
, Mz

1.

Hence, for any sufficiently small ε > 0, there exists n3 > n2 such that for n ≥ n3,zn ≤ Mz
1 +ε. Next we show that V1 ≥ Nx

1 ,V2 ≥
N

y
1 ,V3 ≥ Nz

1. From the first equation of system (1.2), we have

xn+1 ≥ xnexp[a−axn −
c1(M

y
1 + ε)

h1
− c2(M

z
1 + ε)

h2
− q

d1
],n ≥ n3.

Consider the auxiliary equation

un+1 = unexp[r1 −aun −
c1(M

y
1 + ε)

h1
− c2(M

z
1 + ε)

h2
− q

d1
]. (4.3)

Since we have r1 − c1(M
y
1+ε)

h1
− c2(M

z
1+ε)

h2
− q

d1
< 1, by Lemma 4.2 (ii), we have, un ≤ 1

a
for n ≥ n3. By Lemma 4.1, we obtain

f (u) = uexp(r1 − c1(M
y
1+ε)

h1
− c2(M

z
1+ε)

h2
− q

d1
−au) is nondecreasing for u ∈ (0, 1

a
]. Thus from Lemma 4.3, we get xn ≥ un for all

n ≥ n3. By Lemma 4.2 (i), we get

V1 = liminfn→∞xn ≥ limn→∞un =
1

a
[r1 −

c1(M
y
1 + ε)

h1
− c2(M

z
1 + ε)

h2
− q

d1
].

From the arbitrariness of ε > 0, we have

V1 ≥ Nx
1 =

1

a
[r1 −

c1(M
y
1 + ε)

h1
− c2(M

z
1 + ε)

h2
− q

d1
].
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Hence for any sufficiently small ε > 0, there exists n4 > n3 such that for n ≥ n4,xn ≥ Nx
1 − ε. From the second equation of

system (1.2), we have

yn+1 ≥ ynexp[r2 −
f1

h1
yn],n ≥ n4.

By the same way, we can get

V2 = liminfn→∞yn ≥ limn→∞un =
r2h1

f1
.

From the arbitrariness of ε > 0, we have,

V2 ≥ N
y
1 =

r2h1

f1
.

Hence for any sufficiently small ε > 0, there exists n5 > n4 such that for n ≥ n5,yn ≥ N
y
1 − ε. Similarly, from the third equation

of system (1.2), we have

zn+1 ≥ znexp[r3 −
f2

h2
zn],n ≥ n5.

with

V3 = liminfn→∞zn ≥ limn→∞un =
r3h2

f2
.

From the arbitrariness of ε > 0, we have,

V3 ≥ Nz
1 =

r3h2

f2
.

Hence for any sufficiently small ε > 0, there exists n6 > n5 such that for n ≥ n6,zn ≥ Nz
1 −ε. Now we show that U1 ≤ Mx

2,U2 ≤
M

y
2 and U3 ≤ Mz

2, where Mx
2 ≤ Mx

1,M
y
2 ≤ M

y
1 and Mz

2 ≤ Mz
1 respectively. From the first equation of system (1.2) for n > n6, we

get

xn+1 ≤ xnexp[r1 −axn −
c1(N

y
1 − ε)

h1 +Mx
1 + ε

− c2(N
z
1 − ε)

h2 +Mx
1 + ε

− qE

d1E +d2(M
x
1 + ε)

].

Consider the auxiliary equation

un+1 = unexp[r1 −aun −
c1(N

y
1 − ε)

h1 +Mx
1 + ε

− c2(N
z
1 − ε)

h2 +Mx
1 + ε

− qE

d1E +d2(M
x
1 + ε)

]. (4.4)

Using the similar argument as in above, we can get

U1 = limsupn→∞xn ≤
1

a
[r1 −

c1(N
y
1 − ε)

h1 +Mx
1 + ε

− c2(N
z
1 − ε)

h2 +Mx
1 + ε

− qE

d1E +d2(M
x
1 + ε)

],

since

r1 −
c1(N

y
1 − ε)

h1 +Mx
1 + ε

)− c2(N
z
1 − ε)

h2 +Mx
1 + ε

− qE

d1E +d2(M
x
1 + ε)

≤ 1.

From the arbitrariness of ε > 0, we claim that

U1 ≤ Mx
2 =

1

a
[r1 −

c1(N
y
1 − ε)

h1 +Mx
1 + ε

− c2(N
z
1 − ε)

h2 +Mx
1 + ε

− qE

d1E +d2(M
x
1 + ε)

].

Hence for any sufficiently small ε > 0, there exists n7 > n6 such that for n ≥ n7,xn ≤ Mx
2 + ε. Similarly, from the second

equation of system (1.2) for n > n7, we get

yn+1 ≤ ynexp[r2 −
f1

h1 +Mx
2 + ε

yn].

Similarly to the above argument, we get

U2 ≤ M
y
2 =

r2(h1 +Mx
2 + ε)

f1
.
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Hence for any sufficiently small ε > 0, there exists n8 > n7 such that for n ≥ n8,yn ≤ M
y
2 +ε. From the third equation of system

(1.2) for n > n8, we get

zn+1 ≤ znexp[r3 −
f2

h2 +Mx
2 + ε

yn].

Similarly to the above argument, we get

U3 ≤ Mz
2 =

r3(h2 +Mx
2 + ε)

f2
.

Hence for any sufficiently small ε > 0, there exists n9 > n8 such that for n ≥ n9,zn ≤ Mz
2 + ε. Now we show that V1 ≥ Nx

2 ,V2 ≥
N

y
2 and V3 ≥ Nz

2, where Nx
2 ≥ Nx

1 ,N
y
2 ≥ N

y
1 and Nz

2 ≥ Nz
1 respectively. Further, from the first equation of system (1.2) for n > n9,

we get

xn+1 ≥ xnexp[r1 −axn −
c1(M

y
2 + ε)

h1 +Nx
1 − ε

− c2(M
z
2 + ε)

h2 +Nx
1 − ε

− qE

d1E +d2(N
x
1 − ε)

].

Using a similar argument, we get

V1 = liminfn→∞xn ≥
1

a
[r1 −

c1(M
y
2 + ε)

h1 +Nx
1 − ε

− c2(M
z
2 + ε)

h2 +Nx
1 − ε

− qE

d1E +d2(N
x
1 − ε)

]≤ 1.

From the arbitrariness of ε > 0, we claim that

V1 ≥ Nx
2 =

1

a
[r1 −

c1(M
y
2 + ε)

h1 +Nx
1 − ε

− c2(M
z
2 + ε)

h2 +Nx
1 − ε

− qE

d1E +d2(N
x
1 − ε)

].

Hence for any sufficiently small ε > 0, there exists n10 > n9 such that for n ≥ n10,xn ≥ Nx
2 − ε. Similarly, from the second

equation of system (1.2) for n > n10, we have

yn+1 ≥ ynexp[r2 −
f1

h1 +Nx
2 − ε

yn]

with

V2 = liminfn→∞yn ≥
r2(h1 +Nx

2 − ε)

f1
.

From the arbitrariness of ε > 0, we claim that V2 ≥ N
y
2 =

r2(h1+Nx
2−ε)

f1
. Hence for any sufficiently small ε > 0, there exists

n11 > n10 such that for n ≥ n11,yn ≥ N
y
2 − ε. Similarly, from the third equation of system (1.2) for n > n11, we have

zn+1 ≥ znexp[r3 −
f2

h2 +Nx
2 − ε

zn].

with

V3 = liminfn→∞zn ≥
r3(h2 +Nx

2 − ε)

f2
.

From the arbitrariness of ε > 0, we conclude that V3 ≥ Nz
2 =

r3(h2+Nx
2−ε)

f2
. Hence for any sufficiently small ε > 0, there exists

n12 > n11 such that for n≥ n12,zn ≥Nz
2−ε . Repeating the above process, we ultimately get six sequences {Mx

n},{M
y
n},{Mz

n},{Nx
n},
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{N
y
n}, and {Nz

n} such that for all n ≥ 2,

Mx
n =

1

a
[r1 −

c1N
y
n−1

h1 +Mx
n−1

−
c2Nz

n−1

h2 +Mx
n−1

− qE

d1E +d2Mx
n−1

],

My
n =

r2(h1 +Mx
n)

f1
,

Mz
n =

r3(h2 +Mx
n)

f2
,

Nx
n =

1

a
[r1 −

c1M
y
n

h1 +Nx
n−1

− c2Mz
n

h2 +Nx
n−1

− qE

d1E +d2Nx
n−1

],

Ny
n =

r2(h1 +Nx
n)

f1
,

Nz
n =

r3(h2 +Nx
n)

f2
.

(4.5)

Clearly, we have for any integer n > 0,

Nx
n ≤V1 ≤U1 ≤ Mx

n,N
y
n ≤V2 ≤U2 ≤ My

n,and Nz
n ≤V3 ≤U3 ≤ Mz

n.

In the following, we will prove that {Mx
n},{M

y
n} and {Mz

n} are monotonically decreasing and {Nx
n},{N

y
n} and {Nz

n} are

monotonically increasing, with the help of inductive method. Firstly, it is clear that

Mx
2 ≤ Mx

1,M
y
2 ≤ M

y
1,M

z
2 ≤ Mz

1,N
x
2 ≥ Nx

1 ,N
y
2 ≥ N

y
1 ,and Nz

2 ≥ Nz
1.

For n = k(k ≥ 2), we assume that

Mx
k ≤ Mx

k−1,M
y
k ≤ M

y
k−1,M

z
k ≤ Mx

k−1,N
x
k ≥ Nx

k−1,N
y
k ≥ N

y
k−1,and Nz

k ≥ Nz
k−1.

Now

Mx
k+1 −Mx

k = −1

a
[
c1{(Ny

k Mx
k−1 −Mx

k N
y
k−1)+h1(N

y
k −N

y
k−1)}

(h1 +Mx
k )(h1 +Mx

k−1)
+

c2{(Nz
kMx

k−1 −Nz
k−1Mx

k )+h2(N
z
k −Nz

k−1)}
(h2 +Mx

k )(h2 +Mx
k−1)

+
qEd2(M

x
k −Mx

k−1)

(d1E +d2Mx
k )(d1E +d2Mx

k−1)
]≤ 0

M
y
k+1 −M

y
k =

r2(M
x
k+1 −Mx

k )

f1
≤ 0

Mz
k+1 −Mz

k =
r3(M

x
k+1 −Mx

k )

f2
≤ 0

Nx
k+1 −Nx

k = −1

a
[
c1{(My

k+1Nx
k−1 −M

y
k Nx

k )+h1(M
y
k+1 −M

y
k)}

(h1 +Nx
k )(h1 +Nx

k−1)
+

c2{(Mz
k+1Nx

k−1 −Mz
kNx

k )+h2(M
z
k+1 −Mz

k)}
(h2 +Nx

k )(h2 +Nx
k−1)

+
qEd2(N

x
k−1 −Nx

k )

(d1E +d2Nx
k )(d1E +d2Nx

k−1)
]≥ 0

N
y
k+1 −N

y
k =

r2(N
x
k+1 −Nx

k )

f1
≥ 0

Nz
k+1 −Nz

k =
r3(N

x
k+1 −Nx

k )

f2
≥ 0

This shows that {Mx
n},{M

y
n} and {Mz

n} are monotonically decreasing and {Nx
n},{N

y
n} and {Nz

n} are monotonically increasing.

Therefore, by the criterion of monotonic bounded, we have established that every one of this six sequences has a limit.

Let

limn→∞Mx
n = x1, limn→∞My

n = x2, limn→∞Mz
n = x3, limn→∞Nx

n = y1, limn→∞Ny
n = y2, limn→∞Nz

n = y3.
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Passing to the limit as n → ∞ in (4.5), we get

x1 =
1

a
[r1 −

c1y2

h1 + x1
− c2y3

h2 + x1
− qE

d1E +d2x1
],

x2 =
r2(h1 + x1)

f1
,

x3 =
r3(h2 + x1)

f2
,

y1 =
1

a
[r1 −

c1x2

h1 + y1
− c2x3

h2 + y1
− qE

d1E +d2y1
]

y2 =
r2(h1 + y1)

f1
,

y3 =
r3(h2 + y1)

f2
.

(4.6)

It is clear that x1 = y1,x2 = y2 and x3 = y3. Thus we obtain x1 = x∗,x2 = y∗,x3 = z∗ as a solution of (15). Hence, the global

asymptotic stability of (x∗,y∗,z∗) is obtained. This completes the proof of the theorem.

5. Bifurcation Study

In this section, we discuss the parametric restrictions for obtaining Neimark-Sacker bifurcation at the interior fixed point E∗ of

system (1.2).

5.1 Neimark-Sacker bifurcation

To examine Neimark-Sacker bifurcation in system (1.2), we need the following result [29].

Lemma 5.1. Consider an n-dimensional discrete dynamical system Uk+1 = fm(Uk) where m ∈ R is a bifurcation parameter.

Let U∗ be fixed point of fm and the characteristic polynomial for Jacobian matrix J(U∗) = (bi j)n×n of n-dimensional map

fm(Uk) is given by

Pm(λ ) = λ n +b1λ n−1 + · · ·+bn−1λ +bn (5.1)

where bi = bi(m,u), i = 1,2,3, · · · ,n and u is a control parameter or another parameter to be deduced. Let ∆
±
0 (m,u) =

1,∆±
1 (m,u), · · · ,∆±

n (m,u) be a sequence of determinants defined by ∆
±
i (m,u) = det(M1 ±M2), i = 1,2,3, · · · ,n where

M1 =













1 b1 b2 · · · bi−1

0 1 b1 · · · bi−2

0 0 1 · · · bi−3

· · · · · · · · · · · · · · ·
0 0 0 · · · 1













,

M2 =













bn−i+1 bn−i+2 · · · bn−1 bn

bn−i+2 bn−i+3 · · · bn 0

· · · · · · · · · · · · · · ·
bn−1 bn · · · 0 0

bn 0 · · · 0 0













.

Moreover, the following conditions hold:

A1 Eigenvalue assignment

∆
−
n−1(m0,u) = 0,∆+

n−1(m0,u)> 0,Pm0
(1)> 0,(−)nPm0

(−1)> 0,∆±
i (m0,u)> 0, i = n−3,n−5, · · · ,1(or 2),

when n is even or odd, respectively.

A2 Transversality condition: [
d(∆−

n−1(m,u))

dm
]m=m0

6= 0.
A3 Non-resonance condition:

cos(2π/ j) 6= ψ,or resonance condition cos(2π/ j) = ψ where j = 3,4,5, · · ·

and ψ = 1−0.5Pm0
(1)∆−

n−3(m0,u)/∆
+
n−2(m0,u). Then Neimark-Sacker bifurcation occurs at m0.
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Now we state bifurcation result by considering a as a bifurcation parameter of system (1.2).

Theorem 5.2. The fixed point E∗ of system (1.2) admits Neimark-Sacker bifurcation if the following conditions are satisfied:

1− p2 + p3(p1 − p3) = 0,

1+ p2 − p3(p1 + p3)> 0,

1+ p1 + p2 + p3 > 0,

1− p1 + p2 − p3 > 0

(5.2)

where p1, p2 and p3 are defined in (3.7).

Proof. Following Lemma 4.1, we have found the following equalities and inequalities:

∆
−
2 (a

∗) = 1− p2 + p3(p1 − p3) = 0,

∆
+
2 (a

∗) = 1+ p2 − p3(p1 + p3)> 0,

Pa∗(1) = 1+ p1 + p2 + p3 > 0,

(−1)3Pa∗(−1) = 1− p1 + p2 − p3 > 0.

(5.3)

6. Chaos Control

Here, we examine chaos control for system (1.2). It is more pertinent for model related with biological species. It is normally

seen that discrete-time models are more chaotic and complicated than the continuous systems. Thus it is justifiable to execute

control method to prevent any uncertainty. We primarily apply hybrid control process discussed in [30]. This technique takes

a single control parameter which lies in the open unit interval. Various types of methods are available for regulating chaos

in discrete systems, for example, state feed back method, pole-placement technique and hybrid control method [31]-[?] in

which, hybrid control technique is most simple to apply. We use hybrid control technique to system (1.2) for controlling chaos

developed through bifurcation. Assume that the system admits Neimark-Sacker bifurcation at its fixed point (x∗,y∗,z∗), then

the corresponding controlled system using the hybrid control method is given by:

xn+1 = ρxnexp{r1 −axn −
c1yn

h1 + xn

− c2zn

h2 + xn

− qE

d1E +d2xn

}+(1−ρ)xn,

yn+1 = ρynexp{r2 −
f1yn

h1 + xn

}+(1−ρ)yn,

zn+1 = ρznexp{r3 −
f2yn

h2 + xn

}+(1−ρ)zn.

(6.1)

where 0 < ρ < 1 is taken as a control parameter. The Jacobian matrix of controlled system (6.1) evaluated at E∗ is given by

J(x∗,y∗,z∗) =









1−ρx∗(a− c1y∗

(h1+x∗)2 − c2z∗

(h2+x∗)2 − qEd2

(d1E+d2x∗)2 ) − ρx∗c1
h1+x∗

ρx∗c2
h2+x∗

ρy∗2 f1
(h1+x2)2 1−ρr2 0

ρz∗2 f2
(h2+x2)2 0 1−ρr3









(6.2)

The fixed point E∗ of controlled system (6.1) is locally asymptotically stable if all the roots of the characteristic polynomial of

(6.2) lie in an unit open disk.

7. Numerical Simulations

In this section, we present some numerical computations to justify our analytical results. We show the role of the intra-specific

competition coefficient among the prey species, harvesting effort and the maximum value of per capita reduction rate of y can

attain on the discrete system visually through numerical simulations.

Example 7.1. Suppose r1 = 0.8,r2 = 0.5,r3 = 0.4,c1 = 0.01,c2 = 0.02,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 0.2, f2 = 0.1,a =
0.1,q = 0.1,E = 1 for system (1.2). Then all the conditions of Theorem 4.4 are satisfied. Thus the fixed point E∗ =
(6.878,19.94,30.72) is globally asymptotically stable (see Fig. 7.1). The Fig. 7.1) shows that initially all the population

increases and eventually all the interacting populations get their steady states and finally become globally asymptotically

stable.
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Example 7.2. Suppose r1 = 3.5,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1.5, f2 = 1,a = 0.3,q =
0.2,E = 1 initial points (0.5, 0.5, 0.) for system (2). Then the conditions of Lemma 3.2 are violated. Thus the fixed

point E∗ = (3.894,7.196,9.813) is unstable. Moreover, system (1.2) admits chaotic behaviour (see 7.2(a)). In order to

show the effectiveness of hybrid control method implemented in system (6.1), we choose ρ = 0.5 and other parameters are

same as in Example 7.2. The 7.2(b) shows that the solutions initiating from (0.5,0.5,0.5) approaches to the fixed point

E∗ = (3.894,7.196,9.813). i.e., the steady state for controlled system (6.1) is a sink.

Example 7.3. Suppose r1 = 3,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,E = 1

and initial points (0.5, 0.5, 0.5) and a ∈ (0.1,1.5) in system (1.2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When

a is considered as a bifurcation parameter, then at a = a∗ = 0.326, the interior fixed point E∗ = (1.46935,5.43257,4.9387)
becomes unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and maximum

Lyapunov exponents (MLE) respect to the parameter a of system (1.2) are depicted in Fig. 7.3. As a increases, we observe that

a transition from unstable to stable.

Example 7.4. Suppose r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q= 0.2,a= 0.3
and initial points (0.5, 0.5, 0.5) and a ∈ (0.5,1.5) in system (1.2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When E

is considered as a bifurcation parameter, then at E = E∗ = 0.978, the interior fixed point E∗ = (1.435,5.373,4.884) becomes

unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and MLE respect to the

parameter E of system (1.2) are depicted in Fig. 7.4. As E increases, we observe that a transition from unstable to stable.

Example 7.5. Suppose r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 1, f2 = 1,q= 0.2,a= 0.3
and initial points (0.5, 0.5, 0.5) and f1 ∈ (0.6,2) in system (2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When f1 is

considered as a bifurcation parameter, then at f1 = f ∗1 = 0.998, the interior fixed point E∗ = (1.534,5.584,5.066) becomes

unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and MLE respect to the

parameter f1 of system (1.2) are depicted in Fig. 7.5. As f1 increases, we observe that a transition from stable to unstable and

then bifurcation within a limit cycle to a periodic window and finally to chaos.

Example 7.6. Suppose r1 = 5.8,r2 = 2,r3 = 3,c1 = 1,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 0.2, f1 = 1, f2 = 1,q =
1,a = 1 and initial points (0.5, 3, 4) ,we obtained two interior fixed points E∗

+ = (0.523607,3.047214,4.570821) and E∗
− =

(0.0763932,2.1527864,3.2291796) both are unstable (see Fig. 7.6). Fig. 7.6(b) represents the time series plot of system (2)

when E = 0.28
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Figure 7.1. Time series plots of system (1.2) with parameter values

r1 = 0.8,r2 = 0.5,r3 = 0.4,c1 = 0.01,c2 = 0.02,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 0.2, f2 = 0.1,a = 0.1,q = 0.1,E = 1 and

initial points (1, 2, 1) and (5, 1, 3).
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Figure 7.2. (a) Time series plots of system (1.2) with parameter values

r1 = 3.5,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1.5, f2 = 1,a = 0.3,q = 0.2,E = 1 with initial

points (0.5, 0.5, 0.5) and (b) phase portrait of controlled system (6.1) for ρ = 0.5
.
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Figure 7.3. Bifurcation diagrams and MLE for system (1.2) with parameter values

r1 = 3,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,E = 1,a ∈ (0.1,1.5) and initial

point (0.5, 0.5, 0.5).
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Figure 7.4. Bifurcation diagrams and MLE for system (1.2) with parameter values

r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,a = 0.3,E ∈ (0.5,1.5) and

initial point (0.5, 0.5, 0.5)

.
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Figure 7.5. Bifurcation diagrams and MLE for system (1.2) with parameter values

r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 1, f2 = 1,q = 0.2,a = 0.3, f1 ∈ (0.6,2) and

initial point (0.5, 0.5, 0.5)

.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

n

P
o
p
u
la

tio
n
s

(a)

 

 

x
n

y
n

z
n

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

n

P
o
p
u
la

tio
n
s

(b)

 

 

x
n

y
n

z
n

Figure 7.6. Time series plots of system (1.2) with parameter values

r1 = 5.8,r2 = 2,r3 = 3,c1 = 1,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,a = 1,q = 1 for E = 0.2 and 0.28

respectively. initial point (0.5, 3, 4).

8. Discussion

In this article, a discrete-time Leslie-Gower two predator-one prey system with Michaelis-Menten type prey harvesting is

investigated. To our knowledge, there are a few works that address the impact of non-linear harvesting on System (1.2). It is
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shown that the system has at most twelve fixed points. Qualitative analysis shows that all the boundary fixed points, excepting

E23 are unstable. Under certain restrictions on the system parameters, E23 may be stable, which in turn implies that that the prey

population goes into extinction. As the trivial fixed point always exists and unstable, the three species cannot go to extinction

together. It is established that multiple fixed points exist due to the presence of non-linear harvesting term. It is shown that

Neimark-Sacker bifurcation occurs at the unique positive fixed point when the parameters a,E, f1 are varied. The choice of

these parameters is arbitrary, one may find similar type of bifurcations for other parameters also. Numerical simulations show

that when the parameters a and E exceed a certain critical value, the system becomes stable (see Figs. 7.3 and 7.4) whereas

the opposite holds f1 is increased. In case of multiple fixed points, chaotic behaviour is observed. In particular, we observe

when the predator population is chaotic, the prey population ultimately tends to extinct. This fact is clear when we increase

the harvest rate from 0.2 to 0.28 (see Fig. 7.6 ). The proposed model admits more rich characteristics and more complicated

dynamics than that exist in the continuous case. We have derived the condition for global stability of the positive fixed point by

applying the iteration scheme and comparison principle of difference equations. Conditions of Theorem 4.4 indicate that when

the intrinsic growth rate of the three species remains below one, the positive fixed point is globally asymptotically stable.

Sometimes bifurcation and chaotic behaviour are in fact unwanted situations in discrete dynamical systems, because there may

be an extinction of the population due to chaos. So chaos control becomes a crucial issue. To prevent chaos, we have used the

hybrid control method so that the stability of the system can be regained.

To our understanding, the dynamical study of discrete time model considering a Leslie-Gower two predator-one prey system

with Michaelis-Menten type prey harvesting has not investigated yet.
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1. Introduction

Numerous studies on families of special polynomials, including the Bernoulli, Euler, Genocchi, and Fubini polynomials, as well

as their generalizations and unifications (see, for example, the most recent works in [1]- [6], have gained significant popularity

due to the wide range of their applications in various branches of mathematics, including p-adic analytic number theory, umbral

calculus, special functions, and mathematical analysis. The special functions of mathematical physics have undergone a major

evolution in recent years, especially in their generalized and multivariable forms. Thus, research on the multivariate Fubini

polynomials was done for this work. Now let’s go through the fundamental terms and theories that we will be using for the

duration of the entire study.

For n ≥ 0, let

Fn =
n

∑
k=0

k!S(n,k),

where S(n,k) denotes the Stirling numbers of the second kind [11]. In [12], the Fubini numbers Fn were connected with

preference arrangements and the recursion for Fn was derived. In [12], [13], the exponential generating function

1

2− et
=

∞

∑
n=0

Fn

tn

n!
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and an asymptotic estimate for Fn were established. In [14], the Fubini polynomials Fn(y) were defined by

Fn(y) =
n

∑
k=0

k!S(n,k)yk

and generated by

1

1− y(et −1)
=

∞

∑
n=0

Fn(y)
tn

n!
.

It is clear that Fn(1) = Fn. Due to the relation

(

y
d

dy

)m
1

1− y
=

∞

∑
k=0

kmyk =
1

1− y
Fm

(

y

1− y

)

, |y|< 1

in [15], one also calls Fn(y) the geometric polynomials. In [16], the Fubini polynomials Fn(x,y) of two variables x, y are defined

by means of the generating function

ext

1− y(et −1)
=

∞

∑
n=0

Fn(x,y)
tn

n!
.

It is apparent that Fn(0,y) = Fn(y). In Particular, the special polynomials of two variables provided new means of analysis

for the solution of large classes of partial differential equations often encountered in physical problems. Most of the special

function of mathematical physics and their generalization has been suggested by physical problems (see, e.g., [7]-[10] and the

references therein). In [17], the bivariate Fubini polynomials F
(r)
n (x,y) of order r, generated by

ext

[1− y(et −1)]r
=

∞

∑
n=0

F
(r)
n (x,y)

tn

n!
, r ∈ N

were studied. It is obvious that F
(1)
n (x,y) = Fn(x,y). The generating functions of Fn, Fn(y), Fn(x,y) and F

(r)
n (x,y) remind us to

consider the generating function

ext

[z− y(et −1)]q
=

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
, x,q ∈ R (1.1)

and the generalized Fubini polynomials Fn(x,y,z,q) of four variables x, y, z, q [18]. It is clear that, since

ext

[z− y(et −1)]q
=

1

zq

ext

[1− (y/z)(et −1)]q
,

we have

Fn(x,y,z,q) =
F
(r)
n (x,y/z)

zr
.

The aim of this paper is to derive various families of multilinear and multilateral generating functions for the polynomials

Fn(x,y,z,q) given by (1.1). We present some special cases of our results and also obtain some other properties for these special

cases.

2. Multilinear and Multilateral Generating Functions

The goal of this section is to derive several families of multilinear and multilateral generating functions for a class of polynomials

in four variables given by equation (1.1) with the help of the method considered in refs. [20], [21].

Lemma 2.1. The following addition formula holds for the generalized Fubini polynomials Fn(x,y,z,q) :

Fn(x1 + x2,y,q1 +q2) =
n

∑
m=0

(

n

m

)

Fn−m(x1,y,z,q1)Fm(x2,y,z,q2). (2.1)
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Proof. Replacing x by x = x1 + x2 and q by q = q1 +q2 in (1.1), we obtain

∞

∑
n=0

Fn(x1 + x2,y,q1 +q2)
tn

n!
=

ex1t+x2t

[z− y(et −1)]q1+q2

=
ex1t

[z− y(et −1)]q1

ex2t

[z− y(et −1)]q2

=
∞

∑
n=0

Fn(x1,y,z,q1)
tn

n!

∞

∑
m=0

Fm(x2,y,z,q2)
tm

m!

=
∞

∑
n=0

∞

∑
m=0

Fn(x1,y,z,q1)Fm(x2,y,z,q2)
tn+m

n!.m!

=
∞

∑
n=0

n

∑
m=0

(n
m)Fn−m(x1,y,z,q1)Fm(x2,y,z,q2)

tn

n!
.

From the coefficients of tn on the both sides of the last equality, one can get the desired result.

Theorem 2.2. Corresponding to an identically non-vanishing function Ωµ(s1, ...,sr) of r complex variables s1, ...,sr (r ∈ N)
and of complex order µ , ψ , let

Λµ,ψ(s1, ...,sr;ζ ) :=
∞

∑
k=0

akΩµ+ψk(s1, ...,sr)ζ
k,

θ µ ,ψ
n,p (x,y,z,q;s1, ...,sr;ξ ) :=

[n/p]

∑
k=0

akFn−pk(x,y,z,q)Ωµ+ψk(s1, ...,sr)
ξ k

(n− pk)!
.

where ak 6= 0, n, p ∈ N and the notation [n/p] means the greatest integer less than or equal p ∈ N. Then, for p ∈ N we have

∞

∑
n=0

θ µ ,ψ
n,p (x,y,z,q;s1, ...,sr;

η

t p
)tn =

ext

[z− y(et −1)]q
Λµ,ψ(s1, ...,sr;η), (2.2)

provided that each member of (2.2) exists.

Proof. For convenience, let S denote the first member of the assertion of Theorem 2.2. Then,

S =
∞

∑
n=0

[n/p]

∑
k=0

akFn−pk(x,y,z,q)Ωµ+ψk(s1, ...,sr)η
k tn−pk

(n− pk)!
.

Replacing n by n+ pk; we may write that

S =
∞

∑
n=0

∞

∑
k=0

akFn(x,y,z,q)Ωµ+ψk(s1, ...,sr)η
k tn

n!

=
∞

∑
n=0

Fn(x,y,z,q)
tn

n!

∞

∑
k=0

ak Ωµ+ψk(s1, ...,sr)η
k

=
ext

[z− y(et −1)]q
Λµ,ψ(s1, ...,sr;η),

which completes the proof.

Using Lemma 1, we have the following theorem.

Theorem 2.3. Corresponding to an identically non-vanishing function Ωµ (s1, ...,sr) of r complex variables s1, ...,sr (r ∈ N)
and of complex order µ , ψ , let

Λ
n,p
µ ,ψ(x1 + x2,y,z,q1 +q2;s1, ...,sr; t) :=

[n/p]

∑
k=0

akFn−pk(x1 + x2,y,q1 +q2)Ωµ+ψk(s1, ...,sr)t
k
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where ak 6= 0, n, p ∈ N. Then, for p ∈ N, we have

n

∑
k=0

[k/p]

∑
l=0

al

(

n− pl

k− pl

)

Fn−k(x1,y,z,q1)Fk−pl(x2,y,z,q2)Ωµ+ψl(s1, ...,sr)t
l

= Λ
n,p
µ,ψ(x1 + x2,y,z,q1 +q2;s1, ...,sr; t), (2.3)

provided that each member of (2.3) exists.

Proof. For convenience, let T denote the first member of the assertion of Theorem 2.3. Then, upon substituting for the

polynomials Fn(x1 + x2,y,z,q1 +q2) from the (2.3) into the left-hand side of (2.1), we obtain

T =
[n/p]

∑
l=0

n−pl

∑
k=0

al

(

n− pl

k

)

Fn−k−pl(x1,y,z,q1)Fk(x2,y,z,q2)Ωµ+ψl(s1, ...,sr)t
l

=
[n/p]

∑
l=0

al

(

n−pl

∑
k=0

(

n− pl

k

)

Fn−k−pl(x1,y,z,q1)Fk(x2,y,z,q2)

)

Ωµ+ψl(s1, ...,sr)t
l

=
[n/p]

∑
l=0

alFn−pl(x1 + x2,y,q1 +q2)Ωµ+ψl(s1, ...,sr)t
l

= Λ
n,p
µ,ψ(x1 + x2;s1, ...,sr; t),

which completes the proof.

3. Special Cases

When the multivariable function Ωµ+ψk(s1, ...,sr), k ∈ N0, r ∈ N0 is expressed in terms of simpler functions of one and more

variables, then we can give further applications of the above theorems. We first set

Ωµ+ψk(s1, ...,sr ) = T
(α1,α2,...,αr ;α)
µ+ψk,λ ,l (s1, ...,sr;s)

in Theorem 2.2, where the Lagrange-based Apostol- type polynomials T
(α1,α2,...,αr ;α)

n,λ ,k (x1, ...,xr;x) [19], generated by

∞

∑
n=0

T
(α1,α2,...,αr ;α)

n,λ ,l (x1, ...,xr;x)tn =

(

r

∏
j=1

(1− x jt)
−α j

)

(

2lt

λet +(−1)l+1

)α

ext (λ ; α j ∈ C) (3.1)

We are thus led to the following result which provides a class of bilateral generating functions for the Lagrange-based

Apostol- type polynomials T
(α1,α2,...,αr ;α)

n,λ ,l (x1, ...,xr;x) and the generalized Fubini polynomials Fn(x,y,z,q).

Corollary 3.1. If

Λµ ,ψ(s1, ...,sr;s;ζ ) :=
∞

∑
k=0

akT
(α1,α2,...,αr ;α)
µ+ψk,λ ,l (s1, ...,sr;s)ζ k (ak 6= 0 , µ,ψ ∈C)

then, we have

∞

∑
n=0

[n/p]

∑
k=0

akFn−pk(x,y,z,q)T
(α1,α2,...,αr ;α)
µ+ψk,λ ,l (s1, ...,sr;s)

ηk

t pk

tn

(n− pk)!
=

ext

[z− y(et −1)]q
Λµ,ψ(s1, ...,sr;s;η), (3.2)

provided that each member of (3.2) exists.

Remark 3.2. Using the generating relation (3.1) for the Lagrange-based Apostol-type polynomials T
(α1,α2,...,αr ;α)

n,λ ,l (s1, ...,sr;s)
and getting ak = 1, µ = 0, ψ = 1 in Corollary 1, we find that

∞

∑
n=0

[n/p]

∑
k=0

Fn−pk (x,y,z,q)T
(α1,α2,...,αr ;α)

k,λ ,l (s1, ...,sr;s)ηk tn−pk

(n− pk)!

=
ext

[z− y(et −1)]q

(

r

∏
j=1

(1− s jη)−α j

)

(

2lη

λeη +(−1)l+1

)α

esη , (λ ∈ C; α j ∈ C) .
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In the particular cases when l = 0, l = 1 in the Corollary 1 and Remak 1, we have bilateral generating functions the

Lagrange-based Apostol-Bernoulli polynomials B
(α1,α2,...,αr ;α)
k,λ (s1, ...,sr;s), the Lagrange-based Apostol-Genocchi polynomials

G
(α1,α2,...,αr ;α)
k,λ (s1, ...,sr;s) and the generalized Fubini polynomials [28].

If we set r = 4 and

Ωµ+ψk(s1,s2,s3,s4) = Fµ+ψk(s1,s2,s3,s4)

in Theorem 2.2, we have the following bilinear generating functions for the generalized Fubini polynomils.

Corollary 3.3. If

Λµ,ψ(s1,s2,s3,s4;ζ ) :=
∞

∑
k=0

akFµ+ψk(s1,s2,s3,s4)ζ
k, (ak 6= 0 µ,ψ ∈ C)

then, we have

∞

∑
n=0

[n/p]

∑
k=0

akFn−pk(x,y,z,q)Fµ+ψk(s1,s2,s3,s4)
ηk

t pk

tn

(n− pk)!
=

ext

[z− y(et −1)]q
Λµ,ψ(s1,s2,s3,s4;η), (3.3)

provided that each member of (3.3) exists.

Remark 3.4. Using the generating relation (1.1) for the generalized Fubini polynomials Fn(x,y,z,q) and getting

ak =
1

k!
, µ = 0, ψ = 1

in Corollary 2, we find that

∞

∑
n=0

[n/p]

∑
k=0

1

k!
Fn−pk (x,y,z,q)Fk(s1,s2,s3,s4)η

k tn−pk

(n− pk)!

=
∞

∑
n=0

Fn (x,y,z,q)
tn

n!

∞

∑
k=0

Fk(s1,s2,s3,s4)
ηk

k!

=
ext

[z− y(et −1)]q
es1t

[s3 − s2 (et −1)]s4
.

If we set r = 1 and

Ωµ+ψk(s1) = Fµ+ψk(x3,y,z,q3)

in Theorem 2.3, we have the following summation formula for the generalized Fubini polynomials.

Corollary 3.5. If

Λ
n,p
µ,ψ(x1 + x2,y,z,q1 +q2;x3,y,z,q3;η) :=

[n/p]

∑
k=0

akFn−pk(x1 + x2,y,z,q1 +q2)Fµ+ψk(x3,y,z,q3)η
k ,

(ak 6= 0, µ,ψ ∈ C) ,

then, we have

n

∑
k=0

[k/p]

∑
l=0

al

(

n

k

)

Fn−k(x1,y,z,q1)Fk−pl(x2,y,z,q2)Fµ+ψl(x3,y,z,q3)η
l

= Λ
n,p
µ,ψ(x1 + x2,y,z,q1 +q2;x3,y,z,q3;η), (3.4)

provided that each member of (3.4) exists.

Remark 3.6. Using (2.1) and taking

al = 1, µ = 0, ψ = 1, p = 1, η l =

(

k

l

)

in Corollary 3, we have

n

∑
k=0

k

∑
l=0

(

n

k

)(

k

l

)

Fn−k(x1;y,z,q1)Fk−l(x2,y,z,q2)Fl(x3,y,z,q3) = Fn(x1 + x2 + x3,y,z,q1 +q2 +q3).
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Furthermore, for every suitable choice of the coefficients ak (k ∈N0), if the multivariable functions Ωµ+ψk(s1, ...,sr), r ∈N,

are expressed as an appropriate product of several simpler functions, the assertions of Theorem 2.2, Theorem 2.3 can be applied

in order to derive various families of multilinear and multilateral generating functions for the family of the generalized Fubini

polynomials given explicitly by (1.1).

4. Miscellaneous Properties

In this section, we give some properties for the generalized Fubini polynomials Fn(x,y,z,q) given by (1.1).

Firstly, recall that the classical Frobenius-Euler polynomials H
(r)
n (u;x) of order r are generated by (see, e.g., [22]-[26])

(

1−u

et −u

)r

ext =
∞

∑
n=0

H
(r)
n (u;x)

tn

n!
, (4.1)

where u 6= 1.

We note that, for r = 1 in (4.1), the H
(1)
n (u;x) = Hn(u;x), which denotes the Frobenius-Euler polynomials and for

u = 0 in (4.1), the H
(r)
n (0;x) = H

(r)
n (x), which denotes the Frobenius-Euler numbers of order r. For x = −1 in (4.1), the

H
(r)
n (u;−1) = En(u), which denotes the Euler polynomials (cf. [27]).

Theorem 4.1. For n ≥ 0, y, z 6= 0; we have

Fn(x,y,z,q) =
H

(q)
n ( z+y

y
;x)

zq
. (4.2)

Proof. Using (1.1) and (4.1), we obtain

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
=

ext

[z− y(et −1)]q

=

[

1− z+y
y

et − z+y
y

]q

ext

= z−q
∞

∑
n=0

H
(q)
n (

z+ y

y
;x)

tn

n!
.

Hence, we have

Fn(x,y,z,q) =
H

(q)
n ( z+y

y
;x)

zq
, (y, z 6= 0) ,

or

H
(q)
n (

z+ y

y
;x) = zqFn(x,y,z,q).

Some special cases of Theorem 4.1 are examined below.

Corollary 4.2. For n ≥ 0, q = 1, z, y 6= 0; we have

H
(1)
n (

z+ y

y
;x) = Hn(

z+ y

y
;x) = zFn(x,y,z,1).

Corollary 4.3. For n ≥ 0, z =−y 6= 0; we have

H
(q)
n (0;x) = H

(r)
n (x) = (−y)qFn(x,y,−y,q).

Corollary 4.4. For n ≥ 0, z, y 6= 0, x =−1; we have

H
(q)
n (

z+ y

y
;−1) = En(

z+ y

y
) = zqFn(−1,y,z,q).
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We now discuss some miscellaneous recurrence relations of the generalized Fubini polynomials.

Theorem 4.5. The following (differential) recurrence relation for the generalized Fubini polynomials holds:

∂

∂x
Fn(x,y,z,q) = n.Fn−1(x,y,z,q) (4.3)

and degFn(x,y,z,q) = n.

Proof. If we take the derivative of (1.1) with respect to x both sides of the expression, we have

∂

∂x

(

∞

∑
n=0

Fn(x,y,z,q)
tn

n!

)

=
∂

∂x

[

ext

[z− y(et −1)]q

]

,

∞

∑
n=0

∂

∂x
Fn(x,y,z,q)

tn

n!
=

text

[z− y(et −1)]q
,

∞

∑
n=0

∂

∂x
Fn(x,y,z,q)

tn

n!
= t

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

∞

∑
n=0

∂

∂x
Fn(x,y,z,q)

tn

n!
=

∞

∑
n=0

Fn(x,y,z,q)
tn+1

n!

∞

∑
n=1

∂

∂x
Fn(x,y,z,q)

tn

n!
=

∞

∑
n=1

Fn−1(x,y,z,q)
tn

(n−1)!
.

On equating like powers of tn in the above expression, which completes the proof.

Theorem 4.6. The following (differential) recurrence relation for the generalized Fubini polynomials holds:

(z+ y)
∂

∂y
Fn(x,y,z,q)+q

∞

∑
n=0

Fn(x,y,z,q) = y
n

∑
p=0

(

n

p

)

∂

∂y
Fn−p(x,y,z,q)+q

n

∑
p=0

(

n

p

)

∂

∂y
Fn−p(x,y,z,q) (4.4)

and degFn(x,y,z,q) = n.

Proof. If we take the derivative of (1.1) with respect to y both sides of the expression, we have

∂

∂y

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
=

∂

∂y

[

ext

[z− y(et −1)]q

]

,

∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
= ext

[

−q
(

z− y
(

et −1
))]−q−1

(−1)(et −1),

∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
=

ext

[z− y(et −1)]q
q(et −1)

z− y(et −1)
,

(z+ y)
∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
− y

∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!

∞

∑
p=0

t p

p!
= q

∞

∑
n=0

∞

∑
p=0

Fn(x,y,z,q)
tn+p

n!p!
−q

∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
,

(z+ y)
∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
− y

∞

∑
n=0

∞

∑
p=0

∂

∂y
Fn(x,y,z,q)

tn+p

n!p!
= q

∞

∑
n=0

∞

∑
p=0

∂

∂y
Fn(x,y,z,q)

tn+p

n!p!
−q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

(z+ y)
∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
− y

∞

∑
n=0

n

∑
p=0

∂

∂y
Fn−p(x,y,z,q)

tn

(n− p)!p!

= q
∞

∑
n=0

n

∑
p=0

∂

∂y
Fn−p(x,y,z,q)

tn

(n− p)!p!
−q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,
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(z+ y)
∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
+q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!

= y
∞

∑
n=0

n

∑
p=0

∂

∂y
Fn−p(x,y,z,q)

tn

(n− p)!p!
+q

∞

∑
n=0

n

∑
p=0

∂

∂y
Fn−p(x,y,z,q)

tn

(n− p)!p!

(z+ y)
∞

∑
n=0

∂

∂y
Fn(x,y,z,q)

tn

n!
+q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!

= y
∞

∑
n=0

n

∑
p=0

(

n

p

)

∂

∂y
Fn−p(x,y,z,q)

tn

n!
+q

∞

∑
n=0

n

∑
p=0

(

n

p

)

∂

∂y
Fn−p(x,y,z,q)

tn

n!

which upon comparison of the coefficients of tn

n!
yields our stated result (4.4).

Theorem 4.7. The following (differential) recurrence relation for the generalized Fubini polynomials holds:

(z+ y)
∂

∂ z
Fn(x,y,z,q) = y

n

∑
p=0

(

n

p

)

∂

∂ z
Fn−p(x,y,z,q)−qFn(x,y,z,q)

and degFn(x,y,z,q) = n.

Proof. If we take the derivative of (1.1) with respect to z both sides of the expression, we have

∂

∂ z

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
=

∂

∂ z

[

ext

[z− y(et −1)]q

]

,

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
=
[

ext
(

−q
[

z− y(et −1)
]−q−1

)]

,

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
=−q

ext

[z− y(et −1)]q (z− y(et −1))
,

(z− y(et −1))
∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
=−q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

−q
∞

∑
n=0

Fn(x,y,z,q)
tn

n!
= z

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
− y

∞

∑
n=0

∞

∑
p=0

∂

∂ z
Fn(x,y,z,q)

tn+p

n!p!
+ y

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
,

−q
∞

∑
n=0

Fn(x,y,z,q)
tn

n!
= z

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
− y

∞

∑
n=0

n

∑
p=0

∂

∂ z
Fn−p(x,y,z,q)

tn

(n− p)!p!
+ y

∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
.

(z+ y)
∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
= y

∞

∑
n=0

n

∑
p=0

∂

∂ z
Fn−p(x,y,z,q)

tn

(n− p)!p!
−q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

(z+ y)
∞

∑
n=0

∂

∂ z
Fn(x,y,z,q)

tn

n!
= y

∞

∑
n=0

n

∑
p=0

(

n

p

)

∂

∂ z
Fn−p(x,y,z,q)

tn

n!
−q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
.

From the coefficients of tn

n!
on the both sides of the last equality, one can get the desired result.

Theorem 4.8. The following (differential) recurrence relation for the generalized Fubini polynomials holds:

∂

∂q
Fn(x,y,z,q) =

∞

∑
m=0

n

∑
p=0

(

n

p

)(

y

z+ y

)m+1

(m+1)p−1Fn−p(x,y,z,q)− ln(z+ y)Fn(x,y,z,q)

and degFn(x,y,z,q) = n.
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Proof. If we take the derivative of (1.1) with respect to q both sides of the expression, we have

∂

∂q

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
=

∂

∂q

[

ext

[z− y(et −1)]q

]

,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
= ext((−1)

[

z− y(et −1)
]−q

ln(z− y(et −1)),

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=

−ext

[z− y(et −1)]q
ln(z+ y)(1−

yet

z+ y
),

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=−

∞

∑
n=0

Fn(x,y,z,q)
tn

n!

[

ln(z+ y)+ ln(1−
yet

z+ y
)

]

,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
− ln(1−

yet

z+ y
)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
−

[

−
yet

z+ y
F(1,1;2;

yet

z+ y
)

]

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

y

z+ y
et

∞

∑
n=0

(1)m(1)m

(2)m

( yet

z+y
)m

m!

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

∞

∑
n=0

∞

∑
m=0

Fn(x,y,z,q)(
y

z+ y
)m+1 (e

t)m+1

m+1

tn

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

Fn(x,y,z,q)

m+1
(

y

z+ y
)m+1 t p(m+1)p

p!

tn

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

Fn(x,y,z,q)(
y

z+ y
)m+1 (m+1)p−1

p!

tn+p

n!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

∞

∑
n=0

∞

∑
m=0

n

∑
p=0

Fn−p(x,y,z,q)(
y

z+ y
)m+1 (m+1)p−1

p!

tn

(n− p)!
,

∞

∑
n=0

∂

∂q
Fn(x,y,z,q)

tn

n!
=− ln(z+ y)

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

∞

∑
n=0

∞

∑
m=0

n

∑
p=0

(

n

p

)

Fn−p(x,y,z,q)(
y

z+ y
)m+1(m+1)p−1 tn

n!
.

On equating like powers of tn

n!
on both sides in the above expression and after some simplification, we arrive at our desired

result.

Theorem 4.9. The following recurrence relation for the generalized Fubini polynomials holds:

(z+ y)Fn+1(x,y,z,q)− x(z+ y)Fn(x,y,z,q) = y
n+1

∑
m=0

Fn−m+1(x,y,z,q)+(q− x)y
n

∑
m=0

(

n

m

)

Fn−m(x,y,z,q).
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Proof. If we take the derivative of (1.1) with respect to t both sides of the expression, we have

∂

∂ t

[

∞

∑
n=0

Fn(x,y,z,q)
tn

n!

]

=
∂

∂ t

[

ext

[z− y(et −1)]q

]

,

[

∞

∑
n=1

nFn(x,y,z,q)
tn−1

n!

]

= xext

[

1

[z− y(et −1)]q

]

−q
[

z− y
(

et −1
)]q−1 [

−yet
]

ext ,

[

∞

∑
n=1

nFn(x,y,z,q)
tn−1

n!

]

= x
∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+

qy∑
∞
m=0

tm

m! ∑
∞
n=0 Fn(x,y,z,q)

tn

n!

z− y(et −1)
,

[z− y
(

et −1
)

]
∞

∑
n=1

Fn(x,y,z,q)
tn−1

n!
= x
[

z− y
(

et −1
)]

∞

∑
n=0

Fn(x,y,z,q)
tn

n!
+qy

∞

∑
n=0

n

∑
m=0

Fn−m(x,y,z,q)
tn

(n−m)!m!
,

(

z− y
(

et −1
))

∞

∑
n=1

Fn(x,y,z,q)
tn−1

n!

= x(z+ y)
∞

∑
n=0

Fn(x,y,z,q)
tn

n!
− xy

∞

∑
n=0

n

∑
m=0

Fn−m(x,y,z,q)
tn

(n−m)!m!
+qy

∞

∑
n=0

n

∑
m=0

Fn−m(x,y,z,q)
tn

(n−m)!m!
,

(z+ y)
∞

∑
n=o

Fn+1(x,y,z,q)
tn

n!
− y

∞

∑
n=0

n+1

∑
m=0

Fn+1−m(x,y,z,q)
tn

n!

= x(z+ y)
∞

∑
n=0

Fn(x,y,z,q)
tn

n!
− xy

∞

∑
n=0

n

∑
m=0

Fn−m(x,y,z,q)
tn

(n−m)!m!
+qy

∞

∑
n=0

n

∑
m=0

Fn−m(x,y,z,q)
tn

(n−m)!m!
,

which yields our stated result.

Theorem 4.10. The following integral representation

β
∫

α

Fn(x,y,z,q)dx =
Fn+1(β ,y,z,q)−Fn+1(α,y,z,q)

n+1
(4.5)

holds for n ≥ 0.

Proof. From (4.3), we derive that

β
∫

α

Fn(x,y,z,q)dx =
1

n+1

β
∫

α

∂

∂x
Fn+1(x,y,z,q)dx

=
Fn+1(β ,y,z,q)−Fn+1(α,y,z,q)

n+1
,

which means the asserted result (4.5).

5. Conclusion

In this paper, we have established some generating functions for the generalized Fubini polynomials by using series rearrange-

ment techniques. Also, some summation formulae for that polynomials are derived by using certain operational techniques and

by using different analytical means on its generating function. Further, many generating functions and summation formulae for

the polynomials related to generalized Fubini polynomials are obtained as applications of main results. The approach presented

in this paper is general and can be extended to establish other properties of special polynomials.
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1. Introduction

The difference equations or systems have too many applications among many branches of science. over the last two decades,

difference equations or their systems have been huge interest between scholars which are mathematicians . For example, in [22]

discussed global dynamics of an one-dimensional discrete-time laser model. Further in [8] Din et al. discussed stability of a

discrete ecological model. Studies of difference equations are increasing day by day and will continue to increase. Therefore,

there are many papers related to applications of difference equations or systems. More specifically, some scientists studied

the dynamics of solutions of difference equations or systems (for example, see [1]-[5],[7, 9, 12], [14]-[21], [23], [25]-[30]).

Additionally, there are many results related to our study as follows:

In [31], Yang et al. studied the solutions, stability and asymptotic behaviour of the system of the two nonlinear difference

equations

xn+1 =
Axn

1+ y
p
n

, yn+1 =
Byn

1+ x
p
n

.

In [11], Elabbasy et al. investigated the global behaviour of following system of difference equations

xn+1 =
a1xn

a2 +a3yr
n

, yn+1 =
b1yn

b2 +b3xr
n

.

In [6], Bacani et al. discussed solutions of the following two nonlinear difference equations

xn+1 =
q

p+ xv
n

, yn+1 =
q

−p+ yv
n

.
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In [24], Hadziabdic et al. examined the global behaviours of following system of difference equations

xn+1 =
b1x2

n

A1 + y2
n

, yn+1 =
a2 + c2y2

n

x2
n

In [8], Burgic et al. investigated the global stability properties and asymptotic behaviour of solutions for the system of difference

equations

xn+1 =
xn

a+ y2
n

, yn+1 =
yn

b+ x2
n

.

In [10], Beso et al. concentrates on discussing boundedness of solutions of following difference equation

xn+1 = γ +δ
xn

x2
n−1

.

In [13], Tasdemir et al. discussed the global asymptotic stability of a system of difference equations with quadratic terms

xn+1 = A+B
yn

y2
n−m

, yn+1 = A+B
xn

x2
n−m

They also studied global asymptotic stability of related difference equation. Motivated by difference equations and their systems,

we consider the following system of difference equations

xi+1 = α +β
yi−1

y2
i

, yi+1 = α +β
xi−1

x2
i

(1.1)

where α and β are positive numbers and the initial values are positive numbers. In this paper we study the stability, global

behaviour and rate of convergence of solutions of system (1.1). We also discussed the oscillation behaviour of solutions of

related system. In this here, we obtain two theorems which are used during this study.

Theorem 1.1. (Linearized Stability Theorem [25]) Assume that

Xi+1 = F (Xi) , i = 0,1, . . .

is a system of difference equations such that X̄ is a fixed point of F.

(i) If all eigenvalues of the Jacobian matrix β about X̄ lie inside the open unit disk |λ |< 1, that is, if all of them have absolute

value less than one, then X̄ is locally asymptotically stable.

(ii) If at least one of them has a modulus greater than one, then X̄ is unstable.

Theorem 1.2. [5] Let i ∈ N+
i0

and g(i,u,v) be a decreasing function in u and v for any fixed n. Suppose that for i ≤ i0,the

inqualities

yi+1 ≤ g(i,yi,yi−1)

ui+1 ≥ g(i,yi,yi−1)

hold. Then

yi0−1 ≤ ui0−1,yi0 ≤ ui0

implies that

yi ≤ ui, i ≥ i0.

2. Linearized Stability of System (1.1)

First of all, we consider the change of the variables for system (1.1) as follows:

ζi =
xi

α
, ηi =

yi

α
.

From this, system (1.1) transform into following system:

ζi+1 = 1+µ
ηi−1

η2
i

,ηi+1 = 1+µ
ζi−1

ζ 2
i

(2.1)

where µ = β

α2 > 0. From now on, we study the system (2.1).
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Lemma 2.1. Let µ > 0. Unique positive equilibrium point of system (2.1) is

(ζ̄ , η̄) =

(

1+
√

1+4µ

2
,

1+
√

1+4µ

2

)

.

Now, we consider a transformation as follows:

(ζi,ζi−1,ηi,ηi−1)→ (t, t1,z,z1)

where t = 1+µ
ηi−1

η2
i

, t1 = ζi,z = 1+µ
ζi−1

ζ 2
i

,z1 = ηi . Thus we get the jacobian matrix about equilibrium point (ζ̄ , η̄):

β (ζ̄ , η̄) =











0 0
µ

η̄2

−2µ

η̄2

1 0 0 0
µ

ζ̄ 2

−2µ

ζ̄ 2 0 0

0 0 1 0











.

Thus, the linearized system of system (2.1) about the unique positive equilibrium point is given by XI+1 = β (ζ ,η)XI , where

XI =









ζi

ζi−1

ηi

ηi−1









,

β (ζ̄ , η̄) =











0 0
µ

η̄2

−2µ

η̄2

1 0 0 0
µ

ζ̄ 2

−2µ

ζ̄ 2 0 0

0 0 1 0











.

Hence, the characteristic equation of β (ζ ,η) about the unique positive equilibrium point (ζ̄ , η̄)is

λ 4 − µ2

ζ̄ 2η̄2
λ 2 +

4µ2

ζ̄ 2η̄2
λ − 4µ2

ζ̄ 2η̄2
= 0.

Due to ζ̄ = η̄ , we can rearrange the characteristic equation such that

λ 4 − µ2

ζ̄ 4
λ 2 +

4µ2

ζ̄ 4
λ − 4µ2

ζ̄ 4
= 0.

Therefore, we obtain the four roots of characteristic equation as follows:

λ1 =
µ +

√

µ2 −8µ ζ̄ 2

2 ζ̄ 2
,

λ2 =
µ −

√

µ2 −8µ ζ̄ 2

2 ζ̄ 2
,

λ3 =
−µ +

√

µ2 +8µ ζ̄ 2

2 ζ̄ 2
,

λ4 =
−µ −

√

µ2 +8µ ζ̄ 2

2 ζ̄ 2
.

Now, we calculate ζ̄ 2 and write in λ1. Then we have

λ1 =
µ +

√

µ2 −4µ(1+2µ +
√

4µ +1)

1+2µ +
√

4µ +1

=
µ +

√

−7µ2 −4µ −4µ
√

1+4µ

1+2µ +
√

4µ +1

=
µ +

√

7µ2 +4µ +4µ
√

1+4µi

1+2µ +
√

4µ +1
.



Global Asymptotic Stability of a System of Difference Equations with Quadratic Terms — 34/43

Thus straightforward calculations show that

|λ1|=
2
√

2µ

1+
√

1+4µ
.

Additionally, we obtain similarly calculations that

|λ2|=
2
√

2µ

1+
√

1+4µ
.

On the other hand, we consider λ3 as follows:

λ3 =
−µ +

√

9µ2 +4µ +4µ
√

4µ +1

1+2µ +
√

4µ +1

=
−µ +

√

(3µ +
√

1+4µ)2 −1−2µ
√

4µ +1

1+2µ +
√

4µ +1

<
−µ +

√

(3µ +
√

1+4µ)2

1+2µ +
√

4ρ +1

=
2µ +

√
1+4µ

1+2µ +
√

4µ +1
< 1.

Moreover, we clearly see that λ3 > 0. So 0 < λ3 < 1 for all µ > 0 . Similar calculations we have that −1 < λ4 < 0 for all

µ > 0.

Theorem 2.2. Suppose that µ > 0.Then the following cases hold for system (2.1):

(i) If µ < 2 then the equilibrium point of system (2.1) is locally asymptotically stable.

(ii) If µ = 2 then the equilibrium point of system (2.1) is a non-hyperbolic equilibrium .

(iii) If µ > 2 then the equilibrium point of system (2.1) is a repeller.

Proof. Firstly we know that |λ3|, |λ4|< 1 for all µ > 0 . Now we consider

|λ1|= |λ2|=
2
√

2µ

1+
√

1+4µ
.

If the equilibrium point of system (2.1) is locally asymptotically stable, then all roots of characteristic equation must lie the unit

disk. Therefore,we must show that |λ1|, |λ2|< 1. Hence

|λ1|= |λ2|=
2
√

2µ

1+
√

1+4µ
< 1.

Thus, we have 2
√

2µ < 1+
√

1+4µ . From this, we obtain that µ < 2. The proofs of other cases can be obtained in a similar

way.

3. An Oscillation Result of Solutions of System (2.1)

In this here, we investigate the oscillation behaviour of solutions of system (2.1).

Theorem 3.1. Assume {(ζi,ηi)} be a positive solution of system (2.1) µ > 0. Then for any i ≥ 0 the following cases are true.

(i) if ζi+1,ηi < ζ̄ = η̄ < ζi,ηi+1 then

(ζi+2k−1)
∞
k=1 < ζ̄ < (ζi+2k)

∞
k=1 ,

(ηi+2k)
∞
k=1 < η̄ < (ηi+2k−1)

∞
k=1 .

(3.1)

(ii) if ζi,ηi+1 < ζ̄ = η̄ < ζi+1,ηi then

(ζi+2k)
∞
k=1 < ζ̄ < (ζi+2k−1)

∞
k=1 ,

(ηi+2k−1)
∞
k=1 < η̄ < (ηi+2k)

∞
k=1 .

(3.2)
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Proof. Firstly we consider case (3.1). Assume that ζi+1,ηi < ζ̄ = η̄ < ζi,ηi+1. Then we obtain that

ζi+2 = 1+µ
ηi

η2
i+1

> 1+µ
η̄

η̄2
= η̄ = ζ̄ ,

ηi+2 = 1+µ
ζi

ζ 2
i+1

< 1+µ
ζ̄

ζ̄ 2
= ζ̄ = η̄ ,

ζi+3 < ζ̄ ,ηi+3 > η̄ ,ζi+4 > ζ̄ ,ηi+4 < η̄ .

Therefore we have by using induction

ζi,ζi+2, . . . ,ζi+2k, . . . > ζ̄ > ζi+1,ζi+3, . . . ,ζi+2k−1, . . .

ηi+1,ηi+3, . . . ,ηi+2k−1, . . . > η̄ > ηi,ηi+2, . . . ,ηi+2k, . . .

Thus the proof of (3.1) is completed as desired. The proof of (3.2) is similar to proof of (3.1).

4. Boundedness of System (2.1)

Lemma 4.1. Let {(ζi,ηi)} be a positive solution of system (2.1) and µ > 0 . Then ζi > 1 and ηi > 1 for i ≥ 1.

Proof. Assume {(ζi,ηi)} be a positive solution of system (2.1). Then we have from system (2.1):

ζ1 = 1+µ
η−1

η2
0

> 1,

η1 = 1+µ
ζ−1

ζ 2
0

> 1.

Therefore, we obtain by induction

ζi+1 = 1+µ
ηi−1

η2
i

> 1,

ηi+1 = 1+µ
ζi−1

ζ 2
i

> 1.

So, the proof of lemma is completed.

Theorem 4.2. If 0 < µ < 1 then every solution of system (2.1) is bounded.

Proof. Firstly we have from system (2.1) ζi > 1 and ηi > 1 for i ≥ 1 and µ > 0. Moreover, every solution of system (2.1)

satisfies

ζi+1 ≤ 1+µ +µ2 ζi−1, i ≥ 1, (4.1)

which due to Theorem 1.2, means that ζi ≤ qi, i = 0,1, . . . , where {ui} satisfy

ui+1 = 1+µ +µ2 ui−1, i ≥ 1, (4.2)

such that

us = ζs,us+1 = ζs+1,s ∈ {−1,0,1, . . .}, i ≥ s.

Hence the solution ui of the difference equation (4.2) is

ui =
1

1−µ
+µ iC1 +(−µ)iC2. (4.3)

Actually, we have from (4.2)

ui+1 = 1+µ +µ2ui−1 ⇒ λ 2 −µ2 = 0 ⇒ λ1,2 =±µ.

From this, the homogeneous solution of difference equation (4.2) is

un = µ iC1 +(−µ)iC2.
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In additon, from (4.2), the equilibrium solution of difference equation (4.2) is

ū = 1+µ +µ2ū ⇒ ū =
1

1−µ
.

Additionally, relations (4.1) and (4.2) imply that

ζi+1 −ui+1 ≤ µ2 (ζi−1 −us−1) , i > s,µ ∈ (0,1).

Therefore we have

ζi ≤ ui, i > s (4.4)

Hence, we obtain from (4.3), (4.4) and Lemma 4.1,

1 < ζi ≤
1

1−µ
+µ iC1 +(−µ)iC2 = N1,

where

C1 =
1

2µ

(

µζ0 +ζ1 −
1+µ

1−µ

)

,

C2 =
1

2µ
(µζ0 −ζ1 +1) .

Similarly we can write that

1 < ηi ≤
1

1−µ
+µ iC3 +(−µ)iC4 = N2

where

C3 =
1

2µ

(

µζ0 +ζ1 −
1+µ

1−µ

)

,

C4 =
1

2µ
(µζ0 −ζ1 +1) .

5. Convergence Results of Solutions of System (2.1)

Theorem 5.1. If ζi ≥ ζ̄ and ηi ≥ η̄ (resp., ζi ≥ ζ̄ and ηi ≥ η̄ ) for i ≥ s and s ∈ {−1,0, . . .} then the solution {(ζi,ηi)} of

system (2.1) tends to equilibrium point
{(

ζ̄ , η̄
)}

as i → ∞.

Proof. Let {(ζi,ηi)} be a positive solution of system (2.1) such that

ζi ≥ ζ̄ , ηi ≥ η̄ , i ≥ s, (5.1)

where s ∈ {−1,0, . . .}. Hence, we obtain from (5.1), system (2.1) and Lemma 4.1:

ζi+1 ≤ 1+µ +µ2ζi−1. (5.2)

ui+1 = 1+µ +µ2ui−1, (5.3)

us = ζs,us+1 = ζs+1,s ∈ {−1,0, . . .}, i ≥ s. (5.4)

Therefore, we get from the solution of the difference equation (5.3):

ui =
1

1−µ
+µ iC1 +(−µ)iC2 (5.5)
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where C1,C2 depent on ζs ,ζs+1. Moreover, we have from (5.2) and (5.3):

ζi+1 −us+1 ≤ µ2 (ζi−1 −us−1) , i > s (5.6)

Thus we obtain from (5.4), (5.6) and by induction

ζi ≤ ui, i ≥ s. (5.7)

From (5.1), (5.5) and (5.7), we obtain that

lim
i→∞

ζi = ζ̄ .

Then we similarly obtain that lim
i→∞

ηi = η̄ . The proof of the other case of this theorem is similar to this case, so we leave it to

readers.

Theorem 5.2. Suppose that 0 < µ < 1
2
. Then the positive equilibrium point of system (2.1) is globally asymptotically stable.

Proof. We have from Theorem 4.2,

1 < m1 = liminf
i→∞

ζi ≤ N1,

1 < m2 = liminf
i→∞

ηi ≤ N2,

1 <U1 = limsup
i→∞

ζi ≤ N1,

1 <U2 = limsup
i→∞

ηi ≤ N2.

By system (2.1), we can write

U1 ≤ 1+µ
U2

m2
2

,m1 ≥ 1+µ
m2

U2
2

,

U2 ≤ 1+µ
U1

m2
1

,m2 ≥ 1+µ
m1

U2
1

.

Hence we have

U1 +µ
m1

U1
≤U1m2 ≤ m2 +µ

U2

m2
,

U2 +µ
m2

U2
≤U2m1 ≤ m1 +µ

U1

m1
.

Therefore we obtain that

U1 +µ
m1

U1
+U2 +µ

m2

U2
≤ m2 +µ

U2

m2
+m1 +µ

U1

m1
,

U1 +µ
m1

U1
+U2 +µ

m2

U2
−m2 −µ

U2

m2
−m1 −µ

U1

m1
≤ 0,

(U1 −m1)

(

1−µ

(

1

m1
+

1

U1

))

+(U2 −m2)

(

1−µ

(

1

m2
+

1

U2

))

≤ 0.

In this here if µ ∈ (0, 1
2
) than

1−µ

(

1

m1
+

1

U1

)

> 0,

1−µ

(

1

m2
+

1

U2

)

> 0.

Thus, we get that

U1 −m1 = 0, U2 −m2 = 0.

So, U1 = m1 and U2 = m2. The proof is completed as desired.
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6. Rate of Convergence of System (2.1)

Now we study the rate of convergence of system (2.1). Hence, we consider the following system:

Ei+1 = (α +β (i))Ei, (6.1)

where Ei is a k-dimensional vector, α ∈Ck×k is a constant matrix, and β : Z+ →Ck×k is a matrix function satisfying

‖β (i)‖→ 0, (6.2)

as i → ∞, where ‖ · ‖ denotes any matrix norm that is associated with the vector norm

‖(x,y)‖=
√

x2 + y2.

Theorem 6.1. (Perronas Theorem, [24]) Assume that condition (6.2) holds. If Ei is a solution of (6.1), then either Ei = 0 for

all as i → ∞,or

lim
i→∞

i
√

‖Ei‖,

or

lim
i→∞

‖Ei+1‖
‖Ei‖

,

exists and is equal to modulus of one of the eigenvalues of matrix α .

Theorem 6.2. Suppose that 0 < µ < 1
2

and {(ζi,ηi)} be a solution of the system (2.1) such that lim
i→∞

ζi = ζ̄ and lim
i→∞

ηi = η̄ .

Then the error vector

Ei =









e1
i

e1
i−1

e2
i

e2
i−1









=









ζi − ζ̄

ζi−1 − ζ̄
ηi − η̄

ηi−1 − η̄









of every solution of system (2.1) satisfies both of the following asymptotic relations:

lim
i→∞

i
√

‖Ei‖=
∣

∣λ1,2,3,4 FJ(ζ̄ , η̄)
∣

∣ ,

lim
i→∞

‖Ei+1‖
‖Ei‖

=
∣

∣λ1,2,3,4 FJ(ζ̄ , η̄)
∣

∣ .

where λ1,2,3,4 FJ(ζ̄ , η̄) are the characteristic roots of the Jacobian matrix FJ(ζ̄ , η̄).

Proof. To find the error terms, we set

ζi+1 − ζ̄ =
1

∑
n=0

An

(

ti−n − ζ̄
)

+
1

∑
n=0

Bn (zi−n − η̄) ,

ηi+1 − η̄ =
1

∑
n=0

Dn

(

ζi−n − ζ̄
)

+
1

∑
n=0

Gn (ηi−n − η̄) ,

and e1
i = ζi − ζ̄ ,e2

i = ηi − η̄ . Thus we have

e1
i+1 =

1

∑
n=0

Ane1
i−n +

1

∑
n=0

Bne2
i−n,

e1
i+1 =

1

∑
n=0

Dne1
i−n +

1

∑
n=0

Gne2
i−n,
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where

A0 = A1 = 0,

B0 =
µ

η2
i

,B1 =
−µ (η̄ +ηi)

η̄η2
i

,

D0 =
µ

ζ 2
i

,D1 =
−µ

(

ζ̄ +ζi

)

ζ̄ ζ 2
i

,

G0 = G1 = 0.

Now we take the limits

lim
i→∞

A0 = lim
i→∞

A1 = 0,

lim
i→∞

B0 =
µ

η̄2
, lim

i→∞
B1 =

−2µ

η̄2
,

lim
i→∞

D0 =
µ

ζ̄ 2
, lim

i→∞
D1 =

−2µ

ζ̄ 2
,

lim
i→∞

G0 = lim
i→∞

G1 = 0.

Hence

B0 =
µ

η̄2
+bi, B1 =

−2µ

η̄2
+ ri,

D0 =
µ

ζ̄ 2
+di, D1 =

−2µ

ζ̄ 2
+ ti,

where bi → 0, ri → 0, di → 0, ti → 0 as i → ∞. Therefore, we obtain the system of the form (6.1)

Ei+1 = (α +β (i))Ei

where

α =











0 0
µ

η̄2

−2µ

η̄2

1 0 0 0
µ

ζ̄ 2

−2µ

ζ̄ 2 0 0

0 0 1 0











,

β (i) =









0 0 bi ri

1 0 0 0

di ti 0 0

0 0 1 0









,

(6.3)

and ‖β (i)‖→ 0 as i → ∞. So, the limiting system of error terms about the equilibrium point can be written as follows:









e1
i

e1
i

e2
i+1

e2
i









=











0 0
µ

η̄2

−2µ

η̄2

1 0 0 0
p

ζ̄ 2

−2µ

ζ 2 0 0

0 0 1 0



















e1
i

e1
i−1

e2
i

e2
i−1









which is same as linearized system of system (2.1) about equilibrium point(ζ̄ , η̄).
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7. Numerical Examples

In this section, we give two examples which include three figures to verify our theoretical results.

Example 7.1. We consider system (2.1) for µ = 0.43. With the initial values ζ−1 = 1, ζ0 = 1.2, η−1 = 3 and η0 = 0.95 positive

equilibrium point of system (2.1) is globally asymptotically stable. Figures 7.1, 7.2 verify our theoretical results.
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Figure 7.1

Example 7.2. We consider system (2.1) for µ = 2.2. With the initial values ζ−1 = 2.08, ζ0 = 2.02, η−1 = 2.03 and η0 = 2.08,

solutions of system (2.1) oscillate about positive equilibrium point (ζ̄ , η̄ = (0.0652,0.0652). Figure 7.3 verifies our theoretical

results.
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8. Conclusions

In this paper we studied convergence results of a system of second order difference equations . Firstly we deal with the unique

positive equilibrium point of system(2.1). Then we analyse the bounded solutions of system (2.1). We also investigate the

oscillation of solutions of system. More specifically, we focus on the convergence results of solutions of system. According

to our results, if 0 < µ < 1
2

then the positive equilibrium point of system (2.1) is globally asymptotically stable. After this

we concentrates on discussing the rate of convergence of solutions of system(2.1). Moreover to this we give two numerical

examples to verify our theoretical results.
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[23] V. Hadžiabdić , M. R. S. Kulenovic , E. Pilav, Dynamics of a two-dimensional competitive system of rational difference

equations with quadratic terms, Adv. Differ. Equ., 301 (2014), 1-32.

[24] A. Khan, M. Qureshi, Qualitative behavior of two systems of higher order difference equations, Math. Meth. Appl. Sci.,

39(11) (2016), 3058-3074.

[25] A. Q. Khan, K. Sharif, Global dynamics, forbidden set, and trans critical bifurcation of a one-dimensional discrete-time

laser model, Math. Meth. Appl. Sci., 43(7) (2020), 4409-4421.

[26] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, volume 256,

Springer Science & Business Media, 1993.

[27] M. R. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and

Conjectures, Chapman and Hall/CRC, 2001.

[28] J. D. Murray, Mathematical Biology: I. An Introduction, 3rd Ed., Springer-Verlag, New York, 2001.
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Tuğba Mert1*, Mehmet Atçeken2
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1. Introduction

The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical

metric on a smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially

for those manifolds with positive curvature. Perelman used Ricci flow and it surgery to prove Poincare conjecture in [1, 2]. The

Ricci flow is an flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂

∂ t
g(t) =−2S (g(t)) .

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it

moves only by a one parameter group of diffeomorphism and scaling.

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In

particular, it has become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture

posed in 1904. In [3], Sharma studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact metric

manifolds have been studied by various authors such as Ashoka et al. in [4, 5], Bagewadi et al. in [6], Ingalahalli in [7], Bejan

and Crasmareanu in [8], Blaga in [9], Chandra et al. in [10], Chen and Deshmukh in [11], Deshmukh et al. in [12], He and Zhu

[13], Atçeken et al. in [14], Nagaraja and Premalatta in [15], Tripathi in [16] and many others.

φ−sectional curvature plays an important role for Sasakian manifold. If the φ−sectional curvature of a Sasakian manifold

is constant, then the manifold is a Sasakian-space-form [17]. P. Alegre and D. Blair described generalized Sasakian space
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forms [18]. P. Alegre and D. Blair obtained important properties of generalized Sasakian space forms in their studies and

gave some examples. P. Alegre and A. Carriazo later discussed generalized indefinite Sasakian space forms [19]. Generalized

indefinite Sasakian space forms are also called Lorentz-Sasakian space forms, and Lorentz manifolds are of great importance

for Einstein’s theory of Relativity.

In this paper, we consider Lorentz Sasakian space form admitting almost η−Ricci solitons in some curvature tensors. Ricci

pseudosymmetry concepts of Lorentz Sasakian space form admits η−Ricci soliton have introduced according to the choice of

some special curvature tensors such as Riemannian, concircular, projective, M−projective, W1 and W2. Then, again according

to the choice of the curvature tensor, necessary conditions for Lorentz Sasakian space form admits η−Ricci soliton to be Ricci

semisymmetric are given. Then some characterizations are obtained and some classifications have been made

2. Preliminaries

Let Ñ be a (2m+1)−dimensional Lorentz manifold. If the Ñ Lorentz manifold with (φ ,ξ ,η ,g) structure tensors satisfies the

following conditions, it is called a Lorentz-Sasakian manifold

φ 2Y1 =−Y1 +η (Y1)ξ ,η (ξ ) = 1,η (φY1) = 0,

g(φY1,φY2) = g(Y1,Y2)+η (Y1)η (Y2) ,η (Y1) =−g(Y1,ξ ) ,

(

▽̃Y1
φ
)

Y2 =−g(Y1,Y2)ξ −η (Y2)Y1,▽̃Y1
ξ =−φY1,

where, ▽̃ is the Levi-Civita connection according to the Riemannian metric g.

The plane section Π in TY1
Ñ. If the Π plane is spanned by Y1 and φY1, this plane is called the φ -section. The curvature of

the φ -section is called the φ -sectional curvature. If the Lorentz-Sasakian manifold has a constant φ -sectional curvature, this

manifold is called the Lorentz-Sasakian space form and is denoted by Ñ (c). The curvature tensor of the Lorentz-Sasakian

space form Ñ (c) is defined as

R̃(Y1,Y2)Y3 =
(

c−3
4

)

{g(Y2,Y3)Y1 −g(Y1,Y3)Y2}

+
(

c+1
4

)

{g(Y1,φY3)φY2 −g(Y2,φY3)φY1

+2g(Y1,φY2)φY3 +η (Y2)η (Y3)Y1 −η (Y1)η (Y3)Y2

+g(Y1,Y3)η (Y2)ξ −g(Y2,Y3)η (Y1)ξ} ,

(2.1)

for all Y1,Y2,Y3 ∈ χ
(

Ñ
)

.

Lemma 2.1. Let Ñ (c) be the (2m+1)−dimensional Lorentz-Sasakian space form. The following relations are hold for the

Lorentz-Sasakian space forms.

▽̃Y1
ξ =−φY1, (2.2)

(

▽̃Y1
φ
)

Y2 =−g(Y1,Y2)ξ −η (Y2)Y1,

(

▽̃Y1
η
)

Y2 = g(φY1,Y2) ,

R̃(Y1,Y2)ξ = η (Y2)Y1 −η (Y1)Y2, (2.3)

η
(

R̃(Y1,Y2)Y3

)

= g(η (Y1)Y2 −η (Y2)Y1,Y3) , (2.4)
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S (Y1,Y2) =

[

(m+2)c− (3m−2)

2

]

g(Y1,Y2)

+
(c+1)(m+1)

2
η (Y1)η (Y2) ,

S (Y1,ξ ) =−

[

(c+1)−4m

2

]

η (Y1) , (2.5)

QY1 =

[

(m+2)c− (3m−2)

2

]

Y1 −
(c+1)(m+1)

2
η (Y1)ξ

Qξ =
(c+1)−4m

2
ξ

where R̃,S are the Riemannian curvature tensor, Ricci curvature tensor of Ñ (c), respectively.

Precisely, Ricci soliton on a Riemannian manifold
(

Ñ,g
)

is defined as a triple (g,ξ ,κ1) on Ñ satisfying

Lξ g+2S+2κ1g = 0,

where Lξ is the Lie derivative operator along the vector field ξ and κ1 is a real constant. We note that if ξ is a Killing vector

field, then the Ricci soliton reduces to an Einstein metric (g,κ1) . Futhermore, in [20], generalization is the notion of η−Ricci

soliton defined by J.T. Cho and M. Kimura as a quadruple (g,ξ ,κ1,κ2) satisfying

Lξ g+2S+2κ1g+2κ2µη ⊕η = 0, (2.6)

where κ1 and κ2 are real constants and η is the dual of ξ and S denotes the Ricci tensor of Ñ. Furthermore if κ1 and κ2 are

smooth functions on Ñ, then it called almost η−Ricci soliton on Ñ [20].

Suppose the quartet (g,ξ ,κ1,κ2) is almost η−Ricci soliton on manifold Ñ. Then,

· If κ1 < 0, then Ñ is shrinking.

· If κ1 = 0, then Ñ is steady.

· If κ1 > 0, then Ñ is expanding.

3. Almost η−Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric
Lorentz Sasakian Space Form

Now let (g,ξ ,κ1,κ2) be an almost η−Ricci soliton on Lorentz Sasakian space form. Then we have

(

Lξ g
)

(Y1,Y2) = Lξ g(Y1,Y2)−g
(

LξY1,Y2

)

−g
(

Y1,LξY2

)

= ξ g(Y1,Y2)−g([ξ ,Y1] ,Y2)−g(Y1, [ξ ,Y2])

= g
(

∇ξY1,Y2

)

+g
(

Y1,∇ξY2

)

−g
(

∇ξY1,Y2

)

+g(∇Y1
ξ ,Y2)−g

(

∇ξY2,Y1

)

+g(Y1,∇Y2
ξ ) ,

for all Y1,Y2 ∈ Γ(T M) . By using φ is anti-symmetric and taking into account (2.2) we have

(

Lξ g
)

(Y1,Y2) = 0. (3.1)

Thus, in a Lorentz Sasakian space form, from (2.6) and (3.1) we have

S (Y1,Y2)+κ1g(Y1,Y2)+κ2η (Y1)η (Y2) = 0. (3.2)
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It is clear from (3.2) that the (2m+1)−dimensional Lorentz Sasakian η−Ricci soliton
(

Ñ2m+1,g,ξ ,κ1,κ2

)

is an η−Einstein

manifold.

For Y2 = ξ in (3.2) this implies that

S (ξ ,Y1) = (κ1 −κ2)η (Y1) . (3.3)

Taking into account of (3.3) we conclude that

κ1 −κ2 =
4m− (c+1)

2
.

Definition 3.1. Let Ñ (c) be an (2m+1)−dimensional Lorentz Sasakian space form. If R̃ ·S and Q(g,S) are linearly dependent,

then the Ñ (c) is said to be Ricci pseudosymmetric.

In this case, there exists a function L1 on Ñ (c) such that

R̃ ·S = L1Q(g,S) .

In particular, if L1 = 0, the manifold Ñ (c) is said to be Ricci semisymmetric.

Let us now investigate the Ricci pseudosymmetry case of the (2m+1)−dimensional Lorentz Sasakian space form.

Theorem 3.2. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

Ricci pseudosymmetric, then

L1 =
2κ1 − (c+1)+4m

4m−2κ1 − (c+1)
,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost η−Ricci

soliton on Lorentz Sasakian space form Ñ (c). Then we have
(

R̃(Y1,Y2) ·S
)

(Y4,Y5) = L1Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(

T Ñ
)

. From the last equation, we can easily write

S
(

R̃(Y1,Y2)Y4,Y5

)

+S
(

Y4, R̃(Y1,Y2)Y5

)

= L1

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.4)

If we choose Y5 = ξ in (3.4) we get

S
(

R̃(Y1,Y2)Y4,ξ
)

+S
(

Y4, R̃(Y1,Y2)ξ
)

= L1 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.5)

If we make use of (2.3) and (2.5) in (3.5) we have

−
[

(c+1)−4m

2

]

η
(

R̃(Y1,Y2)Y4

)

+S (Y4,η (Y2)Y1 −η (Y1)Y2)

= L1

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.6)

If we use (2.4) in the (3.6), we get

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (η (Y2)Y1 −η (Y1)Y2,Y4)

= L1

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.7)
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If we use (3.2) in the (3.7), we can write

[(

κ1 −
(c+1)−4m

2

)

+
(

κ1 +
(c+1)−4m

2

)

L1

]

×

g(η (Y1)Y2 −η (Y2)Y1,Y4) = 0.

(3.8)

It is clear from (3.8)

L1 =
2κ1 − (c+1)+4m

4m−2κ1 − (c+1)
.

This completes the proof.

Thus we have the following corollaries.

Corollary 3.3. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

Ricci semisymmetric, then Ñ (c) is an η−Einstein manifold with κ1 =
(c+1)−4m

2
and κ2 = (c+1)−4m.

Corollary 3.4. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

Ricci semisymmetric, then we observe that:

i) Ñ (c) is expanding, if (c+1)> 4m.

ii) Ñ (c) is shrinking, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the concircular curvature tensor is defined as

C (Y1,Y2)Y3 = R(Y1,Y2)Y3 −
r

2m(2m+1)
[g(Y2,Y3)Y1 −g(Y1,Y3)Y2] . (3.9)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.9) we can write

C (Y1,Y2)ξ =

[

1+
r

2m(2m+1)

]

[η (Y2)Y1 −η (Y1)Y2] , (3.10)

and similarly if we take the inner product of both sides of (3.9) by ξ , we get

η (C (Y1,Y2)Y3) =

[

1+
r

2m(2m+1)

]

g(η (Y1)Y2 −η (Y2)Y1,Y3) . (3.11)

Definition 3.5. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If C ·S and Q(g,S) are linearly dependent,

then it is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function L2 on Ñ (c) such that

C ·S = L2Q(g,S) .

In particular, if L2 = 0, the manifold Ñ (c) is said to be concircular Ricci semisymmetric.

Let us now investigate the concircular Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.6. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

concircular Ricci pseudosymmetric, then

L2 =
[2κ1 − (c+1)+4m] [2m(2m+1)+ r]

2m(2m+1) [4m− (c+1)−2κ1]
,

provided 4m 6= 2κ1 +(c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be concircular Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost

η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(C (Y1,Y2) ·S)(Y4,Y5) = L2Q(g,S)(Y4,Y5;Y1,Y2) ,
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for all Y1,Y2,Y4,Y5 ∈ Γ
(

T Ñ
)

. From the last equation, we can easily write

S (C (Y1,Y2)Y4,Y5)+S (Y4,C (Y1,Y2)Y5)

= L2

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.12)

If we choose Y5 = ξ in (3.12) we get

S (C (Y1,Y2)Y4,ξ )+S (Y4,C (Y1,Y2)ξ )

= L2 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.13)

If by using (2.5) and (3.10) in (3.13) we have

S
(

Y4,

[

1+ r
2m(2m+1)

]

[η (Y2)Y1 −η (Y1)Y2]
)

−
[

(c+1)−4m

2

]

η (C (Y1,Y2)Y4)

= L2

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.14)

Substituting (3.11) in (3.14), we get

−
[

(c+1)−4m

2

][

1+ r
2m(2m+1)

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+
[

1+ r
2m(2m+1)

]

S (η (Y2)Y1 −η (Y1)Y2,Y4)

= L2

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (η (Y1)Y2 −η (Y2)Y1,Y4)} .

(3.15)

If we use (3.2) in the (3.15), we can write
[(

κ1 −
(c+1)−4m

2

)(

1+ r
2m(2m+1)

)

+
(

κ1 +
(c+1)−4m

2

)

L2

]

×

g(η (Y1)Y2 −η (Y2)Y1,Y4) = 0.

This implies that

L2 =
[2κ1 − (c+1)+4m] [2m(2m+1)+ r]

2m(2m+1) [4m− (c+1)−2κ1]
.

This completes the proof.

We can give the following corollaries.

Corollary 3.7. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

concircular Ricci semisymmetric, then Ñ (c) is either manifold with scalar curvature r =−2m(2m+1) or κ1 =
(c+1)−4m

2
.

Corollary 3.8. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

concircular Ricci semisymmetric, then we conclude that:

i) Let r < 2m(2m+1) .
a) Ñ (c) is expanding, if (c+1)> 4m.

b) Ñ (c) is shrinking, if (c+1)< 4m.

ii) Let r > 2m(2m+1) .
c) Ñ (c) is shrinking, if (c+1)> 4m.

d)Ñ (c) is expanding, if (c+1)< 4m.
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For a (2m+1)−dimensional semi-Riemannian manifold N, the projective curvature tensor is defined as

P(Y1,Y2)Y3 = R(Y1,Y2)Y3 −
1

2m
[S (Y2,Y3)Y1 −S (Y1,Y3)Y2] . (3.16)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.16) we can write

P(Y1,Y2)ξ =
c+1

4m
[η (Y2)Y1 −η (Y1)Y2] , (3.17)

and in the same way if we take the inner product of both sides of (3.16) by ξ , we get

η (P(Y1,Y2)Y3) =
c+1

4m
g(η (Y1)Y2 −η (Y2)Y1,Y3) . (3.18)

Definition 3.9. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If P ·S and Q(g,S) are linearly dependent,

then the manifold is said to be projective Ricci pseudosymmetric.

In this case, there exists a function L3 on Ñ (c) such that

P ·S = L3Q(g,S) .

In particular, if L3 = 0, the manifold Ñ (c) is said to be projective Ricci semisymmetric.

Let us now investigate the projective Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.10. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

projective Ricci pseudosymmetric, then

L3 =
(c+1) [2κ1 − (c+1)+4m]

2m [4m− (c+1)−2κ1]
,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be projective Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost

η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(P(Y1,Y2) ·S)(Y4,Y5) = L3Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(

T Ñ
)

. From the last equation, we can easily see

S (P(Y1,Y2)Y4,Y5)+S (Y4,P(Y1,Y2)Y5)

= L3

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.19)

If we choose Y5 = ξ in (3.19) we get

S (P(Y1,Y2)Y4,ξ )+S (Y4,P(Y1,Y2)ξ )

= L3 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.20)

If we taking into account (2.5) and (3.17) in (3.20), then we have

S
(

Y4,
c+1
4m

[η (Y2)Y1 −η (Y1)Y2]
)

−
[

(c+1)−4m

2

]

η (P(Y1,Y2)Y4)

= L3

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.21)
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If we use (3.18) in the (3.21), we get

−
[

(c+1)−4m

2

]

(

c+1
4m

)

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+
(

c+1
4m

)

S (η (Y2)Y1 −η (Y1)Y2,Y4)

= L3

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (η (Y1)Y2 −η (Y2)Y1,Y4)} .

(3.22)

If we use (3.2) in the (3.22), we taking into account
[(

κ1 −
(c+1)−4m

2

)

(

c+1
4m

)

+
(

κ1 +
(c+1)−4m

2

)

L3

]

×

g(η (Y1)Y2 −η (Y2)Y1,Y4) = 0.

(3.23)

It is clear from (3.23)

L3 =
(c+1) [2κ1 − (c+1)+4m]

2m [4m− (c+1)−2κ1]
.

This completes the proof.

We have the following corollaries.

Corollary 3.11. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

projective Ricci semisymmetric, then Ñ (c) is either real space form with constant section curvature c =−1 or κ1 =
(c+1)−4m

2
.

Corollary 3.12. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

projective Ricci semisymmetric, then we conclude provided that c+1 6= 0:

i) The soliton Ñ (c) is expanding, if (c+1)> 4m.

ii) The soliton Ñ (c) is shrinking, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the M−projective curvature tensor is defined as

M (Y1,Y2)Y3 = R(Y1,Y2)Y3 −
1

2m
[S (Y2,Y3)Y1 −S (Y1,Y3)Y2

+g(Y2,Y3)QY1 −g(Y1,Y3)QY2]
(3.24)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.24) we can write

M (Y1,Y2)ξ = c+1
4m

[η (Y2)Y1 −η (Y1)Y2]

+ 1
2m

[η (Y2)QY1 −η (Y1)QY2] .
(3.25)

On the other hand, if we take the inner product of both sides of (3.24) by ξ , we get

η (M (Y1,Y2)Y3) =
c+1
4m

g(η (Y1)Y2 −η (Y2)Y1,Y3)

− 1
2m

S (η (Y2)Y1 −η (Y1)Y2,Y3) .
(3.26)

Definition 3.13. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If M · S and Q(g,S) are linearly

dependent, then it is said to be M−projective Ricci pseudosymmetric.

In this case, there exists a function L4 on Ñ (c) such that

M ·S = L4Q(g,S) .

In particular, if L4 = 0, the manifold Ñ (c) is said to be M−projective Ricci semisymmetric.

Let us now investigate the M−projective Ricci pseudosymmetric case of the Lorentz Sasakian space form admitting almost

η−Ricci soliton.
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Theorem 3.14. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

M−projective Ricci pseudosymmetric, then

L4 =
4κ1 [(c+1)−2m]− (c+1) [(c+1)−4m]−4κ2

1

4m [2κ1 − (c+1)+4m]
,

provided 2κ1 6= (c+1)−4m.

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be M−projective Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be

almost η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(M (Y1,Y2) ·S)(Y4,Y5) = L4Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(

T Ñ
)

. From the last equation, we have

S (M (Y1,Y2)Y4,Y5)+S (Y4,M (Y1,Y2)Y5)

= L4

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.27)

If we choose Y5 = ξ in (3.27) we get

S (M (Y1,Y2)Y4,ξ )+S (Y4,M (Y1,Y2)ξ )

= L4 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.28)

If we make use of (2.5) and (3.25) in (3.28), we have

−
[

(c+1)−4m

2

]

η (M (Y1,Y2)Y4)

+S
(

Y4,
c+1
4m

[η (Y2)Y1 −η (Y1)Y2]

+ 1
2m

[η (Y2)QY1 −η (Y1)QY2]
)

= L4

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.29)

If we by using (3.26) in the (3.29), we get

− (c+1)[(c+1)−4m]
8m

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+ (c+1)−4m

4m
S (η (Y2)Y1 −η (Y1)Y2,Y4)

+S
(

Y4,
c+1
4m

[η (Y2)Y1 −η (Y1)Y2]

+ 1
2m

[η (Y2)QY1 −η (Y1)QY2]
)

= L4

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (η (Y1)Y2 −η (Y2)Y1,Y4)} .

(3.30)
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If we use (3.2) in the (3.30), we can write

− (c+1)[(c+1)−4m]
8m

g(η (Y1)Y2 −η (Y2)Y1,Y4)

−κ1[(c+1)−4m]
4m

g(η (Y2)Y1 −η (Y1)Y2,Y4)

−κ1(c+1)
4m

g(Y4,η (Y2)Y1 −η (Y1)Y2)

− κ1
2m

S (η (Y2)Y1 −η (Y1)Y2,Y4)

= L4

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

−κ1g(Y4,η (Y1)Y2 −η (Y2)Y1,Y4)} .

(3.31)

Again, if we use (3.2) in the (3.31), we obtain

[

κ1[(c+1)−4m]
4m

+ κ1(c+1)
4m

− (c+1)[(c+1)−4m]
8m

−
κ2

1
2m

+L4

(

(c+1)−4m

2
−κ1

)]

×

g(η (Y1)Y2 −η (Y2)Y1,Y4) = 0.

(3.32)

It is clear from (3.32)

L4 =
4κ1 [(c+1)−2m]− (c+1) [(c+1)−4m]−4κ2

1

4m [2κ1 − (c+1)+4m]
,

which proves our assertion

We have the following corollaries.

Corollary 3.15. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

M−projective Ricci semisymmetric, then

κ1 =
(c+1)−4m

2
,

or

κ1 =
c+1

2
.

Corollary 3.16. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

M−projective Ricci semisymmetric, then we observe that:

i) Ñ (c) is shrinking, if κ1 is between
(c+1)−4m

2
and c+1

2
,

ii) Ñ (c) is steady for κ1 =
(c+1)−4m

2
and κ1 =

c+1
2
,

iii) Ñ (c) is expanding for other cases of κ1.

For a (2m+1)−dimensional semi-Riemannian manifold N, the W1−curvature tensor is defined as

W1 (Y1,Y2)Y3 = R(Y1,Y2)Y3 +
1

2m
[S (Y2,Y3)Y1 −S (Y1,Y3)Y2] . (3.33)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.33), we can write

W1 (Y1,Y2)ξ =
8m− (c+1)

4m
[η (Y2)Y1 −η (Y1)Y2] , (3.34)

and similarly if we take the inner product of both sides of (3.33) by ξ , we get

η (W1 (Y1,Y2)Y3) =
8m− (c+1)

4m
g(η (Y1)Y2 −η (Y2)Y1,Y3) . (3.35)
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Definition 3.17. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If W1 · S and Q(g,S) are linearly

dependent, then the manifold is said to be W1−Ricci pseudosymmetric.

In this case, there exists a function L5 on Ñ (c) such that

W1 ·S = L5Q(g,S) .

In particular, if L5 = 0, the manifold Ñ (c) is said to be W1−Ricci semisymmetric.

Let us now investigate the W1−Ricci pseudosymmetric case of the Lorentz Sasakian space form.

Theorem 3.18. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W1−Ricci pseudosymmetric, then

L5 =
[8m− (c+1)] [2κ1 − (c+1)+4m]

4m [4m− (c+1)−2κ1]
,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be W1−Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost

η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(W1 (Y1,Y2) ·S)(Y4,Y5) = L5Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(

T Ñ
)

. From the last equation, we have

S (W1 (Y1,Y2)Y4,Y5)+S (Y4,W1 (Y1,Y2)Y5)

= L5

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.36)

If we choose Y5 = ξ in (3.36) we get

S (W1 (Y1,Y2)Y4,ξ )+S (Y4,W1 (Y1,Y2)ξ )

= L5 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.37)

If we make use of (2.5) and (3.34) in (3.37), we have

S
(

Y4,
8m−(c+1)

4m
[η (Y2)Y1 −η (Y1)Y2]

)

−
[

(c+1)−4m

2

]

η (W1 (Y1,Y2)Y4)

= L5

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.38)

If we use (3.35) in the (3.38), we get

[4m−(c+1)][8m−(c+1)]
8m

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+ 8m−(c+1)
4m

S (η (Y2)Y1 −η (Y1)Y2,Y4)

= L5

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (η (Y1)Y2 −η (Y2)Y1,Y4)} .

(3.39)
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If we use (3.2) in the (3.39), we can write

{

8m−(c+1)
4m

[

κ1 +
4m−(c+1)

2

]

+L5

[

(c+1)−4m

2
+κ1

]}

×

g(η (Y1)Y2 −η (Y2)Y1,Y4) = 0

(3.40)

It is clear from (3.40)

L5 =
[8m− (c+1)] [2κ1 − (c+1)+4m]

4m [4m− (c+1)−2κ1]
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.19. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W1−Ricci semisymmetric, then Ñ (c) is either real space form with c = 8m−1 constant section curvature or κ1 =
(c+1)−4m

2
.

Corollary 3.20. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W1−Ricci semisymmetric, then we conclude that:

i) Let 8m > c+1.

a) Ñ (c) is expanding, if (c+1)> 4m.

b) Ñ (c) is shrinking, if (c+1)< 4m.

ii) Let 8m < c+1.

c) Ñ (c) is shrinking, if (c+1)> 4m.

d) Ñ (c) is expanding, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the W2−curvature tensor is defined as

W2 (Y1,Y2)Y3 = R(Y1,Y2)Y3 −
1

2m
[g(Y2,Y3)QY1 −g(Y1,Y3)QY2] . (3.41)

For a (2m+1)−dimensional Lorentz Sasakian spacew form Ñ (c), if we choose Y3 = ξ in (3.41), we can write

W2 (Y1,Y2)ξ = [η (Y2)Y1 −η (Y1)Y2]

− 1
2m

[η (Y1)QY2 −η (Y2)QY1] .
(3.42)

Furthermore, if we take the inner product of both sides of (3.41) by ξ , we get

η (W2 (Y1,Y2)Y3) = g(η (Y1)Y2 −η (Y2)Y1,Y3)

+ 1
2m

S (η (Y1)Y2 −η (Y2)Y1,Y3) .
(3.43)

Definition 3.21. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If W2 · S and Q(g,S) are linearly

dependent, then the manifold is said to be W2−Ricci pseudosymmetric.

In this case, there exists a function L6 on Ñ (c) such that

W2 ·S = L6Q(g,S) .

In particular, if L6 = 0, the manifold Ñ (c) is said to be W2−Ricci semisymmetric.

Let us now investigate the W2−Ricci pseudosymmetric of the Lorentz Sasakian space form.

Theorem 3.22. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W2−Ricci pseudosymmetric, then

L6 =
κ1 (1−2m)+m [(c+1)−4m]+κ2

1

m [2κ1 +(c+1)−4m]
,

provided 2κ1 6= 4m− (c+1) .
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Proof. Let be assume that Lorentz Sasakian space form be W2−Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost η−Ricci

soliton on Lorentz Sasakian space form. That is mean

(W2 (Y1,Y2) ·S)(Y4,Y5) = L6Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ(T M) . From the last equation, we can easily write

S (W2 (Y1,Y2)Y4,Y5)+S (Y4,W2 (Y1,Y2)Y5)

= L6

{

S ((Y1 ∧g Y2)Y4,Y5)+S (Y4,(Y1 ∧g Y2)Y5)
}

.

(3.44)

If putting Y5 = ξ in (3.44), we get

S (W2 (Y1,Y2)Y4,ξ )+S (Y4,W2 (Y1,Y2)ξ )

= L6 {S (g(Y2,Y4)Y1 −g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y2)Y1 −η (Y1)Y2)} .

(3.45)

If we make use of (2.5) and (3.42) in (3.45), we have

−
[

(c+1)−4m

2

]

η (W2 (Y1,Y2)Y4)

+S (Y4, [η (Y2)Y1 −η (Y1)Y2]

− 1
2m

[η (Y1)QY2 −η (Y2)QY1]
)

= L6

{

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2 −η (Y2)Y1)} .

(3.46)

If we use (3.43) in the (3.46), we get

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+ 1
2m

S (η (Y1)Y2 −η (Y2)Y1,Y4)

+S (Y4, [η (Y2)Y1 −η (Y1)Y2]

− 1
2m

[η (Y1)QY2 −η (Y2)QY1]

= L6 {S (Y4,η (Y1)Y2 −η (Y2)Y1)

−
[

(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)
}

.

(3.47)

If we use (3.2) in the (3.47), we have
[

κ1 −
κ1
2m

− (c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

+ κ1
2m

S (η (Y1)Y2 −η (Y2)Y1,Y4)

=−L6

[

κ1 +
(c+1)−4m

2

]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

(3.48)

Again, if we use (3.2) in (3.48), we obtain
[

κ1 −
κ1
2m

− (c+1)−4m

2
−

κ2
1

2m

+L6

(

κ1 +
(c+1)−4m

2

)]

g(η (Y1)Y2 −η (Y2)Y1,Y4)

(3.49)
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It is clear from (3.49)

L6 =
κ1 (1−2m)+m [(c+1)−4m]+κ2

1

m [2κ1 +(c+1)−4m]
.

This completes the proof.

We can give a result of this theorem as follows.

Corollary 3.23. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W2− Ricci semisymmetric, then

κ1 =−
1

2

[

−(2m−1)+
√

−4(c+2)m+20m2 +1

]

,

or

κ1 =
1

2

[

(2m−1)+
√

−4(c+2)m+20m2 +1

]

.

Corollary 3.24. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a

W2−Ricci semisymmetric, then we observe that

i) Ñ (c) is shrinking, if κ1 is between − 1
2

[

−(2m−1)+
√

−4(c+2)m+20m2 +1
]

and 1
2

[

(2m−1)+
√

−4(c+2)m+20m2 +1
]

,

ii) Ñ (c) is steady for − 1
2

[

−(2m−1)+
√

−4(c+2)m+20m2 +1
]

and 1
2

[

(2m−1)+
√

−4(c+2)m+20m2 +1
]

,

iii) Ñ (c) is expanding for other cases of κ1.

4. Conclusion

In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost η−Ricci solitons in some curvature

tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits η−Ricci soliton have introduced according

to the choice of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then,

again according to the choice of the curvature tensor, necessary conditions are given for Lorentz Sasakian space form admits

η−Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and some classifications have made

under the some conditions.
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[14] M. Atçeken, T. Mert, P. Uygun, Ricci-Pseudosymmetric (LCS)n−manifolds admitting almost η−Ricci solitons, Asian J.

Math. Comput. Research, 29(2), 23-32,2022.

[15] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2) (2012), 18–24.

[16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801,4221 V1, [Math DG], (2008).

[17] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics,

Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010.

[18] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space form, Israel J. Math., 141 (2004), 157-183.

[19] P. Alegre, A. Carriazo, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Math. Sci. Soc.,

41(1) (2018), 1–14.

[20] J.T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J, 61(2) (2009),

205-212.

[21] G. Ayar, M. Yıldırım, η−Ricci solitons on nearly Kenmotsu manifolds, Asian-European J. Math., 12(6), 2040002 (2019).

[22] G. Ayar, M. Yıldırım, Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis, Series:

Mathematics and Informatics, (2019), 503-510.

[23] M.Yıldırım, G. Ayar, Ricci solitons and gradient Ricci solitons on nearly Cosymplectic manifolds, J. Univers. Math., 4(2)

(2021), 201-208.

[24] G. Ayar, D. Dilek, Ricci Solitons on Nearly Kenmotsu Manifolds with Semi-symmetric Metric Connection, Journal of

Engineering Technology and Applied Sciences, 4(3) (2019), 131-140.

[25] G. Ayar, Kenmotsu manifoldlarda konformal ricci solitonlar, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri
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1. Introduction

Several authors have made significant contributions for the development of integral transforms through a series of papers.

Among other eminent authors, Bhonsle [1, 2], Sharma [5] Gupta and Agrawal [6], Goyal and Vasishta [7], Goyal and Jain

[8], Saxena [14], Srivastava [15, 16, 18], Srivastava and Vyas [17], Srivastava and Tuan [19], Srivastava and Yürekli [20] and

Yakubovich and Martins [21] have studied and explored Laplace, Meijer, Stieltjes, H− function, Kontorovitch-Lebdev and

Hankel transforms at large in the form of generalizations, convolution and interconnecting theorems.

Bhonsle [1, 2], Sharma [5], Saxena [14], Srivastava [15, 16], Srivastava and Vyas [17] have obtained integral formulae involving

Legendre functions of the first kind, Bessel functions of the first kind and modified Bessel functions of the second kind.

In the present paper we have obtained four integral formulae involving Bessel functions of the first kind and second kind,

modified Bessel functions of the first kind and second kind, Struve’s functions and Anger functions.

Now, we define the Stieltjes transform and Hankel transform.

Definition 1.1. The Stieltjes transform [4, 8, 19] of a function f (x) ∈ L(0,∞) is defined in the following manner.

G( f ; y) =
∫

∞

0
(x+ y)−1 f (x)dx,

where y is a complex variable.

Definition 1.2. The Hankel transform [4, 5, 16] of order v of a function f (x) ∈ L(0,∞) is defined in the following manner.

hv( f ; ζ ) =
∫

∞

0
(ζ x)1/2 Jv(ζ x) f (x)dx, ζ > 0,
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where Jv(z) stands for the Bessel function of the first kind ([3], Page 4, Equation (2)).

2. Main Theorems

In this section we establish four theorems connecting Stieltjes transform and Hankel transform.

Theorem 2.1. If ζ > 0, −1 <Re(v)< 1/2 and |arg y|< π , then

G{xv+1/2 f (x); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.1)

where

K(y, ζ ) = 2vπ−1/2 ζ−v−1/2
Γ(v+1/2)+ζ 1/2 2−1π yv+1sec(vπ) [Y−v(ζ y)−H−v(ζ y)],

where Y−v(z) and H−v(z) stand for the Bessel function of the second kind ([3], Page 4, Equation (4)) and Struve’s function ([3],

Page 38, Equation (55)) respectively.

Proof. We have by the Hankel inversion theorem [13] that

f (x) =
∫

∞

0
(ζ x)1/2 hv( f ; ζ )Jv(ζ x)dζ . (2.2)

Hence

G{xv+1/2 f (x); y}=
∫

∞

0
ζ 1/2 hv( f ; ζ ) G{xv+1 Jv(ζ x); y}dζ . (2.3)

The change of order of integration is justified because ζ > 0, −1 <Re(v)< 1/2 and Jv(ζ x) is a bounded function for both the

variables for Landau’s bounds [9] (see also [10]) i.e

|Jv(x)| ≤ bLv−1/3, bL := 21/3 sup
x∈R+

(Ai(x)) (2.4)

and

|Jv(x)| ≤ cL|x|
−1/3, cL := sup

x∈R+

(J0(x)), (2.5)

where Ai(x) stands for the familiar Airy function.

Now, using the following result ([4], Page 224, Equation (4)) in (2.3)

G{xv+1 Jv(ax); y}= 2vπ−1/2a−v−1
Γ(v+1/2)+2−1π yv+1sec(vπ)[Y−v(ay)−H−v(ay)], (2.6)

provided that a > 0, −1 <Re(v)< 1/2 and |arg y|< π we arrive at the desired result (2.1), where ζ > 0, −1 <Re(v)< 1/2

and |arg y|< π .

Theorem 2.2. If ζ > 0, Re(v)>−1 and |arg y|< π , then

G{x−1/2 f (x); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.7)

where

K(y, ζ ) = ζ 1/2 π cosec(vπ) [Jv(ζ y)− Jv(ζ y)],

where Jv(z) and Jv(z) stand for the Anger’s function ([3], Page 35, Equation (33)) and Bessel function of the first kind ([3],

Page 4, Equation (2)) respectively.

Proof. Again, by (2.2) we have that

G{x−1/2 f (x); y}=
∫

∞

0
ζ 1/2 hv( f ; ζ ) G{Jv(ζ x); y}dζ . (2.8)

The change of order of integration is justified because ζ > 0, Re(v) > −1 and Jv(ζ x) is a bounded function for both the

variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).

Now, using the following result ([4], Page 224, Eq. (2)) in (2.8)

G{Jv(ax); y}= π cosec(vπ) [Jv(ay)− Jv(ay)],

provided that a > 0, Re(v) > −1 and |arg y| < π we arrive at the desired result (2.7), where ζ > 0, Re(v) > −1 and

|arg y|< π .
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Theorem 2.3. If 0 < a < ζ , −1 <Re(v)< 3/2 and |arg y|< π , then

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.9)

where

K(y, ζ ) = 2 ζ 1/2 yv/2−1/2 sinh(ay1/2) Kv(ζ y1/2),

where Kv(z) stands for the modified Bessel function of the second kind or Basset’s function ([3], Page 5, Equation (13)).

Proof. Again, by (2.2) we have that

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
ζ 1/2 hv( f ; ζ ) G{xv/2−1/2 sin(ax1/2) Jv(ζ x1/2); y}dζ . (2.10)

The change of order of integration is justified because 0 < a < ζ , −1 <Re(v)< 3/2 and Jv(ζ x) is a bounded function for both

the variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).

Now, using the following result ([4], Page 226, Equation (18)) in (2.10)

G{xv/2−1/2 sin(ax1/2) Jv(bx1/2); y}= 2 yv/2−1/2 sinh(ay1/2)Kv(by1/2), (2.11)

provided that 0 < a < b, −1 <Re(v)< 3/2 and |arg y|< π we arrive at the desired result (2.9), where 0 < a < ζ , −1 <Re(v)<
3/2 and |arg y|< π .

Theorem 2.4. If 0 < ζ < a, Re(v)>−1/2 and |arg y|< π , then

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.12)

where

K(y, ζ ) = ζ 1/2 πy−v/2 exp(−ay1/2) Iv(ζ y1/2),

where Iv(z) stands for the modified Bessel function of the first kind ([3], Page 5, Equation (12)).

Proof. Again, by (2.2) we have that

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
ζ 1/2 hv( f ; ζ ) G{x−v/2 sin(ax1/2) Jv(ζ x1/2); y}dζ . (2.13)

The change of order of integration is justified because 0 < ζ < a, Re(v)>−1/2 and Jv(ζ x) is a bounded function for both the

variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).

Now, using the following result ([4], Page 226, Equation (19)) in (2.13)

G{x−v/2 sin(ax1/2) Jv(bx1/2); y}= π y−v/2 exp(−ay1/2) Iv(by1/2), (2.14)

provided that 0 < b < a, Re(v)>−1/2 and |arg y|< π we arrive at the desired result (2.12), where 0 < ζ < a, Re(v)>−1/2

and |arg y|< π .

3. Applications

In this section we make applications of our theorems to obtain integral formulae.

Example 3.1. Let f (x) = xµ−v+1/2Jµ(ax), [a > 0, Re(v)> Re(µ)>−1]. Then

G{xv+1/2 f (x); y}= G{xµ+1 Jµ(ax); y}. (3.1)

Using the result (2.6) in (3.1), we get

G{xv+1/2 f (x); y}= 2µ π−1/2 a−µ−1
Γ(µ +1/2)+2−1π yµ+1sec(µπ) [Y−µ(ay)−H−µ(ay)], (3.2)
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where a > 0, −1 <Re(µ)< 1/2 and |arg y|< π .

Now, we have

hv( f ; ζ ) = hv{xµ−v+1/2 Jµ(ax); ζ}. (3.3)

Using the following result ([4], Page 48, Equation (8)) in (3.3)

hv{xµ−v+1/2 Jµ(ax); y}=
2µ−v+1aµ

Γ(v−µ)yv−1/2
(y2 −a2)v−µ−1, (3.4)

provided that Re(v)>Re(µ)>−1 and 0 < a < y < ∞ we get

hv( f ; ζ ) =
2µ−v+1aµ

Γ(v−µ)ζ v−1/2
(ζ 2 −a2)v−µ−1, (3.5)

where Re(v)>Re(µ)>−1 and 0 < a < ζ < ∞.

Now, using the results (3.2) and (3.5) in (2.1), we get

∫

∞

a
[2v π−1/2 ζ−v−1/2

Γ(v+1/2)+ζ 1/2 2−1π sec(vπ) yv+1{Y−v(ζ y)−H−v(ζ y)}] ζ 1/2−v(ζ 2 −a2)v−µ−1dζ

= 2v−1 π−1/2 a−2µ−1
Γ(v−µ)+π yµ+1 2v−µ−2a−µ

Γ(v−µ) sec(µπ)
[

Y−µ(ay)−H−µ(ay)
]

,

(3.6)

where a > 0, Re(v)>Re(µ)>−1, Re(v−µ)> 0 and |arg y|< π .

Example 3.2. Let f (x) = xv+1/2, [0 < x < 1, Re(v)>−1]. Then

G{x−1/2 f (x); y}= G{xv; y}. (3.7)

Using the following result ([4], Page 216, Equation (5)) in (3.7)

G{xv; y}=−π yv cosec(πv),

where −1 <Re(v)< 0 and |arg y|< π , we get

G{x−1/2 f (x); y}=−π yv cosec(πv), (3.8)

where −1 <Re(v)< 0 and |arg y|< π .

Now, we have

hv( f ; ζ ) = hv{xv+1/2; ζ}. (3.9)

Using the following result ([4], Page 22, Equation (6)) in (3.9)

hv{xv+1/2; y}= y−1/2 Jv+1(y),

where 0 < x < 1, Re(v)>−1 and y > 0, we get

hv( f ; ζ ) = ζ−1/2 Jv+1(ζ ), (3.10)

where 0 < x < 1, Re(v)>−1 and ζ > 0.

Now, using the results (3.8) and (3.10) in (2.7), we get

∫

∞

0
[Jv(ζ y)− Jv(ζ y)]Jv+1(ζ )dζ =−yv, (3.11)

where −1 <Re(v) and |arg y|< π .

Example 3.3. Let f (x) = xµ−v+1/2Jµ(bx), [b > 0, Re(v)> Re(µ)>−1]. Then

f (x1/2) = xµ/2−v/2+1/4Jµ(bx1/2)
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and

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}= G{xµ/2−1/2 sin(ax1/2) Jµ(bx1/2); y}. (3.12)

Using the result (2.11) in (3.12), we get

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}= 2 yµ/2−1/2 sinh(ay1/2) Kµ(by1/2), (3.13)

where 0 < a < b, −1 <Re(µ)< 3/2 and |arg y|< π .

Now, we have

hv( f ; ζ ) = hv{xµ−v+1/2 Jµ(bx); ζ}. (3.14)

Using the result (3.4) in (3.14), we get

hv( f ; ζ ) =
2µ−v+1bµ

Γ(v−µ)ζ v−1/2
(ζ 2 −b2)v−µ−1, (3.15)

where Re(v)>Re(µ)>−1 and 0 < b < ζ < ∞.

Now, using the results (3.13) and (3.15) in (2.9), we get

∫

∞

b
ζ 1−v(ζ 2 −b2)v−µ−1Kv(ζ y1/2)dζ = 2v−µ−1b−µ yµ/2−v/2

Γ(v−µ)Kµ(by1/2), (3.16)

where Re(v)> Re(µ)>−1, Re(v−µ)> 0 and |arg y|< π .

Example 3.4. Let f (x) = xv−µ+1/2Jµ(bx), [b > 0,−1 < Re(v)< Re(µ)]. Then

f (x1/2) = xv/2−µ/2+1/4Jµ(bx1/2)

and

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}= G{x−µ/2 sin(ax1/2) Jµ(bx1/2); y}. (3.17)

Using the result (2.14) in (3.17), we get

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}= π y−µ/2 exp(−ay1/2) Iµ(by1/2), (3.18)

where 0 < b < a, Re(µ)>−1/2 and |arg y|< π .

Now, we have

hv( f ; ζ ) = hv{xv−µ+1/2 Jµ(bx); ζ}. (3.19)

Using the following result ([4], Page 48, Equation (7)) in (3.19)

hv{xv−µ+1/2 Jµ(ax); y}=
2v−µ+1 yv+1/2

Γ(µ − v) aµ
(a2 − y2)µ−v−1,

provided that a > 0, −1 <Re(v)<Re(µ) and 0 < y < a we get

hv( f ; ζ ) =
2v−µ+1ζ v+1/2

Γ(µ − v) bµ
(b2 −ζ 2)µ−v−1, (3.20)

where b > 0, −1 <Re(v)<Re(µ) and 0 < ζ < b.

Now, using the results (3.18) and (3.20) in (2.12), we get

∫ b

0
ζ v+1(b2 −ζ 2)µ−v−1Iv(ζ y1/2)dζ = 2µ−v−1bµ y−µ/2+v/2

Γ(µ − v)Iµ(by1/2), (3.21)

where b > 0,−1 < Re(v)< Re(µ), Re(µ − v)> 0 and |arg y|< π .
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4. Conclusion

Four integral formulae (3.6), (3.11), (3.16) and (3.21) involving special functions have been obtained with the help of the

theorems established in this paper. Several other integral formulae extending the results given in [11, 12] may be obtained with

the help of the theorems established in this paper and Stieltjes transforms available in [4].
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