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Research Article

Existence and uniqueness of viscosity solutions to the infinity
Laplacian relative to a class of Grushin-type vector fields

THOMAS BIESKE AND ZACHARY FORREST*

ABSTRACT. In this paper, we pose the∞-Laplace equation as a Dirichlet Problem in a class of Grushin-type spaces
whose vector fields are of the form

Xk(p) := σk(p)
∂

∂xk
and σk is not a polynomial for indices m+ 1 ≤ k ≤ n. Solutions to the∞-Laplacian in the viscosity sense have been
shown to exist and be unique in [3], when σk is a polynomial; we extend these results by exploiting the relationship
between Grushin-type and Euclidean second-order jets and utilizing estimates on the viscosity derivatives of sub- and
supersolutions in order to produce a comparison principle for semicontinuous functions.

Keywords:∞-Laplace equation, viscosity solution, Grushin-type spaces.

2020 Mathematics Subject Classification: Primary 53C17, 35D40, 35J94; Secondary 35H20, 22E25, 17B70.

1. INTRODUCTION

In [3] the author considers the Dirichlet Problem

(1.1)

{
∆∞ w = 0 in Ω

w = g on ∂Ω

and establishes conditions under which a viscosity solution (see Section 3) to (1.1) exists and
is unique when the problem is posed in a wide variety of Grushin-type spaces. The goal of
the current paper is to extend the existence/uniqueness results of [3] to a more general class of
Grushin-type spaces.

The spaces under consideration in [3] are defined by Lie Algebras consisting of vector fields
of the form

(1.2) Yk(p) := Pk(p)
∂

∂xk
for k ≤ n,

where Pk is a polynomial in the variables xi (i ≤ k−1) and P1 ≡ 1. The current paper considers
the situation when the vector fields are of the form

(1.3) Xk(p) := σk(p)
∂

∂xk
for k ≤ n,

where σk : Rn → R need not be a polynomial when k > m ≥ 1. Grushin-type spaces defined
by vector fields as in (1.2) are known to possess certain desirable properties – e.g. it is known
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78 Thomas Bieske and Zachary Forrest

that the vector fields Yj and their commutators

[Yj , Yk], [Yj , [Yk, Y`]], [Yj , [Yk, [Y`, Ym]]], . . .

span Rn and hence we may apply Chow’s Theorem to conclude that points of the related
Grushin-type space may be connected by appropriately smooth curves. Spaces defined by
vector fields as in (1.3), however, can not be treated this way and require modified techniques.

The article will proceed as follows. In Section 2 we will define the spaces of interest and
consider notions of geometry and calculus. The trappings of viscosity theory are introduced in
Section 3, and a lemma relating Euclidean and Grushin second-order jets is presented. We con-
clude with Section 4 in which we produce results necessary to establish a comparison principle
for sub- and supersolutions and existence of solutions – the culmination of these results is the
theorem below.

Main Theorem. Let G be a Grushin-type space whose Lie Algebra consists of vectors fields as defined
in the forthcoming section. Then there exists a unique solution to the Dirichlet Problem (1.1).

2. THE GRUSHIN-TYPE ENVIRONMENT G

Let n ≥ 2 and 1 ≤ m < n be given. Fixing any p = (x1, . . . , xn) ∈ Rn, consider the frame
{Xi, Xj} containing the vector fields

(2.4) Xi(p) :=
∂

∂xi
(1 ≤ i ≤ m)

and

(2.5) Xj(p) := σ(p)
∂

∂xj
(m+ 1 ≤ j ≤ n),

where we will assume that:
(1) σ(p) = σ(x1, . . . , xm). That is, σ(p) is independent of xm+1, . . . , xn.
(2) σ is Euclidean C2 (denoted C2

eucl for what follows).
(3) The set of zeroes for σ is given by Z × Rn−m, where Z is a discrete subset of Rm.

In the case that σ is a polynomial the frame {Xi, Xj} defines a generalized Grushin space such
as the ones under consideration in [3]; otherwise {Xi, Xj} corresponds to a member of a more
general class of Grushin-type spaces.

The Lie Algebra g := span {Xi, Xj} may be endowed with an inner-product 〈·, ·〉 which
is singular on Z × Rn−m and makes {Xi, Xj} an orthonormal basis otherwise. Defining the
space G to be the image of g under the exponential map, note that points of G are also n-tuples
p = (x1, . . . , xn) and that the tangent space to G at any point p is g(p). One consequence of
this definition is that G is not a group: Indeed, the dimension of the tangent space to G at p is
dim g(p) which equals m if p ∈ Z × Rn−m and otherwise equals n.

The natural metric to impose upon G is the Carnot-Carathéodory (or CC) metric

(2.6) dCC (p, q) := inf
γ∈Γ

∫ 1

0

‖γ′(t)‖dt,

where Γ is the collection of all curves γ satisfying (i) γ(0) = p, γ(1) = q and (ii) γ′ ∈ g. Because
Xj ≡ 0 on Z × Rn−m, Chow’s Theorem (see, for example, [5]) does not apply. However, since
the vector fields Xi are nonzero, points of G can always be connected by concatenating curves
– so Γ 6= ∅ and dCC (·, ·) is an honest metric.
We may therefore define balls in G by

B(p0, r) := {p ∈ G : dCC (p0, p) < r}
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and consider notions of bounded domains, which we shall typically denote by Ω b G.
Given a smooth function u : O → R where O ⊆ G is open, the gradient of u in G is defined

by
∇G u := (X1u, . . . ,Xnu)

and the second derivative matrix
(
D2u

)? is the symmetric n×nmatrix whose entries are given
by

[
(
D2u

)?
]k` :=

1

2
(X`Xku+XkX`u) .

We also have notions of regularity.

Definition 2.1. A function u : O → R is said to be C1
G(O) if Xku is continuous for each 1 ≤ k ≤ n.

The function u is C2
G(O) if X`Xku is continuous for each 1 ≤ k, ` ≤ n.

Finally, given 1 ≤ p ≤ ∞, we also may define the function spaces Lp(O), Lploc(O),W 1,p(O)

and W 1,p
loc (O) in the obvious way.

3. JETS & VISCOSITY SOLUTIONS

With the appropriate definitions of derivatives and function spaces introduced in the previ-
ous section, we turn our attention to homogeneous PDEs of the form

(3.7) H(p, η,X) = 0

for η ∈ Rn and symmetric n × n matrices X (frequently denoted X ∈ Sn). The operators H
will be continuous and proper in the sense of [6]: That is, for X ≤ Y we will have H(p, η, Y ) ≤
H(p, η,X). Specifically, assuming that w is smooth, we will have interest in the ∞-Laplace
operator

∆∞ w := −
〈(
D2w

)?∇G w,∇G w
〉

;

the related p-Laplace operators (for 1 < p <∞)

∆pw := − div
(
‖∇G w‖p−2∇G w

)
= −‖∇G w‖p−2

n∑
a=1

XaXaw + (p− 2)‖∇G w‖p−4 ∆∞ w;

and Jensen’s Auxiliary Functions (see [7])

Fε(p,∇G w,
(
D2w

)?
) := min

{
‖∇G w‖2 − ε2,∆∞ w

}
and

Gε(p,∇G w,
(
D2w

)?
) := max

{
ε2 − ‖∇G w‖2,∆∞ w

}
,

where ε ∈ R will be given. In what follows, we will useH to represent any of the four operators
above.

In order to introduce the machinery of viscosity solutions to Hw = 0, we first must consider
the following classes of test functions which “touch” the function u : O → R. Given an open
set O ⊆ G, a point p0 ∈ O, and a function u : O → R, we have the so-called “touching above”
functions

T A(u, p0) :=
{
ϕ ∈ C2

G(Ω) : 0 = ϕ(p0)− u(p0) < ϕ(p)− u(p) near p0

}
;

we have also the “touching below” functions at p0 defined by

T B(u, p0) :=
{
ϕ ∈ C2

G(Ω) : 0 = u(p0)− ϕ(p0) < u(p)− ϕ(p) near p0

}
.

Comparisons between the derivatives of smooth functionsw and the touching functions ϕ, and
between the operations Hw,Hϕ then lead us to make the following definition.
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Definition 3.2. Let Ω b G be a domain and let u ∈ USC(Ω). We say that u is a viscosity subsolution
to (3.7) in Ω if the following is satisfied: For every p ∈ Ω and each ϕ ∈ T A(u, p),

H(p,∇G ϕ(p),
(
D2ϕ

)?
(p)) ≤ 0.

We say that v ∈ LSC(Ω) is a viscosity supersolution to Equation (3.7) if −v is a viscosity subsolution
to Equation (3.7). We say that w ∈ C(Ω) is a viscosity solution to Equation (3.7) if it is both a viscosity
sub- and supersolution.

When convenient, we may also speak in terms of “jets” for a function u at a point p0.

Definition 3.3. Given u : O → R, we define the second-order upper jet for u by

J2,+ u(p0) :=
{(
∇G ϕ(p0),

(
D2ϕ

)?
(p0)

)
∈ Rn × Sn : ϕ ∈ T A(u, p0)

}
and the second-order lower jet for u by J2,− u(p0) := − J2,+[−u](p0). We say that the ordered pair
(η,X) ∈ Rn × Sn belongs to the closure of the upper jet, written (η,X) ∈ J2,+

u(p0), if there exists
(pk) ⊆ O and jet entries (ηk, Xk) ∈ J2,+ u(pk) so that

(pk, u(pk), ηk, Xk)→ (p0, u(p0), η,X);

the definition for J
2,−

u(p0) is similar.

Remark 3.1. Definition 3.2 above can also be stated equivalently through the lens of the jet closures:
u ∈ USC(Ω) is a viscosity subsolution if for every p ∈ Ω

H(p, η,X) ≤ 0

for each (η,X) ∈ J2,+
u(p). Similar restatements can be made for viscosity supersolutions and viscosity

solutions.

Remark 3.2. If it should happen that H = ∆p, then we will call solutions to (3.7) p-harmonic; if
H = ∆∞, then we call solutions to (3.7) infinite harmonic.

The jets for G can be related to Euclidean jets via the following lemma, which is an applica-
tion of [4, Corollary 3.2].

Lemma 3.1 (The G Twisting Lemma). Let O ⊆ G be open, let u : O → R, and let p0 ∈ O. Suppose
that we know (η,X) ∈ J2,+

eucl (u, p0): Then

(3.8)
(
A(p0) · η,A(p0) ·X ·AT(p0) + M(η, p0)

)
∈ J2,+(u, p0),

where

(3.9) (A(p0))k` =


1, k = ` ≤ m
σ(p0), m+ 1 ≤ k = ` ≤ n
0, otherwise

and

(3.10) (M(η, p0))k` =


1

2
· ∂σ
∂xk

(p0)η`, 1 ≤ k ≤ m < ` ≤ n
1

2
· ∂σ
∂x`

(p0)ηk, 1 ≤ ` ≤ m < k ≤ n

0, otherwise.
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Proof. The result in (3.8) is known (see [4, Corollary 3.2] and [1, Lemma 3]); we shall restrict
our attention to verifying Equations (3.9) and (3.10). The n × n matrix A is defined by [4] as
A(p) := (Ak`(p)), where

Xk(·) =

n∑
`=1

Ak`(·)
∂

∂x`
.

The definitions (2.4) and (2.5) imply:
(1) Ak` ≡ 0 if k 6= `;
(2) Akk ≡ 1 if k ≤ m and Akk = σ if m+ 1 ≤ k ≤ n.

This justifies (3.9).
To verify (3.10), recall the definition of M(η, p0) in [4]:

(M(η, p0))k` :=


1

2

n∑
r=1

n∑
s=1

(
Aks(p0)

∂A`r
∂xs

(p0) +A`s(p0)
∂Akr
∂xs

(p0)

)
ηr, k 6= `

n∑
r=1

n∑
s=1

Aks(p0)
∂Akr
∂xs

(p0)ηr, k = `.

Because Ars ≡ 0 whenever r 6= s, we may simplify the equation above:

(3.11)
(M(η, p0))k` =

1

2

n∑
r=1

((
Akk(p0)

∂A`r
∂xk

(p0) + 0

)
+

(
0 +A``(p0)

∂Akr
∂x`

(p0)

))
ηr

=
1

2

(
Akk(p0)

∂A``
∂xk

(p0)η` +A``(p0)
∂Akk
∂x`

(p0)ηk

)
if k 6= `,

and

(3.12) (M(η, p0))kk =

n∑
r=1

Akk(p0)
∂Akr
∂xk

(p0)ηr = Akk(p0)
∂Akk
∂xk

(p0)ηk if k = `.

First consider Equation (3.12). If k = 1, . . . ,m, then ∂Akk/∂xk ≡ 0. If k = m + 1, . . . , n
we also have ∂Akk/∂xk ≡ 0 because σ is independent of the variables xm+1, . . . , xn. Hence,
(M(η, p0))kk = 0 for all k ≤ n.

Turning our attention to Equation (3.11), we reduce the expression utilizing Item 2 and the
definition of σ:

• If k, ` ≤ m, then Akk ≡ 1 ≡ A`` and hence

(M(η, p0))k` =
1

2
(1 · 0 · η` + 1 · 0 · ηk) = 0.

• If k ≤ m < ` ≤ n, then Akk ≡ 1 and A`` = σ. Since σ is constant with respect to
xm+1, . . . , xn,

(M(η, p0))k` =
1

2

(
1 · ∂σ

∂xk
(p0)η` + σ(p0) · 0 · ηk

)
=

1

2
· ∂σ
∂xk

(p0)η`.

• If ` ≤ m < k ≤ n, then work similar to the above shows

(M(η, p0))k` =
1

2
· ∂σ
∂x`

(p0)ηk.

• If m < k, ` ≤ n, then Akk = σ = A`` and so

(M(η, p0))k` =
1

2
(σ(p0) · 0 · η` + σ(p0) · 0 · ηk) = 0.
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We conclude from the above that the matrix given by (3.10) is indeed M(η, p0). �

4. UNIQUENESS OF INFINITE HARMONIC FUNCTIONS

It is standard knowledge (see, for example, [2] and [8]) that there exist solutions to the Equa-
tion (3.7), so we turn our attention to uniqueness of these solutions. This will be achieved by
proving uniqueness for the operatorsFε and Gε, and will rely upon the properties of jet entries.

4.1. Iterated Maximum Principle & Estimates on Derivatives. The focus of this subsection is
Lemma 4.4, which requires the Iterated Maximum Principle of [3]. As we shall show in Lemma
4.4, the Iterated Maximum Principle gives conditions for finding points possessing nonempty
jet closures for viscosity sub- and supersolutions – this will enable us to produce necessary
estimates on the “viscosity derivatives”. As in [6], we will have need for a “penalty function”;
specifically, we make use of the function

ϕτ1,τ2,τ3,...,τn(p, q) = ϕ~τ (p, q) :=
1

2

n∑
k=1

τk(xk − yk)2,

where the entries of ~τ = (τ1, τ2, τ3, . . . , τn) are positive, real numbers. The use of n real param-
eters as opposed to the one employed by [6] allows us to take the set Z × Rn−m into account.

Lemma 4.2 (The Iterated Maximum Principle). Let Ω b G be a domain, u ∈ USC(Ω), and v ∈
LSC(Ω); assume that there exists some p0 ∈ Ω so that

u(p0)− v(p0) > 0.

Let ~τ = (τ1, τ2, τ3, . . . , τn) ∈ Rn have positive coordinates and, for each pair of points in G p =
(x1, x2, x3, . . . , xn), q = (y1, y2, y3, . . . , yn) define the functions

ϕτ1,τ2,τ3,...,τn(p, q) :=
1

2

n∑
k=1

τk(xk − yk)2

ϕτ2,τ3,...,τn(p, q) :=
1

2

n∑
k=2

τk(xk − yk)2

ϕτ3,...,τn(p, q) :=
1

2

n∑
k=3

τk(xk − yk)2

...

ϕτn(p, q) :=
1

2
τn(xn − yn)2.
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Appealing to the compactness of Ω and to upper semicontinuity, we may also define

Mτ1,τ2,τ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ1,τ2,τ3,...,τn(p, q)}

= u(pτ1,τ2,τ3,...,τn)− v(qτ1,τ2,τ3,...,τn)− ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn)

Mτ2,τ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ2,τ3,...,τn(p, q) : x1 = y1}

= u(pτ2,τ3,...,τn)− v(qτ2,τ3,...,τn)− ϕτ2,τ3,...,τn(pτ2,τ3,...,τn , qτ2,τ3,...,τn)

Mτ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ3,...,τn(p, q) : xk = yk, k = 1, 2}

= u(pτ3,...,τn)− v(qτ3,...,τn)− ϕτ3,...,τn(pτ3,...,τn , qτ3,...,τn)

...

Mτn := sup
Ω×Ω

{u(p)− v(q)− ϕτ3,...,τn(p, q) : xk = yk, k = 1, . . . , n− 1}

= u(pτn)− v(qτn)− ϕτn(pτn , qτn).

Then
lim

τn→∞
· · · lim

τ3→∞
lim
τ2→∞

lim
τ1→∞

Mτ1,τ2,τ3,...,τn = u(p0)− v(p0)

and
lim

τn→∞
· · · lim

τ3→∞
lim
τ2→∞

lim
τ1→∞

ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Additionally, the first ` coordinates of pτ`+1,...,τn and qτ`+1,...,τn are identical – that is,

x
τ`+1,...,τn
k = y

τ`+1,...,τn
k , k = 1, . . . , `.

The proof of the Iterated Maximum Principle leads immediately to the following results
which permit us to take the parameters τk → ∞ in any order, and to speak of the full limit as
τk1 , τk2 , . . . , τkn →∞.

Corollary 4.1 (cf. [3, Corollary 4.4]). Under the conditions of Lemma 4.2, each iterated limit of
Mτ1,τ2,τ3,...,τn exists and is equal to u(p0)− v(p0) – in other words,

lim
τk1
→∞
· · · lim

τkn−2
→∞

lim
τkn−1

→∞
lim

τkn→∞
Mτ1,τ2,τ3,...,τn = u(p0)− v(p0).

Consequently,

lim
τk1
→∞
· · · lim

τkn−2
→∞

lim
τkn−1

→∞
lim

τkn→∞
ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Lemma 4.3 (cf. [3, Lemma 4.5]). Under the conditions of Lemma 4.2, the full limit of Mτ1,τ2,τ3,...,τn

exists and is equal to u(p0)− v(p0) – more precisely,

lim
τn,...,τ3,τ2,τ1→∞

Mτ1,τ2,τ3,...,τn = u(p0)− v(p0).

In addition,
lim

τn,...,τ3,τ2,τ1→∞
ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Remark 4.3. Owing to Lemma 4.3, there is no ambiguity in relabeling the intermediate points pτ1,τ2,τ3,...,τn ,
qτ1,τ2,τ3,...,τn and function ϕτ1,τ2,τ3,...,τn as p~τ , q~τ , and ϕ~τ . We will also denote the coordinates of p~τ , q~τ
as x~τk, y

~τ
k respectively.

Applying the results above and [6, Theorem 3.2], we have the following estimates.



84 Thomas Bieske and Zachary Forrest

Lemma 4.4. Let u, v, ϕ~τ , and (p~τ , q~τ ) be as in Lemma 4.2 and assume additionally that at least one of
u, v is locally G-Lipschitz. Then:

(A) There exist (η+
~τ ,X~τ ) ∈ J2,+

u(p~τ ) and (η−~τ ,Y~τ ) ∈ J2,−
v(q~τ ).

(B) Define (p�q)k to be the point whose k-th coordinate coincides with q and whose other coordinates
coincide with p – in other words,

(p � q)k = (x1, . . . , xk−1, yk, xk+1, . . . , xn).

Then for each index k,

(4.13) τk(x~τk − y~τk)2 . dCC (p~τ , (p~τ � q~τ )k) .

For the indices i ≤ m,

(4.14) τi
∣∣x~τi − y~τi ∣∣ = O(1) as τi →∞.

(C) The vector estimate

(4.15)
∣∣∣∥∥η+

~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = o (1) as τk →∞ for all k ≤ n

holds.
(D) The matrix estimate

(4.16)
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉
= o (1) as τk →∞ for all k ≤ n

holds.

Proof. For clarity, we split the proof between the items above.
Item (A).

[6, Theorem 3.2] guarantees the existence of elements in the Euclidean jet closures: In partic-
ular, for each fixed δ > 0 we will have(

Dpϕ~τ (p~τ , q~τ ), X~τ
)
∈ J2,+

euclu(p~τ ) and
(
−Dqϕ~τ (p~τ , q~τ ), Y ~τ

)
∈ J2,−

euclv(q~τ ).

Applying the G Twisting Lemma (Lemma 3.1) produces the members (η+
~τ ,X~τ ) ∈ J

2,+
u(p~τ )

and (η−~τ ,Y~τ ) ∈ J2,−
v(q~τ ).

Item (B).
By the definition of the points p~τ , q~τ , for all points p, q ∈ Ω the inequality

u(p)− v(q)− ϕ~τ (p, q) ≤ u(p~τ )− v(q~τ )− ϕ~τ (p~τ , q~τ )

is satisfied. Hence assuming (without loss of generality) that u is G-Lipschitz, decreeing p :=
(p~τ � q~τ )k and q := q~τ , and recollecting terms, we obtain

(4.17)

τk(x~τk − y~τk)2 = ϕ~τ (p~τ , q~τ )− ϕ~τ ((p~τ � q~τ )k, q~τ )

≤ u(p~τ )− u ((p~τ � q~τ )k)

≤ K dCC (p~τ , (p~τ � q~τ )k) ,

where K is the Lipschitz constant for u. This is Inequality (4.13), so to complete 4.4 we turn our
attention to to the expression τi

∣∣x~τi − y~τi ∣∣ (i ≤ m). If x~τi 6= y~τi then (4.17) shows

(4.18) τi
∣∣x~τi − y~τi ∣∣ = τi(x

~τ
i − y~τi )2 · 1∣∣x~τi − y~τi ∣∣ ≤ K dCC (p~τ , (p~τ � q~τ )i)∣∣x~τi − y~τi ∣∣ as τ1, · · · , τn →∞.

Note that

(4.19) dCC (p~τ , (p~τ � q~τ )i) ≤
∣∣x~τi − y~τi ∣∣
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as a consequence of [5, Theorem 7.34]. Combining (4.18) and (4.19) proves Equation (4.14) and
completes the proof of 4.4.
Item (C).

Observe that
∂

∂xk
ϕ(p~τ , q~τ ) = τk(x~τk − q~τk) = − ∂

∂yk
ϕ(p~τ , q~τ );

consequently, referring back to the definition of the matrix A, the coordinates of η+
~τ and η−~τ are

[
η+
~τ

]
k

=

{
τk(x~τk − y~τk), if k ≤ m
τk(x~τk − y~τk)σ(p~τ ), if m+ 1 ≤ k ≤ n

and [
η−~τ
]
k

=

{
τk(x~τk − y~τk), if k ≤ m
τk(x~τk − y~τk)σ(q~τ ), if m+ 1 ≤ k ≤ n.

Fixing ~τ for the moment, this leads to the estimate

(4.20)
∣∣∣∥∥η+

~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ ≤ n∑
k=m+1

∣∣σ2(p~τ )− σ2(q~τ )
∣∣ · τ2

k

(
x~τk − y~τk

)2
.

The values τi for i ≤ m are not present in Inequality (4.20). Taking the iterated limits of (4.20)
as τi →∞, recalling that σ(p) depends only upon the first m coordinates of p, and applying the
Iterated Maximum Principle yields

lim
τm→∞

· · · lim
τ1→∞

∣∣∣∥∥η+
~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = 0.

The above implies

lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

∣∣∣∥∥η+
~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = 0,

concluding Item (C).
Item (D).

[6, Theorem 3.2] and the Twisting Lemma imply〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉
= I1 + I2,

where we define

I1 :=
〈(

A(p~τ ) ·X~τ ·AT(p~τ )
)
· η+
~τ , η

+
~τ

〉
−
〈(

A(q~τ ) · Y ~τ ·AT(q~τ )
)
· η−~τ , η

−
~τ

〉
and

(4.21) I2 :=
〈
M(Dpϕ~τ (p~τ , q~τ ), p~τ ) · η+

~τ , η
+
~τ

〉
−
〈
M(Dqϕ~τ (p~τ , q~τ ), q~τ ) · η−~τ , η

−
~τ

〉
.

Writing ε̃ := A(p~τ ) · ε, κ̃ := A(q~τ ) ·κ to mean the twisting of ε, κ ∈ Rn according to the Twisting
Lemma,〈

A(p~τ ) ·X~τ ·AT(p~τ )ε, ε
〉
−
〈
A(q~τ ) · Y ~τ ·AT(q~τ )κ, κ

〉
=
〈
X~τ · ε̃, ε̃

〉
−
〈
Y ~τ · κ̃, κ̃

〉
≤ 〈C ·Υ,Υ〉 ,

where Υ := (ε̃, κ̃) and C is a 2n× 2n block matrix resulting from [6, Theorem 3.2] of the form(
B −B
−B B

)
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and

[B]ab =

{
τa + 2δτ2

a , a = b

0, a 6= b.

(Recall that δ is a consequence of [6, Theorem 3.2].) Choosing ε := η+
~τ and κ := η−~τ , the above

shows

(4.22)

I1 ≤
〈
B ·
(
η̃+
~τ − η̃

−
~τ

)
, η̃+
~τ − η̃

−
~τ

〉
=

n∑
k=m+1

(τk + 2δτ2
k )(σ2(p~τ )− σ2(q~τ ))2 · τ2

k (x~τk − y~τk)2.

The right-hand side of Relation (4.22) is free of the τi for i ≤ m, so proceeding as in the proof
of Item (C), we find

lim
τm→∞

· · · lim
τ1→∞

I1 = 0

so that

(4.23) lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

I1 = 0.

For the term I2, let us begin by simplifying the notation for the matrix M(·, ·). Appealing to
Equation (3.10) in the Twisting Lemma, we see that

M(Dpϕ~τ (p~τ , q~τ ), p~τ ) =

(
0 S(p~τ )

S(p~τ )T 0

)
and

M(Dqϕ~τ (p~τ , q~τ ), q~τ ) =

(
0 S(q~τ )

S(q~τ )T 0

)
,

where, permitting t to represent either the point p~τ or q~τ , them× (n−m) matrix S(t) is defined
by

[S(t)]rs :=
1

2
· ∂σ
∂xr

(t) · τs(x~τs − y~τs ).

Calculations with (4.21) show

I2 =

n∑
`=m+1

m∑
r=1

∂σ

∂xr
(p~τ ) · τr(x~τr − y~τr ) · τ2

` (x~τ` − y~τ` )2σ(p~τ )

−
n∑

`=m+1

m∑
r=1

∂σ

∂xr
(q~τ ) · τr(x~τr − y~τr ) · τ2

` (x~τ` − y~τ` )2σ(q~τ ).

We adopt the notation

Tr` := τr(x
~τ
r − y~τr )τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(p~τ )− τr(x~τr − y~τr )τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(q~τ )

for the (r, `)-term of I2. Since the Iterated Maximum Principle implies

p~τ → (x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n) and q~τ → (x0

1, . . . , x
0
i , y

~τ
i+1, . . . , y

~τ
n)
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as τ1, . . . τi → ∞ (i ≤ m), and since 1 ≤ r ≤ m < ` ≤ n and σ ∈ C2
eucl, we obtain the iterated

limit

lim
τi→∞

· · · lim
τ1→∞

Tr` = τr(x
~τ
r − y~τr )τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n)

− τr(x~τr − y~τr )τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , y

~τ
i+1, . . . , y

~τ
n)

if i < r; if r ≤ i we may apply Item 4.4, Inequality (4.14), and arrive at

lim
τi→∞

· · · lim
τ1→∞

Tr` ≈ τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n)

− τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , y

~τ
i+1, . . . , y

~τ
n).

This second limit in particular implies that

(4.24)
lim

τm→∞
· · · lim

τ1→∞
Tr` ≈ τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
m, x

~τ
m+1, . . . , x

~τ
n)

− τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
m, y

~τ
m+1, . . . , y

~τ
n)

for all r ≤ m. Since σ, ∂σ/∂xr depend only upon the first m coordinates of points p, (4.24)
implies

lim
τm→∞

· · · lim
τ1→∞

I2 = 0

and hence

(4.25) lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

I2 = 0.

Equation (4.16) then follows from (4.23) and (4.25). �

4.2. A Comparison Principle & Uniqueness. With the completion of Lemma 4.4, we prove a
comparison principle for viscosity solutions to the Dirichlet problems

(4.26)

{
Fε
(
p,∇G w(p),

(
D2w

)?
(p)
)

= min
{
‖∇G w(p)‖2 − ε2,∆∞w(p)

}
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

and

(4.27)

{
Gε
(
p,∇G w(p),

(
D2w

)?
(p)
)

= max
{
ε2 − ‖∇G w(p)‖2,∆∞w(p)

}
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

in order to prove the uniqueness of solutions to

(4.28)

{
∆∞ w(p) =

〈
D2w(p) · ∇G w(p),∇G w(p)

〉
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

As before, Ω is a bounded domain; we also assume g ∈ C(∂Ω). In the interest of maintaining
clear notation, we establish the following convention.

Definition 4.4. A viscosity supersolution to Problems (4.26), (4.27), or (4.28) is a viscosity supersolu-
tion v to the equations Fε = 0, Gε = 0, or ∆∞ = 0 (respectively) such that v ≥ g on ∂Ω; a viscosity
supersolution u to Problems (4.26), (4.27), or (4.28) is defined similarly. A viscosity solution to any of
the above three Dirichlet problems is both a viscosity sub- and supersolution to the problem in the above
sense.
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Theorem 4.1. Suppose that u, v are sub- and supersolutions to Problem (4.26) or Problem (4.27) such
that at least one of the functions is locally G-Lipschitz in Ω. Then u ≤ v in Ω.

Proof. We will complete the proof for Problem (4.26) and note that the proof for Problem (4.27)
is similar. Suppose, to the contrary of the theorem, that there exists some p0 ∈ Ω such that

u(p0)− v(p0) = max
Ω

(u− v) > 0.

Appealing to Lemma 5.1 and Theorem 5.3 in [2], we may assume that v is a strict viscosity
supersolution to Fε = 0 – that is, there exists µ(p) > 0 so that

Fε
(
∇G v(p),

(
D2v

)?
(p)
)

= µ(p) > 0

holds in the viscosity sense for each p ∈ Ω. Applying Lemma 4.4 to produce the sequence of
ordered pairs (p~τ , q~τ ) ∈ Ω× Ω, we have

(4.29)

0 < µ(q~τ ) ≤ Fε
(
η−~τ ,Y

~τ
)
−Fε

(
η+
~τ ,X

~τ
)

= min
{∥∥η−~τ ∥∥2 − ε2,−

〈
Y~τη−~τ , η

−
~τ

〉}
−min

{∥∥η+
~τ

∥∥2 − ε2,−
〈
X ~τη+

~τ , η
+
~τ

〉}
≤ max

{∥∥η−~τ ∥∥2 −
∥∥η+
~τ

∥∥2
,
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉}
.

[2, Lemma 5.1], [2, Theorem 5.3], Lemma 4.4, and Lemma 4.2 imply

(4.30) µ(q~τ )→ µ(p0) > 0

and that

(4.31) max
{∥∥η−~τ ∥∥2 −

∥∥η+
~τ

∥∥2
,
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉}
→ 0

as τ1, . . . , τn → ∞; in other words, for τ1, . . . , τn sufficiently large, we may combine (4.29),
(4.30), and (4.31) and produce a contradiction. �

Because viscosity solutions are both viscosity sub- and supersolutions, Theorem 4.1 implies
that solutions to (4.26) and (4.27) are unique. Observing that viscosity solutions to (4.26) are
viscosity supersolutions to (4.28) and that viscosity solutions to (4.27) are viscosity subsolutions
to (4.28), we may therefore conclude that solutions to (4.28) are unique by an application of the
lemma below.

Lemma 4.5 (cf. [2, Lemma 5.6]). Let uε and uε be solutions to the Dirichlet Problems (4.26) and
(4.27) respectively. Given δ > 0, there exists ε > 0 such that

uε ≤ uε ≤ uε + δ.
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ABSTRACT. We prove the unique existence of the functions rn (n = 1, 2, . . .) on [0, 1] such that the corresponding
sequence of King operators approximates each continuous function on [0, 1] and preserves the functions e0(x) = 1

and ej(x) = xj , where j ∈ {2, 3, . . .} is fixed. We establish the essential properties of rn, and the rate of convergence
of the new sequence of King operators will be estimated by the usual modulus of continuity. Finally, we show that the
introduced operators are not polynomial and we obtain quantitative Voronovskaja type theorems for these operators.
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1. INTRODUCTION

Let Πn be the space of all algebraic polynomials of degree not greater than n. The Bernstein
operators Bn : C[0, 1]→ Πn are given by

(1.1) (Bnf)(x) =

n∑
k=0

pn,k(x)f

(
k

n

)
,

where n = 1, 2, . . ., x ∈ [0, 1], f ∈ C[0, 1] and pn,k(x) =
(
n
k

)
xk(1 − x)n−k. For j = 0, 1, 2, . . ., we

denote by ej the power function ej(x) = xj , x ∈ [0, 1]. It is well-known [6, p. 3] that

(1.2) (Bne0)(x) = 1, (Bne1)(x) = x, (Bne2)(x) = x2 +
1

n
x(1− x), x ∈ [0, 1].

Studying the connection between regular summability matrices and convergent positive lin-
ear operators, King [14, pp. 204-205] introduced the operators Vn : C[0, 1] → C[0, 1] defined
by

(1.3) (Vnf)(x) =

n∑
k=0

pn,k(r∗n(x))f

(
k

n

)
,

where

(1.4) r∗n(x) =

{
x2, if n = 1

− 1
2(n−1) +

√
n

n−1x
2 + 1

4(n−1)2 , if n = 2, 3, . . .
.

Taking into account (1.1)-(1.3), we have (Vnf)(x) = (Bnf)(r∗n(x)), x ∈ [0, 1] and Vne0 = e0,
Vne2 = e2. The uniform convergence lim

n→∞
Vnf = f and a quantitative estimation are also

discussed in [14, p. 204 and p. 206]. We mention that in [8] we obtained direct and converse
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approximation theorems for (1.3). The existence of a sequence of linear positive bounded poly-
nomial operators onC[0, 1], possessing e0 and e2 as fixed points, was proved in [9]. Main results
concerning certain King type modifications of the Bernstein operators and the Szász-Mirakyan
operators were presented in the survey paper [1].

Replacing f
(
k
n

)
in (1.1) with f

(
j

√
k(k−1)...(k−j+1)
n(n−1)...(n−j+1)

)
, n ≥ j ≥ 2, Aldaz, Kounchev and Ren-

der [3, p. 12, Proposition 11] defined a new King type operator, which preserves the functions
e0 and ej , where j ∈ {2, 3, . . .} is fixed. In [10], we proved that there exist infinitely many se-
quences of Bernstein type operators (Ln)n≥1, which approximate each continuous function on
[0, 1] and have the functions e0 and ej as fixed points, where j ∈ {1, 2, . . .} is given and

(Lnf)(x) =

n∑
k=0

pn,k(x)λn,k(f), f ∈ C[0, 1]

and λn,k ∈ C∗[0, 1] are bounded positive linear functionals. Further properties of the Bernstein
type operators of Aldaz, Kounchev and Render were obtained in the papers [2], [4], [5] and
[13]. In [11], among others, we studied the approximation properties of the operators Un :
C[0, 1]→ C[0, 1] defined by

(1.5) (Unf)(x) =

n∑
k=0

pn,k(rn(x))f

(
k

n

)
,

where the functions rn ∈ C[0, 1] were constructed such that Un preserves the functions e0 and
e2i, with i ∈ {1, 2, . . .} given. The main goal of the present paper is to prove the unique ex-
istence of the functions rn : [0, 1] → [0, 1] (n = 1, 2, . . .) such that the corresponding King
operators given by (1.5) approximate each continuous function on [0, 1] and satisfy the condi-
tions Une0 = e0 and Unej = ej , where j ∈ {2, 3, . . .} is fixed. The essential properties of rn
(n = 1, 2, . . .) will be established. A necessary and sufficient condition is given for the uniform
convergence of (Unf)n≥1 to f ∈ C[0, 1]. The quantitative estimates for the operators (1.5) are
obtained with the aid of the usual modulus of continuity. Finally, we show that Un cannot be
polynomial operator of degree n, and we obtain a quantitative Voronovskaja type theorem for
the operators (1.5).

2. THE CONSTRUCTION OF rn

At first we prove the following lemma.

Lemma 2.1. Let f, g : [a, b]→ [α, β] be strictly increasing and continuous functions such that f(a) =
α = g(a), f(b) = β = g(b) and f(u) ≤ g(u) for all u ∈ [a, b]. Then, the inverse mappings f−1, g−1 :
[α, β]→ [a, b] exist and are strictly increasing and continuous on [α, β] such that g−1(v) ≤ f−1(v) for
all v ∈ [α, β].

Proof. The existence of f−1 and g−1 is the consequence of the following continuous inverse theo-
rem: if ϕ : [a, b] → R is a strictly increasing and continuous function then the inverse mapping
ϕ−1 : [ϕ(a), ϕ(b)]→ [a, b] exists and is strictly increasing and continuous on [ϕ(a), ϕ(b)]. Conse-
quently f−1, g−1 : [α, β] → [a, b] are strictly increasing and continuous on [α, β]. Moreover, for
every v ∈ [α, β] there exists a unique u ∈ [a, b] such that v = f(u). Then g−1(v) = g−1(f(u)) ≤
g−1(g(u)) = u = f−1(v), because f(u) ≤ g(u) and g−1 is strictly increasing. �

The next result contains the construction of the functions rn (n = 1, 2, . . .).
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Theorem 2.1. For every n = 1, 2, . . ., there exists the unique function rn : [0, 1]→ [0, 1] such that

(2.6)
n∑

k=0

pn,k(rn(x))

(
k

n

)j

= xj

for all x ∈ [0, 1], being j ∈ {2, 3, . . .} fixed.

Proof. If n = 1 then the function r1(x) = xj , x ∈ [0, 1] satisfies the equality

p1,0(r1(x)) · 0 + p1,1(r1(x)) · 1 = xj , x ∈ [0, 1].

Let n ≥ 2 and consider the function φn : [0, 1]→ R,

φn(y) = (Bnej)(y) =

n∑
k=0

pn,k(y)

(
k

n

)j

.

By (1.1)-(1.2), we have φn(0) = 0, φn(1) = 1 and 0 ≤ φn(y) ≤ (Bne0)(y) = 1 for every y ∈ [0, 1].
Because

(Bnf)′(y) = n

n−1∑
k=0

pn−1,k(y)

[
f

(
k + 1

n

)
− f

(
k

n

)]
(see [6, p. 305, (2.2)]), we get

φ′n(y) = (Bnej)
′(y) = n

n−1∑
k=0

pn−1,k(y)

[(
k + 1

n

)j

−
(
k

n

)j
]

= n

{
(1− y)n−1

(
1

n

)j

+

(
n− 1

1

)
y(1− y)n−2

[(
2

n

)j

−
(

1

n

)j
]

+ . . .

+

(
n− 1

n− 2

)
yn−2(1− y)

[(
n− 1

n

)j

−
(
n− 2

n

)j
]

+ yn−1

[
1−

(
n− 1

n

)j
]}

> 0(2.7)

for all y ∈ [0, 1]. Thus φn : [0, 1]→ [0, 1] is a strictly increasing and continuous function. But the
function ej is also strictly increasing and continuous on [0, 1] such that ej(0) = 0 and ej(1) = 1,
therefore if x ∈ [0, 1] is arbitrary then the equation φn(y) = xj has a unique solution y = rn(x).
In view of the continuous inverse theorem, there exists the strictly increasing and continuous
inverse mapping φ−1n . Then

(2.8) rn(x) = (φ−1n ◦ ej)(x), x ∈ [0, 1]

and satisfies (2.6). Moreover 0 = rn(0) ≤ rn(x) ≤ rn(1) = 1 for all x ∈ [0, 1]. �

The essential properties of rn (n = 1, 2, . . .) are gathered in the following theorem.

Theorem 2.2. Let rn : [0, 1]→ [0, 1] (n = 1, 2, . . .) be the function defined by (2.6). Then
a) rn is strictly increasing and continuous function on [0, 1];
b) xj ≤ rn(x) ≤ rn+1(x) ≤ x for all x ∈ [0, 1];
c) lim

n→∞
rn(x) = x for all x ∈ [0, 1];

d) rn is differentiable on [0, 1].

Proof. a) By (2.8), we have that rn(x) = (φ−1n ◦ej)(x), x ∈ [0, 1], where φ−1n is a strictly increasing
and continuous function on [0, 1]. Hence, we obtain that rn is also a strictly increasing and
continuous function on [0, 1].
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b) In view of (1.2), we have
n∑

k=0

pn,k(rn(x)) k
n = rn(x). Using (2.6) and Jensen’s inequality on

[0, 1] for the convex function ej , we get

xj =

n∑
k=0

pn,k(rn(x))

(
k

n

)j

≥

(
n∑

k=0

pn,k(rn(x))
k

n

)j

= (rn(x))j , x ∈ [0, 1].

Hence rn(x) ≤ x, x ∈ [0, 1].
Because (Bnf)(y) > (Bn+1f)(y), 0 < y < 1 for any strictly convex function f on [0, 1] (see

[6, p. 310, Corollary 4.2]), we obtain φn(y) = (Bnej)(y) > (Bn+1ej)(y) = φn+1(y) for y ∈ (0, 1).
But φn(0) = 0 = φn+1(0) and φn(1) = 1 = φn+1(1), therefore φn(y) ≥ φn+1(y), y ∈ [0, 1]. Due to
Lemma 2.1, we have φ−1n (x) ≤ φ−1n+1(x), x ∈ [0, 1]. In particular φ−1n (xj) ≤ φ−1n+1(xj), x ∈ [0, 1],
i.e. rn(x) ≤ rn+1(x), x ∈ [0, 1], because of (2.8). But r1(x) = xj , x ∈ [0, 1], thus xj ≤ rn(x),
x ∈ [0, 1].
c) Because pn,k (k = 0, 1, . . . , n) are polynomials of degree n, we have, by Taylor’s formula for
x, y ∈ [0, 1] that

pn,k(y) = pn,k(x) +
1

1!
p′n,k(x)(y − x) +

1

2!
p′′n,k(x)(y − x)2 + . . .+

1

n!
p
(n)
n,k(x)(y − x)n.

Hence, in view of (2.6) and (1.1),

xj − (Bnej)(x) =

n∑
k=0

pn,k(rn(x))

(
k

n

)j

−
n∑

k=0

pn,k(x)

(
k

n

)j

=

n∑
k=0

[pn,k(rn(x))− pn,k(x)]

(
k

n

)j

=

n∑
k=0

{
n∑

i=1

1

i!
p
(i)
n,k(x)(rn(x)− x)i

}(
k

n

)j

=

n∑
i=1

1

i!
(rn(x)− x)i

n∑
k=0

p
(i)
n,k(x)

(
k

n

)j

=

n∑
i=1

1

i!
(rn(x)− x)i(Bnej)

(i)(x).(2.9)

On the other hand the Bernstein polynomial BnP of a polynomial P of degree m is itself a
polynomial of degree m, if n ≥ m (see [6, p. 306]). Then (Bnej)

(i)(x) = 0, x ∈ [0, 1] for
n ≥ i > j. By (2.9), we get for n > j that

(2.10) xj − (Bnej)(x) =

j∑
i=1

1

i!
(rn(x)− x)i(Bnej)

(i)(x).

It is known that lim
n→∞

(Bnf)(i)(x) = f (i)(x), if x ∈ [0, 1] and f ∈ Ci[0, 1] (see [6, p. 306, Theorem
2.1]). Thus

(2.11) lim
n→∞

(Bnej)
(i)(x) = e

(i)
j (x) = j(j − 1) . . . (j − i+ 1)xj−i,

where x ∈ [0, 1] and i ∈ {1, 2, . . . , j}. Furthermore, in view of b), the sequence (rn(x))n≥1 is
convergent for all x ∈ [0, 1]: there exists

(2.12) lim
n→∞

rn(x) = r(x), x ∈ [0, 1].
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Combining (2.10)-(2.12), we find that

0 = lim
n→∞

(xj − (Bnej)(x))

=

j∑
i=1

1

i!
lim

n→∞
(rn(x)− x)i lim

n→∞
(Bnej)

(i)(x)

=

j∑
i=1

1

i!
(r(x)− x)ij(j − 1) . . . (j − i+ 1)xj−i =

j∑
i=1

(
j

i

)
(r(x)− x)ixj−i

= −xj +

j∑
i=0

(
j

i

)
(r(x)− x)ixj−i = −xj + (r(x)− x+ x)j = −xj + (r(x))j .

Hence r(x) = x, x ∈ [0, 1], thus lim
n→∞

rn(x) = x.

d) Because φ′n(y) > 0, y ∈ [0, 1] (see (2.7)) and rn(x) = φ−1n (xj), x ∈ [0, 1] (see (2.8)), it follows
that rn is a differentiable function on [0, 1]. Moreover

(2.13) r′n(x) = (φ−1n )′(xj) · (xj)′ =
jxj−1

(φ′n)′(rn(x))
=

jxj−1

(Bnej)′(rn(x))
, x ∈ [0, 1],

because φn(rn(x)) = xj . �

Remark 2.1. Due to (1.4), we have for all x ∈ [0, 1] that

(r∗n)′(x) =

2x, if n = 1

n
n−1x

(
n

n−1x
2 + 1

4(n−1)2

)− 1
2

, if n = 2, 3, . . .
.

The same result can be obtained from (2.13) for j = 2.
Indeed, by (2.7), (1.2) and (1.4), we have for x ∈ [0, 1] and n ≥ 2 that

(Bne2)′(r∗n(x)) = n

n−1∑
k=0

pn−1,k(r∗n(x))

[(
k + 1

n

)2

−
(
k

n

)2
]

=
2(n− 1)

n

n−1∑
k=0

pn−1,k(r∗n(x))
k

n− 1
+

1

n

n−1∑
k=0

pn−1,k(r∗n(x))

=
2(n− 1)

n
r∗n(x) +

1

n

=
2(n− 1)

n

√
n

n− 1
x2 +

1

4(n− 1)2
.

Hence, by (2.13),

(r∗n)′(x) =
2x

(Bne2)′(r∗n(x))
=

n

n− 1
x

(
n

n− 1
x2 +

1

4(n− 1)2

)− 1
2

.

3. THE APPROXIMATION PROPERTIES OF Un

The operators Un : C[0, 1] → C[0, 1] given by (1.5) are positive linear and (Unf)(0) = f(0)
and (Unf)(1) = 1, because rn(0) = 0 and rn(1) = 1. Moreover, by (1.2) and (2.6), we have
Une0 = e0 and Unej = ej . In the following theorem, we study the convergence Unf → f in the
uniform norm defined by ‖f‖ = sup{|f(x)| : x ∈ [0, 1]}, f ∈ C[0, 1].
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Theorem 3.3. lim
n→∞

‖Unf − f‖ = 0 for each f ∈ C[0, 1] if and only if lim
n→∞

‖rn − e1‖ = 0, where rn
(n = 1, 2, . . .) are defined by (2.6).

Proof. Using (1.5), (1.1) and (1.2), we obtain

(3.14) (Une0)(x) = 1, (Une1)(x) = rn(x), (Une2)(x) = (rn(x))2 +
1

n
rn(x)(1− rn(x)).

Hence

‖Une0 − e0‖ = 0,(3.15)

‖Une1 − e1‖ = ‖rn − e1‖(3.16)

and

(3.17) ‖Une2 − e2‖ ≤ ‖r2n − e21‖+
1

4n
≤ 2‖rn − e1‖+

1

4n
,

because rn(x) ∈ [0, 1] for x ∈ [0, 1] (see Theorem 2.1).
On the other hand, the statements a), b) and c) of Theorem 2.2, and Dini’s theorem (see e.g.

[15, p. 150, 7.13. Theorem]) imply that

(3.18) lim
n→∞

‖rn − e1‖ = 0.

Combining (3.15)-(3.18), in view of Korovkin theorem [6, pp. 8-10], we obtain the assertion
of our theorem. �

The next result contains pointwise and uniform quantitative estimates for Un (n = 1, 2, . . .),
using the usual modulus of continuity of f ∈ C[0, 1] given by

ω(f ; δ) = sup{|f(u)− f(v)| : u, v ∈ [0, 1], |u− v| < δ}, δ > 0.

Theorem 3.4. Let (Un)n≥1 be the sequence of operators defined by (1.5). Then for every f ∈ C[0, 1],
we have

a) |(Unf)(x)− f(x)| ≤ 2ω
(
f ;
√

(rn(x)− x)2 + 1
nrn(x)(1− rn(x))

)
, n ≥ 1, x ∈ [0, 1];

b)

|(Unf)(x)− f(x)| ≤


6ω

(
f ;
√

x(1−x)
n

)
, if j = 2

2(1 +
√
C(j))ω

(
f ;

√
x(1−x)
2j
√
n

)
, if j = 3, 4, . . .

,

where n ≥ j, x ∈ [0, 1] and

(3.19) C(j) = (j − 1)
j

√
j(j − 1)2

8
+ j;

c)

‖Unf − f‖ ≤

6ω
(
f ; 1√

n

)
, if j = 2

2(1 +
√
C(j))ω

(
f ; 1

2j
√
n

)
, if j = 3, 4, . . .

,

where n ≥ j and C(j) is defined by (3.19).



96 Zoltán Finta

Proof. a) For any sequence (Ln)n≥1 of positive linear operators on C[a, b], it is known [7, p. 30]
that for f ∈ C[a, b] and x ∈ [a, b], we have

|(Lnf)(x)− f(x)| ≤ |f(x)| · |(Lne0)(x)− e0(x)|

+ ω (f ; δ)

[
(Lne0)(x) +

1

δ
((Lne0)(x))

1/2 ·
(
(Ln(e1 − xe0)2)(x)

)1/2]
.

In our case [a, b] = [0, 1] and Une0 = e0 (see (3.14)), thus

(3.20) |(Unf)(x)− f(x)| ≤
[
1 + δ−1

(
(Un(e1 − xe0)2)(x)

)1/2]
ω (f ; δ) .

But, in view of (3.14), we have

(Un(e1 − xe0)2)(x) = (Une2)(x)− 2x(Une1)(x) + x2(Une0)(x)

= (rn(x)− x)2 +
1

n
rn(x)(1− rn(x)).(3.21)

Choosing δ =
(
(rn(x)− x)2 + 1

nrn(x)(1− rn(x))
)1/2 in (3.20), we get the required estimate.

b) We will prove the following estimates below:

(3.22)
(
Un(e1 − xe0)2

)
(x) ≤

{
4
nx(1− x), if j = 2
C(j)
j
√
n
x(1− x), if j ≥ 3

,

where x ∈ [0, 1] is arbitrary. Hence, by (3.20) and the property ω(f ;λδ) ≤ (1 + λ)ω(f ; δ), λ > 0,
we get for δ =

((
Un(e1 − xe0)2

)
(x)
)1/2 that

|(Unf)(x)− f(x)| ≤2ω
(
f ;
((
Un(e1 − xe0)2

)
(x)
)1/2)

≤


2ω

(
f ; 2
√

x(1−x)
n

)
, if j = 2

2ω

(
f ;
√
C(j)

√
x(1−x)
2j
√
n

)
, if j ≥ 3

≤


6ω

(
f ;

√
x(1−x)√

n

)
, if j = 2

2(1 +
√
C(j))ω

(
f ;

√
x(1−x)
2j
√
n

)
, if j ≥ 3

which was to be proved.
Now let us prove (3.22). Using Theorem 2.2 b), we have for x ∈ [0, 1] that

(3.23) rn(x)(1− rn(x)) ≤ x(1− xj) = x(1− x)(1 + x+ . . .+ xj−1) ≤ jx(1− x).

For j = 2, we have in view of [8, p. 87, Lemma 1, d)] that 0 ≤ x− rn(x) ≤ 2
n (1− x). Hence

(3.24) (x− rn(x))2 = (x− rn(x))(x− rn(x)) ≤ 2

n
x(1− x).

Then (3.21), (3.24) and (3.23) imply
(
Un(e1 − xe0)2

)
(x) ≤ 2

nx(1− x) + 2
nx(1− x) = 4

nx(1− x).
Let j ≥ 3 and n ≥ j. By Theorem 2.1 and [11, pp. 102-103, Lemma 1 and Lemma 2], the

polynomial φn(y) ≡ Pn,j(y) =
n∑

k=0

pn,k(y)
(
k
n

)j
= a0y

j + a1y
j−1 + . . . + aj−1y satisfies the
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following conditions:

Pn,j(rn(x)) = xj ;

a0 =
1

nj−1
(n− 1)(n− 2) . . . (n− j + 1); a1, . . . , aj−1 > 0; a0 + a1 + . . .+ aj−1 = 1;

0 ≤ 1− a0 ≤
j(j − 1)

2n
.

Hence

0 ≤ xj − (rn(x))j = Pn,j(rn(x))− (rn(x))j

=

j−1∑
k=0

ak(rn(x))j−k − (rn(x))j

= (a0 − 1)(rn(x))j +

j−1∑
k=1

ak(rn(x))j−k

= −
j−1∑
k=1

ak(rn(x))j +

j−1∑
k=1

ak(rn(x))j−k

=

j−1∑
k=1

ak(rn(x))j−k
[
1− (rn(x))k

]
=

j−1∑
k=1

ak(rn(x))j−k(1− rn(x))
[
1 + rn(x) + . . .+ (rn(x))k−1

]
≤ rn(x)(1− rn(x))

j−1∑
k=1

kak ≤ (j − 1)rn(x)(1− rn(x))

j−1∑
k=1

ak

= (j − 1)rn(x)(1− rn(x))(1− a0)

≤ j(j − 1)2

2n
rn(x)(1− rn(x)) ≤ j(j − 1)2

8n
.

Using (u − v)2j ≤ (uj − vj)2, u, v ∈ [0, 1] (see [11, p. 103, Lemma 2, (b)]), we find that (x −
rn(x))2j ≤ (xj − (rn(x))j)2 ≤

(
1
8nj(j − 1)2

)2, i.e.

(3.25) 0 ≤ x− rn(x) ≤ j

√
1

8n
j(j − 1)2.

At the same time, due to Theorem 2.2 b), we obtain

(3.26) 0 ≤ x− rn(x) ≤ x− xj = x(1− xj−1) = x(1− x)(1 + x+ . . .+ xj−2) ≤ (j − 1)x(1− x).

Hence, in view of (3.21), (3.25), (3.26) and (3.23), we get(
Un(e1 − xe0)2

)
(x) = (x− rn(x))(x− rn(x)) +

1

n
rn(x)(1− rn(x))

≤ j

√
1

8n
j(j − 1)2(j − 1)x(1− x) +

j

n
x(1− x) ≤ C(j)

j
√
n
x(1− x).

c) Because x(1− x) ≤ 1 for x ∈ [0, 1], the estimates formulated in c) follow from the statement
of b). �
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Remark 3.2. By Theorem 2.1, we have Unf ≡ Vnf for j = 2. Then Vne0 = e0 and Vne2 = e2, thus,
by (3.21), we get (Vn(e1 − xe0)2)(x) = 2x(x− r∗n(x)). Applying Theorem 3.4, we obtain

|(Vnf)(x)− f(x)| ≤ 2ω
(
f ;
√

2x(x− r∗n(x))
)
, n ≥ 1, x ∈ [0, 1];

|(Vnf)(x)− f(x)| ≤ 6ω

(
f ;

√
x(1− x)

n

)
, n ≥ 2, x ∈ [0, 1];

‖Vnf − f‖ ≤ 6ω

(
f ;

1√
n

)
, n ≥ 2.

For the first estimate see [14, p. 206, Theorem 3.1].

Furthermore, we have the following theorem.

Theorem 3.5. Let Un : C[0, 1] → C[0, 1] (n = 1, 2, . . .) be the operators given by (1.5) with rn
defined by (2.6). Then Un cannot be polynomial operator of degree n: there exists f ∈ C[0, 1] such that
Unf /∈ Πn.

Proof. Let n ≥ j and suppose that Unf ∈ Πn for all f ∈ C[0, 1]. Then Une1 = rn ∈ Πn due
to (3.14). Furthermore Bnej is a polynomial of degree j, because n ≥ j, and thus (Bnej)(y) =
a0y

j +a1y
j−1 + . . .+aj−1y, where a0 > 0 (see [11, p. 102, Lemma 1]). Taking into account (2.6),

we have

xj = (Unej)(x) = (Bnej)(rn(x)) = a0(rn(x))j + a1(rn(x))j−1 + . . .+ aj−1rn(x).

In view of rn ∈ Πn and a0 > 0, we find that rn is a first degree polynomial. By Theorem 2.1,
we have rn(0) = 0 and rn(1) = 1, thus rn(x) = x, x ∈ [0, 1]. Hence (Unf)(x) = (Bnf)(rn(x)) =
(Bnf)(x), x ∈ [0, 1]. But Unej = ej (see (2.6)), therefore Bnej = ej on [0, 1], contradiction,
because (Bnf)(x) > f(x), 0 < x < 1 for any strictly convex function f on [0, 1] (see [6, p. 310,
Corollary 4.2]), in particular Bnej > ej on (0, 1).

If 1 ≤ n < j and Unf ∈ Πn for all f ∈ C[0, 1], then Unej = ej ∈ Πn due to (2.6). Hence j ≤ n,
contradiction. �

Finally, we have the following quantitative Voronovskaja type theorem for the operators
(1.5). We mention that similar result was established for the Bernstein type operators of Aldaz,
Kounchev and Render in [12].

Theorem 3.6. Let Un (n = 1, 2, . . .) be given by (1.5). Then

a)
∣∣∣ n((Unf)(x)− f(x)) + (f ′(x)− xf ′′(x))n(x− rn(x))

∣∣∣≤ 2(2 +
√

39)x(1− x)ω
(
f ′′; 1√

n

)
for all x ∈ [0, 1], f ∈ C2[0, 1] and j = 2, where

0 ≤ lim inf
n→∞

n(x− rn(x)) ≤ lim sup
n→∞

n(x− rn(x)) ≤ 2;

b)
∣∣∣ j
√
n((Unf)(x) − f(x)) + f ′(x) j

√
n(Un(xe0 − e1))(x) − 1

2f
′′(x)) j

√
n(Un(xe0 − e1)2)(x)

∣∣∣
≤
√
C(j)(

√
C(j) +

√
C1(j))x(1− x)ω

(
f ′′; 1

2j
√
n

)
for all x ∈ [0, 1], f ∈ C2[0, 1] and j ≥ 3, where C(j) is defined by (3.19),

C1(j) =
3

4
j2 +

119

8
j +

1

4
(j − 1)2

j

√
1

64
j2(j − 1)4

and

0 ≤ lim inf
n→∞

j
√
n(Un(xe0 − e1))(x) ≤ lim sup

n→∞
j
√
n(Un(xe0 − e1))(x) ≤ j

√
1

8
j(j − 1)2,



King operators which preserve xj 99

0 ≤ lim inf
n→∞

j
√
n(Un(xe0 − e1)2)(x) ≤ lim sup

n→∞
j
√
n(Un(xe0 − e1)2)(x) ≤ 1

4
C(j).

Proof. For f ∈ C2[0, 1] and x, t ∈ [0, 1], by Taylor’s formula, we have

f(t) = f(x) + f ′(x)(t− x) +
1

2
f ′′(x)(t− x)2 +

∫ t

x

(f ′′(u)− f ′′(x))(t− u) du.

Hence

(Unf)(x) = f(x) + f ′(x)(Un(e1 − xe0))(x) +
1

2
f ′′(x)(Un(xe0 − e1)2)(x)

+ Un

(∫ t

x

(f ′′(u)− f ′′(x))(t− u) du;x

)
.(3.27)

Because ∣∣∣ ∫ t

x

(f ′′(u)− f ′′(x))(t− u) du
∣∣∣≤∣∣∣ ∫ t

x

|f ′′(u)− f ′′(x)||t− u| du
∣∣∣

≤
∣∣∣ ∫ t

x

ω(f ′′; |u− x|) |t− u| du
∣∣∣≤∣∣∣ ∫ t

x

(1 + δ−1|u− x|)ω(f ′′; δ) |t− u| du
∣∣∣

=ω(f ′′; δ)
∣∣∣ ∫ t

x

(|t− u|+ δ−1|u− x||t− u|) du
∣∣∣≤ ω(f ′′; δ)

(
|t− x|2 + δ−1|t− x|3

)
,

where δ > 0, we get, by (3.27) and Hölder’s inequality that∣∣∣ ((Unf)(x)− f(x)) + f ′(x)(Un(xe0 − e1))(x)− 1

2
f ′′(x)(Un(e1 − xe0)2)(x)

∣∣∣
≤ ω(f ′′; δ)

{
(Un(e1 − xe0)2)(x) + δ−1(Un|e1 − xe0|3)(x)

}
≤ω(f ′′; δ)

×
{

(Un(e1 − xe0)2)(x) + δ−1
[
(Un(e1 − xe0)2)(x)

]1/2 [
(Un(e1 − xe0)4)(x)

]1/2}
.

(3.28)

Using the first four moments of the Bernstein polynomials [6, p. 304], we have

(Un(e1 − xe0)4)(x) =

n∑
k=0

pn,k(rn(x))

(
k

n
− x
)4

=

n∑
k=0

pn,k(rn(x))

[(
k

n
− rn(x)

)
+ (rn(x)− x)

]4
=

n∑
k=0

pn,k(rn(x))

(
k

n
− rn(x)

)4

+ 4(rn(x)− x)

n∑
k=0

pn,k(rn(x))

(
k

n
− rn(x)

)3

+ 6(rn(x)− x)2
n∑

k=0

pn,k(rn(x))

(
k

n
− rn(x)

)2

+ 4(rn(x)− x)3
n∑

k=0

pn,k(rn(x))

(
k

n
− rn(x)

)
+ (rn(x)− x)4

=
3

n2
(rn(x))2(1− rn(x))2 +

1

n3
[
rn(x)(1− rn(x))− 6(rn(x))2(1− rn(x))2

]
+4(rn(x)− x)

1

n2
(1− 2rn(x))rn(x)(1− rn(x)) + 6(rn(x)− x)2

1

n
rn(x)(1− rn(x))

+(rn(x)− x)4.

(3.29)
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a) If j = 2, then rn(x)(1 − rn(x)) ≤ 2x(1 − x), x ∈ [0, 1], due to (3.23). Hence, by (3.29) and
(3.24),

(Un(e1 − xe0)4)(x)

≤ 12

n2
x2(1− x)2 +

2

n2
x(1− x)(1 + 6rn(x)(1− rn(x))

+
8

n2
x(1− x)(x− rn(x))(1 + 2rn(x)) +

12

n
x(1− x)(x− rn(x))2 + (x− rn(x))4

≤ 3

n2
x(1− x) +

2

n2

(
1 +

3

2

)
x(1− x)

+
24

n2
x(1− x) +

12

n
x(1− x)

2

n

1

4
+

4

n2
x(1− x)

1

4

=
39

n2
x(1− x).(3.30)

Then (3.28), (3.22) and (3.30) imply that∣∣∣ n((Unf)(x)− f(x)) + f ′(x)n(Un(xe0 − e1))(x)− 1

2
f ′′(x)n(Un(e1 − xe0)2)(x)

∣∣∣
≤ω(f ′′; δ)

{
4x(1− x) + δ−1

2
√

39√
n
x(1− x)

}
.

Choosing δ = 1√
n

, and taking into account that (Un(xe0 − e1))(x) = x − rn(x) and (Un(e1 −
xe0)2)(x) = 2x(x− rn(x)), we obtain the desired estimate.

Furthermore, in view of [8, p. 87, Lemma 1, d)], we have 0 ≤ x − rn(x) ≤ 2
n (1 − x) ≤ 2

n ,
x ∈ [0, 1], thus 0 ≤ lim inf

n→∞
n(x− rn(x)) ≤ lim sup

n→∞
n(x− rn(x)) ≤ 2.

b) If j ≥ 3, then (3.29), (3.23), (3.25) and (3.26) imply that

(Un(e1 − xe0)4)(x)

≤ 3

n2
j2x2(1− x)2 +

1

n3
jx(1− x)(1 + 6rn(x)(1− rn(x))

+
4

n2
jx(1− x)(x− rn(x))(1 + 2rn(x)) +

6

n
jx(1− x)(x− rn(x))2 + (x− rn(x))4

≤ 3j2

4n2
x(1− x) +

5j

2n3
x(1− x)

+
12j

n2
x(1− x) +

3j

8n
(j − 1)2x(1− x) +

j

√
1

64n2
j2(j − 1)4(j − 1)2

1

4
x(1− x)

≤ 1
j
√
n2
x(1− x)

{
3

4
j2 +

119

8
j +

1

4
(j − 1)2

j

√
1

64
j2(j − 1)4

}
=
C1(j)

j
√
n2

x(1− x).(3.31)

Using (3.28), (3.22) and (3.31), we get∣∣∣ j
√
n((Unf)(x)− f(x)) + f ′(x) j

√
n(Un(xe0 − e1))(x)− 1

2
f ′′(x)) j

√
n(Un(e1 − xe0)2)(x)

∣∣∣
≤ω(f ′′; δ)

{
C(j)x(1− x) + δ−1

√
C(j)
2j
√
n

√
C1(j)x(1− x)

}
.

Choosing δ = 1
2j
√
n

, we obtain the desired estimate.
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Finally, by (3.25) and (3.22), we get

0 ≤ lim inf
n→∞

j
√
n(Un(xe0 − e1))(x) ≤ lim sup

n→∞
j
√
n(Un(xe0 − e1))(x) ≤ j

√
1

8
j(j − 1)2

and
0 ≤ lim inf

n→∞
j
√
n(Un(xe0 − e1)2)(x) ≤ lim sup

n→∞
j
√
n(Un(xe0 − e1)2)(x) ≤ 1

4
C(j)

which completes the proof of the theorem. �
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ABSTRACT. The purpose is to provide a generalization of Carleson’s Theorem on interpolating sequences when
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1. INTRODUCTION

Let us recall a known result that it has been shown that a sequence Γ = (ak)k∈N is interpo-
lated by a function in B∞ϕc(Dn), the set of holomorphic functions f on the complex unit ball Dn
such that ϕf is bounded, where ϕ is strictly positive continuous function on [0, 1) satisfying a
few meaningful assumptions and the power c is a strictly positive constant [3]. Precisely, it has
been shown the following theorem.

Theorem 1.1 ([3]). Let Γ = (ak)k∈N be a sequence in Dn and
∏
j∈N\{k}|ψaj (ak)| ≥ ϕ(|ak|) for

all k ∈ N. Then Γ is interpolated by a function in B∞ϕc(Dn). Furthermore, an upper bound of the
interpolation constant is given explicitly and it is independent of n and ϕ.

|ψaj (ak)| is the pseudohyperbolic distance between aj and ak such that ψaj (·) is the Dn-
valued Möbius map on Dn. Apropos of the proof of Theorem 1.1, concisely the author sets up
an interpolating function belonging in B∞ϕc(Dn) given in terms of a series of functions.

The goal of the present article is to show that Theorem 1.1 remains true when we swap Dn
by a unit Hilbert ball, so we give a positive response on a question raised in Remark 3.1 in
[3]. Therefore, let BH = {x ∈ H : ‖x‖H < 1} be the open unit ball in H = (H,〈·, ·〉H ; ‖ · ‖H),
an infinite dimensional complex Hilbert space endowed with the inner product 〈·, ·〉H and the
norm ‖·‖H . E.g.,H = L2(X,µ), the space of square-integrable measurable functions onX with

respect to the measure µ such that 〈f, g〉H =
∫
X
f(x)g(x)dµ(x) and ‖f‖H =

(∫
X
|f(x)|2dµ(x)

) 1
2 .

Instead to use a holomorphic function, we employ a complex-valued analytic function on
BH , i.e., a Fréchet differentiable function at all points in BH .
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2. PRELIMINARIES AND STATEMENT OF THE MAIN THEOREM

LetA(BH) be the space of analytic functions on BH , φ be a strictly positive continuous func-
tion on [0, 1), where its inverse is logarithmically convex. LetL∞φ (BH) =

(
L∞φ (BH), ‖ · ‖∞,φ

)
be

the space of complex-valued measurable functions f on BH such that φ(‖x‖H).f(x) is bounded
for all x ∈ BH and ||f ||∞,φ = supx∈BH φ(||x||H)|f(x)| <∞.

The weighted Bergman space of infinite order on BH is defined by

B∞φ (BH) =
{
f complex measurable functions on BH : f ∈ A(BH) ∩ L∞φ (BH)

}
.

The spaceB∞φ (BH) is endowed with the induced norm ‖·‖∞,φ. We suppose that the continuous
function φ is not identically equal to one which implies thatB∞φ (BH) contains strictlyH∞(BH),
the Hardy space of order infinity on BH . We recall that interpolating a sequence by a function
in H∞(BH) has been conducted in [8].

Let (l∞φ , || · ||l∞φ ) be the weighted space of bounded sequences with respect to the sequence
(xk)k∈N in BH and which is defined by

l∞φ =
{
v = (vk)k∈N ∈ C such that (φ(‖xk‖H)|vk|)k∈N ∈ l

∞}
such that ‖v‖l∞φ = supk∈N (φ(‖xk‖H)|vk|) . In the sequel, we need the following definition of an
interpolation sequence.

Definition 2.1. Let c be a positive constant, we say that Γ = (xk)k∈N is an interpolation sequence
for B∞φc(BH) if for every complex-valued sequence v = (vk)k∈N ∈ l∞φc−4 , there is f ∈ B∞φc(BH) such
that f(ak) = vk. The associated interpolation constant is the smaller constant M such that ||f ||∞,φ ≤
M ||v||l∞

φc−4
.

The pseudohyperbolic distance between two points x, y belonging to BH is defined by ‖Φy(x)‖H
such that Φy(x) is the Möbius transformation on BH defined by Φy(x) = (syQy + Py)my(x)

such that my is the BH -valued analytic map on BH and defined as my(x) = y−x
1−〈y,x〉H , Py(x) =

〈y,x〉H
‖y‖2H

y, Qy(x) = x− Py(x), and sy =
√

1− ‖y‖2H . It is known (see Page 99 in [5]) that

(2.1) ‖Φy(x)‖2H = 1− (1− ‖x‖2H)(1− ‖y‖2H)

|1− 〈x, y〉H |2
·

Our main result states

Theorem 2.2. Let Γ = (xk)k∈N be a sequence in BH such that
∏
j∈N\{k} ‖Φxj (xk)‖H ≥ φ(‖xk‖H)

for all k ∈ N such that φ be a strictly positive continuous function on [0, 1) such that its inverse is
logarithmically convex. Then Γ is interpolated by a function belonging toB∞φc(BH) and an upper bound
of the associated interpolation constant is provided explicitly and does not rely on the weight function φ.

As we observe that the announcement of the main result is almost the same as the one stated
in Theorem 1.1, where Dn is substituted by Bn and the complex modulus is substituted by ‖·‖H .
The novelty of the proof of Theorem 2.2 is that we use the pseudohyperbolic distance between
two points in BH and essentially Equality (2.1).

In the following section, we furnish the proof of Theorem 2.2 in two parts and we employ
the techniques used in [2, 3, 6, 7]. The first part is on building an interpolation function, see
Subsection 3.1, and the second one focuses on the interpolation constant, see Subsection 3.2.
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3. PROOF OF THE MAIN THEOREM

3.1. On an appropriate interpolating function. Let us consider the following series of func-
tions on BH

(3.2) G(x) =

∞∑
k=1

vkGk(x) for x ∈ BH ,

where (vk)k∈N ∈ l∞φc−4 such that each Gk is an analytic function on BH defined as

Gk(x) =

(
1− ‖xk‖2H

1− 〈xk, x〉H

)4

W(xk, x)V(xk, x)
∏

j∈N\{k}

〈Φxj (xk),Φxj (x)〉H
‖Φxj (xk)‖2H

,

where x ∈ BH , (xk)k∈N is a sequence in BH ,W(xk, ·) and V(xk, ·) are two analytic functions on
BH . Precisely,

W(xk, x) = exp

[
−
∑
m∈N

(f(x)− f(xk))
(1− ‖xm‖2H)(1− ‖xk‖2H)

1− |〈xm, xk〉H |2

]

with f(x) = 1+〈xm,x〉H
1−〈xm,x〉H which is well defined due the fact by using Cauchy-Schwarz inequality,

we have 1−〈xm, x〉H > 0 and V(xk, x) = exp(∂u(ψ̃(xk)).(ψ̃(x)−ψ̃(xk))),where ∂u(ψ̃(xk)).(ψ̃(x)−
ψ̃(xk)) is the inner product in Cn between ∂u(ψ̃(xk)) and ψ̃(x)− ψ̃(xk) where u is a real-valued
convex function on Cn and ψ̃ is a Cn-valued surjective map on BH . Consequently, from the
definitions ofW and V , we have Gk(xk) = 1 and for j 6= k we have Gk(xj) = 0 this due to the
fact that Φxj (xj) = 0, see (2.1). Whence, the sequence (ak)k∈N is interpolated by G and in the
next subsection, we prove that G ∈ B∞φc(BH) and provide explicitly an upper bound associated
to the interpolation constant.

3.2. On the interpolation constant. By using the hypothesis of Theorem 2.2, that is, for each
k ∈ N,

∏
j∈N\{k} ‖Φxj (xk)‖H is bigger than φ(‖xk‖H), we have

(3.3) |Gk(x)| ≤
(

1− ‖xk‖2H
1− 〈xk, x〉H

)4

|W(xk, x)||V(xk, x)|φ−2(‖xk‖H).

Let us look an upper bound for |W(xk, x)|. So, since that we work in a complex Hilbert space,
we have <f(x) = 1−|〈xm,x〉H |2

|1−〈xm,x〉H |2 . Whence, we have

|W(xk, x)| = exp

[
−
∑
m∈N

1− |〈xm, x〉H |2

|1− 〈xm, x〉H〉2
(1− ‖xm‖2H)(1− ‖xk‖2H)

1− |〈xm, xk〉H |2

]

× exp

[∑
m∈N

(1− ‖xm‖2H)(1− ‖xk‖2H)

|1− 〈xm, xk〉H |2

]
.(3.4)

Let us show that the terms exp
[∑

m∈N
(1−‖xm‖2H)(1−‖xk‖2H)
|1−〈xm,xk〉H |2

]
is upper bounded by exp(1)φ−2(‖xk‖H).

For x > 0, we have 1 − x ≤ exp(−x), thus by employing, successively, this inequality with
ym,k =

(1−‖xm‖2H)(1−‖xk‖2H)
|1−〈xm,xk〉H |2 > 0, the square of the pseudohyperbolic distance equality (2.1), and
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the assumption of Theorem 2.2, we obtain

exp

[
−
∑
m∈N

ym,k

]
=
∏
m∈N

exp(−ym,k)

= exp(−1)
∏

m∈N\{k}

exp(−ym,k)

≥ exp(−1)
∏

m∈N\{k}

‖Φxm(xk)‖2H ≥ exp(−1)φ2(‖xk‖H).

Hence, Equality (3.4) implies

|W(xk, x)| ≤ exp(1)

φ2(‖xk‖H)
exp

[
−
∑
m∈N

Am,k(x)

]
(3.5)

such that Am,k(x) = 1−|〈xm,x〉H |2
|1−〈xm,x〉H |2

(1−‖xm‖2H)(1−‖xk‖2H)
1−|〈xm,xk〉H |2 ·

Let us reorder the sequence (xk)k∈N, for obtaining an increasing sequence (‖xk‖H)k∈N, then
by using the fact that 1−|〈xm,x〉H |2

1−|〈xm,xk〉H |2 ≥
1−‖xm‖2H

8(1−|〈xk,x〉H |2) whenever ‖xm‖H ≥ ‖xk‖H , for the proof
see Lemmas 3.8 and 3.9 in [8], and Inequality (3.5) becomes

|W(xk, x)| ≤ exp(1)

φ2(‖xk‖H)
exp

[
−XTk

8

]
(3.6)

such that X =
1−‖xk‖2H

1−|〈xk,x〉H |2 and Tk =
∑
m≥k

(
1−‖xm‖2H
|1−〈xm,x〉H |

)2
.

Let bm(x) =
(

1−‖xm‖2H
|1−〈xm,x〉H |

)2
, then thanks to the triangle inequality, we have bk(x) ≤ 4X2,

and we observe that the function gX(τ) = X2 exp
(
−Xτ

8

)
for τ > 0, is at most equal h(τ) =

min
(

1, 256
exp(2)τ2

)
. Accordingly, Inequality (3.6) becomes

bk(x) |W(xk, x)| ≤ 4 exp(1)X2

φ2(‖xk‖H)
exp

(
−XTk

8

)
≤ 4 exp(1)

φ2(‖xk‖H)
h (Tk) .(3.7)

Now, from the definition of V and the use the properties of the convex function u, we have
|V(xk, x)| ≤ exp(u(ψ̃(x))−u(ψ̃(xk))). Furthermore, since that the inverse of φ is logarithmically
convex, let us choose u(ψ̃(x)) = −c log(φ(‖x‖H)) and we have

|V(xk, x)| ≤ φc(‖xk‖H)φ−c(‖x‖H).(3.8)

We recall that Gk satisfies

|Gk(x)| ≤
(

1− ‖xk‖2H
1− 〈xk, x〉H

)4

|W(xk, x)||V(xk, x)|φ−2(‖xk‖H).(3.9)

Whence, by using Inequalities (3.7)-(3.9) we obtain

φc(‖x‖H)φ4−c(‖xk‖H)|Gk(x)| ≤ 4 exp(1)bk(x)h (Tk) .(3.10)

The function h(τ) decreases on [Tk+1,Tk], then by using Inequality (3.10), we have

φc(‖x‖H)φ4−c(‖xk‖H)|Gk(x)| ≤ 4 exp(1)

∫ Tk

Tk+1

h(τ)dτ.(3.11)



106 Mohammed El Aïdi

Therefore, by using the definition of h(τ) and Inequality (3.11), we have∑
k∈N

φc(‖x‖H)φ4−c(‖xk‖H)|Gk(x)| ≤ 4 exp(1)
∑
k∈N

∫ Tk

Tk+1

h(τ)dτ

≤ 4 exp(1)

∫ ∞
0

h(τ)dτ

= 47.0886.(3.12)

We recall that G(x) =
∑∞
k=1 vkGk(x), then from (3.12), we have

|G(x)| ≤
∞∑
k=1

|vk||Gk(x)| ≤ ‖v‖l∞
φc−4

∞∑
k=1

φ4−c(|xk|)|Gk(x)|

≤ 47.0886‖v‖l∞
φc−4

φ−c(‖x‖H).

Thus, ‖G‖∞,φ = supx∈BH φ
c(‖x‖H)|G(x)| ≤ 47.0886‖v‖l∞

φc−4
< ∞, i.e., G ∈ B∞φc(BH), conse-

quently the sequence Γ is interpolated by the function G, furthermore an upper bound of the
interpolation constant is equal to 47.0886. The proof of Theorem 2.2 is complete.

On an extension
We are asking whether it possible to state an analogue result of Theorem 2.2, for a proper
subspace of a suitable weighted Bergman space of infinite order on BH and containing a proper
subspace of H∞(BH). E.g., interpolating sequences for a proper space of H∞(D) has been
conducted by Dyakonov [1]. Also, we are asking whether our result remains true for a function
belonging to a Bloch-type space on BH , see, e.g., [9].
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Principal eigenvalues of elliptic problems with singular
potential and bounded weight function
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ABSTRACT. Let Ω be a bounded domain in Rn with C0,1 boundary, and let dΩ : Ω → R be the distance function
dΩ (x) := dist (x, ∂Ω) . Our aim in this paper is to study the existence and properties of principal eigenvalues of self-
adjoint elliptic operators with weight function and singular potential, whose model problem is −∆u + bu = λmu in
Ω, u = 0 on ∂Ω, u > 0 in Ω, where b : Ω → R is a nonnegative function such that d2

Ωb ∈ L
∞ (Ω) , m : Ω → R is a

nonidentically zero function in L∞ (Ω) that may change sign, and the solutions are understood in weak sense.

Keywords: Weighted principal eigenvalue problems, second order elliptic operators, singular potentials.
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1. INTRODUCTION

Let Ω be a bounded domain in Rn with C1,1 boundary if n > 1, let m be a real valued
function defined on Ω, let λ ∈ R, and let L be a second order elliptic linear operator on Ω.
We recall that λ is said a principal eigenvalue of the operator L with weight function m and
Dirichlet boundary condition, if there exists a solution u to the problem

(1.1)


Lu = λmu in Ω,

u = 0 on ∂Ω,

u ≥ 0 in Ω and u 6≡ 0 in Ω.

These problems have received a lot of attention in the literature, in part because they appear
naturally when one studies semilinear bifurcation problems via the implicit function theorem
(for details see e.g., [8], Chapter 5, Section 5.3). Let us recall some works related to problem
(1.1).

Manes and Micheletti in [15] studied the problem (with the solutions understood in weak
sense and belonging to H1

0 (Ω) ∩ C
(
Ω
)
)

(1.2)


−div (A∇u) = λmu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

in the case when m ∈ Lr (Ω) for some r > n
2 and A = (aij (x)) is a symmetric uniformly

elliptic n × n whose coefficients belong to C0,1
(
Ω
)
. They proved, by variational methods, the

following facts:
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a) If m ≥ 0, then problem (1.2) has a principal eigenvalue λ1 (m) , which is positive and
simple, and that it is the first positive eigenvalue of the problem

(1.3)

{
−div (A∇u) = λmu in Ω,

u = 0 on ∂Ω,

that is, if λ is any other eigenvalue λ of (1.3), then λ > λ1 (m) .
b) If m ≤ 0, then problem (1.2) has a principal eigenvalue λ−1 (m) , which is negative and

simple, and satisfies that λ < λ−1 (m) for any other eigenvalue λ of problem (1.3).
c) If m+ 6≡ 0 and m− 6≡ 0, then problem (1.2) has two principal eigenvalues λ1 (m) and
λ−1 (m), with λ1 (m) > 0 and λ−1 (m) < 0; both of them are simple eigenvalues, and
λ /∈ (λ−1 (m) , λ1 (m)) for any eigenvalue λ of problem (1.3).

They proved also a maximum principle with weight, which reads as: If h ∈ Lq (Ω) for some
q > n and 0 ≤ h 6≡ 0, and if either m+ 6≡ 0,m− 6≡ 0 and λ−1(m) < λ < λ1(m), or m ≥ 0 and
λ < λ1(m), or m ≤ 0 and λ > λ−1(m), then the problem

(1.4)

{
− div (A∇u) = λmu+ h in Ω,

u = 0 on ∂Ω

has a unique solution, and it is positive in Ω.
On the other hand, motivated by problems of genetic population dynamics, Brown and Lin

in [4] studied the existence and properties of principal eigenvalues for problem (1.2) in the case
of the Laplace operator with homogeneous Neumann boundary condition, Hess and Kato in
[13] investigated principal eigenvalue problems with weight for a general uniformly elliptic
second order linear operator

Lu := −
∑

1≤i,j≤n

aij (x)
∂2u

∂xi∂xj
+
∑

1≤i≤n

ai (x)
∂u

∂xi
+ a0 (x)u.

Indeed, they studied the problem

(1.5)


Lu = λmu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

where the weight m may change sign and belongs to Cγ
(
Ω
)

for some γ ∈ (0, 1) , and with the
solutions understood in classical sense (i.e., u ∈ C2 (Ω) ∩ C

(
Ω
)
). Under standard regularity

assumptions on the coefficients of L (among them that a0 ∈ Cγ
(
Ω
)

for some γ ∈ (0, 1)), they
proved, by using the Krein Rutman theorem, that if a0 ≥ 0 in Ω, and m+ 6≡ 0 (respectively
m− 6≡ 0), then problem (1.5) admits a unique positive (resp. negative) principal eigenvalue
λ1 (m) (resp λ−1 (m)) which is simple. They also showed that the solutions u of (1.5) belong to
C1
(
Ω
)

and satisfy, for some positive constants c1 and c2,

c1dΩ ≤ u ≤ c2dΩ in Ω.

They proved also the following maximum principle with weight: If a0 ≥ 0 in Ω, and if m+ 6≡ 0
(respectively m− 6≡ 0) and if 0 ≤ λ < λ1 (m) (resp. λ−1 (m) < λ ≤ 0) then, for any nonidenti-
cally zero h such that 0 ≤ h ∈ Cγ

(
Ω
)
, the problem

(1.6)
{Lu = λmu+ h in Ω,

u = 0 on ∂Ω
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has a unique (classical) solution u and it is positive in Ω.
Hess and Senn in [18] studied problem (1.5) with the Dirichlet replaced by the Neumann

boundary condition.
Lopez-Gomez in [14] addressed problem (1.5) in the case when a0 is not necessarily non-

negative and, by using arguments relying on the maximum principle, they stated sufficient
conditions for the existence and the nonexistence of principal eigenvalues.

Hernandez, Mancebo and Vega (see [10], Section 2), studied problem (1.5) in situations
where some coefficients of L and the weight m are allowed to have a certain kind of singu-
larity along ∂Ω. They assumed that:

1) Ω is a bounded domain in Rn with C3+γ boundary for some γ ∈ (0, 1),
2) A (x) = (ai,j (x)) is a symmetric n× n matrix, uniformly and strongly elliptic in Ω, and

for each i, j, aij ∈ C3 (Ω) ∩ C
(
Ω
)
,

3) ai ∈ C2 (Ω) and there exists a constant K and α ∈ (−1, 1) such that
∣∣∣∂aij∂xk

∣∣∣ + |ai| ≤

K (1 + dαΩ) and
∣∣∣ ∂2aij
∂xi∂xj

∣∣∣ +
∣∣∣ ∂ai∂xj

∣∣∣ ≤ Kdα−1
Ω for all x ∈ Ω and 1 ≤ i, j ≤ n; and their

assumptions on the functions a0 and m were:
4) a0 ∈ C1 (Ω) and, for all k = 1, 2, ..., n, d2−α

Ω

∣∣∣ ∂a0

∂xk

∣∣∣ ∈ L∞ (Ω) , with α as in 3),
5) m is strictly positive in Ω and satisfies the conditions in 4).

Under the hypothesis 1)-5), they proved (see [10, Theorem 2.6]), that there exists a unique real
eigenvalue λ with an associated eigenfunction u in the interior of the positive cone of C1

(
Ω
)

(i.e., such that u > 0 in Ω and ∂u
∂ν < 0 on ∂Ω, where ν denotes the unit outward normal to ∂Ω),

and that such a λ is a simple eigenvalue of problem (1.5).
Let us mention also that Berestycki, Varadhan an Nirenberg in [2] studied, in a generalized

sense, problem (1.5) in the case where each aij ∈ C (Ω) , a0 ∈ L∞ (Ω) , and ai ∈ L∞ (Ω) for i =
1, 2, ..., n. Additional results and more references concerning principal eigenvalues for elliptic
problems can be found in [6].

Principal eigenvalue problems for periodic parabolic operators with Dirichlet boundary con-
dition were studied by Beltramo and Hess in [1], and applications to semilinear periodic para-
bolic problems were given in [11]. A very good exposition of these results, including problems
with either Neumann or Robin boundary conditions and its nonlinear applications, as well as
additional references, can be found in the book [12].

Problems of the form

(1.7)


−∆u+ bu = λmu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

were studied in [9] in the case when m is a nonnegative and nonidentically zero function be-
longing to L∞ (Ω) , and b is a singular potential of the form b = av−α−1, where:

1’) 0 < α < 3,
2’) a ∈ L∞ (Ω) and there exists δ > 0 such that ess infAδ a > 0, ,withAδ := {x ∈ Ω : dΩ (x) ≤ δ} ,
3’) v ∈ Dα :=

{
v ∈ H1

0 (Ω) : ϑ−1
α v ∈ L∞ (Ω) and ess infΩ ϑ

−1
α v > 0

}
, where ϑα := dΩ if

0 < α < 1, ϑ1 := dΩ

(
log
(
ω
dΩ

)) 1
2

, where ω is an arbitrary constant greater than the

diameter of Ω, and ϑα := d
2

1+α

Ω if 1 < α < 3.

Under these assumptions, Lemmas 4.3 and 4.4 in [9] state the existence of a positive principal
eigenvalue for problem (1.7), and a maximum principle with weight.
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Our aim in this paper is to study principal eigenvalue problems with singular potential and
bounded weight function of the form

(1.8)


−div (A∇u) + bu = λmu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

where the solution u is understood in weak sense (see Definition 1.1 below), and Ω, A, b and m
satisfy the following assumptions:

H1) Ω is a bounded domain in Rn, with C1,1 boundary if n > 1.
H2) A : Ω→Mn (R) , with A = (aij (x)) uniformly elliptic (i.e., there exists a constant γ > 0

such that 〈A (x) ξ, ξ〉 ≥ γ |ξ|2 for any x ∈ Ω and ξ ∈ Rn) and such that aij ∈ C0,1
(
Ω
)
,

aij = aji for 1 ≤ i, j ≤ n.
H3) The potential b : Ω → R is nonnegative and bd2

Ω ∈ L∞ (Ω) , where dΩ : Ω → R denotes
the distance function given by

(1.9) dΩ (x) := dist (x, ∂Ω) .

H4) m ∈ L∞ (Ω) and m 6≡ 0 in Ω, i.e., |{x ∈ Ω : m (x) 6= 0}| > 0.

Observe that H3) allows b to be singular along ∂Ω and H4) allows m to change sign in Ω. The
notion of weak solution we use is the usual one, given by the following:

Definition 1.1. Let f : Ω→ R be such that fϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) , and let u : Ω→ R. We

say that u is a weak solution of the problem{
−div (A∇u) = f in Ω,

u = 0 on ∂Ω

if u ∈ H1
0 (Ω) and

∫
Ω
〈A∇u,∇ϕ〉 =

∫
Ω
fϕ for any ϕ ∈ H1

0 (Ω) .

The paper is organized as follows: In Section 2, we present some general facts need later. In
Section 3, following the approach of [13] we study, for each λ ∈ R and under the assumptions
H1)-H4), the principal eigenvalue problem without weight (i.e., with weight 1)

(1.10)


−div (A∇u) + bu = λmu+ µu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

We prove that, for each λ ∈ R, problem (1.10) has a unique principal eigenvalue µ = µm,b (λ) ,
which has the variational characterization

(1.11) µm,b (λ) := inf
w∈H1

0 (Ω)\{0}

∫
Ω
〈A∇w,∇w〉+

∫
Ω

(b− λm)w2∫
Ω
w2

.

We prove also that the eigenspace Vµm,b(λ) corresponding to µm,b (λ) is one dimensional, and
that if 0 6≡ u ∈ Vµm,b(λ) then u ∈ H1

0 (Ω) ∩ C1 (Ω) and either u ≡ 0 in Ω, or u > 0 in Ω, or
u < 0 in Ω. In addition, we show that µm,b is a concave function which satisfies µm,b (0) > 0,
limλ→∞ µm,b (λ) = −∞ if m+ 6≡ 0, and limλ→−∞ µm,b (λ) = −∞ if m− 6≡ 0. We show also
that if m ≥ 0 in Ω then µm,b (λ) > 0 for any λ ≤ 0, and that if m ≤ 0 in Ω then µm,b (λ) >
0 for any λ ≥ 0. From these facts, it follows that if m changes sign in Ω then the equation
µm,b (λ) = 0 has exactly two roots, λ = λ−1 (m, b) < 0 and λ = λ1 (m, b) > 0, whereas if
m ≥ 0 (respectively m ≤ 0) the same equation has a unique solution λ = λ1 (m, b) > 0 (resp.
λ = λ−1 (m, b) < 0). From these facts, and since the principal eigenvalues of problem (1.8)
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are exactly the roots of the equation µm,b (λ) = 0, we state, in Section 4 (see Theorem 4.1) the
corresponding results for the principal eigenvalues of (1.8). A maximum principle with weight
is given in Theorem 4.2, the variational formula for the principal eigenvalues of problem (1.8)
is given in Theorem 4.3. In Theorem 4.4 we prove that the eigenfunctions corresponding to
these eigenvalues belong to H1

0 (Ω) ∩ C1 (Ω) ∩ C
(
Ω
)

and we give lower and upper estimates
for them (in terms of powers of dΩ), and in Theorem 4.5 we study the continuity of the maps
(m, b) → λ1 (m, b) and (m, b) → Φm,b, where Φm,b is the positive eigenfunction associated to
λ1 (m, b) and normalized by ‖Φm,b‖L2(Ω) = 1.

2. PRELIMINARIES

For 1 ≤ p ≤ ∞, we will write p′ for the Hölder conjugate exponent defined by 1
p + 1

p′ = 1

(with the convention that 1
∞ = 0); and p∗ will denote the Sobolev critical exponent defined by

1
p∗ = 1

p −
1
n if p < n and by p∗ :=∞ otherwise.

For a measurable function v : Ω → R such that vϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) , we will

write Sv to denote the functional Sv : H1
0 (Ω) → R defined by Sv (ϕ) :=

∫
Ω
vϕ; and we will

say v ∈
(
H1

0 (Ω)
)′ to mean that Sv ∈

(
H1

0 (Ω)
)′ and, in this case, if no confusion arises, we will

write sometimes v instead of Sv. We will denote by dΩ the distance to the boundary function
dΩ : Ω→ R defined by

dΩ (x) = dist (x, ∂Ω) .

From now on, L0 will denote the operator L0 : H1
0 (Ω) →

(
H1

0 (Ω)
)′ defined by L0u :=

−div (A∇u) and, for ζ ∈
(
H1

0 (Ω)
)′
, L−1

0 (ζ) will denote the unique weak solution u ∈ H1
0 (Ω)

(given by the Riesz theorem) to the problem L0u = ζ in Ω, u = 0 on ∂Ω.

Remark 2.1. Let us recall the following well known facts:
i) (Poincaré’s inequality, see e.g., [16], Proposition 1.9.6) If n > 2 then there exists a positive

constant c such that ‖ϕ‖L2∗ (Ω) ≤ c ‖∇ϕ‖L2(Ω) for all ϕ ∈ H1
0 (Ω) and, if n = 2 then for

each q ∈ [1,∞) there exists a positive constant cq such that ‖ϕ‖Lq(Ω) ≤ cq ‖∇ϕ‖L2(Ω) for all
ϕ ∈ H1

0 (Ω) .

ii) (Hardy’s inequality, see e.g., [3], p. 313) There exists a positive constant c such that
∥∥∥ ϕ
dΩ

∥∥∥
L2(Ω)

≤

c ‖∇ϕ‖L2(Ω) for all ϕ ∈ H1
0 (Ω) .

iii) (weak maximum principle, see e.g., [8], Theorem 1.3.7) If g : Ω→ R is nonnegative and belongs
to
(
H1

0 (Ω)
)′
, then L−1

0 g ≥ 0.

iv) (weak comparison principle) If g : Ω → R and h : Ω → R belong to
(
H1

0 (Ω)
)′ and g ≤ h in

Ω, then L−1
0 g ≤ L−1

0 h.

Remark 2.2. Let v : Ω → R. From the Poincaré’s and Hardy’s inequalities of Remark 2.1, it follows
immediately that if either v ∈ L(2∗)′ (Ω) or dΩv ∈ L2 (Ω) , then:

i) The functional Sv : H1
0 (Ω) → R is well defined, belongs to

(
H1

0 (Ω)
)′
, and there exists a

positive constant c, independent of v, such that: If v ∈ L(2∗)′ (Ω) then ‖Sv‖ ≤ c ‖v‖(2∗)′ , and
if dΩv ∈ L2 (Ω) then ‖Sv‖ ≤ c ‖dΩv‖2 .

ii) The problem L0z = v in Ω, z = 0 on ∂Ω, has a unique weak solution z ∈ H1
0 (Ω) , and

it satisfies, for some positive constant c independent of v, ‖z‖H1
0 (Ω) ≤ c ‖v‖(2∗)′ when v ∈

L(2∗)′ (Ω) , and ‖z‖H1
0 (Ω) ≤ c ‖dΩv‖2 when dΩv ∈ L2 (Ω) .
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Remark 2.3. If v : Ω→ R be a measurable function such that vϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) and if

Sv ∈
(
H1

0 (Ω)
)′
, then, by the Riesz theorem, the problem

L0z = v in Ω, z = 0 on ∂Ω

has a unique weak solution z ∈ H1
0 (Ω) , and it satisfies ‖z‖H1

0 (Ω) = ‖Sv‖(H1
0 (Ω))

′ .

If g and h are real functions defined a.e. in Ω, we will write sometimes f ≈ g to mean that there
exist positive constants c1 and c2 such that c1f ≤ g ≤ c2f a.e. in Ω. We will write also f / g to
mean that there exists a positive constant c such that f ≤ cg a.e. in Ω.
For δ > 0, we set Ωδ := {x ∈ Ω : dΩ (x) > δ} .

Lemma 2.1. If w and ϕ belong to H1
0 (Ω) , then d−2

Ω wϕ ∈ L1 (Ω) and there exists a positive constant,
independent of w and ϕ, such that

(2.12)
∥∥d−2

Ω wϕ
∥∥

1
≤ c ‖w‖H1

0 (Ω) ‖ϕ‖H1
0 (Ω) .

Proof. The lemma follows immediately from the Hardy’s inequality. �

Lemma 2.2. Let b : Ω → R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , and let h : Ω → R

be such that h ∈
(
H1

0 (Ω)
)′
. Then:

i) There exists a unique weak solution u ∈ H1
0 (Ω) to the problem

(2.13)
{L0u+ bu = h in Ω,

u = 0 on ∂Ω.

ii) If h ≥ 0, and if u is the weak solution of (2.13), then u ≥ 0 a.e in Ω.
iii) If h ≥ 0 and h 6≡ 0, and if u is the weak solution of (2.13), then, for any δ > 0 such that

Ωδ 6= ∅, there exists a positive constant c such that u ≥ cdΩδ a.e in Ωδ. In particular, u > 0
a.e. in Ω.

Proof. Let B : H1
0 (Ω)×H1

0 (Ω)→ R be defined by

B (ϕ,ψ) :=

∫
Ω

(〈A∇ϕ,∇ψ〉+ bϕψ) .

By Lemma 2.1, B is a continuous bilinear form on H1
0 (Ω) ×H1

0 (Ω) and, since b ≥ 0, B is also
coercive. Then i) follows from the Lax Milgram theorem. Suppose now h ≥ 0. By taking −u−
as a test function in (2.13), we get∫

Ω

(〈
A∇u−,∇u−

〉
+ b

(
u−
)2)

=

∫
Ω

(〈
A∇u,−∇u−

〉
+ bu

(
−u−

))
= −

∫
Ω

hu− ≤ 0,

which gives u− = 0 a.e. in Ω. Thus ii) holds.
To prove iii), observe that if h ≥ 0 a.e in Ω and h 6≡ 0 in Ω, then, for δ positive and small

enough, there exist ε > 0 and a measurable set E ⊂ Ωδ such that |E| > 0 and h ≥ εχE in Ωδ.
For such a δ, let Ω′ be a regular domain such that Ωδ ⊂⊂ Ω′ ⊂⊂ Ω, and consider the problem{

−L0z + bz = εχE in Ω′,

z = 0 on ∂Ω′.

Since 0 ≤ b|Ω′ ∈ L∞ (Ω′) and εχE ∈ L∞ (Ω′) , by the inner elliptic estimates in ([7], Theorem
9.11), we have z ∈W 2,q (Ω′)∩W 1,q

0 (Ω′) for any q ∈ [1,∞) and so z ∈ C1
(
Ω′
)
. By the maximum

principle (as stated e.g., in [7, Theorem 9.1]) we have z (x) > 0 for any x ∈ Ω′, and by the Hopf’s
boundary lemma (as stated e.g., in [17, Theorem 1.1]), we have also ∂z

∂ν < 0 on ∂Ω′ and from
these two facts it follows that z belongs to the interior of the positive cone of C1

(
Ω′
)
, and so
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there exists a constant c > 0 (which may depend on Ω′) such that z ≥ cdΩ′ in Ω′. Therefore,
since dΩ′ ≥ dΩδ in Ωδ, we have z ≥ cdΩδ in Ωδ. Now,{

L0 (u− z) + b (u− z) = h− εχE ≥ 0 in D′ (Ω′) ,

u− z ≥ 0 on ∂Ω′,

with the inequality on ∂Ω′ understood in the sense of the trace. Thus, by the maximum princi-
ple (as stated, e.g., in [7, Theorem 9.1]), u ≥ z in Ω′ and then u ≥ cdΩδ a.e. in Ωδ. Thus iii) holds
for δ positive and small enough, and so iii) holds also for any δ > 0 such that Ωδ 6= ∅ (because
if 0 < δ1 < δ2 and Ωδ2 6= ∅ then dΩ1 ≤ dΩ2 in Ωδ2 ). �

Remark 2.4. Let b : Ω→ R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , and let (L0 + b)

−1
:

L2 (Ω)→ H1
0 (Ω) be the solution operator of problem (2.13), i.e., the operator defined by (L0 + b)

−1
h =

u, where u is the weak solution of (2.13). Then (L0 + b)
−1

: L2 (Ω) → H1
0 (Ω) is continuous and

(L0 + b)
−1

: L2 (Ω) → L2 (Ω) is a compact operator. Indeed, for h ∈ L2 (Ω) and u = (L0 + b)
−1
h,

we have
c ‖u‖2H1

0 (Ω) ≤
∫

Ω

〈A∇u,∇u〉+

∫
Ω

bu2 =

∫
Ω

hu ≤ cP ‖h‖2 ‖u‖H1
0 (Ω) ,

where c is the ellipticity constant of A and cP is the constant of the Poincaré’s inequality, and so, if
u 6≡ 0, then ‖u‖H1

0 (Ω) ≤ c−1cP ‖h‖2 . Since clearly this inequality holds also when u ≡ 0, it follows

that (L0 + b)
−1

: L2 (Ω) → H1
0 (Ω) is continuous. Then, since H1

0 (Ω) has compact inclusion in
L2 (Ω) , we conclude that (L0 + b)

−1
: L2 (Ω)→ L2 (Ω) is a compact operator.

3. A ONE PARAMETER EIGENVALUE PROBLEM WITH SINGULAR POTENTIAL

From now on, b and m will denote, respectively, a nonnegative function b : Ω → R such that
d2

Ωb ∈ L∞ (Ω) , and a nonidentically zero function m ∈ L∞ (Ω) , which (except if otherwise is
explicitly stated) may change sign.

Definition 3.2. For λ ∈ R, let

(3.14) µm,b (λ) := inf
w∈H1

0 (Ω)\{0}

∫
Ω
〈A∇w,∇w〉+

∫
Ω

(b− λm)w2∫
Ω
w2

.

Notice that, by the Hardy’s inequality,

(3.15) 0 ≤
∫

Ω

bw2 =

∫
Ω

d2
Ωb
w2

d2
Ω

≤
∥∥d2

Ωb
∥∥
∞ ‖w‖

2
H1

0 (Ω) ≤ c ‖w‖
2
H1

0 (Ω)

for any w ∈ H1
0 (Ω) , where c is a positive constant independent of w. Also,∫

Ω
〈A∇w,∇w〉+

∫
Ω

(b− λm)w2∫
Ω
w2

≥
∫

Ω
〈A∇w,∇w〉+

∫
Ω
bw2∫

Ω
w2

− ‖m‖∞ |λ| ≥ −‖m‖∞ |λ| ,

and then µm,b (λ) is well defined and finite for any λ ∈ R.

Proposition 3.1. For any λ ∈ R, we have:
i) If µ ∈ R and if u is a weak solution of the problem

(3.16)

{
−div (A∇u) + bu = λmu+ µu in Ω,

u = 0 on ∂Ω



114 Tomas Godoy

then u ∈ C1 (Ω) and µm,b (λ) ≤ µ.
ii) The infimum in (3.14) is achieved at some nonnegative and nonidentically zero u ∈ H1

0 (Ω) .

Proof. To prove i), it is enough to see that: if u is a weak solution of (3.16), and if Ω′ is an
arbitrary regular domain such that Ω′ ⊂⊂ Ω, then u ∈ C1 (Ω′) . We consider first the case
n = 2. For Ω′ as above, let U0 be a regular domain such that Ω ⊃⊃ U0 ⊃⊃ Ω′. Since n = 2,
we have u ∈ H1

0 (Ω) ⊂ Lq (Ω) for any q ∈ [1,∞) , and so u ∈ Lq (U0) , λmu + µu ∈ Lq (U0)
for some q > 2. Also, b ∈ L∞ (U0) . Then, taking into account (3.16), and the inner elliptic
estimates in ([7], Theorem 9.11), we get u ∈ W 2,q (Ω′) ⊂ C1 (Ω′) . Suppose now n > 2, and
let {Ωj}j∈N∪{0} and {Uj}j∈N∪{0} be two sequences of regular domains such that Ω0 = Ω and
Ωj ⊃⊃ Uj ⊃⊃ Ωj+1 ⊃⊃ Ω′ for all j ∈ N ∪ {0} . For j ∈ N ∪ {0}, let qj be inductively defined by
q0 = 2, and by qj+1 = q∗j (with q∗j := ∞ if qj ≥ n). Let j0 = max

{
j ∈ N ∪ {0} : q∗j <∞

}
. Thus

qj0 < n and q∗j0 ≥ n. Let us show, inductively, that

(3.17) u ∈W 2,qj (Ωj+1) for j = 0, 1, ..., j0.

Since u ∈ L2 (Ω), we have u ∈ L2 (U0) , λmu + µu ∈ L2 (U0) . Also, b ∈ L∞ (U0) and thus,
by (3.16) and ([7], Theorem 9.11), u ∈ W 2,2 (Ω1) = W 2,q0 (Ω1) . Then (3.17) holds for j = 0.

Suppose now that (3.17) holds for some j ∈ {0, 1, ..., j0 − 1} . Then u ∈ Lq
∗
j (Uj+1) , λmu+µu ∈

Lq
∗
j (Uj+1) , and also b ∈ L∞ (Uj+1) , and so, again now from (3.16) and ([7], Theorem 9.11),

u ∈ W 2,q∗j (Ωj∗2) = W 2,qj+1 (Ωj∗2) , which completes the inductive proof of (3.17). Then u ∈
W 2,qj0 (Ωj0+1) and so, by using again now the above argument, u ∈ W 2,q∗j0 (Ωj0+2) . If q∗j0 > n

then W 2,q∗j0 (Ωj0+2) ⊂ C1 (Ωj0+2) ⊂ C1 (Ω′) and we are done. If q∗j0 = n then W 2,q∗j0 (Ωj0+2) ⊂
Lr (Ωj0+2) for any r ∈ [1,∞) .We take r > n to obtain, proceeding as above, u ∈W 2,r (Ωj0+3) ⊂
C1 (Ωj0+3) ⊂ C1 (Ω′) . Thus the first assertion of i) holds.

On the other hand, from (3.16),∫
Ω

(
〈A∇u,∇u〉+ (b− λm)u2

)
= µ

∫
Ω

u2

and so µ =
(∫

Ω
u2
)−1 ∫

Ω

(
〈A∇u,∇u〉+ (b− λm)u2

)
≥ µm,b (λ) , the last inequality by (3.14),

which completes the proof of i). To prove ii) consider a minimizing sequence {wj}j∈N for (3.14).
After normalizing it, and by replacing, if necessary, wj by |wj | we can assume that wj ≥ 0 and
‖wj‖2 = 1 for each j. From (3.14), we have

µm,b (λ) = lim
j→∞

(∫
Ω

〈A∇wj ,∇wj〉+

∫
Ω

(b− λm)w2
l

)
(3.18)

≥ lim inf
j→∞

∫
Ω

〈A∇wj ,∇wj〉 − |λ| ‖m‖∞(3.19)

and so, after pass to a further subsequence if necessary, we can assume that {wj}j∈N is bounded
in H1

0 (Ω) . Thus there exist u ∈ H1
0 (Ω) and a subsequence, still denoted by {wj}j∈N , such that

{∇wj}j∈N converges weakly in L2 (Ω,Rn) to ∇u and {wj}j∈N converges strongly in L2 (Ω) to
u. Thus ‖u‖2 = 1. After pass to a further subsequence if necessary, we can assume also that
{wj}j∈N converges to u a.e.in Ω and so, since each wj is nonnegative, we have u ≥ 0. Let k ∈ R
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such that b− λm+ k ≥ 0. From the equality in (3.18) and since ‖wj‖2 = 1, we have

µm,b (λ) + k = lim
j→∞

(∫
Ω

〈A∇wj ,∇wj〉+

∫
Ω

(b− λm+ k)w2
l

)
≥ lim inf

j→∞

∫
Ω

〈A∇wj ,∇wj〉+ lim inf
j→∞

∫
Ω

(b− λm+ k)w2
l

≥
∫

Ω

〈A∇u,∇u〉+

∫
Ω

(b− λm+ k)u2

=

∫
Ω

〈A∇u,∇u〉+

∫
Ω

(b− λm)u2 + k,

where in the last inequality it was used the Fatou’s Lemma and the fact that ‖〈A∇u,∇u〉‖2 ≤
lim infj→∞ ‖〈A∇wj ,∇wj〉‖2 . Then µm,b (λ) ≥

∫
Ω
〈A∇u,∇u〉 +

∫
Ω

(b− λm)u2. On the other
hand, from the definition of µm,b (λ) ,we get the opposite inequality. Then µm,b (λ) =

∫
Ω
〈A∇u,∇u〉+∫

Ω
(b− λm)u2 and so ii) holds. �

Proposition 3.2. For any λ ∈ R, we have:
i) If u is a minimizer of (3.14), then u is a weak solution of the problem

(3.20)

{
−div (A∇u) + bu = λmu+ µm,b (λ)u in Ω,

u = 0 on ∂Ω.

ii) For µ ∈ R, if u is a nonidentically zero weak solution of the problem

(3.21)

{
−div (A∇u) + bu = λmu+ µu in Ω,

u = 0 on ∂Ω

such that u ≥ 0 in Ω, then µ = µm,b (λ) and u is a minimizer of (3.14).

Proof. To prove i), consider a minimizer w of (3.14). Thus

(3.22) µm,b (λ) =

∫
Ω

(
〈A∇w,∇w〉+ (b− λm)w2

)∫
Ω
w2

.

Let ψ ∈ H1
0 (Ω) . Then there exists ε0 > 0 such that w + tψ ∈ H1

0 (Ω) \ {0} for any t ∈ (−ε0, ε0) .
Then, for such a t,

(3.23) µm,b (λ) ≤

∫
Ω

(
〈A∇ (w + tψ) ,∇ (w + tψ)〉+ (b− λm) (w + tψ)

2
)

∫
Ω

(w + tψ)
2 .

From (3.23), a computation using gives that, for t ∈ (0, ε0) ,

µm,b (λ)

(∫
Ω

wψ +
t

2

∫
Ω

ψ2

)
≤
∫

Ω

(
〈A∇w,∇ψ〉+

t

2
〈A∇ψ,∇ψ〉+ (b− λm)

(
wψ +

t

2
w2

))
,

and so, by taking limt→0+ we get µm,b (λ)
∫

Ω
wψ ≤

∫
Ω

(〈A∇w,∇ψ〉+ (b− λm)wψ) . By replac-
ing ψ by −ψ, the reversed inequality is obtained, and thus i) holds.

To prove ii), suppose that u ∈ H1
0 (Ω) is a nonidentically zero weak solution of (3.16) such

that u ≥ 0 in Ω. Let w ∈ C∞c (Ω) and let ε > 0. Then w2

u+ε ∈ H1
0 (Ω) . We take w2

u+ε as a test
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function in (3.16) to obtain∫
Ω

〈
A∇u, (u+ ε) 2w∇w − w2∇u

(u+ ε)
2

〉
+

∫
Ω

bw2 u

u+ ε

= λ

∫
Ω

mw2 u

u+ ε
+

∫
Ω

w2 µu

u+ ε
,

that is ∫
Ω

〈
A∇u, 2w∇w

u+ ε

〉
−
∫

Ω

〈
A∇u, w2∇u

(u+ ε)
2

〉
+

∫
Ω

bw2 u

u+ ε

= λ

∫
Ω

mw2 u

u+ ε
+

∫
Ω

w2 µu

u+ ε
,

i.e., ∫
Ω

2 〈Aw∇ ln (u+ ε) ,∇w〉 −
∫

Ω

〈Aw∇ ln (u+ ε) , w∇ ln (u+ ε)〉+

∫
Ω

bw2 u

u+ ε

= λ

∫
Ω

mw2 u

u+ ε
+

∫
Ω

w2 µu

u+ ε
,

that is

−
∫

Ω

〈A (w∇ ln (u+ ε)−∇w) , w∇ ln (u+ ε)−∇w〉+

∫
Ω

〈A∇w,∇w〉+

∫
Ω

bw2 u

u+ ε

= λ

∫
Ω

mw2 u

u+ ε
+ µ

∫
Ω

w2 u

u+ ε
,

and so

(3.24)
∫

Ω

w2 µu

u+ ε
≤
∫

Ω

〈A∇w,∇w〉+

∫
Ω

bw2 u

u+ ε
− λ

∫
Ω

mw2 u

u+ ε
.

From (3.24), by taking limε→0+ and using the Lebesgue’s dominated convergence theorem, we
get

(3.25) µ

∫
Ω

w2 ≤
∫

Ω

〈A∇w,∇w〉+

∫
Ω

bw2 − λ
∫

Ω

mw2.

Since this holds for any w ∈ C∞c (Ω) , and taking into account Lemma 2.1, a density argument
gives that (3.25) holds also for any w ∈ H1

0 (Ω) . Therefore,

(3.26) µ ≤
∫

Ω
〈A∇w,∇w〉+

∫
Ω
bw2 − λ

∫
Ω
mw2∫

Ω
w2

for any w ∈ H1
0 (Ω)\{0} . On the other hand, by taking w = u as a test function in (3.14), we get

µ =
(∫

Ω
u2
) ∫

Ω

(
〈A∇u,∇u〉+ bu2 − λmu2

)
. Thus, from this fact and (3.26), µ = µm,b (λ) . Then

ii) holds. �

Proposition 3.3. For any λ ∈ R, we have:

i) If u is a nonidentically zero weak solution of problem (3.20), then either u > 0 in Ω or u < 0 in
Ω.

ii) The space of the weak solutions u of (3.20) is one dimensional.



Principal eigenvalue problems with singular potential and bounded weight 117

Proof. To prove i) we follow, partly, [15] (see also [5, Theorem 1.13]). We proceed by the way of
contradiction. Suppose that u ∈ H1

0 (Ω) \ {0} is a weak solution of (3.20), and that u+ 6≡ 0 and
u− 6≡ 0. Let

α :=

∫
Ω

(
〈A∇u,∇u〉+ (b− λm)u2

)
, β :=

∫
Ω

u2,

α1 :=

∫
Ω

(〈
A∇u+,∇u+

〉
+ (b− λm)

(
u+
)2)

, β1 :=

∫
Ω

(
u+
)2
,

α2 :=

∫
Ω

(〈
A∇u−,∇u−

〉
+ (b− λm)

(
u−
)2)

, β2 :=

∫
Ω

(
u−
)2
.

Thus α = α1 + α2 and β = β1 + β2. Now,

µm,b (λ) =
α1 + α2

β1 + β2
,

and so, since u+ and u− belong to H1
0 (Ω) \ {0} ,

α1 + α2

β1 + β2
≤ α1

β1
and

α1 + α2

β1 + β2
≤ α2

β2
,

that is

α1β1 + α2β1 ≤ β1α1 + β2α1,(3.27)
α1β2 + α2β2 ≤ β1α2 + β2α2,

i.e., α1

β1
≥ α2

β2
and α1

β1
≤ α2

β2
. Thenα1

β1
= α2

β2
and so α1+α2

β1+β2
= α1

β1
= α2

β2
. Thus µm,b (λ) = α1

β1
= α2

β2
.

Therefore u+ and u− are nonnegative minimizers of (3.14) and then, by Proposition 3.1 ii), they
are nonnegative and nonidentically zero weak solutions of (3.20) and so, for q ∈ R such that
b− λm+ q ≥ 0 and µm,b (λ) + q > 0 we have, in weak sense,

(3.28)

{
−div

(
A∇u+

)
+ (b− λm+ q)u+ = (µm,b (λ) + q)u+ in Ω,

u+ = 0 on ∂Ω.

Thus, from Lemma 2.2 (used with b replaced by b−λm+q and with h replaced by (µm,b (λ) + q)u),
we get that, for any δ > 0 such that Ωδ 6= ∅, there exists a positive constant c such that
u+ ≥ cdΩδ in Ωδ. In particular, u+ > 0 in Ω, and so u− ≡ 0 in Ω, which contradicts our as-
sumptions. Then i) holds.

To prove ii), suppose that v and w are two linearly independent solutions of (3.20) and
let x0 ∈ Ω. Taking into account i) and Proposition 3.1, we can assume (by replacing, if
necessary, v and/or w by −v and/or −w respectively) that v (x0) > 0 and w (x0) > 0. Let
t0 = (v (x0))

−1
w (x0) and let z := t0v − w. Then t0 > 0 and z is a solution of (3.20) such

that z (x0) = 0. Thus, by i), z is identically zero on Ω, which contradicts the assumed linear
independence of v and w. �

Proposition 3.4. Let b : Ω→ R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , let m ∈ L∞ (Ω)

be a nonidentically zero function, and, for λ ∈ R, let µm,b (λ) be defined by (3.14). Then:
i) The map λ→ µm,b (λ) is concave and µm,b (0) > 0.

ii) Ifm+ 6≡ 0 then limλ→∞ µm,b (λ) = −∞; and there exists a unique λ > 0 such that µm,b (λ) =
0. If, in addition, m ≥ 0 in Ω, then µm,b (λ) > 0 for any λ ≤ 0.

iii) If m− 6≡ 0 then limλ→−∞ µm,b (λ) = −∞; and there exists a unique λ < 0 such that
µm,b (λ) = 0. If, in addition, m ≤ 0 in Ω, then µm,b (λ) > 0 for any λ ≥ 0.
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Proof. The first assertion of i) follows from the facts that µm,b (λ) is finite for any λ ∈ R, and that
λ→

(∫
Ω
w2
)−1 (∫

Ω
〈A∇w,∇w〉+

∫
Ω

(b− λm)w2
)

is an affine function for anyw ∈ H1
0 (Ω)\{0}.

Observe also that, from Proposition 3.1 ii), Proposition 3.2 i) and Proposition 3.3 i), all of them
used with λ = 0, the problem

(3.29)


−div (A∇u) + bu = µm (0)u in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

has a weak solution u. By taking u as a test function in (3.29), we get∫
Ω

〈A∇u,∇u〉+

∫
Ω

bu2 = µm (0)

∫
Ω

u2

which gives µm (0) > 0. Thus i) holds.
To see ii), suppose m+ 6≡ 0 and let w0 ∈ H1

0 (Ω) \ {0} such that
∫

Ω
mw2

0 > 0. By nor-
malizing w0, if necessary, we can assume that

∫
Ω
mw2

0 = 1. Then, for any λ ∈ R, µm,b (λ) ≤∫
Ω
〈A∇w0,∇w0〉+

∫
Ω
bw2

0−λ
∫

Ω
mw2

0 . From this fact, and since µm is concave and µm (0) > 0, it
follows that limλ→∞ µm,b (λ) = −∞; and that there exists a unique λ > 0 such that µm,b (λ) = 0.
On the other hand, if m ≥ 0 in Ω and λ ≤ 0, and if u is a positive solution of the problem

−div (A∇u) + bu = λmu+ µm,b (λ)u in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

then, by taking u as a test function, we get∫
Ω

(
〈A∇u,∇u〉+ bu2

)
= λ

∫
Ω

mu2 + µm,b (λ)

∫
Ω

u2

and so
∫

Ω
u2 > 0, which implies µm,b (λ) > 0. Thus ii) holds.

Finally, iii) follows from ii) by using that, by (3.14), µm,b (λ) = µ−m (−λ) . �

4. PRINCIPAL EIGENVALUES PROBLEMS WITH SINGULAR POTENTIAL AND BOUNDED WEIGHT

Definition 4.3. Let b : Ω → R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) and let m ∈

L∞ (Ω) \ {0} . We say that λ ∈ R is a principal eigenvalue of the operator L0 + b on Ω, with weight
function m and homogeneous Dirichlet boundary condition, if the problem

(4.30)

{
− div (A∇φ) + bφ = λmφ in Ω,

φ = 0 on ∂Ω

has a weak solution φ ∈ H1
0 (Ω) such that φ ≥ 0 a.e. in Ω and φ 6≡ 0 in Ω. In such a case, any

nonidentically zero solution of (4.30) will be called a principal eigenfunction associated to the principal
eigenvalue λ.

Theorem 4.1. Let b : Ω→ R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) and let m ∈ L∞ (Ω)

be such that m 6≡ 0. Then:
i) λ ∈ R is a principal eigenvalue for problem (4.30) if, and only if, µm,b (λ) = 0.

ii) If m+ 6≡ 0 (respectively if m− 6≡ 0) there exists a unique positive (resp. a unique negative)
principal eigenvalue for problem (4.30), which will be denoted by λ1 (m, b) (resp. by λ−1 (m)).

iii) If m ≥ 0 (respectively if m ≤ 0), then λ1 (m, b) (resp. λ−1 (m)) is the unique principal
eigenvalue for problem (4.30).
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iv) If λ ∈ R is a principal eigenvalue for problem (4.30), and if u is an associated eigengunction,
then u ∈ H1

0 (Ω) ∩ C1 (Ω) . Moreover, if u ∈ H1
0 (Ω) nonidentically zero then either u > 0 in

Ω or u < 0 in Ω.
v) The space of solutions of (4.30) is one dimensional.

Proof. The proposition follows directly from Propositions 3.1, 3.2, 3.3, and 3.4. �

The following form of the maximum principle for problems with singular potential and weight
function holds:

Theorem 4.2. Let b : Ω→ R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) and let m ∈ L∞ (Ω)

be a nonidentically zero function. For λ ∈ R, let µm,b (λ) be defined by (3.14) and let h : Ω → R be
such that h ∈

(
H1

0 (Ω)
)′
. Then:

i) If µm,b (λ) > 0, the problem

(4.31)

{
−div (A∇u) + bu = λmu+ h in Ω,

u = 0 on ∂Ω

has a unique weak solution.
ii) If µm,b (λ) > 0 and 0 6≡ h ≥ 0, then the solution u of (4.31) is positive a.e in Ω.

iii) If 0 6≡ h ≥ 0 and if (4.31) has a nonnegative solution, then µm,b (λ) > 0.
iv) If 0 6≡ h ≥ 0 and µm,b (λ) = 0, then (4.31) has no weak solutions.

Proof. To prove i), suppose µm,b (λ) > 0 and let k ∈ [0,∞) be such that b − λm + k ≥ 0. Let
T : L2 (Ω)→ L2 (Ω) be defined by T := (L0 + b− λm+ k)

−1
. Thus T is a continuous, compact,

linear and it is self-adjoint operator on L2 (Ω) . Notice that ρ is an eigenvalue of T if and only
if ρ = 1

k+µ with µ an eigenvalue of L0 + b + k − λm with (homogeneous Dirichlet boundary
condition). By Proposition 3.1 i), we have µ ≥ µm,b+k (λ) = µm,b (λ) + k > 0, and so ρ < 1

k .

Thus, by the Fredholm alternative theorem, 1
k I − T : L2 (Ω) → L2 (Ω) is bijective, and so the

problem 1
ku− Tu = 1

kTh has a unique weak solution u ∈ H1
0 (Ω) , that is, the problem

1

k
(L0 + b− λm+ k)u− u =

1

k
h in Ω,

u = 0 on ∂Ω

has a unique weak solution u. Then i) holds.
To see ii) observe that if µm,b (λ) > 0 and if u ∈ H1

0 (Ω) is a weak solution of{
−div (A∇u) + (b− λm)u = h in Ω,

u = 0 on ∂Ω

then, by taking −u− as a test function,

µm,b (λ)

∫
Ω

(
u−
)2 ≤ ∫

Ω

(〈
A∇u−,∇u−

〉
+ (b− λm)

(
u−
)2)

= −
∫

Ω

hu− ≤ 0

and so u− = 0. Thus u ≥ 0. In addition, since −div (A∇u) + (b− λm+ k)u = h + ku and
0 6≡ h+ ku ≥ 0, Lemma 2.2 gives u > 0 in Ω. Thus ii) holds.

To see iii) suppose that 0 6≡ h ≥ 0 and that u is a nonnegative solution of (4.31). Take k as in
the proof of i), to get {

− div (A∇u) + (b− λm+ k)u = h+ ku in Ω,

u = 0 on ∂Ω
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Then, by Lemma 2.2 iii), u > 0 a.e. in Ω. Now we can repeat, line by line, the first part of the
proof of Lemma 3.2 ii), replacing there, in each appearance, µu by h, to obtain, instead of (3.24),
that for any w ∈ C∞c (Ω) and ε > 0,∫

Ω

w2 h

u+ ε
≤
∫

Ω

〈A∇w,∇w〉+

∫
Ω

bw2 u

u+ ε
− λ

∫
Ω

mw2 u

u+ ε

and so, by taking lim infε→0+

(4.32) 0 ≤
∫

Ω

〈A∇w,∇w〉+ lim inf
ε→0+

(∫
Ω

bw2 u

u+ ε
− λ

∫
Ω

mw2 u

u+ ε

)
.

Notice that u > 0 a.e. in Ω, limε→0+ bw2 u
u+ε = bw2 a.e. in Ω, and limε→0+ mw2 u

u+ε = mw2 a.e.

in Ω. Also, bw2 u
u+ε ≤ bw2 and mw2 u

u+ε ≤ mw2. Observe also that, by Lemma 2.1 and that,
from our assumption on b, bw2 ∈ L1 (Ω) . Also, clearly mw2 ∈ L1 (Ω) . Thus, from (4.32) and
the Lebesgue’s dominated convergence theorem,

0 ≤
∫

Ω

〈A∇w,∇w〉+

∫
Ω

bw2 − λ
∫

Ω

mw2

and so ∫
Ω

(
〈A∇w,∇w〉+ bw2 − λmw2

)∫
Ω
w2

≥ 0

and thus, since w →
∫

Ω
bw2 and w →

∫
Ω
mw2 are continuous on H1

0 (Ω) , the same inequality
holds for any w ∈ H1

0 (Ω) \ {0} . Thus µm,b (λ) ≥ 0. If µm,b (λ) = 0, then there exists φ ∈ H1
0 (Ω)

such that

(4.33)


−div (A∇φ) + bφ = λmφ in Ω,

φ = 0 on ∂Ω,

φ > 0 in Ω.

Then ,
∫

Ω
(〈A∇φ,∇u〉+ bφu) = λ

∫
Ω
mφu and also

∫
Ω

(〈A∇u,∇φ〉+ buφ) = λ
∫

Ω
mφu +

∫
Ω
hφ.

Then
∫

Ω
hφ = 0, which is impossible. �

Remark 4.5. From Proposition 3.4, it follows immediately that:
i) If m ≥ 0 in Ω, then {λ ∈ R : µm,b (λ) > 0 } = (−∞, λ1 (m, b)) .

ii) If m ≤ 0 in Ω, then {λ ∈ R : µm,b (λ) > 0 } = (λ−1 (m) ,∞) .
iii) m+ 6≡ 0 and m− 6≡ 0, then {λ ∈ R : µm,b (λ) > 0 } = (λ−1 (m) , λ1 (m, b)) .

Theorem 4.3. If m+ 6≡ 0, then

(4.34) λ1 (m, b) = inf
{w∈H1

0 (Ω):
∫
Ω
mw2>0}

∫
Ω

(
〈A∇w,∇w〉+ bw2

)∫
Ω
mw2

or, equivalently,

(4.35) λ1 (m, b) = inf
w∈Wm

∫
Ω

(
〈A∇w,∇w〉+ bw2

)
,

where Wm :=
{
w ∈ H1

0 (Ω) :
∫

Ω
mw2 = 1

}
.

Proof. For λ > 0, from (3.14), we have µm,b (λ) = 0 if and only if

inf
{w∈H1

0 (Ω):
∫
Ω
mw2>0}

∫
Ω

(
〈A∇w,∇w〉+ (b− λm)w2

)∫
Ω
mw2

= 0,

i.e., if and only if (4.34) holds. �



Principal eigenvalue problems with singular potential and bounded weight 121

Remark 4.6. From proposition 4.3, it is clear that the following three facts follow:
i) Let bi : Ω → R, i = 1, 2, be nonnegative functions such that d2

Ωbi ∈ L∞ (Ω) , i = 1, 2 and let
m ∈ L∞ (Ω) \ {0} be such that m+ 6≡ 0. If b1 ≤ b2 in Ω, then λ1 (m, b1) ≤ λ1 (m, b2) .

ii) Let b : Ω→ R, i = 1, 2, be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , and let mi : Ω→

R, i = 1, 2, be functions in L∞ (Ω) such that m+
1 6≡ 0. If m1 ≤ m2 in Ω, then λ1 (m1, b) ≥

λ1 (m2, b) .
iii) Let Ω1, Ω2 be bounded domains in Rn such that Ω1 ⊂ Ω2, let m ∈ L∞ (Ω2) be such that

m+ 6≡ 0 in Ω1 and let b : Ω2 → R be a nonnegative function such that d2
Ω2
b ∈ L∞ (Ω2) . Let

λ1 (m, b,Ωi) , i = 1, 2, be the positive principal eigenvalue of the operator L0 + b on Ωi with
weight function m. Then

{
w ∈ H1

0 (Ω1) :
∫

Ω1
mw2 = 1

}
⊂
{
w ∈ H1

0 (Ω2) :
∫

Ω2
mw2 = 1

}
and so λ1 (m, b,Ω2) ≤ λ1 (m, b,Ω1) .

For δ > 0, we set Aδ := {x ∈ Ω : dist (x, ∂Ω) < δ} .

Remark 4.7. Let b : Ω→ R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , and let δ > 0 be such

that Ωδ 6= ∅. If v ∈ H1 (Ω) ∩ C
(
Ω
)

and L0v + bv ≥ 0 in D′ (Aδ) , v ≥ 0 on ∂Aδ then v ≥ 0 in
Aδ. Indeed, we have v− ∈ H1 (Aδ) ∩ C

(
Ω
)

and v− = 0 on ∂Aδ, and so v− ∈ H1
0 (Aδ) . Let {ϕj}j∈N

be a sequence in C∞c (Aδ) such that {ϕj}j∈N converges to v− in H1
0 (Aδ) . By replacing {ϕj}j∈N by{√

ϕ2
j + 1

j2 −
1
j

}
j∈N

if necessary, we can assume that each ϕj is nonnegative. Then∫
Aδ

(〈
A∇v−,∇v−

〉
+ b

(
v−
)2)

= lim
j→∞

∫
Aδ

(〈
A∇v−,∇ϕj

〉
+ bv−ϕj

)
= − lim

j→∞

∫
Ω

(〈A∇v,∇ϕj〉+ bvϕj) ≤ 0

and so v− = 0 on Aδ.

In the case when 0 ≤ b ∈ L∞ (Ω) (and m such that m ∈ L∞ (Ω) and m+ 6≡ 0), it is well
known that any positive eigenfunction u associated to λ1 (b,m) satisfies u ≈ dΩ in Ω (because
u ∈ C1

(
Ω
)

and ∂u
∂ν < 0 on ∂Ω, see e.g., [5], Proposition 1.6 and the Remark immediately before

it). Let us mention that, if we require only that b ≥ 0 and d2
Ωb ∈ L∞ (Ω) , the assertion that

u ≈ dΩ in Ω may not hold, as the following example shows:

Example 4.1. Let γ1 > 1 and let ϕ1 be a principal eigenfunction for the problem without weight
−∆ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω, ϕ1 > 0 in Ω. A computation shows that −∆ (ϕγ1) = γλ1ϕ

γ
1 −

γ (γ − 1)ϕγ−2
1 |∇ϕ1|2 , i.e., −∆ (ϕγ1) + bϕγ1 = γλ1ϕ

γ
1 in Ω, where b := γ (γ − 1)ϕ−2

1 |∇ϕ1|2 , and,
since ϕ1 ≈ dΩ in Ω and |∇ϕ1| ∈ L∞ (Ω) , we have b ≥ 0 and d2

Ωb ∈ L∞ (Ω) . It is easy to see that
ϕγ1 ∈ H1

0 (Ω) and that ϕγ1 satisfies, in weak sense, −∆ (ϕγ1) + bϕγ1 = γλ1ϕ
γ
1 in Ω, ϕγ1 = 0 on ∂Ω, and

so ϕγ1 is a principal eigenfunction corresponding to the potential b and the weight m = 1, and clearly
ϕγ1 6≈ dΩ in Ω.

In order to prove the next theorem, we need the following elementary lemma:

Lemma 4.3. For δ > 0 such that Ωδ 6= ∅, we have

(4.36) {x ∈ Ω : dist (x, ∂Ω) = δ} ⊂ Ω δ
2
.

Proof. If x ∈ Ω and dist (x, ∂Ω) = δ, then dist
(
z, ∂Ω δ

2

)
= δ

2 for any z ∈ ∂Ω δ
2
, and so there exists

pz ∈ ∂Ω such that |z − pz| = δ
2 . Now,

|x− z| = |x− pz − (z − pz)| ≥ |x− pz| − |z − pz| = |x− pz| −
δ

2
≥ δ − δ

2
=
δ

2
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then, since z ∈ ∂Ω δ
2

was arbitrary, we conclude that dist
(
x, ∂Ω δ

2

)
≥ δ

2 . Thus (4.36) holds. �

Theorem 4.4. Let b : Ω → R be a nonnegative function such that d2
Ωb ∈ L∞ (Ω) , let m ∈ L∞ (Ω)

such that m 6≡ 0 in Ω, and let λ ∈ R. If u ∈ H1
0 (Ω) is a weak solution of the problem

(4.37)


−div (A∇u) + bu = λmu in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

then:
i) There exists a positive constant c1 such that u ≤ c1dΩ in Ω.

ii) u ∈ C
(
Ω
)
.

iii) If, in addition, dβΩb ∈ L∞ (Ω) for some β < 2, then for any γ > 1 there exists a positive
constant c2 such that u ≥ c2dγΩ in Ω.

Proof. Since λm = −λ (−m) it is enough to consider the case when λ > 0.Notice that, for k > 0,
the equation L0u+ bu = λmu can be written as L0u+ (b+ λk)u = λ (m+ k)u and that b+ λk
satisfies the condition on b assumed in the statements of the lemma. Therefore, by taking k
positive and large enough, we can assume that m ≥ 1.

We first prove i) and ii). For δ > 0 such that Ωδ 6= ∅ let bδ := bχΩδ . Then 0 ≤ bδ ∈ L∞ (Ω)
and, in weak sense, L0u+ bδu ≤ L0u+ bu = λmu in Ω. Thus

(4.38) 0 < u ≤ (L0 + bδ)
−1

(λmu) in Ω.

If 2∗ = ∞ (i.e., if n = 1, 2) then (L0 + bδ)
−1

(λmu) ∈ Lr (Ω) for any r ∈ [1,∞) (because
λmu ∈ L2 (Ω)) and thus, by (4.38), u ∈ Lr (Ω) for any r ∈ [1,∞) . In particular, λmu ∈ Lr (Ω)

for some r > n which implies (L0 + bδ)
−1

(λmu) ∈ C1
(
Ω
)
. Then, by (4.38), u is continuous

at ∂Ω and, since by Proposition 3.1 i), u ∈ C (Ω) we conclude that u ∈ C
(
Ω
)
. Also, since

(L0 + bδ)
−1

(λmu) ∈ C1
(
Ω
)

and (L0 + bδ)
−1

(λmu) = 0 on ∂Ω, there exists a positive constant
c such that (L0 + bδ)

−1
(λmu) ≤ cdΩ in Ω, and then, by (4.38), u ≤ cdΩ in Ω.

In the case when 2∗ < ∞, since u ∈ H1
0 (Ω) we have u ∈ L2∗ (Ω) . Thus λmu ∈ L2∗ (Ω) and

then (L0 + bδ)
−1

(λmu) ∈ L2∗∗ (Ω) (when 2∗∗ < ∞) and thus, from (4.38), u ∈ L2∗∗ (Ω) and so
λmu ∈ L2∗∗ (Ω) . By iterating this procedure, we get that λmu ∈ Lr (Ω) for some r > n. Then
(L0 + bδ)

−1
(λmu) ∈ C1

(
Ω
)

and thus, as above, we get that u ∈ C
(
Ω
)

and that there exists a
positive constant c such that u ≤ cdΩ in Ω. Thus i) and ii) hold.

To prove iii), assume that dβΩb ∈ L∞ (Ω) for some β < 2. Notice that if γ > r then (since Ω is
bounded) there exists a constant cr,s such that dγΩ ≤ cs,rdrΩ in Ω. Therefore it is enough to prove
iii) when 1 < γ < 2. Consider the solution ψ ∈ ∩1≤q<∞W

2,q (Ω) ∩W 1,q
0 (Ω) of the problem{L0ψ =1 in Ω,

ψ =0 on ∂Ω.

The regularity of ψ and the Hopf’s boundary lemma give that there exist δ > 0 and a constant
c3 > 0 such that

(4.39) 〈A∇ψ,∇ψ〉 ≥ c23 in Aδ.

From this fact, the strong maximum principle and the fact that ψ ∈ C1
(
Ω
)
, it follows that, for

some positive constants c4 and c5,

(4.40) c4dΩ < ψ ≤ c5dΩ in Ω.
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Let c6 ∈ (0,∞) be such that dβΩb < c6 in Ω. A computation shows that

L0 (ψγ) + bψγ = γψγ−1 − γ (γ − 1)ψγ−2 〈A∇ψ,∇ψ〉+ bψγ in Ω,

and so, for δ as above,

L0 (ψγ) + bψγ ≤ γcγ−1
5 dγ−1

Ω − γ (γ − 1) cγ−2
3 c25d

γ−2
Ω + c6c

γ
5d
−β+γ
Ω

= dγ−2
Ω

(
−γ (γ − 1) cγ−2

3 c25 + γcγ−1
3 dΩ + c6c

γ
5d
−β+2
Ω

)
and thus, by diminishing δ if necessary,

L0 (ψγ) + bψγ ≤ 0 in Aδ.

Then, for any ε > 0,

{L0 (u− εψγ) + b (u− εψγ) ≥ 0 in D′ (Aδ) .

Let us show that, for ε small enough, u − εψγ ≥ 0 on ∂Aδ. Indeed, clearly u − εψγ = 0 on ∂Ω.
Also, by Lemma 2.2 iii), there exists a positive constant c7 such that

(4.41) u ≥ c7dΩ δ
2

in Ω δ
2
.

Thus, since u ∈ C
(
Ω
)

we have

(4.42) u ≥ c7
δ

2
in Ω δ

2
.

Then, by (4.42), (4.36) and (4.40), for ε small enough (perhaps depending on δ) we have

u− εψγ ≥ c6
δ

2
− εcγ5d

γ
Ω ≥ c6

δ

2
− εcγ5δγ

= δ
(c6

2
− εcγ5δγ−1

)
> 0 in {x ∈ Ω : dist (x, ∂Ω) = δ} .

Then, by Remark 4.7,
u− εψγ ≥ 0 in Aδ.

On the other hand, since ψ ≤ M := c5diam (Ω) in Ω, by diminishing ε if necessary we have
u − εψγ ≥ c6

δ
2 − εM

γ > 0 in Ω δ
2

and so u − εψγ > 0 in Ωδ). Then u − εψγ ≥ 0 in Ω and the
Proposition follows from (4.40). �

Let us to introduce some convenient notation. We set

B :=
{
b : Ω→ R : d2

Ωb ∈ L∞ (Ω)
}

and for b ∈ B, we set ‖b‖B :=
∥∥d2

Ωb
∥∥
∞ and B+ := {b ∈ B : b ≥ 0} . Thus (B, ‖b‖B) is a Banach

space and B+ is its positive cone. We set also P := {m ∈ L∞ (Ω) : m+ 6≡ 0} .
For m ∈ P and b ∈ B+, we will write λ1 (m, b) for the (unique) positive principal eigen-

value of problem (4.33), and we will denote by φm,b the (unique) associated positive principal
eigenfunction, normalized by ‖φm,b‖2 = 1.

Lemma 4.4. Let (m, b) ∈ P×B+ and let {(mj , bj)}j∈N be a sequence inP×B+ such that {(mj , bj)}j∈N
converges to (m, b) inP×B (withP endowed with the topology of the norm of L∞ (Ω) and B+ endowed
with the topology of the norm ‖.‖B). Then:

i) {λ1 (mj , bj)}j∈N is bounded.
ii)
{
φmj ,bj

}
j∈N is bounded in H1

0 (Ω) .
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Proof. To see i), consider an arbitrarily chosen function z ∈ H1
0 (Ω) ∩ L∞ (Ω) such that z > 0

a.e. in Ω. Since {bj}j∈N converges to b in B, there exists a positive constant c such that bj ≤ cd−2
Ω

a.e. in Ω for any j ∈ N and, by Lemma 2.1,
∫

Ω
d−2

Ω z2 <∞. Then, for j ∈ N,

(4.43)
∫

Ω

bjz
2 ≤ c′′

with c′′ a positive constant independent of j. Also, taking into account that {mj}j∈N con-
verges to m in L∞ (Ω) and that z2 ∈ L1 (Ω) , the Lebesgue’s dominated convergence gives
limj→∞

∫
Ω
mjz

2 =
∫

Ω
mz2 > 0. Then there exists a positive constant c′′′ such that, for any

j ∈ N,

(4.44)
∫

Ω

mjz
2 ≥ c′′′

then i) follows from (4.43), (4.44) and from the fact that

λ1 (mj , bj) ≤

∫
Ω

[
|∇z|2 + bjz

2
]

∫
Ω
mjz2

.

To prove ii), observe that∫
Ω

∣∣∇φmj ,bj ∣∣2 = λ1 (mj , bj)

∫
Ω

mjφ
2
mj ,bj −

∫
Ω

bjφ
2
mj ,bj ≤ λ1 (mj , bj)

∫
Ω

mjφ
2
mj ,bj ,

and so, since {mj}j∈N is bounded in L∞ (Ω) , ii) follows from i). �

Theorem 4.5. i) The map (m, b)→ λ1 (m, b) is continuous from P × B+ into R.
ii) The map (m, b)→ φm,b is continuous from P × B+ into H1

0 (Ω) .

Proof. To prove the lemma, it is enough to see that if (m, b) ∈ P × B+ and if {(mj , bj)}j∈N
is a sequence in P × B+ which converges to (m, b) in P × B, then there exists a subsequence
{(mjk , bjk)}k∈N such that limk→∞ λ1 (mjk , bjk) = λ1 (m, b) and limk→∞

∥∥∥φmjk ,bjk − φm,b∥∥∥H1
0 (Ω)

=

0. To do it, consider a pair (m, b) ∈ P × B+ and a sequence {(mj , bj)}j∈N ⊂ P × B+ such that
limj→∞ (mj ,j ) = (m, b) with convergence in P × B. From Lemma 4.4 i) and ii), after pass to a
subsequence if necessary (still denoted by {(mj , bj)}j∈N, we can assume that {λ1 (mj , bj)}j∈N
converges to some µ ∈ [0,∞) , and that there exists φ ∈H1

0 (Ω) such that
{
φmj ,bj

}
j∈N converges

to φ strongly in L2 (Ω) and a.e. in Ω, and
{
∇φmj ,bj

}
j∈N converges weakly to∇φ in L2 (Ω,Rn) .

In particular, this implies ‖φ‖2 = 1, and then φ is nonnegative (because each φmj ,uj is positive)
and nonidentically zero in Ω.

Let us show that
{
φmj ,bj

}
j∈N converges to φ strongly in H1

0 (Ω) . For j, k ∈ N we have, in
weak sense,

L0

(
φmj ,bj − φmk,bk

)
= −

(
bjφmj ,bj − bkφmk,bk

)
(4.45)

+ λ1 (mj , bj)mjφmj ,bj − λ1 (mk, bk)mkφmk,bk in Ω,

φmj ,bj − φmk,bk = 0 on ∂Ω,

and so, by taking φmj ,bj − φmk,bk as a test function in (4.45), we get∫
Ω

〈
A∇

(
φmj ,bj − φmk,bk

)
,
(
φmj ,bj − φmk,bk

)〉
= Ij,k + IIj,k,
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where

Ij,k := −
∫

Ω

(
bjφmj ,bj − bkφmk,bk

) (
φmj ,bj − φmk,bk

)
,

IIj,k :=

∫
Ω

(
λ1 (mj , bj)mjφmj ,bj − λ1 (mk, bk)mkφmk,bk

) (
φmj ,bj − φmk,bk

)
.

Now, bj = βjd
−2
Ωj in Ω, with βj ∈ L∞ (Ω) such that, for some positive constant c and for all

j ∈ N, ‖βj‖∞ ≤ c. Thus

Ij,k = −
∫

Ω

(bj − bk)φmj ,bj
(
φmj ,bj − φmk,bk

)
−
∫

Ω

bk
(
φmj ,bj − φmk,bk

)2(4.46)

≤
∫

Ω

φmj ,bj |bj − bk|
∣∣φmj ,bj − φmk,bk ∣∣

=

∫
Ω

φmj ,bj
dΩ

d2
Ω |bj − bk|

∣∣∣∣φmj ,bj − φmk,bkdΩ

∣∣∣∣
=

∫
Ω

φmj ,bj
dΩ

|βj − βk|
∣∣∣∣φmj ,uj − φmk,ukdΩ

∣∣∣∣ .
Then, by the Hardy’s inequality,

Ij,k ≤ c ‖βj − βk‖∞

∥∥∥∥φmj ,bj − φmk,bkdΩ

∥∥∥∥
2

∥∥∥∥φmj ,bjdΩ

∥∥∥∥
2

≤ c′ ‖βj − βk‖∞
∥∥φmj ,bj − φmk,bk∥∥H1

0 (Ω)

∥∥φmj ,bj∥∥H1
0 (Ω)

≤ c′′ε (j, k)
∥∥φmj ,bj − φmk,bk∥∥H1

0 (Ω)
,

where ε (j, k) := ‖βj − βk‖∞ and where c, c′ and c′′ are positive constants independent of j and
k. Therefore

(4.47) Ij,k ≤ c′′ε (j, k)
∥∥φmj ,bj − φmk,bk∥∥H1

0 (Ω)
.

On the other hand,

IIj,k ≤
∫

Ω

∣∣(λ1 (mj , bj)− λ1 (mk, bk))mjφmj ,bj
(
φmj ,bj − φmk,bk

)∣∣(4.48)

+

∫
Ω

∣∣λ1 (mk, bk) (mj −mk)φmj ,bj
(
φmj ,bj − φmk,bk

)∣∣
+

∫
Ω

λ1 (mk, bk)mk

(
φmj ,bj − φmk,bk

) (
φmj ,bj − φmk,bk

)
≤ c′δ (j, k)

∥∥φmj ,bj − φmk,bk∥∥H1
0 (Ω)

,

where c′ is a positive constant independent of j and k and

δ (j, k) :=
∥∥(λ1 (mj , bj)− λ1 (mk, bk))mjφmj ,bj

∥∥
2

+
∥∥λ1 (mk, bk) (mj −mk)φmj ,bj

∥∥
2

+
∥∥λ1 (mk, bk)mk

(
φmj ,bj − φmk,bk

)∥∥
2
.

Now, limj,k→∞ (λ1 (mj , bj)− λ1 (mk, bk)) = 0, {mj}j∈N is bounded inL∞ (Ω) , and
{
φmj ,bj

}
j∈N

converges to φ in L2 (Ω) . Then

lim
j,k→∞

∥∥(λ1 (mj , bj)− λ1 (mk, bk))mjφmj ,uj
∥∥

2
= 0.



126 Tomas Godoy

Also, {λ1 (mk, bk)}k∈N is bounded, limj→∞mj = mwith convergence inL∞ (Ω) , and
{
φmj ,uj

}
j∈N

is bounded in L2 (Ω) . Thus

lim
j,k→∞

∥∥λ1 (mk, bk) (mj −mk)φmj ,bj
∥∥

2
= 0,

and, since {λ1 (mk, bk)}k∈N and {mk}k∈N are bounded in R andL∞ (Ω) respectively, and
{
φmj ,bj

}
j∈N

converges to φ in L2 (Ω) , we have

lim
j,k→∞

∥∥λ1 (mk, bk)mk

(
φmj ,bj − φmk,bk

)∥∥
2

= 0.

Then limj,k→∞ δ (j, k) = 0 and, since {bj}j∈N converges to b inB,we have also that limj,k→∞ ε (j, k) =

0. Now, ∥∥φmj ,bj − φmk,bk∥∥2

H1
0 (Ω)

= Ij,k + IIj,k

≤ cεj,k
∥∥φmj ,bj − φmk,bk∥∥H1

0 (Ω)
+ c′δj,k

∥∥φmj ,bj − φmk,bk∥∥H1
0 (Ω)

and so
lim

j,k→∞

∥∥φmj ,bj − φmk,bk∥∥H1
0 (Ω)

= 0.

Thus
{
φmj ,bj

}
j∈N converges in H1

0 (Ω) to some φ̃. Since φmj ,bj converges a.e. in Ω to φ, we

conclude that φ̃ = φ. Therefore,

(4.49)
{
φmj ,bj

}
j∈N converges to φ in H1

0 (Ω) .

To complete the proof of the lemma, it only remains to see that µ = λ1 (m, b) and φ = φm,b. For
ϕ ∈ H1

0 (Ω) and j ∈ N, we have

(4.50)
∫

Ω

(〈
A∇φmj ,bj ,∇ϕ

〉
+ bjφmj ,bjϕ

)
= λ1 (mj , bj)

∫
Ω

mjφmj ,bjϕ,

and, by (4.49), limj→∞
∫

Ω

〈
∇φmj ,bj ,∇ϕ

〉
=
∫

Ω
〈∇φ,∇ϕ〉 . Also, bjφmj ,bjϕ converges to bφϕ a.e.

in Ω and, by Lemma 4.4 i), we have

|bjφϕ| ≤ cd−2
Ω φ |ϕ|

with c a positive constant independent of j and, by Lemma 2.1, d−2
Ω φ |ϕ| ∈ L1 (Ω) . Thus, by the

Lebesgue’s dominated convergence theorem,

lim
j→∞

∫
Ω

bjφmj ,bjϕ =

∫
Ω

bφϕ.

Also, since limj→∞ λ1 (mj , bj) = µ, limj→∞mj = mwith convergence inL∞ (Ω) , and limj→∞ φmj ,bj =

φ with convergence in H1
0 (Ω) , we have

lim
j→∞

λ1 (mj , bj)

∫
Ω

mjφmj ,bjϕ = µ

∫
Ω

mφϕ.

Then, from (4.50), ∫
Ω

(〈A∇φ,∇ϕ〉+ bφϕ) = µ

∫
Ω

mφϕ

and so µ = λ1 (m, b) and φ = φm,b. �
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ABSTRACT. We consider real univariate polynomials with all roots real. Such a polynomial with c sign changes and
p sign preservations in the sequence of its coefficients has c positive and p negative roots counted with multiplicity.
Suppose that all moduli of roots are distinct; we consider them as ordered on the positive half-axis. We ask the question:
If the positions of the sign changes are known, what can the positions of the moduli of negative roots be? We prove
several new results which show how far from trivial the answer to this question is.
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1. INTRODUCTION

In the present paper, we study a problem related to a generalization of Descartes’ rule of
signs formulated in [5]. About this rule see [1], [2], [3], [4], [7], [9], [10], [16] or [17]. For its
tropical analog see [6]. A related problem concerning polynomials in one variable is considered
in [15]. A degree d real polynomial Q :=

∑d
j=0 ajx

j is hyperbolic if all its roots are real. Suppose
that all coefficients aj are non-zero. For such a polynomial, Descartes’ rule of signs implies that
it has c positive and p negative roots (counted with multiplicity, so c + p = d), where c is the
number of sign changes and p the number of sign preservations in the sequence of coefficients
of Q. The signs of these coefficients define the sign pattern (sgn(ad), sgn(ad−1), . . ., sgn(a0)). We
deal mainly with monic polynomials in which case sign patterns begin with a +. In this case,
we can use instead of and equivalently to a sign pattern the corresponding change-preservation
pattern which is a d-vector and (by some abuse of notation) whose jth component equals c if
ad−j+1ad−j < 0 and p if ad−j+1ad−j > 0. One can consider also the moduli of the roots of
a hyperbolic polynomial defining a given sign pattern. We study the generic case when all
moduli are distinct. A natural question to ask is:

Question 1.1. When these moduli are ordered on the real positive half-axis, at which positions can the
moduli of the negative roots be?

Descartes’ rule of signs provides no hint for the answer to this question. In the present
paper, we recall known and we introduce new results in this direction which show how far
from trivial the situation is.

Notation 1.1. (1) We denote by 0 < α1 < · · · < αc the positive and by 0 < γ1 < · · · < γp the
moduli of the negative roots of a hyperbolic polynomial. We explain the notation of the order of
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these moduli on the positive half-axis by an example. Suppose that d = 6, c = 2, p = 4 and

α1 < γ1 < γ2 < α2 < γ3 < γ4 .

Then for the order of moduli we write PNNPNN , i. e. the letters P and N denote the relative
positions of the moduli of the positive and negative roots.

(2) A sign pattern beginning with i1 signs + followed by i2 signs − followed by i3 signs + etc. is
denoted by Σi1,i2,i3,....

In what follows, we consider for each given degree d couples of the form (change-preservation
pattern, order of moduli) (called couples for short). Such a couple is compatible with Descartes’
rule of signs if the number of components c (resp. p) of the change-preservation pattern is equal
to the number of components P (resp. N ) of the order of moduli. A couple is called realizable
if there exists a polynomial defining the change-preservation pattern of the couple and whose
moduli of roots define the given order.

Remark 1.1. For fixed d and c, there are
(
d
c

)
change-preservation patterns and

(
d
c

)
orders of moduli

hence
(
d
c

)2
compatible couples. Thus for a given degree d, the total number of compatible couples is

(1.1) χ(d) :=

d∑
c=0

(
d

c

)2

=

d∑
c=0

(
d

c

)(
d

d− c

)
=

(
2d

d

)
.

This is the coefficient of xd in the polynomial (x + 1)d(x + 1)d = (x + 1)2d. Using Stirling’s formula
n! ∼

√
2πn(n/e)n, one concludes that χ(d) ∼ 22d/

√
πd.

Example 1.1. (1) For d = 1, the only compatible couples are (c, P ) and (p, N). They are realiz-
able respectively by the polynomials x− 1 and x+ 1.

(2) For d = 2, there are
(
4
2

)
= 6 compatible couples. Out of these, the couples (cp, PN) and

(pc, NP ) are not realizable. Indeed, for a hyperbolic polynomial x2−ux−v (resp. x2+ux−v),
u > 0, v > 0, one has the order of moduli NP (resp. PN ). The remaining 4 couples are
realizable. To see this one can consider the family of polynomials x2 + a1x + a0. In the plane
of the variables (a1, a0) the domain of hyperbolic polynomials is the one below the parabola
P : a0 = a21/4. We list the realizable couples and the open domains in which they are realizable:

(cc, PP ) {a1 < 0, 0 < a0 < a21/4} , (pp, NN) {a1 > 0, 0 < a0 < a21/4} ,

(cp, NP ) {a1 < 0, a0 < 0} , (pc, PN) {a1 > 0, a0 < 0} .

We can make Question 1.1 more precise:

Question 1.2. For a given degree d, which compatible couples are realizable?

The above example answers this question for d = 1 and 2. For d = 3, 4 and 5, the exhaustive
answer is given in Section 3.

Remark 1.2. There exist two commuting involutions acting on the set of degree d polynomials with
non-vanishing coefficients. These are

im : Q(x) 7→ (−1)dQ(−x) and ir : Q(x) 7→ xdQ(1/x)/Q(0) .

The role of the factors (−1)d and 1/Q(0) is to preserve the set of monic polynomials. When acting on a
couple, the involution im changes the components c to p, P to N and vice versa while the involution ir
reads the vectors of a given couple from the right. A given couple is realizable or not simultaneously with
all other couples from its orbit under the action of im and ir. An orbit consists of four or two couples.
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Notation 1.2. For a sign pattern σ, we denote by k∗(σ) the number of orders of moduli with which σ
is realizable. For an order of moduli Ω, we denote by l∗(Ω) the number of sign patterns realizable with
Ω. For a given d, we denote by r̃∗(d) the ratio between the numbers of realizable and of all compatible
couples.

Example 1.2. (1) For the sign pattern Σ3,3,1 one has k∗(Σ3,3,1) = 6. Indeed, consider the polyno-
mial

(x− 1)(x+ 1)4(x− b)
=x6 + (3− b)x5 + (2− 3b)x4 + (−2b− 2)x3 + (2b− 3)x2 + (3b− 1)x+ b .

For b > 0 sufficiently small, it defines the sign pattern Σ3,3,1. One can perturb its 4-fold root
at −1 to obtain polynomials with the same sign pattern and with exactly k moduli of negative
roots which are > 1 and 4 − k moduli which are < 1, where k = 0, 1, . . ., 4; these moduli are
close to 1. On the other hand, the only other realizable order with this sign pattern is

γ1 < α1 < α2 < γ2 < γ3 < γ4 , i. e. NPPNNN ,

see [11, Theorems 3 and 4], which makes a total of 6 orders of moduli realizable with Σ3,3,1.
(2) For m ≥ 1, n ≥ 1, one has k∗(Σm,n) = 2 min(m,n) − 1, see [11, Theorem 1 and Corol-

lary 1].

Our first result is the following theorem:

Theorem 1.1. (1) For d ≥ 1, the only orders realizable with all compatible change-preservation
patterns are PP . . . P and NN . . .N . The corresponding change-preservation patterns are
cc . . . c and pp . . . p.

(2) For any d ≥ 1, there exist sign patterns realizable with all compatible orders. For d ≥ 5, there
exist sign patterns with c = 2 which are realizable with all

(
d
2

)
compatible orders.

(3) There exists no sign pattern σ such that k∗(σ) = 2.
(4) The only sign patterns σ with k∗(σ) = 3 are the ones of the form Σ2,d−1, ir(Σ2,d−1), im(Σ2,d−1)

and irim(Σ2,d−1).
(5) For any ` ∈ N∗, there exist a degree d and an order Ω such that l∗(Ω) = `.

The theorem is proved in Section 4. In Section 2, we recall some notions and known re-
sults and we continue the formulation of the new ones. In particular, for each of the 6 classes
of non-realizable couples introduced in Section 2, we compare the number of couples which
it contains with the number of all compatible couples, see (1.1). In all 6 cases, the limit of
their ratio as d → ∞ is 0 (see part (2) of Remarks 2.3, part (2) of Remarks 2.4, Remark 2.5,
Remark 2.6, Remark 2.7 and part (4) of Theorem 2.3). On the other hand, when considering
the cases d = 3, 4 and 5 in Section 3, we arrive to the conclusion that it is plausible to have
limd→∞ r̃∗(d) = 0 (see Notation 1.2). This however cannot be explained by the presence of
the 6 classes of non-realizable couples, so for the moment it is not evident what the exhaustive
answer to Question 1.2 should be.

We finish this section by a result of geometric nature. Consider the space of coefficients
Oad−1 · · · a0 ∼= Rd. The hyperbolicity domain is the set of values of (ad−1, . . . , a0) for which the
corresponding monic polynomialQ is hyperbolic. The resultantR := Res(Q(x), (−1)dQ(−x), x)
vanishes exactly whenQ has two opposite roots or a root at 0. When the coefficients aj are real,
the polynomials Q(x) and Q(−x) have a root in common either when Q(0) = 0 or when Q has
two opposite real non-zero roots or when Q has a pair of purely imaginary roots.

Example 1.3. For d = 1, 2 and 3, one obtains R = −2a0, R = 4a0a
2
1 and R = −8a0(a2a1 − a0)2,

respectively.
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We denote by [.] the integer part and we set

Q1 := x[d/2] + ad−2x
[d/2]−1 + ad−4x

[d/2]−2 + · · · ,

Q2 := ad−1x
[(d−1)/2] + ad−3x

[(d−1)/2]−1 + ad−5x
[(d−1)/2]−2 + · · · and

R0 := Res(Q1(x), Q2(x), x)) .

Theorem 1.2. (1) One has R = (−1)[d/2]+12d−[(d+1)/2]+1a0R
2
0.

(2) The quantity R0 is an irreducible polynomial in the variables aj .

The theorem is proved in Section 5. Properties of the set {R0 = 0} and its pictures for d ≤ 4
can be found in [8].

2. CANONICAL SIGN PATTERNS, RIGID ORDERS OF MODULI AND FURTHER RESULTS

Definition 2.1. For a given change-preservation pattern, the corresponding canonical order is obtained
by reading the pattern from the right and by replacing each component c (resp. p) by P (resp. by N ).
E. g., the canonical order corresponding to the pattern ccpcp is NPNPP . This definition allows to
define the canonical order corresponding to each given sign pattern beginning with +.

Each sign or change-preservation pattern is realizable with its canonical order, see [12, Propo-
sition 1].

Definition 2.2. (1) A sign pattern (or equivalently a change-preservation pattern) realizable only
with its corresponding canonical order is called canonical.

(2) If all monic hyperbolic polynomials having a given order of moduli define one and the same sign
pattern, then the order is called rigid.

Remark 2.3. (1) It is shown in [13] that canonical are exactly these sign patterns which have no
four consecutive signs equal to

(+,+,−,−, ) , (−,−,+,+) , (+,−,−,+) or (−,+,+,−) .

Hence canonical are these change-preservation patterns having no isolated sign changes and no
isolated sign preservations, i. e. having no three consecutive components cpc or pcp.

(2) In the proof of Proposition 10 in [13], the set of all canonical change-preservation patterns is
represented as union of four subsets, namely of patterns beginning with a single p or c, patterns
ending by a single p or c, patterns both beginning and ending by a single p or c and patterns
whose two first letters are equal and whose last two letters are also equal. For d ≥ 100, the
number of patterns in each of these sets can be majorized by 2 · [d/2] · 2d−[0.26d]−1. Hence the
number of all canonical sign-preservation patterns is ≤ τ(d) := 8 · [d/2] · 2d−[0.26d]−1 and for
large d, the number of all non-realizable couples with canonical sign-preservation patterns is

≤ τ(d)

d∑
c=0

(
d

c

)
= 8 · [d/2] · 22d−[0.26d]−1 < 22d/

√
πd ∼ χ(d) ,

see Remark 1.1; we majorize one of the factors
(
d
c

)
in (1.1) by τ(d).

Remark 2.4. (1) It is proved in [14] that rigid are the orders of moduli PP . . . P ,NN . . .N (defin-
ing the change-preservation patterns cc . . . c and pp . . . p, the two corresponding couples are
realizable by any polynomials having distinct positive or distinct negative roots) and also

(2.2) PN := PNPNPN . . . , NP := NPNPNP . . . .
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Each of the latter two orders (we call them standard) defines, depending on the parity of d, one
of the sign patterns

(2.3) σ+ := (+,+,−,−,+,+,−,−, . . .) or σ− := (+,−,−,+,+,−,−,+,+, . . .) .
(2) For each fixed degree d, there are

(
d

[d/2]

)
compatible couples with the order PN and

(
d

[d/2]

)
with the order NP , see (2.2). Hence there are 2

(
d

[d/2]

)
− 2 compatible couples in which the

order of moduli is rigid (more exactly standard) and which are not realizable, and one has
limd→∞(2

(
d

[d/2]

)
− 2)/χ(d) = 0, see (1.1) and use Stirling’s formula.

Definition 2.3. We call superposition of two standard orders of moduli Ω1 and Ω2 any order obtained
as follows. One inserts the components of Ω2 at any places between the components of Ω1 or in front of
the first or after the last component of Ω1 by preserving their relative order. Example: the order

PN̄NPP̄NN̄P̄ N̄ is superposition of PNPN and NPNPN

(we overline in this superposition the moduli coming from Ω2; in this example there is more than one
way to attribute the moduli of roots in the superposition as coming from Ω1 or Ω2; the superposition of
two standard orders is not uniquely defined).

The following proposition explains how one can obtain new examples of non-realizable cou-
ples on the basis of standard orders.

Proposition 2.1. Each superposition of two standard orders is realizable only with sign patterns of the
form

(+,+, ?,−, ?,+, ?,−, . . .) , (+, ?,−, ?,+, ?,−, . . .) or (+,−, ?,+, ?,−, ?,+, . . .)
which are the “products” of sign patterns σ+σ+, σ+σ− and σ−σ−.

Proof. Indeed, suppose that in the superposition of standard orders, the roots coming from
the order Ωi are roots of a polynomial Ti, i = 1, 2. Then in the product T1T2 every second
coefficient, the leading coefficient and the constant term are sums of products of a coefficient of
T1 and a coefficient of T2 either all with opposite or all with same signs, so the corresponding
components of the “products” of sign patterns are well-defined. �

Remark 2.5. The number of letters N in a standard order is equal to the number of letters P or differs
from the latter by 1. Hence in the superposition of two standard orders the modulus of this difference is
majorized by 2. Besides, not more than [d/2] of the signs of coefficients are not determined by the order
of moduli, so the number of non-realizable couples corresponding to superpositions of standard orders is
less than

2

((
d

[d/2]

)
+

(
d

[d/2]− 1

)
+

(
d

[d/2]− 2

))
· 2[d/2] < 6

(
d

[d/2]

)
· 2(d+1)/2

which is ∼ 12 · 23d/2/
√
πd (we use Stirling’s formula here). At the same time χ(d) ∼ 22d/

√
πd (see

Remark 1.1).

There exist other situations in which the order of moduli defines the signs of part of the
coefficients of the polynomial.

Example 2.4. Consider for d = 8k + 2, k ∈ N∗, and for c = 2 the order of moduli

Ω : γ1 < · · · < γ4k < α1 < α2 < γ4k+1 < · · · < γ8k .

It is realizable only with sign patterns having two sign changes. Denote by U1 and U2 monic hyperbolic
degree 4k + 1 polynomials with roots

−γ1 , −γ2 , . . . , −γ2k , −γ4k+1 , −γ4k+2 , . . . , −γ6k , α1
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and

−γ2k+1 , −γ2k+2 , . . . , −γ4k , −γ6k+1 , −γ6k+2 , . . . , −γ8k , α2

respectively. Hence they define sign patterns of the form Σmi,ni
, i = 1, 2. According to [11, Theo-

rem 1], if ni < mi, then the polynomial Ui has ≤ 2ni − 2 moduli of negative roots which are ≤ αi; if
ni > mi, then it has ≤ 2mi − 2 moduli of negative roots which are ≥ αi. Hence one has ni ≥ k + 1
and mi ≥ k + 1. This implies that the first k + 1 and the last k + 1 coefficients of the product U1U2 are
positive, i. e. the order of moduli Ω is not realizable with sign patterns Σj1,j2,j3 which do not satisfy the
conditions j1 ≥ k + 1 and j3 ≥ k + 1.

Remark 2.6. There are
(
d
2

)2
compatible couples with c = 2 hence less than

(
d
2

)2
non-realizable couples

concerned by Example 2.4. Using the involution im (see Remark 1.2), one can give as many such
examples with c = d− 2. One has limd→∞

(
d
2

)2
/χ(d) = 0, see (1.1).

The proposition and theorem that follow describe other situations in which certain compat-
ible couples are not realizable.

Proposition 2.2. Suppose that d is even, that the leading monomial and the constant term are positive
(hence c is even), that all coefficients of odd powers are negative and that c < d. Then there is no modulus
of a negative root in any of the intervals (0, α1), (α2, α3), . . ., (αc−2, αc−1), (αc,∞).

Proof. Indeed, for a monic hyperbolic polynomial Q satisfying these conditions one has Q(t) >
0, if t belongs to any of the mentioned intervals. As all odd monomials are with negative
coefficients, one has also Q(−t) > Q(t) from which the proposition follows. �

Remark 2.7. For d even, the number of sign patterns as defined in Proposition 2.2 is≤ 2d/2 (half
of the signs of coefficients are fixed), so if d is large, then the number of such non-realizable
couples is

≤ 2d/2
d∑

c=0

(
d

c

)
= 23d/2 < χ(d) ∼ 22d/

√
πd ,

see Remark 1.1.

Theorem 2.3. (1) Suppose that

(2.4) c ≤ p and αc < γp, αc−1 < γp−1 , . . . , α1 < γp−c+1 .

Then ad−1 > 0. Hence a couple with ad−1 < 0 and order satisfying conditions (2.4) is not
realizable.

(2) For fixed d, the number of orders of moduli satisfying conditions (2.4) is

(2.5) T c
d :=

(
d

c

)
− C0

(
d− 1

c− 1

)
− C1

(
d− 3

c− 2

)
− C2

(
d− 5

c− 3

)
− C3

(
d− 7

c− 4

)
− · · · ,

where Ck :=
(
2k
k

)
/(k + 1) is the k−th Catalan number.

(3) One has

(2.6) T c
d =

(
d

c

)(
1− c

d− c+ 1

)
=

(
d

c

)
d− 2c+ 1

d− c+ 1
.

(4) For the number ν(d) of non-realizable couples satisfying condition (2.4) and with ad−1 < 0 one
has limd→∞ ν(d)/χ(d) = 0, see (1.1).
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Remark 2.8. The quantity T c
d

(
d−1
c

)
(resp.

(
d
c

)(
d−1
c

)
) is the number of couples in which the change-

preservation pattern begins with p and the order satisfies condition (2.4) (resp. of all compatible couples
in which the change-preservation pattern begins with p). For c fixed, one has limd→∞ T c

d/
(
d
c

)
= 1.

Indeed, this is the ratio of two degree c polynomials in d whose leading coefficients equal 1/c!.

Proof of Theorem 2.3. Part (1). Indeed, ad−1 = γ1 + · · ·+ γp − α1 − · · · − αc > 0.
Part (2). The first term in the right-hand side of (2.5) is the number of all orders with c

components equal to P . The second term is the number of orders beginning with P ; they do
not satisfy conditions (2.4). The third (resp. the fourth) term is the number of orders beginning
withNPP (resp. withNPNPP orNNPPP ). The fifth term is the number of orders beginning
with NPNPNPP , NNPPNPP , NPNNPPP , NNPNPPP or NNNPPPP etc.

That is, for k ≥ 2, the kth term is the number of orders among whose first 2k − 1 compo-
nents there are k letters P and which are not included in one of the previous terms (excluding
the initial

(
d
c

)
). In an equivalent way, the kth term contains orders among whose 2k − 2 first

components there are exactly k− 1 letters P and for s ≤ 2k− 2, among their s first letters there
are not less letters N than letters P . Hence this is the number of lattice paths in the plane with
possible steps (1, 1) and (1,−1) going from (0, 0) to (2k− 2, 0) which do not descend below the
abscissa-axis. The number of such paths is Ck−1.

Part (3). Formula (2.6) can be proved by induction on d. For d = 1 and 2 and for c ≤ d, it is
to be checked directly. Suppose that it is true for d ≤ d0. Then for d = d0 + 1, one applies to
any binomial coefficient in the formula the well-known equality

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
. Thus

T c
d = T c

d−1 + T c−1
d−1 =

(
d−1
c

) (
1− c

d−c

)
+
(
d−1
c−1
) (

1− c−1
d−c+1

)
=

(
d
c

) (
1− c

d−c+1

)
,

where the rightmost equality is to be checked straightforwardly.
Part (4). Suppose that d = 2k, k ∈ N∗. Set

hk,m :=
k(k − 1) · · · (k −m+ 1)

(k + 1)(k + 2) · · · (k +m)
, so

(
2k

k −m

)
=

(
2k

k

)
hk,m .

For k fixed, the sequence hk,m is decreasing in m; one has hk,0 = 1. The sum
∑d

c=0

(
d
c

)2
of all

compatible couples equals b̃ :=
(
2k
k

)2
(1 + 2

∑k
m=1 h

2
k,m). The number ν(d) = ν(2k) is bounded

by

k∑
c=0

(
2k

c

)
T c
2k =

k∑
m=0

(
2k

k −m

)
T k−m
2k =

(
2k

k

)2 k∑
m=0

2m+ 1

k +m+ 1
h2k,m

(we remind that the orders satisfying condition (2.4) are defined under the assumption that
c ≤ p). Fix s ∈ (0, 1). Then

g1 :=

[sk]∑
m=0

2m+ 1

k +m+ 1
h2k,m ≤

2[sk] + 1

k + [sk] + 1

[sk]∑
m=0

h2k,m .

It is clear that g1 <
2[sk]+1
k+[sk]+1

∑k
m=0 h

2
k,m, so

(2.7)
(

2k

k

)2

g1 <
2[sk] + 1

k + [sk] + 1
b̃ .
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For large values of k and for m ≥ [sk] + 1, the quantity hk,m is majorized by

(k − [sk/2]) · · · (k −m+ 1)

(k + [sk/2] + 1) · · · (k +m)
≤
(

k − [sk/2]

k + [sk/2] + 1

)[sk]−[sk/2](
k − [sk] + 1

k + [sk]

)m−[sk]−1

.

Set u := k−[sk/2]
k+[sk/2]+1 and v := k−[sk]+1

k+[sk] . Hence

g2 :=
∑k

m=[sk]+1 h
2
k,m < u[sk]−[sk/2]

∑∞
m=[sk]+1 v

m−[sk]−1

= u[sk]−[sk/2]

1−v = u[sk]−[sk/2] k+[sk]
2[sk]+1 .

The latter quantity tends to 0 as k →∞, therefore

lim
k→∞

(
2k

k

)2

g2/b̃ = 0.

As

g3 :=

k∑
m=[sk]+1

2m+ 1

k +m+ 1
h2k,m < g2,

one obtains

(2.8) lim
k→∞

(
2k

k

)2

g3/b̃ = 0 .

One has ν(d) ≤
(
2k
k

)2
(g1+g3). The coefficient of b̃ in (2.7) can be made smaller than any positive

number by choosing s small enough. Therefore inequality (2.7) and equality (2.8) imply part
(4) of Theorem 2.3 for d even.

If d = 2k + 1, k ∈ N∗, then one can prove part (4) in much the same way, so we point out
only some technical differences. One sets

hk,m :=
k(k − 1) · · · (k −m+ 1)

(k + 2)(k + 3) · · · (k +m+ 1)
, so

(
2k + 1

k −m

)
=

(
2k + 1

k

)
hk,m ,

and b̃ = 2
(
2k+1

k

)2
(1 +

∑k
m=1 h

2
k,m). The definitions of the quantities g1, g2 and g3 are the same,

but with respect to the new formula for hk,m. One sets u := k−[sk/2]
k+[sk/2]+2 and v := k−[sk]+1

k+[sk]+1 .
Inequality (2.7) and equality (2.8) remain the same. �

3. REALIZABLE COUPLES FOR d = 3, 4 AND 5

We give the exhaustive answer to Question 1.2 for d = 3, 4 and 5; for d = 1 and 2, this answer
is given by Example 1.1; one finds that r̃∗(1) = 1 and r̃∗(2) = 2/3, see Notation 1.2. It is clear
from part (1) of Theorem 1.1 that r̃∗(1) < 1 for d > 1. We make use of the involution im, see
Remark 1.2, to consider only the cases with ad−1 > 0. For d = 3, we give the list of sign patterns
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and (non)-realizable orders in the following table:

sign pattern realizable orders non− realizable orders

(+,+,+,−) PNN NPN , NNP

(+,+,−,−) PNN , NPN , NNP

(+,+,+,+) NNN

(+,+,−,+) PPN NPP , PNP .

Thus r̃∗(3) = 3/5. The (non)-realizability of these cases can be justified using the results in [11].
For d = 4, we list the sign patterns by the value of c:

c sign pattern realizable orders non− realizable orders

0 (+,+,+,+,+) NNNN

1 (+,+,+,+,−) PNNN NPNN, NNPN, NNNP

(+,+,+,−,−) PNNN, NPNN, NNPN NNNP

(+,+,−,−,−) NPNN, NNPN, NNNP PNNN

2 (+,+,−,+,+) NPPN NNPP, NPNP, PNNP
PNPN , PPNN

(+,+,−,−,+) PNPN, NPPN, NPNP, NNPP
PPNN, PNNP

(+,+,+,−,+) PPNN PNPN, NPPN, NPNP
PNNP, NNPP

3 (+,+,−,+,−) PPPN NPPP, PNPP, PPNP

Hence r̃∗(4) = 3/7. The (non)-realizability of the cases can be proved using the results in [11].
The involution im transforms the sign pattern with c = 3 into (+,−,−,−,−). We illustrate the
realizability of the cases with the sign pattern (+,+,−,−,+) by examples:

PNPN (x+ 1.3)(x− 1.2)(x+ 1.1)(x− 1) =
x4 + 0.2x3 − 2.65x2 − 0.266x+ 1.716

NPPN (x+ 2)(x− 1)(x− 0.9)(x+ 0.8) =
x4 + 0.9x3 − 2.82x2 − 0.52x+ 1.44

PPNN (x+ 2)(x+ 1.1)(x− 1)(x− 0.1) =
x4 + 2x3 − 1.11x2 − 2.11x+ 0.22

PNNP (x− 2)(x+ 1.9)(x+ 1)(x− 0.8) =
x4 + 0.1x3 − 4.62x2 − 0.68x+ 3.04 .
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For d = 5, we show for each sign pattern only the number of realizable and the total number
of orders compatible with the sign pattern and in some cases the realizable orders. To justify
the tables below, one can use the results in [11] and [13]. There are the following canonical sign
patterns:

c = 0 (+,+,+,+,+,+) 1/1 c = 1 (+,+,+,+,+,−) 1/5

c = 2 (+,+,−,+,+,+) 1/10 c = 3 (+,+,−,+,−,−) 1/10
(+,+,+,−,+,+) 1/10 (+,+,+,−,+,−) 1/10
(+,+,+,+,−,+) 1/10

c = 4 (+,+,−,+,−,+) 1/5.

The remaining sign patterns are:

c = 1 (+,+,+,+,−,−) PNNNN , 3/5
NPNNN , NNPNN

(+,+,+,−,−,−) 5/5
(+,+,−,−,−,−) NNPNN , 3/5

NNNPN , NNNNP

c = 2 (+,+,−,−,−,+) PPNNN , 5/10
PNPNN , PNNPN ,
PNNNP , NPPNN

(+,+,+,−,−,+) PPNNN , PNPNN , 4/10
PNNPN , NPPNN

(+,+,−,−,+,+) 10/10

c = 3 (+,+,−,+,+,−) 5/10
(+,+,−,−,+,−) 4/10.

Therefore r̃∗(5) = 47/126. The two latter sign patterns (with c = 3) are obtained from two of
the sign patterns with c = 2 via the involution imir.

The realizability of the sign pattern (+,+,−,−,+,+) with all possible orders results from

(x+ 1)3(x− 1)2 = x5 + x4 − 2x3 − 2x2 + x+ 1 .

Indeed, by perturbing the triple root at −1 and the double root at 1, one obtains polynomials
with the same sign pattern and with any order of the moduli of the roots, see the proof of part
(2) of Theorem 1.1.

Remark 3.9. We obtained the following sequence for the values of the quantity r̃∗(d): 1, 2/3, 3/5, 3/7,
47/126, . . .. One could conjecture that the sequence is decreasing. For the sequence of the ratios of two
consecutive terms, one gets

2/3 = 0.66 . . . , 9/10 = 0.9 , 5/7 = 0.71 . . . , 47/54 = 0.87 . . . .

It seems that the even and the odd terms form two adjacent sequences and that limd→∞ r̃∗(d) = 0+.

4. PROOF OF THEOREM 1.1

Part (1). As already mentioned, for the orders PP . . . P and NN . . .N , the only change-
preservation patterns compatible with them are cc . . . c and pp . . . p respectively and the corre-
sponding couples are realizable.
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Suppose that for given c > 0 and p > 0, the order of moduli Ω is realizable with all compat-
ible change-preservation patterns. Then, in particular, it is realizable with the sign patterns σ′

and σ′′, where σ′ has all its c sign changes at the beginning followed by its p sign preservations
and vice-versa for σ′′. However, the sign patterns σ′ and σ′′ are canonical hence realizable only
with their respective canonical orders Ω′ and Ω′′, see Definition 2.2. As Ω′ 6= Ω′′, the order Ω is
not realizable with both σ′ and σ′′.

Part (2). For d ≥ 1, the all-pluses sign pattern is realizable with its only compatible order
N . . .N . To prove the rest of part (2) for d ≥ 5, we construct sign patterns with c = 2 which are
realizable with all compatible orders. Consider the polynomial

(x+ 1)d−2(x− 1)2 =
(∑d−2

k=0

(
d−2
k

)
xk
)

(x2 − 2x+ 1)

=
∑d

k=0 hkx
k , hk :=

(
d−2
k

)
− 2
(
d−2
k−1
)

+
(
d−2
k−2
)
.

It has two sign changes (so its sign pattern is of the form Σi1,i2,i3 ). To understand in which
positions they are, one observes that

hk =
(d− 2)!

k!(d− k)!
(4k2 − 4dk + d(d− 1)) ,

so hk = 0 if and only if k = k± := (d±
√
d)/2. If d is not an exact square, then the sign changes

occur between the powers xs± and xs±+1, where s± < k± < s±+1. If d is an exact square, then
the coefficients of xk± are 0.

Suppose that d is not an exact square. One can perturb the roots of the polynomial by keep-
ing the sign pattern the same. If d is an exact square, then one can perturb them so that all
coefficients become non-zero. One can choose such a perturbation for any possible order of
the moduli of roots which proves part (2). One can observe that as k+ − k− =

√
d, for d ≥ 5,

there are at least two consecutive negative coefficients (i. e. i2 ≥ 2) and the sign pattern is not
canonical.

We prove part (3) of the theorem by induction on d. For d = 1, 2 and 3, the claim is to
be checked straightforwardly, see Example 1.1 and Section 3. Suppose that d ≥ 4 and that
σ is not canonical. Represent σ in the form (σd, σ

†, σ0), where σd and σ0 are its first and last
components. Then at least one of the sign patterns (σd, σ

†) and (σ†, σ0) contains an isolated
sign change or an isolated sign preservation. Suppose that this is (σd, σ

†). Then (σd, σ
†) is not

canonical and hence is realizable by at least three orders by polynomials Pj . This means that σ
is also realizable by at least three orders defined by the roots of the polynomials Pj(x)(x ± ε),
where ε > 0 is small enough and the sign is + (resp. −) if the last two components of σ are
equal (resp. are different).

Part (4) is also proved by induction on d. For d ≤ 4, it is to be checked directly. Suppose that
d ≥ 5. If neither of the sign patterns (σd, σ

†) and (σ†, σ0) contains an isolated sign change or
sign preservation, then this is the case of σ as well, so σ is canonical and k∗(σ) = 1 – a contra-
diction. Hence at least one of these sign patterns is not canonical. Without loss of generality, we
suppose that this is (σd, σ

†) (otherwise we apply the involution ir). Hence k∗((σd, σ†)) ≥ 3, so
k∗((σd, σ

†)) = 3, otherwise similarly to the proof of part (3) we obtain that k∗(σ) > 3. Applying
if necessary the involution im, we assume that (σd, σ

†) = Σ2,d−2 or Σd−2,2. In the first case,
one has σ = Σ2,d−1. Indeed, if σ = Σ2,d−2,1, then k∗(σ) > 3, see [11, Theorems 3 and 4]. In
the second case, either σ = Σd−2,3 and k∗(σ) = 5 (see [11, Theorem 1]) or σ = Σd−2,2,1 and
k∗(σ) = 4 (see [11, Theorems 3 and 4]).

Part (5). For d even, the order Ω := PNN . . .N is realizable exactly with the sign patterns
Σm,n, m+ n = d+ 1, n < m, see [11, Theorem 1], so `∗(Ω) = d/2.
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5. PROOF OF THEOREM 1.2

Proof of part (1). A) For a vector-row v of length 2d, we denote by v` the vector-row obtained
from v by shifting v by ` positions to the right (the rightmost ` positions are then lost and
the leftmost ` positions are filled with zeros). We represent R as determinant of the Sylvester
2d × 2d-matrix of the polynomials Q(x) and (−1)dQ(−x) whose first and (d + 1)st row equal
respectively

u := ( 1 ad−1 ad−2 ad−3 ad−4 . . . a1 a0 0 . . . 0 )

and

w := ( 1 −ad−1 ad−2 −ad−3 ad−4 . . . (−1)d−1a1 (−1)da0 0 . . . 0 ) ;

its second and (d+ 2)nd rows equal u1 and w1, its third and (d+ 3)rd rows equal u2 and w2 etc.
For d = 2 and d = 3, we obtain the determinants

∣∣∣∣∣∣∣∣
1 a1 a0 0
0 1 a1 a0
1 −a1 a0 0
0 1 −a1 a0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

1 a2 a1 a0 0 0
0 1 a2 a1 a0 0
0 0 1 a2 a1 a0
1 −a2 a1 −a0 0 0
0 1 −a2 a1 −a0 0
0 0 1 −a2 a1 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

B) For j = 1, . . ., d, we add the (j + d)th row to the jth row. Hence the first row of the
determinant is now

g := ( 2 0 2ad−2 0 2ad−4 . . . 2ad−2[d/2] 0 0 . . . 0 )

and the next d−1 rows equal gj , j = 1, . . ., d−1. After this one subtracts the kth row multiplied
by 1/2 from the (d+ k)th one, k = 1, . . ., d. Hence, the (d+ 1)st row equals

h := ( 0 −ad−1 0 −ad−3 0 . . . −ad−2[(d+1)/2]+1 0 0 . . . 0 )

and the next d− 1 rows are of the form hj , j = 1, . . ., d− 1. For d = 2 and d = 3, this gives

∣∣∣∣∣∣∣∣
2 0 2a0 0
0 2 0 a0
0 −a1 0 0
0 0 −a1 0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 2a1 0 0 0
0 2 0 2a1 0 0
0 0 2 0 2a1 0
0 −a2 0 −a0 0 0
0 0 −a2 0 −a0 0
0 0 0 −a2 0 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

C) We permute the rows of the determinant (which does not change the determinant up to
a sign). In the first d − [d/2] positions we place the first, third, fifth etc. rows, in the next [d/2]
positions the (d + 2)nd, (d + 4)th, (d + 6)th etc. rows, in the next [d/2] positions the second,
fourth, sixth etc. rows and in the last d − [d/2] positions the (d + 1)st, (d + 3)rd, (d + 5)th etc.
rows. After this permutation the first d rows have non-zero entries only in the odd and the last
d rows have non-zero entries only in the even columns.

Then we permute the columns of the determinant placing the odd columns in the first d
positions and the even columns in the last d positions by preserving the relative order of the



140 Vladimir Petrov Kostov

even and odd columns. For d = 2 and d = 3, the result is

∣∣∣∣∣∣∣∣
2 2a0 0 0
0 −a1 0 0
0 0 2 2a0
0 0 −a1 0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

2 2a1 0 0 0 0
0 2 2a1 0 0 0
0 −a2 −a0 0 0 0
0 0 0 2 2a1 0
0 0 0 −a2 −a0 0
0 0 0 0 −a2 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

For any d ≥ 2, the determinant is now block-diagonal, with two diagonal blocks d × d. For
d = 4, these blocks are∣∣∣∣∣∣∣∣

2 2a2 2a0 0
0 2 2a2 2a0
0 −a3 −a1 0
0 0 −a3 −a1

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
2 2a2 2a0 0
0 2 2a2 2a0

−a3 −a1 0 0
0 −a3 −a1 0

∣∣∣∣∣∣∣∣ .
The first and the (d+ 1)st rows equal respectively

g̃ := ( 2 2ad−2 2ad−4 . . . 2ad−2[d/2] 0 0 . . . 0 )

and g̃d. The first d− [d/2] rows equal g̃, g̃1, g̃2, . . ., g̃d−[d/2]−1 while the rows with indices d+ 1,
d+ 2, . . ., d+ [d/2] are g̃d, g̃d+1, . . ., g̃d+[d/2]−1. The (d− [d/2] + 1)st row equals

h̃ := ( 0 −ad−1 −ad−3 −ad−5 . . . −ad−2[(d+1)/2]+1 0 0 . . . 0 ) .

The next [d/2]− 1 rows are h̃j , j = 1, . . ., [d/2]− 1. The last d− [d/2] rows equal h̃k, k = d− 1,
. . ., 2d− [d/2]− 2.

The total number of transpositions of rows and columns is even, so the sign of the determi-
nant does not change.

D) One develops the determinant thus obtained w.r.t. its first and then w.r.t. its last column.
For d even (resp. for d odd), this yields −4a0∆ (resp. −2a0∆), where the (2d − 2) × (2d − 2)-
determinant ∆ is block-diagonal, with two diagonal blocks (d − 1) × (d − 1) each of which is
the Sylvester matrix of the polynomials 2Q1 and −Q2. This implies part (1) of the theorem. �

Proof of part (2). One can assign quasi-homogeneous weights to the variables aj as follows: 0
to ad−1, 1 to ad−2 and ad−3, 2 to ad−4 and ad−5, 3 to ad−6 and ad−7 etc., in accordance with the
fact that ad−2, ad−4, . . . and ad−3/ad−1, ad−5/ad−1, . . . are up to a sign elementary symmetric
polynomials of the roots ofQ1 andQ2. HenceR0 is a quasi-homogeneous polynomial of weight
d0 := [(d − 1)/2][d/2]. For d even (resp. for d odd), it contains monomials αa[(d−1)/2]0 a

[d/2]
d−1 and

βa
[d/2]
1 , α 6= 0 6= β (resp. γa[(d−1)/2]1 a

[d/2]
d−1 and δa[d/2]0 , γ 6= 0 6= δ), all other monomials containing

factors ak0 and as1 only with k < [(d−1)/2] and s < [d/2] (resp. with k < [d/2] and s < [(d−1)/2]).
Hence R0 cannot be the product of two quasi-homogeneous polynomials of weights b1 and b2,
0 < b1, b2 < d0. �
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